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Abstract 

Operating on the ocean can be risky, particularly in harsh weather, or under economic drivers as 
with the offshore industry or fishing activities. In addition to advances in safety technology and 
practices, a robust Search and Rescue (SAR) capability is a key factor for mitigating risks and 
improving the safety of Canadians. The Canadian Coast Guard strives to provide an acceptable 
maritime SAR service. Optimizing the efficiency of limited resources helps to ensure that the Coast 
Guard’s maritime SAR services are used to best advantage.  For strategic and tactical planning, this 
involves Location-Allocation modelling to ensure that the right assets are in the best place to 
respond effectively. This problem becomes more complicated when we are faced with several 
criteria for assessing decision outcomes, some of which are conflicting as well.  

The contribution of this study is a framework of mathematical models to support efficient 
management of maritime SAR resources with regard to several criteria such as primary and backup 
coverage, mean access time, service equality, and cost. A scenario planning approach is adopted 
along with spatial density estimation to deal with uncertainty of future incidents at sea. Several 
models are developed in multiple phases of the study with different purposes and complexity to 
determine the optimal location and response allocation of SAR resources, aiming to achieve greater 
responsiveness and resource utilization.  

The multi-criteria analyses, developed in different stages of this study, provide a range of good 
trade-off solutions. Comparing the performance of solutions obtained by the developed models 
with the current arrangement of the SAR fleet, indicates an appreciable potential improvement in 
terms of coverage, accessibility and efficiency of service. Such improvements can be achieved 
through several changes in fleet composition and/or location. Results of this study can guide 
decision makers with regards to SAR vessel acquisitions and placement in order to improve the 
efficiency of resources and increase the service level. More specifically, the outcome of this study 
provides the Canadian Coast Guard with some beneficial insights for future resource planning 
including fleet renewal planning, station locations for new vessels, and the arrangement of the 
current fleet.  
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Chapter 1 Introduction 

 Background and Problem Definition 

Maritime Search and Rescue on the sea is one of the most visible humanitarian activities 

in Canada. The aim is to minimize loss of of life, injury, property damage and risk to the 

environment.  Search and Rescue (SAR) can be categorized as an emergency response 

activity, and in many countries, it is considered a public service. In Canada, the Canadian 

Coast Guard (CCG) provides maritime SAR, operating a diverse fleet of vessels, in 

cooperation with the Department of National Defence (DND) that provides airborne 

services. According to CCG reports (Canadian Coast Guard 2014), every year on average, 

97 percent of the lives at risk in maritime distress who requested emergency assistance are 

saved (2,200 lives per year). Another 18,000 people are helped each year in non-distress 

maritime incidents by the SAR system. Thus, the maritime SAR system is a vital 

government service. 

The Canadian National Search and Rescue objective is “to prevent loss of life and injury 

through SAR alerting, responding, and aiding activities using public and private resources” 

(Abi-Zeid and Frost 2005). Moreover, in a SAR operation, the difference between life and 

death can sometimes be measured in minutes. Additionally, a SAR operation consumes 

considerable resources in terms of time, effort and money. Thus, emergency response 

actions should be well-planned and efficiently organized (Razi and Karatas 2016). 

Maritime SAR is one of the main responsibilities of the CCG and it is among their strategic 

priorities to improve their SAR service level by enhancing the fleet capability and 

utilization. Since time is of the essence in SAR operations, it is paramount that their 

resources, including SAR vessels, stations, and crew, are used efficiently and effectively. 

To do this, one important factor is to decide where to site their resources and how to allocate 

incidents to the located resources. This kind of problem is known as the Location-

Allocation problem. The CCG has many different SAR vessel types that were designed or 

purchased with specific tasks in mind, and not all are equally effective at handling specific 

incident types. Also, the ranges and speeds vary greatly among different types of SAR 

vessels, so response vessel characteristics need to be considered in any study on this matter. 
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This study falls into the field of emergency location analysis. Many researchers have 

studied this area and hence the literature is quite rich. In a typical SAR location problem, 

we are faced with a “server to customer” service system with mobile servers, which is 

similar to the ambulance location problem. While the servers represent the SAR vessels, 

the customers (demands) symbolize the maritime incidents. In this kind of location 

problem, the main goals are typically to respond to an incident within a minimum amount 

of time and/or maximize the area under coverage.  

In literature, there are mathematical location models to maximize the number of incidents 

that can be serviced and minimize the time it would take to arrive at the incidents. However, 

several differences exist in the problem setting. First of all, in the case of emergency vehicle 

location, all response units such as ambulances are usually assumed to have the same 

capability and speed which is not the case in maritime SAR. Secondly, the method of 

computing distances to the incidents is quite different, as the rescue vessels are patrolling 

on the sea, a land-avoidance algorithm must be used to calculate the travel distance, rather 

than Euclidean or Manhattan distance metrics (Li 2006). 

This research examines the optimal locations of SAR vessels in Atlantic Canada with 

respect to several decision criteria. The objective is to ensure the maximum likelihood of 

saving lives and mitigating property loss using available response resources. Access time 

is a common proxy measure for the likelihood of saving lives and property. The access 

time is defined in this study as the elapsed time from the departure from the station of a 

SAR vessel to the arrival at the scene of an incident. Coverage, which indicates the 

proportion of demand that can be responded to within a prespecified time limit, is another 

common performance metric in such problems. In addition to access time and coverage, 

this research also aims to address other key factors and decision criteria such as backup 

coverage, service equality, and cost. 

Although there is extensive literature focusing on different aspects of emergency response 

location problems, there are few studies conducted for the particular case of maritime SAR 

with its special characteristics and conditions. Furthermore, to the best of our knowledge 

there is no comprehensive study that simultaneously considers different aspects of the 

problem including multiple objectives, uncertainty in demand, the possible changes in fleet 
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composition, and seasonal relocation of resources. The approach presented in this thesis 

integrates spatial data analysis, simulation, and multiple emergency location optimization 

models to develop a decision-making framework for mid- to long-term tactical and 

strategic decisions. Figure 1-1 summarizes the various aspects of the problem which are 

considered in this study, including decision criteria and exogenous factors such as 

uncertainty of demand. 

 

Figure 1-1- Modelling approach with different factors 

 Maritime Search and Rescue in Canada 

Canada is a maritime nation surrounded by three oceans, whose population and economy 

make significant use of waterways for commercial and recreational purposes. The marine 

environment can be extremely dangerous as every year more than 6,000 incidents are 

reported in waters around Canada. To mitigate the consequences of these incidents, Canada 

strives to provide effective maritime Search and Rescue services. 

"Search and Rescue comprises the search for, and the 

provision of aid to, persons, ships or other craft which are, 

or are feared to be, in distress or imminent danger."  

(Canadian Forces 1998) 

Multi Criteria 
Location 
Analysis

Primary 
Coverage

Access 
time

Cost
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The primary goal of the National SAR Program is to save lives at risk throughout Canada. 

This national program involves federal departments, volunteers, organizations, 

municipalities, provinces and territories, working together to provide this service. As part 

of the Department of Fisheries and Oceans (DFO), the CCG is the principal civilian 

maritime operational arm of the Government of Canada. It is responsible for providing 

maritime resources for the SAR mission in areas of federal responsibility. The CCG 

operates all DFO vessels and provides services for SAR, Environmental Response, 

Icebreaking, Marine Navigation Services, and Marine Communications and Traffic 

Services. Figure 1-2 demonstrates the organizational hierarchy of the DFO including the 

CCG structure in three regions of Canada as well as Operations and Vessel Procurement 

departments. 
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Figure 1-2- Department of Fisheries and Oceans organizational hierarchy (DFO website 2017) 

The CCG is responsible for a number of SAR tasks including the detection of maritime 

incidents and, with the assistance of the Department of National Defence (DND), the 

coordination, control and conduct of SAR operations in maritime SAR situations within 

Canadian areas of federal responsibility. In addition, CCG is in charge of the provision of 

maritime resources to help with aeronautical SAR operations as necessary; and, when and 

where available, the provision of SAR resources to assist in humanitarian and civil incidents 

within provincial, territorial or municipal areas. The CCG also coordinates, controls and 
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conducts SAR Prevention programs to reduce the number and severity of maritime SAR 

incidents (CCG website 2017). 

The CCG's SAR Program has four important elements: management, monitoring, 

operation, and volunteers. The goal of management and monitoring is to ensure that the 

SAR Program operates at maximum efficiency. This is accomplished by ensuring that SAR 

coverage requirements are continuously adjusted to meet changing needs and that 

specialized primary SAR units are deployed as required. To further enhance response 

capabilities, SAR Program management cooperates with other program managers in the 

deployment of multi-tasked and secondary resources. These combined efforts ensure that 

capable emergency services will be readily available when and where they are most likely 

to be needed. 

The following categories of vessels are used in maritime SAR: 

 Primary SAR Vessels 

A primary SAR vessel is a specially designed, equipped and crewed vessel that has SAR as 

its main responsibility. These vessels are stationed in areas that have a high risk of SAR 

incidents. These vessels maintain a maximum 30-minute state-of-readiness but are 

typically ready to respond the moment an alert is received. 

 Multi-tasked SAR Vessels 

Multi-tasked SAR vessels are tasked to deliver the SAR Program and at least one other 

operational program. They have to remain within a specific SAR area while they are multi-

tasked to the SAR Program and maintain all SAR operational standards. Multi-tasked 

vessels increase fleet utilization, reduce costs to the government, and stand in for primary 

SAR vessels when necessary. 

 Secondary SAR Vessels 

Secondary SAR vessels are all other government vessels. 

 Canadian Coast Guard Auxiliary Vessels 
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The Canadian Coast Guard Auxiliary (CCGA) is a volunteer organization made up of five 

regional non-profit associations and a national council which assists the Coast Guard in 

SAR response and incident prevention activities. The CCG assists the CCGA with the 

specialized SAR training necessary to become, and remain, a member.  

 Vessels of Opportunity 

A vessel of opportunity is any other vessel not mentioned above, close enough to provide 

assistance to a vessel in distress. Under the Canada Shipping Act and international law, 

every vessel at sea is required to assist in a distress situation. 

Although, all vessels mentioned above can be tasked to SAR missions in the case of 

emergency need, for planning purposes only those vessels that are owned and operated by 

CCG should be included in an analysis, because other vessels are not managed by CCG 

and their positioning and allocation is not under its control. Therefore, in this study we only 

consider Primary and Multi-Tasked SAR vessels.  

1.2.1. Rescue Co-Ordination Centres and Maritime Rescue Sub-Centres 

The CCG jointly staffs three Rescue Co-ordination Centres (JRCCs) with the Canadian 

Forces, which are located in Victoria, British Columbia, Trenton, Ontario, and Halifax, 

Nova Scotia. The CCG also operates a Maritime Rescue Sub-Centre (MRSC) at Quebec 

City, Quebec. The function of a MRSC is to reduce the JRCC's workload in areas of high 

marine activity. The JRCCs/MRSCs are responsible for the planning, co-ordination, 

conduct and control of SAR operations. 

1.2.2. Canadian Coast Guard Fleet Renewal 

Fleet renewal is one of four strategic and management priorities of the CCG. The CCG is 

always looking to modernize and renovate their fleet for improving the quality of their 

services. Renewing Assets, Delivering Risk-Based and Client-Focused Services, 

Enhancing Capacity to Respond to Marine Incidents, and Advancing Workforce and 

Business Management Practices to Improve Program and Service Delivery are four main 

strategic priorities listed in the current CCG strategic plan. 
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The Government of Canada has demonstrated a strong commitment to the CCG and 

Canada's shipbuilding industry. Since 2005 to date (2016), approximately 7 billion dollars 

(Canadian) have been committed for fleet investments, in addition to the procurement of 

small vessels and craft that CCG funds from its annual capital budget. These investments 

enable the renewal of the CCG fleet as current vessels reach the end of their operational 

lives. Furthermore, Vessel Life Extension and Mid-Life Modernization Programs are in 

place to determine how to best maintain the aging fleet of vessels, until new ships are 

delivered. 

1.2.2.1. CCG Fleet Renewal Plan 2017 

According to CCG’s Fleet Renewal Plan, there will be a comprehensive 30-year strategic 

investment plan which outlines asset requirements into the future. This investment plan 

incorporates procurement of various type of vessels to operate in different programs. 

 New SAR Lifeboats  

CCG will procure and deliver up to 15 SAR Lifeboats within next half decade, to replace 

the existing Arun-Class vessels at their home ports. The SAR Lifeboats are designated as 

primary SAR vessels and are specially designed, equipped and crewed for that purpose.  

 Medium Endurance Multi-Task Vessels and Offshore Patrol Vessels 

In October 2013, the Government of Canada announced that up to ten additional large 

vessels are to be built for the CCG fleet at an estimated cost of $3.3B. CCG will acquire 

up to five Medium Endurance Multi-Tasked Vessels (MEMTV). The MEMTV are large, 

shallow draught vessels capable of supporting many CCG programs primarily for the 

deployment, recovery and maintenance of aids to navigation. The MEMTV will also be 

capable of SAR, icebreaking, fisheries management and environmental response. In 

addition, CCG will acquire up to five Offshore Patrol Vessels (OPV). The OPV are large 

vessels that will be used primarily for fisheries protection, both in Canadian waters and on 

the high seas. The OPV will also be capable of SAR, aids to navigation support and 

environmental response. 

These huge investment plans for renewing and modernizing the CCG fleet, make it crucial 

to study and analyze the best approach for planning their positioning and deployment in 
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order to ensure maximum utilization is gained. There are several models in this research 

that deal with Location-Allocation of CCG’s SAR vessels. In each phase of the study, 

depending on the purpose of the model, either the current composition of vessels or 

plausible new vessels might be included in order to provide useful insights for tactical and 

strategic decisions on fleet mix and deployment.  

1.2.3. Maritime SAR in the Canadian Atlantic Region 

The CCG’s Atlantic Region encompasses approximately 2.5 million km2 of the Northwest 

Atlantic Ocean and the continental shelf, and is bordered by nearly 40,000 km of coastline 

along Canada’s East Coast provinces: New Brunswick, Newfoundland and Labrador, Nova 

Scotia, and Prince Edward Island. With long ice seasons and extreme weather conditions 

second only to the Canadian Arctic, the Atlantic Region handles the highest proportion of 

distress incidents and the largest percentage of maritime SAR cases in Canada annually, 

with the SAR zone extending halfway across the Atlantic Ocean (Canadian Coast Guard 

2014). Figure 1-3 demonstrates the CCG regional boundaries. 

The Atlantic region must also remain ready to take action against environmental pollution 

incidents, given that the region is home to the largest oil handling port (Canaport, 

approximately 9 km southeast of the city of Saint John, New Brunswick) in Canada, the 

periodically expanding offshore oil industry, and millions of tonnes of potentially polluting 

cargo and vessel fuel which transit through the region each year. To deal with the 

challenges it faces, the Atlantic Region is home to more Coast Guard resources than any 

other region in the country. 

As outlined in a recent CCG strategic plan (Canadian Coast Guard 2014), annually, on 

average the Atlantic Region:  

 Has 51 vessels/helicopters and 6,698 Aids to Navigation  

 Employs 36.9% of CCG’s employees  

 Breaks 22,600 km of ice-packed waterways  

 Has over 111,700 commercial vessel transits  

 Responds to 2,500 SAR incidents  

 Manages 200 environmental response calls 
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Figure 1-3- CCG operational regions (CCG website 2017) 

  

Hence, Atlantic Canada is the region with the highest demand for maritime SAR service, 

which justifies the need for studying the optimal allocation of limited SAR resources in this 

area. Appendix A provides detailed information regarding the current CCG’s SAR vessels 

in Atlantic region. 

 Data Sources 

This study requires valid and real data on the demand for SAR services (i.e. maritime 

incidents) and on the available SAR resources. The main data source for our study is related 

to historical demand arising from maritime incidents, and the current CCG’s fleet 

composition and arrangement in the study area.  

1.3.1. Incident Data Set

The dataset being used in this study is derived from the CCG’s SISAR (Search and Rescue 

Program Information Management System) which collects all maritime incident 

information associated with SAR missions conducted within Canadian areas of SAR 

responsibility. SISAR is a quite detailed record (when filled out completely) of all the 

incidents where SAR missions were tasked. The SISAR database includes fields on: incident 
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date/time and location, incident type and cause, incident response summary (action taken), 

details on vessels involved, rated severity of the incident, and atmospheric conditions 

(wave height, wind speed, wind direction, wind-against-current, visibility, ceiling, air 

temperature, sea surface temperature, clouds, ice, weather comments, atmospheric 

conditions, tide states). In this study, the information related to location and time of incident 

occurrence is used and additional information such as vessel characteristics and weather 

condition are not considered in the models either due to low fill rate, inaccuracy or 

irrelevancy to the modelling approach.  

The Canadian Coast Guard classifies incidents according to their type and level of severity, 

which are also captured in the SISAR database:  

 M - Maritime Incidents (M1, M2, M3, M4)  

 A – Aeronautical Incidents (A1, A2, A3, A4)  

 H – Humanitarian Incidents (H1, H2, H3, H4)  

 U – Unknown Incidents (U4).  

Since this study focuses on analyzing maritime SAR, only maritime incidents are 

considered in this thesis. Humanitarian are rare events and thus are excluded from this 

study. We assume Maritime incidents are sub-classified according to the level of their 

severity as follows (Canadian Coast Guard 2000):  

 M4- False alarms and hoaxes: Situations that cause the SAR system to react but 

which prove to be unjustified or fabricated, such as a mistaken report of a flare.  

 M3- Incidents resolved in the uncertainty phase (Non-Distress): No distress or 

perceived appreciable risk to life apparent. An uncertainty phase exists when:  

1. There is doubt regarding the safety of a vessel or the persons on board;  

2. A vessel has been reported overdue at destination; or  

3. A vessel has failed to make an expected position report.  

 M2- Potential Distress incidents: The potential exists for a distress incident if 

timely action is not taken; i.e., immediate responses are required to stabilize a 

situation in order to prevent distress. This incident exists when:  
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1. There is apprehension regarding the safety of a vessel or the persons on 

board;  

2. Following the uncertainty phase, attempt to establish contact with the vessel 

has failed and inquiries addressed to the other appropriate sources have been 

unsuccessful; or  

3. Information has been received indicating that the operational efficiency of 

a vessel is impaired but not to the extent to be a distress situation.  

 M1-Distress incidents: Distress phase exists when:  

1. A vessel or a person is threatened by grave and imminent danger and 

requires immediate assistance (Life-threatening situation was judged to be 

present or close at hand at some point during the incident);  

2. Following the previous phase, further unsuccessful attempts to establish 

contact with the vessel and more widespread unsuccessful inquiries point to 

the high probability that the vessel is in distress; or  

3. Information is received which indicates that the operating efficiency of the 

vessel has been impaired to the extent that a distress situation is very likely. 

 Also, 21 types of maritime incidents are identified by CCG, which are as listed in Table 

1-1. 

Table 1-1- Maritime incident types 

 

 

 

Maritime incident types 

capsized medical airborne emergency 

disabled foundered missing person(s) 

disoriented suicide ditching 

grounded suicide attempt stranded 

false alarm taking on water body recovery 

man overboard forced landing person in water 

on fire crash other 



13 
 

1.3.2. SAR Stations 

Based on the current situation, there are 18 onshore SAR stations in Atlantic Canada which 

are able to house SAR vessels. It is assumed that all stations can accommodate all vessel 

types and no restriction is applied in this regard. 

Also, 19 potential ‘offshore stations’ are to be considered in our analyses. Of course, this 

is not a station in the traditional sense, but a central location for a vessel that spends much 

of its time patrolling or performing other tasks at sea. It should be noted that some CCG 

vessels have offshore patrolling responsibility with long endurance capability. These 

vessels usually spend most of their operational time away from inshore stations. Initially, 

some of these offshore stations are the centroid of each maritime subarea in Atlantic 

Canada (as determined by the CCG) and others are the actual location that some offshore 

vessels are currently located. So, there will be 18 onshore stations and 19 potential offshore 

stations considered in the analysis. One assumption in the mathematical models, 

represented as constraints, is that smaller CCG vessels, called lifeboats, cannot be located 

at offshore stations because their maximum range and endurance are not sufficient for 

offshore patrolling. 

1.3.3. Land-Avoided Distances 

The distances between incidents’ locations and SAR vessels are required to perform model 

calculations. There are different methods for distance calculation. The most common way 

is calculating straight Euclidean distance. However, there is an issue for using straight or 

direct route calculations in this study. In some cases, it is not possible to use the straight 

route assumption because of land obstacles in the way. To deal with this problem, we use 

a previously developed land avoidance algorithm to find the shortest route between 

incidents and vessels while avoiding land obstacles. The error in distance calculation 

associated with the earth curvature is ignored since is it negligible (less than 1%) at the 

typical distance level in the area of interest. 
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 Study Scope and Historical Trends 

The Atlantic Canada region serves as our study area, with its maritime boundaries defined 

in Figure 1-4. Historical incidents with different severity levels are shown in this figure as 

well. 

 

Figure 1-4- Historical incidents in the area of study (Atlantic Canada, 2005-2006,2008-2012) 

The incident dataset, which has been checked and cleaned for quality control, is available 

from 1988 to 2013 (the data for year 2013 is incomplete, up to October), but to have a more 

accurate analysis, we chose the cleanest and the most reliable recent data from 2005 to 

2012 for this study excluding 2007 which has data deficiencies due to a SAR management 

system change. 

In Figure 1-5, the annual number of incidents (M1 to M3) in Atlantic Canada is presented 

over the period of study (2005 to 2012). There is no clear trend in the annual incident total 

given the fluctuations, although a slight decrease can be observed. As noted above, 2007 

levels are lower since there was some loss in data for several months due to the system 

switchover. For this reason, 2007 will be excluded from the analyses. 
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Figure 1-5- Number of incidents in the Atlantic region over the years (M1, M2, M3) 

Figure 1-6 demonstrates the monthly distribution of historical incidents over the included 

years. It is obvious that there is a peak period starting from May until September every 

year, during which the majority of incidents occurred. This insight could be beneficial for 

the analysis, particularly when we are looking at seasonal resource planning. 

 

Figure 1-6- Incidents distribution by month in the Atlantic region (M1, M2, M3) 

 Research Objectives  

Although there have been extensive studies on many aspects of emergency location 

analysis (as demonstrated in the next chapter with additional descriptions in subsequent 

chapters), some gaps still exist, particularly in the case of maritime SAR resource planning. 

In the limited research in this specific field, the proposed models typically have a single 
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objective while in the real case there are more than one criterion that decision makers care 

about. What makes this study novel in the literature is first considering several criteria as 

objectives in the mathematical model concurrently. Coverage, cost and mean travel time 

or distance are widely used in multi-criteria location analyses as model objectives. We aim 

to incorporate various decision criteria such as coverage, access time, service equality, and 

cost into our mathematical models. Moreover, other aspects of the problem including 

uncertainty of demand, possible changes in fleet composition, and potential seasonal 

rearrangement of the fleet are taken into consideration. 

This research targets several objectives in particular. These objectives include: 

i. Analyze and understand different important decision criteria and service level 

requirements in maritime SAR, and figure out an appropriate methodology for 

measurement and incorporating them into a mathematical model; 

ii. Conduct spatial data analysis for extracting location patterns of incident 

occurrences and leverage that in order to find a better representation of future 

demand for resource positioning purposes; 

iii. Address the uncertainty involved with the future incident locations by applying an 

appropriate simulation methodology to account for different possible incident 

distribution schemes; 

iv. Develop customized multi-criteria location models to find the optimal or near-

optimal solutions to the maritime SAR Location-Allocation Problem; 

v. Develop strategic level models for a long-term planning horizon aiming at 

determining the best vessel procurement and allocation strategy given the results 

of mathematical models on the optimal composition of SAR vessels and their best 

siting plan; 

vi. Build tactical and operational level decision models, with regard to making 

informed decisions on seasonal rearrangement of existing vessels as well as the 

demand assignment plan; 

vii. Analyze and compare the current situation of resource arrangement with the 

optimal solutions obtained from developed mathematical models; 
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viii. Extract managerial insights for use by decision makers on resource planning and 

policy development. 

Overall, this thesis focuses on developing a framework for the multi-criteria analysis of the 

location and allocation of maritime SAR resources with the goal of improving the service 

quality while reducing the costs. Figure 1-7 summarizes the necessary steps that are 

considered for conducting this study. Ultimately, the aim of the study is to provide valuable 

insights assisting decision makers for defining better strategies and policies for managing 

Coast Guard SAR resources to ensure the maximum quality of response to maritime 

incidents given limited resources. Such outcomes are particularly beneficial in the light of 

the close relationship with the two CCG strategic priorities: (1) Enhancing capacity to 

respond to marine incidents and (2) fleet renewal. 

 

Figure 1-7- Steps followed in the general methodology of the study 

 

 

 

Interpretation of Results 
Interpret and analyze the results provided by optimization and compare the optimal solutions by 

current situation 

Optimization

Formulate and solve mathematical models to optimize the Location-Allocation of SAR resources  

Simulation of Demand Scenarios

Simulate a set of randomly generated incident locations based on kernel density estimates

Spatial Demand Analysis

Utilize kernel density estimation to extract patterns in historical incidents location 

Problem Definition
Understand different relevant factors; define decision variables, objectives and constraints; 

choose appropriate modelling approach
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 Study Assumptions 

The following is the list of assumptions that are considered in the study:

1. Although the timing and location of incidents in the SISAR reports can be 

approximate, we consider them to be accurate. 

2. The average speed used for travel time calculations of rescue vessels is assumed to 

be equal to their cruising speed which comes from their build specifications. 

3. No time is considered to search and locate an incident in the model. 

4. No environmental factors such winds, sea state, tides, etc. are taken explicitly into 

account. 

5. No time is considered for coordination or preparation for response. 

 Thesis Outline 

This thesis is in manuscript-based format and each phase of the research is presented as a 

manuscript submitted to a journal. In all the presented manuscripts, I have made the main 

contribution to the conception and design of the model, and the analysis and interpretation 

of the results. All references cited in the chapters are included in a single complete 

reference list at the end of thesis. 

To reach the objectives defined for the research, this thesis is organized as follows: 

Literature Review: This chapter traces the literature related to the general area of this 

study and presents some principal models in the field. The literature review that is related 

to more specific topics such as multi-objective optimization, stochastic optimization and 

uncertainty in emergency location analysis are presented in the related chapters. 

Phase 1 (Multi-Criteria Analysis): This chapter examines performance of two basic 

popular location models for emergency response location analysis (maximal covering and 

p-median) for the case of maritime SAR and compares the solutions with respect to several 

defined decision criteria.

Phase 2 (Budgeted strategic model): The model presented in this part of thesis, combines 

a covering model with a p-median model and incorporates a fleet capital budget constraint 

to find optimal composition of the fleet. 
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Phase 3 (Multi-objective optimization): The mathematical model developed in this 

chapter considers three different decision criteria as objectives in order to simultaneously 

take into account these important and complementary criteria for improving the SAR 

service level. 

Phase 4 (Multi-period planning):  This part of the study extends the previous models 

with a seasonal vessel relocation feature to allow periodical planning for locating SAR 

vessels in response to seasonal pattern changes in demand, and improve the fleet utilization 

through periodical repositioning of the response vessels to address the possible variations 

in demand distribution. 

Phase 5 (Strategic fleet planning model): This phase presents a more comprehensive 

model concerning strategic level decisions, by considering capital and operating costs of 

different vessels and aiming to optimize decisions regarding fleet renewal, procurement 

and decommissioning with respect to the main service level standards and requirements. 

Conclusion: The final part of the thesis summarizes the results from all the phases, points 

out the contributions, clarifies limitations of the analyses, and makes recommendation for 

pursuing future works in this area. 
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Chapter 2 Literature Review 

Location analysis is a subfield of operations research that includes a wide range of 

problems. The term Location Analysis refers to the modeling, formulation, and solution of 

a class of problems that can best be described as siting facilities in a given space in the 

presence of “customers”. There are four components that characterize location problems, 

which are: (1) customers, who are presumed to be already located at points or on routes, 

(2) facilities that will be located, (3) the nature of the space in which customers and 

facilities are located, and (4) a metric that indicates distances or times between customers 

and facilities (ReVelle and Eiselt 2005). Location decisions relate to a system’s ability to 

satisfy its demands in an efficient manner. Moreover, because of lasting impacts of such 

decisions, they will also affect the system’s flexibility to meet demands as they evolve over 

time. For detailed and systematic introductions to the field, readers are referred to (ReVelle 

and Eiselt 2005). 

Facility location models are used in a wide variety of applications. These include, but are 

not limited to, locating warehouses within a supply chain to minimize the average time to 

market, locating hazardous material sites to minimize exposure to the public, locating 

railroad stations to minimize the variability of delivery schedules, locating automatic teller 

machines to best serve the bank’s customers, and locating a coastal SAR station to minimize 

the maximum response time to maritime accidents (Hale and Moberg 2003). Eiselt et al. 

(2015) present a recent classification of location analysis applications. 

The space in which facilities are located can be the basis for classification of location 

problems. These problems are generally categorized at two levels with respect to the space 

of the problem in two spaces; first: planar (n-space) vs. network spaces; and second: 

continuous vs. discrete problems. All four combinations of these two levels are possible. 

The continuous problems deal with location problems on a continuous space (single or 

multiple dimensions) where any location within this space (anywhere on planar space or 

anywhere on a network) is considered a feasible location for a new facility. In contrast, in 

discrete problems, the locations must be chosen from a set of alternatives which can be in 

n-space or at network nodes. 
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Location problems can be categorized in several other ways based on the goal of a study. 

For instance, it can be divided into competitive/non-competitive problems or 

stochastic/deterministic problems. Another aspect by which such literature can be 

categorized is the desirable/undesirable facility location problem.  

As mentioned in the introduction, the focus of this study is on the specific types of location 

models that are relevant to the application of maritime SAR location analysis, which falls 

in the field of emergency location analysis. To be more specific, the problem in this study 

is a non-competitive desirable facility location problem.

The Location-Allocation problem is a commonly used model which is applicable in many 

areas such as fire station location, ambulance location, distribution center location and 

warehouse location. As discussed earlier, the maritime SAR location problem is a “mobile 

server to customer” service system which is similar to ambulance location problems. In 

this kind of location problem, the main concern is to cover all the demands or at least try 

to cover as many as possible. There are two types of location problems that deal with the 

coverage concept: The Location Set Covering Problem (LSCP) and Maximal Covering 

Location Problem (MCLP). The objective of the set covering model is to find the minimum 

numbers of facilities required to cover all the demands. The maximum coverage location 

problem tries to maximize the total covered demands given a predefined number of 

facilities. The other type of location problem that is commonly used in the area of 

emergency vehicles locations involves median problems. This kind of model tries to 

minimize the total distance of demands from their closest server. 

In this chapter, a broad background of the field of location analysis and a review of relevant 

literature in the area of emergency response location modelling are provided. Some basic 

optimization models and their extensions will be discussed as well. 

 Fundamental Models in Location Analysis 

Facility location models are used in a broad range of applications. Mathematical location 

models are broadly applied not only to the private sector (e.g., industrial plants, banks, 

retail facilities, etc. (Sweeney and Tatham 1976)) but also in the public sector (e.g., 

ambulances, clinics, etc. (Brotcorne et al. 2003) and (Griffin et al. 2008)). Refer to (Owen 
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and Daskin 1998) for a complete overview and more examples. Other applications include 

locating warehouses within a supply chain to minimize the average travel time to the 

markets, locating hazardous material sites to minimize exposure to the public, locating 

railway stations to minimize the variability of delivery schedules, locating automatic teller 

machines to best serve the bank's customers, and locating a coastal search and rescue 

station to minimize the maximum response time to maritime accidents (Hale and Moberg 

2003).  

Aside from covering problems and median problems, center problems comprise a third 

popular problem type in location modeling. In the center problem, the objective is to 

minimize maximum distance from the facilities. Covering problems essentially are looking 

for maximizing the acceptability of service by defining the coverage concept. Such models 

attempt to cover the demand within a pre-specified distance via determining optimal 

facility locations. While median problems care about the accessibility by minimizing the 

total travel distance/time, the third category, the center problems, focusses on the worst-

case situations and seeks to locate facilities to minimize the maximum distance from all 

customers to the nearest located facility. 

Covering and median problems are very popular in the area of emergency location analysis 

which is the case in this study. Marianov and Serra (2002) pointed out that both the median 

and covering problems can be considered benchmarks in the development of facility 

location models.  

2.1.1. Covering Models 

Covering models attempt to maximize a predefined minimally acceptable service standard 

to any of the customers in the problem. Therefore, these models usually fit well with the 

objectives in emergency response problems. Two basic and important covering location 

problems in the literature according to the classification by Schilling et al. (1993) are: (1) 

Location Set Covering Problem where coverage is required; and (2) Maximal Covering 

Location Problem where coverage is optimized. 

The idea of covering models started with the LSCP introduced by Toregas et al. (1971).This 

kind of problem is looking to find the minimum number of facilities required to be located 
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in order to cover all the customers (demand) within a given maximum covering 

distance/time. Later, Church and ReVelle (1974) introduced the MCLP. Based on their 

definition, the objective of the MCLP is to locate a fixed number of facilities to provide the 

service to cover as many demands as possible. A review of covering models and their 

applications can be found in (ReVelle et al. 2002). 

2.1.1.1. Location Set Covering Problem 

The LSCP was first introduced by Hakimi (1964) and was later formulated as an integer 

programming problem by Toregas et al. (1971). The objective of the LSCP problem is to 

locate the minimum number of facilities such that each demand is covered by at least one 

of the facilities. The general formulation of LSCP is as below. ݊݅ܯ   ܼ = ∑ ௝௝ݕ .ݏ (2.1)    ∑                                .ݐ ௝௝ ∈ே೔ݕ ≥ 1,   ݅ = 0,1, … , ௝ݕ (2.2) ݊  ∈ {0,1}  

where: 

I: Set of demand locations 

J: Set of facility locations ݕ௝: Binary variable for locating a facility at point j 

௜ܰ = ൛݆ | ݀௜௝ ≤  ൟ     ⩝ i ݀௜௝: Distance from i to jݏ

s: Maximum coverage distance 

The constraints could be restated as below: ∑ ܽ௜௝ݕ௝௝ ≥ 1, ݅ = 0,1, … , ݊  (2.3) 
where: 
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ܽ௜௝ = 1 if : ݀௜௝ ≤  Otherwise = 0 ݏ

Equation (2.1) minimizes the number of located facilities, and either constraints (2.2) or 

(2.3) ensure that all customers are covered by at least one located facilities which is within 

the acceptable distance (s). 

The LSCP assumes that there is no limitation on the budget, or that the number of facilities 

that need to be located for covering all customers is unlimited which is not realistic in most 

practical problems. The complete coverage requirement in LSCP is very restrictive. In a 

problem with many spatially dispersed customer locations, the requirement of complete 

coverage of all demands may produce solutions with a number of facilities that are 

unrealistic from a budgetary point of view. Given that the number of facilities is a proxy 

for costs, it also assumes equal costs for facilities at all potential locations, which could be 

far from reality. The second issue with LSCP is that it fails to discriminate between large 

demand nodes and small demand nodes. When it is impossible to cover all demand nodes 

within the specified service standard, it is often important to give priority to the nodes with 

the greater demand (ReVelle and Eiselt 2005). 

2.1.1.2. Maximal Covering Location Problem 

The Maximal Covering Location Problem (MCLP) does not attempt to cover all customers. 

Given a fixed number of p facilities, the task is to locate these facilities so as to cover the 

largest possible number of customers. Simply stated by Eiselt and Sandblom (2012), the 

MCLP seeks the maximum amount of coverage (in terms of population, property values, 

or similar parameters) given a covering distance and a specific number of facilities that can 

be used. 

Sometimes, we cannot afford to provide the required number of facilities in order to cover 

all the demands. In such a situation, we are faced with a trade-off problem between 

increasing maximum coverage distance or accepting that some demands will not be 

covered. If we allow less than complete coverage to occur, we will have a new problem 

with the objective of maximizing coverage for a given number of resources. So, in this 

formulation, the covering distance and number of facilities are predetermined.  

To summarize, whereas the LSCP has the form: 
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LSCP: minimize the number of facilities opened, 

s.t. covering all demand, 

The MCLP has the inverse form: 

MCLP: maximize the demand covered, 

s.t. a limit on the number of facilities opened as a proxy for a budget constraint. 

The general MCLP can be formulated as below. ݖ   ݔܽܯ = ∑ ௜௜ݔ .ݏ (2.4)   ∑                                   .ݐ ௝௝ݕ   = ∑ (2.5)                        ݌ ௝௝ ∈ே೔ݕ ≥ ݅ ,௜ݔ = 0,1, … , ,௜ݔ  (2.6) ݊ ௝ݕ ∈ {0,1}   

where: 

I∶ set of demand locations 

J∶ set of facility locations ݕ௝: Binary variable of locating a facility at point j (Location variables) ݔ௜=1 if demand at point i is covered (Covering variables) 

௜ܰ = ൛݆ | ݀௜௝ ≤  ൟ    ⩝ i ݀௜௝: Shortest distance from i to j (where it is assumed that all movements are along aݏ

shortest path) 

s: Maximum coverage distance 

p: Pre-determined number of facilities 

This formulation maximizes the covered demands given p located facilities. The first 

constraint fixes the number of facilities and the second set of constraints avoids xi taking 
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the value of 1 when no facilities have been located at the sites which are able to cover node 

i. The set Ni includes all potential facility locations which can dispatch to and reach 

customer i within the standard distance (s). The maximizing objective function then forces 

as many xi as possible to take on the value one as long as they are within the coverage range 

of located facilities. 

If the number of facilities needed to provide complete coverage exceeds the available 

resources, relaxing the requirement for covering all demand is one option. An alternative 

is to relax the coverage distance standard until a standard is found that allows for total 

coverage with the available resources. This approach is adopted by the p-center model 

(Hakimi 1964) which minimizes the maximum distance from the demand to the nearest 

located facility. The other common limitation of original covering problems (LSCP and 

MCLP) is that these models only determine whether a customer is within the coverage 

distance of the located facilities and thus do not explicitly allocate customers to facilities. 

Hence, they do not consider concerns such as the workload capacity. 

2.1.1.3. Extensions to Covering Models 

Numerous extensions have been introduced for the MCLP including consideration of 

partial coverage, capacity limits and stochastic factors. Schilling et al. (1980) extended the 

maximal covering model by considering two types of demand with different priority levels. 

The original covering models discussed above implicitly assume that if a demand is 

covered by a facility then that facility will be available to serve the demand, but in some 

applications, that availability assumption is problematic. Several studies attempted to 

provide multiple coverage to demand nodes so that if one facility is busy, others will be 

within the acceptable range to serve incoming demands. Daskin and Stern (1981), Hogan 

and ReVelle (1986) and Batta and Mannur (1990) developed an MCLP that contains a 

secondary backup coverage objective. However, this approach is not the best way to 

address the issue as it does not incorporate the stochasticity involved with the availability 

of facilities and the arrival of customers. Applying queuing models in location analysis is 

the most appropriate way to deal with congestion, although it essentially converts the 

problem to an operational level problem.  
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Probabilistic models are another stream of extensions to the MCLP. One of the earliest 

probabilistic models for ambulance location is the Maximum Expected Covering Location 

Problem formulation (MEXCLP) due to Daskin (1983). The objective in that case is to 

locate facilities so as to maximize the expected number of demands that a facility can cover. 

But the main problem in that model was using only a constant probability for the facility 

being busy as opposed to a probability distribution. Batta et al. (1989) extended the 

MEXCLP model by adding correction factors into the objective function to approximately 

relax the assumption of independency of facilities unavailability in MEXCLP. Daskin et al. 

(1988) studied the integration of different covering models such as multiple, excess, 

backup and expected covering models.  

