
FAST CALCULATION OF N-GRAM-BASED PHRASE
SIMILARITY

by

Zichu Ai

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

December 2017

© Copyright by Zichu Ai, 2017



To dear professors who helped me with this project.

To my friends who provided help when I needed.

To my parents who are always supportive.

ii



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Phrase Similarity Calculation . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Document Structure . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Word and Phrase Relatedness Using Google N-Gram Corpus . . . . . 6

2.2 N-gram indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Efficient Integer Sequence Compression . . . . . . . . . . . . . . . . . 10

Chapter 3 High Performance Computational Framework for Phrase
Relatedness based on TrWP . . . . . . . . . . . . . . . . 12

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Mapping N-Grams to Phrase Indexes . . . . . . . . . . . . . . . . . . 15

3.4 Mapping Target Phrase Indexes to Frequencies . . . . . . . . . . . . . 17

3.5 Mapping Target Phrase Indexes to Phrase Contexts . . . . . . . . . . 18

3.6 Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Overall design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iii



Chapter 4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Evaluation of the gram-indexer . . . . . . . . . . . . . . . . . . . . . 39

4.3 Evaluation of the gram-frequency-indexer . . . . . . . . . . . . . . . . 41

4.4 Evaluation of the gram-context-indexer . . . . . . . . . . . . . . . . . 42

4.5 Evaluation of Overall Performance in Speed . . . . . . . . . . . . . . 44

Chapter 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Appendix A Framework Description . . . . . . . . . . . . . . . . . . . . 55

iv



List of Tables

1.1 Examples of target phrase and phrase context . . . . . . . . . . 3

1.2 Example of binary vector . . . . . . . . . . . . . . . . . . . . . 4

2.1 Existing N-gram indexing solutions . . . . . . . . . . . . . . . . 7

2.2 Baseline of encoding approaches classified by data alignment . 10

3.1 Components of key collection, with the number of n-grams and
size of file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Number of context arrays and file size represented as integer
sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Word-aligned codecs . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Comparison of different indexing approaches in the aspect of
construction time, retrieval time per query and memory cost in
GB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Comparison of retrieval times and size of different gram-frequency-
indexer implementation. . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Comparison of different bit-aligned methods and differential cod-
ing approaches applied on gram-context-indexer . . . . . . . . . 42

4.4 Comparison of different differential coding approaches with most
compact encoding method applied on gram-context-indexer . . 42

4.5 Comparison of different byte-aligned methods and differential
coding approaches applied on gram-context-indexer . . . . . . . 43

4.6 Comparison of different byte-aligned methods and differential
coding approaches applied on gram-context-indexer . . . . . . . 45

4.7 Comparison of different intersection methods with uncompressed
context arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.8 Comparisons of framework with most compact storage and fastest
calculation speed. . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



List of Figures

3.1 Overview of structure and workflow . . . . . . . . . . . . . . . 13

3.2 Pre-processing for generating required data set . . . . . . . . . 14

3.3 Tiered gram-indexer . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Expected memory cost of gram-frquency-indexer . . . . . . . . 18

3.5 Expected 32-bit aligned tiered gram-frequency-indexer . . . . . 18

3.6 Structure of gram-context-indexer . . . . . . . . . . . . . . . . 20

3.7 Coding scheme of using SIMD operation pshufb (Variant-G8IU ) 26

3.8 Coding scheme of Variant-Byte . . . . . . . . . . . . . . . . . 28

3.9 Coding Scheme of Variant-GB . . . . . . . . . . . . . . . . . . 28

3.10 Coding Scheme of Variant-G8IU . . . . . . . . . . . . . . . . 29

3.11 Binary Packing with 6-bit frames and 8-bit frames . . . . . . . 30

3.12 Patched Frame of Reference . . . . . . . . . . . . . . . . . . . 31

3.13 Scalar intersection of monotonic integer sequence . . . . . . . 33

3.14 Overall structure of phrase relatedness calculation framework . 38

4.1 Tiered gram-indexer with sequential secondary key . . . . . . 40

4.2 Distribution of context lengths . . . . . . . . . . . . . . . . . . 43

4.3 Length distribution of evaluated context arrays . . . . . . . . 45

4.4 Break-down in time with different combinations of each module 47

A.1 Framework UML . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.2 Calling & Invoking Sequence . . . . . . . . . . . . . . . . . . . 57

vi



Abstract

Text Relatedness Using Word and Phrase Relatedness Method (TrWP) is a text re-

latedness measure that computes semantic similarity between words and phrases uti-

lizing aggregated statistics from the Google Web-1T corpus. The phrase similarity

computation in TrWP has significant overhead in time and memory cost, making

TrWP inefficient for practical scenario with massive queries. This thesis presents

an in-memory computational framework for TrWP, which optimizes the calculation

process by efficient indexing and compact storage using perfect hashing, parallelism,

quantization and variable length encoding. Using the Google Web 1T 5-gram corpus,

we demonstrate that the fastest computational speed of our framework reaches 4098

queries per second.

vii



Acknowledgements

First, I’d really like to show special thanks to my supervisors: Dr. Norbert Zeh and

Dr. Abidalrahaman Mohammad for offering me the chance of knowing what research

is and what attitude should I have for challenges, and most importantly, patience.

And I’d like to show thanks to Dr. Evangelos Milios for his useful comments and Dr.

Vlado Keselj for being my reader. And I’d like to show special thanks to Jie Mei,

without whose help I would not have been able to learn how to write a good paper

and manage large projects. I’d like to show thanks to my friend Xiang Zhang, Yang

Wang and Sitong Chen for their inputs when I needed.

Thanks to my mom and dad for offering me the chance of having this kind of

unique experience.

viii



Chapter 1

Introduction

1.1 Problem Statement

Text relatedness is an important research topic in the field of Natural Language

Processing (NLP) that is useful for many tasks, including plagiarism detection [31],

document classification [7], and machine translation [24]. Text relatedness algorithms

work by capturing semantic information from text corpora. The availability of large

corpora, like Google-Web 1T [6], benefits text relatedness algorithm by providing more

semantic information. The Google Trigram Method (GTM) takes the advantage of

the Google Web-1T corpus, and it has been demonstrated as an effective algorithm for

calculating word relatedness and text relatedness [20]. Text relatedness using word

and phrase relatedness (TrWP) [28] improves GTM by recognizing that semantic

units that capture related concepts may be represented by phrases composed of two

or more words. Phrases (of one or two words) sharing similar semantic information

are recognized by their occurrences in the same contexts. The introduction of phrase

contexts improves the accuracy of phrase relatedness calculations expressed by the

Pearson correlation, but it requires a large amount of memory to manipulate and

analyze those phrase contexts, so storage space is a problem. A document similarity

calculation may trigger hundreds of phrase similarity queries, so the query speed

is also crucial. Plenty of work has been done based on efficient file-system based

approaches [18, 8]. However, disk I/O overhead restricts the retrieval speed of these

methods, thus making TrWP impractical for calculating the text relatedness for large

text data sets and answering queries on the fly.

In recent years, in-memory indexing has been demonstrated to be an effective

approach for large text corpora [25, 16, 17]. However, in-memory indexing leads to

conflicting objectives: storing large text corpora in memory requires them to be rep-

resented compactly while fast queries require the support of efficient data structures,

which incur a certain space overhead. In the case of TrWP, the high memory cost of

1



2

the context array is the main challenge to be addressed. Thus our primary objective

is to design efficient data structures to support fast calculation and a very important

secondary objective is to make the data structure as compact as possible.

1.2 Phrase Similarity Calculation

TrWP extends GTM and shows improvement in accuracy of calculating phrase relat-

edness. In general, TrWP achieves the improvement by introducing bigram-bigram

relatedness, and unigram-bigram relatedness during phrase similarity calculation and

this similarity introduction are performed by using the notion of phrase context, which

is fully discussed in this section later.

Phrase similarity is calculated based on the phrase context generated from Google

Web-1T 5-gram corpus. Examples of n-gram contexts are shown in Table 1. Target

phrase could be either one-word or two-word. And we have three kinds of phrase

contexts: a left-context consists of two unigrams immediately before a target phrase,

a right-context consists of two unigrams right after target phrase, while a left-right

context consists of a unigram immediately before target phase and another unigram

right after target phrase. If a pair of phrase contexts share the same content but

they are correlated with different target phrase, we say we find a common phrase

context. Difference in type and frequency is acceptable. In order to clearly formalize

the working flow of TrWP, we declare a collection of abbreviations and symbols as

follows: assume we have a pair of target phrases P1 and P2. For each target phrase,

we may find a sequence of correlated phrase contexts AP1 = {C1
1 , C

2
1 , . . . C

n
1 } with

n elements and AP2 = {C1
2 , C

2
2 , . . . C

m
2 } with m elements for P1 and P2 respectively

from either trigrams or fourgrams, where C represents phrase context. We need to

extract common phrase contexts AC = {CC1, CC2 . . . CCk} by finding intersection

of AP1 and AP2 , where CC stands for common context. For example: for the trigram

”nice bachelor person” and the fourgram ”behaved as nice person”, we have target

phrases ”bachelor” and ”behaved as”. They both have context with same content

”nice person” but of different type. Since the contents of context are the same, ”nice

person” is still defined as common context. We use F1() to query the frequency of

contexts ACP1 , F2() to query the frequency of contexts in ACP2 and F () to query the

frequency of target phase.



3

Context Category Contexts in Google n-gram
rightcontext bachelor lives alone

left-right context nice bachelor person
left context good looking bachelor
right context large number of files

left-right context very large number generator
left context show someone large number

Table 1.1: Examples of target phrase and phrase context

Notion of Phrase Context. The table shows three context types, based on the position of the target
phrase in the n-gram. Words in italic font represent the context while words in normal font represent
target phrase.

First, we need to extract AP1 for P1 and AP2 for P2. Second, we perform lexical

pruning on AP1 and AP2 . Lexical pruning involves removal of some of the contexts

that satisfy certain conditions. One condition is related to the presence of stopwords

in a context: for left-contexts, those with stopword or punctuation at the left-most

position should be removed, right-contexts with stopword or punctuation at the right-

most position should be removed, and left-right contexts with stop words at both ends

should also be removed. Third, we detect common contexts AC from AP1 and AP2 .

Fourth, we perform statistical pruning on the common contexts. This means the

following: (a) For each context of ACP1 and each context of ACP2 , we collect their

frequencies; (b) Compile the frequencies of all common contexts into two arrays, one

for P1 and one for P2; (c) For each array, we calculate the strength of each common

context pair based on the following sum-ratio strategy: assume the frequency of P1

is c1, the frequency of P2 is c2, the frequency of CC correlated with P1 is cc1 and the

frequency of CC correlated with P2 is cc2, then we calculate the strength of CC as
min(

cc1
c1

,
cc2
c2

)

max(
cc1
c1

,
cc2
c2

)
× (cc1 + cc2); (d) we calculate the average value µ and standard deviation

sd of all the strengths, common context pairs with strength value exceeding µ ± sd

should be removed.

Phrase relatedness strength is obtained by combining relatedness strengths calcu-

lated from identical contexts and all contexts of the phrase pairs, which is described

as follows:

• Step 1: For each identical context pair, we calculate the ratio (minimum /

maximum) between their frequencies, and multiply it with the sum of their



4

frequencies. Then we sum the results of all k statistically pruned identical

context pairs, to obtain the relatedness strength RS, in Eq. 1:

RS(P1, P2) =
k∑

i=1

[
min(F1(CCi), F2(CCi))

max(F1(CCi), F2(CCi))
· [F1(CCi) + F2(CCi)]

]
(1.1)

where F1(CCi) retrieves the frequency value of CCi whose target phrase is P1

and F2(CCi) retrieves the frequency value of CCi whose target phrase is P2.

• Step 2: We compute the cosine similarity between all the non-pruned(identical

and non-identical) phrase contexts of P1 and P2 using two boolean vectors ABP1

and ABP2 . If one context appears in AP1 but not in AP2 , corresponding element

in ABP1 will be assigned 1 while in ABP2 it will be assigned 0:

cosSim(P1, P2) =
ABP1 · ABP2

||ABP1 || · ||ABP2 ||
(1.2)

For example: if we have target phrases P1 ”bachelor” with trigrams ”former

bachelor acquaintances”,”degree of bachelor”, ”number of bachelor” and P2

”single man” with ”former single man acquaintances”, ”property of single man”,

”number of single man”. Then ABP1 and ABP2 will be described as follows:

former .. acquaintances degree of number of property of
ABP1 1 1 1 0
ABP2 1 0 1 1

Table 1.2: Example of binary vector

• Step 3: We combine the relatedness strength and cosine similarity generated

from the context arrays, defined as RSCOS:

RSCOS(P1, P2) = RS(P1, P2) · cosSim(P1, P2) (1.3)

• Step 4: We define the normalized phrase relatedness ranging from 0 to 1 as

the NGD [9] normalization of RSCOS, where N stands for the total number of

web documents used in Google-n-gram corpus:



5

NGD(RSCOS(P1, P2)) = e
{−2·max(log F (P1),logF (P2))−log(RSCOS(P1,P2))

logN−min(logF (P1),logF (P2))
}

(1.4)

where F() retrieves the frequency of queried target phrase.

1.3 Contributions

• We demonstrate that an in-memory representation of unigram and bigram con-

texts can be used to speed up the computation of phrase similarities.

• We implement a computational framework with careful engineering, integrated

with perfect hashing, fast differential coding, variable length encoding of differ-

ent schemes. And we provide a space-efficient representation of context arrays

to guarantee that our framework fits in memory.

