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ABSTRACT 

A visual or olfactory stimulus (green light or phenylethyl alcohol) was presented 

to groups of adult zebrafish in their home tanks. An automatic feeder dispensed food 

immediately after the conditioned stimuli (CS), or at variable delays for controls. Fish 

showed anticipatory movement towards the food dispensing area after as few as 7-10 

trials, learning that the CS was a predictor of food presentation at the water surface. 

Memories of the conditioned association persisted at least 2 days after training when 

fish were again presented with the CS. Control fish, for which the visual or olfactory 

stimuli were unpaired with food, showed no response when exposed to the CS. This 

simple, low-cost, automated system permits scalable conditioning of zebrafish with 

minimal human intervention, greatly reducing both variability and labour-intensiveness. 

It will be useful for studies of the neural basis of learning and memory, and for high-

throughput screening of compounds modifying those processes.  
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CHAPTER 1: INTRODUCTION 

1.1 ZEBRAFISH AS A MODEL ORGANISM 

Zebrafish are providing increasing opportunities as models for scientific research. 

They share similar developmental and physiological processes and homologous genes 

with higher vertebrates, making for a less complex model to study more complicated 

mammalian systems (Bally-Cuif & Vernier 2010).  Zebrafish are also small, have a high 

fecundity and are easy to maintain, making  them well suited to high-throughput studies 

(Sumbre & de Polavieja 2014; Traver et al. 2003; Lee et al. 2007; Laughlin et al. 2008; 

Lawson 2002; Patton & Zon 2002). Larval zebrafish and some mutant strains are largely 

transparent, allowing their internal structures to be visible (White et al. 2008), also 

making them an excellent choice for in vivo optical imaging of electrical activity and 

optogenetic activation or inhibition of sets of neurons (Sumbre & de Polavieja 2014).  

In addition to the benefits of various strains and general maintenance, zebrafish 

also possess a wide range of well documented behaviours, which in combination with 

the aforementioned characteristics make them suitable for studies in which behaviour is 

altered (Kalueff et al. 2013). In fact, zebrafish have become a popular model for 

examining the effects of various drugs on behaviour. For example, zebrafish are used to 

study addiction and withdrawal with alcohol or cocaine and also as model to examine 

the effects of hallucinogens on neurochemistry (Gerlai et al. 2009; Gerlai et al. 2000; 

Lockwood et al. 2004; Tran et al. 2016; Darland & Dowling 2001; López Patiño et al. 

2008; Grossman et al. 2010; Kyzar et al. 2012; Cachat et al. 2013). Studies that use 

zebrafish as a behavioural model often rely on learning paradigms to examine how 
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certain substances or conditions affect the fish’s ability to learn and remember 

associations (Chacon & Luchiari 2014; Levin & Chen 2004). 

1.2 IMPORTANCE OF LEARNING PARADIGMS 

Using a variety of learning paradigms, it is possible to determine the basic 

abilities of zebrafish to learn associations.  For example, several studies on the visual 

capabilities of zebrafish have determined that they could detect and distinguish 

between different colours and shapes (Colwill et al. 2005; Fetsko 2003). In one study, 

fish were successfully trained to associate one colour or shape with food and could 

correctly identify it when given a choice between the familiar and the unfamiliar colour 

or shape (Colwill et al. 2005). Similarly, several olfactory experiments used learning 

paradigms to determine that zebrafish and other species can discriminate between 

certain amino acids. Catfish were conditioned to associate L-amino acids with food and 

then exposed to an unconditioned amino acid. Fish exhibited increased food searching 

behaviour when exposed to the conditioned amino acid but not when exposed to the 

unconditioned ones; however, the catfish required multiple pairings to distinguish 

between similar amino acids (Miklavc & Valentinčič 2012; Valentinčič et al. 1994; 

Valentinčič et al. 2000). 

In addition to imparting important information about the detection and 

discrimination abilities of animals, learning paradigms can help examine the genetic 

effects on cognition. Zebrafish are already used as models for studying the cognitive 

decline associated with age (Yu et al. 2006; Paquet et al. 2010). The use of transgenic 

strains, like those that approximate the cellular aggregates found in Alzheimer’s Disease 
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and other tauopathies, allow experimenters to use zebrafish as models of disease states 

(Kalueff et al. 2014; Rubinstein 2003; Newman et al. 2014; Gerlai 2012; Paquet et al. 

2010). There are even models in development for other cognitive disorders such as 

schizophrenia and autism spectrum disorder (Gerlai 2012; Tropepe & Sive 2003; Stewart 

et al. 2014). These models could be used in conjunction with learning paradigms to 

examine the effects that these diseases have on the ability to learn and retain 

associations. 

 Learning paradigms can also be used to explore the underlying processes 

governing learning and memory. Most of these learning paradigms, developed for use 

with rodents, have provided important insight into the regions of the brain and the 

neurotransmitters involved in mammalian learning and memory retrieval (Jarrard 1993; 

Morris 2008; McClelland et al. 1995; Owen et al. 1997; Hyman et al. 2006; Myhrer 2003; 

Johansen et al. 2011; Blokland 1996; Ammassari-Teule & Caprioli 1985; Maurice et al. 

1996). Learning paradigms for zebrafish have also been successful in examining the 

underlying mechanisms of learning.  For instance, experiments have found that nicotine 

exposure improved zebrafish performance at learning tasks when compared to a control 

group (Eddins et al. 2009; Levin et al. 2006). Learning paradigms have also been used 

extensively to examine the retrieval of learned associations in zebrafish. Several studies 

have determined that MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist, 

can block retrieval of a learned association when administered after conditioning (Blank 

et al. 2009; Sison & Gerlai 2011). Some studies suggest that the formation of memories 

can also be blocked by MK-801 exposure prior to training (Cognato et al. 2012), but that 
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finding is contentious, as other studies have been unsuccessful at blocking memory 

formation with pre-exposure to MK-801 (Dix et al. 2010; Castellano et al. 2001). 

Regardless, the demonstrated role of MK-801 suggests that memory retrieval is 

glutamate mediated, a finding that is consistent with studies of other vertebrates 

(Sweatt 2010). Other studies further explored the role of the cholinergic system by 

examining induced learning impairments in zebrafish caused by the anti-nausea 

medication, scopolamine, a cholinergic blocker. Using the zebrafish, they found that 

these impairments could be prevented by pre-treatment with the flavonol, quercetin or 

the cholinesterase inhibitor, physostigmine, indicating the importance of acetylcholine 

in learning (Kim et al. 2010; Richetti et al. 2011). To more effectively explore learning 

and the various methods by which it can be effected in zebrafish, these types of studies 

require simple but robust learning paradigms.  

1.3 FACTORS TO CONSIDER WHEN USING ZEBRAFISH FOR LEARNING STUDIES 

 Various factors must be taken into account when adapting learning paradigms 

for zebrafish. One of the most important is selection of the unconditioned stimulus 

(UCS).  As with conditioning in other animals, paradigms use either an aversive or 

attractive stimulus. Several studies use changes in tank lighting, as a conditioned 

stimulus (CS), paired with electric shock, as an aversive UCS.  Such a pairing is highly 

effective but has undesirable consequences because unlike electric shock applied to 

mammals, it is difficult to localize in an aqueous milieu and must be applied to an entire 

tank (Pradel et al. 1999; Gleason et al. 1977; Agetsuma et al. 2012; Blank et al. 2009). A 

generalized electric shock may disrupt normal physiological processes and thereby 

https://en.wikipedia.org/wiki/Cholinesterase_inhibitor
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confound elicited behavioural responses and analyses (Gerlai 2011). Conversely, studies 

that use positive reinforcement usually consist of a food reward. One major drawback of 

using a food reward is that fish may become satiated and therefore may ignore the UCS 

upon repeated presentation (Sison & Gerlai 2011; Al-Imari & Gerlai 2008).  This factor 

must be taken into account when determining the amount of food reward and the 

number of pairings per day. 

Another major factor to consider is the apparatus in which the fish are 

conditioned. Introducing fish to a specialized apparatus needed for certain paradigms 

requires long periods of acclimation. Furthermore, the increased handling necessary to 

transport fish has been shown to cause increased cortisol levels, which could change 

behaviour and interfere with results (Ramsay et al. 2009). Zebrafish are shoaling animals 

and often exhibit anxious behaviours when isolated (Engeszer et al. 2007), so testing fish 

individually may also contribute to higher stress levels (Sison & Gerlai 2011; Braubach et 

al. 2009; Blank et al. 2009; Al-Imari & Gerlai 2008). Therefore, a paradigm that 

conditions zebrafish in groups may garner a truer response from the fish, with the 

added advantage of training more fish in a shorter period of time, making it beneficial 

for high-throughput screening (Braubach et al. 2011; Wyeth et al. 2011).  

1.4 EXPLORING SENSORY MODALITIES  

 Many paradigms focus on the ability of the zebrafish to navigate using visible 

cues because they are highly visual animals (Easter & Nicola 1996; Neuhauss 2010), but 

other paradigms focus on olfaction  (Doyle et al. 2017; Valentinčič et al. 2000; Braubach 

et al. 2009), and our lab has recently developed a robust, auditory appetitive learning 
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paradigm for conditioning zebrafish (Doyle et al. 2017; Merovitch 2016; Merovitch et al. 

2016).  

The auditory conditioning paradigm presented by Doyle et al (2017) and 

Merovitch (2016) was robust, very effective and suitable for high throughput. Groups of 

five fish were conditioned in their home tank, which reduced handling stress common to 

other paradigms (See Section 1.3 – Factors to consider when using zebrafish for learning 

studies). Continual frequency modulated (FM) tone sweeps (100-1000-100 Hz) acted as 

the CS and were paired with a food reward (UCS) ten times daily for two days. The 

entire system was automated to minimize experimenter intervention and ensure 

precise amounts of food are presented. A camera recorded the behaviour before and 

during presentation of the CS, then software was used to track horizontal and vertical 

positions of the fish. From those data, the net movement of the fish towards the food 

source was calculated and those scores were then compared to the movement of a 

control group which experienced an auditory cue unpaired with the food reward. The 

experimental group exhibited fast, efficient learning by the 5th pairing of the auditory 

stimulus and food reward.  

The experiment also examined the ability of the fish to retain the learned 

association. Probe trials were conducted with groups of fish at 2 and 16 days after 

conditioning, then with individual fish at 2, 4, 8, 16 and 32 days after conditioning. The 

fish retained the association for at least two days when tested in groups or as 

individuals, and then the strength of the association declined over the next month. Due 
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to the success of the auditory paradigm, the aim of this thesis is to determine whether 

the paradigm could be adapted to use visual or olfactory cues.  

1.5 VISUAL LEARNING PARADIGM 

Zebrafish possess excellent vision systems, so a visible conditioned cue should 

represent a particularly salient stimulus (Fleisch & Neuhauss 2006; Easter & Nicola 1996; 

Neuhauss 2010). Therefore, Chapter 2 will focus on adaptation of the paradigm to use a 

visual cue. The factors that were considered when choosing the visual stimulus will be 

fully discussed in Section 2.1.3 – Factors to consider when using visual paradigms.  

1.5.1 Objectives 

 Adapt an existing auditory learning  paradigm (Doyle et al. 2017; 

Merovitch 2016) to use a salient visual cue (green LED) as the conditioned 

stimulus. 

 Use the adapted paradigm to examine the rate of acquisition of the 

association. 

 Determine if zebrafish retain the memory of the association in groups 

with probe trials at 2 and 16 days, but also as individuals at 2, 4, 8, 16 and 

32 days. 

1.6 OLFACTORY LEARNING PARADIGM 

Chapter 3 focuses on adapting the paradigm to use an olfactory cue as the CS. 

Using olfactory cues, especially in an aqueous environment, presents unique challenges 

not encountered with visual or auditory stimuli. It is necessary for the fish to encounter 
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the olfactory cue in a concentration that is above their threshold of detection. Due to 

the imprecise nature of odourant dispersal, many hyper-concentrated regions may exist 

temporarily, even if the final mixed concentration is not above the detection threshold 

of the zebrafish. It is also necessary to achieve washout, lowering the concentration of 

odour below the detection threshold subsequent to each pairing. When a paradigm 

involves multiple pairings, it is particularly important to achieve washout well before 

subsequent pairings. Due to these specific requirements, olfactory paradigms require a 

greater volume of water than other paradigms. All of the obstacles associated with 

olfactory stimuli will be fully discussed in Section 3.1.3 – Technical problems with 

olfactory paradigms. 

1.6.1 Objectives 

 Develop a robust olfactory paradigm to condition groups of adult 

zebrafish in their home tanks. 

 Determine the rate of acquisition of the learned association. 

 Examine the duration of the learned association by performing probe 

trials 6-7 days and 13-14 days after training. 
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CHAPTER 2: VISUAL LEARNING PARADIGM 

2.1 VISUAL INTRODUCTION 

2.1.1 Zebrafish as a model for vision 

 Vision is critical for the survival of zebrafish; it is used for food detection, 

predator avoidance and identification of conspecifics (other zebrafish) (Easter & Nicola 

1996). An obvious indicator of the importance vision is the disproportionately large eye 

size in zebrafish larvae (Fleisch & Neuhauss 2006). The zebrafish visual system develops 

very early, so that the fish can evade predators and capture food (Neuhauss 2010). For 

example, the visual startle response develops by 70 hours post fertilisation (hpf), and by 

72 hpf the eye and lens are emmetropic, meaning that they gain the ability to focus 

(Easter & Nicola 1996; Neuhauss 2010).  

Zebrafish are a popular visual model because their visual system is similar in 

organization to higher vertebrates but is much less complex (Bilotta & Saszik 2001). In 

addition, the zebrafish retina possesses similar cell types and layering as other 

vertebrate retinas (Hitchcock & Raymond 2004; Fleisch & Neuhauss 2006). The zebrafish 

retina is capable of regeneration after injury, even in adult animals, which makes it 

popular for studies examining ocular damage (Fleisch & Neuhauss 2006; Hitchcock & 

Raymond 2004). 

2.1.2 Assessing function through behaviour 

As stated in Chapter 1, transgenic and mutant zebrafish strains are extensively 

used for research on a wide variety of topics. Several strains exist that emulate specific 

eye deficits or diseases, such as glaucoma or retinal degeneration (Stujenske et al. 2011; 
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Penberthy et al. 2002; Goldsmith 2001). However, the severity of the deficits may be 

difficult to determine because even though zebrafish rely heavily upon vision, they can 

navigate using other senses (Burgess et al. 2010; Ghysen & Dambly-Chaudiere 2004). 

Conversely, transgenic or mutant strains may be used to study another aspect of 

zebrafish physiology or anatomy but may have unwanted visual deficits that prevent the 

fish from being used in a particular paradigm (Brockerhoff et al. 1995, 1998; Neuhauss 

et al. 1999; Gross et al. 2005; Muto et al. 2005). For example, the sleepy (sly) mutant 

expresses notochord and brain defects, but it would be difficult to examine the effect of 

these defects on behaviour because they also possess a visual deficit that affects their 

mobility (Neuhauss 2003). Learning paradigms that rely on vision can be useful in 

determining the fish’s visual acuity, as fish with severe visual deficits will not be able to 

see a light cue or successfully associate a shape with an unconditioned stimulus (UCS).     

2.1.3 Factors to consider when using visual paradigms 

The majority of existing learning paradigms for zebrafish focus on visual cues as 

either the conditioned stimulus (CS), the UCS or sometimes both (Fleisch & Neuhauss 

2006; Colwill et al. 2005; Arthur & Levin 2001; Mueller & Neuhauss 2012). Choice of the 

UCS is important, as each has its benefits and drawbacks. Aversive stimuli, such as the 

sight of a predator or electric shock, are effective but can cause stress for the fish (Xu et 

al. 2007; Agetsuma et al. 2012; Blank et al. 2009; Gerlai et al. 2009; Gerlai 2011). 

Conversely, a positive stimulus, like the sight of conspecifics, is effective as a UCS, due to 

their shoaling nature (Spence et al. 2008); however, this stimulus would be difficult to 

accomplish logistically in home tank learning paradigms, as exploited in this thesis (see 
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Section 2.1.5 – Benefits of a home tank paradigm). Another traditional positive stimulus 

is food, which zebrafish usually identify visually, though complications can arise with 

satiation; therefore, the amount of food administered must be calculated carefully 

(Williams et al. 2002; Sison & Gerlai 2011).  

Like the UCS, the CS can also take various forms. A very common CS is the use of 

an indicator light or lighted area in a tank (Blank et al. 2009; Xu et al. 2007). The light 

can be white but also can utilize a variety of colours. Zebrafish utilise the same visual 

spectrum as humans but also include the ultraviolet spectrum (Easter & Nicola 1996). 