The basic location models, do not consider workload capacities. Thus, some servers may 

be allocated to so many tasks that they are over their maximum capacity. To solve this 

issue, researchers have worked on extending the fundamental models to include constraints 

on the capacity to balance the workload of facilities. These additional capacity constraints 

destroy the property that all demand of a customer is satisfied from a single facility. Also, 

capacity constraints make the model substantially more difficult to solve and the associated 

problems are usually NP-hard problems ((Current and Storbeck 1988), (Pirkul and 

Schilling 1991). 

For uncapacitated models, in the optimal solution all demands are assigned to their closest 

facility. However, a constraint on the capacity of the facilities could change the 

assignments. The other issue that arises here is the equity of the service level in demands. 

This means that when capacity limits do not allow all the demands to be served in full, we 

must decide which demands should be covered fully, which partially, and which remain 

non-covered. Another issue is balancing the load across the facilities in order to avoid 

heavy loads on some facilities while others are idle. 

Chung et al. (1983) and Current et al. (1998) were among the earliest researchers who dealt 

with the concept of capacitated MCLP, by adding a maximum capacity constraint to the 

model formulation. Pirkul and Schilling (1991) proposed a capacitated model that all 

demands are assigned to facilities, regardless of whether the demand lies within the service 

covering distance or not. Haghani (1996) also developed a multi-objective capacitated 
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MCLP wherein its objective function aims to maximize the weighted covered demand 

while minimizing the average distance from uncovered demands to the nearest facilities.  

The capacity of different facilities can be varied based on their different characteristics. 

Correia and Captivo (2003) called such a problem with varied capacity constraints the 

modular capacitated location problem. To apply the capacitated MCLP model to the case 

of emergency facility siting problem so that the facility could have different capacity levels 

with varied numbers of stationed emergency vehicles, Yin and Mu (2012) proposed an 

extension of MCLP called the Modular Capacitated Maximal Covering Location Problem 

(MCMCLP). The objective of their model, similar to Haghani (1996), is to maximize the 

weighted covered demand and simultaneously minimize the average distance from 

uncovered demands to the located facilities.  

2.1.2. Median Problems 

Unlike covering problems, median problems deal with the allocation of customers 

(demands) to facilities as well as determining the facility locations. The objective of the 

median problem is to minimize total traveling distance/time to the customers/facilities. It 

is worth mentioning that for fixed demand, this also minimizes the average facility/demand 

distance, and with that we have an objective that maximizes accessibility. Church and 

ReVelle (1974) point out that one important way to measure the effectiveness of a facility 

location is by determining the average distance traveled by those who visit it. 

These kinds of problems are applicable for establishment of the public services such as 

schools, hospitals, fire stations, ambulances, technical audit stations of cars, etc., although 

they can be of interest for private sector location problems as well since minimizing the 

total distance as a proxy of total transportation cost, or average distance as average access 

time, is appealing for decision makers in the business.  

Hakimi (1964) explains the basic concepts of absolute center and absolute median. Then, 

he used them to discover the optimal location of a switching center in a communication 

network and also to find the best place for building a police station in a highway system. 

However, the objectives are somewhat different for these two applications. In the switching 

center problem, the objective is to minimize the total length of wires which makes it an 
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absolute median case, while in the police station problem, the objective is to minimize the 

maximum distance from the police station to any incident which is the form of an absolute 

center problem. Hakimi allowed a facility to lie anywhere along the graph’s edges, but he 

proved that an optimal absolute median is always located at a vertex of the graph. He 

generalized the absolute median to find p medians on a graph in order to minimize the sum 

of the weighted distances. Hence, Hakimi’s main contribution to location theory is that at 

least one absolute median is also a node-median. This reduces the search for the set of 

optimal solutions to the nodes. His contribution was similar to that of Dantzig for linear 

programming, in that it reduced the set of optimal solutions from a potentially infinite set 

to a finite (albeit astronomically finite) set. This result is commonly referred to as the 

“Hakimi theorem” or “the node property” (ReVelle and Eiselt 2005). 

Although the first explicit formulation of the p-median problem is attributed to Hakimi 

(1964), earlier Hua (1962) proposed an algorithm for locating the 1-median on trees (and 

networks with cycles), and proved that locating median points on vertices is better than 

locating them somewhere along the edges. ReVelle and Swain (1970) first formulated the 

central facility location problem. The problem of central facilities location consists of 

locating n facilities, designating m of n communities (m < n) as medians in such a way that 

the average distance or time travelled per person is a minimum.  Goldman (1971) provided 

simple algorithms for locating a single facility for both an acyclic network (a tree) and a 

network containing exactly one cycle. One important way to measure the effectiveness of 

a facility location is by determining the average distance travelled by those who visit it 

(Church and ReVelle 1974). The p-median model implicitly assumes that the cost of 

locating a facility at each candidate site is the same for all sites. 

Marianov and Serra (2002) gave a review of the p-median problem and its extensions. 

 

A p-median model with covering constraints: 

Objective: 

The objective of the model is to minimize the weighted total distance from demands 

to their closest facility.  
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Constraints: 

(1) A demand at point i can only be served by facility at point j if there is one 

located there. 

(2) Fixed number of facilities 

(3) Each demand is allocated to exactly one facility.  

(4) A facility can be assigned only to demands which are within its coverage 

distance. 

The formulation of the model is as follows. ݖ   ݊݅ܯ = ∑ ∑ ௜௝௝௜ݔ ௜݀௜௝ݓ .ݏ (2.7)   ௜௝ݔ       .ݐ ≤ ,݅ ∀ ,௝ݕ ݆    (2.8) ∑ ௝௝ݕ = ∑ (2.9)                          ,݌ ௜௝௝ݔ = 1, ∀ ݅ (2.10) ݀௜௝ݔ௜௝ ≤ ,݅ ∀ ,ݏ ௜௝ݔ (2.11)               ݆ ∈ ௝ݕ  {0,1} ∈ {0,1}  

where:  

I: set of demand locations 

J∶ set of facility locations ݔ௜௝: Binary variable for assigning a facility at point j to demand at i ݕ௝: Binary variable for locating a facility at point j ݓ௜: Demand weight at point i ݀௜௝: Distance from i to j 
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s: Maximum coverage distance 

p: Fixed number of facilities 

 Other Considerations in Location Analysis 

This section discusses several other important aspects and concerns in location analysis 

that have attracted a lot of attention among researchers in the field. 

2.2.1. Dynamic Location Models 

The strategic nature of facility location problems requires that any reasonable model 

consider some aspect of future uncertainty. Since the investment required by locating or 

relocating facilities is usually large, facilities are expected to remain operable for an 

extended time period. Thus, the problem of facility location truly involves an extended 

planning horizon. Decision makers must not only select robust locations which will 

effectively serve changing demands over time, but must also consider the timing of facility 

expansions and relocations over the long term (Owen and Daskin 1998). Facility location 

problems can be divided into two categories: static and dynamic problems. In dynamic 

problems, as opposed to static problems, location decisions are made in a time dependent 

manner (i.e. facilities can be relocated, closed, opened, and expanded during planning time 

horizon).  

Relocation of facilities can occur in a discrete or continuous manner. In the former 

category, relocation is only possible at discrete pre-determined points of time (Wesolowsky 

1973); while in the latter case, relocation is possible at any time during the planning horizon 

(Drezner and Wesolowsky, 1991). Wesolowsky (1973), Wesolowsky and Truscott (1975), 

and Sweeney and Tatham (1976) were pioneers in dealing with the multi-period Location-

Allocation problem. Wesolowsky and Truscott (1975) extended the multi-period Location-

Allocation problem, allowing facility relocation in response to predicted changes in 

demand. They presented an integer programming model which constrains the number of 

location changes in each period. A dynamic programming formulation is also presented. 

Sheppard (1974) presented a variety of models which extend the location of multiple 

facilities by determining the size of the facilities and the timing of plant construction or 

expansion. In order to reduce the complexity that emerges in such mathematical models, 
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most studies prefer discrete time periods of relocation over continuous changes. In 

addition, this approach is more practical in most cases when it comes to the implementation 

of solutions; however, choosing continuous time for relocations results in the same or better 

optimal solutions. 

Arabani and Farahani (2012) reviewed the literature on dynamics in location analysis. 

Different approaches for considering dynamicity in demand, parameters and/or factors in 

facility location problems are examined. They categorized studies based on the method 

taken into account for the stochasticity of demand and its possible variations. Time 

dependent location problems, multi-period and simple-period location problems and 

location-relocation problems are among different types of problems which were reviewed. 

Seyedhosseini et al. (2016) also reviewed dynamic location problems and recent 

advancements in the field. They covered a wide range of problems including single and 

multiple facility relocation problems, median and covering dynamic location problems, 

stochastic dynamic location problems, and fuzzy location problems. 

2.2.2. Uncertainty in Location Analysis 

In all the modelling approaches discussed so far, it is assumed that input parameters for the 

model are known and deterministic. This section addresses the approaches to cope with 

uncertainty in location problems. Uncertainty in facility location modelling may exist in 

different aspects of the problem such as demand locations, travel times, travel costs, 

demand volume, etc. There are two ways to represent the uncertainty associated with model 

parameters: (1) using discrete scenarios to describe the uncertain parameters where each 

scenario has a given probability of occurrence, and (2) using probability distributions to 

represent the stochasticity of parameters. A “scenario” is a complete realization of all the 

uncertain parameters. Each scenario fully determines the value of all the uncertain 

parameters.  

Snyder (2006) reviewed the literature on stochastic and robust facility location models and 

explored a variety of approaches for optimization under uncertainty. The main approaches 

for optimization under an uncertain environment falls into two categories: Stochastic 

Programming (SP) and Robust Optimization (RO). Problems that deal with uncertain 
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parameters in which their variation scheme conforms to a specific probability distribution, 

are known as stochastic optimization problems. A common goal is to optimize the expected 

value of some objective function. Conversely, the cases in which parameters are uncertain, 

and furthermore no information about their probabilities is known, are known as robust 

optimization problems. In robust optimization, a set of possible future values are taken into 

account and typically the objective is to minimize the maximum deviation of objective 

values in each scenario from their best possible solution. A  recent overview of different 

modelling approaches for dealing with uncertainty in facility location is given in (Correia 

and Saldanha da Gama 2015). 

2.2.3. Congestion 

In most of the basic location models like MCLP, LSCP and p-median, it is assumed that 

facilities have infinite capacity to respond to demands. This is not usually the case in real 

problems as brought up in the preceding section. Also, in real situations the nature of 

demands is typically variable and random. Although the facilities may be capable of coping 

with the average demand, there will be some peak times when they cannot provide service 

to all requests. Such situations are referred to as congested systems.  

These issues can be investigated using queueing models which take into account the 

probabilistic nature of demand and service. In congested systems, in some cases when a 

facility is not able to serve all service requests, some of them can wait until the server 

become available. But in other cases, such as emergency systems, it is generally not 

reasonable to wait so if the demand is not responded within a time limit it will be assumed 

to be uncovered. 

Marianov and Serra (1998) studied a probabilistic Maximal Covering Location-Allocation 

model for congested systems. They developed a Location-Allocation model for multiple 

server system with constraints on queues and waiting times in (Marianov and Serra 2002).  

Marianov and Serra (2001) also studied the congestion concept for hierarchical facilities. 

Examples of hierarchical structures can be found in public health services, where hospitals 

correspond to the higher-level facilities, and primary health care centers are the lower level. 

They presented two location models for this problem. First, a queueing set covering 
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problem and second a queuing maximal covering problem whereby a heuristic approach 

was used to find the solutions for both models. 

Also, it is possible to incorporate a probabilistic constraint into the model to ensure a 

minimum level of service availability for each demand or in a similar way include a 

constraint to limit the maximum waiting time of each customer. 

Berman and Krass (2002) addressed facility location problems with stochastic demands 

and congestion for the mobile server case.  Boffey et al. (2007) reviewed the studies related 

to congestion models in the location of immobile facility servers. 

Berman et al. (2006) considered two potential sources of lost demand: (1) demand lost due 

to insufficient coverage; and (2) demand lost due to congestion. The objective is to 

minimize the number of facilities and locate them so that the amount of demand lost for 

either reason does not exceed certain pre-set levels. Also, Berman et al. (2007) formulated 

a model to maximize the expected amount of captured demand for capacitated facilities 

when customer demands are stochastic. It is assumed that customers travel to their closest 

facility for the service; In case the facility is fully utilized, they will go to the next closest 

facility. 

An alternative common approach to cope with congestion is to consider backup coverage. 

Here we try to cover demands more than once in order to decrease the probability of server 

unavailability in case of congestion. One important concern is the possible conflict or trade-

off between primary and backup coverage, whereby improving the former may hamper the 

latter. Hogan and ReVelle (1986) presented a maximal backup coverage model and Pirkul 

and Schilling (1988) proposed a capacitated maximal covering model. 

2.2.4. Gradual Coverage 

One problematic or maybe unrealistic assumption in MCLP is the 0-1 concept of coverage 

which means that demands within the coverage radius from the located facilities are 

covered completely, while demands beyond this predefined distance are not covered at all. 

This is the where the idea of gradual coverage comes from. The coverage is then assumed 

to be a gradually decaying function of distance from facilities rather than an abrupt 

termination. Church and Roberts (1983) were the first to suggest replacing the covered/not 
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covered idea by a function for modeling the level of coverage. Berman and Krass (2002) 

presented a generalized Maximal Covering Location Problem. They used the concept of 

partial coverage in their study and defined the degree of coverage as a decreasing function 

of the distance to the closest facility. They showed that this problem is equivalent to the 

uncapacitated facility location problem. Drezner et al. (2004) also formulated and solved 

the gradual covering problem. They presented coverage as a ring where inside its inner 

circle the point is fully covered, and outside the outer circle there is no coverage.  

Karasakal and Karasakal (2004) applied the concept of partial coverage in MCLP and used 

Lagrangian relaxation for solving the model. They introduced coverage as a function of the 

distance of the demand point to the facility. It is assumed that the demand is fully covered 

within the minimum critical distance S, partially covered up to a maximum critical distance 

T, and not covered at all outside of the maximum critical distance. The coverage function 

is defined as below. Also, various types of coverage function are demonstrated in Figure 

2-1. 

ܿ௜௝ = ቐ 1                                                             ݂݅  ݀௜௝ ≤ ܵ,݂൫݀௜௝൯              ݂݅  ܵ < ݀௜௝ ≤ ܶ, ൫0 < ݂൫݀௜௝൯ < 1൯,0                                                             ݐ݋ℎ݁݁ݏ݅ݓݎ     (2.12) 

 

Figure 2-1- various coverage functions (Eiselt and Marianov 2009) 
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Eiselt and Marianov (2009) extended the LSCP by replacing the covered/not covered 

dichotomy with the gradual coverage concept. The quality of service is also incorporated 

in the presented model. Berman et al. (2011) studied the gradual covering location problem 

on a network with stochastic demand. The demand weights are assumed to be independent 

discrete random variables. The objective of their model is to maximize the probability that 

the total covered demand weight is greater than or equal to a pre-selected threshold value. 

Berman et al. (2010) reviewed several recent generalizations of the basic concept of 

coverage in the maximal covering location model. This review includes gradual coverage, 

cooperative coverage and variable coverage radius concepts. 

 Multi-Criteria Location Analysis 

Facility location problems usually involve multiple decision criteria. Therefore, they fall 

under multi-criteria decision-making (MCDM) problems. MCDM is generally classified 

into two categories: 

• multi-objective decision-making (MODM), and 

• multi-attribute decision-making (MADM) 

In the former case, the process of optimizing systematically and simultaneously a collection 

of objective functions is called multi-objective optimization (MOO) or vector optimization 

(Marler and Arora 2004). Zimmermann (2010) defines the vector optimization problem as 

Maximize {Z(x) | x∈ X} 

where Z(x) = (z1(x), …, zn(x)) is a vector-valued function of x and X is the solution space. 

Generally, multi-objective optimization methods can be classified into two categories: 

Scalarization methods and Pareto methods. In the first group of methods, the multi-

objective problem is solved by translating it back to a single (or a series of single) objective, 

scalar problem. The formation of the aggregate objective function requires that the 

preferences or weights between objectives are assigned a priori, i.e. before the results of 

the optimization process are known. Alternatively, running such models multiple times 

while altering objective weights could approximate the non-dominated frontier, which 

would still be insightful for decision makers who do not know the weights in advance. The 
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easiest to understand and most widely used scalarization method is the weighted sum 

approach. The Pareto methods, on the other hand, keep the elements of the objective vector 

Z separate throughout the optimization process and typically use the concept of dominance 

to distinguish between inferior and non-inferior solutions. 

Normally, there is no point that could simultaneously optimize all objectives at once.  In 

other words, when we deal with a problem with multiple conflicting objectives, the concept 

of optimality as defined for single objective problems, ceases to exist. Hence, another 

concept was developed to cope with this issue by describing efficient or nondominated or 

noninferior solutions, also known as Pareto-optimal sets. A point x is an efficient solution 

if it is not possible to move feasibly from it to increase an objective without decreasing at 

least one of the others. 

A multi-objective problem can be formulated and solved by using several mathematical 

methods. The most popular ones are as follows: weighted sum method, epsilon constraint 

method, utility function, bounded objective method, lexicographic method, goal 

programming (GP), goal attainment method, method of Geoffrion, and interactive GP. 

The weighted sum method scalarizes the set of objectives into a single objective by 

multiplying each objective with a user supplied weight. The epsilon constraint method first 

introduced by Haimes (1971) chooses a single-objective to be optimized while every other 

objective is treated as a constraint. The extreme point that is computed is then used to 

determine the bound on the objectives, and this is repeated until there are no new solutions 

left. In the lexicographic method, the objective functions are arranged in order of 

importance and the corresponding problems are solved sequentially, each time by adding 

a bound on the objective value optimized in the previous round. Goal programming 

attempts to minimize total deviation from the predefined goals on objectives. In the value 

function method, a user defined utility function (a function of all objectives) which is valid 

over the entire feasible region is optimized. The goal attainment method aims to minimize 

the maximum weighted deviation from specified objective goals. 

On the other hand, MADM is defined as a formal analysis which takes into account multiple 

attributes associated with certain actions or choices. The model scores and weighs these 
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attributes for each alternative action in a comparative mathematical analysis. Zimmermann 

(2001) defines a general multi-attribute decision making model as follows. 

Let X = {xi | i=1, …, n} be a (finite) set of decision alternatives and G = {gj | j=1, …, m} a 

(finite) set of goals according to which desirability of an action is judged.  

Determine the optimal alternative x* with the highest degree of desirability with respect to 

all relevant goals gj. 

Usually MADM methods consist of two stages: 

1. The aggregation of the judgments with respect to all goals and per decision 

alternative, and 

2. The rank ordering of the decision alternatives according to the aggregated 

judgments.  

2.3.1. Multi-Objective Optimization in Location Analysis 

The objectives that are usually considered in multi-criteria location problems can be 

different, some of which are: 

• Minimizing the fixed and operating cost 

• Maximizing service level (required level of response in terms of time/distance) 

• Minimizing average time/distance traveled 

• Minimizing maximum time/distance traveled 

• Minimizing the number of located facilities as a proxy of cost 

Using multiple objectives in location studies started with Ross and Soland (1980) who 

proposed an interactive solution method to compute non-dominated solutions for multi-

activity multi-facility problems to compare and choose from. Studies in this field can be 

categorized from various perspectives such as the application of the proposed model, the 

type of objective functions, or the methodology used for modelling. 

2.3.1.1. Areas of Application 

With respect to different applications of multi-objective optimization in location analysis, 

we can name practical problems like: distribution centers, fire stations, ambulance location, 

service centers, etc. Coverage, cost, and travelling distance/time are among the popular 
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location objectives and were extensively used in multi-objective location studies. Baker et 

al. (1989) developed a multi-criteria model for the ambulance allocation problem. They 

used various outcome criteria in their model, including response time, cost and workload 

balance. The model is then solved using an integer, non-linear goal-programming 

technique. In their study of heath care services, Badri et al. (1998) attempted to determine 

the optimal place to locate fire stations considering multiple criteria. The model 

incorporates multiple objectives including travel times and travel distances as well as other 

cost-related and quality-related objectives. These criteria include minimizing stations 

overlaps, and avoiding locating the facility where water availability is a problem. A 

tradeoff between costs and quality is provided to help decision makers. Drezner et al. 

(2006) have incorporated five objectives: p-median, p-center, two maximum covering and 

the minimum variance, in order to minimize the maximum percent deviation from the 

optimum of each of these objectives for casualty collection points location. Kim and 

Murray (2008) developed a model to maximize primary and secondary coverage for a given 

number of serving facilities. They proposed a bi-objective model which maximizes primary 

and backup coverage respectively. Balcik and Beamon (2008) minimized the sum of 

transportation costs and penalty costs for unsatisfied and late satisfied demands in a 

humanitarian relief supply problem. Burkey et al. (2012) considered efficiency, availability 

of the service, and equality as examining criteria to compare existing locations with optimal 

solutions from formulations as a maximal covering location problem and a p-median 

problem. The results of their study show that the existing locations provide near-optimal 

geographic access to health care centres. A bi-criteria problem was formulated by 

Kolokolov and Zaozerskaya (2013) to find the optimal locations of service centers. Trade-

off methods were used for finding a subset of the Pareto-optimal solutions set. 

2.3.1.2. Modelling Approaches 

Moreover, different modelling methodologies were adopted by researchers to deal with 

multi-objective location problems. Lee et al. (1981) applied integer goal programming for 

facility location with multiple competing objectives. Solanki (1991) presented an 

approximation scheme to produce a set of Pareto solutions for a bi-objective location 

problem. Ogryczak (1998) looked for efficient location patterns in a multi-criteria discrete 
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location problem and provided a compromise method between the median and center 

solution concepts. Rakas et al. (2004) dealt with the location of undesirable facilities and 

used a weighting method to combine two objective functions. An evolutionary algorithm 

was utilized to deal with the multi-objective optimization in order to generate a set of trade-

off solutions. Their model is divided into two parts: (1) multi-objective facility location 

problem; and (2) multi-objective customer allocation problem. Abounacer et al. (2014) 

used an epsilon-constraint method to find the Pareto frontier solutions considering three 

objectives in their location-transportation model for disaster response. These three 

objectives are total distribution time for emergency supplies, the number of agents required 

to operate selected distribution centers and the third one, non-covered demands.  

Stochastic approaches were also utilized in multi-objective location problems that involve 

nondeterministic factors on demand and facility availablity. Wang et al. (2004) studied a 

facility location problem with stochastic demand and tried to minimize the total travel cost 

and waiting cost for the customer. Their model includes a restriction on the number of 

facilities that may be opened and an upper bound on the allowable expected waiting time 

at a facility. Pasandideh and Niaki (2012) also developed a bi-objective model for facility 

location in an M/M/1 queuing system. In this paper, a facility location problem with 

stochastic customer demand and immobile servers is studied. The problem was formulated 

using queuing theory and solved by a genetic algorithm. Rahmati et al. (2014) produced a 

multi-objective model for facility location-allocation problem considering stochastic 

demand and using a queuing framework. Their model has two objectives: first to minimize 

the total cost of servers, and second to minimize the total time of customers. 

2.3.1.3. Fuzzy Location Optimization 

Fuzzy multi-objective models have been used in several location analysis studies. In recent 

years, many people have brought fuzzy theory into facility location analysis. Using the 

fuzzy concept, we could translate the vagueness and uncertainty in the objectives’ 

importance into numerical functions. Also, the stochastic nature of demands can be 

represented by fuzzy demands. Specifically, it could be helpful to apply the idea of gradual 

and partial coverage in the form of fuzzy values. Fuzzy set theory can also be combined 

with the goal programming or weighted sum methods in order to model multi-objective 
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problems. Bhattacharya et al. (1993) utilized a fuzzy goal programming approach for a 

convex multi-facility location problem with two objectives: minimizing transportation 

cost, and minimizing maximum distance. Shavandi and Mahlooji (2006) utilized fuzzy 

theory to develop a queuing Maximal Covering Location-Allocation model. Their model 

includes one constraint on service time or a maximum queue length to constrain the service 

quality. A genetic algorithm is developed to solve the model. Araz et al. (2007) also used 

a fuzzy goal programming approach to propose a multi-objective emergency vehicle 

location model which simultaneously maximizes the population covered, maximizes the 

population with backup coverage, and minimizes the total travel distance. Yang et al. 

(2007) introduced a fuzzy multi-objective programming approach to determine the location 

of fire stations. They also used a genetic algorithm to solve the problem and find a near-

optimal solution. A maxi-min objective function was used for two objectives: (1) total fixed 

and operating cost and cost of incidents loss; and (2) distance from the fire station to any 

incident. Three types of fuzzy models are proposed by Zhou and Liu (2007) to deal with a 

capacitated Location-Allocation problem with fuzzy demands. They used three types of 

fuzzy programming models to solve a location analysis problem with fuzzy demands. 

2.3.1.4. Undesirable Facilities 

In some cases, researchers deal with undesirable facilities such as landfills so they might 

take into account different type of objectives. Ohsawa et al. (2006) developed a new bi-

criteria location problem with partial covering to model siting a semi-obnoxious facility 

within a convex polygon. Their model considers mini-max and maxi-min objectives in 

Euclidean distances. Xifeng et al. (2013) considered minimum economic cost, maximum 

customer service reliability and minimum CO2 emissions as objectives of their model of 

sustainable logistics facility problem and applied the epsilon constraint method for multi-

objective optimization. A bi-objective model for locating landfills was developed by Eiselt 

and Marianov (2014). Their model minimizes pollution as well as cost. Another multi-

objective optimization approach was proposed by Harris et al. (2014) in their study of the 

capacitated facility location problem with flexible store allocation for green logistics. Their 

model includes minimizing financial costs and CO2 emission as objectives. 
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  Emergency Response Location Analysis 

As mentioned in previous sections, location analysis has many applications in different 

areas. One of the main application areas of different location models is emergency logistics. 

There is a very large number of studies in the literature dealing with analyzing the location 

of emergency services facilities such as health centers, ambulances, fire stations and Search 

and Rescue vessels/stations. This section concentrates on previous studies on the 

application of location theory in emergency services as this is the subject of this study. 

Examples using location modelling in practice have included locating hospitals (Sinuany-

Stern et al. 1995), emergency medical services (Pirkul and Schilling 1988), blood banks 

(Jacobs et al. 1996), and ambulances (Ball and Lin 1993). A review of location models 

specifically applied to healthcare can be found in (Daskin and Dean 2004). Also, Goldberg 

(2004) reviewed the literature of operations research applications in emergency services 

vehicles. Brotcorne et al. (2003) reviewed the evolution of models in the area of ambulance 

location and relocation, dividing the models into deterministic and probabilistic models. 

Also, dynamic models which involve ambulance relocation were discussed.  

Marianov and ReVelle (1996) discussed the problems and applications in siting emergency 

services. They proposed a model for a queueing maximal availability location problem 

taking into account the randomness of servers’ availability. Harewood (2002) formulated 

a bi-objective problem for locating ambulances on the island of Barbados. The model 

considers minimizing the cost of serving customers, while maximizing multiple coverage 

given a certain distance standard. Alsalloum and Rand (2006) extended the maximal 

covering problem for the case of emergency vehicle location, in two ways: First, by 

replacing the 0-1 coverage definition by the probability of covering a demand within a 

target time. Second, the minimum number of vehicles at each location that satisfies the 

required performance level is determined after locating the sites. Griffin et al. (2008) 

developed an optimization model to determine the best location and number of new 

Community Health Centers in a geographical network as well as what services each such 

center should offer at which capacity level. The objective is to maximize the weighted 

demand coverage of the target population subject to budget and capacity constraints. 
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Mathematical location modelling has been widely applied to the optimization of logistics 

in the humanitarian relief activities and large-scale emergency response planning. Jia et al. 

(2007) proposed a model in their study for determining the facility locations of medical 

supplies in response to large-scale emergencies. They formulated the problem as a maximal 

covering problem with multiple facility and quality of coverage requirements and 

developed three heuristics to solve the model. The results demonstrate a good capability of 

the model in improving the population coverage and reducing life-loss during large-scale 

emergencies. Balcik and Beamon (2008) integrated maximal covering facility location and 

inventory decision model to consider a case of facility location decisions for a humanitarian 

relief chain responding to quick-onset disasters. Results show the effects of pre- and post-

disaster relief funding on the relief system’s performance, specifically on response time 

and the proportion of demand satisfied. 

Indriasari et al. (2010) developed a Maximal Service Area Problem (MSAP) utilizing the 

capabilities of GIS for emergency facilities for which accessibility is an important 

requirement. The objective of the MSAP is to maximize the total service area of a specified 

number of facilities. The results of the study show that the three heuristics provide better 

coverage than the existing coverage with the same number of fire stations within the same 

travel time. In another related study, Rawls and Turnquist (2010) developed an emergency 

response planning tool that determines the location and quantities of various types of 

emergency supplies to be pre-positioned, under uncertainty about time and location of 

natural disaster occurrence. The study presents a two-stage stochastic mixed integer 

program. This study was extended in (Rawls and Turnquist 2011) with additional service 

quality constraints. These constraints ensure that the probability of meeting all demand is 

at least α, and that the demand is met with supplies whose average shipment distance is no 

greater than a specified limit.  

Yin and Mu (2012) presented a modular capacitated maximal covering model to find the 

optimal location and allocation of emergency vehicles. The modular capacity concept 

refers to the case where there are several possible capacity levels. Few studies have 

considered the multiple-resource multiple-depot emergency response problem considering 

the effects of possible secondary disasters. For instance, Zhang et al. (2012) formulated an 
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emergency resource location problem incorporating the constraints of multiple resources 

requirement as well as possible secondary disasters. They introduced the opportunity cost 

of the secondary disasters into the objective function to develop a model for dispatching 

the multiple emergency resources. 

2.4.1. Search and Rescue Location Analysis 

Focusing on works more relevant to the subject of this research, which concerns the 

location of SAR vessels, there are quite a few studies to highlight. Among them, Brown et 

al. (1996) developed a mixed integer model for scheduling US Coast Guard district cutters 

which resulted in solutions superior to manually prepared schedules. Nguyen and Kevin 

(2000) incorporated maximal covering and p-median location problems into a goal 

programming model to assess the level of service of the current SAR system (in terms of 

location of SAR aircrafts and helicopters) and compare it to the optimal solution. They also 

used simulation and queueing theory to examine the performance of SAR aircraft in terms 

of average time incidents spend in queue for both current and proposed solution. The 

proposed solution shows a significant improvement over the current situation. Also, Li 

(2006) applied three location models (maximal covering location problem, maximal 

expected covering location problem and maximal covering location problem with 

workload capacity) to the maritime SAR location problem for Atlantic Canada. A 

simulation model was also employed to validate, compare and improve the results. This 

study covers the application of general discrete location models in the case of Maritime 

SAR. Some studies have taken other analytical approaches rather than optimization. For 

instance, Azofra et al. (2007) proposed a tool for assignment of sea rescue resources to 

incidents using a gravitational modelling approach. The proposed model returns a 

coefficient for each possible assignment based on the appropriateness of the rescue vessel 

to the incident. This study only evaluates different solutions but is not attempting to 

propose an optimal solution. Huang and Pan (2007) developed an incident response 

management tool by integrating a Geographic Information System with traffic simulation 

and optimization of response unit assignment, but they didn’t incorporate optimizing the 

location of resources.  
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Afshartous et al. (2009) took a statistical-optimization approach to obtain robust Coast 

Guard air station locations given uncertainty in distress call locations. They simulated 

distress calls and investigated the performance of the solutions obtained from the 

optimization problem across numerous simulation replications. Wagner and Radovilsky 

(2012) optimized location and allocation of U.S Coast Guard lifeboats by proposing a 

model that simultaneously considers balancing the workload and decreasing fleet size and 

operating cost while ensuring that the service requirements are met. Wex et al. (2014) 

developed a combined Allocation-Scheduling model to arrange the order of rescue unit 

response to incidents. They considered the specific requirement of incidents and different 

capability of rescue units in their model. This study developed a decision support model to 

minimize the sum of completion times of incidents weighted by their severity. Razi and 

Karatas (2016) also developed a multi-objective model for allocating maritime SAR 

resources in Turkey. They took advantage of the AHP method for ranking different incident 

types and aggregated the demand using a zonal distribution model. Their model has 

multiple objectives including minimizing response time to incidents, fleet operating cost, 

and the mismatch between boats’ workload and operation capacity hours. A recent account 

of application of location modelling for maritime SAR is provided by Pelot et al. (2015). 

As shown in this section, many studies have been performed in the area of emergency 

location analysis. However, there are still some gaps remaining, particularly in the case of 

maritime SAR location modelling. Most of the studies do not consider the multiple criteria 

in a proper way to satisfy the stakeholders’ (decision makers) expectations. This 

shortcoming is addressed by taking a more comprehensive multi-criteria approach in this 

thesis. In addition, one of the most important gaps to highlight is that most studies on 

emergency response location analysis have relied on historical demand for planning future 

response which is not a realistic assumption. In this study, we aim to propose a spatial-

simulation methodology to incorporate the stochasticity of future demand locations. 
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Abstract 

In this paper a multi-criteria analysis is performed on the location of maritime Search and Rescue 
resources. Two well-known standard location models (the maximal covering location problem and 
p-median problem) are modified and applied in accordance with our problem characteristics. The 
study considers several distinct response vessel types with different capabilities. Future incidents 
are simulated based on the underlying distribution of historical incidents. The models are 
formulated and solved using data from the Atlantic region of Canada. The optimal solutions of 
these two models, along with the current resource arrangement, are compared in terms of five 
decision criteria: (1) mean access time, (2) primary coverage, (3) backup coverage, (4) Gini index, 
and (5) maximum access time. The results indicate a significant increase in efficiency of resource 
utilization and availability of service based on access time and coverage criteria for the solutions 
provided by the optimization models compared to the current situation. 

Keywords: Maritime Search and Rescue; Location analysis; Multiple criteria; Coverage; 
Access time; Kernel estimation
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 Introduction and Problem Statement  

Maritime Search and Rescue is one of the most conspicuous humanitarian activities in 

Canada, with the aim of minimizing loss of of life, injury, property damage and risk to the 

environment. The marine environment can be extremely dangerous as every year more than 

6,000 incidents are reported in navigable waters around Canada. Maritime Search and 

Rescue (SAR) is one of the main responsibilities of the Canadian Coast Guard (CCG) and, 

as a public service dealing with maritime incidents, it is very important that their resources, 

including search and rescue vessels, stations, and crew, are used efficiently. To do this, 

they must decide where to locate their resources and how to allocate demands to them, 

which is also known as the Location-Allocation problem. The Location-Allocation 

problem is an essential model for several important applications, including the location of 

ambulances, police cruisers, fire stations, distribution centres, etc. Optimizing the 

efficiency of resource utilization is always a major concern.

In a typical SAR location problem, we are faced with a server to customer service system, 

which is similar to fire station and ambulance location problems. The servers represent the 

SAR vessels, while the customers symbolize the incidents. In this kind of location 

problems, usually the main goal is to provide good coverage and service levels (e.g. 

minimum travel distance). 

The Canadian Coast Guard has many different SAR vessel types that were designed or 

purchased with specific tasks in mind, and not all are equally capable of, or effective at, 

handling different incident types. Also, the ranges and speeds vary greatly among different 

types of SAR vessels, so the vessels’ capabilities need to be considered. 

The purpose of this study is to incorporate multiple facility types within two common 

location analysis formulations, viz., the maximal covering location problem and p-median 

problems, and then compare the solutions in terms of several decision criteria. The first 

model tries to maximize the coverage for a given number of resources, while in the second 

model the objective is to minimize the average access time to all incidents. The proposed 

models are applied to a real case maritime Search and Rescue location problem. In other 

words, the goal of the study is to examine the efficiency, accessibility and equality of SAR 
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services and see if we can improve them through finding an optimal mathematical solution. 

Ultimately, this paper investigates some important decision criteria in maritime SAR 

services and will provide some helpful insights for decision makers regarding possible 

changes to improve the overall quality of service. 

The remainder of this paper is structured as follows. First section presents relevant 

literature. The following section explains the decision criteria used in our study. Then, we 

apply the two aforementioned models using the data for the case study, followed by 

discussion of the results. We conclude the paper with the summary of the findings and 

outlook for future research in the field.  

 Literature Review 

Facility location models are useful for a wide range of applications. Location models are 

applicable both to the private sector (e.g., industrial plants, banks, retail facilities, etc.), and 

the public sector (e.g., ambulances, clinics, etc.). In the Maritime SAR location problem, 

we are faced with a server to customer service system which is similar to ambulance 

location problems. In this kind of location problem, the main concern generally is to serve 

all the demands or at least try to serve as much as possible, although, like any other 

emergency service, response time is of great importance as we would like to reach the 

incidents as quickly as possible. 

Covering problems and median problems are among the most popular problem types in 

location modelling and they are appropriately used in emergency response location 

analysis. The former is concerned with covering demands within a specified response 

distance/time standard while the latter is aiming at minimizing the system-wide average 

response distance/time.  

3.2.1. Maximal Covering Location Problem 

Schilling et al. (1993) classified models which use the concept of covering into two 

categories: (1) location set covering problems (LSCP), in which complete coverage is 

required, and (2) maximal covering location problems (MCLP), which maximize coverage. 

The idea of covering models started with the location set covering problem introduced by 
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Toregas et al. (1971). Later, Church and ReVelle (1974) introduced the maximal covering 

location problem. The task of the MCLP is to locate a given number of p facilities, so that 

as many customers as possible are within a pre-specified distance of any of the facilities. 

Numerous extensions to the MCLP have been introduced including consideration of partial 

coverage, capacity limits and stochastic factors. Schilling et al. (1980) extended the 

maximal covering model by considering two types of demand with a different priority 

level. Daskin and Stern (1981), Hogan and ReVelle (1986) and Batta and Mannur (1990) 

developed an MCLP that contains a secondary backup coverage objective. A review of 

covering problems and their applications can be found in ReVelle et al. (2002). 

3.2.2. P-Median Location Problem 

One important way to measure the effectiveness of a facility location is by determining the 

average distance traveled (Church and ReVelle 1974). Unlike covering problems, median 

problems deal with the allocation of the customers to the facilities as well as deciding the 

facility locations. The objective of the median problem is to minimize total traveling 

distances or times to reach the customers (or customers to reach the facility, depending on 

the nature of the problem). Given that the total demand is fixed in the standard p-median 

model, this is equivalent to minimizing the average time a customer requires to reach its 

closest facility. These kinds of problems include the establishment of public services 

including schools, hospitals, firefighting, ambulance service, vehicle inspection stations, 

etc. where decision makers are concerned about the accessibility of resources, and Median 

problems are commonly used in private sector location problems as well when minimizing 

the total travel distances as a proxy for transportation cost is of interest.  

Problems of the p-median type are among the most researched location models in the 

literature. The first explicit formulation of the p-median problem is attributed to Hakimi 

(1964). Marianov and Serra (2011) provided a review of median problems and their 

extensions.  
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3.2.3. Emergency Location Analysis 

One of the main application areas of different location models is emergency logistics. 

There is an extensive number of studies in the literature dealing with analyzing the location 

of emergency service facilities such as health centers (Cho (1998) and Burkey et al. 

(2012)), fire stations (Badri et al. (1998) and Yang et al. (2007)), and Search and Rescue 

stations (Armstrong and Cook (1979) and Pelot et al. (2015)). Locating hospitals (Sinuany-

Stern et al. 1995), emergency medical services (Pirkul and Schilling 1988), blood banks 

(Jacobs et al. 1996), and ambulances (Ball and Lin (1993), Harewood (2002), and 

Brotcorne et al. (2003)) are also among the example applications in this area. Goldberg 

(2004) provided a literature review on operations research applications for emergency 

services vehicles.  

When we concentrate on studies in the area of SAR location, there is a considerable number 

of relevant contributions. Among those, Azofra et al. (2007) proposed a tool for assignment 

of sea rescue resources to incidents. They used gravitational modelling, and the model 

provides a coefficient for each possible assignment which represents the appropriateness 

of a rescue vessel for a given station location, based on the number of historical incidents, 

their severity, nearby infrastructure, and other factors. Their study only evaluates different 

solutions but does not propose an optimal solution. Huang and Pan (2007) developed an 

incident response management tool by integrating a geographic information system with 

traffic simulation and optimization of response unit assignment.  

