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Abstract 

 

The detection of population-genetic structure is useful for understanding patterns of gene 

flow, population distribution, and wildlife management and conservation. In this work, 

we examine approaches for inferring the modern genetic structure of Atlantic salmon 

(Salmo salar). We explore the utility of machine-learning algorithms (random forest, 

regularized random forest, and guided regularized random forest) compared with FST-

ranking for selection of single nucleotide polymorphisms (SNP) for fine-scale population 

assignment within a marine embayment, Lake Melville, Labrador. Using an unpublished 

SNP dataset for Atlantic salmon and validating our approaches with a published SNP data 

set for Alaskan Chinook salmon (Oncorhynchus tshawytscha), we demonstrate improved 

self-assignment accuracy and provide evidence of population structure consistent with F-

statistics. We compare the level of population structure in greater Labrador that is 

resolved using a preliminary panel of SNPs selected with guided regularized random 

forest with an established panel of 101 microsatellites. We ask if salmon originating from 

rivers draining into Lake Melville show evidence of discrete genetic population structure 

relative to those outside of the embayment. Finally, we investigate environmental 

parameters associated with the observed genetic structure and seek to explain the 

mechanisms driving genetic differentiation in the area. We highlight the potential for 

applications of machine-learning approaches in population genetics and uncover fine-

scale structure with potential impact on fisheries management techniques.        
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Chapter 1 

 

Introduction 

 

1.1 Population Genetics in Fisheries Research 

 

The study of population genetics (or genomics) for wildlife conservation and 

management is, like many sciences, a diverse and expanding field. Not only do new, 

interesting questions arise out of existing work, as technology develops we have 

increasing access to a variety of types and immense quantities of genetic data, and with 

that, the opportunity for novel approaches to uncover interesting patterns. Ultimately, 

population genetics asks “what diversity is present in this population?” or more 

accurately, “what is the genetic structure of individuals and populations in a given area?” 

For the purposes of conservation, particularly of exploited species, we aim to identify this 

structure to retain genetic diversity to reduce inbreeding depression in often declining 

wildlife populations, and to preserve adaptive genetic variation. 

 Applying these objectives to mixed-stock fisheries management involves 

identifying the stock (population) composition of harvests, and ensuring subpopulations 

are not overexploited (Bradbury et al., 2015). This approach, termed genetic stock 

identification or GSI can be done through mixed-stock analysis or assignment of 

individuals to a reference population (McKinney et al., 2017; Anderson 2010; Guinand et 

al., 2002). Although a reference is often unavailable, it is possible to infer a population of 

origin for highly structured populations (e.g. those that demonstrate natal homing 

behaviour) by sampling individuals at sites of putative population origin and establishing 

a model of population structure to then assign individuals of unknown origin. Though 

modelling attempts to detect patterns, it can also be implemented for data reduction, in 

which a reduced set of genetic markers, or loci, are selected to adequately explain 

variation in the data (Figure 1.1C). Often, various approaches for a given step in the GSI 

workflow (Figure 1.1) are implemented for a cross-method comparison.  
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Rapid advances in sequencing and genotyping technologies, such as next-

generation sequencing or NGS, have enabled the development of large panels of 

informative single nucleotide polymorphisms (SNPs) from genome-wide scans. These 

substitution mutations are usually biallelic, as multiple substitution events occurring at 

the same nucleotide are highly unlikely. Rare SNPs that are polyallelic are often removed 

from the data due to downstream computational complexity. Relative allele frequency of 

SNPs across populations can be used to inform genetic structure. Markers selected 

particularly for maximum self-assignment accuracy are likely to be useful for assignment 

across both broad and small-scale studies (Larson et al., 2014a); however, the trade-off 

between panel size and self-assignment accuracy often results in panels that, at an 

adequate performance threshold, are too large to be of practical value for fisheries 

applications, due to the costs of analysis. For this reason, methods to select informative 

loci without reducing accuracy of the assignment model, known generally as feature-

selection, have been developed (Helyar et al., 2011; Rosenberg et al. 2005). To date, 

methods to select informative loci have mostly been restricted to simple, univariate 

ranking. Machine-learning methods may provide a more robust approach, allowing for 

the establishment of smaller panels with greater accuracy (Topchy et al., 2004; Guinand 

et al., 2002), by using computational algorithms to recognize underlying patterns within 

data. An iterative process, these methods apply non-parametric methods to subsets of 

variables or features (here, genetic markers) to find trends between sets of data, or within 

the data itself (Guinand et al., 2002). This allows for greater consideration of feature 

importance by evaluating how variables interact and influence the model in a variety of 

combinations. In classification, states of features across samples (individuals) of a known 

class or group are assessed to place individuals into their assigned class with maximum 

accuracy. Feature-selection identifies key features that convey a high degree of 

information for the classification process. 

To avoid overestimating the accuracy of a given method, often referred to as 

upward grading bias (Anderson, 2010) the feature-selection algorithm is applied to a 

subset of individuals with known origin, referred to as a training set (Figure 1.1C). The 

remaining individuals, or those in the test set, are assigned to a population using an  
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Figure 1.1: A generalized workflow to assess a method for feature-selection for 

population assignment of individuals. A) Tissue is sampled from individuals at several 

sampling/spawning sites (in this case, within a river network) indicative of population of 

origin and putative population structure. B) DNA is sequenced from tissues to create a 

panel of all loci within all individuals. C) Individuals are split into a training and test set. 

D) A feature/loci selection technique is implemented on genotype data from ‘training’ 

individuals. E) ‘Test’ individuals are assigned to a population with GSI methods using 

only selected loci from step D. F) Accuracy of the locus-selection method (step D) is 

assessed by determining the proportion of correctly assigned individuals. 

 

 

algorithm that is given only the selected loci from the feature-selection step (Figure 

1.1E). The success of the feature-selection technique can be assessed by calculating the 

proportion of individuals correctly assigned given their putative population of origin, that 

is, the proportion of individuals from a given sampling location whose assignment 

(Figure 1.1E) matches that of the sampling site.  
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 In Chapter Two, we investigate novel approaches to select informative loci for 

population assignment of Atlantic salmon (Salmo salar) in a small geographic area of 

Labrador, Canada.  

 

1.2 Landscape Genetics in Fisheries Research 

 

While it is helpful to understand the genetic population structure of a fishery species, it is 

also important to identify possible mechanisms influencing this structure. Landscape 

genetics not only seeks to determine the genetic diversity present in a population, but also 

how the landscape affects the distribution of this diversity. Genetic divergence, the 

accumulation of genetic differences (e.g. allele frequencies) across groups of individuals 

resulting in defined subpopulation structure and potentially speciation, can result from 

many phenomena. Divergence may be influenced by selection, or by random (neutral) 

processes. Neutral factors include genetic drift, in which small populations undergo 

random changes in relative allele frequency, causing them to diverge, as well as dispersal 

or gene flow, in which migrants may introduce new genetic variants or alter the genetic 

composition of a population. This often occurs as localized gene flow, in which 

individuals are exchanged between neighbouring populations, or from historical scenarios 

such as secondary contact between formerly isolated populations. Alternatively, non-

neutral, or selective forces influence genetic divergence through local adaptation (Manel 

and Holderegger, 2013; Manel et al., 2003). By investigating how physical or 

environmental variables at a given spawning site vary with genetic structure, landscape 

genetics aims to identify possible underlying mechanisms to explain the observed genetic 

diversity.  

In addition to asking interesting questions from an evolutionary perspective, 

landscape genetics research plays a role in policy making to conserve exploited 

species (Manel and Holdregger, 2013). To be considered an evolutionarily significant 

unit, or a designatable unit (DU), for conservation purposes by the Committee on the 

Status of Endangered Wildlife in Canada (COSEWIC, 2015), a population must not only 

be genetically discrete, but also evolutionarily significant. This significance is based on 

four main criteria, although to be a considered a DU a population does not need to exhibit 



5 
 

all four. There may exist (1) evidence of local adaption, or genetic divergence due to 

selection. A population may also demonstrate (2) endemism, in which a genetically 

distinct group is isolated to a particular area, or (3) deep phylogenetic divergence relative 

to other populations of the species. The population may also be important for (4) range 

connectivity, in which its removal or extinction would result in isolation of surrounding 

populations. As such, developing approaches to provide evidence of these phenomena is 

important to influence protection of species and resources. By identifying environmental 

variables influencing local adaptation of a population, conservation efforts may be 

directed accordingly to focus on key habitat features to promote the maintenance of 

genetic diversity in managed populations (Hilborn et al., 2003; Manel and Holdregger, 

2013). 

Environmental association analysis (EAA) refers to the general statistical 

approaches involved in identifying correlations between genetic and environmental data, 

based on the principle that local adaptation evolves due to environmental or ecological 

heterogeneity across a population range (Lotterhos and Whitlock, 2015). Disentangling 

neutral from adaptive influences on genetic variation is a difficult computational task as 

these factors often vary similarly with geography and are therefore often highly 

correlated, resulting in similar signals reflected within the data (Frichot et al., 2013). This 

necessitates determining an underlying ‘neutral model’ to describe the genetic 

differentiation expected with only neutral influence on the process of divergence. Loci 

that exhibit patterns of population structure, and correlations with environmental 

parameters outside of this model can then be considered for evidence of local adaptation. 

This can be accomplished by identifying outlier loci after accounting for neutral structure 

and removing putative neutral loci from the dataset (Ferchaud and Hansen, 2016), or by 

including neutral genetic structure as an explanatory variable within EAA, such that 

correlations outside of this variable can be identified (Bradbury et al., 2015; Bourret et 

al., 2014). This inference, however, is dependent on the type of genetic marker used for 

analysis.  
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1.2.1 Genetic Markers: SNPs and Microsatellites 

 

Different types of molecular markers carry varying amounts of information, depending 

on the number of alleles per locus. They can also differ in their impact on trait or 

phenotypic expression, and undergo varying mutation rates (DeFaveri et al., 2013). 

Landscape associations with panels consisting of a particular marker type are likely to 

identify different factors influencing population structure compared to panels with 

alternative genetic information. 

SNPs are widely present within the genome, can be genotyped with low error and 

do not require access to a species’ fully sequenced genome. Because of these advantages, 

the use of SNPs for GSI have been increasing, relative to microsatellites (Hess et al., 

2011; Hauser et al., 2011). Microsatellites are regions of repeating k-mers, often 2-4 

nucleotides in length, in which allelic variation is defined by variation in the number of 

repeats. As repeat regions are more prone to mutations, microsatellites experience a 

higher mutation rate relative to SNPs (Nishant et al., 2009). Microsatellites contain more 

information per locus due to a high length variability across individuals, (Hauser et al., 

2011); consequently, fewer (up to a tenth of the number of biallelic SNPs) are required to 

obtain equivalent detection of population structure (Hess et al., 2011). However, the need 

for more SNPs can be readily met with NGS techniques with relatively low cost. Both 

types of marker have been used for identification of population structure and landscape 

associations, though the use of large SNP panels is becoming more frequent throughout 

the literature (e.g. Bradbury et al., 2015a; Larson et al., 2014a; Bourret et al., 2013; 

Dionne et al., 2008). Although most studies implement a single marker type, harmonizing 

observed patterns in population structure using multiple molecular markers could be 

beneficial for understanding mechanisms of divergence and moving forward in 

population genetics research (Groot et al. 2015; DeFaveri et al., 2013). This integration, 

however, is not always straight-forward as comparisons of microsatellites and SNPs for 

population structure are often equivocal. Fine-scale structure has been found best 

resolved for threespine stickleback (Gasterosteus aculeatus) and Chinook salmon 

(Oncorhynchus tshawytscha) using microsatellites (DeFaveri et al., 2013; Hess et al., 

2011), while assignment success was highest in sockeye salmon (Oncorhynchus nerka) 
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and Atlantic salmon using SNPs (Hauser et al., 2011; Glover et al., 2010). Evidence of 

introgression in Newfoundland populations of Atlantic salmon was apparent only when 

analyzing SNP arrays (Bradbury et al., 2015b). Regardless of the molecular markers 

used, even when filtering SNPs for outlier detection, Moore et al. (2014) found similar 

resolution in North American Atlantic salmon population structure.   

 In the context of EAA for Atlantic salmon, microsatellite variation has most often 

been found to correlate with neutral factors that influence population size or carrying 

capacity such as river size or flow volume (Bradbury et al., 2014; Ozerov et al., 2012; 

Dillane et al., 2008). Due to their multi-allelism, signals of drift may be more easily 

detected when using microsatellites than SNPs. However, associations have also been 

made with putatively adaptive influences, such as temperature (Dionne et al., 2008) and 

water chemistry (Bradbury et al., 2014). Similarly, both neutral effects and adaptively 

associated parameters have been found to influence genetic differentiation of SNPs 

(Rougemont and Bernatchez, 2017; Zueva et al., 2014; Bourret et al., 2013; Palstra et al., 

2007). Non-microsatellite-associated SNPs are more likely to be located within coding 

regions of the genome, microsatellites may be proximal to genes, resulting in genetic 

hitchhiking, in which the selection of a gene results in a similar change in allele 

frequency at a near-by locus due to physical proximity on the genome, without direct 

selection of the locus itself. SNPs and microsatellites alike are influenced by selective 

and neutral forces, necessitating approaches to identify true signals of selection.  

  

1.3 Our Study System: Atlantic Salmon in Labrador 

 

Historically a contentious location for French, British, and later American proprietary 

interests, Labrador fishery catch was monitored and extensively exploited across the 

region by the early 19th century (Taylor, 1985; Dunfield, 1985). Although fishery 

production regularly fluctuated, the progression of industry and human encroachment, as 

well as over-exploitation in the 20th century have recently led to significant declines in 

stocks, necessitating management strategies (Mills et al., 2013; Dunfield, 1985). Atlantic 

salmon in Newfoundland and Labrador are harvested according to Salmon Fishing Areas 

(SFAs), and assessed and monitored according to DUs (DFO, 2016). In fisheries, 
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management units are often not aligned with biologically or genetically distinct 

populations (Reiss et al., 2009). Established with the initiation of a management plan in 

1984, Labrador is composed of three SFAs, located North of Lake Melville, South of 

Lake Melville, and adjacent to the Strait of Belle Isle (O’Connell et al., 1992), while the 

whole of Labrador consists of a single DU. Despite the regular moratoria in the area, 

continued reductions in Atlantic salmon populations are largely attributed to reduced 

marine survival likely resulting from environmental and ecosystem changes, including 

those associated with climate change (DFO, 2016; Mills et al., 2013). Widely distributed 

and extensively exploited, Atlantic salmon exemplify opportunities and challenges within 

population and landscape genetics research (COSEWIC, 2011, Larson et al. 2014a; 

Bradbury et al., 2015a; 2015b; 2016). They are of particular conservation concern, 

protected under the Species at Risk Act (SARA) in parts of their ranges, due to 

substantial population declines. Anadromous populations home to their natal streams to 

spawn (natal philopatry) with low rates of straying (Hendry et al., 2004) and exhibit 

hierarchical population structure (Bradbury et al., 2015a; Bourret et al., 2013). As there is 

a greater differentiation between European and North American populations than within 

either continent, North American populations were thought to have derived from a single 

ancestral population already diverged from the European lineage (Ståhl, 1987). More 

recent evidence suggests at least one secondary contact event from a European lineage 

may have occurred in Newfoundland and southern Labrador due to the presence of shared 

alleles associated with European ancestry (Rougemont and Bernatchez, 2017; Bradbury 

et al., 2015b; Nilsson et al., 2001; King et al., 2000). How historical processes, such as 

recolonization, may have influenced current population structure and distribution may be 

influence modern findings in population genomics approaches. In Chapter Three we will 

further discuss the population structure of Labrador Atlantic salmon.  

Within Labrador approximately 13,200 salmon are harvested each year (Bradbury 

et al., 2015a). FSC (Food, Social, and Ceremonial) fishery practices are conducted by 

Innu First Nations, Inuit (Nunasiavut) and Metis (NunatuKavut) groups and constitute 

important traditional and recreational harvests (ICES, 2013) necessitating a better 

understanding of stock assessment for management of these populations. Most of the 

salmon harvest occurs within Lake Melville, a 3,069 km2 marine embayment (Figure 
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1.2). As a somewhat isolated area, physiographic characteristics such as temperature and 

water chemistry differ between Lake Melville and other areas of Labrador. As smolt 

spend some time in the embayment area before exiting into the broader ocean, these 

characteristics may play a selective role, influencing juvenile survivorship (Ozerov et al., 

2012). If there is evidence of local adaptation affecting differentiation between Lake 

Melville and elsewhere in coastal Labrador, Lake Melville may require distinct 

management strategies, and may meet the criteria to be considered as a separate SFA.  

 

1.4 Our Contribution 

 

Fine-scale assignment of Atlantic salmon can be difficult due to relatively low divergence 

(Bradbury et al., 2015a), necessitating novel approaches to detect subtle genetic 

differences across subpopulations. In Chapter 2, we will discuss widespread methods for 

SNP selection in population genetics, and compare accuracy in individual assignment 

using a well-established parameter, the fixation index (FST) and novel applications of 

random forest-classification, a machine-learning approach that implements a series of 

decision trees for ranking features. We use parr (salmon juveniles) sampled from 11 

rivers running into Lake Melville to evaluate the potential for individual assignment 

within this small geographic area. We test various sizes of subsets of genetic markers to 

determine the minimum panel size required to reach an adequate self-assignment 

accuracy, ≥ 90%. We then investigate patterns of incorrect assignment across methods to 

infer genetic structure across these rivers. To assess the broader applicability of our 

proposed methods, we also apply our feature-selection techniques to a published SNP 

dataset of Chinook salmon from coastal Alaska and the Yukon River (Larson et al., 

2014b).  