They possess four distinct photopigments: ultraviolet (UV) sensitive pigment (λmax 362 

nm), short wavelength sensitive pigment (λmax 415 nm, medium sensitive wavelength 

pigment (λmax 480 nm) and long sensitive wavelength pigment (λmax 570 nm) (Bilotta & 

Saszik 2001). Despite this knowledge of the eye structure, there is still debate about 

their capacity to visualize distinct colours (Risner et al. 2006; Fleisch & Neuhauss 2006; 

Neuhauss 2010; Avdesh et al. 2012; Bilotta & Saszik 2001). Regardless, they are able to 

differentiate between stimuli of different colours, as several paradigms use colours as 

the conditioned stimuli (Colwill et al. 2005; Sison & Gerlai 2011; Bilotta et al. 2005; 

Williams et al. 2002). 

2.1.4 Current visual learning paradigms 

 For brevity, I will review a selection of the most common types of visual 

paradigms. As mentioned in the previous section, many paradigms use aversive stimuli, 

of which electric shock is by far the most common. An example of a cued-fear 

conditioning paradigm was presented by Agetsuma et al. (2012). This paradigm used a 
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red light to repeatedly warn fish of an impending electric shock. After training, the fish 

exhibited freezing behaviour upon presentation of the CS. Avoidance paradigms are also 

popular and most use a tank arranged like a shuttle box. One paradigm has the fish 

move from a lighted area to an area of darkness to avoid an electric shock. The fish were 

exposed to 20 to 40 pairings spread over 1 to 3 sessions, although another paradigm 

with similar methods presented it as a single trial avoidance paradigm (Xu et al. 2007; 

Blank et al. 2009). 

There are also several paradigms that utilize attractive or appetitive stimuli. 

 Sison & Gerlai (2010) present a paradigm that used a four-armed maze with a coloured 

card (CS) to indicate the arm with the UCS (the sight of conspecifics). The fish learned 

this association over the course of 16 trials (four trials per day for four days). A paradigm 

by Chacon & Luchiari (2014) trained fish to associate an indicator light (CS) in a specific 

area of the tank with the impending delivery of food (UCS) over a period of eight days. A 

paradigm presented by Mueller & Neuhauss (2012) is one of the few that shows full 

automation with UCS (food) and CS (video screen with an arbitrary visual stimulus) 

delivery and fish tracking. However this paradigm, like all of the others mentioned in 

this section, requires a specialized tank for conditioning. 

2.1.5 Benefits of a home tank paradigm  

As mentioned in the previous chapter, Doyle et al. (2017) and Merovitch (2016) 

demonstrated a robust auditory paradigm using appetitive conditioning for zebrafish. 

Fish showed an association between the UCS and CS by the 5th pairing. Due to the 

effectiveness of the auditory paradigm, the goal of this chapter is to adapt the paradigm 
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to utilize a visual cue. Training the fish in their home tank reduces handling stress and 

minimizes acclimation time. It is also easier and more convenient to train fish if a 

specialized tank is not required. The result is a fully automated, cost-effective, appetitive 

paradigm that does not require a special tank and has a minimal stress impact on the 

fish. 

2.1.6 Summary 

The goal of this experiment was to create an effective learning paradigm for 

zebrafish in their home tanks by adapting an existing auditory paradigm (Doyle et al. 

2017; Merovitch 2016) to use a salient visual cue (green LED) as the conditioned 

stimulus. This section also examined retention of learned association in groups with 

probe trials at 2 and 16 days, but also as individuals at 2, 4, 8, 16 and 32 days. 
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2.2 MATERIALS & METHODS 

 
2.2.1 Animals 

 Wild-type adult zebrafish, 3.5-4.0 cm in length, (PetSmart, Bedford, NS, CAN), 

were housed as mixed-gender groups of five fish in 3 litre plastic tanks (Pentair Aquatic 

Eco-Systems, Apopkoka, FL, USA), beginning at least two days prior to experimentation. 

The fish were maintained on a 14:10 hour light: dark cycle and in municipal water 

(28.5°C) that had undergone reverse osmosis and was then treated with 600 mg Instant 

Ocean (United Pet Group, Blacksburg, VA, USA) and 26.4 mg sodium bicarbonate 

(Pentair Aquatic Eco-Systems, Apopkoka, FL, USA) per litre. Each tank was provided with 

a water flow of 13-14 litres per hour. Adult fish were normally fed twice daily using 300-

500 micron pellets of Golden Pearl Reef Diet (Brine Shrimp Direct, Ogden, UT, USA). All 

experiments were conducted in accordance with the Canadian Council on Animal Care 

standards and guidelines (Protocol #: 14-132). 

2.2.2 Experimental apparatus 

 For training and testing, each home tank containing five fish was moved from the 

rack on which they were routinely maintained to a specialized rack partitioned into 

three arenas, each containing one fish tank (Figure 2.1). Arenas were separated from 

one another by white corrugated plastic sheets (Coroplast, Granby, QC, CAN), and the 

back wall of the enclosure was covered in translucent white nylon fabric, which diffused 

the LED backlighting for each tank (1600 lumen LED work lights, Snap-on, Kenosha, WI, 

USA). While on the training/testing rack, each tank was provided with recirculating 

water from a dedicated 40 litre reservoir.  
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Figure 2.1: Diagram of behavioural apparatus for visual conditioning in home tanks. 

Panel A and B illustrate the positions of control and experimental fish respectively 

during the presentation of conditioned stimulus. Green LED strips were used for the 

presentation of the visual stimuli. Food pellets were dispensed by the automatic feeder 

located above the tank. Panel C illustrates the position of the camera relative to the 

tank. 
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A micro controller (Arduino Uno, Arduino, Ivrea, ITA) with an associated motor 

control board (shield) (Product ID: 1438), and DS1307 real time clock (Product ID: 264) 

from Adafruit, New York, NY, USA was used to control automatic feeders and to present 

visual stimuli. Arduino programs (sketches) were created in the Arduino integrated 

development environment (Arduino 2014) utilizing the following libraries to control the 

experiments: Time (Margolis 2016), TimeAlarms (Margolis 2014), and Motorshield 

(Adafruit 2016). See Appendix B for Arduino sketches. 

An automatic feeder, produced with a 3D printer (Replicator 2, Makerbot, New 

York, NY, USA) using biodegradable polylactic acid thermoplastic (stereolithography file 

downloadable from http://crollab.physiology.dal.ca/automaticfeeder) was placed over 

an existing hole in the lid of each tank (Figure 2.1). Food was placed in the hopper of 

each feeder and could be dispensed using a stepper motor (Sparkfun, Niwot, CO, USA) 

which turned a 5 mm steel drill bit. The bit served as an auger to dispense 

approximately 10 mg of food at a time. A white plastic divider was placed at the level of 

the water, 6.5 cm from the front, to keep the dispensed food floating near the feeder. 

The visual conditioned stimulus was presented using a 15 cm light strip with 6 

RGB LEDs (Mosaic LED Flexible Light Kit, Sylvania, Danvers, MA, USA). The LED strips 

were placed against each tank on the support shelf, visible to both the camera and fish 

(Figure 2.1). The visual conditioned stimulus consisted of green illumination, and was 

selected based on the spectral sensitivity of zebrafish (Risner et al. 2006), with a rated 

output of 6.3 lumens. 
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2.2.3 Conditioning 

 Training consisted of 10 sessions during light hours on each of two consecutive 

days. Inter-trial intervals of 34-108 minutes were selected from those produced using a 

pseudorandom time generator (Random Time Generator, http://www.random.org). 

Conditioning was performed by illuminating green LEDs (visual conditioned stimuli) for a 

20-second period. The conditioned stimulus was immediately followed by the 

presentation of the food reward from the automatic feeder. In trials with control fish, 

the unconditioned stimulus (food) did not immediately follow the conditioned stimulus, 

but was instead administered at the midpoint of the inter-stimulus interval, except for 

the last trial in which it was administered 17-54 minutes later. 

After the completion of training, the feeders and plastic dividers were removed 

from each tank. The tanks were then moved back to the racks on which they were 

routinely maintained, and routine care was resumed until animals were tested for 

memory retention. 

2.2.4 Probe trials 

Probe trials to test memory retention were conducted at various times after 

training. Fish were either tested in the groups in which they were trained or tested 

individually. For group testing, the entire tank of five fish was moved from the 

maintenance rack back to the observation arena, and the upper divider that prevented 

dispersion of the food was reintroduced as a visual landmark at one end of the tank. LED 

strips used for visual conditioning were left adhered to the shelf throughout 

conditioning and testing. For testing single fish, one animal at a time was removed from 
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each of the maintenance tanks and transferred to a new tank equipped with the food 

divider and LED strip. All fish were transferred back to the observation arenas one day 

before testing in order to re-acclimate them to the apparatus. On the day of testing, fish 

were exposed to the LED stimulus to which they were conditioned for 20 seconds 

without the food reward to test the association. Each group or individual fish was given 

only a single probe trial at 2, 4, 8, 16 or 32 days after training. 

2.2.5 Data collection and analysis 

 A single camera was centred along one side of each tank in the observation 

arenas such that the outflow was on the right. Experiments were video recorded either 

in black and white at a resolution of 640x480 pixels (HCM5748 camera from Honeywell 

Video Systems, Louisville, KY, USA) or in colour at a resolution of 1280x720 pixels (C930e 

camera from Logitech, Newark, CA, USA). Surveillance software (iSpy, 

http://www.ispyconnect.com or Novex, Toronto, ON, CAN) permitted recording time-

stamped video files from multiple cameras simultaneously. Videos were recorded at or 

converted to 6 frames/second and were then trimmed to 40 second clips (VirtualDub, 

http://www.virtualdub.org) covering the 20 seconds immediately before exposure to 

the visual conditioned stimulus and the 20 second period during presentation of the 

conditioned stimulus. 

The behaviour of groups of fish during acquisition and probe trials was analysed 

using a program (Wyeth et al. 2011) developed in Matlab (The Mathworks Inc., Natick, 

MA, USA). Average positional values for the group were generated as mean vertical and 

horizontal locations of the individual fish. The behaviour of single fish in probe trials was 



19 
 

analysed in ImageJ (Schindelin et al. 2015) using the built-in Manual Tracking plugin. We 

also reanalysed the tracks of individual fish from acquisition groups in three control and 

three experimental tanks using the Manual Tracking plugin since this plugin generated 

vertical and horizontal positional values for each fish in each frame and allowed for 

analysis of factors such as velocity and turn angle of individuals and nearest neighbour 

analysis for group acquisitions. However, because no significant differences were found 

in any of these measures, they were excluded from further analysis and only the 

positional values were examined.  

The average vertical and horizontal positions of the fish in each tank were 

calculated for the 20 seconds before the presentation of the conditioned stimulus and 

compared to average coordinates during presentation of the stimulus. This comparison 

is similar to what has been previously used to analyse responses of fish to the 

presentation of odours (Hussain et al. 2013), and to examine effects of stress on the 

position of fish relative to the bottom of the tank (Tran et al. 2016). However, adult fish 

exhibited a substantial latency in responding to the conditioned stimulus and therefore 

average positions were only calculated during the last 10 seconds of the 20 second 

stimulus presentation. These horizontal and vertical positions were combined into a 

single measure using Pythagorean Theorem (√(𝑥2 + 𝑦2)), corresponding to the 

distance from a common origin in the top left corner of the tank, near the food source. 

The distances during presentation of the conditioned stimulus were then subtracted 

from the distances before the stimulus. This subtraction was also performed individually 

for vertical and horizontal positions. Positive scores for vertical coordinates correspond 



20 
 

to upward movements towards the surface, and positive scores for horizontal 

coordinates correspond to a lateral movement toward the end of the tank with the food 

source, regardless of initial positions. Positive combined distance scores correspond to 

movement towards the food source.  

Linear mixed-effects models were used to analyse the acquisition data. Models 

included conditioning treatment and trial number as fixed effects, and two random 

effects for tank (both intercept and by-trial slope). Log-likelihood ratio tests compared 

reduced models with only main effects for conditioning treatment and trial versus the 

full model including both main effects and the interaction between the two. Differences 

in Akaike Information Criterion (ΔAIC) were also examined (Burnham & Anderson 2002). 

Conclusions paralleled those from the log-likelihood test P-values, with full models 

showing ΔAIC values >10 over the reduced models for all acquisition tests. In all cases, 

residual plots showed no major deviations from normality or homoscedasticity. Two-

way full factorial analyses of variance (ANOVAs; with conditioning and probe time 

factors) and Welch two sample t-tests were conducted for the probe trials in adults. All 

analyses were performed in R (R Core Team 2016) with the help of the following 

packages: nlme (Pinheiro J et al. 2016), effects (Fox 2003), car (Fox & Weisberg 2011), 

ggplot (Wickham 2009), sjplot (Lüdecke 2015), plotly (Sievert et al. 2016). P-values are 

reported in text but for full statistical analyses see Appendix C. 
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2.3 VISUAL CONDITIONING RESULTS 

2.3.1 Acquisition of appetitive conditioning 

Both experimental and control fish were observed to swim over much of the 

depth and length of the tank during the 20 s period before presentation of the LED 

illumination, with the mean position of the fish being near the centre of the tank. During 

training, the control groups, which were presented food with variable delays following 

the LED illumination, continued a similar swimming pattern in the 20 s period that the 

auditory stimulus was presented (Fig. 2.2A, Supp. Movie 1). In contrast, the 

experimental fish, which were presented with a food reward directly after each LED 

illumination, increasingly spent more time near the feeding location during the 

presentation of the auditory stimulus as training progressed (Fig. 2.2B, Supp. Movie 2). 

Hence, on average, the fish moved closer to the food source during presentation of the 

visual stimulus. As with auditory conditioning, fish came to swim closer to the food 

source during the presentation of a visual stimulus that was paired with food. Figure 

2.3A shows this progressive tendency of fish in the conditioning treatment (but not 

those in the control treatment) to swim closer to the corner of the tank in which food 

was presented as training progressed. Analysis of linear mixed effects models confirmed 

a significant interaction between conditioning and training trial (χ2(1)= 31.755, p<0.001). 

Bootstrapped confidence intervals suggested that by the 7-10th training trial, the 

experimental groups were moving consistently toward the food source during the 

presentation of the visual stimulus.  Separate analyses of vertical and horizontal 

components of the movements each showed significant interactions between 
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conditioning and training trial (horizontal: χ2(1)= 15.798, p<0.001, Figure 2.4A; vertical: 

χ2(1)= 28.233, p<0.001, Figure 2.5A) suggesting fish learned to adjust both their depth 

and horizontal position in the tank in response to the conditioning visual stimulus. 

2.3.2 Memory retention for groups of fish 

To examine whether the association between the visual stimulus and the food 

reward was retained after training, we tested the groups of fish for their responses to 

the visual stimulus alone with probe trials at 2 and 16 days after training (Figure 2.3B). A 

two-way ANOVA on the movement of fish towards the feeding location revealed a 

significant effect of conditioning (p=0.001) but no significant effect of retention day or 

interaction between retention day and condition (both p>0.05). A two-way ANOVA of 

the horizontal data indicated a significant effect of condition (p=0.038) and a significant 

effect of day of retention (p=0.039; Figure 2.4B) but no interaction between retention 

day and condition (p>0.05). An analysis of the vertical components also showed a 

significant effect of conditioning (two-way ANOVA, p<0.001; Figure 2.5B) but no effect 

of retention day or interaction between retention day and condition (both p>0.05). 

2.3.3 Memory retention for individual fish 

Probe trials were performed from 2-32 days post training to determine whether 

fish trained in groups also retained memories for the conditioned associations with a 

visual stimulus when tested individually. An analysis on the movement towards the 

feeding location showed no significant effects of condition, day of retention or any 

interaction between them (two-way ANOVA, all p>0.05; Figure 2.3B). Analysis of the 

horizontal data showed no significant effects of condition, day of retention or any 
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interaction between them (two-way ANOVA, all p>0.05; Figure 2.4B). A two-way ANOVA 

of the vertical data indicated a significant effect of condition (p=0.012; Figure 2.5B) but 

no effect of retention day or interaction between retention day and condition (both 

p>0.05). This weaker retention is probably due to a less robust conditioning than what 

was seen with the auditory conditioning.  
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Figure 2.2: Panels A and B illustrate the position of control and experimental zebrafish 

respectively during trial 20, 20 s before and during the presentation of visual stimulus. The 

colour scale refers to the time (s) that corresponding areas were occupied by groups of 

moving fish. The average positions of the fish before and during the last 10 s of the visual 

stimulus are indicated by black and white circles respectively. The average distance 

traveled laterally and vertically in the control tank are 3.48 cm and 0.37 cm respectively. 