Afshartous et al. (2009) utilized a statistical-optimization approach to generate a robust 

solution given uncertainty in distress call locations for locating coast guard air stations. 

They simulated distress calls and solved the optimization problem for different simulations. 

However, their mathematical model is simple and lacks the consideration of different 

criteria. Wagner and Radovilsky (2012) undertook to optimize location and allocation of 

lifeboats in the U.S Coast Guard and proposed a model that simultaneously considers 

reduction of excess capacity and boat shortages at the stations, a decrease in the overall 

fleet size with an increase in boat utilization, and overall reduction of the fleet operating 

cost. Another significant research was performed by Pelot et al. (2015) where three location 
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models (maximal covering location problem, maximal expected covering location 

problem, and maximal covering location problem with workload capacity) were applied to 

the Maritime SAR location problem for Atlantic Canada. That study focused only on 

covering models so it does not consider other criteria. Moreover, relying on historical 

incidents for the analysis is a limitation. 

Verma et al. (2013) presented a two-stage stochastic programming model which 

determines the optimal location and stockpile of equipment at the emergency response 

facilities for the case of oil-spill response. A number of scenarios were generated using the 

information procured from realistic sources to account for uncertainty involved with 

parameters’ values.  

Wex et al. (2014) developed a combined allocation-scheduling model to prescribe the order 

of rescue unit response to incidents. Their study considered the specific requirements of 

incidents and different capabilities of rescue units in their model. This study develops a 

decision support model to minimize the sum of serving times of incidents weighted by their 

severity. The authors propose and compare several heuristics and show that these 

algorithms can solve and reach a near optimal solution for a medium size problem in less 

than a second. 

More recently, Razi and Karatas (2016) proposed a multi-objective model for allocating 

SAR resources. They used the Analytical Hierarchy Process to rank and weight different 

incidents and also a zonal distribution model was developed to cluster incidents and 

aggregate weighted demand locations. Their model features several objectives including 

minimizing response time to incidents, fleet operating cost and the mismatch between 

boats’ workload and operation capacity hours. The historical incidents data was used for 

the analysis. 

As described, there is a rich and diverse literature in the area of emergency location 

analysis, but some gaps still exist, particularly in the case of Maritime SAR resource 

planning. Only a few studies have attempted to consider multiple criteria. With respect to 

dealing with future incidents, most researchers have relied on using historical incidents for 

future analysis which does not take into account the stochastic nature of the demand. A 
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recent account of location analysis in practice, including location of emergency facilities, 

is provided by Eiselt et al. (2015) and particularly for Maritime SAR location by Pelot et 

al. (2015). 

In this study, we aim to not only apply two common location problems to the case of 

maritime SAR, but also assess the solutions in terms of other important decision criteria 

and investigate their relative performance. Moreover, the underlying distribution of 

historical incidents is extracted and used as a basis for determining demand weights in 

optimization models as well as simulation of future incident locations. 

3.2.4. Multi-Criteria Location Analysis 

Facility location problems are usually multi-criteria decision making (MCDM) problems. 

The objectives that are typically considered in multi-criteria location problems can vary, 

for example: 

 Minimizing fixed and operating costs 

 Maximizing service level (required level of response in terms of time and/or 

quality) 

 Minimizing average time/distance traveled 

 Minimizing the number of located facilities to cover all demands 

 Minimizing the maximum time/distance traveled by any customer to his closest 

facility 

There is a significant number of studies involving multiple criteria in emergency location 

analysis. Baker et al. (1989) developed a multi-criteria model for the ambulance allocation 

problem. They used various criteria including response time, cost and workload balance in 

their model. A goal programming technique was used to solve their problem. Nguyen and 

Kevin (2000) have also applied goal programming to the case of maritime SAR aircraft 

location analysis. 

Drezner et al. (2006) have incorporated five objectives of p-median, p-center, two 

maximum covering and the minimum variance in order to minimize the maximum percent 

deviation from the optimum of each of these objectives for a casualty collection point 



 
 

53 
 

location problem, a variant of compromise programming. In their study on location of 

health care services, Burkey et al. (2012) used efficiency, availability of the service and 

equality as their examining criteria. They compared existing locations with optimal 

solutions derived through a maximal covering location problem and a p-median problem. 

The results of their study show that the existing locations provide near-optimal geographic 

access to health care. 

 Assessment Criteria  

This section introduces the decision criteria which are used to compare the performance of 

model solutions and the current situation. Basically, the decision criteria considered in this 

work are used to examine efficiency, service availability and service equality. As one of 

the main goals of this study is to incorporate multi-criteria analysis into the SAR resource 

Location-Allocation problem, five main criteria which are of considerable importance for 

decision makers and the public are defined and examined for the two different solutions 

based on the maximal covering problem and the p-median problem, as well as the current 

arrangement of resources. 

These comparison criteria are as follows: 

(1) Access time: This criterion assesses the mean time for the nearest response vessel 

to reach an incident. 

This criterion is very common in location analysis studies. In this study, it is defined as 

‘mean travel time for the nearest response vessel to reach an incident. This is a widely used 

proxy for measuring the efficiency of service in location analysis. As mentioned before, 

the p-median problem minimizes this criterion for a given fixed number of facilities. We 

use time rather than distance as we are dealing with multiple type resources with different 

speeds, so time is a more appropriate measure of proximity than distance. 

(2) Primary Coverage: This criterion measures the percentage of incidents to be 

covered within the predetermined access time by at least one SAR vessel. 
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Coverage is an obvious criterion when dealing with service location problems, especially 

in an emergency location problem. It is used as an index for availability of service. 

Coverage could have different definitions and can be measured in different ways. It can be 

considered as a binary function with a specified threshold or it can be a continuous function 

based on the proximity. It is necessary to have at least one vessel within the acceptable 

response time limit for areas with the potential for incident occurrence. Therefore, primary 

coverage is one of the main criteria of this analysis. 

(3) Backup Coverage: This criterion expresses the percentage of incidents that are 

within the predetermined coverage region of at least two SAR vessels. 

Backup coverage becomes a concern when we are faced with a congested system or a 

system with the possibility of resources being out of service due to maintenance etc. 

whereby sometimes the closest facility is unavailable to respond. So, it would be beneficial 

if we have another facility within range and time of coverage so as not to miss the demand. 

It would be considered as a secondary proxy for service availability. 

Indeed, we try to cover demands more than once in order to decrease the probability of 

server unavailability in case of congestion. One important concern is the possible conflict 

or trade-off between primary and backup coverage, whereby improving the former may 

hamper the latter. Hogan and ReVelle (1986) presented one of the earliest maximal backup 

coverage models.  

For the purpose of this study, in the post-modelling analysis, the access times from each 

grid cell (incidents are projected on mesh of grid cells, see also Section 3.4.1.3) to all 

vessels within their maximum range are calculated and those cells that are within the 

maximum access time from at least two vessels are assumed to have backup coverage. 

(4) Gini Index: This criterion is measured as the deviation level of the access time to 

all incidents. 

Service equality metrics have only been included in relatively few studies. The idea is to 

locate facilities in order to make them equally accessible to all customers. Several indexes 



 
 

55 
 

have been used to measure the equality, such as the range (i.e., the difference between the 

shortest and the longest distances between customers and assigned facilities), the variance 

of distances, and the Gini index.  

Mulligan (1991) and Marsh and Schilling (1994) discussed the wide variety of ways that 

equality (or inequality) can be measured with the strengths and weaknesses of each method. 

For example, measures such as the range of values and maximum absolute deviation are 

extremely sensitive to extreme values and ignore the interior of the distribution, while 

measures such as the variance are not normalized, and are thus incomparable between times 

or jurisdictions (Burkey et al. 2012). 

For evaluating this criterion we have chosen the Gini index, a very popular index in 

economic studies for investigating income level equity which was first suggested by Gini 

(1921). The Gini index always has a value between zero (indicating total equality) and one 

(indicating total inequality). The Gini coefficient is usually defined mathematically based 

on the Lorenz curve, which plots the proportion of the total income of the population (y 

axis) that is cumulatively earned by the bottom x% of the population (see Figure 3-1). The 

line at 45 degrees thus represents perfect equality of incomes. The Gini coefficient can then 

be thought of as the ratio of the area that lies between the line of equality and the Lorenz 

curve (marked A in the diagram) over the total area under the line of equality (marked A 

and B in the diagram); i.e., Gini = A / (A + B).  
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Figure 3-1- Gini index calculation using Lorenz curve 

We adopt this concept for the case of emergency response access times whereby the access 

times to different areas (i.e. incidents) substitute for the income level of individuals in the 

formula. The following simplified formula (Dixon et al. 1987) is used to compute the Gini 

index. The index is defined as 

ܩ = ଶ ∑ ௜௬೔೙೔సభ௡ ∑ ௬೔೙೔సభ − ௡ାଵ௡ (3.1)

where access times (yi) are in ascending order and i will be their rank in order (i =1 to n). 

(5) Maximum access time: Another relevant criterion in emergency location analysis 

is the maximum access time to all customers, which we would like to minimize.  

This metric can be considered as an additional index for measuring equality level of 

service, since the range of variation of access times is smaller. The center problem is a 

popular type of problem in location modelling whereby the objective is to minimize the 

maximum distance from the located facilities to reach all customers. One issue with using 

this criterion is the possibility of outliers that might dramatically affect the metric value. In 

this study, in order to overcome the issue of rare outliers in remote areas, we take the 
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average of the worst ten percent of access times to all incidents as one of the metrics for 

measuring equality of service provided to customers. 

 Case Study: Data Preparation and Modelling 

To address the deficiencies discussed in the previous section in the field of maritime SAR 

location modelling, we conduct a multiple criteria decision analysis for our case study and 

furthermore, we propose a method for simulating future incident locations rather than just 

simply using the historical incident positions. This section explains the process of data 

preparation and mathematical modelling for the case study. All operational information 

used in this case study is retrieved from actual data supplied by the CCG. Also, necessary 

goals and assumptions are established in consultation with CCG experts. 

3.4.1. Preparation for Modelling

This study requires real and valid data about the resources and the demand for response 

services. The dataset used in this study derives from the CCG SISAR (Search and Rescue 

Information Management System) database which collects information on all maritime 

incidents. The Atlantic Canada region serves as our research area, with the Coast Guard’s 

administrative borders illustrated in Figure 3-2. The incident dataset, which has been 

checked and cleaned for quality control, is available from 1988 to 2013, but to have a more 

accurate analysis, we chose the most reliable recent data from 2005 to 2012 excluding 2007 

which has significant accuracy issues, for this study. After performing necessary data 

cleaning, we obtained a refined dataset with 8,033 incident records. 
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Figure 3-2- Atlantic Canada region and historical incidents 

3.4.1.1. Existing SAR Stations 

According to information acquired from the CCG, currently there are 18 inshore SAR 

stations in Atlantic Canada which are able to house SAR vessels. It is assumed that all 

stations are capable to accommodate all vessel types and no restriction is applied in this 

regard. Moreover, it is assumed that maximum one vessel of each category can be located 

in each station. Also, 19 potential offshore stations are to be considered in our analyses. Of 

course, this is not a station in the traditional sense, but a central location for a vessel that 

spends much of its time patrolling or performing other tasks at sea. Initially, these offshore 

stations are assumed to be at the mean point of each Maritime subarea in Atlantic Canada 

as determined by the Coast Guard. So, we will have 18 stations inshore and 19 potential 

offshore stations. One assumption in the model, represented as a constraint, is that small 

CCG vessels, called lifeboats, cannot be located at offshore stations because their 

maximum traveling range is not sufficient for patrol tasks and also they cannot endure for 

a long time offshore. This restriction is applied in the mathematical models through 

defining an appropriate constraint. 

3.4.1.2. Vessel Types and Characteristics 

As mentioned earlier, there are many different SAR vessels utilized by CCG. In this study, 

we use the actual information for the currently serving vessels. There are 24 vessels whose 

primary task is SAR response in Atlantic Canada. These vessels include lifeboats, multi-
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tasking ships and offshore patrol vessels. Each of these vessels has its own characteristics 

and capabilities.  

All currently available Coast Guard vessels which are capable of providing SAR services 

are categorized into four categories in order to simplify the modelling. The vessel 

categories with their specifications are shown in Table 3-1. The effectiveness of response 

thus depends on the fleet composition due to notable differences in these vessels’ 

characteristics which affect coverage and access time. 

Table 3-1- Vessel categories with characteristics 

Vessel Class Vessel type Range 
(Km) 

Vessel 
Length (m) 

Cruising 
Speed 

(Km/hr) 

Number 
available 

Regular Lifeboat class  Type 1 185 16 26 9 

Fast Lifeboat class  Type 2 185 15 41 7 

Offshore Patrol vessel Type 3 10000 60-70 31 4 
Large multi-task vessel Type 4 6000 80-90 22 4 

 

3.4.1.3. Land-Avoided Distance Matrix 

The distances between incidents’ locations and SAR stations are required to perform model 

calculations. There are different methods for distance calculation. The most common way 

is calculating straight Euclidean distance. However, there is an issue for using straight or 

direct route calculation in this study. In some cases, it is not possible to use the straight 

route because of land obstacles in the way. To deal with this problem, we have to use a 

previously developed land avoidance algorithm by the MARIN (Maritime Activity and 

Investigation Network) research group to find the shortest route between incidents and 

vessels by calculating Euclidean distance between grid cells while avoiding land obstacles. 

As mentioned earlier we use a mesh of square grid cells in the study area to project the 

incident locations in order to simplify and accelerate the computation. For simplification 

of calculation, it is assumed that all incidents occur at the centroid of the associated cell. 

To have more accurate projection of incident locations and more accurate distances, we 

use a variable grid cell size: smaller cells for areas close to shore with high density of 
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incidents (1/4 degree × 1/4 degree), larger cells farther out in the ocean (1/2 degree × 1/2 

degree) and even larger cells of size (1 degree × 1 degree) in remote areas (Figure 3-3). 

Some grids around the shoreline are partial due to overlap with land. 

The distances are collected in the matrix D, which includes distances between all grid cells 

where incidents may occur (using cell centroids) and potential stations. This matrix has 

been populated with land avoided distances and has 1,617 rows (grid cells) and 37 columns 

(stations), where dij denotes the distance of incident i from potential station j (for n incident 

grids and m stations). In addition, the number of incidents that occurred in each grid cell is 

counted. Figure 3-3 demonstrates the mesh of grid cells on the map, colour-coded based 

on the count of historical incidents. 

 

Figure 3-3- Historical incidents on grid cells 

1.1.1. Demand Density Estimation 

In order to use an appropriate estimation for potential incident locations in the future that 

could represent the stochasticity of demand, we attempt to use a spatial statistical method 

to extract the distribution of incidents that occurred in the past and use the estimated 

densities as a proxy of demand weights. Knowing that an incident occurred at specific point 

in the past does not ensure that it will happen at the same point again, nor preclude events 

at any other points even if there were no incidents there in the past. The historical data 

could be used as a strong predictor of future occurrence of incidents though. With this 
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proposed approach, we take advantage of actual historical data for extracting underlying 

patterns and distributions. 

There are several methods to find the distribution for spatial data including quadrat 

analysis, naive estimation, and kernel density function.  Extracting patterns and 

distributions from historical incidents can be accomplished using a Kernel estimation (KE) 

method which is a quite popular method for analyzing spatial point patterns. For each 

individual point (i.e. cell centroid), the method searches neighbouring area to provide a 

density estimate based on the number of events (points) in the search area and their distance 

from that centroid. The other important advantage of the kernel density method over some 

alternate methods is that it works properly with gridded data and because we projected our 

demand (incident locations) over a mesh of grid cells, that is relevant. There is a variety of 

different kernels that have been used for KE. The quartic kernel is encountered frequently 

in the point pattern analysis literature (Bailey and Gatrell 1995). The KE with the quartic 

kernel can be given by: 

(ݔ)መ௞ߣ = ∑ ଷగఛమ ቀ1 − ௗ೔మఛమቁଶௗ೔ஸఛ   (3.2), 

where ߣመ௞(ݔ) represents the estimated density of kernel (x) and xi are points with di distance 

from the centre of the kernel (x) which is less than the bandwidth τ (determining the size 

of the kernel). Simply stated, the kernel equation sums up a function of distances of all 

points that are within the search area (a circle with center x and radius τ). The bandwidth 

defines the level of smoothness of the kernel function whereby the larger bandwidth size 

results in a smoother function while the smaller one would lead to more saw-toothed profile 

across the grid cells. Hence, a trade-off value should be chosen depending on the density 

of the points to avoid over- and under-smoothing.   

Using past incidents, as most other studies have done, implies the assumption that the 

future will behave exactly like the past, while using the procedure proposed in this study 

assumes that the pattern of incidents (i.e., the underlying probability distribution) remains 

the same but the instances will vary. This is a less restrictive assumption that will result in 

a more robust analysis. Furthermore, our approach does not ignore potential demand in 
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areas that haven’t experienced any incidents in the recorded past as kernel density 

estimation takes the neighbouring area of each point into account when ‘distributing’ the 

demand spatially.  

To apply the kernel density estimation method, several parameters including the type of 

kernel function, cell size and bandwidth are required to be determined which are listed 

below. The QGIS software version 2.23 was used for applying the kernel density 

estimation. 

 Kernel type: Quartic 

 Cell size: (1/4 × 1/4) degree; the centre of each grid cell is used for kernel density 

calculation. 

 Bandwidth (τ): variable size between (1/4 - 1 degrees), 1/4 degree for areas close 

to the shoreline with high density of incidents, 1/2 degree for areas further from 

shore and low incident density, and one degree for areas further offshore with a 

very low number of incidents in the vicinity. 

The incident density estimates obtained from applying KE are used as demand weights (wi) 

in the optimization models. 

3.4.2. Study Assumptions 

The following assumptions are considered in the study: 

(1) The average speed used for travel time calculations of SAR vessels is assumed to 

be equal to their cruising speed which comes from their build specifications. 

(2) As we focus on access time, which basically refers to travel time, the rescue 

operation time (the time required for SAR activities from arriving at the incident 

position until the completion of the SAR task, possibly including search time) is 

ignored in all models. 

(3) No environmental impacts such winds, sea state, tides, etc., are taken into account. 

(4) No time is considered for coordination or preparation of the response. 

(5) The maximum access time in this study for an acceptable level of primary and 

backup coverage is considered to be 6 hours based on consultation with CCG 
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experts. This parameter can be varied to examine the sensitivity of model results to 

the maximum access time. This constraint is only applied to the maximal covering 

model, but not to the p-median model where there is no limit on access time, 

although it is used for calculation of primary and backup coverage in both models’ 

solutions. 

(6) We assume that the available response vessels are those in the current CCG fleet 

(fixed number of vessels in various classes). 

3.4.3. Modelling: Different Configurations 

Some modifications are made to two prototypical location models to customize them based 

on the real SAR problem. First, we solve an MCLP model, which includes multiple types 

of facilities. The objective function of the model is to maximize the number of incidents 

which are within a specified time (six hours in this study) from the closest facility for a 

given number of available facilities. In the second model, we apply a revised p-median 

model to minimize the mean access time to all incidents from their respective closest 

facility. We also examine two additional scenarios by adding a constraint to each of these 

models to restrict the location of vessels to inshore stations. This addresses the questions 

of whether it is possible to obtain an acceptable level of service without locating vessels 

offshore which apparently incurs extra operating costs. 

This section provides the formulation of the models. 

3.4.3.1. A Multiple Facility Type MCLP 

The goal of this model is to maximize coverable demands within predetermined travel time 

for a given number of SAR vessels. The full list of variables and parameters of the model 

is given below.  

Indices: 

i  I: Grid cell index (demands)  

j  J: Index for potential vessel stations 

JS  J: Set of offshore stations 

 k  K: Index for vessel types  
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Variables: ݔ௜ : Binary variable for primary coverage at cell i ݕ௝௞ ∶ Integer variable for number of vessels type k located at station j 

Parameters: ݎ௞: Coverage distance (range) of vessel type k ݌௞:  Available number of vessel type k ݒ௞:  Cruising speed of vessel type k ݀௜௝:  Distance between grid cell i and station j ݓ௜:  Number of incidents in grid cell i 

t:          Maximum access time for acceptable coverage ܽ௜௝௞ ≔ 1 if: (݀௜௝ ≤ ௞ݒ/௞ and  ݀௜௝ݎ ≤ else  ܽ௜௝௞ (ݐ ∶= 0  

Parameter defining whether grid cell i is within response range and 

acceptable access time of vessel k positioned at j 

The formulation of the proposed model is as follows. 

Problem 1: Max:  ܼ = ∑ ௪೔௫೔೔∑ ௪೔೔  (3.3) 

s.t. 

௜ݔ ≤ ∑ ∑ ܽ௜௝௞ ௝௞௞௝ݕ , ∀ ݅ Primary coverage constraint (3.4) 

∑ ௝௞௝ݕ ≤  ௞, ∀ ݇  Fixed number of available vessels in each type(3.5)݌

௝௞ݕ = 0   ∀ ݆ ∈ ,ௌܬ ݇ ∈ {1,2} Offshore location constraint (3.6) 

The objective function (3.3) maximizes the percentage of incidents with primary coverage. 

Constraints (3.4) restrict the primary coverage to grid cells that are within pre-specified 

time from a located vessel. The maximum number of vessels in each vessel category is 

limited by constraints (3.5). Also, constraints (3.6) ensure that we do not locate lifeboats 

(vessels type 1 and 2) at the offshore stations. 
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3.4.3.2. Multiple Facility Type P-Median 

The objective of the second model is to minimize mean access time to all incidents for a 

given number of SAR vessels. Many parameters and variables are similar to the maximal 

covering model. Below is the list of additional parameters and variables followed by 

formulation of the model. 

Variables: ݑ௜௝௞ :  Binary allocation variable for grid cell i to vessel type k located at station j 

Parameters: ܾ௜௝௞  := 1if:  ݀௜௝ ≤ ௞ else  ܾ௜௝௞ݎ ∶= 0   

Parameter defining whether grid cell i is within response range of vessel k 

at station j 

Problem 2: Min ܼ = ∑ ∑ ∑ ቆ௪೔௨೔ೕೖ ൬ௗ೔ೕ ௩ೖ൘ ൰ቇ  ೕ೔ೖ ∑ ௪೔೔   (3.7) 

s.t. ∑ ∑ ௜௝௞௝௞ݑ = 1, ∀ ݅ Grid cell allocation to located vessels (3.8) 

∑ ௝௞௝ݕ ≤  ௞,  ∀ ݇ Fixed number of available vessels in each type (3.9)݌

௜௝௞ݑ  ≤ ܾ௜௝௞ ,݅ ∀ ௝௞ݕ ݆, k Allocation to SAR vessels (3.10) 

௝௞ݕ = 0   ∀ ݆ ∈ ,ௌܬ ݇ ∈ {1,2} Offshore locations constraint (3.11) 

The objective function (3.7) minimizes the weighted average of access time to all incidents. 

Constraints (3.8) require that all demand cells are assigned to exactly one located vessel. 

Inequalities (3.9) constrain the maximum number of available vessels in each category. 

Restricting the allocation of vessels to those incidents that are within the coverage range is 

applied by (3.10). And as in the previous model, constraints (3.11) guarantee that lifeboats 

are not located at the offshore stations. 
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These models were built in the MPL environment and solved by the GUROBI 6.5 solver, 

producing the optimal solutions in 14.09 and 15.73 seconds respectively using a computer 

with CPU Intel CORE i7 and 8GB RAM. 

3.4.3.3. The Current Arrangement of Vessels 

This configuration aims to simulate the current situation of SAR vessel usage given the 

actual location of vessels, as a basis for comparison of solutions. The current location of 

CCG vessels included in this study by category is shown in Figure 3-4. Based on this 

information, the response allocation of resources to the forecasted incidents is simulated 

taking into account the vessels’ characteristics (response range and speed) and the policy 

of allocating incidents to the closest vessel within response range. It should be noted that 

there is no reliable observation on actual response travel times. Even if such information 

were available, given that many other factors (e.g. weather and sea conditions) affect actual 

response times, for consistency and comparability of the results with the model solutions 

it is better to take our simulation approach. 

 

Figure 3-4- Current locations of SAR vessels in Atlantic Canada 
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3.4.3.4. Models with Inshore Location Restriction 

By including additional constraints to restrict all vessels to locate at inshore stations, we 

examine the effect of excluding offshore stations from the potential vessel locations. This 

will basically allow us to investigate whether it is possible improve the service level 

compared to the current arrangement of vessels without locating any vessels in the offshore 

areas. 

3.4.3.5. Examining Solutions’ Robustness: Simulation of Incident Scenarios 

The kernel density estimates are used as the basis for generating random incidents for 

future demand scenarios. The process of using kernel density estimations for simulating 

future demand is performed through the following steps: 

(1) For each grid cell, the average of kernel estimates within the cell square is computed 

(these values are visualized in Figure 3-5).  

(2) Computed incident density rates are multiplied by the grid cell area (to account for 

the variable size grid cells) to compute the expected number of incidents for each 

cell.  

(3) Calculated cell incident counts are scaled (multiplied by a fixed value) so that they 

sum up to the average number of incidents per year. These scaled values are 

considered as the mean parameter of a Poisson distribution to be used for generating 

a random number of incidents over the mesh of grid cells in the area of interest. 

(4) One hundred sets of random incident counts are generated based on the calculated 

Poisson rates. These randomly generated scenarios represent the stochastic future 

demand and are used for validation of model solutions.  



 
 

68 
 

 
Figure 3-5- Incidents Kernel estimates on gridded map 

 

3.4.4. Discussion of Our Results 

3.4.4.1. Optimization Model Solutions 

The optimal solutions found for the different scenarios were compared to each other as 

well as to the current arrangement of vessels in terms of discussed assessment criteria. 

Results of this comparison analysis are summarized in Table 3-2.  

Table 3-2- Solution comparison results 

Model 
Primary 

Coverage 

Backup 

coverage 

Mean access 

time (hours) 

Gini 

index 

Mean access 

time to worst 

10% (hours) 

MCLP 95.42% 60.19%  2.75  0.393   8.40  

p-median 94.56% 64.69%  2.50  0.404   7.77  

Current arrangement 89.38% 60.18%  3.14  0.467   11.57  

Inshore MCLP 89.07% 78.06%  3.23  0.474   12.51  

Inshore p-median 88.79% 77.70%  2.98  0.472   11.01  

 

As Table 3-2 shows, the MCLP model has slightly better performance regarding the 

primary coverage criterion compared to the p-median (95.42% vs. 94.56%), whereas the 
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p-median model generates a solution with significantly lower (better) access time (around 

0.25 hour) and higher level of backup coverage (64.69% vs. 60.19%). Regarding the 

equality criteria, it is observed that the MCLP has a slightly better performance than the p-

median solution in terms of the GINI index. This can be explained by the point that p-

median tries to minimize the sum or mean access time so it doesn’t care about the equality 

(fairness) that much, while MCLP does its best to keep all demand access times under the 

maximum acceptable coverage time in order to maximize the primary coverage. Although, 

with respect to the access time to remote incidents where we measure it by average access 

time to the worst 10% of incidents, p-median has a marginal advantage. Overall, neither of 

the two model solutions dominates the other one in all criteria, although p-median has the 

advantage in most cases and is competitive in others.  

When it comes to comparing the models’ solutions with the current situation, we see a 

substantial improvement in almost all indices. Primary coverage increases by at least 5%, 

mean access time could be lowered by up to 40 minutes, and the equality can be also 

improved significantly. Moreover, backup coverage can go up by 4.5% if we use the p-

median solution. It is obvious that there is a trade-off between the different criteria, and 

one model with a single objective cannot perform the best in all aspects. But according to 

the observed results, we can say that both optimization model solutions dominate the 

current arrangement based on the criteria we have chosen and measured. In the case where 

we preclude potential offshore stations, running the two models with only inshore stations 

resulted in a competitive solution compared to the current arrangement where we do have 

some vessels patrolling offshore. The most interesting point here is that we can increase 

the backup coverage, to more than 78%. This might be the result of siting more vessels in 

the areas close to shore, which are generally the areas where more incidents occur. 

The spatial variation of the vessel locations from the MCLP and p-median solutions is 

presented in Figure 3-6 and Figure 3-7 respectively. Although these two configurations 

have some differences, in general there are very similar and substantially different from 

the current arrangement of vessels (Figure 3-4) as the solutions obtained by both models 

suggests relocating about 50% of the vessels from their current station. Should this degree 

of change be deemed unacceptable, one could add constraints to the MCLP and p-median 
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formulations that limit the number of changes made to the current arrangement, and this 

approach could also serve to examine the tradeoff between vessel relocations and the 

amount of service level improvement.  

  

 

Figure 3-6- Maximal covering solution's arrangement 

 

Figure 3-7- P-median solution's arrangement 
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3.4.4.2. Simulation validation 

In order to examine the robustness of solutions over different simulated incident scenarios, 

three assessment metrics (criteria) are measured for each simulated scenario. That way we 

can see the fluctuation of metrics when incident locations change to observe how sensitive 

the model solutions are to the variations in demand. Figure 3-8 to Figure 3-10 demonstrate 

the variation of three main criteria over hundred simulated scenarios using box plots. 

According to these observations, the variation of metrics for the two main model solutions 

over different simulated scenarios is small. In addition, the observed results indicate a clear 

distinction of the solution performances in that the optimization model solutions dominate 

the current arrangement of resources with respect to the most criteria. In particular, Figure 

3-8 confirms that both model solutions provide substantially better primary coverage than 

the current arrangement. Also, the performance of two models is very close although the 

MCLP has a slight edge as expected. The variation of metric values is very low. With 

respect to backup coverage, the simulation results validate our findings as p-median has a 

substantially better performance compared to other configurations (Figure 3-9), although 

we observe a higher level of variation compared to primary coverage. Observations on 

mean access times are interesting as well, where again the p-median solution performs the 

best, while the MCLP lies in between that and the current arrangement (Figure 3-10Figure 

3-10). Overall, examining the performance of different vessel configurations over the one 

hundred simulated demand scenarios verifies the findings of the optimization models that 

used estimated demand weights as input. 
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Figure 3-8- Primary coverage variations over simulated incident scenarios 

 

Figure 3-9- Backup coverage variations over simulated incident scenarios 



 
 

73 
 

Figure 3-10- Mean access time variations over simulated incident scenarios 

With regard to the distribution of access times to all incidents, it is quite important for us 

to reach as many incidents as possible in the minimum amount of time. Figure 3-11 presents 

the cumulative distribution function of access times to all incidents for the solutions of the 

proposed models compared to the current situation. The p-median solution produces access 

to the maximum number of incidents within two hours (more than 50% of all incidents). 

As we move toward six hours, the MCLP solution starts performing better which is not 

surprising as we expect that to provide better primary coverage (access within 6 hours). 

Moreover, it can be clearly seen that the p-median outperforms the current arrangement 

while that is not the case for the MCLP throughout the range. 
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Figure 3-11- Cumulative distribution function of access times

3.4.4.3. Sensitivity to relocation 

To investigate the sensitivity of the model solutions to the number of relocations required 

from the current vessel positions, a parametric analysis was conducted for the p-median 

model. An additional constraint is included to restrict the total number of vessel relocations 

from the current position, which is then altered to see how the solution changes. According 

to the results, the number of vessels that need to move for the p-median solution with no 

restriction is 12 vessels (50% of the fleet). Table 3-3 shows the sensitivity of the solution to 

this constraint. These results are useful for decision makers since it shows how much 

improvement is possible with fewer relocations, even though it is likely that, due to 

operational difficulties, it would not possible to implement all relocations suggested by the 

model solution. For instance, with moving only six vessels (25% of the fleet) we can drop 

the access time down from 3.14 to 2.67 hours thus achieving about 75% of the maximum 

possible reduction in mean access time (which would be obtained by 12 relocations). 
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Table 3-3- Sensitivity of the p-median model solution to number of relocations allowed 

Number of 
relocations 

Primary 
coverage 

Backup 
coverage 

Mean access 
time 

% possible improvement in 
access time 

12 94.56% 64.94% 2.50 100.00% 
11 94.42% 61.73% 2.52 96.59% 
10 94.37% 67.30% 2.55 91.26% 
9 94.40% 61.27% 2.58 87.38% 
8 92.89% 67.78% 2.61 83.02% 
7 92.92% 63.52% 2.64 78.17% 
6 92.88% 67.32% 2.67 73.82% 
5 92.54% 67.31% 2.70 69.01% 
4 92.88% 60.88% 2.75 60.57% 
3 91.88% 64.50% 2.81 51.28% 
2 91.89% 57.84% 2.88 40.99% 
1 91.40% 58.91% 2.97 26.67% 

 

 Conclusion and Outlook 

In this study, we applied two common location models in a maritime SAR Location 

problem. For these models, four common SAR vessel types which are used in practice and 

have different capabilities are considered. Two integer-linear optimization models with 

different objectives, maximizing primary coverage and minimizing mean access time, are 

utilized. We have chosen five performance metrics of interest for decision makers and the 

public to assess the solutions. We found that the p-median model provides a better solution 

in terms of three metrics (access time, backup coverage and access to furthest incidents), 

while the MCLP works slightly better for primary coverage and service equality. Overall 

performance of both model solutions is close. Notably, both of these optimization models 

provide solutions with significantly better performance versus the current arrangement of 

SAR vessels taking into account all decision criteria.  

A simulation procedure based on kernel density estimation was proposed and used in this 

study to generate several demand scenarios to represent the stochasticity of demand in the 

future. The variation of models’ solution performance over different demand scenarios are 

examined and as observed there are not large variations across simulated scenarios. Results 

of this study could be useful for guiding decisions with regards to SAR vessel placements 
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in order to improve the efficiency of using resources and increase the service level. 

Sensitivity analyses can be performed to help explore particular circumstances such as the 

impact of changes in service level requirements or available resources. 

Decision makers can use the models to gain insights for rearrangement of current vessels, 

procurement of new vessels, establishing new stations or decommissioning decisions, and 

society would benefit from improvements in the service accessibility and effectiveness 

resulted from applying the proposed solutions.  

There are several potential future extensions of this work. It is apparent that the two models 

used in this research have conflicting objectives and each of two models concentrates only 

on one objective and another one is ignored. One possibility is to use multi-objective 

optimization methods to take into account all criteria as objectives in one model, so as to 

obtain additional interesting trade-off solutions on the non-dominated frontier. One 

important factor which could make the analysis more realistic and useful is considering 

different characteristics of vessels and incidents which couldn’t be done in this study due 

to unavailability of required information. Some incidents may need a special type of 

response or some CCG vessels may not be able to serve specific types of incidents. In other 

words, all vessels are not equally effective in responding to different types of incidents. 

Congestion is also an important issue whereby there is the possibility that the closest vessel 

is not available to respond or it is busy with another task. The models could be extended to 

take this into account through probabilistic and queuing models. Optimizing the fleet 

composition could also be included in a more comprehensive resource planning model that 

involves more strategic decisions with budget implications. The proposed model could be 

further extended to future response needs by modelling trends in incidents, incident rates, 

and/or exposure metrics like traffic levels. 
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Chapter 4 Determining the Optimal Mix and Location of Search and 

Rescue Vessels for the Canadian Coast Guard 

Amin Akbari, H.A. Eiselt, W.D. MacMackin, Ronald Pelot 

This section has been accepted for publication in the “International Journal of Operations 

and Quantitative Management”. 
 

Abstract 

The Canadian Coast Guard is in charge of search and rescue missions off the east coast of Canada. 
It accomplishes this task with a number of different vessels. In order to determine the best possible 
type of equipment and the optimal locations of the Coast Guard vessels, we formulate an integer 
optimization problem that minimizes the access time required by the Coast Guard vessels to provide 
service, given a budget and a required coverage. The results demonstrate a large discrepancy 
between the existing equipment and the vessels that would optimally be used, thus potentially 
providing a much improved service. 

Keywords: Coast Guard; location problems; fleet configuration; p-median; covering models  
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 Introduction 

When driving a car on a highway, we may encounter an accident or other emergency. In 

such a case, given a functioning cell phone, help is usually more or less readily available 

within a fairly short amount of time. The situation on the oceans is generally different, 

mostly due to the fact that rescue facilities are more remote, much more expensive to 

operate, and typically considerably slower, thus rescue times are much longer, and the 

resulting damage to lives and property is often considerably higher. Furthermore, different 

incidents demand different rescue modes and equipment: a large container vessel in distress 

at sea will require very different response equipment than a fishing vessel near the coast 

that experiences a fire, or a yacht that has a man overboard.  

The search and rescue problem is particularly important in the Canadian Coastal waters. 

As Transport Canada (2016) points out,  

“Canada has the world’s longest coastline, at more than 

243,000 kilometres [in excess of 150,000 mi, ed.]. Each 

year, 80 million tonnes of oil are shipped off Canada’s east 

and west coasts. On any given day, there are 180 vessels 

(ships known as ‘SOLAS vessels,’ or those over 500 tonnes 

gross tonnage that operate internationally) operating within 

Canada’s Exclusive Economic Zone (200 nautical miles 

from shore).” 

These are vast areas of open water that have to be served by Coast Guard vessels, thus their 

positioning is crucial. Coast Guards typically have a number of different vessels with 

different capabilities, whose task is to respond to distress calls of different degrees of 

urgency, which requires a triage system. One issue that somewhat simplifies matters is that 

much of the traffic takes place in shipping lanes. An example for such lanes along the 

Canadian Coast in the North Atlantic is shown in Figure 4-1. The lane in the upper right 

part is the traffic that passes Cape Breton, Nova Scotia to the North and leads into the Saint 

Lawrence Seaway system and eventually the Great Lakes. To its south, major lanes split 

off along the coast of Nova Scotia to the Northeastern United States. Finally, smaller lanes 
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form a star-shaped pattern near the left side of the Figure. They connect the New Brunswick 

port of Saint John and Nova Scotia’s port of Yarmouth with Boston, Baltimore, and other 

places in the Northeastern United States.  

 

Figure 4-1- Major shipping lanes off the Eastern Canadian coast (landmass shown in gray) (Fisheries & 
Oceans Canada 2016) 

The task of planning an efficient system for search and rescue operations requires locating 

appropriate equipment at appropriate places at the lowest possible cost. The question of 

where to locate the rescue vessels such as lifeboats, patrol vessels and multitasking ships 

is as important as the choice of equipment: even with the best and most appropriate 

equipment, if it is located very far away, it will take a long to time to respond with the 

associated loss of life and property. And this is the focus of this paper: what composition 

of search and rescue vessels do we choose and where do we locate them, in order to be able 

to respond as efficiently as possible? 

In order to simplify matters, we will adhere as much as possible to the usual terminology 

used in location theory; see, e.g., Eiselt and Sandblom (2004), Eiselt and Marianov (2011) 

Daskin (2011), Eiselt et al. (2015) and Laporte et al. (2015).The ships or boats that are 
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potentially in need of assistance are referred to as “customers,” while the vessels used in 

the search and rescue effort are referred to as “facilities.” The space, in which customers 

and facilities are located and will locate is the Euclidean plane, which, however, has been 

discretized, so as to make the problem computationally tractable. Since all facilities move 

in water, we can safely use the 2 norm, i.e., Euclidean (straight-line) distances with 

avoiding land obstacles. Since the main objective of this study is to locate facilities, so as 

to provide customers with help as quickly as possible, we will consider two criteria. The 

first criterion concerns access time, while the second criterion deals with the area over 

which the rescue facilities can reach and provide assistance within a pre-specified time to 

customers. In order to operationalize and define quantitative measures for our purpose, we 

will use the average access time between a customer and his closest rescue facility, as well 

as the number of customers located within a predetermined distance D from a facility. 

These are best known as p-median problem (also known as multi-Weber problem or, 

alternatively, location-allocation problem), and a maximum covering problem. These are 

the starting points used in this paper.  

