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Abstract

The microorganisms associated with our body, collectively known as the microbiome,
have profound impacts on biological processes including human health and disease.
Different body sites are dominated by different major groups of microbes, but the
variations within a body site, such as the mouth, can be more subtle. High-throughput
DNA sequencing allows the assessment of the microbiome at an unprecedented scale,
but creates new computational challenges. Machine-learning procedures can serve
as useful tools for distinguishing microbes from similar body sites, understanding
key organisms and their roles can highlight deviations from expected distributions of
microbes.

We focused our attention on the classification of nine oral sites, and dental plaque
in particular, using data collected from the Human Microbiome Project. A key focus
of our representations was the use of phylogenetic information, both as the basis for
custom kernels and as a way to represent sets of microbes to the classifier. We also
used the PICRUSt software, which draws on phylogenetic relationships to predict
molecular functions, to generate additional features for the classifier. Custom kernels
based on the UniFrac measure of community dissimilarity did not improve perfor-
mance. However, feature representation was vital to classification accuracy, with
microbial clade and functional representations providing useful information to the
classifier. However, these two types of information were correlated rather than com-
plementary, and combining the two types of features did not yield increased prediction
accuracy. Many of the best-performing clades and functions had clear associations
with the oral microbiome.

The classification of oral microbiota remains a challenging problem; our best ac-
curacy on the plaque dataset was approximately 81%. Perfect accuracy may be
unattainable due to the close proximity of the sites and intra-individual variation.
However, further exploration of the space of both classifiers and feature representa-

tions is likely to increase the accuracy of predictive models.
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Chapter 1

Introduction

The microorganisms that coexist within the human host are referred to as the human
microbiome. The human body harbors a tremendous number of microbial cells that
can outnumber human cells by a factor of 10 [6, 7, 8, 9, 10]. Interacting closely with
their host, these microorganisms play an important role in human biological processes
and disease states [11, 12, 13, 14, 15, 16]. For example, the intestinal microbes are
capable of producing some required vitamins that the human body cannot synthesize,
such as vitamin B12 and vitamin K [17]. Iron absorption [18, 19, 17] and the formation
of antioxidants [20] in the human body also rely heavily on microbes. Microbes are
also linked to different diseases, such as inflammatory bowel disease [21, 22, 11],

periodontal disease [23, 24, 25, 15, 26, 27] and skin disease [28, 29, 30, 31].

The human oral cavity is one of the most diverse and complex microbial habitats to
analyze, for several reasons. First, many ecologically distinct sites including different
types of plaque, different oral surfaces, and saliva are found in close proximity to one
another [12, 32, 33], which makes it easier for microbes to migrate among these sites.
Second, the oral habitat is highly variable with frequent inputs of nutrients, often
followed by mechanical removal of the biofilm (e.g., via tooth brushing). Third, the
oral microbiome is also implicated in a number of diseases, including dental caries,

periodontal disease and even infections in heart and liver [34, 35, 15].

Traditional microbiome studies were performed using laboratory culture meth-
ods [6, 36, 37, 38|, which identify the microorganisms by plating samples on different
artificial media. Culture-based approaches are slow and limit the detectable organ-
isms to the minority that could be grown in a laboratory environment. DNA se-
quencing refers to the process of determining the order of nucleotides in a specific
molecule of DNA. In a microbiome study, these sequences can reveal genetic infor-
mation about the microorganisms. Recent developments in high-throughput DNA

sequencing techniques allow a large number of microbial sequences to be identified
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in a short time [39, 40]. With so much microbiome data available, interpretation
of these huge datasets is a daunting challenge. Machine-learning approaches can be
used to identify critical information to classify or distinguish microbiome samples.
Several studies have constructed microbial features from DNA sequence and used
machine-learning algorithms for classification [41, 42, 43, 44]. Classifying the samples
between major body sites is relatively “easy” and commonly performed, however,
differentiating samples within sites is challenging.

In our work, we tackled the problem of classifying human oral cavity samples, espe-
cially those associated with hard plaque. Integrating phylogenetic information among
these microbes improved classifier performance. The work in this thesis is geared to-
wards improving classifiers in order to better characterize microbial communities in
the oral cavity. Important features for the classifiers also reveal the discriminative

microorganisms and key functions within the microbial community.

1.1 Human Microbiome

1.1.1 Microbiome Interactions and Human Host

The term “human microbiome” was first proposed by Joshua Lederberg: “Microbiome
is the ecological community of commensal, symbiotic, and pathogenic microorganisms
that literally share our body space” [45]. Taking different parts of our body as their
habitats, the microbes have substantial effects on human biological processes and
disease states.

Microbial communities often interact with the host in a non-disease-inducing way.
Members of these communities can have mutualistic relationships with the human
host, where both partners derive some benefit from the association. Intestinal mi-
crobes inhabit in the human body and rely on nutrients from the host to survive.
At the same time, these bacteria also produce vitamins and other substances which
are vital elements for human health. Not all commensal microbes provide products
that benefit the human body, some of them are associated with the enhancement of
health. For example, immunological studies found probiotic bacteria, such as lac-
tic acid bacteria in human milk contribute to the maturation of the baby’s immune

system [46].
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Disease-associated microorganisms are also associated with the human body. Many
medical conditions are associated with the breakdown in microbial balance in the
human body, termed dysbiosis, which is readily detectible through changes in the
diversity or composition of human-associated microbes [13]. For example, the abun-
dance shifts in intestinal microbes have been identified as a vital factor of Crohn’s
disease [47, 48]. Some conditions such as psoriasis and acne are caused by an inap-
propriate immune response on the skin; this dysregulation was found to result from

a change in skin microbes [31].

Some microorganisms play an indeterminate role in the human body. They are
harmless to humans most of the time, but can switch to pathogenic status under
some conditions. An example of such an “opportunistic pathogen” is Staphylococcus
epidermidis. It is a permanent and commensal colonizer on human skin, but was
found to be one of the most important causes of infections. Normally, they keep
a benign relationship with their hosts and do not cause disease. However, when
foreign bodies intrude into our body, S.epidermidis can cause infections. Because
S.epidermidis can form a biofilm around foreign bodies, where biofilm is a number
of densely-stick microbial cells growing on a surface. Due to the protection of this

biofilm, our immune system cannot eliminate the infection [49, 50].

The oral cavity plays host to many complex microbial communities. Periodontal
disease, one of the most common inflammatory and bone lytic diseases, is caused by
abnormal composition of microorganisms in the gums [51, 15]. Besides the direct
impacts of oral disease, periodontitis has been associated with systemic diseases such
as cardiovascular disease and diabetes [25, 52]. Food is chewed and mixed in the
oral cavity before reaching stomach and intestinal tract. If there was gingival crevice
or other oral injury, some bacteria may follow the bloodstream to reach other body
sites and cause infections. As one of the main communities of oral microbes, dental
plaque refers to a condensed layer of bacteria on the teeth [53, 54]. Plaque is com-
monly associated with a number of diseases, including tooth decay and periodontal
disease [55, 26]. While tooth brushing is an important mechanical control for plaque,
many people fail to clear away all the plaque with regular tooth brushing, leading
to very high prevalence of dental disease. The role of dental plaque in oral health

and disease makes the oral cavity, and plaque in particular, worthwhile targets for



microbial community profiling and classification.

1.1.2 Microbial Communities of the Human Body

Microbial community ecology draws on concepts from traditional ecology to generate
insights into the human microbiome: key aspects of microbial ecology include analysis
of taxonomic proportions, functions, and interactions between microorganisms and

environment [56, 57, 58].

Taxonomy provides approaches to define groups of organisms based on their com-
mon physiological or genetic characteristics. A taxon (plural: taxa) consists of a
number of related organisms that share certain similarities. Recursively aggregating
taxa forms higher-level groups, which creates a hierarchical taxonomic classification
system. Organisms are typically assigned names at each rank of a taxonomic hierar-
chy comprising the ranks of kingdom, phylum, class, order, family, genus and species.
Major body sites show very distinctive composition at all taxonomic levels; for exam-
ple, healthy human gut samples are dominated by members of phyla Bacteroidetes
and Firmicutes, while skin samples tend to be much richer in Actinobacteria and
other groups [59, 60, 61]. Variation in environmental conditions results in the growth
of various sets of bacteria. For example, hard plaque is subdivided into subgingi-
val plaque below the gumline, and supragingival plaque above the gumline. Because
of the oxygen-free environment, subgingival plaque consists mainly of anaerobic or-
ganisms, such as Clostridia, Fusobacterium and Prevotella, while aerobic bacteria,
such as Bacilli and Betaproteobacteria are dominant members of the supragingival
plaque [7, 32]. Taxa in human body is easy to be affected by factors, such as age,
lifestyle, ethnicity and living environment. However, related studies found functional
profiles within one site varies little between individuals. Functional profiles summa-
rize metabolic or other traits existing in the samples, which is often a more stable
measurement of microbial communities than taxonomic composition. Since functional
traits characterize the microbial community from a different aspect, we might expect

function to provide powerful features for microbial classification problem.



1.1.3 Microbiome Analysis

To characterize the microbiome requires the choice of a marker to identify and analyze
the microorganisms. Genetic markers allow us to identify individuals, populations or
species within the community. Although marker genes are a key tool for microbial
study nowadays, the identification of microorganisms has undergone several decades
of developments.

Culture-based approaches were applied to identify the microbes, but this method
limited the range of microbes to those that can grow in the laboratory environ-
ment [62, 36, 63]: some authors have claimed that less than 10% of microbes can
be cultured, thus preventing most microorganisms from having taxonomic names
assigned [64]. The first use of molecular (i.e., DNA or protein) sequences for evolu-
tionary analysis took place in the 1960s [65, 66, 67]. If all organisms possess similar
genes that evolve relatively slowly, these sequences can be used to infer the evolu-
tionary history of the organisms. The 16S ribosomal RNA (16S rRNA) gene emerged
as the standard for identification of microorganisms. This gene is a constituent of
ribosomes, which are responsible for synthesising proteins in the cell; since this is a
universal function, all living organisms have ribosomes and the gene that encodes this
ribosomal RNA. Several reasons justify the 165 rRNA gene (referred to hereafter as
16S) as a genetic marker for microbial diversity [68, 6, 37, 69]:

First, ribosomal RNA is present in all microorganisms, which makes it a universal
target.

Second, the 16S rRNA sequence is a stable genetic marker. Many regions of the
gene change slowly and 16S has a lesser chance of gene loss, mutation or genetic
exchange between organisms (e.g. lateral gene transfer [70]). The evolutionary relat-
edness of the organisms can be inferred from these sequences.

Third, the 16S sequences include highly conserved and variable regions (Fig-
ure 1.1). The variable regions are different from species to species, which allows
us to identify the taxa in the community. The conserved regions work as start-end
marks on sequences to locate the variable regions.

Identifying the microbial diversity based on the 16S marker gene is widely used
today, but there is still a large number of microbes that have not been character-

ized. Since we still have 16S sequences that cannot be reliably classified in taxonomy.
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Figure 1.1: Illusration of conserved (blue) and variable (white) regions of
the 16S rRNA gene.

The 16S sequences of many bacteria and archaea can be accessed via those pub-
lic databases, such as National Center of Biotechnology Information (NCBI) and
Genbank. However, quality of the sequences in those databases is not very authori-
tative [71]. So several secondary 16S database address this problem; the three most
widely used are the Ribosomal Database Project (RDP) [72], SILVA [73] and Green-
Genes (GG) [74]. RDP provides aligned and annotated sequences from not only
bacteria and archaea but fungi as well. Sequences can also be aligned and derived
phylogeny via RDP. SILVA has numerous types of rRNA sequences. Operations on
sequences, such as searching and aligning are also available in SILVA. GG is a 16S
rRNA gene database, which provides annotated, classified and full-length aligned se-
quences. The taxonomy in GG is based on a de novo phylogenetic tree created from

the whole reference sequences in its database.

16S is a valuable tool to characterize microbial communities, however, it gives no
direct information about the function of organisms in a given habitat. Metagenomics
refers to the sequencing of fragments of DNA from given environment such as the
human body. Metagenomics uses a “Shotgun” sequencing approach, which cuts total
DNA from all microbes in an environment into small pieces. Sequencing a random
sample of these fragments yields information about functional genes, and can poten-
tially produce whole genomes based on the assembly of overlapping regions of these
sequence fragments [75, 76]. However, due to the cost of metagenomics, the number

of available metagenomic samples is smaller than that of 16S rRNA.



1.1.4 Human Microbiome Project

The recognition that microorganisms in the human body may play a more central
role in health and disease that previously thought, motivated the development of
large-scale projects to assess the microbiome in many individuals. To facilitate the
understanding of the human microbiome, the National Institutes of Health launched
the Human Microbiome Project (HMP) in 2008 [77, 78]. The goals of HMP included:

1) collecting samples from multiple body sites to produce an overall characteriza-
tion of the microbial communities;

2) exploring the relationships between health state and changes in the microbiome;

3) providing researchers with a standard dataset and technology for further studies
of the microbiome.

The HMP collected samples from 242 North American volunteers (129 males and
113 females) aged between 18 and 40. Microorganism samples were collected from
the five major sites of greatest interest: the oral cavity, the nasal cavity, the skin, the
gastrointestinal tract and the urogenital tract. In many cases several sub-sites were
sampled from each site: for example, a total of nine different locations in the mouth
were sampled from most study participants. A diagram of the oral cavity drawn by
Sitepainter can be found in Figure 1.2. All generated sequences, developed software
and related standard operating protocols in HMP have been released to the public,
which can be accessed from HMP Data Analysis and Coordination Center (DACC)
[Link: www.hmpdacc.org].

