
USING NAMED ENTITIES IN POST-CLICK NEWS
RECOMMENDATION

by

Arash Koushkestani

Submitted in partial fulfillment of the
requirements for the degree of
Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

June 2015

c© Copyright by Arash Koushkestani, 2015

To my parents.

ii

Table of Contents

List of Tables . vi

List of Figures . viii

Abstract . ix

List of Abbreviations Used . x

Acknowledgements . xi

Chapter 1 Introduction . 1

1.1 Research Objectives . 4

1.2 Contributions . 4

Chapter 2 Background and Related Work 6

2.1 Recommender Systems . 6
2.1.1 Personalized News Recommendation System 7
2.1.2 Post-Click News Recommendation System 8

2.2 Information Retrieval . 10
2.2.1 Semantic Search . 10
2.2.2 Named Entity Recognition and Disambiguation 11
2.2.3 Learning to Rank . 13

2.3 Keyword Extraction . 14

Chapter 3 Features, Training Set, and Relatedness Model 15

3.1 Similarity as Relatedness . 16

3.2 Model of News Articles and Labels 17

3.3 Keyword Extraction . 18
3.3.1 Modified Chinese Restaurant Process 19
3.3.2 Selecting Keywords of Text 22

3.4 Semantic Similarity Features . 24
3.4.1 Semantic Similarity of Two Named Entities 25
3.4.2 Semantic Similarity of Two Articles 26

3.5 Other features . 27

iii

3.5.1 Lexical Similarity . 28
3.5.2 LDA-based Similarity . 29
3.5.3 Time Similarity . 30

3.6 Labeling of Training Examples . 30
3.6.1 Data Model 1: Random Selection of Negative Examples 30
3.6.2 Data Model 2: Using Lucene for Generating Negative Examples 31
3.6.3 Data Model 3: Graph Representation of Relatedness 31

3.7 Relatedness Model . 33
3.7.1 Feature Selection . 34
3.7.2 Regression Models . 35
3.7.3 Learning to Rank . 37

Chapter 4 Implementation . 39

4.1 Implementation Overview . 39
4.1.1 Architecture . 44
4.1.2 Performance and bottleneck 45
4.1.3 Load Test . 48

Chapter 5 Experiments and Results 50

5.1 Datasets . 50

5.2 Main Measurement Criteria . 51

5.3 Feature Selection Results . 51

5.4 Selecting Best Data Model . 54

5.5 Comparing Different Regression Models 55

5.6 Ranking Results . 57

5.7 Universal News Relatedness Model 61

5.8 Expert Preferences . 62

5.9 News Recommender Software Evaluation 63

Chapter 6 Conclusion . 65

Bibliography . 68

iv

Appendix A Skip-gram Model . 73

A.1 Document Vectors . 75

Appendix B Sunflower . 77

Appendix C Tulip . 80

C.1 Data Sources . 81

C.2 Modules . 82

C.3 Tulip Performance . 85

Appendix D Raw Article for Clustering Example 87

v

List of Tables

3.1 Performance of Lucene search engine with default TF-IDF scor-
ing function considering top k returned results. 16

4.1 List of external dependencies of the application 46

5.1 Ranked list of features extracted from three feature selection
algorithms. 53

5.2 Selected features for modeling relatedness. 53

5.3 Effect of Features in Regression Performance. None of the num-
bers in this experiment were statistically significant than oth-
ers. However due to the performance of Skipgram model and
Occam’s razor principle, we decided to select only 13 features
without considering Sunflower and LDA. 54

5.4 Comparing different data labeling methods on “The Chronicle
Herald” dataset. Training correlation coefficient shows the per-
formance of the system on training set while other columns rep-
resent the results on test data. 55

5.5 Comparing different data labeling methods on “Wikinews” dataset.
Training correlation coefficient shows the performance of the sys-
tem on training set while other columns represent the results on
test data. 55

5.6 Offline results of four models on “The Chronicle Herald” dataset.
Bold values represent the best results in a column. The red
numbers indicate those that are not statistically significant from
the bold ones. Baseline method is below double lines. 56

5.7 Offline results of four models on “Wikinews” dataset. Bold val-
ues represent the best results in a column. The red numbers
indicate those that are not statistically significant from the bold
ones. Baseline method is below double lines. 56

vi

5.8 Ranking results of different models on “The Chronicle Herald”
dataset. The performance of ranking is measured using NDCG,
Mean Average Precision (MAP) and precision, considering up
to 5 top returned results by the system.
Bold values represent the best results in a column. The red
numbers indicate those that are not statistically significant from
the bold ones. Baseline methods are below double lines.

. 60

5.9 Ranking results of different models on “Wikinews” dataset. The
performance of ranking is measured using NDCG, Mean Average
Precision (MAP) and precision, considering up to 5 top returned
results by the system. Bold values represent the best results in
a column. The red numbers indicate those that are not statisti-
cally significant from the bold ones. Baseline methods are below
double lines. 60

5.10 Results on “The Chronicle Herald” given a model trained on
Wikinews. 61

5.11 Results on Wikinews given a model trained on “The Chronicle
Herald”. 61

5.12 Experts feedback on live system in “The Chronicle Herald”.
Bold values represent the best results in a column. The red
numbers indicate those that are not statistically significant from
the bold ones. Lucene was the baseline. 62

5.13 News recommendation software evaluation using Wikinews dataset.
Lucene was the baseline. 63

C.1 Challenge results for the first ten systems in long document track. 85

vii

List of Figures

1.1 An article from “The Chronicle Herald”. The red box represents
the recommended news to the selected article. 2

3.1 Word cluster results after two runs on the same article. 23

3.2 Topical word profile vs. Tf-idf keywords profile of an article . 23

3.3 A sample view of connected components in the training set of
The Chronicle Herald dataset. 32

4.1 Layered architecture of the system. 40

4.2 Components of the system. Arrows show dependency of com-
ponents. 42

4.3 A high-level view of the MVC model. 45

4.4 An example of profiling. The most time consuming method is
cache handling. 47

4.5 Hot Spots of application. 48

5.1 ANOVA test results on students’ feedback. The test was subjec-
tive, which introduces a wide range of values that contributes to
the high variance of results. This is very different from experts’
feedback result which was more objective. 64

A.1 Similar words are closer to each other in skip-gram (word2vec)
space. 74

A.2 The vector between two points represents a relationship 74

B.1 Example of category graph generated by Sunflower given Intel
as input. 78

viii

Abstract

With the growth of online news readers, many news websites use different signals to
attract users’ initial clicks. However, the problem of keeping users in the web site
through post-click news recommendation is relatively under explored. To address this
problem, we try to find the news articles related to the one that a user is currently
reading based on the content of the articles while no history or user profile is assumed.
The problem is very similar to a typical information retrieval problem in which the
system finds related documents to a given query ranked by a similarity function which
produces a relatedness score between a document and the query. However, we con-
ducted experiments to show that “relatedness” is not equivalent to similarity as in
information retrieval. As a relatedness function, we used the semantic similarity of
named entities extracted from the body of news articles in a combination with lexical
similarity functions available through information retrieval systems. A new system
called Tulip was used as the named entity recognition and disambiguation system and
the word skip-gram model was used for finding similarity of named entities. Tulip
provides precise recognition of named entities and very fast response time. Addi-
tionally, a stochastic keyword extraction algorithm based on the Chinese restaurant
process and the word skip-gram model was proposed to capture topical similarity of
two articles. To solve problem practically, we proposed using the cosine similarity
of TF-IDF vectors of articles as a filter to narrow down the search space, given one
article as a query. Then we applied the relatedness function to the results returned by
cosine similarity. In other words, we proposed a relatedness function to re-rank the re-
sults extracted from a typical retrieval system. Due to the nature of the problem and
available datasets, we proposed a graph based approach as an unsupervised approach
for labeling pairs of documents during both training and testing. We trained and
tested our method on two datasets against the cosine similarity of TF-IDF vectors as
the baseline before testing it by domain experts. The model trained on our proposed
features is demonstrated to outperform the baseline. Finally we conducted a series of
experiments to rank the importance of different features. Based on our observations,
semantic similarity of named entities along with Information Based lexical similarity
(included in Lucene) are more effective than other lexical features and provide better
ranking for the related news.

ix

List of Abbreviations Used

ANOVA Analysis of variance

CF-IDF Concept frequency-inverse document frequency

CFS Correlation based feature selection

CRP Chinese Restaurant Process

DCG Discounted cumulative gain

GBRT Gradient boosted regression tree

IB Information based

IR Information retrieval

JVM Java virtual machine

LDA Latent Dirichlet allocation

LM Language model

LSI Latent semantic indexing

MAP Mean average precision

MVC Model, View, and Controller

NDCG Normalized discounted cumulative gain

NERD Named entity recognition and disambiguation

ORM Object-relation mapping

PMI Pointwise mutual information

RDBMS Relational database management system

SF-IDF Synset frequency-inverse document frequency

TF-IDF Term frequency-inverse document frequency

x

Acknowledgements

First, I would like to thank my supervisor, Evangelos Milios. Thank you for taking

me as a master student at the first place. Thank you for your guidance, patience,

and the great project you have assigned to me. You taught me how to do research

and organize my thought when I was lost in the middle of so many ideas and tasks.

I am also grateful to my mentor, Marek Lipczak. Thank you for teaching me a

new way of thinking when working with big data problems. You had many great ideas

for solving hard problems which I could never think of before meeting you. Thank

you for trusting me and giving me different projects, I learned a lot. I can never

forget the one year time that I have spent constantly learning from you.

I am fortunate to meet and work with wonderful people in The Chronicle Herald.

Thank you Jason Hurst, Bryan Cave, and Sheryl Grant for all of your time and efforts.

You trusted me, you spent time for me, and you provided me your invaluable data

that I could never find anywhere else. Thank you Bryan and Jason to spend so much

time preparing all the tests and interfaces required for evaluating the recommender.

You always gave me positive energy. I must thank all of the other people in The

Chronicle Herald for their cooperation in this project from the first place.

I would like to thank Dalhousie University to provide such a great environment

to do research and allowing me to finish my work. Coming to Dalhousie was a great

opportunity that has changed my life forever. It was my first time being away from

home, and I am happy that beautiful Dalhousie University was my first destination

far away from family.

I am proudly grateful to my supportive and loving family. To my mom and dad, I

am blessed to be your child. To my sister, you always made me happy. Thank you all

for encouraging me to pursue my interests and your unconditional love and support.

I am grateful to my friends who never let me be alone. Thank you for letting me not

thinking about my problems while I was with you.

xi

Chapter 1

Introduction

Online news readership has experienced an explosive growth in the last decade. Ac-

cording to the Newspaper Association of America1, 173 million unique visitors have

visited digital newspaper web sites in only January 2015 which is 27 million more than

the number of visitors in January 2014. This number only shows news papers and

not many famous news websites such as Yahoo! News and Google News. The Halifax

based news paper “The Chronicle Herald” has 1000 online users on average at a given

moment on weekdays. All these numbers confirm the importance of recommending

related news articles to users.

One obvious advantage of online news websites over traditional media is the aug-

mentation of information such as links to encyclopedias such as Wikipedia, and adding

voice or video clips to the news. One other advantage is the ability to show related

news articles to the user. When she is done with one news article, she may also like

to explore other related news articles to the current article on the screen. There are

tools like Hermes2 for personalizing news articles to solve this problem, but practi-

cally, a large fraction of users do not log in to news web sites and are referred to a

news article from another domain. More than 30 percent of Facebook users get their

daily news from the social media website 3 and are redirected to news websites from

their personal account (their Facebook wall or Twitter timeline). In this situation,

the user had been already in the website and the goal is to feed him or her with as

much related news as possible to keep the user interested. We follow the work done

by Lv et al. [2011] and call this problem post-click news recommendation.

There are two research areas related to post-click news recommender systems:

the first is document pair similarity and the second is news personalization. In the

document pair similarity area, the goal is to quantify the similarity of two documents

1http://www.naa.org/
2http://hermesportal.sourceforge.net/
3http://www.pewresearch.org/fact-tank/2014/09/24/how-social-media-is-reshaping-news/

1

2

Figure 1.1: An article from “The Chronicle Herald”. The red box represents the
recommended news to the selected article.

from different aspects (Huang et al. [2012]). If we look at the news articles as two text

documents, then finding related news articles is finding other articles with the highest

similarity score. The goal of the news personalization is to suggest news articles based

on user’s interest. This field has grabbed a lot of attention in recent years (Borsje

et al. [2008]).

Effective post-click news recommendation is crucial to news web sites, because

recommending unrelated news articles will hurt user interest in the web site. So

recommended articles must be logically and topically related. They must represent

one coherent story through time to keep the user interested. They must also be about

the same person or entity.

In the best case scenario, news recommendation is offered by editors by going

through the entire corpus and selecting related news before publishing a news article.

3

This task is very time consuming and is not always complete because editors do not

remember all the related news articles from the past and one editor may not be an

expert in all topics. Therefore it is highly desirable to have a recommender system for

both editors and users: it can be seen as a decision support system for news editors

and as a content-based recommender system for visitors of the web site.

The notion of relatedness between two news articles is difficult to define precisely.

Two news articles can be related because they happened in the same geographical

location, the main subject person is the same, or they follow one developing story. In

contrast, researchers in information retrieval have defined different relevancy measures

through the years to find relevant documents for a given query in information retrieval

area. Each relevancy measure produces a slightly different result. In our initial

experiments, we took one article and used its entire body as a query string. Then

we passed the query to an IR system which contained all of the news article in the

repository and examined the returned results. We discovered that although relevancy

is not equal to relatedness, the produced results by different information retrieval

systems can be seen as related news. Since each of them can capture different aspects

of relatedness, we decided to combine them and use machine learning to learn the

concept of relatedness using different relevancy scores.

Semantic similarity of named entities can also capture relatedness. A good seman-

tic similarity measure can assign high similarity score to a pair of entities which are

related to each other from different aspects, like geographic location or affiliation of

people. Hence, we used semantic similarity of named entities in a combination with

other lexical similarity measures in an effort to formulate relatedness.

A relatedness model will produce a score for a pair of news articles in a way that

more related pairs get higher scores. A very important issue of a recommender system

is its performance in terms of response time. Having a trained model of relatedness, it

is not practical to apply it on all possible pairs of articles in the repository. All major

search engines that implement typical information retrieval algorithms have reduced

their response time over the last decade and that’s one of the main reasons many of

them are being used as content based recommended systems in different applications

especially in news domain. We introduced a filtering idea using a simple cosine

similarity to narrow down the search space while keeping the accuracy of the model

4

as high as possible. For a given query document, instead of checking the relatedness

score with all available articles, we first pass the query article to a retrieval system

and get a number of articles. The number of returned documents are much fewer than

the available articles and we set it in a way to minimize the loss of recall as much as

possible. After applying the filter, a relatedness function will score each pair of news

articles consisting of query article and each of the returned articles. By narrowing

down the search space and number of times we apply relatedness function, we can

solve this problem practically.

1.1 Research Objectives

The main goal of this research is providing a model that has better performance than

Lucene (baseline system) in content-based news recommendation. In order to achieve

our goal, we performed following studies:

1. Using named entities and studying their effect in news recommendation.

2. Using word vectors to provide semantic relatedness between two news articles.

3. Using word vectors and Chinese restaurant process to provide topical similarity

between two news articles.

Our proposed method must outperform baseline in both accuracy of recommenda-

tion and response time. To achieve this goal, we implemented a fast approach for

recommending news by introducing lexical filtering and re-rank its results.

1.2 Contributions

Here is the list of contributions of this thesis:

1. Using Tulip as the state of the art system in named entity recognition and

disambiguation for post-click news recommendation. We used skip-grams to

calculate semantic similarity of named entities and we showed that features

based on semantic similarity are more important than lexical similarities.

2. A new keyword extraction method which helps summarizing news articles and

creating a keyword based profile. We first cluster the words of a news article

5

based on their semantic similarities by using a one-pass stochastic algorithm.

Each cluster shows one of the topics of the text and the one that represents

dominant topic of text is selected. The keywords of the selected cluster will be

used to find similar news articles and we claim that using this features beside

other lexical similarity features improves the accuracy of the model since it can

capture topical similarity.

3. We adapted a graph representation of data to model relatedness scores by only

having binary relatedness information, the only available information that can

be extracted from datasets. The nodes represent news articles and each edge

represents binary relatedness between two news article. We used the distance

of nodes in the graph as the score of news article pairs. We claim that using

inferred scores improves the performance of any regression model in this task

as opposed to binary regression of classification. It also shed light to consider

story of news articles instead of isolated pairs of news articles.

In addition to the main contributions, we argued that our proposed solution for

news recommendation is practical. We proposed an architecture that instead of find-

ing relatedness score for all news pairs, tries to re-rank the returned results from a

TF-IDF search engine. This approach narrows down the search space required for

the system to find related news articles.

Our relatedness function is a combination of different similarity measures. The

idea of combining similarity measures is not novel. But some individual features are

novel and are used for the first time in this domain including features that are based

on Tulip and skip-gram model.

Finally we provided two publicly available datasets for news recommendation

which can be later used by researchers to improve news recommender systems. The

first one belongs to The Chronicle Herald newspaper and the second one is parsed

from Wikinews. It is the first time we used a free-collaborative source of news like

Wikinews for the post-click news recommendation task.

Chapter 2

Background and Related Work

In this chapter we review previous work in related fields. To the best of our knowledge

there is a little work in the area of post-click news recommender systems. However

there are many research studies performed in related areas such as personalized news

recommendation using different methods. First two different paradigms of recom-

mender systems are explained. As this thesis is a content based recommender sys-

tem, some work in this area will be covered. After that news personalization systems

which work based on user profiles will be briefly discussed. Then there is an overview

of the under-explored area of post-click news recommender systems. Since our pro-

posed method maps the problem to an information retrieval task, a brief overview in

this field is also discussed. Additionally, we discuss the importance of named entities

and similarity measures based on Wikipedia. A good semantic similarity measure for

named entity pairs can capture semantic relatedness of two text documents better

than lexical similarities. At the end, we explore learning to rank and their applications

in recommendation systems.

