
ACCELERATING TEXT RELATEDNESS COMPUTATIONS ON
GENERAL PURPOSE GRAPHICS PROCESSING UNITS

by

Duffy Angevine

Submitted in partial fulfillment of the
requirements for the degree of
Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

December 2015

c© Copyright by Duffy Angevine, 2015

This thesis is dedicated in loving memory to Beth Angevine.

ii

Table of Contents

List of Tables . vi

List of Figures . vii

Abstract . x

List of Abbreviations Used . xi

Acknowledgements . xii

Chapter 1 Introduction . 1

1.1 Thesis Document Structure . 3

Chapter 2 Background . 5

2.1 Text Similarity . 5

2.2 Google Trigram Method (GTM) . 8

2.3 General Purpose Graphics Processing Unit Computing 12
2.3.1 History of GPGPU Computing 12
2.3.2 Nvidia’s GPGPU Architecture 14
2.3.3 CUDA Model . 15
2.3.4 CUDA C . 16
2.3.5 Efficiency Concerns in GPGPU Programming 18

Chapter 3 Framework for Implementing of the GTM on a GPGPU 20

3.1 Design Assumptions and Influences 20

3.2 Design Considerations . 21

3.3 System Design . 23
3.3.1 Design of the N-Gram Processor Tools 23
3.3.2 Design of the Corpus Processor Tool 24
3.3.3 Design of the Document Relatedness Tool 24

3.4 Generalized N-Gram Processing . 26

3.5 Word Relatedness Matrix . 28

3.6 Corpus Processing . 28

iii

Chapter 4 Computing GTM Document Relatedness on GPGPUs 29

4.1 GPGPU Text Relatedness Algorithm and Mapping it to the GPGPU
Architecture . 29
4.1.1 Evolution of the Pair-Wise Approach 31
4.1.2 Evolution of the One-to-N Approach 34

4.2 Modifications to the GPGPU Text Relatedness Algorithm to Address
Variable Length Documents . 36
4.2.1 Impact on the Pair-Wise Algorithm 37
4.2.2 Impact on One-to-N Algorithm 37

4.3 Contrasting the GPGPU Approaches 38

4.4 Data Structures for Word Relatedness 38
4.4.1 Search Strategies using a Sorted WRM 39
4.4.2 Search Strategies based on Hashing 41
4.4.3 Evaluation of the Data Structures on WRM Retrieval 41

4.5 Document Loading . 44
4.5.1 Singleton . 45
4.5.2 Stride . 45
4.5.3 Grid . 46
4.5.4 All-in-Memory . 46
4.5.5 Performance of the Document Loading Methods Strategies . . 49

4.6 The Optimized GPGPU Approaches 50

Chapter 5 Computing GTM Document Relatedness on a Multi-Core
System . 52

5.1 Construction of a Multi-Core Algorithm and Mapping 52
5.1.1 Parallelizing for Document Comparison Throughput for the

Baseline . 53
5.1.2 Parallelizing for an Individual Document Comparison Approach

for the Baseline . 53

5.2 Determining the Data Structures Used for WRM Retrieval 53
5.2.1 Evaluating the Data Structures for the WRM Retrieval in the

Baseline . 56

5.3 Recommended Baseline Approaches for Document Relatedness 58

Chapter 6 Evaluation of the GPGPU Approach 59

6.1 Configuration of the Experiments . 59

iv

6.2 Evaluation Method . 60

6.3 Data Sets Used in Experimentation 62
6.3.1 ACM Dalhousie Abstract Collection 62
6.3.2 Gutenberg Collection . 62

6.4 Determining the CPU Benchmark Performance 64

6.5 Comparing GPGPU Approaches . 67
6.5.1 Evaluating the Shared Memory GPGPU methods 68
6.5.2 Contrasting the GPGPU Global Memory Approach with the

Shared Memory Approach . 70
6.5.3 Evaluating the Global Memory GPGPU Approach 72

6.6 Comparing Global Memory GPGPU Approaches to the Benchmark . 75

6.7 Summary of Results . 78

Chapter 7 Conclusion . 81

7.1 Recommendations for Future Work 81

Bibliography . 83

v

List of Tables

Table 4.1 Wall Clock Time Taken to Perform 242,427,791 WRM Queries
on a GPGPU for a given Data Structure 43

Table 4.2 Word Similarity Look-Ups per Second on the GPGPU for the
Perfect Hashing Data Structure 44

Table 4.3 Impact of Document Loading Approach on Document Relatedness 49

Table 5.1 Wall-Clock Time Taken to Perform 242,427,791 WRM Queries
on the CPU for a given data structure using 64 OpenMP threads 57

Table 6.1 Performance of the shared memory GPGPU approaches on 2,000:2,000
and 10,000:10,000 Document Relatedness Comparisons Using
The ACM Dalhousie Abstract Collection 68

Table 6.2 Contrasting The Shared Memory GPGPU Approach Performance
Evaluating the ACM Dalhousie Abstract Collection for 2,000:2,000
against 10,000:10,000 . 68

Table 6.3 Performance of the Global Memory GPGPU approaches on a
2,000:2,000 and 10,000:10,000 Document Relatedness Compar-
isons Using The ACM Dalhousie Abstract Collection 70

Table 6.4 Comparing the Rates of the ACM Dalhousie Abstract Document
Relatedness Performance over 2,000:2,000 and 10,000:10,000 for
the Global Memory GPGPU Approaches 70

vi

List of Figures

Figure 2.1 Representation of the Calculation Space Document Relatedness 11

Figure 2.2 Example of the Matrix constructed from Document1 and Document2
following Step 2 from Algorithm 1 12

Figure 2.3 Contrasting the CPU and Nvidia GPU Architecture Perfor-
mance in Terms of GFLOPS 13

Figure 2.4 Average Nvidia GPU Architecture Performance as Observed
Across all GeForce Series Cards 15

Figure 2.5 Device Kernel Allocation . 17

Figure 2.6 Nvidia GPU Memory Hierarchy 18

Figure 3.1 Remapping the WRM to provide non-redundant access. (a)
Illustrates the WRM prior to removing redundant access, and
zero values. (b) Illustrates the transitory state of the WRM
once zero values, and sorted access is in place. 22

Figure 3.2 The remapped WRM . 23

Figure 3.3 Proposed System Design for Implementing GTM. (a) Indicates
that the processing of Corpora and N-Grams are to targeted
to run on CPUs and provide of measure of performance for
document relatedness calculations, while (b) indicates that the
Document Relatedness routines are to be targeted to run GPG-
PUs . 24

Figure 3.4 N-Gram Processor Block Diagrams for the GTM Framework.
(a) Illustrates the Uni-gram Processing Data Flow, (b) Illus-
trates the Tri-gram Data Flow, and (c) Illustrates the WRM
Data Flow. 25

Figure 3.5 Corpus Processor Block Diagram for the GTM Framework. . . 25

Figure 3.6 Document Relatedness Calculator Block Diagram for the GTM
Framework. 26

Figure 4.1 GPGPU Pair-Wise Approach Mapping to Kernel Parameters . 32

Figure 4.2 GPGPU One-To-N Approach Mapping to Kernel Parameters . 34

vii

Figure 4.3 GPGPU One-to-N Approach Process for Performing Document
Relatedness Calculations . 35

Figure 4.4 Native format of WRM Data Structure. 39

Figure 4.5 The WRM Remapped into an Index Array and the Correspond-
ing Value Array. 40

Figure 4.6 Display of Pair-Wise Approach When Stride Loading is Used . 46

Figure 4.7 Display of Pair-Wise Approach When Grid Loading is Used . 47

Figure 6.1 The Average Document Length and Deviation for a Given Seg-
ment of the ACM Dalhousie Abstract Collection 63

Figure 6.2 The Number of Words Required to be Compared to Complete
the Document Relatedness for a Given Segment of the ACM
Dalhousie Abstract Collection 63

Figure 6.3 The Average Document Length and Deviation for a Given Seg-
ment of the Gutenberg Collection 64

Figure 6.4 The Number of Words Required to be Compared to Complete
the Document Relatedness for a Given Segment of the Guten-
berg Collection . 65

Figure 6.5 The Observed Performance of the CPU Throughput Approach
and CPU Parallelized Individual Approach When Processing
Segments of the ACM Dalhousie Abstract Collection 66

Figure 6.6 The Observed Performance of the CPU Throughput Approach
and CPU Parallelized Individual Approach When Processing
Segments of the Gutenberg Collection 66

Figure 6.7 The Observed Performance of the Global Memory Approaches
When Processing Segments of the ACM Dalhousie Abstract
Collection . 73

Figure 6.8 The Observed Performance of the Global Memory Approaches
When Processing Segments of the Gutenberg Collection 74

Figure 6.9 Performance of the ACM Dalhousie Abstract Collection Across
All Approaches . 75

Figure 6.10 Performance of the Gutenberg Collection Across All Approaches 76

Figure 6.11 Run-Time Performance of the ACM Dalhousie Abstract Col-
lection Across All Approaches 77

viii

Figure 6.12 Run-Time Performance of the Gutenberg Collection Across All
Approaches . 78

Figure 6.13 Performance of the Global Memory GPGPU Approaches on the
ACM Dalhousie Abstract Collection Expressed as Percentage of
the Baseline Performance . 79

Figure 6.14 Performance of the Global Memory GPGPU Approaches on the
Gutenberg Collection Expressed as Percentage of the Baseline
Performance . 80

ix

Abstract

This thesis investigates a novel approach for accelerating document similarity calcu-

lations using the Google Trigram Method (GTM). GTM can be performed as either a

1:1 comparison between a pair of documents, a 1:N comparison which occurs between

one document and several others, or as an N:N comparison, where all documents

within a set are compared against each other. Existing research in this domain has

focused on accelerating the GTM on standard processors. In contrast, this thesis

focuses on accelerating the performance of an N:N document relatedness calculation

using a General Purpose Graphics Processing Unit (GPGPU).

Fundamental to our approach is the pre-computation of several static elements.

These static elements are the GTM inputs: the documents to be compared, and the

Google N-Grams. The Google N-Grams are processed to produce a word relatedness

matrix, and the documents are tokenized. They are then saved to disk to allow for

recall and are available for calculating document relatedness.

The mapping of the GTM to a GPGPU requires analysis to establish an effective

system to transfer documents to the GPGPU, the data structures to be used in the

GTM calculations, as well as an investigation into how to effectively implement GTM

on the GPGPU’s unique architecture.

Having designed a set of GPGPU methods we systematically evaluate their per-

formance. In this thesis, the GPGPU methods are compared to a multi-core Central

Processing Unit (CPU) method that acts as a baseline. In total, two different CPU

methods and four different GPGPU methods are evaluated.

The CPU hardware platform is a workstation with a pair of 8 core Intel Xeon

processors, retailing for approximately $10,000. The GPGPU platform is a Nvidia

GeForce 660 GTX, worth approximately $200 at the time of purchase. We observe

across a wide range of data sets that the GPGPU achieved between 40% and 80% of

the performance observed on the multi-core workstation, at one fiftieth of the cost.

x

List of Abbreviations Used

ACM Association for Computing Machinery

API Application Program Interfaces

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DPS Documents Per Second

FLOPS Floating Point Operations Per Second

GPGPU General Purpose Graphics Processing Unit

GPU Graphics Processing Unit

GTM Google Trigram Method

GLSL OpenGL Shading Language

HLSL High Level Shader Language

LCS Longest Common Substring

NLP Natural Language Processing

PCIe Peripheral Component Interconnect Express

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Threads

STL Standard Template Library

STS Semantic Text Similarity

WPS Words Per Second

WRM Word Relatedness Matrix

xi

Acknowledgements

The author would like to acknowledge the assistance of a few key individuals who

kept the thesis on track:

Dr. Andrew Rau-Chaplin, for providing expertise and guidance without

which, this thesis would have languished.

Jessica, for her tireless support and encouragement through out the process of

developing and writing this thesis.

xii

Chapter 1

Introduction

Text similarity, also known as document relatedness, is an important concept of

the Natural Language Processing (NLP) field. It has many applications, such as

information retrieval [5, 16], text categorization [5, 16], and document classifica-

tion [5, 16, 18, 9, 6]. With an ever increasing number of available documents, the

need to quickly and accurately perform document relatedness is essential.

This thesis investigates several methods to accelerate an unsupervised text simi-

larity approach called the Google Trigram Method (GTM) [9]. The GTM was selected

because it performs on par with supervised text relatedness approaches [9] without

requiring the same degree of overhead as those supervised methods. The GTM can be

applied in any language provided there exists a collection of N-grams for that specific

language [9]. When applying the GTM approach to a large collection of documents,

also known as a corpus, the calculation of text similarity requires significantly more

resources. With the GTM, the computation of relatedness between two (2) documents

is defined in terms of the pair-wise relatedness between the words in the documents.

Efficient algorithmic techniques and high performance computing (HPC) are re-

quired to reduce any observed run-time. This leads to a O
(
M2
)

time computing the

relatedness between a pair of documents, with the assumption that word relatedness

can be computed in O(1) time. To compute the relatedness between N documents,

O
(
N2 ×M2

)
time is required. This means that the expected run-time is tied to not

only the length of documents in the collection but also the number of documents in

the corpus.

The GTM can be applied to a pair of documents (1:1 comparison), to a whole

corpus (N:N comparison), or to subsets of a corpus (1:N comparison). While this

thesis primarily focuses on calculations of N:N document relatedness, this approach

to improve the performance of the GTM’s computation can be applied to 1:1 and 1:N

calculations as well.

1

2

Multi-core hardware is a system with a number of processors, or cores, that are

able to partition an assigned workload across the total number of cores present. Tra-

ditionally, multi-core systems are thought of as of Central Processing Units (CPUs),

however General Purpose Graphics Processing Units (GPGPUs) are in this domain

as well. The GPGPU is a component of every modern desktop or workstation as

a dedicated processor to render images on the display. Recent advances in archi-

tectural design and Application Program Interfaces (APIs) have allowed GPGPUs

to undertake more than the task of rendering pixels, and have made them effective

multi-core systems in their own right. Research has shown that applying various tra-

ditional computing problems to the GPGPU has demonstrated improvement [12] over

CPU-based multi-core versions. The GPGPU’s architecture is an attractive option

for accelerating the GTM for the following reasons:

1. The financial cost of adding a GPGPU to an existing workstation is often sig-

nificantly less than adding an additional CPU.

2. The performance of GPGPU architecture continuously increases the floating

point operations per second (FLOPS) at a faster rate than new CPU architec-

ture [10].

To accelerate the GTM, this thesis leverages a mix of algorithmic engineering

techniques and design optimizations that take advantage of the GPGPU’s architec-

tural features. We present methods that exploit pre-computational processes and

data structures residing in memory to effectively compute word relatedness between

1:1, 1:N and N:N documents. This thesis also explores the trade-offs of mapping

the GTM to the GPGPU architecture via two distinct approaches to calculating the

document relatedness, the Pair-Wise and One-to-N approaches, as well as how to

effectively provide these approaches with the required inputs to perform the GTM.

These inputs can be broadly grouped into two areas of focus: the data structures that

are used to represent word-pair relatedness required by the GTM, and transference

of the corpus to the GPGPU.