Works studying the HMP data found that Firmicutes is the prevalent phylum
in the oral cavity, and Streptococcus, a genus of Firmicutes, has the most abun-
dance at the genus level [7, 32]. However, through the digestive tract from mouse
to gut, the abundance of Firmicutes typically decrease while the amount of Bac-
teroidetes increases. Following Streptococcus, other abundant species are different at
sites: Haemophilus were found in the buccal mucosa, Actinomyces and Prevotella
were in Supragingival plaque and Subgingival plaque [52]. Comparing to other sites,
communities in the oral cavity and stool are diverse in microbial memberships and the
taxonomic composition varies a lot between each individual. In addition, a number
of metabolic processes were widely distributed on digestive tract, such as carbohy-

drate metabolism and the synthesis of energy molecules(e.g., adenosine triphospate
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Figure 1.2: Human oral cavity diagram drawn by SitePainter [1].

(ATP)) [32].

1.2 Machine-learning Methods

Machine learning is the science of designing algorithms to recognize patterns in data,
and making predictions based on these discovered patterns. Machine learning has
been widely applied in many fields, such as text categorization, image recognition and
intelligent robot control [79, 80, 81]. Recently developed “next-generation sequencing”
technologies can produce a huge number of DNA sequences in a short time and
low cost. To deal with such large amount of sequences, powerful computation tools
and algorithms are required. Machine learning has been applied to many problems
in bioinformatics [82, 83, 84, 85]; applying it to microbiome data may give better

characterizations of the microbial community [44, 86, 41].

1.2.1 Overview

For the sake of consistency, this section introduces the definitions used throughout
the thesis. The dataset that is used to build and evaluate the model is a collection of
samples, also called instances or examples. Each sample is described by a number of
features, which can also be referred to as attributes, variables or dimensions. Features
can be assigned with values in continuous, categorical, or other data types. Training

is the process of building a predictive model by learning from a subset of the entire
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labeled dataset. To see how well the model performs on new samples, testing is
performed using samples that were not used in the training process. The complete set
of samples can be separated into training and testing set to evaluate the performance
of the model. K-fold cross-validation is a common strategy that extends the idea of
training and test sets by dividing the samples into & equal sized subsets. For each
cross-validation process, the iy, (i=1,2,...,k) set is used for testing while the other k-1
sets are for training iteratively. Repeating the process £ times and averaging the k

results produces the final estimation.

Machine-learning methods are often split into two major categories. Supervised
learning uses prior defined labels (for example, the body location associated with a
given sample) and tries to build a mapping function between them according to the
category they belong to. Unsupervised learning attempts to associate samples based
on measures of between-sample similarity, without reference to any previously defined
categories. Commonly used methods such as ordination and clustering are able to
find out the associations from the most salient patterns, however, sometimes the
achieved patterns may not reveal features with much interest [29]. Since supervised
classification approaches use knowledge of features to train models that can draw on
any pattern of co-variation in the data, it may give patterns with higher relevance to

categories of interest than unsupervised approaches.

Due to the large variety of prediction algorithms, different evaluation measures
have been proposed. For supervised learning algorithms, widely used evaluation meth-
ods assess the performance mainly from the proportion of correct predictions, sum
of error and correlation coefficients [87]. The proportion of correctness reflects the
percentage of samples that are correctly predicted, which can also be derived from
the number of True Positive (TP), True Negative (TN), False Positive (FP) and False
Negative (FN) predictions (description of TP, TN, FP and FN in Chapter 3.3). Sum
of error approaches calculate the distance between the prediction and true label of
the sample, while correlation coefficients measure the amount of agreement between

them.

Typically, the performance of an algorithm is evaluated after repeating the pre-

diction for a number of times. Although the performance can fluctuate during each
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time, the deviation should always be within a reasonable scale. To verify the pre-
dicting results, statistical methods are usually used. Basic statistical descriptions
include central tendency, consistency and range of a sample. In addition, a statistical
hypothesis test can also be used to prove that results are not achieved by chance,

which increases the soundness of the algorithm.

1.2.2 TImportant Considerations in Classification

The goal of classification is to generate a model that can maximize the accuracy
under a given criterion. However, no single classifier can give optimal results on
every dataset. Several factors may lead to the failure of classification, from the
sample initialization to final evaluation [2]. Successful classification depends on a

large number of factors, including;:

e Creating an appropriate feature set is essential. Features are like the bricks
that will be used to construct a building: if the bricks are poor, even the best
architecture cannot make it strong. Raw data are not usually in a form that
classifiers can use directly: for example, microbiome samples are based on DNA
sequencing, models based directly on nucleotide sequences are unlikely to give
good accuracy. To solve such problems, different feature construction strate-
gies are required. For example, in sequence classification, a k-mer approach
is used to create features, whose values represent the frequency of all possible
k-length subsequences appearing in the target sequence [88]. For document
categorization, features are constructed via a bag-of-words model, which counts
the occurrences of each word in the document. Features can be constructed

using various strategies [89)].

e Biological datasets are often high dimensional, with many more features than
there are samples. This is often described as the curse of dimensionality [90].
Many datasets in biology are of this type: gene microarray data records the
expression level of thousands of genes under different conditions, but typically
for under 100 samples [91]. Biological sequence data such as DNA and pro-
tein are often converted to features using a k-mer approach, which generates

a large number of features (4* for DNA and 20* for protein) [92, 93, 88]. An
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obvious problem caused by high-dimensional feature set are the high cost in
running time and memory space. Moreover, overfitting may occur if the clas-
sifier is trained using a large number of features [94, 2]. Since feature space
of large-dimension usually results in a complex model. Several strategies are
available to counteract the curse of dimensionality. One way is to select an algo-
rithm that can handle high-dimensional input features, such as Support Vector
Machine (SVM) [95] and Random Forest (RF) [96]. Dimensionality reduction
can also be used to reduce the size of the feature space. Feature selection and
extraction are two commonly used types of approach. Feature selection (e.g.
Information Gain [97], Feature Permutation [98]) chooses a subset of features
highly relevant to the labels with different strategies. Feature extraction (e.g.
Principal Component Analysis(PCA)) transforms all the features into a new
feature space, where the first few dimensions captures most of variance about
the dataset. These features may contain more useful information to the clas-
sifiers than those from feature selection, but the transformed features cannot
reflect their biological meaning directly. Last, taking advantage of the proper-
ties of dataset and algorithms, for example, SVM gives predictions based on the
similarity scores between pairs of samples. If information in the original feature
space can be transformed into similarity scores, the high-dimensional problem
will be avoided. Moreover, meaningful correlations often exist in biological data.
For instance, several genes together may affect the same characteristic, a pro-
cess known as epistasis [99]; and it may be a group of microorganisms, rather
than a single one, that differentiates the communities [32]. If one representative

member of this set can be picked out, the number of features would be reduced.

Information leakage usually happens when the training data gets information
about the labels in testing test beforehand, resulting in unrealistically good pre-
dictions. A typical example of a leaked model would be that it gives predictions
based on the target label itself. This type of leakage is analogous to saying it
is sunny on sunny days [100]. Although the predictions from such models look
very satisfactory, they are not reliable. Information leakage can occur in most
steps of the machine learning process, including feature construction, feature

reduction, training and testing. An instance of leakage in feature construction
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was seen in the KDD-Cup competition in 2008 [101]. One challenge required
methods to predict if a patient had breast cancer based on her mammography
data. The patient ID feature showed an extremely powerful ability to predict the
label, because the ID string is encoded with the patients’ health condition [102].
Information leakage can also occur when applying feature selection [103]. Fea-
tures are first ranked on all the dataset using information gain or other criteria.
Then a number of important features are selected, people build the model with
these features and use cross-validation to measure the performance. But actu-
ally, all the data has already been known before testing, meaning the selected
features leak the labels of all samples. So in this case, feature selection should
be performed during cross-validation, that is divide the samples into training
and testing set, rank the features based on training set and evaluate the model

with testing set. Repeat this process for £ times to get the result.

The accuracy of machine-learning classifiers is rarely perfect on anything. Peo-
ple usually try to decrease the error by optimizing the training model. Bias and
variance are two indicators of measuring the models [104]. Assume a training
set (z;,v;) fit an hypothesis H(x), bias describes the average error made by
H(x), while variance measures the amount of consistency of the predictions.
Figure 1.3 visualizes the concept of bias and variance [105]. When a model is
too simple, it may make consistently incorrect predictions. Although the con-
sistency keeps a low variance, the value of bias will be very high. This situation
is described as under-fitting. In contrast, if a model is too complex, even if it
works well on training set, the prediction accuracy on the test set may not be
that precise. This scenario leads to low bias and high variance, which is known
as over-fitting. Since a decrease in bias implies an increase in variance and
vice versa, there must be one point where the trade-off of bias and variance is
optimal with respect to classification accuracy. A bias-variance trade-off curve

graphically describes this idea (in Figure 1.4).

Over-fitting can be avoided by reducing the complexity of the model.. Some
algorithms reduce it via tuning specific parameters, others by controlling the
number of parameters. Regularization is another way to control model com-

plexity. From Figure 1.5 we find that the boundary generated by an over-fitted
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fitting: high variance and low bias.
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model is usually highly curved, since it tries to get close to every training point.
However, regularization can smoothe the curve functions by using different tech-

niques [106].

1.3 Related Work

Supervised approaches have been used to classify the human microbiome [41, 107, 43,
108] with the abundance of different taxa (e.g., species) or Operational Taxonomic
Units (OTUs) serving as feature vectors. OTUs were defined based on the similarity
sharing between marker genes [109, 110]. For OTUs in microbiome, they are groups
of sequences, typically 16S sequences, with a specific amount of similarity.

Knights et al performed one of the first supervised classification studies of the
human microbiome, applying five classification algorithms [41], including RF and
SVM. These classifiers were applied to five microbial datasets, comprising samples
from healthy human volunteers, that were originally described in Costello et al [29,
111]. RF achieved the highest accuracy on three of the datasets when all features were
used. However, SVM showed similar accuracy after being given a selected subset of
features. Samples labeled with major body sites were easy to separate: for example,
a classifier trained to distinguish external auditory canal (e.g., the ear), gut, hair,
nostril, oral cavity and skin samples yielded an accuracy of 88.8%. Sub-sites were
more difficult to distinguish: for example, a classifier trained on twelve different skin
sites got an accuracy of 56.8% (s.d. 6.7%) on average.

Supervised classification has also been used to distinguish samples labeled with
disease states. Galimanas et al found that microbial communities from supragingi-
val plaque and the tongue dorsum can serve as alternative biomarkers for Chronic
Periodontitis (CP), a disease of the subgingiva [12]. Subgingival, supragingival and
tongue plaque samples from 11 healthy and 13 diseased subjects were analyzed in
their study. In tongue dorsum, they found a group of disease-indicating OTUs, in-
cluding Treponema denticola and Treponema forsythia, have a small proportion in
healthy samples but are present in high abundance in people with CP. The amounts
of Porphyromonas gingivalis and Filifactor alocis in supragingival plaque were found

at significantly increased levels in people suffering from CP.
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Statnikov et al tested the performance of several major classifiers and feature
selection strategies [43]. They found that classification tasks of separating body
sites or subjects yielded relatively high accuracy, while distinguishing healthy from
diseased states was more difficult: for example, when classifying the samples from
people with and without psoriasis (labels: control, psoriasis normal and psoriasis
lesion), the performance of all classifiers were poor, whose accuracy is about 10% to
60% lower than classifying healthy body sites. When comparing the classification
methods, their result was consistent with Knights et al’s: RF and SVM were two
most effective machine-learning methods, followed by Kernel Ridge Regression and
Bayesian Logistic Regression. Studies done previously recognized that the 16S rRNA
data is of high sparsity and redundancy when expressed as input features. Wang et al
present a feature reduction algorithm called Feature Merging and Selection (FMS),
which integrated the Linear Discriminant Analysis [108]. FMS was able to reduce the
feature space without losing original accuracy, and the relationships between features
can also be preserved. They tested the pneumonia data (binary classification) with
SVM and k-nearest neighbor (KNN) models. Results showed that features selected by
FMS gained better performance than some popular feature selection methods: 5.5%

(SVM) to 13.9% (kNN) improvement in accuracy.

For the high-dimension and sparsity of the feature space, an efficient machine
learning algorithm for microbial classification is also in demand, especially multi-
class classification. Liu et al integrated the SVM and KNN learning methods, and
proposed a sparse distance-based learning algorithm for classifying 16S metagenomic
data [42]. In their algorithm, the predictions were made by a kNN model. However,
the distances between samples in the ANN model were given different weights, which
is optimized via an efficient quadratic SVM method. They showed its efficiency in

classifying 16S rRNA data and the suitability to unbalanced datasets.

Microbiome data is typically high dimensional, with potentially thousands of
OTUs observed in each sample. Feature selection aims to identify a subset of all
features that are most promising for classification, thereby eliminating uninformative
features and decreasing the running time for the classifier [112]. Even when the ac-
curacy of a classifier is not substantially improved, feature selection can still reveal

key species or molecular functions of particular biological interest, because only the
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set of features that are most useful to classification (typically a very small subset of

all features) is retained.