  In Chapter 3 we investigate the overall structure within coastal Labrador, and 

apply a robust landscape genetics approach, redundancy analysis (RDA), to uncover the 

mechanism for divergence in this area. We use parr sampled from these same 11 rivers in 

Chapter 2, with some overlap of individuals, as well as parr sampled from an additional 

24 sites in coastal Labrador (Figure 1.2). We apply these methods to two established 
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panels: (1) 101 microsatellites, and (2) 376 single-SNP genotypes. We conclude with a 

discussion of our contribution and indicate the direction of future work in this area.      

    

 

Figure 1.2: Sampling rivers across coastal Labrador. Individuals sampled at site locations 

in blue were used to study feature-selection techniques for GSI in Chapter Two. Data 

from site locations in both red and blue were used to investigate overall population 

structure and EAA in Chapter Three. For full names of rivers, see Table 2.1.     
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Chapter 2 

 

Random Forest Feature-Selection for Individual Assignment 

 

2.1 Individual Assignment 

 

Genetic assignment of individuals to their source populations is useful for uncovering 

spatial distribution of populations and migration patterns (e.g. André et al., 2016) relevant 

to wildlife management and conservation (Manel et al., 2005). For exploited species, 

assignment tests may be used to monitor population-specific exploitation, ensuring the 

maintenance of genetic diversity and improving management practices through the 

identification of over-exploited stocks. Assignment tests have been implemented in 

commercial fishery species such as herring, Clupea harengus L., (Bekkevold et al., 

2015), Atlantic cod, Gadus morhua L., (André et al., 2016), Chinook salmon, 

Oncorhynchus tshawytscha, (Smith et al., 2005; Templin et al., 2011, Larson et al. 2014a) 

and Atlantic salmon, Salmo salar (Karlsson et al., 2011, Bradbury et al., 2015a). These 

studies rely on genetic differences among populations to assign individuals to their source 

populations across large spatial scales (e.g. Bekkevold et al., 2015). Resolution of 

spatially distinct biological units across fine spatial scales can be difficult as weak genetic 

divergence may limit the accuracy of assignment tests (Larson et al., 2014a). Developing 

methods to detect this divergence and improve assignment accuracy may benefit 

management practices across both large and small geographic scales.   

In this chapter, we identify and evaluate various sizes of SNP panels using global 

FST and three variations of RF: standard RF, Regularized Random Forest (RRF), and 

Guided Regularized Random Forest (GRRF) (Deng and Runger 2013). We aim to 

identify one or more methods for selection of an optimal panel, while comparing the 

trade-off between panel size and self-assignment accuracy across methods and 

identifying the minimum panel size required to achieve a minimum overall self-

assignment accuracy of 90%. We provide evidence of successful implementation of 

machine-learning approaches on a metapopulation scale for site-by-site (river) 

classification to establish a relevant, non-redundant, reduced panel of genetic markers. By 
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testing these novel approaches on an unpublished set of Atlantic salmon SNPs, and a 

published Chinook salmon data set, we explore methods for capitalizing on large 

genomic datasets for genetic population assignment, with potential for application across 

a range of systems.     

 

2.1.1  Feature-Selection Techniques in Population Genetics 

 

Currently, the most widely used methods for SNP selection in ecological research rely on 

measures of population differentiation (see Helyar et al., 2011; Rosenberg et al. 2005 for 

review). Most commonly, SNPs are ranked by fixation index, FST (Karlsson et al., 2011; 

Larson et al., 2014a; Larson et al., 2014c; Lemay and Russello, 2015; André et al., 2016). 

As a measure of differentiation of populations, FST for SNP selection can be calculated at 

each locus between subpopulations (pairwise FST) or for a metapopulation relative to the 

overall population (global FST; Foll and Gaggiotti, 2006). Though widely used, it is 

difficult to gauge the applicability of FST-based methods across different study systems 

because published studies are often biased towards research demonstrating successful 

self-assignment. As FST-based methods only consider loci through a single, univariate 

rank for importance (Brieuc et al., 2015), the overall performance of the selected panel 

may be limited. Commonly used Bayesian algorithms rank locus importance based on 

inference of population structure through linkage disequilibrium (for example, Carlson et 

al., 2004), or deviation from Hardy-Weinburg Equilibrium (HWE). The latter has been 

implemented in user-friendly formats such as STRUCTURE (Pritchard et al., 2000) and 

BAPS (Corander et al., 2008).  

As an alternative, iterative algorithms implemented in the software BELS 

(Bromaghin, 2008) and genetic algorithms (Topchy et al., 2004) have been proposed for 

informative SNP selection (Rosenberg, 2005). Though potentially an improvement for 

assignment-focused marker selection, like those previously described, both methods are 

computationally intensive, potentially limiting the number of markers considered. BELS 

also lacks consideration of various possible subsets of SNPs (Helyar et al., 2011). There 

is the potential for further work on machine-learning approaches such as k-nearest 

neighbour and genetic algorithms (Topchy et al., 2004).  
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In contrast to simple ranking, random forest (RF) is a machine-learning approach 

that considers a subset of features or predictive variables (e.g. SNPs) at each node to 

grow a series of decision trees (Breiman, 2001). In the classification implementation, an 

individual is assigned to a class (e.g. population), using a bootstrapped sample of these 

features or loci. Features can be ranked by importance based on the change in 

classification error affected by the presence or absence of a feature in a subset. The RF 

algorithm also considers loci in various combinations of subsets, improving the power of 

the algorithm to rank these features or loci for importance. The increasing popularity of 

RF in biological research has provided ample evidence to indicate its potential for 

successful use in population genetics. The regression implementation has been used to 

select SNPs to predict phenotypes (Bureau et al., 2005; Brieuc et al., 2015; Pavey et al., 

2015) and to identify environmental parameters that may have an influence on population 

structures in landscape genetics (Zhan, 2016). RF classification has been applied as a 

method of feature-selection to predict microbial community structure, using phylogenetic 

and functional trait data (Ning and Beiko, 2015) and to select genes for functionality 

using microarray data (Díaz-Uriarte and De Andres, 2006; Deng and Runger, 2013; 

André et al., 2016); however, to our knowledge it has yet to be applied to SNP selection 

for population assignment. 

 

2.1.2  Random Forest Feature-Selection 

 

For RF classification, measures of importance of each feature can be calculated based on 

the reduction in accuracy of the model when the feature in question (i.e. SNP) is not 

included in a subset of features within a tree (Breiman, 2001). Decision trees based on 

subsets lacking highly informative features will have a higher error or reduced 

classification accuracy to a known class (i.e. river) when an important feature is removed, 

compared to an irrelevant marker, the removal of which will result in no reduction in 

model accuracy. This difference in model accuracy, averaged across decision trees with 

and without the locus in question is termed the mean decrease in accuracy (MDA). We 

used this measurement to rank loci based on importance in assignment (classification). 

Features or SNPs with a relatively high MDA will be deemed highly important for 



14 
 

accurate classification. As the actual MDA value indicates relative importance, a strict 

cut-off threshold will vary for each data set. The overall error of a forest of trees is 

assessed as the out-of-bag (OOB) error. Similar to the calculation of MDA across subsets 

of features, OOB error is an average of model error across the bootstrapped (or bagged) 

samples or individuals.    

Regularized random forest (RRF) and guided regularized random forest (GRRF) 

are variations on the RF algorithm designed to address issues with RF, and to optimize 

features for selection (Deng and Runger 2013). RRF uses a customizable parameter, the 

penalty coefficient (λ), which penalizes features at a node when making a classification 

decision. To be selected for importance and included in the selected panel, a feature must 

be more informative than the other features in the subset considered at a node as well as 

those already selected for importance, despite this penalty. As such, RRF is a more 

stringent application of RF and influences the selected feature set (panel) size. A larger λ 

(approaching 1) leads to a smaller penalty, resulting in a larger selected panel. Using the 

minimum regularization (λ=1) a feature must still be more informative than the already 

selected features to be included in the subset. Though this additional component to the RF 

algorithm provides a more stringent approach, the efficacy of RF and RRF may be 

limited by the number of nodes within the forest that consider a feature for importance to 

the model. That is, as a locus may not be present in many nodes, it may not be considered 

for importance often enough to truly inform the selection process, a problem referred to 

as node sparsity (Deng and Runger 2013). 

GRRF addresses node sparsity by using an input of importance measures (from a 

previous RF run, for instance) to weigh each feature. This customizes the algorithm such 

that the penalty coefficient applied to features of presumably greater importance is less 

than that applied to features of less importance. GRRF uses an alternative parameter, 

gamma (γ), to control the weight of the importance score applied to each feature. A larger 

value of γ (approaching 1) leads to a smaller overall λ and will therefore result in a 

smaller feature set (Deng and Runger, 2013). The ability to fine-tune parameters to target  
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Table 2.1 Site locations and sample size for all study collections of juvenile salmon, 

sampled in 2013 and 2014. 

River Name Sample Size Site ID Latitude (N) Longitude (W) 

Cape Caribou 

River 

21 CB 53°32'48,8" 60°36'27,0" 

Caroline Brook 20 CL 53°15,232' 60°31,899' 

Peters River 21 PR1 53°20'10,4" 60°47'15,3" 

  
PR2 53°20,345' 60°37,293' 

Red Wine River 22 RW1 53°52,764' 61°27,976' 

  
RW2 53°52,928' 61°28,730' 

Susan River 22 SR1 53°44,365' 61°3,275' 

  
SR2 53°44,184' 61°02,216' 

Crooked River 21 CR 53°50,991' 60°48,863' 

Kenamu River 22 KE 52°50,952' 60°08,279' 

Main Brook River 21 MB 54°04,355' 57°52,374' 

Mulligan River 17 MU 53°52,138' 60°05,392' 

Sebaskachu River 22 SK1 53°47,397' 60°08,523' 

  
SK2 53°46,10' 60°10,575' 

Traverspine River 22 TR 53°08,853' 60°27,769' 

 

sizes of SNP panels that achieve maximum classification accuracy in combination offers 

a unique property to the RRF and GRRF algorithms and demonstrates their suitability for 

comparing assignment accuracy across panel sizes.  

 

2.2 Sampling and Genotyping 

 

A total of 231 juvenile (parr) Atlantic salmon were sampled from 11 rivers (1-2 sites per 

river) within Lake Melville, Labrador (Table 2.1, Fig. 2.1) in 2013 and 2014 by 

electrofishing and angling.  Heart samples were collected and placed in 95% ethanol. 

DNA was isolated using the DNeasy Blood and Tissue kit or DNeasy 96 Blood and 
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Tissue kit (Qiagen, Toronto, ON, Canada) following the manufacturer’s protocol, 

including the optional RNase A treatment. DNA samples were quantified using the Qubit 

dsDNA HS Assay Kit (Life Technologies, Burlington, ON, Canada) with assays read on 

a Qubit v2.0 (Life Technologies) or using the Quant-iT PicoGreen dsDNA Assay Kit 

(Life Technologies) with assays read on a FLUOStar OPTIMA fluorescence plate reader 

(BMG Labtech, Ortenberg, Germany). The DNA quality for all samples was verified by 

agarose gel electrophoresis of 100 ng of extracted DNA, visualized using SYBR Safe 

(Life Technologies), and documented using a Gel Logic 200 (Kodak, Rochester, New 

York, United States). Individuals were genotyped using a 220K target, bi-allelic SNP 

Affymetrix Axiom array developed by the Centre for Integrative Genetics (CiGene, Ås, 

Norway). These SNPs were a subset of those in the 930K XHD Ssal array (dbSNP 

accession numbers ss1867919552–ss1868858426).  

Ten fish were genotyped twice to assess genotyping error rate. Loci with 

inconsistent calls among replicates were removed from the data set. Loci were then 

filtered in PLINK v. 1.07 (Purcell et al., 2007) for global minor allele frequency (MAF) 

below 5%. One locus was also removed for having more than 5% missing data across all 

sites. Pairwise population FST (Weir and Cockerham, 1984) was calculated using 

Arlequin (Excoffier et al., 2005), Table 2.2. Additional missing genotype data, consisting 

of 0.08% of the data, were imputed using the function rfImpute in the RandomForest 

package, using 5000 trees with all other parameters set to default.  

We further reduced our panel for downstream feature-selection by removing 

redundant SNPs and SNPs in linkage disequilibrium using the genepop_toploci function 

in the R package ‘genepopedit’ (Stanley et al., 2016) at an R2 threshold of 0.2 and a 

minimum global FST of 0.05. Though this is a highly stringent approach, reductions in the 

dataset are helpful both to reduce computational load and to increase consistency of 

markers across subsets (and therefore confidence in the importance of selected SNPs). As 

evidence suggests that under linkage disequilibrium RF performance may be reduced, 

redundancy in the dataset should be considered prior to or during the feature-selection 

process (Toloşi and Lengauer, 2011; Meng et al. 2009). 
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Figure 2.1: Sampling locations of (A) Atlantic salmon (Salmo salar) from Lake Melville, 

Labrador, Canada and (B) Chinook salmon (Oncorhynchus tshawytscha) from Western 

Alaska and the Yukon River. See Table 2.1 for site coordinates, site ID, and sample size 

for Atlantic salmon sampling. Coordinates for Chinook salmon sampling sites were 

obtained from Larson et al. (2014a). Maps were created using ArcGIS (ESRI, 2011). 
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Chinook salmon data contained 10,944 SNPs identified through Sbf1 restriction-

site-association DNA (RAD) sequencing for 265 adult individuals from five locations: 

four populations in coastal western Alaska and one in Yukon River (Fig. 2.1B). SNPs 

were removed from an original pool of 42,351 putative loci, if genotyped in <80% of 

individuals, and were reduced to one SNP per RAD tag (Larson et al., 2014a). Further, 

SNPs were filtered for linkage disequilibrium, evidence of paralogous sequences, 

deviation from Hardy-Weinberg equilibrium and MAFs of <0.05 (Larson et al. 2014a). 

Data were imputed and filtered for FST and redundancy as described above. 

 

2.2.1  Overall Panel Characteristics 

 

Of the original 220K SNPs genotyped for Atlantic salmon, 276 were called inconsistently 

across samples. Overall genotyping accuracy was > 99.8%. After removing these loci and 

initial filtering for MAF, 93,058 SNPs remained in the Atlantic salmon dataset for further 

selection. Average global, locus-specific FST (mean: 0.059, range: 0 - 0.58) and pairwise 

population FST ranking across the whole panel (Table 2.2, Fig. 2.2) indicated relatively 

low genetic differentiation. After controlling for linkage disequilibrium and co-variance 

in the panel across all chromosomes, and filtering at a global FST of 0.05, 8,434 non-

redundant loci remained in the panel, with FST frequency distribution similar to that 

observed in the unfiltered dataset (Fig. 2.2). The 10,944 SNP panel accessed for this 

study (Larson et al. 2014b) was reduced to 2,178 SNPs after filtering at a global FST of 

0.05 and linkage threshold of 0.2. For pairwise population FST, see Larson et al. (2014a). 

The size of the panel ranged from 51 to 697 SNPs and 41 to 528 SNPs for the Atlantic 

salmon and Chinook salmon datasets, respectively (Table 2.3). Though SNPs were most 

often selected by only a single selection method, some SNPs were identified by more 

than one method (Fig. 2.3). A total of 17 and 32 SNPs were selected by all four SNP 

selection methods for Atlantic and Chinook salmon, respectively. Overlap in SNPs 

occurred more often with Chinook salmon data, likely a result of the smaller panel size 

(2,178 SNPs) relative to the 8,434 SNPs in the Atlantic salmon panel. 
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2.3 SNP Selection for Identifying Panel Subsets 

 

Ideally, assignment analysis with loci selected for population assignment would 

implement a training/holdout approach, such that the individuals used for marker 

selection would be different from those used for assignment analysis (Anderson, 2010). 

Though upward grading bias (over-estimations of assignment accuracy) is effectively 

diminished by this approach, a completely independent training and holdout set is often 

unfeasible due to limitations in sample size. To overcome this, Anderson (2010) proposes 

a combined training/holdout/leave-one-out strategy where a subset of individuals 

(training set) are used for locus selection, and all individuals are used to establish a 

baseline for assignment. However, self-assignment accuracy is calculated based solely 

upon the assignment of the individuals in the holdout set.  As such, all loci were selected 

using a subset of individuals. For both datasets one-third of the individuals from each site 

(approximately 7 for Atlantic salmon data and 19 for Chinook salmon data) were 

randomly selected for all methods of locus selection. 

 

2.3.1  RF-based SNP Selection 

 

Data was formatted using a custom R script such that individuals at a given locus were 

assigned 0, 0.5, or 1, for an individual that is homozygous for the minor allele, 

heterozygous, or homozygous for the major allele, respectively. We ran RF using the R 

Table 2.2: Pairwise population FST (bottom diagonal) and p-values (top diagonal) calculated using 

1000 iterations in Arlequin 3.5.2.2 (Excoffier et al. 2005). P-values of zero indicate values < e10-6. 