2.1 Recommender Systems

The problem of recommending items to users has been studied quite extensively

throughout the last decade and two main paradigms of problem solving have emerged:

collaborative filtering and content-based filtering. In most of the studies, both entities

of users and items exist. Users are usually registered into the website and their activity

can be recorded to build an informative user profile Lops et al. [2011].

In collaborative filtering, the recommender identifies users whose preferences are

similar to a given user and recommends items they have liked (Balabanović and

Shoham [1997]). The preferences can be mined by looking at whether a user has

bought an item or not. More advanced solutions analyze history of users’ activity

such as checking if a user listened to a music track, watched a movie, rated an item

6

7

or wrote a comment. In many cases such as online shopping or multimedia web

sites in which contents are rarely available, common collaborative filtering algorithms

outperform existing content-based methods by a relatively large margin.

In the content-based paradigm, the recommender tries to construct a user profile

based on what she preferred previously. In this case, the recommender does not

depend on what other users liked or disliked about a particular product and user

profile will be compared to existing item profiles to find similar items. In this way,

the recommendation problem can be seen as a personalization task in which users

will find the type of the information they are mainly interested in. Users are usually

allowed to provide some information about themselves to guide the system further.

Content-based filtering does not suffer from the major drawback of collaborative

filtering which is called the cold-start problem. Whenever a new item is added to the

system there is no rating or preference available for that and it takes some time for

the system to collect enough information for making useful inference. On the other

hand, in content-based systems, recommending new items can be done by matching

its content to the existing user profiles.

2.1.1 Personalized News Recommendation System

News are naturally not a suitable domain for collaborative filtering since new articles

are being published every day, which introduces sparseness in the user-item matrix.

Also, news article have relatively much shorter lifetime and they lose their importance

after a very short time compared with items in an online shopping web site. So the

most sensible choice for a recommender system is a content-based system. The key

problem to solve is to create a representative profile for both articles and users.

TF-IDF is a basic way to represent documents in the vector space model. User

profiles are built by aggregating TF-IDF scores of words in the articles Lops et al.

[2011]. News article will later be compared to the created profile by cosine similarity

and the most relevant ones will be reported. But lexical similarity of words is not

informative enough for user or article profiles. Systems like Hermes Borsje et al.

[2008] used WordNet to enrich the representation and provided a new value for each

word called Concept Frequency - Inverse Document Frequency (CF-IDF) Goossen

et al. [2011] in a vector space model. Other methods such as Synset Frequency -

8

Inverse Document Frequency (SF-IDF) Moerland et al. [2013] follows the same idea

as well. Using ontologies was not a new idea in news recommendation since many

news outlets have their own category hierarchy and provide similar news articles based

on what category a user might be interested in. Named entities were also used for

news personalization (Gabrilovich et al. [2004]). In these systems, however, semantic

similarity among named entities was not considered.

2.1.2 Post-Click News Recommendation System

All of the mentioned systems rely on the fact that there exists a user profile and a

descriptive model of users and items can be constructed. However, they do not take

into consideration a major difference between news web sites and other web sites:

many readers do not have any user account so building a profile of user preferences or

her activity logs is impossible. News websites usually rely on item to item similarity

to recommend similar news articles to what a user is reading at a given moment.

In this situation, techniques in information retrieval are used to find relevant news

articles. These techniques require an accurate definition for similarity or relatedness

in order to produce acceptable results.

The main motivation is to keep the user in the news web site as long as possible

by offering interesting news articles after she enters the web site. This area is called

post-click news recommendation Lv et al. [2011] and is fairly under-explored. In the

state of the art, post-click recommendation is done by editors manually searching

through the entire corpus. The process in both expensive and limited to the editors’

knowledge about the subject.

The same problem was addressed by Bogers and van den Bosch [2007] through

combining three different relevancy measures, and created a regression model out of

their proposed combinations. They also demonstrated that using the entire body of

news articles can improve the performance of their algorithms as opposed to using

a fraction of it like using first paragraphs or selected passages. The only compara-

ble work that differentiated between relevancy and relatedness in the news domain

was done by Lv et al. [2011]. They followed the idea of combining different rele-

vancy scores, however they argued that relevancy scores do not represent relatedness

between two news articles. They proposed using a modified topic model method

9

(LDA) to capture higher level similarity between two articles helps recommending

news articles which may be very related topically but have few words in common.

They also demonstrated that relevancy scores are among the most important features.

They used learning to rank for this task and used ranking measures to evaluate their

proposed method.

Other work use modified information retrieval methods which often rank articles

by calculating relevancy score. Due to performance constraint of news recommen-

dation, many methods will not be suitable for this task. Because the entire process

of finding related news articles must be finished when the user finishes reading one

news article. Lexical information retrieval methods are usually fast enough and are

easily fit into the requirements of this domain. An example of an alternative method

is document clustering which its output can be used to find similar documents to a

query article. However the performance of clustering algorithms is worse than lexical

IR methods.

Trevisiol et al. [2014] studied post-click recommendation of news articles in a

completely different paradigm. They studied the behavior of users in different news

web sites and constructed a graph which indicated how users switched their attention

between news articles. Then they made their probabilistic graph-based model to

guess which news article user will read after reading one article.

Capelle et al. [2013] used semantic similarity of WordNet concepts in their news

recommendation task. Although they used their method in a personalization task

(as opposed to our post-click problem task) it was one of the first methods to use

named entities and their similarities. They calculated similarities between concepts

using Bing search engine by finding number of web pages that a concept is appeared

in. They used these statistics to calculate PMI co-occurrence similarity measure.

In this thesis, the problem of post-click news recommendation is addressed by

introducing new document pair similarity measures based on semantic relatedness

of named entities. We followed the previous work that combined different similarity

measures to capture relatedness by introducing semantic similarity of named entities.

We used a state of the art named entity recognition and disambiguation system to

extract entities and then used the method of skip-gram to calculate similarity of two

named entities.

10

In most systems, datasets are created manually for the specific task. For example

authors usually collect some news articles and ask people to rank them for their

relatedness or relevance to use them in ranking or regression models. In our work, we

created a graph of relatedness between news articles using explicit feedback from news

editors. The nodes represent news articles and each edge represent binary relatedness

between two news article. We used the distance between nodes to calculate their

relatedness. This approach can be used for any news website by simply extracting

binary relationship among news articles. We later show that using this approach

reduces learning noise and improves our results for a good extent. We used this

approach for parsing Wikinews1 as a collaborative news outlet. In fact Wikinews was

used for the first time in this thesis and can be a benchmark for comparing different

recommendation systems in the future.

2.2 Information Retrieval

Information retrieval is the activity of obtaining information resources relevant to an

information need from a collection of data. The input is typically a textual query

and the output is the ranked list of relevant document. There is always and scoring

strategy which plays an important role in information retrieval as it defines which doc-

ument is relevant to the query. Returned documents are usually sorted based on their

relevancy scores. This area has been studied extensively and many successful statis-

tical methods and tools have been proposed. TF-IDF is the most famous method.

Okapi BM25, probabilistic language models, and information based retrieval models

are also available. Casting the news article recommender problem into an informa-

tion retrieval problem can be done easily by considering the content of one document

as query and pass it to an IR system. The returned results can be seen as relevant

documents and are sorted by their relevancy scores.

2.2.1 Semantic Search

Statistical information retrieval methods only consider lexical relevancy and do not

take into account the meaning of the words. Although their performance is accept-

able in many situations, in some tasks which require deeper understanding of the

1http://en.wikinews.org

11

underlying topic, they fail to provide accurate results. There are some works that use

an ontology specifically WordNet to calculate semantic similarity of text documents

(Leacock and Chodorow [1998]). However the performance overhead of non-statistical

methods is usually high and does not scale well.

LSI (Landauer et al. [1998]) is one of the techniques in IR which is believed to

capture semantic relatedness between queries and documents. It is an indexing and

retrieval method that uses a mathematical technique called singular value decompo-

sition to identify the relationship between the terms and the concepts contained in an

unstructured collection of text. LSI is based on the fact that words within a context

tend to have similar meanings. It has the ability of correlating semantically related

terms in the text.

LDA (Blei et al. [2003]) is a topic modeling algorithm that can be used in informa-

tion retrieval to provide semantic analysis of words. Similar to LSI, it can identify sets

of words that are semantically related. It also produces a topic model for documents

by assigning topic weights to its containing words. In other words, the output of LDA

can be vectors of topics for a given document. One typical way to measure similarity

of two documents based on LDA is to calculate the Kullback-Leibler divergence of

their topic distribution. An alternative approach is calculating cosine similarity of

two topic distributions and use them as two vectors in topic space.

Explicit Semantic Analysis (Gabrilovich and Markovitch [2007]) is a vectorial rep-

resentation of text that uses a document corpus as a knowledge base. Each text can

be represented in a high dimensional space of concepts derived from a knowledge

base like Wikipedia. The similarity between two texts will be calculated using con-

ventional methods such as cosine similarity of their corresponding vectors in the new

vector space. ESA is a proven method in text categorization. The provided similar-

ity measure can be directly used in information retrieval tasks to perform semantic

search.

2.2.2 Named Entity Recognition and Disambiguation

A correct mapping from words to concepts in an external knowledge base, automat-

ically solves the problem of synonyms in information retrieval. Beside that, many

valuable relationships between concepts in a knowledge base can help with semantic

12

search and identifying underlying topics. For example in FreeBase2 it is easy to infer

that Halifax is a Canadian city in the Atlantic coast line and is the capital city of the

province of Nova Scotia. Such valuable information can lead to a better inference in

similarity.

Semantic similarity between two concepts in knowledge bases received a lot of

attention since the emergence of reliable and very big ones like Wikipedia Medelyan

et al. [2008] Witten and Milne [2008]. There are also works like DBPedia Spotlight3

which follows a context-based scoring strategy. Recently, Mikolov et al. [2013] intro-

duced Skip-grams which are currently state-of-the-art in semantic similarity between

any given pair of words or consequently any concepts. We used skip-gram model

extensively in this thesis.

In order to use semantic similarities of named entities in semantic information

retrieval tasks, named entities must be recognized and disambiguated from texts.

The first task is to identify named entities within the text. In other word, all the

words that can possibly be a named entity in the knowledge base must be identified.

After that the disambiguation task selects the correct meaning for each word from a

given knowledge base. As mentioned before, the knowledge base is usually Wikipedia.

The task of named entity recognition and disambiguation has been studied broadly

in recent years due to their importance. There are a few effective methods such as

WikiMiner (Milne and Witten [2008]), Wikify (Mihalcea and Csomai [2007]), DBPe-

dia Spotlight (Mendes et al. [2011]), AIDA (Hoffart et al. [2011]), and a novel fast

and accurate method called Tulip (Lipczak et al. [2014]). Tulip is in fact the state-

of-the-art system in this area based on the results in Named Entity Recognition and

Disambiguation Challenge 2014.

The most recent work to use semantic similarity of concepts in document pair

similarity belongs to Huang et al. [2012] who used Wikiminer for named entity recog-

nition and disambiguation and used different similarity features for document pairs

such as average, minimum, and maximum similarity of concept pairs in two text doc-

uments. Then a regression model was trained and the output of the model was used

as similarity of two documents.

To the best of our knowledge, there is no such a system to use state-of-the-art

2http://www.freebase.com/
3spotlight.dbpedia.org/

13

methods in named entity recognition and disambiguation along with an accurate

similarity measure. In this work, Tulip was used for named entity recognition and

disambiguation (NERD) task and skip-grams were used to provide semantic similarity

among identified named entities for the first time. Extracted named entities and all

features based on them are among the most important features.

2.2.3 Learning to Rank

Learning to rank refers to machine learning techniques for training the model in a

ranking task. Learning to rank is useful for many applications in information retrieval,

natural language processing, and data mining (Li [2011]). In this work, we cast the

problem of finding related news into a ranking problem and measured its performance

against traditional regression models.

The input of a learning to rank algorithm is lists of items with some partial or-

dering between items within each list. The output would be a model, which takes a

query and a document and returns either a score or a binary decision. The score rep-

resents relevancy in information retrieval, but based on our goal and our features, we

can see the scores as relatedness degrees. Relevancy score denotes how well returned

documents meets the information need of the user which is expressed through a query

string. However relatedness score represents similarity of two documents, which in

this thesis are two news articles.

Although this is a fairly new area, there are quite a lot of works in this domain.

The goal of many of the works is introducing a new method for learning to rank such

as MART(Friedman [2000]), RankNet (Burges et al. [2005]), RankBoost (Freund

et al. [2003]), SVMRank (Joachims [2002]), and LambdaMart (Wu et al. [2010]).

There are also many works on applications of learning to rank in other domains

than their original information retrieval tasks such as construction of email threads

(Dehghani et al. [2013]) and recommender systems. Since recommender systems

outputs are always a ranked list of relevant results, learning to rank has been used

in recommender systems for a while. In post-click news recommender system, only

Lv et al. [2011] used learning to rank and they did not offer any comparison with

traditional regression models. In contrast, we are going to compare learning to rank

methods with regression model to justify using one method over others.

14

2.3 Keyword Extraction

Keyword extraction is a well-studied area of natural language processing. The main

goal is to extract meaningful words and phrases from text files. There are many

motivations behind developing such systems including text summarization, document

tagging, and compact representation of documents. Methods are either supervised

or unsupervised. Unsupervised methods are usually based on statistical information

and co-occurrence of the words in text while supervised methods usually require a

sufficient number of text documents with keywords extracted by experts (Medelyan

et al. [2009]).

In this work we present a new method for keyword extraction based on the se-

mantic relatedness of words in skip-gram model and the Chinese restaurant process.

Our extracted keywords are used as one of the features to capture relatedness and

works alongside other features to capture new aspects of relatedness.

Chapter 3

Features, Training Set, and Relatedness Model

In this work, we are trying to answer two research questions:

1. Is news article relatedness the same as similarity in information retrieval?

2. If they are different, can we define a relatedness function?

First we performed some experiments with typical information retrieval tools to an-

swer our first question. Then we focus on introducing a new relatedness function for

news. There is not a clear definition for relatedness of two news articles. Therefore,

we follow the works by Lv et al. [2011] to learn an unknown concept of relatedness

by combining different similarity measures. In our work, each similarity measure pro-

vides a score which is used as a numeric feature. So all of the definitions of features

are for a pair of documents.

We model relatedness of a pair of documents as a regression problem, in which a set

of similarity measures is treated as a set of input features to a regression model, which

maps them to a single similarity value. The main challenges here are selecting input

similarity measures and finding a good regression model. The relatedness model

that we are defining is similar to the similarity functions in information retrieval tasks

in which a function scores the similarity of a query to a given document. Hence, we

follow that terminology and call a given news article query document. For each

query document, the trained model will be capable of giving higher scores to related

documents.

In this chapter, we begin with answering our first research question by doing a

simple experiment. Then we explain different features that are used in order to create

a regression model which will finally become our relatedness model. We will begin

describing a keyword extraction method which will help us define our first feature in

section 3.3. Then we focus on the features that captures semantic similarity of two

news articles in section 3.4. After that we explain a number of lexical features that

15

16

K Precision @ K Recall @ K
3 0.339 0.453
5 0.225 0.563
15 0.089 0.727
25 0.057 0.785
35 0.042 0.816
45 0.033 0.831

Table 3.1: Performance of Lucene search engine with default TF-IDF scoring function
considering top k returned results.

were used in the regression model. In section 3.6 we discuss different approaches to

use available datasets to train the relatedness model. Finally, we explain different

regression models that we used to model relatedness.

3.1 Similarity as Relatedness

Our first research question is knowing if similarity measures that are used in infor-

mation retrieval capture relatedness in news articles. To answer this question, we

used the common information retrieval tool called Lucene1. This tool acts like a doc-

ument database and is extensively used in many software products or websites that

have searching service. Given its popularity and efficiency, we used it as our baseline.

Lucene also provides very fast and reliable indexing and retrieval APIs in various

programming languages.

We indexed the body of the news articles in “The Chronicle Herald” dataset by

Lucene using its standard analyzer which removes very common stop words and makes

all the text lower-cased. After that we extracted a subset of news articles that had

at least one related news article based on what news editors marked as related. For

each of those articles, we created a query using its body and passed it to Lucene

(more details about this dataset is in section 5.1). We measured precision and recall

of retrieved documents by considering different number of returned articles as shown

in table 3.1. The returned articles for each query article are matched with the ground

truth to calculate precision and recall.

This experiment gives us an estimation of how well an information retrieval system

performs in finding related news articles. In this experiment, the similarity function

1https://lucene.apache.org/core/

17

that we used was cosine similarity of TF-IDF vectors of documents which is widely

used in IR tasks. According to results of this experiment, although similarity is not

equal to relatedness in news domain, lexical similarity is one of its important aspects.

In the following sections, we define additional features to capture other aspects of

relatedness.

This experiment also shed light to an important design decision regarding imple-

mentation of recommender system. The final recommender system must be responsive

enough to handle all concurrent users who are visiting the news website. If we assume

that we have a relatedness function which produces a score for two given news arti-

cles, a trivial idea to use that for finding related articles would be comparing a given

news article to all others. This idea is definitely impractical considering the number

of news articles in a news website. Instead, if we look at the results produced with

minimum overhead by Lucene, we can use it as a filter before our model. In other

words, we will use Lucene retrieved documents to narrow down our search space.

Based on our results, if we get 45 results, then we only need 45 comparisons with

the cost of losing 17 percent of recall. In fact considering only 45 results means that

17 percent of pairs are related without having exact match of words which is still

acceptable considering the performance gain of the system. We also used the subset

that was prepared for this experiment for our other experiments including training

and testing of the models. We separated this subset to a train and test set with size

of 0.75 and 0.25 of the original set respectively.

In the rest of this thesis, when we talk about a relatedness model, we mean a model

which will be applied to the Lucene’s returned results. In other words, the relatedness

model will be used to re-rank the retrieved results based on other similarity measures.