1.4 Contributions

Supervised methods are effective for many classification problems; however, few stud-
ies have tackled the classification of the oral microbiome specifically. An important
objective of this project is to augment standard representations of microbial commu-
nities (for example, OTUs) with additional biological and evolutionary information.
For example, support vector machines (SVMs) can base their classifications on cus-
tomized similarity values between samples from the same or different body sites; dis-
tances such as UniFrac [113, 114, 115] can be informed by phylogenetic relationships
amongst species or OTUs.

Similarly, the use of OTUs in classification builds on an assumption that groups
of closely related organisms can be treated as units sharing key similarities. This
assumption may be violated by strain-level variation, and conversely may apply to
aggregations of phylogenetic groups (i.e., clades that encompass all OTUs descended
from a common ancestor) that comprise many OTUs, which again suggests a phylo-
genetic approach.

Finally, while taxonomic representations can contain a great deal of information,
different microorganisms have different functional sets of genes involved in processes
such as biosynthesis of important compounds, environmental adaptation, and antibi-
otic resistance. Information of functional genes are typically obtained by sequencing
metagenomic data described in Chapter 1.1.3, however, this approach is costly. The
recently developed Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States (PICRUSt) [116] (see Chapter 4.3) algorithm can map taxonomic
samples to functional profiles, based on known gene repertoires of closely related
organisms: these functional approaches may provide complementary information to
taxonomic features. Functions may be similar between distantly related lineages
and PICRUSt can potentially identify sets of clades whose similarities are functional
rather than phylogenetic. Some of these approaches yield significant increases in
classification accuracy, while feature selection highlights key phylogenetic and func-

tional features. We have implemented these ideas in a machine-learning framework,
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and used oral microbiome samples from the Human Microbiome Project 78, 77] as a

challenging test case.

1.5 Thesis Outline

The remainder of this thesis is organized into five chapters. A brief description of
the 16S rRNA dataset used in the thesis and standard data preprocessing are given
in Chapter 2. Chapter 3 shows a preliminary experiment on the whole dataset and
lists all the challenges encountered. Our exploration of this classification task, with a
focus on samples from subgingival and supragingival plaque, is described in Chapter
4, which includes the prediction results, the key phylogenetic and functional features
and classification with ensemble method. The conclusion of this thesis is in Chapter

5, which summarizes the results we achieved so far and gives ideas for future work.



Chapter 2

Data Preparation and Exploration

The 16S sequences used in the thesis came from HMP and all the sequences were
processed via standard microbiome analysis software. The analysis of microbial com-
munity involves the following: quality filtering on 16S sequences, picking OTUs,
representative sequence alignment, phylogenetic tree construction, diversity analysis
and sample visualization. As a feature file for our classification problem, the OTU
abundance table was analyzed from some basic statistical points of view. Preliminary
interpretations of the microbial communities on different body sites were also given,

including the comparison of taxonomic composition and phylogeny within the OTUs.

2.1 Microbiome Data

We retrieved the oral microbiome marker-gene dataset from the HMP DACC [77] in
February 2014. There are nine sampled sites within the oral cavity: saliva, supragin-
gival plaque and subgingival plaque (plaque above and below the gingival margin),
tongue dorsum (top surface of the tongue), hard palate (roof of the mouth), buccal
mucosa (inside lining of the cheek), attached keratinized gingiva (gums covering the
jaw bones), and palatine tonsils (sides at the back of the throat) (see Figure 1.2).
Samples in HMP were collected up to three times per site from each individual in a
non-invasive manner. The process of sample collection obeyed the strict procedures;
details were described in Manual of Procedures [117, 118]. Sequences in this dataset
included amplified V1-V3 and V3-V5 regions of 16S rRNA gene, although there were
more sequences associated with the V3-V5 region (see Table 2.1 for summary statis-

tics).

18
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2.2 Sequence Analysis

Many microbiome studies follow a standard protocol for sequence analysis and OTU
construction. In human microbiome collection, related information about the sample
donors such as sex, age and ethnicity is a vital factor for subsequent association
studies. DNA sequence was then extracted from the collected samples. Sequences
can be extracted using different experimental protocols, but it is essential that a single

protocol be employed consistently in one study.

2.2.1 Sequence Quality Control

The small amount of sequence initially extracted from each sample was not enough
for further study. So DNA amplification is performed to obtain a larger quantity of
sequences. However, because of the employed technique, contaminant sequences are
introduced in this process. So it is inevitable that microbial dataset usually comes
with noise. The quality of raw sequences needs to be assessed in Quality Control
(QC) steps.

There is not a gold standard to assess all sequences; QC strategies vary among
sequencing techniques. For example, sequences from Sanger and Illumina sequencing
machines come together with a quality file, which records the scores for each nucleotide
directly [119]. For 454 or SOLid methods, each quality score is given as the probability

of this nucleotide being wrong [120]. After assessing the quality, sequences with a

Table 2.1: Details of human oral cavity samples from HMP, with associated
abbreviations.

Sub-sites Acronym | Samples | OTUs Segs/sample OTUs/sample
Saliva SAL 281 6166 8596 + 6034 521 + 183
Attached keratinized gingiva GING 304 3741 8998 £ 5756 313 + 105
Buccal mucosa BUCC 301 5370 9465 + 10268 447 + 166
Hard palate HPAL 300 5848 8935 + 6575 441 + 154
Palatine tonsils PTON 304 5339 9586 + 7247 448 + 146
Throat THRO 301 6278 9053 + 7233 422 + 147
Tongue dorsum TONG 305 4400 10351 £ 10450 398 + 129
Subgingival plaque SUB 301 6782 9877 £ 5926 495 + 147
Supragingival plaque SUPRA 305 5277 10413 + 6564 497 + 152
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higher error rate than previously defined will be removed.

2.2.2 Building Operational Taxonomic Units

The definition of unique sequences has large effects on the identification of microor-
ganisms [121]. Several degree of sequence divergences exists within the organism to
define the organisms, the concept of OTU was proposed [109, 110]: based on the
similarity shared among marker gene, sequences can be binned into groups. Differ-
ent thresholds of similarity cutoffs denote different taxonomic levels, such as 97% for
species level, 95% for genus level [122]. The assessment of sequence similarity can be
done either by examining pairs of sequences within each sample, or by comparing each
collected sequence to standard reference sequences from a reference database such as
GG. With OTU abundance available, characterisics of the microbial communities
such as microbial diversity and phylogenetic relationships can be inferred.

The approaches of clustering sequences into OTUs or OTU picking can be divided
into three categories: de novo, closed-reference and open-reference (in Figure 2.1). In
the de novo approach, sequences are compared against one another just within the
samples; no external database is used as a reference. In the closed-reference OTU pick-
ing process, each sequence is compared against the sequences in a reference database
such as GG. The sequence will be binned into the OTU centered on one reference
database sequence, if their similarity is larger than the cutoff. As a compromise of
de novo and closed-reference picking strategy, open-reference can be used. Sequences
that succeed in finding a hit to the reference database are assigned as in the closed-
reference approach, while the remainders are clustered using a de novo approach.

Closed-reference strategy discards sampled sequences that do not match any refer-
ence sequence at the specified threshold, which limits the identified OTUs. However,
closed-reference OTU picking is fast since the implementation can be fully paralleliz-
able. Moreover, the taxonomic assignment and the phylogenetic trees generated in
the next steps are more reliable because all the OTUs are defined based on the well-
constructed reference database. OTUs in our work were picked via a closed-reference
strategy. For the reference database, although the RDP [72] and SILVA [73] have their
own advantages and disadvantages, we adopted GG (gg-13_08) [74] as our reference

database, which is consistent with our adopted pipeline’s default setting.
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Figure 2.1: Diagram of OTU picking strategies. De novo (red stream), closed-
reference (green stream) and open-reference (blue stream)

2.2.3 Sequence Alignment and Phylogenetic Tree Construction

The taxonomic assignment of OTUs can be used to express the similarity between
samples, but it has drawbacks. The taxonomic annotation in the reference database
usually cannot cover all sequences in our sample, leading to incomplete taxonomic
summaries of the microbial community. The taxonomic hierarchy cannot always
reflect the evolutionary distance precisely, which depends on the quality of annota-
tions in reference database. Besides the count or proportion of different OTUs and
species, the evolutionary distance between OTUs is also an important characteristic
of microbial communities. Mapping OTUs takes advantage of intrinsic structure of a
phylogenetic tree [123, 124]. Phylogeny refers to the evolutionary relatedness between
different species, while a phylogenetic tree displays these relationships in a binary tree

structure.

Phylogenetic trees are constructed after aligning the sequences of the target taxa.
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Sequence alignment is a process trying to allow maximum number of identical nu-
cleotides or amino acid be aligned against each other [125, 126]. By allowing sub-
stitutions and gaps, similar regions located of sequences can be identified. If a pair
of sequences shares significant sequence similarity, there is a large chance that they
evolved from a common ancestor, which refers to the parent node in the phylogenetic

tree.

Branches and nodes are two main features in a phylogenetic tree. For each node in
the tree, external nodes (leaves) represent the living individual in samples and inner
nodes are their common ancestors. Branches in the tree represent the evolutionary
relationships among a subset of the whole species and the degree of divergence between
pairs of species. Phylogenetic tree can either be rooted, with a unique node that is
ancestral to all other nodes, or unrooted, in which no common ancestor is explicitly
defined (in Figure 2.2). These two types of tree can be interconverted. Simply
removing the root of a rooted tree results in an unrooted tree, while giving a root to
an unrooted tree needs more information. It can be done by adding a known outgroup
sequence or finding an uncontroversial criterion that can split the whole species into

two groups, such as bacteria and archaea.

Phylogenetic trees are mainly constructed with three different approaches: dis-
tance matrix, maximum parsimony and maximum likelihood. The distance method
relies on a distance matrix that records the amount of mismatches or gaps between
each pair of sequences in the set. Commonly used distance-based algorithms are
Unweighted Pair Group Method with Arithmetic Mean (UPGMA) [127, 128] and
Neighbor Joining (NJ) [129]. Their main procedure is similar to sample clustering:
two nodes with the smallest distance merges together and then forms a new node; this
process is repeated until all species are assigned to the leaves. Most distance methods
are pretty fast, but building tree with only a distance matrix loses much information
of the sequences themselves [130]. Maximum parsimony is a character-based algo-
rithm that tries to construct a tree with minimum number of substitutions over all
sequences, that is the smallest number of steps to map characters to reach the phy-
logenetic state [131]. This method is avoids providing sequences as a single distance,
but searching the tree space takes much time. Moreover, parsimony assumes all sub-

stitutions in sequences happen with equal chance, but actually nucleotides change at
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(c) (d)

Figure 2.2: Different ways to display a phylogenetic tree. Diagrams of (a)
rooted and (b) unrooted phylogenetic trees. The trees can also be layout as (a and
b) rectangular, (c¢) circular, (d) radial phylograms.
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different frequency rates. Maximum Likelihood approaches address this limitation by
taking the probability of substitutions into consideration [132]. After assuming an
empirical substitution matrix and a starting parsimony tree, the probability of differ-
ent tree shapes can be calculated. The tree with highest likelihood will be selected at
last. Although maximum likelihood is expensive in computation, it tends to create
an accurate and robust evolutionary model. In our thesis work, FastTree [133] algo-
rithm was adopted to build the tree, which is an approximately-maximum-likelihood
method. Since instead of using a distance matrix as standard maximum-likelihood
method, FastTree stores the sequences information of internal nodes. Together with
other fast tree pruning and likelihood estimating algorithms, FastTree is efficient in

both computational time and memory cost.

2.2.4 Measures of Microbial Diversity

Microbial diversity measures the variability among all types of microorganisms living
in the community. High diversity can allow a community to cope with a chang-
ing and unpredictable environment, which increases their chances of survival [134].
The diversity of microorganisms in the oral cavity is higher than many other sites,
since the wide variety of intaken food, changes in temperature and oxygen and saliva
mixture make human mouth an unstable habitat. For human health, a number of
diseases were found to correlate with variation of microbiome diversity [11], which
also makes microbial diversity a potential indicator of disease detection, and possibly
other conditions as well.

Alpha and beta diversity are two major categories of diversity measurements [6].
Alpha diversity represents the richness of taxa within a single community [135, 136].
This diversity criterion can vary a great deal between body sites: the study found
that the alpha-diversity of microorganisms inhabiting in female is larger than that
in males [137]. Beta-diversity quantifies the degree to which pairs of samples differ.
The dissimilarity is usually expressed as a distance between communities [135, 138].
Simple distance measures such as those based on Euclidean or Manhattan distance
use only information about the presence and absence (qualitative beta diversity) or
the abundance (quantitative beta diversity) of OTUs in samples to calculate the dis-

tance. Those non-phylogenetic measures implicitly assume all organisms are equally
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related in evolutionary history. However, phylogenetic information is lost under this
assumption. Phylogenetic measurements can take different degrees of evolutionary re-
latedness into account. Two phylogenetic beta-diversity measures commonly used in
microbial ecology are the weighted and unweighted UniFrac distances [113, 114, 115],
which are described in Chapter 4.1.2.

However, because of the sequencing technique, the number of sequences in each
sample is different. This variation can affect the estimation of microbial diversity:
the more sequences, the more species will be found. Now people usually address this
problem through two strategies: rarefaction and normalization. In rarefaction, N
sequences will be randomly selected from each sample. The diversity is only calculated
from those sampling sequences [139]. If the number of sequences in a sample is
less than N, the entire sample will be omitted. Rarefaction eliminates low-quality
samples with few sequences, but too many sequences may be excluded if N is given
a very large value. Moreover, rarefaction is a random sampling process, there is
no guarantee for a global optimal answer. In contrast to rarefaction, normalization
attempts to adjust the sequence number to a common scale. The most straightforward
approach to normalization, total-sum scaling (TSS) [140, 141], divides the number of
sequence in each OTU by the total amount of sequences in that sample. In addition,
other normalization methods were also proposed, for example scaling the number of
sequence by the 75, percentile of the non-zero abundance in each sample, which
can normalize the dataset based on the sequence-count distribution. Paulson et al
extended this idea [86], so that their cumulative sum scaling (CSS) is better suited

for marker gene dataset.