 CB CL PR RW SR CR KE MB MU SK TR 

CB - 0 0 0 0 0 0 0 0 0 0 

CL 0.034 - 0 0 0 0 0 0 0 0 0.0009 

PR 0.131 0.136 - 0 0 0 0 0 0 0 0 

RW 0.024 0.033 0.122 - 0 0.0048 0 0 0 0 0 

SR 0.037 0.045 0.133 0.025 - 0 0 0 0 0 0 

CR 0.019 0.027 0.120 0.003 0.023 - 0 0 0 0 0 

KE 0.025 0.022 0.125 0.026 0.037 0.023 - 0 0 0 0 

MB 0.053 0.061 0.151 0.046 0.057 0.042 0.058 - 0 0 0 

MU 0.061 0.068 0.154 0.055 0.065 0.050 0.067 0.036 - 0 0 

SK 0.076 0.084 0.165 0.070 0.079 0.064 0.080 0.056 0.031 - 0 

TR 0.036 0.010 0.138 0.036 0.049 0.033 0.017 0.069 0.075 0.090 - 
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package ‘randomForest’ (Liaw and Wiener, 2002) on our filtered datasets. To determine 

our appropriate ntree parameter (number of trees), we ran RF using 125, 250, 500, 1000, 

2000, 4000, and 8000 trees, 10 times each. As overall out-of-bag (OOB) error stabilized 

at approximately 2000 trees for both Atlantic and Chinook data, we accepted this as 

suitable for our analysis (Boulesteix et al., 2012). The mtry parameter (the number of 

features considered at a node) was tested at default (the square root of the number of 

features), half default, and twice default, as suggested by Liaw and Weiner (2002). Error 

was lowest at twice default for 

 

 

Fig. 2.2: Frequency distribution of global FST (A) across all loci after initial filtering 

(93,058 SNPs) and (B) after filtering for redundancy (R2 linkage threshold of 0.2) and FST 

(threshold of 0.05) in genepopedit (Stanley et al. 2016). 
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Table 2.3: Properties of panels selected for assignment analysis by FST-rank, Random Forest (RF), 

Regularized Random Forest (RRF), and Guided Regularized Random Forest (GRRF). Panel size column 

indicates ‘(Rank) Panel Size’ for RF-selected panels. See Fig. 2.3 for intersections across methods. 

Method Parameter for selection Parameter Value Panel Size 

Atlantic Salmon 

 

Panel Size 

Chinook Salmon 

FST Top ranked - 60 47 

- 85 65 

- 104 88 

- 130 112 

- 184 134 

- 266 182 

- 344 240 

  - 508 384 

  - 519 454 

  - 670 509 

RF Within (x) rank across all 5 runs - (800) 66 (400) 41 

- (825) 90 (600) 74 

- (850) 110 (700) 91 

- (875) 135 (850) 125 

- (900) 157 (950) 167 

- (950) 201 (1000) 216 

- (1050) 298 (1100) 277 

- (1200) 435 (1250) 341 

- (1400) 605 (1400) 437 

- (1500) 697 (1500) 519 

RRF Penalty coefficient (λ) 0.75 51 47 

0.8 83 71 

0.825 114 94 

0.85 140 110 

0.875 180 150 

0.9 275 191 

0.925 336 260 

0.95 515 364 

0.975 604 470 

0.99 710 528 

GRRF Weight of penalty (γ) 0.25 60 47 

0.2 85 65 

0.175 104 88 

0.15 130 112 

0.125 184 134 

0.1 266 182 

0.075 344 240 

0.05 508 384 

0.025 519 454 

0.01 670 509 
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A

 

B

 

Figure 2.3: Overlap of SNPs from largest panels created using FST, Random Forest (RF), 

Regularized Random Forest (RRF) and Guided Regularized Random Forest (GRRF) for 

(A) Atlantic salmon data and (B) Chinook salmon data (Larson et al. 2014a). See Table 

2.3 for panel information.  

 

both Atlantic and Chinook data and was therefore used as such for our analyses. We used 

a minimum node size (minimum size of terminal nodes or leaves) of five, allowing larger 

trees to be grown while decreasing run time (see ‘randomForest’ R documentation), with 

all other parameters set to default (Liaw and Wiener, 2002).   

For feature-selection, we used five runs of RF, resulting in five separate lists of 

SNPs ranked by MDA. Panels of various sizes were created by identifying SNPs present 

in all five lists at 10 ranking levels. These levels were selected to create panels of 40-700 

SNPs, after ensuring that each list contained only features with a positive MDA. For 

example, SNPs consistently ranked within the top 800 loci in all five lists were 

aggregated to form a consensus panel of 67 SNPs (Table 2.2).  

RRFs and GRRFs were run using the R package ‘RRF’ (Deng and Runger, 2013). 

Both methods were run using the same parameters as those used for RF (described 

above). We tested ten parameter values for the penalty coefficient (λ) running RRF and 

10 parameter values for gamma (γ) when running GRRF (Table 2.2). Parameters were 

selected to encompass a range of regularization penalties and to ensure a diversity of 

panel sizes for individual assignment. A vector of importance measures (MDA scores) 
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determined by a single RF run for feature (SNP) rank was applied for feature weight in 

GRRF, as described above. 

 

2.3.2  FST-based SNP Selection 

 

We tested FST as a method of SNP selection using panels of loci ranked by global FST 

calculated using the R package ‘genepopedit’ (Stanley et al., 2016). To assess the 

assignment power of various panel sizes of SNPs ranked by FST, we created panels of size 

equal to those established using GRRF for cross-method comparison (Table 2.3). To 

visualize the overlap of SNPs selected across all methods, Venn diagrams were created 

for the largest panels across all SNP-selection methods using Venny v.2.1 (Oliveros, 

2015). 

 

2.4 Approaches for Individual Assignment  

 

Assignment tests for GSI when the population of origin is already known (or suspected, 

based on sampling location) or for a simulated baseline, can apply a variety of 

classification algorithms, such as those discussed above for use in the feature-selection 

step of the pipeline. In general, most assignment methods have implemented maximum 

likelihood, for instance, the user-friendly software, ONCOR (Kalinowski et al., 2008) and 

GENECLASS2 (Piry et al., 2004), or Bayesian approaches, such as STRUCTURE 

(Pritchard et al., 2000) and BAPS (Corander et al., 2008). These two general approaches, 

however are susceptible to over-estimation of assignment accuracy as population allele 

frequencies often deviate from baseline (sample) allele frequencies, particularly over 

resampling of individuals to create a simulated baseline (Anderson et al., 2008). As an 

alternative, Anderson et al. (2008) proposes gsi_sim (genetic stock identification 

simulation) to estimate individual assignment and mixture proportions. By limiting the 

training set used for marker selection to a subset of individuals as described above, and 

implementing a LOO cross-validation method, gsi_sim controls for high grading bias 

within power analysis without reducing the sample size of the dataset. Gsi_sim creates 

simulations of individual genotypes through bootstrap sampling and assigns these 
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individuals to a population based on the true baseline calculated across all individuals. 

This is particularly useful for studies with relatively low sample sizes as there is likely a 

larger difference between baseline allele frequencies and actual parametric population 

frequencies. The improvement of assignment accuracy is also expected to be largest for 

fine-scale studies, where genetic differences in populations are expected to be small. 

‘Assigner’ is an R package developed to run filtering procedures and conduct assignment 

and mixture analysis with NGS data and has the option to implement gsi_sim. ‘Assigner’ 

(Gosselin et al., 2015) was used here to implement gsi_sim (Anderson et al., 2008), to 

conduct assignment analysis. Whitelists, or lists of loci to be considered for assignment, 

were created from each SNP selection method using custom R scripts for input into 

‘assigner’. Though all individuals were used to create the baseline for gsi_sim, only the 

assignment of the holdout individuals was used to assess self-assignment accuracy.  

Significance of SNP selection method was determined by an ANOVA comparing 

second degree polynomial models with and without the SNP-selection method term. We 

investigated consistent patterns of incorrect assignment across putative populations 

(rivers) by observing assignment matrix heatmaps of the smallest panels across all SNP 

selection methods. We also compared pairwise population FST values to discrepancies in 

pairwise mismatches (the number of individuals incorrectly assigned between paired 

populations) between FST-rank and GRRF selection methods, to further assess the optimal 

application of each method. That is, for a given pair of putative populations, the 

proportion of individuals that were incorrectly assigned from one study site to the other 

when using GRRF for SNP selection was subtracted from the proportion of individuals 

incorrectly assigned (within that pair of sites) using FST -rank. This allowed us to 

visualize a preferred method for sites at a given pairwise FST.  

 

2.5 Panel Performance 

 

2.5.1  Atlantic salmon in Labrador, Canada 

 

Across panel sizes, we found that panels selected by FST ranking had the lowest self-

assignment accuracy on average (mean=79.4%, SE=1.8) (Fig. 2.4A). Self-assignment 
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accuracy for panels selected using RF, RRF and GRRF perform better overall (RF: 

mean=81.8%, SE=1.8; RRF: mean=81.5, SE=2.6; GRRF: mean=82.1, SE=2.5). An 

ANOVA comparing the fit of polynomial models with and without considering SNP 

selection method indicated marginal significance (F28,37=2.54, p=0.048). The difference 

between methods varied with panel size. In the smallest panel sizes (50-100 SNPs), FST-

ranked panels had better or comparable self-assignment accuracy with RF-based panels 

(Fig. 2.4A). In small- to medium-sized panels (101-200 SNPs), RF-selected panels 

performed best (up to 7.8 percentage points for panels of comparable size), while GRRF-

selected panels most often have the highest self-assignment accuracy in larger panels 

(>200 SNPs). In all cases but the three smallest panel sizes (60, 85 and 104 SNPs), 

GRRF-selected panels outperformed FST -selected panels of the same size by a margin of 

3.2 to 4.9 percentage points. For smaller panels, RF-selected panels outperformed FST -

selected panels by up to 5 percentage points, although the highest accuracy of the 

smallest panel was 70.64%, observed in the FST -selected panel. A threshold of 90% 

accuracy overall was achieved only with the largest panels created using GRRF and RRF, 

composed of 670 and 710 SNPs, respectively.  

We also investigated how self-assignment varied across sites (Fig. 2.5). Many 

sites showed consistently high (above 90%) self-assignment regardless of SNP selection 

method, whereas others have a higher frequency of mis-assignment. In these latter sites 

(Caroline River and Traverspine River; Red Wine River and Crooked River), the margin 

in performance between FST and RF-selected panels widened, in some cases by up to 40 

percentage points, as seen in Caroline River (Fig. 2.5A). Some study sites showed a 

higher self-assignment accuracy with FST -based methods and some with RF-based 

methods (Fig. 2.5A). To understand these patterns, we compared pairwise population FST 

values with the difference in the proportion of mismatches across paired sites between 

FST and the best performing RF-based method overall, GRRF (Fig. 2.6). While we 

expected that populations with a low pairwise FST value may tend to be more successful 

with one SNP selection method over another, we did not find consistency across panels. 

As pairwise FST values increased, these differences shifted toward zero, but at low 

pairwise FST values there was no tendency for more mismatches to occur in one method 

over another (Fig. 2.6). 
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Figure 2.4: Average, overall self-assignment accuracy of identified SNP panels (50-700 

SNPs) for (A) Atlantic salmon and (B) Chinook salmon (Larson et al. 2014a) calculated 

across sampling sites. SNP selection method (FST rank, RF, RRF and GRRF) is indicated 

by colour. 
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To identify patterns of mis-assignment, we created heatmaps demonstrating mis-

assignment from ‘assigner’ outputs for the smallest panel sizes from all methods to 

ensure consistency in observed patterns (Fig. 2.7). From this we observed a high rate of 

mis-assignment between Red Wine River and Crooked River, and between Caroline 

River, Traverspine River, and to a lesser degree, Kenamu River. Regardless of the 

method of SNP selection, we observed that incorrectly assigned individuals from Red 

Wine River frequently assigned to Crooked River (30.0% of all individuals), and vice 

versa (35.7% of all individuals). Incorrectly assigned individuals from Caroline River 

were often assigned to Traverspine River (30.7% of individuals). Although individuals 

from Traverspine River generally self-assigned well, incorrectly assigned individuals 

often assigned to Caroline River (13.3% of all individuals) (Fig. 2.7). Up to 10% of 

individuals from Traverspine River and Caroline River incorrectly assigned to Kenamu 

River, while incorrectly assigned individuals from Kenamu River most often assigned to 

Traverspine River or Caroline River (up to 13.3%). We also observed consistent self-

assignment of 81% of individuals in Peter’s River (Fig. 2.5a). Regardless of panel-

selection method, the same four individuals mis-assigned to Crooked River, Red Wine 

River or Kenamu River (Fig 2.7). It is also worth noting that these incorrectly assigning 

individuals were sampled from a site upstream of the river mouth, while all other samples 

were collected near the river mouth (Table 2.1), possibly indicating within-river 

population structure. These consistent patterns in mis-assignment between and within 

geographically proximate sites (Fig. 2.1) illustrate the difficulty with population 

assignment at the finest spatial scales. Although there appears to be some level of genetic 

divergence between individuals at each of these sites, either computational methods are 

limited in their ability to detect and fully discern these populations, or they are in fact 

genetically and behaviourally the same population with higher genetic diversity than 

nearby populations.    

 

2.5.2  Chinook salmon in Alaska, USA 

 

Similar to our findings with the Atlantic salmon data, we found consistently 

higher self-assignment accuracy with RF-based selection methods (RF: mean=82.7%,  
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Figure 2.5: Self-assignment accuracy of identified SNP panels (50-700 SNPs) across all 

sampling sites as indicated by site ID (see Table 1) for (A) Atlantic salmon and (B) 

Chinook salmon (Larson et al. 2014a). SNP selection method (FST rank, RF, RRF and 

GRRF) is indicated by colour. Note differences in y-axis range between A and B. 
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Figure 2.6: Difference between FST and best overall RF-based SNP-selection method 

showing proportion of individuals from one study location incorrectly assigned to an 

alternative location, sorted by pairwise population FST for (A) Atlantic salmon, 

comparing FST and GRRF and (B) Chinook salmon (Larson et al. 2014a), comparing FST 

and RF.  

 

SE=2.16; RRF: mean=80.7%, SE=1.84; GRRF: mean=81.5%, SE=2.5) compared to FST-

selected panels (mean=75.4%, SE=2.18) (Fig. 2.4B) for the Chinook salmon dataset. SNP 

selection method was found to have a significant effect on the polynomial model 

(F28,37=4.08, p=0.001). As observed with the Atlantic salmon data, smaller to medium-

sized panels (up to 200 SNPs) performed best with RF SNP selection (up to 11.2 

percentage points for panels of comparable size), while GRRF often had the highest self-
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assignment accuracy of the larger panels. However, unlike the Atlantic salmon data, FST-

selected panels showed reduced self-assignment accuracy at both small and large panel 

sizes. GRRF-selected panels outperform FST -selected panels of the same size by a 

margin of 1 to 9.8 percentage points.  A 90% self-assignment accuracy threshold was 

reached with the largest panels of all RF-based selection methods, and with a panel of 

384 SNPs selected by GRRF at 92.4% overall accuracy. 

Self-assignment accuracy decreased (Fig. 2.5B) and mis-assignment increased 

among closely associated sites (Anvik River, Koktuli River, and Kogrukluk River) with 

reduced pairwise FST values (Larson et al., 2014a).  Larson et al. (2014a) found the lowest 

genetic divergence between these three rivers, particularly between Kogrukluk River and 

Koktuli River, with these rivers showing the lowest pairwise FST (0.003) and highest 

occurrence of overlap in a principal component analysis (PCA). Accordingly, we found 

the highest rate of incorrect assignment occur between these two rivers (Fig. 2.8). Though 

FST -selected panels most often had the lowest accuracy, this was not consistent across all 

sites. As with the Atlantic data, we investigated the relationship between pairwise 

population FST values and the difference in the number of mismatches occurring between 

a given pair of populations when using FST values versus the best performing method 

overall, RF. Though higher pairwise FST is associated with reduced differences between 

these approaches, there is no indication that outperformance of a particular method is 

associated with FST (Fig. 2.6B). 

 

2.6 Discussion of Results 

 

Overall, in both Atlantic salmon and Chinook salmon, we achieved self-assignment 

accuracy above 90% for most populations using targeted panels of loci, comparable to or 

higher than that of broad-scale (Ozerov et al., 2013; Moore et al., 2014; Bradbury et al., 

2015; Bradbury et al., 2016) and fine-scale (Vähä et al. 2016) mixed-stock analyses. 

Machine-learning algorithms in contrast to FST-rank, allow SNPs to be selected based on 

their relevance directly to the study question, be it correlation with a phenotype (for 

example, Brieuc et al., 2015) or classification to a reference population. Machine-learning 

techniques also consider the importance of loci in combinations with other loci, in 
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contrast to loci selected solely on individual importance. If combinations of markers 

perform better than expected given the individual characteristics of each marker, then 

machine-learning methods might select relevant markers that would otherwise go 

undetected. For phenotype-genotype studies, this approach is more likely to consider and 

identify important loci involved in polygenic traits, which may otherwise be discarded. In 

a SNP selection study targeting disease indicators (Shah and Kusiak, 2004) a set of 172 

SNPs was reduced by 85% with little cost to the performance of the assignment model. It 

is not surprising then, that machine-learning algorithms may increase the accuracy of 

population assignment.  