The average distance traveled laterally and vertically in the experimental tank are 6.79 cm 

and 6.23 cm respectively.  
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Figure 2.3: Movement of adult zebrafish during acquisition and retention of a visual 

appetitive paradigm. (A) Zebrafish in the experimental group moved towards the food 

source from their initial positions as a result of conditioning to the visual stimulus. This 

response increased throughout the training trials. Zebrafish in the control group did not 

move toward the food source in response to the visual stimulus. (B) When tested for 

retention, trained groups moved closer to the food source when compared to controls. 

Individual fish did not move closer to the food source, when compared with controls. Data 

points are mean distance from the food source before LED illumination minus mean 

distance from the food source during LED illumination. Numbers beside data points 

represent replicates for individuals (single fish) and groups (each containing 5 fish) in each 

condition. Error bars = ± S.E.M. 
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Figure 2.4: Horizontal movements of adult zebrafish during acquisition and retention of a 

visual appetitive paradigm. (A) Adult zebrafish in the experimental group moved laterally 

from their initial positions towards the food source as a result of conditioning to the visual 

stimulus. This response increased throughout the training trials. Zebrafish in the control 

group did not move laterally towards the food source in response to the visual stimulus. (B) 

When tested for retention on various days, trained groups moved closer, laterally, towards 

the food source compared to controls. The individual fish did not move closer to the food 

source when compared with the controls. Data points are mean horizontal position before 

the LED illumination sweep minus mean horizontal position during the LED illumination. 

Numbers beside data points represent replicates for individuals (single fish) or groups (each 

containing 5 fish) in each condition. Error bars = ± S.E.M. 
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Figure 2.5: Vertical movements of adult zebrafish during acquisition and retention of a 

visual appetitive paradigm. (A) Adult zebrafish in the experimental group moved vertically 

from their initial positions towards the surface as a result of conditioning to the visual 

stimulus. This response increased throughout the training trials. Zebrafish in the control 

group did not move vertically towards the food source in response to the visual stimulus. 

(B) When the fish were tested for retention on various days, both trained groups and 

individuals moved more towards the surface compared to controls. Data points are mean 

vertical position before the LED illumination minus mean vertical position during LED 

illumination. Numbers beside data points represent replicates for individuals (single fish) 

or groups (each containing 5 fish) in each condition. Error bars = ± S.E.M. 
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2.4 SUMMARY 

The auditory learning paradigm presented in Doyle et al. (2017) and Merovitch 

(2016) was successfully adapted to use a salient visual cue (green LED) as the 

conditioned stimulus. Results showed that by the 7-10th pairing, fish were consistently 

moving toward the feeding location after presentation of the conditioned stimulus 

(green LED). Groups of fish tested for memory retention showed a significant effect of 

conditioning at least 2 days after training. Individual fish tested for retention moved 

towards the surface but not laterally towards the food location for at least 2 days after 

training.  
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CHAPTER 3: OLFACTORY LEARNING PARADIGM 

3.1 INTRODUCTION 

3.1.1 Zebrafish are important models for olfaction 

The sense of smell plays an integral part in the survival of all vertebrates (Doty 

1976; Hara 1994; Stoddart 1980). Traditional models, such as mice and rats, have been 

extensively studied, examining the role of olfaction in various aspects of animal 

behaviour, including danger detection, food location and various social cues (Bowers & 

Alexander 1967; Kinney & Antill 1996; Yang & Crawley 2009). However, fully 

understanding the physiology and anatomy of the rodent olfactory system can be 

challenging, due to its complexity. The rodent olfactory bulb contains 1800 – 2000 

glomeruli, and the mouse genome possesses approximately 1200 olfactory receptor 

genes. (Potter et al. 2001; Mombaerts 2006; Oliva et al. 2008; Jones et al. 2008; 

Schaefer et al. 2001; Buck & Axel 1991).  Zebrafish are a comparable vertebrate 

alternative, as they possess an olfactory system similar in organization but much simpler 

than that found in many mammals, making it better suited for many olfactory 

experiments (Baier & Korsching 1994). Zebrafish possess only approximately 140 

glomeruli, which have been characterized (Braubach et al. 2012; Braubach et al. 2013), 

and the regions of the olfactory bulb have been mapped. These factors make zebrafish 

especially useful for studies of physiology (Braubach et al. 2012; Friedrich & Korsching 

1998; Li et al. 2005). Insight into the underlying function of these regions can be gained 

by examining the behavioural responses of zebrafish towards odours.  



30 
 

3.1.2 Assessing function through behaviour 

Zebrafish have a rich and well-documented behavioural repertoire that can be 

used to examine the effects that physiological changes have on function (Spence et al. 

2008; Moretz et al. 2007; Kalueff et al. 2013). They display specific behaviours in 

response to odours, and certain odours have been found to activate specific areas in the 

olfactory bulb (Friedrich & Korsching 1997; Friedrich & Korsching 1998; Stensmyr & 

Maderspacher 2012). For instance, feeding responses in zebrafish are elicited by amino 

acids, which activate the lateral glomeruli of the olfactory bulb (Friedrich & Korsching 

1997; Michel & Derbidge 1997). Bile acids are responsible for most social responses and 

activate areas in the medial bulb (Friedrich & Korsching 1998; Hamdani & Døving 2007). 

Exposure to pheromones such as the alarm substance, Schreckstoff, activates a unique 

area of the zebrafish medial bulb (Stensmyr & Maderspacher 2012; Speedie & Gerlai 

2008; Jesuthasan & Mathuru 2008; Hamdani & Døving 2007). The effects of a single 

odourant exposure on zebrafish physiology thus are well documented, but exploring the 

effects of various odourants on zebrafish becomes difficult when moving from single 

exposure to the repeated exposures needed for a conditioning paradigm. As discussed 

in Chapter 1, learning paradigms can provide useful insight into how animals interact 

with their environments, and olfactory paradigms have previously been used to study 

fish behaviour. 

3.1.3 Technical problems with olfactory paradigms 

Creating an effective olfactory learning paradigm can be difficult for several 

reasons. Working with odourants is inherently challenging because temporal and spatial 
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distribution of odourants are more difficult to control than auditory or visual stimuli. 

Olfactory conditioning paradigms that utilize multiple pairings also require large 

volumes of water to dilute odourants between trials. The flow rate and odourant 

concentration must be chosen to balance the effective threshold and rate of wash out. 

The odourant must be sufficiently salient to be detected during pairing but must 

subsequently be diluted below the effective threshold before the next pairing.  

Choosing an appropriate odourant is also important when using an olfactory 

paradigm. Amino acids are a common odourant for use in odour exposure studies 

involving fish (Valentinčič et al. 2000; Valentinčič & Caprio 1994; Valentinčič et al. 2005). 

Zebrafish can also be conditioned using amino acids but show an innate preference for 

them due to an association with food (Braubach et al. 2009; Lipton & Rosenberg 1994; 

Koide et al. 2009). To investigate the acquisition rate, conditioned behaviour must be 

sufficiently distinct from innate behaviour; therefore, the conditioned stimulus must be 

initially neutral to the fish (Braubach et al. 2009). A more suitable odourant for this 

study is phenylethyl alcohol (PEA), which has been shown to be initially neutral to 

zebrafish (Harden et al. 2006). All of the factors mentioned in this section must be 

carefully examined when developing an olfactory paradigm.  

3.1.4 Current olfactory paradigms 

An olfactory paradigm developed in our lab in 2009 showed successful 

conditioning of adult zebrafish (Braubach et al. 2009). This experiment featured single 

fish acclimated in a large cylindrical tank. Fish were exposed to 12 pairings of PEA or an 

amino acid with a food reward per day for five days. At the end of conditioning, 
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zebrafish showed increased appetitive swimming behaviour when presented with the 

odourant and restricted their swimming to the immediate area of food reward. An 

examination of memory found the fish retained the association up to 48 hours later. To 

ensure that conditioning was olfactory and not gustatory, the nares of fish were 

occluded before testing. The anosmic fish did not exhibit the same association, which 

confirmed that the olfactory conditioning was occurring. 

Unfortunately, this paradigm’s use of individual animals makes it difficult to 

implement on a large scale. In 2011 the paradigm was successfully adapted to train 

groups of fish; however, further issues remain unaddressed (Braubach et al. 2011; 

Wyeth et al. 2011). One of the issues is that the paradigm requires a specialized tank 

that is unfamiliar to the fish, thereby necessitating an acclimation period. In addition, 

the large water requirement (360L/tank/hour) makes it difficult to run more than one 

tank simultaneously (Braubach et al. 2009). While this paradigm has proven that groups 

of zebrafish can be conditioned using an olfactory cue, it suffers from limitations that 

make it unsuitable for high-throughput training. 

3.1.5 Benefits of a home tank olfactory paradigm  

Recently, Doyle et al (2017: see also Chapter 2) developed an appetitive 

conditioning paradigm for zebrafish in their home tanks (Doyle et al. 2017; Merovitch 

2016). A major advantage of this paradigm was that the fish were conditioned in the 

same tanks in which they were housed, which greatly reduces handling stress and in 

turn reduces acclimation time. The paradigm used auditory cues paired with a food 

reward ten times daily for two days. Fish showed a robust association between the 
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stimulus and the food reward after two days of training and retained the association for 

at least another two days. In this chapter, the paradigm was adapted to use olfactory 

cues, while also addressing the drawbacks of other olfactory paradigms. The result was 

a high-throughput, cost-effective, appetitive paradigm with reasonable water 

requirements and a minimal stress impact on the fish. 

3.1.6 Summary 

The goal of this chapter was to adapt the auditory learning paradigm presented 

in Doyle et al (2017) and Merovitch (2016) to use a salient olfactory cue (PEA) as the 

conditioned stimulus. The rate of acquisition will be examined, in addition to the 

retention of the learned association at one and two weeks post training. An effective 

olfactory conditioning paradigm will be useful for studying the physiological aspects of 

learning and the olfaction process.    
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3.2 MATERIALS AND METHODS 

3.2.1 Animals 

 AB zebrafish (both wild type and unscreened UAS:GCamp zebrafish) (Muto et al. 

2013) were obtained from the Zebrafish Core Facility, Faculty of Medicine, Dalhousie 

University, Halifax, NS, Canada and housed as mixed-gender groups of five fish in 3 L 

tanks  (Pentair Aquatic Eco-Systems, Apopkoka, FL, USA), beginning at least one day 

prior to experimentation. The fish were maintained on a 14:10 hour light/dark cycle in 

treated municipal water (28°C, pH: 7.3 and salinity: 0.20 psu) with a flow of 

approximately 13-14 L per hour per tank. All experiments were conducted in accordance 

with the Canadian Council on Animal Care standards and guidelines (Dalhousie Protocol 

14-132). 

3.2.2 Experimental apparatus 

 For conditioning, the home tank was moved to one of the eight specialised 

observation arenas (See figure 3.1). Each arena contained a camera (C930e camera from 

Logitech, Newark, CA, USA), centred along one side of each tank, which was used to 

observe the fish. To provide contrast for the video, the long side of the tank, opposite 

the camera, was covered with opaque white tape. In addition, the opaque side 

prevented the fish from being distracted and provided a landmark. The end of the tank, 

opposite the drain, was covered with alternating green and red stripes on the diagonal 

to use as a visual cue for the location of food delivery. Each arena also contains a water 

inlet (See 3.2.3 Water delivery).   
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Figure 3.1: Diagram of behavioural apparatus for olfactory conditioning in home tanks. 

Panel A and B illustrate the positions on control and experimental fish respectively 

during the presentation of conditioned stimulus. A tube delivered phenylethyl alcohol 

(PEA) to the tank. A red LED indicated to the camera when the odourant was being 

delivered. Food pellets were dispensed by the automatic feeder located above the tank. 
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A 3D printed automatic feeder, controlled by an Arduino microprocessor (See 

Section 2.1.2) was placed over an existing hole in the lid of each tank (stereolithography 

file downloadable from http://crollab.physiology.dal.ca/automaticfeeder) (Fig. 3.1). 

Food was dispensed using a stepper motor and a 5 mm steel drill bit, which served as an 

auger to dispense approximately 10 mg of food at a time. Programs (sketches) were 

created in the Arduino software (Arduino 2014) utilizing the following libraries to 

control the experiments: Time (Margolis 2016), TimeAlarms (Margolis 2014) and 

Motorshield (Adafruit 2016) (See Appendix B for Arduino sketches). A white polylactic 

acid divider was placed at the level of the water, 8 cm from the front of the tank, to 

keep the dispensed food floating near the feeder. 

The odorant was dispensed using a syringe pump (Model 200, KD Scientific, 

Holliston, Massachusetts, USA) adapted to hold eight 20 mL syringes (Becton Dickinson, 

Franklin Lakes, New Jersey, USA). Each syringe was connected to polyethylene tubing 

(PE No. 160, Becton Dickinson) using an 18 gauge needle (Becton Dickinson). Each tube 

was placed through a hole in the lid of the tanks by the water inflow, near the front of 

the tanks. An LED light partially wrapped in heat shrink tubing was adhered to the lid so 

that it was only visible to the camera. The light indicated when the odourant was being 

delivered.  

3.2.3 Water delivery 

For approximately 9 hours during the 14 hour daylight period, the tanks were 

maintained by a fresh water, flow-through system (13-14 L per hour) to prevent 

odourant from contaminating the main recirculating system. Municipal water (28°C) was 
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run through a charcoal filter (FC200, Rainfresh, Richmond Hill, ON, CAN) and into a 200 L 

reservoir at ground level. Water was then treated with 600 mg Instant Ocean (United 

Pet Group, Blacksburg, VA, USA), 26.4 mg sodium bicarbonate (Pen-tair Aquatic Eco-

Systems, Apopkoka, FL, USA) and 0.1 ml dechlorinator/conditioner (Aquasafe Plus, 

PetSmart, NS, CAN) per litre. An ActiveAQUA Submersible Pump 1000 (Hydrofarm, CA, 

USA) then transferred the water into a 40 L polyethylene reservoir on the top of the 

shelf of the racks housing the experiment. A hose (12.7 mm or 1/2”) connected the 

reservoir to a ball valve (12.7 mm or ½”), which in turn connected to a manifold with 

outflows to the individual tanks. Tubing (3.2 mm or 1/8”) connected each outflow to a 

tank via a Y-connector (3.2 mm or 1/8”), which allowed easy delivery of either 

recirculating system water or fresh flow-through water to each tank.  During 

conditioning, the outflow of each tank was directed to a floor drain using two 1” (25.4 

mm) PVC ball valves (Home Depot, Halifax, NS, CAN) to prevent contamination of the 

system water with odourant. 

Overnight, when the fish were not being exposed to odourants, the tanks were 

switched back to the recirculating system water, and the outflows drained back into the 

recirculation system. 

3.2.4 Conditioning 

 Training consisted of 10 sessions during daylight hours on each of two 

consecutive days. Inter-trial intervals of 40-60 minutes were selected from those 

produced using a pseudorandom time generator (Random Time Generator, 

http://www.random.org). Conditioning was performed by introducing an odourant to 
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the tank. Twenty seconds after the beginning of odourant delivery, the conditioned 

stimulus was followed by the presentation of the food reward from the automatic 

feeder. In trials with control fish, the unconditioned stimulus (food) did not immediately 

follow the conditioned stimulus, but was instead administered at the midpoint of the 

inter-stimulus interval, except for the last trial in which it was administered at a time 15-

34 minutes later as determined by the random time generator. Of the eight tanks run 

simultaneously, four were designated experimental and four control. 

 Phenylethyl alcohol (PEA) was used for the odourant because it has previously 

been shown to be a neutral stimulus for zebrafish (Braubach et al. 2009; Harden et al. 

2006). During each of the 20 sessions, 1.5 mL of 2x10-4 M PEA was delivered to the tank. 