2.2.5 Visualization of Microbial Community Structure

A number of different approaches can be used to visualize the beta diversity within
a set of samples; two widely used approaches are Principal Coordinates Analysis
(PCoA) plots [142] and hierarchical clustering [143]. PCoA is a scaling method that
tries to represent the dissimilarity between samples in a low-dimensional space. PCoA
transforms the distance matrix into a set of uncorrelated axes containing the max-
imum amount of dissimilarity information [144]. The axes are ranked by their im-

portance in a descending order. The importance refers to the amount of variation
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Figure 2.3: Two visualization methods (a) PCoA and (b) hierarchical clus-
tering show the distances between each pairs of samples.

in the matrix that can be captured by this axis. PCoA sometimes is confused with
Principal Component Analysis (PCA) that also tries to display much information
in a low-dimensional space [145]. However, PCA calculates from an initial variable
matrix, whereas PCoA uses a distance matrix as its input. PCoA can accept distance
matrices generated from any distance measurement such as weighted or unweighted
UniFrac distance, which makes it possible for us to compare the samples based on
different expressions of beta diversity. An example to explain PCoA can be found in
Figure 2.3(a).

Hierarchical clustering expresses relationships among samples by grouping them
into a tree (in Figure 2.3(b)). Process starts with finding the pair of samples with
shortest distance, and then merging them into a common node. Repeating this process
until all samples are clustered in the tree. A rooted tree will be generated in the end,

reflecting the distances among samples.

2.3 Sequence Processing and Initial Data Analysis

Raw 16S sequences were processed and built into OTUs. A phylogenetic tree was
constructed based on the representative sequences in each OTU. Different beta di-
versity measures were also calculated, reflecting the dissimilarity between samples. A
preliminary exploration of the dataset helps us to better understand its main charac-
teristics. Exploratory Data Analysis (EDA) is an approach for data analysis that uses

visualization and basic statistical techniques [146]. EDA has become a critical step
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before experiments: it allows an investigator to detect missing values and mistakes;
know the range and distribution of the dataset; understand the biological meaning
of features. We examined several important properties of our oral dataset via EDA.
Comparing the OTU proportions at different ranks, and the precision to which differ-
ent OTUs were classified (for example, at the phylum, genus or species level) is useful
since we will use abundance information to classify the samples. The phylogenetic
tree visualizes the relationships between OTUs, which gives us ideas to create new

features.

2.3.1 Processing Workflow

All samples were processed using the Quantitative Insights Into Microbial Ecology
(QIIME) software, version 1.8.0 [147], which is an open-source software pipeline to
analyze and visualize microbial communities. HMP reviewed the data for quality
and published necessary quality assurance report to declare the sequences are rela-
tively complete and clean. So the sequences downloaded from DACC have already
passed QC. All 16S sequences were clustered into OTUs at 97% similarity using
UCLUST version 1.2.22q [148], using a closed-reference OTU-picking strategy with
GreenGenes (gg 13.08) as our reference database. Representative sequences were
aligned using QIIME’s default alignment method Python Nearest Alignment Space
Termination (PyNAST) version 1.2.2q [149], which implements the NAST alignment
algorithm in Python. We used the default settings of PyNAST, which removes se-
quences with alignment length <150 nucleotides or <75% identity with the reference
dataset. A phylogenetic tree of OTUs was constructed from the sequence alignment
using FastTree version 2.1.3q [133]. Trees were visualized with Python Environment
for Tree Exploration (ETE) version 2.1 [150]. Four beta-diversity metrics were used
to calculate the distance between each pair of samples with QIIME. To visualize the
dissimilarity of the samples, Principal Coordinates Analysis (PCoA) was performed
to observe the samples in a low-dimensional space. We also used UPGMA approach

to build hierarchical clusters. The workflow can be found in Figure 2.4.
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Figure 2.4: Sequence data processing workflow. Raw 16S sequences were ob-
tained from HMP and put into QIIME to pick OTUs with a closed-reference strategy
(GG as reference database). Steps also include building a phylogenetic tree of these
OTUs, calculating the microbial diversity of each samples and visualization with
PCoA. PICRUSt was used to predict the functional profiles based on the OTU table

created.
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2.3.2 Basic Statistical Description of Samples

A total of 2,706 human oral cavity samples from nine oral sites were collected from
the HMP database. Some of the samples have sequences from both V1-V3 and V3-V5
regions, and some of samples have either one of them. We split each sample based
on the variable regions, resulting in a total of 1,542 included sequence data from
the V1-V3 region of the 16S rRNA gene, while 2,702 samples contained information
from the V3-V5 region. Because of the disparity in data set size, and less accurate
results obtained with the V1-V3 region (see Chapter 3.3), we focused on information
retrieved from V3-Vb.

The samples covered the V3-V5 region of the 165 rRNA gene (in Table 2.1). All
sites had at least 281 associated samples. A total of 12,845 OTUs were generated
by the closed-reference picking process, and OTU richness across all samples of a
given site varied from a minimum of 3,741 (attached keratinized gingiva) to over
6,000 (saliva and throat). The average number of sequences per sample ranged from
approximately 8,500 to 11,500, although the variation within each site was high. In
terms of community members, the number of OTUs in a single sample varied between
313 (attached keratinized gingiva) and 521 (saliva).

A large number of identified OTUs were of low abundance (see Figure 2.5(a)). A
number of 7,752 (60.4%) of the OTUs have fewer than 5 sequences, and 3,865 (30.1%)
of them are singleton OTUs comprising only a single sequence. However, these low-
abundance OTUs may nonetheless be useful for classification, so none of them was
removed. Because of the high dimensionality of the data, the OTU table is very
sparse. Figure 2.5(b) shows the number of OTUs presenting in different numbers
of samples. Fewer than 1,105 (8.6%) OTUs are present in >10% of the samples,
while 4,325 (33.7%) of them are present only in one sample. Rare and site-specific
OTUs are common in microbial datasets, for several reasons. Rare OTUs can in
fact be artifacts that arise from sequencing errors. Some microorganisms may be
viable only in a subset of all sampled sites, while others may simply be rare. Specific
human body sites typically comprise microbes from similar high-level groups such as
phylum or family: for example, the gut microbiome is typically dominated by phyla
Firmicutes and Bacteroidetes. However, when OTUs are clustered at very high levels

of similarity, the overlap in composition tends to decrease dramatically. Different
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Figure 2.5: Statistical summary of the input features. Numbers on X-axis
are displayed in logarithmic scale with base 2. (a) Each feature (OTU) has a dif-
ferent number of sequences. With the abundance of OTUs increasing, the number
of corresponding features become less. (b) Features appear in different number of
samples.

body sites support different kinds of microorganisms, and the body conditions also
vary from person to person. Although some of the distinct features may not facilitate
classification, we still kept all of them. Feature reduction strategies would be used to

remove them alternatively.

2.3.3 Taxonomic composition of samples

The purpose of microbial community classification is definitely not only for a higher
accuracy, identifying the discriminative taxa that differentiate the microbial com-
munities is also important. Bacteria on the oral sites were compared at different
taxonomic levels. Based on the GG taxonomic assignments, more than 60 phyla were
detected, but four of these phyla constituted nearly 99% of the entire set of char-
acterized OTUs (in Figure 2.6(a)). They are: Firmicutes (43.0%), Proteobacteria
(20.4%), Bacteroidetes(17.8%) and Fusobacteria (9.4%). More than 180 classes were
found in samples, and the top four classes covered 69% of OTUs that were classified
at this rank: Bacilli (30.6%), Bacteroidia (14.1%), Gammaproteobacteria (12.4%)
and Clostridia (12.3%) (in Figure 2.6(b)).

At the phylum level, Proteobacteria (20.4 + 3.9% s.d.) has an even distribution
across all body sites, with a 3.9% standard deviation., while Firmicutes varies a lot

(43.0 + 13.9% s.d.). Buccal mucosa, hard palate and attached keratinized gingiva are
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the three sites with the most Firmicutes, while subgingival plaque and supragingival
plaque have the smallest proportion. All sites have similar amount of Bacteroidetes
except buccal mucosa. Although subgingival plaque and supragingival plaque consist
of similar microorganisms, they are quite different from the other seven sites.

At the class level, the two major classes of Firmicutes together occupy more than
55.0% of the whole taxa on attached keratinized gingiva, buccal mucosa and hard
palate. However, the amount of these two classes, Bacilli and Clostridia are extremely
different. The ratios of Bacilli to Clostridia on these three sites are 9.0, 11.89 and
4.68. Since Bacilli are aerobic (i.e., they respire oxygen), these three sites are usually
exposed to air. Palatine tonsils, throat and tongue dorsum are similar in proportion,
25.8% of Bacilli followed by 16.8% and 18.0% Clostridia and Bacteroidia. There is not
a dominant class in saliva, since Clostridia and Bacteroidia have similar proportion.
Although the taxa at phylum level on subgingival plaque and supragingival plaque
are quite similar, they show some difference at the class level.

When coming to the genus level, Streptococcus (26.0 £ 13.8%s.d.) comprises a
major population in the oral cavity. Two species of Streptococcus mainly appear in
dental plaque of healthy human mouth, they are S. sanguinis and S. mutans. Both
of them were found to be associated with dental caries. Streptococcus salivarius is
fairly abundant in tongue dorsum, while Streptococcus mitis in other sites, such as
buccal mucosa. Haemophilus also has a large population in the oral cavity, especially
saliva samples. Haemophilus parainfluenzae is the biggest species of Haemophilus
in oral cavity, which is reported to be highly associated with the pathogenicity of
Haemophilus parainfluenzae.

OTUs were mapped into a phylogenetic tree whose root separates Bacteria and
Archaea. The tree structure shows the evolutionary distance and relatedness of OTUs.
The microbial communities are usually not distinguished by a single OTU, but a
group of related members together. Phylogenetic tree put closely related species into
a common branch. With the tree structure, the analysis did not need to be limited
on the leaves (OTUs). Taking a branch of OTUs as a new taxonomic unit may give

more information.
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Figure 2.6: Taxonomic composition of the microbes in nine oral cavity sites
based on average relative abundance of 16S rRNA sequences. Taxa from
top b phyla (a), 8 classes and the remaining taxa are described as “Others”. The full
name of each abbreviations can be found in Table 2.1
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Figure 2.7: Phylogenetic trees shows the relationships of OTUs from all oral
samples. OTUs are assigned to (a) phylum and (b) class level. The most abundant
groups are highlighted in different colors.



Chapter 3

Classification of Oral Cavity Samples

In this thesis, 16S rRNA sequences were used as marker genes to identify the taxa
in microbial communities. A supervised learning approach, SVM, was used to dis-
tinguish samples from nine different oral sites. Thousands of features were generated
in our work, many of which are likely to be uninformative. With the help of feature
selection, those uninformative features can be removed, resulting in an efficient train-
ing process. Moreover, a number of discriminative features were examined to uncover

their biological relevance.

3.1 Feature Space

In our work, the OTU abundance calculated from the 16S rRNA samples acted as
input features; the body site that the sample came from was the label attribute.
Assume the raw dataset is a sample-by-taxon abundance matrix X (m,n), which

can be displayed as follows:

11 T12 ... Tin n

To1 T2 ... Top Y2
X = s y =

Tml Tm2 - -- Tmn Yk

where m and n indicate the number of samples and features. z;; denotes the
abundance of the i;, OTU in the j;;, sample. Class label y indicates the body sites,
yi € C = {c1,¢2,...,¢5}. In our classification task, C= {saliva, attached kera-
tinized gingiva, buccal mucosa, hard palate, palatine tonsils, throat, tongue dorsum,
supragingival plaque, subgingival plaque}.

Data normalization or scaling converts the values of features into a specific range,

which is usually performed as a data-reprocessing step. In SVM, scaling features

34
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to [—1,41] or [0,+1] is good for building the classifiers, since the algorithm may
have less sensitivity to features with a small numeric range than a very large one.
In addition, features in this numeric range also reduce the computational time in
training step [151].

The number of sequences in each sample varied between approximately one and
ten thousands, so we first converted raw abundance to proportions, or relative OTU
abundance in each sample. The relative abundance was then scaled such that the

largest value in each sample was set to 1.0.

3.2 Support Vector Machine

Support Vector Machines (SVMs) have been widely used in various applications since
their introduction by Cortes and Vapnik in 1995 [95]. SVMs are model-based clas-
sification methods that try to maximize the width of a decision boundary between
categories. This decision boundary or hyperplane is typically defined by a small num-
ber of boundary cases (the support vectors) with relatively small distances to cases of
the other type [152]. A key attribute of SVMs is their ability to accept any similarity
values that satisfy a set of constraints; the “kernel trick” allows mapping of cases into

a higher-dimensional space where the linear SVM classifier can perform well [153].