 

Figure 2.7: Assignment matrix heat maps indicating average percent assignment of 

Atlantic salmon data calculated across the smallest panels (51-66 SNPs) established using 

(A) FST rank, (B) RF, (C) RRF and (D) GRRF. Colour intensity indicates probability of 

an individual from a reference population (rows) being assigned to a given population 

(columns). 
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In the Atlantic salmon dataset, we observed an improvement of up to 40 

percentage points within a single site and up to 7.8 percentage points in overall 

assignment accuracy, compared to FST-selected panels of similar size. This improvement 

in self-assignment accuracy was most apparent in larger panel sizes. In the three smallest 

panel sizes, FST-selected panels had comparable accuracy to those selected using RF 

methods. We observed frequent and consistent mis-assignment in particular sites across 

SNP selection methods (Fig. 2.5A, Fig. 2.7A). Caroline River and Traverspine River, as 

well as Red Wine River and Crooked River showed higher levels of mis-assignment with 

each other than most other rivers, though self-assignment was still higher than would be 

expected if individuals were randomly assigned to one of these two paired sites (i.e. 

 

Figure 2.8: Assignment matrix heat maps indicating average percent assignment of 

Chinook salmon data calculated across the smallest panels (41-47 SNPs) established 

using (A) FST rank, (B) RF, (C) RRF and (D) GRRF. Colour intensity indicates 

probability of an individual from a reference population (rows) being assigned to a given 

population (columns). 
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50%). This reduction in self-assignment accuracy likely reflects close genetic 

relationships or admixing between these neighbouring populations within the same river 

tributary. Alternatively, this may indicate multiple spawning sites (rivers) for the same 

population. Pairwise FST values were considerably lower for these pairs of rivers, 

indicating relatively low genetic divergence (Table 2.2).  We also observed that 

assignment accuracy within Peter’s River rarely deviated from 81%. Across all runs, 

individuals from Peter’s River sampled from the site closest to the river mouth (Fig. 

2.1A) were incorrectly assigned to Red Wine River, Crooked River or Susan River. We 

suspect that there may be genetic structuring occurring within Peter’s River or that these 

individuals are progeny of recent migrants from one or more of these populations. More 

samples to detect population structure within these rivers may indicate the presence of 

distinct upstream and downstream populations within Peter’s River, or other rivers with 

natural barriers influencing within-stream population structure.  Though our study 

revealed clear patterns of mis-assignment in pairs, it is likely that patterns of incorrect 

assignment in other natural systems may be more complex (Vähä et al., 2016), 

particularly when assigning to a greater number of sites (Moore et al., 2015) or if the 

subpopulations in question are less genetically divergent. For such studies, GRRF or 

other modified machine-learning approaches may be well suited to SNP selection for 

accurate overall assignment accuracy, as shown by the successful application in the 

present study. 

In Chinook salmon, our application of RF-based methods to a large (10,944 

SNPs), published data set (Larson et al. 2014a) provided further evidence of the 

usefulness of RF feature-selection. RF-selected panels had consistently higher self-

assignment accuracy compared to those selected by FST-ranking. Using a panel of 39 

SNPs developed from expressed sequence tags, Larson et al. (2014a) obtained an overall 

accuracy of 54.4% using a LOO approach, comparable to our smallest FST-ranked panel 

of 47 SNPs, with an overall accuracy of 60.6% (Fig. 2.4B). However, the smallest RF-

based panels resulted in overall self-assignment accuracy of 71.6%, 70.0% and 68.6% for 

RF, RRF and GRRF, respectively (Fig. 2.4B). Self-assignment accuracy of the largest 

panel (509 SNPs) using GRRF was comparable to that achieved using all 10,944 SNPs 

(Larson et al. 2014a) (92.0% and 96.4%, for the 509 SNP panel and 10,944 SNP panel 
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respectively). Comparable self-assignment accuracy (above 90%) was reached using a 

panel of 500 multi-SNP (haplotype) loci (McKinney et al., 2017) selected based on FST 

rank with individuals assigned using gsi_sim. In this study McKinney et al. (2017) 

combined Koktuli River and Kogrukluk River into a single group for mixture analysis 

and individual assignment. That we achieved a similar level of self-assignment accuracy 

with single-SNP panels of equal or lesser size without combining sampling locations 

speaks to the predictive power of RF-based methods for marker selection. Populations 

with the lowest self-assignment accuracy (Anvik River, Kogrukluk River and Koktuli 

River) (Fig. 2.5B, Fig. 2.7B) were consistent with those found to be the least divergent, 

with the lowest pairwise FST (0.003 - 0.006) and high degree of overlap in a PCA analysis 

(Larson et al., 2014a). While FST-selected panels had the lowest accuracy for Kogrukluk 

River and Koktuli River, this disparity was reduced in Anvik River. The increased self-

assignment accuracy obtained here is comparable with that achieved by McKinney et al. 

(2017) using haplotype genotypes of the same dataset. However, this improvement was 

achieved under a simpler assumed population structure as rivers with the lowest pairwise 

FST (Kogrukluk River and Koktuli River) were combined into a single class.  

Overall, RF methods often outperformed the FST based method, however, the 

Atlantic and Chinook salmon data showed discrepancies in the optimal method of SNP 

selection for each site. By comparing pairwise FST with the difference in the number of 

mismatches between paired populations when using the best RF-based method and FST 

for SNP selection, we hoped to elucidate these findings. However, we did not find strong 

evidence that either of these methods perform better under certain conditions of 

population divergence (Fig. 2.6). 

Across all analyses, we often observed fluctuations in self-assignment accuracy. 

There are many instances of accuracy decreasing with increasing panel size, even when 

markers were selected using the same method (Fig. 2.5, Fig. 2.7). Using a simulated 

baseline based on a subset of SNPs for individual assignment leaves room for noise and 

minor fluctuations depending on the SNPs used for assignment. Increasing panel size 

would not always increase accuracy if less-informative SNPs are included in the panel. 

Though our methods aim to select the most informative SNPs, those selected for 
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classification based on the training set of individuals may not be informative for 

assignment when applied to the holdout individuals.   

Although there was little difference observed between the three RF-based 

methods, in both datasets RF-selected panels had higher assignment accuracy in small- to 

medium-sized panels, while GRRF often outperformed other SNP-selection methods in 

the largest panels. This reduction in RF accuracy may be due to our applications of the 

RF approach. As we aggregated SNPs across five lists ranked by MDA, loci common 

across all lists at a lower rank may not be any more informative than those already 

included in the smaller panels, and will therefore contribute little to assignment accuracy. 

Conversely, GRRF continues to apply a penalty to SNPs regardless of panel size and thus 

selects SNPs that continue to contribute to the overall informativeness of the panel. We 

tested RRF and GRRF in addition to the basic RF approach to address the possible risk of 

node sparsity and to demonstrate the potential benefits of more stringent approaches. The 

easy implementation and customizable parameters for panel-size selection speak to the 

usability of these algorithms for subset selection. One additional benefit of GRRF is the 

customizable weighting of loci. We applied importance scores from a previous RF run to 

apply a non-uniform weight to the error penalty for each SNP. However, these scores 

could be manipulated to reflect additional information, such as location within known 

genes or importance to a phenotypic trait to allow for functional importance of loci to be 

considered in the SNP selection process. As such, we believe the comparison of all three 

approaches informs future use across genetic-based disciplines.    

Sampling juveniles at spawning sites of anadromous fish increases the possibility 

of including siblings within the sample. Though this might inflate our estimates of self-

assignment accuracy for Atlantic salmon, purging the dataset of siblings may actually 

reduce population estimates, depending on the severity of sibling removal (Waples and 

Anderson, 2017). The ideal threshold to remove individuals can be difficult to determine 

and varies for different systems and datasets (Waples and Anderson 2017). Further, this 

bias would be consistent across SNP selection methods, and does not detract from the 

benefits of machine-learning methods for SNP selection. The improved self-assignment 

accuracy obtained with RF methods for a larger sample of adult Chinook salmon (Larson 

et al., 2014a) demonstrate a wider range of the applicability of this approach. 



36 
 

We applied RF feature-selection to populations under a hierarchical genetic 

structure. Further tests of these methods may reveal that the applicability of RF is limited 

to highly structured populations under this type of hierarchical model. However, we 

demonstrate that within these populations of low differentiation (low pairwise FST), there 

is potential to develop these methods for further research. The resolution achieved using a 

single, small panel of SNPs for river-scale assignment offers new opportunities to 

improve fisheries management techniques. Ozerov et al. (2013) found that to distinguish 

populations of Atlantic salmon to a comparable (90%) accuracy, different sets of up to 

150 SNPs were required to classify mixtures of individuals, depending on the populations 

in question. Although it is possible that there is some upward grading bias in our study, 

we applied the combined training-holdout and LOO method proposed by Anderson 

(2010) to reduce overestimation of self-assignment accuracy that might otherwise occur 

with relatively low sample sizes.  

As we investigated overall assignment using a single panel at a time, we cannot be 

sure how each SNP in the subset distinguishes among individuals within a river. The low 

degree of overlap across RF runs (Table 2) indicates high variation in the RF ranking 

process. This is expected due to the randomness associated with considering subsets of 

features within each tree, but may be indicative of noise that must be filtered by the RF 

algorithm. Although the proportion of SNPs present in all 5 runs increases with 

increasing rank (Table 2), an adapted algorithm to increase consistency may also improve 

results. Though outside of the scope of the present study, investigating the potential for a 

deterministic approach could provide insight to the underlying genetic differentiation 

between certain populations and the process of feature ranking in RF. Our findings 

support the use of stringent applications of RF for feature-selection in a wildlife 

management context, such that a reduced panel may be established to allow for individual 

assignment to natal rivers. With this improvement in accuracy, these methods could be 

used to inform management policies to reduce exploitation of particular subpopulations. 

This study highlights the need for further investigation of machine-learning techniques, 

such as RF, that may be valuable for a range of ecological studies. 
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Chapter 3 

 

Population and Landscape Genetics in Greater Labrador 

 

The discovery of informative SNPs for accurate assignment of individuals within Lake 

Melville indicates that these populations are highly structured. Given this level of 

detectable structure for a small geographic area, populations may also be distinguishable 

across a broader scale. For a larger geographic area, assignment to spawning sites may 

not be achievable, but structure that is resolvable to general region may help to inform 

fishing practices and influence the monitoring and establishment of DUs. Identifying and 

preserving this genetic diversity can be crucial to managing fisheries harvests and 

ensuring the maintenance of the species. Due to the highly-structured nature of Atlantic 

salmon populations, we may expect that Lake Melville populations are differentiated 

from those in greater Labrador, particularly given differences in environmental conditions 

within the embayment.  

In the previous chapter, we applied selected SNPs for individual assignment in 

Lake Melville. Here, we investigate the applicability of these SNPs for detecting overall 

structure across coastal Labrador. By targeting fewer molecular markers in individuals 

from an additional 24 rivers, we use amplicon-based sequencing to investigate the 

resolution that is achievable through a cost-effective approach for selecting SNPs.  

 As discussed in Chapter 1, the use of molecular tools for phylogeographic studies 

may identify environmental conditions that influence population structure. Understanding 

the contribution of neutral or adaptive factors that influence past and present population 

distribution allows the implementation of habitat-based conservation approaches, and 

may help predict future distribution in response to changing environmental conditions 

(Manel et al., 2003). We assess trends between population structure, climate variables, 

habitat conditions and geographic distance to uncover patterns that may indicate local 

adaptation to particular conditions, influencing the process of divergence.     

 

3.1 Population Structure in Coastal Labrador 
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Atlantic salmon from Labrador often form a discrete genetic group relative to other 

regions of North America, though even this distinction is not consistent (Bradbury et al., 

2014; Moore et al., 2014; King et al., 2001). Labrador populations have been shown to 

constitute a polyphyletic group with populations in Northern Newfoundland rivers, with 

no apparent pattern relating to geographic structure (Palstra et al., 2007; Verspoor et al., 

2005), while more recent microsatellite analyses group Labrador populations with 

southeast Quebec (Moore et al., 2014; Dionne et al., 2008). Assessing these same 

populations using a SNP panel, Moore et al. (2014) found Labrador clustered into a 

discrete group, with some sites constituting their own cluster, depending on the subset of 

SNPs analysed. As research focused particularly on Labrador populations is limited, 

structure within the region has remained somewhat elusive but may be inferred through 

range-wide studies. Though only two Labrador sites were represented, a neighbour-

joining (NJ) tree based on microsatellite data (King et al., 2001) aligns with that of other 

research separating Labrador into a distinct lineage, with further evidence showing 

greater divergence between north and south Labrador populations than any other within-

region divergence, congruent with current SFA designations. A similar divergence was 

detected, separating Labrador into two clusters along a single principal component (PC) 

axis, though no geographic explanation for this split was made apparent (Bourret et al., 

2013). In addition to genetic evidence of a north-south split within Labrador, differences 

in run-time, and possibly other life-history traits support the presence of distinct groups 

(Dempson et al., 2017). At a broader scope, the less likely fine-scale structure is to be 

detected, as between-region diversity is almost always greater than within-region 

diversity. Though this is to be expected, it does not indicate that within-region structure 

isn’t present. On the contrary, that structure within Labrador can be even faintly detected 

when analysing across a broad scale, suggests that there exists differentiation that when 

inspected closely, may have important consequences for conservation.      

 

3.1.1  Techniques to Identify Population Structure 

 

Population structure may be detected through a variety of computational methods. While 

any clustering algorithm could theoretically be used to detect the number of discrete 
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populations and the fidelity of individuals to those clusters, few software packages are 

used regularly in the field of population genetics. The most commonly used methods 

implement a Bayesian approach with Markov chain Monte Carlo algorithms, as applied 

in STRUCTURE (Pritchard et al., 2000) and GENELAND (Guillot et al., 2005), in which 

it is assumed that populations are independent. Often these approaches provide the option 

of including sampling locations as priors in determining population structure. 

Hierarchical structure and genetic relationships between populations may be calculated 

using dendrograms, often through distance-based measures (such as UPGMA 

(Unweighted Pair Group Method with Arithmetic Mean) or Neighbour-Joining (NJ) 

trees), or maximum-likelihood approaches. As leaves or terminal nodes must be known to 

establish relationships between groups, tree-based methods require prior clusters or 

populations to be established.  

As an alternative, model-free clustering approaches such as k-means clustering, 

which aims to find an optimal k at a local maximum may be implemented through 

software such as GENODIVE (Meirmans and Van Tienderen, 2004). In k-means 

clustering, increasing values of k are tested and compared using a Bayesian information 

criterion (BIC) score. The optimal k or smallest BIC score indicates the optimal number 

of clusters without overfitting the model. Discriminant analysis of principal components 

(DAPC) uses k-means clustering on PCA-transformed data to determine the optimal 

number of clusters. A linear discriminant analysis is conducted on the retained PCs, 

maximizing variance between clusters, with the minimum variance within clusters 

(Jombart et al., 2010). 