In preliminary experiments, 1.5 mL of dye was injected into the tanks to assess the 

dispersion of odourant. After injection, a single bolus of dye was visible for 20 s when it 

broke into concentrated swirls that were observed for approximately 120 s before what 

appeared to be homogeneous dispersion throughout the tank. During the dye 

experiment, all fish in the tank encountered the concentrated dye within the 20 s (See 

Supp. Movie 3). Assuming that the dye dispersed similarly to PEA odourant and was 

evenly distributed by about 120 s after injection, each fish would be expected to 

encounter a concentrated area. After full dispersion in the tank, the concentration of 

PEA was calculated to be 1x10-7 M, which is below the functional dosage for zebrafish 

(Harden et al., 2006). The continuous water inflow further diluted the odourant during 

the inter-trial period.  See Appendix E for a mathematical analysis of odourant dilution.  
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Figure 3.2: Theoretical calculation of phenylethyl alcohol (PEA) dilution delivery to the 

tank. The equation (C= 1.05*10-7 M x e(-t/12.86)) assumes the odourant is homogenously 

distributed in the tank, which occurs approximately 2 min after delivery to the tank   

(See Appendix E for calculations).     
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After the completion of training on the second day, the feeders, indicator lights 

and odourant dispensing tubes were removed from the lid and tanks were then moved 

back to the racks on which they were routinely maintained, until animals were tested 

for memory retention. 

3.2.5 Water only trial 

 To ensure that the fish were responding specifically to the PEA and not to the 

water turbulence that the odourant delivery creates, each tank was exposed to a water-

only trial after training. Instead of odourant, 1.5mL of reservoir water was delivered to 

the tank using the same delivery method. The responses of fish were recorded and 

behaviour analyzed using the same method as the acquisition videos. 

3.2.6 Probe trials 

Probe trials to test memory retention were conducted 6-7 and 13-14 days after 

training. Each entire tank of five previously trained fish was moved from the 

maintenance rack back to the observation arena and switched over to the flow-through 

water system at least one hour before testing. The feeders, indicator lights and 

odourant tubes were placed back on the lids of the tanks. Fish were exposed to the 

stimulus to which they were conditioned for 20 seconds without the food reward to test 

whether the fish retained a conditioned association between the CS and the UCS. 

3.2.7 Data collection and analysis 

 Experiments were video recorded in colour at a resolution of 1280x720 pixels. 

Surveillance software (iSpy, http://www.ispyconnect.com) permitted recording time-

stamped video files from all eight cameras simultaneously. Videos were recorded at 6 
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frames/second and were then trimmed to 40 second clips (VirtualDub, 

http://www.virtualdub.org) covering the 20 seconds immediately before exposure to 

the olfactory conditioned stimulus and the 20 second period during presentation of the 

conditioned stimulus. The food (UCS) was dispensed immediately after the video 

concluded at 40 s. 

The behaviour of groups of fish during acquisition and probe trials was analysed 

using a program (Wyeth et al. 2011) developed in Matlab (The Mathworks Inc., Natick, 

MA, USA). Average positional values for the group were generated as mean vertical and 

horizontal locations of the individual fish. The average vertical and horizontal positions 

of the fish in each tank were calculated for the 20 seconds before the presentation of 

the conditioned stimulus and compared to average coordinates during presentation of 

the stimulus. However, the fish in the olfactory paradigm exhibited a different response 

time than fish in the visual paradigm. In order to examine when the fish were 

responding, the positions of the fish in all the tanks were averaged together on trial 20 

(see Figure 3.3). The fish showed a spike in response to the stimulus for a duration of 5 

seconds, from the 25th second to the 30th second of the video. The positions of fish 

during this 5 second window were compared to the positions during the entire 20 

second period before stimulus delivery. These horizontal and vertical positions were 

combined into a single measure using Pythagorean Theorem (√(𝑥2 + 𝑦2)), 

corresponding to the distance from a common origin in the top left corner of the tank, 

near the food source. The distances during presentation of the conditioned stimulus 
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were then subtracted from the distances before the stimulus to produce a measure of 

movement relative to the location of food presentation. 

Analysis was again performed independently for changes in vertical and 

horizontal position. Positive scores for vertical coordinates correspond to upward 

movements towards the surface, and positive scores for horizontal coordinates 

correspond to a lateral movement toward the end of the tank with the food source, 

regardless of initial positions. Positive combined distance scores correspond to 

movement towards the food source. Statistical analysis was performed using the same 

methods as the visual paradigm (See Section 2.2.5 – Data collection and analysis). For 

full statistical analyses see Appendix D.  

 

 

  



43 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 3.3: Average position of groups (n=44) in experimental and control tanks over the 

last pairing trial (Trial 20). The trial begins at 0 s and the odourant is delivered at 20 s. 

Experimental fish showed a spike in activity approximately 5 s after odourant delivery for 

a duration of about 5 s.   
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3.3 RESULTS  

3.3.1 Acquisition of appetitive conditioning 

With training, the fish swam closer to the food source during the presentation of 

an olfactory stimulus that was paired with food, although the association was weaker 

than the visual conditioning. Figures 3.5A and 3.6A show a weak tendency of fish in the 

conditioning treatment (but not those in the control treatment) to swim closer to the 

corner of the tank in which food was presented as training progressed. Analyses of 

vertical and horizontal components of the movements each showed significant 

interactions between conditioning and training trials (horizontal: χ2(1)= 5.5545, p<0.05, 

Fig. 3.5A; vertical: χ2(1)=6.3594, p<0.01, Fig. 3.6A) suggesting that fish learned to adjust 

both their depth and horizontal position, albeit slightly, in the tank in response to the 

conditioned olfactory stimulus. Analysis of linear mixed effects models showed no 

significant interaction between conditioning and training trials (χ2(1)= 1.9669, p>0.05, 

Fig 3.4A) in the combined measure, mean movement towards food. The effect of 

training was too small to determine during which trial they begin to form an association.  

3.3.2 Response to water only trial 

A comparison of the experimental and control response to the water only trial 

revealed no significant difference in both mean movement towards food and vertical 

movement (T-Test: both p>0.05, Figs. 3.4A & 3.6A). Analysis of the horizontal movement 

indicated a significant difference between the experimental and control groups (T-Test: 

p<0.05, Fig. 3.5A), although this result was not due to an elevated control group but by a 

control group that was below the original baseline. 
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3.3.3 Memory retention  

Groups of fish were tested for their responses to the olfactory stimulus alone 

with probe trials one and two weeks after training to examine whether the association 

between the olfactory stimulus and the food reward was retained. A two-way ANOVA 

on the mean movement of fish towards the feeding location revealed a significant effect 

retention day (p<0.05, Fig. 3.4B) but no significant effect of condition or interaction 

between retention day and condition (both p>0.05). Independent analyses on the 

horizontal and vertical data indicated no significant effect of condition, retention day or 

interaction between retention day and condition (Two-way ANOVA, all p>0.05, Figs. 

3.5B & 3.6B). 
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Figure 3.4: Movement of adult zebrafish during acquisition and retention of an 

olfactory appetitive paradigm. (A) Zebrafish in the experimental group showed small 

movements towards the food source from their initial positions as a result of 

conditioning to the olfactory stimulus, although the difference was not significant. 

This response increased slightly throughout the training trials. Zebrafish in the control 

group did not move toward the food source in response to the olfactory stimulus. The 

water only trial showed no significant response by either the control or experimental 

fish. (B) When tested for retention, some trained groups moved closer to the food 

source when compared to controls. Data points are mean distance from the food 

source before PEA delivery minus mean distance from the food source during PEA 

delivery. Numbers beside data points represent replicates for groups (each containing 

5 fish) in each condition. Error bars = ± S.E.M. 
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Figure 3.5: Horizontal movements of adult zebrafish during acquisition and retention of 

an olfactory appetitive paradigm. (A) Adult zebrafish in the experimental group moved 

laterally from their initial positions slightly towards the food source as a result of 

conditioning to the olfactory stimulus. This response increased throughout the training 

trials. Zebrafish in the control group did not move laterally towards the food source in 

response to the olfactory stimulus. The water only trial showed a significant response 

by either the control or experimental fish, it appears to be caused by the control group 

moving below baseline. (B) When tested for retention on various days, some trained 

groups moved closer, laterally, towards the food source compared to controls, 

although not significantly. Data points are mean horizontal position before the PEA 

delivery sweep minus mean horizontal position during the PEA delivery. Numbers 

beside data points represent replicates for groups (each containing 5 fish) in each 

condition. Error bars = ± S.E.M.
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Figure 3.6: Vertical movements of adult zebrafish during acquisition and retention of an 

olfactory appetitive paradigm. (A) Adult zebrafish in the experimental group moved 

vertically from their initial positions slightly towards the surface as a result of 

conditioning to the olfactory stimulus. This response increased throughout the training 

trials. Zebrafish in the control group did not move vertically towards the food source in 

response to the olfactory stimulus. The water only trial showed no significant response 

by either the control or experimental fish. (B) When the fish were tested for retention 

on various days they showed slight movement towards the surface compared to 

controls, although not significantly. Data points are mean vertical position before the 

PEA delivery minus mean vertical position during PEA delivery. Numbers beside data 

points represent replicates for groups (each containing 5 fish) in each condition. Error 

bars = ± S.E.M.
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3.4 SUMMARY 

 The auditory learning paradigm presented in Doyle et al (2017) and 

Merovitch (2016) was adapted to use an initially neutral, salient olfactory cue (PEA) as 

the conditioned stimulus. The results showed that though the fish seem to move 

towards the food source in the lateral and horizontal directions, the small response in 

the data makes it difficult to determine by which pairing the fish have learned the 

association. Groups of fish tested for memory retention at one and two weeks showed a 

slight effect of retention day when examining the combined measure, mean movement 

towards food. 
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CHAPTER 4: DISCUSSION 

4.1 SUMMARY 

 This thesis presents two adaptations of a previously described automated 

appetitive auditory paradigm (Doyle et al. 2017; Merovitch 2016; Merovitch et al. 2016).  

4.1.1 Visual learning paradigm 

This visual paradigm possesses several improvements over previous visual 

paradigms. It is an efficent, fully automated paradigm that is easily adaptable to any 

conventional fish rack, and the programmable nature of the LED light strip makes it 

simple to alter the light stimulus. Potential possibilities include different colours, light 

intensities and spatiotemporal patterns of illumination. 

Conditioning: The fish formed an association between the illumination of the 

green LED (conditioned stimulus, CS) and the food reward (unconditioned stimulus, 

UCS). In as few as 7-10 pairings, the fish moved consistently to the feeding area upon 

the presentation of the CS.  

Retention: Groups of fish, tested for memory retention at 2 and 16 days, 

retained the association for at least 2 days. Individual fish, tested for memory retention 

at 2, 4, 8, 16 and 32 days, showed significant vertical movement towards the feeding 

area at 2 days, which suggested that they retain the association with food but not the 

exact lateral location. 

4.1.2 Olfactory learning paradigm 

In addition to the general improvements mentioned with the visual paradigm, 

such as automation and adaptability, the olfactory paradigm conditioned fish to form an 
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association with a fraction of the water usage of previously described paradigms 

(Braubach et al. 2009). The lower water requirements of the current paradigm make it 

compatible for use in standard zebrafish facilities and lessen the need for a specialised 

testing area. 

Conditioning: Fish formed a weak association between the PEA (CS) and the food 

reward (UCS). The fish moved towards the food location after presentation of the 

odourant, although the response appears less pronounced than the response of the fish 

trained with the visual paradigm. 

Retention: When examining the combined measure, mean movement towards 

food, the retention data indicated significance in retention duration, but the response 

was too weak to determine how long they remember the association. 

4.2 CONDITIONING 

 Initially, it was necessary to determine if conditioning occurred and whether the 

association formed was between the food and the intended CS. In both paradigms, 

naïve fish at the beginning of training exhibited similar movements before and during 

the presentation of the CS (Figs. 2.3A & 3.4A), which indicated that the respective 

stimuli (green LED and PEA) were innately neutral to the fish. At the end of the 

acquisition period, fish in the control groups showed no significant difference in 

behaviour from the naïve fish, which indicated that no association was formed between 

the CS and the UCS (Figs 2.3A & 3.4A). At the end of training, only the fish in the 

experimental groups move towards the feeding area when presented with the CS. These 
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results suggest that the fish learn to associate previously neutral stimuli with a food 

reward, which indicates that classical conditioning occurred. 

As discussed in Section 3.1.3 - Technical Problems with Olfactory Paradigms, the 

olfactory paradigm presented unique challenges with regard to CS presentation. For 

instance, it was necessary to ensure that the fish were responding to the odour itself 

and not to the changes in water flow caused by the odourant delivery. Therefore, the 

fish were exposed to a water-only trial at the end of training to gauge the fish’s 

response to changes in water flow (see Section 3.2.5 – Water Only Trial). The fish 

showed no significant change in behaviour before and during the delivery of the water, 

thus indicating that the fish were responding to the odour and not the changes in water 

flow caused by the odourant delivery (Fig 3.4A).  These findings are consistent with 

those presented by Braubach et al 2009 (see Section 3.1.4 – Current olfactory 

paradigms) which showed that fish with occluded nares could not form an association 

between an odourant and a food reward. Therefore, it can be concluded that the fish 

were associating the smell of the odour with the food, not changes in water flow caused 

by delivery. 

 My results clearly show that fish can form associations between either a visual or 

olfactory stimulus and a food reward as exhibited by reliable changes in their swimming 

patterns in the automated paradigms that I developed. A question arises, however, 

whether the fish actually develop a spatial map of the tank or if the association is purely 

with landmarks used for navigation. The fish rose to the surface in anticipation of food 

when presented with the CS. This association is probably rooted in the innate surface 
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feeding behaviours of zebrafish (Spence et al. 2008). The association between the CS 

and the lateral position of the food seems to be weaker. The weaker lateral association 

also occurred with the auditory paradigm presented in Doyle et al. (2017) and Merovitch 

(2016). In an effort to provide more salient visual landmarks for the fish in the olfactory 

paradigm, red and green stripes were affixed to the tank on the end where food was 

dispensed. The fish did show a weak association with the side of the tank where the 

food was dispensed. This response was similar to the vertical response of the fish, 

perhaps indicating that although weak, the fish form an association with the landmarks, 

as other studies that suggest they are capable of learning such associations (Karnik & 

Gerlai 2012; Arthur & Levin 2001; Ruhl et al. 2014). Another explanation for the lack of 

evidence of an association in the lateral direction relates to the small size of the tank. 

The size constraint of the tank may limit the natural circling behaviour exhibited by 

zebrafish when they are anticipating food (Kalueff et al. 2013). Other studies conducted 

in a larger testing apparatus have found that zebrafish will circle in the area of expected 

food after the delivery of the CS (Braubach et al. 2009; Kalueff et al. 2013). The fish may 

be associating the food with the specific location but circle the area instead of remaining 

stationary near the feeding site. The weak lateral response still suggests that there is an 

association and therefore incorporating that measurement into the analysis provides a 

more accurate representation of the fish’s behaviour. 

4.3 RATE OF AQUISITION 

A review of other studies presented a wide range of acquisition rates. Studies 

using aversive stimuli such as water turbulence or administering electric shock, have 
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used 1 to 40 pairings presented over 1 to 5 days (Agetsuma et al. 2012; Xu et al. 2007; 

Blank et al. 2009; Morin et al. 2013). In contrast, previous appetitive paradigms use 20 

to 400 trials for up to 8 days (Sison & Gerlai 2011; Braubach et al. 2009; Chacon & 

Luchiari 2014; Colwill et al. 2005; Mueller & Neuhauss 2012). These findings suggest that 

acquisition rates vary widely between paradigms and sensory modalities and that fish 

may take longer to form appetitive associations when compared to aversive paradigms. 

However, based on the results from Doyle et al (2017) and this thesis, the fish appear to 

form appetitive associations relatively quickly. 

 Fish trained with the visual paradigm began to exhibit an association between 

the CS (LED) and the unconditioned stimulus (food reward) by the 7th to 10th pairings on 

the first day of training. This rate of learning is similar to the one observed in the 

previously described auditory paradigm, which showed learning by the 5th pairing  

(Doyle et al. 2017; Merovitch 2016). The olfactory paradigm showed that the fish 

formed a weak association between the presentation of odourant and the food reward 

over two days of training. The weaker association may be due to the imprecise nature of 

PEA diffusion. Each fish encounters the odourant at a slightly different time, and the 

concentration varies depending on the location in the tank, which may contribute to 

delay in forming the association. 

Comparison of acquisition rates between modalities can be problematic for 

several reasons. Firstly, the intensities of the conditioned stimuli are not directly 

comparable. One challenge in designing a learning paradigm is in choosing the intensity 

of the CS. Several studies have been conducted to examine the effect of stimulus 
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intensity on the reaction of zebrafish (Avdesh et al. 2012; Wolman et al. 2011; Carvan et 

al. 2004; Bilotta et al. 2005). The intensities of the stimuli were chosen to fall within the 

detection range known for zebrafish but such that they did not evoke a startle response. 