In addition to evaluating the data structures and transfer methods used by the

GPGPU implementations of the GTM, this thesis evaluates the optimal GPGPU

approach against a multi-core CPU approach similar to the one presented in [15].

3

Evaluation of the proposed implementations on both GPGPU and CPU is performed

using two different corpora. The two corpora were selected to establish the univer-

sality of each approach, as one corpus is composed of relatively small documents and

the other is composed of variable length (longer) documents. The corpora are used

in a series of experiments, where various subsets of each corpus is provided to each

implementation, and the observed time taken to produce the document relatedness

for the given subset is recorded.

The results of these experiments reveal that the GPGPU approach, when run on

a Nvidia GeForce 660 GTX, yielded a performance equivalent to 40% to 60% of the

multi-core CPU implementation when run on a Linux server containing 256 GB main

memory and 2 Intel Xeon ES-2650 processors, each with 8 cores and Hyper Threading

enabled.

1.1 Thesis Document Structure

The remainder of this thesis is organized as follows:

1. Chapter 2 provides an overview of existing research to situate the theories and

approaches fundamentally important to an understanding of this work, includ-

ing an overview of the GTM method for text relatedness, and the architecture

of the GPGPUs used.

2. Chapter 3 presents the design choices that influenced the approaches used to

perform the GTM in this thesis, as well as the framework responsible for prepar-

ing the inputs for the GTM algorithm.

3. Chapter 4 provides specifics on how the GTM algorithm was mapped to the

GPGPU, and discusses the analysis and design decisions that influenced how

this approach evolved.

4. Chapter 5 presents an efficient GTM implementation for a multi-core CPU

architecture which will be used as a baseline for comparison with the GPGPU

algorithm.

5. Chapter 6 describes the experimental evaluation in terms of the data sets used,

the timing methodology used, and the results observed.

4

6. Chapter 7 concludes the thesis, with a presentation of results and possible future

work.

Chapter 2

Background

This chapter provides an overview of existing and established research for the topics

discussed in this thesis, including an overview of text similarity and a description of

the text similarity method selected to be accelerated in this thesis (the Google Trigram

Method (GTM)). It also contains a review of the architecture and programming

models for General Purpose Graphics Processing Units (GPGPUs).

2.1 Text Similarity

Text similarity, also known as document relatedness, plays a fundamentally important

role in tasks such as information retrieval [5, 16, 18, 9], text classification [5, 16, 18, 9]

and document clustering [5, 16, 18, 9, 6]. Accurately and effectively assessing doc-

ument relatedness is increasingly critical as the volume of documents that can be

compared is rapidly multiplying. Documents are increasingly digitized into reposito-

ries and other on-line collections, while new e-mail, blog and form posts are added to

the vast collection of documents that can be analyzed on a daily basis.

A variety of approaches to the computation of document relatedness have been

explored in existing literature [5, 7]. Some of the more common approaches are as

follows:

1. String-Based Similarity Measures

These measures compute similarity between two documents by measuring the

similarity or dissimilarity (distance) between two documents (or strings) [5]. In

general, these methods take only the pair of strings as inputs, and produce the

relatedness between the strings using no other information other the strings’

content. These distance methods can utilize the following approaches:

(a) Edit Distance Measures [17]

5

6

Edit distance measures quantify the relatedness between two strings via a

sum. This sum is produced from the number of modifications required to

produce the first string from the contents of the second. These modifica-

tions can include insertions, deletions or substitutions.

(b) Bag Distance [17]

The bag distance approach enumerates all of the characters in the first

string that cannot be matched with the characters of the second string.

This approach then completes the opposite function, enumerating the char-

acters from the second string that cannot be matched with the first. The

maximum value of the enumerations is the bag distance.

(c) N-gram Measures [17]

N-gram measures count the number of n-grams, or substrings of length n

that are common between the two strings [17]. Upon finding the number

of common n-grams, the similarity between the two strings is determined

by either dividing the number obtained by the number of n-grams in the

shorter string, the larger string or by an average of the two strings. This

formula is similar to the Dice Coefficient [8], which is twice the number of

common characters in the compared strings divided by the total number

of characters in both strings.

(d) Longest Common Substring (LCS) Measures [17, 5]

LCS is performed by determining the longest common substring between

the compared strings. This longest substring is what will determine the

overall relatedness of the two strings.

2. Knowledge-Based Similarity Measures [13, 5, 13]

These measures compute the text similarity of two documents by determining

the relatedness between the words that make up the documents. This relat-

edness between words is retrieved from a knowledge-base provided for the ap-

proach. This knowledge base contains the semantic relatedness for word pairs,

and in most knowledge-based measures, the knowledge base is provided via

WordNet[4].

7

WordNet is a large lexical database for the English language, which groups

nouns, verbs, adverbs and adjectives into structures called synsets. These

synsets have defined relationships among the members of individual synsets

as well as other synsets, and relatedness is calculated based on these relation-

ships. These relationships are what is used to determine the relatedness of

words which make up the documents.

3. Hybrid Measures [5]

The hybrid measures make use of multiple similarity techniques to determine the

relatedness between documents. One such example is Semantic Text Similarity

(STS) [7], which determines the relatedness of two texts via string similarity

and the semantic similarity, which is a knowledge measure.

4. Corpus-Based Similarity Measures [5, 9]

Corpus-based similarity measures require two documents as inputs, as well as a

collection of written texts, or corpus, to find the word relatedness. This corpus

provides the necessary information regarding the relatedness between the words

that compose the documents being compared. Document relatedness can then

be produced using these inputs.

An example of a corpus-based measure is the Google Trigram Method (GTM),

presented in [9]. This approach uses the Google N-Gram Library, specifically the

Uni-gram and Tri-gram corpora, to determine the relatedness between the words

of two documents. Using the relatedness between all the word pairs between the

two documents, the GTM produces a result indicating the relatedness between

the documents. Additionally, this approach (proposed in [9]) could be used with

any language, provided that there exists an n-gram corpus in that language.

After surveying the existing literature, it was decided to further investigate the

acceleration of text relatedness performed using a corpus-based similarity measure,

specifically the GTM. The GTM is an attractive approach because of the following

factors:

1. The corpus required by the GTM, the Google N-gram corpus, is both free to

use and publicly available.

8

2. The GTM provides the flexibility to perform relatedness calculations in lan-

guages other than English.

3. The GTM has reported superior performance over other word similarity mea-

sures in existing research[9].

4. The structure of the GTM appears to be amenable to parallelization.

2.2 Google Trigram Method (GTM)

The GTM was pioneered in [9] as an unsupervised approach to computing document

relatedness. This is a corpus-based document similarity approach, which requires the

following inputs to calculate document relatedness:

1. The two or more documents for which the relatedness is sought

2. The Google Web 1T N-Gram data set, as presented in [3]

The Google Web 1T N-Gram data collection provides five distinct n-gram data

sets, those being uni-gram, bi-gram, tri-gram, quad-gram and quint-gram. Each of

these data sets provide millions of n-grams and their associated rate of occurrence

in Google web searches [3]. Of the 5 N-Gram data sets, the GTM requires only the

tri-grams [8], and an accompanying uni-gram of the same language data set as well,

though it does not need to be from the 5 N-Gram data sets.

The GTM uses the frequencies of the tri-grams to produce the relatedness between

the words that make up the compared documents. The main tenant of the tri-

gram relatedness model is to determine the relatedness between pairs of words, which

are present in both the uni-gram and tri-gram corpora. This relatedness, or word

similarity, is produced using the frequency of occurrence for the uni-grams and tri-

grams that contain word pair as defined in [8], and is expressed in Equation 2.1.

Similarity(w1, w2) =

log

(
(C(w1,w2)/2)C

2

C(w1)C(w2)min(C(w1),C(w2))

)
−2 log

min(C(w1),C(w2))
C

if (C(w1,w2)/2)C2

C(w1)C(w2)min(C(w1),C(w2))
> 1,

log 1.0.1

−2 log
min(C(w1),C(w2))

C

if (C(w1,w2)/2)C2

C(w1)C(w2)min(C(w1),C(w2))
< 1,

0 if (C(w1, w2)/2) = 0

(2.1)

9

where: w1 = first uni-gram from the tri-gram

w2 = third uni-gram from the tri-gram

C(wi) = frequency for the given uni-gram

C(w1, w2) = the frequency of tri-gram containing w1 and w2

C = maximum frequency in the uni-gram set

To perform the GTM, the documents and n-grams must have been read into

memory. The GTM must then convert each document into a collection of tokens.

The process of converting a given document into tokens is accomplished by removing

all special characters and punctuation from the document. The tokens are created

from only the words of the document. Once this process is completed, the document

is now ready for use. Algorithm 1 describes how the GTM computes the relatedness

between two documents, which is also known as calculating 1:1 relatedness.

To compute the relatedness between N documents in a corpus, or N:N relatedness,

the GTM algorithm would be repeated over the corpus, alternating the documents

used until each document in the corpus has been compared against all other docu-

ments. Given that documenti’s relatedness to documentj is the same as documentj’s

relatedness to documenti, the algorithm would need to be called N2

2
times to produce

the result. The relatedness values between a given document pair (i,j), if placed in a

matrix, would result in an upper triangular matrix as seen in Figure 2.1.

Mean =

∑N
c=0WRM(wrow, wc)

N
(2.2)

where: N = the length of document2 after removal of matching words

wrow = the rowth element of document1

wc = the columnth element of document2

WRM(wr, wc) = the word relatedness between the two words

StandardDeviation =

√∑N
c=0(WRM(wrow, wc)− U)2

N
(2.3)

10

Algorithm 1 1:1 GTM Text Relatedness

Require:

Document1 : A document that has been converted to tokens. It is a sequence of

|Document1| words

Document2 : A document that has been converted to tokens. It is a sequence of

|Document2| words

Google Web 1-Gram data set

Google Web 3-Gram data set

Ensure: |Document1| ≤ |Document2|, if this not the case then switch the contents

of Document1 and Document2

Step 1: Remove and count number of words that occur in both documents. If

all of the words match, proceed to Step 5.

Step 2: Construct a matrix, called the WRM, where the value stored at row

r and column c is the word relatedness of rth word of document1 and the cth

word of document2 as illustrated in Figure 2.2. The word relatedness values are

calculated as per Equation 2.1, using the frequencies found when searching for rth

word of document1 and the cth word of document2 in the tri-gram and uni-gram

data sets.

Step 3: For each row r, find the mean using Equation 2.2. Once the mean is

known, find the standard deviation of the same row using Equation 2.3. Once

these values have been computed, store the summation of the mean and standard

deviation of each row as a value called Kr

Step 4: For each row r, create the set of values in which the index is ≥ Kr,

called Ar. Upon processing of the entire row, find the mean of Ar and add it to

the value X.

Step 5: Determine the relatedness between the two documents using Equa-

tion 2.5, which returns a value between 0 and 1.

11

Figure 2.1: Representation of the Calculation Space Document Relatedness

where: N = the length of document2 after removal of matching words

U = the mean of the row

wrow = the rowth element document1

wc = the columnth element of document2

WRM(wr, wc) = the word relatedness between the two words

X =
M∑
r=0

Ar

|Ar|
(2.4)

where: M = the length of document1 after removal of matching words

Ar = the elements of the rth row ≥ meanr+standard deviationr

DocumentRelatedness =
(Y + X)(AB)

2AB
(2.5)

where: Y = number of matching words between Document1 and Document2

X = summation of all the significant word relatedness

A = the length of document1

B = the length of document2

12

Figure 2.2: Example of the Matrix constructed from Document1 and Document2
following Step 2 from Algorithm 1

2.3 General Purpose Graphics Processing Unit Computing

General Purpose Graphics Processing Units (GPGPUs) make use of a computer’s

Graphics Processing Unit (GPU), a specialized add-on card designed to rapidly ma-

nipulate and create images for a computer’s display, in conjunction with the com-

puter’s CPU to accelerate applications. Any observed increase in performance de-

pends on how effectively the application can offload the computations from the CPU

to the GPU, and how efficiently the applications can be mapped to the specialized

GPGPU architecture.

This mapping of an application requires that it be reworked from the classic

CPU design of sequential execution of tasks, to that of a GPGPU, which utilizes

data-parallel execution of tasks. This data-parallel execution stems from the GPU’s

evolution to update the computer’s display without noticeable artifacts. To reduce

or eliminate display issues, the GPU hardware has evolved to execute the same in-

structions on different elements of data, or to display information.

The specific GPU selected for use in the GPGPU computing presented in this the-

sis is a Nvidia GPU. This hardware was selected for its performance over traditional

CPU architectures as illustrated in Figure 2.3, the ongoing support and development

of CUDA, and near dominance of the add-in GPU market [1]. As such, the informa-

tion that follows will focus on and be tailored towards Nvidia’s GPUs.

2.3.1 History of GPGPU Computing

The evolution of GPUs from a specialized chipset that performed display updates to

a general purpose computing hardware was not spurred by the foresight of graphics

card manufacturers. It was in fact due to Microsofts requirement that all DirectX

13

Figure 2.3: Contrasting the CPU and Nvidia GPU Architecture Performance in Terms
of GFLOPS

8.0 compatible devices include programmable vertex and pixel shaders to improve 3D

graphics rendering performance.

The GeForce 3, a GPU produced by Nvidia, was the first to meet the Direct X

8.0 standard and thus was the first card to provide programmers the ability to exact

a degree of control over what calculations would be performed on the GPU. Early

attempts to use GPUs for generalized computing required that the developer present

their work as a series of OpenGL or DirectX API calls. This mandated that GPGPU

tasks must appear to the GPU as rendering tasks, thus limiting the usefulness and

increasing the complexity of leveraging the hardware. Based on the complexity of

utilizing these computing resources, and the limitations of the Direct X framework,

basic computing tasks such as random reads and writes to memory were difficult,

if not impossible, to perform. This meant that programs that required scatter and

gather operations, the sending and receiving of data from node to the all the others,

were unsuited to application on GPGPUs.

Nvidia hardware navigated these challenges until the release of the Geforce 8800

GTX in support of DirectX 10, which supported Microsofts latest revision of the 3D

14

standard, and would be the first GPU built to support Nvidia’s Compute Unified

Device Architecture (CUDA). CUDA’s architecture was designed to facilitate gen-

eral purpose computation by moving away from the previous models of vertex and

pixel shaders, which older versions of DirectX required, and instead focusing on a

unified shader pipeline, which DirectX 10 used. This unified shader pipeline could be

used for more generalized tasks, however, it required the tasks to be expressed in ei-

ther Microsoft’s High Level Shader Language(HLSL) or OpenGL’s Shading Language

(GLSL).

It was not until Nvidia released the CUDA C programming language that Nvidia’s

GPU could easily be utilized to perform general purpose computing without the need

to understand Direct X or OpenGL.

2.3.2 Nvidia’s GPGPU Architecture

Nvidia has produced several iterations of GPGPU hardware architectures, all of which

are based on CUDA, and has revised them approximately every 2 years. These

architectures are:

1. Fermi, released in 2010

2. Kepler, released in 2012

3. Maxwell, released in 2014

4. Pascal, scheduled for release in 2016

This thesis makes use of a Kepler-based GeForce Series GPGPU, as this was the

most recent and readily available architecture upon commencement of this research

in late 2013. Figure 2.4, illustrates the average performance of Nvidia GeForce Series

GPU architectures in terms of GFLOPS. These values are drawn from the perfor-

mance of each GeForce Series GPU that adheres to the given architecture for that

calendar year. The mid-level Kepler card used in this thesis, a GeForce GTX 660, is

expected to have a peak performance of 2,100 GFLOPS.