We test three methods for determining population structure to cover a diverse 

approach to uncovering structure revealed by microsatellites and selected SNPs, and  

to compare clustering patterns across methods. We apply hierarchical STRUCTURE 

(Pritchard et al., 2000) without location priors, NJ trees based on Cavalli-Sforza and 

Edwards chord distance (Cavalli-Sforza and Edwards, 1967), and DAPC. 
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Table 3.1: List of selected microsatellite loci and primer sequences 

Locus Name Forward Primer (5’-3’) Reverse Primer (5’-3’) 
NGS-SsaD486 

NGS-SSsp2210 

Ssa-1.5 

Ssa-1.7 

Ssa-1.8 

Ssa-10.1 

Ssa-10.4 

Ssa-11.2 

Ssa-11.3 

Ssa-11.5 

Ssa-11.6 

Ssa-12.5 

Ssa-14.2 

Ssa-14.6 

Ssa-15.1 

Ssa-15.3 

Ssa-15.7 

Ssa-19.1 

Ssa-19.2 

Ssa-19.3 

Ssa-2.1 

Ssa-2.2 

Ssa-2.7 

Ssa-20.2 

Ssa-23.2 

Ssa-25.2 

Ssa-5.2 

Ssa-6.2 

Ssa-7.1 

Ssa-9.3 

Ssa-9.8 

Ssa-1.10 

Ssa-1.11 

Ssa-1.14 

Ssa-11.11 

Ssa-11.12 

Ssa-12.12 

Ssa-12.13 

Ssa-13.10 

Ssa-13.12 

Ssa-14.10 

Ssa-14.9 

Ssa-16.5 

Ssa-19.7 

Ssa-19.9 

Ssa-2.12 

Ssa-2.13 

Ssa-21.10 

Ssa-21.3 

Ssa-21.5 

Ssa-23.10 

Ssa-23.3 

Ssa-23.9 

Ssa-24.9 

Ssa-25.3 

Ssa-27.7 

Ssa-3.10 

Ssa-3.9 

Ssa-5.11 

Ssa-6.11 

TGCAGTCCAATAATATCCCCGT 

CACATTCACTGCAAAATAAAGCT 

GCGTTATGTGCTTGCATGC 

AGAACACAACAGAACCAGGTAC 

AGGCCAAAGAAATCCTGCAC 

GGTCCTCCAGTACCTCCAAC 

GGTGAAATGTAGCCTGCATG 

AAAGTTTGTTTGTGGACCGC 

AGCGTGTGTGTCGTTCAATAC 

GTGTGCCGTTCTATCGCTG 

TTAACCTGCTCTACCTCTCG 

TCTCCTTCCTCGATCAGCTC 

GGGCATGATCTCGACACC 

AGTCAAGAAAGTCACTGCCC 

TTTCTTTGTGTGTTGTGCCC 

GCTAACGAATGACAGCTTGC 

GATGTGATGGCAGTGCTATG 

TGTGCAAACGCCATGATACC 

GTGACCCAAAGTGCTGCTG 

ACGTCCTGACAGTTATCCTTG 

AGACTCCACCTGCCTTGTTC 

TGGCCATTCTCCAGAGCTAG 

CCCAGACTTCCCACTCTCTATG 

TCTTCCCTCTTCTGCAGCAG 

GGTGGTTGTTTCTAGTGAGGG 

TGCAGGAAGACTCTGAAAGG 

AACTTGCGTGATGATGTGGC 

GGAGAAGAGGAGATGGAACTTG 

CCACTCCCACGAATGATGTTC 

GCCAACCACCGTTAAACCTC 

GCGTCGACTGCCATTCAAC 

TGGATGACAACCTCCGTTAAAC 

CTCATCAACGCTATCCTCTTCC 

TCGTATTTGTCAAGGATGTGCC 

CGGCATATACCTTTAACGTTGG 

CGTTAGCACACATGGCAAATC 

TTGCTGCTGGTTTGTGCTC 

ATCAGGCTCAGAGGTGGAAC 

TGAAAGTTGGCTGCAATCCG 

AGTTTGGCGTAGTCTGGGAC 

GGGAACGTGTGGAAGATTCAC 

CCATAATGGCACTGCTTCTTC 

CCGCTGGATTCCTCATTATGTC 

CTCCTTCACACAACCACC 

TCTGGTGCTGACGATGAGAG 

CAGTACAGAAGCAGTCATCGC 

GCTCAGATCGCAACCTTGAC 

ACTGCTTAGCTAGATTTGGCC 

TTGAACCTGAACTGGAATCCC 

CACTCCCTAACTCCATGGTC 

TGATTGTGAACGGCTTTGGG 

GGAGAAGTGATTATGGTTGTGC 

ACGGATACAGAGAGACGCAC 

CACTCCATCTATCATCTGTGCC 

TTCCCACTGGCCAAGAACTG 

TCATCAGTGTGGAGGGAATC 

GACTGCAACTAACTGAATGACG 

CACCTCCAACTGCTCAATTAGG 

CAACCGCCGTTAAACATCATC 

CCGTGGAAAGCACTTAACATG 

CCCTGCATGACTCGGATAAC 

TGGGATTCAATAAAGGTAAGTAAGT 

ACCACCGTACTCAGCTTATCC 

CTCGAACACACTTCCAACCC 

ACTGACCCAAACACGCAAATAG 

AATCTGGTGAGTTCGTCCGG 

ACACACTGCTATATGTGTGG 

CGGACAGTTTCTTGGACTTC 

ATGTTTCACCTCTGCGTCAC 

CCTAAAGAAATGCCAGAGTCCG 

ACATCACCACACCTATCTTC 

AATGTGTCGCCTTCCCACC 

AGGAATGAGTAAGCTGGCTAAG 

GGAATGGCAAACAGAAAGGG 

CAGCTGTGGTTCCTCTGGG 

CATTAGTAAGACTGGCAGCAG 

CAGCAACAAGGTCAATCTCC 

CCATGACAGCTCCATCCGG 

CTCCAGACACCAGCACCTC 

GTCTTGTCATGGCTGTGCTC 

CTCACTGTCAGAGCATGCG 

CCACCAAAGGAGAGTACGTG 

GGACACAGAACCTTGAACGG 

AGCTCTGGACACCACACTG 

GCACCTCTAAAGCACCATGG 

AGGTGGGTGTTGTACATCAG 

GCTGGCCATGTTCTTCTGTG 

ACACCTGACAATACCACACC 

GGAGGCCACATTGCAGTC 

TCAGCAGTTCCCAATATTTCCC 

TGTCCTTGCTTTCTCCGTGG 

CGGGAAGCCTGGTGAAGATC 

GTCTTTCATCTGTCCGCGTG 

AGATGCCCATTGTATTGCCC 

GAAGAAGCGATGCGAGAGG 

GGTGCTGTTTGGGATGCATC 

GGGACAGTGAAGTGGTATTGC 

ACACAGTGGAGGTAGAGATAGC 

GGAACCTGTCTGCCCACAC 

TCCCATCATCCTCCTCTGGG 

AAGGTATGGAGGGTGATGCC 

GTGTTGCTTCATTACACTCCG 

GGACTGACAGGAAGAGAGACC 

AAGTGCAGACCTACCTTGTG 

GAAATCAGAGGTCATTGGCCC 

ATTGTTTGCGGACGGTCATG 

TCTAAACCGACCAGACCGAG 

TCTACAGACAGGTGAACATGC 

ACCGGCCAGTCTGAAACAG 

TCATGGATGTCGTCACTGTG 

ACAAGCAAGCACCCTTTGTC 

GGACAACGGGTTCTACATGG 

ACAGCGAGGAGGACAAAGTC 

GATGAGGAGCAGAAGAGGCC 

GACATTCCCTTGTGTTGATGAC 

TCTATCTTCCTCTGGCCTGG 

TCCATCATCCCTTTCAGCTG 

GAGGCCCGTGTTTCTCAAC 

GAGGCCCGTGTTTCTCAAC 

GAACGCATGTCATGGCCTC 
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Locus Name Forward Primer (5’-3’) Reverse Primer (3’-5’) 
Ssa-9.10 

Ssa-10.2 

Ssa-11.8 

Ssa-13.8 

Ssa-14.3 

Ssa-14.5 

Ssa-14.8 

Ssa-17.1 

Ssa-18.7 

Ssa-20.d56 

Ssa-21.2 

Ssa-22.2 

Ssa-22.5 

Ssa-22.9 

Ssa-22.d31 

Ssa-25.11 

Ssa-26.1 

Ssa-4.d44 

Ssa-5.6 

Ssa-6.7 

Ssa-7.12 

Ssa-9.13 

Ssa-1.9 

Ssa-13.2 

Ssa-17.2 

Ssa-22.d40 

Ssa-22.d41 

Ssa-22.d44 

Ssa-24.d09 

Ssa-24.d24 

Ssa-26.d06 

Ssa-27.d46 

Ssa-28.d01 

Ssa-29.d18 

Ssa-29.d33 

Ssa-3.2 

Ssa-5.8 

Ssa-7.d33 

Ssa-7.d47 

Ssa-8.d04 

Ssa-8.d07 

TCCATTGTTCCCTCAGACCC 

TGATCCTCTTCACCACCCTG 

AAAGGACCCAGAACGTACAG 

TGACGAGACAAGATTCAGGTTG 

TCAACCTAAACCCTCTGCCC 

CCAGGAGGCCTTCACATG 

AAACATTGATTTGGCTCTGTC 

CATCTTCCGGTTCGCTCAAC 

TGCAGGTTGTGGTCATGTTG 

GAGGTCAAGGTTTCCACTGG 

CTGTCCAAATTGCAGGCTTG 

AGTGGTTGCTTTGGTTCTCC 

GTGACGTCTGGAATTGTGAC 

CAAATGCCACACGACCTGAC 

AGTTTAGTAGGGCCTGCGTG 

GGGTCCATGAGAAAGGCAAC 

TCACGCATAACCTTAGACAACC 

TTGGGTCTTAATGGCACCTG 

GTGCAGCTGTTCCTCACTTC 

GCAAATCAGCATTCAGGGC 

CACTCCCTGACACGTTAACAC 

ATCCACACCTCTCTTGCCAC 

CTGAGGAGCACAAAGGACAG 

CTACACCAAGAGTCCAGTGTC 

ACCCATAGAATTACTGCACTGG 

GCACAGAGGTAAGAGTTCAGC 

CTCTGTGGTCTGGGTCCTC 

GTACCTTTGAACATGCACACG 

ACCGTAAGCAGCATCACTTTAG 

CTGCCAACACACACTGCC 

CATAATCACCTTGCATGACACC 

TGGCTGGTGGTTATAGGAGC 

ATTACTGCCCTATCGCCATG 

AGCTACCTATTCCTGGAGCG 

TAACTGCTGAGCCGTGTGTC 

GTCACCAATACCACGTCACC 

ACACAGCTCTTATTTAACCGTC 

AGCATAGCATAGGAACAGACAC 

TGGAATTGGGTCAGCAGTTC 

ACTGTGTGGACTGGGAGATC 

GGGTGTGAGGGAGGACTTAAC 

GGTAACATGAAGGAGAGCTGG 

CTGAAGACTCCTCCCTCACC 

ACCACACAGTACCCTCAATG 

GACCTATGCAACCACCAACG 

AATCATCACATTCCACAGCAAC 

CCTCCTGGCAATGCTGTATAG 

TATTGCACCATCCCGTTCTC 

GTCATGACCTGTGCAACCAG 

CACATTCTGTCCATTCGGCC 

TAGCTGCTCTCTGTTCTGGG 

GCCTAATTTGCCTACTCCTGTC 

GGATAAAGCGGACCAAGACG 

GATCCAATCAACACCGGTAG 

GGTCAACCGCTCTGCATATAG 

ACATTCTTCTGTCACAGCCTG 

TGGGATCCACACCTGACAAC 

AATGCCAACCCTGTTACAGC 

GCTTTGGTTCCCTGAGAGTG 

GGGACAGGCGTAGAAATCG 

CAGCTGATCGAACTGAATGGG 

CACTTCCTGACAAACATGCAC 

GATCACCATCGTTACCATCCC 

GTGTTGCTGGCTGTGTTCTC 

ACAATTTGTCTCCCTGTTGTTG 

GTCGTACTGGCATAATGTCAAC 

CTCTGCTGCTGTGGGTGG 

ACCTCGTACCCATGCACATC 

CATCTCCACATGATAACGTTGC 

GTTTGGGCTGTCTGGTACTG 

TTTGACTCTTCCTGTATGTCGG 

CCTGCTGCACCGCTAAATAC 

ACCATGCCAAGACAGTGATG 

TCACCTTCTTCACACACGATG 

AGAGATGTTAGCGGGTCAGG 

GCAGTGAATTCTATCTTCGTCG 

TCGTCAAGGGATGTGGTCAC 

GAAGGAATCTCACTCGTCTAAG 

AGCACATCCTGACCTCATCG 

AGGACAGGGTTGAGATCAGC 

CAGCAGCGTTGTCTTGTACC 

TGCTAGCTACACTCCTGTCC 

 

3.1.2 Methods: Panel Establishment and Characteristics  

 

A panel of 101 microsatellites (Table 3.1) distributed across the Atlantic salmon genome 

was selected for genotyping in 1558 individuals across 35 sampling sites. Loci were 

selected based on MEGASAT scores (Zhan et al., 2016) with automatic genotype scoring, 

with the additional criteria of an approximately even distribution of loci across the 

genome. Loci were amplified in 10-locus multi-plex PCRs. Multiplex PCRs were 

performed using Qiagen (Toronto, Ontario, Canada) Type-IT 29 Mastermix (1.75 µL), 

0.2 µM each oligonucleotide and 0.7 µL genomic DNA. PCRs were conducted on 
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Eppendorf (Hamburg, Germany) Mastercycler ep384 PCR machines using the following 

parameters: 94°C for 15 min, followed by 20 cycles of 94°C for 30s, 57°C for 180s, 72°C 

for 60s, with a final extension at 68°C for 30 min. 

Indexing sequences were added to the PCR products using a second PCR. The 

index PCR used oligonucleotides composed of Illumina annealing adapter sequences, a 

6b barcode and the Illumina sequencing primers. Indexing PCRs were performed in 5 µL 

total volume with 0.25 U Taq DNA polymerase (New England Biolabs, Ipswich, MA, 

USA), 0.5 µL Thermopol 109 buffer (NEB), 0.2 mM each dNTP, 0.2 µM Index_1 oligo, 

0.2 µM Index_2 oligo and 0.3 µL of 20-fold diluted multiplex-PCR product. Cycling 

parameters were as follows: 95°C for 2 min, followed by 18 cycles of 95°C for 20s, 60°C 

for 60s, 72°C for 60s with a final extension at 72°C for 10 min. Indexed PCR products 

were pooled and cleaned using Ampure XP (Beckman Coulter, Pasadena CA, USA) or 

Sera-Mag Speedbeads (GE Healthcare, Little Chalfont, UK) magnetic beads (1.8:1 

bead:DNA library ratio). Libraries were quantified using Kapa (Wilmington, MA, USA) 

Library Quantification for Illumina on a Roche (Basel, Switzerland) LC480 qPCR 

instrument following manufacturers’ protocols. Libraries were sequenced at 10–12 pM 

concentration using MiSeq v3 chemistry with 150 cycles in one direction and dual 

indexing. Indexed individuals were demultiplexed with the MiSeq sequence analysis 

software. After filtering at a maximum of 40% missing data, 1485 individuals remained 

in the data set for downstream analysis. 

As described in Chapter 2, a preliminary GRRF run was applied to select SNPs 

from a filtered panel of 93,703 loci. SNPs were selected based on their informativeness 

for individual assignment within Lake Melville, as applied in the previous chapter, to 

select a candidate panel for assessing the structure of greater coastal Labrador. At a 

gamma value (see description of the RRF and GRRF algorithm and parameters in section 

2.1.2) of 0.1, a panel of 443 SNPs was selected. Amplicon-based sequencing (Table 3.1) 

was conducted in 1559 individuals across 35 sites (Fig. 1.2). The protocol was 

implemented as described for microsatellites, using five PCR multiplexes. Of these 443 

targeted amplicons, after filtering for quality and MAF of 0.05, 557 SNPs were 

successfully genotyped across 381 amplicons. After sequence alignment, the single SNP 

associated with the original Cigene SNP chip was retained per locus. After comparing 
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allele frequency between samples in both the original data set (analysed in Chapter 2) and 

the amplicon data set, SNPs outside of two standard deviations of the linear trend line 

were removed, resulting in a final panel of 376 SNPs across 1389 samples (Table 3.2). 

 

3.1.3 Method Application 

 

Nei’s pairwise population FST was calculated for both molecular marker sets using the R 

package ‘hierfstat’ (Goudet and Jombart, 2015) (Table 3.3). STRUCTURE (Pritchard et 

al., 2000) was run using a burn-in of 100,000 and 500,000 iterations for both the 

amplicon and microsatellite data for K = 1-35. Often, STRUCTURE runs conducted 

across the entire data set result in an optimal k=2 (Janes et al., 2017). Known as the K = 2 

conundrum, investigators are encouraged to conduct hierarchical structure analyses, in 

which each of the two clusters are tested for finer-scale structure through subsequent 

STRUCTURE runs. When our analyses resulted in an optimal K = 2, we re-ran 

STRUCTURE using a burn-in of 500,000 and 1,000,000 iterations for K = 1 - n+1 (where 

n is equal to the number of sampling sites within the subset) up to 3 levels of hierarchy. 

Mixed populations were assigned to 1 of 2 clusters at a criterion of at least 50% of 

individuals having a q-value greater than 0.5 for that cluster. For SNP data, as high rates 

of admixture made splitting the data for hierarchical analysis difficult, we also inspected 

alternative optimal values of K. Bar plots for the determined optimal K were created in 

Excel 2016. 

NJ trees were created using Populations v. 1.2.31 (Langella, 1999), and edited 

using FigTree v. 1.4.2 (Rambaut, 2006), using 1000 bootstrap replications. 

DAPC was run using the R package ‘adegenet’ (Jombart et al., 2008). For the 

microsatellite and amplicon data, 500 and 400 PCs, and 2 and 4 linear discriminants were 

retained, respectively. The optimal k for each data set was determined through BIC plots. 

DAPC scatterplots were created in R v. 3.3.2; NJ trees and DAPC clustering figures were 

created in GenGIS v. 2.5 (Parks et al., 2013). 
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Table 3.2: Site ID, location and sample size for both datasets used for Chapter 2 analyses.  