In the case of the olfactory stimulus, we also had to factor in the time until the odourant 

fell below the effective threshold. In all three sensory modalities (auditory, visual and 

olfactory) the fish formed some association between the CS and the UCS by the end of 

the two day (20 trials) training period. The auditory paradigm began to show an 

association by the 5th pairing; however, the strong pairing may be due to the nature of 

the stimulus itself. The sound was applied via a surface transducer attached to the side 

of the tank, which evenly administered the sound instantaneously to the whole tank. In 

the visual paradigm, the LED light strip that provided the stimulus was adhered adjacent 

to the tank as not to interfere with the videotaping of the fish. It is possible that the fish 

in certain areas of the tank did not immediately see the light, therefore resulting in a 

delayed response from some fish in the group. Similar limitations also apply to the 

olfactory paradigm. The olfactory stimulus presents the greatest challenge to 

implementation. As seen in the dye trial video (See Supp. Movie 3) each fish in the 

group was exposed to the odourant at slightly different times, which may be the reason 

this paradigm also showed the most delayed acquisition. Although the fish were 

exposed to PEA at a concentration above their effective threshold, it is possible that the 

stimulus was not salient enough to form a strong association. 

An additional point to consider is that each sensory system may have a different 

neural substrate for learning. Most of the current studies on zebrafish examine brain 
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regions associated with learning generally and not learning specific to a sensory stimulus 

(Rodrıǵuez et al., 2002; Portavella et al., 2004; Salas et al., 2006; Broglio et al., 2010; 

Mueller and Wullimann, 2009; Mueller et al., 2011; Northcutt, 2011). Therefore, it is 

unknown if different types of learning utilize different areas of the zebrafish brain or 

different mechanisms. Consequently, it is also unknown if association via one sensory 

modality may be inherently easier for zebrafish to acquire than via another sensory 

modality. 

4.4 RETENTION 

 One goal of this study was to examine the memory retention of these two 

paradigms at various periods after training. There are very few studies that have 

examined memory retention beyond 2–3 days after training. Zebrafish can remember 

the association between a visual or olfactory cue and food for 1 to 2 days (Al-Imari & 

Gerlai 2008; Braubach et al. 2009). Memory of an association between a visual stimulus 

and an electric shock can persist for 3 days (Xu & Goetz 2012) and one study has 

suggested that zebrafish can retain spatial memories for up to 10 days (Williams et al. 

2002).  

For the visual paradigm, the individual fish did not exhibit movement towards 

the food in the lateral direction when tested for retention, but they did retain the 

vertical association for at least 2 days (Fig 2.5). When groups of fish were tested for 

retention at 2 days they showed a general movement towards the feeding location. The 

paradigms were demonstrably effective when testing retention on individuals or groups 

as required for an experiment design.  
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When tested, the fish showed significance in retention duration but due to the 

weak association, it is difficult to quantify how long they retained the association. 

Solutions to this issue are addressed in Section 4.6.2 – Future Studies. 

4.5 FUTURE IMPROVEMENTS  

4.5.1 Improvements in Visual Paradigm 

As discussed in Section 4.3 – Rate of Acquisition, one possible reason that fish 

quickly formed associations during the auditory learning paradigm was the intensity and 

salience of the conditioned stimulus. Accordingly, increasing the intensity of the light 

may improve rate of acquisition and retention of association for the visual paradigm. It 

was also postulated that the light’s position made it difficult for some fish to see 

immediately upon illumination. Moving the light to a more visible location or the 

addition of more light strips may help the fish to form the association more quickly. 

Presenting light of modulating intensity or colour may also increase the salience of the 

visual stimulus.   

4.5.2 Improvements in Olfactory Paradigm 

Due to the small responses in the olfactory data, various improvements could be 

implemented. In preliminary experiments, the volume and concentration of the 

odourant were varied to ensure that the fish encounter PEA at a concentration above 

the zebrafish effective threshold determined by other studies (Harden et al. 2006; 

Braubach et al. 2009), while also ensuring washout and dissipation to below threshold 

However, it is still possible that the odourant is not salient enough for the fish to form a 

strong association. Therefore, the concentration could be increased two fold to ensure 
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the stimulus is salient enough. The fish do form a weak association, but it is possible 

that the association may become stronger with more training. Also it may take longer 

for zebrafish to form association with olfactory cues versus visual or auditory cues. 

Therefore, an additional day of training could be added with an extra 10 trials, for a total 

of 30 trials over three days.   

Further refinements to the olfactory paradigm may yield even greater scalability 

and reduced labour intensiveness. Adapting the olfactory paradigm to utilize 

recirculated water would be beneficial for several reasons. Firstly, this would make the 

water requirements less onerous by removing the need to drain off the odourant 

contaminated water. As discussed in section 3.2.3 - Water Delivery, the olfactory 

paradigm uses 13-14 litres of water per tank per hour, so approximately 252 L were 

required to train one group of fish to criterion over two days. For comparison, the 

paradigm presented by Braubach et al., (2009) used 360 litres per tank per hour, so 

approximately 16000 L were required to train one fish to criterion over five days. The 

significant reduction in water usage makes the olfactory paradigm easier to replicate, 

although this is still a large water requirement for some systems to tolerate. If the water 

could instead be reconditioned and then returned to the existing system, there could be 

further reductions in the requirements for water supply. This olfactory paradigm utilized 

a flow-through system to ensure no contamination of the main water supply; however, 

this precaution was extremely conservative. The PEA added to the tanks was already 

diluted below threshold by the time it was homogeneously diffused in the tank. The 

concentration of PEA would be negligible if the entire volume of water in the whole 
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recirculation system was used. Also, methods of treating the outflow to break down the 

odourant should be investigated, as this would allow reconditioned water to be 

recirculated into the main water supply without any odourant contamination. 

This olfactory paradigm can be adapted for use with any liquid odourants, so the 

water reconditioning would need to be adapted specifically to neutralize the odourant 

being used. For example, amino acids could be easily used with a recirculation system 

because they will degrade in any system with a bio-filter (Barker 1981). Using 

recirculating water would also make adapting the paradigm to a traditional rack system 

easier due to the reduced space requirements for water reservoirs. Additionally, having 

all of the water delivered from the main supply could allow for better water quality and 

more consistent control of water temperature.  

4.6 IMPLICATIONS  

4.6.1 Applications of these paradigms 

Both of these paradigms will have many beneficial applications. They can be 

easily adapted into high-throughput screens, which can be used to examine genetic and 

pharmacological effects on learning and memory. As discussed in Chapter 1: 

Introduction, these paradigms may prove useful when examining the neural substrates 

of behaviours.  

4.6.2 Juveniles 

A future goal will be to further adapt the olfactory paradigm for use with juvenile 

zebrafish.  The auditory paradigm has been successfully adapted for use on younger 

animals (Doyle et al. 2017). Juveniles (49 dpf) can successfully learn to associate an FM 
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tone sweep with food reward by the 10th to 13th pairing, and they can remember the 

association for at least two days. Merovitch (2016) showed that 30 dpf fish began to 

show an association between the 8th and 10th pairing and retained the memory for at 

least 2 days after training. Therefore, the olfactory paradigm will first adapted for use on 

49 dpf fish and if successful will be further adapted for 30 dpf fish. 

4.6.3 Physiological study 

 Another potential future study could be an examination of neural activity during 

memory retrieval. One method of studying neural activity is by examining the 

phosphorylation of activated extracellular kinases (ERKs). When the cell’s membrane 

depolarises, it triggers an influx of calcium, which in turn triggers a mitogen-activated 

protein kinase (MAPK) cascade, which results in phosphorylation of ERKs (pERK) 

(Randlett et al. 2015). Several studies have examined the role of ERK in the retrieval of 

memories in rodents (Atkins et al. 1998; Selcher et al. 1999; Blum et al. 1999), and ERK 

has also been used as a general indicator of neural activity in larval zebrafish by using 

immunohistochemistry to stain against pERK (Randlett et al. 2015). Merovitch (2016) 

presented an examination of neural activity in the zebrafish brain during memory 

retrieval of a learned auditory association. This study determined that pERK 

immunoreactivity increases in certain regions of the brain when memory retrieval is 

occurring. The goal would be to apply the same technique to examine neural activity 

with fish that have undergone conditioning with the visual or olfactory paradigms. In 

fact, several studies have already used pERK to examine activity in the olfactory bulb 
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when the animal is exposed to an odour (Biechl et al. 2016; Mirich et al. 2004; Hussain 

et al. 2013). 

A further study could explore how olfactory discrimination abilities develop as 

zebrafish age. The zebrafish olfactory system begins development before hatching at 

about 22 hours post fertilisation (hpf), and by 48 hpf rudimentary proto-glomeruli have 

developed (Whitlock & Westerfield 1998; Miyasaka et al. 2007). Over the course of 

development, the glomeruli begin to differentiate into smaller, more numerous 

glomeruli. As mentioned in Section 3.1 – Olfactory Introduction, certain odourants, like 

amino acids, elicit activity in certain glomeruli. However, when the fish are developing, 

these glomeruli may still be amalgamated and therefore may be unable to differentiate 

between two similar odours. The goal of this experiment would be to determine at what 

age the fish develop the ability to discriminate between amino acids. At 30 dpf the 

olfactory paradigm could be used to condition the fish to a specific amino acid, but 

during the inter-trial period, a second amino acid will be introduced to the tank. This 

could determine if the fish can discriminate between the two amino acids and 

successfully associate the correct amino acid with a food reward. This could also be 

paralleled with a physiological study of the differentiation of the glomeruli in the 

olfactory bulb. 
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CHAPTER 5: CONCLUSIONS 

 In conclusion, this thesis presents two successful home tank learning paradigms 

for zebrafish using a visual or olfactory cue. The visual paradigm conditioned fish to 

associate a light cue with a food reward in 7-10 pairings and retain the memory of this 

association for at least two days. The olfactory paradigm, although weaker than the 

visual paradigm, still showed formation of an association over two days and some 

indication of retention. 

 Both these paradigms eliminate the need for a specialised apparatus, which in 

turn increases efficiency and reduces handling stress on the fish. This simple, low-cost, 

automated system permits scalable conditioning of zebrafish with minimal human 

intervention, greatly reducing both variability and labour-intensiveness. It will be useful 

for studies of the neural basis of learning and memory, and for high-throughput 

screening of compounds modifying those processes. 
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APPENDIX A: SUPPLEMENTAL MOVIES 

Supplemental movies can be accessed from Dalspace (dalspace.library.dal.ca) 

Supplemental Movie 1: Representative video of acquisition trial 20 for visual 

conditioning in a control tank. Fish exhibit normal swimming behaviour in the 20 

seconds before the presentation of conditioned stimulus. During the 20 second 

presentation of the conditioned stimulus, green light (bottom of tank), the fish 

did not exhibit any changes in their swimming behaviour. 

Supplemental Movie 2: Representative video of acquisition trial 20 for visual 

conditioning in an experimental tank. Fish exhibit normal swimming behaviour in 

the 20 seconds before the presentation of conditioned stimulus. During the 20 

second presentation of the conditioned stimulus, green light (bottom of tank), 

fish moved towards the food source (upper-left corner of the tank) in 

anticipation of the food reward. 

Supplemental Movie 3: Demonstration of odourant delivery to tank during olfactory 

conditioning. Blue food dye is substituted for phenylethyl alcohol to provide a 

visual representation of odourant dispersion and how fish encounter areas of 

high concentration.  
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APPENDIX B: ARDUINO SKETCHES FOR CONDITIONING AND RETENTION 

B.1: VISUAL CONDITIONING DAY ONE 

 

#include <Time.h>  

#include <TimeAlarms.h> 

#include <DS1307RTC.h> 

#include <Wire.h> 

#include <Adafruit_MotorShield.h> 

#include "utility/Adafruit_PWMServoDriver.h" 

 

Adafruit_MotorShield AFMS = Adafruit_MotorShield();  

 

Adafruit_StepperMotor *Motor = AFMS.getStepper(200, 1); 

 

#define REDPIN 6 

#define GREENPIN 9 

#define BLUEPIN 11 

 

void setup() { 

    Serial.begin(9600); 

    while (!Serial) ; // wait until Arduino Serial Monitor opens 

    setSyncProvider(RTC.get);   // the function to get the time from the RTC 

    Alarm.alarmRepeat(9,45,0, LightOn);  // Set Alarm For 9:45AM Every Day 

    Alarm.alarmRepeat(9,45,20, LightOff);  // Set Alarm For 9:45:20AM Every Day 

    Alarm.alarmRepeat(9,45,20, Feeder);  // Set Alarm For 9:45:20AM Every Day 

    Alarm.alarmRepeat(10,19,0, LightOn);  // Set Alarm For 10:19AM Every Day 

    Alarm.alarmRepeat(10,19,20, LightOff);  // Set Alarm For 10:19:20AM Every Day 

    Alarm.alarmRepeat(10,19,20, Feeder);  // Set Alarm For 10:19:20AM Every Day 

    Alarm.alarmRepeat(11,28,0, LightOn);  // Set Alarm For 11:28AM Every Day 

    Alarm.alarmRepeat(11,28,20, LightOff);  // Set Alarm For 11:28:20AM Every Day 

    Alarm.alarmRepeat(11,28,20, Feeder);  // Set Alarm For 11:28:20AM Every Day 

    Alarm.alarmRepeat(12,20,0, LightOn);  // Set Alarm For 12:20PM Every Day 

    Alarm.alarmRepeat(12,20,20, LightOff);  // Set Alarm For 12:20PM Every Day 

    Alarm.alarmRepeat(12,20,20, Feeder);  // Set Alarm For 12:20PM Every Day 

    Alarm.alarmRepeat(13,48,0, LightOn);  // Set Alarm For 13:48PM Every Day 

    Alarm.alarmRepeat(13,48,20, LightOff);  // Set Alarm For 13:48:20PM Every Day 

    Alarm.alarmRepeat(13,48,20, Feeder);  // Set Alarm For 13:48:20PM Every Day 

    Alarm.alarmRepeat(14,35,0, LightOn);  // Set Alarm For 14:35PM Every Day 

    Alarm.alarmRepeat(14,35,20, LightOff);  // Set Alarm For 14:35:20PM Every Day 

    Alarm.alarmRepeat(14,35,20, Feeder);  // Set Alarm For 14:35:20PM Every Day 

    Alarm.alarmRepeat(16,23,0, LightOn);  // Set Alarm For 16:23OM Every Day 
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    Alarm.alarmRepeat(16,23,20, LightOff);  // Set Alarm For 16:23:20PM Every Day 

    Alarm.alarmRepeat(16,23,20, Feeder);  // Set Alarm For 16:23:20PM Every Day 

    Alarm.alarmRepeat(17,59,0, LightOn);  // Set Alarm For 17:59PM Every Day 

    Alarm.alarmRepeat(17,59,20, LightOff);  // Set Alarm For 17:59:20PM Every Day 

    Alarm.alarmRepeat(17,59,20, Feeder);  // Set Alarm For 17:59:20PM Every Day 

    Alarm.alarmRepeat(19,10,0, LightOn);  // Set Alarm For 19:10PM Every Day 

    Alarm.alarmRepeat(19,10,20, LightOff);  // Set Alarm For 19:10:20PM Every Day 

    Alarm.alarmRepeat(19,10,20, Feeder);  // Set Alarm For 19:10:20PM Every Day 

    Alarm.alarmRepeat(20,22,0, LightOn);  // Set Alarm For 20:22PM Every Day 

    Alarm.alarmRepeat(20,22,20, LightOff);  // Set Alarm For 20:22:20PM Every Day 

    Alarm.alarmRepeat(20,22,20, Feeder);  // Set Alarm For 20:22:20PM Every Day 

 

    pinMode(REDPIN, OUTPUT); 

    pinMode(GREENPIN, OUTPUT); 

    pinMode(BLUEPIN, OUTPUT); 

     

    AFMS.begin(); // Start the bottom shield 

    Motor->setSpeed(500); // Speed in RPM 

} 

 

void loop() { 

  Alarm.delay(1000); // wait one second between clock display 

} 

 

void LightOn() { 

  analogWrite(REDPIN, 255); 

  analogWrite(GREENPIN, 255); 

  analogWrite(BLUEPIN, 0); 

} 

 

void LightOff() { 

  analogWrite(REDPIN, 0); 

  analogWrite(GREENPIN, 0); 

  analogWrite(BLUEPIN, 0); 

} 

 

void Feeder() { 

  Motor->step(100, BACKWARD, DOUBLE); //Steps, Direction, Step Type (SINGLE, DOUBLE, 

INTERLEAVE, MICROSTEP) 

  Motor->release(); 

 

}  
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B.2: VISUAL CONDITIONING DAY TWO 