3.2 Model of News Articles and Labels

In our model, without loss of generality, each input news article must contain a title, a

news body, and a publish date. There is also an optional field which represents editors’

choices of related news articles. This optional field is used to train our system, but

is not used in production environment. This is a minimalistic view to a news article

and enables us to define various similarity measures suitable for news articles which

can be used in many news websites based on similarity of the news body, title, and

18

date. We will later define all of our features based on these properties.

The training labels are provided for a fraction of news article pairs by human

judgment. The labels indicates if a pair of news articles are related, but does not

provide any information about whether a pair is unrelated. In “The Chronicle Herald”

data set, the labels are set by editors while in Wikinews data set, everybody can

provide such labels for article pairs. These labels can be used in various ways as it

will be discussed later. In both of our datasets, almost one percent of news articles

have a related news section. The data related for this section comes from editors of

the news. So we look at them as ground truth for modeling relatedness. Although

this fraction of data is small compared with entire dataset, they are invaluable since

the editors are the experts of this domain. However, the problem is that they cannot

relate all the news articles to each other; they can remember a limited number of news

articles at a moment, and more importantly, they have a limited time which prevents

them from going through their entire news corpus to extract all related articles. As

a result we will be sure about the label of a pair of news articles if they are labeled

as related. But it is wrong to assume that unlabeled news pairs are unrelated.

3.3 Keyword Extraction

In this section we explain how we obtain one of our features for the regression model.

We believe that this feature helps us to find similar documents that are about one

specific topic. This feature assigns a numeric similarity value to a pair of documents

and the value is greater for the pairs that have a shared dominant topic. We used

semantic similarity of words to find word groups or clusters that are closer to each

other semantically. Then we pick the group which represents the dominant topic of

the document and use only those words to find similar articles.

In this thesis and this particular module of the thesis, we used skip-gram model

for word representation(Mikolov et al. [2013]) that was pre-trained on Google news

corpus2. In this model, each word is a vector in a hypothetical, high-dimensional

space. This model preserves relationship of the words through the vectors. For

example, words that have closer meaning to each other are placed closer to each

other in the space. Also, if we add two vectors of two words, we will get a vector

2https://code.google.com/p/word2vec/

19

similar to a word which covers meaning of both words. For example, if we add vectors

of words “man” and “woman”, we get a vector very similar to the word “human”.

Each element of the vector defines one hypothetical aspect of similarity between

words, so cosine similarity of the vectors of the words represents semantic similarity

of words. The word vectors are learned from massive text datasets which is described

in appendix A.

The problem of finding important words in a single document is called keyword

extraction. Our goal is to find topical keywords of a text and use them to measure

similarity of two documents using different similarity measures. The main usage

of keyword extraction is in summarization. However, in information retrieval, it

sometimes improves the precision of retrieved documents if noisy words are removed.

One of the widely used approaches for removing non-informative words is removing

stop words. The keywords must be selected very fast, and with the least amount of

information loss. We propose a novel one-pass algorithm using word clustering and a

stochastic model to eliminate words that are not related to the main topic of a single

text document. We claim that having only important words instead of normal bag of

word model is a better representation toward modeling relatedness if the extracted

words represent the core topic of a document.

Our solution is to remove noisy words from a single document and keep only words

that are truly relevant to the main topic of the text and use those words to measure

similarity with other documents. For example, if an article is about environment, it

is likely that it also touches on economic issues. If we extract keywords representing

only the dominant topic, then we can find related documents about only that topic.

3.3.1 Modified Chinese Restaurant Process

In our method, we use Chinese restaurant process (CRP) to perform clustering on

all of the words of a text, because we need a one pass linear algorithm in which each

word is seen only once during clustering. In this model, clusters are tables, and words

are people. In the Chinese Restaurant Process or CRP, we have an infinite number

of tables, each with infinity capacity. At each time step only one customer enters the

restaurant. The first customer will be seated at an unoccupied table with probability

1. At time n + 1, a new customer arrives and has to decide where to sit: either a

20

new table will be assigned to the new customer or she will choose to sit next to some

people who are already at an occupied table. The former happens with a probability

α which is called CRP hyper-parameter. The later will happen with a probability

based on number of people who are already seated on the table. Here is the formal

definition:

P (zi = k|z1:i−1, α) ∝

nk, if k ≤ K

α, otherwise k = K + 1
(3.1)

where k is the index of selected table, nk is the number of people sitting at table k, α

is the hyper-parameter, and zi is the new person entering the restaurant while there

are i− 1 people in the restaurant.

We modified the formal definition of CRP to use similarity of word vectors that

are coming from skip-gram model in our cluster assignment. In our model, we have

to keep track of one extra item which is the sum of all vectors within a cluster which

we call cluster vector. The cluster vector represents what a cluster generally means

based on the words it contains. In this method, for each new word, we look into

cluster vectors of all current clusters and find the one which has the maximum cosine

similarity with the new word vector. If the similarity is greater than α then we assign

the new word to the target cluster. Otherwise, we consider creating a new cluster

with probability α. It means that if the new word is not very related to the cluster,

there is still a chance, to assign it to that cluster. This property prevents creating

too many word clusters. There is one distinct difference to traditional CRP: if the

new word does not go to an empty table, it deterministically goes to the most similar

table.

Using the Chinese restaurant process to cluster words was already done in other

domains. In one of the works, a hierarchical clustering for words was created by a

nested Chinese restaurant process (Blei et al. [2010]). They also proposed another

method for a distance dependent Chinese restaurant process Blei and Frazier [2011].

But our work is different since we are working with cluster vectors and not word

vectors alone. To the best of our knowledge, it is the first time that both skip-gram

model and CRP are used for keyword extraction.

The intuition behind using the Chinese restaurant process is that each table or

21

Algorithm 1: Clustering words of one document into different topical groups

using modified Chinese restaurant process

Data: An array A representing all tokenized words

Result: A set of arrays, each array represents a cluster of words

Remove stopwords from input array A;

Create an empty cluster set clusterSet;

Create an empty set representing each cluster vector clusterVec;

Create a cluster with the first word and put it in clusterSet;

Set the first cluster’s vector to the vector of the first words;

p = 1.0;

forall the Word w in A do

pNew = p / (number of clusters);

maxSim = find the similarity of most similar vector to w in clusterVec

using cosine similarity;

if maxSim > pNew then

Add w to the most similar cluster;

Add vector of w to the vector of most similar cluster;

else if pNew > randomNumber then

Create a new cluster;

Put w into the new cluster;

Set new cluster’s vector as w’s;

else

Add w to the most similar cluster;

Add vector of w to the vector of most similar cluster;

return clusterSet;

22

cluster represents a topic and each word in that cluster is related to the topic as well.

Since each word contributes to the meaning of topic by influencing the cluster vector,

an incoming word is likely to be assigned into the proper topic. In this way, words

will be grouped topically using skip-gram vectors while losing the ability to assign

more than one topic to each word (e.g. soft clustering of words as LDA). One of

the good properties of this method as opposed to LDA is that it does not require

the knowledge of the number of cluster (topics) in advance, and clusters are created

dynamically. Since we are going to focus on only words of one topic later, there is no

point to have a soft clustering.

3.3.2 Selecting Keywords of Text

The word clusters for an article about economy of province of Alberta and its current

workforce wage are extracted in figure 3.1 (the raw text is available in appendix D).

Having the word clusters of a given document, the task of keyword extraction is now

reduced to selecting the cluster which contains the most important words. We use

standard TF-IDF to assign scores to words, and then for each cluster, calculate the

average TF-IDF score of its words. At the end, we choose the cluster with highest

score to represent keywords of the input document (Figure 3.2). We will later use

literal presence of the words of the selected cluster to retrieve similar articles. The

retrieved articles will be mainly about the topic represented by the selected cluster

since we are not using words which may be either general words or about other topics.

Having a keyword representation of a document, we believe is informative enough

to be used for obtaining similarity of documents beside other lexical features. In order

to use extracted keywords in calculating relatedness, we concatenated the keywords of

each document and formed a query string. Then we passed it to Lucene search engine

to extract documents which contains the exact keywords. We use cosine similarity of

our keywords and the entire body of documents to find related documents and the

corresponding scores. In this way, we only get high similarity values for documents

which are about one specific topic. There are other ways of using the extracted

keywords. One of the them is to do a summation of the vectors of keywords of

a document and then represent documents with that vector. In this way, we can

measure semantic similarity of two documents by computing cosine similarity of their

23

Figure 3.1: Word cluster results after two runs on the same article.

Figure 3.2: Topical word profile vs. Tf-idf keywords profile of an article

document vectors, even when they have no words in common. However, we observe

that using this method will assign high scores to documents which are similar in a

general domain like politics or sports, whereas in our task of news recommendation,

we need a similarity measure which is more specific.

One other application of keyword extraction for the news domain is tagging. The

keyword model for documents represents words from the text that are very important.

Using them for summarizing news article is one of the directions of future work. This

feature is called Keywords in the evaluations.

Our initial experiment to extract an informative subset of words was to apply

clustering algorithms to words of a document and using their vector distance as the

24

cluster distance criteria. We used K-Means as our clustering algorithm and prelimi-

nary results were promising. But there was two major problems with this approach.

The first problem was that we were using Euclidean distance of words to put them

into clusters. Although related words are close to each other based on their vector

representation, it is their cosine similarity which captures the semantic meaning of

two words and K-Means is not well-suited for this type of similarity. The second

problem is that we need to know the number of clusters; I.e, the number of topics in

a text which is usually unknown.

We used skip-gram similarity, which is a state-of-the-art semantic similarity of

words, to create a new representation for documents and used it for our similarity task.

Additionally, unlike other keyword extraction methods, our method is unsupervised;

It does not require training on a corpus and it operates only on a single document.

The skip-gram model requires training on large datasets to model vectors of words. In

this thesis, we used a pre-trained model from Google News which is available online3.

To the best of our knowledge, this method is a novel approach for using skip-gram

model for modeling documents.

3.4 Semantic Similarity Features

This section introduces a set of features based on named entities and their semantic

similarity for our regression model. We use named entities that are extracted from

the text to calculate semantic similarity of a pair of news articles. At first we briefly

introduce Tulip as our named entity recognizer and disambiguation system. Then

we define functions that calculate similarity of two named entities. Finally, we used

those functions to define different similarity measures of two news articles which are

the features that are used in this thesis.

The named entities are extracted using Tulip (see appendix C). Tulip is a named

entity recognition and disambiguation (NERD) system which takes one text document

as input and annotates the named entities by linking them to Freebase4 knowledge

base. By annotating the text, an article can be represented as a set of entities.

In knowledge bases, especially Freebase, we can infer valuable information about

3https://code.google.com/p/word2vec/
4http://www.freebase.com/

25

relatedness of two entities by considering various information.

The task of recognition and disambiguation of named entities in a text is a fun-

damental task in the systems that rely on knowledge base information. Since it sits

at the bottom of the stack of modules in such systems, any errors will propagate

through the system and reduce performance of later components. Tulip is currently

stat of the art among NERD systems and won the first prize in named entity recogni-

tion and disambiguation challenge 2014 Lipczak et al. [2014]. In addition to its high

precision, the response time of the system is very short compared with other system.

This property makes Tulip suitable for our recommender system in which we have

many articles that are required to be annotated. In this thesis, each article is passed

to Tulip and the set of returned entities are used to build an entity profile for each

article.

A group of our proposed features to measure semantic similarity of two documents

are based on semantic similarity of their extracted named entities. In this section, we

introduce five features to capture semantic similarity of two documents. We followed

the work by Huang et al. [2012] and assume that we have a named entity profile

for a given document. They demonstrated that by introducing different numerical

features and combining them, we can capture semantic similarity of two articles.

Their numerical features are extracted from sets of named entities by applying a

similarity function which takes two named entities and returns a similarity values.

They used a similarity measure based on graph structure of Wikipedia (Witten and

Milne [2008]).

3.4.1 Semantic Similarity of Two Named Entities

Although graph based similarity based on Wikipedia is a proven approach, we decided

to use a newer state of the art skip-gram model to calculate similarity of named

entities (Mikolov et al. [2013]). We also used a new system called Sunflower (see

appendix B) which provides similarity considering Wikipedia categories and compared

it with skip-gram model in terms of its performance in the final recommender system.

One advantage of using skip-gram over the graph based method is that it can be

trained on any text corpus and since we are working on news domain, we used vectors

that were trained on news domain same as the ones that were used in section 3.3. But

26

in this case, the vectors were trained by considering the mentions of named entities

instead of only words. The semantic similarity of a pair of named entities, e1 and e2

is defined by using cosine similarity of their corresponding vectors:

sim(e1, e2) = cos(Ve1 , Ve2) (3.2)

in which Ve1 and Ve2 are vector representation of e1 and e2 respectively.

Sunflower is a system developed at Dalhousie University by Marek Lipczak5. This

system is based on different language versions of Wikipedia and provides a cate-

gory profile for each Wikipedia article. Since each named entity in Freebase has a

corresponding article in Wikipedia, we can use Sunflower to find the vectorial rep-

resentation of the entity in Wikipedia category space. Then we use equation 3.2 to

calculate similarity of two named entities by using category vectors.

The category graph of Wikipedia is very complex and huge, but Sunflower provides

accurate and sparse representation of articles by limiting the amount of generalization.

According to our preliminary experiments, in our news recommendation task, we have

to stay specific on the subject of news, so we set the Sunflower parameters to provide

the most specific representation as possible to calculate similarity by setting its width

to 1 and its height to 3 to get the best results (more details in appendix B).

3.4.2 Semantic Similarity of Two Articles

We introduce 5 features inspired by Huang’s work. As we will discuss in chapter 5,

the skip-gram model gives us better similarity function. Therefore, in experiments

that we do not specify Sunflower similarity, we are using skip-gram model as default

choice. However, all of the semantic features are defined regardless of the similarity

function. They can be replaced with other similarity methods at any time.

If we have sim(SAi, SBj) as a semantic similarity function of two named entities

in two sets and SA and SB representing two sets of entities of documents A and B

respectively, the first feature is the average of all possible similarity values between

entities of two sets. Formally, the value for this feature is:

5This work has not been published yet.

27

sim(SA, SB) =

∑|SA|
i

∑|SB |
j sim(SAi, SBj)

| SA | . | SB |
(3.3)

We call this feature AvgSim. We add a prefix to describe which similarity function

was used for this feature (either Sunflower or Skip-gram).

The next feature is calculated with a slight change to previous formula. The intu-

ition behind this feature is that similarity of two sets of entities is usually dependent

of the maximum similarity score of their entities:

sim(SA, SB) =

∑|SA|
i max(sim(SAi, SBj ∈ SB))

| SA |
(3.4)

In other words there is usually at least one entity in another set which has the

highest similarity score. The average value of all maximum scores can remove the

effect of less important and less related entities. Two other features are also used

which represent minimum and maximum similarity between two sets. This feature

will be called SumOfMax in evaluations.

The other two features are trivial. They are maximum and minimum similarity

score between all pairs of entities between two sets (MaxSim and MinSim in evalu-

ations respectively). We also used Jaccard index of two entity sets as an additional

feature. This feature captures exact presence of entities in two documents. The

Jaccard index of two sets is defined by following formula:

J(SA, SB) =
|SA ∩ SB|
|SA ∪ SB|

(3.5)

Where SA and SB are the sets of named entites in two documents. We call this

feature in evaluations JaccardSim.

3.5 Other features

We discussed some of our features so far based on named entities and skip-gram

model. As we mentioned earlier, we try to combine the semantic features through a

regression model with other well known features to model relatedness. In this section,

we start by introducing 6 features that are based on lexical similarity of news articles.

Then we introduce LDA-based similarity which uses a topical distribution of words

to capture relatedness. Finally we introduce a feature based on the publication date

of news articles.

28

3.5.1 Lexical Similarity

Although relatedness of two news article is not as same as their lexical similarity,

having the same word can give us a lead about relatedness. Both Lv et al. [2011]

and Bogers and van den Bosch [2007] argued that standard information retrieval

similarity measures can capture important aspects of relatedness which are novelty

and relevancy.

We defined 6 lexical similarity features. The first one is cosine similarity of two

documents using their term frequency vectors. The reason we did not use TF-IDF is

that this aspect of relatedness has been already captured according to our architecture

by using Lucene as a filter. So it would be redundant to calculate it again. Instead

we only calculate TF vectors and cosine similarity of two documents based on TF.

We call this feature CosineTF in our evaluations.

CosineTF (A,B) =

∑
iAiBi√∑

iA
2
i ·

√∑
iB

2
i

(3.6)

The second feature is Jaccard index of terms in body of two news article. It can be

calculated using formula 3.7 by having A and B as the sets of terms in two documents.

We call this JaccardBody in evaluations. If we use formula 3.7 with sets representing

terms in title of two articles, then we can obtain numeric values for another feature

which indicates similarity of titles of two article. This feature is called JaccardTitle.

J(A,B) =
|SA ∪ SB|
|SA ∩ SB|

(3.7)

Okapi BM25 is one of the standard scoring methods in information retrieval. It is

based on the probabilistic retrieval framework developed in 1970s and it works well

in many IR tasks. This score can be obtained using following formula:

score(Q,D) =
n∑
i

IDF (qi).
f(qi, D).(k1 + 1)

f(qi, D) + k1.(1− b+ b. |D|
avgdl

)
(3.8)

where IDF is inverse document frequency, avgdl is average length of all documents

in corpus, and k1 and b are free parameters. In previous works, BM25 was one of the

most important feature. We call this feature BM25 in the evaluations.

Another lexical feature is based on language modeling. To calculate this feature,

a language model is created for each document. Then for each query, the probability

29

of the query text given the language model is calculated. The main property of this

type of similarity is that it partially models the local dependency of the word in the

text. There are two famous smoothing for this type of similarities: Jelinek-Mercer

and Dirichlet smoothing. According to Lv et al. [2011] the former shows similarity

much better than the later. Also our preliminary results suggested using Jelinek-

Mercer smoothing. So our language model similarity features uses only this type of

smoothing. We used the implementation of this type of similarity available in Lucene

package. This feature is called LM in the evaluations.