River Name Site ID Latitude(N) Longitude(W) Sample Size 

(SNP) 

Sample Size 

(Microsats) 

Alexis River ALX 52°6' 56°53' 29 29 

Big River BIG 54°84' 58°94' 27 29 

Cape Caribou River CCR 53°32'48,8" 60°36'270" 39 39 

  53°34'26,76" 60°42'2960"   

  53°37'166" 60°25'594"   

Caroline Brook CAR 53°15'232"  60°31'899" 17 25 

Charles River CHA 52°23' 55°84' 37 50 

Crooked River CRO 53°50'991" 60°48'863" 51 50 

  53°52'768" 60°49'946"   

Double Mer DBM 54°02'296" 59°65'24" 50 50 

Eagle River EAG 53°53'333" 57°46'67" 44 50 

English River ENG 53°53'1519" 58°50'39'71" 58 59 

Forteau River FOR 51°48'467" 56°94'48" 41 50 

Hunt River HUN 55°56'836" 60°66'97" 46 46 

Kenamu River KMU 52°50'952" 60°08'279" 18 18 

Kenemich River KEN 53°31'864" 59°82'05" 30 30 

L’anse au Loup River LLO 51°52'628" 56°81'68" 34 50 

Main Brook MNB 54°04'355" 57°52'374" 42 42 

  54°04'189" 57°52'306"   

Mary’s Harbour MAH 52°31'317" 55°82'43" 38 50 

Middle Bay Brook MID 54°41'463" 58°09'15" 49 49 

Muddy May Brook MBB 53°64' 57°07' 50 50 

Mulligan River MUL 53°52'138" 60°05'392" 43 47 

Paradise Brook PAB 53°42'305" 57°23'72" 42 41 

Paradise River PAR 53°42'408" 57°24'95" 39 40 

Partridge Point PPT 54°09'918" 59°47'51" 50 48 

Peter’s River PTR 53°20'104" 60°47'153" 51 46 

  53°20'345"  60°37'293"    

Pinware River PIN 51°63' 56°69' 50 49 

Port Marnum POM 52°4' 55°74' 33 31 

Pottle’s Bay POT 54°48'043" 57°72'98" 13 13 

Red Wine River RWR 53°52'764" 61°27'976"  50 50 

  53°52'928" 61°28'730"   

Sand Hill River SAH 53.56'667" 56°35' 48 47 

Sebaskachu River SEB 53°47'397"  60°08'523" 30 30 

  53°46'10" 60°10'575"   

Shinny’s River SHI 52°59' 56°34' 50 50 

St. Lewis River SLR 52°44' 56°19' 27 48 

Susan River SUS 53°44'365"  61°3'275" 34 50 

  53°44'184" 61°02'216"    

Tom Luscombe River TLU 54°34'106" 58°55'04" 50 50 

Traverspine River TSP 53°08'853" 60°27'769"  48 48 

  53°07'319" 60°30'380"   

West Brook WST 54°39'706" 58°10'31" 31 31 

 TOTAL 
  

1389 1485 

  



 

Table 3.3: Nei’s pairwise population FST for microsatellite data (bottom left) and SNP data (top right). Colour intensity indicates magnitude of FST. 
 ALX FOR HUN KMU KEN LLO MNB MAH MID MBB MUL BIG PAB PAR PPT PTR PIN POM POT RWR SAH SEB CAR SHI SLR SUS TLU TSP WST CCR CHA CRO DBM EAG ENG 

ALX - 0.047 0.038 0.066 0.053 0.051 0.039 0.032 0.031 0.028 0.075 0.041 0.036 0.027 0.067 0.054 0.020 0.035 0.032 0.047 0.021 0.073 0.050 0.038 0.029 0.055 0.029 0.064 0.033 0.063 0.028 0.039 0.055 0.025 0.033 

FOR 0.031 - 0.048 0.069 0.070 0.030 0.054 0.037 0.039 0.040 0.073 0.048 0.046 0.040 0.076 0.069 0.028 0.042 0.036 0.060 0.042 0.080 0.064 0.048 0.045 0.066 0.044 0.078 0.046 0.063 0.030 0.052 0.069 0.038 0.048 

HUN 0.043 0.045 - 0.038 0.049 0.054 0.044 0.042 0.037 0.041 0.059 0.029 0.043 0.039 0.068 0.047 0.033 0.046 0.031 0.046 0.042 0.067 0.037 0.055 0.042 0.048 0.037 0.052 0.035 0.038 0.037 0.028 0.055 0.032 0.031 

KMU 0.043 0.051 0.027 - 0.055 0.077 0.062 0.068 0.055 0.056 0.083 0.068 0.061 0.060 0.085 0.049 0.050 0.075 0.085 0.043 0.054 0.099 0.039 0.068 0.076 0.050 0.055 0.036 0.066 0.058 0.064 0.040 0.072 0.052 0.050 

KEN 0.035 0.045 0.040 0.049 - 0.074 0.048 0.058 0.047 0.050 0.071 0.062 0.060 0.050 0.089 0.053 0.047 0.063 0.051 0.041 0.046 0.086 0.046 0.066 0.058 0.058 0.044 0.054 0.055 0.058 0.056 0.042 0.070 0.045 0.046 

LLO 0.030 0.025 0.040 0.046 0.046 - 0.058 0.035 0.043 0.040 0.080 0.059 0.045 0.047 0.081 0.068 0.031 0.042 0.041 0.061 0.042 0.088 0.065 0.046 0.048 0.067 0.049 0.078 0.048 0.072 0.034 0.055 0.068 0.040 0.050 

MNB 0.029 0.038 0.040 0.049 0.040 0.036 - 0.049 0.033 0.044 0.041 0.046 0.046 0.039 0.069 0.060 0.041 0.046 0.042 0.050 0.037 0.051 0.060 0.055 0.045 0.058 0.043 0.076 0.041 0.063 0.050 0.054 0.053 0.048 0.041 

MAH 0.021 0.029 0.033 0.042 0.034 0.030 0.031 - 0.027 0.029 0.070 0.043 0.033 0.032 0.067 0.058 0.019 0.025 0.022 0.056 0.025 0.080 0.056 0.030 0.030 0.056 0.032 0.070 0.029 0.062 0.016 0.046 0.052 0.028 0.040 

MID 0.027 0.031 0.037 0.049 0.031 0.033 0.030 0.022 - 0.023 0.062 0.032 0.035 0.027 0.060 0.053 0.017 0.026 0.015 0.050 0.024 0.067 0.050 0.035 0.029 0.049 0.017 0.066 0.013 0.051 0.018 0.040 0.044 0.030 0.031 

MBB 0.032 0.039 0.045 0.055 0.042 0.038 0.030 0.030 0.032 - 0.063 0.036 0.026 0.020 0.061 0.060 0.026 0.027 0.023 0.048 0.024 0.068 0.063 0.038 0.027 0.054 0.036 0.071 0.031 0.061 0.026 0.047 0.053 0.030 0.036 

MUL 0.036 0.049 0.036 0.047 0.049 0.047 0.029 0.042 0.043 0.056 - 0.069 0.064 0.062 0.096 0.073 0.061 0.071 0.057 0.065 0.066 0.052 0.066 0.074 0.070 0.078 0.061 0.080 0.059 0.073 0.068 0.062 0.079 0.063 0.068 

BIG 0.038 0.034 0.035 0.044 0.038 0.032 0.038 0.024 0.030 0.037 0.036 - 0.045 0.036 0.066 0.056 0.031 0.045 0.039 0.050 0.037 0.079 0.052 0.051 0.047 0.056 0.029 0.066 0.038 0.065 0.035 0.034 0.052 0.036 0.027 

PAB 0.020 0.040 0.029 0.043 0.041 0.038 0.040 0.029 0.031 0.037 0.043 0.027 - 0.025 0.067 0.059 0.023 0.035 0.030 0.051 0.031 0.077 0.055 0.040 0.033 0.060 0.036 0.070 0.036 0.056 0.029 0.049 0.058 0.026 0.041 

PAR 0.027 0.036 0.042 0.054 0.039 0.034 0.032 0.028 0.027 0.035 0.040 0.037 0.033 - 0.060 0.054 0.016 0.028 0.025 0.046 0.024 0.071 0.052 0.037 0.028 0.056 0.029 0.067 0.027 0.057 0.022 0.040 0.060 0.019 0.035 

PPT 0.052 0.065 0.071 0.075 0.063 0.072 0.064 0.058 0.051 0.063 0.079 0.060 0.060 0.064 - 0.086 0.051 0.065 0.046 0.087 0.066 0.101 0.085 0.079 0.065 0.078 0.061 0.099 0.052 0.076 0.057 0.071 0.071 0.060 0.065 

PTR 0.048 0.065 0.049 0.052 0.046 0.058 0.049 0.047 0.052 0.059 0.056 0.045 0.056 0.052 0.090 - 0.056 0.062 0.048 0.047 0.056 0.080 0.052 0.067 0.058 0.053 0.067 0.065 0.056 0.050 0.064 0.049 0.079 0.059 0.055 

PIN 0.019 0.029 0.037 0.043 0.033 0.030 0.030 0.016 0.020 0.027 0.042 0.025 0.028 0.023 0.053 0.052 - 0.019 0.024 0.043 0.018 0.064 0.053 0.028 0.019 0.045 0.028 0.070 0.026 0.053 0.021 0.045 0.041 0.027 0.030 

POM 0.030 0.035 0.041 0.065 0.050 0.034 0.038 0.024 0.030 0.040 0.046 0.033 0.039 0.028 0.063 0.057 0.026 - 0.025 0.055 0.025 0.080 0.063 0.033 0.030 0.063 0.031 0.076 0.031 0.072 0.020 0.047 0.052 0.032 0.042 

POT 0.032 0.031 0.039 0.083 0.040 0.028 0.030 0.021 0.021 0.033 0.044 0.039 0.039 0.033 0.044 0.050 0.020 0.041 - 0.038 0.019 0.070 0.057 0.024 0.033 0.050 0.028 0.059 0.027 0.090 0.026 0.038 0.039 0.028 0.025 

RWR 0.034 0.044 0.030 0.037 0.032 0.040 0.034 0.032 0.031 0.041 0.037 0.030 0.038 0.033 0.071 0.039 0.032 0.041 0.037 - 0.046 0.071 0.039 0.060 0.049 0.038 0.049 0.048 0.048 0.040 0.048 0.023 0.072 0.041 0.048 

SAH 0.023 0.033 0.035 0.045 0.034 0.030 0.032 0.017 0.022 0.030 0.041 0.029 0.029 0.024 0.055 0.046 0.019 0.024 0.028 0.030 - 0.064 0.051 0.030 0.021 0.054 0.023 0.064 0.025 0.051 0.018 0.042 0.055 0.027 0.034 

SEB 0.047 0.055 0.049 0.072 0.061 0.054 0.037 0.047 0.050 0.058 0.030 0.048 0.056 0.049 0.077 0.067 0.049 0.057 0.055 0.047 0.052 - 0.079 0.075 0.073 0.079 0.066 0.087 0.069 0.090 0.074 0.069 0.087 0.070 0.069 

CAR 0.033 0.037 0.023 0.003 0.021 0.033 0.025 0.028 0.030 0.036 0.020 0.021 0.021 0.031 0.063 0.030 0.028 0.032 0.026 0.012 0.024 0.034 - 0.066 0.059 0.045 0.059 0.049 0.062 0.045 0.060 0.037 0.070 0.057 0.045 

SHI 0.029 0.036 0.047 0.050 0.041 0.037 0.039 0.023 0.027 0.039 0.050 0.031 0.038 0.034 0.066 0.058 0.027 0.031 0.027 0.042 0.025 0.056 0.036 - 0.030 0.062 0.038 0.079 0.040 0.063 0.025 0.053 0.060 0.042 0.048 

SLR 0.023 0.034 0.038 0.048 0.032 0.029 0.035 0.020 0.024 0.033 0.039 0.031 0.031 0.027 0.051 0.048 0.022 0.030 0.027 0.035 0.023 0.048 0.032 0.025 - 0.056 0.027 0.067 0.032 0.072 0.025 0.046 0.051 0.030 0.038 

SUS 0.015 0.023 0.007 -0.03 0.002 0.020 0.010 0.016 0.018 0.018 0.009 0.004 0.005 0.019 0.033 0.016 0.017 0.014 0.006 0.004 0.013 0.015 0.008 0.024 0.012 - 0.048 0.053 0.053 0.058 0.055 0.035 0.060 0.050 0.046 

TLU 0.022 0.031 0.037 0.047 0.031 0.030 0.030 0.022 0.017 0.034 0.040 0.028 0.031 0.027 0.057 0.053 0.021 0.030 0.022 0.034 0.023 0.051 0.028 0.028 0.022 0.018 - 0.072 0.026 0.061 0.031 0.048 0.036 0.037 0.030 

TSP 0.035 0.044 0.039 0.036 0.035 0.042 0.037 0.035 0.039 0.044 0.049 0.034 0.041 0.042 0.079 0.043 0.037 0.043 0.036 0.030 0.033 0.056 0.022 0.044 0.038 0.011 0.042 - 0.065 0.034 0.074 0.051 0.085 0.068 0.062 

WST 0.023 0.028 0.035 0.053 0.045 0.030 0.026 0.019 0.010 0.031 0.038 0.028 0.029 0.027 0.046 0.049 0.019 0.032 0.019 0.033 0.022 0.049 0.027 0.022 0.019 0.010 0.013 0.036 - 0.070 0.031 0.045 0.038 0.035 0.031 

CCR 0.045 0.050 0.025 0.058 0.051 0.050 0.048 0.043 0.051 0.055 0.052 0.032 0.050 0.054 0.080 0.052 0.047 0.061 0.066 0.037 0.047 0.070 0.005 0.052 0.046 -0.02 0.050 0.034 0.053 - 0.068 0.044 0.068 0.057 0.040 

CHA 0.017 0.030 0.027 0.046 0.040 0.031 0.034 0.017 0.025 0.033 0.036 0.020 0.027 0.028 0.058 0.054 0.020 0.024 0.028 0.036 0.022 0.047 0.023 0.027 0.022 0.008 0.022 0.042 0.024 0.047 - 0.045 0.046 0.029 0.031 

CRO 0.054 0.051 0.038 0.036 0.045 0.048 0.046 0.043 0.048 0.055 0.041 0.040 0.040 0.052 0.076 0.050 0.046 0.053 0.054 0.028 0.044 0.056 0.014 0.056 0.047 -0.01 0.046 0.042 0.047 0.025 0.039 - 0.056 0.041 0.039 

DBM 0.042 0.049 0.056 0.066 0.050 0.051 0.041 0.043 0.032 0.051 0.054 0.045 0.051 0.055 0.052 0.074 0.040 0.054 0.036 0.051 0.043 0.061 0.048 0.050 0.042 0.029 0.034 0.063 0.030 0.071 0.044 0.064 - 0.054 0.054 

EAG 0.020 0.030 0.031 0.039 0.029 0.030 0.029 0.021 0.023 0.028 0.040 0.025 0.025 0.025 0.057 0.044 0.016 0.029 0.024 0.028 0.022 0.045 0.022 0.031 0.026 0.014 0.025 0.032 0.021 0.039 0.025 0.042 0.041 - 0.035 

ENG 0.028 0.036 0.028 0.040 0.037 0.036 0.034 0.025 0.027 0.037 0.041 0.021 0.035 0.031 0.062 0.050 0.027 0.032 0.025 0.034 0.028 0.048 0.027 0.033 0.025 0.018 0.027 0.038 0.024 0.048 0.028 0.043 0.044 0.027 - 

4
5
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3.1.4 Results: Microsatellites 

 

Hierarchical STRUCTURE analysis on the microsatellite data determined an optimal K = 

2 at all levels (Fig. 3.1). At the broadest level, sites were split into a west Lake Melville 

group, with the additional northern site Hunt River, and a second cluster containing sites 

outside of Lake Melville, as well as sites located at the mouth of Lake Melville, or on the 

east-northern shore. Hierarchical structure revealed a further division separating 

Sebaskachu River, Main Brook, Mulligan, and 23 individuals from Peter’s River from the 

rest of Lake Melville populations. Of the former three, Main Brook formed a separate 

group from Mulligan River and Sebaskachu River in the next level of STRUCTURE 

runs. Within the west Lake Melville cluster, Peter’s River was divided into two groups, in 

which individuals caught in the upstream sampling site (Table 3.2) cluster separately 

from those caught near the river mouth, consistent with patterns of mis-assignment in 

Chapter 2. Populations from the north shore of Lake Melville (Double Mer and Partridge 

Point) clustered separately from rivers located near the mouth, or outside of Lake 

Melville in the second level of hierarchy (Fig. 3.1). These rivers each formed their own 

distinct cluster in the next level of STRUCTURE runs, with Forteau River and L’anse au 

Loup, the southern-most sites, forming a discrete group from the rest of Labrador 

populations.  

Using DAPC, resolution was not as fine as the hierarchical STRUCTURE 

approach, however delineations in clusters were consistent. An optimal K = 3 was 

identified in the microsatellite DAPC analysis (Fig. 3.2A), separating west Lake Melville, 

north shore Lake Melville populations, and populations outside of Lake Melville into 

distinct groups. The proportion of individuals from each site assigned to a given cluster 

(Fig. 3.2B) revealed a clinal pattern in admixture, where mixing increased with latitude. 

Like the STRUCTURE results, DAPC showed an association between Hunt River and 

the west Lake Melville cluster. This pattern was also evident in the NJ tree (Fig. 3.2B), 

which clustered west Lake Melville and Hunt River together, distinct from all other 

populations. West Lake Melville and northern Labrador appeared more closely related 

compared with west Lake Melville and southern Labrador. North shore Lake Melville  
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Figure 3.1: Hierarchical STRUCTURE (Pritchard et al., 2000) analyses barplots of q-

values using microsatellite data. All analyses resulted in an optimal K = 2. 

 

populations clustered with both branches, consistent with admixture shown with DAPC, 

and with splits in the hierarchical STRUCTURE analysis. However, bootstrap values for 

deep splits were quite low, thus failing to provide strong genetic evidence of these 

relationships. Within Lake Melville, our NJ tree showed high bootstrap support for 

branches containing Caroline River and Traverspine River, and Crooked River and Red 

Wine river, the same rivers that showed high rates of paired mis-assignment in Chapter 2. 