 
#include <Time.h>  

#include <TimeAlarms.h> 

#include <DS1307RTC.h> 

#include <Wire.h> 

#include <Adafruit_MotorShield.h> 

#include "utility/Adafruit_PWMServoDriver.h" 

 

Adafruit_MotorShield AFMS = Adafruit_MotorShield();  

 

Adafruit_StepperMotor *Motor = AFMS.getStepper(200, 1); 

 

#define REDPIN 6 

#define GREENPIN 9 

#define BLUEPIN 11 

 

void setup() { 

    Serial.begin(9600); 

    while (!Serial) ; // wait until Arduino Serial MOnitor opens 

    setSyncProvider(RTC.get);   // the functiOn to get the time from the RTC 

   Alarm.alarmRepeat(10,06,0, LightOn);  // Set Alarm For 10:06AM Every Day 

    Alarm.alarmRepeat(10,06,20, LightOff);  // Set Alarm For 10:06:20AM Every Day 

    Alarm.alarmRepeat(10,06,20, Feeder);  // Set Alarm For 10:06:20AM Every Day 

    Alarm.alarmRepeat(10,58,0, LightOn);  // Set Alarm For 10:58AM Every Day 

    Alarm.alarmRepeat(10,58,20, LightOff);  // Set Alarm For 10:58:20AM Every Day 

    Alarm.alarmRepeat(10,58,20, Feeder);  // Set Alarm For 10:58:20AM Every Day 

    Alarm.alarmRepeat(11,46,0, LightOn);  // Set Alarm For 11:46AM Every Day 

    Alarm.alarmRepeat(11,46,20, LightOff);  // Set Alarm For 11:46:20AM Every Day 

    Alarm.alarmRepeat(11,46,20, Feeder);  // Set Alarm For 11:46:20AM Every Day 

    Alarm.alarmRepeat(12,34,0, LightOn);  // Set Alarm For 12:34PM Every Day 

    Alarm.alarmRepeat(12,34,20, LightOff);  // Set Alarm For 12:34PM Every Day 

    Alarm.alarmRepeat(12,34,20, Feeder);  // Set Alarm For 12:34PM Every Day 

    Alarm.alarmRepeat(13,54,0, LightOn);  // Set Alarm For 13:54PM Every Day 

    Alarm.alarmRepeat(13,54,20, LightOff);  // Set Alarm For 13:54:20PM Every Day 

    Alarm.alarmRepeat(13,54,20, Feeder);  // Set Alarm For 13:54:20PM Every Day 

    Alarm.alarmRepeat(14,38,0, LightOn);  // Set Alarm For 14:38PM Every Day 

    Alarm.alarmRepeat(14,38,20, LightOff);  // Set Alarm For 14:38:20PM Every Day 

    Alarm.alarmRepeat(14,38,20, Feeder);  // Set Alarm For 14:38:20PM Every Day 

    Alarm.alarmRepeat(15,52,0, LightOn);  // Set Alarm For 15:52PM Every Day 

    Alarm.alarmRepeat(15,52,20, LightOff);  // Set Alarm For 15:52:20PM Every Day 

    Alarm.alarmRepeat(15,52,20, Feeder);  // Set Alarm For 15:52:20PM Every Day 
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    Alarm.alarmRepeat(17,42,0, LightOn);  // Set Alarm For 17:42PM Every Day 

    Alarm.alarmRepeat(17,42,20, LightOff);  // Set Alarm For 17:42:20PM Every Day 

    Alarm.alarmRepeat(17,42,20, Feeder);  // Set Alarm For 17:42:20PM Every Day 

    Alarm.alarmRepeat(19,20,0, LightOn);  // Set Alarm For 19:20PM Every Day 

    Alarm.alarmRepeat(19,20,20, LightOff);  // Set Alarm For 19:20:20PM Every Day 

    Alarm.alarmRepeat(19,20,20, Feeder);  // Set Alarm For 19:20:20PM Every Day 

    Alarm.alarmRepeat(20,06,0, LightOn);  // Set Alarm For 20:06PM Every Day 

    Alarm.alarmRepeat(20,06,20, LightOff);  // Set Alarm For 20:06:20PM Every Day 

    Alarm.alarmRepeat(20,06,20, Feeder);  // Set Alarm For 20:06:20PM Every Day 

 

    pinMode(REDPIN, OUTPUT); 

    pinMode(GREENPIN, OUTPUT); 

    pinMode(BLUEPIN, OUTPUT); 

     

    AFMS.begin(); // Start the bottom shield 

    Motor->setSpeed(500); // Speed in RPM 

} 

 

void loop() { 

  Alarm.delay(1000); // wait one second between clock display 

} 

 

void LightOn() { 

  analogWrite(REDPIN, 255); 

  analogWrite(GREENPIN, 255); 

  analogWrite(BLUEPIN, 0); 

} 

 

void LightOff() { 

  analogWrite(REDPIN, 0); 

  analogWrite(GREENPIN, 0); 

  analogWrite(BLUEPIN, 0); 

} 

 

void Feeder() { 

  Motor->step(100, BACKWARD, DOUBLE); //Steps, Direction, Step Type (SINGLE, DOUBLE, 

INTERLEAVE, MICROSTEP) 

  Motor->release(); 

 

 

} 
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B.3: VISUAL CONTROL DAY ONE 

 

#include <Time.h>  

#include <TimeAlarms.h> 

#include <DS1307RTC.h> 

#include <Wire.h> 

#include <Adafruit_MotorShield.h> 

#include "utility/Adafruit_PWMServoDriver.h" 

 

Adafruit_MotorShield AFMS = Adafruit_MotorShield();  

 

Adafruit_StepperMotor *Motor = AFMS.getStepper(200, 1); 

 

#define REDPIN 6 

#define GREENPIN 9 

#define BLUEPIN 11 

 

void setup() { 

    Serial.begin(9600); 

    while (!Serial) ; // wait until Arduino Serial Monitor opens 

    setSyncProvider(RTC.get);   // the function to get the time from the RTC 

    Alarm.alarmRepeat(9,45,0, LightOn);  // Set Alarm For 9:45AM Every Day 

    Alarm.alarmRepeat(9,45,20, LightOff);  // Set Alarm For 9:45:20AM Every Day 

    Alarm.alarmRepeat(10,02,20, Feeder);  // Set Alarm For 10:02:20AM Every Day 

    Alarm.alarmRepeat(10,19,0, LightOn);  // Set Alarm For 10:19AM Every Day 

    Alarm.alarmRepeat(10,19,20, LightOff);  // Set Alarm For 10:19:20AM Every Day 

    Alarm.alarmRepeat(10,53,20, Feeder);  // Set Alarm For 10:52:20AM Every Day 

    Alarm.alarmRepeat(11,28,0, LightOn);  // Set Alarm For 11:28AM Every Day 

    Alarm.alarmRepeat(11,28,20, LightOff);  // Set Alarm For 11:28:20AM Every Day 

    Alarm.alarmRepeat(11,54,20, Feeder);  // Set Alarm For 11:54:20AM Every Day 

    Alarm.alarmRepeat(12,20,0, LightOn);  // Set Alarm For 12:20PM Every Day 

    Alarm.alarmRepeat(12,20,20, LightOff);  // Set Alarm For 12:20:20PM Every Day 

    Alarm.alarmRepeat(13,02,20, Feeder);  // Set Alarm For 13:02:20PM Every Day 

    Alarm.alarmRepeat(13,48,0, LightOn);  // Set Alarm For 13:48PM Every Day 

    Alarm.alarmRepeat(13,48,20, LightOff);  // Set Alarm For 13:48:20PM Every Day 

    Alarm.alarmRepeat(14,11,20, Feeder);  // Set Alarm For 14:11:20PM Every Day 

    Alarm.alarmRepeat(14,35,0, LightOn);  // Set Alarm For 14:35PM Every Day 

    Alarm.alarmRepeat(14,35,20, LightOff);  // Set Alarm For 14:35:20PM Every Day 

    Alarm.alarmRepeat(15,29,20, Feeder);  // Set Alarm For 15:29:20PM Every Day 

    Alarm.alarmRepeat(16,23,0, LightOn);  // Set Alarm For 16:23PM Every Day 

    Alarm.alarmRepeat(16,23,20, LightOff);  // Set Alarm For 16:23:20PM Every Day 

    Alarm.alarmRepeat(17,11,20, Feeder);  // Set Alarm For 17:11:20PM Every Day 
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    Alarm.alarmRepeat(17,59,0, LightOn);  // Set Alarm For 17:59PM Every Day 

    Alarm.alarmRepeat(17,59,20, LightOff);  // Set Alarm For 17:59:20PM Every Day 

    Alarm.alarmRepeat(18,35,20, Feeder);  // Set Alarm For 18:35:20PM Every Day 

    Alarm.alarmRepeat(19,10,0, LightOn);  // Set Alarm For 19:10PM Every Day 

    Alarm.alarmRepeat(19,10,20, LightOff);  // Set Alarm For 19:10:20PM Every Day 

    Alarm.alarmRepeat(19,46,20, Feeder);  // Set Alarm For 19:46:20PM Every Day 

    Alarm.alarmRepeat(20,22,0, LightOn);  // Set Alarm For 20:22PM Every Day 

    Alarm.alarmRepeat(20,22,20, LightOff);  // Set Alarm For 20:22:20PM Every Day 

    Alarm.alarmRepeat(20,54,20, Feeder);  // Set Alarm For 20:54:20PM Every Day 

 

    pinMode(REDPIN, OUTPUT); 

    pinMode(GREENPIN, OUTPUT); 

    pinMode(BLUEPIN, OUTPUT); 

     

    AFMS.begin(); // Start the bottom shield 

    Motor->setSpeed(500); // Speed in RPM 

} 

 

void loop() { 

  Alarm.delay(1000); // wait one second between clock display 

} 

 

void LightOn() { 

  analogWrite(REDPIN, 255); 

  analogWrite(GREENPIN, 255); 

  analogWrite(BLUEPIN, 0); 

} 

 

void LightOff() { 

  analogWrite(REDPIN, 0); 

  analogWrite(GREENPIN, 0); 

  analogWrite(BLUEPIN, 0); 

} 

 

void Feeder() { 

  Motor->step(25, BACKWARD, DOUBLE); //Steps, Direction, Step Type (SINGLE, DOUBLE, 

INTERLEAVE, MICROSTEP) 

  Motor->release(); 

 

 

} 
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B.4: VISUAL CONTROL DAY TWO 

 
#include <Time.h>  

#include <TimeAlarms.h> 

#include <DS1307RTC.h> 

#include <Wire.h> 

#include <Adafruit_MotorShield.h> 

#include "utility/Adafruit_PWMServoDriver.h" 

 

Adafruit_MotorShield AFMS = Adafruit_MotorShield();  

 

Adafruit_StepperMotor *Motor = AFMS.getStepper(200, 1); 

 

#define REDPIN 6 

#define GREENPIN 9 

#define BLUEPIN 11 

 

void setup() { 

    Serial.begin(9600); 

    while (!Serial) ; // wait until Arduino Serial Monitor opens 

    setSyncProvider(RTC.get);   // the function to get the time from the RTC 

    Alarm.alarmRepeat(10,06,0, LightOn);  // Set Alarm For 10:06AM Every Day 

    Alarm.alarmRepeat(10,06,20, LightOff);  // Set Alarm For 10:06:20AM Every Day 

    Alarm.alarmRepeat(10,26,20, Feeder);  // Set Alarm For 10:26:20AM Every Day 

    Alarm.alarmRepeat(10,58,0, LightOn);  // Set Alarm For 10:58AM Every Day 

    Alarm.alarmRepeat(10,58,20, LightOff);  // Set Alarm For 10:58:20AM Every Day 

    Alarm.alarmRepeat(11,22,20, Feeder);  // Set Alarm For 11:22:20AM Every Day 

    Alarm.alarmRepeat(11,46,0, LightOn);  // Set Alarm For 11:46AM Every Day 

    Alarm.alarmRepeat(11,46,20, LightOff);  // Set Alarm For 11:46:20AM Every Day 

    Alarm.alarmRepeat(12,10,20, Feeder);  // Set Alarm For 12:10:20AM Every Day 

    Alarm.alarmRepeat(12,34,0, LightOn);  // Set Alarm For 12:34PM Every Day 

    Alarm.alarmRepeat(12,34,20, LightOff);  // Set Alarm For 12:34PM Every Day 

    Alarm.alarmRepeat(13,14,20, Feeder);  // Set Alarm For 13:14PM Every Day 

    Alarm.alarmRepeat(13,54,0, LightOn);  // Set Alarm For 13:54PM Every Day 

    Alarm.alarmRepeat(13,54,20, LightOff);  // Set Alarm For 13:54:20PM Every Day 

    Alarm.alarmRepeat(14,16,20, Feeder);  // Set Alarm For 14:16:20PM Every Day 

    Alarm.alarmRepeat(14,38,0, LightOn);  // Set Alarm For 14:38PM Every Day 

    Alarm.alarmRepeat(14,38,20, LightOff);  // Set Alarm For 14:38:20PM Every Day 

    Alarm.alarmRepeat(15,15,20, Feeder);  // Set Alarm For 15:15:20PM Every Day 

    Alarm.alarmRepeat(15,52,0, LightOn);  // Set Alarm For 15:52PM Every Day 

    Alarm.alarmRepeat(15,52,20, LightOff);  // Set Alarm For 15:52:20PM Every Day 

    Alarm.alarmRepeat(16,47,20, Feeder);  // Set Alarm For 16:47:20PM Every Day 
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    Alarm.alarmRepeat(17,42,0, LightOn);  // Set Alarm For 17:42PM Every Day 

    Alarm.alarmRepeat(17,42,20, LightOff);  // Set Alarm For 17:42:20PM Every Day 

    Alarm.alarmRepeat(18,31,20, Feeder);  // Set Alarm For 18:31:20PM Every Day 

    Alarm.alarmRepeat(19,20,0, LightOn);  // Set Alarm For 19:20PM Every Day 

    Alarm.alarmRepeat(19,20,20, LightOff);  // Set Alarm For 19:20:20PM Every Day 

    Alarm.alarmRepeat(19,43,20, Feeder);  // Set Alarm For 19:43:20PM Every Day 

    Alarm.alarmRepeat(20,06,0, LightOn);  // Set Alarm For 20:06PM Every Day 

    Alarm.alarmRepeat(20,06,20, LightOff);  // Set Alarm For 20:06:20PM Every Day 

    Alarm.alarmRepeat(20,36,20, Feeder);  // Set Alarm For 20:36:20PM Every Day 

 

    pinMode(REDPIN, OUTPUT); 

    pinMode(GREENPIN, OUTPUT); 

    pinMode(BLUEPIN, OUTPUT); 

     

    AFMS.begin(); // Start the bottom shield 

    Motor->setSpeed(500); // Speed in RPM 

} 

 

void loop() { 

  Alarm.delay(1000); // wait one second between clock display 

} 

 

void LightOn() { 

  analogWrite(REDPIN, 255); 

  analogWrite(GREENPIN, 255); 

  analogWrite(BLUEPIN, 0); 

} 

 

void LightOff() { 

  analogWrite(REDPIN, 0); 

  analogWrite(GREENPIN, 0); 

  analogWrite(BLUEPIN, 0); 

} 

 

void Feeder() { 

  Motor->step(25, BACKWARD, DOUBLE); //Steps, Direction, Step Type (SINGLE, DOUBLE, 

INTERLEAVE, MICROSTEP) 

  Motor->release(); 

 

 

} 
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B.5: VISUAL RETENTION 

 

#include <Time.h>  

#include <TimeAlarms.h> 

#include <DS1307RTC.h> 

#include <Wire.h> 

#include <Adafruit_MotorShield.h> 

#include "utility/Adafruit_PWMServoDriver.h" 

 

Adafruit_MotorShield AFMS = Adafruit_MotorShield();  

 

Adafruit_StepperMotor *Motor = AFMS.getStepper(200, 1); 

 

#define REDPIN 6 

#define GREENPIN 9 

#define BLUEPIN 11 

 

void setup() { 

    Serial.begin(9600); 

    while (!Serial) ; // wait until Arduino Serial MOnitor opens 

    setSyncProvider(RTC.get);   // the functiOn to get the time from the RTC 

   Alarm.alarmRepeat(15,1,0, LightOn);  // Set Alarm For 15:1AM Every Day 

    Alarm.alarmRepeat(15,1,20, LightOff);  // Set Alarm For 15:1:20AM Every Day 

 

    pinMode(REDPIN, OUTPUT); 

    pinMode(GREENPIN, OUTPUT); 

    pinMode(BLUEPIN, OUTPUT); 

     