The remainder of this paper is organized as follows. Section 4.2 discusses the basic models 

that are the foundation of the problem formulation applied in this paper. Section 4.3 

investigates the specific situation of the Canadian Coast Guard and formulates a 

mathematical model that determines the optimal mix of search and rescue vessels and the 

locations of the vessels, so as to minimize access time while ensuring a chosen coverage 

level and staying within the Coast Guard’s means. Section 4.4 displays the solutions of the 

model and discusses the results. Finally, Section 4.5 summarizes our findings and presents 

some potential future research strands. 

 The Basic Models 

This section will first establish the usual p-median and maximal covering models, which 

form the basis of our model. This will also allow us to introduce the parameters, the 

variables, and the notation we will use in the model under investigation. The formulation 

for the model discussed in this paper is then presented.  
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Denote by I the set of customers in the model, so that |I| = m. Similarly, the set J with |J| = 

n represents all potential facility locations. For computational reasons, we will discretize 

space and consider only a finite number of customer locations and possible facility 

locations. Furthermore, we define the distance dij between any two points (typically, we 

are interested in distances between customer points i and facility location points j) as the 

shortest distance between points i and j. Furthermore, we will be using the user-defined 

service standard D, which indicates a distance between customer and facility, within which 

a customer will be considered covered, which is why it is frequently also referred to as a 

covering distance. For instance, if a facility such as an ambulance, a fire truck, or a rescue 

vessel can reach a customer within, say, half an hour, and within the given context 30 

minutes correspond to 20 km, then any customer, who is no farther than 20 km from the 

facility closest to him, will be considered covered.  

Two comments regarding possible and important extensions should be made here. First of 

all, the model is appropriate only in case of very low demand density, i.e., a small number 

of incidents that require the attention of an emergency facility. Put differently, the model 

makes sense only if the capability of the combined forces of all vessels far surpass the 

number of incidents, i.e., the need. If this is not the case, congestion becomes an important 

issue, which may require serving a customer from a facility that is not closest to him. For 

location models with congestion, see, e.g., (Berman and Krass 2015). Secondly, coverage 

in practice is not a zero-one affair. If, to use the aforementioned example, the covering 

distance is 20 km, then a customer, who is, say 21 km from his closest aid facility, for 

practical purposes cannot be referred to as “not covered,” even though the basic model will 

consider him as such. What is more realistic is what is commonly called a gradual covering 

model, (Church and Roberts (1983); Berman and Krass (2002); Drezner et al. (2004), and 

Eiselt and Marianov (2009)), in which the degree of coverage decreases with increasing 

customer–facility distance. The gradual covering model no longer uses the covered-not 

covered dichotomy, but assigns instead degrees of coverage: a number close to zero 

indicates that the distance between a customer and his closest facility is significant, 

whereas a number close to one shows that the facility closest to a customer is quite close. 
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While not probabilities per se, the numbers could be understood as an indicator of the 

likelihood that a customer could be reached and served within the covering distance D.  

The basic maximal covering model is described by Church and ReVelle (1974); for a recent 

survey, see García and Marín (2015). Again, customers are located at sites i  I, whereas 

facilities may be located at points j  J. A total of p facilities are to be located, where the 

value of p is typically determined by the decision maker’s budget for this purpose. The 

distance (assumed to be along the shortest path) between customer point i and (potential) 

facility site j is denoted by dij  i  I and j  J. The set Ni = {j  J: dij  D} then denotes 

the set of facility sites j, from which a customer at point i is located within the covering 

distance D. Furthermore, with each customer point i  I, we associate a weight hi, which 

typically indicates the demand for service at site i, which is normally expressed by its 

proxy, the population at site i. As such, these weights indicate the number of incidents that 

requires attention from service (rescue) facilities. 

We can then determine two types of variables. First, there are the binary location variables 

yj, which assume a value of one, if we locate a rescue facility at point j  J, and zero if we 

do not. We also need binary covering variables xi, which assume a value of one, if a 

customer location is covered by a service facility (which is the case, if it is within the 

covering distance D), and zero otherwise.  

The maximal covering problem can then be described as follows.  

 P1: Max z = 
i i

i I
h x          (4.1) 

 s.t.    
i

i j
j N

x y i I         (4.2) 

 j
j J

y p          (4.3) 

 yj = 0 or 1  j  J        (4.4) 

 xi = 0 or 1  i  I        (4.5) 
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The objective function (4.1) in problem P1 maximizes the coverage that the facilities 

provide, constraints (4.2) ensure that a customer is only considered covered if at least one 

facility is located within its covering distance, the single constraint (4.3) indicates that 

exactly p facilities are to be located, and the specifications of the variables shown in (4.4) 

and (4.5) indicate the binary nature of the variables in this model.  

While the maximal covering problem maximizes the number of customers who will receive 

adequate service from the facilities, it does not say anything how good the service actually 

is. The p-median problem can do that. It was first put forward by ReVelle and Swain 

(1970), and it requires a few different definitions. The parameters hi, dij, and p have already 

been defined, as have the location variables yj. We do not need covering variables, but we 

need assignment variables xij, which are one, if the customers at point i  I are assigned to 

the facility at point j  J and zero otherwise. The (uncapacitated) p-median problem can 

then be written as  

 P2: Min z = i ij ij
i I j J

h d x        (4.6) 

 s.t. ij
j J

x  = 1  i  I        (4.7) 

 xij  yj  i  I, j  J        (4.8) 

 
Jj

j py          (4.9) 

 xij  0  i  I,  j  J;  yi = 0  1  j  J.      (4.10) 

 

The objective function (4.6) of problem P2 minimizes the sum of customer-facility 

distances of all customers (which is, given that each customer is actually served, equivalent 

to the average access time). The constraints (4.7) ensure that each customer is allocated to 

exactly one facility, the constraints (4.8) guarantee that service from a facility at a node nj 

is provided only if there exists a facility at that node, and constraint (4.9) requires that 
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exactly p facilities are located. The specifications of the variables are expressed in 

constraints (4.10).  

Pelot et al. (2015) presented several location models including maximal covering location 

problems, maximal expected covering location problems, and maximal covering location 

problems with workload capacity for the case of the maritime Search and Rescue location 

problem for Atlantic Canada. Also, analyzing the location of different types of coast guard 

vessels has recently been examined by (Akbari, Eiselt, et al. 2016; Akbari, Pelot, et al. 

2016). The papers examine the improvements in coverage and access time that could be 

achieved by relocating the existing vessels. This paper goes one step beyond these results. 

 The Coast Guard Problem 

While the previous section has outlined two of the most important general models in the 

literature, this section will show our model, which is a combination of the p-median and 

maximum covering model for the specific application of the Coast Guard. Furthermore, 

our model not only finds locations for vessels, but it also determines the optimal mix of 

different types of vessels. In order to be able to formulate the model, we will need to make 

a number of assumptions.  

Assumption 1: Space. The space, in which incidents occur and in which Coast guard 

vessels are to be located is naturally continuous. In order to make the space tractable, we 

discretize the space. More specifically, we use a mesh of square grids. As more incidents 

are expected close to shore, we use a variable grid size: smaller grids close to shore (1/4 

degree × 1/4 degree), larger grids farther out in the ocean (½ degree × ½ degree) and even 

larger grids of size (1 degree × 1 degree) in remote areas. This pattern is shown in Figure 

4-2.  
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Figure 4-2- Variable grid cell sizes 

Assumption 2: Customer locations. Rather than using historical data of incidents, we have 

chosen to use past data as a basis for a random distribution, which then, in turn, is used to 

generate incidents. That way, we do not assume that the future incidents occur where they 

happened in the past, we only assume that future incidents follow the same pattern as they 

did in the past. Due to the lack of data we cannot distinguish between different types of 

incidents. In our study, we use incident reports in the years 2005-2012 excluding 2007 

which had accuracy issues, a time, for which complete sets of records is available. During 

those years, we have 1617 gridded customers that reported a total of 9,658 incidents of 

cleaned M1, M2, and M3 classes. Figure 4-3 (which was constructed on the basis of data 

from SISAR, the search and rescue information management system database provided by 

the Coast Guard, shows incidents off the coast of Eastern Canada. We have taken the 

number of reported incidents and randomly generated incidents based on patterns in the 

historical data.  
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Figure 4-3- Search & rescue incidents 2005-2006, 2008-2012 

 

Assumption 3: Classes of distress calls. The Coast Guard distinguishes between different 

classes of calls, viz., M1 to M3. In this nomenclature, “M” refers to “maritime” incidents 

(while “H” would symbolize a humanitarian assist, and “A” symbolizes an aircraft 

accident, which are excluded from this study), and the incidents range from class 1 (a 

distress call) to 2 (a call regarding a potential distress situation), and finally class 3 (non-

distress calls). Table 4-1 shows the three incident classes and the number and relative 

frequency of calls in the respective categories.  
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 Table 4-1- Incident classes recognized by the Coast Guard 

Incident 
class 

Number of 
incidents 

Proportion 

M1 657 6.8% 

M2 1,086 11.24% 

M3 7,915 81.96% 

Grand total 9,658 100.00% 

Assumption 4: Distances. Euclidean (straight-line) distances do not model paths of vessels 

particularly well. Even in the middle of the ocean with no obstacles present, vessels 

typically stick to lanes. Even more importantly, close to shore vessels may have to round 

islands, peninsulas, etc., so that vessels will be assumed to take the shortest route around 

the stretch of land that is in the way. In our paper, the distance measure of choice are 

Euclidean distances with land avoidance. An algorithm previously developed by the 

MARIN group is utilized for calculating land avoided distances. It uses a mesh of grids for 

both high seas and coastal waters. The algorithm calculates Euclidean distance while 

avoiding crossing the land. 

Assumption 5: Existing vessels and helicopters. The Coast Guard fleet used for search and 

rescue can be categorized in four types of vessels at its disposal. Their ranges, sizes, speeds 

and cost are shown in Table 4-2. It should be noted that Lifeboats (vessels types 1 and 2) 

cannot be located offshore, while vessels of types 3 and 4 can. The current arrangement of 

existing vessels over randomly-generated incidents are visualized in Figure 4-4. 

Table 4-2- Types of Coast Guard vessels 

Vessel class Vessel 
type 

Range 
(km) 

Vessel 
length (m) 

Cruising speed 
(km/h) 

Numbers 
available 

Capital 
cost 

Regular lifeboat class Type 1 185 16 26 9 $1.2M 
Fast lifeboat class 

 
Type 2 185 15 41 7 $1.6M 

Mid-Shore Patrol 
Vessel 

Type 3 1,850 40-50 31 3 $21.6M 

Large Multi-Task 
Vessel & Offshore 

Patrol Vessel 

Type 4 6,000 60-90 22 8 $100M 
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Furthermore, there are 30 existing and potential stations (including 18 inshore and 12 

offshore) at which Coast Guard vessels can be located. It must also be noted that the Coast 

Guard presently owns 22 helicopters, most of which are rather old and are in line to be 

replaced soon. However, after discussions with Coast Guard officials, it became clear that 

neither the helicopters that the Coast Guard presently owns, nor those that are to be 

purchased in the near future will be properly equipped for search and rescue missions. 

Whether or not a change of this policy can be expected in the future or is indeed desirable 

is unknown. Similarly, the Canadian Air Force owns some search and rescue helicopters, 

and while they may help out with marine incidents, they are mainly used for air incidents, 

but their capability limitations render them unfit to be used for general search and rescue 

missions of the Coast Guard.  

 

Figure 4-4- Randomly-generated incidents and existing vessel locations 

Assumption 6: Budget constraint. As far as the number of types of vessels that are to be 

used, we are applying the following argument. First, we determine the total capital cost of 

all vessels, except for that of the large multi-task and offshore patrol vessel. The reason to 

exclude these large vessels is that they are used for missions other than search and rescue 
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as well, so the Coast Guard could not simply replace them with other vessels. The cost of 

all Type 1 – 3 vessels (as per Table 1) is $86.8 million, which we assume are available for 

use. If it is assumed that more money will be available in the future, the budget could be 

increased by an appropriate amount. In other words, we pretend that we can sell all existing 

vessels for the prices shown and can purchase new vessels of the four types (actually, just 

Types 1 – 3, as a single Type 4 vessel costs more than is available in the budget calculated 

in this fashion) and locate them optimally. This way, we will simultaneously choose an 

optimal vessel mix for use of search and rescue missions, and locate them optimally. This 

will provide insight into whether or not the present fleet configuration operated by the 

Coast Guard is optimal, or, at least, near optimal.  

Assumption 7: Allocation of incidents to vessels. Customers, i.e., incidents, will be 

allocated to vessels based on proximity. More specifically, an incident will be served by 

the vessel that is closest to it, where proximity is measured in terms of time, not distance. 

We realize that in congested models, such an allocation may result in very long wait times, 

as the vessel that an incident is allocated to may be busy. At present, the system is far from 

being congested, so that such an allocation rule is acceptable. Furthermore, we will vary 

the maximum acceptable access time so as to determine the sensitivity of the solution to 

this service parameter.  

We are now ready to formulate our model. First, though, we will list all parameters and 

variables used in the model.  

The Parameters This model uses the following parameters:  

hi: Number of customers at customer point i, i.e., the number of distress calls attributed to 

site i  

i
i

H h : Total number of customers in the model 

B: Budget (computed on the basis of existing equipment as detailed above) 

kc : Capital unit cost of vessel of type k 
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tmax: Maximum acceptable access time for coverage calculation 

k
ijt : Time to cover customer i from facility site j with vessel type k 

Dk: Covering distance provided by vessel type k 

: 1 , if  k k k
ij ija t D , and 0 otherwise. The parameters k

ija  indicate whether or not customer i 

is within coverage range of vessel type k at site j 

α: Required proportion of incidents covered 

p4: Fixed number of available large multitasking vessels 

Ko: The set of potential offshore locations for vessel placement 

The decision variables Our model has three types of decision variables. First, we will 

decide what types of equipment (vessels) are to be “purchased,” and where to be 

positioned; second, we need to determine the assignment of customers to located vessels, 

and third, we need to determine whether or not an incident site is covered within maximum 

acceptable time. More specifically, the variables are  

k
jy : zero-one location variable, equals 1, if we locate vessel type k at site j, zero otherwise 

k
ijx : zero-one allocation variable; equals 1, if we allocate customer i to vessel type k located 

at site j, 0 otherwise 

ui: zero-one covering variable; equals 1, if customer i is covered, 0 otherwise 

The formulation The formulation provided in the problem formulation P3 below attempts 

to blend p-median and covering features. The main idea is to determine the optimal mix of 

vessels given the present budget and to locate the vessels so as to minimize the average 

access time. It is also required that at least a certain proportion of incidents is covered by 

the search and rescue vessels within a specific time.  

P3: Min 1 k k
i ij ij

i j k
z t xh

H
       (4.11) 
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s.t.
4

k k
j

k j

c y B         (4.12) 

4 4
j

j

y p          (4.13) 

     , ,k k k
ij ij jx a y i j k         (4.14) 

1  k
ij

j k

x i I         (4.15) 

i i
i

h u H          (4.16) 

}, : min{ , 

    
k k
ij max

k
i ij

j k t t D

u x i I        (4.17) 

o0   {1,2} and   k
jy j k K        (4.18) 

, , 0 or 1 , ,k k
j ij iy x u i j k        (4.19) 

The objective (4.11) of problem P3 minimizes the weighted average of access time to all 

customers. Constraints (4.12) ensure that the vessels used in the model do not exceed the 

existing budget, where, as discussed above, Type 4 vessels are excluded. As discussed 

above, the budget equals the sum of the value of existing vessels (excluding large 

multitasking ships) plus the potential dollar amount that the Department is willing to spend 

on search & rescue equipment. At this point, the extra value is zero. The single constraint 

(4.13) ensures that the number of Type 4 vessels equals the number of such (large 

multitasking) vessels that presently exist. Constraints (4.14) ensure that customer i can only 

be served from site j by vessel k if a vessel k is actually located at site j and is within range 

of that vessel. Constraints (4.15) require that all customers must be allocated to exactly one 

located vessel. Constraints (4.16) require that at least α percent of the incidents are covered. 

Constraints (4.17) define coverage of a node by stating that a node is only covered if there 

is a vessel at site j of type k, which can reach customer i in less than minimum of D time 

units (max coverage of vessel k) and tmax (maximum desired access time). Constraints 
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(4.18) require that the two types of lifeboats cannot be positioned at offshore locations (i.e., 

those in Ko), and constraints (4.19) are the specifications of the variables.  

 Solutions and Discussion 

The model described in the previous section was built in MPL and solved by GUROBI 6.5. 

The computer hardware included a CPU Intel CORE i7 and 8GB RAM. The model features 

195,777 variables and 197,301 constraints and it took about one minute in average 

(between 15-150 seconds) to run and find the optimal solution of the problem over several 

model configurations. The results of a number of runs are shown in Table 4-3 (for tmax = 6 

hrs) to Table 4-4 (tmax = 5 hrs), Table 4-5 (tmax = 4 hrs), and finally  

Table 4-6 (tmax = 3 hrs).  

Table 4-3- The solution for tmax = 6 hrs 

# Minimum 
coverage (α) 

Actual 
coverage 

Available 
budget 
($M) 

Excess 
budget 
($M) 

Access 
time 
(hrs) 

Optimal mix of vessels 

Type 1 Type 2 Type 3 

1 89% 92.20% $86.80 $14.60 2.2941 1 17 2 

2 90% 92.20% $86.80 $14.60 2.2941 1 17 2 

3 91% 92.20% $86.80 $14.60 2.2941 1 17 2 

4 92% 92.21% $86.80 $14.60 2.2941 1 17 2 

5 92.5% 92.73% $86.80 $3.40 2.3168 9 18 2 

6 93% 93.10% $86.80 $0.30 2.3748 0 13 3 

7 93.5% infeasible $86.80      
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Table 4-4- The solution for tmax = 5 hrs 

# Minimum 
coverage (α) 

Actual 
coverage 

Available 
budget 
($M) 

Excess 
budget 
($M) 

Access 
time 
(hrs) 

Optimal mix of vessels 

Type 1 Type 2 Type 3 

1 80.0% 91.37% $86.80 $14.60 2.2941 1 17 2 

2 85.0% 91.37% $86.80 $14.60 2.2941 1 17 2 

3 90.0% 91.37% $86.80 $14.60 2.2941 1 17 2 

4 91.0% 91.37% $86.80 $14.60 2.2941 1 17 2 

5 91.5% 91.52% $86.80 $8.20 2.3168 5 18 2 

6 92.0% infeasible $86.80         

 

Table 4-5- The solution for tmax = 4 hrs 

# Minimum 
coverage (α) 

Actual 
coverage 

Available 
budget 
($M) 

Excess 
budget 
($M) 

Access 
time (hrs) 

Optimal mix of vessels 

Type 1 Type 2 Type 3 

1 80% 87.73% $86.80  $14.60  2.294 1 17 2 

2 85% 88.12% $86.80  $14.60  2.294 1 17 2 

3 88.5% 88.67% $86.80  $2.20  2.317 10 18 2 

4 89% infeasible $86.80      

 

Table 4-6- The solution for tmax = 3 hrs 

# Minimum 
coverage (α) 

Actual 
coverage 

Available 
budget 
($M) 

Excess 
budget 
($M) 

Access 
time (hrs) 

Optimal mix of vessels 

Type 1 Type 2 Type 3 

1 60% 66.62% $86.80 $14.60 2.294 1 17 2 

2 70% 74.29% $86.80 $7.40 2.294 7 17 2 

3 73% 74.29% $86.80 $7.40 2.294 7 17 2 

4 74% 74.29% $86.80 $7.40 2.294 7 17 2 

5 74.5% 74.62% $86.80 $2.20 2.317 10 18 2 

6 75% 75.13% $86.80 $14.60 2.361 1 17 2 

7 75.5% infeasible $86.80      
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It is not surprising that with decreasing values of tmax, i.e., as conditions for coverage are 

tightened, the maximal possible coverage decreases as well. More specifically, given a 

standard of tmax = 6 hours, it is possible to serve 93% of the population; a number that 

gradually decreases to 75% for tmax = 3 hours (Table 3d). While coverage decreases 

markedly, it is noteworthy that access times are very stable. They range from 2.29 to 2.36 

hours throughout the series, i.e., an increase of less than 4%. The main result, however, is 

the difference in the mix of vessels that the optimal result prescribes in comparison to the 

mix of vessels that is in use by the Coast Guard now. In all solutions with the lower 

coverage, the prescribed solutions call for one Type 1 vessel, 17 Type 2 vessels, and two 

Type 3 vessels (in addition to the mandatory Type 4 vessels). In contrast, the Coast Guard 

presently owns 9 Type 1 vessels, 7 Type 2 vessels, and 3 Type 3 vessels. The mean access 

time and coverage (given a desired covering time of 6 hours) that can be achieved by these 

vessels at their current positions are 3.05 hours and 86.34%. This is significantly worse 

than the model results which range from 2.29 hours access time (a 25% decrease) and 92% 

coverage (a 6.5% increase) to 2.37 hour access time and 93% coverage. Furthermore, it is 

worth mentioning that the existing Type 1 lifeboats are significantly older than their Type 

2 counterparts, making them eligible for replacement in the not-too-distant future. In such 

a case, decision makers may want to consider replacing the older Type 1 boats with Type 

2 vessels as suggested by the optimized solutions.  

Also, a closer inspection of Tables 4-3 – 4-6 reveals that there is a significant excess budget. 

One may wonder why this existing budget is not spent in the model solution to achieve 

greater coverage or shorter access times. The reason is that the excess is not sufficient to 

purchase an additional Type 3 vessel (which costs $21.6 million in comparison to the 

available sum of $14.6 million), and while a number of Type 1 and Type 2 vessels could 

be purchased with the additional funds, these vessels must be based at onshore locations, 

where these types of vessels are already located, so that the solution cannot be improved 

by locating more vessels of the same type in those locations.  
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 Summary and Outlook 

This paper considers a real situation faced by the Canadian Coast guard in the Atlantic 

region. We first review two of the major standard generic location formulations, viz., the 

p-median and the maximum covering location problems. The paper then formulates the 

Coast Guard problem, which, in addition to combining features from both of these standard 

problems, also considers a possible change of the present mix of vessels for search and 

rescue missions. Computational experiments reveal that the present mix of vessels is very 

different from the optimal combination. Coverage could rise from around 86% up to 93% 

and mean access time could drop dramatically from 3.05 hours to 2.29 hours. 

There are a number of additional features in this multimillion dollar problem that should 

be considered in order to make the problem “more real.” Among these features is 

congestion. This concern was addressed by Marianov and Serra (1998, 2001), Wang et al. 

(2004) and Rahmati et al. (2014) in their studies by considering stochastic demand and 

possibility of facility unavailability. Different approaches such as queuing models and 

maximal probabilistic models are utilized. (Ingolfsson et al. 2008) considered randomness 

in ambulance availability and in the delays and the travel times for ambulance location 

problem. Berman and Krass (2001) covered the facility location problems with stochastic 

demands and congestion for the mobile server case. In other words, given that tight budgets 

will mean that individual vessels are used much more than is the case traditionally, it is 

increasingly likely that vessels which are the closest to an incident are presently busy and 

cannot provide the requested service. This requires concepts such as backup coverage or 

queuing features in the model.  

Another stream of research would be the inclusion of different means of providing service. 

One of the obvious ideas is to include appropriately equipped helicopters as another type 

of “facility” in the model. The optimization would show whether or not the Coast Guard 

could obtain their “bang for the buck” with these different service providers.  

Another extension of the model will include data concerning specific types of emergencies. 

In other words, individual facilities (vessel or other means of providing service) have 

different capabilities. For instance, some facilities may not be able to deal with fires on 
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boats, towing of vessels, or other emergency tasks. This would require that the Coast Guard 

classifies and keeps track of individual incidents in greater detail. These are data that were 

not available. Furthermore, with differently classified incidents, it would be possible to 

specify different targets. For instance, one may require to cover (within a predetermined 

time) 100% of all incidents that involve people, 95% of all incidents that involve fires, 50% 

of all incidents that require towing, etc.  
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Chapter 5 A Modular Capacitated Multi-Objective Model for 

Locating Maritime Search and Rescue Vessels  

Amin Akbari, Ronald Pelot, H.A. Eiselt 

 

This section has been accepted for publication in the “Annals of Operations Research”. 

The final publication is available at http://link.springer.com/article/10.1007/s10479-017-

2593-1. 

 

Abstract 

This paper presents a mathematical multi-objective model to optimize the Location-Allocation of 
Maritime Search and Rescue (SAR) vessels with regard to several criteria, including primary and 
backup coverage and mean access time. Atlantic Canada serves as the area of the study and the 
Canadian Coast Guard has provided the necessary datasets and information. A goal programming 
multi-objective model is developed to optimize the location and allocation of SAR vessels to 
potential future incidents in order to achieve greater level of responsiveness and coverage. 
Comparing the optimal solution found to the current arrangement of SAR vessels, shows a 
substantial improvement in terms of access time and coverage. The results of the study provide 
decision makers with valuable insights to make more informed strategic and tactical decisions for 
more efficient management of the SAR fleet. 

Keywords: Location analysis; Multi-objective optimization; Maritime search and rescue; 
Scenarios planning; Goal programming 
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 Introduction 

The Canadian Coast Guard (CCG) is responsible for providing maritime search and rescue 

(SAR) services in Canada and, as a public service dealing with incidents and people lives, 

it is very important that their resources, including SAR vessels and stations are used and 

managed efficiently. To do this, they must decide where to locate their resources and how 

to allocate future demands (i.e. incidents) to them, which is also known as the Location-

Allocation problem. The Location-Allocation problem is an essential model for several 

important applications, including the location of ambulances, police cruisers, fire stations, 

distribution centers and so on. Optimizing the efficiency of resource utilization is always a 

major concern. 

In a typical SAR location problem, we are faced with a “server to customer” service system, 

which is in nature similar to fire station and ambulance location problems. The servers 

represent the SAR vessels, while the customers symbolize the incidents. These situations 

are generally categorized as emergency location analysis problems. In this kind of location 

problem, the main concern is to cover all the demands or at least try to cover as many as 

possible and as fast as possible. 

This problem becomes more complicated when we are faced with several criteria for 

assessing decision outcomes, some of which may be conflicting as well. There is a rich and 

diverse literature in the area of emergency location analysis, but some gaps still exist, 

particularly in the case of maritime SAR resource planning. Usually, research in this area 

considers only a single objective while in the real case, there is more than one criterion that 

decision makers care about. Coverage, cost and average access time or response time are 

widely used in multi-criteria location studies as model objectives. This study considers 

several criteria as objectives simultaneously in the mathematical model. 

Covering problems, median problems and center problems are three popular problem types 

in location modeling. Covering problems are concerned with locating facilities so that as 

many customers as possible are within a pre-specified distance from any one of the 

facilities, while the median problem is aiming at minimizing the system-wide average 

response time. In the center problem, the objective is to minimize the maximum distance 
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from the facilities. Covering and median problems are extensively used in the area of 

emergency location analysis. Marianov and Serra (2002) pointed out that both the median 

and covering problems can be considered benchmarks in the development of facility 

location models. But, each of these general models only consider one criterion when 

attempting to optimize the location of facilities, while in reality it is often desired to take 

into consideration a couple of criteria as model objectives. In emergency location analysis, 

coverage is always of great importance and usually comes first. However, decision makers 

would still like to decrease costs through minimizing travel distances. This is also intended 

to increase the chance of saving people in danger through minimizing the response time to 

incidents. From a technical point of view, while covering problems provide acceptable 

service (as defined by the covering distance) to as many people as possible, median 

problems do not consider the number of people served, but the average service to individual 

customers.  

The CCG has many different SAR vessels that were designed or purchased with specific 

tasks in mind, and not all are equally capable of, nor effective at, handling different incident 

types. Also, the ranges and speeds vary greatly among different types of SAR vessels, so 

the vessels’ capabilities need to be considered. Resources have a predetermined capacity 

(maximum number of incidents handled per year) based on their type and their planned 

utilization. Some vessels are multi-tasking and therefore are shared among different 

services, including SAR. Planned and unplanned vessel maintenance should be considered 

when planning for operational requirements and capacity needs. 

The purpose of this study is mainly to develop a multi-objective model for the case of 

maritime SAR resource location and attempts to incorporate different criteria that are of 

interest for decision makers. The goal programming optimization model aims to minimize 

total deviations from a predetermined target for each objective. Resource type related 

constraints such as capacity are considered in the model. Several demand scenarios are 

randomly generated based on the spatial distribution extracted from historical data. The 

proposed model is applied to a real world Maritime SAR location problem. Solutions 

provided by the multi-objective model are compared to the current arrangement scenario, 

so it helps decision makers to see exactly how they can improve what they are doing now. 
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Ultimately, this study seeks to propose a multi-criteria decision support model that is 

capable of providing helpful insights for decision makers regarding possible changes at the 

strategic and tactical level of managing resources to improve the overall quality of SAR 

service and effectiveness of resource utilization. 

The remainder of this paper is structured as follows. Section 5.2 presents relevant literature. 

Section 5.3 explains the methodology used in our study for modelling a multi-objective 

emergency location problem. In section 5.4, the process of applying the proposed goal 

programming model to our case study is presented, followed by the numerical results and 

discussion as well as managerial aspects of using this model. The paper concludes with the 

summary of the findings and outlook for future research in the field. 

 Literature Review 

5.2.1. Multi-Objective Optimization in Location Analysis 

Facility location problems are usually multi-criteria decision-making (MCDM) problems. 

There are different approaches to model and optimize a multi-objective problem. 

Generally, multi-objective optimization methods can be classified into two categories: 

Scalarization methods and Pareto methods. In the first group of methods the multi-

objective problem is solved by translating it back to a single (or a series of) objective, scalar 

problem. The formation of the aggregate objective function requires that the preferences 

or weights between objectives are assigned a priori, i.e. before the results of the 

optimization process are known. The Pareto methods, on the other hand, keep the elements 

of the objective vector separate throughout the optimization process and typically use the 

concept of dominance to distinguish between inferior and non-inferior solutions. 

Using multiple objectives in location studies was started in late 1970s and early 1980s. 

Armstrong and Cook (1979) developed several goal programming models to allocate 

aircraft SAR resources to bases to provide the most effective level of service defined by 

maximum attainable probability of successfully completing SAR operation within 

predetermined amount of time for different distress levels. However, the study lacks 

requisite accurate data in order to apply the proposed models to this practical case. Also, it 

does not consider other important criteria like mean access time. Ross and Soland (1980) 
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worked on multi-activity multi-facility problems and proposed an interactive solution 

method to compute non-dominated solutions from which to compare and choose. Lee et al. 

(1981) studied an application of integer goal programming for facility location with 

multiple competing objectives. Current et al. (1985) solved their bi-objective location 

problem by relaxing integer terms and also used a branch-and-bound procedure.  

In the 1990s, the volume of literature grew rapidly. Solanki (1991) applied an 

approximation scheme to generate a set of non-dominated solutions to a bi-objective 

location problem, while Malczewski and Ogryczak (1996) considered utility-function-

based and goal programming methods and developed a new approach based on the 

reference point method that was applied to an interactive decision support system for multi-

criteria location problems. Cho (1998) combined a Monte Carlo integer programming 

technique with an augmented Lagrangian algorithm to obtain an optimum global solution. 

Badri (1999) proposed the use of the Analytic Hierarchy Process and multi-objective goal 

programming methodology for the Location-Allocation problem with multiple conflicting 

objectives. In (Ohsawa 1999), to find the set of Pareto-optimal locations from the model, 

the candidate locations were examined first, based on simple geometrical methods with the 

help of the farthest-point Voronoi diagram, then the objective functions were minimized 

via solving a scalarized location model with suitable weights. Melachrinoudis and Min 

(2000) proposed a multi-objective mixed integer program model that generates a set of 

non-dominated solutions without a priori preference information due to its usage of a 

weighting generation method. Blanquero and Carrizosa (2002) suggested an algorithm 

which decomposed the problem and built the Voronoi cells, and constructed a finite ε-

dominating set of Pareto-optimal solutions for the bi-objective problem. 

In more recent studies for example, San Cristóbal (2012) utilized the goal programming 

method to find the optimal mix of different plant types and locations where each plant 

should be built in a capacity expansion planning problem of the renewable energy industry. 

Ho et al. (2013) integrates the Analytic Hierarchy Process (AHP) and multi-choice goal 

programming (MCGP) to select an appropriate house among numerous alternative 

locations that best suits the preferences of renters. The study obtains weights from AHP 

and implements it for each goal using MCGP for the location selection problem. A bi-
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criteria problem was formulated by Kolokolov and Zaozerskaya (2013) to find the optimal 

locations of service centers. Tradeoff methods were used for finding a subset of the Pareto 

optimal solution set. Rahmati et al. (2013) proposed a Pareto-based meta-heuristic 

algorithm called multi-objective harmony search to solve a multi-objective multi-server 

facility location problem. Three objective functions are considered including minimizing: 

(i) sum of the aggregate travel and waiting times; (ii) maximum idle time of all facilities; 

and (iii) the budget required to cover the costs of establishing the selected facilities plus 

server staffing costs. Abounacer et al. (2014) considered three objectives in their location-

transportation model for disaster response: total distribution time for emergency supplies, 

the number of agents required to operate selected distribution centers, and non-covered 

demands. They used an epsilon-constraint method to find the Pareto frontier solutions. 

The idea of fuzzy programming has also been used along with the goal programming 

method to deal with multi-objective location problems. Bhattacharya et al. (1993) 

developed a fuzzy goal programming model for their convex multi-facility location 

problem with mini-sum (transportation cost) and mini-max (distance) objectives with 

rectilinear distances. Araz et al. (2007) proposed a multi-objective emergency vehicle 

location model which considers maximization of population covered, maximizing the 

population with backup coverage and minimization of total travel distance as its objectives. 

A fuzzy goal programming approach was used to formulate the model. 

The appropriate methodology to model and find the optimal solution for a multi-criteria 

problem depends greatly on the structure of the problem and the decision maker’s needs. 

Any of the aforementioned methods, including scalarization methods such as weighted 

methods and goal programming (given a priori information about objective weights) and 

interactive methods that are able to provide efficient solutions without a priori information, 

can be useful. A wide range of objectives/criteria has been used by researchers in location 

analysis including more common criteria like travel time (Badri et al. (1998), coverage 

(Kim and Murray (2008)) and cost (Balcik and Beamon (2008)) as well as special case-

dependent criteria such as pollution in the undesirable facility location problem (Ohsawa 

et al. (2006) and Eiselt and Marianov (2014)). 
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5.2.2. Emergency Response Location Models 

Emergency services are among the main applications of location studies and usually a 

comprehensive analysis of problems in this area requires one to consider multiple criteria. 

Goldberg (2004) reviewed the literature of operations research applications in emergency 

services vehicles and Brotcorne et al. (2003) performed a more specific review on the 

evolution of models in the area of ambulance location and relocation. They divided the 

studies into deterministic and probabilistic models.  

Baker et al. (1989) developed a multi-criteria model for the ambulance allocation problem. 

They used various outcome criteria in their model, including response time, cost and 

workload balance. The model is then solved using an integer, non-linear goal-programming 

technique. Harewood (2002) formulated a bi-objective programming problem to locate 

ambulances on the island of Barbados. One objective minimizes the cost of serving 

customers, while the other maximizes multiple coverage given a certain distance standard. 

Burkey et al. (2012) used efficiency, availability of the service, and equality as their 

assessment criteria in the location of heath care services. They compared existing locations 

with optimal solutions of the maximal covering location problem and the p-median 

problem. Zhang et al. (2012) formulated an emergency resource location problem with the 

constraints of multiple resources as well as possible secondary disasters. They introduced 

the opportunity cost of the secondary disasters into the objective function to build a model 

for dispatching the multiple emergency resources and an effective heuristic algorithm was 

proposed for solving the problem.  

Narrowing down the research area to location studies in maritime SAR problems, quite a 

few articles have been identified. Brown et al. (1996) developed a mixed integer model for 

scheduling coast guard district cutters. The proposed model provided a superior solution 

compared to manually prepared schedules. Nguyen and Kevin (2000) incorporated 

maximal covering and p-median location problems into a goal programming model to 

assess the level of service of the Canadian SAR system (in terms of location of SAR aircraft 

and helicopters) and compare it to the optimal solution. Afshartous et al. (2009) studied the 

problem of locating coast guard air stations. They utilized a statistical-optimization 
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approach to provide a robust solution in the presence of uncertainty in distress call 

locations. Distress calls are simulated and the optimization problem is solved for different 

simulations. The optimization model however is simple and lacks the consideration of 

different criteria.  

Radovilsky and Koermer (2007) presented the application of integer linear programming 

for optimal allocation of rescue boats among the stations of the U.S. Coast Guard. The 

objective of their model was to minimize shortages or excess capacity at the stations. Later, 

Wagner and Radovilsky (2012) proposed a new model that simultaneously considers 

reduction of excess capacity and boat shortages at the stations, a decrease in the overall 

fleet size with an increase in boat utilization, and overall reduction of the fleet operating 

cost. Nelson et al. (2014) developed an optimization model to determine the optimal 

deployment assignments, operational levels and aircraft allocation among all USCG Air 

Stations. 

Pelot et al. (2015) developed three location models (maximal covering location problem, 

maximal expected covering location problem, and maximal covering location problem 

with workload capacity) applied to the Maritime SAR location problem for Atlantic 

Canada. Akbari et al. (2016) presented a multi-criteria analysis on performance of solutions 

provided by two popular location models, p-median and maximal covering to the case of 

maritime SAR location. This study considers primary and backup coverage, mean access 

time and the Gini index as post-assessment criteria for solutions of two single objective 

models. 

Razi et al. (2016) used optimization to determine the best allocation of helicopters for SAR 

and then validated the performance of the solution by simulating the stochastic demand. In 

another study Razi and Karatas (2016) designed a multi-objective model for allocation of 

SAR boats where the decision depends on several criteria such as density and type of 

incidents, resource capability, and business rules. The model considers minimizing 

response time to incidents, fleet operation cost and the mismatch between resource load 

and operation planned capacity. 
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5.2.3. Capacitated Location Models 

The basic location models, particularly covering models, do not consider workload 

capacities. In most of the basic location models such as the maximum covering location 

problem (MCLP), the set covering location problem (SCLP) and p-median problems, it is 

assumed that facilities have infinite capacity to respond to demand. As a result, some 

servers may in reality be assigned to so many tasks that it is beyond their maximum 

capacity. To solve this issue, researchers have worked on extending the fundamental 

models to include constraints on the capacity, to balance the workload of facilities. 

However, an upper bound on the capacity of the facilities could change the optimal 

assignments generated by uncapacitated models whereby in the optimal solution all 

demands are assigned to their closest facility. 

Chung et al. (1983) and Current and Storbeck (1988) were among the earliest researchers 

to deal with the concept of capacitated MCLP, by adding a maximum capacity constraint 

to the model formulation. Pirkul and Schilling (1988) proposed a capacitated model where 

all demands are assigned to facilities, regardless of whether the demand lies within the 

service covering distance or not. Haghani (1996) took into account a resource capacity 

constraint and proposed a capacitated multi-objective model to maximize weighted 

covered demand as a primary objective and to minimize the average distance from 

uncovered demand to the located facilities as the secondary objective. The capacity of 

different facilities could be varied based on their different characteristics. (Correia and 

Captivo 2003) called such a problem with varied capacity constraints the modular 

capacitated location problem. To apply the capacitated MCLP model to the case of an 

emergency facility siting problem so that the facility could have different capacity levels 

with varied numbers of stationed emergency vehicles, Yin and Mu (2012) proposed an 

extension of MCLP called the Modular Capacitated Maximal Covering Location Problem 

(MCMCLP). The objective of their model, similar to (Haghani 1996), is to maximize the 

weighted covered demand and simultaneously minimize the average distance from 

uncovered demands to the located facilities. 
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5.2.4. Uncertainty of Demand 

In facility location analysis, it is typically assumed that demand locations are known at the 

time of making siting decisions, while in reality, there is usually, uncertainty in the location 

of future demand with some variations that are not necessarily predictable. As location 

problems usually involve strategic decisions, it is necessary to take into account variations 

in demand using different potential scenarios. These factors might tremendously affect the 

results of such long-term decisions.  