15

Figure 2.4: Average Nvidia GPU Architecture Performance as Observed Across all
GeForce Series Cards

2.3.3 CUDA Model

In CUDA, any task performed on the GPU is composed of threads, and the processors

of the GPU are focused on executing those threads. These processors are organized

into Streaming Multiprocessors (SMs)1 and are composed of CUDA cores and other

execution units. The SMs group the assigned threads into groups of thirty-two,

referred to as a warp, and then execute the warps as needed. Note that in general,

the CUDA programming model is organized in such a way that the programmer does

not need to be concerned with warp allocation, and instead can write the application

code from the perspective of a single thread.

While the programmer is shielded from the low-level resource assignment, they are

not protected from the execution of the hardware. Unlike traditional multi-core CPUs,

which are Multiple Instruction/Multiple Data, the CUDA hardware and software

models make use of the Single Instruction Multiple Threads/Data (SIMT/SIMD)

architectures. A SIMT/SIMD architecture is one in which only a single instruction

is executed at a time, however it is applied to multiple data points simultaneously.

The classic example of a SIMD task would be adding a numeric to each element in

a vector. The single instruction would be to add the numeric to the value stored

1In the Kepler card used in this thesis, that number is five

16

at vector index, however, this addition would be performed on all elements in the

vector at once. In a CUDA GPGPU, SIMT/SIMD is represented by the processing

elements. At the software level this is a thread, and at the hardware level it is the

work being performed by a CUDA core, that would perform the same operation on

differing locations in memory.

As mentioned previously, CUDA programs can be written from the perspective of

a single thread, however, the code contained there-in applies to all threads that will

run that section of the program. As the CUDA is a SIMT/SIMD architecture, the

programmer would want to ensure that the instructions being processed can apply

to all threads. In the case of conditional branching, performance can degrade if

the threads are no longer processing the same data. This occurrence is called warp

divergence, and should be avoided to the greatest extent possible as the threads are

not all performing the same task, and are therefore slowing the overall execution.

2.3.4 CUDA C

Nvidia provides the programming language, CUDA C, to write applications that will

run on their GPUs. As the name implies, CUDA C is very similar to C both in

syntax and structure. A CUDA program is composed of one or more kernels, similar

in concept to C-style functions, that are provided GPU resources based on launch

parameters. Launch parameters define the number of threads to allocate to the

kernel and what resources are made available to the threads. The thread allocation

is two-fold. First is the number of blocks, or thread pools requested, and second

is the number of threads in a given block. These resources can be mapped into a

three dimensional (X,Y,Z) co-ordinate system called a grid. For example, if a kernel

specified as follows:

1. exampleKernel <<<new Grid(3,2,0),new Grid(3,3,3)>>>

it is assigned device resources as illustrated in Figure 2.5.

Using the above kernel as our exemplar, the kernel is executed on the concurrent

parallel thread pools. Each thread within the pool executes on an instance of the

kernel, with each thread aware of its unique identifier within the pool and the ID of

the block to which they are a member. Additionally, the threads of a given pool can

17

Figure 2.5: Device Kernel Allocation

co-operate with each other via shared memory and through synchronization (barriers).

A thread is provided with its own local memory, access to the shared memory, and

access to read and write to global memory.

This memory hierarchy is captured in Figure 2.6, and it should be noted that the

Read Only Cache is a tunable feature, which is carved out of the available shared

memory, and is not used in this thesis2. The memory model presented is available

to the GPGPU when a kernel is being executed. Otherwise, outside of the kernel

calls, the GPGPU only exposes its DRAM or global memory to the developer. This

allows the developer to allocate memory on the GPGPU for data structures and other

elements required to perform the computations in the kernels. Additionally, it allows

2This thesis was implemented to work on all CUDA devices, thus the assumption will be a
Compute 1.0 device, which would not have Read Only Cache.

18

for the movement of data between CPU memory and the GPGPU.

This facilitates the movement of data between the CPU memory and the GPGPU.

Figure 2.6: Nvidia GPU Memory Hierarchy

2.3.5 Efficiency Concerns in GPGPU Programming

When programming for the GPGPU, there are several key factors to keep in mind.

As mentioned in Section 2.3.3, the underlying architectural model of the GPGPU

is SIMT/SIMD, and therefore, conditional branching should be avoided as much as

possible. In the cases where branching cannot be avoided, it is better to structure

the program in such a way that reduces the scope of the branching. For example, if

a branch is used to determine the success of a look-up in a data structure and the

element is not found, the branch should assign a value that will have no impact on

future operations. This reduces the scope of the branch’s divergence in execution of

the threads, rather than dealing with the case of missed look-ups throughout the rest

of the program.

In Figure 2.6, we see that the GPU has three layers of memory, each of which

provides access that is slower than the last. A GPGPU application should be coded

to minimally access global memory, performing as much work as possible in the L1

Cache or shared memory. In a best case scenario, the kernel should read global

19

memory only at kernel launch, and when writing the results back.

Another consideration is to reduce the amount of data copied to and from the

GPU as the data transfer between the GPU and CPU is an expensive operation.

Adhering to the distributed system design of small infrequent messaging would be

the best practice.

With these considerations in mind, this thesis will attempt to create an approach

for applying the GTM relatedness computation for the CPU to the GPGPU. Based

on the structure of the algorithm presented in Algorithm 1, the algorithm can be

expressed as a series of parallel computations, for example, Steps 2 through 4. Ad-

ditionally, it requires no data is fetched from memory other than the values that are

derived from the WRM. Section 3 will outline how the GPGPU approach is to be

developed.

Chapter 3

Framework for Implementing of the GTM on a GPGPU

This chapter explains the design choices and rationale behind the foundational el-

ements of the implementation of the GTM on a GPGPU. The design choices were

selected because they contributed to an efficient solution for applying the GTM to

GPGPUs. This approach, including the concepts of pre-computing word similarities

and tokenizing documents, draws from the existing body of work presented in [15].

However, this approach differs in both the applied data structures, and in the ap-

proach and performance of calculating N:N document relatedness.

3.1 Design Assumptions and Influences

During the development of the approaches to be examined in this thesis, the following

core design choices were made:

1. Pre-computation will be utilized wherever possible.

2. All document relatedness processing will be done in memory to the greatest

extent possible.

3. The workstation which houses the GPGPU will have sufficient memory to hold

all N documents to be compared on the GPGPU.

Pre-computation is the concept of performing applicable work in advance, such as

processing the documents of the corpora, or creating the Word Relatedness Matrix

(WRM). Work that can be pre-computed is typically work that will not change at

run-time or be affected by any computations, and therefore one can save resources

during the computation by completing this work in advance. This will benefit future

tasks which make use of common outputs to perform other functions, as there will be

no additional costs to begin processing.

20

21

Making the most of a targeted hardware’s system memory is a common engineer-

ing strategy, and accordingly, any processing should be done in memory wherever

possible. This helped inform the choice to use pre-computation wherever possible,

meaning that pre-computed values should be stored in memory as close to the pro-

cessing cores as possible. The WRM and the documents of the corpus that will be

compared should be read from storage and into CPU memory prior to performing

document relatedness calculations.

The third design assumption is that the memory attached to the CPU will have

sufficient space to hold all of the processed documents that will be compared. As

this thesis leverages GPGPUs, which maintain separate memory from the CPU, this

assumption allows us to focus on devising an effective method for transferring the

documents stored in the CPU memory to the GPGPU memory. The CPU to GPGPU

memory allocation methods will be discussed in Section 4.5.

3.2 Design Considerations

Prior to introducing the high-level design for the tools applied in this thesis, a brief

overview of the relevant design considerations is necessary.

In this thesis it is essential to reduce the space required for the inputs measured

by the document relatedness computation as it will be performed on a GPGPU. To

this end, the decision was made to tokenize character strings into unique numeric

values. This will often decrease the memory space required for storage and reduce

the time needed for future operations, such as equality checks, when compared to a

non-tokenized format.

This thesis also gave careful consideration to how the WRM would be represented.

Historically, the WRM is produced by determining the relatedness between each word

in a uni-gram set, and all the other words present in the set. This leads to a two-

dimensional array (matrix), which holds the relatedness between any given pair of

words. The WRM is indexed in row-column order, therefore allowing the relatedness

between two words to be indexed by WRMij, or WRMji.

If V is the size of the uni-gram set used, then the WRM would contain V2 elements.

For smaller vocabularies, this representation of the WRM will fit in memory, but for

larger vocabularies the WRM quickly becomes too great for memory. Given that

22

GPGPU memory sizes are considerably smaller than those of CPUs, a more space-

efficient version of the WRM is required for this thesis in order to design an approach

applicable to larger computations of relatedness.

To resolve this issue, the content and nature of the WRM was examined. As

mentioned previously, the WRM provides two distinct indices that point to the same

value, WRMij and WRMji. Additionally, not all word pairs will have a non-zero

relatedness value, leading to a matrix that is sparsely populated with non-zero values.

To address this, we can modify the WRM to hold the same amount of information

while requiring significantly less space.

This optimization is accomplished by organizing the WRM so that the value at

WRMij or WRMji is indexed by the smallest value of the (i,j) pair. This allows

for the total space of the WRM to be halved, but will require that the WRM is

remapped to take advantage of the reduction. During the process of performing this

re-organizing, the indicies which have a relatedness value of zero can be excluded.

Figure 3.1 illustrates this process.

Figure 3.1: Remapping the WRM to provide non-redundant access. (a) Illustrates
the WRM prior to removing redundant access, and zero values. (b) Illustrates the
transitory state of the WRM once zero values, and sorted access is in place.

The final step in the alteration of the WRM remaps the matrix into a 1D array.

This process removes the ability to easily access the WRM via direct look-ups and

requires additional information, such as the word pair to which the relatedness value

relates. Figure 3.2 illustrates the resulting data structure to hold the WRM.

This simplified form of the WRM is more space efficient, but the data contained

therein is no longer as easily accessible, resulting in the need for look-up strategies.

23

Figure 3.2: The remapped WRM

The data structures required will be determined based on the target hardware per-

forming document relatedness computations, and thus each of these implementation

decisions are considered for each unique architecture. This will be discussed in detail

in Section 4.4.3 for the GPGPU approach and Section 5.2 for the CPU approach.

3.3 System Design

Prior to calculating document relatedness, the following processing steps must be

undertaken:

1. The N-grams must be tokenized.

2. The documents of the corpus that are going to be used in document relatedness

calculations must be tokenized.

3. The Word Relatedness Matrix (WRM) must be constructed from the tokenized

N-Grams.

This sequence of steps is encapsulated in the high-level design for the proposed

framework in Figure 3.3. As the figure illustrates, the design of the system is bi-

furcated into two separate functional areas. The CPU functional area is responsible

for the processing of the N-Grams and the corpora as well as providing a baseline

measure. This baseline measure for document relatedness is used to determine the

effectiveness of GPGPU approach. The GPGPU functional area is responsible only

for calculating document relatedness.

3.3.1 Design of the N-Gram Processor Tools

As previously mentioned, the N-Grams used in the construction of the WRM must

be tokenized prior to being used in document relatedness calculations. Figure 3.4

24

Figure 3.3: Proposed System Design for Implementing GTM. (a) Indicates that the
processing of Corpora and N-Grams are to targeted to run on CPUs and provide
of measure of performance for document relatedness calculations, while (b) indicates
that the Document Relatedness routines are to be targeted to run GPGPUs

illustrates the high-level of the N-Gram processor. This system is composed of three

tools that, when used in series, are responsible for manipulation of the N-Grams into

a WRM, which is required for document relatedness calculations.

The processing of uni-grams and tri-grams needs to only be performed once per

N-Gram data set, and can be performed in any order, however, for the purpose of

clarity they will be discussed in the order presented in Figure 3.4.

After processing the uni-grams and tri-grams, the WRM can be created and saved

to storage for future use in the document relatedness calculations. The details of how

the WRM is created, will be outlined in Section 3.5.

3.3.2 Design of the Corpus Processor Tool

Figure 3.5 illustrates the high-level design of the tool that converts each document

of the ASCII formatted corpus into a processed document that can be used by the

Document Relatedness Module.

3.3.3 Design of the Document Relatedness Tool

Figure 3.6 shows the high-level block design of the document relatedness tool.

Prior to exploring the inputs required for the tool to function, we must discuss the

algorithm used to calculate the document relatedness, and how this algorithm can be

mapped to both the GPGPU and CPU.

The algorithm used to determine document relatedness is common to both the

CPU and GPGPU, regardless of the target architecture. This algorithm is presented

25

Figure 3.4: N-Gram Processor Block Diagrams for the GTM Framework. (a) Illus-
trates the Uni-gram Processing Data Flow, (b) Illustrates the Tri-gram Data Flow,
and (c) Illustrates the WRM Data Flow.

Figure 3.5: Corpus Processor Block Diagram for the GTM Framework.

in Algorithm 1.

The minimum pre-computational work that each approach requires is a WRM

and a pair of processed documents. Provided these inputs, the document relatedness

tool will produce an output between 0..1 representing the relatedness between the

pair of documents as determined by Algorithm 1. However, this tool is designed and

implemented to compare more than just a single pair of documents, and also aims to

perform the comparison in the most efficient manner.

The design implementation rationale as well as the performance of the discussed

representation of the WRM will be discussed for the GPGPU in Chapter 4, and for

26

Figure 3.6: Document Relatedness Calculator Block Diagram for the GTM Frame-
work.

the CPU in Chapter 5.

3.4 Generalized N-Gram Processing

The N-gram corpus, regardless of source, presents each entry in the corpus as a

delimited sequence of N words and a count representing the occurrence of that given

N-gram. In the case of the N-gram used in this thesis, the Google Web 1T N-Gram

corpus, the counts are the occurrence that the given N-gram appeared in one trillion

English web texts [3].

In this thesis we will tokenize each of the words that compose an N-gram, and will

represent each of the tokenized words with their own unique ID, called a WordID.

The tokenization process requires that each N-Gram data set is read independently

and sequentially. As each entry is read, the end of an N-gram is determined by the

delimiters for the data set, generally a whitespace character such as a tab, and the

end of the entry itself via a new line. Each entry in the N-gram data set is treated

as a series of N words with a single numeric entry.

As each sequence of the N-gram is read, each word of the N-gram is converted to

lower case, and checked to confirm that it is composed only of alphabetic characters.

If non-alphabetic values occur in any of the words of the N-gram, the whole N-gram

is discarded as invalid. If the word is valid it is given a WordID.

This WordID can be assigned via the Dictionary Look-Up approach. The Dictio-

nary Look-Up approach is a mapping technique leveraged in previous works [19, 15]

27

to accelerate the GTM. The Dictionary Look-Up approach first requires that all N-

grams be read into memory. Once in memory, only the unique words are placed in

a word table. The words in the word table are then assigned a unique value, from 0

to the number of unique words-1, based on the order that they were read from the

corpus.

Adding a new word to vocabulary requires that the word table is scanned to

determine if the word is unique, in which case it is added to the table. As the number

of unique words increases, the space required for the word table grows, as does the

number of accesses required to determine the WordID for a given word.