Our last lexical feature is information based similarity score. This similarity model

is based on the work by Clinchant and Gaussier [2010] and is based on the fact that

the difference of behavior of a word at the document and collection levels brings

information on the significance of the word for the document. They showed in their

paper that their model leads to a simpler and more effective similarity measure for

ad-hoc information retrieval. We used the implementation of this formula in Lucene

software package. In evaluations this feature is called IB.

3.5.2 LDA-based Similarity

Topic models are a group of methods that uncover the hidden topical and thematic

structure in document collections. Blei et al. introduced Latent Dirichlet Allocation

in 2003 and it quickly became one of the most famous and effective methods for topic

modeling. Given a collection of documents which in our case is the total news corpus,

LDA returns distribution of topics for each document and distribution of topics of

each words. For each document pair, Jensen-Shannon divergence of their distributions

of topics can be seen as a measure of dissimilarity. To apply LDA on our corpus, we

used MALLET6 library. LDA needs to know the number of clusters beforehand. We

set it to 200 after doing empirical tests on the corpus to get the best results.

As explained before, Jensen-Shannon divergence represents the difference between

two documents in terms of their distribution over each topic. Since LDA returns a

vector representation of documents in topic space, we can use cosine similarity of

the vectors to represent similarity of two documents. Our experiments revealed that

cosine similarity is more powerful and informative than divergence measure to be a

6http://mallet.cs.umass.edu/

30

feature for relatedness. Hence, instead of KL or Jensen-Shannon divergence, we used

the equation 3.6 and used cosine similarity of topical distribution of two articles. This

feature is called LDASim.

3.5.3 Time Similarity

The last feature represents how close are two news articles in terms of their publish

time. The intuition behind that is that when news articles are covering a story, that

story develops quickly and related news articles about that story are published one

after another. This feature is simply the absolute value of the time difference between

two news articles. This feature is called TimeSpan.

3.6 Labeling of Training Examples

In this section, we explain how we calculate the relatedness score of two news articles

to be used during training the system. To train our regression model for relatedness,

we need to have both positive and negative examples. For positive examples, we can

use explicitly labeled related pairs. However, we have no information about negative

examples. In this section we discuss different strategies to find negative examples.

For our scoring model, we have the option of creating a binary classifier to assign a

class label as related or not related to a given pair of news article. However, since we

need to provide a ranked list of related news articles, we focus on a regression model

to produce relatedness score. Sorting output list by their relatedness score will help

us generate the desired output ranked list. When working with regression models,

we convert positive labels to numeric value 1.0 and negative labels to numeric value

0.0. Applying a threshold on the final output will keep only related documents. The

threshold will be based on user’s need: lower threshold will provide more news about

other topics.

3.6.1 Data Model 1: Random Selection of Negative Examples

In this model, positive examples are those labels that are explicitly labeled as related.

For negative examples, we select pairs randomly and those that are not in our positive

set of pairs, are assigned as negative. The number of these randomly selected are the

31

same as positive examples to keep the dataset balanced.

3.6.2 Data Model 2: Using Lucene for Generating Negative Examples

In section 3.1 we introduced the idea of using Lucene as a filter. If we use that strategy

in production, then Model 1 would not be compatible with it. In other words, our

relatedness model is going be to used to re-rank the output of Lucene results. So the

data set must be prepared in a way to assist the system doing the re-ranking task.

The trained model will still be a relatedness model, but the data points will resemble

the final production environment during training.

In order to have a compatible data model, we used Lucene as a filter in the process

of making dataset in exactly the same way as we use it in production environment. In

this setting, each article in our training set is passed to Lucene to get top 45 results.

Then for each of results, we check if they form a positive pair or not according to the

gold standard. Finally we sub-sample our negative instances to make it a balanced

training set.

3.6.3 Data Model 3: Graph Representation of Relatedness

One problem that arises in our ground truth dataset, is that sometimes article A is

related to article B and B is related to C but there is no labeling for the AC pair. In

situations like this, it is not rational to label AC pair of news articles as a negative or

not-related. Also, we cannot say they are surely related, because it is not rational to

label real related articles (i.e labeled by editors) and these partially-related articles as

related. To handle both situations, we proposed making a graph of relatedness from

the existing related pairs in the dataset. In the proposed graph, each node represent

a news article and there is an unweighted non-directional edge between two nodes

if they are labeled as related. If we have V as set of nodes which represents set of

news articles and E as set of edges, the formal definition of each element of adjacency

matrix of relatedness graph G(V,E) is as follows:

ai,j =

1 if Vi and Vj is a positive pair in training set

0, otherwise
(3.9)

32

Figure 3.3: A sample view of connected components in the training set of The Chron-
icle Herald dataset.

In the relatedness graph G, the relatedness of two nodes can be represented by the

shortest path between those nodes. That is if two nodes are closer to each other, they

are more related than two nodes farther than each other. We used this scoring scheme

of relatedness to label document pairs in order to use them to train our models.

We also observed that there are a lot of isolated communities in the relatedness

graph. Fig 3.3 shows the relatedness graph of The Chronicle Herald dataset. If we

look inside of some communities, we can easily observe that they are related news

articles about one story. We will call each of these communities a news story thread

since they are about one subject like a discussion thread in forums of email threads.

We will later consider these story threads in our evaluations.

The relatedness graph enabled us to prevent assigning an unrelated label to two

articles in same news thread by introducing partial relatedness. In order to improve

the precision, we still need to learn characteristics of a non-related pair of news articles

to improve accuracy of the data model. To solve this problem, we randomly select

nodes from two different news threads and consider them as not-related. We limit

33

the number of times we do the random selection to have a fairly balanced dataset.

In order to see the effectiveness of this method of constructing a training set, we call

this method Model 3.

Algorithm 2: Finding distance of nodes in the graph which represents how

similar two node are in the relatedness graph. Calculated scores can be converted

to relatedness scores directly. In the relatedness graph, nodes are articles and

edges represent explicit relatedness in the dataset. Edges are not weighted.

Input: Set of news article pairs A in which each pair is a related pair of news

articles

Output: Set of relatedness scores for each pair in A.

nodes = make a graph node for each news article in A;

edges = make an edge for each pair in the A;

Create graph g with nodes and edges;

returnSet = new empty set;

forall the News article a in A do

node = find the corresponding node to a in g;

(reachableNodes, distanceToRoot) = apply BFS on g with node as the

root;

forall the Node r in reachableNodes do

add (node,r,distanceToRoot(r)) to returnSet ;

return returnSet;

3.7 Relatedness Model

In this section we discuss various strategies to use our different training datasets for

creating relatedness model. We used two open source libraries: Weka7 and RankLib8.

Weka provides different algorithms including feature selection, pre-processing tools,

classifiers and clustering tools. RankLib is a collection of different learning to rank

algorithms implemented in Java.

7http://www.cs.waikato.ac.nz/ml/weka/
8http://sourceforge.net/p/lemur/wiki/RankLib/

34

3.7.1 Feature Selection

Not all the features that we introduced are used to calculate relatedness of two news

articles. Although combining different similarity measures means combining different

aspect of relatedness, some features may introduce noise instead of helping other

features. For example some features may capture very general theme of news articles

that is not useful.

Since testing features by user experience is very expensive, feature selection must

be performed before introducing model in the production environment. So most of the

experiments regarding the performance of feature extraction methods were performed

offline. We collected all feature value and then used Weka package to apply different

feature values and test different combination of features. Weka application provides

all required tools for calculating importance of features.

In order to find the importance of individual features, we used Correlation-based

feature subset selection (CFS) (Hall [1999]). This method assigns a merit value for

a subset of features which is on the basis of the following hypothesis: good feature

subsets contain features highly correlated with the regression value, yet uncorrelated

to each other. In other words, features that are independent from other features

and correlates more with regression values get better scores. The correlation score

with the regression values can be calculated using Pearson’s correlation coefficient

or Spearman’s ρ. However, Hall used three different measures of relatedness in his

method: minimum description length, symmetrical uncertainty and relief.

In addition to CFS feature evaluation, we conducted feature selection based on

two other methods. The first one is ranking features based on information gain. This

method evaluates the worth of an attribute by measuring the information gain with

respect to the regression value. In other words, it ranks the attributes by the order of

their separating power. The second method is called Relief which assigns a score to

the attribute based on its ability to separate close instances. If two instances are close

in the feature space, for a given attribute, it is desirable to get close to equal values;

otherwise the a negative score will be added to the overall score of the attribute.

35

3.7.2 Regression Models

The problem of training a regression model has been broadly studied in the machine

learning community. There are a lot of options available to pick among many regres-

sion algorithms. Since we wanted to show the power of introduced features and data

model, we focused on a few well known algorithms. One property of the features

used in this research is that we have only one feature (time difference) that may get a

value out of the range of what there is in training set and all other feature values will

remain in a fixed range. So practically, the feature space created by training data will

not change in the future and any regression algorithm that divides the feature space

meaningfully will perform well for the future data points. Based on our experiments,

we found that regression trees provide best performance for the system. So our main

focus is on regression trees.

The concept that the regression tree is trying to learn and describe is news re-

latedness. It will separate feature space into subspaces in which most of data points

have the same value. The relatedness score of a given pair in the future will be

calculated based on the subspace it goes to. Given this definition, it looks like an

interpolation problem and tree based algorithms are usually preferred for this kind

of problem since they can create a complex set of subspaces in the feature spaces. In

other words, the regression tree will transform a set of attributes, each representing

one aspect of relatedness, into a relatedness score:

relatedness score = f(
−→
X) (3.10)

where X is the input feature vector and f is the learned relatedness model. The way

that the regression tree obtains values for f is completely based on how it divides the

feature space into smaller subspaces. During evaluation, a feature vector will end up

being placed in one of the subspaces and its value will be calculated based on other

data points in that subspace.

There are many parameters to consider for selecting a algorithm for regression.

The first important property of an algorithm is its speed both for training and testing.

Given the size and novelty of the problem, training time is important and allows us

run many experiments with different parameters. An example of very slow algorithm

that needs tuned parameters for training is SVR (Support Vector Regression) with

36

some complicated kernel functions.

Decision or regression trees easily fit to the problem. They rarely require any

parameter, and they are trained very fast. The only downside of using them is

their problem of overfitting to the training data. As mentioned earlier, this is an

interpolation problem, so overfitting will not be a serious issue. Also, there are

ensemble methods which solve the overfitting problem.

The first regression model which was trained on our data models was a simple

regression tree. We used the REPTree implementation from WEKA package which is

a simple incremental regression tree with greedy backward pruning. The loss function

in this tree is based on variance reduction, exactly the same as CART (Olshen et al.

[1984]). This implementation allows to apply pruning using back fitting to reduce

error on a percentage of learning data as verification set.

When using data model 1 or 2, the scores in training set is either 0.0 or 1.0.

However, to use our 3rd data model, we had to divide range of 0 to 1 into equal

intervals. The number of intervals are calculated based on longest possible path

in the graph of relatedness. It means that if the longest path is 4, then we score

relatedness of pairs using values 1, 0.80, 0.60, 0.40, 0.20, and 0 for very related to

completely unrelated. Note that in this case, the 0.20 will be assigned to a news

article which is four steps away from the query article. The 0 score is assigned to a

completely irrelevant article based on the graph structure.

The second tree based method that we used for regression is gradient boosted re-

gression trees (Friedman [2000]) or GBRT. Like other ensemble methods, this method

combines some weaker regression algorithms which are typically regression trees to

solve a general regression problem. It works based on reducing mean square prediction

error by fitting a new tree at each iteration of gradient descent algorithm. The only

required parameters for this method are maximum number of trees and maximum

number of leaves of trees. We used an implementation in RankLib9 package.

We did not use SVR methods since it requires finding and tuning kernel and

regularization parameters. Our preliminary experiments suggested that the data

points are not separable at all. Statistical data from size of the decision trees also

suggested that it is a very hard problem to solve for methods requiring separable data

9http://sourceforge.net/p/lemur/wiki/RankLib/

37

points.

3.7.3 Learning to Rank

The news-article recommendation problem can be seen as a learning to rank problem.

For each query document, we have a list of related documents with its relatedness

score. The relatedness scores are not assigned by human judgment, but we can use

our graph-based data mode to train a ranking model to re-construct the ranked list.

In this way we can evaluate how well the ranking model performed not only for finding

explicit related pairs, but also for finding related articles in the same story thread. In

other words, we can consider each node of the graph as a query article and each node

that is in the same story thread is related, but each related news must be ranked

based on their relatedness score. This way of evaluation will gives us insight about

the performance of the system as an exploratory system.

Learning to rank algorithms use different loss functions to optimize their per-

formance of learning. Their general behavior can be categorized in three groups:

pointwise, pairwise, and listwise.

Pointwise algorithms are the same as regression model on the entire dataset. So

each feature vector is used independently of other vectors, and is used to minimize a

loss function. It is the same as supervised regression or classification tasks and the

final relatedness model tries to predict the relevancy scores as closely as possible.

Pairwise methods use the relevancy scores to create a set of pairwise constraints.

Then constraints are classified using existing supervised algorithms. Pairwise algo-

rithms do not predict relevancy scores, but produce a ranked list of results. So there

is no way to apply any sort of threshold to distinguish between highly related and

slightly related results. On the other hand, pairwise algorithms are always preferred

over pointwise algorithms when final ranking is more important than relevancy scores,

especially if click data is used as major source of training.

Listwise methods take the advantage of the structure of the ranked list in the

training data and try to optimize any given evaluation measure as opposed to other

methods which optimize an internal loss function. Like pairwise methods, the output

is a list of ranked results and there is no meaningful scoring available. Using different

loss functions mandates us to apply threshold on only top k results. For example if

38

the algorithms loss function optimizes precision of the top two results (P@2) then

only first two results must be considered in evaluation. These methods work great in

traditional recommendation situation in which there is a user and a list of preferred

items that must be recommended to her. These systems are usually optimized for a

certain measure which is defined by the business value of the recommender.

Loss functions of listwise methods are based on evaluation metrics of learning to

rank algorithms. This is important since the trained ranking model will be evaluated

based on exactly what it is supposed to do in production environment. Usual evalu-

ation measures are Mean Average Precision(MAP), NDCG@k and Precision@k. We

used these measures to evaluated our method for the situations where a ranked list

of results are preferred.

We trained and evaluated different learning to rank algorithms and it turned out

that pointwise methods (regression models) are always outperforming others. The

main reason can be their ability to provide interpretable relatedness score which

can be used directly for removing less related articles. In our task, for each query

document, we have a variable number of related news. Unlike traditional ranking

problems which are often based on top k results, a meaningful threshold must be

applied to prune unrelated articles. The other reason that pairwise and listwise

methods did not perform well was that our similarity features are designed to capture

relatedness globally. Those two methods are usually successful when there is a user-

item matrix and items are ranked relative to the user by defining local similarity

functions.

Chapter 4

Implementation

In this chapter we briefly discuss some important aspects of the implementation. The

main purpose of this chapter is to discuss how different components are connected

together, what the bottlenecks are and demonstrate possible ideas for future extension

of the application.

4.1 Implementation Overview

The recommender system that is being discussed in this thesis is implemented as a

web application which can be deployed at any news web site. The system must be

responsive enough to handle a large number of concurrent people reading different

news articles and getting recommended articles. Also, it must accept and index newly

written news articles to recommend them in response to an old article, or recommend

older articles for them.

There are two tasks executing in such a system. The first one is the main task of

the system, which is recommending related articles, given a new article. The second

task is indexing each news article when is it being published and put it into the

repository of the recommender. The former requires three sub tasks:

1. Extracting features that represent relatedness of a given news article to all other

articles.

2. Calculating similarity of the given news article and all other articles based on

the features.

3. Sorting other articles based on their relatedness score, and apply required

thresholds to prune unrelated results.

The most important property of such recommender system is being as quick as

possible in producing a ranked list of result for a given article. The number of newly

39

40

Figure 4.1: Layered architecture of the system.

written articles is far smaller than the number of visits. So all the expensive tasks of

indexing and extracting features can be done while the news article is being published.

However, producing a ranked list of related news articles must be done quickly and

dynamically. It must be dynamic, because new articles are published every day and

there can be a new article more related to a given article than currently identified

related ones. It must also be as quick as possible, because users do not like to wait

to see related news articles.

We used a layered architecture for our software architecture (figure 4.1). There

are two controller components in this system which harmonize the tasks required for

each scenario: indexer and recommender. Indexer is mainly responsible for getting a

raw and newly published news article and put it into the system in a proper way for

later use. The recommender gets one news article identifier at a time and returns a

ranked list of related news articles. Other layers deal with feature extraction, scoring,

and managing repository data.

In our layered architecture, the interaction with the environment is performed only

through controllers. The controllers’ main responsibilities are preparing input for the

rest of the system and preparing output in a usable format for external use. The con-

troller is placed on top of a business layer. The business layer represents the domain

model of the system which contains all the objects required for all different tasks.

This layer is composed of many components including feature extractor, ranker, in-

dexer, and recommender. Feature extractor is responsible for extracting features for

a given pair of articles, ranker uses the extracted features to generate a relatedness

41

score, recommender uses ranker to generate output, and indexer persists a new arti-

cle, the results of feature extractor, and ranker. The entire business layer is placed

on top of data layer which is responsible for transactional persistence and retrieval

of information to and from database. We used Hibernate1 object-relation mapper

(ORM) technology in our data layer. The underlying data base can be different and

tuned for better performance for a news web service.

Since features are extracted for each pair of documents, the amount of space

required for storing feature values is O(N2) given N articles in the system. On

the other hand, having all the article pairs and their features in a repository can

improve the performance of the system and eliminates the need for recalculating

costly features. Based on our architecture, whenever a new article is begin published,

it will be persisted into a database itself. Then this article is compared to all other

articles in the database and for each pair, a feature vector is extracted and persisted.

All these works should be done during indexing. So the recommendation task can

be done by passing feature vectors of an article to a scoring model and extracting

the produced score by models. In this way the performance of the recommender

is dependent only on finding and extracting feature vectors as assigning scores to

feature vectors is usually a cheap task. Fig 4.2 shows the major component of the

architecture.