    AFMS.begin(); // Start the bottom shield 

    Motor->setSpeed(500); // Speed in RPM 

} 

 

void loop() { 

  Alarm.delay(1000); // wait one second between clock display 

} 

 

void LightOn() { 

  analogWrite(REDPIN, 255); 

  analogWrite(GREENPIN, 255); 

  analogWrite(BLUEPIN, 0); 

} 
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void LightOff() { 

  analogWrite(REDPIN, 0); 

  analogWrite(GREENPIN, 0); 

  analogWrite(BLUEPIN, 0); 

} 

 

} 
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B.6: OLFACTORY CONDITIONING DAY ONE/ TWO (CONDITIONING & CONTROL) 

 
#include <Time.h>  

#include <TimeAlarms.h> 

#include <DS1307RTC.h> 

#include <Wire.h> 

#include <Adafruit_MotorShield.h> 

#include "utility/Adafruit_PWMServoDriver.h" 

 

Adafruit_MotorShield AFMS = Adafruit_MotorShield();  

Adafruit_StepperMotor *stepper1 = AFMS.getStepper(200, 1); 

Adafruit_StepperMotor *stepper2 = AFMS.getStepper(200, 2); 

 

 

void setup() { 

 

  pinMode(10, OUTPUT); 

  pinMode(9, OUTPUT); 

  digitalWrite(9, HIGH); 

 

  AFMS.begin(); // Start the bottom shield 

  stepper1->setSpeed(500); // Speed in RPM 

  stepper2->setSpeed(500); // Speed in RPM 

   

 

 

Serial.begin(9600); 

  while (!Serial) ; // wait until Arduino Serial Monitor opens 

  //setTime(9,59,0,9,31,14); // set time to Wednesday 15:18:00pm April 16 2014 

  setSyncProvider(RTC.get);   // the function to get the time from the RTC 

    Alarm.alarmRepeat(8,7,0, PumpOn);  // Set Alarm For 9:45AM Every Day 

    Alarm.alarmRepeat(8,7,20, Feeder1);  // Set Alarm For 9:45:20AM Every DayFeeder2 

    Alarm.alarmRepeat(8,20,0, Feeder2);  // Set Alarm For 9:45:20AM Every Day 

     

    Alarm.alarmRepeat(8,40,0, PumpOn);  // Set Alarm For 9:45AM Every Day 

    Alarm.alarmRepeat(8,40,20, Feeder1);  // Set Alarm For 9:45:20AM Every DayFeeder2 

    Alarm.alarmRepeat(9,5,0, Feeder2);  // Set Alarm For 9:45:20AM Every Day 

     

    Alarm.alarmRepeat(9,30,0, PumpOn);  // Set Alarm For 10:19AM Every Day 

    Alarm.alarmRepeat(9,30,20, Feeder1);  // Set Alarm For 10:19:20AM Every Day 

    Alarm.alarmRepeat(9,50,0, Feeder2);  // Set Alarm For 10:19:20AM Every Day 
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    Alarm.alarmRepeat(10,15,0, PumpOn);  // Set Alarm For 11:28AM Every Day 

    Alarm.alarmRepeat(10,15,20, Feeder1);  // Set Alarm For 11:28:20AM Every Day 

    Alarm.alarmRepeat(10,35,0, Feeder2);  // Set Alarm For 11:28:20AM Every Day 

     

    Alarm.alarmRepeat(10,50,0, PumpOn);  // Set Alarm For 12:20PM Every Day 

    Alarm.alarmRepeat(10,50,20, Feeder1);  // Set Alarm For 12:20PM Every Day 

    Alarm.alarmRepeat(11,15,0, Feeder2);  // Set Alarm For 12:20PM Every Day 

     

    Alarm.alarmRepeat(11,50,0, PumpOn);  // Set Alarm For 13:48PM Every Day 

    Alarm.alarmRepeat(11,50,20, Feeder1);  // Set Alarm For 13:48:20PM Every Day 

    Alarm.alarmRepeat(12,10,0, Feeder2);  // Set Alarm For 13:48:20PM Every Day 

     

    Alarm.alarmRepeat(12,30,0, PumpOn);  // Set Alarm For 14:35PM Every Day 

    Alarm.alarmRepeat(12,30,20, Feeder1);  // Set Alarm For 14:35:20PM Every Day 

    Alarm.alarmRepeat(12,52,0, Feeder2);  // Set Alarm For 14:35:20PM Every Day 

     

    Alarm.alarmRepeat(13,15,0, PumpOn);  // Set Alarm For 16:23OM Every Day 

    Alarm.alarmRepeat(13,15,20, Feeder1);  // Set Alarm For 16:23:20PM Every Day 

    Alarm.alarmRepeat(13,45,0, Feeder2);  // Set Alarm For 16:23:20PM Every Day 

     

    Alarm.alarmRepeat(14,5,0, PumpOn);  // Set Alarm For 17:59PM Every Day 

    Alarm.alarmRepeat(14,5,20, Feeder1);  // Set Alarm For 17:59:20PM Every Day 

    Alarm.alarmRepeat(14,35,0, Feeder2);  // Set Alarm For 17:59:20PM Every Day 

     

    Alarm.alarmRepeat(15,0,0, PumpOn);  // Set Alarm For 19:10PM Every Day 

    Alarm.alarmRepeat(15,0,20, Feeder1);  // Set Alarm For 19:10:20PM Every Day 

    Alarm.alarmRepeat(15,20,0, Feeder2);  // Set Alarm For 19:10:20PM Every Day 

 

} 

 

void loop() { 

  Alarm.delay(1000); // wait one second between clock display 

   

} 

 

void PumpOn() { 

  digitalWrite(10, HIGH); 

  digitalWrite(9, LOW); 

  delay(100); 

  digitalWrite(9, HIGH); 

  delay(6900); 

  digitalWrite(10, LOW); 
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  digitalWrite(9, LOW); 

delay(100); 

  digitalWrite(9, HIGH); 

} 

 

 

 

void Feeder1() { 

  stepper1->step(100, BACKWARD, DOUBLE); //Steps, Direction, Step Type (SINGLE, DOUBLE, 

INTERLEAVE, MICROSTEP) 

  stepper1->release();  

} 

void Feeder2() { 

  stepper2->step(100, BACKWARD, DOUBLE); //Steps, Direction, Step Type (SINGLE, DOUBLE, 

INTERLEAVE, MICROSTEP) 

  stepper2->release(); 

} 
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B.7: WATER ONLY TRIAL 

 
#include <Time.h>  

#include <TimeAlarms.h> 

#include <DS1307RTC.h> 

#include <Wire.h> 

#include <Adafruit_MotorShield.h> 

#include "utility/Adafruit_PWMServoDriver.h" 

 

Adafruit_MotorShield AFMS = Adafruit_MotorShield();  

Adafruit_StepperMotor *stepper1 = AFMS.getStepper(200, 1); 

Adafruit_StepperMotor *stepper2 = AFMS.getStepper(200, 2); 

 

 

void setup() { 

 

  pinMode(10, OUTPUT); 

  pinMode(9, OUTPUT); 

  digitalWrite(9, HIGH); 

 

  AFMS.begin(); // Start the bottom shield 

  stepper1->setSpeed(500); // Speed in RPM 

  stepper2->setSpeed(500); // Speed in RPM 

   

 

 

Serial.begin(9600); 

  while (!Serial) ; // wait until Arduino Serial Monitor opens 

  //setTime(9,59,0,9,31,14); // set time to Wednesday 15:18:00pm April 16 2014 

  setSyncProvider(RTC.get);   // the function to get the time from the RTC 

    Alarm.alarmRepeat(8,7,0, PumpOn);  // Set Alarm For 9:45AM Every Day 

         

 

} 

 

void loop() { 

  Alarm.delay(1000); // wait one second between clock display 

   

} 

 

void PumpOn() { 

  digitalWrite(10, HIGH); 
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  digitalWrite(9, LOW); 

  delay(100); 

  digitalWrite(9, HIGH); 

  delay(6900); 

  digitalWrite(10, LOW); 

  digitalWrite(9, LOW); 

delay(100); 

  digitalWrite(9, HIGH); 

} 

 

 

 

void Feeder1() { 

  stepper1->step(100, BACKWARD, DOUBLE); //Steps, Direction, Step Type (SINGLE, DOUBLE, 

INTERLEAVE, MICROSTEP) 

  stepper1->release();  

} 

void Feeder2() { 

  stepper2->step(100, BACKWARD, DOUBLE); //Steps, Direction, Step Type (SINGLE, DOUBLE, 

INTERLEAVE, MICROSTEP) 

  stepper2->release(); 

} 
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B.8: OLFACTORY RETENTION 

 
#include <Time.h>  

#include <TimeAlarms.h> 

#include <DS1307RTC.h> 

#include <Wire.h> 

#include <Adafruit_MotorShield.h> 

#include "utility/Adafruit_PWMServoDriver.h" 

 

Adafruit_MotorShield AFMS = Adafruit_MotorShield();  

Adafruit_StepperMotor *stepper1 = AFMS.getStepper(200, 1); 

Adafruit_StepperMotor *stepper2 = AFMS.getStepper(200, 2); 

 

 

void setup() { 

 

  pinMode(10, OUTPUT); 

  pinMode(9, OUTPUT); 

  digitalWrite(9, HIGH); 

 

  AFMS.begin(); // Start the bottom shield 

  stepper1->setSpeed(500); // Speed in RPM 

  stepper2->setSpeed(500); // Speed in RPM 

   

 

 

Serial.begin(9600); 

  while (!Serial) ; // wait until Arduino Serial Monitor opens 

  //setTime(9,59,0,9,31,14); // set time to Wednesday 15:18:00pm April 16 2014 

  setSyncProvider(RTC.get);   // the function to get the time from the RTC 

    Alarm.alarmRepeat(8,7,0, PumpOn);  // Set Alarm For 9:45AM Every Day 

    Alarm.alarmRepeat(8,40,0, PumpOn);  // Set Alarm For 9:45AM Every Day 

 

} 

 

void loop() { 

  Alarm.delay(1000); // wait one second between clock display 

   

} 

 

void PumpOn() { 

  digitalWrite(10, HIGH); 
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  digitalWrite(9, LOW); 

  delay(100); 

  digitalWrite(9, HIGH); 

  delay(6900); 

  digitalWrite(10, LOW); 

  digitalWrite(9, LOW); 

delay(100); 

  digitalWrite(9, HIGH); 

} 

 

 

 

void Feeder1() { 

  stepper1->step(100, BACKWARD, DOUBLE); //Steps, Direction, Step Type (SINGLE, DOUBLE, 

INTERLEAVE, MICROSTEP) 

  stepper1->release();  

} 

void Feeder2() { 

  stepper2->step(100, BACKWARD, DOUBLE); //Steps, Direction, Step Type (SINGLE, DOUBLE, 

INTERLEAVE, MICROSTEP) 

  stepper2->release(); 

} 
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APPENDIX C: STATISTICAL ANALYSIS FOR VISUAL PARADIGM 

C.1: VISUAL ACQUISITION – LINEAR MIXED EFFECTS MODEL – MOVEMENT TOWARDS 

FOOD 

 

Visual   dD 

refitting model(s) with ML (instead of REML) 

Data: dfs 

Models: 

mod.dfs3: Measure ~ Condition + TrialN + (TrialN | Tank) 

mod.dfs5: Measure ~ Condition * TrialN + (TrialN | Tank) 

 Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) 

mod.dfs3   7 4051.5 4084.6 -2018.7    4037.5    

mod.dfs5   8 4021.7 4059.6 -2002.8    4005.7 31.755       1 1.749e-08 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Linear mixed model fit by REML ['lmerMod'] 

Formula: Measure ~ Condition * TrialN + (TrialN | Tank) 

Data: dfs 

 

REML criterion at convergence: 4016.5 

 

Scaled residuals:  

Min 1Q Median 3Q Max 

-4.1367  -0.5832 -0.0825   0.5558   4.3496 

              

Random effects: 

Groups Name Variance Std.Dev. Corr 

Tank   (Intercept) 1.91916   1.385  

 TrialN 0.01368   0.117 -0.30 

Residual  6.00896   2.451  

Number of obs: 839, groups:  Tank, 42 

 

Fixed effects: 

 Estimate Std. Error t value 

(Intercept)          0.06524     0.42280  0.154 

ConditionE -0.59856     0.55925 -1.070 

TrialN  0.02918     0.03553  0.821 

ConditionE:TrialN    0.31596     0.04700  6.723 
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Correlation of Fixed Effects: 

 (Intr) CndtnE TrialN 

ConditionE   -0.756                 

TrialN -0.532    0.402         

CndtnE:TrlN    0.402 -0.532 -0.756 

 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: Measure 

 Chisq Df Pr(>Chisq) 

Condition  8.7433 1   0.003107 ** 

TrialN 81.3192   1 < 2.2e-16 *** 

Condition:TrialN  45.1943     1   1.784e-11 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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C.2: VISUAL ACQUISITION – LINEAR MIXED EFFECTS MODEL – VERTICAL MOVEMENT 

 

Visual   dY 

refitting model(s) with ML (instead of REML) 

Data: dfs 

Models: 

mod.dfs3: Measure ~ Condition + TrialN + (TrialN | Tank) 

mod.dfs5: Measure ~ Condition * TrialN + (TrialN | Tank) 

 Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) 

mod.dfs3   7 3656.8 3690.0 -1821.4    3642.8                                 

mod.dfs5   8 3630.6 3668.5 -1807.3    3614.6 28.233         1 1.076e-07 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Linear mixed model fit by REML ['lmerMod'] 

Formula: Measure ~ Condition * TrialN + (TrialN | Tank) 

Data: dfs 

 

REML criterion at convergence: 3626.1 

 

Scaled residuals:  

Min 1Q Median 3Q Max 

-3.6004  -0.5462 -0.0139   0.5338   3.4332 

                  

Random effects: 

Groups Name Variance Std.Dev. Corr 

Tank (Intercept) 3.09189   1.7584          

 TrialN 0.01066   0.1033    -0.58 

Residual    3.65380   1.9115          

Number of obs: 839, groups:  Tank, 42 

 

Fixed effects: 

 Estimate Std. Error t value 

(Intercept)          0.51428     0.46437     1.107 

ConditionE -0.04497     0.61426   -0.073 

TrialN    0.01759     0.02996     0.587 

ConditionE:TrialN    0.24541     0.03963     6.192 

 

Correlation of Fixed Effects: 

 (Intr) CndtnE TrialN 

ConditionE -0.756   

TrialN    -0.650  0.491         

CndtnE:TrlN    0.491 -0.650 -0.756 
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Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: Measure 

 Chisq Df Pr(>Chisq) 

Condition 26.977   1 2.058e-07 *** 

TrialN 64.756     1 8.477e-16 *** 

Condition:TrialN 38.342     1 5.937e-10 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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C.3: VISUAL ACQUISITION – LINEAR MIXED EFFECTS MODEL – HORIZONTAL 

MOVEMENT 

 

Visual   dX 

refitting model(s) with ML (instead of REML) 

Data: dfs 

Models: 

mod.dfs3: Measure ~ Condition + TrialN + (TrialN | Tank) 

mod.dfs5: Measure ~ Condition * TrialN + (TrialN | Tank) 

 Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) 

mod.dfs3   7 3962.8 3995.9 -1974.4    3948.8                                 

mod.dfs5   8 3949.0 3986.9 -1966.5    3933.0 15.798         1 7.048e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Linear mixed model fit by REML ['lmerMod'] 

Formula: Measure ~ Condition * TrialN + (TrialN | Tank) 

Data: dfs 

 

REML criterion at convergence: 3943.8 

 

Scaled residuals:  

Min 1Q Median 3Q Max 

-3.8945 -0.5757 -0.0350   0.5641   4.6594  

                   

Random effects: 

Groups Name Variance Std.Dev. Corr 

Tank (Intercept) 1.92618   1.3879          

 TrialN 0.01671   0.1292    -0.38 

Residual  5.45141   2.3348          

Number of obs: 839, groups:  Tank, 42 

 

Fixed effects: 

 Estimate Std. Error t value 

(Intercept)        -0.35632     0.41528 -0.858 

ConditionE   -0.65661     0.54930 -1.195 

TrialN  0.02411     0.03720  0.648 

ConditionE:TrialN    0.21030     0.04921  4.274 

   

Correlation of Fixed Effects: 

 (Intr) CndtnE TrialN 

ConditionE -0.756                 

TrialN    -0.555    0.420         

CndtnE:TrlN    0.420 -0.555 -0.756 
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Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: Measure 

 Chisq Df Pr(>Chisq) 

Condition  2.0013 1      0.1572     

TrialN 35.1094   1 3.117e-09 *** 

Condition:TrialN 18.2659 1   1.921e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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C.4: VISUAL GROUP RETENTION – TWO-WAY ANOVA – MOVEMENT TOWARDS FOOD 

> # aov independent samples tests 

# VISUAL 

> varname="dD" Df Sum Sq Mean Sq F value    Pr(>F)     

Condition  1 125.72    125.72    16.476 0.000613 *** 

DayN                 1   9.87        9.87      1.294 0.268787     

Condition:DayN      1  17.50      17.50      2.294 0.145531     

Residuals 20 152.60        7.63                                       

 

C.5: VISUAL GROUP RETENTION – TWO-WAY ANOVA – VERTICAL MOVEMENT  

> varname="dY" Df Sum Sq Mean Sq F value    Pr(>F)     

Condition  1 109.74    109.74   32.436 1.42e-05 *** 

DayN  1  10.61      10.61     3.137    0.0918 .   