If the N-gram has been read, and is valid, it is stored in memory in the following

format:

1. N WordIDs

2. Count

3. Frequency

In the case of duplicate N-grams, (N-grams that have the same WordID[s]) the exist-

ing N-gram is kept in memory, but has its count increased to account for the existence

of a duplicate N-gram, and the duplicate is then discarded. Once all of the N-grams

have been read from disk, each one has its frequency derived, as per Equation 3.1.

Frequency =
O∑M
i=0Ci

(3.1)

where: M = the number N-grams in the data set

Ci = the count value of the ith N-Gram

O = the count of the N-gram for which the frequency is to be calculated

Upon completion of this calculation for all of the N-grams in memory, the N-grams

are written to disk for later use.

This generalized structure holds true for uni-grams, however, it does not for tri-

grams. Based on the work presented in [9], a tri-gram consisting of word1, wordi, and

word3 can be combined with any tri-gram that also consists of word1 and word3 in

the same position. Further, a tri-gram consisting of word1, wordi, and word3 can also

28

be combined with the tri-gram consisting of word3, wordi, and word1, provided that

the mean frequency for the two tri-grams is used.

Therefore, each element of the tri-gram data set written to disk is represented as:

1. WordID1

2. WordID2

3. Count

4. Frequency

This applies when the entries are sorted such that WordID1 ≤ WordID2, and the

frequency is half of the value of the result from Equation 3.1 using the given count.

3.5 Word Relatedness Matrix

The WRM Creation Tool produces a WRM in the format described in Section 3.2.

Each of the words that compose a tri-gram, WordID1 and WordID2, if found in

the uni-gram data set, have the required values from the uni-gram data set as well

as those of the tri-gram data set provided for Equation 2.1. The resulting similarity

between WordID1 and WordID2 is placed into the WRM associated with whichever

has the smallest WordID. Once all of the tri-grams have been evaluated, the reduced

WRM is saved to disk for future use.

3.6 Corpus Processing

The Corpus Processor processes the provided corpus one document at a time. Each of

the documents processed are treated as a collection of words delimited by punctuation

and whitespace. Similar to the N-gram processing, each word is converted to lowercase

and checked to confirm it is a strictly alphabetic sequence. If the word only consists of

alphabetic characters, it is deemed valid and given a WordID, and is stored in memory

until the document has finished processing. If the word is invalid it is discarded. In

the case of duplicate WordIDs, only the first occurrence of the word is kept. Once all

of the words in the document have been processed, the processed document is then

written to disk storage for future use in document relatedness calculations.

Chapter 4

Computing GTM Document Relatedness on GPGPUs

This chapter explains the design details for the GPGPU implementation of the doc-

ument relatedness approaches from Chapter 3.

The generalized algorithm used to calculate document relatedness from Section 2.2

is mapped to the GPGPU hardware in several different ways. After the creation of

an algorithmic approach, the data structures used to support it are investigated and

evaluated and subsequently the methods for transferring documents from the CPU

to the GPGPU are analyzed.

This investigation and analysis generated two possible approaches: the global

memory approach and shared memory approach. Both will be explored throughout

this analysis.

4.1 GPGPU Text Relatedness Algorithm and Mapping it to the

GPGPU Architecture

The generalized algorithm presented in Section 2.2 can be adapted to the GPGPU

architecture with modifications as shown in Algorithm 2. Note that some of lines in

Algorithm 2 correspond to the GTM steps from Algorithm 1, while others are just

scaffolding required by the GPGPU method.

This thesis leverages Nvidia GPGPUs and implements the algorithm in CUDA

C. When Algorithm 2 is mapped to the GPGPU hardware, CUDA terminology and

limitations are applied to outline the design and implementation specifics. An ad-

ditional consideration is the disparate memory structures of the CPU and GPGPU

platforms. Consequently, the approach to copying any documents to the GPGPU is

an added complexity that must be properly managed, both due to the cost of transfer-

ring documents into GPGPU memory and the scarcity of memory. Once documents

are transferred to the GPGPU, document usage must be fully maximized in order to

reduce the number of memory allocations and/or memory copies required. This is

29

30

Algorithm 2 High Level Description of the GPGPU Approach

Require: The corpus and WRM are pre-processed. The user provides a set of doc-

uments to be compared

1: wrm← Read WRM

2: corpus← Read Corpus

3: Copy the wrm and the corpus to the GPGPU

4: On the GPGPU perform the following:

5: for i← 0; i < |Corpus| ; i + + do

6: doc1← Corpusi

7: for j ← i; j < |Corpus| ; j + + do

8: doc2← Corpusj

9: /*GTM Step 1 is done in Flag Matches*/

10: numberOfmatches← Flag Matches(doc1, doc2)

11: /*GTM Step 2 to 4 is done in Calculate Relatedness*/

12: relatedness← Calculate Relatedness(doc1, doc2, wrm)

13: Copy the relatedness from the GPGPU to the CPU

14: Copy the numberOfmatches from the GPGPU to the CPU

15: Perform the final relatedness calculation on CPU /*GTM Step 5*/

16: Record the final relatedness to disk

17: end for

18: end for

31

accomplished by flagging the words that match in a pair of documents rather than

removing those matching elements from the documents. This approach allows for

document re-use on the GPGPU provided that those flags are cleared, and relevant

elements are excluded from the calculation of relatedness. By checking for matching

words in the documents prior to calculating relatedness, we can save the overhead

of launching a potentially unnecessary and more complex kernel that would require

additional hardware resources.

The first step in determining how to map the algorithm to the GPGPU hardware

is to identify where the bulk of the computational work is performed in Algorithm 2.

Then we must find a method to effectively express the results on a Nvidia GPGPU,

within the limitations of the CUDA framework.

Step 2 through 4 of Algorithm 1 all require construction of a matrix from the

selected documents, which will be used to perform various operations. Mapping of

the algorithm can begin, using the construction of the matrix as a starting point. As

only the number of blocks and threads per block have to be specified in each function

call, |documenti| and |documentj| are provided as parameters.

Note that for the remainder of this chapter, unless otherwise noted, it is assumed

that |documenti| ≤ |documentj|

4.1.1 Evolution of the Pair-Wise Approach

While Algorithm 1 provides a high-level description of how to perform the GTM,

Algorithm 3 provides more detail for how the GTM would be implemented in code.

By examining Algorithm 3, we observe that work performed using the GTM is

driven by the two inner ’for’ loops. Specifically, it is centered around the look-ups

for similarity between the words of the two documents, and work performed on these

values as discussed Step 3 through 4 in Algorithm 1.

By organizing our GPGPU approach around performing 1:1 document relatedness

as described in the GTM algorithms, the following mapping as illustrated in Figure 4.1

was selected.

Figure 4.1 illustrates that the mapping of a pair of documents for which relatedness

was being calculated was derived from the two inner ’for’ loops in Algorithm 3. By

making the blocks equal to the |documenti|, and the number of threads per block equal

32

Algorithm 3 GTM Algorithm Sketch

for i← 0; i < |Corpus| ; i + + do

for j ← j; j < |Corpus| ; j + + do

for k ← 0; k < |Documenti| ; k + + do

for l← 0; l < |Documentj| ; l + + do

Compute Similarity between k, l

end for

Compute mean, standard deviation

end for

Write/Display Document i, j Similarity

end for

end for

Figure 4.1: GPGPU Pair-Wise Approach Mapping to Kernel Parameters

33

to |documentj|, each block can perform all of the required work for one iteration of

the third ’for’ loop. Specifically, this allows for the work required for each rowr, Step

2 through 4 from Algorithm 1, to be performed by a single block.

Upon completion of the Pair-Wise kernel’s execution, each row’s Ar is known. An

additional sub-step is required to perform a reduction on the results, which will pro-

duce the final output of GTM Step Four. This value can then be used in Equation 2.5

as the value of X.

To determine and remove the number of matching words between the two docu-

ments being compared, an identical mapping to Figure 4.1 will be used. By mapping

|documenti| once more to the number of blocks, and |documentj| to the number of

threads per block, each pool of threads will determine if a single word in documenti

matches any of the words in documentj. These words will be flagged as a match in

both documents and a count of the number of matches found per row is generated.

The number of matches are then reduced to a single value, which is used as Y in

Equation 2.5.

The resulting Pair-Wise approach requires four CUDA kernel calls to calculate

the relatedness between any two documents, namely:

1. Find matching words between the two documents

2. Perform a reduction on the count of matches

3. Calculate relatedness of each row

4. Perform a reduction on the relatedness of all rows

The values of X and Y are copied back to the CPU, which performs Equation 2.5.

This calculation is performed on the CPU rather than the GPGPU because the

GPGPU does not have the means to effectively perform it in parallel.

To evaluate the performance of this approach, the number of accesses into the

GPGPU’s global memory are examined, as this constitutes one of the most expensive

operations that the GPGPU can perform.

Due to the Pair-Wise approach being organized by the number of blocks and the

number of threads per block, a performance of O(NM) global memory accesses is

expected if N is |documenti| and M is |documentj|.

34

Figure 4.2: GPGPU One-To-N Approach Mapping to Kernel Parameters

4.1.2 Evolution of the One-to-N Approach

It is possible to achieve O(N + M) global memory accesses per pair of documents

evaluated by developing a One-to-N approach, which makes heavier use of shared

memory between the threads.

Figure 4.2 illustrates that the One-to-N approach is achieved by mapping the

blocks to the number of documents to be compared at once, and the number threads

to the longest document of the documents to be compared. Rather than one CUDA

kernel per pair of documents (documenti, documentj), there can now be several pairs

of documents compared for a single kernel launch, (documenti, document∗), where *

is the number of blocks.

As observed in the Pair-Wise approach, the threads will read the longest docu-

ment into thread memory. However, as there is only one block assigned per pair of

documents, the threads must then iterate over each element of documentsmallest, as

illustrated in Figure 4.3

During each iteration, Step 2 through 4 of Algorithm 1 are performed for a given

row. Upon completion of an iteration, the sum of X is incremented by the calculated

result, and then the next element of documentsmallest is read. Upon iterating through

the full document, the value of X is made available to the CPU to perform the final

calculations, as per Equation 2.5.

Unlike the case of the Pair-Wise approach, the treatment of Step 1 is affected by

the unbounded nature of the One-to-N approach. If N is greater than the bit-width

of the largest primitive data type that CUDA supports, which at the time of this

thesis is a 64 bit value, then N must be less than or equal to 64. Therefore, a different

35

Figure 4.3: GPGPU One-to-N Approach Process for Performing Document Related-
ness Calculations

approach than the flagging of matching words in the documents must be applied.

By incorporating Step 1 into the CUDA function to calculate the relatedness, this

scalability issue can be resolved. Prior to performing the iterative processing for Steps

2 to 4, the documents must be checked for matching values. The threads will still

read the elements of the documentlargest, but will subsequently check each element of

documentsmallest against the contents of the threads. If the elements match, then a

common count is incremented, and the thread marks itself as a match. Once all the

elements of documentsmallest have been processed, the threads then re-iterate over the

next element of documentsmallest to perform Steps 2 through 4.

This alters the previous work flow of Steps 2 to 4, to allow the threads that

are marked as a match to exclude themselves from further computation. The only

exception to this is if the threads read an element from documentsmallest that matches

a marked thread, meaning the processing of this row should be excluded from the

calculation, the thread will force the pool to skip this iteration of the loop.

This results in a One-to-N approach that requires one CUDA kernel call to calcu-

late the relatedness between any single document and N others, but like the Pair-Wise

approach still requires that the results (number of matches, and the relatedness) are

copied back to the host to perform Equation 2.5 for each of the N pairs. This results

in an algorithm with the following performance:

Let N be |documentsmallest| and let M be |documentlargest|. Due to the organizing

36

of the CUDA kernel, the elements of documentlargest are read a single time into mem-

ory followed by the reading of the elements of documentsmallest twice. The first read

is intended to determine matches, and the second is for the relatedness calculation.

This results in a total of O(2N + M) global memory accesses.

4.2 Modifications to the GPGPU Text Relatedness Algorithm to

Address Variable Length Documents

While the previous two approaches provide a strong basis for estimating the GPGPU’s

ability to perform document relatedness, they fail to provide a system that can deal

with documents of any length, specifically those larger than 1024 unique words.

The relevant limitation of CUDA hardware is that the maximum number of

threads that a CUDA GPGPU currently supports is 1024, in a one dimensional grid.

Therefore, when the two approaches are provided documents to calculate their relat-

edness, they will only map the number of threads to |documentlargest| in cases where

|documentlargest| ≤ 1024.

To address cases where |documentlargest| >1024, both algorithms require alter-

ations. Regardless of the approach, to work with variable length documents the

CUDA kernels are required to be aware of |documentlargest|. If |documentlargest| >
1024, then the threads will have to read additional elements of documentlargest.

Algorithm 4 illustrates how this additional reading is performed, taking advantage

of the CUDA keywords that provide information on the threadId, and the number of

threads per block (blockDim.x) This alteration indicates that the threads will no

Algorithm 4 Pseudo Code for CUDA Kernels to handle Variable Length Documents

1: threadId← threadId.x

2: blockId← blockId.x

3: if blockId ≤ |doc1| then

4: while threadId ≤ |doc2| do

5: /* Do kernel work */

6: threadId← threadId + blockDim.x

7: end while

8: end if

37

longer be able to hold all unique values in memory in either of the approaches (Pair-

Wise or One-to-N), as an individual thread is no longer responsible for retaining a

single word of the document. This changes the algorithmic run-times and structure

as described in the following sections.

4.2.1 Impact on the Pair-Wise Algorithm

The modifications to the Pair-Wise approach, as described in Section 4.1.1, require

two additional CUDA kernel calls to calculate the relatedness between any two doc-

uments as shown below:

1. Find matching words between the two documents

2. Perform a reduction on the count of matches

3. Find the mean between the rows

4. Find the standard deviation between the rows

5. Find the relatedness of the rows

6. Perform a reduction on the relatedness of all rows

This result is then copied back to the CPU, which performs Equation 2.5, similar to

Section 4.1.1.

As the Pair-Wise approach organizes the CUDA kernel calls by the number of

blocks, and the number of threads per block, there are still O(NM) global memory

accesses in the determination of the number of matches, and all the calculation steps

aside from the final reduction which requires O(N) global memory accesses. This

results in a bound of O(4NM) global memory accesses.

4.2.2 Impact on One-to-N Algorithm

Modifications to the One-to-N approach to support variable length documents include

three additional CUDA kernel calls to calculate the relatedness between any two

documents as shown below:

1. Find matching words between the sixty-four (64) documents

38

2. Find the mean between the documents

3. Find the standard deviation between the documents

4. Find the relatedness of the documents

This result is then copied back to the CPU, which performs Equation 2.5.

Most important of the alterations to the One-to-N approach for variable length

documents is that N ≤ 64, which differs from its previously unbounded state. This

bounding is required as the documentlargest is no longer able to stay in memory

and thus requires that words of each document must be flagged and excluded from

computation.

Additionally, upon completion of the calculations required for the mean, the whole

document would have to be re-read for additional calculations, such as standard

deviation and the document relatedness. The resulting algorithm requires O(N + M)

global memory access for each kernel resulting in a bound of O(4N + 4M) global

memory accesses.