• We evaluate parallel methods based on Single instruction, multiple data (SIMD)

instructions available on modern microprocessors to speed up the calculation of

phrase relatedness.

1.4 Thesis Document Structure

The remainder of this thesis is organized as follows:

In Chapter 2, we review the relevant literature.

In Chapter 3, we introduce algorithms applied on our high-performance frame-

work, and we provide a high-level description of it. Then we present the detailed

description of each component including an analysis of bottlenecks and a study of

indexing approaches such as perfect hashing, variable-length coding, and SIMD ac-

celeration.

In Chapter 4, we evaluate each step of our computational framework and compare

its performance with other open-source language model tool kits, like SRILM [33].

We compare different approaches for accelerating each step and we identify the most

efficient combination.

In Chapter 5, we discuss future work and offer conclusion.



Chapter 2

Related Work

In this chapter, we review the background of phrase relatedness calculation based on

n-grams. Besides, we find our work highly correlates with some well-studied topics in

information retrieval, including n-gram indexing and optimization on inverted index.

Thus we review works related to the two topics in this chapter.

2.1 Word and Phrase Relatedness Using Google N-Gram Corpus

RT (ω1, ω2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

log
µT (ω1,ω2)C

2
max

C(ω1)C(ω2)min(C(ω1),C(ω2))

−2×log
min(C(ω1),C(ω2))

Cmax

if log µT (ω1,ω2)C2
max

C(ω1)C(ω2)min(C(ω1),C(ω2))
> 1

log 1.01

−2×log
min(C(ω1),C(ω2))

Cmax

if log µT (ω1,ω2)C2
max

C(ω1)C(ω2)min(C(ω1),C(ω2))
≤ 1

0 if µT (ω1, ω2) = 0

(2.1)

GTM [19] is an unsupervised text relatedness algorithm. It uses unigrams and

trigrams from Google’s Web 1T n-gram corpus [6] for word relatedness calculation.

The relatedness is calculated by Equation 2.1, where C(ω) stands for count of unigram

ω, µT (ω1, ω2) stands for mean frequency of trigrams either start with ω1 and end with

ω2 or start with ω2 and end with ω2, Cmax represents maximum frequency among all

unigrams.

Text relatedness based on Words and Phrases (TrWP) [28] extends GTM. It in-

troduces word-phrase relatedness and phrase-phrase relatedness by taking advantage

of phrase contexts, again extracted from the Google Web 1T n-gram corpus, which

produce more accurate results but lead to high memory cost due to large data repre-

senting phrase contexts.

2.2 N-gram indexing

Generally speaking, we have three kinds of starting points that can be used for n-gram

indexing: (a) file-based indexing, (b) relational databases, and (c) specialized systems

6



7

Name Year Purpose Core DataStructure Is Code Released
SRILM 2002 Frequency Query Trie www.speech.sri.com/projects/srilm/
RandLM 2007 Machine Translation BloomFilter sourceforge.net/projects/randlm
LOUDS 2009 Language Model Compression Trie(BitVector) github.com/tarowatanabe/expgram
MPHR 2010 Frequency Query Perfect Hashing + BitVector No
BerkeleyLM 2011 Machine Translation Trie(SortedArray/HashTable) github.com/adampauls/berkeleylm
KenLM 2011 Machine Translation Trie(SortedArray/HashTable) kheaeld.com/code/kenlm
Marisa 2011 General String Dictionary Patricia Trie github.com/s-yata/marisa-trie
Elias-Fano Trie 2017 Machine Translation Trie(BitVector) github.com/jermp/tongrams

Table 2.1: Existing N-gram indexing solutions

[14]. Our baseline implementation uses file-based indexing, which is relatively slow.

And relational databases are mostly based on file-indexing as well. In memory, two

kinds of data structures are commonly used for the indexing of large text corpora,

namely hash tables and trie [25].

We do a brief review of works related to efficient in-memory n-gram indexing in

Table 2.1. In-memory indexing of n-grams for fast retrieval was first used in SRILM

[33], an n-gram language model toolkit. SRILM uses a naive word-level trie with a

hash table in each layer. Each hash table contains successive unigrams of a common

prefix as key and corresponding frequency values as satellite data. MPHR [16] indexes

the whole Google Web1T corpus based on perfect hashing and n-grams represented as

fingerprints. Fingerprints are generated from the lower m bits of hash value generated

from Murmurhash1. Although fingerprints are kept to avoid false positives caused by

perfect hashing, it cannot avoid false positives caused by Murmurhash. That is, dif-

ferent key may result in a same lower m bits in their hash value. The extension on

fingerprint length may reduce false positive ratio but will lead to more memory cost.

MPHR also realize the values of satellite data are rather scalar, so memory can be

saved by representing satellite data using rank, which is the offset of corresponding

value in an auxiliary array, named unique value array, which keeps unique values of

satellite data. The resulting framework achieves compact storage with around 3 bytes

per n-gram and 1.97 microseconds per query. BerekelyLM [25] introduced a novel in-

dexing structure based on a trie-based structure. Since a pointer-based trie leads to

high memory cost because of pointers, BerkeleyLM uses array offsets to indicate the

ids of n-grams. Vocabularies are kept in string while n-grams containing more than

one word are kept in numerical representation. N-grams sharing the same suffix are

kept in blocks of sorted arrays. Ids of unigrams are retrieved from the offset in the

1https://sites.google.com/site/murmurhash/



8

vocabulary array while the prefixes are retrieved from the array offset of n-1 grams.

Layers of the trie-based structure are represented using two kinds of alternatives:

sorted array, in which loop-up operation is performed by binary search, and hash

map, in which loop-up operation is performed by hash table look-up. BerkeleyLM

firstly introduce variable length encoding in solutions listed in Table 2.1 for compact

storage. In addition, BerkeleyLM notice queries are often highly repetitive, so it intro-

duces a key-value cache based on direct-mapping (each key has exactly one address),

so that repetitive queries can be answered by the cache rather than the trie struc-

ture. Fastest retrieval speed by BerkeleyLM achieves 0.139 microseconds per query.

KenLM [17] further extend BerkeleyLM, introducing optimizations in searching and

bitpacking. KenLM has been demonstrated to be more efficient than BerkeleyLM and

SRILM. It stores keys as their hash values using Murmurhash, guaranteeing an even

distribution of hash values like BerkeleyLM. But it performs interpolation search [26]

instead of binary search to look for corresponding unigram in each layer, thus reduc-

ing time complexity of searching corresponding element from O(log n) to O(log log n).

However, interpolation search is effective only for long sequences, it will be less com-

petitive when dealing with short sequences. Because task of machine translation

requires fast comparison of probabilities, KenLM use binning method [13] to quantize

sorted floating probability values into bins of equal size and it uses mean value of

each bin as representative, thus introducing scarification of accuracy since probabil-

ity values lies in the same bin cannot be properly compared. KenLM is fast with 0.32

microsecond per query and 14.77 byte per n-gram. LOUDS trie [35] takes advantage

of succinct coding method LOUDS [21], which represents a trie with m nodes using

2m+ 1 bits. It supports layer navigation by efficiently perform a select operation on

a bit vector. Associated values are compressed using variant-byte encoding method

with an auxiliary bit vector. The bit vector indicates the boundaries of byte values by

setting 1 to the ith position associated with the last byte in a variant-byte represented

integer, thus guaranteeing random access of each associated value by retrieving bytes

between Selecti + 1 and Selecti+1 + 1. The comprehensibility of LOUDS reaches

2.40 bits for each n-gram, however, the paper does not contain evaluation on query

speed. Recently, Giulio compared all available n-gram indexing frameworks, coming

up with a framework named Elias-Fano Trie with excellent speed-memory trade-off.



9

Elias-Fano Trie [27] implements a similar trie structure like BerkeleyLM and KenLM

but with different coding approach, which takes advantage of Elias-Fano Coding [12]

by recognizing the availability of random access on compressed data with auxiliary

data structures for efficiently answering Select1(i). It takes advantage of many opti-

mizations introduced in other works mentioned in this section, like unique value array

[16]. It reaches 1.35 microseconds per query but only requires 1.97 bytes per n-gram.

However, we notice the difference between those works and our objectives by

recognizing the following properties:

• Most existing works are evaluated under a scenario different from ours. For

example, BerkeleyLM and KenLM keep probabilities of n-gram as satellite in-

formation for machine translation scenarios. LOUDS Trie supports layer navi-

gation for the purpose of finding successors and predecessors of query. However,

key information, in our task, has different satellite information according to its

role. For example, in our implementation of TrWP, we use n-gram indexing

to unigrams, bigrams and phrase contexts, in which unigrams and bigrams are

treated as target phrases but part of bigrams can be treated as phrase contexts

as well. As a result, depending on the different interpretation of a bigram, we

associate different satellite data. Thus we do not include satellite data in the

n-gram indexing step.

• Trie structure is commonly chosen because in machine translation scenario, we

require probabilities of contexts as feature to support the decision on hypothe-

ses. However, in our case, we only care about correctly retrieving indexes.

Additional overhead brought by layer navigation and satellite data could be

ignored.

• We show no tolerance to false positives for the correctness of TrWP. Since we

expect massive queries, a small probability of false positive may result in non-

negligible false positives. Despite of [16, 25], other works mentioned in this

section treat n-grams as digital tokens by default, however, we have to consider

invalid queries. This rules out algorithms based on Bloom Filter or perfect

hashing without additional steps to catch false positives.

• Succinct data structures show high compressibility, but they are not competitive



10

Coding Family Coding Name Highlight

Bit Aligned
Elias Family • Treat data as bit stream.

• High compressibility.
• Hard to parallelize.

Golomb/Rice

Block Coding

Byte Aligned

Variant Byte
• Treat data as byte stream.
• Relatively lower compressibility.
• Easy to parallelize.

Variant Group Byte

Variant G8IU

Variant G8CU

Word Aligned
Simple-9 • Try to store as many values as possible inside one word.

• Relatively higher speed because of data alignment.
• Available when integer sequence satisfy certain distribution.

Simple-16

Simple-8b

Frame Aligned
Binary Packing

• Store data in sequences of fixed-length bit frames.PFor

AFor

Succinct Elias-Fano • Random access on compressed data.

Table 2.2: Baseline of encoding approaches classified by data alignment

in speed due to frequent bit manipulations, which conflicts with our objective

of guaranteeing high retrieval speed. To use succinct data structures in our

implementation, we would need a method that supports much faster Select

operations on a bit vector than what are currently known.

2.3 Efficient Integer Sequence Compression

As we will see in this Chapter 3.5, managing phrase contexts is quite similar to the

implementation of inverted indexes. Efficient implementation of both context arrays

and inverted indexes require compact storage and support for fast intersections of

integer sequences. Given that integer sequences are usually compactly stored as bit

arrays, we review works related on architecture-dependent compression approaches

and use of data-level parallelism to implement bitmap compression and inverted in-

dexes. These approaches often exploit SIMD, which is a collection of instructions

available on modern microprocessors. Plenty works have been done but the majority

of them are optimized based on algorithms listed in Table 2.2.

Generally speaking, the compressed representation of integer sequence consists

two components: descriptor (or selector, control pattern), which is used to describe

the length of the natural representation of integers in bits, bytes, etc, and payload (or

data), which carries the actual information of original integers. Lemire introduced

S4-BP128-D4 [23], which is a compression scheme on 32-bit integer sequences. ”D4”

stands for differential coding, which computes deltas of every four integers. ”BP”



11

stands for bit packing, which compresses integers into a sequence of fix-length bit

frames, ”128” represents the number of integers in each block and ”S4” stands for

4-integer SIMD acceleration. It achieves 0.7 CPU cycles for the decoding process of

each 32-bit integer. Another work of Lemire [22] focuses on engineering compression

of long sequence of monotonically increasing 32-bit values, reaching a performance of

1600 million integer compressions and 2600 million integer decompressions per second.

Byte-aligned coding [32] is a collection of compression schemes. Stepanov introduced

a general approach for fast decoding of grouped byte-aligned compression algorithms

(Variant-GB, Variant-G8IU and Variant-G8CU ) based on the SIMD shuffling op-

eration pshufb and the pre-construction of shuffle sequences. Trotman’s work [34]

optimizes word-aligned codings, also known as simple codings, by recognizing left-

greedy strategy is not optimal dealing with some counter-examples. That is, the

integer sequence is compiled in sequence of machine words successively, so some in-

tegers might be forced to be compiled in next machine word if it overflows remaining

space in current one. However, same data sequences with different orders show dif-

ferent compressibility. In this work, Simple-9 is optimized by performing dynamic

programming on integer sequence to find the best order. However, the paper do

not mention how to recover the original sequence if the order need to be considered.

Schlegel [30] apply SIMD acceleration to Elias γ coding by aggregating integers into

blocks and using shared length information so SIMD can be applied on data blocks.

We also find differences between works discussed above and our work: The SIMD

accelerated approaches for speeding up compression and decompression of monoton-

ically increasing 32-bit integer sequences focus on very long sequences. However,

sequence lengths in our framework vary significantly between 2-3 elements and up to

80,000 elements. The majority of context arrays in our work contains less than 5 ele-

ments, which makes SIMD based approaches not applicable or degraded. This makes

it difficult to apply SIMD techniques to speed up compression and decompression in

our framework. Simple-9 and Simple-16 [34] can only handle integer sequences with

each element not exceeding 228, but the codec is expected to handle larger integers

since many frequency values in Google n-gram corpus exceed 228.