3.2.1 Linear SVM

Suppose S is our training set containing n samples: S = {(z1,v1), (2, 42), - - -, (Tn, yn) },
x; are the feature vectors of the samples and y; € {—1,+1} represents the labels of the
instances. To separate the positive and negative samples, SVM defines a hyperplane
as:

flw,z) =wls +b (3.1)

which has the largest distance to the support vectors. This distance is called largest
margin of the decision boundary. For all training samples on the right side of the

margin, they should satisfy:

> 1, when y; =1
whe +b (3.2)

< —1,when y; = —1
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Searching for the optimal hyperplane f(w?,b) is a process of solving a quadratic

programming problem to minimize:

1

5 Wl (3.3)

under the constraints:

Vi=1,2,...,n
(3.4)

st yi(wlz; +0) > 1
The Lagrange multiplier is introduced to solve this problem yielding the final decision

function:

flw,z) =wlz+0b

(o) o
= Zaiyi (x;,x)y +b
i=1

This is the simplest SVM, which can only cope with a linearly separable training
set. However, real-world datasets are typically more complex, with various amounts
of noise and outliers. Samples cannot be correctly separated since noise and outlier
cases can interfere with correct separation. The classifier will go worse if noise or
outliers appear in the support vectors , since a small number of support vectors
determines the decision boundary. The introduction of slack variable &; blurs the
decision boundary, so that the abnormal incorrectly separated points can be given

less weight. So the optimization problem can be converted to minimize:
L 36)
2 i=1 Z .

under the constraints:

Vi=1,2,...,n
(3.7)

stoy(whe; +0)>1-§
Where the cost penalty C' is used to control the model complexity of SVM, which
allows the optimal trade off between bias and variance. When C' is too large, the

hyperplane will try to classify each training sample correctly while ignoring the test
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Figure 3.1: Illustration of two labeled groups of samples in feature space
separated by a hyperlane.

set. This usually causes an over-fitting problem. However, if C' is too small, all
samples will be separated by a very large margin. It will hard to segregate the
samples into their respective classes. However, there is no well-developed theory for
determining an appropriate C value, and the typical approach to optimize C' is to
exhaustively try a number of values and chose the one with highest cross-validation

accuracy.

3.2.2 Non-linear SVM

Finding a hyperplane on a linear separable dataset is straightforward given the formu-
lation of the SVM, however, many real-world samples are distributed in a non-linear
space. The kernel technique maps low-dimensional features into higher space and
tries to separate the samples in this space. It also largely improves the computational
efficiency of SVM, since the computation cost increases a lot with dimensionality. In
SVM, kernel method works more like kernel trick. For the decision boundary is de-

fined from the inner products of pair-variables and this inner product can be directly
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replaced by kernel. So SVM does not actually compute the coordinates in that high
and complex feature space, but gets this result directly from the kernel functions. If

the input feature vector x; can be expressed as:

z; = (x;) (3.8)

Then a kernel function can be introduced to satisfy:

K(z1,22) = (¢(21), ¥ (2)) (3.9)

So the decision function becomes:

n

flx) = Z%’%‘K(xi, z)+b (3.10)
i=1

An example of classifying nonlinear data with kernel function is given in Figure 3.2.
The points form two curves on X — Y space, so it is impossible to find a hyperplane
that perfectly separates the two classes. However, when points are mapped to a third
dimension, the boundary is obvious. There are a few commonly used kernels in SVM,
including linear, polynomial, radial basis function (RBF) and sigmoid kernels. The
RBF kernel was used as our baseline because of its reasonable number of parameters

and widely applied in many problems. The formula can be given as:

2
_lm1—wo|

K(xy,29) =€ 22 (3.11)
A replacement of v = # is usually used to simplify the equation as:
K(zy,29) = e —wal’ (3.12)

where v define the influence of each training sample can have. When ~ is small,
samples can have far-reaching influence. So the separation will be smooth. However,
if v is too large, the model will be very specific and highly sensitive to noise. Figure 3.3
explains how points were mapped into higher space using RBF kernel.

The kernel trick can convert a nonlinear separable problem into a linearly separable
one. Because of the multiple choice of kernel functions, SVM works well on many

different types of datasets.
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Figure 3.2: An example of features that are not linear separable in the first

two dimension, but becomes separable after mapping to a third dimension
space [4].

Figure 3.3: Graphical description of how RBF kernel can map features into
higher features space.
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3.2.3 SVM in Multi-class Classification

SVM itself is a binary classifier, however it can be applied to multiclass classification
by decomposing the multiclass task into several binary ones. One-vs-all and one-vs-
one are two commonly used strategies [154].

A one-vs-all classifier treats the samples from the i, class as positive samples
and the others as negative. It is computationally efficient, since only n classifiers
are needed when there are n classes. But the sub-samples for each classifier are
unbalanced; the number of negative samples outnumbers positive samples n—1 times.
Such unbalanced dataset usually generates models with bias, which have preference
to the class with more samples. The one-vs-one approach builds classifiers from
each pair of classes. In the testing process, classifiers will vote for the class they
preferred and the one with the most votes wins. The number of classifiers in one-vs-
one quadratically grows with class.

nn=b) lassifiers will be constructed. Although one-vs-

For an n-class dataset, ™ 5
one requires O(n?) classifiers comparing to O(n), the sample size for training each
classifier is much smaller. It results in a faster and less memory-intensive training
process. Importantly, each classifier is trained from a balanced subset as long as the

original dataset is uniformly distributed.

3.3 Results Evaluation and Verification

3.3.1 Performance Evaluation

The performance of the prediction algorithm can be assessed by the accuracy, which
is usually expressed as the percentage of correct predictions, quadratic error measures
or correlation coefficients. Raw percentage can correctly reflect the performance when
the number of samples in each label bin is similar [87]. However, classes can be imbal-
anced, with one group containing many more samples than the other: for example, in
a dataset that compares diseased vs healthy individuals, there may be a much smaller
diseased set. If all samples were roughly predicted as non-disease, there still would
be a very high accuracy as the majority would be correct. To solve this problem,

predictions are summarized into a confusion matrix with four numbers: True Positive

(TP), True Negative (TN), False Positive (FP) and False Negative (FN). A confusion
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Predicted Class
Disease Non-disease
Disease TP FP
Actual
Class .
Non-disease FN TN

Figure 3.4: Confusion matrix of a binary classification problem, disease vs
non-disease. TP is the number of samples that are disease and predicted as positive;
FP is the number of samples that are disease but predicted as negative; FN is the
number of samples that are non-disease but predicted as positive; TN is the number
of samples that are non-disease and predicted as negative

matrix displays the number of actual and predicted samples in each class made by
the classification algorithm. Explanation of the four numbers is in Figure 3.4.

Precision and recall evaluate different aspects of the performance. Precision is
defined as the number of true positive samples over the number of all true samples,
which tells you the percentage of the selected items that are correctly predicted.
Recall provides the complementary information, which calculated as the number of
true positive samples over the total number of positive predictions. The assessment
of quadratic error methods is based on the distance between the true and predicted
label, such as Hamming or Euclidean distance [155]. Correlation coefficient measures
are frequently used in machine learning. Omne of the most commonly used is the
Matthews Correlation Coefficient (MCC), proposed by Matthews in 1975 [156]. The
value can be calculated as:

MOC — TPxTN —FPx FN (3.13)
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

The result is ranged between -1 and +1, which reflects the degree to which correct

assignments agree with the predictions. A coefficient of +1 indicates a perfect predic-
tion, while -1 means a total disagreement between them. Measures mentioned above
all can be extended to the case of multi-class classification problem. The confusion

matrix displays the number of correctly predicted samples in each class. The rows



42

indicate the true label for each sample, while columns indicate the label predicted by
the classifier. Detail extension of other measures can be found in [87]. We adopted
the percentage of correct predictions and confusion matrix to evaluate the classifiers,

since the dataset in the thesis is in balance.

3.3.2 Statistical Testing

Classification with different input features was repeated for 100 times with shuffling of
the samples, and the final accuracy was expressed as their mean value. To exam the
results, statistical methods were used. Basic statistical information was first given:
the mean reflects the average performance under one type of classification model;
standard deviation measures how consistent this group of results are; standard error
estimates the likely difference between the mean and future data; minimum and
mazimum values give the range of the data; confidence interval establishes a range of
values that within which a future data may fall with a specific probability. A group
of accuracies was also shown with a histogram and a boxplot to examine its normal

distribution.

Compare to the benchmark done, some attempts we did improved the classifi-
cation performance, while some did not. For the significance of improvement, we
did two-sample t-tests. The two-sample t-test is used for determining whether the
means of two samples are significantly different. Assumptions behind this test in-
clude: both samples must follow normal distributions and they are independent. We
established the null hypothesis as a lack of difference between two samples. T-value

was calculated from:

X, - X
=12 (3.14)

st S8

M TN,

where N; and N, are the sample sizes, X; and X, are the means, S? and S? the
standard deviations. The p-value can determined then, indicating the probability
that the null hypothesis can be accepted. A threshold of 5% was used in the thesis. If
the p-value was lower than 0.05, we can declare that the improvement did not occur

by chance.
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3.4 Classification of Nine Sub-sites

Classification was performed using the LIBSVM package [157] with RBF kernel. To
pick the best combination of kernel width v and error penalty parameter C, a grid
search using different combinations of C' and v was done as a pre-experiment (finite
sets of attempt values for C' = [log, —5, log, 15], v = [log, —15,1log, 3] . An one vs one
strategy was adopted to perform multi-class classification. A five-fold cross-validation
approach was adopted to evaluate the classification models. This cross-validation
procedure was repeated 100 times for each trial, each time using a different random

number seed, in order to generate distributions of accuracy scores.

3.4.1 Performance Comparison

Samples from both the V1-V3 and V3-V5 variable regions of 16S were classified
using SVM with RBF kernel. The model built from V1-V3 dataset achieved an
accuracy of 64.4%, while the V3-V5 samples contributed to a better model whose
accuracy reached 69.7%. A two-sample t-test was given to measure the significance
of improvement. The performance of the model from V3-V5 samples yielded 4.70%
(in Figure 3.5) higher accuracy than that from V1-V3 samples. Since V3-V5 regions
have 1,160 more samples than V1-V3 regions, the increased accuracy may be due to
a larger training set. Sequences from the V3-V5 regions may also be more powerful
in identifying different microorganisms, regardless of sample size. Based on the result

above, we chose to focus on samples from the V3-V5 regions only.

3.4.2 Grouping of Sites

We generated PCoA plots based on unweighted UniFrac distances between samples to
visualize the separation of points between the nine sample types (in Figure 3.6(a)). A
table containing the relative abundance of OTUs in each sample was used to calculate
the distance. A phylogenetic tree was also passed as input to inform the evolutionary
relationships between OTUs.

We used QIIME to calculate the principal coordinate axes for each sample. The
first two principal coordinates explain 15.07% of the total variance in the data set, and

do not provide clear separation of any of the nine sample types. Clustering patterns



44

0.72

" —

0.68

0.66

Cross-validation Accuracy

0.64

0.62
V1-V3 V3-V5

Figure 3.5: Classification accuracy with features of sequences from different
variable regions. Significant difference between models built from V1-V3 and V3-
V5 dataset was observed.

are nonetheless visible in the figure; in particular, the supragingival and subgingival
plaque samples constitute a group that is largely separate from the other sample
types. The other seven sample types occupy one large cluster, but none of these
is uniformly distributed throughout the cluster: for example, attached keratinized
gingival samples tend to have negative values in principal coordinate one and near-zero
values in principal coordinate two, while both principal coordinates of buccal mucosa
samples are near-zero values. The PCoA plot reflects the distance between these oral
samples. Overlapping sets of samples share considerable amount of similarity, which
may imply a challenging classificaton problem.

We performed SVM classification using an RBF kernel on all 2,702 oral cavity
samples from the V3-V5 regions. The cross-validated classification accuracy with
respect to the sample type label was 69.7%. The confusion matrix (in Figure 3.7(a)),
which shows the frequency with which samples of a given type were correctly classified
or misclassified to another category, shows a non-random pattern of misclassification.
Of the nine oral cavity sites, saliva and tongue dorsum were classified with the highest
accuracy (87.2% and 84.4%, respectively), while samples from the palatine tonsils and

throat were correctly classified less than 45% of the time.
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(b) Principal coordinates analysis of four clusters

Figure 3.6: Principal coordinates analysis of nine oral cavity sites. The same
data set is shown with all nine oral cavity sites (a) and four clustered groups (b) as
labels. Distances were computed using the unweighted UniFrac distance.
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(a) Confusion matrix of nine-way classification
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Figure 3.7: Confusion matrix of nine-way oral site classification without
feature selection. Rows indicate the correct label for each sample, while columns
indicate the label predicted by the classifier. Each cell indicates the number of samples
of a given type classified to each sample type. The classification patterns of all nine
classes (a) and a recoding into four classes (b) are shown.
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We identified four natural groupings of sites based on these patterns. 90.0% of
samples from a group comprising the attached keratinized gingiva, buccal mucosa
and hard palate samples were most often classified within the same group, which we
define as “gums”; the misclassification of 12.5% of hard palate samples to the throat
represents the only major confusion between this group and any other. Consistent
with the separation seen in Figure 3.6(a), 98.6% of subgingival and supragingival
plaque samples are classified as one of these two sites. Samples from throat, pala-
tine tonsils and tongue dorsum constitute another group responsible for 85.4% of all
classifications, although the throat and tonsils are also conflated with the hard palate
and buccal mucosa. Finally, salivary samples are relatively better classified, with an
accuracy of 87.2 %. In general, these four major groupings consist of sites that are
proximal in the mouth, corresponding roughly to gums (attached keratinized gingiva,
buccal mucosa and hard palate), plaque (supragingival and subgingival plaque), back
of the mouth (throat, palatine tonsils and tongue dorsum), and saliva. Because of
the gag reflex, collecting samples from throat is the most difficult work among the
nine sites. Samples are easy to be contaminated during the depressor getting back

from throat, so throat samples may be mixed with hard palate microbes [117].