As we discussed about our first research question in chapter 3, before working on

different features, a prototype system was created with the following simplified model

using Lucene search engine:

1. When a new article is being published, it is indexed by Lucene.

2. When an article is being passed to the system to collect other related articles, it

creates a query from the body of the input article and return Lucene generated

results given that query.

This prototype had all the components including an indexer and recommender con-

troller. In this case, the indexer controller was only calling the Lucene indexing service

and the recommender was responsible for creating a query, passing it to Lucene, and

returning Lucene results.

1http://hibernate.org/

42

Figure 4.2: Components of the system. Arrows show dependency of components.

Using Lucene as a filter to produce C results for a query document, the space

required to keep all feature vectors is reduced from O(N2) to O(C · N) = O(N),

while keeping speed of the system as fast as possible. The goal of this strategy is

re-ranking the returned results from Lucene to improve its precision while keeping

recall as high as possible. In best case scenario, the precision and recall of the system

will be 1.0 and 0.831 respectively. According to table 3.1 C is set to 45.

Using Lucene as a filter leads to idea of using a cache to maintain a list of pre-

calculated similarity scores. The cache is responsible to keep track of the top C

documents for each articles. The cache can be also used to keep track of the similar-

ity score, so recommendation task would be done by performing a cache check and

returning results. During indexing of a given document, the cache for that document

is empty. So the article is passed to Lucene, and top C results is retrieved. Then new

document and the returned C documents will make C document pairs. The feature

extraction will extract the feature values and put them into the cache. A call to our

scoring component makes the procedure complete by updating the relatedness scores

43

in the cache.

When recommender is being called, a call to Lucene is made to get C results. The

returned results are compared to the cached values and a cache hit or a cache miss

can happen. Those values in the cache that are not in the returned list are removed

and all articles that are not in the cache (cache miss) are sent to feature extraction

component and persisted in the cache. This type of cache management ensures that

new articles are always considered to recommend for a given article. Additionally, this

strategy has a huge impact on the response time of the system by limiting all required

feature vectors to 45 at each query. We persist the cache inside the database, and do

all cache management in the business layer of the application. Indexing information

by B-Trees in database makes searching logarithmic and since we have at most 45

entries in the entire cache table, the search and retrieval task happens in sub-linear

time.

The summary of what happens in the system during indexing based on figure 4.2

is as follows:

1. A new article treated as the query article is sent to the indexing service.

2. The article is passed to Tulip and a document model (section 3.2) from its

named entities and tokenized body is created.

3. The document model is passed to feature extraction component. Since feature

vectors represent different similarity measures of a pair of articles, the query

article is passed to Lucene and a number of relevant articles are retrieved. For

each pair of news articles, containing the query article and a relevant article, a

feature vector is extracted.

4. Extracted feature vectors that belong to pairs of articles are inserted in the data

base.

5. Feature vectors that belong to pairs of articles that include the query article and

relevant articles are sorted by the relatedness score, generated by a relatedness

model (section 3.7).

Likewise, the summary of what happens during recommendation is as follows:

44

1. The article that a user is currently reading is assumed to be indexed and is

passed to the recommender service.

2. The article is passed to Lucene as the query article and a number of relevant

articles from current state of the system are retrieved. Returned articles are

not necessarily the same as what had been returned during indexing, because

other articles may have been added in the meanwhile.

3. Retrieved documents are compared with the articles that were found previously

for the same query article which are now in the data base.

4. For each article not paired with the query article, the new feature vector is

calculated and relatedness score is fetched from the model.

5. The data base table that contains the feature vectors and scores is updated and

articles sorted by relatedness score to the query article are returned. The table

acts as a cache to reduce number of times the feature extraction is done.

4.1.1 Architecture

The implementation of the system should be adaptable to different changes including

adding or removing features and modification of layers. It must also generate recom-

mended results rapidly. So the binary code itself must not produce any bottleneck.

Additionally, beside performance needs of the project, maintainability is a driving

factor in implementing this project. In addition to external libraries and tools which

can change in future, domain specific features can be added later to the system like

news topics and tags.

For implementation, we used JavaEE technology. As mentioned before, we used

Hibernate as our ORM for the data layer. The entire system is a Maven2 project

which provides an easy to use dependency management. To manage layers of our

web application, we used Spring MVC3 framework. In web application development

Model-View-Controller pattern is different than traditional publisher-subscriber pat-

tern and is equivalent to a three layer application stack. In traditional MVC, controller

2http://maven.apache.org/
3http://spring.io/

45

Figure 4.3: A high-level view of the MVC model.

handles the input and updates the model, then model informs view about changes

that happened, so the view can update itself accordingly. In web MVC, the view is

at client side, so there is no way to see the changes of model all the time. Instead,

controller gets the input, updates the model, and informs view about changes. In

this way, view and controller are in top layer, and business and data layers come

afterward. This is equivalent to our layered design of the system with the difference

that there is no view for this application.

This application has many external dependencies. The external components used

in this system are shown in table 4.1. All of these components were subject to changes

many times in the development phase. They can also be changed during production.

For example changing underlying database system can happen at any time. To handle

external dependencies, we used Spring dependency injection. It allows us to configure

all these dependencies through external configuration file and let the application work

by only an interface representing the functionality of these components. The concrete

implementation of the components are linked to the application dynamically based

on the configuration file.

4.1.2 Performance and bottleneck

The response time of the system during indexing and recommendation depends on

many factors. During indexing, we need to persist document on the secondary storage

device of the system (usually a hard drive) using Lucene. After that, we need to access

database in order to retrieve, modify, or store new feature vectors. Since in both of

46

External Component Used system
Data Base MySQL

Regression Model Weka
Learning to Rank RankLib

Indexing and statistical text analysis Lucene
Semantic Similarity Word2Vec

Named entity recognition and disambiguation Tulip Web Service

Table 4.1: List of external dependencies of the application

these tasks, we are accessing to the slowest component of the system, minimizing

number of accesses will improve overall performance of the system. The other slow

component of the system, is network access to services like Tulip which is performed

only once per document during indexing. In case of hard disk access of Lucene and

database system, we can use their internal caching system which depends on their

configuration.

Regarding the implementation, the right choice of collections have a huge effect

on the overall performance. In Java, there are various implementations for Set and

Map data structures. We used Trove4 collection which is a high performance imple-

mentation of Java collections and has better performance in terms of memory and

speed.

To find the bottlenecks of the system other than the mentioned components, we

did a simple performance test for execution of two scenarios and used a simple JVM

profiling tool called Visual VM5. In Visual VM, we can see the amount of time the

process is spending in each method. Figure 4.4 represent a sample output from

VisualVM for recommendation task. In this example, the process spend most of its

time inside method handleCache which is in Recommender class. It simply depicts

hot spots in the application which gives us a clue about where to begin optimization.

The task of optimizing the application is not a part of this thesis. But having an

insight about hot spots can shed light into the future work directions.

During profiling, it became clear that the application is spending most of its time

in Lucene related function. There are huge number of invocations for Lucene methods

as keeping cache up-to-date requires finding similar articles for every single query. In

4http://trove.starlight-systems.com/
5http://visualvm.Java.net/

47

Figure 4.4: An example of profiling. The most time consuming method is cache
handling.

figure 4.5, there are useful information regarding number of times a method is called

and how much time is spent in that method sorted by their time consumption. As

it shows, the performance of the application is heavily based on method in Lucene

package.

The scalability of the architecture allows us to run the application on more than

one hardware instance and get better response time. The application can be replicated

on more than one server and the only shared point of the replicas would be Lucene

index and database. Lucene index can be replaced with Solr to support horizontal

scalability which can distribute hotspots on different machines. Database layer which

uses standard RDBMS like MySQL can be horizontally scaled too since all major

RDBMSs support this feature. One of the directions of future work is to find a better

way to perform tasks related to these bottlenecks and eliminate them by modifying

the algorithms or using parallelism techniques.

48

Figure 4.5: Hot Spots of application.

4.1.3 Load Test

We used a load testing tool called Grinder6 to find out the responsiveness of the system

during heavy traffic. We assumed that all the articles had already been indexed and

users are only requesting recommended results. This will involve Lucene and database

and requires high level of concurrency.

Grinder provides users a scenario script written in Python which contains the

name of a URL, the expected response from the server and following actions. Then

the number of threads or processes that are going to send request to server will be

set. This tool is heavily used to understand the behavior of web application under

heavy loads and if we combine it with a profiling tools, valuable information about

bottlenecks can be understood.

As our experiments indicated, the maximum number of handled requests by the

recommender was limited by the performance of Lucene as a filter. under normal load

(100 requests per second), the system was able to respond to 30 requests per second on

its peak. On average, each recommendation query will take 2 seconds assuming that

the server is not fully loaded. In these experiments, the advanced caching capabilities

6http://grinder.sourceforge.net/

49

of Hibernate was not enabled. One of the directions of the future works will be using

more advanced solutions for retrieval like Solr and compare its performance to the

current system.

Chapter 5

Experiments and Results

In this chapter, all the offline and online experiments on the proposed system are

discussed. To measure the performance, we relied on well-known performance criteria

of recommender systems. For each of the datasets, we did two different experiments:

the first was based on explicit labels of the relatedness in the dataset for the purpose of

measuring ability of the system to recommend such news pairs, while in the second set

of experiments, we focused on our proposed graph model of relatedness to measure its

ability to find all related news in a story thread. The baseline in all of the experiments

is Lucene which is the standard search engine used in industry.

5.1 Datasets

To perform our experiments, we relied on two datasets. The first dataset was con-

structed from a set of news articles belonging to “The Chronicle Herald” news paper.

it contains 116,384 news articles for a period of 4 years. Out of all news articles,

there are 1472 pairs of news articles that are tagged as related news by web editors.

One problem with this labeling is that the pairs are tagged in a directional way. It

means that there are situations in which A is related to B but the opposite direction

is not labeled. We consider all pairs as non-directional. Before separating the set into

training and testing subsets, we made sure that an article will never appear in both

sets. It means if A is related to B and B is related to C, then both of these pairs

have to appear in either training or testing set and not in both. Considering all pairs

of documents, we created a query-document style dataset in which for each query

article, there is a set of related articles. We divided training and testings subsets

by 60-40 ratio which resulted in 889 training query articles and 583 testing query

articles.The average related document per query is 1.86.

The second dataset that was used in the following experiments was extracted

from Wikinews. Like the first dataset, editors labeled a tiny fraction of documents as

50

51

related pairs. The dataset contains 16723 news articles and only 2035 articles have

at least one related news article. We followed the same procedure to build training

and testing subsets. The training set contains 1216 query articles and the test set

contains 819 query articles. The average number of related document per query is

1.87.

5.2 Main Measurement Criteria

In this set of experiments, we used Precision, Recall, and F1 to measure performance

of the system against the gold standard. To measure precision of the system, we used

the following formula:

Pq =
|rq ∩ gq|
|rq|

(5.1)

where rq is the set of returned articles by the system and gq is the set of articles that

must be returned according to gold standard.

We calculate recall for a given query article by the following formula:

Rq =
|rq ∩ gq|
|gq|

(5.2)

F1 measure is the harmonic mean of precision and recall and gives us an overall

performance of the system and the retrieval power of it:

F1q =
Rq · Pq · 2
Rq + Pq

(5.3)

All these measures are used to measure performance of the system on immedi-

ate related news articles. In other words, the gold standard is always the binary

relatedness flags as they are represented in the actual dataset unless it is specified

differently.

5.3 Feature Selection Results

As discussed in subsection 3.7.1, we conducted a feature importance ranking based on

three different feature selection algorithms. In all three experiments, time difference

attribute, Jaccard index of named entities, and information based score are getting

52

high ranks. However using LDA gets very low rank. We conjecture that LDA assigns

high similarity score to a pair of documents which are only related by sharing a high

level topic like politics.

The topical keywords feature is doing well among lexical features. It stands on

top of BM25 and cosine similarity based on CFS (discussed in subsection 3.7.1).

According to Information Gain and RELIEF, this feature also performs better than

language modeling. Therefore, it is one of the most important lexical features.

To the best of our knowledge, there is no work in news recommendation that

used Information Based similarity as a feature. According to the results from our

experiments, this feature gets very high rank compared to other lexical features.

Except Jaccard index of named entity sets of two documents, other features that

rely on named entities get middle-class ranking scores. There is a close competition

between skip-gram similarity and Sunflower similarity features groups as based on

what method is used for feature selection, one method seems to be better than the

other one. However, if we consider speed of the system during feature extraction,

skip-gram model is a clear winner since it only requires a cosine similarity. In terms

of the ability of the feature to model relatedness, the best way to find out which

one performs better was to train a regression model with and without these features

and select the one which produces the best results. For this purpose, we trained and

tested a simple regression model by REPTree algorithm in Weka package. In these

experiments, we used REPTree for our regression models with a cut-off threshold of

0.8 which was obtained through trial and error.

The results of testing regression models that were trained with different feature

sets are demonstrated in table 5.3. As these results show, using LDA decreases the

performance of the system. It is so low rank in the regression tree that removing it

barely changes the precision and recall of the system (first and second rows). The

third row of the table represents results without LDA and two less important features

calculated by Sunflower. As it shows, the results are improved by removing those

features. The fourth row is the system without using LDA and Sunflower at all and

the results are almost the same as keeping two features from Sunflower. Considering

the cost of calculating similarity by Sunflower, a system with 13 features is more

preferable than 15 features. The last row is a system that uses only Sunflower instead

53

CFS Information Gain RELIEF
TimeSpan TimeSpan TimeSpan

IB JaccardTitle IB
JaccardSim JaccardSim JaccardSim

SunflowerAvgSim IB SunflowerAvgSim
SunflowerSumOfMax SunflowerMax JaccardTitle

JaccardTitle SunflowerAvgSim SkipgramMinSim
SkipgramAvgSim SunflowerSumOfMax Keywords

SkipgramSumOfMax Keywords sunFlowerMin
JaccardBody LM JaccardBody

LM SkipgramMinSim LM
LDASim SkipgramMaxSim BM25
Keywords SkipgramSumOfMax CosineTF

BM25 SkipgramAvgSim SkipgramMaxSim
SunflowerMax sunFlowerMin SunflowerMax

CosineTF CosineTF SunflowerSumOfMax
SkipgramMaxSim BM25 SkipgramAvgSim
SkipgramMinSim JaccardBody SkipgramSumOfMax

sunFlowerMin LDASim LDASim

Table 5.1: Ranked list of features extracted from three feature selection algorithms.

13 Selected Features
TimeSpan

IB
JaccardSim
JaccardTitle

SkipgramAvgSim
SkipgramSumOfMax

SkipgramMaxSim
SkipgramMinSim

JaccardBody
LM

Keywords
BM25

CosineTF

Table 5.2: Selected features for modeling relatedness.

54

Feature Set Precision Recall F1 Score
All features (18 features) 0.473 0.713 0.569

No LDA (17 features) 0.475 0.708 0.569
No LDA, Min and Max Sunflower (15 features) 0.493 0.705 0.580

No LDA and Sunflower (13 features) 0.499 0.693 0.580
Sunflower instead of skip-gram (13 features) 0.460 0.683 0.550

Table 5.3: Effect of Features in Regression Performance. None of the numbers in this
experiment were statistically significant than others. However due to the performance
of Skipgram model and Occam’s razor principle, we decided to select only 13 features
without considering Sunflower and LDA.

of skip-gram model and it clearly indicates that skip-gram gives us better similarity

scores for news recommendation task.

5.4 Selecting Best Data Model

In our first experiment, we wanted to select the best data model for training our

regression models. As we discussed in subsection 3.6 we had three models for labeling

negative data samples. In the first data model, we selected negative examples ran-

domly. In the second model, we selected them based on the Lucene output as a filter,

and in the third model we used the graph of relatedness to model partial relatedness

scores. We call these models Random, LuceneFilter, and GraphData respectively. We

also compared these models to a baseline Lucene search engine which we call lucene

in our result tables. Since the purpose of this experiment is to select one data model

against others, all of the regression models were created using REPTrees with all 13

features selected in previous section.

We report the macro average of the discussed criteria (see subsection 5.2) in this

experiment, shown in tables 5.4 and 5.5. In these experiments, we used REPTree

for our regression models with a cut-off threshold of 0.8. As these results indicate,

the GraphData gives us the best negative sampling of data. The training correlation

coefficient that is reported in the result tables indicates a very important behavior

of the data. When we are dealing with randomly sampled negative instances, the

high training correlation coefficient indicates a separable dataset which does not need

a very complicated model. In other words, a simple regression tree performs very

well in separating positive and negative examples. However, the randomly selected

55

Model name
Training
Correlation
Coefficient

Macro
Precision

Macro Recall Macro F1

GraphData 0.789 0.499 0.693 0.580
Random 0.917 0.088 0.804 0.159
LuceneFilter 0.714 0.455 0.433 0.443

Lucene(best
f1: k = 3)

N/A 0.339 0.453 0.388

Table 5.4: Comparing different data labeling methods on “The Chronicle Herald”
dataset. Training correlation coefficient shows the performance of the system on
training set while other columns represent the results on test data.

Model name
Training
Correlation
Coefficient

Macro
Precision

Macro Recall Macro F1

GraphData 0.652 0.373 0.589 0.457
Random 0.911 0.200 0.775 0.318
LuceneFilter 0.512 0.366 0.327 0.345

Lucene(best
f1: k = 3)

N/A 0.348 0.645 0.452

Table 5.5: Comparing different data labeling methods on “Wikinews” dataset. Train-
ing correlation coefficient shows the performance of the system on training set while
other columns represent the results on test data.

negative data points do not correspond with actual setting of the problem since the

regression model is supposed to re-rank Lucene’s output. The lower value of the

training correlation coefficient in other data models represents a very complex and

non-separable feature space.

5.5 Comparing Different Regression Models

In our second experiment, we wanted to compare performance of different Regression

tree models trained on our selected data model which is Graph data (based on the

experiment in previous section 5.4). We also measured the effect of our keyword

56

Model name Macro Precision Macro Recall Macro F1
REPTree (13 features) 0.499 0.693 0.580

GBRT (13 features) 0.471 0.721 0.570
GBRT (12 features) 0.471 0.723 0.570

REPTree (12 features) 0.530 0.672 0.593

Lucene(best f1: k = 3) 0.339 0.453 0.388

Table 5.6: Offline results of four models on “The Chronicle Herald” dataset. Bold
values represent the best results in a column. The red numbers indicate those that
are not statistically significant from the bold ones. Baseline method is below double
lines.