Chapter 3

High Performance Computational Framework for Phrase

Relatedness based on TrWP

Our primary objective is to build on the approach of TrWP to calculate phrase re-

latedness and engineer a framework supporting fast queries so that TrWP can be

practical to massive queries. We do not change the fundamental method used by

TrWP to compute phrase relatedness but ensure the method is implemented using

efficient algorithms and data structure to achieve high throughput. These data struc-

tures are large, having to store information about the entire Google Web -1T corpus

for unigrams, bigrams, trigrams and fourgrams. To be able to fit these data struc-

tures in memory, an important secondary objective is to make them as compact as

possible.

3.1 Overview

As discussed in Chapter 2.2, we treat n-grams as numerical tokens and represent

phrase contexts as integer sequences. Since bigrams can be interpreted as target

phrases or phrase contexts, we expect auxiliary data structures to store satellite data.

Thus we expect three components to finish the calculation: a gram-indexer that

can convert target phases and phrase contexts into numerical tokens (we call this

process ”mapping n-grams to phrase indexes”), a gram-frequency-indexer that can

associate frequency value with target phases (we call this process ”mapping target

phrase indexes to frequencies”) and a gram-context-indexer that can associate context

arrays with corresponding target phases (we call this process ”mapping target phrase

indexes to phrase contexts”). We present the overall structure and the working flow

in Figure 3.1.

12



13

gram-indexer

mapping n-gram to indexes(token)

gram-frequency-indexer

mapping token(target phrase) to frequency

gram-context-indexer

mapping token(target phrase) to contexts

Q
u
er
y

C
on

st
ru
ct

n-grams

Processes

unigrams

bigrams

contexts

(section 3.0.3)

(section 3.0.4)

(section 3.0.5)

perfect hash

tokens

target phrase

frequencies

phrase pair

frequency array

phrase context

frequencies context arrays

target phrase

frequencies

context array

relatedness

Figure 3.1: Overview of structure and workflow

Dataset Numbers of Distinct n-grams File Size [GB]

keyset 198,820,259 2.70
unigram 4,210,035 0.05
bigram 142,683,094 2.2
context 51,927,127 0.45

Table 3.1: Components of key collection, with the number of n-grams and size of file

Dataset Numbers of context arrays File Size [GB]

trigram 2,116,038 9.9
fourgram 41,296,941 12

Table 3.2: Number of context arrays and file size represented as integer sequences
(including target phrase id, arrays of context id and frequency)



14

stemmed unigrams

stemmed bigrams

stemmed trigrams

stemmed fourgrams

tokenization Unigram Set (Keyset)

filter frequency values Frequency set

contexts contexts

merge

exclude bigrams

Context Set Bigram set

stem
m

in
g

to
low

er
ca

se

m
erg

e
n

-gra
m

freq
u

en
cy

unigrams

bigrams

trigrams

fourgrams

context arrays correlated with unigrams

context arrays correlated with bigrams

remove invalid contexts

remove invalid contexts

Figure 3.2: Pre-processing for generating required data set

3.2 Pre-processing

The size of the original Google Web-1T corpus is around 87 GB. TrWP is based

on unigrams, bigrams, trigrams, and fourgrams. This potion of corpus takes 55GB.

TrWP performs preprocessing, including transforming all n-grams into lower-case,

stemming of all n-grams and merging frequency values of n-grams that become iden-

tical as a result. After this step we expect more contexts to be correlated with one

target phrase, so we include more semantic information for each calculation and im-

proves the quality of similarity results. Then we extract all context from trigrams

and fourgrams beforehand. Ideally, Google unigrams can be treated as vocabularies

and all phrase contexts are included in Google bigrams. However, we find quite a

few unigrams that appears in Google bigrams, trigrams and fourgrams are not in-

cluded in Google unigrams. In addition, left-right-contexts, which are split by target

phrases, are less likely to be included in Google bigrams. Thus, we need to tokenize

the whole Google unigram, bigrams, trigrams and fourgrams to get vocabularies (uni-

grams) and find all possible bigrams, including bigrams as target phrases and possible

phrase contexts. Then we get a collection of n-grams which should be represented



15

by numerical ids. After pre-processing, the size of the whole dataset is shrunk to

23.17 GB. A detailed description of the data set is presented in Table 3.1 and Table

3.2. Keyset contains all unigrams, bigrams and phrase contexts, and n-gram files

contain n-grams of different lengths with corresponding frequency. We find the size

of unigrams, which serves as vocabularies, is 8,239,666, and the average length of each

unigram is 14.4 characters, so we expect that the binary representation of unigrams

won’t exceed ⌈log2(8, 239, 666)⌉ = 23bits. In addition, we have 262,028,256 unique

unigrams and bigrams, which we treat as the collection of target phrases and phrase

contexts, so we guarantee that n-grams involved in our task can be represent using

⌈log2(262, 028, 256)⌉ = 28bits, which won’t exceed the range of a 32-bit integer.

3.3 Mapping N-Grams to Phrase Indexes

N-gram indexing is applied to unigrams, bigrams and phrase contexts. As discussed

in Chapter 2, we treat n-gram indexing and the representation of correlation between

corresponding satellite data as two separate processes, so indexing is our only concern

in this step. In order to quickly locate the grams during calculation, we assign each

item of our keyset a numerical index for fast retrieval and data compression. We

apply perfect hashing to ensure constant-time look-up operations and optimized data

storage for false positive validation.

Perfect hashing: We apply the Hash, displace and compress algorithm [5] 1 for

the generation of a minimal perfect hash function, which ensures constant time for the

retrieval of indexes. A minimal perfect hash function h for a set S of k keys ensures

that each key in S maps to a unique integer ID in the range [0, k − 1]. However, if

we apply h to a key not in S, it also produces an integer in this range. To detect

whether a given query key x is in fact in S, we store the elements in S in a string

array A, storing element x ∈ S at index h(x) in the array. Given a query key x, we

check whether x ∈ S by testing whether A(h(x)) = x. If so, we report h(x) as x’s ID,

otherwise, we report that x /∈ S. This naive approach [1] serves as a baseline for later

optimization. And we can populate A in parallel since perfect hashing guarantees no

hash collision.

1C Minimal Perfect Hash Library: http://cmph.sourceforge.net/



16

Reducing memory cost: As discussed in [16], using hash value as fingerprints

of n-grams won’t eliminate false positives, so we can’t avoid the string representation

of n-grams in memory. We expect the memory taken by the string representation of

unigrams to be 0.11GB, which is manageable. However, if we include all keys in string

representation to avoid false positives, memory solely cost by strings is expected to

be 4.2 GB, which deserves further optimization. We notice bigrams and contexts can

be treated as the combination of unigrams, so they can be represented as a pair of

unigram ids. Thus, we recognize two kinds of false positives. The first kind: for

unigram queries, the perfect hash function returns a valid index for an invalid query.

The second kind: for bigram queries, the bigram may not be in the data set even if

the two unigrams it is composed of are in the data set. We expect less memory cost

by designing a tiered implementation for bigram indexing. We first use the uigram

indexer to map each of the two unigrams in the bigram to a 23-bit integer. Instead of

the full bigram string, we use the concatenation of these two 23-bit integers, which is

a 46-bit integer, as the representative of bigram. As discussed in section 3.2, average

length of unigrams is 14.4 characters, so we expect 29.8 characters per bigram, which

is 238.4 bits. Thus we approximately expect to save 80.7% memory for storing bigrams

and contexts.

Primary Minimal Prefect Hash

vast. . . . . . amount . . .. . .

Bigram Minimal Prefect Hash

bigram = {vast, amount}

1 << 23 + 3

unigram array

3 << 23 + 3. . . . . . . . .. . .

bigram combination check

Context Minimal Prefect Hash

1 << 23 + 3. . . . . . . . .. . .

context combination check

Figure 3.3: Tiered gram-indexer

Note: Tiered gram-indexer, assume we are querying the index of a phrase context ”vast amount”,
we first check the availability of ”vast” and ”amount”, then we check the availability of combination
by left shifting the index of ”vast” by 23 bits and add it to the index of ”amount”, which is a 46-bit
flag. We use this flag to validate the combination of this two-word query.



17

Final design: We name the tiered data structure for mapping n-gram to indices as

gram-indexer in Figure 3.3. We have unigram indexer consisted of a primary perfect

hash function Fu and a auxiliary string array Au with each unigram ku stored in

Fu(ku). We use unigram indexer to retrieve the ids and check the first kind of false

positives. For bigrams and contexts, we represent them using 46-bit keys consisted of

two 23-bit keys representing corresponding unigrams. We keep a perfect hash Fb and

an array of 46-bit integers Ab for keys of bigrams, and similar Fc and Ac for contexts.

Then we check the second kind of false positive by checking the existence of the 46-bit

key generated from query.

By using such a design, we can avoid false positives when mapping grams to

indexes while achieving constant-time look up operations on average and storing the

data fairly compactly. We can also guarantee that the indexes of unigrams, bigrams

and contexts are distributed in the range [0, |Au| − 1] , [|Au|, |Au| + |Ab| − 1] and

[|Au|+ |Ab|, |Au|+ |Ab|+ |Ac| − 1], respectively.

3.4 Mapping Target Phrase Indexes to Frequencies

In the second step, we map the indexes of the target phrases to their corresponding

frequencies. We have a baseline approach [1], which simply stores the frequency for

each unigram and bigram in an integer array. The frequency of the unigram or bigram

with id k is stored at position k in the array. To reduce memory usage of the frequency

array, we observe that, while there are 146,893,129 keys whose frequencies need to

be stored, only 482,265 unique frequencies occur. The largest frequency value in the

Google Web 1T corpus is more than 95 billion, which requires 37 bits for storage,

but most frequency values can be represented using 32 bits. We explored the Google

Web 1T corpus and found all n-grams with frequency larger than 232 happens to be

stopwords or punctuations, which are guaranteed excluded from our data set.

In order to further optimize memory cost, we borrow the notion of patch coding

[37] by designing a tiered data structure. We set a threshold b. Frequency values

up to 2b − 1 are ”small”, values greater than or equal to 2b are ”large”. The data

structure now consists of two arrays: a main array M and an escape array E. Each

entry in M uses b + 1 bits. If the first bit of M [k] is 0, then the M [k] is the frequency

of the element with key k. Otherwise, the lower b bits of M [k] are the index i of an



18

0 5 10 15 20 25 30
b

344

346

348

350

352

354

m
em

or
y 

co
st

 [M
B]

Expected memory cost of gram frequency indexer

Figure 3.4: Expected memory cost of gram-frquency-indexer

0 1 0 1

. . .frequency frequency frequency escapearray

main array

gram-frequency-indexer

frequency frequencyoffset offset

Figure 3.5: Expected 32-bit aligned tiered gram-frequency-indexer

entry in E : E [i] is the frequency of the element with key k in this case. E thus stores

all large frequencies using 31 bits per frequency value.

For a given choice of b, it is easy to determine the number m of elements with large

frequencies and thus calculate the memory usage as |M |× (1+max(b+1, log2 |E|))+
31×|E|, then we can choose a value for b between 1 to 31 that minimize the memory

usage. As shown in Figure 3.4 , memory usage resulting from choosing b = 31 is

only slightly higher than the optimal value of b = 19 . Since b = 31 leads to word-

aligned entries in the main array, this improves query performance while paying only

a modest price in terms of space usage (Other components of the framework uses

significantly more memory). Thus, we assign b = 31 in our implementation and

cancel the descriptor.

3.5 Mapping Target Phrase Indexes to Phrase Contexts

In the third step, we associate each target phrase with its corresponding phrase con-

texts. Each phrase context consists of three components: (1) Context type indicating



19

whether it is a left context, right context or left-right context ; (2) ContextID rep-

resenting the content of the context in the format of unigram/bigram indexes; (3)

Frequency of this context. However, context type is only used in lexical pruning, so

only ids and frequencies are required to be stored. As discussed in 1.2, we calculate

phrase similarity by identifying all contexts common to the two target phrases to be

compared, along with their frequencies, which shares many similarities with inverted

indices.

Inverted index is the core data structure in a search engine. It consists of two main

components: a dictionary containing all possible terms and a sequence of document

identifications associated with each term, known as a posting list. We compare the

structure of posting list and context array as follows:

• Posting list : Each element in the posting list of a term t is represented using

a triplet: (DocID, TF, [pos1, pos2, . . . , posn ]), where DocID represents a

document that contains t. TF stands for term frequency of t in the DocID th

document and [ pos1, pos2, . . . , posn ] are the positions where t occur in this

document.

• Context array : Each element in the context array of a phrase p can be repre-

sented using the triplet (ContextID, Frequency, ContextType).

A search query locating all documents containing a set of words can be answered

by retrieving the posting lists of these words and taking their intersections. This is

similar to the computation of phrase similarities using the context array, since we

intersect the context arrays to find all common contexts of the two words. Thus,

techniques developed to support fast queries on inverted indexes can also be used to

speed up queries on context arrays.

We can borrow many ideas from the techniques applied on inverted index. We

name the data structure as gram-context-indexer, keeping a dictionary storing point-

ers of target phrases to corresponding context arrays. Differences between inverted

index and gram-context-indexer is discussed in following contents.

We observe that 23.7% of the phrase contexts exist in only one context array.

We call those instances singletons. According to the process described in Section

1.2, singletons should be included when calculating cosine similarities, but they are



20

...

...

...