Recoloring sample points in the original PCoA plot to reflect the four groups (in
Figure 3.6(b)) shows a clearer distinction among sites, albeit still with a substantial
amount of overlap among all but the plaque group. The nine sites were recoded
into their four constituent categories, and once again classified using an SVM with
the RBF kernel. The classification accuracy of plaque samples is 96.9%, as compared
with 73.2% accuracy for saliva, 87.0% for gums, and 92.3% for the back of the mouth.
In the four-way classification, the number of saliva samples is much smaller than that
of gums or hard plaque, which makes the decision boundary prone to labels with large
sample size. It can be one reason for the reduced accuracy of saliva samples. The
plaque samples were well separated from the other groups, but difficult to distinguish
based on the confusion matrix in Figure 3.7(b), we chose to focus on this two-class
problem in order to try and improve the classification accuracy for a tractable subset

of sites.
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3.5 Challenges

The work done in this chapter used all samples from the oral cavity. Features were
constructed from OTU abundance without any optimization. From this preliminary

attempt, three major challenges in microbial community classification can be identi-
fied:

1. High dimensionality and sparseness. A total of 12,845 OTUs were generated
at a 97% OTU identity threshold, but there are only 2,702 samples in our
dataset. High-dimensional classification is expensive both in time and memory.
Moreover, it may raise over-fitting problem. The taxon abundance feature is a
sparse matrix. Among all the OTUs, as many as (4,325) 33.7% of them appear
only once. Only (1105) 8.6% of the OTUs exist in >10% of the samples. Rare
features cannot be proved to be useless for classification, so none of them were

removed.

2. Feature dependence: many machine-learning methods and feature selection op-
erators assume that all the input features are independent. However, many
input OTUs have highly correlated patterns of abundance. In microbial clas-
sification problem, sometimes a number of OTUs cannot be useful features

independently, but they may become powerful when combined together.

3. Limited information contained within OTUs: OTUs that clustered from 16S
rRNA only contain taxonomic information within communities. However, other
information such as phylogenetic distance, functional profiles can also be used
to differentiate microbial communities. Building features space based on various

information is another challenge.

Results from the 9-class classification show the correlations among oral sites.
Saliva was mixed with microorganisms from various sources since it bathes several
sites in the mouth. Samples from teeth are quite isolated, which can be found in the
confusion matrix and the PCoA plot. However, subgingival plaque and supragingival
plaque samples were very difficult to distinguish from one another. Since these sites
provide a challenging binary classification problem, in the next chapter, we develop

and test ideas to improve classification accuracy using these two sites.



Chapter 4

Classification of Hard Plaque Samples

In the previous chapter, the microbiome of the oral cavity was characterized and sam-
ples were classified using SVMs. However, the classifiers so far were informed only by
the relative OTU abundance of each sample. Features represented in this way usually
presume that OTUs are the appropriate unit of analysis, which may not be the case.
Phylogenetic relationships among the organisms express their evolutionary distances;
these relationships may be key attributes of microbial communities. Augmenting the
classification methods with phylogenetic insights may yield better results. Represent-
ing organisms based on their phylogenetic groupings breaks the constraint of rigid

OTU thresholds, which may provide additional information to the SVM.

In addition to taxonomic information, functions in the microbial community can
also serve as useful features. Each body site differs remarkably in functions and
the microbial pathways are highly associated with the body site functions. Intesti-
nal microbes are mainly responsible for the production and absorption of nutrients,
while microbes on skin are protective against pathogenic bacteria. Functional profiles
characterize the microbial communities differently from taxonomic components. The
functional difference between body sites may provide discriminative information to

the classifiers.

Ensemble methods are algorithms that integrate a number of classifiers to give
better predictions than a single classifier does. Ensemble methods suggest another
approach, since we found the predictions from different classifiers are not always

consistent.

49
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4.1 Custom Kernels based on Phylogenetic Distances

4.1.1 Kernel Methods

Kernel methods are a set of algorithms that work on various types of dataset and find
the general relationships in it. Datasets such as, sequences, documents, and images,
all can be performed. In addition to their application in SVMs, kernel methods can
be used in a range of techniques including Fisher Discriminant Analysis, Principal
Components Analysis and Spectral Clustering. Problems are usually solved by kernel
methods in two steps: map the original dataset into the feature space that the adopted
algorithm can deal with; design a function to discover linear patterns in the mapped
feature space.

From the formula 3.8 we induced in Chapter 3:

z; = ¥(x;) (4.1)

Then a kernel function can be introduced to satisfy:

K(x1,29) = ((21), 9 (22)) (4.2)

where ¢ maps the original features into a dot product space, or feature space. The
inner product in the feature space is K, kernel function. Kernel function is the vital
ingredient for kernel method, since it has to be designed depending on the types of
the specific dataset and be efficient in computation. SVMs are capable of working
on nonlinear datasets, since a hyperplane can always be found by mapping features
into higher dimensions and the kernel function still works efficiently in infinite feature

space.

Generic polynomial and RBF kernels are widely used, but custom kernels that
incorporate biological insights can be useful as well. For example, alignment-based
kernels improved SVM performance in predicting protein subcellular localization,
which is a vital aspect of protein function [88]. Since phylogenetic distance is an
effective measure in the comparison of microbial communities, custom kernels based

on this property may be effective in discriminating microbiome samples.
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4.1.2 Four Distance Measures

Parks et al examined 39 measures of beta diversity and analyzed their relative similar-
ity [5]. The authors identified several groups of measures with very high correlations
among predictions. We chose single representatives from four of these groups. The
custom kernels were developed based on two phylogenetic (weighted and unweighted
UniFrac distances) and two non-phylogenetic (Euclidean and Canberra distances)
measures. Non-phylogenetic measures assess community differences based only on
OTU presence and abundance, while phylogenetic measures are also informed by
evolutionary relationships between these OTUs in the phylogenetic tree.

The Euclidean distance is one of the most popular and straightforward distance
measures. It can be expressed as the length of the path connecting two points

(x1,x9,...,x,) and (y1, Yo, ..., Ys) in n-space:

The Canberra distance is a non-phylogenetic measurement introduced by Lance et
al in 1966 and the modified form mainly used today was suggested a year later [158,
159]. The dissimilarity sums the results calculated from the absolute difference be-
tween the pair of variables divided by their total value. The Canberra distance be-
tween (x1, o, ..., x,) and (y1, s, ..., y,) in n-space can be calculated as:

(z,v) Z ||xz uil (4.4)

xz| + |yz

This metric is more sensitive to quantitative (abundance) than binary (presence-
absence) differences between samples.

Some studies found the Canberra distance works well in separating community
samples and had a better performance than the Euclidean distances [160]. Possible
reasons for these differences were proposed: the Euclidean distance does not scale the
values during calculation, while the Canberra distance uses the sum of the variables
in each dimension as a scaling factor. The Canberra distance was initially proposed
as a software metric and performed well in detecting intrusions in networks and in-
formation systems, but it has been readily adopted in ecology and genomics. Jurman

et al used the Canberra distance as an indicator to measure the stability of ranked
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Figure 4.1: Calculation of the UniFrac distance. Blocks in blue and red colors
indicate sequences from each of two communities. Branches in purple means taxa
from these two samples are mutually shared. (a) A tree of taxa from two similar
communities, where all the braches are shared. A minimum UniFrac distance value
of 0.0. (b) A tree of two very different communities, sequences in red and sequences
in blue appear in disjoint sets of branches. A maximum UniFrac distance value of 1.0.
(c) A tree shows that parts of sequences from these two communities share branches
on the tree, while some of them do not.

biomarkers from functional genomics, so that a reliable set of genes can be selected
for classification or annotation [161].

UniFrac distance, as a method of estimating microbial distance based on phyloge-
netic information, was proposed by Lozupone et al [113, 114, 115]. UniFrac expresses
the phylogenetic dissimilarity between each pair of samples after all taxa in these
samples have been placed into a rooted phylogenetic tree. Any branch that has taxa
from both samples as children is called a “shared branch”, whereas a branch whose
children are from one sample only are “unique branches”. The UniFrac distance of
these two samples can be calculated as the sum of lengths of all unique branches
divided by the sum of all branch lengths in the tree..

Figure 4.1 gives examples of three UniFrac distances. The two communities in
Figure 4.1(a) have similar phylogeny (minimum UniFrac distance 0.0), since all the
taxa in red and blue samples simultaneously appear in each branch. However, Fig-
ure 4.1(b) shows taxa from these two samples are in distinct braches, which leads to
a maximum UniFrac distance 1.0. Between these two extreme cases, Figure 4.1(c)
shows a UniFrac distance of 0.5, whose total branch length from shared branches and

unshared branches are equal. The formula of calculating the distance between two
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communities, x and y, is consistent with [162]:

n

A S ET Y L 2 »

where n is the number of braches in the phylogenetic tree, and b; corresponds to

the length of branch i. PF and P/ are the taxa proportions in the i, branch from
community = and y respectively. Function I(.) indicates the presence or absence of
species within the branch.

The results from this measurement have an assumption that all taxa in the phy-
logenetic tree come with similar abundance, which is called unweighted UniFrac dis-
tance. However, the difference in abundance can be critical for distinguishing com-
munities, so a weighted UniFrac distance was developed. Weighted UniFrac distance
gives a weight to each branch based on the amount of divergence in the taxa abun-

dance. The equation can be given as:

Z?:l bl(sz — sz>
Z?:l bl(‘PZx + sz)

These two measurements yield different and complementary dissimilarity score be-

d(z,y) = (4.6)

tween communities. Unweighted UniFrac is sensitive only to the presence and absence
of different OTUs, which may amplify the effect of rare lineages. However, not all
rare members are important. Weighted UniFrac considers the relative abundance, but
sometimes the most abundant lineages are not the discriminative members. General-
ized UniFrac distances which offer different tradeoffs between presence and abundance
have been developed [162]. However, here we focus on the widely used unweighted
and weighted UniFrac distance.

A distance matrix is used to store the distance between each pair of samples,

which is square and symmetric. It can be represented as an n-by-n matrix:

d2,1) 0

d(3,1) d(3,2) 0

dn,1) d(n,2) ... ... d(n,n)
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where d(7,j) measures the dissimilarity between sample i and j. All the diagonal
values are defined as zero, which indicates that there is no difference between the
element and itself. A value of 1.0 denotes the maximum dissimilarity.

All four beta-diversity measures in the thesis were calculated with QIIME. Con-
verting the data to a common range before applying distance calculation is necessary,
so that all the attributes can be given an equal weight. To account for disparities in
OTU counts in different samples, these similarity scores were combined with several
different OTU table preprocessing approaches, including raw OTU count, relative
abundance, rarified counts from 500 to 3,000 per samples and cumulative sum scal-
ing (CSS) normalization [86]. Since beta diversity expresses the dissimilarity between
each pair of samples, we subtracted each such value from 1.0 in order to generate simi-
larity values for the SVM classifier. The classifiers with custom kernel were performed

using Libsvm package [157].

4.1.3 Performance Comparison

Using the four beta-diversity measures above, we developed custom kernels that ex-
press the similarity between all pairs of samples. The hypothesis underlying the use of
these kernels is that similarity scores based on ecological similarity measures will out-
perform a naive RBF kernel, especially when these measures are based on information
not available to the classifier (for example, phylogenetic information in the case of
UniFrac). The performance of SVMs with different custom kernels is given in Figure
4.2. Colors are consistent with Parks et al’s clusters on beta diversity measurements.

Phylogenetic measures did not work better than non-phylogenetic measures: for
example, the widely used unweighted and weighted UniFrac measures yielded 74.4%
and 73.7% accuracy. The Canberra distance obtained an accuracy score of 76.5%,
which is better than the UniFrac distance, but still worse than using OTU abundance
with an RBF kernel. Although many types of microbial samples cluster well based
on beta-diversity measures such as UniFrac, this is clearly not the case with the
two types of plaque. A possible reason for the discrepancy between RBF and our
custom kernels is the optimization of the gamma parameter, since none of the four
beta-diversity measures have such process. Another reason may be that the semi-

defined distance function makes samples not satisfy the KarushKuhnTucker (KKT)
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distance_metric Canberra unweighted UniFrac | weighted UniFrac Euclidean RBF
otu_count 0.762 0.729 0.734 0.695 /

otu_abundance 0.762 0.729 0.736 0.736 0.762
rarefaction 0.766 0.770 0.740 0.622 /
css 0.769 0.729 0.738 0.754 /

mean + s.d 0.765 + 0.003 0.739 £ 0.017 0.737 £0.002 0.702 +0.051 0.762

Figure 4.2: The performance of SVMs with different custom kernels. The
distance metrics are ranked by their mean values and highlighted with colors consis-
tent to Parks et al’s cluster result. Highly correlated and prominent measures are
grouped in one color set, the calculation of correlation can be found in [5].

conditions, which is a generalized method Lagrange multipliers . So we cannot ensure
the Lagrange function is still convex, resulting that the hyperplane may not be global

optimal.

4.2 Clade Features based on Phylogenetic Relationships Among OTUs

A clade refers to a group containing a common ancestor and all its descendants,
which is a grouping of lineages based on phylogenetic relationships. The term was
first proposed by Huxley in 1957 [163]. In the phylogenetic tree, clades are nested
within one another (in Figure 4.3). A clade can have thousands of organisms or only
a few of them.