Generally, there are two approaches for optimization under an uncertain environment: 

stochastic programming and robust optimization. In stochastic programming the value of 

uncertain parameters is assumed to follow probability distributions with known 

parameters; while, in robust optimization it is assumed that there is no information 

available about the probability distribution. 

Snyder (2006) reviewed the literature on stochastic and robust facility location models and 

categorized a variety of approaches for optimization under uncertainty. In stochastic 

location modeling, locations are generally first-stage decisions whereas assignments of 

customers to facilities are second-stage. One of the main types of stochastic models is 

applying a scenario planning approach.  

Chen et al. (2006) and Owen and Daskin (1998) applied a scenario planning approach, one 

of the main types of stochastic models, in which a limited number of scenarios with given 

probability of occurrence is considered. The other common approach is to use probability 

distribution functions for uncertain parameters and optimize the expected value of the 

objective function which increases the complexity of the problem (for example, see, Snyder 

(2006)). The scenario planning approach leads to more tractable model which can be solved 

in a reasonable amount of time. 

Moreover, although the facilities may be capable of coping with the average demand, there 

could be some peak periods during which they cannot provide service to all requests right 

away. Such situations are referred to as “congested systems.” These issues can be 

investigated using queueing models which take into account the probabilistic nature of 

demand and service. In congested systems, in cases when a facility is not able to serve all 
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service requests, some of them can wait until the server become available. But in often 

cases, such as emergency systems, it is generally not reasonable to wait, so if the demand 

is not responded to within a time limit it will be assumed to be uncovered. 

A potential and common way to cope with the congestion issue is to consider backup 

coverage to provide multiple coverage for demands in order to decrease the probability of 

server unavailability in case of congestion. Backup coverage refers to the secondary 

coverage of a demand node and it is used as a means for handling of congestion issue in 

areas of high demand where the closest vehicles to respond is not available or tasked to 

other customer coverage. This approach works particularly well for emergency response 

where the customers cannot wait for a busy server to become available, thus having a 

backup response is an appropriate solution. One important concern is the possible conflict 

or tradeoff between primary and backup coverage, whereby improving the former may 

hamper the latter. Hogan and ReVelle (1986) presented a maximal backup coverage model.  

To the best of our knowledge, there is no study in emergency location analysis and 

particularly in SAR location modelling that concurrently considers coverage, travel time 

and backup response, and address the stochasticity of incident locations and the capacity 

of response resources. Targeting these gaps in the related literature, this study aims at 

developing a multi-objective model for the maritime SAR Location-Allocation problem to 

analyze and compare the current resource arrangement with the optimal solution and to 

provide the CCG with advice regarding their future strategic decisions to improve the 

efficiency of resource utilization and response to incidents. The study contributes to the 

research field by: 

- Considering three important criteria (primary coverage, backup coverage and mean 

access time) in the optimization model simultaneously; 

- Categorizing facilities based on their capabilities and availabilities; 

- Extracting the spatial distribution of historical incidents as a basis for generating 

and simulating future demand; 

- Applying a variation of the goal programming method for multi-objective 

programming. 
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 Methodology 

The methodology used in this study is described in the following sections, explaining the 

way we digitize the space and simulate events based on past data. Then we develop relevant 

criteria for the problem, and propose the multi-objective optimization model.   

5.3.1. Incidents Spatial Distribution  

The nature of demand for SAR services is typically stochastic, but the historical recorded 

data are deterministic and thus using the past patterns directly for modelling the future is 

not an ideal approach. Knowing that an incident occurred at specific point in the past does 

not imply that it will happen at the same point again, nor that there cannot be events at any 

other points even if there were no incidents there in the past. Hence, to cope with this issue, 

it appears appropriate to simulate the potential incident distribution over the study region 

and timeframe using statistical parameters estimated from the historical demand. 

Therefore, finding a comprehensive approach to properly simulate the potential demand 

distributed over the study area is a modelling issue.  

As the pattern of past incidents is a strong predictor of future, it is important to extract the 

underlying distribution of historical incident locations as the basis of a stochastic approach 

for generating future incidents. There are several methods to fit a distribution for spatial 

data including quadrat analysis, naive estimation, and kernel density function (Bailey and 

Gatrell 1995). In this study historical incidents are analyzed to extract patterns and 

distribution by using Kernel estimation which is a quite popular method for analyzing 

spatial point patterns which considers neighboring areas when calculating the density for 

each specific point. The other advantage of kernel density method is that it works properly 

with gridded data, which is the format of our demand projection. 

Quadrat analysis, a common and simple way of exploring spatial patterns, includes 

counting points that fall within each grid square. Kernel estimation is a more sophisticated 

means of exploring spatial variations in terms of intensity. Such approaches are often used 

in the identification of clusters and hot spots. If we want to simply estimate the intensity of 

points over an area, we can calculate the number of events within a radius around the nodes 
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of a grid and divide it by the area concerned. This is called a naïve estimator. The naïve 

intensity estimate is given by: ߣመ(݋) = #(஼(௢,ௗ))గௗమ ,         (5.1) 

where #(C(o,d)) indicates the number of events in the circle C(o,d) that has center at o and 

radius d. Kernel estimation (KE) can be expanded to make use of a geographical weighting 

scheme (a kernel function) whereby the influence of the points varies inversely to how far 

they are from the centre of the window (Lloyd 2010). The KE of intensity is given by: ߣመ௞(݋) = ∑ ଵఛమ௡௜ୀଵ ݇(௢ି௢೔ఛ ),        (5.2) 

where τ is the bandwidth (determining the size of the kernel) and o-oi indicates the distance 

between the centre of the kernel (o) and the location oi (i is an index for data points). There 

is a variety of different kernels that have been used for KE. The quartic kernel is 

encountered frequently in the point pattern analysis literature. The KE with the quartic 

kernel can be given by: 

(݋)መ௞ߣ = ∑ ଷగఛమ ቀ1 − ௗ೔మఛమቁଶௗ೔ஸఛ ,        (5.3) 

where di is the distance between the centre of the kernel (o) and the location oi. 

5.3.2. Goal Programming Multi-Objective Model 

Based on the nature of our case study, our problem has some characteristics that makes 

weighted goal programming a good choice for modelling. First of all, the problem is multi-

objective and these objectives do not necessarily have same scale. So, it seems to be a good 

idea to minimize the standardized deviation of objective values from their corresponding 

target value instead of optimizing the weighted sum of objectives. As compared to efficient 

methods that provide Pareto frontiers (set of non-dominated solutions) for which it is 

difficult for the decision maker to select one among an infinite number of efficient 

solutions, scalarization methods such as goal programming yield a finite number of 

reasonably good solutions (for variable weights associated with objectives), which is more 

clear to the decision maker in order to understand and choose an appropriate solution. Also, 
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determining the appropriate target values (goals) is desirable and also possible in our case 

as we have some prior information about the service level requirements and standards that 

decision makers are prepared to achieve. These target values are required to be sufficiently 

high and unattainable according to the goal programming concept. Moreover, we use one-

sided deviations in the model as attempting to reach all objective targets is desirable and 

targets are determined such that actual outcomes cannot exceed them. For example, for 

primary coverage as one of main criteria in emergency response location problems, it is 

desired to get as close as possible to 100% which is the maximum value it could take.  

On the other hand, weighted goal programming is designed for problems where all the 

goals are quite important, with only modest differences in importance that can be measured 

by assigning weights to the goals. In contrast, preemptive goal programming is used when 

there are major differences in the importance of the goals. In our case, none of the 

objectives dominates the others in terms of importance, so the preemptive method does not 

seem to be a good fit for modelling the problem. 

In this section a multi-objective model which is a variation of goal programming is 

proposed with three objectives for the maritime SAR Location-Allocation problem: primary 

coverage, backup coverage and mean access time. The model considers different classes 

of SAR vessels (resources) with different speeds, capacities and potential locations. The 

model includes capacity constraints to reflect that resources have limited usable operating 

capacity. Four different SAR vessels are considered (two types of lifeboats, patrol vessels 

and large multitasking ships). Lifeboats are considered as the primary SAR vessels, while 

patrol and multitasking vessels are the secondary resources for SAR missions.  

To avoid assuming certainty in demand, a scenario planning approach is utilized where 

several set of randomly generated demands (demand scenarios) are used and considered in 

the mathematical model. The weighted average of objective function values in all scenarios 

is minimized. 
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The three objectives in the mathematical model are defined as follows.  

1) Primary coverage:  

This objective is defined as the percentage of incidents to be covered within the 

predetermined access time (travel time) by at least one SAR vessel and is measured by 

following equation. 

Primary Coverage = ∑ ௡ܲ(∑ ௪೔೙௫೔೔∑ ௪೔೙೔ )௡ ,     (5.4)  

where xi  {0, 1} is a primary coverage variable, which assumes a value of 1 if 

customer node i is covered within pre-specified access time and 0 if it is not, and 

win symbolizes the weight on grid i in scenario n, reflecting the number of 

forecasted incidents at that grid point. Pn is the probability associated with scenario 

n. 

2) Backup coverage: 

Backup coverage expresses the percentage of incidents that are within the 

predetermined coverage area of at least two SAR vessels and is calculated by relation 

(5.5). 

Backup Coverage = ∑ ௡ܲ(∑ ௪೔೙௬೔೔∑ ௪೔೙೔ )௡ ,     (5.5) 

where yi  {0, 1} is a backup coverage variable, which assumes a value of 1 if 

customer node i is within pre-specified access time of at least two vessels and 0 if 

it is not.  

3) Mean access time: 

Mean access time is defined as “mean travel time for the nearest available response 

vessel to reach an incident cross all demand scenarios” and is calculated as follows. 

Mean access time = ∑ ௡ܲ ቆ∑ ∑ ∑ ቆ௪೔೙௨೔ೕೖ൬ௗ೔ೕ ௩ೖൗ ൰ቇ  ೕ೔ೖ ቇ∑ ௪೔೙೔௡ ,   (5.6) 
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where ݑ௜௝௞  is a binary variable for allocation of demand at grid i to vessel type k 

which is located at j; dij is the distance from grid i to j and cruising speed of vessel 

type k is defined by vk. 

The mathematical model developed for this problem is a large scale Mixed Integer Linear 

Problem (MILP) and it is built using the constrained goal programming method. Remaining 

indices, parameters and variables used in the model are listed and defined below. 

Indices: 

i  I:      Grid index (demands)  

j  J:     Index for potential vessel stations 

k  K:   Index for vessel types  

l  L:      Objectives’ index  

n  N:     Index for simulated incident scenarios 

JS  J:  Set of offshore stations (virtual stations offshore for patrol vessels and 

multitasking ships) 

 
Variables: ݔ௜ :  Binary variable for primary coverage at grid i ݕ௜ :  Binary variable for backup coverage at grid i ݖ௝௞ ∶        Integer variable for number of vessels type k located at station j ݑ௜௝௞:  Binary allocation variable for grid i to vessel type k located at station j ߝ௟ ∶              Undesirable deviation from target value of objective l 

 

Parameters: ߣ௟ ∶     Weight of objective l μ௟ ∶      Predetermined target for objective l ݎ௞:        Coverage distance (range) of vessel type k ݌௞:        Available number of vessel type k 
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ܿ௞:  Capacity of vessel type k in terms of number of incidents that can be 

responded to ݒ௞:  Cruising speed of vessel type k ݀௜௝:  Distance between grid i and station j ݓ௜௡:  Demand weight on grid i in scenario n 

Pn:  Probability of occurrence of scenario n  

t:          Coverage time limit for acceptable level of coverage ߙ௟:  Minimum level for each objective value (maximum for mean access time) ܽ௜௝௞:  A parameter indicating whether grid i is within coverage time limit of a 

vessel type k at j ܾ௜௝௞:  A parameter indicating whether grid i is within response range of a vessel type k at j 
The formulation of the proposed model is as follows: 

Min: 

߃  = ∑ ௟௟ߣ . ௟ߝ) μ௟ൗ )   (5.7) 

s.t. ݔ௜ ≤ ∑ ∑ ܽ௜௝௞ݖ௝௞௞௝ ,          ∀ ݅  Primary coverage constraint (5.8)    ܫ 

where: ܽ௜௝௞: = 1 if:  ݀௜௝ ≤ ௞ݒ/௞ and  ݀௜௝ݎ ≤ else ܽ௜௝௞ ݐ ∶= ௜ݕ   0 ≤ ∑ ∑ ൫ܽ௜௝௞ݖ௝௞൯ − ௜௞௝ݔ , ∀ ݅ ௜ݕ Backup coverage constraint (5.9)    ܫ  ≤ ݅ ∀     , ௜ݔ   Backup coverage comes after ܫ 

  primary coverage  (5.10) ∑ ∑ ௜௝௞௝௞ݑ = 1,               ∀ ݅ ∑  Grid allocation to closest vessel (5.11)   ܫ  ௝௞௝ݖ ≤ ݇ ∀           ,௞݌  Fixed number of available vessels   ܭ 

  in each class  (5.12) ݑ௜௝௞  ≤ ܾ௜௝௞ݖ௝௞ ∀ ݅ ,ܫ  ݆ k ,ܬ   Allocation to SAR vessels possible ܭ 

   if there is a vessel within the 

   coverage range  (5.13) 

where: ܾ௜௝௞: = 1 if:  ݀௜௝ ≤ ௞ else  ܾ௜௝௞ݎ ∶= 0    
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∑ ௜௝௞௜ݑ௜௡ݓ ≤ ܿ௞ݖ௝௞ ∀ ݆ ,ܬ  ݇ ,ܭ  ݊  ܰ Capacity constraint (5.14) ݖ௝௞ = 0   ∀ ݆ ∈ ,ௌܬ ݇ ∈ {1,2} Offshore location constraint (5.15) μଵ − ቀ∑ ௡ܲ(∑ ௪೔೙௫೔೔∑ ௪೔೙೔ )௡ ቁ =  ଵ Deviation of primary coverageߝ 

  from its target value  (5.16) μଶ − ቀ∑ ௡ܲ(∑ ௪೔೙௬೔೔∑ ௪೔೙೔ )௡ ቁ =  ଶ  Deviation of backup coverageߝ 

  from its target value  (5.17) 

∑ ௡ܲ ቆ∑ ∑ ∑ ቆ௪೔೙௨೔ೕೖ൬ௗ೔ೕ ௩ೖൗ ൰ቇ  ೕ೔ೖ ቇ∑ ௪೔೙೔௡ − μଷ =  ଷ   Deviation of mean access time fromߝ 

  its target value (5.18) ∑ ௪೔೙௫೔೔∑ ௪೔೙೔ ≥ ݊ ∀       ଵߙ   ܰ Minimum primary coverage in  

  every scenario (5.19) ∑ ௪೔೙௬೔೔∑ ௪೔೙೔ ≥ ݊ ∀       ଶߙ   ܰ      Minimum backup coverage in 

  every scenario (5.20) 

ቆ∑ ∑ ∑ ቆ௪೔೙௨೔ೕೖ൬ௗ೔ೕ ௩ೖൗ ൰ቇ  ೕ೔ೖ ቇ∑ ௪೔೙೔ ≤ ݊ ∀ ଷߙ   ܰ Maximum mean access time in 

  every scenario (5.21) 

The minimization objective function (equation 5.7) has three terms corresponding to the 

standardized deviation of total primary coverage, total backup coverage and mean access 

time from their predetermined targets value, respectively. Constraint (5.8) ensures that grid 

i can be included under primary coverage only if there is a SAR vessel within the maximum 

coverage distance and time limit. Constraint (5.9) defines the concept of backup coverage 

with respect to primary coverage and total number of vessels within range for each incident, 

and (5.10) states that backup coverage cannot happen when there is no primary coverage. 

Allocation of gridded demands to resources is defined in (5.11) which ensures that all grids 

are allocated to exactly one vessel for access time calculation. The fixed maximum number 

of vessels in each class is constrained by (5.12). Constraint set (5.13) limits the allocation 

of demands to SAR vessels based on the availability of having at least one vessel within its 

range. Vessel capacity restrictions for each scenario are applied in (5.14), and constraint 
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set (5.15) ensures that lifeboats (vessels type 1 and 2) cannot be located at the offshore 

stations (described in section 5.4.1.2). Constraints (5.16) to (5.18) are used to implement 

the constrained objectives concept as required in the goal programming method. Finally, 

constraints (5.19) to (5.21) ensure a minimum level of primary and backup coverage and 

maximum mean access time in every scenario in order to ensure a robust solution. 

 Case Study 

In this section the process of implementing the developed methodology to the specific case 

study for maritime SAR in Atlantic Canada is explained.  

5.4.1. Data 

To apply the proposed model, a set of real and valid data about the resources and the 

demand is required. The main data source for our study is related to historical demand 

arising from maritime incidents. Also, some preparation and recalculation was performed 

to transform raw data to the format that is needed to feed into the mathematical model. 

The dataset used in this study derives from the CCG SISAR1 database which collects 

information on all reported maritime incidents. The Atlantic Canada region serves as our 

research area, with its defined borders illustrated in Figure 5-1. The incident dataset, which 

has been checked and cleaned for quality control, is available from 1988 to 2013, but due 

to lack of quality control of the data in early years, and to have a more accurate analysis, 

we chose the most reliable recent data from 2005 to 2012 (excluding year 2007 which has 

major problems) for this study.

All incidents are categorized into several classes based on their estimated type and severity, 

of which the following three are relevant for this research: Class M1 comprises distress 

incidents, class M2 is potential distress incidents, and class M3 is non-distress incidents, 

where the “M” indicates maritime (versus other types, such as humanitarian assist “H” or 

                                                 

1 Search and Rescue Information Management System 
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an aircraft accident at sea “A”). After selecting only these three classes of incidents during 

the chosen study period, we obtained a refined dataset with 8,033 incident records. 

 
Figure 5-1- Atlantic Canada SAR region and historical incidents (2005, 2006, 2008-2012) 

These historical incidents are projected on a mesh of grids generated for the study area of 

interest. The size of grid squares is variable such that in the areas around the shoreline 

where the density of incidents is higher, grids are (0.25  0.25 degrees), in the areas further 

out (0.5  0.5 degrees), and for areas far offshore we have bigger grids (1.0  1.0 degrees). 

Then, the number of incidents that occurred in each grid is counted to be used for 

computing incident weights later in the simulation of future incidents. Figure 5-2 shows 

the mesh of grids on the map, color-coded based on the count of historical incidents. 
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Figure 5-2- Historical incidents on grids (2005, 2006, 2008-2012) 

5.4.1.1. Resources 

With respect to response resources, information about operating SAR stations, as well as 

about Coast Guard vessels and their capabilities, is required. 

As mentioned earlier, there are different types of SAR vessels utilized by the CCG. In this 

study, we use the actual information for the currently serving vessels. There are 24 vessels 

performing SAR response activities in Atlantic Canada. These vessels include lifeboats, 

multi-tasking ships and offshore patrol vessels. Each of these vessels has its own 

characteristics and capabilities, but they can be categorized into a few classes for 

simplifying the calculation. 

All currently available Coast Guard vessels which are able to provide SAR services are 

categorized into four groups in order to simplify the modelling and reduce calculations. 

The vessel classes with their specifications are shown in Table 5-1. 
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Table 5-1- SAR Vessel classes with characteristics 

Vessel Class Vessel type Range 
(Km) 

Vessel 
Length (m) 

Cruising 
Speed 

(Km/hr) 

Numbers 
available 

Regular Lifeboat class  Type 1 185 16 26 9 

Fast Lifeboat class  Type 2 185 15 41 7 

Offshore Patrol vessel Type 3 10000+ 60-70 31 4 
Large multi-task vessel Type 4 6000+ 80-90 22 4 

 

Different types of SAR vessels have different travel times as their cruising speeds are 

different. Moreover, their maximum coverage ranges are different as well. This requires 

them to be treated separately in the mathematical model as we are dealing with travel time 

rather than travel distance. 

5.4.1.2. Potential Stations 

Based on the current situation, there are 18 inshore SAR stations in Atlantic Canada which 

are able to house SAR vessels. It is assumed that all stations are able to accommodate all 

vessel types and no restriction is applied in this regard. Some vessels are capable of being 

positioned offshore for long periods of time. To take advantage of this capability, 19 

potential offshore stations are to be considered in our analyses. Of course, this is not a 

station in the traditional sense, but a central location for a vessel that spends much of its 

time patrolling or performing other tasks at sea. Initially, these offshore stations are 

assumed to be at the mean point of each Maritime subarea in Atlantic Canada as determined 

by the Coast Guard. So, we will have 18 stations in-shore and 19 potential offshore stations. 

One assumption in the model, represented as a constraint, is that small CCG vessels, called 

lifeboats, cannot be located at offshore stations because their maximum traveling range and 

endurance are not sufficient for long patrol tasks. 

5.4.1.3. Land-Avoided Distance Matrix 

The distances between incidents’ locations and SAR stations are required to perform model 

calculations. There are different methods for distance calculation. The most common way 

is calculating straight Euclidean distance. However, there is an issue for using straight or 



 
 

119 
 

direct route calculation in this study. In some cases, it is not possible to use the straight 

route because of land obstacles in the way. To deal with this problem, a previously 

developed land avoidance algorithm has been used to find the shortest route between 

incidents and vessels by calculating Euclidean distance between grids while avoiding land 

obstacles. Note also that great circle distances to accommodate the earth’s curvature would 

be more accurate, but for the strategic aim of this study, and over relatively short distances, 

it can be ignored. 

The distances are collected in the matrix D, which includes distances between all grids 

where incidents may occur (using grid centroids) and potential station locations. This 

matrix was calculated using land avoidance and has 1617 rows (grids) and 37 columns 

(stations), where dij denotes the distance of incident grid i from potential station j. Using a 

smaller grid size for areas around the shoreline corresponding to the response zone of small 

lifeboats (with 185 km range) helps in reducing the error in determining the coverage area. 

Aggregation of demand points to a limited number of points (centroid of grids in this case) 

could result in some errors in measuring distances and with a consequent impact on 

objective functions. (Francis et al. 2009) explained different types of errors due to demand 

aggregation and discussed their impact on accuracy of model solutions. The scale of error 

depends highly on the level of aggregation and the approximation method. On the other 

hand, using all of the individual original demand points would increase the size of the 

problem and computation time and this could be an issue especially for large size problems. 

Moreover, predicting exact demand points is not possible due to stochasticity and 

continuity of demand.  

5.4.1.4. Applying Kernel Density Estimation 

The process of applying kernel density estimation to historical incidents is described in this 

section. Several parameters including the type of kernel function, cell size and bandwidth 

are required to be set. Parameters’ values are determined as follows. 

- Kernel type: Quartic 

- Cell size: (0.25  0.25) degree; the centre of each grid is used for kernel density 

calculation. 
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- Bandwidth (radius): variable size between (0.25-1.0 degrees), 0.25 degree for 

areas close to the shoreline with high density of incidents, 0.5 degree for areas 

further from shore and low incident density, and 1.0 degree for areas further 

offshore with very low number of incidents in the vicinity. 

5.4.1.5. Simulating Future Demand 

The kernel density estimates are the basis for generating random incidents for future 

scenarios. For each grid square, the average of kernel estimates within the grid square is 

calculated (Figure 5-3). These incident density rates are multiplied by the grid area (grids 

with variable size have variable area) to compute the incident count estimate for each grid. 

These calculated grid incident counts are scaled so that they sum up to the average number 

of incidents per year (this is calculated based on seven years’ historical data). These scaled 

values are considered as the mean parameter of a Poisson distribution for generating a 

random number of incidents over the mesh of grids in the area of interest. Twenty sets of 

random incident counts per grid square are generated based on calculated Poisson rates. 

These randomly generated scenarios are used as representation of stochastic demand in the 

proposed model. Probability of occurrence for each simulated demand scenario is 

considered to be equal to 0.05 for each of the 20 scenarios as they were all generated from 

the same distribution. 
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Figure 5-3- Incidents Kernel estimates on gridded map 

Using past incidents for the demand, as most of other studies have done, means assuming 

that the future will behave exactly like the past, while using our procedure assumes that the 

pattern of incidents (i.e., the underlying probability distribution) remains the same. 

Furthermore, our approach does not ignore potential demand for the areas that haven’t 

experienced any incidents in the recorded past. This is a less stringent approach that would 

result in a more reliable analysis. 

5.4.2. Coverage Time Limit 

The maximum access time for an acceptable level of primary and backup coverage can 

vary based on the predefined service level standards or expert opinion. In this study, the 

default value for coverage time limit is considered to be 6 hours based on consultation with 

CCG experts. This parameter will be varied in Section 5.4.4.2 to examine the sensitivity of 

model results to the coverage time limit. This constraint is only applicable for the primary 

and backup coverage concepts in the model, but not to the allocation process of the model 

where there is no limit on access time and all incidents are to be allocated to the closest 

available resource in order to calculate mean access time. 
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5.4.3. Resource Capacity Calculation 

For each class of SAR vessels, a maximum capacity in terms of the number of incidents 

that could be responded to during the planning timeframe of analysis (one year) should be 

determined, and considered as a constraint in the optimization model. This is necessary to 

control the workload of the resources when planning. To calculate the capacity for each 

vessel type, several factors must be considered: 

 Vessel unavailability due to maintenance: SAR vessels can be unavailable in some 

period of service due to planned and unplanned maintenance which affects their 

actual operational capacity. 

 Vessel unavailability due to multitasking: Some vessels that perform SAR tasks are 

designed and used for multiple mandates. So, in reality they are not fully allocated 

to SAR program. This should be considered in the capacity planning of resources. 

 Average response time to incidents: the average number of incidents that can be 

responded to by a particular vessel in a given time period based on historical 

observations is important in order to calculate the maximum number they can 

respond to over the planning horizon.  

 Vessel speed: vessels have different speeds which has an impact on the duration of 

response to incidents and thus on the capacity of vessel. 

The following equation takes into account different factors to calculate the maximum 

annual capacity of each vessel type: ܿ௞ = (1 − (௞ݎݑ݉ ∗ ௞ݎܽ  ∗ ௞ݎܽݏ ∗ ݎ݅ܽ ∗ ݊݀,      (5.22) 

where:  

ck: Maximum number of incidents a vessel type k can respond to in the planning 

horizon 

murk:  Maintenance (planned and unplanned) unavailability rate of vessel type k 

ark:  Availability rate of vessel type k for SAR tasks 

sark:  Speed adjustment rate of vessel type k 

air:  Average number of incidents responded to by a vessel per day 
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nd:  Number of days in planning timeframe (365 days) 

 
Table 5-2- Vessel annual response capacity calculation 

Vessel Class murk ark sark air ck 

Vessel Type 1 0.15 1 0.88 1 273 

Vessel Type 2 0.15 1 1 1 310 

Vessel Type 3 0.18 0.55 0.81 1 98 

Vessel Type 4 0.23 0.33 0.77 1 54 

 

All these factors and their associated values are defined with consultation and information 

provided by CCG experts. The other fact that needs to be addressed concerning the capacity 

constraints is that according to historical incidents, there is a seasonal peak during spring 

and summer in the number of incidents in the area of interest. In particular, the monthly 

average number of incidents that occurred during the peak season is about 61% more than 

the annual average. To make the appropriate adjustments, we consider applying a rate to 

the number of incidents in the corresponding constraint in the model (i.e. by multiplying 

the left side of inequality (5.14) by 1.61 to increase the number of incidents with respect to 

the peak season). Therefore, the model ensures satisfying the demand during the peak 

season. 

5.4.4. Numerical Results and Discussions 

The proposed model was built and solved using the Gurobi 6.0.4 environment. The model 

has 197,457 variables and 202,999 constraints. The optimal solutions were found in a 

reasonable amount of time, usually in a few minutes depending on the parameters’ values 

using a computer with Intel Core i7 CPU and 8GB RAM. In the following sections, the 

results generated for different scenarios are presented and discussed.  

5.4.4.1. Weighted Goal Programming Model 

For the first set of optimization runs, the aim is to examine the solutions for different 

weights on three objectives in the model. The sum of weights is always equals to one and 

they can vary individually in the range of (0, 1). Objective targets are fixed at 100%, 100% 

and two hours for primary coverage, backup coverage, and mean access time, respectively. 
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These are determined through consultation with experts and also given prior information 

about service level requirements. Table 5-3 presents details of the results for 10 different 

configurations. The coverage time limit for the coverage calculation is assumed to be fixed 

at 6 hours in all runs. These results provide good insight about the tradeoffs among 

objectives and how their values vary by changing the importance weights in the objective 

function.  

Table 5-3- Weighted goal programming model solutions (varying weights) 
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λ1 λ2 λ3 μ1 μ2 
μ3 

(hrs) 

Primary 

Coverage 

Backup 

Coverage 

Mean 

Access 

Time 

(hrs) 

1 0.4 0.3 0.3 1 1 2 6 93.83% 77.22%  2.637  2:55 
2 0.4 0.2 0.4 1 1 2 6 94.11% 74.84%  2.611  2:24 
3 0.5 0.2 0.3 1 1 2 6 94.11% 74.84%  2.611  2:48 
4 0.6 0.2 0.2 1 1 2 6 93.83% 77.22%  2.637  2:59 
5 0.8 0.1 0.1 1 1 2 6 93.83% 77.22%  2.637  3:54 
6 0.3 0.2 0.5 1 1 2 6 94.11% 71.21%  2.578  3:24 
7 0.2 0.2 0.6 1 1 2 6 94.31% 68.95%  2.563  4:03 
8 0.1 0.1 0.8 1 1 2 6 94.31% 63.07%  2.534  2:09 
9 0.3 0.4 0.3 1 1 2 6 93.83% 77.22%  2.637  14:15 

10 0.3 0.5 0.2 1 1 2 6 93.11% 81.73%  2.751  14:49 

 

Based on the observed results, primary coverage can vary between 93.1% and 94.3% by 

changing its weight, so it is not very sensitive to the weight. Mean access time has more 

significant variation by changing the objective weights. Its best obtained solution is 2.53 

hours, while changing the weights would worsen it up to 2.75 hours. The most sensitive 

objective function element to the choice of weights is the backup coverage as its value 

varies in the range of 63.1% to 81.7% in the investigated results. So far, these results 

demonstrate that by using the multi-objective model it is possible to achieve solutions that 

are simultaneously fairly good in terms of different criteria. This will be discussed more in 

subsequent sections. We consider (0.5, 0.2, 0.3) as a default objectives configuration, 

because in the decision maker’s mind, primary coverage is the most important objective, 

but some importance should be assigned to the other criteria, keeping in mind that access 
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time is significantly more important relative to backup coverage. Moreover, examining the 

different solutions it looks like this specific configuration of objective weights yields a 

reasonable tradeoff by providing a near optimal solution for all objectives. 

As discussed, in order to ensure that a solution can meet the demand during peak season, 

we have adjusted the number of incidents in each grid (multiplying by 1.61), but this could 

be a pessimistic overestimate. To investigate the impact of this parameter on the solution, 

different model configurations were tested by altering that multiplier (from 1.61 down to 

1.0 which will make it equal to the average annual demand). The results show that there 

will be no change in the optimal vessel locations. The only difference is with the optimal 

value obtained for the mean access time which drops from 2.611 to 2.600 (due to loosening 

the capacity constraints), a fairly negligible change. Other objectives remain unaffected. 

The other thing that is important since we have nondeterministic demand, is the variation 

of model performance among different demand scenarios that have been generated. 

Clearly, we would like to have less variation or in other words a more robust solution. We 

attempted to control negative variations in the objective’s values across different scenarios 

by adding constraints (5.19-21) to the model. Also, we observed the objective values for 

each scenario to examine whether the variation levels are under control and within 

confidence intervals. The results shown in Figure 5-4 indicate a relatively low level of 

variation in objective values among different demand scenarios for the (0.5, 0.2, 0.3) 

objective weights. The Backup Coverage objective is more stable, while the Primary 

Coverage and Mean Access Time have more fluctuation while still within reasonable 

range. This observation supports the robustness of solutions produced by the proposed 

model over different simulated demand scenarios as well as the appropriateness of the size 

of simulation (number of replications). 
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Figure 5-4- Objective values variation over demand simulated scenarios 

5.4.4.2. Sensitivity Analysis on Coverage Time Limit 

In the previous section the coverage time limit parameter was fixed and the changing 

variables were the objective weights. But coverage time limit could change based on 

different situations and potential service level requirement changes. In this section, 

objective weights are fixed at (0.5, 0.2, 0.3). Table 5-4 shows the solutions found for 

scenarios with coverage time limit varying between 4 and 12 hours. As shown, increasing 

the coverage time limit will mostly help coverage objectives improve, in fact getting very 

close to their target value (100%). This is expected as the coverage time limit works as a 

constraint on the coverage variables thus loosening that constraint will result in increase in 

coverage. Figure 5-5 demonstrates the performance of model solutions when increasing 

the coverage time limit. Moreover, we observe a slight drop in mean access time as we 

increase the coverage time limit. This phenomenon can be explained by considering multi-

objective model behavior. The model is forced to sacrifice the mean access time for the 

cases with a tighter coverage time limit constraint, in order to keep reasonable objective 

values for primary and backup coverage that have been squeezed by the lower coverage 
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time limit. This is apparently done in order to minimize the total weighted deviation from 

targets by avoiding a sharp decline in coverage rates. 

Table 5-4- Weighted goal programming model solutions (varying coverage time limit) 
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λ1 λ2 λ3 μ1 μ2 
μ3 

(hrs) 

Primary 

Coverage 

Backup 

Coverage 

Mean 

Access 

Time 

(hrs) 

1 0.5 0.2 0.3 1 1 2 4 85.64% 53.41%  2.637  3:25 
2 0.5 0.2 0.3 1 1 2 5 91.88% 69.67%  2.667  6:46 
3 0.5 0.2 0.3 1 1 2 6 94.11% 74.84%  2.611  2:24 
4 0.5 0.2 0.3 1 1 2 7 95.79% 82.70%  2.614  4:45 
5 0.5 0.2 0.3 1 1 2 8 97.15% 83.85%  2.585  1:53 
6 0.5 0.2 0.3 1 1 2 9 97.99% 85.80%  2.570  5:10 
7 0.5 0.2 0.3 1 1 2 10 98.28% 87.75%  2.553  2:14 
8 0.5 0.2 0.3 1 1 2 11 98.74% 89.12%  2.536  2:37 
9 0.5 0.2 0.3 1 1 2 12 99.30% 91.04%  2.536  1:27 

 

 

Figure 5-5- Objective values sensitivity to coverage time limit 

5.4.4.3. Proposed Solution Compared to Single Objective Models’ Solutions 

The performance of the multi-objective goal programming model is also examined 

compared to two popular single objective models, Maximal covering (Church and ReVelle 

1974) and p-median (Hakimi 1964), in terms of the three main criteria of the problem. The 
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results shown in Table 5-5 demonstrate that the proposed model performs well in 

comparison with single objective models with respect to the purpose it is designed for, 

where primary coverage is only 1.1% lower than the maximal covering solution and mean 

access time only 0.08 hours higher than the p-median solution, while the backup coverage 

has been improved notably (14% compared to the maximal covering and 11% compared 

to the p-median). The results show that a significantly higher level of backup coverage can 

be provided without substantial loss of primary coverage and upsurge in access time. The 

main achievement of the multi-objective model, as it was anticipated, is to provide near 

optimal solutions for all criteria simultaneously which was overlooked in the single 

objective models. 

Table 5-5- Proposed model solution vs. single objective models 

Resource Arrangement 
Solution (objective values) 

Primary Coverage Backup Coverage Mean Access Time (hrs) 

Maximal covering 95.23% 60.12%  2.79  

p-median 94.31% 63.07%  2.53  

Multi-objective model 94.11% 74.84%  2.61  

 

5.4.4.4. Proposed Model Solution Compared to The Current Arrangement of Vessels 

In order to compare the solutions provided by the multi-objective mathematical model to 

the current arrangement of SAR resources, the performance of current arrangement of SAR 

vessels across different demand scenarios is simulated. The response allocation of 

resources to the forecasted incidents is simulated taking into account the vessel classes’ 

characteristics and the policy of allocating incidents to the closest vessel. In Table 5-6, the 

objectives’ values for the simulated current arrangement scenario are compared to the goal 

programming model with (0.5, 0.2, 0.3) weights and given the default six hours’ coverage 

time limit. According to the results, a remarkable improvement in terms of all criteria is 

provided using the multi-objective model solution versus what is obtained by the current 

arrangement of resources.  
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Table 5-6- Proposed model solution vs. the current arrangement 

Resource Arrangement 
Solution (objective values) 

Primary Coverage Backup Coverage Mean Access Time (hrs) 

Current Arrangement 89.38% 60.18%  3.14  

Multi-objective model solution 94.11% 74.84%  2.61  

 

5.4.5. Managerial Aspects 

The proposed model in this study attempts to take into account different criteria that are of 

interest to decision makers for planning and managing limited resources efficiently and 

effectively. This model considers different characteristics and capability of resources as 

well as their operational capacities, and tries to model the problem in the closest way 

possible to a real case. The multi-objective model provides the desired flexibility by 

incorporating several variable parameters into the model for managers to play with these 

factors and obtain the most appropriate solution for various different business situations. 

The idea of goal programming helps as managers can specify their desired target values for 

each objective as well as their preferences across criteria. This general model can be 

utilized by high level decision makers in order to perform strategic resource and capacity 

planning. Several sensitivity analyses can be performed to examine different possible 

scenarios, for example decommissioning of vessels, new resource recruitment or new 

station development. One can see the tradeoffs among objectives’ values resulting from 

changing different parameters in the model and thus acquire valuable insights about the 

anticipated impacts of strategic and tactical decisions. 

 Conclusion 

In this study, multi-objective goal programming is applied to the Maritime SAR Location 

problem. For this model, four common SAR vessel types which are used in practice and 

have different capabilities are considered. Future demands are simulated and distributed 

over the study area and timeframe based on patterns extracted from historical incidents. 

The mixed integer-linear optimization model has three objectives: minimizing 

standardized deviation from: Primary coverage, Backup coverage and Mean access time. 

Several model runs with different parameter configuration are generated and solved and 
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results show the desirable performance of the model compared to common single objective 

models in location analysis, namely maximal covering and p-median. The proposed model 

provides solutions with significantly better performance versus the current response vessel 

arrangement taking into account three main decision criteria. Several different scenarios 

are examined through performing sensitivity analyses on objective weights and coverage 

time limit. 

The results of this study could be useful for guiding decisions with regards to SAR vessel 

acquisitions and placement in order to improve the efficiency of resources and increase the 

service level. More specifically, the outcome of this study could provide the CCG with 

some useful insight for future resource capacity planning including fleet procurement 

planning and appropriate stations for placing new vessels. Also, it can be helpful for 

managing current operations to increase the resource utilization and effectiveness of their 

services. Several operational rules can be extracted from the model solution for best 

resource allocation policies. 

There are several potential future extensions of this work. There could be different types 

of incidents with different severity and requirements for different types of response, as all 

CCG vessels are not equally effective at responding to different types of incidents. So, it 

would be more realistic if we can differentiate incident types in the model and take into 

account their specific response requirements. That also would require more detailed 

information about the capabilities of resources. In this study, we dealt with the congestion 

issue by incorporating backup coverage in the model as an objective, while the other 

common way is using queuing models. One could look at simulating the future incidents 

in a way that produces the exact location versus the aggregation approach which is used in 

this study. This could help with reducing the error in distance and coverage area 

calculation. The model could be further extended to future response needs by modelling 

trends in incidents, incident rates, and/or traffic levels. In addition, there could be a 

possibility to relocate some vessels periodically to balance the availability of resources 

responding to changing demand patterns and thus increase the utilization. 
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Chapter 6 γ-Robust Multiple Period Capacitated Location Model: The 

Case of Maritime Search and Rescue  

Amin Akbari, Ronald Pelot, H.A. Eiselt  

 

This section has been submitted for publication in the “European Journal of Operational 

Research”. 