...

p0

p1clength

p2

p3

CID offset0 offset2 . . .freq0 freq1 freq2offset1 freq3 offset3 freq4

Figure 3.6: Structure of gram-context-indexer

Note: Structure of gram-context-indexer, CID stands for the first context id, offset stands for
differential values of adjacent sequential indices, freq stands for the frequency of corresponding
phrase context. P indicates the pointer pointed to context information.

guaranteed to be excluded when calculating intersections. Thus, we can save space

by keeping a variable clength representing the length of context array with singletons

included, but we do not keep singletons in memory. As discussed in section 1.2, cosine

similarity is calculated between two binary vectors. Given the length of P1 context

array as clength1, P2’s as clength2 and the number of common context as clengthc, the

value of divisor is expected to be (clength1 + clength2 − clengthc)
2 and the dividend

is expected to be clengthc. Thus, we expect to have the cosine similarity calculated

directly following clengthc

(clength1+clength2−clengthc)2
without operation like union finding.

Our experiments discussed in section 4.3 shows that naive implementation of gram-

context-indexer leads to high memory cost. We expect far less memory usage on

gram-context-indexer with little penalty on calculation speed.

We know from Chapter 3.3 that ids of unigrams, bigrams and contexts are dis-

tributed in disjoint ranges, we subtract each context id with the capacity of unigrams,

thus we can save memory by compressing context ids with smaller values. The con-

struction process of gram-context-indexer works as follows: (1) First, we construct

the context arrays by reading the trigram and fourgram files. Each trigram produces

contexts for three unigram phrases: a right-context for the first unigram, a left-right-

context for the middle unigram, and a left-context for the last unigram. A fourgram



21

similarly produces contexts for three bigram phrases. We append each such context

to the context array of the respective phrase. (2) Second, we sort each context array

treating indexes as key information and frequencies as satellite information. (3) Next,

we calculate the differences between adjacent indexes. (4) Finally, we compress the

context array using variable-length encoding.

Single instruction, multiple data (SIMD): Single instruction-multiple data

(SIMD) architectures allow the same operation to be carried out simultaneously on

multiple data elements, usually stored in vectors. This is also known as data-level

parallelism. Modern CPUs support a number of different such vector operations.

Whenever a computation can be expressed in terms of these operations, this usually

leads to significantly faster algorithms.

Fast differential coding: Given the fact that deltas of sequential context indices

are expected to be non-negative and far smaller than original indices, we store all

phrase contexts increasingly by ids and treat the sequence of ids using differential

coding.

Differential coding works by dealing with an array of sorted integers (x1, x2, x3, ...,

xn) and representing each element using deltas between adjacent elements as (x1, x2−
x1, x3−x2, ..., xn−xn−1). The original integer array can be recovered by accumulating

the prefix sum. This process trivially affect retrieval speed. However, it may be a

potential bottleneck if the following steps are highly optimized. The speed penalty is

introduced by data recovery, because we cannot recover an integer without knowing

the prefix sum of all previous deltas. Lemire proposed several SIMD-accelerated ap-

proaches of fast delta coding by balancing recovery speed and length of delta width

operated on 32-bit integer sequences [23], so all schemes are started with ”D” indi-

cating they are dealing with differential codings with different trade-offs. They work

as follows:

• D1: We may take advantage of SIMD operations to parallelize scalar differential

coding. For each group of four integers (x1, x2, x3, x4), we may calculate deltas

of adjacent elements as follows:



22

– Right shift the copy of (x1, x2, x3, x4). Then prepend the last element of

previous group. This produces a quadruple (x0, x1, x2, x3).

– Compute the delta values (δ1, δ2, δ3, δ4) by calculating (x4, x3, x2, x1) −
(x3, x2, x1, x0) using the mm sub epi32 instruction.

D1 requires 6 SIMD instructions to finish decoding for each block with 4 integers.

Assume we have deltas d1=(δ5, δ6, δ7, δ8), first, we make a copy of d1 and right

shift it for two integers, after that, we sum the right-shifted copy and original

deltas and we get d2=(δ5, δ6, δ5 + δ7, δ6 + δ8). We make a copy of d2 and right

shift one integer, then we perform a sum operation again and we get d3=(δ5, δ5+

δ6, δ5+δ6+δ7, δ5+δ6+δ7+δ8). The original integers can be recovered by adding

(x4, x4, x4, x4) with d3.

• D2: This approach is similar to D4, but calculates deltas relative to the element

two positions earlier in the list: (δ5, δ6, δ7, δ8) = (x5, x6, x7, x8)− (x3, x4, x5, x6),

so the delta is expected to be 2 times larger than D1’s.

D2 requires 4 SIMD instructions to finish recovery. Similar to D1, we need a

right-shifted copy of (δ5, δ6, δ7, δ8), which is (0, 0, δ5, δ6), then we add the copy

and the original deltas and we get (δ5, δ6, δ5 + δ7, δ6 + δ8). Then the recovery is

finished by adding (x3, x4, x3, x4) with (δ5, δ6, δ5 + δ7, δ6 + δ8).

• DM: We may compute deltas relative to the last element of the previous block.

Following the example of D2, deltas are calculated as: (δ5, δ6, δ7, δ8) = (x5, x6, x7,

x8) −(x4, x4, x4, x4). This approach is expected to generate 2.5 times the size

of deltas generated using D1.

DM requires 2 SIMD instructions for recovery. We need PSHUFB to get

(x4, x4, x4 , x4) and we add it with (δ5, δ6, δ7, δ8), then we finish the recovery.

• D4: Instead of computing the delta between each element and its predeces-

sor, this method computes the difference between each element and the ele-

ment 4 positions earlier in the list. For example, if we have a sequence of

integers {x1, x2, ..., x8}, then the deltas of this sequence are calculated as :

(δ5, δ6, δ7, δ8) = (x5, x6, x7, x8)− (x1, x2, x3, x4). Deltas are calculated every four

elements, so the delta is expected to be 4 times larger than D1.



23

D4 takes full advantage of SIMD and it only requires one SIMD instruction for

recovery. For example, we simple add (x1, x2, x3, x4) and (δ5, δ6, δ7, δ8).

From D1 to D4, we expect decrements on the number of required instructions

with more memory cost as trade-off. The number of instructions needed for recovery

does not reflect wall-clock time, it can only show the relative speed between the

four approaches. SIMD based differential coding works by simultaneously handling

chunks of data with 4 32-bit integers in our case. However, the number of elements

in the input integer sequence is not guaranteed to be a multiple of 4, tail elements

are handled with the non-SIMD approach, which means that SIMD based approaches

benefit performance only if the input sequences aren’t too short.

Variable-length coding: According to Zipf’s law, the frequency of an n-gram

show inversely proportional to its number of words, which means lower frequencies

are expected to occur more frequently for trigrams and fourgrams, so we expect far

fewer bits to store frequency values of contexts. Deltas of context ids are expected to

be smaller than original ids. However, digits represented using machine words are not

compact. We introduce variable-length encoding for more compact storage. And we

distinguish encoding methods based on the alignment of encoded values, namely bit-

aligned coding, byte-aligned coding, word-aligned coding and frame-aligned coding.

Bit-aligned coding methods can produce codes consisting of an arbitrary number of

bits. This produces the most compact codes but requires us to work with individual

bits during encoding and decoding. Byte-aligned codes produce codes consisting of

a number of bits that is a multiple of 8. Thus, these codes can be accessed on a

byte-by-byte bases. Word-aligned coding keep 4 bits in one word (32-bit or 64-bit)

as selector and the rest bits as payload, then it tries to compile as many integers

as possible inside one word. Frame-aligned coding represent data as a sequence of

bit-frames with same width for the convenience of parallization.

Bit-aligned coding: Bit-aligned coding schemes handle data on a bit-by-bit base.

We tried several variable-length encoding methods to perform bit-aligned coding of

the context array, including Golomb / Golomb-Rice coding [29], Elias encoding [11]

and block encoding [4, 25]. These variable length encoding methods work by adding



24

a binary prefix to each number that indicates the number of bits used to encode the

actual number. Given a number n and assuming the length of its natural binary

representation is |n|, the bit-aligned coding methods work as follows:

• Golomb/Golomb-Rice code: Golomb code works by dividing the integer to be en-

coded into two components: quotient and remainder, in which the quotient is

represented using unary and the remainder using binary. When using the Golomb

code to compress a sequence of integers, the divisor M is usually set to 0.69 times

the mean value of the integers in the sequence. The Golomb-Rice code chooses

M to be a number equal to 2n, since this means the division can be implemented

much more efficiently using a simple bit shift instead of floating point division.

For example: Assume we want to encode 9 and divisor is set to 4, then we know

9 = 2 ∗ 4 + 1, so the encoded value will be 01 001. This coding method is compact

but quite slow when required to encode large values.

• The Elias γ code represent the number n using 2∥ log n∥ + 1 bits. It performs

encoding by prepending |n|−1 0s to the natural binary representation of n. During

the decoding process, we read in 0s until reaching the first 1. Assume the number

of 0s is N, then the next N bits will be n in binary representation. For example:

given an uncompressed number 7 with its binary representation 111, we know it

takes 3 bits to represent. Thus we represent its length using prefix 00 and the Elias

γ code of 7 is 00 111.

• The construction of the Elias ω code of n is obtained by setting k = n and initializing

the code to consist of a single 0. Then, while k > 1, we prepend the binary encoding

of k to the code and replace k with |k| - 1. And the decoding process reverse this

construction. We set n = 1. Next we read one bit. If this bit is 0, we report n

as the decoded number. Otherwise, we read n more bits, prepend 1 to this bit

sequence, replace n with the number encoded by this bit sequence and repeat the

above process. For example: Given a number 16 and we know it takes 5 bits to

encode. We prepend the binary format of 16 before 0, getting 10000 0. Then we

prepend the binary format of 5 - 1 = 4, which gives 100 10000 0, then we prepend

the binary format of 3 - 1 = 2, and we get 10 100 10000 0, after this step we find

N becomes 1, so we stop.



25

• The Elias δ code use Elias γ encoded |n| + 1 as the prefix and it represents one

digit x using ⌊log x⌋+ 2⌊(⌊log x+ 1⌋)⌋+ 1 bits. During decoding process, we first

decode the prefix with Elias γ code, assume the decoded value is N , then the next

N − 1 bits will be n in binary format. For example: Given an uncompressed digit

7, we know 7 = 22 + 3, so the Elias δ code of 7 is 011 11.

• The Block code defines the block size as k and it calculates the number of blocks N

required for the representation of n based on 2k, then it prepends the unary format

of N before the binary-formatted n. During the decoding process, we read in 0s

until the first 1. Assume the number of 0s is N, then the next N · k bits will be n

in binary format. For example: Given a number 7 and block size 2, we know 7 is a

3-bit long integer and we need 2 blocks to store 7, so the block-encoded 7 will be

01 01 11.

We can tell from the working strategy of the bit-aligned coding that integer se-

quence are compressed as bit streams and decoding process has to be performed on

a bit-by-bit base, which is relatively slow due to restrictions caused by frequent bit

operations. We expect faster compression methods, which are discussed in following

contents.

Byte-aligned coding: The atomic unit of byte-aligned coding to represent one

integer is one byte. The simplest byte-aligned coding described in this thesis cited

from [10] uses one bit per byte as descriptor indicating whether the current byte is the

last byte of the encoded number, while the other 7 bits are used to encode the num-

ber. This encoding is variant-byte (vbyte). [32] recognizes that compression can be

accelerated by aggregating descriptors in one byte. This approach is named variant-

GB, where G stands for group and B stands for binary. In variant-GB approach,

integers are stored in blocks ranging from 1 byte to 4 bytes for every 4 blocks and

descriptors are aggregated in one descriptor byte. Each aggregated descriptor byte

contains 4 descriptors, and each descriptor can be 00, 01, 10 or 11, which indicates

the actual width of the corresponding block with 1 byte, 2 bytes, 3 bytes or 4 bytes

respectively. By reading descriptor byte, we avoid reading data byte by byte. In ad-

dition, since each descriptor byte contains 4 descriptors and each descriptor contains

4 states, we expect 16 kinds of different schemes for the data part. Thus, we expect to



26

15 14 12 1113 10 9

-1 -1 -1 -1 -1

8 7 6 5 4 3 2 01

01-1 -1 -1 -1 -12345

aaaabbcc00 bb bb00

aaaa0000bbbbbbcc 0000000000000000

i

shf

src

dst

shf

src

dst

01 32

aabbccdd

bb ccdd aa

Figure 3.7: Coding scheme of using SIMD operation pshufb (Variant-G8IU )

Note: PSHUFB accept two parameters: shuffle sequence shf, data src, and return shuffled sequence
dst. PSHUFB assign src[shf[i]] to dst[i] if shf[i] is not -1, or dst[i] will be assigned 0.

accelerate the decoding process by calling corresponding decoding methods directly

for corresponding block. We leave this implementation as future work.

Data compressed using Variant-GB is not of fixed length, so the data block is

expected to be as short as 4 bytes or as long as 16 bytes, which makes it harder to be

parallelized. However, the decoding process can be further accelerated using SIMD

instruction pshufb with some modification on the coding scheme. Thus, Variant-G8IU

is introduced, where ”U” stands for unary, ”8” stands for 8 bytes, ”I” stands for in-

complete. Different from Variant-GB, Variant-G8IU use unary 0, 01, 011, 0111 to

describe the length of each integer and integer are compiled in blocks of 8 bytes, so the

descriptor is not guaranteed to be fully filled if current integer exceeds the remaining

space of current block. Variant-G8IU solves this problem by padding descriptor with

1s and the remaining space in current block with 0s.