By using the phylogenetic tree generated in the sequence-processing step, sets of
closely related OTUs can be grouped into clades. Since OTUs can only be identified
after assuming a fixed similarity, OTUs cannot go into deep lineage if the similarity
were set very low. However, if the microbial communities were differentiated by taxa
in big families, a very high similarity cannot detect such groups [164]. In fact, although
many studies pick OTUs at 97% similarity, this percentage is an empirical value. So
it is reasonable to argue that OTUs at lower or higher similarity, such as 90% or
99% may better characterize the communities. To support the argument, Knights
et al identified OTUs at different similarity between 50% and 95%, besides 97% and
99% [41]. Features were constructed from these OTUs and put into RF classifiers.
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Figure 4.3: Generation of clade-based features. Each clade in the tree corre-
sponds to a feature in the data set; for example, the darkest box encompasses OTUs
A and B.

Results show the accuracy did not change much when the similarity became larger
than 65%. However, the accuracy got worse at high levels of similarity, for example, in
addition to the more widely used 97% and 99%. Their results indicate that OTUs of
high similarity cannot always provide discriminative features for classifiers. However,
it is difficult to determine a perfect similarity before classification. To solve this
problem, we proposed the idea of clade features. The aggregation of clades breaks
the limitation by strain-level variation, so that discriminative taxa at different levels

can be found.

4.2.1 Clade Features

We constructed clades using the reference phylogenetic tree as described above, and
added each clade to the existing OTU feature space. The abundance of a clade was
calculated as the sum of abundances of all its descendants. Clade abundance reduces
the sparsity of the dataset and removes the need for a single, universal similarity
threshold. However, this method increases the number of features relative to the
original OTU table. Since the number of non-leaf clades is equal to the number of
internal nodes in the phylogenetic tree, this clade-based approach can generate a total
of [ — 2 features, where [ is the number of leaves in the tree, if the uninformative root
clade that includes all OTUs is ignored. To solve this problem, we applied different

feature selection strategies.
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4.2.2 Feature Selection

The clade approach generated thousands of features, many of which are likely to be
uninformative, and in aggregate can reduce the speed and accuracy of SVM training.
Although some species appear in only a small number of samples, rare features may
nonetheless be useful for classification and should not be removed by default. We used
feature selection to accelerate learning by removing uninformative OTUs. Among the
multitude of available feature selection techniques, we used two types of approach:
filter methods, which consider the usefulness of features based on their apparent
relevance to the classification problem, and wrapper methods, which assess features
by quantifying their effect on the accuracy of a trained model.

One of the filter methods used was information gain, which ranks the features
based on the amount of predictive information obtained from the presence or absence
of a term [165]. To measure the amount of information, we introduce the concept
of entropy, which tells the expected amount of information in the content. Let Y =
{y1,y2,...,yr} denote the set of values in the space and fit the probability function
P(Y). So the entropy H(Y) can be defined as:

H(Y)==> p(y)log,p(y) (4.7)

yey

where the log is usually to the base of 2, meaning the entropy is measured in bits.
A simple example is tossing a fair coin, where the probability of heads and tails are
both 0.5. So the entropy is —0.5 x log 0.5 — 0.5 x log 0.5 = 1.

The definition of entropy can be extended to a pair of variables, which is called
joint entropy H(X,Y). If the variables (X,Y) ~ p(x,y), the conditional entropy
H(Y|X) can be defined as:

HYIX) == Y ply.iogP)

zeX,yeY ( )

(4.8)

Conditional entropy can be regarded as the uncertainty of Y after given the infor-
mation of X. Mutual information is the difference between entropy H(Y') and the

conditional entropy H (Y X):

MI(Y;X)=H(Y) - H(Y|X) (4.9)
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H(X,Y)

Figure 4.4: Illustration of relationship between entroy and mutual informa-
tion. For the two variables X and Y, area of the rectangle is joint entropy H(X,Y).
The full area of the circles on the left denotes individual entropy H(X), the light blue
area is the conditional entropy H(X]|Y). The circle on the right shows for variable Y.
The area overlopped by these two circles is the mutual information I(X;Y).

which gives the reduction in entropy if X is known. A Venn diagram in Figure 4.4
shows the relationship between entropy and mutual information. However, infor-
mation gain is different from mutual information, since it calculates the expected

reduction in entropy:
IG(Y;X) =) %MI(Y; X))
S; Si
_ il _ = ‘ 4.10
S
= H(Y) = 3 ZHY|X)

where S denotes the whole number of samples, % is the proportion of samples with
the iy, value in feature X. We computed the information gain of each feature and
selected the top N of them to build the classifier.

The Chi-square (x?) test is used to identify the difference between the sampling
distribution and the expected distribution given by the hypothesis [97, 166]. Suppose
there are N samples in total, Y = {y1,9s,...,yr} enumerates the classes in target
space and X = {xy,29,..., 2} is one variable in the feature set. A null hypothesis
H, states that variables X and Y are independent. The probability of rejecting this

hypothesis can be calculated from the y? value under the y? distribution with one
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degree of freedom. Formulas are referred from:

n k 2
2 _ (0 — Eij)
NESEED 3) plcae s (411
=1 j=1 i
M, B;
E . =— 4.12

where O; ; is the number of samples has the ¢y, feature from the jy, class. M; indicates
the number of samples has the i, feature, whatever the class is. B; is the amount of
samples from the jy, class. So the E, ; is the expected number of samples with the
1y, feature and from the jy, class.

By searching the x? distribution table, the corresponding p-value can be found. A
small probability allows us to reject the null hypothesis, which indicates this feature
has high correlation with the class label.

Wrapper methods were also employed in the thesis. These approaches select
features according to their performance when used by a learning algorithm, as the
evaluation function. We considered Random Forest (RF) feature permutation as a
wrapper method, which is very popular in feature ranking [98]. It is easy to use and
only few parameters need to be tuned. Each feature value would be shuffled randomly
and test the performance of the model trained by those permutated features. Variables
were ranked based on the effect of randomizing their values between the categories
to be predicted. In the context of a trained RF classifier, randomizing a useful
variable would lead to a significant drop in accuracy, whereas a similar procedure
on an uninformative variable would have no effect. Measurements such as prediction
accuracy, precision or MCC can be used to evaluate the performance.

Filter methods are fast and suitable for problems of high dimensionality. Since
these approaches are independent of the classification algorithm and typically consider
features one at a time, features only need to be ranked once. However, filter methods
lose the interaction with the classifiers. This means the selected features may not be
the subset that are of greatest utility to the classifier. What is worse, filter methods
treat all features as independent from one another, which is not true in fact. By
contrast, wrapper methods interact well with the learning algorithm and may take
feature dependencies into account. Features selected by wrapper methods are usually

more powerful than those by filter methods [112], but the searching process require
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long time and high computational cost. Although OTUs with strong marginal effects
(i.e., those that have good predictive power independent of any other variables) should
be identified by all three of our chosen approaches, useful combinations of variables

might be highlighted by the RF approach.

4.2.3 Performance Comparison

We augmented the OTU table with relative abundance information about clades that
contain multiple OTUs, to determine whether explicit specification of relationships
amongst OTUs might lead to better prediction accuracy. Fifty-two OTUs were lost
because their corresponding sequences failed the PyNast quality control filters, leav-
ing a total of 6,996 OTUs. To this set we added 6,994 clades, corresponding to all
internal nodes in the reference tree, minus the uninformative root node which always
has a relative abundance of 1.0. The classification accuracy obtained without feature
selection was less than that obtained from the OTU table without clade information

(73.8% vs. 76.2%). While the OTU+-clade table has almost twice as many features

Table 4.1: Maximum accuracy of SVM classifiers trained with different
combinations of input features. The initial numbers show the accuracy score,
with numbers in parentheses indicating the total number of features used to train
and test the classifier. The four types of input features used were (i) OTUs only;
(i) OTUs and clades comprising related sets of OTUs; (iii) Functional predictions
made using PICRUSt; and (iv) a dataset comprising all generated features. Feature
selection techniques used were the filter methods, information gain and Chi-square;
and the feature permutation wrapper method.

Cross-Validation Accuracy (number of features)

. . With Feature Selection
Features Without Feature Selection
Info_Gain Chi_Square Feat_Perm
) 0.762 0.779 0.777 0.798
(i) OTU
(7048) (60) (50) (20)
. 0.738 0.802 0.800 0.802
(ii) Clade
(14402) (110) (170) (100)
. 0.761 0.762 0.754 0.761
(iii) Function
(6191) (120) (100) (60)
. . 0.777 0.804 0.805 0.805
(iv) Hybrid
(1556/1518) (92/78) (68/62) (28/23)
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as the OTU abundance table alone and includes over 99% of the original OTUs, it
appears that the higher dimensionality of the data confounds the SVM classifier, mak-
ing it more difficult to build an accurate model. However, applying feature selection
as above gave at least 80% accuracy (results in Table 4.1, Figure 4.5). A ten-fold
cross-validation was performed and we recorded the accuracy from each fold and the

overall dispersion.. The statistical descriptions are displayed in Table 4.2.

As was observed previously with the OTU table, the filter methods required more
features to achieve their maximum classification accuracy (110 and 170 for information
gain and Chi-square versus 100 features for the RF approach). When analyzing the
selected features, all three methods selected more clades than OTUs (106 clades
for information gain, 159 clades for Chi-square and 19 clades for the RF feature
permutation). Figure 4.6 shows the performance of classifiers with different numbers
of features. The information gain (in Figure 4.6(a)) and Chi-square (in Figure 4.6(b))
approaches had similar performance: the accuracy of OTU abundance varied between
76% and 78% with different numbers of features. However, clade abundance gave
accuracy scores that were often in excess of 80%. Both OTU and clade abundance can
classify samples well with a small number of RF-ranked features (in Figure 4.6(c)), but

with the number of features increasing, the performance of OTU abundance worsened

Table 4.2: Statistical summary of the accuracies from each of ten cross-
validation folds with different features.

Features Mean | Std.Deviation | Std.Error 95% Confidence intervals Min | Maz
Lower Upper

Info_Gain 0.776 0.069 0.005 0.648 0.847 0.645 | 0.850

OTU Chi_Square | 0.778 0.053 0.003 0.684 0.856 0.677 | 0.867

Feat_Perm 0.783 0.064 0.004 0.664 0.863 0.656 | 0.867

Info_Gain 0.806 0.025 0.001 0.778 0.853 0.777 | 0.860

Clade Chi_Square | 0.792 0.053 0.003 0.698 0.870 0.691 | 0.881

Feat_Perm 0.800 0.035 0.001 0.743 0.850 0.742 | 0.854

Info_Gain 0.756 0.057 0.003 0.659 0.816 0.653 | 0.817

Function | Chi_Square | 0.753 0.054 0.003 0.659 0.816 0.653 | 0.817

Feat_Perm 0.751 0.058 0.003 0.655 0.833 0.653 | 0.833

Info_Gain 0.804 0.035 0.001 0.756 0.872 0.753 | 0.884

Hybrid Chi_Square | 0.795 0.043 0.002 0.746 0.888 0.739 | 0.903

Feat_Perm 0.805 0.045 0.002 0.744 0.884 0.740 | 0.892
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Figure 4.5: Boxplots show the distribution of 100 times cross-validation
accuracies with different input features. Features (a) without feature selection
and with feature selection: (b) information gain, (c) Chi-square, (d) RF feature
permutation criteria.

whereas clade abundance kept working well. Clade abundance gained improvement
in accuracy, which were tested by two-sample ¢-tests (results in Table 4.3). It appears
that explicitly modeling the phylogenetic correlations between OTUs allows the filter
methods to exploit the interactions that were previously accessible only to the wrapper

method.

4.2.4 Phylogenetic Distribution of Selected Features

The phylogenetic mappings and corresponding phylum-level GreenGenes taxonomic

classifications of OTUs are shown in Figure 4.7(a). Subgingival plaque samples tended
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Figure 4.6: Classification accuracy with different sets of input features. The
classification accuracy is shown for sets of 10 to 200 of the top-ranked features ac-

cording to the information gain (a), Chi-square (b), and RF feature permutation

(c) criteria. The four types of input features used were OTUs only (orange mark-
ers); OTUs and clades (green markers); Functional predictions made using PICRUSt
(purple markers); and all generated features (blue markers).
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to have higher proportions of Bacteriodetes (sub: 0.254 vs supra: 0.191), Fusobacteria
(0.172 ws 0.118) and Spirochaetes (0.029 vs 0.006), whereas Actinobacteria (0.175 vs
0.247) and Proteobacteria (0.151 vs 0.215) are more abundant in supragingival plaque.
Firmicutes had similar abundance in both types of site (0.213 vs 0.220), however, at
the class level, Bacilli (0.110 vs 0.148) and Clostridia (0.103 vs 0.071) showed larger

deviations.