4.3 Contrasting the GPGPU Approaches

Based on the analysis of the two presented approaches, their defining difference is

the volume of memory accesses. Both approaches made heavy use of CUDA’s thread

and shared memory architecture to have each thread represent a single word pair.

While memory efficient, this approach was hindered by the limited number of threads.

Conversely, the refinements that enable the approaches to handle longer documents

mean that a single thread cannot represent the data for a single word pair, and thus

requires more accesses to global memory to accomplish the same amount of work.

4.4 Data Structures for Word Relatedness

Based on the decisions outlined in Section 3.5 to represent the WRM in the most

compact form possible, easily indexing into this array for a given (word1 ,word2) pair

is no longer possible. This section discusses different look-up strategies that are used

by our proposed GPGPU implementations of the GTM.

39

Figure 4.4: Native format of WRM Data Structure.

This thesis presents four methods for word relatedness look-ups on a GPGPU.

The first three are based on linear and binary search methods and are described

in Section 4.4.1. The final method is based on perfect hashing and described in

Section 4.4.2.

4.4.1 Search Strategies using a Sorted WRM

The WRM is composed of data elements organized so that each pair of (word1, word2)

contains the relatedness between the words, as seen in Figure 4.4. By sorting the

WRM in ascending lexicographical order and saving the resulting WRM back to

storage, it is available for use as sorted data structure. Using the sorted WRM,

the resulting look-ups to find relatedness between words from the documents can be

performed via binary search, rather than linear probing. While this technique is an

improvement over O(|WRM |) (linear search), the look up time can still be improved

over O(log(|WRM |)) (binary search).

With the sorted WRM, one can further reduce the space required by remapping

the WRM to an Index Array and a Value Array. This resulting data structure is

illustrated in Figure 4.5, and is similar in concept to the Parallel Blocking Array data

structure presented in [15].

The upper data structure from Figure 4.5 allows for the algorithm to search for

a given wordi. If wordi exists in the WRM, the search has the range of all possible

(wordi, wordN) pairs via the last two indexes of the data structure. As this data

structure is built from the sorted WRM, the data structure itself is sorted by wordi.

The lower data structure from Figure 4.5 provides both the value of wordj for a

40

Figure 4.5: The WRM Remapped into an Index Array and the Corresponding Value
Array.

given (wordi, wordj) pair and the corresponding relatedness. This data structure is a

reduced version of the sorted WRM, omitting the wordi value from the native format

of that structure, seen in Figure 4.4.

By using this new data structure, the resulting look-ups into the WRM to find

relatedness between words in the documents being compared can be performed via

linear search, and by a double binary search.

The linear search allows for the searching of the initial data structure to find the

word1 indexes, prior to searching for the word2 value and the word pair’s relatedness

between said indices in the secondary structure. Similarly, the double binary search

allows for the binary searching of the initial look-up structure, to determine where in

the secondary data structure the binary search should be performed.

Leveraging these techniques hopefully results in an improved performance over

the standard binary and linear searches, as subsets of the WRM are searched rather

than the WRM as a whole. This is captured as follows:

Let N = |wordi| values, and let M = |(wordi, wordj)| pairs. This results in:

1. O(N)+O(M) memory access for linear search, and

2. O(log(N))+O(log(M)) memory access for binary search.

These methods will be evaluated in Section 4.4.3.

41

4.4.2 Search Strategies based on Hashing

The final approach to look-up strategies is the use of hashing to achieve look-ups in

O (1) memory accesses. Based on the construction of the WRM, the look-up pairs

(wordi, wordj) are ensured to be unique. Therefore, perfect hashing, a type of hashing

which maps keys to values without collisions, can be used to access the WRM.

This work makes use of a perfect hashing library provided by [2], with slight

modifications, including:

1. Modifying the library to read key values from a file

2. Modifying the library to handle the ASCII control characters

The alterations only required modification of the library’s determination of string

lengths, as it made use of Standard C’s strlen() to determine the length of the keys.

As shown in Algorithm 5, the keys created for use in this algorithm were made with

a fixed length of eight ASCII characters.

Given the list of keys created from the two WordID pairs from each element in

the WRM, the library returns a hash function. This hash function provides a unique

mapping application from the keys to a value. This value is then used to re-build the

WRM, where the new WRM is an array of M length, where M is defined such that

M= 2i ≤ |WRM | ≤ 2i+1 as per the library.

In this new WRM, only the indexes returned by the hash function would contain

a word relatedness value. This value corresponds to the value held by the (word1,

word2) pair in the initial WRM.

4.4.3 Evaluation of the Data Structures on WRM Retrieval

To determine the best data structure for use in the GPGPU versions of the algorithm,

the sorted and hashing data structures were evaluated.

The evaluation to determine the performance of the data structures takes a two-

phased approach. The first phase evaluates the performance of the data structures

based on the wall-clock time to perform 242,427,791 word look-ups in the WRM.

Based on the time required, the fastest performing data structure will then be further

evaluated. If there are outliers in this first phase, they are independently explored

further.

42

Algorithm 5 Creation of a perfect hashing key

key ← std :: vector()

if word1 ≤ word2 then

key0 ← (word1 � 24) & 0xFF

key1 ← (word1 � 16) & 0xFF

key2 ← (word1 � 8) & 0xFF

key3 ← (word1) & 0xFF

key4 ← (word2 � 24) & 0xFF

key5 ← (word2 � 16) & 0xFF

key6 ← (word2 � 8) & 0xFF

key7 ← (word2) & 0xFF

else

key0 ← (word2 � 24) & 0xFF

key1 ← (word2 � 16) & 0xFF

key2 ← (word2 � 8) & 0xFF

key3 ← (word2) & 0xFF

key4 ← (word1 � 24) & 0xFF

key5 ← (word1 � 16) & 0xFF

key6 ← (word1 � 8) & 0xFF

key7 ← (word1) & 0xFF

end if

43

The second phase determines the performance of the selected data structure in

terms of look-ups per second performed on the WRM. This calculation will be based

on the time taken to process an average of 593,529,627,312 word pair look-ups in

the WRM. This result is produced from the average performance of several runs of

varying lengths from 133,000,000,000 to 1,100,000,000,000 word pairs.

The GPGPU architecture used for the evaluation of the performance of the WRM

retrieval is a Nvidia GeForce 660 GTX, with 2 GB of RAM and 960 CUDA Cores, each

clocked at 980 MHz, hosted in a PC running Windows 7 Home Edition. This GPGPU

was used to run the executable produced using NVCC, Nvidia’s CUDA compiler for

CUDA 5.5. This test excludes the time needed to load the data structures and word

pairs onto the GPGPU.

The results of the first phase are shown in Table 4.1.

Search Approach Wall-Clock Time in Seconds Space Required in Bytes

Linear Search 6082.48 854,118,732
Binary Search 5.68 1,135,497,760

Double Binary Search 6.35 854,118,732
Perfect Hashing 1.99 1,107,296,499

Table 4.1: Wall Clock Time Taken to Perform 242,427,791 WRM Queries on a
GPGPU for a given Data Structure

The results presented in Table 4.1 show that the fastest data structure is the

perfect hashing technique, as it performs the same number of look-ups as the next

closest performing structure in nearly a third of the time. While the cost in terms of

storage is nearly 50% of the targeted GPGPU memory, the search strategy delivers a

significant performance increase over the both the standard binary and double binary

search data structures, which consume either the same amount of memory or a 1
3

less

memory.

Using the perfect hashing search technique, the second phase of the evaluation

varies the volume of the word pair look-ups that are used in this evaluation, resulting

in the average number of word pairs cited in Table 4.2. Each of these word pair lists

were evaluated, and the results were used to produce the reported performance of

perfect hashing.

44

Average Number of Word Pairs Average Number of Look-Ups per Second

593,529,627,312 377,989,297

Table 4.2: Word Similarity Look-Ups per Second on the GPGPU for the Perfect
Hashing Data Structure

4.5 Document Loading

Since GPGPUs possess a limited amount of memory compared to a workstation,

server, or desktop computer, it is assumed that there will be corpora that will not fit

entirely in the GPGPU’s memory along with the data structures required to perform

document relatedness. To effectively process these corpora, any proposed GPGPU

solutions must be able to copy elements of a given corpus from the CPU to the

GPGPU in an effective manner.

Whenever possible, the loading approaches used will take advantage of an ability

Nvidia’s hardware supports, called streaming. Streaming allows a programmer to

specify a series of operations to be executed sequentially. This functionality ensures

that a specific series of instructions, such as memory copies and kernel executions, is

ensured to be completed prior to the execution of the next sequence of events in the

stream. This allows for the avoidance of dirty, or conflicted, reads. This translates

well to the proposed Pair-Wise approach for document relatedness, as each Pair-

Wise calculation is a series of sequential events that do not affect any other pairs of

documents being compared.

In this thesis, we have proposed two distinct approaches for performing N:N doc-

ument relatedness. The Pair-Wise approach, which computes N:N document relat-

edness as a series of 1:1 calculations, and the One-To-N approach, which produces

N:N document relatedness as a series of 1:N document relatedness evaluations. Based

on these approaches, a base document, the 1 in our 1:1 or 1:N, is fetched from the

CPU and held on the GPGPU until the base document has been compared with all

N documents. At this point a new base document can be fetched from the CPU.

The following sections deal with the loading schemas that were investigated to

provide the documents to compare our base document with.

45

4.5.1 Singleton

The singleton approach provides both a baseline method for loading documents from

the CPU to the GPGPU, and the only loading mechanism possible for the One-to-N

approach to use due to the control structures required for that approach. Thus the

evaluations of the loading approaches will be explained from the point of view of the

Pair-Wise Approach.

The singleton approach performs a single copy of one or more comparison doc-

uments from the CPU to the GPGPU. Upon completion of the relatedness calcula-

tions between the base document and the comparison document, a new document is

retrieved from the CPU and relatedness calculations are repeated. This process is re-

peated until the base document has been compared with the rest of the corpus. Once

this is completed, a new base document is loaded from the CPU, and the process is

repeated for the next document until the N:N relatedness has been calculated.

4.5.2 Stride

Similar to the singleton document loading method, the stride approach allows for

the base document to be loaded into GPGPU memory and retained until the 1:N

document relatedness calculations are completed. Unlike the singleton method, each

comparison document of the stride is loaded from the CPU to the GPGPU in a stream,

with the document relatedness calculations for each strideth document against the

base document queued. Figure 4.6 illustrates this process.

Due to CUDA’s architectural limits, the maximum width of a stride is thirty-two

(32) documents, as that is the maximum number of streams the hardware currently

supports. Upon completion of all comparisons within a given stride, the next stride

is retrieved from the CPU and relatedness calculations are performed. This process

is repeated until the 1:N document relatedness is completed, at which point a new

base document is selected and the process repeats.

The width of a stride is determined based on the present location of the algorithm

in the 1:N relatedness calculation. For instance, if there are fewer than 32 documents

remaining, then the stride is clamped to that value, otherwise the maximum stride

value is taken.

46

Figure 4.6: Display of Pair-Wise Approach When Stride Loading is Used

4.5.3 Grid

The grid approach is similar to the stride loading approach, however, rather than

a linear 1:N approach to computing the N:N document relatedness matrix, the grid

loading approach alters how the documents are held in GPGPU memory. This allows

for the calculation of a X:N documented relatedness approach, where X is the number

of base documents held for a single iteration through the Grid. Similar to the other

methods, each comparison document is loaded into GPGPU memory, and compared

against a base document, as Figure 4.7 illustrates.

The document comparisons are placed into CUDA streams, between the docu-

ments that comprise the row (base) documents and those that compose the columns,

explained in Algorithm 6.

4.5.4 All-in-Memory

The final approach to be considered applies only to cases where the corpus will fit into

GPGPU memory in its entirety. In this approach, the corpus is loaded into memory,

47

Figure 4.7: Display of Pair-Wise Approach When Grid Loading is Used

48

Algorithm 6 High Level Description Grid Approach

1: for i← 0; i < N ; i← i + GridRows do

2: for k ← 0; k < GridRows; k + + do

3: baseDocumentk ← Corpusi+k

4: end for

5: for j ← i; j < N ; j ← j + GridCols do

6: for k ← 0; k < GridCols; k + + do

7: compareDocumentk ← Corpusj+k

8: end for

9: for x← 0;x < GridRows;x + + do

10: for y ← 0; y < GridCols; y + + do

11: Place the following in a CUDA Stream

12: Calculate Relatedness(baseDocumentx, compareDocumenty)

13: end for

14: end for

15: end for

16: end for

49

then a base document is selected. The initial base document is then compared against

the remaining documents.

The comparison documents are treated as a stride, with the length of the maxi-

mum number of concurrent kernels that the CUDA hardware supports and appropri-

ate bounds-checking. Each of the documents that make up the stride are compared

against the base document in parallel. This process is repeated until N documents

have been compared, at which point a new base document is selected.

4.5.5 Performance of the Document Loading Methods Strategies

To determine the most appropriate loading method, an experiment using the Pair-

Wise document relatedness approach was devised. This experiment involved using the

ACM Dalhousie Abstract corpus’ first two thousand (2000) documents to determine

how document loading would affect the time required to calculate their relatedness.

Aside from modifying the applied document loading strategy, each version of the

experiment made use of the same elements of the corpus, and used the same WRM

search strategy. The results of this experiment can be seen in Table 4.3.

Each part of the experiment ran the executables that were produced using NVCC,

Nvidia’s CUDA compiler for CUDA 5.5 and made use of OpenMP 2.0 for concurrent

kernel launches. The GPGPU used for these experiments was a Nvidia GeForce 660

GTX, with 2 GB of RAM and 960 CUDA Cores, each clocked at 980 MHz, hosted in

PC running Windows 7 Home Edition.

Loading Approach Documents Processed per second

Singleton 7,711
Stride 9,002

Grid 2,106
All-in-Memory 10,081

Table 4.3: Impact of Document Loading Approach on Document Relatedness

The results of the performance of the grid approach merit some discussion. While

this approach should theoretically be the most efficient method of performing doc-

ument relatedness, the observed performance does not support this. Based on the

copying of the comparison documents in streams, the other comparison documents

are not guaranteed to be in GPGPU memory until the stream responsible for the copy

50

is performing the document relatedness between a document pair. In order to ensure

that documents are available, the GPGPU must either block until each stream’s first

document relatedness calculations are ready to begin, or copy the comparison docu-

ments in a singleton load. Performing either approach did not improve the results,

as the GPGPU accesses the global memory more frequently for the comparison doc-

uments and base documents due to the loss of locality of reference and cache misses

when compared to the other methods.

The results of this experiment show that if all documents can fit into GPGPU

memory, then the All-in-Memory approach should be used. While this will work for

a smaller corpus such as the ACM Dalhousie Abstract collection, it is not applicable

for larger corpora, such the Gutenberg Dataset. In any case where the corpus is too

large for an All-in-Memory approach, the stride approach is the most efficient for

document similarity computations.

4.6 The Optimized GPGPU Approaches

Based on the evaluations and design considerations presented in this chapter, two

approaches for using GPGPUs to calculate document relatedness are recommended:

the Pair-Wise approach and the One-to-N approach. This thesis applies these two

approaches to calculate relatedness between varied length documents, rather than

documents assumed small enough to be held in thread memory.