We may realize the process of encoding / decoding is actually removing / adding 0s

before the natural representation of integers [32]. If given the aggregated descriptor,

the decoding process can be efficiently completed with SIMD instruction pshufb and

data blocks of fixed length. pshufb works by receiving two parameters: the data array

and a shuffle sequence and return a new array with each byte assigned a value accord-

ing to the shuffle sequence. The working process of pshufb is shown in Algorithm 1.

For each byte i in the shuffle sequence, pshufb either assign the ith byte in returned

array with the ith byte from data array, or assign ith byte in the returned array as



27

Algorithm 1 pshufb

Input: shuffle sequence M, data source S
Output: destination sequence D
1: procedure
2: for 0 ≤ i < 16 do
3: if M[i] < 0 then
4: D[i] ← 0
5: else
6: D[i] ← S[M[i] % 16]
7: end if
8: end for
9: end procedure

0 if i is -1. We show the decoding process of Variant-G8IU using pshufb in Figure

3.7: by reading the descriptor byte, we generate the corresponding shuffle sequence.

Then we use pshufb to reinsert 0s to the compressed data and write recovered data

to output.

Actually, the construction of shuffle sequence works similarly with the decoding

process by inserting -1s in the shuffle sequence indicating positions of bytes from the

compressed array. Once valid shuffle sequences are constructed, the decoding process

works simply by looking up corresponding shuffle sequence and performing the shuffle.

A similar idea can be applied to many block-based encoding methods with a finite

set of possible descriptor permutations. For Variant-GB format,one descriptor byte

contains 8 bits, so 28 possible shuffle sequences can be constructed in advance and

all possible shuffle sequences are valid. However, for Variant-G8IU format, if one

descriptor byte contains consecutive 0s with more than 4 bit-distance, it has to be

trimmed.

Shuffle array construction is based on two accessory functions, which is described

as follows:

• num(descriptor byte): returns the number of integers encoded in the coding

block.

• len(descriptor byte,i) : returns the actual length in bytes of the ith encoded

integer in the coding block.



28

Algorithm 2 Shuffle Sequence Construction of Variant-G8IU

Input: valid descriptor byte B
Output: shuffle sequence Q
1: procedure
2: i ← 0, j ← 0
3: for i = 0 : num(B) do
4: for n = 0 : 4 do
5: if n < len(B, i) then
6: Q [j] ← i
7: i ← i + 1
8: else
9: Q [j] ← -1
10: end if
11: end for
12: end for
13: return Q
14: end procedure

110 010100101000111011011

memory address increasing

Figure 3.8: Coding scheme of Variant-Byte

Note: We encode 1798474, with 0 indicating the termination of encoding.

2 bits per descriptor

descriptor byte

11010 1

1-4 bytes1-4 bytes1-4 bytes1-4 bytes

0 0
0xffffffff0xcccccc0xdddd0xbb

Figure 3.9: Coding Scheme of Variant-GB

Note: Coding Scheme of Variant-GB with data 0xffffff, 0xcccccc, 0xdddd and 0xbb, in which 0xffffffff
takes 4 bytes, 0xcccccc takes 3 bytes, 0xdddd takes 2 bytes and 0xbb takes 1 byte.



29

unary descriptor

descriptor byte

11101 11 0
0xff0xff0xff0xff

1byte1byte1byte1byte1byte1byte1byte1byte

0xaa0xaa0xaa0x00

Figure 3.10: Coding Scheme of Variant-G8IU

Variant-G8IU scheme with data 0xffffffff and 0xaaaa. Length of 0xffffffff is represented using 0111
and 0xaaaaaa is represented using 011. Assume our next digit is wider than 1 byte, we should not
include the next digit in this block using Variant-G8IU, we should pad the descriptor with 1 and 0
with the data block.

Word-aligned coding: Word-aligned coding, also known as simple-coding, try to

store as many values as possible inside one word by dividing each word into selector

and payload, in which selector shows the number of integers this word may store

while payload try to store as many integers as the selector indicates. Word-aligned

coding contains simple-9, simple-8b and simple-16. Simple-9 keeps first 4 bits in one

word as selector and the rest 28 bits as payload. simple-8b optimize simple-9 by

recognizing 7 selectors are idle in simple-9 scheme. Besides, some coding schemes

in simple-9 (e.g: when selector is 4, only 25 bits can be used in payload) result in

wasted space. simple-16 introduce optimization by using larger word (64-bit) while

maintaining selector of same length, so fewer selector bits are paid on average for

each bit in payload. We listed all possible coding schemes for simple-9, simple-8b and

simple-16 in Table 3.3. Word-aligned approaches have been demonstrated to be a

fast approach [34]. However, despite Simple-16, other two simple-family codecs can

only handle integers within the range of 228.

Frame-aligned coding: Frame-aligned coding shares many similarities with byte-

aligned coding schemes. But data are compressed in frames of fixed length. The

frame-aligned coding family includes PackedBinary [2], Patched Frame of Reference

(PFor) [36]. PackedBinary uses the bit-width of the largest value in each data block

as frame-width, and bit packing process is finished by process described in Figure 3.11,

and the bit shifting operation can be efficiently completed by replacing standard bit



30

Simple-9 Simple-8b Simple-16
Selector Capacity Integer Width Capacity Integer Width Capacity Integer Width

0 28 1 28 28×1 - 0
1 14 2 21 7×2,14×1 - 0
2 9 3 21 7×1,7×2,7×11 60 1
3 7 4 21 14×1,7×2 30 2
4 5 5 14 14×2 20 3
5 4 7 9 1×4,8×3 15 4
6 3 9 8 1×3,4×4,3×3 12 5
7 2 14 7 7×4 10 6
8 1 28 6 4×5,2×4 8 7
9 - - 6 2×4,4×5 7 8
10 - - 5 3×6,2×5 6 10
11 - - 5 2×5,3×6 5 12
12 - - 4 4×7 4 15
13 - - 3 1×10,2×9 3 20
14 - - 2 2×14 2 30
15 - - 1 1×28 1 60

Table 3.3: Word-aligned codecs (Simple-family Codecs)

int1int2int3int4int5int6

6121824304

int1int2int3int4

81624 00

void unpack6_8(const

uint32_t* in,

uint32_t* out){

*out++ = ((*in)) & 63;

*out++ = ((*in) >> 6 ) & 63;

*out++ = ((*in) >> 12) & 63;

*out++ = ((*in) >> 18) & 63;

*out++ = ((*in) >> 24) & 63;

*out = ((*in) >> 30);

++in;

*out++ |= ((*in) & 15) << 2;

*out = ((*in) >> 4) & 63;

}

void unpack8_8(const

uint32_t* in,

uint32_t* out){

*out = ((*in) >> 0) & 255;

out++;

*out = ((*in) >> 8) & 255;

out++;

*out = ((*in) >> 16) & 255;

out++;

*out = ((*in) >> 24) & 255;

++in;

out++;

}

Figure 3.11: Binary Packing with 6-bit frames and 8-bit frames

shifting operation with SIMD intrinsics: mm and si128 (&), mm srli epi32 (>>),

mm slli epi 32 (<<). However, as integers are packed with same width, Packed-

Binary will leads to inefficiency when occasional large numbers are included. PFor

solves this problem by introducing patching. That is, data are stored in blocks of fixed



31

1234567891 2 3 4

11 2 3 4

position:3

b=27,b
′
=2

· · ·

· · ·
1110101101111001101000101 01

Figure 3.12: Patched Frame of Reference

Note: despite of 123456789, all other members do not exceed 3, thus b=27 and b
′
= 2, the lower

2 bits of 123456789 is packed together with other members, while one byte is kept to indicate the
position of the exception in this block.

size (usually 128 integers), and a frontier b
′
is set for each block so that majority of

values inside this block requires less than b
′
bits for encoding. The exceptions can

be compactly stored in accessory data structures of 32 different exception sequences.

For each data block, the frontier b is decided by solving an optimization problem of

minimizing 128× b
′
+ c(b

′
)× (b− b

′
+8), where c(b

′
) stands for the number of excep-

tions decided by b
′
and 8 stands for the memory cost by keeping one byte indicating

the position of the exception in this block. b and b
′
can be efficiently calculated by

linearly scanning the block using bsr instruction for the calculation of log2 of each

element.

Assume we have a block of 128 32-bit integers starting with 1, 2, 3, 123456789, 2,

3, 1, in which 123456789 is the only member exceeding 3. Then we may store each

member using 2 bits while keeping metadata indicating high bits of each exception

and we need less than 32 escape arrays storing the high bits of all exceptions. This

example is explained in Figure 3.12.

Conclusion: We can tell from the working strategies of all this coding schemes

that when memory is the main concern, bit-aligned coding approaches are expected

to perform better when integer sequences are small, since smaller integers result in

shorter prefixes, while byte-aligned methods are expected to perform better when

dealing with larger values because the length of descriptors only distributes in a

small range (1-4). When speed becomes our primary concern, we consider storing

data into an aligned format, either as sequences of machine word or data blocks, so



32

compression and decompression can be accelerated using SIMD instructions. The

frame-based approaches are quite suitable for very long integer sequences. However,

it cannot handle integer sequences efficiently with capacity less than the block size.

We observe that the length of context arrays are not ideally distributed in a small

range. Some context arrays are fairly short while some others are quite long. The

frame-aligned coding schemes, like PFor, compress data in blocks of 128 integers,

thus making it incompatible with short context array. On the other hand, bit-aligned

approaches are compatible with any distribution of integer sequence, but they are

much slower than frame-aligned and byte-aligned coding. All these facts suggest the

necessity of introducing a hybrid compression algorithm. We did not look into this

very deeply and use a simple heuristic. Assume we have a monotonic integer sequence

A with |A| elements: (1) if 128 ≤ |A|, we compress it using PFor (2) if |A| < 128 and

8 ≤ |A|, we encode this sequence using Variant-G8IU (3) if the sequence contains

less than 8 elements, we compress it using Elias δ coding. Here an element is a

phrase context, which contains a pair of integer indicating the id of context and its

corresponding frequency.

3.6 Intersection

According to Chapter 1.2, the calculation of phrase relatedness requires finding the

intersections of phrase context arrays. During our experiment, we found that the

length of context arrays varies greatly, some context arrays contain only 2 to 3 el-

ements while others could contain more than 10,000 elements. Thus, we introduce

optimization on intersection operation for greatly imbalanced arrays. A textbook

approach described in Algorithm 3 for finding the intersection of two sorted lists runs

in O(m + n) , where m stands for the size of larger array and n stands for the size

of smaller array. Let us note the larger of the two arrays as Vl and the smaller of the

two arrays as Vr. The algorithm scans Vl and Vr. In each step, it checks whether the

current elements in Vl and Vr. Otherwise, it advances to the next element only in Vl

or Vr, whichever contains the smaller of the two current elements.

We may also use a hash map to represent the context array, so we can theoretically

perform each intersection operation with O(kn) time. However, the general STL

unordered map show no optimization on the hidden constant factor k, thus making



33

Algorithm 3 non-SIMD Linear Scan

Input: context arrays of queried phrase pairs A1 and A2, block size T
Output: intersected context arrays A3 and A4, containing all elements common to

A1 and A2, with corresponding frequency value attached.
1: procedure
2: i ← 0, j ← 0
3: while i < |A1| and j < |A2| do
4: if A1[i] equals A2[j] then
5: add A1[i] to A3

6: add A2[j] to A4

7: i ← i + 1
8: j ← j + 1
9: else if A1[i] > A2[j] then
10: j ← j + 1
11: else
12: i ← i + 1
13: end if
14: end while
15: return A3,A4

16: end procedure

1

1

3 9 12 15 18 21 26 31 35

3 12 18 31 352 4 8 14 22 29 33

(a) non-SIMD Linear Scan

1

1

3 18 19 20 21 22 26 31 35

3 10 12 15 182 4 5 11 13 14 16 99

(b) non-SIMD Galloping

Figure 3.13: Scalar intersection of monotonic integer sequence



34

it less competitive compared with the non-SIMD linear scan in our experiment. [3]

introduced an optimized approach with O(n log i) running time, named galloping

search (or exponential search), where i stands for the index of matched element in

the long list. Galloping search take every element esi from the shorter sequence,

looking for the first element eli in longer sequence that no less than esi. Instead of

seeking for esi sequentially, galloping search double the distance for each step, which

makes it advantageous when m ≫ n. [23] introduced a hybrid SIMD accelerated

approach for retrieving intersections of two sorted integer sequences, which consists

of V1 intersection, V3 intersection, and SIMD galloping intersection. Acceleration

is achieved by performing all-against-all comparisons, in which V1 means ”one block

is vectorized” and V3 means the vectorized is doubled for addtional two times. V1,

which is explained in Algorithm 4, is similar to non-SIMD linear scan but compares

each element in Vs to T (usually T = 8) elements in Vl. V3 is explained in Algorithm

5. It optimizes V1 by recognizing that more comparisons can be skipped by enlarging

the searching range. V3 tries to locate a block of 4T elements in Vl for every queried

element esi from Vs. Once we find a match in those 4T elements for current esi,

we perform a binary search inside those 4T elements, managing to find a block of

T elements containing esi. Thus we avoid unnecessary comparisons by checking

4T elements every time. However, V1 and V3 will be less competitive compared

with galloping when Vl becomes extremely large compared to Vs. [23] introduces

SIMD galloping for further optimization, which follows the basic idea of galloping,

but it compares blocks of T elements instead of single ones, thus the time complexity

of SIMD-galloping is still O(n log i) . We notice SIMD-based approaches introduce

optimization by lower the constant factor of each non-SIMD based algorithms. SIMD-

hybrid algorithm is based on a simple heuristic: (1) When length(Vs) ≤ length(Vl) ≤
50 ∗ length(Vs), V1 is applied. (2) When 50 ∗ length(Vs) ≤ length(Vl) ≤ 1000 ∗
length(Vs), V3 is applied. (3) When 1000 ∗ length(Vs) ≤ length(Vl), SIMD galloping

is applied. Lemire claims this heuristic works well on 32-bit sequences. For 64-bit

integer sequences, different heuristics should be explored.