Model name Macro Precision Macro Recall Macro F1
REPTree (13 features) 0.373 0.589 0.457

GBRT (13 features) 0.553 0.768 0.643
GBRT (12 features) 0.532 0.759 0.626

REPTree (12 features) 0.374 0.595 0.459

Lucene(best f1: k = 3) 0.348 0.645 0.452

Table 5.7: Offline results of four models on “Wikinews” dataset. Bold values represent
the best results in a column. The red numbers indicate those that are not statistically
significant from the bold ones. Baseline method is below double lines.

extraction feature by comparing a model trained without that feature. In this ex-

periment, we compared two different regression tree approaches: the first is using

REPTree and the second is using Gradient Boosted Regression Tree (GBRT) based

on CART trees as weak trees (details in section 3.7). We compared these two models

against baseline which was Lucene search engine. These models were trained with

13 selected features discussed in section 5.3. We removed the keyword extraction

feature and trained the REPTree model with 12 features to measure the effect of this

particular feature. Our experiment on two datasets based on precision, recall, and F1

measures is summarized in Tables 5.6 and 5.7. For REPTree, the cut-off values was

0.8. For the GBRT method, the cut-off was set to two steps away form query article.

Based on the results from this experiment, gradient boosted regression trees im-

proved the results in Wikinews dataset to a large extent while on The Chronicle Herald

dataset, it almost produced the same results as REPTree. According to Maclin and

Opitz [1999] this result suggests that there is a noticeable amount of noise in “The

Chronicle Herald” dataset which is not surprising as there are many data points, that

are close to each other but with different feature values. In other words, the data

57

points in the feature space is not easily separable. As mentioned earlier, this dataset

is not accurate and is created by minimum effort of editors given a limited time frame

which leads to having pairs of articles that are labeled as related while one can find

much more related articles instead of the labeled ones. On the other hand, Wikinews

dataset is created by many users which virtually means having tens or hundreds of

editors per article. This reduces the noise dramatically by assigning more related

news articles to one article and allows boosting algorithms improve the results.

The effect of keyword extraction feature was also studied by training models with

and without it. In this experiment, according to the gold standard, the decision tree

without keyword extraction feature outperforms the one with the keyword extraction

feature. However, when using gradient boosted trees, including keyword extraction

slightly improves the performance of the system. The intuition behind this feature

was to capture topical similarity only based on shared keywords. This feature is

making very small impact in The Chronicle Herald dataset. But it improves precision

in Wikinews dataset by a large degree. A potential reason is that Wikinews covers

broader range of topics and this feature brings news articles within the same category.

In other words, this experiment shows the power of this feature for narrowing down

the search space when there is a large set of different categories.

5.6 Ranking Results

As we discussed in sub-section 3.6.3, we can see a connected component of the re-

latedness graph as a thread of a news story. Considering the scoring strategy that

we used to model partial relatedness which improved overall accuracy of the system,

we can also measure the system as a ranking system to score related articles against

each other based on their distance in the graph. In other words, if we consider an

article as a query article, then the system should return all the news of the same

story thread as related news articles, sorted by their distance in the graph. This is a

different application for the system, but it is closely related to the topic.

To measure performance of the system for the ranking scenario, we used Mean

Average Precision or MAP, Normalized Discounted Cumulative Gain or NDCG, and

precision. In contrast to typical information retrieval evaluation scenarios in which

human judgment is used as ground truth, we used the distance in the relatedness

58

graph as the ranking gold standard. In our experiments, given a query document, the

ranking of each of the recommender articles is calculated relative to the distance of

the query article and recommended article in the graph representation of relatedness.

So a recommended article that is the neighbor of the query article gets the highest

rank.

Precision and recall are single-value metrics based on the whole list of documents

returned by the system. When we have a ranking system, it makes sense to consider

order of the returned documents in the computation of precision or recall. By com-

puting the precision and recall at every position of the ranked list of document, we

can plot the precision-recall curve. Average precision is the area under the precision-

recall curve from recall = 0 to recall = 1. Instead of going through all the returned

results, we can always limit the number of considered articles to any number. Mean

average precision is the mean of all average precision values for all query articles.

Discounted cumulative gain1 is a measure of ranking quality. In information re-

trieval, it is used to measure the quality of the returned results by a search engine or

any retrieval system. DCG measures the usefulness or gain of a document based on

its position in the result list. In other words, DCG assumes more relevant documents

must be placed higher than less relevant documents. DCG of a query is calculated

using the following formula:

DCGn = rel1 +
n∑

i=2

reli
log2 i

(5.4)

where reli represents relatedness score of the result in rank i.

The normalization factor for Normalized DCG is the optimal or ideal setting of

the list of retrieved documents. Since we used graph distance values as relatedness

scores, we use them as the ideal values for ranking. So given a ranking, we referred to

the gold standard (from graph) for the actual ranking score of an element in the list.

For example, for a query document, we get d1, d2, and d3 in the results. For each of

them, we calculate its distance to the query article. In this example, we get 2, 0, and

6 respectively. We sort these scores in descending order and calculate its DCG. The

resulting DCG value is used as the normalization factor.

We also report the precision of the returned list of articles by counting either first

1http://en.wikipedia.org/wiki/Discounted cumulative gain

59

3 or first 5 results. In this experiment, we consider all of the news articles in the same

story as relevant. Therefore, it is different than the precision scores of the previous

experiments which were only based on explicit labels of related articles.

In this experiment, we measured the performance of our models from previous

experiments against each other and baseline. In addition, we did the experiment using

a few well-known learning to rank algorithms from other learning paradigms (pairwise

and listwise) using RankLib package. The summary of the results are in tables 5.8

and 5.9. As these results suggest, the regression models, which are considered as

pointwise algorithms in the learning to rank area, are returning the best results.

According to these results, the keyword extraction feature slightly improves the

precision of the system in finding related news in the same story. This feature finds

similar articles inside a story thread with very small cost of losing a little accuracy

on the explicit relatedness of news articles. It also performs much better on “The

Chronicle Herald” noisy dataset.

The baseline of this experiment performs well when we measure precision at first

ranked result (P@1), specially on Wikinews dataset. It simply means that most of

the times, the lexical similarity offered by Lucene can identify the very similar article

to the query document. However, other systems outperform baseline when we look

at other results in the ranked list. The proposed features are doing well in re-ranking

results based on their relatedness score.

On “The Chronicle Herald” dataset, REPTree outperforms other methods in most

of the cases. As discussed earlier, this dataset is a noisy dataset. So boosting methods

like GBRT do not perform well in noisy situation. This method yields the highest

MAP value which means that most of the related news articles in a story thread are

ranked on top of the ranked list. This can also be seen by looking at precision results.

The keywords extraction feature also plays a very important role when we compare

MAP values between models. This experiment demonstrates the importance of this

feature in finding related articles in the story thread.

On Wikinews dataset, REPTree is slightly better than baseline. However, GBRT

method outperforms both baseline and REPTree by a large margin. It is mainly

because that this dataset is not noisy, therefore we see a jump in the results of

GBRT as an boosting method. Like previous dataset, the keyword extraction feature

60

Model Name NDCG@5 MAP@5 P@1 P@3 P@5
REPTree (13 features) 0.736 0.596 0.671 0.570 0.546
GBRT (No threshold) 0.751 0.243 0.628 0.395 0.290

GBRT (13 features, th = 2) 0.724 0.566 0.612 0.540 0.521
GBRT (12 features, th = 2) 0.730 0.478 0.624 0.541 0.520

REPTree(12 features) 0.733 0.499 0.659 0.560 0.532

Lucene(no threshold) 0.614 0.175 0.484 0.296 0.223
LambdaMART 0.767 0.24 0.659 0.400 0.287

Coordinate Ascent 0.615 0.185 0.484 0.310 0.234
RankBoost 0.530 0.148 0.397 0.252 0.196

Table 5.8: Ranking results of different models on “The Chronicle Herald” dataset.
The performance of ranking is measured using NDCG, Mean Average Precision
(MAP) and precision, considering up to 5 top returned results by the system.
Bold values represent the best results in a column. The red numbers indicate those
that are not statistically significant from the bold ones. Baseline methods are below
double lines.

Model name NDCG@5 MAP@5 P@1 P@3 P@5
REPTree (13 features) 0.623 0.426 0.531 0.482 0.467
GBRT (No threshold) 0.843 0.355 0.817 0.512 0.374

GBRT (13 features, th = 2) 0.835 0.677 0.810 0.719 0.695
GBRT (12 features, th = 2) 0.826 0.656 0.799 0.698 0.674

REPTree (12 features) 0.626 0.418 0.530 0.475 0.46

Lucene(No threshold) 0.770 0.306 0.718 0.446 0.337
LambdaMART 0.786 0.320 0.730 0.470 0.356

Coordinate Ascent 0.791 0.321 0.730 0.472 0.353
RankBoost 0.739 0.295 0.656 0.440 0.335

Table 5.9: Ranking results of different models on “Wikinews” dataset. The perfor-
mance of ranking is measured using NDCG, Mean Average Precision (MAP) and
precision, considering up to 5 top returned results by the system. Bold values rep-
resent the best results in a column. The red numbers indicate those that are not
statistically significant from the bold ones. Baseline methods are below double lines.

61

Model name NDCG@5 MAP@5 P@1 P@3 P@5
REPTree(13 features) 0.531 0.294 0.389 0.362 0.348

Baseline 0.614 0.175 0.484 0.296 0.223

Table 5.10: Results on “The Chronicle Herald” given a model trained on Wikinews.

Model name NDCG@5 MAP@5 P@1 P@3 P@5
REPTree(13 features) 0.552 0.265 0.427 0.353 0.318

Baseline 0.770 0.306 0.718 0.446 0.337

Table 5.11: Results on Wikinews given a model trained on “The Chronicle Herald”.

improves the ability of the system in finding related news articles in a story thread.

As the results of this experiment show, the learning to rank methods other than

typical regression methods are not performing well. The main reason is that the sim-

ilarity features that are used in this work are producing values regardless of the local

relatedness of news articles while other listwise or pairwise (see section 3.7.3) meth-

ods require features that represent relatedness considering the entire list of related

articles (in listwise method) or a list of relative constraints (in pairwise methods). It

is arguable that we could transform our dataset to a pairwise constraint and produce

features in that manner. This can be investigated later as a future work.

5.7 Universal News Relatedness Model

In this experiment, we wanted to see if we can train a model once and use it in

different situations. Since we had only two datasets, we trained our model on one

dataset and tested it on the other one. The results of this experiment are represented

in tables 5.10 and 5.11.

At the first glance, we see that the model trained on The Chronicle Herald is

not performing well on the Wikinews. The main reason behind it is that Wikinews

covers a broader range of news topics and domains while The Chronicle Herald is

only a local newspaper covering news mainly about Nova Scotia. On the other hand,

The Chronicle Herald is focused on Nova Scotia, so there are plenty of words and

named entities which belong to this region. This diminishes the power of the model

trained on Wikinews to produce meaningful scores for The Chronicle Herald articles.

Although the results show that the model trained on Wikinews is slightly better than

62

Model name NDCG@5 MAP@5 P@5
REPTree (13 features) 0.950 0.882 0.904

GBRT (13 features) 0.951 0.875 0.888
REPTree (12 features) 0.899 0.755 0.797

Lucene 0.830 0.768 0.786

Table 5.12: Experts feedback on live system in “The Chronicle Herald”. Bold values
represent the best results in a column. The red numbers indicate those that are not
statistically significant from the bold ones. Lucene was the baseline.

the baseline, this experiment shows that our features are domain dependent. So when

we are dealing with regional news, we can not use a model trained on global news.

5.8 Expert Preferences

We made the system available for the editors of “The Chronicle Herald” news paper

for a limited time frame. In total, 7 editors participated in this experiment and

provided more than 600 binary decisions on whether a recommended result is good

or bad. Each editor was able to see 5 recommended results for a given article of their

choice. We used their binary judgments to calculate NDCG, MAP and Precision

of the system. Like our first experiment, we tested 4 systems against each other.

In this test, for a query submitted by each editor, the system selected one of the

recommenders randomly and provided related articles as indicated in table 5.12. As

these results demonstrate, if the system is being used as a decision support system to

help editors with selecting recommended articles, then REPTree with 13 features and

GBRT is outperforming Lucene and REPTree with 12 features. These results tell us

how the proposed systems are being preferred over Lucene which is the most widely

used search engine. The other conclusion from this experiment is the importance

of the keyword extraction feature which was not included in the REPTree with 12

features. This feature appears to be very effective in finding related news since the

models trained with 13 features are outperforming the one with 12 features. The

strength of the keyword feature is that it let the articles about the main topic of

the query article get higher ranks. This experiment shows that news editors like this

property of the recommender system.

63

Model Name NDCG@5 NDCG@3 MAP@5 MAP@3 P@5 P@3
GBRT (12 features) 0.874 0.789 0.599 0.687 0.647 0.447
GBRT (13 features) 0.892 0.862 0.644 0.766 0.679 0.496

Lucene 0.892 0.854 0.570 0.685 0.612 0.462

Table 5.13: News recommendation software evaluation using Wikinews dataset.
Lucene was the baseline.

5.9 News Recommender Software Evaluation

We asked 15 students to use a web application that uses Wikinews as repository and

provide binary feedback about relatedness of recommended news articles, same as the

scenario of our experiment with editors in The Chronicle Herald. Each student had 25

news articles about various topics, which were selected randomly from Wikinews test

dataset. By selecting each of the 25 articles, a user gets 5 recommended articles which

were produced by one of the test systems. The user provided one binary judgment

about if a recommended article is related to the selected news article or not. Only

title and first 500 words of each article were showed for each article. We asked the

participants to skim the news article and make a decision in less than one minute.

Therefor, the users made decision based on very little information.

The goal of this experiment was to measure the performance of the proposed

models against Lucene baseline and the power of our keyword extraction feature.

Thus, there are 3 models in this experiment: Lucene as baseline, GBRT with 12

features and GBRT with an additional keyword extraction feature. As results show,

the proposed models outperform the baseline in Mean Average Precision. GBRT

with 12 features performs worse than the baseline when considering top 3 results

considering precision and NDCG. It means that this method is providing related

articles in later positions of the returned ranked lists. Using the keyword extraction

feature re-ranks the results and puts more related ones on top of the list (table 5.13).

In this test, students were asked to skim the articles and decide based on what

they think about relatedness. This kind of experiment is different from the experiment

done with the experts. An editor understanding of relatedness is more accurate and

more well-defined than an ordinary person. Thus, there is a higher variance for

returned values when we analyzed subjective data from students (figure 5.1).

64

Figure 5.1: ANOVA test results on students’ feedback. The test was subjective, which
introduces a wide range of values that contributes to the high variance of results. This
is very different from experts’ feedback result which was more objective.

Chapter 6

Conclusion

In this thesis, we explored an approach based on named entities to address the prob-

lem of post-click news recommendation. Like previous work, we combined various

distinct similarity measures between two articles to find a relatedness function using

a regression model. Our main contribution is the use of named entities and their

semantic similarity in addition to traditional lexical similarity measures. We stud-

ied the effect of named entities and demonstrated that simple Jaccard index of two

sets of named entities is a very important feature. We compared two similarity mea-

sures based on two different paradigms: skip-gram vs. Wikipedia categories. The

winner was skip-gram as categories represent broader level of relatedness which is

not sufficiently precise in news domain. We also showed that using LDA similarity

is not suitable to capture semantic similarity of articles in the specific task of news

recommendation.

Named entities were extracted from the body of news articles using the award

winning system Tulip. To the best of our knowledge, this is the fastest and most

accurate system for extracting named entities out of text available. Then we used

the skip-gram model, a state-of-the-art similarity measure, to calculate similarity of

named entities. This is the first time Tulip and skip-gram model are being used

together and the results can be produced very fast.

We introduced a stochastic keyword extraction process which sits in a middle

ground between topic modeling and lexical similarity in order to fill the gap between

topical similarity and traditional lexical similarity. This process extracts the key-

words that represent the core topical keywords of a text. Then a cosine similarity

measure was used on those keywords to find similar documents. The cosine similarity

calculated using extracted keywords formed a new similarity feature in the regression

feature set. Although this proposed feature is stochastic and does not produce ex-

actly the same results each time, we claim that this does not cause a problem for two

65

66

reasons: first, other lexical similarities in the regression feature set cover any possible

mistakes by this method and second, other output keywords from this method are

still able to represent the core topic of the text. Our experiments showed that this

feature is doing very well when we are dealing with entire threads of news stories.

Due to the nature of the problem, it is challenging to define negative examples to

create a dataset for training and evaluating any proposed solution. In previous work,

the problem was tackled from an information retrieval point of view and only ranking

of article was the issue. In this problem, we introduced similarity features to learn a

relatedness model. Hence, it requires negative examples as well as positive examples

of related news articles. To the best of our knowledge, there is no dataset containing

both classes of examples. We studied various strategies to extract relatedness label

of a news pair from a typical news dataset and compared them by comparing their

final model. The most effective strategy was a graph-based method which considers

the entire thread of news stories as related articles with scores as function of their

relative distance.

We conducted experiments using traditional regression methods as well as learning

to rank methods to find the best model that captures relatedness of two news articles.

We measured the performance of the algorithms to find immediate related articles

based on the gold standard and its ability to find related articles within the same story

thread. The latter task suggested using more advanced learning to rank algorithms

and measuring the models using ranking criteria such as MAP and NDCG. It turned

out that a gradient boosted regression tree which is an boosting method with ordinary

regression trees outperforms other models.

We reported the importance of each feature used in this study. To the best of

our knowledge, there is no similar work in this domain that has used information

based similarity, one of the well studied similarity function in the information re-

trieval. In all of our studies, this feature was one of the most important features.