Each of these approaches will make use of perfect hashing as the WRM retrieval

method based on the performance observed in Section 4.4.3. For document loading,

the One-to-N approach will use a singleton load of N, and the Pair-Wise approach

will use the stride method for document loading.

The proposed framework is expected to deal with corpora of any size, so the stride

method will be further refined so that the stride length will be tunable based on the

current size of the documents being compared against the base document. This tuning

can be summarized as per Algorithm 7.

With all relevant considerations and methods defined, the GPGPU approaches

are now ready for evaluation against a baseline and against each other.

51

Algorithm 7 Tuning the Stride Loading Amount

Require: The corpus to be loaded into CPU memory, and the footprint of the

GPGPU WRM Data Structure to be known.

Ensure: The corpus fits in the CPU memory

1: for i← 0; i < |Corpus| ; i + + do

2: for j ← i; j < |Corpus| ; do

3: stride← STRIDEMAX . Either 32 or 64 depending on approach

4: if stride > |Corpus| − j then

5: stride← |Corpus| − j

6: end if

7: arrayOfLenghts← findLengthsOfDocuments(stride)

8: largestDocument← greatestLength(arrayOfLenghts)

9: stride← calculateSpaceRequired(largestDocument)

10: if stride = 0 then

11: exit(1)

12: end if

13: if stride |Corpus| − j then

14: stride← |Corpus| − j

15: end if

16: Copy the stride documents to the GPGPU

17: Create the supporting variables to hold the stride documents

18: Perform document relatedness work

19: j ← j + stride

20: end for

21: end for

Chapter 5

Computing GTM Document Relatedness on a Multi-Core

System

This chapter introduces two multi-core approaches for calculating document related-

ness that will be used to evaluate the performance of the GPGPU approaches. Similar

to Chapter 4, the work presented in this chapter will map the generalized algorithm

for calculating document relatedness to the CPU. The data structures used to store

and access the WRM are then investigated and evaluated.

5.1 Construction of a Multi-Core Algorithm and Mapping

To construct a multi-core performance benchmark, the generalized algorithm for doc-

ument relatedness must be mapped to a multi-core CPU, hereafter referred to as a

CPU. At a high level the main difference between the approach for the CPU and the

high-level approach for the GPGPU, see Algorithm 2, is that the CPU approach does

not require memory transfers, as the CPU is able to hold all required data in memory.

Much like the GPGPU version, the CPU benchmark will require an investigation

into the data structures required to search and store the WRM. Unlike the GPGPU

approaches, the CPU baseline can make use of the C++ Standard Template Library

(STL). The STL provides a repeatable and common implementation with guaranteed

performance for the templates [data structures] regardless of target architecture, and

without requiring the data structures to be reproduced in project specific code.

Additionally, to make the CPU performance more comparable to a multi-threaded

GPGPU, OpenMP will be used to speed up the computation. This is to address

existing research [12] that contrasts GPGPU performance gains and has shown that

without a proper basis of comparison, any reported speed-up is not accurate.

The parallelization provided by OpenMP is leveraged to speed up the operations

performed in the loops that compose the algorithm described in Algorithm ??. This

52

53

is accomplished via the #pragma parallel for command around the loop to par-

allelize. The CPU’s approach to parallelization using OpenMP can be performed in

two ways:

1. The process of comparing a given documenti against documentj can be paral-

lelized, giving each thread a unique (documenti, documentj) pair to process.

2. The process of comparing a given documenti against documentj can be paral-

lelized, where each thread works on the same (documenti, documentj) pair in

parallel.

These two approaches, discussed in the following sections, each make use of com-

mon code as OpenMP provides the #pragma commands to handle either approach

without requiring code changes from a single threaded approach.

5.1.1 Parallelizing for Document Comparison Throughput for the

Baseline

The parallelization of this approach is captured in Algorithm 8. As this algorithm

shows, the modifications required to parallelize for document pair throughput are

trivial.

5.1.2 Parallelizing for an Individual Document Comparison Approach

for the Baseline

The parallelization required for this approach is performed on the following functions

defined in Algorithm ??: RemoveMatches() and CalculateRelatedness(). The modi-

fications required to support the parallelization are captured in Algorithms 9 and 10.

This approach uses the best performing data structure as determined in Section 5.2

for the WRM look-up.

5.2 Determining the Data Structures Used for WRM Retrieval

To determine the best data structure to hold WRM, the following options were pro-

posed:

54

Algorithm 8 CPU Benchmark - Parallelizing For Document Throughput

Require: The corpus and WRM are pre-processed. The user provides a start and

stop point for the documents to be compared

Ensure: The files exist

wrm← Read WRM

corpus← Read Corpus(start,stop)

for i← 0; i < |Corpus| ; i + + do

baseDocument← Corpusi

pragma parallel for

for j ← i; j < |Corpus| ; j + + do

compareDocument← Corpusj

doc1, doc2 ← Remove Matches(baseDocument, compareDocument)

relatedness← Calculate Relatedness(doc1, doc2, wrm)

end for

end for

1. STL Map. This is a sorted map that works on a (key,value) pair structure. In

this baseline the key is the STL pair object that is composed of the (wordId i

wordId j) pairs from the WRM, and the value is the similarity between these

two words. Querying the STL Map is a function of O(log(N)).

2. Binary Search. This is identical to the WRM structure of the same name

proposed in Section 4.4.1.

3. Double Binary Search. This is identical to the WRM structure of the same

name proposed in Section 4.4.1.

4. Perfect Hashing. This is identical to the WRM structure of the same name

proposed in Section 4.4.2.

5. STL UnorderedMap. Similar to the STL Map, this data structure works on

a (key, value) pair system; however unlike the STL Map, the UnorderedMap

performs a hash on the values and places them into buckets.

55

Algorithm 9 CPU Benchmark - High-Level Parallelizing For Individual Document

Comparison

Require: |Doc1| ≤ |Doc2|
function Calculate Relatedness(Doc1, Doc2)

Step One: For each word of Doc1: if it is not flagged, proceed to Step Two. If

it is flagged, advance to the next word of Doc1

Step Two: In a #pragma parallel for, find the WRM(Doc1i, Doc2j) if

Doc2j is not flagged.

Step Three: In a #pragma parallel for, find the mean of the WRM values

retrieved in the previous step.

Step Four: In a #pragma parallel for, find the deviation of the WRM values

retrieved in Step Two.

Step Five: Find the standard deviation using the value from the previous step.

Step Six: In a #pragma parallel for, find the values of WRM(Doc1, Doc2j)

which are greater than sum of the mean and standard deviation. In the same loop,

find the mean of those values.

Step Seven: Add this resulting mean to the relatedness value.

Step Eight: Upon processing of all of the words of Doc1 return the relatedness

value

end function

Algorithm 10 CPU Benchmark - Parallelizing For Individual Document Comparison

function Remove Matches(documenti, documentj)

for i← 0; i < |documenti| ; i + + do

#pragma parallel for

for j ← 0; j < |documentj| ; j + + do

if Documentj[j] = Documenti[i] then

Flag elements in both documents as match

end if

end for

end for

return Doc1, Doc2

end function

56

Before discussing the evaluation of these data structures and their performance,

it is important to provide context as to why the STL containers were selected. By se-

lecting the STL Map, the binary search approaches can be contrasted against a known

approach that performs in O(log(N)) time and works with any type of data. This

provides a baseline for the specific binary search techniques developed and employed

in this thesis.

Similarly, the STL UnorderedMap was selected to provide a relative comparison

to the Perfect Hashing Library used. To that end, the STL algorithm made use of

a predefined hash function to create entries for all of the values and keys passed to

it. Unlike the Perfect Hashing Library, the UnorderedMap was evaluated through

two different key generation approaches. The first key creation strategy was from

Algorithm 5, save for the values being stored in an std::string vice an array. The

second strategy is defined as per Algorithm 11. The approaches were selected to test

whether the key data type would affect the results.

Algorithm 11 Alternate Approach For the Creation of an UnorderedMap key

key ← 0

if word1 ≤ word2 then

key ← (word1 � 32) | word2
else

key ← (word2 � 32) | word1
end if

5.2.1 Evaluating the Data Structures for the WRM Retrieval in the

Baseline

To evaluate the performance of the data structures, a single-phased approach is used.

The data structures are evaluated through the wall-clock time taken to perform

242,427,791 word look-ups from the WRM. Based on the time taken, the data struc-

ture that performed the fastest will be selected. If there are outlying results, they

will be explored further prior to determining the best data structure.

The hardware used for the evaluation of the data structure was CGM6, a Linux

server composed of 2 Intel Xeon ES-2650 processors, each with 8 cores and Hyper

57

Threading enabled, with shared access to 264 GB of RAM. This server ran the ex-

periment using executables that were produced using GCC 4.4.7 and that version of

GCC’s OpenMP.

Each of the resulting executables, one per data structure, were identically coded

aside from the differing elements of the data structures used. Note that each of the

reported times exclude the time needed to load the data structures and word pairs

into memory.

Search Approach Wall-Clock Time in Seconds Space Required in Bytes
Binary Search 189.03 1,135,497,760

STL Map 23.51 5,544,000,000
Double Binary Search 11.32 854,118,732
STL UnorderedMap 1 11.28 3,960,000,000
STL UnorderedMap 2 5.48 3,960,000,000

Perfect Hashing 282,020 1,107,296,499

Table 5.1: Wall-Clock Time Taken to Perform 242,427,791 WRM Queries on the CPU
for a given data structure using 64 OpenMP threads

The results of this evaluation are shown in Table 5.1. The presented results are

in line with expectations. As expected, of the divide and conquer approaches, the

Double Binary Search is the ideal candidate, and hashing is the fastest way to access

the WRM. However, despite the excellent performance of the perfect hashing routine

observed on the GPGPU (see Section 4.4.3) this performance does not exist on the

CPU.

Based on the results of the STL UnorderedMap, key construction can play a

role in the time taken to process an index into the WRM. However, when the STL

UnorderedMap made use of the same key forging algorithm as perfect hashing, Algo-

rithm 5, it completed the processing of the word pairs in a significantly shorter period

of time. Since the key construction technique does not appear to be the problem, and

the hashing approach is not a performance impediment, one can conclude that the

issue with perfect hashing results is the library used.

In the 15 years since this hashing library was created, the instruction sets pro-

vided in modern CPUs have evolved to expect operations and values larger than 8-bit

words, as evidenced by the rise of 64-bit instruction sets. This change in instruction

58

sets would require extensive shifting prior to being subjected to the bit manipula-

tions required for the Perfect Hashing library to be effective. Similarly, this explains

why the GPGPU did not experience noticeable issues with the hashing library as

CUDA architecture requires several instruction sequences to complete a single 64-bit

operation.

As the STL UnorderedMap, when creating a key using Algorithm 11, took the

least amount of time to perform the look-ups, it was selected to be used as the data

structure for the CPU benchmarks.

5.3 Recommended Baseline Approaches for Document Relatedness

The two proposed CPU benchmark approaches can be defined by the level of paral-

lelization they leverage with respect to evaluation of the document relatedness space.

The first method, introduced in Section 5.1.1, suggests coarse-grained parallelization

where each document pair to be evaluated is assigned its own thread. The other

method, proposed in Section 5.1.2, proposes fine-grained parallelization, where each

document pair to be evaluated is worked on by all threads. Regardless of the ap-

proach, each of these potential benchmarks will access the WRM using the STL

UnorderedMap, as this was proven to be the best suited data structure.

In Chapter 6, the CPU benchmarks will be evaluated against each other, and

the best performing benchmark will be used to evaluate the proposed GPGPU ap-

proaches.

Chapter 6

Evaluation of the GPGPU Approach

This chapter evaluates the document relatedness approaches for the GPGPU and

CPU as discussed in Chapters 4 and 5 respectively. We will begin by discussing the

specifics of the evaluation methodology and how it will be applied to the selected ap-

proaches, followed by an analysis using the selected corpora, and finally a presentation

of the results. Both CPU GTM approaches described in Chapter 5 are evaluated, and

the one with the best performance will be selected as the benchmark against which

the GPGPU approaches will be compared.

In Chapter 4, two GPGPU approaches were described. The first was performed

in shared GPGPU memory but was only applicable for documents which contained

less than 1024 unique words. The second method used a combination of shared and

global GPGPU memory but was much more widely applicable, only requiring that

the documents fit in the GPGPU’s global memory. We first compared the GPGPU

approaches using the Association for Computing Machinery (ACM) Dalhousie Ab-

stract Collection corpus (which had documents that were less than 1024 words in

length).

We then compared the global memory GPGPU method with the CPU benchmark

using both the ACM Dalhousie Abstract Collection corpus and a ’real life’ text corpus

drawn from the Gutenberg Collection [11].

6.1 Configuration of the Experiments

The experiments make use of two different target architectures, the traditional Intel

x86 architecture and Nvidia’s GPGPU architecture. Due to the architectural differ-

ences discussed earlier, they cannot both run the same executable.

The CPU and GPGPU platforms used different operating system environments

59

60

and configurations. For the CPU version, experiments were performed with an ex-

ecutable produced using GCC 4.4.7 and that version of GCC’s OpenMP. This ex-

ecutable was then evaluated on a Linux server composed of 2 Intel Xeon ES-2650

processors, each with 8 cores and Hyper Threading enabled, and shared access to 264

GB of RAM. The GPGPU experiments were performed using an executable produced

using NVCC for CUDA 5.5, compiled for Compute 1.0 architecture. The resulting

executables were then evaluated on a Windows 7 Home Edition PC comprised of a

quad core Intel i5, clocked at 3.40 GHz and paired with a GeForce 660 GTX.

The timings reported for the experiments performed in this chapter were derived

as follows:

1. All data structures and documents were pre-loaded into the host memory of the

CPU.

2. Timings for the CPU methods include the time from the start of the document

similarity calculations to the final document similarity result being written onto

disk.

3. Timings of the GPGPU methods include all transfers of data between the CPU

and GPGPU and all of the similarity computations. The timing also includes

the time taken to transfer the results of the similarity computation from the

GPGPU to the CPU, and to write the results to disk.

6.2 Evaluation Method

The evaluation of the proposed CPU and GPGPU approaches focuses on their ability

to calculate document relatedness. Regardless of the specific hardware, any approach

will be evaluated by measuring the document relatedness calculation rate that is

observed when processing a corpus. The rate of calculation can be expressed in two

possible rates:

1. The number of documents per second (DPS) that have been processed

2. The number of words per second (WPS) that have been processed

61

The measurement of DPS may initially seem the most relevant in assessing approaches

to calculating document relatedness, however, it prevents clear comparisons between

different corpora. Given that different corpora will rarely have individual documents

of consistently uniform lengths, an analysis of only the DPS calculation could poten-

tially mask the complexity of the results. WPS calculations allow for inter-corpora

comparisons, and provide a method to determine the comparable work of computing

document relatedness with documents of any length.

With these considerations taken into account, both approaches will generally be

evaluated through WPS metrics, allowing for discussions regarding the throughput

across corpora and on an individual corpus. DPS metrics are only considered when

another level of analysis is required, and are only used in conjunction with a WPS

metric.