Lemire’s original implementation focuses on evaluating only the intersection speed,

that is, it only cares about the existence of queried sets, thus making the implementa-

tion not compatible with our data format. We re-implemented the algorithm, adding



35

Algorithm 4 V1 Intersection

Input: context arrays of queried phrase pairs A1 and A2, block size T
Output: intersected context arrays A3 and A4, containing all elements common to

A1 and A2, with corresponding frequency value attached.
1: procedure
2: i ← 0, j ← 0
3: for i = 0 to |A1| do
4: R ← {A1[i],A1[i],A1[i],A1[i]}
5: while A2[j − 1 + T ] < A1[i] do
6: j ← j + T
7: if j > |A2| then
8: return A3,A4

9: end if
10: end while
11: F ← {A2[j], A2[j + 1], A2[j + 2], A2[j + 3], · · · , A2[j + T − 1]}
12: if any Ri ∈ F then
13: add A1[i] to A3

14: k ← binarysearch(F,A1[i])
15: add A2[k] to A4

16: end if
17: end for
18: return A3,A4

19: end procedure



36

Algorithm 5 V3 intersection

Input: context arrays of queried phrase pairs A1 and A2, block size T
Output: intersected context arrays A3 and A4, containing all elements common to

A1 and A2, with corresponding frequency value attached.
1: procedure
2: i ← 0, j ← 0
3: for i = 0 to |A1| do
4: R ← {A1[i],A1[i],A1[i],A1[i]}
5: while A2[j − 1 + 4T ] < A1[i] do
6: j ← j + 4T
7: if j > |A2| then
8: return A3,A4

9: end if
10: end while
11: if A2[j + 2T − 1] > A1[i] then
12: if A2[j + T − 1] > A1[i] then
13: F ← {A2[j], A2[j + 1], · · · , A2[j + T − 1]}
14: else
15: F ← {A2[j + T ], A2[j + T + 1], · · · , A2[j + 2T − 1]}
16: end if
17: else
18: if Aj+3T−1

2 > Ai
1 then

19: F ← {A2[j + 2T ], A2[j + 2T + 1], · · · , A2[j + 3T − 1]}
20: else
21: F ← {A2[j + 3T ], A2[j + 3T + 1], · · · , A2[j + 4T − 1]}
22: end if
23: end if
24: if any Ri ∈ F then
25: add A1[i] to A3

26: k ← binarysearch(F,A1[i])
27: add A2[k] to A4

28: end if
29: end for
30: return A3,A4

31: end procedure



37

Algorithm 6 SIMD galloping intersection

Input: context arrays of queried phrase pairs A1 and A2, block size T
Output: intersected context arrays A3 and A4, containing all elements common to

A1 and A2, with corresponding frequency value attached.
1: procedure
2: j ← 0
3: for i = 0 to |A1| do
4: R ← {A1[i],A1[i],A1[i],A1[i]}
5: δ ← 0
6: while A2[j + δ − 1 + T ] < A1[i] and j < |A2| do
7: if δ equals 0 then
8: δ = T
9: else
10: δ = 2 * δ
11: end if
12: end while
13: binarysearch for δmin in [⌊δ/2⌋, δ] divisible by T so fj+δmin−1+T ≤ A1[i]
14: j ← j + δmin

15: F ← {A2[j], A2[j + 1], ..., A2[j − 1 + T ]}
16: if any Ri ∈ F then
17: add A1[i] to A3

18: k ← binarysearch(F,A1[i])
19: add A2[k] to A4

20: end if
21: end for
22: return A3,A4

23: end procedure



38

Minimal Perfect

Hashing

gram1 gram2 . . . gramk−1

freqT0 freqT1 . . . freqTn−1

frequency indexes

. . .

CID0
0

freqC0
0

offset00
freqC1

0

offset10...

CID0
0

freqC0
0

offset00
freqC1

0

offset10...

CID0
0

freqC0
0

offset00
freqC1

0

offset10...

. . .. . .

gram frequency context array

Gram indexes

gram

ID or ”not found”

ID

verification

Figure 3.14: Overall structure of phrase relatedness calculation framework

Note: High-level System Design of High-Performance TrWP Framework, where gram stands for the
target phrases, index stands for the numerical index of a gram within keyset, freqT stands for the
frequency of target phrase, CID stands for the ID of the first context, offset stands for the index
interval, freqC stands for the frequency of context or target phrase.

a binary search operation to search for corresponding index and corresponding fre-

quency value in this position when a match is detected in the long array. Similar

to SIMD based differential coding approaches, SIMD intersections are based on the

assumption that the length of Vl is divisible by 4 and tail elements have to be handled

using non-SIMD linear scan. The method degrades to the non-SIMD linear scan when

the longer context array contains less than T elements.

3.7 Overall design

The overall design of the high-performance framework is shown in Figure 3.14. As-

suming we have two target phrases gram1 and gram2. (1) We query gram-index-

indexer to get the index of each target phrase, defined as index1 and index2. (2) We

retrieve the frequency of each target phrase from the gram-frequency-indexer using

index1 and index2. (3) We retrieve the context arrays in the format of bit vectors

and decompress it; then we recover the id array. (4) We find common contexts shared

by the two target phrases (5) We follow the rest process discussed in section 1.2 to

get the queried phrase relatedness.



Chapter 4

Evaluation

4.1 Experiment Setup

The experiment was performed on a Linux server (2.6.32-573.18.1.el6.x86 64 GNU/

Linux, CentOS 6.7) with 32 Intel Xeon E5-2650 @ 2.00 GHz CPUs and 256 GB of

main memory. Our code is written in C++ and compiled using GCC 5.3 with -O3

optimization. We chose Google Web 1T corpus for TrWP evaluation and calculated

the similarity of 108 noun phrase pairs as done in [28]. The Google Web 1T corpus

contains around 1 trillion words with n-gram lengths ranging from 1 to 5. The total

file size of unigrams to fourgrams is approximately 55 GB. As discussed in section 3.2,

we get pre-processed data of approximately 23.17 GB. We evaluated our framework

in several aspects: construction time, query speed, memory consumption. Reducing

the query time is our main focus. In our evaluation, we use wall-clock time rather

than CPU clock as the criterion to evaluate the query speed.

4.2 Evaluation of the gram-indexer

We compare the retrieval speed of our gram-indexer with some benchmark language

model toolkits. SRILM [33] is a language model toolkit providing a collection of

data structures and runnable programs for evaluation of language models based on n-

grams. It provides a component named Vocab for n-gram indexing, which maintains

a hash table in each layer, keys in hash map represents contains a hash table using

n-gram as key and index as value and an array storing n-grams in corresponding

indexes. The Naive indexer [1] is consisted of a perfect hash and an auxiliary string

array.

Our results are shown in Table 4.1. Compared with the SRILM, our two ap-

proaches performs better in terms of both space and query time. The Naive Indexer

[1] performs no compression, and it is by far the fastest of three data structure to

39



40

Approach Construction Time [microsec] Retrieval Time per Query [microsec] Memory [GB]

SRILM 794,912,645 1.644 14.080
Naive Indexer 17,345,549 0.850 11.008
Compressed 1,542,769,885 1.350 4.352

Table 4.1: Comparison of different indexing approaches in the aspect of construction
time, retrieval time per query and memory cost in GB

Primary Minimal Prefect Hash

vast. . . . . . amount . . .. . .

. . .

3

Secondary Minimal Prefect Hash

bigram = {vast, amount}

id = 1

1 << 23 + 3

output + unigram size

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

unigram array

secondary unigram array

bigramid

Figure 4.1: Tiered gram-indexer with sequential secondary key

construct. Its query time is about twice as fast as that of SRILM. The Naive Indexer

saves 21% memory than SRILM but we expect further optimization on memory.

gram-indexer uses 60.4% memory compared with the Naive Indexer, but at the ex-

pense of a significantly increased construction time, even compared to SRILM. Its

query time is 58.8% higher than that of the naive indexer but also 17.6% less than

that of SRILM. gram-indexer introduces extra benefit of choosing the ids of uni-

grams and bigrams from disjoint ranges, so other components of this framework can

recognize the type of n-gram ids from its id alone. This avoids data structures for

remapping in later steps.

Other approaches Before deciding on the final implementation of the gram-indexer,

we tried another approach that promises fast queries in theory but resulted in infe-

rior performance in our experiments. The structure is presented in Figure 4.1. in



41

Approach Retrieval Time per Query [microsec] Memory [GB]

Naive gram-frequeuncy-indexer ≪1 0.686
Aligned gram-frequency-indexer ≪1 0.343

Compact gram-frequency-indexer 1.65 0.343

Table 4.2: Comparison of retrieval times and size of different gram-frequency-indexer
implementation.

which the unigram index generation shares a similar approach as gram-indexer. We

avoid the second kind of false positives by attaching an integer array for each uni-

gram in unigram array. For each attached array, we store the tokens of successive

unigrams of each bigram or context in order, so the availability of concatenation can

be checked by a binary search on the attached token array with O(log n) time, where

n stands for the length of attached token array. We found this design slows the con-

struction and query significantly though it is more compact. In addition, the range

of bigram tokens and context tokens are not disjoint, which lead to a remapping in

gram-frequency-indexer, so we do not use this design.

4.3 Evaluation of the gram-frequency-indexer

Retrieval speed is the most important performance metric for the gram-frequency-

indexer, because this data structure is fairly small even when optimized for speed

and not for size. We compare our compact gram-frequency-indexer with patch coding

and the prefered word-aligned design with the baseline Naive gram-frequency-indexer

[1], in which gram-frequency-indexer is implemented as a 64-bit integer array.

Our results are shown in Table 4.2. As expected, compared with the naive gram-

frequency-indexer, the introduction of escape array save 50% space without sacrificing

retrieval speed since the size of the escape array is fairly small. Memory cost by

Aligned gram-frequency-indexer and Compact gram-frequency-indexer is the same

because the potion of frequency values requiring larger than 19 bits to represent is

negligible.



42

Approach Memory [GB] Compression Rate Context Array Retrieval Speed [microsecs]

D1+Elias γ 5.54 0.53 1513
D1+Elias ω 4.78 0.58 1640
D1+Elias δ 4.79 0.57 1299
D1+block 4.79 0.57 1832

Table 4.3: Comparison of different bit-aligned methods and differential coding ap-
proaches applied on gram-context-indexer

Approach Memory [GB] Compression Rate Context Array Retrieval Speed [microsecs]

D1+Elias ω 4.78 0.58 1640
DM+Elias ω 5.03 0.56 1643
D2+Elias ω 5.04 0.56 1639
D4+Elias ω 6.55 0.43 1645

Table 4.4: Comparison of different differential coding approaches with most compact
encoding method applied on gram-context-indexer

4.4 Evaluation of the gram-context-indexer

We evaluated the memory usage, compression rate and retrieval speed of the gram-

context-indexer in terms of compression and using different differential codings and

compression approaches. We report compression rate as the reduction of memory

compared with uncompressed data. We used Lemire’s implementation 1 as a reference

of D1 and implemented D2, DM, D4, VByte, Variant-GB,Variant-G8IU, Elias γ

coding, Elias ω coding, Elias δ coding, block coding and Golomb-Rice coding from

scratch. We evaluate other coding schemes mentioned in our work using Lemire’s

library2. Since the experiment is time-consuming when dataset becoming large, we

carried out the evaluation only on fourgrams, that is, on contexts of bigram phrases.

Table 4.3 compares the performance of different bit-aligned compression approaches

combined with D1 differential coding. The Golomb-Rice code is not included in the

tables as it took more than 8 hours to compress the data and we terminated it. Elias

ω coding outperforms other bit-aligned approaches while Elias γ coding performs the

1https://github.com/lemire/SIMDCompressionAndIntersection
2https://github.com/lemire/FastPFor.git



43

Approach Memory [GB] Compression Rate Context Array Retrieval Speed [microsecs]

D1+VByte 6.81 0.43 716
D1+VGB 7.35 0.35 509
D1+Variant-G8IU 12.86 -0.07 226

Table 4.5: Comparison of different byte-aligned methods and differential coding ap-
proaches applied on gram-context-indexer

0 5 10 15 20
length of context array (log 10)

0

1

2

3

4

5

6

7

nu
m

be
r o

f i
ns

ta
nc

es
 (l

og
 2

)

Length Destribution of context arrays

Figure 4.2: Distribution of context lengths

Note: x axis represents the length of context array in logarithm based on 2, y axis represents the
number of corresponding instances in logarithm based on 10. Large y-axis value indicates high
potion of context arrays with corresponding length in the dataset.

worst in compression. Elias δ coding achieves the fastest query time while achiev-

ing almost as good compression as Elias ω coding. Table 4.4 shows our comparison

of combining Elias ω with different differential coding methods. As can be seen,

the query speed is unaffected by the choice of differential coding method, but the

compression rate varies more significantly. As a result, we chose D1 in our implemen-

tation, which achieves the best compression rate.Table 4.5 does similar evaluation for

byte-aligned compression methods. We compare it with Table 4.3. Variant-byte pay

42% more space compared with the most compact bit-aligned method Elias ω coding

but the retrieval speed is 2.3 times faster.