 

Abstract 

This study proposes a robust multi-period p-median model with a constraint on the minimum 
required coverage level for optimizing the Location-Allocation of maritime search and rescue 
vessels over several simulated demand scenarios. Different types of capacitated vessels are 
considered. The possibility of seasonal relocation of vessels is taken into consideration to 
effectively respond to the associated changes in demand patterns. Comparing the exact optimal 
solution provided by the dynamic model to the current arrangement of SAR resources as well as to 
a static configuration of the model reveals a substantial potential improvement in terms of the 
service level, with robust performance over possible variations in demand. 

Keywords: Location; Maritime Search and Rescue; Multiple period; p-median; Robust 
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 Introduction 

According to many published reports, ocean activities such as fishing or marine 

transportation are among the most dangerous activities in the world. Since, Canada is 

surrounded by navigable waters, the country is subject to many risky marine operations. 

For example, Commercial fishing has the highest fatality rate among all industries in 

Canada. Workers Compensation Board (WCB) statistics show that 0.831 workers per 1000 

died while on the job in the fishing industry, while the average across all other industries 

is 0.044 worker fatalities per 1000 workers (WCBNS 2012). Thus, maritime search and 

rescue (SAR) is one of the most needed rescue activities in Canada as every year more than 

6,000 incidents are reported to the responsible authorities. Maritime SAR can be 

categorized as an emergency response activity. The Canadian Coast Guard (CCG) operates 

the federal government’s civilian fleet within the Department of Fisheries and Oceans 

(DFO), including providing maritime SAR services. It is paramount that their limited 

resources are used efficiently. To do so, they must make informed strategic and tactical 

decisions on where to site their resources, how to relocate them if necessary, and how to 

allocate incidents to the located resources. 

The Location-Allocation problem is a basic model for several important applications, 

including the location of ambulances, police cruisers, fire stations, distribution centers and 

so on. These models determine the optimal location of facilities as well as allocation of 

customers (demand) to the located facilities. There is a wide variety of mathematical 

models with different characteristics that have been formulated for such problems. Each of 

these models aims to provide an optimal solution with regard to single or multiple 

objectives (criteria) such as coverage, cost, access time, etc.

There is rich literature in the field of emergency location analysis. In a typical emergency 

response location problem, we are faced with a “server to customer” service system with 

mobile servers in contrast to the usual facility location problems wherein facilities are fixed 

and customers travel to those sites. So, in these problems, by facilities we refer to the 

emergency response vessels such as ambulances or SAR vessels. In such conditions, the 

relocation of facilities (i.e. vessels) is much easier and does not incur the regular costs 
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associated with closing a facility and opening a new one in a new location. In this practical 

category of location problems, usually a key goal is to provide efficient response within a 

minimum amount of time so as to increase the chance of people surviving. 

An important concern when dealing with strategic planning for any type of facility is the 

nature of the demand. It is crucial to consider the possible patterns and variations in 

demand. The spatial and temporal changes in demand in terms of volume and location 

should be taken into account. Overlooking these factors might dramatically affect the actual 

system performance. In our case, as we have different types of marine incidents with 

different causes and contexts, there are substantial spatial variations in demand that need 

to be considered for response resource planning purposes. For example, we know that the 

areas that most incidents occur substantially change due to variations in fishing areas, 

recreational zones and maritime transit corridors in different seasons. 

The purpose of this study is to develop a robust multi-period model for the case of a 

maritime SAR location problem that not only incorporates different criteria that are of 

interest for decision makers and ensures that the solutions performs well under different 

demand conditions, but also allows relocation of vessels in a defined periodic manner so 

that we can more effectively respond to the dynamics of demand. Constraints related to 

resource type, such as response vessel capacity and capability, are considered in the model 

to make the representation more realistic. We use the scenario planning approach to deal 

with the demand uncertainty. Several demand scenarios are randomly generated based on 

the spatial distribution extracted from historical data and for different seasons of operations 

to account for changing seasonal patterns. The proposed model is applied to a real world 

maritime SAR location problem. Solutions provided by the proposed model are compared 

to the current arrangement of the fleet as well as to the solution of the model with static 

configuration (i.e. where the vessel arrangement is unchanged throughout the time 

horizon). Ultimately, this study aims to propose a decision support model that is capable 

of providing helpful insights for decision makers with regard to possible changes at the 

strategic and tactical level on managing resources to improve the overall quality of 

maritime SAR service and efficiency of resource utilization. 
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The remainder of this paper is organized as follows. Section 6.2 presents a critical review 

of relevant literature. Section 6.3 explains the proposed mathematical model. In section 

6.4, the process of applying the model to our case study is presented, followed by the 

numerical results and discussion of the results. We conclude the paper with the summary 

of the findings and outlook for future research in the field. 

 Literature 

6.2.1. Dynamic Facility Location Studies

Facility location problems can be divided into two categories: static and dynamic problems 

where location decisions are made just once in the static category, while in the dynamic 

problems location decisions are time dependent (i.e. relocation of facilities is permitted). 

Relocation of facilities can occur in a discrete or continuous manner. In the former 

category, relocation is only possible at discrete pre-determined points of time (Wesolowsky 

1973); while in the latter case, relocation is possible at any time during the planning horizon 

(Drezner and Wesolowsky 1991). 

Wesolowsky (1973), Wesolowsky and Truscott (1975), and Sweeney and Tatham (1976) 

dealt with the multi-period Location-Allocation problem starting with the static Location-

Allocation problem, and subsequently dynamic programming was applied to introduce 

dynamic considerations in order to find the optimal multi-period solution. A relocation 

problem for public facilities was applied to a real life problem in (Min 1988). A fuzzy 

multi-objective model with constraints on budget and on the maximum number of 

relocations per period was constructed to solve the problem. 

Melo et al. (2005) studied the application of a set of innovative models for the single-

commodity and multi-commodity dynamic (i.e. multi-period) Location-Allocation 

problem. They considered gradual relocation of facilities over the planning horizon. 

Capacity expansion and reduction scenarios were examined to address the fluctuations in 

demand. More recently, Afshari et al. (2014) presented a model with an optimal approach 

for multi-objective, multi-period, multi-commodity, distribution-service system. Sonmez 

and Lim (2012) introduced a location-relocation model minimizing the initial and expected 

future weighted travel distance. The model considers possibility of facility relocation for 
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future instances by closing some of the facilities that were located initially and opening 

new ones, without exceeding a given budget. 

Seyedhosseini et al. (2016) point out that in most of the research on this subject there has 

been an emphasis on the use of deterministic parameters. Framing a problem using a 

probabilistic or stochastic model is the most important cause of complexity in the problem 

and generating the solution. In order to simplify, most authors consider the parameters as 

deterministic. Also, in order to reduce the complexity of the mathematical model most 

studies prefer discrete time periods of relocation over continuous changes. In addition, this 

approach is more practical in most cases when it comes to the implementation of solutions; 

however, choosing continuous time for relocations often results in better optimal solutions. 

Arabani and Farahani (2012) have reviewed the literature on dynamics in location analysis. 

Different approaches for considering dynamicity in demand, parameters and/or factors in 

facility location problems are examined. They categorized studies based on the method 

taken into account for the stochasticity of demand and its possible variations. Time 

dependent location problems, multi-period and simple-period location problems and 

location-relocation problems are among different types of problems which were reviewed.  

One of the most appealing practical subsets of dynamic location modelling, with a quite 

rich literature, is the ambulance relocation problem where the relocation or redeployment 

decisions are usually made in a real time manner, see e.g.,  Gendreau et al. (2001), 

Rajagopalan et al. (2008), Bélanger et al. (2014), and Moeini et al. (2014). Brotcorne et al. 

(2003) traced the evolution of ambulance location and relocation models including static 

models, probabilistic models and dynamic models. Gendreau et al. (2006) developed a 

Maximal Expected Coverage Relocation Problem which aims to provide optimal dynamic 

relocation strategy for emergency vehicle waiting sites so that the expected covered 

demand is maximized while the number of relocations is under control. Rajagopalan et al. 

(2008) also proposed a dynamic relocation/redeployment model for ambulances to 

determine the minimum number of ambulances required and their locations for each time 

cluster in which significant changes in demand pattern occur. 
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Seyedhosseini et al. (2016) presented the most recent comprehensive review on research 

studies on dynamic location problems. They classified problems in this area with respect 

to modelling methodology, objective function type, solution approach, and application 

area. They covered a wide range of problems including single and multiple facility 

relocation problem, median and covering dynamic location problems, stochastic dynamic 

location problems, and fuzzy location problems. 

6.2.2. Facility Location Modelling Under Demand Uncertainty 

Uncertainty in discrete facility location modelling may exist in different aspects of the 

problem such as demand locations, travel times, travel costs, demand volume, etc. There 

are two common approaches for optimization under an uncertain environment: stochastic 

programming (SP) and robust optimization (RO); in the first approach uncertain parameters 

are represented with probability distributions. In robust optimization, a set of possible 

future values (represented as scenarios) are taken into account and typically the objective 

is to minimize the largest deviation of a solution from the best possible (i.e. ideal) objective 

value across all scenarios. A “scenario” is a complete realization of all the uncertain 

parameters. Each scenario fully determines the value of all the uncertain parameters. 

Depending on the problem, we may have a finite or infinite number of scenarios. 

Minimizing regret is one of the most popular approaches taken by researchers in RO where 

the regret is generally defined as the deviation of a solution from the best possible solution. 

The concept of regret can be used in the same way ideal points techniques proceed, which 

is either by way of minimizing the average distance to the ideal point (or regret) or by a 

minimax objective so as to guard against the worst-case scenario.  

Snyder (2006) reviewed the literature on stochastic and robust facility location models and 

covered a variety of approaches for optimization under uncertainty. According to this work, 

in risk situations there are uncertain parameters whose values are governed by probability 

distributions that are known by the decision maker. In uncertainty situations, parameters 

are uncertain, and furthermore, no information about their probabilities is known. Problems 

in risk situations are known as stochastic optimization problems; a common goal is to 

optimize the expected value of some objective function. Problems under uncertainty are 
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known as robust optimization problems and often attempt to optimize the worst-case 

performance of the system. 

In stochastic programming, it is assumed that the probability distribution associated with 

the value of uncertain parameters is known; however, in robust optimization it is assumed 

that no information about probability distributions is available except limited data on the 

specification of intervals containing the uncertain values. According to what Owen and 

Daskin (1998) proposed, the uncertainty in the model parameters might arise for two 

reasons, as either future conditions incur planning uncertainty, or absence of knowledge 

about the input parameters produces the related uncertainty. As examples of applying a 

scenario planning approach for stochastic location programming, one can refer to Chen et 

al. (2006) and Owen and Daskin (1998). In scenario planning, the decision maker identifies 

a number of future possible scenarios and estimates the likelihood of each scenario 

occurring. Sheppard (1974) was among the first researchers to use scenario planning to 

model uncertainties in facility location. His model minimizes the expected cost over all 

scenarios.  

In the context of stochastic facility location, the regret associated with each scenario under 

a given siting plan is usually defined as the difference between the objective function value 

of the optimal solution for that scenario and the objective function value of a chosen siting 

plan (Chen et al. 2006). If there is no knowledge about the probabilities of the possible 

outcomes, the Minimax regret principle can be useful to help people in making decisions. 

However, if there is knowledge about these probabilities, then the Minimax regret principle 

can be suboptimal. An alternative robustness measure proposed by Snyder and Daskin 

(2006) is “α-robustness”. They present a novel robustness measure that combines the two 

objectives by minimizing the expected cost while bounding the relative regret in each 

scenario. The idea is to look for a solution that minimizes the expected cost/distance such 

that the relative regret in each scenario is no more than α. This study can be considered as 

an application of the constraint method; see e.g. Cohon et al. (1979). 

Daskin et al. (1997) also proposed an α-reliable minimax regret model for a p-median 

problem. They minimized the maximum regret of the total weighted distance over a set of 
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scenarios whose total probability is at least α. Their approach mixes the advantages of 

robust optimization by applying a regret criterion, and stochastic optimization since it 

minimizes the expected regret over select scenarios. Chen et al. (2006) studied a facility 

location problem under uncertainty associated with future events which is modelled by 

defining alternative future scenarios with probabilities. They presented an α-reliable mean 

excess model that minimizes the expected regret with respect to an endogenously selected 

subset of worst-case scenarios. 

The two-stage nature of facility location problems (choose locations now, before we know 

what the future holds, and react once the uncertainty has been resolved, say, by assigning 

customers to facilities) has made these problems very attractive to researchers exploring 

approaches to decision making under uncertainty (Snyder 2006). Thus, in stochastic 

location modelling, locations are generally first-stage decisions whereas assignments of 

customers to facilities are second-stage, i.e., recourse, decisions. (If both decisions occur 

in the first stage, most problems can be easily reduced to deterministic problems in which 

uncertain parameters are replaced by their means.) 

Wang et al. (2003) proposed a model which considers opening new facilities and closing 

some old ones that, due to a change in the distribution of customer demand, no longer 

provide adequate service. The model minimizes the total weighted travel distance for 

customers, subject to a constraint on the budget. Lim and Sonmez (2013) also consider 

relocating facilities where there are demand changes. Relocations are performed by closing 

some of the existing facilities from low demand areas and opening new ones in newly 

emerging areas. Different scenarios with known probabilities were used to capture demand 

uncertainty. Their model minimizes the expected weighted distance while making sure that 

relative regret for each scenario is no greater than γ. Both Wang et al. (2003) and Lim and 

Sonmez (2013) have not considered the capacity limitation of facilities in their models. 

The other limitation is that all facilities are assumed to have the same characteristics.  

A review on different modelling approaches for dealing with uncertainty in facility location 

is provided by Correia and Saldanha da Gama (2015). 
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6.2.3. Search and Rescue Location Analysis 

There are not many studies on the application of location modelling to SAR problems. 

Brown et al. (1996) developed a mixed integer model for scheduling US Coast Guard 

district cutters, whereby its solution was superior compared to manually prepared 

schedules. Nguyen and Kevin (2000) combined maximal covering and p-median location 

problems using a goal programming model to assess the level of service of the existing 

Canadian SAR system (in terms of location of SAR aircraft and helicopters) and compared 

it to the optimal solution of their model. Afshartous et al. (2009) studied the problem of 

locating Coast Guard air stations taking a statistical-optimization approach to provide a 

robust solution in the presence of uncertainty in distress call locations. Distress calls are 

simulated and the optimization problem is solved for different simulations. The 

optimization model however is not as comprehensive as it should be and it does not 

consider all different demand simulations in an integrated model.  

Radovilsky and Koermer (2007) presented the application of integer linear programming 

for the optimal allocation of rescue boats among the stations of the U.S. Coast Guard. Their 

model minimizes shortages or excess capacities at the stations. In an extension to the 

previous study, Wagner and Radovilsky (2012) developed a new model that 

simultaneously considers reduction of excess capacity and boat shortages at the stations, a 

decrease in the overall fleet size with an increase in boat utilization, and overall reduction 

of the fleet operating cost. Another interesting study was conducted by Nelson et al. (2014) 

who developed an optimization model for determining the optimal deployment 

assignments, operational levels and aircraft allocation among all USCG Air Stations. 

Pelot et al. (2015) applied three common covering problems in emergency response 

modelling including maximal covering location problem, maximal expected covering 

location problem, and maximal covering location problem with workload capacity, to the 

maritime SAR location problem for Atlantic Canada. Akbari et al. (2016) also presented a 

multi-criteria analysis on the performance of solutions provided by two popular location 

models, p-median and maximal covering, to the case of a maritime SAR location problem. 

This study considers primary and backup coverage, mean access time, the Gini index to 
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reflect the service equality level across customers, and maximum access time as post-

assessment criteria for solutions of two single objective models. 

Razi et al. (2016) determined the best solution for allocating helicopters to SAR missions 

using an optimization model. Simulation was used to validate the performance of the 

solution for the uncertain demand. Razi and Karatas (2016) conducted a study on 

developing a multi-objective model for allocation of SAR boats taking into account several 

factors and decision criteria such as density and type of incidents, resource capability, and 

business rules. Response time to incidents, fleet operation cost and the mismatch between 

resource load and operation planned capacity, are minimized. 

To the best of our knowledge, none of studies in the area has considered the possibility of 

relocating vessels to deal with dynamic demand. Also, it should be noted the approach of 

relocating SAR vessels is quite different from what is usual in other emergency response 

activities such as ambulances as the relocation of SAR vessels is not as simple as the 

relocation of ambulances and it cannot happen very frequently. Vessels used for SAR, 

especially multitasking vessels, are often big ships such that that their relocation to a new 

station is not easy and involves several operational issues. The decision about where 

vessels are stationed, or pre-positioned, is an administrative decision which must pass 

through several levels of approval in the organization; this is not a quickly decided move.  

It may impact on the planning in other sections of the Coast Guard due to multi-tasking 

coordination. Depending on the nature of a relocation, it may affect from which home 

locations crew members are assigned, thus another logistics issue.  Of course, the response 

range in maritime SAR is long and not comparable with ambulances, and thus a vessel’s 

relocation can potentially be a long one. Furthermore, most of the proposed models assume 

deterministic demand, usually based on historical data. In some cases, future demand is 

simulated to validate the model solution performance, but not then used as an input to the 

optimization model. 
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 Proposed Multi-Period Model 

We present a robust multi-period capacitated p-median model which is customized for the 

maritime SAR Location-Allocation case. The p-median problem is a well-known facility 

location problem that was first introduced explicitly by Hakimi (1964) and formulated by 

ReVelle and Swain (1970).  

Due to the possibility of changes in demand during different seasons, we allow relocations 

to occur, so vessels can be relocated from their current station to other eligible stations in 

a periodic manner. Also, to account for uncertainty in demand, a scenario planning 

approach is utilized whereby several sets of randomly generated demands (demand 

scenarios) at the planning horizon are used in the mathematical model. The objective 

function minimizes the expected weighted access time to all incidents over the demand 

scenarios assuring that the maximum regret across all demand scenarios stays within a 

prescribed upper bound (i.e. under control). 

Therefore, the goal of this study is to produce a new model for the SAR vessel location-

relocation problem with multiple types of capacitated facilities and under demand 

uncertainty. We develop a mathematical model to provide solutions for vessel relocation 

decisions that ensures good performance across all scenarios rather than finding optimal 

solution for each scenario. The model solution determines where to locate different types 

of vessels and which ones to relocate seasonally to effectively respond to demand pattern 

changes and balance the expected and worst case performance of the decisions. 

Our model considers different classes of SAR vessels with different speeds, response 

capacities and plausible locations. It includes capacity constraints on the number of 

incidents that can be responded to by different types of SAR vessels to account for limited 

operational capacity of resources. Moreover, since we are dealing with a problem of 

locating mobile facilities (i.e. SAR vessels) with different speeds, we chose to use travel 

time instead of a regular travel distance proxy in the objective function. In addition, 

typically in emergency response analysis a customer is called covered if it is within a 

predetermined access time rather than prescribed range because the time is a better proxy 

for measuring system performance in this case.  
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In our case, there is no second stage decision in contrast to common stochastic 

programming location models, because the allocation decision must be made before that 

actual demand is revealed. So, both location and allocation decisions are made prior to 

having complete information about the demand. In other words, the assignment of demand 

to resources cannot be variable for different scenarios, because even at the time of 

deployment of a vessel to respond to a particular incident, we still do not know which one 

of the demand scenarios is happening. The important fact is that we apply a scenario 

planning approach to come up with a solution which is robust with respect to possible 

demand variations, even though these specific scenarios are not guaranteed to happen. 

Furthermore, our model considers the capacity limits of resources and these constraints are 

not the same in different scenarios because in various simulated scenarios, the workload of 

vessels can be different due to changes in grid weights (number of incidents in each grid). 

Hence, we want to ensure that in all circumstances these capacity constraints are satisfied. 

This is another reason why scenarios cannot be simply replaced by their mean value to 

convert the model to a simpler deterministic version instead. 

We present a new formulation for the γ-robust facility relocation problem customized for 

the case of emergency response facilities (particularly in maritime SAR) that not only 

concurrently incorporates the uncertainty of demand through scenario planning and 

relocation of facilities, but also extends the model proposed by Lim and Sonmez (2013) in 

at least two ways: first by considering different type of facilities (vessels) with different 

operational characteristics and second by including capacity constraint on facilities to 

account for their limited operational capacity. 

The model objective is to minimize the expected mean travel time (access time) to all 

incident locations which are projected over a mesh of grids while ensuring that relative 

regret for each scenario is no more than γ. The relative regret associated with a scenario is 

the standardized difference between the mean access time corresponding to a given 

solution and the optimal mean access time for that scenario. The optimal mean access times 

for individual scenarios are obtained by solving the corresponding versions of our 

relocation problem. 
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The mathematical model developed for this problem is a large-scale Integer Linear 

Programming Problem. Indices, parameters and variables used in the model are listed and 

defined below. 

Indices: 

i  I:      Demand locations  

j  J:     Potential vessel stations 

JS  J:   Set of offshore stations (virtual stations offshore for patrol vessels and  

  multitasking ships) 

k  K:   Index for vessel types  

ω  Ω:     Index for simulated incident scenarios 

θ  Θ:     Index for relocation periods 

 

Variables: ݔ௜ఏ :  Binary variable for primary coverage at grid i in period θ ݖ௝௞ఏ ∶        The number of vessels type k located at station j in period θ ݑ௜௝௞ఏ:  Allocation of customers at grid i to vessel type k located at j in period θ ߭ఠ:  Mean access time in scenario ω 
 

Parameters: ݎ௞:        Coverage distance (range) of vessel type k ݌௞:        Maximum available number of vessel type k ܿ௞ఏ:       Capacity of vessel type k in period θ (number of incidents that can be 

responded to) ݒ௞:  Cruising speed of vessel type k ݀௜௝:  Distance between grid i and station j ߨఠ:  Probability of occurrence of scenario ω  ݓ௜ఠఏ:  Demand weight at grid i in period θ in scenario ω (number of incidents) ݐ:          Coverage time limit for acceptable level of coverage 



 
 

144 
 

∗Maximum uncovered demand (as a percentage of total incidents) ߭ఠ  :ߙ Maximum relative regret (desirable robustness level, in percentage)  :ߛ :  Optimal objective value of the problem corresponding to individual 

scenario ω    
The formulation of the proposed model is as follows: 

Min: ߃ = ∑ ఠ߭ఠఠߨ    (6.1) 

s.t. 

∑ ∑ ∑ ∑ ቆ௪೔ഘഇ௨೔ೕೖഇ൬ௗ೔ೕ ௩ೖൗ ൰ቇೕ೔ೖഇ ∑ ∑ ௪೔ഘഇ೔ഇ = ߭ఠ, ∀ ߱  (6.2) ݔ௜ఏ ≤ ∑ ∑ ܽ௜௝௞ݖ௝௞ఏ௞௝ , ∀ ݅,  Primary coverage constraint (6.3) ߠ

where: ܽ௜௝௞: = 1 if:  ݀௜௝ ≤ ௞ݒ/௞ and  ݀௜௝ݎ ≤ else ܽ௜௝௞ ݐ ∶= 0   ∑ ∑ ௜௝௞ఏ௝௞ݑ = 1, ∀ ݅,   Unique demand allocation   ߠ

  constraint (6.4)  ∑ ௝௞ఏ௝ݖ ≤ ,݇ ∀ ,௞݌  Fixed number of available vessels   ߠ

  in each class  (6.5) ݑ௜௝௞ఏ  ≤ ܾ௜௝௞ݖ௝௞ఏ, ∀ ݅, ݆, k, θ Allocation to SAR vessels possible 

   if there is a vessel within the 

   coverage range  (6.6) 

where: ܾ௜௝௞: = 1 if:  ݀௜௝ ≤ ௞ else  ܾ௜௝௞ݎ ∶= 0    ∑ ௜௝௞ఏ௜ݑ௜ఠఏݓ ≤ ܿ௞ఏݖ௝௞ఏ,  ∀ ݆, ݇, ߱, ௝௞ఏݖ Capacity constraint (6.7) ߠ = 0,   ∀ ݆ ∈ ,ௌܬ ݇ ∈ {1,2}, ∑ Offshore location constraint (6.8) ߠ గഘ ∑ ∑ ௪೔ഘഇ௫೔ഇ೔ഇഘ∑ గഘ ∑ ∑ ௪೔ഘഇ೔ഇഘ ≥  1 −   Minimum expected coverage over      ,ߙ

  all scenarios (6.9) ߭ఠ − ߭ఠ∗ ≤ ∗ఠ߭ߛ  ,     ∀ ߱   Maximum relative regret in  

  every scenario (6.10) 
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The minimization objective function (equation 6.1) in relation with constraint (6.2) 

minimizes the expected mean access time for all incidents across all demand scenarios. 

Constraint (6.3) ensures that demand location i covered in period θ only if there is a vessel 

within the maximum coverage range and time in that period. Allocation of demand 

locations to resources is defined in (6.4) which ensures that all demand points are assigned 

to exactly one response vessel. The fixed maximum number of vessels in each class is 

constrained by (6.5). Constraint set (6.6) limits the allocation of demands to vessels based 

on the availability of having at least one vessel within its range. Vessel capacity restrictions 

for each scenario in different periods are applied in (6.7), and constraint set (6.8) ensures 

that lifeboats (vessels type 1 and 2) cannot be located at the offshore stations (described in 

section 6.4.1.2). Constraint (6.9) ensures a minimum level of expected coverage (1-α) 

provided. The last constraint set (6.10) is used to keep the relative regrets in each scenario 

below a specified threshold (γ). The robustness coefficient γ is the maximum allowable 

relative regret. The relative regret is computed using υω*, which is an input to the model; 

the υω* values have already been computed by solving separate deterministic capacitated 

p-median problems. 

 Case Study and Numerical Results 

This section explains the process of applying the proposed model to the specific case study 

for maritime SAR in Atlantic Canada. 

6.4.1. Data Preparation 

6.4.1.1. Seasonal Analysis of Incidents 

The location of demand for maritime incident response is typically uncertain. Although, 

historical locations can be a good representation of potential future demand points, those 

deterministic points cannot properly reflect the stochasticity of future demand. Moreover, 

the demand could change or fluctuate over different time periods. When dealing with 

strategic decision such as facility locations, it is important to pay attention to changing 

patterns in demand, potential peak seasons, as well as uncertainty associated with the 

volume and the location of demand. Therefore, choosing a comprehensive approach to 

properly simulate the potential future demand is a challenge.  
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As the pattern of past incidents is a strong predictor of future, it appears appropriate to 

extract the underlying distribution of historical incident locations over different time 

periods as the basis of a stochastic approach for simulating future incidents. There are 

several methods to fit a distribution for spatial data including quadrat analysis, naive 

estimation, and kernel density function. In this study, historical incidents are analyzed to 

extract patterns and distribution by using Kernel estimation (KE) which is a popular method 

for analyzing spatial point patterns. Kernel density estimation searches neighboring areas 

for calculating the density of occurrence around each specific point. Hence, it has the 

advantage of not ignoring the potential movement in demand locations over time. Kernel 

estimation is a proper means of exploring spatial variations in terms of intensity. Such 

approaches are often used in the identification of clusters and hot spots. This method 

provides a density estimate for any particular point based on historical occurrences in the 

vicinity of that point, giving more weight to the closer occurrences. The kernel density 

method also works well with gridded data, which is the format of our demand projections. 

Kernel estimation usually uses a geographical weighting scheme (a kernel function) 

whereby the influence of the points varies inversely to how far they are from the centre of 

the window (Lloyd 2010). The KE of intensity is given by: ߣመ௞(݋) = ∑ ଵఛమ௡௜ୀଵ ݇(௢ି௢೔ఛ ),        (6.11) 

where τ is the bandwidth (determining the size of the kernel) and o-oi indicates the distance 

between the centre of the kernel (o) and the location oi (i is an index for data points). There 

is a variety of different kernel functions that have been used for KE. The quartic kernel is 

encountered frequently in the point pattern analysis literature (Bailey and Gatrell 1995). 

The KE using the quartic kernel can be given by: 

(݋)መ௞ߣ = ∑ ଷగఛమ (1 − ௗ೔మఛమ)ଶௗ೔ஸఛ ,        (6.12) 

where di is the distance between the centre of the kernel (o) and the location oi. 

The distances between the incidents’ locations and potential SAR stations are required to 

perform model calculations. There are different methods for distance calculation. The most 

common way is calculating straight Euclidean distances. However, in this study it is not 
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always possible to use the straight (or the most direct) route because of land obstacles in 

the way. To deal with this problem, a previously developed land avoidance algorithm has 

been used to find the shortest route between incidents and vessels by calculating Euclidean 

distance between grids while avoiding land obstacles. Note also that great circle distances 

to accommodate the earth’s curvature would be more accurate, but for the strategic aim of 

this study, and over relatively short distances, it can be ignored. 

The calculated distances are collected in the matrix D, which includes distances between 

all grids where incidents may occur (using grid centroids) and potential station locations. 

This matrix has 1617 rows (gridded demand locations) and 37 columns (vessel stations), 

where dij denotes the distance of incident grid i from potential station j. Using a smaller 

grid size for areas around the shoreline corresponding to the response zone of small 

lifeboats (with 185 km range) helps in reducing the numerical error in determining the 

coverage area. 

Aggregation of demand points to a limited number of points (centroid of grids in this case) 

could result in some errors in measuring distances and with a consequent impact on 

objective functions. Francis et al. (2009) explained different types of errors due to demand 

aggregation and discussed their impact on accuracy of model solutions. The scale of error 

depends highly on the level of aggregation and the approximation method. On the other 

hand, using all of the individual original demand points would increase the size of the 

problem and computation time and this could be an issue especially for large size problems. 

Moreover, predicting exact demand points is not possible due to stochasticity and spatial 

continuity of demand.  

Due to some operational limitations and rules, relocation of SAR vessels is only possible 

over two operation seasons in our study area: October-April (season 1) and May-September 

(season 2). For many reasons related to origins of demand (incident occurrence), the second 

season is an expected peak season. Figure 6-1 demonstrates a huge jump in number of 

incidents that occurs during Spring-Summer as opposed to Fall-Winter. A similar trend is 

observed over different years. 
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Figure 6-1- Historical incident count by month for multiple years (2007 is omitted due to data deficiencies) 

For applying the kernel estimation over demand seasons, we need to determine several 

parameter values including the type of kernel function, cell size and bandwidth. The 

parameter values are listed below. 

- Kernel type: Quartic 

- Cell size: (0.25  0.25) degree; the centre of each grid is used for kernel density 

calculation. 

- Bandwidth (radius): variable size between (0.25-1.0 degrees), 0.25 degree for 

areas close to the shoreline with high density of incidents, 0.5 degree for areas 

further from shore and low incident density, and 1.0 degree for areas further 

offshore with very low number of incidents in the vicinity. 

Figure 6-2 and Figure 6-3 visualize the kernel density estimates for the two different 

operational seasons: Fall-Winter (season 1) and Spring-Summer (season 2). As it can be 

observed in these figures, the incident distribution pattern varies substantially over the two 

seasons, and the corresponding incidents totals are quite different. 
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Figure 6-2- Kernel density estimation for season 1: October- April 

 

Figure 6-3-Kernel density estimation for season 2: May- September 
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6.4.1.2. Vessel Classes and Characteristics 

This study considers different type of SAR vessels which are operated by the CCG. There 

are 24 vessels performing SAR response activities in Atlantic Canada. These vessels 

include lifeboats, multi-tasking ships and offshore patrol vessels. All existing Coast Guard 

vessels which are able to provide SAR services are categorized into four groups in order to 

simplify the modelling and reduce calculations. The vessel classes with their specifications 

are shown in Table 6-1. 

Table 6-1- SAR Vessel classes with characteristics 

Vessel Class Vessel type Range 

(Km) 

Vessel Length 

(m) 

Cruising 

Speed 

(Km/hr) 

Number 

available 

Regular Lifeboat class Type 1 185 16 26 9 

Fast Lifeboat class Type 2 185 15 41 7 

Offshore Patrol vessel Type 3 10000 40-50 31 4 

Large multi-task vessel  Type 4 6000 60-90 22 4 

 

Different types of SAR vessels have different travel times because of their different cruising 

speeds. Also, they have distinct maximum travel ranges as well. This requires them to be 

treated separately in the mathematical model as we are dealing with travel time rather than 

travel distance. 

6.4.1.3. SAR Stations 

Currently, there are 18 inshore SAR stations in Atlantic Canada which are able to house 

SAR vessels. It is assumed that all stations are able to accommodate all vessel types and no 

restriction is applied in this regard.  Some vessels are capable of being positioned offshore 

for long periods of time. To take advantage of this capability, 19 potential and currently in-

use offshore stations are to be considered in our analyses. Of course, this is not a station in 

the traditional sense, but a central location for a vessel that spends much of its time 

patrolling or performing other tasks at sea. So, we will have 18 inshore stations and 19 

potential offshore stations. One assumption in the model, represented as a constraint, is that 
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small CCG vessels, called lifeboats, cannot be located at offshore stations because their 

maximum traveling range and endurance are not sufficient for long patrol tasks. 

6.4.1.4. Capacity Calculation 

For each class of SAR vessel, a maximum capacity in terms of the number of incidents that 

can be responded to during different time periods of the planning horizon must be 

determined for consideration as a constraint in the optimization model. This is necessary 

to control the workload of resources when planning, especially given the significant 

increase in demand over peak season. Also, it should be noted that according to the 

historical data, the occurrence of incidents is usually such that it does not result in 

congestion for the response. Therefore, our modelling approach is based on the assumption 

that the congestion issue is rarely expected and are we are not concerned about the wait 

time for the response due to servers being busy with another task. 

To calculate the capacity for each vessel type, several factors must be considered: 

 Vessel unavailability due to maintenance: SAR vessels are generally unavailable in 

some period of service due to planned and unplanned maintenance, which affects 

their actual operational capacity. 

 Vessel unavailability due to multitasking: Some vessels that perform SAR tasks are 

designed and used for multiple mandates. So, in reality they are not fully allocated 

to the SAR program. This should be considered in the capacity planning of 

resources. 

 Average response time to incidents: the average number of incidents that can be 

responded to by a particular vessel in a given time period based on the historical 

observations is important in order to calculate the maximum number they can 

respond over planning horizon.  

 Vessel speed: vessels have different speeds, which has impact on the duration of 

response (i.e. transit) to incidents and thus on the capacity of vessel. 

The following equation is defined to take into account different factors to calculate the 

maximum seasonal response capacity ck  of each vessel type: 
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ܿ௞ఏ = (1 − (௞ఏݎݑ݉ ∗ ௞ఏݎܽ  ∗ ௞ݎܽݏ ∗ ݎ݅ܽ ∗ ݊݀,     (6.13) 

where:  

murkθ:  Maintenance (planned and unplanned) unavailability rate of vessel type k in 

season θ 

arkθ:  Availability rate of vessel type k for SAR tasks in season θ 

sark:  Speed adjustment rate of vessel type k relative to the fastest vessel type 

air:  Average number of incidents responded to by a vessel per day (1/day) 

nd:  Number of days in a season (182-183 days) 

 
Table 6-2- Seasonal vessel capacity (number of incidents) calculation 

Vessel Class Season 1 Season 2 

murkθ arkθ sark capacity murkθ arkθ sark capacity 

Vessel Type 1 0.27 1 0.88 118 0.03 1 0.88 155 

Vessel Type 2 0.27 1 1 134 0.03 1 1 177 

Vessel Type 3 0.324 0.55 0.81 56 0.036 0.55 0.81 79 

Vessel Type 4 0.414 0.33 0.77 27 0.046 0.33 0.77 44 

 

All these factors and their associated values were defined with consultation and 

information provided by CCG experts. In order to deal with the fact that we have a seasonal 

peak in the number of incidents during spring and summer and to provide greater capacity 

level, maintenance unavailability rates are adjusted so that we have higher availability for 

vessels during peak season. In other words, we push the planned maintenance to happen 

during off-peak season to release more capacity for peak season, which also reflects the 

reality of their operations. 

6.4.1.5. Simulation and Projection of Future Incidents 

The kernel density estimates are the basis for generating random incidents for future 

scenarios. For each grid square, the average of kernel estimates within the grid square in 

each season is calculated. These incident density rates are multiplied by the grid area (to 

account for grids with variable area due to different sizes) to compute the incident count 

estimate for each grid/season. These calculated grid incident counts are scaled so that they 
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sum up to the average number of historical incidents in a season (this is calculated based 

on seven years’ historical data; see Figure 6-1). These scaled values are considered as the 

mean parameter of a Poisson distribution for generating a random number of incidents over 

the mesh of grids in the study area. Ten sets of random incident counts per grid square are 

generated based on calculated Poisson rates. These randomly generated scenarios are used 

to represent the stochastic demand in the proposed model. Probability of occurrence for 

each simulated demand scenario is considered to be equal to 0.1 for each of the 10 scenarios 

as they were all generated from the same distribution. 

6.4.1.6. Coverage Time Limit 

The maximum access time for an acceptable level of coverage can vary based on the 

predefined service level standards or expert opinion about actual operations. In this study, 

the default value for coverage range time limit is considered to be 6 hours based on 

consultation with CCG experts. It should be noted that, this constraint is only applied to 

the coverage calculation in the model, but it has no impact on the allocation process of the 

model where there is no limit on access time and all incidents are to be allocated to the 

closest available resource in order to calculate mean access time. 

6.4.2. Solving the Model: Different Configurations 

The proposed model was built in the MPL environment and solved using the Gurobi 6.0.4 

solver. The model features 446,858 variables and 449,253 constraints. The exact optimal 

solutions were found in a reasonable amount of time, usually between 2-10 minutes 

depending on the parameter values using a computer with Intel Core i7 CPU and 8GB 

RAM. In the following sections, the results generated for different model configurations 

are presented and discussed. Table 6-3 shows the model solutions for different parameter 

values. In one of the desirable configurations, the model solution yields 2.4845 hours mean 

access time and 0.9421 coverage with 10 seasonal relocations, and the maximum relative 

regret across demand scenarios is only 0.029. Increasing the minimum required coverage 

to 0.945 results to worsening the access time to 2.4885 with greater regret (0.04), and 

demanding an even higher coverage level makes the problem infeasible. The maximum 
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relative regret of solution can be improved to 0.025, but that requires reduction of coverage 

as well as increase in access time, which are not desirable. 

Table 6-3- Model results- different configurations (without relocation limit) 

Max regret 

γ 

Min Coverage 

1-α 

Weighted access time 

(hrs) 

Coverage # of relocations Max regret 

γ 

0.05 0.90 2.4845 0.9201 10 0.029 

0.05 0.94 2.4845 0.9421 10 0.029 

0.05 0.945 2.4885 0.9452 11 0.040 

0.05 0.95 infeasible    

0.05 0.94 2.4845 0.9421 10 0.029 

0.025 0.90 2.4950 0.9214 10 0.025 

0.02 0.90 infeasible    

 

Table 6-4 shows the objective function values across different demand scenarios obtained 

by the integrated model compared to the optimal solution for each individual scenario, 

followed by the relative regret in percentage. The results reveal that model solution yields 

relative regrets between 0.5% and 2.9% and its average is about 1.6% which is desirable. 

Table 6-4- Model results: demand scenarios 

Demand 

scenario 

Optimal 

individual 

scenario objective 

Optimal 

integrated model 

objective 

Regret (%) 

Scenario 1 2.4061 2.4332 1.1% 

Scenario 2 2.5287 2.5401 0.5% 

Scenario 3 2.3421 2.3590 0.7% 

Scenario 4 2.3544 2.4052 2.2% 

Scenario 5 2.4485 2.5006 2.1% 

Scenario 6 2.5274 2.6012 2.9% 

Scenario 7 2.4715 2.5106 1.6% 

Scenario 8 2.5889 2.6235 1.3% 

Scenario 9 2.4399 2.4793 1.6% 

Scenario 10 2.3566 2.3923 1.5% 
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In order to be able to compare the performance of the model solution with the current 

arrangement of vessels and to measure the potential improvement, we need to calculate the 

access time to incidents given the current siting of vessels. To do so, we fix the location of 

vessels where they currently are and then compute the mean access time over the different 

simulated demand scenarios to be comparable with the model results. The results, shown 

in Table 6-5, indicate a substantial improvement in access time to incidents using our model 

solution compared to the current arrangement of SAR vessels. We anticipate to see about 

21% improvement in mean access time to incidents as well as 5% increase in coverage by 

implementing the solution suggested by our model. 