The WPS is calculated with the total number of words that are compared be-

tween the relevant number of documents using the generalized algorithm outlined in

Section 2.2. For example, the total number of words included in a Pair-Wise calcula-

tion would be the number of words compared between a pair of documents, where a

1:N calculation would include the total number of words compared between the base

document and the series of N documents. The total number of words captures the

number of elements that should be present in the matrix proposed in GTM Step Two

of the generalized algorithm. This total is then divided by the amount of time, in

seconds, taken to complete the word relatedness calculation to ultimately determine

the number of words processed per second.

Equation 6.1 illustrates how the WPS is calculated for computing N:N document

relatedness.

WPS =
N∑
i=0

N∑
j=i

|Di| |Dj|
Time(i, j)

(6.1)

where: N = The number of documents to find relatedness between

D = A document from the corpus

T (i, j) = The time taken to calculate and record document relatedness

Equation 6.1 makes the assumption that the time taken to determine if there are

matching words is negligible in the overall calculation, and the true measure is in

62

the algorithmic work conducted in GTM Steps Two through Five, as captured in

Algorithm 1.

6.3 Data Sets Used in Experimentation

The following corpora were selected for use in evaluating the framework:

1. The ACM Dalhousie Abstract Collection, which is composed of 43,452 abstracts

from papers published in the ACM digital library and prepared for use by

Dalhousie students.

2. The Gutenberg Collection, provided by [11], includes a subset of the Project

Gutenberg literary works. This subset provides a collection of 3,036 works of

literature that are in the public domain.

For any document relatedness experiments, the content of the given corpus must

be known in order to determine the effectiveness of the proposed approaches. The

following section will discuss the content characteristics of the two selected corpora,

including an outline of each of the corpus’ main parameters, the average length of a

given subset of the corpus, and the total number of words that must be processed in

that subset to calculate document relatedness as per the generalized algorithm.

6.3.1 ACM Dalhousie Abstract Collection

The ACM Dalhousie Abstract Collection was processed according to Section 3.6, and

the first 10,500 documents were used for the relatedness calculations. Figure 6.1 shows

the average length per processed document for the given subset of the ACM Dalhousie

Abstract corpus, as well as the standard deviation for the processed document length.

Figure 6.2 illustrates that the growth rate of the number of words to compare appears

to grow in a quadratic fashion as the subset incorporates more documents from the

corpus.

6.3.2 Gutenberg Collection

The Gutenberg Collection was also processed according to Section 3.6, and the first

200 documents were used for relatedness calculations. Additionally, these documents

63

Figure 6.1: The Average Document Length and Deviation for a Given Segment of
the ACM Dalhousie Abstract Collection

Figure 6.2: The Number of Words Required to be Compared to Complete the Docu-
ment Relatedness for a Given Segment of the ACM Dalhousie Abstract Collection

64

Figure 6.3: The Average Document Length and Deviation for a Given Segment of
the Gutenberg Collection

were sorted by their length, such that the larger documents of the selected subsets

were evaluated first. Figure 6.3 shows the average processed document length for the

given subset of the Gutenberg Collection corpus, as well as the standard deviation in

the processed document length. Figure 6.4 illustrates the growth rate of the number

of words to compare as the subset incorporates more documents from the corpus.

6.4 Determining the CPU Benchmark Performance

In order to draw relevant conclusions for the effectiveness of a GPGPU implemen-

tation of the GTM, the GPGPU approach in question must be compared against

an efficient CPU implementation [12]. This thesis presented two possible CPU ap-

proaches in Section 5.1: one focusing on parallelizing a document pair as thoroughly

as possible, and another focusing on parallelizing the throughput of document pairs.

In order to determine which CPU approach will act as the benchmark against

which we evaluate the GPGPU approaches, the two CPU approaches were evaluated

in separate experiments to determine which generates the best rate of WPS. The

approach with the highest overall WPS becomes the baseline approach for comparison.

These experiments serve to evaluate the CPU approaches on various subsets of the

65

Figure 6.4: The Number of Words Required to be Compared to Complete the Docu-
ment Relatedness for a Given Segment of the Gutenberg Collection

first 1000 documents of the ACM Dalhousie Abstract Collection, and the first 100

documents of the Gutenberg Collection.

Figure 6.5 illustrates the performance of the CPU Throughput approach on the

ACM Dalhousie Abstract Collection. It shows the number of words compared per

second as a function of the number of documents compared. We observe that as the

number of documents to be compared increases, the amount of work required and the

computed WPS increases. The WPS rate increases until around 4002 documents are

compared for their relatedness, after which the rate of improvement begins to slow.

Note that this figure illustrates that about 50 million WPS can be processed using

this CPU approach.

Figure 6.5 also illustrates the performance of the CPU Parallelized Individual

approach on the ACM Dalhousie Abstract Collection. We observe that when com-

pared to the CPU Throughput Approach, this method shows significantly lower per-

formance. The CPU Parallelized Individual approach achieves about 33,000 WPS

versus the 50 million WPS achieved by the throughput method. This is presumably

because there are not enough words present in the documents of ACM Dalhousie

Abstract Collection to efficiently parallelize a 1:1 document relatedness computation

on a 16-core processor. The overhead of using OpenMP in this case simply overcomes

the anticipated and expected performance gains.

Figure 6.6 illustrates the performance of the CPU Throughput approach on the

66

Figure 6.5: The Observed Performance of the CPU Throughput Approach and CPU
Parallelized Individual Approach When Processing Segments of the ACM Dalhousie
Abstract Collection

Figure 6.6: The Observed Performance of the CPU Throughput Approach and CPU
Parallelized Individual Approach When Processing Segments of the Gutenberg Col-
lection

67

Gutenberg Collection. It shows the words compared per second as a function of the

number of documents compared. As the number of documents compared increases,

the rate of WPS increases as well. We observe that performance drops off around 402

documents before returning to a positive slope. The decrease is better understood

when we examine Figure 6.3. This figure demonstrates that at 402 documents, the

average document length of the corpus begins to increase at a greater rate than its

maximum of approximately 6,000 words per document. The rate of WPS increases

from the point of 202 documents compared until the end of the experiment. Note

that this figure illustrates that about 100 million WPS can be processed using this

CPU approach.

Figure 6.6 also illustrates the performance of the CPU Parallelized Individual

approach on the Gutenberg Collection. We observe that the performance of this ap-

proach is significantly better than the performance with the ACM Dalhousie Abstract

Collection. We see a continued decline in performance as the average document size

of corpus decreases. This figure confirms that the CPU Parallelized Individual ap-

proach is very much dependent on the length of the document(s) in question. The

performance observed in this figure shows that longer documents allow for the over-

head of using OpenMP to be masked by the increase in performance. Unfortunately,

while the CPU Parallelized Individual approach was aided by the longer documents,

with a WPS rate of around 3 million, the CPU Throughput approach was observed

to have a rate of WPS of 100 million.

Given the superior performance of the CPU Throughput approach, it will be used

as the benchmark for evaluating all of the GPGPU methods that follow.

6.5 Comparing GPGPU Approaches

In this section, we explore the performance impacts of the modifications made to the

GPGPU approaches in order to handle variable length documents. These modifi-

cations primarily made greater use of the GPGPU’s global memory vice the shared

memory-centric approach to perform document relatedness calculations. From our

analysis in Chapter 4, we know that the best GPGPU loading method is the tuned

stride approach and that the best data structure for looking up word similarities is

perfect hashing. We now need to compare the following:

68

1. The shared memory method vs the global memory method

2. Pair-Wise document comparison approach vs the One-To-N document compar-

ison approach

This leads to the evaluation of a total of four approaches. Each of the proposed

GPGPU approaches were evaluated using the ACM Dalhousie Abstracts corpus in

a 2,000:2,000 document comparison and in a 10,000:10,000 document comparison to

best identify the impacts of the two memory methods on the selected approaches.

6.5.1 Evaluating the Shared Memory GPGPU methods

Table 6.1 illustrates the performance observed in the shared memory GPGPU ap-

proach.

GPGPU Approach WPS DPS Comparison (N:N)

Shared Memory Pair-Wise 10,803,419 9,698 2,000:2,000
Shared Memory One-to-N 40,519,426 36,376 2,000:2,000
Shared Memory Pair-Wise 12,912,885 9,415 10,000:10,000
Shared Memory One-to-N 19,526,691 14,032 10,000:10,000

Table 6.1: Performance of the shared memory GPGPU approaches on 2,000:2,000
and 10,000:10,000 Document Relatedness Comparisons Using The ACM Dalhousie
Abstract Collection

Based on the results observed in Table 6.1, Table 6.2 was created to easily illustrate

the change in the performance of the shared memory approaches as the volume of the

document relatedness calculations was increased.

GPGPU Approach ∆ WPS ∆ DPS

Shared Memory Pair-Wise 20% -3%
Shared Memory One-to-N -53% -60%

Table 6.2: Contrasting The Shared Memory GPGPU Approach Performance Evalu-
ating the ACM Dalhousie Abstract Collection for 2,000:2,000 against 10,000:10,000

Table 6.2 clarifies that the shared memory Pair-Wise approach scales effectively,

demonstrated by the 3 percent decline in the reported DPS performance as the amount

of work to compute the N:N document relatedness is multiplied by 25. This figure

illustrates that the number of words compared between the 2,0002 documents and

69

10,0002 documents increases by roughly the same factor as the total volume of doc-

uments compared. Additionally, Figure 6.1 allows us to observe that the corpus of

10,0002 document contains longer documents (approximately 10% longer). These two

figures allow us to effectively interpret an increase in the rate of WPS.

In contrast to the shared memory Pair-Wise approach, the shared memory One-

to-N approach has not demonstrated an ability to scale as effectively. The shared

memory One-to-N approach shows a decline of 60% in terms of DPS, and as a conse-

quence of lowered document throughput, the WPS rate declined accordingly.

In considering the rationale for the performance drop in the shared memory One-

to-N approach, the GPGPU’s ability to assign resources must be examined. As

discussed in Section 2.3.4, the GPGPU assigns resources by allocating blocks, each

of which is assigned a pool of threads. The N in the One-to-N approach defines both

the number of blocks and documents to compare against a base document. Each

of the N blocks is assigned a pool of threads equal to |Documentlongest| of the N

documents being compared. As N increases, the amount of work required of the

kernel also increases, but the number of resources remains fixed until N thread pools

are finished.

This results in a performance bottleneck, where the GPGPU is unable to advance

to the next kernel until the slowest pool of threads has completed its work. As

the thread pools finish performing their document relatedness calculations and are

removed from the GPGPU’s processing queue, more and more of the GPGPU falls

idle. In the One-to-N approach, this is caused by two issues:

1. Larger Documents require more iterations over the algorithm to calculate relat-

edness, slowing document throughput.

2. More work is provided upfront but no replacement tasking is available until the

N documents are compared.

In contrast, the Pair-Wise approach saturates the GPGPU with at most 32 times

the |documentsmallest| blocks of thread pools, each of which is required to perform

less work than a corresponding kernel launched in the One-to-N approach. It also

provides a more voluminous pool of tasks that can be worked on while waiting for

slower (longer) documents to be processed.

70

Based on the Shared Memory limitations discussed in Section 4.2, we can conclude

that the Shared Memory approaches cannot scale to a larger corpus, such as the

Gutenberg Collection. On smaller corpora that would apply to this method, such as

the ACM Dalhousie Collection, we would expect the performance of the One-to-N

approach to continue to decline comparatively to the Pair Wise due to the limited

number of threads it can effectively exploit on the GPGPU, as the scope of N in the

N:N document relatedness increases.

6.5.2 Contrasting the GPGPU Global Memory Approach with the

Shared Memory Approach

Table 6.3 illustrates the performance observed in the global memory GPGPU ap-

proach, when applied to the 2,000:2,000 and 10,000:10,000 ACM Dalhousie Abstract

Collection.

GPGPU Approach WPS DPS Comparison (N:N)
Global Memory Pair-Wise 8,154,287 7,320 2,000:2,000
Global Memory One-to-N 28,442,911 25,535 2,000:2,000
Global Memory Pair-Wise 9,975,764 7,273 10,000:10,000
Global Memory One-to-N 30,240,353 22,049 10,000:10,000

Table 6.3: Performance of the Global Memory GPGPU approaches on a 2,000:2,000
and 10,000:10,000 Document Relatedness Comparisons Using The ACM Dalhousie
Abstract Collection

Based on the results observed in Table 6.3, Table 6.4 was created to easily illustrate

the change in the performance of the global memory approaches as the volume of the

document relatedness calculations increased.

GPGPU Approach ∆ WPS ∆ DPS

Global Memory Pair-Wise 22% -1%
Global Memory One-to-N 6% -14%

Table 6.4: Comparing the Rates of the ACM Dalhousie Abstract Document Related-
ness Performance over 2,000:2,000 and 10,000:10,000 for the Global Memory GPGPU
Approaches

Table 6.4 allows us to observe that the global memory Pair-Wise approach again

demonstrates the most efficient relative scaling of DPS and WPS performance. The

71

global memory One-to-N approach, when contrasted with the shared memory One-to-

N approach (see Table 6.2), shows a much more graceful degradation in performance

in terms of DPS (14% decline), and even shows an increased throughput in WPS.

This can in part be explained by the growth in the corpus’ average document length,

and scaled by the decline in the DPS.

The modifications made to the global memory approaches result in a clear im-

provement over the observed scaling performance of shared memory approaches. The

superior scalability of global memory approaches are explained by the fragmentation

of the work into smaller elements. In the shared memory approaches there were fewer

kernel calls, and due to the modifications required for variable length documents,

the global memory approaches alter the base algorithms to perform the same work,

spread out over more kernel calls.

Prior to contrasting the performance of the global memory and shared memory

approaches on the ACM Dalhousie Abstract Collection, one must first discuss the

expected performance of the approach independent of memory storage. In general,

if algorithms are equal, the One-to-N approach should always outperform the Pair-

Wise approach. This is due to the GPGPU global memory access patterns for the

algorithms, which are the most expensive operations performed on the GPGPU. The

access patterns are as follows:

1. For the One-to-N approach O(N+M), where N is the length of the largest

document, and M is the length of smallest of the two documents being compared.

2. For the Pair-Wise approach O(N*M), where N is the length of the largest doc-

ument, and M is the length of smallest of the two documents being compared.

As each of the two approaches have the above O(memory access times) for each of the

kernels they invoke, it follows that the global memory approaches of the algorithms

should be slower for all approaches.

The global memory Pair-Wise approach performs slower than the shared memory

Pair-Wise approach across the evaluation corpora, which is in line with expectations

due to the fragmentation of the work. It also performs slower than the shared memory

One-To-N approach on the sample sizes selected, though based on the discussion in

Section 6.5.1, this condition most likely would not hold if the relatedness of a greater

72

number of documents was evaluated.

The global memory One-to-N approach, however, is only in line with the expected

performance in smaller subsets. In the larger corpus, it out-performs the shared mem-

ory approach by a significant margin. While the global memory One-to-N approach

performs with the highest WPS rate with the larger document collection, the perfor-

mance can be explained by the following factors:

1. The shared memory approach had N bounded by the upper dimensions of the

N:N document relatedness being calculated. The modifications required for

variable length documents ensure that the N in the One-To-N approach is now

bounded to N ≤ 64 for the global memory approach. This dedicates a fixed

volume of work for each iteration resulting in increased kernel launches over

larger document sets.