44

We find D4 differential coding performs worse than other three differential cod-

ing schemes, which should be slower than D4. We also find Variant-G8IU even lead

to more memory cost than the uncompressed data. The result can be explained by

checking the length distribution of our context arrays, which is presented in Figure

4.2. We find 71.7% of all context arrays contains less than 5 elements. Such dis-

tribution makes the SIMD-based differential coding degrade frequently. Byte-aligned

approaches introduce redundant data in exchange for higher speed. Bit-aligned coding

methods provide more compact storage but they sacrifice the convenience for paral-

lelization. Simple-9 and Simple-16 are unable to handle integers exceeding 228, so we

do not evaluate them. We evaluate Simple-8b on the fourgram dataset. Then we find

context array retrieval speed is 433 microseconds on average and compression rate

is -0.17. Due to the property of our data set, we are unable to solely evaluate PFor

since the majority of context arrays are short. We evaluate PFor as a component of

the hybrid approach described at the end of Section 3.5. According to the statistical

result, 85.1% of the context array contains less or equal to 8 elements, 13.4% contains

more than 8 elements but less than 128 elements and 1.5% context arrays contains

more than 128 elements. We tried to use Lemire’s library for evaluating PFor but

the original code only works when the length of context array is divisible by 256.

We leave it as a future work to re-implement Lemire’s library and evaluate a hybrid

approach based on PFor.

4.5 Evaluation of Overall Performance in Speed

According to Chapter 1.2, we know the calculation process consists of four main steps:

(1) Context array retrieval: We decode context arrays of corresponding target phrase

and formalize them into sequences of context IDs and frequency values. (2) Context

array intersection: We find phrase contexts sharing the same id from context arrays

belonging to different target phrases. (3) Cosine Similarity Calculation: We calculate

cosine similarity of two binary vectors indicating whether a context exists or not.

(4) Other Calculation: We calculate the RS value and relatedness score. Then we

normalize the relatedness score.

We implemented linear intersection, gallopng, V1, V3 and simd-galloping from

scratch. Before evaluating the performance of calculation speed, we show the size



45

0 20 40 60 80
instances of context array pairs

0

2000

4000

6000

8000

10000

12000

14000
su

m
 o

f c
on

te
xt

 a
rra

y 
le

ng
th

[p
hr

as
e 

co
nt

ex
t(t

wo
 in

te
ge

rs
)]

context array length distributation
context array1
context array2

Figure 4.3: Length distribution of evaluated context arrays

Approach Memory [GB] Compression Rate Context Array Retrieval Speed [microsecs]

D1+VByte 6.81 0.43 716
D4+VByte 6.82 0.43 733
D2+VByte 6.81 0.43 705
DM+VByte 6.81 0.43 717

Table 4.6: Comparison of different byte-aligned methods and differential coding ap-
proaches applied on gram-context-indexer

Approach Context retrieval Intersection Statistical Pruning RS Value Cosine Similarity Other Overall
hash map 18 179812 130 5 1 4 179870
linear 19 141 130 6 <1 1 297
galloping 18 145 130 5 1 1 300
V1 18 90 130 5 <1 1 244
V3 18 115 130 5 <1 1 269
simd galloping 18 93 130 5 <1 1 246
simd hybrid 18 93 130 5 <1 1 246

Table 4.7: Comparison of different intersection methods with uncompressed context
arrays. Time shown are average break-down time in microseconds among all eval-
uated instances represented in steps.



46

Combination Total Memory Cost [GB] Time Cost per Query [microseconds]

Compressed gram-indexer
Compressed gram-frequency-indexer

D1 differntial coding
Elias ω encoded gram-context-indexer

V1 intersection

9.475 1852

Naive gram-indexer
Aligned gram-frequency-indexer

D1 differential coding
Variant-GB encoded gram-context-indexer

V1 intersection

12.045 722

Naive gram-indexer
Aligned gram-frequency-indexer

No differential coding
Uncompressed gram-context-indexer

V1 intersection

23.07 243

Table 4.8: Comparisons of framework with most compact storage and fastest calcu-
lation speed.

of context arrays we evaluated in Figure 4.3. This test set has 89 phrase pairs and

it passes the Pearson Correlation test with R-value equals to 0.73, which means

the relatedness score calculated from this test sets highly correlates with the golden

standard. We tell from Figure 4.3 that most tested instances are imbalanced context

arrays.

Then we show the break down of time spent on calculating phrase relatedness

in Table 4.7 and Figure 4.4. We notice that most of time is spent on context array

retrieval and context array intersection. Time spent on other calculation and co-

sine similarity calculation is almost trivial. Intersection based on hashmap performs

the worst, and it cost nearly 1000 times of other intersection approaches. SIMD ac-

celerated approaches performs better than non-SIMD approaches, leading to a 5%

improvement in calculation speed. We expect a better performance with the hybrid

approach. However, since most of the test cases are imbalance in the length of context

array, the hybrid approach shows no advantage to other SIMD based approaches.

Based on our evaluation performed on current data set, we compare different

combination of modules we designed in Table 4.8 using the same query set shown

in Figure 4.3. Fastest combination requires 244 microseconds per query, shown in

Figure 4.4 (c), which means we can answer 4098 queries per second. Compactest

combination takes 1730 microseconds per query, shown in Figure 4.4 (a) which means

we can answer 578 queries per second. Since our primary objective is guaranteeing fast



47

0 20 40 60 80
queries

0

2000

4000

6000

8000

10000

12000

14000

16000

tim
e 

fo
r c

al
cu

la
tio

n 
[m

icr
os

ec
on

ds
]

context retrieval
intersection
statistical pruning
rs
cos sim
other

(a)

0 20 40 60 80
queries

0

2000

4000

6000

8000

10000

12000

14000

16000

tim
e 

fo
r c

al
cu

la
tio

n 
[m

icr
os

ec
on

ds
]

context retrieval
intersection
statistical pruning
rs
cos sim
other

(b)

0 20 40 60 80
queries

0

2000

4000

6000

8000

10000

12000

14000

16000

tim
e 

fo
r c

al
cu

la
tio

n 
[m

icr
os

ec
on

ds
]

context retrieval
intersection
statistical pruning
rs
cos sim
other

(c)

Figure 4.4: Break-down in time with different combinations of each module

Note: (a) Compressed gram-indexer + Compressed gram-frequency-indexer + D1 differential coding
+ Elias ω coding + V1 intersection (b) Naive gram-indexer + Aligned gram-frequency-indexer +
D1 differential coding + Variant-GB encoded gram-context-indexer + V1 intersection (c) Naive
gram-indexer + Aligned gram-frequency-indexer + No differential coding + Uncompressed gram-
context-indexer + V1 intersection



48

calculation, based on the evaluation on context information extract from fourgrams,

we could skip the compression step and only care about accelerating intersection and

statistical pruning process. However, since most context arrays are short, we left it

as future work discussing whether it is a must for introducing compression.



Chapter 5

Conclusion

We presented a high-performance computational framework for the phrase related-

ness algorithm TrWP. With careful algorithm engineering and analysis of the data

set, we made the computational framework work support fast queries using a reason-

able amount of space. We found that the optimization of context array storage and

retrieval is the key to achieve high efficiency because context arrays take the most

memory and account for the largest portion of the query time. However, this work

highly depends on the actual property of the n-gram corpus, since we need to know

the distribution of context arrays and some extreme values of the pre-processed cor-

pus in order to decide some architecture-depended optimizations and formalize some

sub-problems.

We demonstrated that the combination of no compression and SIMD base inter-

section reaches fastest calculation speed. However, the speed still cannot support

massive query for phrase relatedness. One of the future work is expected to be real-

time document classification, which requires very fast phrase relatedness calculation.

Consider we have two short text segments with 100 words each, the phrase related-

ness of 10,000 pairs will be queried, leading to approximately 1 seconds cost solely on

phrase relatedness calculation. Thus, we need faster calculation of phrase relatedness.

We realize false positives can be restricted in a trivial ratio in exchange for more

compact storage and faster indexing. We may use hash functions that can map

inputs to a large range of evenly distributed hash values. And we use hash values as

fingerprint to represent each unigram. The length of each fingerprint deserves further

study to see the effect on the correctness of TrWP.

We did not do a full comparison of different encoding schemes to find the best

trade-off due to time constraints. Each codec needs to be implemented with many

tricks in C++ in order to make the codec work efficiently. We surveyed other high-

performance coding schemes, like SIMD-BP-128, [23] and FastPFor [15]. However, we

49



50

did not have the time to implement them ourselves and we encounter errors when

applying existing library1 for our work, the errors are possibly caused by improper

inputs. Due to the lack of documents, we expect more time to read the source

code and make it applicable for our task. Lemire’s library guarantee the success

of the compression process by allocating buffer far larger than required, and frame-

based coding schemes only works with integer sequences with 256n (n = {1, 2, 3...})
elements. Besides, frame-based approaches, like SIMD-BP-128, aggregated data into

blocks of 128 integers, but for our data, more than 71 % of the context arrays contain

less than 5 elements, where frame-based coding cannot be applied. Thus, we found

the framework is still not supportive for large query sets even with the uncompressed

array, which indicates it is necessary to explore some other approaches for acceleration.

We tried to implement the library using efficient bit operations to make it com-

pact and fast. However, we did not fully take advantage of GNU built-in functions

and SIMD intrinsics. Some components, like context array, are implemented with

STL containers for convenience, which means the evaluation results are expected to

perform better if those components are rewritten in pure C.

We lack a persuasive evaluation standard like other published works [22, 23, 16],

in which all works are evaluated on a standard posting list dataset and a standard

query set.

This work mainly focuses on optimizing the process of calculating phrase related-

ness. However, our final objective is to answer document similarity on the fly. The

document similarity is calculated by algorithms performed on the matrix, but we did

not look deep into it. More work is expected on optimizing the process of document

relatedness calculation.

1https://github.com/lemire/SIMDCompressionAndIntersection.git



Bibliography

[1] Zichu Ai, Jie Mei, Abidalrahman Moh’d, Norbert Zeh, Meng He, and Evangelos
Milios. High-performance computational framework for phrase relatedness. In
Proceedings of the 2017 ACM Symposium on Document Engineering, DocEng
’17, pages 145–148, New York, NY, USA, 2017. ACM.

[2] Vo Ngoc Anh and Alistair Moffat. Index compression using 64-bit words. Softw.
Pract. Exper., 40(2):131–147, February 2010.

[3] Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algorithm for
unbounded searching. Information Processing Letters, 5(3):82 – 87, 1976.

[4] Paolo Boldi and Sebastiano Vigna. Codes for the world wide web. Internet
Math., 2(4):407–429, 2005.

[5] Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. Simple and space-efficient
minimal perfect hash functions. In Proceedings of the 10th International Con-
ference on Algorithms and Data Structures, WADS’07, pages 139–150. Springer-
Verlag, 2007.

[6] Thorsten Brants and Alex Franz. Web 1t 5-gram version 1. 2006.

[7] William B. Cavnar and John M. Trenkle. N-gram-based text categorization. In
In Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and
Information Retrieval, pages 161–175, 1994.

[8] Hakan Ceylan and Rada Mihalcea. An efficient indexer for large n-gram corpora.
In The 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, Proceedings of the Conference, 19-24 June, 2011,
Portland, Oregon, USA - System Demonstrations, pages 103–108, 2011.

[9] Rudi L. Cilibrasi and Paul M. B. Vitanyi. The google similarity distance. IEEE
Trans. on Knowl. and Data Eng., 19(3):370–383, March 2007.

[10] J. Shane Culpepper and Alistair Moffat. Efficient set intersection for inverted
indexing. ACM Trans. Inf. Syst., 29(1):1:1–1:25, December 2010.

[11] P. Elias. Universal codeword sets and representations of the integers. IEEE
Trans. Inf. Theor., 21(2):194–203, September 2006.

[12] Robert Mario Fano. On the number of bits required to implement an associative
memory. Massachusetts Institute of Technology, Project MAC, 1971.

51



52

[13] Marcello Federico and Nicola Bertoldi. How many bits are needed to store prob-
abilities for phrase-based translation? In Proceedings of the Workshop on Sta-
tistical Machine Translation, StatMT ’06, pages 94–101, Stroudsburg, PA, USA,
2006. Association for Computational Linguistics.

[14] MICHAEL FLOR. A fast and flexible architecture for very large word n-gram
datasets. Natural Language Engineering, 19(1):6193, 2013.

[15] Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. Compressing rela-
tions and indexes. In Proceedings of the Fourteenth International Conference on
Data Engineering, ICDE ’98, pages 370–379, Washington, DC, USA, 1998. IEEE
Computer Society.

[16] David Guthrie and Mark Hepple. Storing the web in memory: Space efficient
language models with constant time retrieval. In Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP ’10, pages
262–272, Stroudsburg, PA, USA, 2010. Association for Computational Linguis-
tics.

[17] Kenneth Heafield. Kenlm: Faster and smaller language model queries. In Pro-
ceedings of the Sixth Workshop on Statistical Machine Translation, WMT ’11,
pages 187–197, Stroudsburg, PA, USA, 2011. Association for Computational Lin-
guistics.

[18] Samuel Huston, Alistair Moffat, and W. Bruce Croft. Efficient indexing of re-
peated n-grams. In Proceedings of the Fourth ACM International Conference on
Web Search and Data Mining, WSDM ’11, pages 127–136, New York, NY, USA,
2011. ACM.