 

3.1.5 Results: SNPs  

 

STRUCTURE (Pritchard et al., 2000) resulted in an optimal K = 2 or K = 11 (Fig. 3.3), 

however both showed a high degree of admixture across populations. With K = 2, we 

observed the same split, generally, as observed with microsatellite data at the broadest 

level of K = 2. There was one cluster consisting of west Lake Melville populations, north 

shore populations (Mulligan River, Main Brook and Sebaskachu River) and northern-

most sites, and a second cluster containing sites south of Lake Melville, as well as some 

located along the north shore and near the mouth of the embayment. With microsatellites, 

only Hunt River was found to cluster with this group. With SNPs, Hunt River showed the  
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Figure 3.2: Population structure detected by microsatellite analysis as indicated by scatter 

plot (A) showing three distinct clusters from DAPC analysis. Pie graphs in (B) indicate 

proportion of individuals from each sampling site associated with each cluster. The 

neighbour-joining cladogram indicates hierarchical relationships, coloured according to 

the DAPC assignment of majority at a given site. Node labels indicate bootstrap values. 

Colours approximately correlate across (A) and (B). BIC plot indicating optimal K in the 

DAPC analysis is in the bottom left of (B). 
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Figure 3.3: STRUCTURE analyses of SNP data showing optimal K = 2 or K = 11. X-

axes for both plots are identical for direct comparison.  

 

highest association, but all three sites located north of Lake Melville showed a high 

degree of admixture with the Lake Melville cluster. 

Because of the high degree of admixture across the two clusters, we also 

inspected an alternative, K = 11. In this case, there was a distinct cluster of southernmost 

sites (Forteau River and L’anse au Loup River), and three other clusters of rivers south of 

Lake Melville. Shinny’s River and Charles River, as well as Eagle River and Paradise 

River were somewhat distinct, with high admixture in Port Marnum, Mary’s Harbour, 

Pinware River, St. Lewis River, Alexis River and Sandhill River between these three 

southern groups. Paradise Brook and Muddy Bay Brook formed a fourth group of 

southern sites, with high admixture with the Eagle River and Paradise River group. A 

discrete group of populations near the mouth of Lake Melville, consisting of Pottle’s Bay, 

West Brook, Middle Bay Brook and Tom Luscombe River also showed high rates of 

admixture with other clusters. Partridge Point and Double Mer each comprised a distinct 

group, with other north shore populations (Main Brook, Mulligan River and Sebaskachu 

River) forming a separate cluster. Northern-most rivers clustered together, with the 

highest rate of admixture seen in Hunt River, mostly with the Lake Melville group, as 

observed in our microsatellite analyses. Lastly, west lake Melville populations formed a  
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Figure 3.4: Population structure detected by SNP analysis as indicated by a scatter plot of 

(A) linear discriminants 1 and 2 and (B) 3 and 4, showing 5 clusters from DAPC analysis. 

Pie graphs in (C) indicate proportion of individuals from each sampling site associated 

with each cluster. The neighbour-joining tree indicates hierarchical relationships, 

coloured according to the DAPC assignment of majority at a given site. Node labels 

indicate bootstrap values. Colours approximately correlate across A and B with C. BIC 

plot indicating optimal K in the DAPC analysis is in the bottom left of (C). 

 

 

C 
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distinct group with high admixture with the northern cluster, particularly in Crooked 

River and Susan River. Here, Peter’s River also grouped into two separate clusters, with 

individuals from the sampling site closest to the river mouth clustering with other Lake 

Melville populations. Though there was a high rate of admixture, or uncertain clustering 

within some populations, general findings from this STRUCTURE analysis were 

consistent with the microsatellite analyses.    

 The DAPC BIC plot showed an optimal K = 5, though only four clusters were 

clear through the scatter plot of linear discriminants 1 and 2, and 3 and 4 (Fig. 3.4). These 

clusters generally consisted of west Lake Melville, northern Labrador, north shore Lake 

Melville (north shore 1), and southern Labrador. Less clear in the scatter plot was a fifth 

cluster containing two other populations of north shore Lake Melville rivers, Double Mer 

and Partridge Point (north shore 2). The distinction between these two groups of north 

shore Lake Melville populations is consistent with structure observed with microsatellite 

analysis, and a deep split in the NJ tree. Though the DAPC analysis grouped Hunt River 

with other northern Labrador sites, the NJ tree, as with the microsatellite data, grouped 

Hunt River with west Lake Melville populations. With both the microsatellite and SNP 

data, however, there was a clear signal of admixture between Hunt River and west Lake 

Melville, regardless of actual cluster assignment. With the SNP data, other northern 

populations (Big River and English River) appeared more closely related to south 

Labrador populations than west Lake Melville and north shore 1 populations. However, 

bootstrap values for deep splits were again quite low (ranging from 32 to 44%). Again, 

there was strong support for pairwise relationships within Lake Melville as seen in 

Chapter 1 and the microsatellite NJ tree. Also consistent with the microsatellite NJ tree 

was the clinal pattern of admixture in southern Labrador populations, increasing with 

latitude. Although we did not observe a high degree of admixture in southern populations, 

relative to that found in the STRUCTURE analysis, this is likely due to the grouping of 

southern populations into a single cluster using DAPC, as the observed admixture was 

generally limited to this region. 

 

3.1.6  Discussion 
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Both SNP and microsatellite marker panels revealed clear and largely congruent patterns 

of population structure across Labrador. Using STRUCTURE, DAPC and NJ trees, we 

found distinct evidence of differentiation between Lake Melville, particularly west Lake 

Melville, and all other Labrador populations, across all methodologies. Further, all 

analyses showed evidence of differentiation within Lake Melville, with distinct splits 

between west Lake Melville and north-shore populations, and further potential genetic 

differentiation within the north shore of Lake Melville. STRUCTURE analyses showed 

splits between these groups at the second level of microsatellite hierarchy and in the K = 

11 SNP analysis. DAPC clustering with both SNPs and microsatellites indicated the 

presence of at least one north-shore Lake Melville group. Further, north shore 

populations diverge from deep splits with NJ trees, and have the highest reported 

pairwise FST values. 

 Pairwise population patterns within Lake Melville were consistent with rates of 

incorrect assignment in Chapter 2. Although this was not surprising for the SNP data as 

these were originally selected for informativeness of population structure within Lake 

Melville sites, we found further support of these relationships using microsatellites.  

 Here we find clear evidence of genetic differentiation of Lake Melville Atlantic 

salmon populations. That these findings are consistent across molecular marker types, 

particularly when assessing SNPs selected for resolving population structure at a finer 

scale, demonstrates the high power of both marker panels to differentiate population 

structure and the high degree of information inferred by RF-selected SNPs. While this 

may suggest altering management strategies to conserve this genetic diversity, the 

ecological importance and source of this diversity is unknown.  

 

3.2  Landscape Genetics  

 

3.2.1  Techniques to Identify Landscape Associations 

 

Landscape genetics aims to identify underlying genetic patterns of populations or sub-

populations that are influenced by variation in environmental and geographic 

characteristics (Rellstab et al. 2015). Environmental association analysis (EAA) refers to 



53 
 

the general statistical approaches involved in identifying these correlations, based on the 

principle that local adaptation evolves due to environmental or ecological heterogeneity 

across a species or population range (Lotterhos and Whitlock, 2015). Effective EAAs 

identify genetic variation that exists across populations due to adaptation while 

accounting for neutral genetic effects. 

Many approaches identify outlier loci based on FST values as potentially adaptive 

(Coop et al. 2010). While FST-based outlier methods have been widely used (Zueva et al., 

2014; Lotterhos and Whitlock, 2014; Foll and Gaggiotti, 2008), outlier methods alone do 

not incorporate an underlying neutral genetic structure into the analysis. Furthermore, 

measures of FST rely on a priori knowledge of subpopulation structuring, necessitating 

additional analyses using software such as STRUCTURE (Pritchard et al., 2000) or 

relying on potentially over-simplified grouping of individuals based on geographic 

location (Zueva et al., 2014). 

To date, most studies (e.g. Hecht et al., 2015; Zueva et al., 2014; Bourret et al., 

2013) use several statistical approaches to accommodate for underlying neutral genetic 

structure and demographic characteristics (Hecht et al., 2015; Bourret et al., 2013). While 

potentially effective, these approaches may suffer due to an accumulation of underlying 

assumptions in sequential analyses and have been criticized as potentially lacking in 

power, and may be biased due to early selection of a subset of loci (Frichot et al., 2013). 

This may include using software such as STRUCTURE (Pritchard et al., 2000) to provide 

an approximation of the number of subpopulations occupying the area of interest, or 

methods to identify and reduce environmental variables with which to investigate genetic 

association (e.g. principal component analysis (PCA)). Then, using FST-based methods 

outlier loci are identified from the whole array (e.g. Ferchaud and Hansen, 2016; 

Bradbury et al., 2014; Zueva et al., 2014). From here further analysis may include a 

method of incorporating underlying neutral genetic structure into the test for 

environmental association.  

A variety of statistical approaches may be used to conduct an association analysis 

with these prepared data. Logistic approaches have been developed to incorporate spatial 

autocorrelation as a proxy for neutral genetic data (Rellstab et al., 2015). Both the spatial 

analysis method (SAM) (Joost et al., 2007) and generalized estimating equations (GEEs) 
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test the association between a single environmental factor and the presence or absence of 

a certain allele. This is an obvious limitation for studies that wish to incorporate a variety 

of environmental variables. Furthermore, spatial autocorrelation as a proxy for neutral 

genetic structure may not detect true underlying structure, resulting in a high false 

positive rate (Rellstab et al., 2015). Joost et al. (2007) suggested that spatial 

autocorrelation methods may be most appropriate for population studies across a broad 

geographic scale.  

Bayesian, FST-based methods such as BayEnv (Coop et al., 2010) and BayScenv 

(de Villemereuil and Gaggiotti, in press) compare the fit of the allele frequency data as a 

covariance matrix with environmental variables to a model using only neutral structure, 

or a null model. Issues arise in ensuring only neutral loci are incorporated into the null 

model; cross-method comparison studies have identified a high rate of false positives and 

false discovery rate in BayEnv, particularly in populations exhibiting hierarchical 

population structuring (de Villemereuil et al. 2014). As BayEnv is computationally 

intensive and relatively slow, faster methods have been developed based on a Bayesian 

framework. BayScenv (de Villemereuil and Gaggiotti, in press) includes neutral genetic 

effects in the model as random factors and an alternative model containing environmental 

factors. Like logistical approaches, only one environmental variable can be tested 

simultaneously, severely reducing run-time.   

Latent factor mixed models (LFMM) (Frichot et al., 2013), integrate 

environmental variables into a PCA framework of a Bayesian regression mixed-model as 

latent factors. This approach requires the estimation of the number of populations (k) 

(Frichot et al., 2013). Simulated data showed LFMM to perform well compared to 

Bayenv and linear regression models (higher detection of true positives, reduced error 

and well-calibrated p-values); however, this was also highly dependent on the selected 

value of K (Frichot et al., 2013). While Bayesian approaches allow for the incorporation 

of various, flexible sources of uncertainty (Lemey et al., 2010), establishing appropriate 

priors and posteriors for inference can be obscured by complex demographic 

characteristics, resulting in an imperfect null model (Rellstab et al., 2015). Though using 

additional tests to determine appropriate input for these analyses may be a more 

sophisticated approach to this problem, the benefit of reducing the number of tests (and 
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their associated assumptions) inferred through these mixed-methods may be consequently 

nullified. 

Multiple linear regression models have been developed to test the effects of 

multiple environmental variables on loci simultaneously. Canonical correlation analysis 

(CCA) and redundancy analysis (RDA) implement regression to find an optimal 

relationship of orthogonal sets of variables to test for significance against explanatory 

variables (Hecht et al., 2015; Bradbury et al., 2014; Bourret et al., 2014). These methods 

are advantageous as they allow for neutral genetic structure or geographic distance to be 

incorporated as an explanatory variable and allow for numerous environmental factors to 

be tested simultaneously. Hecht et al. (2015) incorporated neutral genetic factors through 

underlying genetic patterns into RDA and identified precipitation and stream conditions 

(water flow) as a likely driver in adaptive divergence in populations of Chinook salmon. 

Bourret et al. (2014) used RDA to regress allele frequency data with principal 

components of environmental factors from a PCA in Atlantic salmon, identifying 12 

SNPs associated with three environmental PCs. Using a similar approach with 

microsatellite data, Bradbury et al. (2014) identified the importance of watershed size as a 

driving force in genetic divergence of populations. As habitat size greatly influences 

carrying capacity and therefore population size, this is likely indicative of strong neutral 

forces shaping the detected structure. Using a PCA for explanatory variables reduces 

collinearity but may cloud interpretation of the influence of environmental factors, 

depending on the loadings of a given PC. 

To avoid reducing the size of our selected data set, we applied a partial RDA on 

all SNPs constrained against PCs of each category of environmental data (precipitation, 

temperature, habitat), while controlling for geographic distance across sites, allowing for 

clearer interpretation of correlated vectors. Although the use of sampling site as a proxy 

for neutral genetic structure may be overly simplified given the population structure 

previously revealed, RDAs consider collinearity between both independent and 

dependent variables (environmental parameters and genetic structure, respectively). For 

the purposes of gaining initial understanding of environmental parameters influencing 

population structure without further reductions to the size of the data set, we believe this 

approach to be sufficient. 
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To assess the importance of each environmental parameter on genetic population 

structure, we also ran random forest regression analysis (also called regression forests) as 

an alternative regression approach (Breiman, 2001). Like the classification approach 

discussion in Chapter 2, RF uses a subset of features, or in this case, environmental 

variables, as predictors of a model. Instead of assigning to a class, decision trees regress 

each feature to a continuous response variable (here, allele frequency). In RF 

classification, a split at a node occurs with discordant ‘votes’ for a given class, across the 

subset of features. In RF regression, features are used to predict the value of the response 

variable at a given feature value. As multiple predictions are made, the prediction with 

the minimum residual squared error (RSE), the squared difference between the predicted 

value and the actual value, of the dependent variable is essentially equivalent to a correct 

classification in a classification tree. Features can likewise be ranked by MDA or increase 

in error to the model when a feature is removed based on the overall contribution to 

obtaining the minimum RSE across nodes. The successful application of RF regression to 

identify SNPs associated with phenotypic traits in plants (Holliday et al., 2012) and 

Chinook salmon (Brieuc et al., 2015), suggest that the predictive power of explanatory 

variables (here environmental data) on genetic data may be detected with greater power 

than simpler approaches such as linear regression. In her Master’s thesis, Zhan (2016) 

applied RF to select SNPs associated with important environmental parameters. Fourteen 

SNPs were found to associate with 10 of 90 environmental parameters. Although we are 

not seeking to further reduce data sets, the environmental parameters most related to 

genetic variance may still be identified through the MDA across all loci. By assessing the 

average RSE for each site, it is also possible to determine site-specific effects on the 

regression model.  

 

3.2.2  Method Application 

 

We sourced 19 BioClim (WorldClim) variables (Fick and Hijmans, 2017), derived from 

interpolated models at 1-km spatial resolution, of monthly rainfall and temperature data, 

for all 35 sites (Table 3.4). To assess the accuracy of these data we visually compared 

downloaded data from three locations to nearby weather station data accessed from 
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Environment Canada’s climate normals online. An additional 10 habitat variables 

(number of obstructions, number of complete obstructions, drainage area, mean width, 

axial length, basin perimeter, maximum basin relief, length by meander, total length and 

number of tributaries) were included for 29 sites (Anderson, 1985). Missing data (for 

Caroline River, Muddy Bay Brook, Main Brook, Port Marnum, Pottle’s Bay, and Red 

Wine River) for the number of tributaries were approximated using Google Earth. 

Remaining habitat missing data were replaced with the variable median. All 

environmental data were standardized and normalized in R.  

 The first PC was retained from a PCA for each category of environmental data. 

Loadings of each variable on their respective PCs are available in Table 3.4. These PCs 

were then used as constraining variables, explaining allele frequency, conditioned on 

geographic distance from the northernmost site (Hunt River) for RDAs for SNP and 

microsatellite data. Rare microsatellite alleles (present in less than 5% of all individuals) 

were removed for RDA analysis. RDAs were run using the R package ‘vegan’ (Oksanen 

et al., 2016). 

 We ran multiple RF regression using the R package ‘randomForest’, using SNP 

and microsatellite allele frequency for each locus as individual response vectors, with 

standardized and normalized environmental data as the predictor set of variables. 

Distance from the northernmost river was also included in this predictor variable set to 

compare associations with environmental parameters relative to geographic distance. 

Parameters were implemented as described in Chapter 2, apart from the mtry parameter, 

which was set to default for RF regression. MDA for each environmental variable and 

RSE for each site was averaged across all loci.    

 

3.2.3  Results  

 

RDA analyses from both SNP and microsatellite data indicated that habitat parameters 

explained the most genetic variance associated with environmental variables (Fig. 3.5). 

Precipitation, temperature, and habitat PC vectors were found to be significant (p<0.05), 

with the temperature vector the most significant (p<0.001) in an ANOVA analysis for 

both the microsatellite and SNP data. The total proportion of the variance explained by  
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Table 3.4: Environmental variables: associated PC1 loadings for each categorical PCA used in RDA, 

sum of mean decrease in accuracy (MDA) associated with microsatellite and SNP allele frequencies 

from random forest regression analysis, in percent (%). 