2. Rather than the shared memory approach’s single kernel, whose workload grows

in relation to N, the global memory approach spread the single kernel’s process-

ing work over four kernels. This allowed for the kernels to be implemented

so that there would be a lowered rate of conditional branching vice the single

kernel of shared memory.

6.5.3 Evaluating the Global Memory GPGPU Approach

To determine the performance of the global memory on the GPGPU, each of the

approaches, Pair-Wise and One-To-N, were evaluated with global memory. This was

performed with a series of subsets of varying sizes, from each corpus.

Figure 6.7 illustrates the observed performance of the global memory Pair-Wise

and One-to-N approaches when calculating the relatedness for the ACM Dalhousie

Abstract Collection. We observe in this figure that the words compared per second is

a function of the number of documents compared. We observe that as the number of

documents compared increases, the rate of WPS increases as well. This figure shows

that the One-to-N approach is clearly superior to the Pair-Wise approach on smaller

data sets, and that the One-To-N approach has a rate of 30 million WPS, while the

Pair-Wise approach has a rate of 10 million WPS. The rationale for the performance

of the One-To-N approach can be explained by:

73

Figure 6.7: The Observed Performance of the Global Memory Approaches When
Processing Segments of the ACM Dalhousie Abstract Collection

1. More efficient document transfers from the CPU to the GPGPU.

The Pair-Wise approach requests a maximum of 32 individual document trans-

fers at a time, while the One-to-N requests up to 64 at once. This allows

for less overhead for the transfer of the data across the Peripheral Component

Interconnect Express (PCIe) data bus.

2. Smaller documents.

The smaller documents allow for the workload of the One-to-N approach to

be more efficiently assigned than with the Pair-Wise approach. Expected per-

formance of the One-to-N approach is O(N+M), due to performing the itera-

tion over the smaller documents while holding the larger documents in thread

memory. On smaller documents there are less iterations and therefore a faster

throughput.

Figure 6.8 illustrates the observed performance of the global memory Pair-Wise

and One-to-N approaches when calculating the relatedness for the Gutenberg Collec-

tion.

We observe in this figure that words compared per second (WPS)is a function

74

Figure 6.8: The Observed Performance of the Global Memory Approaches When
Processing Segments of the Gutenberg Collection

of the number of documents compared. To this effect, as the number of documents

compared increases, the rate of WPS increases as well. This figure shows that the

Pair-Wise approach outperforms the One-to-N approach, and that the One-To-N

approach has a rate of 110 million WPS, while the Pair-Wise approach has a rate of

130 million WPS. The rationale for this performance difference can be explained by:

1. Document transfers from CPU to the GPGPU are non-blocking.

The Pair-Wise approach requests at most 32 individual document transfers at

a time, and the relatedness calculation for a document can begin as soon as the

first transfer is completed.

2. Larger documents.

The larger documents allow for the Pair-Wise approach to scale properly. Rather

than the One-to-N approach of iterating over the smaller document of the pair,

the Pair-Wise approach spawns more threads to represent the document. While

this approach would create more threads than relative work required on smaller

documents, with larger documents the threads are provided with enough work.

75

Figure 6.9: Performance of the ACM Dalhousie Abstract Collection Across All Ap-
proaches

Ultimately, the selection of the most effective approach is decided based on the

content and complexity of the corpus. The One-to-N approach provides the more

generally applicable approach to document relatedness calculations. If the documents

of the corpus are sufficiently large, for example six thousand unique words, then the

Pair-Wise approach would be the preferred approach.

6.6 Comparing Global Memory GPGPU Approaches to the Benchmark

In this section, we compare the two GPGPU approaches, using global memory, to the

CPU benchmark when performing a document relatedness calculation.

Using the benchmark established in Section 6.4, the global memory GPGPU ap-

proaches can be now be evaluated. This evaluation compares the baseline against the

GPGPU approaches on the ACM Dalhousie Abstract Collection and the Gutenberg

Collection.

The approaches were evaluated using a series subsets of composed from the first

10,500 documents of the ACM Dalhousie Abstract Collection. The performance of

the approaches with this subset is shown in Figure 6.9.

Figure 6.9, illustrates the WPS rates of the optimal approaches with the ACM

76

Figure 6.10: Performance of the Gutenberg Collection Across All Approaches

Dalhousie Abstract Collection: the global memory Pair-Wise approach, the global

memory One-To-N approach, and the CPU benchmark. We observe that the CPU

benchmark performs with a WPS rate of around 65 million, easily out-performing

the closest GPGPU approach. The One-to-N approach performed the best out of

the GPGPU approaches, with a WPS rate of around 30 million, while the Pair-Wise

had an observed WPS rate of 10 million. We can infer, based on the performance of

the CPU benchmark, that the streaming of the ACM Dalhousie Abstract Collection’s

smaller documents is responsible for some of the reduced capacity of the GPGPU.

This explanation is supported in part by the performance of the One-to-N approach,

with its larger document transfer performing significantly better relative to the CPU

benchmark.

Figure 6.10, shows the WPS rate of the three methods being evaluated with the

Gutenberg Collection: the global memory Pair-Wise approach, the global memory

One-to-N approach, and the CPU benchmark. We observe that the One-to-N ap-

proach performs with a relatively consistent WPS rate of a 92 million, which initially

out-performed the CPU benchmark, until 302 documents were compared, at which

point the CPU benchmark demonstrated superior performance. The Pair-Wise ap-

proach performed with an average WPS rate of 120 million, outperforming the One-

To-N approach under all conditions. The Pair-Wise method outperformed the CPU

77

Figure 6.11: Run-Time Performance of the ACM Dalhousie Abstract Collection
Across All Approaches

benchmark until 502 documents were compared at which point the CPU benchmark

outperformed the Pair-Wise approach.

Figure 6.11 illustrates the run-times of the Pair-Wise, One-to-N and CPU bench-

mark approaches when evaluated on the same subsets of the ACM Dalhousie Abstract

Collection. In Figure 6.9, we observe that the Pair-Wise approach takes the most

amount of time to calculate the results, while the One-to-N approach performs the

same volume of work in a similar amount of time as the benchmark until more than

3,0002 documents are compared.

Figure 6.12, illustrates the run-times of the Pair-Wise, One-to-N and CPU bench-

mark approaches when evaluated on the same subsets of the Gutenberg Collection. In

Figure 6.10, we observe that the One-to-N approach takes the most time to calculate

the results, while the Pair-Wise approach performs the same volume of work as the

benchmark until more than 602 documents are compared.

Based on the results observed in this evaluation, the GPGPU approach can only

out-perform the benchmark for limited intervals and only under specific conditions.

To narrow the performance gap between the GPGPU and CPU, arguments can be

made that improving the hardware of the GPGPU used, for instance, updating the

78

Figure 6.12: Run-Time Performance of the Gutenberg Collection Across All Ap-
proaches

GeForce 660 GTX to a more recent video card. However, a similar argument could

be made for improving the server that the benchmark is run on. This is to say that

the specific hardware utilized can negatively or positively affect the word relatedness

calculations on either a CPU or a GPGPU.

To contextualize the GPGPU performance in terms of the CPU performance,

one should consider the financial or retail cost of the hardware. In this series of

experiments, the GPGPU is a sub $200 card compared against CGM6, an $8,000

server. In this case, the superior performance of CGM6 comes at 40 times the price

of the GPGPU.

6.7 Summary of Results

To summarize the results of this chapter’s experiments, the GPGPU approaches have

been shown to effectively calculate document relatedness given the conditions that

were outlined in Section 3.1.

Based on the performance observed during the document similarity computations

on the documents, the optimal approach between the Pair-Wise and the One-to-N

approaches is determined by the average corpus length. On relatively small corpora,

such as the ACM Dalhousie Abstract Collection, the One-to-N approach demonstrates

79

Figure 6.13: Performance of the Global Memory GPGPU Approaches on the ACM
Dalhousie Abstract Collection Expressed as Percentage of the Baseline Performance

superior performance. Given the relatively small number of data sets of this size, the

Pair-Wise approach would be more universally applicable, and therefore, the generally

preferred approach to use.

Figure 6.13 illustrates the performance of the global memory One-to-N, and global

memory Pair-Wise approaches on the subset of the ACM Dalhousie Abstract Corpus

used earlier in this chapter. The performance of the two approaches are expressed as

a percentage of the CPU benchmark’s WPS performance. This allows us to observe

that the One-to-N approach provides the performance of about half of the CPU

benchmark (while the Pair-Wise approach sits at 15%).

Figure 6.14 illustrates the performance of the global memory One-To-N, and global

memory Pair-Wise approaches on the subset of the Gutenberg Collection used earlier

in this chapter. The performance of the two approaches are expressed as a percentage

of the CPU benchmark’s WPS performance. This allows us to observe that the One-

to-N approach provides the performance of around 60% of the CPU benchmark, with

the Pair-Wise approach performing slightly higher at around 80%.

Ultimately, this thesis has proven the ability of the novel GPGPU approaches

proposed to compute document relatedness, and has illustrated that the performance

of a single low-cost GPGPU can vary between 40 to 80% of a high-cost mutli-core

server, in this thesis CGM6, as illustrated in Figures 6.13 and 6.14.

80

Figure 6.14: Performance of the Global Memory GPGPU Approaches on the Guten-
berg Collection Expressed as Percentage of the Baseline Performance

Chapter 7

Conclusion

This thesis presented and evaluated a number of approaches for computing GTM

relatedness on a GPGPU platform. It has illustrated that document relatedness cal-

culations can be effectively performed on GPGPUs in a highly cost effective manner.

In addition to proving the success of the novel GPGPU approaches as an alternative

to previously established CPU approaches, this thesis has illustrated that the ob-

served performance of a single low-cost GPGPU can compete with the performance

of a high-cost mutli-core server.

7.1 Recommendations for Future Work

While the results presented in thesis have demonstrated an effective GPGPU GTM

approach, the approach could be further developed in a number of ways. For example,

the following areas of future development could be explored:

1. A Hybrid CPU and GPGPU algorithm to conduct GTM document relatedness.

This approach would require investigations into scheduling and assigning work

between the CPU and GPGPU approaches. This would also include devising

an improved CPU implementation of GTM.

2. An adaptive GPGPU GTM method that selects the algorithmic approach of

Pair-Wise or One-to-N, based on the corpus being evaluated.

By performing additional research into the performance of the Pair-Wise and

One-to-N approaches on corpora of varying document lengths, a heuristic for

which approach to use given set a documents can be developed. Using this

heuristic, the GPGPU GTM method could then determine and apply the best

suited approach for calculating relatedness to achieve the highest rate of WPS

possible.

81

82

3. A multi-GPGPU approach to performing GTM document relatedness.

The multi-GPGPU approach would require experiments to determine the ideal

methodology to share workload, and resources between multiple GPGPUs.

4. Further analysis into other applicable N:N document comparison methods, such

as scheduling blocks of documents.

This thesis explored 1:1, and 1:N relatedness approaches to produce an N:N

document relatedness calculation, and while effective, there are other related-

ness approaches explored for multi-core implementations [15, 19]. This future

work would involve the investigation and application of these approaches to a

GPGPU.

5. Applying the GPGPU approach to other corpus-based similarity methods.

The GPGPU approach in this thesis can potentially be applied to other methods

to compute document similarity, such as work presented in [14].

Bibliography

[1] Jon Martindale, Nvidia dominating in add-in graphics
card market, DigitalTrends, Aug. 2015. [Online]. Available:
http://www.digitaltrends.com/computing/nvidia-add-in-graphics-market/
[Accessed: 27 Aug. 2015].

[2] Bob Jenkins, Minimal Perfect Hashing, BURTLEBURTLE, 1999. [Online]. Avail-
able: http://burtleburtle.net/bob/hash/perfect.html [Accessed: 20 June 2014].

[3] Thorsten Brants and Alex Franz. Web 1T 5-gram corpus version 1.1. Technical
report, Google Research, 2006.

[4] Fellbaum. WordNet: An electronic lexical database. MIT Press, 1998.

[5] Wael H. Gomaa and Aly A. Fahmy. A Survey of Text Similarity Approaches.
International Journal of Computer Applications, 2013.

[6] Anna Huang. Similarity measures for text document clustering. 2008.

[7] Aminul Islam and Diana Zaiu Inkpen. Semantic text similarity using corpus-
based word similarity and string similarity. TKDD, 2(2), 2008.

[8] Aminul Islam, Evangelos E. Milios, and Vlado Keselj. Comparing word relat-
edness measures based on google n-grams. In COLING 2012, 24th Interna-
tional Conference on Computational Linguistics, Proceedings of the Conference:
Posters, 8-15 December 2012, Mumbai, India, pages 495–506, 2012.

[9] Aminul Islam, Evangelos E. Milios, and Vlado Keselj. Text similarity using
google tri-grams. In Advances in Artificial Intelligence - 25th Canadian Confer-
ence on Artificial Intelligence, Canadian AI 2012, Toronto, ON, Canada, May
28-30, 2012. Proceedings, pages 312–317, 2012.

[10] Jason Sanders, Edward Kandrot. CUDA By Example: An Introduction to
General-Purpose GPU Programming. Addison-Wesley, 2011.

[11] Shibamouli Lahiri. Complexity of Word Collocation Networks: A Preliminary
Structural Analysis. ArXiv e-prints, 2013.

[12] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennu-
paty, Per Hammarlund, Ronak Singhal, and Pradeep Dubey. Debunking the
100x GPU vs. CPU myth: an evaluation of throughput computing on CPU and
GPU. In 37th International Symposium on Computer Architecture (ISCA 2010),
June 19-23, 2010, Saint-Malo, France, pages 451–460, 2010.

83

84

[13] Hongzhe Liu and Pengfei Wang. Assessing sentence similarity using wordnet
based word similarity. JSW, 8(6):1451–1458, 2013.

[14] Md Rashadul, Hasan Rakib, Aminul Islam, and Evangelos Milios. Text relat-
edness using word and phrase relatedness. Proceedings of the 9th International
Workshop on Semantic Evaluation, 2015.

[15] Jie Mei, Xinxin Kou, Zhimin Yao, Andrew Rau-Chaplin, Aminul Islam, Abidal-
rahman Moh’d, and Evangelos E. Milios. Efficient computation of co-occurrence
based word relatedness. In Proceedings of the 2015 ACM Symposium on Docu-
ment Engineering, DocEng 2015, Lausanne, Switzerland, September 8-11, 2015,
pages 43–46, 2015.

[16] Donald Metzler, Susan T. Dumais, and Christopher Meek. Similarity measures
for short segments of text. pages 16–27, 2007.

[17] Gabriel Recchia and Max M. Louwerse. A comparison of string similarity mea-
sures for toponym matching. In ACM SIGSPATIAL International Workshop
on Computational Models of Place, COMP 2013, November 5, 2013, Orlando,
Florida, USA, pages 54–61, 2013.

[18] Robert B Allen, Pascal Obry, and Michael Littman. An interface for navigating
clustered document sets returned by queries. pages 1075–1079, 1993.

[19] Xinxin (Vivian) Kou. Efficient Implementations of Google Trigram Method for
Computing Document Relatedness. Bachelor thesis, Dalhousie University, 2015.