We then highlighted the optimal features that were selected by each method in
the phylogenetic tree. The filter methods, information gain (in Figure 4.7(a)) and
Chi-square (in Figure 4.7(c)) chose similar clades including a large clade within Bac-
teroidetes and smaller groupings within Firmicutes and Fusobacteria. The Chi-square
approach chose the largest number of features, including Spirochaetes and Clostridia
clades that were not chosen by the information gain criterion. By contrast, the RF
feature-permutation approach, which included the fewest features in its optimal set,
selected a greater diversity of features (in Figure 4.7(d)). This set of features included
unique clades of Firmicutes and Actinobacteria that were not identified by the infor-
mation gain or Chi-square approaches. For all the three feature-selection methods,
near-optimal classification accuracy was obtained for many different numbers of se-

lected features, suggesting that some of the highlighted clades in Figure 4.7 may not

Table 4.3: Improved accuracy of SVM classifiers trained with different com-
binations of input features. The initial numbers show the improvement of accu-
racy score, with numbers in parentheses indicating the p-value and ¢-value from ¢-test.
Three pairs of features were compared: (i) Clade vs OTU; (ii) Hybrid vs OTU; (iii)
Hybrid vs Clade. Feature selection techniques used were the filter methods, informa-
tion gain and Chi-square; and the feature permutation wrapper method.

Improvement of Accuracy (p-value, t-value)

. With Feature Selection
Features Without F.S.
Info_Gain Chi_Square Feat_Perm
())Clad OTU -0.024 0.023 0.024 0.009
i)Clade vs
(p<2.2e-16;t=-34.6) | (p<2.2e-16;t=26.5) | (p<2.2e-16;t=24.8) | (p<1.7e-13;t=8.6)
(i) Hybrid vs OTU 0.015 0.025 0.028 0.015
ii)Hybrid vs
(p<2.2e-16;t=18.1) | (p<2.2e-16;t=25.9) | (p<2.2e-16;t=29.7) | (p<2.2e-16;t=15.6)
0.039 0.002 0.005 0.003
(iii)Hybrid vs Clade
(p<2.2e-16;t=56.9) (p<1.1e-1;t=1.6) (p<3.6e-5;t=4.3) (p<T7.3e-3;t=3.5)
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Figure 4.7: Phylogenetic mapping of top-ranked clade and OTU features.
(a) Reference tree comprising all observed oral site OTUs, with branch lengths pro-
portional to substitutions per site. Key phyla are highlighted with different colors.
(b-d) mapping of highest-ranked clade and OTU features according to information
gain (b: 110 features), Chi-square (c: 170 features) and RF feature permutation (d:
100 features).
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be important for classification purposes. The selected clades are nested; one big clade
may contain a number of small ones. Because of that, although 110 features were
selected by information gain, there are only 5 big clades highlighted in the phylo-
genetic tree. Nonetheless, the higher variety of features selected by the RF feature
permutation approach shows the value of testing combinations of features during the

selection process.

4.3 Functional Encondings

Taxonomic diversity is an important characteristic of microbial communities, however,
essential knowledge of functional capabilities helps understand the role they play. The
functional capabilities of a microbiome sample are often assessed using metagenomics
(see Chapter 1.4), but the HMP collected only 764 metagenomic samples as compared
to 2,702 16S samples. Since large numbers of samples are desirable for model training,
we used a method that predicts functions within the community from 16S rRNA gene

sequences.

4.3.1 Functional Features

The PICRUSt software [116] allows the prediction of functional gene complements in
microbial samples that have been characterized with marker genes such as 16S. We
used these predictions as the basis for classification; if the functional capacity of mi-
crobes in a system is more important than their specific taxonomic affiliations, then
a function-based approach to classification may yield higher accuracy. PICRUSt uses
phylogenetic information to make its predictions, and thus functional information will
be highly correlated with the OTU and clade data. However, since phylogenetically
distant lineages can share common functional features, the predictions made by PI-
CRUSt may identify functional similarities between OTUs that belong to different
high-level taxonomic groups such as classes and phyla. Thus the predictions made by
PICRUSt are not completely redundant with the OTU and clade features considered
in this work.

The functional profile predicted by PICRUSt is expressed as a table containing
the count of functional genes in each sample. Kyoto Encyclopedia of Genes and

Genomes (KEGG) orthologs were the gene family profiles we adopted [167]. KEGG
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is a database containing genomic information and high-level functions. The functional
assignments in KEGG connect genes into different molecular interaction and reaction
networks, such as metabolism and genetic information processing. KEGG Ortholog
(KO) groups were manually defined based on the hierarchy of pathways and used as
identifiers to map each gene function. New features were constructed from the KO
abundance in each sample, where maximum values were also scale to 1.0 to eliminate
the disparity.

To measure the reliability of the functional predictions, we calculated the Nearest
Sequenced Taxon Index (NSTI) values for each sample. The value of NSTI was
calculated from average length of the braches that can separate the OTUs from the
reference genome, given a weighted by the normalized abundance of the OTU. So the
lower the value is, the more reliable the prediction is expected to be. A 0.04£0.01 s.d.
was obtained in the thesis. It is similar to the values reported for HMP samples
(mean NSTI = 0.03+0.02 s.d.), which were generally well predicted by PICRUSt, as
compared with 0.23 +0.07 s.d. for a less well-predicted hypersaline community [116].

4.3.2 Hybrid Features

Since both function and taxonomy can potentially characterize the community, com-
binations of the two types of feature may provide complementary information. We
combined clade and functional abundances and created new hybrid features. Results
show that classifiers were able to distinguish samples with a small number of fea-
tures, which allows us to focus on the key attributes that distinguish the two types

of plaque.

4.3.3 Performance Comparison

A total of 6,191 KEGG orthologs, which incorporate functional predictions in addi-
tion to homology information, were used as input features to an SVM with an RBF
kernel as performed above. The cross-validated accuracy of the model trained with
all features was 76.1%, almost the same with the corresponding OTU abundance
model. These observations are consistent with those of Xu et al [168], who found
that taxonomy alone was sufficient to model microbial community structure. Func-

tional features are still useful for predictive purposes, but their failure to improve
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classification accuracy may be attributable to several factors. It may be that the
crucial functions are not well annotated by KEGG, because of misannotations or a
failure to assign to any meaningful functional category. The granularity of KEGG
functional attributions and the presence of irrelevant features may also impede the
discovery of important predictive attributes.

To assess the performance of classifiers based on combined clade and functional
information, we performed feature selection on a hybrid data set containing features
of both types. The results of feature selection and classification are shown in Ta-
ble 4.1 and statistical descriptions in Table 4.2. The accuracy obtained from all
three types of feature selection was 80.4%-80.5%, and the RF feature permutation
approach yielded a maximum accuracy score with only 28 clade-based and 22 func-
tional features. The small improvement in accuracy of the hybrid approach relative
to clade-based classification alone (in Table 4.3) suggests that the functional features
do not provide much useful complementary information to taxonomy: the increase of
0.3% relative to previous wrapper-based results corresponds to only a few additional

correctly classified cases.

4.3.4 Biological Meaning of Selected Features

The selected clade-based features are mainly from Streptococcus, with several of them
restricted to the opportunistic pathogen S.anginosus. There are other clades of Strep-
tococcus, underscoring the importance of different members of this genus in the oral
cavity. Although Streptococcus is typically a more significant component of supragin-
gival plaque, consistent with its facultative anaerobic lifestyle, three of the Strepto-
coccus-containing groups were overrepresented in subgingival plaque, while the fourth
was 50% more abundant in supragingival plaque. This finding suggests that the most
common types of Streptococcus may not be the best discriminators between the two
types of plaque. Some selected features were broader in their taxonomic distributions,
including genera such as Prevotella, Fusobacterium and Dialister.

One of the selected functional features is sagA, which encodes the basic structural
unit of Streptolysin S (SLS). Bacteria such as S.pyogenes use SLS to lyse host cells
and acquire iron [169, 170]. This function appears to be strongly associated with

subgingival plaque. High correlated functional features also include a beta-lactam
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resistance protein, overrepresented in subgingival plaque; streptokinase, which can
aid the spread of Streptococcus infection through cleavage of fibrils [171]; proteins
involved in resistance to tellurium and vancomycin; and a Type IV secretion sys-
tem component. Although many of the implicated functions relate to host-microbial

interactions, we found no clear, strong connections to aerobic or anaerobic lifestyles.

4.4 Combining Information from Multiple Classifiers

Empirical studies shows that no algorithm can outperform all others on all possible
datasets. Instead of trying to optimize a single learning model, combing several
different trained predictors may yield better results [2]. Ensemble methods train
a group of base classifiers on the same dataset and make decisions based on the
predictions from all of them. SVM, kNN and decision trees are all commonly used

base classifier.

4.4.1 Different Predictions from Various Classifiers

Although our focus was on SVMs, we also considered two other supervised classifica-
tion methods, SourceTracker [172] and RF [96]. SourceTracker is a Bayesian approach
that assigns probabilities that a given sample is derived from each of a set of envi-
ronment types, which characterizes the microbial community in another aspect. We
used SourceTracker version 0.9.5 software as implemented in QIIME with default
settings. Analogous to five-fold cross validation, the set of samples was divided into
5 subsets: one subset was sink samples for testing while the other four were source
samples training. We repeated this process five times with different cross-validation
subsampling.

RFs, first introduced in 2001, are an ensemble method merging decision trees with
voting schemes. Each decision tree is constructed based on M (mtry) randomly chosen
features from the input dataset. The prediction of every sample is determined by the
majority vote of all these decision trees. RF classifiers are popular both for feature
selection and classification, and were found by Knights et al to perform well on several
test datasets. RF classification was implemented with scikit-learn 0.15 [173].

RF trials were carried out in an analogous manner to SVM, using sets of 10 to

200 features ranked by the three feature selection methods. Since SourceTracker has
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a much longer running time, we only used the whole set of features to test its per-
formance. For the RF model, the lowest and highest accuracies were respectively
achieved by functional abundance and the hybrid feature set, as was observed with
the SVM classifiers (in Figure 4.8). OTUs and clades had similar performance when
features were ranked by information gain (in Figure 4.8(a)) and Chi-square (in Fig-
ure 4.8(b)), but clade abundance improved under RF feature permutation (in Fig-
ure 4.8(c)) ranked features. SourceTracker estimates the posterior probability scores
for each possible source of a sample; we used the source with the highest posterior
probability as the final prediction. The clade and hybrid feature sets did not perform
as well as OTUs, likely due to the large number of highly similar clade features that
were not removed with a feature selection process.

Both SourceTracker and RF had similar performance in distinguishing the two
hard plaque sites, with classification accuracy between 75% to 78% with OTU abun-
dance features. However, the predictions on each sample were different between
methods. Figure 4.9 contrasts the predictions made by each pair of methods on each
sample. All three methods had consistent predictions on most samples, since the ma-
jority of samples are either perfectly classified or perfectly misclassified by each pair
of methods. However, off-diagonal samples show differences between two methods,
and some samples are classified 100% correctly by one approach and 0% correctly by

the other.

4.4.2 Design of Ensemble Algorithm

Since the predictions from SVM, RandomForest and SourceTracker were sometimes
divergent, we used all three methods as base classifiers for an ensemble model. All
the samples were divided into five subsets as 5-fold cross-validation (in Figure 4.10).
Training set was then trained with SVM, RandomForest and SourceTracker respec-
tively. During this training process, another 5-fold cross-validation was adopted, that
separated the training samples into five subsets. After this inner cross-validation,
each sample was assigned a label. As was done with the individual SVM and RF
classifiers, this process was repeated 100 times with random shuffling of the cross-
validation sets. For SourceTracker, the classification was performed for one time due

to the speed of SourceTracker. However, SourceTracker are able to give predictions in
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Figure 4.8: Classification accuracy with different sets of input features. Each
plot is split into two portions; (Left) the random forests classification accuracy with
sets of 10 to 200 of the top-ranked features according to the information gain (A),
Chi-square (B), and RF feature permutation (C) criteria, (Right) the Source Trackers
classification accuracy with only top 200 and the whole features. The four types
of input features used were OTUs only (orange markers); OTUs and clades (green
markers); Functional predictions made using PICRUSt (purple markers); and all
generated features (blue markers).
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Figure 4.9: The predictions on all samples: (a) SVM wvs random forests, (b)
SVM ws SourceTracker, (c) random forests vs SourceTracker. The values
on x and y axis indicate the frequency of samples were correctly predicted. The size
of the nodes reflects the number of samples that were classified with the indicated
accuracy, from 0% by both classifiers in the lower left-hand corner to 100% in the
upper right-hand corner.

probability (possibility of the sample from Subgingival plaque, Supragingival plaque
and Unknown) contrasting to the discrete values (+1, -1) from SVM and RF.

To construct the new feature space, we combined the corresponding probabilities
and the top N (from 10 to 200 at a step of 10) features from RF feature permutation.
A RF classifier was adopted as our final classifier with default settings. The classifiers

were trained by the new features and evaluated using the testing set.

4.4.3 Performance Comparison

Figure 4.11 compares the performance of classifiers from ensemble method and with
original OTU abundance. Unfortunately, the ensemble method did not yield a sub-
stantial increase in accuracy. The best accuracy obtained was 78.5% with 120 fea-
tures. Two possible reasons may account for the failure of ensemble method: the
performance of base classifiers themselves and the design of final classifiers. The
performances of the three base classifiers are not perfect, so we cannot expect the
samples that are wrongly predicted by all base members can be correctly labeled by
the final classifier. The ensemble methods follow the philosophy that errors made by
one base classifier can be compensated by another, so that the final result would ide-
ally have less errors than either base classifiers. However, our result failed to achieve

this goal, though predictions from SVM, RF and SourceTrack did have some amount
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Figure 4.10: Illustration of ensemble method. The streams in black indicate the
data flow of training set, while streams in blue are from the testing set. The top N
features adding to the final classifier were highlighted in green.

of disagreement. Possibly the design of final classifier needs to be improved. Instead

of using random forest to combining all classifiers, we can try some other algorithms,

such as artificial neural network.
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