Environmental Variable PC1 

Loading 

RF MDA 

(micros) 

RF MDA 

(SNPs) 

Temperature PC 
 

  

Annual mean Temperature BIO1 -0.235 0.007 0.016 

Mean diurnal range (mean of monthly (max temp - min 

temp)) 

BIO2 0.343 0.024 0.067 

Isothermality (mean diurnal range/temperature annual 

range) * 100 

BIO3 -0.058 0.001 0.002 

Temperature seasonality (standard deviation * 100) BIO4 0.350 0.023 0.055 

Max temperature of warmest month BIO5 0.329 0.024 0.063 

Minimum temperature of coldest month BIO6 -0.341 0.017 0.039 

Temperature annual range (BIO5 - BIO6) BIO7 0.351 0.023 0.057 

Mean temperature of wettest quarter BIO8 0.274 0.016 0.055 

Mean temperature of driest quarter BIO9 -0.288 0.015 0.056 

Mean temperature of warmest quarter BIO10 0.289 0.018 0.060 

Mean temperature of coldest quarter BIO11 -0.335 0.016 0.037 

Precipitation PC 
  

  

Annual precipitation BIO12 -0.466 0.010 0.031 

Precipitation of wettest month BIO13 -0.032 0.009 0.029 

Precipitation of driest month BIO14 -0.453 0.008 0.026 

Precipitation seasonality (coefficient of variation) BIO15 0.373 0.006 0.014 

Precipitation of wettest quarter BIO16 -0.098 0.007 0.012 

Precipitation of driest quarter BIO17 -0.466 0.014 0.033 

Precipitation of warmest quarter BIO18 -0.034 0.007 0.011 

Precipitation of coldest quarter BIO19 -0.458 0.012 0.028 

Habitat PC 
  

  

Number of obstructions 
 

-0.191 0.003 0.012 

Number of complete obstructions 
 

-0.086 0.002 0.006 

Drainage area 
 

-0.383 0.003 0.012 

Mean width 
 

-0.370 0.004 0.011 

Axial length 
 

-0.386 0.003 0.010 

Basin perimeter 
 

-0.384 0.003 0.011 

Maximum basin relief 
 

-0.189 0.003 0.009 

Length by meander 
 

-0.273 0.005 0.016 

Total length 
 

-0.358 0.007 0.017 

Number of tributaries 
 

-0.371 0.006 0.018 

Geographic distance  NA 0.015 0.032 

 

 

 



59 
 

the constraining (environmental PCs) variables was 13.89% and 17.4%, with 6.5% and 

8.1% of the total proportion of variance explained by conditioning variables (distance) for 

microsatellites and SNPs, respectively. A greater proportion of the variance can be 

explained by environmental data in the SNP data set compared to microsatellites, 

supporting the idea that selection is more likely to be detected in SNPs. The relatively 

low variance explained by environmental PCs overall indicates that while there might be 

some noticeable and significant effect of environmental vectors, particularly for 

temperature and habitat-related variables, the majority of the genetic variance (79.0% and 

73.7% in microsatellites and SNPs, respectively) is not explainable by constrained 

factors. This is likely due to neutral forces influencing genetic variation, though there 

may be additional parameters not considered in these analyses that affect the observed 

genetic structure. Despite a relatively low proportion of variance explained by the RDA 

axes (Fig. 3.5), vectors associating genetic frequency data with temperature and habitat 

and to a lesser degree, precipitation, were evident with both genetic data sets. Habitat 

appeared most influenced by southernmost sites (Forteau River and L’anse au Loup 

River) and inner north shore Lake Melville populations (Double Mer, Partridge Point 

River, Sebaskachu River and Mulligan River). Temperature was most influenced by 

rivers draining into west Lake Melville. Closer inspection of habitat variables revealed 

that these sites are smaller than other rivers included in the analysis (Table 3.4). Further, 

habitat parameters indicative of river size (drainage area, mean width, axial length, basin 

perimeter, total length and number of tributaries) had the greatest load on the habitat PC1 

used in the RDA (Table 3.4). 

For both molecular marker types, MDA values calculated from RF regression 

were quite small, suggesting that environmental variables correlate little with allele 

frequency across populations. Consistent with the proportion of variance explained by 

RDAs, microsatellite-associated MDAs were consistently lower than SNP-associated 

MDAs, suggesting that SNPs are more effected by particular environmental parameters. 

For both types of molecular marker, temperature-associated variables had the greatest 

impact on the accuracy of the model (largest MDA). The highest MDA values were 

mostly associated with variables relating to temperature ranges (mean diurnal range and 

temperature annual range) and warmth (maximum temperature of warmest month and  
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Figure 3.5: RDA plot of (A) microsatellites and (B) SNPs indicating distribution of sites 

explained by first PCs of three categories of environmental variables (Precipitation, 

Temperature and Habitat), conditioned on geographic location. Axis labels indicate the 

proportion of variance explained by each RDA axis out of the total variance.  
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Table 3.5: Mean and standard error of all habitat variables for sites most influenced by habitat 

variables according to RDA analyses (Forteau River, L’anse au Loup, Double Mer, Partridge Point 

River, Sebaskachu River and Mulligan River), relative to all other sites. 

Variable Habitat-influenced sites Non-habitat influenced sites 

Mean SE Mean SE 

No. of obstructions 2.50 0.81 2.74 0.51 

No. of complete obstructions 1.00 0.62 0.78 0.29 

Drainage area (km2) 609.33 200.02 2059.87 510.45 

Mean width (km) 13.33 2.39 23.78 2.93 

Axial length (km) 34.00 5.96 68.35 7.23 

Basin Perimeter (km) 111.33 24.04 228.00 29.08 

Max. basin relief (m) 295.00 43.56 436.96 38.42 

Length by Meander (km) 41.33 9.49 86.00 10.99 

Total Length (km) 158.17 33.52 782.18 223.19 

No. of tributaries 24.00 4.40 36.52 5.50 

 

 

 

 
Figure 3.6: Site-specific mean residual squared error (RSE), averaged across all 

regression forests created for each microsatellite allele and SNP locus. Sites are clustered 

generally by geographic location (see Fig. 1.2).  

 

 

mean temperature of warmest quarter). Unlike RDA findings, habitat variables had very 

little impact on either RF regression analysis. 

Average RSE across all sites (Fig. 3.6) was lower for microsatellites indicating 

that overall, allele frequency was better predicted than that of SNPs. While this may seem 
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contradictory with the lower MDA values for microsatellites, this is not necessarily the 

case. As MDA gives us relative importance of each independent variable to the overall 

model, the regression overall may still be accurate, but not affected by any one variable in 

particular. With SNPs, however, temperature variables were considerably higher, 

suggesting that the inclusion of these parameters improves the accuracy of the regression 

model. The highest RSE for both microsatellites and SNPs was observed in sites in Lake 

Melville, both west and north-shore populations. These allele frequencies at these sites 

are therefore more difficult for the regression forests to predict, but this accuracy 

increases with the variables with highest MDA. 

 

3.2.4 Discussion 

 

The results of both EAA approaches are consistent with salmonid landscape associations 

observed in previous studies. That microsatellites are less associated with environmental 

variables than SNPs suggests that microsatellite structure is more affected by genetic drift 

(Bradbury et al., 2014; Ozerov et al., 2012; Dillane et al., 2008), likely due to the higher 

mutation rate in microsatellites resulting in multi-allelism, indicating a stronger influence 

of drift within subpopulations (Nishant et al., 2009). Both the SNP RDA and regression 

forests indicate that Labrador Atlantic salmon may be influenced by local adaptation, or 

that temperature difference may restrict gene flow. Both RDAs and elevated site-specific 

RSE suggest that west Lake Melville populations are most affected by this phenomenon. 

As water temperatures within the embayment are higher than in the rest of Labrador, that 

variables related to temperature range and extreme (relative to the area) warm 

temperatures are most associated with allele frequency in the regression forests also 

supports this hypothesis. Over time, the exposure of juveniles to warmer conditions may 

result in selection of temperature-associated genes involved in regulatory or 

developmental processes. Presumably because of the difficulty of dealing with extreme 

temperature regimes, both cold and warm temperatures have been shown to relate to 

genetic structure in salmonids (Larson et al., 2016; Kovach et al., 2015; Chang and 

Psaris, 2013). If an individual or its offspring is less adapted to these extreme 

temperatures, the likelihood of survival is severely decreased, effectively reducing gene 
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flow. As temperature is often correlated with distance along a latitudinal gradient, it can 

be difficult to distinguish temperature associations from isolation by distance along a 

latitudinal gradient. Given that our temperature associations are not along a latitudinal 

gradient, and that there is little covariance between latitude and temperature-related 

variables in our data (Fig. 3.7), it is unlikely that temperature associations are an artefact 

of latitudinal effect. However, this is only true for our comparison involving Lake 

Melville. Exploring the environmental associations of coastal Labrador sites alone may 

reveal a stronger latitudinal and temperature gradient associated with the observed 

admixture in our population analyses that is not detectable here. It may also be that 

different environmental conditions affect these populations unevenly. Population 

structure of steelhead trout (Oncorhynchus mykiss) from coastal populations has been 

found to correlate strongest with precipitation and the distance of the spawning site to the 

ocean, while inland sites are more influenced by precipitation and temperature (Matala et 

al., 2014). A deeper analysis of coastal Labrador structure and landscape associations 

may reveal incongruent trends across regions. The MDA associated with geographic 

distance is high, relative to environmental variables, for both the SNP and microsatellite 

data, suggesting that geographic distance can explain a great deal of genetic variance 

across populations. Neutral or random factors clearly influence genetic structure, but this 

does not eliminate the possibility of selection also influencing local adaptation.  

 In this chapter, we show evidence of temperature-driven structure. As temperature 

has been found to influence spawning time in Pacific salmon (Lisi et al., 2013), there may 

be the development of temporal isolation over time, reinforcing the current structure. 

Alternatively, in climate change conditions resulting in warming ocean temperatures 

(IPCC, 2013), warm temperature-intolerant populations may become less productive, 

leading to replacement by warm-tolerant populations to these rivers, leading to a loss of 

overall genetic diversity. This, of course, would depend on the specific conditions to 

which individuals are exposed, and the plasticity of warm-tolerant populations. Predicting 

changes in population structure requires interdisciplinary approaches to understand 

responses of species to projected climate conditions. 
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Figure 3.7: Heatmap of covariance of all environmental variables used for EAA. 

Point, Mulligan River and Sebaskachu River, sometimes (in the case of the SNP DAPC) 

with a further division of these sites into two groups. Here, smaller river size may affect 

population size, influencing genetic drift in these areas.    

 

 

Though there was no clear indication of habitat influencing population structure in 

the RF regression analysis, RDAs indicated that habitat size may influence population 

structure of southernmost populations, and north shore Lake Melville populations. North- 

shore Lake Melville populations also had relatively high RSEs, though MDAs do not 

indicate a strong habitat influence on improving the regression models. MDAs alone 

indicate this structure may also be temperature driven, but this is not supported by the 

RDA vectors. Despite the lack of support through MDAs, habitat parameters may help to 

explain the population structure observed within Lake Melville. Our population structure 

analyses with both molecular marker types identified one or two separate genetic clusters 
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consisting of Double Mer, Partridge Point, Middle Bay Brook, Sebaskachu River and 

Mulligan River. 

 Our population structure analyses consistently identify west Lake Melville 

populations as a discrete genetic cluster. To effectively assess the importance of Lake 

Melville for genetic diversity, we sought evidence of local adaptation within the region. 

We found evidence of temperature-regulated selection acting on both microsatellite and 

SNP variation through linear constrained ordination and non-linear regression forests. 

Genetic associations with geographic distance and the large amount of unexplained 

variance in the data set indicate neutral factors influence both microsatellites and SNPs. 

Despite these promising findings, we were limited by the environmental data available 

for us to explore. Environmental parameters taken at the time of sampling and covering a 

wider description of the habitat and water conditions (e.g. salinity, water temperature, 

chemical constituents, chlorophyll concentration) would likely be better suited as they 

more accurately describe the environmental conditions faced by salmon in these habitats. 

Lastly, as we did not identify outlier SNPs, neutral SNPs in our dataset may reduce the 

likelihood of detecting true selective forces, and may result in false positive associations. 

The work presented here provides a starting point in uncovering the factors affecting 

genetic diversity of Labrador Atlantic salmon.  
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Chapter 4 

 

Conclusion 

 

In this work, we describe a novel application of random forest for SNP selection for use 

in individual assignment. By comparing RF and RF variations with an established 

method (FST rank) in two SNP data sets, we demonstrate consistent improvement in 

assignment accuracy for two species of high commercial interest. We apply these 

techniques for referencing individuals to spawning site across a small-scale, within a 

single marine embayment for Atlantic salmon and across a broader scale of five 

populations of Chinook salmon in Alaska. The RF methods outperform FST rank for SNP 

selection in both applications. For the published data set our application of RF methods 

shows improved assignment relative to the original publication (Larson et al., 2014a), 

comparable to subsequent analyses utilizing the information gain of haplotype genotypes 

for assignment (McKinney et al., 2017). We show consistent patterns of population 

structure across methods, further supporting the accuracy of RF for classifying 

individuals to populations.  

In Chapter 3, we further demonstrate the utility of RF-selected SNPs by testing 

the resolution of population structure achieved using a panel of 376 SNPs selected for 

importance in classification within Lake Melville. Including a total of 35 rivers, we 

conduct a Labrador-wide study of population structure. Our approaches enabled the 

exploration of the genetic distinctiveness of Lake Melville populations using a variety of 

methods to support overall structure. Comparing our SNP data set with a panel of 101 

microsatellites, we provide strong support for Lake Melville populations as a unique 

genetic cluster. We also show evidence of within-region delineation between west and 

north shore Lake Melville populations, and a latitudinal cline in admixture along costal 

Labrador, consistent across statistical methods and molecular marker sets.  

Both RDA and regression forests provide putative evidence of temperature and, to 

a lesser degree, habitat effects on population genetic variation. Most promisingly, west 

Lake Melville populations show the strongest association with temperature, consistent 

with warmer temperature regimes found in the area. It is highly likely that both neutral 
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and adaptive forces influence genetic structure across the genome. Although the low 

MDA overall indicates that genetic differentiation is mostly unrelated to the 

environmental conditions that were tested, there were consistent associations identified 

through both methods, and a stronger environmental association with SNPs compared to 

microsatellites.  

 

4.1 Future Work 

 

Our methods have the potential to be effective for numerous other applications. By 

testing not only random forest, but additional machine-learning algorithms for genetic 

marker selection, population classification, landscape associations, and extending its use 

to other genetic and ecological questions, there is great potential for developing novel 

techniques, and improving upon existing approaches. Fast, efficient techniques with easy 

implementation are not only important within academia, but also for increasing the 

knowledge base on which adequate management policies rely. Here, we show a 

successful application of random forest for feature-selection on hierarchical populations 

that are likely strongly delineated. We focused on the utility of RF for classification for 

feature-selection and regression due to its optimal use with many features relative to the 

number of samples (Breiman, 2001). However other machine-learning algorithms may 

also be highly suitable for feature-selection of genetic markers, individual assignment, or 

inferring ecological associations with genetic structure (Guinand et al., 2002). Genetic 

algorithms are designed to function based on principles of natural selection and have been 

successfully applied for use in ranking SNPs for importance in drug resistance 

development (Shah and Kusiak, 2004). Support vector machines can also be implemented 

for classification or regression, and are able to detect complex relationships through the 

use of customisable kernels. SVMs have been widely used to classify genes based on 

cancer classification, gene expression data (e.g. Vanitha et al., 2015; Guyon et al., 2002) 

and in ecological genetics, to assign individuals to a genetic group based on a phenotype 

(Grbic et al., 2015).  K-nearest neighbour clustering may also be highly useful, 

particularly for genetic individual assignment, as it has been applied to assess the genetic 

origin of trees (Degen et al., 2017), and humans (Huckins et al., 2014) using SNP panels. 
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Interdisciplinary approaches to develop deterministic algorithms that are highly suited for 

genetic assignment and classification problems may prove to be highly applicable across 

study systems.   

 Within the context of Atlantic salmon in Labrador, we have provided consistent, 

initial evidence of population structure at a finer resolution than addressed by the 

management strategies currently in place. As previously discussed, additional criteria are 

needed to establish the need for a population to be treated as a separately considered DU. 

With both microsatellites and SNPs, we found evidence of a genetic split between Lake 

Melville and greater Labrador equal to or greater than that between populations north and 

south of Lake Melville, suggesting that updating DUs to reflect this genetic diversity may 

be appropriate. Evidence of temperature and habitat-related structure suggests the need 

for a more in-depth exploration of potentially adaptive loci, as well as their associated 

genes with accurate, local, aquatic environmental parameters included in the analyses.  

 We further hope to investigate the information gained using haplotype genotypes 

by identifying SNPs within the flanking regions of microsatellites, and in the 

microsatellites themselves, as well as identifying multiple SNPs per locus in our 

amplicon-based detection approach. Without incurring additional laboratory costs, this 

may allow for finer resolution of population structure, and improvement in genetic 

population assignment.  

 Though no single approach is likely to provide an over-arching solution, even for 

a single species, by working towards the development of evidence-based strategies aimed 

at conserving genetic diversity, we hope to contribute to the recovery of threatened 

wildlife and promote lasting conservation.  
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