Condition:DayN   1      2.11        2.11     0.623    0.4393     

Residuals   20    67.66        3.38         

 

C.6: VISUAL GROUP RETENTION – TWO-WAY ANOVA – HORIZONTAL MOVEMENT 

> varname="dX" Df Sum Sq Mean Sq F value Pr(>F)   

Condition  1    40.75     40.75    4.936 0.0380 * 

DayN  1   40.10     40.10    4.858 0.0394 * 

Condition:DayN      1  18.29     18.29    2.216 0.1522   

Residuals 20 165.10       8.25                    

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

C.7: VISUAL INDIVIDUAL RETENTION – TWO-WAY ANOVA – MOVEMENT TOWARDS 

FOOD 

varname="dD" Df Sum Sq Mean Sq F value Pr(>F) 

Condition   1   46.9 46.85 1.751 0.189 

DayN    4  142.2 35.55 1.329 0.266 

Condition:DayN  4   66.4  16.60 0.620 0.649 

Residuals   82 2194.4 26.76   

 

C.8: VISUAL INDIVIDUAL RETENTION – TWO-WAY ANOVA – VERTICAL MOVEMENT 

varname="dY" Df Sum Sq Mean Sq F value Pr(>F) 

Condition   1   88.6  88.61  6.639 0.0118 * 

DayN    4   78.9  19.73  1.478 0.2163 

Condition:DayN  4   15.4   3.85  0.289 0.8845 

Residuals   82 1094.5  13.35   
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C.9 : VISUAL INDIVIDUAL RETENTION – TWO-WAY ANOVA – HORIZONTAL MOVEMENT 

varname="dX" Df Sum Sq Mean Sq F value Pr(>F) 

Condition    1    8.2   8.232 0.315 0.576 

DayN   4  111.5  27.887 1.067 0.378 

Condition:DayN     4   56.4  14.102 0.539 0.707 

Residuals  82 2143.9  26.145   

---  

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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APPENDIX D: STASTISTICAL ANALYSIS FOR OLFACTORY PARADIGM 

D.1: OLFACTORY ACQUISITION – LINEAR MIXED EFFECTS MODEL – MOVEMENT 

TOWARDS FOOD 

Olfactory dD 
refitting model(s) with ML (instead of REML) 
Data: dfs 
Models: 
Mod.dfs3: Measure ~ Condition + TrialN + (TrialN | Tank) 
Mod.dfs5: Measure ~ Condition * TrialN + (TrialN | Tank) 

 Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) 

mod.dfs3 7 4331.9 4370.2 -2158.9 4317.9    

mod.dfs5 8 4331.9 4375.7 -2158.0 4315.9 1.9669 1 0.1608 

----- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Linear mixed model fit by REML t-tests use 
  Satterthwaite approximations to degrees of 
  freedom [lmerMod] 
Formula: Measure ~ Condition * TrialN + (TrialN | Tank) 
Data: dfs 
 
REML criterion at convergence: 4342.3 
 
Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-8.6836 -0.4021 -0.0906  0.2646  7.7377  

 
Random effects: 

Groups Name Variance Std.Dev. Corr 

Tank (Intercept) 0.1002759 0.31666  

 TrialN 0.0007043 0.02654 -0.77 

Residual  0.6457511 0.80359  

Number of obs: 1760, groups:  Tank, 44 
 
Fixed effects: 
  

 Estimate Std. Error df t value Pr(>|t|) 

(Intercept) 2.028e-01 7.380e-02 8.510e+01 2.748 0.00732 ** 

ConditionE 2.131e-03 7.959e-02 1.670e+03 0.027 0.97865 

TrialN 4.687e-05 6.171e-03 8.490e+01 0.008 0.99396 

ConditionE:TrialN 9.315e-03 6.644e-03 1.670e+03 1.402 0.16109 
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--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 

 (Intr) CndtnE TrialN 

ConditionE -0.539   

TrialN -0.833 0.472  

CndtnE:TrlN 0.473 -0.877 -0.538 

 
 
Analysis of Deviance Table (Type II Wald chisquare tests) 
 
Response: Measure 

                   Chisq Df Pr(>Chisq)    

Condition 6.8049 1   0.009091 ** 

TrialN 0.8184 1   0.365656    

Condition:TrialN 1.9657 1   0.160905    

--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

  



108 
 

D.2: OLFACTORY ACQUISITION – LINEAR MIXED EFFECTS MODEL – VERTICAL 
MOVEMENT 
 
Olfactory dY 
refitting model(s) with ML (instead of REML) 
Data: dfs 
Models: 
Mod.dfs.3: Measure ~ Condition + TrialN + (TrialN | Tank) 
Mod.dfs.5: Measure ~ Condition * TrialN + (TrialN | Tank) 

       Df    AIC    BIC  logLik deviance  Chisq     Chi Df Pr(>Chisq)   

Mod.dfs3 7 3639.9 3678.2 -1813.0 3625.9    

Mod.dfs5     8 3635.5 3679.3 -1809.8 3619.5 6.3594 1 0.01168 * 

--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Linear mixed model fit by REML t-tests use 
  Satterthwaite approximations to degrees of 
  freedom [lmerMod] 
Formula: Measure ~ Condition * TrialN + (TrialN | Tank) 
Data: dfs 
 
REML criterion at convergence: 3648.4 
 
Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-6.3024 -0.3322  0.0484  0.3439  7.8136  

 
Random effects:  

Groups Name Variance Std.Dev. Corr 

Tank (Intercept) 4.032e-03 0.06350  

 TrialN 6.512e-05 0.00807 1.00 

Residual  4.458e-01 0.66770  

Number of obs: 1760, groups:  Tank, 44 
 
Fixed effects: 

 Estimate Std. Error df t value Pr(>|t|) 

(Intercept) 8.324e-02 4.773e-02 5.523e+02 1.744 0.08173 

ConditionE -1.932e-01 6.613e-02 1.713e+03 -2.922 0.00353 ** 

TrialN 5.728e-03 4.089e-03 3.093e+02 1.401 0.16222 

ConditionE:TrialN -1.392e-02 5.520e-03 1.713e+03 -2.522 0.01176 * 

--- 
Signif. codes:   
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0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 

 (Intr) CndtnE TrialN 

ConditionE -0.693   

TrialN -0.760 0.592  

CndtnE:TrlN 0.607 -0.877 -0.675 

 
Analysis of Deviance Table (Type II Wald chisquare tests) 
 
Response: Measure 

 Chisq Df Pr(>Chisq) 

Condition 113.6815 1 < 2e-16 *** 

TrialN 0.1670 1 0.68278 

Condition:TrialN 6.3601 1 0.01167 * 

--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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D.3: OLFACTORY ACQUISITION – LINEAR MIXED EFFECTS MODEL – HORIZONTAL 

MOVEMENT 

Olfactory dX (Unbinned) 

refitting model(s) with ML (instead of REML) 

Data: dfs 

Models: 

mod.dfs3: Measure ~ Condition + TrialN + (TrialN | Tank) 

mod.dfs5: Measure ~ Condition * TrialN + (TrialN | Tank) 

 Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) 

mod.dfs3 7 4798.0 4836.3 -2392.0 4784.0           

Mod.dfs5 8 4794.4 4838.2 -2389.2 4778.4 5.5545 1 0.01843 *  

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Linear mixed model fit by REML t-tests use 

Satterthwaite approximations to degrees of freedom [lmerMod] 

Formula:  

Measure ~ Condition * TrialN + (TrialN | Tank) 

Data: dfs 

 

REML criterion at convergence: 4804.6 

 

Scaled residuals:  

Min 1Q Median 3Q Max 

-7.7465 -0.2798 0.0646 0.3499 7.4203 

 

Random effects: 

Groups Name Variance Std.Dev. Corr 

Tank (Intercept) 0.0512245 0.22633  

 TrialN 0.0002735 0.01654 -0.65 

Residual  0.8596503 0.92717  

Number of obs: 1760, groups:  Tank, 44 

 

Fixed effects: 

                   Estimate Std. Error         df t value Pr(>|t|) 

(Intercept) -2.328e-01 7.335e-02 1.150e+02 -3.173 0.00193 ** 

ConditionE 6.259e-02 9.183e-02 1.670e+03 0.682 0.49560 

TrialN 7.882e-03 5.966e-03 1.231e+02 1.321 0.18889 

ConditionE:TrialN -1.807e-02 7.665e-03 1.670e+03 -2.357 0.01852 * 
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--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

 (Intr) CndtnE TrialN 

ConditionE -0.626   

TrialN -0.832 0.563  

CndtnE:TrlN 0.549 -0.877 -0.642 

> print(Anova(mod.dfs5))  

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: Measure 

 Chisq Df Pr(>Chisq) 

Condition 8.2748 1 0.00402 ** 

TrialN 0.0636 1 0.80097 

Condition:TrialN 5.5570 1 0.01841 * 

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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D.4: OLFACTORY WATER TRIAL – T-TEST – MOVEMENT TOWARDS FOOD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D.5: OLFACTORY WATER TRIAL – T-TEST – VERTICAL MOVEMENT 

 

 

 

 

  

Table Analyzed Water Trial - dD 

Column B Experimental 

vs. vs. 

Column A Control 

Unpaired t test  

P value 0.1637 

P value summary ns 

Significantly different (P < 0.05)? No 

One- or two-tailed P value? Two-tailed 

t, df t=1.405 df=86 

How big is the difference?  

Mean ± SEM of column A 0.3189 ± 0.09996, n=44 

Mean ± SEM of column B 0.1075 ± 0.1124, n=44 

Difference between means -0.2114 ± 0.1505 

95% confidence interval -0.5105 to 0.08773 

R squared (eta squared) 0.02243 

F test to compare variances  

F, DFn, Dfd 1.265, 43, 43 

P value 0.4433 

P value summary ns 

Significantly different (P < 0.05)? No 

Table Analyzed Water Trial - dY 

Column B Experimental 

vs. vs. 

Column A Control 

Unpaired t test  

P value 0.9587 

P value summary ns 

Significantly different (P < 0.05)? No 

One- or two-tailed P value? Two-tailed 

t, df t=0.0519 df=86 

How big is the difference?  

Mean ± SEM of column A 0.05484 ± 0.09354, n=44 

Mean ± SEM of column B 0.04855 ± 0.07713, n=44 

Difference between means -0.006292 ± 0.1212 

95% confidence interval -0.2473 to 0.2347 

R squared (eta squared) 3.132e-005 

F test to compare variances  

F, DFn, Dfd 1.471, 43, 43 

P value 0.2100 

P value summary ns 

Significantly different (P < 0.05)? No 
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D.6: OLFACTORY WATER TRIAL – T-TEST – HORIZONTAL MOVEMENT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D.7: OLFACTORY GROUP RETENTION – TWO-WAY ANOVA – MOVEMENT TOWARDS 

FOOD 

Table Analyzed Retention - 
dD 

    

Two-way ANOVA Ordinary     

Alpha 0.05     

Source of Variation % of total 
variation 

P 
value 

P value 
summary 

Significant?  

Interaction 0.8343 0.4195 ns No  

Retention Day 5.448 0.0415 * Yes  

Condition 0.3467 0.6023 ns No  

ANOVA table SS (Type III) DF MS F (DFn, DFd) P value 

Interaction 0.869 1 0.869 F (1, 74) = 0.6591 P=0.4195 

Retention Day 5.675 1 5.675 F (1, 74) = 4.304 P=0.0415 

Condition 0.3612 1 0.3612 F (1, 74) = 0.2739 P=0.6023 

Residual 97.57 74 1.318   

Number of missing 
values 

34     

 

  

Table Analyzed Water Trial - dX 

Column B Experimental 

vs. vs. 

Column A Control 

Unpaired t test  

P value 0.0441 

P value summary * 

Significantly different (P < 0.05)? Yes 

One- or two-tailed P value? Two-tailed 

t, df t=2.043 df=86 

How big is the difference?  

Mean ± SEM of column A 0.4891 ± 0.1495, n=44 

Mean ± SEM of column B 0.07982 ± 0.1333, n=44 

Difference between means -0.4092 ± 0.2003 

95% confidence interval -0.8074 to -0.01108 

R squared (eta squared) 0.0463 

F test to compare variances  

F, DFn, Dfd 1.258, 43, 43 

P value 0.4548 

P value summary ns 

Significantly different (P < 0.05)? No 
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D.8: OLFACTORY GROUP RETENTION -TWO-WAY ANOVA – VERTICAL MOVEMENT 

Table Analyzed Retention - 
dY 

    

Two-way ANOVA Ordinary     

Alpha 0.05     

Source of Variation % of total 
variation 

P 
value 

P value 
summary 

Significant?  

Interaction 0.8773 0.4108 ns No  

Retention Day 4.185 0.0749 ns No  

Condition 0.04148 0.8578 ns No  

ANOVA table SS (Type III) DF MS F (DFn, DFd) P value 

Interaction 0.7126 1 0.7126 F (1, 74) = 0.6842 P=0.4108 

Retention Day 3.399 1 3.399 F (1, 74) = 3.263 P=0.0749 

Condition 0.03369 1 0.03369 F (1, 74) = 
0.03235 

P=0.8578 

Residual 77.08 74 1.042   

Number of missing 
values 

34     

 

D.9: OLFACTORY GROUP RETENTION – TWO-WAY ANOVA – HORIZONTAL MOVEMENT 

 

 

  

Table Analyzed Retention - 
dX 

    

Two-way ANOVA Ordinary     

Alpha 0.05     

Source of 
Variation 

% of total 
variation 

P 
value 

P value 
summary 

Significant?  

Interaction 0.3584 0.6035 ns No  

Retention Day 2.149 0.2056 ns No  

Condition 0.07435 0.8129 ns No  

ANOVA table SS (Type III) DF MS F (DFn, DFd) P value 

Interaction 0.5088 1 0.5088 F (1, 74) = 0.2721 P=0.6035 

Retention Day 3.05 1 3.05 F (1, 74) = 1.631 P=0.2056 

Condition 0.1056 1 0.1056 F (1, 74) = 
0.05644 

P=0.8129 

Residual 138.4 74 1.87   

Number of 
missing values 

34     
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APPENDIX E: DILUTION CALCULATION 
 

Assuming the solution remains well-mixed, the form of the differential equation is: 
 
C(t) = Ci e

(-t/T) 
 
Concentration (C) as a function of time (t) is equal to initial concentration (Ci) times 
Euler's number (e) to the power of negative time over a time constant (T). 
 
Known: 
 
Ci = 1.05 * 10-7 M 
 
V = 3 L 
 
Q = -14 L/hr 
 
Initial rate of solute loss is: 
 
Q * Co = -14 L/hr * 1.05*10-7 M = -1.47 * 10-6 mol/hr 
 
Such that the initial rate of change of concentration is: 
 
Q * Co / V = -1.47 *10-6 mol/hr / 3L = -4.9*10-7 M/hr 
 
This is equal to C'(0), or dC/dt at t=0, where dC/dt may be found using calculus: 
 
dC/dt = -Co/T e(-t/T) 
 
Such that: 
 
C'(0) = -Co/T = -4.9*10-7 M/hr 
 
T = 1.05*10-7 / 4.9*10-7 M/hr = 0.2143 hr 
 
OR 
 
T = 12.86 minutes 
 
OR 
 
T = 771.4 seconds 
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Concentration at any time is therefore given by: 
 
C(t) = 1.05*10-7 M * e(-t/0.2143 hr) 
 
The concentration decreases by a factor of e (2.718) every ~13 minutes. 
 
Concentration will halve after -ln(0.5)*T = 0.69*12.86 = ~9 minutes. 
 
Concentration will be below 1% of initial by -ln(0.01)T = ~1 hour. 
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