Table 6-5- Model solution compared to the current arrangement 

Resource Arrangement 
Decision criteria 

Mean Access Time (hrs) Coverage 

Current Arrangement 3.1424 0.8934 

γ-robust p-median model 2.4845 0.9421 

 

6.4.3. Sensitivity Analysis 

It is generally instructive to examine the sensitivity of model solutions to possible changes 

in parameter values. In our case, there are several parameters that might change due to 

managers’ decisions, policy changes or other consequential situations. For example, it is 

not unexpected to have new vessels joining the fleet or some old vessels being 

decommissioned. Hence, it is necessary to investigate the impact of these possibilities in 

the performance of our model. Also, these investigations can provide insightful information 

for decision makers. 

First, we examine the sensitivity of model solutions to possible changes in available 

resources by altering the maximum number of vessels in each class (+1, -1) and observing 

the changes in the objective function value. In Table 6-6, the results show that the objective 

function is sensitive to changes in class 2 and class 4 vessels more than to the class 1 and 

class 3. Also, class 1 seems to be the least important class in affecting the objective 
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function. Decision makers can easily see which type of vessels can be a better investment 

for improving the service level. 

Table 6-6- Sensitivity analysis on number of vessels 

Vessel class  Class 1 Class 2 Class 3 Class 4 

Change +1 -1 +1 -1 +1 -1 +1 -1 

Obj. value 2.478 2.499 2.437 2.547 2.460 2.521 2.429 2.562 

% dif. vs. 

optimal 
-0.2% 0.6% -1.9% 2.5% -1.0% 1.5% -2.2% 3.1% 

 

The number of seasonal relocations is another important factor for which the impact of 

variations on the solution quality should be examined. Essentially, fewer relocations are 

better as vessel relocation involves several operational issues such as crew relocation as 

well as associated costs. In the original model, there is no limit on number of relocations, 

although it is more realistic to add such constraint not only to observe the sensitivity of 

model results to restricting the number of relocations, but also to consider the cost/benefit 

aspect. This way, it would be possible to find a tradeoff between number of relocations and 

the objective function value.  

Table 6-7 presents the results of this analysis, altering the maximum number of relocations 

allowed. As can be seen, the mean access time slightly increases as we gradually restrict 

the number of relocations. Also, for this test we set the minimum coverage level at 94% 

and the maximum regret at 0.05. The results indicate a substantial improvement in access 

time when allowing relocation vs. the static configuration (i.e. no relocation permitted). 

Also, the solution for a configuration with 6 relocations seems to be a good tradeoff 

between the access time and number of relocations as allowing more relocations does not 

add much value to the objective function value and restricting it further results in a 

significant negative impact on the objective function value. 
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Table 6-7- Sensitivity analysis on relocation limit 

1-α γ Relocation limit Access 

time 

Actual 

coverage 

# of relocations 

0.94 0.05 no limit 2.4845 0.9421 10 

0.94 0.05 9 2.4862 0.94 9 

0.94 0.05 8 2.4929 0.943 7 

0.94 0.05 7 2.4989 0.943 7 

0.94 0.05 6 2.5030 0.9427 6 

0.94 0.05 5 2.5181 0.9413 5 

0.94 0.05 4 2.5305 0.9418 4 

0.94 0.05 3 2.5516 0.9436 3 

0.94 0.05 2 2.5764 0.9418 2 

0.94 0.05 1 2.5952 0.9422 1 

0.94 0.05 0 2.6148 0.9437 0 

 

6.4.4. Discussion of Our Results 

Running the proposed model for our case study show that the solution performance meets 

the main goals for developing this model. First, our model aimed to improve the access 

time to potential incidents by adding an option to relocate vessels seasonally to more 

efficiently respond, given significant pattern changes in the demand. Comparing the multi-

period model (dynamic model) solution with its static version solution confirms that 

substantial potential benefit can be obtained by permitting seasonal relocation. The multi-

period model can also improve the mean access time from 2.615 in the static model down 

to 2.485 hours. Also, the solution ensures a certain level of coverage within a pre-specified 

amount of time (over 94%).  

Moreover, the solution indicates that model has properly dealt with the robustness issue 

over possible variations in demand. The solution provided by our robust model can keep 

the maximum relative regret across all simulated demand scenarios under 0.03, which is a 

very reasonable level. Comparing the solution performance with the current arrangement 

of the CCG SAR fleet, shows a tremendous potential improvement both in access time and 

coverage. Sensitivity analyses examined the impact of changing parameters value on the 
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model solution. This was performed specifically for possible changes in fleet mix (altering 

in number of vessels in different classes). The more valuable vessel types are identified 

and the level of their impact is observed. These results provide the CCG with valuable 

insights on making more informed fleet renewal and procurement decisions. 

 Conclusion & Outlook 

In this study, a multi-period robust p-median problem is applied to the maritime SAR 

location problem. The model considers seasonal relocation of SAR vessels. For this model, 

four common SAR vessel types which are used in practice and have different capabilities 

are considered. Future demands in two operational seasons with different demand patterns 

are simulated over the study area and timeframe based on incident occurrence estimates 

extracted from historical incidents using a kernel density estimation. Constraints on the 

relative regret in all demand scenarios assures a certain level of robustness over possible 

variations in demand. Several model runs with different parameter configuration are 

generated and solved. The results show the desirable performance of the model compared 

to the static version of the model. The proposed model provides solutions with notably 

better performance versus the current SAR vessel arrangement. Sensitivity analyses were 

performed on factors such as the number of vessels in different classes and the number of 

relocations allowed, to examine their impact on the model solution and to allow for 

cost/benefit tradeoffs. 

The results of this study could be useful for guiding decisions with regard to SAR vessel 

arrangement, acquisitions and placement in order to improve the efficiency of resources 

and increase the service level, particularly in response to pattern changes in demand during 

different operational seasons. More specifically, the outcome of this study could provide 

the CCG with some useful insight for future resource capacity planning, including fleet 

recruitment planning and appropriate stations for placing new vessels. Also, it can be 

helpful for managing current operations to increase the resource utilization and 

effectiveness of their services. Several tactical and operational rules can be extracted from 

the model solution for best resource allocation policies. 
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The model proposed in this study can be further extended in several ways. We are aware 

of different types of incidents with different severity and requirements for different types 

of response, as all SAR vessels are not equally effective at responding to different types of 

incidents. Therefore, it would be more realistic if we can differentiate incident types in the 

model and take into account their specific response requirements. Moreover, this would 

provide an opportunity to add the effectiveness of response as an objective in the model. 

Such analysis would require more detailed information about the capabilities of resources 

which was not available at the time of this study. The demand simulation methodology 

could be further extended to future response needs by incorporating trends in incident 

numbers, incident rates, and/or traffic levels. It would be beneficial to add cost of 

relocations as a constraint in the model, and perhaps remove the limit on number of 

relocations. Our model assumes that the number of vessels in each class is fixed, although 

some sensitivity analyses were conducted to address that. But, for a more strategic level 

model, it is better to allow changes in fleet configuration as part of the optimization. Also, 

the model can be extended to incorporate more real-time decisions on vessel deployments 

in order to add the possibility for priority scheduling when we have incidents with different 

distress levels. An interesting additional feature would be to allow disruption of a response 

to a non-distress incident in favor of faster reaction to a distress one. 
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Chapter 7 A Comprehensive Strategic Model for Maritime Search and 

Rescue Fleet Planning 

Amin Akbari, Ronald Pelot, H.A. Eiselt  

 

This section has been submitted for publication in the “Naval Research Logistics”. 

 

Abstract 

This study presents a comprehensive multi-objective model for decisions on the composition and 
Location-Allocation of maritime Search and Rescue vessels, with constraints on the minimum 
required primary and backup coverage levels. The model provides trade-offs between the total fleet 
cost and the mean access time to incidents. Various types of Search and Rescue vessels with 
different characteristics and operational capacity are considered. Possible variations in the 
distribution of future incidents are addressed by using spatial simulation. Vessels can be relocated 
according to predetermined seasons to more effectively respond to corresponding changes in 
demand patterns. The results provide a range of good trade-off solutions which can substantially 
improve the service level obtained compared to the current fleet composition and arrangement of 
Search and Rescue resources with respect to several decision criteria. 

Keywords: Strategic Location analysis; Maritime Search and Rescue; Cost; Access time; 
Relocation; Scenario planning 
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 Introduction 

Facility location decisions are a critical element in strategic planning for a wide range of 

private and public firms. Emergency response planning is one of the interesting application 

areas for location modelling where strategic decisions greatly affect society and the 

environment. According to many published reports, ocean activities such as fishing or 

marine transportation are among the most dangerous activities in the world. Since, Canada 

is surrounded by navigable waters, the country is subject to many risky marine operations. 

Thus, maritime search and rescue is one of the most needed rescue activities in Canada. As 

the Canadian Forces (1998) pointed out: "Search and Rescue comprises the search for, and 

the provision of aid to, persons, ships or other craft which are, or are feared to be, in distress 

or imminent danger."  

Since time is of the essence in Search and Rescue (SAR) operations, it is paramount that 

the resources, including SAR vessels, stations, and crew, are used efficiently and 

effectively. To do this, several strategic decisions have to be made in order to efficiently 

allocate limited resources to obtain the best service level possible. Such decisions include 

determining the optimal mix of vessels with different characteristics and capability, 

deciding the location of vessels, and optimally allocating them to the demand. The 

Canadian Coast Guard (CCG) has a variety of SAR vessel types that were designed or 

purchased with specific tasks in mind, and not all are equally effective at handling distinct 

incident types. Also, the ranges and speeds vary greatly among different types of SAR 

vessels. Therefore, response vessel characteristics are important factors that need to be 

considered in any study on this matter. 

Enhancing the capacity to respond to marine incidents and renewing assets are among 

current strategic business priorities of the CCG according to their documented strategic 

plans (Canadian Coast Guard 2014). They are aware of the tremendous importance of 

enhancing the decision-making process in resource allocation matters. The development 

and acquisition of a new facility is typically a costly, time-sensitive project. Thus, facilities 

which are procured and located today are usually expected to remain in operation for an 

extended period of time. Several factors such as transportation and safety policy changes 
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and new transit corridors might affect the demand over short- to long-term time horizon. 

On the other hand, changes in the environment and/or activity such as weather conditions 

and traffic patterns during the facility's lifetime can drastically alter the appeal of a 

particular site, and the effectiveness of a particular response vessel. Determining the best 

composition of the fleet and the vessel locations is thus an important strategic challenge, 

demanding that decision makers account for current requirements and uncertain future 

events. The resulting models can be extremely difficult to solve to optimality (most 

problems are classified as NP-hard). 

In a maritime SAR operation, the difference between life and death can sometimes be 

measured in minutes. Additionally, a SAR operation consumes considerable resources in 

terms of time, effort and money (Razi and Karatas 2016). Maximizing the coverage as well 

as minimizing the access time and the cost are common objectives in emergency response 

location studies. There is an extensive literature on emergency location analysis. Most 

studies have attempted to determine the location of SAR vessels to maximize the coverage 

range given the historical incident locations. There is gap in taking a more comprehensive 

approach studying the strategic level decisions taking into account a broad range of 

parameters and factors affecting the performance of the emergency response system in the 

long term. Various types of response vessels with different capabilities, the possibility of 

vessel relocation, and uncertainty associated with the demand locations are among 

important factors to be considered. 

This study aims at developing a comprehensive optimization model, incorporating 

different important decision criteria and factors for long-term fleet planning of maritime 

SAR resources. We accomplish that by employing a scenario planning approach for 

representing the uncertainty of future demand in order to ensure that the model solution 

would perform well over variations in the demand. The operational characteristics and 

capacity of various vessel types is taken into account. In addition, our model allows for 

seasonal relocation of vessels with the aim of effectively responding to significant seasonal 

changes in incident locations. The ultimate goal of the study is to propose a decision 

support model that is capable of providing helpful insights for decision makers with regard 

to development of long-term strategic level plans and policies on managing the limited 
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resources to increase the overall quality of maritime SAR service through improving the 

resource utilization. 

The remainder of this paper is organized as follows. Section 7.1.1 presents a critical review 

of relevant literature followed by the description of the problem in section 7.2. Section 7.3 

explains the proposed methodology of the study including the optimization model. In 

section 7.4, the process of applying the model to our case study along with the numerical 

results are presented, and continues with a discussion of the results. We conclude the paper 

with the summary of the findings and outlook for future research in the field. 

7.1.1. Related Work 

A vast literature has developed out on tackling the challenge concerned with strategic 

location decisions. A number of mathematical programming models were developed by 

researchers to represent a wide range of location problems which might have built with 

different objectives in mind and for various applications. Owen and Daskin (1998) 

reviewed various aspects and different approaches to tackle strategic location problems. 

Facility location problems often involve strategic decisions that must hold for quite long 

time. During this time horizon, changes may occur in the underlying conditions such as 

demand volume and distribution. Thus, many studies attempted to address the uncertainty 

associated with different factors in location analysis. The most investigated source of 

uncertainty that affects the location modelling is the stochasticity of future demand 

locations.  

There are two common approaches for optimization under an uncertain environment: 

Stochastic Programming (SP) and Robust Optimization (RO). Moreover, there are two 

ways for representing the uncertain parameters: first by using discrete scenarios with 

certain values for each parameter and each scenario has a given probability of occurrence, 

while in the second case uncertain parameters are represented with probability 

distributions. In robust optimization, a set of possible future values are taken into account 

and typically the objective is to minimize the worst-case scenario objective, while in 

stochastic programming, a common objective is to minimize expected objective value. A 

“scenario” is a complete realization of all the uncertain parameters. Each scenario fully 
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determines the value of all the uncertain parameters. Depending on the problem, there may 

be a finite or infinite number of scenarios (Correia and Saldanha da Gama 2015). 

Sensitivity analysis attempts to quantify the effect of a change in parameter values on the 

optimal objective function value, while both stochastic programming and scenario 

planning approaches move away from reactive analyses of solution sensitivity toward 

models which formalize the complexity and uncertainty inherent in real-world problem 

instances (Owen and Daskin 1998). 

Snyder (2006) presented a comprehensive review on stochastic and robust facility location 

models and the variety of approaches for optimization under uncertainty. Snyder points out 

that in risk situations there are uncertain parameters whose values are governed by 

probability distributions that are known by the decision maker. In uncertainty situations, 

parameters are uncertain, and furthermore, no information about their probabilities is 

known. Problems in risk situations may be modeled as stochastic optimization problems; a 

common goal is to optimize the expected value of some objective function. Problems under 

uncertainty are known as robust optimization problems and often attempt to optimize the 

worst-case value of the objective function. 

Generally, in such problems, the objective is to determine robust facility locations which 

will perform well (according to the defined criteria) under a number of possible parameter 

realizations. Probabilistic models explicitly consider the probability distributions of the 

modelled random variables, while scenario planning models consider a generated set of 

possible future variable values. In robust optimization, it is assumed that no information 

about probability distributions is available except limited data on the specification of 

intervals containing the uncertain values.  

For a comprehensive review of different modelling approaches to tackle  uncertainty in 

facility location the readers are referred to Correia and Saldanha da Gama (2015). 

Decision makers must not only select robust locations which will effectively serve 

changing demands over time, but must also consider the timing of facility relocations over 

the long term. Facility location problems can be divided into two categories with respect 

to timing of location decisions: static and dynamic problems. Facility locations are decided 
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once in the static category, while in the dynamic problems location decisions are time 

dependent (i.e. relocation of facilities is permitted). Relocation of facilities can occur in a 

discrete or continuous manner. In the former category, relocation is only possible at 

discrete pre-determined points of time (Wesolowsky 1973); while in the latter case, 

relocation is possible at any time during the planning horizon (Drezner and Wesolowsky 

1991). Wesolowsky (1973), Wesolowsky and Truscott (1975), and Sweeney and Tatham 

(1976) are among the first researchers who dealt with the multi-period Location-Allocation 

problem. Arabani and Farahani (2012) reviewed different approaches for considering 

dynamicity in demand, parameters and/or factors in facility location problems. 

Seyedhosseini et al. (2016) presented the most recent review on studies dealing with 

dynamic location problems. They classified problems in this area with respect to modelling 

methodology, objective function type, solution approach, and application area. 

7.1.1.1. Search and Rescue Location Analysis 

To the best of our knowledge, there is only a few studies on the application of location 

modelling to SAR problems, so that a number of aspects of the problem in the field can be 

the subject of further research and development. Brown et al. (1996) developed a mixed 

integer programming model for scheduling U.S. Coast Guard district cutters, whereby its 

solution was superior compared to manually prepared schedules. (Nguyen and Kevin 2000) 

combined two objectives used in the maximal covering location problem and the p-median 

problem using a goal programming approach to assess the level of service of the existing 

Canadian SAR system (in terms of location of SAR aircraft and helicopters) and compared 

it to the optimal solution of their model. Azofra et al. (2007) built a tool for assignment of 

sea rescue resources using a gravitational model based on either individual incidents or a 

zonal distribution representation to compute an appropriateness coefficient for each 

possible assignment of resources to locations. Their model does not attempt to optimize 

the allocation but to generate a metric for assessment of different solutions. 

Afshartous et al. (2009) studied the problem of locating Coast Guard air stations and 

developed a statistical-optimization model to come up with a robust solution in the 

presence of uncertainty in distress call locations. Distress calls are simulated and the 
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optimization problem is solved for different simulations individually and the solutions are 

assessed for their similarity. Radovilsky and Koermer (2007) applied integer linear 

programming for the optimal allocation of rescue boats among the stations of the U.S. 

Coast Guard. Their model minimizes shortages or excess capacities at the stations. Wagner 

and Radovilsky (2012) extended the previous study by developing a new model named 

BAT that simultaneously considers reduction of excess capacity and boat shortages at the 

stations, a decrease in the overall fleet size with an increase in boat utilization, and overall 

reduction of the fleet operating cost. They presented a stochastic and robust version of their 

model where they used the value-at-risk concept. Nelson et al. (2014) conducted a study 

for maximizing the aircraft fleet operational performance for USCG. An optimization 

model was developed for determining the optimal deployment assignments, operational 

levels and aircraft allocation among all USCG Air Stations. Their model attempts to 

minimize the fleet operational costs subject to performance targets. 

Pelot et al. (2015) examined three covering problems in emergency response modelling 

including maximal covering location problem, maximal expected covering location 

problem, and maximal covering location problem with workload capacity, to the maritime 

SAR location problem for Atlantic Canada. This study relies on historical incidents and 

differentiates between different distress level incidents. Akbari et al. (2016) also presented 

a multi-criteria analysis on the performance of solutions obtained by two popular location 

models, p-median and maximal covering, to the case of a maritime SAR location problem. 

That study considers primary and backup coverage, mean access time, the Gini index to 

reflect the service equality level across customers, and maximum access time as post-

assessment criteria for solutions of two single objective models.  

Razi et al. (2016) examined the allocation of helicopters to SAR missions using an 

optimization model with the objective of minimizing average response time to incidents. 

Then, a discrete event simulation was used to validate the performance of the optimization 

solution for the stochastic demand. Razi and Karatas (2016) proposed a multi-objective 

model for allocation of SAR boats. Their modelling approach first ranks different types of 

incidents according to their severity using the Analytical Hierarchy process and then 

applies a zonal distribution model for aggregating the incident locations. Finally, the 
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mathematical model determines the optimal allocation of boats with the objectives of 

minimizing response time to incidents, fleet operating cost and the mismatch between 

boats’ workload and operation capacity hours. Their model does not account for the 

uncertainty involved with the incident locations though. They also defined several other 

metrics for assessment of the solutions. 

None of the studies on Location-Allocation of SAR resources considers the possibility of 

relocating vessels in a periodic manner to tackle the dynamics of the demand. There are a 

lot of studies done on location-relocation models in emergency response but mostly for the 

case of ambulances. However, the context of vessel relocation in maritime SAR is quite 

different from what is in other emergency response activities such as ambulances. The 

relocation of SAR vessels is not as easy as the relocation of ambulances and it cannot 

happen very frequently (dynamically). The number of maritime incidents is usually not as 

high as medical emergency calls, so the chance of congestion is lower. Therefore, the SAR 

vessels do not require to be relocated very often. Also, some of the SAR vessels are large 

ships for which the relocation is more challenging. Hence, this issue should be tackled with 

respect to special characteristics of the problem. Furthermore, most of the models proposed 

for SAR resource allocation have relied on deterministic demand based on historical data 

which is a weak assumption in such a problem environment that deals with a lot of 

uncertain factors affecting the demand. In some cases, future demand is simulated to 

validate the model solution performance, but not then used as an input to the optimization 

model. This study aims to address these limitations and propose a comprehensive model 

for fleet Location-Allocation planning in maritime SAR. 

 Problem Description 

This section provides information regarding the characteristics of our problem including 

data sources, modelling parameters and factors. 

7.2.1. Historical Incidents 

This study uses real and valid data on the demand. The dataset used in this study derives 

from the CCG SISAR (Search and Rescue Information Management System) database 

which collects information on all maritime incidents. The Atlantic Canada region serves as 
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our area of interest, with the Coast Guard’s administrative borders illustrated in Figure 7-1. 

The incident dataset, which has been checked and cleaned for quality control, is available 

from 1988 to 2013, but to have a more accurate analysis, we chose the most reliable recent 

data from 2005 to 2012 (excluding 2007 which has significant deficiencies due to a system 

switchover) for this study. The resulting dataset contains 8,033 incident records, which is 

about 1,148 incidents per year. 

 

Figure 7-1- Historical marine incidents in Atlantic Canada (2005,2006,2008-2012) 

7.2.2. Vessel Classes and Characteristics 

The CCG operates various vessel types that were designed with specific tasks in mind for 

their different missions where many are primarily designed for SAR and others are well-

suited for multi-tasking. As of December 2016, there are 24 vessels performing SAR 

response activities in Atlantic Canada, including lifeboats, multi-tasking ships and offshore 

patrol vessels. Moreover, the CCG is in the process of renewing and modernizing its fleet. 

They are going to replace some of the old vessels with updated versions as well as expand 

the fleet capacity with possible new procurements according to their current strategic plan 

and additional budget allocations. We would like to incorporate these new additions into 

the SAR fleet as the study aims to provide support for the strategic decisions. Existing Coast 

Guard SAR vessels included in this study can be categorized into four groups in order to 

simplify the modelling and reduce calculations. One new vessel class is considered in our 

analysis representing the new modern lifeboats to examine their impact on fleet 
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performance. These vessels are relatively faster than the current lifeboats in use. The vessel 

classes with their specifications are shown in Table 7-1. 

Table 7-1- SAR Vessel classes with characteristics 

Vessel Class Vessel 
type 

Range 
(Km) 

Vessel 
Length (m) 

Cruising Speed 
(Km/hr) 

Number 
available 

Regular Lifeboat (Arun-class) Type 1 185 16 26 9 

Fast Lifeboat (Cape-class) Type 2 185 15 41 7 

Offshore Patrol vessel Type 3 10000 40-50 31 4 
Large multi-task vessel Type 4 6000 60-90 22 4 
New lifeboat (K-class) Type 5 185 15 43.5 - 

 

As shown in Table 1, various types of SAR vessels have different travel times to get to a 

given incident because of their different cruising speeds. Also, they have different 

maximum travel ranges as well. These differences require them to be treated separately in 

the mathematical model as we are dealing with minimizing the travel time rather than the 

travel distance. 

7.2.3. SAR Stations 

Currently, there are 18 inshore SAR stations in Atlantic Canada which can site SAR vessels. 

It is assumed that all stations are able to accommodate all vessel types and no restrictions 

are applied in this regard.  Some vessels are capable of being positioned offshore for long 

periods of time due to their long endurance and range. To leverage this potential for 

providing additional coverage to offshore areas and faster response, 19 offshore stations 

are to be considered in our analyses. Of course, this is not a station in the traditional sense, 

but a central location for a vessel that spends much of its time patrolling or performing 

other tasks at sea. Some of these virtual stations are currently considered in operation and 

others have been added after consulting with CCG experts to allow more flexibility in the 

analysis. Therefore, we consider 18 inshore stations and 19 potential offshore stations. An 

operational constraint which is considered in the model is that small CCG vessels, called 

lifeboats, cannot be located at offshore stations because their maximum traveling range and 

endurance are not sufficient for long patrol tasks. 
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7.2.4. Operation Planning Seasons 

Maritime incidents have a substantial seasonal nature due to their various causes and 

contexts. For example, incidents related to recreational activities mostly occur during 

spring and summer while the pattern is different for fishing related incidents. Also, 

according to historical observations, each year the total number of incidents peaks during 

the summer (with the highest rate in July and August). In order to be able to effectively 

plan the allocation of resources and also considering other operational matters, it is useful 

to define two operational seasons. It should be noted that this is not an unrealistic 

assumption as the CCG currently has defined operational seasons although the exact 

definitions might be slightly different than what we use in this study. The peak season 

usually starts in April with a slight jump in number of incidents and continues to increase 

toward summer and ends in September. Hence, we define two operation planning seasons: 

(1) Fall-Winter (October-March) and (2) Spring-Summer (April-September). In addition, 

relocation of SAR vessels is only assumed to be possible at the beginning of each operation 

season. 

7.2.5. Vessel Response Capacity 

In order to be able to appropriately plan the allocation of resources (vessels) to the demand 

(incidents), we need to have a measure to capture the actual operational capacity of each 

vessel type given its characteristics and availability. To do so, we considered determining 

a maximum capacity in terms of the number of incidents that can be responded to during 

different seasons for each class of SAR vessel. Such a capacity limit must be included in 

the mathematical model as a constraint. This is necessary to manage the workload of the 

resources when planning, especially given the significant increase in demand over the peak 

season. To come up with a reasonable measurement for the maximum capacity of each 

vessel type, the following equation is defined to take into account different factors to 

calculate the maximum seasonal response capacity ck  of each vessel type. It must be noted 

that while this capacity provides an upper bound on the service that is possible, there may 

be significant delays in the case where demand for service is clustered giving rise to the 

congestion issue. 
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ܿ௞ఏ = (1 − (௞ఏݎݑ݉ ∗ ௞ఏݎܽ  ∗ ௞ݎܽݏ ∗ ݎ݅ܽ ∗ ݊݀,     (7.1) 

where:  

murkθ:  Maintenance (planned and unplanned) unavailability rate of vessel type k in 

season θ 

arkθ:  Availability rate of vessel type k for SAR tasks in season θ (percent of time) 

sark:  Speed adjustment rate of vessel type k relative to the fastest vessel type (this 

rate is applied to decrease the capacity of slower vessels relative to their speed 

compared to the fastest vessels) 

air:  Average number of incidents responded to by a vessel per day (1/day) 

nd:  Number of days in a season (182 days) 

Equation (7.1) computes the maximum number of incidents that a particular type of vessels 

can respond to during each operation season with respect to its characteristics and 

availability for SAR tasks. 

Table 7-2 presents the actual parameter values and calculated vessel capacities over two 

operational seasons. All these factors and their associated values are determined with 

consultation and information provided by CCG experts. In order to address the concern 

about a seasonal peak in the number of incidents during spring and summer and to provide 

greater capacity level, maintenance unavailability rates are determined in such a way that 

we yield higher vessel availability during peak season. In other words, we limited all the 

planned maintenance to the off-peak season to release more capacity for peak season, 

which also reflects the reality of their operations. The maximum number of incidents that 

can be responded by different vessel types ranges from 27 to 134 in season 1 and from 44 

to 177 in season 2. 
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Table 7-2- Seasonal vessel capacity (number of incidents) calculation 

Vessel Class Season 1 Season 2 

murkθ arkθ sark capacity murkθ arkθ sark capacity 

Vessel Type 1 0.27 1 0.88 118 0.03 1 0.88 155 

Vessel Type 2 0.27 1 1 134 0.03 1 1 177 

Vessel Type 3 0.324 0.55 0.81 56 0.036 0.55 0.81 79 

Vessel Type 4 0.414 0.33 0.77 27 0.046 0.33 0.77 44 

Vessel Type 5 0.27 1 1 134 0.03 1 1 177 

 

7.2.6. Vessels’ Procurement and Operational Cost 

One of the main objectives in location modelling and resource allocation analyses is 

minimizing the total cost including fixed (procurement) and variable (operational) costs. 

As we are going to plan the fleet Location-Allocation for the long run, it is desired to 

consider total cost associated with operating SAR vessels either by incorporating it as a 

hard budget constraint or a soft constraint as an objective in the model. Therefore, the actual 

annual operational and procurement cost of currently operated SAR vessels has been 

supplied by the CCG. For confidentiality purposes these costs are represented as scaled 

rates rather than actual figures which it is acceptable for use our study. The annual 

operational costs consist of several elements including: crew salary, maintenance, fuel, 

travel cost, etc. For consistency, the procurement cost of vessel, which is a fixed value, is 

distributed (annualized) over the operational lifetime of vessels. Table 7-3 presents the 

scaled cost rates for the existing vessel classes. 

Table 7-3- average annual scaled cost rates for each vessel class 

Vessel 

class 

Operational 

lifetime 

(years) 

Procurement 

cost 

(annualized) 

Crew 

salary 

Fuel Refit Maintenance Other 

costs 

Total 

cost 

Total 

cost 

allocated 

to SAR 

 

Type 1 20 0.067 0.548 0.017 0.085 0.004 0.050 0.771 0.771  

Type 2 20 0.083 0.428 0.010 0.029 0.003 0.048 0.601 0.601  

Type 3 35 0.511 2.343 0.693 0.906 0.020 0.466 4.939 2.716  

Type 4 40 1.000 3.267 1.075 1.214 0.035 0.601 7.191 2.373  
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 The annualized acquisition cost of multitasking vessel is the basis for scaling the 

costs. 

 Methodology 

7.3.1. Demand Pattern Analysis 

When dealing with strategic decisions such as facility locations, it is important to pay 

attention to changing patterns in the demand, potential peak seasons, as well as uncertainty 

associated with the volume and the location of demand. Hence, choosing a comprehensive 

approach to properly simulate the potential future demand is a challenge. The location of 

demand for maritime incident response is typically uncertain due to its context and several 

non-deterministic factors. Historical locations are potentially a good representation of 

future demand distribution, although those deterministic points cannot properly reflect the 

stochasticity of future demand.  

Since there is not much reliable information to properly predict the future demand 

distributions, so we must rely on the past distribution of incident locations for analyzing 

the demand. There are several methods to fit a distribution for spatial data including quadrat 

analysis, naive estimation, and kernel density function. In this study, historical incidents 

are analyzed to extract patterns and distribution by using Kernel estimation (KE) which is 

a popular method for analyzing spatial point patterns. Kernel density estimation searches 

neighboring areas and computes a function of the distances from incidents within search 

zone to the kernel centre to be used as the density of occurrence around each specific point. 

Thus, it has the advantage of not ignoring the potential movement in demand locations over 

time. The kernel density method properly works with gridded data, which is the format of 

our demand projections. Kernel estimation usually uses a geographical weighting scheme 

(a kernel function) whereby the influence of the points varies inversely to how far they are 

from the centre of the window (Lloyd 2010). The KE of intensity is given by: ߣመ௞(݋) = ∑ ଵఛమ௡௜ୀଵ ݇(௢ି௢೔ఛ ),        (7.2) 

where τ is the pre-specified bandwidth (determining the size of the kernel) and o-oi 

indicates the distance between the centre of the kernel (o) and the location of an incident 
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oi (i is an index for data points). There is a variety of different kernel functions that have 

been used for KE. The quartic kernel is encountered frequently in the point pattern analysis 

literature (Bailey and Gatrell 1995). The KE using the quartic kernel is given by: 

(݋)መ௞ߣ = ∑ ଷగఛమ (1 − ௗ೔మఛమ)ଶௗ೔ஸఛ ,        (7.3) 

where di is the distance between the centre of the kernel (o) and the location oi. 

7.3.2. Distance Calculation 

As one of the inputs required for the model, the matrix of distances between the incidents’ 

locations and potential SAR stations must be calculated. There are various methods for 

distance calculation. The most common way is calculating straight Euclidean distances. 

However, in this study it is not always possible to use the straight (or the most direct) route 

because of land obstacles in the way. To cope with this problem, we use a land avoidance 

algorithm to find the shortest realistic route between incidents and vessels avoiding land 

obstacles. It worth mentioning that although, great circle distances to accommodate the 

earth’s curvature would be more accurate, but for the strategic aim of this study, and over 

relatively short distances, it can be ignored. 

7.3.3. Optimization Model 

We develop a comprehensive model for fleet strategic planning decisions which 

incorporates several important factors customized for the maritime SAR Location-

Allocation case. The model considers minimizing (1) the total annualized capital and 

operating cost of SAR vessels and (2) the mean access time to all incidents. The weighted 

sum method is used for scalarization of multiple objectives. Our model is a multiple period 

planning model to be consistent with operation seasons and moreover to provide the 

flexibility of relocating vessels periodically to appropriately respond to changing seasonal 

patterns in the demand. Multiple randomly generated seasonal incident are used in a 

scenario planning approach to reflect the uncertainty of the demand.  

The model must consider various aspects of the problem including multiple criteria, factors 

and constraints. Our model considers multiple type of existing and potential SAR vessels 

with different speeds, response capacities and plausible locations. The maximum response 
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capacity of the vessels has been taken into account by restricting the total number of 

incidents can be responded to by each vessel during each season. Moreover, since we are 

dealing with a problem of locating mobile facilities (i.e. SAR vessels) with different speeds, 

travel time is used as opposed to the regular travel distance proxy in the objective function.  

We apply the concept of coverage which is very common in emergency response location 

analysis where it is desired to provide acceptable level of coverage for as many customers 

(i.e. incidents) as possible. Typically, in emergency response analysis, a customer is called 

covered if it is within a predetermined access time rather than prescribed range because the 

time is a better proxy for measuring system performance in this case. In addition, 

congestion in service is a potential issue that should be addressed as we attempt to make 

strategic long-term decisions. Although it is not a great concern currently, according to 

expert opinion and that fact that it is not happening frequently, is a chance that it becomes 

more serious with a possible increase or distribution change in the demand. To cope with 

the issue, we consider the backup coverage concept in the proposed model in a way that 

we try to have more than one vessel capable of responding to each incident location (within 

coverage range).  

The model presented in this paper extends the previous model developed in (Akbari et al. 

2017) in three ways: first, by relaxing the fixed number of vessels in each class and also 

including the potential new vessel procurements; second, by including a cost minimization 

in a multi-objective function; and finally, by considering a minimum level of backup 

coverage to address the congestion issue. Once decided, the fleet composition is assumed 

to be fixed (i.e. there is no replacement until the end of the useful life of the vessels). 

The mathematical model developed for this problem is a large-scale integer linear 

programming problem. Indices, parameters and variables used in the model are listed and 

defined below. 

Indices: 

i  I:      Demand locations  

j  J:     Potential vessel stations 
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JS  J:  Set of offshore stations (virtual stations offshore for patrol vessels and 

multitasking ships) 

k  K:   Index for vessel types  

ω  Ω:     Index for simulated incident scenarios 

θ  Θ:     Index for relocation periods 

 

Variables: ݔ௜ఏ :  Binary variable for primary coverage at grid i in period θ ݕ௜ఏ :  Binary variable for backup coverage at grid i in period θ ݖ௝௞ఏ ∶        The number of vessels type k located at station j in period θ ݑ௜௝௞ఏ:  Allocation of customers at grid i to vessel type k located at j in period θ ܴ1௝௞, ܴ2௝௞: Binary variables for determining relocations of vessel type k at station j  ܴܥ௞:  Relocations count of vessels type k 

Parameters: ݎ௞:        Coverage distance (range) of vessel type k ݌௞:        Minimum number of vessel type k required ܽܿ௞:  Annual cost of vessel type k ܿ௞ఏ:       Capacity of vessel type k in period θ (number of incidents that can be 

responded to) ݒ௞:  Cruising speed of vessel type k ݀௜௝:  Distance between grid i and station j ߨఠ:  Probability of occurrence of scenario ω  ݓ௜ఠఏ:  Demand weight at grid i in period θ in scenario ω (number of incidents) ݐ:          Coverage time limit for acceptable level of coverage ߙଵ:  Maximum uncovered demand (as a percentage of total incidents) ߙଶ:  Maximum proportion of demand without backup coverage ߩ:  Coefficient of the mean access time in the objective function ߚ:  Maximum number of permitted relocations 
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The formulation of the proposed model is as follows: 

Minimize: 

߂  = ∑ ఠߨ ቌ∑ ∑ ∑ ∑ ቆ௪೔ഘഇ௨೔ೕೖഇ൬ௗ೔ೕ ௩ೖൗ ൰ቇೕ೔ೖഇ ∑ ∑ ௪೔ഘഇ೔ഇ ቍఠ + ߩ ቀ∑ ܽܿ௞௞ ൫∑ ௝௞ଵ௝ݖ ൯ቁ (7.4) 

s.t. ݔ௜ఏ ≤ ∑ ∑ ܽ௜௝௞ݖ௝௞ఏ௞௝ , ∀ ݅,  Primary coverage constraint (7.5)    ߠ

where: ܽ௜௝௞: = 1 if:  ݀௜௝ ≤ ௞ݒ/௞ and  ݀௜௝ݎ ≤ else ܽ௜௝௞ ݐ ∶= ௜ఏݕ   0 ≤ ∑ ∑ ൫ܽ௜௝௞ݖ௝௞ఏ൯ − ௜ఏ௞௝ݔ , ∀ ݅, ௜ఏݕ Backup coverage constraint (7.6)    ߠ ≤ ,݅ ∀     ,௜ఏݔ   Backup coverage comes after ߠ

  primary coverage (7.7) ∑ ∑ ௜௝௞ఏ௝௞ݑ = 1, ∀ ݅,   Unique demand allocation ߠ

  constraint (7.8)  ∑ ௝௞ఏ௝ݖ ≥ ,݇ ∀           ,௞݌   Minimum number of vessels in ߠ

  each class (7.9) ݑ௜௝௞ఏ  ≤ ܾ௜௝௞ݖ௝௞ఏ, ∀ ݅, ݆, k, θ Allocation to SAR vessels possible 

  if there is a vessel within the coverage 

range (7.10) 

where: ܾ௜௝௞: = 1 if:  ݀௜௝ ≤ ௞ else  ܾ௜௝௞ݎ ∶= 0    ∑ ௜௝௞ఏ௜ݑ௜ఠఏݓ ≤ ܿ௞ఏݖ௝௞ఏ, ∀ ݆, ݇, ߱, ௝௞ఏݖ Capacity constraint (7.11) ߠ = 0,   ∀ ݆ ∈ ,ௌܬ ݇ ∈ {1,2}, ∑ Offshore location constraint (7.12) ߠ గഘ ∑ ∑ ௪೔ഘഇ௫೔ഇ೔ഇഘ∑ గഘ ∑ ∑ ௪೔ഘഇ೔ഇഘ ≥  1 −  ଵ,       Minimum expected primary coverageߙ

  over all scenarios (7.13) ∑ గഘ ∑ ∑ ௪೔ഘഇ௬೔ഇ೔ഇഘ∑ గഘ ∑ ∑ ௪೔ഘഇ೔ഇഘ ≥  1 −  ଶ,         Minimum expected backup coverageߙ

over all scenarios (7.14) ∑ ௝௞ଵ௝ݖ = ∑ ௝௞ଶ௝ݖ , ∀ ݇ Fixed number of vessels in each type 

  in two periods (7.15) ݖ௝௞ଶ − ௝௞ଵݖ  = ܴ1௝௞ − ܴ2௝௞ ∀ ݆, ݇ Relocation of vessel type k from/to  

  location j (7.16) 
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௞ܥܴ = ∑ ൫ோଵೕೖାோଶೕೖ൯ଶ௝  ∀ ݇ Calculating number of relocations   

  of vessels type k (7.17) ∑ ௞௞ܥܴ ≤   Restricting number of relocations  ߚ

   (7.18) 

The minimization objective function (equation 7.4) minimizes the weighted sum of total 

annual cost of vessels located by the model (which the same in both seasons) and the 

expected mean access time for all incidents across all demand scenarios (over two seasons). 