We showed that Jaccard index of named entities play an important role to capture

relatedness. Also our keyword extraction algorithm was performing better than most

of the lexical similarity functions. For those cases that the importance of features

was not obvious from feature selection algorithms, due to getting different ranking by

different algorithms, we trained and tested a regression model with different subsets

67

of features.

One of the directions of future research is testing various named entity recognition

and disambiguation methods instead of Tulip that are able to annotate concepts.

Concepts are usually general words with general meanings in the knowledge base and

are much harder to disambiguate than named entities. In this way, there are going to

be more entities (concepts) per article. The other direction is using other similarity

measures such as Wikipedia links. Other measures are likely to be much slower, but

they may provide better results. The response time of the system is always an issue,

so optimizing or distributing the computation can be one of the future challenges.

The other direction of future work is creating a specific news recommender for

each group of readers. Reader profiling based on their behavior is a well-studied area

that can be directly used in combination with this system. The profiling can help

providing better recommendation for each group by filtering their behavior from their

first interaction with the web site.

The keyword extraction algorithm introduced in this work has the potential for

further extension. The algorithm is stochastic, so the results are not guaranteed to be

the same over multiple runs. This problem can be addressed by running the algorithm

many times and producing a set of keywords which represent the consensus output of

the system. To deal with the increasing cost of computation, it can be implemented in

parallel such that its results will be merged since each run of the system is completely

independent of the others.

Bibliography

Marko Balabanović and Yoav Shoham. Fab: Content-based, Collaborative Recom-
mendation. Commun. ACM, 40(3):66–72, March 1997. ISSN 0001-0782. doi:
10.1145/245108.245124. URL http://doi.acm.org/10.1145/245108.245124.

David M. Blei and Peter I. Frazier. Distance Dependent Chinese Restaurant Pro-
cesses. J. Mach. Learn. Res., 12:2461–2488, November 2011. ISSN 1532-4435.
URL http://dl.acm.org/citation.cfm?id=1953048.2078184.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation.
J. Mach. Learn. Res., 3:993–1022, March 2003. ISSN 1532-4435. URL http:

//dl.acm.org/citation.cfm?id=944919.944937.

David M. Blei, Thomas L. Griffiths, and Michael I. Jordan. The Nested Chinese
Restaurant Process and Bayesian Nonparametric Inference of Topic Hierarchies.
J. ACM, 57(2):7:1–7:30, February 2010. ISSN 0004-5411. doi: 10.1145/1667053.
1667056. URL http://doi.acm.org/10.1145/1667053.1667056.

Toine Bogers and Antal van den Bosch. Comparing and Evaluating Information
Retrieval Algorithms for News Recommendation. In Proceedings of the 2007 ACM
Conference on Recommender Systems, RecSys ’07, pages 141–144, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-730–8. doi: 10.1145/1297231.1297256. URL
http://doi.acm.org/10.1145/1297231.1297256.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-
base: a collaboratively created graph database for structuring human knowledge. In
Proceedings of the 2008 ACM SIGMOD international conference on Management
of data, pages 1247–1250. ACM, 2008.

Jethro Borsje, Leonard Levering, and Flavius Frasincar. Hermes: A Semantic Web-
based News Decision Support System. In Proceedings of the 2008 ACM Symposium
on Applied Computing, SAC ’08, pages 2415–2420, New York, NY, USA, 2008.
ACM. ISBN 978-1-59593-753-7. doi: 10.1145/1363686.1364258. URL http://

doi.acm.org/10.1145/1363686.1364258.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. Learning to rank using gradient descent. In Proceedings of
the 22nd international conference on Machine learning, pages 89–96. ACM, 2005.

Michel Capelle, Frederik Hogenboom, Alexander Hogenboom, and Flavius Frasincar.
Semantic News Recommendation Using Wordnet and Bing Similarities. In Proceed-
ings of the 28th Annual ACM Symposium on Applied Computing, SAC ’13, pages
296–302, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1656-9. doi: 10.1145/
2480362.2480426. URL http://doi.acm.org/10.1145/2480362.2480426.

68

http://doi.acm.org/10.1145/245108.245124
http://dl.acm.org/citation.cfm?id=1953048.2078184
http://dl.acm.org/citation.cfm?id=944919.944937
http://dl.acm.org/citation.cfm?id=944919.944937
http://doi.acm.org/10.1145/1667053.1667056
http://doi.acm.org/10.1145/1297231.1297256
http://doi.acm.org/10.1145/1363686.1364258
http://doi.acm.org/10.1145/1363686.1364258
http://doi.acm.org/10.1145/2480362.2480426

69

David Carmel, Ming-Wei Chang, Evgeniy Gabrilovich, Bo-June Paul Hsu, and
Kuansan Wang. ERD’14: entity recognition and disambiguation challenge. In
ACM SIGIR Forum, volume 48, pages 63–77. ACM, 2014.

Stéphane Clinchant and Eric Gaussier. Information-based Models for Ad Hoc IR.
In Proceedings of the 33rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’10, pages 234–241, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0153-4. doi: 10.1145/1835449.1835490. URL
http://doi.acm.org/10.1145/1835449.1835490.

Mostafa Dehghani, Azadeh Shakery, Masoud Asadpour, and Arash Koushkestani.
A learning approach for email conversation thread reconstruction. J. Information
Science, 39(6):846–863, 2013. doi: 10.1177/0165551513494638. URL http://dx.

doi.org/10.1177/0165551513494638.

Yoav Freund, Raj D. Iyer, Robert E. Schapire, and Yoram Singer. An Efficient Boost-
ing Algorithm for Combining Preferences. Journal of Machine Learning Research,
4:933–969, 2003. URL http://www.jmlr.org/papers/v4/freund03a.html.

Jerome H. Friedman. Greedy Function Approximation: A Gradient Boosting Ma-
chine. Annals of Statistics, 29:1189–1232, 2000.

Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic relatedness using
wikipedia-based explicit semantic analysis. In IJCAI, volume 7, pages 1606–1611,
2007.

Evgeniy Gabrilovich, Susan Dumais, and Eric Horvitz. Newsjunkie: providing person-
alized newsfeeds via analysis of information novelty. In WWW ’04: Proceedings of
the 13th international conference on World Wide Web, pages 482–490, New York,
NY, USA, 2004. ACM Press. ISBN 158113844X. doi: 10.1145/988672.988738. URL
http://dx.doi.org/10.1145/988672.988738.

Frank Goossen, Wouter IJntema, Flavius Frasincar, Frederik Hogenboom, and Uzay
Kaymak. News Personalization Using the CF-IDF Semantic Recommender. In
Proceedings of the International Conference on Web Intelligence, Mining and Se-
mantics, WIMS ’11, pages 10:1–10:12, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0148-0. doi: 10.1145/1988688.1988701. URL http://doi.acm.org/

10.1145/1988688.1988701.

Mark A Hall. Correlation-based feature selection for machine learning. PhD thesis,
The University of Waikato, 1999.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Manfred
Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard Weikum. Ro-
bust disambiguation of named entities in text. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pages 782–792. Association for
Computational Linguistics, 2011.

http://doi.acm.org/10.1145/1835449.1835490
http://dx.doi.org/10.1177/0165551513494638
http://dx.doi.org/10.1177/0165551513494638
http://www.jmlr.org/papers/v4/freund03a.html
http://dx.doi.org/10.1145/988672.988738
http://doi.acm.org/10.1145/1988688.1988701
http://doi.acm.org/10.1145/1988688.1988701

70

Lan Huang, David Milne, Eibe Frank, and Ian H. Witten. Learning a Concept-based
Document Similarity Measure. J. Am. Soc. Inf. Sci. Technol., 63(8):1593–1608,
August 2012. ISSN 1532-2882. doi: 10.1002/asi.22689. URL http://dx.doi.org/

10.1002/asi.22689.

Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 133–142. ACM, 2002.

Thomas K Landauer, Peter W Foltz, and Darrell Laham. An introduction to latent
semantic analysis. Discourse processes, 25(2-3):259–284, 1998.

Claudia Leacock and Martin Chodorow. Combining local context and WordNet sim-
ilarity for word sense identification. WordNet: An electronic lexical database, 49
(2):265–283, 1998.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören
Auer, et al. DBpedia–A large-scale, multilingual knowledge base extracted from
Wikipedia. Semantic Web, 2014.

Hang Li. A Short Introduction to Learning to Rank. IEICE Transactions, 94-D
(10):1854–1862, 2011. URL http://dblp.uni-trier.de/db/journals/ieicet/

ieicet94d.html#Li11.

Marek Lipczak, Arash Koushkestani, and Evangelos Milios. Tulip: Lightweight En-
tity Recognition and Disambiguation Using Wikipedia-based Topic Centroids. In
Proceedings of the First International Workshop on Entity Recognition & Dis-
ambiguation, ERD ’14, pages 31–36, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-3023-7. doi: 10.1145/2633211.2634351. URL http://doi.acm.org/

10.1145/2633211.2634351.

Pasquale Lops, Marco de Gemmis, and Giovanni Semeraro. Content-based recom-
mender systems: State of the art and trends. In Francesco Ricci, Lior Rokach,
Bracha Shapira, and Paul B. Kantor, editors, Recommender Systems Hand-
book, pages 73–105. Springer US, 2011. ISBN 978-0-387-85819-7. doi: 10.1007/
978-0-387-85820-3\ 3. URL http://dx.doi.org/10.1007/978-0-387-85820-3_

3.

Yuanhua Lv, Taesup Moon, Pranam Kolari, Zhaohui Zheng, Xuanhui Wang, and
Yi Chang. Learning to Model Relatedness for News Recommendation. In Proceed-
ings of the 20th International Conference on World Wide Web, WWW ’11, pages
57–66, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0632-4. doi: 10.1145/
1963405.1963417. URL http://doi.acm.org/10.1145/1963405.1963417.

Richard Maclin and David Opitz. Popular ensemble methods: An empirical study.
Journal of Artificial Intelligence Research, 1999.

http://dx.doi.org/10.1002/asi.22689
http://dx.doi.org/10.1002/asi.22689
http://dblp.uni-trier.de/db/journals/ieicet/ieicet94d.html#Li11
http://dblp.uni-trier.de/db/journals/ieicet/ieicet94d.html#Li11
http://doi.acm.org/10.1145/2633211.2634351
http://doi.acm.org/10.1145/2633211.2634351
http://dx.doi.org/10.1007/978-0-387-85820-3_3
http://dx.doi.org/10.1007/978-0-387-85820-3_3
http://doi.acm.org/10.1145/1963405.1963417

71

Olena Medelyan, Ian H Witten, and David Milne. Topic indexing with Wikipedia.
In Proceedings of the AAAI WikiAI workshop, volume 1, pages 19–24, 2008.

Olena Medelyan, Eibe Frank, and Ian H Witten. Human-competitive tagging using
automatic keyphrase extraction. In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing: Volume 3-Volume 3, pages 1318–1327.
Association for Computational Linguistics, 2009.

Pablo N Mendes, Max Jakob, Andrés Garćıa-Silva, and Christian Bizer. DBpedia
spotlight: shedding light on the web of documents. In Proceedings of the 7th
International Conference on Semantic Systems, pages 1–8. ACM, 2011.

Rada Mihalcea and Andras Csomai. Wikify!: linking documents to encyclopedic
knowledge. In Proceedings of the sixteenth ACM conference on Conference on in-
formation and knowledge management, pages 233–242. ACM, 2007.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of
Word Representations in Vector Space. CoRR, abs/1301.3781, 2013. URL http:

//arxiv.org/abs/1301.3781.

David Milne and Ian H Witten. Learning to link with wikipedia. In Proceedings of the
17th ACM conference on Information and knowledge management, pages 509–518.
ACM, 2008.

Marnix Moerland, Frederik Hogenboom, Michel Capelle, and Flavius Frasincar.
Semantics-based News Recommendation with SF-IDF+. In Proceedings of the
3rd International Conference on Web Intelligence, Mining and Semantics, WIMS
’13, pages 22:1–22:8, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1850-
1. doi: 10.1145/2479787.2479795. URL http://doi.acm.org/10.1145/2479787.

2479795.

LBJFR Olshen, Charles J Stone, et al. Classification and regression trees. Wadsworth
International Group, 93(99):101, 1984.

Sameer Singh, Amarnag Subramanya, Fernando Pereira, and Andrew McCallum.
Wikilinks: A large-scale cross-document coreference corpus labeled via links to
Wikipedia. University of Massachusetts, Amherst, Tech. Rep. UM-CS-2012-015,
2012.

Michele Trevisiol, Luca Maria Aiello, Rossano Schifanella, and Alejandro Jaimes.
Cold-start News Recommendation with Domain-dependent Browse Graph. In Pro-
ceedings of the 8th ACM Conference on Recommender Systems, RecSys ’14, pages
81–88, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2668-1. doi: 10.1145/
2645710.2645726. URL http://doi.acm.org/10.1145/2645710.2645726.

I Witten and David Milne. An effective, low-cost measure of semantic relatedness
obtained from wikipedia links. In Proceeding of AAAI Workshop on Wikipedia and

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://doi.acm.org/10.1145/2479787.2479795
http://doi.acm.org/10.1145/2479787.2479795
http://doi.acm.org/10.1145/2645710.2645726

72

Artificial Intelligence: an Evolving Synergy, AAAI Press, Chicago, USA, pages
25–30, 2008.

Qiang Wu, Christopher JC Burges, Krysta M Svore, and Jianfeng Gao. Adapting
boosting for information retrieval measures. Information Retrieval, 13(3):254–270,
2010.

Torsten Zesch, Christof Müller, and Iryna Gurevych. Extracting Lexical Semantic
Knowledge from Wikipedia and Wiktionary. In LREC, volume 8, pages 1646–1652,
2008.

Appendix A

Skip-gram Model

The work by Mikolov et al. [2013] grabbed a lot of attention since they published it.

They proposed using different neural network techniques and a new shallow learning

approach (as opposed to deep learning) to create a language model. One of their

ideas was using skip-gram model. In this model, each word is projected into a high

dimensional space as a vector. The values of the vectors are determined by considering

surrounding words. In this way, we assume that related words appear close to each

other in a data set. Since this is a very fast method to train, it can be trained on

very large text corpus, in a size about 1 billion news articles from Google News.

They demonstrated that the meaning and relationship between words are encoded

spatially. In other words, their model provided a good semantic representation of

words: similar words are closer to each other in terms of their distance (Figure A.1)

and relationship between words are preserved by same vector direction (Figure A.2).

So the cosine similarity of the vectors of two words can measure similarity of them

from different dimensions where each dimension represent a hypothetical aspect of

similarity between two words. This model provides a high quality and accurate vector

representation of words, but there is no efficient and proven way to use it for document

pair similarity. This is a very active field of research though. In this work, we used

skip-gram model for two purposes: the first was to use it as a similarity function in

our semantic similarity functions. The second use case was for keyword extraction

tasks as an alternative way to use it for document similarity (see section 3.3).

Our keywords extraction idea works based on the properties of skip-gram model.

Each word is a vector in the skip-gram space. So there is the possibility to perform

vector arithmetic on the word vectors. For example adding vectors of words Man and

Woman will produce a vector very similar to the word Human or adding vector of

words head, leg, and hand will produce a vector very similar to the word body. In

73

74

Figure A.1: Similar words are closer to each other in skip-gram (word2vec) space.

Figure A.2: The vector between two points represents a relationship

75

our keyword extraction component, we used this property to find a vector represen-

tation of a group of words of calculating sum of all vectors. As mentioned earlier,

cosine similarity of vectors also produce semantic similarity score of them. So cosine

similarity of a vector which represent a group of words with a single vector tells us

the similarity of those two.

Skip-gram model can also be trained using mentions of named entities in the

text. In this case, the produced vectors will represent named entities instead of words

while it preserves all of the properties of ordinary word skip-gram model. We used

cosine similarity of vector of named entities to calculate similarity of two named

entities (see section 3.4). We preferred using skip-grams instead of other methods,

because it was trained specifically on a news dataset and it is well suited for our

news recommendation task. One other advantage of skip-grams is the speed of the

similarity function which is basically done in constant time.

A.1 Document Vectors

We tried to propose a naive method to produce document vectors from word vectors to

use it as one of our features. However it turned out that this method does not produce

good results. After looking at the produced results, we focused on finding keywords

from text to and used skip-grams in that way to find document pair similarity, but

we thought this naive approach worth mentioning.

The naive solution is using word vectors is to sum up the vectors for all the words.

This did not work because of the noise that was created by general words. To deal

with noise, we used TF-IDF value of words to assign weighting on them. Formally,

we could generate a document-vector matrix by using following formula:

D = W.V (A.1)

Where V indicates word vectors and W indicates document-word vector with TF-IDF

values. In this way, the resulting document vector D is very noisy, because we are

considering all the words. The cosine similarity of two D vectors of two documents

would indicate similarity of them if D was clean enough. Removing stop words

helps a bit, but does not improve the quality of document vector significantly. It

was clear that if we remove general words, we get better result and our research for

76

removing general words led us to a new idea of doing word clustering and selecting

most informative words (Section 3.3).

Appendix B

Sunflower

Sunflower is a generalization system developed at Dalhousie University by Marek

Lipczak1 and was later used in other systems. This system works based on category

graph extracted from Wikipedia. In Wikipedia, each article belongs to at least one

category. Categories are special Wikipedia pages which cover a broader area than

their individual articles. For example an article about Barack Obama belongs to the

category of Presidents of the United States which contains all the presidents of that

country. Categories can have a parent category or a child category. This property

of categories leads to a hierarchical view of categories, from a fined-grained topic

toward a very general topic like Politics. The relationship between categories can

form a graph, in which an edge represents a parent-child relationship and each node

represents a category. This graph is often called the category graph

Each language version of Wikipedia has its own version of category graph. Sun-

flower is a graph, which is a unification of category graphs of 120 Wikipedia language

versions. The intuition behind using different language versions is that each language

acts like a witness for the importance of stored relation. In other words, if more

language versions contain a relationship between two categories, it means that the

relationship is more important than others. For example the fact that Barack Obama

is the president of the United States is cited in more languages than he is a winner

of Grammy Awards. This information help us find the main category that an article

falls into.