[19] Aminul Islam, Evangelos Milios, and Vlado Keselj. Comparing word relatedness
measures based on Google n-grams. In Proceedings of COLING 2012: Posters,
pages 495–506, Mumbai, India, December 2012. The COLING 2012 Organizing
Committee.

[20] Aminul Islam, Evangelos Milios, and Vlado Kešelj. Text similarity using google
tri-grams. In Proceedings of the 25th Canadian Conference on Advances in Ar-
tificial Intelligence, Canadian AI’12, pages 312–317, Berlin, Heidelberg, 2012.
Springer-Verlag.

[21] G. Jacobson. Space-efficient static trees and graphs. In 30th Annual Symposium
on Foundations of Computer Science, pages 549–554, Oct 1989.

[22] D. Lemire and L. Boytsov. Decoding billions of integers per second through
vectorization. Softw. Pract. Exper., 45(1):1–29, January 2015.

[23] Daniel Lemire, Leonid Boytsov, and Nathan Kurz. Simd compression and the
intersection of sorted integers. Softw. Pract. Exper., 46(6):723–749, June 2016.



53

[24] José B. Mariòo, Rafael E. Banchs, Josep M. Crego, Adrià de Gispert, Patrik
Lambert, José A. R. Fonollosa, and Marta R. Costa-jussà. N-gram-based machine
translation. Comput. Linguist., 32(4):527–549, December 2006.

[25] Adam Pauls and Dan Klein. Faster and smaller n-gram language models. In
Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume 1, HLT ’11, pages 258–
267, Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

[26] Yehoshua Perl, Alon Itai, and Haim Avni. Interpolation search&mdash;a log
logn search. Commun. ACM, 21(7):550–553, July 1978.

[27] Giulio Ermanno Pibiri and Rossano Venturini. Efficient data structures for mas-
sive n-gram datasets. In Proceedings of the 40th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR ’17, pages
615–624, New York, NY, USA, 2017. ACM.

[28] Md. Rashadul Hasan Rakib, Aminul Islam, and Evangelos Milios. f: Phrase Re-
latedness Function Using Overlapping Bi-gram Context, pages 137–149. Springer
International Publishing, Cham, 2016.

[29] R. Rice and J. Plaunt. Adaptive variable-length coding for efficient compression
of spacecraft television data. IEEE Transactions on Communication Technology,
19(6):889–897, December 1971.

[30] Benjamin Schlegel, Rainer Gemulla, and Wolfgang Lehner. Fast integer compres-
sion using simd instructions. In Proceedings of the Sixth International Workshop
on Data Management on New Hardware, DaMoN ’10, pages 34–40, New York,
NY, USA, 2010. ACM.

[31] Efstathios Stamatatos. Plagiarism detection using stopword n-grams. J. Am.
Soc. Inf. Sci. Technol., 62(12):2512–2527, December 2011.

[32] Alexander A. Stepanov, Anil R. Gangolli, Daniel E. Rose, Ryan J. Ernst, and
Paramjit S. Oberoi. Simd-based decoding of posting lists. In Proceedings of
the 20th ACM International Conference on Information and Knowledge Man-
agement, CIKM ’11, pages 317–326, New York, NY, USA, 2011. ACM.

[33] Andreas Stolcke. Srilm-an extensible language modeling toolkit. In Proceed-
ings International Conference on Spoken Language Processing, pages 257–286,
November 2002.

[34] Andrew Trotman, Michael Albert, and Blake Burgess. Optimal packing in
simple-family codecs. In Proceedings of the 2015 International Conference on
The Theory of Information Retrieval, ICTIR ’15, pages 337–340, New York, NY,
USA, 2015. ACM.



54

[35] Taro Watanabe, Hajime Tsukada, and Hideki Isozaki. A succinct n-gram lan-
guage model. In Proceedings of the ACL-IJCNLP 2009 Conference Short Pa-
pers, ACLShort ’09, pages 341–344, Stroudsburg, PA, USA, 2009. Association
for Computational Linguistics.

[36] Hao Yan, Shuai Ding, and Torsten Suel. Inverted index compression and query
processing with optimized document ordering. In Proceedings of the 18th Inter-
national Conference on World Wide Web, WWW ’09, pages 401–410, New York,
NY, USA, 2009. ACM.

[37] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar ram-cpu cache
compression. In 22nd International Conference on Data Engineering (ICDE’06),
pages 59–59, April 2006.



Appendix A

Framework Description

We attach framework UML in Figure A.1. Then we present the functionality of

each major class in Figure A.2. Potential contributor of this work may find it useful

comparing Figure 3.1, Figure 3.14 and Figure A.1.

We recommend potential contributor of this work to implement following modules

as an asset:

• Implement custom tokenizer or find faster alternatives, since tokenization based

on regex can be slow.

• Implement visualization methods for your data structure, debugging on bit-

manipulations can be challenging.

• Implement custom serialization modules for your data structures, since I/O in

data structure construction can be time-consuming.

55



56

H
yb

ri
d

S
IM

D
_g

al
lo

pi
ng

V
3

V
1

no
n_

S
IM

D
_g

al
lo

pi
ng

no
n_

S
IM

D
_l

in
ea

r

G
ol

om
b

B
lo

ck

In
te

rs
et

io
n

+ 
vo

id
 in

te
rs

ec
tio

n(
st

d:
:v

ec
to

r<
st

d:
:p

ai
r<

ui
nt

32
_t

,u
in

t3
2_

t>
)

E
lia

s 
de

lta
E

lia
s 

om
eg

a
E

lia
s 

ga
m

m
a

PF
or

si
m

pl
e_

8b

va
ri

an
t_

g8
iu

va
ri

an
t_

gb

va
ri

an
t_

by
te

In
te

rf
ac

e
G

FI
nd

ex
er

+ 
ui

nt
32

_t
 g

et
_f

re
qu

en
cy

(i
nt

 t
ok

en
)

In
te

rf
ac

e
G

IIn
de

xe
r

+ 
ui

nt
32

_t
 g

et
_u

ni
gr

am
_i

d(
st

d:
:s

tr
in

g 
un

ig
ra

m
)

+ 
ui

nt
32

_t
 g

et
_b

ig
ra

m
_i

d(
st

d:
:s

tr
in

g 
bi

gr
am

)

D
4

D
M

D
2

D
1

va
ria

bl
e_

le
ng

th
_e

nc
od

in
g_

x3
2

+ 
vo

id
 e

nc
od

e(
ui

nt
32

_t
 *

in
, s

iz
e_

t i
nl

en
, u

in
t3

2_
t*

 o
ut

, s
iz

e_
t o

ut
le

n)
+ 

vo
id

 d
ec

od
e(

ui
nt

32
_t

 *
in

, s
iz

e_
t i

nl
en

, u
in

t3
2_

t*
 o

ut
, s

iz
e_

t o
ut

le
n)

va
ria

bl
e_

le
ng

th
_e

nc
od

in
g_

x8
+ 

vo
id

 e
nc

od
e(

ui
nt

32
_t

 *
in

, s
iz

e_
t i

nl
en

, u
in

t8
_t

* 
ou

t, 
si

ze
_t

 o
ut

le
n)

+ 
vo

id
 d

ec
od

e(
ui

nt
8_

t *
in

, s
iz

e_
t i

nl
en

, u
in

t3
2_

t*
 o

ut
, s

iz
e_

t o
ut

le
n)

va
ria

bl
e_

le
ng

th
_e

nc
od

in
g_

x6
4

+ 
vo

id
 e

nc
od

e(
ui

nt
32

_t
 *

in
, s

iz
e_

t i
nl

en
, u

in
t6

4_
t*

 o
ut

, s
iz

e_
t o

ut
le

n)
+ 

vo
id

 d
ec

od
e(

ui
nt

64
_t

 *
in

, s
iz

e_
t i

nl
en

, u
in

t3
2_

t*
 o

ut
, s

iz
e_

t o
ut

le
n)

di
ff

er
en

tia
lc

od
ec

+ 
vo

id
 d

el
ta

(s
td

::
ve

ct
or

<u
in

t3
2_

t>
 &

in
pu

t)
+ 

vo
id

 r
ec

ov
er

(s
td

::
ve

ct
or

<u
in

t3
2_

t>
 &

in
pu

t)

G
C

In
de

xe
r

C
om

pr
es

se
d 

G
FI

nd
ex

er

A
lig

ne
d 

G
FI

nd
ex

er

N
ai

ve
 G

FI
nd

ex
er

C
om

pr
es

se
d 

In
de

xe
r

N
ai

ve
 I

nd
ex

er
Tr

W
P

S
im

In
te

rf
ac

e
P

hr
as

eS
im

+ 
do

ub
le

 g
et

_s
im

(s
td

::
st

ri
ng

 p
hr

as
e1

, 
st

d:
:s

tr
in

g 
ph

ra
se

2)

In
te

rf
ac

e
G

C
In

de
xe

r
+ 

st
d:

:v
ec

to
r<

ui
nt

32
_t

> 
ge

t_
co

nt
ex

t(
ui

nt
32

_t
 t

ok
en

)

F
ig
u
re

A
.1
:
F
ra
m
ew

or
k
U
M
L



57

C
al

l t
hi

s 
to

 g
et

 s
im

ila
ri

ty
 v

al
ue

Im
pl

em
en

ta
tio

n 
of

 G
C

In
de

xe
r

C
al

l t
hi

s 
to

 g
et

 c
on

te
xt

ar
ra

y 
of

 t
ar

ge
t 

ph
ra

se
.

C
al

l t
hi

s 
to

 g
et

 t
he

 f
re

qu
en

cy
va

lu
e 

of
 t

ar
ge

t 
ph

ra
se

.

+ 
vo

id
 in

te
rs

ec
tio

n
+ 

vo
id

 s
ta

tis
tic

al
pr

un
in

g
+ 

vo
id

 r
so

b
+ 

vo
id

 c
os

si
m

+ 
vo

id
 c

al
si

m

+ 
do

ub
le

 g
et

_s
im

Tr
W

P
S

im
co

ns
tr

uc
tio

n 
in

vo
ke

+ 
vo

id
 in

itp
ar

am

C
on

te
xt

 a
rr

ay
 2

C
on

te
xt

 a
rr

ay
 1

+ 
ve

ct
or

<p
ai

r<
ui

nt
32

_t
,u

in
t3

2_
t>

 >
 g

et
_c

on
te

xt

G
C

In
de

xe
r

co
ns

tr
uc

tio
n 

in
vo

ke
:

+ 
vo

id
 in

itp
ar

am
+ 

vo
id

 d
el

ta
co

de
+ 

vo
id

 c
om

pr
es

s

C
al

l t
hi

s 
to

 g
et

 th
e 

id
 o

f 
a 

tw
o-

w
or

d 
ta

rg
et

 p
hr

as
e

C
al

l t
hi

s 
to

 g
et

 th
e 

id
 o

f 
a 

on
e-

w
or

d 
ta

rg
et

 p
hr

as
e

+ 
ui

nt
32

_t
 g

et
_f

re
q

+ 
ui

nt
32

_t
 g

et
_b

ig
ra

m
_i

d

Ta
rg

et
 F

re
q 

2
Ta

rg
et

 F
re

q 
1

+ 
ui

nt
32

_t
 g

et
_u

ni
gr

am
_i

d

Ta
rg

et
 T

ok
en

 2

Ta
rg

et
 T

ok
en

 1

Ta
rg

et
 P

hr
as

e 
P

ai
r

Im
pl

em
en

ta
tio

n 
of

 G
C

In
de

xe
r

Im
pl

em
en

ta
tio

n 
of

 G
FI

nd
ex

er

C
om

pr
es

se
dG

FI
nd

ex
er

co
ns

tr
uc

tio
n 

in
vo

ke
+ 

vo
id

 in
itp

ar
am

+ 
vo

id
 in

itu
ni

+ 
vo

id
 in

itb
i

C
om

pr
es

se
d 

gr
am

-i
nd

ex
er

co
ns

tr
uc

tio
n 

in
vo

ke
:

+ 
vo

id
 in

itp
ar

am
+ 

vo
id

 in
itu

ni
+ 

vo
id

 in
itb

i
+ 

vo
id

 in
itc

on

 q
u

e
ry

 i
n

vo
ke

 q
u

e
ry

 i
n

vo
ke

 q
u

e
ry

 i
n

vo
ke

qu
er

y
qu

er
y

q
u

e
ry

 i
n

vo
ke

 

q
u

e
ry

 i
n

vo
ke

 

qu
er

y

qu
er

y

ge
ne

ra
te

ge
ne

ra
te

q
u

e
ry

 i
n

vo
ke

 
qu

er
y

F
ig
u
re

A
.2
:
C
al
li
n
g
&

In
vo
k
in
g
S
eq
u
en
ce


	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Problem Statement
	Phrase Similarity Calculation
	Contributions
	Thesis Document Structure

	Related Work
	Word and Phrase Relatedness Using Google N-Gram Corpus
	N-gram indexing
	Efficient Integer Sequence Compression

	High Performance Computational Framework for Phrase Relatedness based on TrWP
	Overview
	Pre-processing
	Mapping N-Grams to Phrase Indexes
	Mapping Target Phrase Indexes to Frequencies
	Mapping Target Phrase Indexes to Phrase Contexts
	Intersection
	Overall design

	Evaluation
	Experiment Setup
	Evaluation of the gram-indexer
	Evaluation of the gram-frequency-indexer
	Evaluation of the gram-context-indexer
	Evaluation of Overall Performance in Speed

	Conclusion
	Bibliography
	Framework Description