Constraint (7.5) ensures that demand location i has primary coverage in period θ only if 

there is a vessel within the maximum coverage distance and access time in that period. 

Constraint (7.6) in relation with (7.7) defines the backup coverage, where backup coverage 

is provided for a specific location if there are more than one located vessels within the 

acceptable access time.  Allocation of demand locations to resources is defined in (7.8) 

which ensures that all demand points are assigned to exactly one response vessel. The 

minimum number of vessels required in each class is constrained by (7.9). Constraint set 

(7.10) limits the allocation of demands to vessels based on the availability of having at least 

one vessel within its range. Vessel capacity restrictions for each scenario in different 

periods are applied in (7.11), and constraint set (7.12) ensures that lifeboats (vessels type 

1 and 2) cannot be located at the offshore stations. Constraints (7.13) and (7.14) ensure that 

a minimum level of expected primary and backup coverage is provided. Equations (7.15) 

ensure that number of vessels in each vessel type does not vary from a period to another 

one. The constraint set (7.16) is used to calculate the relocation of vessels for each station 

and vessel type. Equation set (7.17) determine the total number of relocations for each 

vessel type, and inequality (7.18) restricts the total number of relocations across all vessel 

types. 

 Case Study and Numerical Results 

This section explains the process of applying the proposed model to the specific case study 

for maritime SAR in Atlantic Canada. 
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7.4.1. Inputs for the Optimization Model 

The calculated distances are collected in a distance matrix, which includes distances 

between all grids where incidents may occur (using grid centroids) and potential station 

locations. This matrix has 1617 rows (gridded demand locations) and 37 columns (vessel 

stations), where dij denotes the distance of incident grid i from potential station j. A smaller 

grid size is used for areas around the shoreline corresponding to the response zone of small 

lifeboats (with 185 km range) which reduces the numerical error in determining the 

coverage area and the access times. 

7.4.1.1. Incidents Kernel Density Estimation 

We compute the kernel density estimates for each grid and over the two predefined seasons, 

using the following parameter values.  

- Kernel function type: Quartic 

- Cell size: (0.25  0.25) degree; the centre of each grid is used for kernel density 

calculation. 

- Bandwidth (radius): variable size between (0.25-1.0 degrees), 0.25 degree for 

areas close to the shoreline with high density of incidents, 0.5 degree for areas 

further from shore with low incident density, and 1.0 degree for areas further 

offshore with very low number of incidents in the vicinity. 

Figure 7-2 and Figure 7-3 visualize the kernel density estimates for the two different 

operational seasons: Fall-Winter (season 1) and Spring-Summer (season 2). As it can be 

observed in these figures, the incident distribution pattern varies substantially over the two 

seasons. 
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Figure 7-2- Kernel density estimation for season 1: October- April 

 

Figure 7-3-Kernel density estimation for season 2: May- September 
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7.4.1.2. Future Incidents Simulation 

The kernel density estimates are used as the foundation for generating random incident 

counts for future scenarios. For each grid square, the average of kernel estimates within the 

grid square in each season is calculated. These incident density rates are multiplied by the 

grid area (to account for grids with variable area due to different sizes) to compute the 

incident count estimate for each grid/season. These calculated grid incident count estimates 

are scaled so that they sum up to the average number of historical incidents in each season. 

We assume that the number of incidents in any grid follows a Poisson distribution. The 

scaled incident count estimates are considered as the mean parameter of a Poisson 

distribution for generating a random number of incidents over the mesh of grids across the 

study area. Ten sets of random incident counts per grid square (for each season) are 

randomly generated. These simulated incident scenarios are used as the representation of 

stochastic demand in the proposed model. Probability of occurrence for each simulated 

demand scenario is considered to be equal to 0.1 for each of the 10 scenarios as they were 

all generated from the same distribution. 

7.4.1.3. Coverage Time Limit 

The maximum access time for an acceptable level of primary and backup coverage can 

vary based on the predefined service level standards or expert opinion about actual 

operations. In this study, the default value for coverage range time limit is considered to be 

6 hours based on consultation with CCG experts. It should be noted that this constraint is 

only applied to the coverage calculation in the model, but it has no impact on the allocation 

process of the model where there is no limit on access time and all incidents are to be 

allocated to the closest available resource in order to calculate mean access time. 

7.4.2. Solving the Model: Different Configurations 

The proposed model was built in the MPL environment and solved using the Gurobi 6.0.4 

solver. The model features 485,728 variables and 494,794 constraints. The computation 

time to find the exact optimal solutions varied between 5-60 minutes in different model 

configurations depending on the parameter values using a computer with Intel Core i7 CPU 

and 8GB RAM. In the following sections, the results generated for different model 
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configurations are presented and discussed. There are several parameters than need to be 

set before attempting to solve the model. In the original model, we do not consider a 

minimum limitation for the number of vessels in each type and only the currently operating 

vessel types are considered.  Also, we need to set a minimum level of primary and backup 

coverage. These values are determined with respect to current standards and long-term 

goals, and fixed at 95% and 75% respectively.  

Table 7-4 presents the model solutions with respect to changing the mean access time 

coefficient in the objective function. There is no limitation on the number of seasonal 

relocations. The trade-off between total annual cost and mean access time is clear in the 

results. As the weight on mean access time increases in the objective function, the model 

yields faster access time while the cost increases. The mean access time can go down to 

2.2 hours while keeping the cost under 32 units (which is less than current annual cost). 

The obtained solutions suggest that the optimal fleet mix most often consists of only vessels 

type 2 (fast lifeboats), and 3 (offshore patrol vessels) but rarely vessel type 4 (multitasking 

vessels). The use of vessel type 1 is not justifiable due to its capability limitations and 

higher costs. The other interesting fact is that enlarging the fleet size by increasing the cost 

often leads to a lower number of required relocations because with more vessels located, 

fewer relocations are needed to obtain the coverage requirements and best access times. In 

one of the desirable configurations, the model solution yields 2.20 hours mean access time, 

95.4% primary coverage, and 75.87% backup coverage with the cost of 31.95 and only two 

seasonal relocations.  
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Table 7-4- Model results: current vessel types, different model configurations (varying objective coefficient) 

 Decision criteria Fleet composition 

Access 

time 

coef. 

Total 

cost 

Mean 

access 

time 

Primary 

Coverage 

Backup 

coverage 

Number of 

relocations 

Vessel 

type 1 

Vessel 

type 2 

Vessel 

type 3 

Vessel 

type 4 

1 26.17 2.54 95.01% 75.02% 4 0 17 5 1 

5 26.17 2.54 95.01% 75.02% 4 0 17 5 1 

8 26.17 2.54 95.01% 75.02% 4 0 17 5 1 

10 26.51 2.51 95.01% 75.01% 7 0 16 6 0 

12 28.89 2.29 95.00% 75.23% 5 0 17 6 1 

15 28.89 2.29 95.00% 75.23% 5 0 17 6 1 

20 29.23 2.27 95.01% 75.06% 5 0 17 7 0 

30 29.23 2.27 95.01% 75.06% 5 0 17 7 0 

40 31.95 2.20 95.40% 75.87% 2 0 17 8 0 

50 31.95 2.20 95.40% 75.87% 2 0 17 8 0 

90 34.66 2.18 95.03% 75.00% 1 0 17 9 0 

100 37.38 2.15 95.04% 75.01% 4 0 17 10 0 

1000 62.42 2.05 96.25% 80.09% 0 0 18 19 0 

 

Although the results observed in the above table is a significant improvement in terms of 

the service level, it lacks consideration of some realistic constraints. For example, it is 

known that even though multitasking vessels are apparently not in the optimal composition 

of our model, in the real situation they cannot be eliminated because they are utilized for 

multiple purposes and SAR is only one among their tasks. So, it would make it more 

realistic to add a constraint into our model to ensure a minimum of number of vessels of 

each type. These minimum values are determined in consultation with the CCG. For 

instance, currently there are 4 patrol vessels and 4 multitasking ships operational in Atlantic 

Canada that are going to be operational for at least next half decade, so they need to be 

there regardless of what the optimal solution is. Also, the old-fashioned lifeboats (type 1) 

are at the end of their operational life and they are going to be replaced by new lifeboats 

according to the CCG strategic plan. Hence the minimum number of vessels for the 4 

vessels types are assumed to be: (0,7,4,4) respectively. Furthermore, it is apparent that 

seasonal relocation of vessels entails additional cost and operational issues such as crew 
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relocation which are not captured in the model. Therefore, we restrict the maximum 

number of relocations in the model to 5. Table 7-5 presents the solution obtained by the 

model including the additional constraints mentioned above. As expected, by forcing 

multitasking vessels into the solution, the total cost increases substantially. The minimum 

feasible annual cost to satisfy all model constraints, is around 30 units. With this new 

setting, in order to obtain 2.2 hours access time, the CCG would need to allocate additional 

budget for the fleet as the annual cost will be 36.01, a 13% increase. Whether or not this is 

feasible from a political point of view remains to be seen. The solution with the access time 

coefficient value of 20 in the objective function seems a reasonable trade-off solution as it 

keeps the cost at 31.17 (close to the current situation) while providing a substantial 

improvement in accessibility and coverage. 

Table 7-5- Model results: current vessel types, different model configurations (varying objective weights) 
with minimum vessel numbers  

 Decision criteria Fleet composition 

Access 

time 

Coef. 

Total 

cost 

Mean 

access 

time 

Primary 

coverage 

Backup 

coverage 

Number of 

relocations 

Vessel 

type 1 

Vessel 

type 2 

Vessel 

type 3 

Vessel 

type 4 

1 29.97 2.40 95.02% 75.11% 5 0 16 4 4 

5 29.97 2.40 95.02% 75.11% 5 0 16 4 4 

8 30.57 2.32 95.01% 75.09% 5 0 17 4 4 

10 30.57 2.32 95.01% 75.09% 5 0 17 4 4 

12 30.57 2.32 95.01% 75.09% 5 0 17 4 4 

15 30.57 2.32 95.01% 75.09% 5 0 17 4 4 

20 31.17 2.28 95.08% 75.01% 4 0 18 4 4 

30 31.17 2.28 95.08% 75.01% 4 0 18 4 4 

40 31.17 2.28 95.08% 75.01% 4 0 18 4 4 

50 33.29 2.24 95.14% 75.15% 3 0 17 5 4 

70 36.01 2.20 95.46% 75.00% 5 0 17 6 4 

85 36.01 2.20 95.46% 75.00% 5 0 17 6 4 

100 41.44 2.15 95.22% 75.06% 4 0 17 8 4 

1000 68.60 2.05 95.01% 75.01% 4 0 17 18 4 
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In order to investigate the performance of the model solution during different seasons and 

across various simulated scenarios, the mean access time is computed and displayed in 

Figure 7-4. The access time in season 2 is usually higher due to a jump in the number of 

incidents and the potential unavailability of the closest vessel to respond. Also, some 

fluctuations can be seen in mean access time across different scenarios which reflects the 

variations of demand distribution.  

 

Figure 7-4- Variation of mean access times across simulated scenarios and over two seasons (model 
configured with current vessel types and constraints on minimum number of vessels in each vessel type and 
maximum relocations, ρ= 20) 

For comparing the results obtained by our model with the current composition of the fleet, 

we configured the model by fixing the number of vessels in different classes at the existing 

level and ran the model with the same objective functions (from now on, the coefficient of 

mean access time in all presented results is fixed at 20). The results shown in Table 7-6 

indicate that with the current 31.5 annual cost, the best mean access time possible (given 

that arrangement of vessels is optimized) is 2.57 hours and primary coverage cannot go 

above 94%. 
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Table 7-6- The optimal arrangement of existing vessels using the proposed model (ρ= 20) 

 Decision criteria Fleet composition 

Access 

time 

Weight 

Total 

cost 

Mean 

access 

time 

Primary 

coverage 

Backup 

coverage 

Number of 

relocations 

Vessel 

type 1 

Vessel 

type 2 

Vessel 

type 3 

Vessel 

type 4 

20 31.50 2.57 94.01% 75.00% 5 9 7 4 4 

 

7.4.3. Sensitivity Analysis 

Examining the sensitivity of model solutions to possible changes in parameter values is an 

instructive process. In particular, we would like to investigate the model performance when 

altering the coverage requirement constraints. Table 7-7 and Table 7-8 present the model 

solutions at variable levels of primary and backup coverage. 

Table 7-7- Sensitivity analysis on the minimum required primary coverage 

 Decision criteria Fleet composition 

Minimum 

primary 

coverage 

Total cost Mean 

access 

time 

Primary 

coverage 

Backup 

coverage 

Number of 

relocations 

Vessel 

type 1 

Vessel 

type 2 

Vessel 

type 3 

Vessel 

type 4 

94% 30.57 2.30 94.47% 75.36% 5 0 17 4 4 

95% 31.17 2.28 95.08% 75.01% 4 0 18 4 4 

96% 40.24 2.21 96.00% 75.01% 4 0 15 8 4 

97% infeasible         

 

In order to increase the primary coverage to 96%, the fleet composition needs to change 

substantially (i.e. many more type 3 vessels are required). Obtaining a coverage over 97% 

is impossible due to the fact that there are a few remote incidents far from all potential 

inshore and offshore stations that are not accessible within 6 hours no matter how many 

vessels are located. 
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Table 7-8- Sensitivity analysis on minimum required backup coverage 

 Decision criteria Fleet composition 

Minimum 

backup 

coverage 

Total 

cost 
Mean 

access 

time 

Primary 

coverage 
Backup 

coverage 
Number of 

relocations 
Vessel 

type 1 
Vessel 

type 2 
Vessel 

type 3 
Vessel 

type 4 

75% 31.17 2.28 95.08% 75.01% 4 0 18 4 4 

77.5% 31.17 2.31 95.02% 77.54% 5 0 18 4 4 

80% 31.78 2.31 95.02% 80.09% 4 0 19 4 4 

82.5% 32.38 2.31 95.02% 82.59% 5 0 20 4 4 

85% 33.58 2.28 95.10% 85.65% 4 0 22 4 4 

 

Increasing the backup coverage above the default rate (75%) is possible and it can go above 

85% by employing a few more vessels type 2 which incurs about 8% additional cost. 

7.4.4. Incorporating New Lifeboats in the Model 

As discussed earlier, the CCG is in the process of renewing part of its fleet. More 

specifically for vessels conducting SAR tasks, some vessels are at the end of their 

operational life and also do not have acceptable up-to-date capability to perform effective 

SAR operations. Among SAR vessels in the Atlantic Canada region, 9 old Arun-class 

lifeboats are currently due for replacement. A new class of lifeboats are under consideration 

to substitute for these older-model boats, with their characteristics presented in section 

7.2.2. In this section, we examine the impact of including these new vessels and the 

feasibility of their acquisition is examined. As these new lifeboats are different and there 

are no historical observations on their operational costs, the model is configured with a 

variable range of costs for the new lifeboats (proportional to the cost of the current fast 

lifeboats, which are competitive). The results shown in Table 7-9 suggest that these new 

lifeboats can improve the service level at any cost not more than 1.5 times the cost of 

lifeboats type 2. If the new vessels have the same cost level, they have complete advantage 

in the model as they are faster. The solution with 0.66 annual cost (second row) is 

appealing. This solution suggests replacing the old lifeboats with the new class and also 

adding two more lifeboats of type 2 leads to significant improvement in access time (2.20 

vs. 2.28) compared to the results shown in Table 7-5, with only a slight increase in cost. 
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The trade-off between the number of lifeboats type 2 and new lifeboats (type 5) based on 

variable cost estimates for new lifeboats is demonstrated in Figure 7-5. 

Table 7-9- Model results, incorporating new lifeboats at variable annual cost levels 

 Decision criteria Fleet composition 

Vessel 

type 5 

cost 

Total 

cost 

Mean 

access 

time 

Primary 

coverage 

Backup 

coverage 

Number of 

relocations 

Vessel 

type 1 

Vessel 

type 2 

Vessel 

type 3 

Vessel 

type 4 

Vessel 

type 5 

0.60 31.17 2.20 95.04% 75.00% 5 0 7 4 4 11 

0.66 31.71 2.20 95.15% 75.13% 5 0 9 4 4 9 

0.72 32.01 2.22 95.02% 75.00% 5 0 11 4 4 7 

0.78 31.53 2.25 95.15% 75.13% 5 0 16 4 4 2 

0.84 31.41 2.27 95.15% 75.13% 3 0 17 4 4 1 

0.90 31.48 2.27 95.15% 75.13% 3 0 17 4 4 1 

0.96 31.17 2.28 95.08% 75.01% 4 0 18 4 4 0 

 

 

Figure 7-5- Trade-off between the annual cost of new lifeboats and their optimal numbers in the model's 
solution 

Figure 7-6 presents the similar results to Figure 7-4, for the new configuration of the model 

including the new lifeboats. Comparing these two figures shows a similar trend across 

scenarios and the two seasons but with a significant shift down in access time by inclusion 

of new lifeboats. 
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Figure 7-6- Variation of mean access times across simulated scenarios and over two seasons (model 
configured incorporating new lifeboats, ρ= 20) 

 

7.4.5. Summary of Our Results 

In order to be able to compare the performance of the model solution with the current 

situation and to measure the potential improvement, the access time to simulated incidents 

is calculated given the current arrangement of SAR vessels. The summary of the results of 

the proposed model compared to the current arrangement of vessels in terms of several 

decision criteria are shown in Table 7-10. 

Table 7-10- Model solutions compared to the current arrangement

Resource Arrangement Decision criteria 

Total fleet 

annual cost 

Mean access time 

(hrs) 

 

Primary coverage  Backup coverage 

Current situation 31.50 3.14 89.38% 60.18% 

The proposed model with 

current vessel types 
31.17 2.28 95.08% 75.01% 

The proposed model 

including new vessels 
31.71 2.20 95.15% 75.13% 
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Comparing the solutions performance with the current arrangement of the CCG SAR fleet, 

shows a tremendous potential improvement both in access time and coverage. In particular, 

holding the annual costs in the same level, it is possible to drop the mean access time to 

potential incident locations by almost one hour (30%) and increase the primary and backup 

coverage by 6% and 15% respectively. 

 Conclusion and Outlook 

This study attempted to develop a comprehensive fleet planning model for strategic 

decisions on procurement, location, and allocation of maritime SAR vessels with a case 

study on Atlantic Canada. The proposed model incorporates several decision criteria such 

as fixed and operational cost, access time to incidents, and primary and backup coverage, 

to address different aspects of the problem. A multi-objective function minimizes the 

weighted sum of the total annual fleet cost and mean access times. A multi-period 

location/relocation approach is taken to allow seasonal relocation of vessels within the area 

of interest to provide more flexibility to respond to periodic variations in demand 

distribution. Future demands in two operational seasons with different demand patterns are 

simulated over the study area and timeframe based on incident occurrence estimates 

extracted from historical incidents using a kernel density estimation. Four SAR vessel types 

which are used in practice with various characteristics are considered. Also, the 

consequence of substituting some old lifeboats with a new class of lifeboats is examined. 

Several model runs with different parameter configurations are generated and solved. The 

results point out that at current cost level (similar budget) the composition and location 

arrangement of vessels can be optimized with a significant improvement in terms of access 

time and coverage. Sensitivity analyses were conducted to observe solution changes with 

respect to variable service level requirements. 

The results of this study could be useful for guiding strategic decisions with regard to SAR 

vessel arrangement, acquisitions and placement which has a long-term impact on the 

efficiency of using limited resources and attainable service level. The outcome of this study 

could provide the CCG with some useful insight for future resource planning, including 

fleet renewal plans and determining appropriate stations for placing new vessels. Also, it 
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can be helpful for managing current operations to increase the resource utilization and 

effectiveness of their services. Finally, several tactical and operational rules can be 

extracted from the model solution for best resource allocation policies. 

The model proposed in this study can be further extended in several ways. There are 

different types of incidents with different severity levels, thus requiring variable levels and 

types of response, and all SAR vessels are not equally effective at responding to different 

types of incidents. Therefore, it would be more realistic if we can differentiate incident 

types in the model and take into account their specific response requirements. Moreover, 

this would make it possible to quantify and consider the effectiveness of response as an 

objective in the model. Such analysis would require more detailed information about the 

capabilities of resources, which was not available at the time of this study. Also, the 

demand simulation methodology can be further extended to estimate future response needs 

by incorporating trends and forecasts on exposure factors such as incident rates, and/or 

traffic levels. Given the availability of actual data, the cost of relocations can also be added 

into the model either as a constraint or as a part of the objective function. 
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Chapter 8 Conclusion 

 Summary and Findings 

Location-Allocation problems are fundamental models for several important applications, 

including emergency response logistics planning. Optimizing the efficiency and 

effectiveness of resource utilization is always a major concern. Maritime SAR, categorized 

within public emergency response activities, is a potential application of location analysis 

to deal with managing limited resources and their locations. This problem becomes more 

complicated when we are faced with several objectives which are sometimes conflicting as 

well. This research developed a framework of mathematical models to optimize the 

Location-Allocation of maritime SAR resources with regard to several criteria including 

primary and backup coverage, mean access time, service equality, and cost. These criteria 

were chosen and defined in order to represent and quantify broader qualitative concepts 

such as acceptability, effectiveness, and efficiency of maritime SAR services.   

The main objectives achieved by this study can be summarized as follows: 

 Determine and incorporate various important decision criteria in maritime SAR 

services in a framework of mathematical models as a decision support tool; 

 Analyze spatial and seasonal trends and patterns in incident occurrences and 

leverage the extracted knowledge for planning a more effective response; 

 Consider the uncertainty involved with future incident locations and adopt spatial 

density estimation methods and a simulation approach to account for different 

possible incident distribution schemes; 

 Apply optimization models to determine the optimal or efficient solutions to the 

maritime SAR Location-Allocation Problem; 

 Develop various operational to strategic level decision support models to assist 

decision makers with short- to long-term decisions regarding effectively and 

efficiently managing SAR resources; 

 Assess the current situation of resource arrangement and compare it with the 

solutions suggested by the developed mathematical models in order to reveal the 

potential area of improvements; 
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 Provide and support decision makers with insightful information extracted from the 

outputs of the comprehensive analysis to enhance the resource planning and policy 

development processes. 

To achieve these objectives, several phases of statistical and mathematical modelling were 

conducted as summarized below.  

In the first phase of the study, two common location models, the Maximal Covering 

Location Problem and p-median problem, were modified and applied to the maritime SAR 

Location problem. Five metrics were defined and measured to assess the solution with 

respect to acceptability, accessibility, and equality of the service. The results indicate that 

the p-median model provides a better solution in terms of three metrics: access time, 

backup coverage, and access to furthest incidents, while the MCLP works slightly better 

for primary coverage and Gini index. The solutions provided by both optimization models 

dominate the current arrangement of SAR vessels. A simulation procedure based on the 

underlying distribution of historical incidents was used to validate the performance of the 

obtained solution across possible variations in the demand.  

The second phase of the research aimed at combining the advantages of the MCLP and p-

median formulations into a new model minimizing the mean access time as the objective, 

constrained to providing a certain level of coverage. The presented model also considers a 

possible change of the present mix of vessels for SAR missions. A budget limitation was 

applied to restrict the capital cost associated with any fleet composition to be the same as 

capital cost of the current fleet. The results are particularly instructive for making strategic 

level decisions for procurement of new vessels. 

While the models developed in previous phases were all single objective, a multi-objective 

model was presented in the third paper which adopted a goal programming approach to 

incorporate three decision criteria in the optimization process. Moreover, a set of demand 

scenarios were considered in the optimization model to account for the stochasticity of 

incident locations. The proposed model also extends the previous models by inclusion of 

the annual vessels response capacity. The primary coverage, backup coverage and mean 

access time to incidents were incorporated into a model that minimizes the weighted 
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standard deviations of objective values from their pre-specified targets. A series of good 

trade-off solutions were obtained by this model which decision makers can choose from 

according to their different perspectives. These solutions perform well with respect to all 

decision criteria, which was a major limitation to the previously applied single objective 

models.  

The fourth phase addressed possible seasonal variations in the demand in terms of the 

incident location and frequency, which historical records show can vary substantially over 

different seasons. The model proposed in this section considers seasonal relocation of 

vessels to effectively respond to such changes in demand patterns. Moreover, a robust 

optimization approach was adopted to ensure that the solution performs at a satisfactory 

level across several simulated demand scenarios. The solution obtained by the presented 

multi-period (i.e. dynamic) model yields notably faster access time versus the static 

solution and the current SAR vessel arrangement, with only a few seasonal vessel 

relocations. 

Finally, in the last phase of the research, the aim was to develop a comprehensive strategic 

model that incorporates the main advantages of all models proposed in previous steps. In 

particular, this model integrates following four main elements of previous models: (1) 

several decision criteria including primary coverage, backup coverage, access time, and 

cost are incorporated into the model either explicitly as part of objective function or 

implicitly with inclusion of appropriate constraints; (2) various SAR vessels types with 

different characteristics and capacity are taken into account; (3) the uncertainty of future 

incident occurrence is addressed using a scenario planning approach; and (4) the model 

allows periodic fleet relocations to respond to seasonal demand variations. In addition, 

since this model is meant to be a decision support tool for strategic long-run fleet planning, 

the possibility of changing the fleet composition via decommission of old vessels and/or 

acquisition of new vessels of the current type or new variants, is considered. The results 

indicate that when holding the capital and operational cost of SAR fleet at the current level 

(similar budget), a substantial improvement in service level is achievable by modifying the 

composition and location arrangement of vessels. 
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Decision makers can choose among the proposed models in this study with respect to the 

inputs and information they require for making challenging operational, tactical, and 

strategic decisions. The outcomes of the modelling would be instructive for them in regard 

to decisions on the rearrangement of the current fleet, procurement of new vessels, 

establishing new lifeboat stations, or decommissioning old vessels. Such informative 

results can be used as inputs for future resource capacity and utilization planning. The 

CCG, in particular, would receive some valuable insight for their future resource planning, 

including fleet renewal plans and siting of new vessels. In addition to support the design 

of long-term resource planning strategies and policies, the knowledge extracted from the 

models’ solutions would greatly assist managers to optimize operational procedures and 

rules for more efficient fleet operations management. Also, society would gain benefits 

from the potential improvement in the service accessibility and effectiveness resulting from 

the implementation of solutions suggested by developed models. 

 Limitations 

Due to the fact that this study relies on historical data for modelling the future state of 

maritime SAR system, the quality of data obtained and the methods to process the data 

impose some limitations on the results. 

Although the SISAR dataset collects a reasonable amount of information related to 

maritime incidents with an acceptable level of accuracy in most cases, some shortcomings 

were identified. Some of the fields in the database are not filled in completely as they were 

not made mandatory for completion by operators. For instance, there is a field defined for 

recording the primary cause of an incident which has a very low fill rate. This limitation, 

in particular, impedes differentiation between incidents resulting from different causes 

(environmental conditions, technology failure, human error, etc.).  

Also, on the response side, the recorded data have some major limitations. For example, 

there are no comprehensive records on tracking the SAR vessels’ locations from the time 

they depart for a mission until they return to the base station, although most of these vessels 

are equipped with location tracking systems. It would be very helpful to have such 
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information in hand which is specifically required for implementing more dynamic (real-

time) models such as queuing models for real-time deployment of vessels.   

Moreover, there is not much information available about the characteristics and 

requirements of different types of incidents. Utilizing a triage system to conduct a needs 

analysis according to different types of incidents, and thus relate it with the operational 

capability of SAR vessels, would enable researchers to consider more realistic response 

requirements and more properly deal with the response effectiveness concept. Using the 

rapidly proliferating information systems similar to OnStar (developed by General Motors) 

for better communication, possibly coupled with video, can simplify the triage.  

Traffic levels and patterns can be important factors related to the incident occurrences. This 

study did not incorporate the traffic as an exposure measure for predicting the location and 

frequency of maritime incidents due to limitations in accessing reliable and recent data. 

Hot spots (risky area) could be identified by relating the number of incidents to the traffic 

level (i.e. define incident rate as a proportion of a number of incidents relative to the 

traffic). This information would be beneficial for providing a more efficient response to 

high-risk areas. Obtaining such data and, more importantly, a proper forecast of future 

trends and changes in traffic, would enhance the accuracy and reliability of the future 

demand used for long-term planning.  

The impact of environmental factors on the occurrence of incidents nor on the response 

provided by SAR resources is examined in this research. Harsh weather or sea conditions 

might increase the chance and/or severity of an incident as well as adversely affect response 

operations. In order to be able to consider these factors, one needs to integrate relevant 

datasets and conduct sufficient statistical analyses to first investigate the relevancy of these 

factors and then use the outcomes as parameters of an optimization model. Rezaee, Pelot, 

and Ghasemi (2016) studied the effect of extreme weather conditions on the fishing 

incidents occurrence. The effect of extreme weather conditions on incidents severity is 

examined in (Rezaee, Pelot, and Finnis 2016). 
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 Recommendations for Future Work 

There are several streams for future work on extending this research. One important 

element which could make the analysis more realistic and interesting for the decision 

makers is to consider characteristics of different incidents with different response 

requirements and try to translate those requirements into operational rules. On the other 

hand, because there are different types of vessels used for SAR tasks which are not all 

equally capable of performing various tasks, it would be appealing to measure the 

capability and effectiveness of each individual vessel type in responding to a specific 

incident type. To do so, additional data collection and analysis are required on the 

capability of various vessels in responding to different incidents with diverse needs. 

Quantifying such qualitative factors makes it feasible for possible inclusion in a 

mathematical model as one of the decision criteria. This was not possible in this study due 

to unavailability of the required information, as discussed in the previous section. 

As discussed throughout the thesis, congestion is an important issue whereby there is a 

possibility that the closest vessel is not able to respond due to being busy with another task 

or unavailable for other reasons (e.g. maintenance). In this study, I dealt with this problem 

by using backup coverage as one of the criteria in the analysis whereby it is desired to have 

more than one vessel within coverage range/time so if the closest vessel is not available, 

another one can fulfill the task. Other approaches such as probabilistic and queuing models 

can be taken to more effectively address this concern. Also, such a modelling approach 

makes it possible to prioritize the incidents based on their severity level. So, for example, 

if a vessel is in the middle of a response to a non-distress incident and a distress incident is 

reported in the vicinity, then the response to the original incident can be disrupted in order 

to provide faster response to a more severe incident. Or in the same vein, a response 

vessel’s availability for a new incident might be affected if it is returning from dealing with 

another incident. Conducting an extended study to examine the performance of the system 

in such situations, can provide insightful inputs for optimizing the operational procedures 

that might involve congestion, priority processing and even service preemption policies. 
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The approach taken in this study for modelling and simulating future demand can be further 

extended to account for trends in incidents, incident rates, and/or exposure metrics like 

traffic levels. In addition, other factors such as environmental changes (e.g. climate change) 

which can alter maritime activities and influence incident rates can have a potentially 

significant effect on the demand patterns in the future. Hence, integrating other data sources 

related to these factors into a more comprehensive methodology for forecasting future 

trends would enhance the accuracy and reliability of the representation of the demand 

distribution in the analysis and thus provide more robust solutions. Furthermore, the 

distinction can be made between incidents with different severity levels in order to set 

faster response requirement for more severe incidents as well as accounting for possible 

differences in their distribution patterns which can affect the optimal arrangement of SAR 

vessels.  

Another stream of research would be the inclusion of other means of providing SAR service 

other than vessels operated by the CCG. The DND SAR helicopters and auxiliary SAR 

vessels are among the possible complementary SAR resources to take into consideration as 

other types of “facilities” in the model. Of course, such inclusion means conducting 

sufficient analysis on the capability of these additional resources compared to the usual 

primary resources in response to various incidents. Also, the study of resource sharing 

among different agencies, which might even involve vessels from other countries 

(primarily the US in our southern waters, or other Arctic countries in the North is an 

interesting subject to study. 

Moreover, the presented models can be integrated with operational plans which involve 

crew scheduling. Also, decisions regarding determining the optimal locations for new 

lifeboat station development can be one additional element of strategic planning models. 
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Appendix A - Canadian Coast Guard SAR Fleet in Atlantic Region 

The CCG fleet in the Atlantic region supports the operational requirements associated with 

the four provinces of New Brunswick, Nova Scotia, Prince Edward Island, and 

Newfoundland and Labrador as well as adjacent waters, including the southern Gulf of 

Saint Lawrence. The vessels that are utilized for the Search and Rescue program, either 

primarily or as multi-tasked vessels, can be categorized into four classes as described here. 

A.1. Arun-Class Search and Rescue Lifeboats 

An Arun-class lifeboat is a small, shore-based, self-righting vessel capable of Search and 

Rescue operations up to 100 NM from shore; its top speed is approximately 25 knots. Ten 

15.77 metre (51.7 ft) boats were built for the Canadian Coast Guard. They were built with 

aluminum hulls. They are considered "high endurance" lifeboats staffed by a crew of four. 

The first vessels of this class were ordered in 1990.  

The existing Arun-class lifeboats in Atlantic region are listed below. These vessels came 

into service between 1985-96, but are currently near the end of their useful life and are 

going to be replaced by new lifeboats. 

 CCGS W.G. George  

 CCGS W. Jackman  

 CCGS Westport 

 CCGS Courtney Bay  

 CCGS Bickerton  

 CCGS Sambro 

 CCGS Spindrift  

 CCGS Spray 

 CCGS Goeland 

 CCGS Clarks Harbour 
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The summary of vessel specifications is as follows: 

Length: 15.8 (Metres) 

Breadth: 5.2 (Metres) 

Draft: 1.3 (Metres) 

Freeboard: Not Applicable 

Gross Tonnage: 43.0 (Tons) 

Net Tonnage: 32.0 (Tons) 

Cruising Range: 200 (Nautical Miles) 

Endurance: 2 (Days) 

Cruising Speed: 14.0 (Knots) 

Maximum Speed: 20.0 (Knots) 

Fuel Capacity: 3.20 (Cubic Metres) 

Fuel Consumption: 2.50 m3/d 

 

 

Figure A-1- A typical Arun-class life boat 
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A.2. Cape-Class Search and Rescue Lifeboats  

Cape-class motor lifeboats have total lengths of 14.61 m (47 feet 11 inches) and beam 

lengths of 4.3 m (14 feet). They are constructed from marine-grade aluminium; ships have 

draughts of 1.37 m (4 feet 6 inches). They contain two Caterpillar 3196 diesel engines 

providing a combined 900 shaft horsepower. They have two 710 mm × 910 mm (28 by 36 

inches) four-blade propellers, and each ship's complement is four crew members and five 

passengers. 

These lifeboats have a maximum speed of 25 knots (46 km/h; 29 mph) and a cruising speed 

of 22 knots (25 mph). Cape-class lifeboats have a fuel capacity of 400 US gallons (1,500 

l; 330 imp gal) and a range of 200 nautical miles (370 km; 230 mi) when cruising. They 

are capable of operating at wind speeds of 50 knots (93 km/h; 58 mph) and wave heights 

of 9.1 m (30 feet). They can two ships with displacements of up to 150 tonnes (170 short 

tons).  

The Atlantic region currently operates several cape-class lifeboats which are listed here. 

The lifeboats were launched between 2002-2005. 

 CCGS Cape Fox 

 CCGS Cap Nord  

 CCGS Cape Spry 

 CCGS Cape Norman 

 CCGS Cap Breton  

 CCGS Cape Edensaw  
 

The specification of these vessels is provided below. 

Length: 14.6 (Metres) 

Breadth: 4.3 (Metres) 

Draft: 1.4 (Metres) 

Freeboard: 0.8 (Metres) 

Gross Tonnage: 33.8 (Tons) 
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Net Tonnage: 25.3 (Tons) 

Cruising Range: 200 (Nautical Miles) 

Endurance: 1 (Days) 

Cruising Speed: 22.0 (Knots) 

Maximum Speed: 25.0 (Knots) 

Fuel Capacity: 1.60 (Cubic Metres) 

 

 

Figure A-2- A Typical Cape-class lifeboat 

 

A.3. Offshore Patrol Vessels 

The CCG’s offshore patrol vessel is approximately 70 metres long.  It can operate beyond 

120 nautical miles (220 km; 140 mi) including outside the Exclusive Economic Zone, has 

a top speed greater than 20–25 knots (37–46 km/h; 23–29 mph) and can stay at sea for up 

to six weeks. It can operate year-round in Canadian waters, except the Arctic archipelago, 

and has a minimal ice capability to transit light ice-infested waters. It carries two rigid-

hulled inflatable boats, up to 11 metres (36 ft) long, and can accommodate a helicopter 
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with minimal hangar capabilities. This vessel is designed to support law enforcement, and 

it has a program operations room. It is primarily used for fisheries enforcement and Search 

and Rescue. 

There are currently four offshore patrol vessels operating in Atlantic region:  

 CCGS Cape Roger  

 CCGS Cygnus 

 CCGS Leonard J. Cowley  

 CCGS Sir Wilfred Grenfell 

 

The summary of specifications for a typical offshore patrol vessel is as follows: 

 Length: 70 (Metres) 

 Breadth: 14.2 (Metres) 

 Draft: 4.5 (Metres) 

 Freeboard: 2.9 (Metres) 

 Gross Tonnage: 2188.0 (Tons) 

 Net Tonnage: 655.0 (Tons) 

 Cruising Range: 12600 (Nautical Miles) 

 Endurance: 35 (Days) 

 Cruising Speed: 17.0 (Knots) 

 Maximum Speed: 18.0 (Knots) 

 Fresh Water: 32.00 (Cubic Metres) 

 Fuel Capacity: 420.00 (Cubic Metres) 

 Fuel Consumption: 12.00 m3/d 
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Figure A-03- Leonard J Cowley, an offshore patrol vessel operating in the Atlantic region 

A.4. High Endurance Multi-Tasked Vessels 

This category encompasses large highly adaptable multi-tasked vessels, approximately 80 

metres long, with an icebreaking capability to work in the southern and western Arctic, for 

escort operations in the Great Lakes, St. Lawrence River and Gulf of St. Lawrence and 

Atlantic Coast in winter.  It also has a crane, a large cargo hold and deck capacity, a 

helicopter hangar that will accommodate a CCG helicopter, and it can launch and recover 

rigid-hull inflatable boats and two utility craft. It is capable to deliver many of the 

Government of Canada programs. It is also formally referred to as a Type 1100 vessel. 

Currently, there are four high endurance multi-tasked vessels in Atlantic region: 

 CCGS Ann Harvey 

 CCGS Edward Cornwallis 

 CCGS George R. Pearkes 

 CCGS Sir William Alexander 

The detailed specifications of these vessels are as follows. 

 Length: 83.0 (Metres) 

 Breadth: 16.2 (Metres) 

 Draft: 6.2 (Metres) 
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 Freeboard: 1.8 (Metres) 

 Gross Tonnage: 3853.6 (Tons) 

 Net Tonnage: 1528.0 (Tons) 

 Cruising Range: 8200 (Nautical Miles) 

 Endurance: 120 (Days) 

 Cruising Speed: 12.0 (Knots) 

 Maximum Speed: 16.5 (Knots) 

 Fresh Water: 100.00 (Cubic Metres) 

 Fuel Capacity: 783.70 (Cubic Metres) 

 Fuel Consumption: 14.00 m3/d 

 

 
Figure A-04- Ann Harvey, a high endurance multi-tasked vessel operating in the Atlantic region 

 

The information presented in this appendix is obtained from the CCG website 

(http://www.ccg-gcc.gc.ca/Fleet/Home). 
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