The input of Sunflower is an article in Wikipedia, and the output is the unified,

weighted, and directed graph of categories, starting from the given article. In practice,

each node of the graph, whether it is starting node, or a category in the category

graph, can be expanded into many other nodes. Sunflower provides a width parameter

to limit number of branches and considers only edges with highest value. The graph

1This work has not been published yet.

77

78

Figure B.1: Example of category graph generated by Sunflower given Intel as input.

can be traversed up to many levels and produce more general topics. Sunflower limits

number of levels that the graph can be generalized by providing a height parameters.

These two parameters can control how much a concept can drift and how much

generalization is needed.

Sunflower graph is directed and weighted. The direction is from sub-category to

parent category. The weight shows the fraction of languages which indicate the rela-

tionship. Starting from a given article, each path can produce a weight by multiplying

the weights on its edges. Each category (i.e. node in the graph) can be scored by

summing up the score of all the incoming paths. Figure B.1 shows an example of

how the scoring system looks on the graph. In this example, given Intel as the query

article, we calculate each category score. For example the score of Economy of the

United States is the sum of the scores of two incoming paths:

• Sum of first path: Intel − > Companies of the United States − > Economy of

the United States ⇒ 0.42 · 0.24 = 0.11

• Sum of the second path: Intel − > Companies Listed on NASDAQ − > Econ-

omy of the United States ⇒ 0.34 · 0.57 = 0.19

• Importance score of “Economy of the United States” given Intel as input =

0.11 + 0.19 = 0.3

The returned graph is a compact and accurate category profile for the given

79

Wikipedia article. It is a sparse representation of articles in category space.

One of the additional goals of developing Sunflower was to generalize a given

concept. The hierarchical structure of categories in Wikipedia is used for this purpose.

Generalization of concepts is helpful for determining context of two concepts. For

example if two concepts are about politics, then Sunflower can identify politics as

a shared topic by generalizing both concepts. This idea can be extended in order

to calculate contextual similarity of concepts by using the category profile of two

concepts. In other words, for each concept, a vector in category space is generate.

The cosine similarity of the vectors of two concepts can generate a similarity score

for two concepts.

Sunflower was used as a module inside Tulip system. The goal of Tulip is to

recognize and disambiguate named entities. So Sunflower used in a limited capacity

only for named entities in Wikipedia and not all Wikipedia articles. Beside that, used

Sunflower similarity as a similarity function for two given entities and compared it

with other methods.

Appendix C

Tulip

Tulip (Lipczak et al. [2014]) is an entity recognition and disambiguation system (ERD)

developed at Dalhousie University and was the winning system at Named Entity

Recognition and Disambiguation Challenge 2014 as a part of SIGIR 2014 organized

by Microsoft and Google.1 The challenge was to annotate words of a given text

file and link them to entities of an external knowledge base which in was Freebase2.

FreeBase is a knowledge base providing structural information for Wikipedia articles

and there is a one to one correspondence between Wikipedia articles and FreeBase

entities. All the participating systems had to return annotated text for a given query

in less than 60 seconds. So response time was an important factor in designing such

a system. The accuracy of participating systems was measured in terms of precision

and recall based on a gold standard created by judges from the organizers. Named

entity recognition and disambiguation is an old field in NLP. But Tulip is not using

any NLP technique. Instead it uses a dictionary approach to match mentions of

named entities to an external knowledge base.

NERD systems play an important role in text mining. They can link words or

phrases to external knowledge bases that contain a meaningful structure. The struc-

ture behind each entity is used for different purposes. For example Sunflower uses

that structure to generalize a given concept. In this work, NERD systems are used

to extract entities and apply semantic similarity functions on them to find related

documents. To the best of our knowledge, this is the first time named entities and

semantic similarity among them is being used in this domain. Tulip was developer in

response to the demand for a very fast and accurate NERD systems. Our previous

experience with existing systems were not satisfactory; lack of precision in disam-

biguation task was always a problem. As NERD systems are placed in lower stack in

text mining applications, any produced error will be propagated and make a negative

1Most of this section was appeared in main Tulip paper and during presentation at SIGIR 2014
2http://www.freebase.com/

80

81

impact on the performance of the entire system.

C.1 Data Sources

The effectiveness and efficiency of Tulip would not be possible without a number of

openly available datasets. In this section we provide an overview of five datasets

used in the project focusing on their applicability to the Entity Recognition and

Disambiguation problem.

Wikipedia is being widely used in text annotation since it is densely structured

by hundreds of millions of links among millions of articles Witten and Milne [2008].

Internal links in Wikipedia (wiki-links) and the anchor text associated with each one

create a rich dataset with valuable statistical information. Given the number of links

Wikipedia has a very high coverage of entity surface forms that can be extracted from

links’ anchor text. The frequency of reference to an article by a given anchor text is

often used in disambiguating mentions which refer to more than one article. We refer

to it as the commonness score.

Google’s Wikilinks corpus Singh et al. [2012] can be considered as an extension

of Wikipedia’s wiki-links data to the Web. It contains 40 million mentions of over

three million entities. These mentions are gathered based on finding hyperlinks to

Wikipedia from a web crawl of over 10 million pages.

Freebase Bollacker et al. [2008] is a collaboratively created knowledge base. It

contains data harvested from Wikipedia and other data sources. Each entity described

in Freebase is manually assigned to one or more types. The type assignment was used

to select the subset entities of entities for the ERD’14 Challenge Carmel et al. [2014].

In the challenge we worked on a subset of over two million entities extracted from

Freebase. We refer to them as Freebase sample. All entities in the Freebase sample

contained a link to corresponding Wikipedia article. The Freebase types can be also

used to select entities for type specific approaches. For example, Tulip uses a special

preprocessing technique for all entities of type person.

DBpedia Lehmann et al. [2014] is a knowledge base of relations automatically

and manually extracted from Wikipedia. Just like Freebase it contains its own type

hierarchy. One of the distinctive features of DBpedia is its effort in unifying infor-

mation from various language versions of Wikipedia. All relations extracted from

82

Wikipedia articles in languages other than English are mapped to the English coun-

terpart using Wikipedia’s language links. We use this feature while computing term

vectors representing entities.

Wiktionary is a free, collaboratively created dictionary. It can be considered

as a data source complementary to Wikipedia Zesch et al. [2008], with a stronger

emphasis on commonly used words and phrases. Wiktionary has a rich representation

of common nouns and other parts of speech which we use as an evidence that a spotted

entity mention can be in fact a commonly used phrase.

C.2 Modules

There are two sub-tasks in an ERD system. At first, words that are candidate to

be annotated must be recognized. Each word is associated with a set of entities in

the knowledge base which are called word senses. The word itself is called a surface

form. The output of this step is a mapping between candidate surface forms and

their set of possible meanings. This output is fed into the next component which is

called disambiguator. At this stage, one of the senses for a given surface form must

be chosen according to the general meaning of the text. There are many approaches

to implement these two components. The mentioned two tasks are usually referred

as spotting and disambiguation respectively.

In Tulip, internal components were selected in a way to achieve very fast per-

formance. The first component, Solr Text Tagger3, was used for recognizing surface

forms in text. In the second component, Sunflower, is used for recognition and elim-

inate false positive annotations. Both of the components are very fast with very low

memory footprint comparing to other ERD systems.

Solr Text Tagger uses a lexicon (dictionary) approach to find candidates. The lex-

icon of surface form text - entity pairs contains the vocabulary of words and phrases

that can potentially indicate the mention of the entity in the text. To build a com-

prehensive lexicon we used information from three data sources: (1) Freebase sample

extracted by the challenge organizers (2) Wikipedia, (3) Google’s Wikilinks corpus

(see Subsection C.1 for details). First, we extracted all the entity names from the

provided Freebase sample. Next we processed all internal Wikipedia links from a

3https://github.com/OpenSextant/SolrTextTagger

83

Wikipedia dump retrieved in February 2014 storing the anchor text and the link tar-

get. We combined this dataset with Google’s Wikilinks corpus creating a repository

of anchor text - entity pairs together with the commonness score. The dataset was

later merged with entity names, treating all names as a single link to their entity. The

objective of the challenge was to recognize only the entities provided in the sample.

However, some of these entities share the name or the anchor text with other entities

in Wikipedia. Therefore we filtered the repository keeping only the entities from the

Freebase sample or Wikipedia articles that share at least one anchor text with any of

the Freebase entities.

Tulip’s lexicon contains over 4 million surface forms linked to over 2 million en-

tities. High coverage of entities comes with the cost of a large number of common

phrases that are mistakenly taken as surface forms. For example, a word details is

used as a surface form for over 5000 entities in our dataset. We prune surface forms

that are likely to be incorrect, which are words with a high number of linked entities

or strings with a majority of non-letter characters. Another problem are ambiguous

entity names which are also used as common words (e.g., “It” – Stephen King’s novel).

As these surface forms can be a cause of a large number of falsely recognized entities,

we decided to mark them as potentially suspicious. If these surface forms are spotted

in the text as potential entity mentions, the Spotter will assign a suspicious flag to

the mention. The current version of the system uses a composition of three soft filters:

(1) stop-word filter marks all stop-words or phrases composed of stop-words (e.g.,

This is); (2) Wiktionary filter marks all common nouns, verbs, adjectives, etc.

found in Wiktionary; (3) lower-case filter marks all lower-case words or phrases.

It is important to notice that the first two filters are case insensitive. For all filters,

mentions with strong evidence for the connection with the default sense are not fil-

tered. By strong evidence we consider a large number of links with a given mention

as an anchor text leading to the same entity. For example, the word “Apple” very

often leads to Apple Inc. company.

An alternative approach for recognition would be using trained named entity rec-

ognizer like Stanford NER4 package. In this approach, the text is passed into the

NER component and named entities are extracted. Then for each named entity list

4http://nlp.stanford.edu/software/CRF-NER.shtml

84

of possible senses must be extracted from the dictionary. The advantage of this ap-

proach is that it does not require a clean dictionary which contains only valid named

entities and it enables us to use a broad dictionary. During the challenge, there was

not enough time to implement this approach so Solr Text Tagger remained as our

spotter.

Given a text as the input, the text is passed through the Solr Text Tagger at the

first stage. The output of this stage is candidate words and their possible entities for

mapping. As mentioned before, the default sense of each word is also marked. At this

point, the candidates and only their default sense are marked with a suspicious and

non-suspicious flag. All of the candidate forms that are in lower case, common words,

or stop words are marked as suspicious and others are marked as non-suspicious. The

entities of non-suspicious forms (entity core) are passed to Sunflower and the returned

category profile for each entity are agglomerated together to form a topic centroid. In

other words, the topic centroid of the text is the representation of all non-suspicious

entities in the category space. The mentioned representation comes from importance

scores generated by Sunflower.

For all non-suspicious entities, the relatedness of its category profile and the topic

centroid is calculated. An entity would be removed from output set if it is not

very similar to the centroid. This comparison let us remove those non-suspicious

candidates that are not related to the core topic of the text. In this way all the false

positive examples are removed, and only those mentions with correct default sense is

accepted. The similarity measure used at this stage is the cosine similarity of vectors

of centroid and entities. In the end, all suspicious candidates are compared with the

centroid and if they are similar to the centroid, they are accepted.

The system looks very simple compared to other available systems with very

sophisticated disambiguation component, because it operates mostly on default sense

and yet, it is very effective. To find out the importance of default sense in ERD

systems, a study on 50 document of the challenge gold standard was conducted and

it turned out that using only default sense of candidates can disambiguate 85% of

mentions. Also, 5% of the mentions could be disambiguated using other mentions in

the text(e.g., E72 and Nokia E72). Although proper disambiguation can be useful

for the remaining 10% of cases, it is more likely that by considering other senses the

85

rank team name F1 prec./recall latency
1 Microsoft Research 0.76 0.83/0.70 1.49
2 Tulip 0.74 0.76/0.71 0.29
3 Seznam Research 0.72 0.79/0.66 2.33
4 National Taiwan University 0.71 0.76/0.67 7.66
5 Heidelberg Inst. for Theoretical Studies 0.70 0.77/0.65 4.97
6 Neofonie GmbH 0.70 0.76/0.65 0.53
7 Northwestern University 0.69 0.72/0.65 0.70
8 A3 Lab (University of Pisa) 0.67 0.87/0.54 0.86
9 University of Amsterdam 0.63 0.74/0.55 0.71
10 University of the Basque Country 0.63 0.74/0.55 37.29

Table C.1: Challenge results for the first ten systems in long document track.

system would incorrectly discard the default sense. We confirmed this hypothesis in

preliminary experiments in which all entities were scored in this step.

The most important aspect that makes Tulip superior to existing system, beside

its response time, is its ability to reject some candidates according to the main topic of

the text. As described earlier, we only focus on default sense of surface forms. So there

is no sophisticated disambiguation component. Instead, we called the component that

rejects bad candidate as recognizer because of its ability to recognize the main topic

of the text.

C.3 Tulip Performance

Tulip response time is very fast comparing to other comparable systems. It produces

a response for a 500 word query document in about 0.29 seconds. The F1 measure

of the system in the challenge was 0.74. Tulip was used as a crucial component of

the proposed system for extracting named entities from news articles. According to

the challenge results(Table C.1) It is currently the state-of-the-art in named entity

recognition and disambiguation task.

It’s important to remember Tulip is a named entity recognizer and disambiguator

system and named entities are different from concepts. For example the word guitar

is not a named entity, but it is a concept describing all models of guitar. Instead,

the word Fender Telecaster is a named entity since there is a type of guitar existing

with this name. Other system that works based on dictionary usually suffer from

this narrow difference of concepts and named entities. We solved this problem using

86

Wiktionary by tagging general words which usually refer to concepts. Words like

flower, building, wall, and light are general concept. If the word wall refers to Pink

Floyd’s album The Wall then that would be considered in the recognition part by

comparing to the topic centroid of the text. Otherwise, the system will never annotate

such words.

In the news domain, recognizing named entities can help us identify people, places,

parties, sport teams, and many other type of information accurately. In contrast,

existing systems return many false positive example which results in an inaccurate

entity profile of an article. Such errors propagate through a pipeline system like ours

and decreases performance of the following components.

Appendix D

Raw Article for Clustering Example

Springtime is typically oilpatch bonus season. As the grass turns green, car dealerships

and upscale stores tend to get busier. This year is different. Bonuses if they exist

at all are expected to be small. Wages have been frozen. Oilpatch workers are

happy to have a job at all. And that’s the private sector. Public sector workers,

like teachers and nurses, are on high alert as the provincial government makes noises

about their pay. Alberta’s premier, however, has said he does not plan to reopen

contracts. Economists are saying that Albertans have a problem: they make too

much money. And not only is it unaffordable, it’s hurting the province’s competitive

position in the global marketplace. According to Statistics Canada numbers out last

week, the average weekly wage in Alberta was 1,163 last year, 23 per cent higher

than the national average. The median household income in the province is close to

100,000. Money not there anymore You’re not going to fix it overnight, says Glen

Hodgson, chief economist at the Conference Board of Canada. It’s happened over a

decade, with having nominal wage increases or bonuses that are one or two There’s

pressure right now for firms and governments to get their compensation under control

because the revenues aren’t there anymore. Hodgson was presenting the Conference

Board’s economic outlook for Western Canada, one in which he predicts Alberta will

slip into recession this year and eke out 1.2 per cent growth in 2016. Until this year,

Alberta’s economy was growing at a fast clip: between 4.5 per cent and five per cent

a year. That’s what pushed wages up in the first place, said Gil McGowan, president

of the Alberta Federation of Labour. Wages are the only way that ordinary people

get their share of the pie, he said. If people believe in markets and I would point out

that labour markets are markets they shouldn’t be just accepting the fact that we

have higher wages, but lauding the fact that we have higher wages, because it means

that the market is working. Private vs. public sector Alberta’s provincial government

is preparing its budget for the next fiscal year, a budget that will have a 7-billion hole

87

88

because of lower energy prices. Alberta Premier Jim Prentice has been sounding the

drum on wages, saying that the public sector earns too much. Public sector unions

counter that argument by saying that wages need to be competitive with the private

sector. But those wages are also expected to come down. We’re seeing corporations

this year with no wage increases, you’re seeing layoffs, which brings down wages, said

Charlie Fischer, former chief executive of energy giant Nexen. There are lots of ways

to make sure you make your employees feel that you’re working with them trying to

sustain their jobs. People would rather have a job with a little less pay than no job,

he added.

	List of Tables
	List of Figures
	Abstract
	List of Abbreviations Used
	Acknowledgements
	Introduction
	Research Objectives
	Contributions

	Background and Related Work
	Recommender Systems
	Personalized News Recommendation System
	Post-Click News Recommendation System

	Information Retrieval
	Semantic Search
	Named Entity Recognition and Disambiguation
	Learning to Rank

	Keyword Extraction

	Features, Training Set, and Relatedness Model
	Similarity as Relatedness
	Model of News Articles and Labels
	Keyword Extraction
	Modified Chinese Restaurant Process
	Selecting Keywords of Text

	Semantic Similarity Features
	Semantic Similarity of Two Named Entities
	Semantic Similarity of Two Articles

	Other features
	Lexical Similarity
	LDA-based Similarity
	Time Similarity

	Labeling of Training Examples
	Data Model 1: Random Selection of Negative Examples
	Data Model 2: Using Lucene for Generating Negative Examples
	Data Model 3: Graph Representation of Relatedness

	Relatedness Model
	Feature Selection
	Regression Models
	Learning to Rank

	Implementation
	Implementation Overview
	Architecture
	Performance and bottleneck
	Load Test

	Experiments and Results
	Datasets
	Main Measurement Criteria
	Feature Selection Results
	Selecting Best Data Model
	Comparing Different Regression Models
	Ranking Results
	Universal News Relatedness Model
	Expert Preferences
	News Recommender Software Evaluation

	Conclusion
	Bibliography
	Skip-gram Model
	Document Vectors

	Sunflower
	Tulip
	Data Sources
	Modules
	Tulip Performance

	Raw Article for Clustering Example

