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Abstract

The microorganisms associated with our body, collectively known as the microbiome,

have profound impacts on biological processes including human health and disease.

Different body sites are dominated by different major groups of microbes, but the

variations within a body site, such as the mouth, can be more subtle. High-throughput

DNA sequencing allows the assessment of the microbiome at an unprecedented scale,

but creates new computational challenges. Machine-learning procedures can serve

as useful tools for distinguishing microbes from similar body sites, understanding

key organisms and their roles can highlight deviations from expected distributions of

microbes.

We focused our attention on the classification of nine oral sites, and dental plaque

in particular, using data collected from the Human Microbiome Project. A key focus

of our representations was the use of phylogenetic information, both as the basis for

custom kernels and as a way to represent sets of microbes to the classifier. We also

used the PICRUSt software, which draws on phylogenetic relationships to predict

molecular functions, to generate additional features for the classifier. Custom kernels

based on the UniFrac measure of community dissimilarity did not improve perfor-

mance. However, feature representation was vital to classification accuracy, with

microbial clade and functional representations providing useful information to the

classifier. However, these two types of information were correlated rather than com-

plementary, and combining the two types of features did not yield increased prediction

accuracy. Many of the best-performing clades and functions had clear associations

with the oral microbiome.

The classification of oral microbiota remains a challenging problem; our best ac-

curacy on the plaque dataset was approximately 81%. Perfect accuracy may be

unattainable due to the close proximity of the sites and intra-individual variation.

However, further exploration of the space of both classifiers and feature representa-

tions is likely to increase the accuracy of predictive models.
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Chapter 1

Introduction

The microorganisms that coexist within the human host are referred to as the human

microbiome. The human body harbors a tremendous number of microbial cells that

can outnumber human cells by a factor of 10 [6, 7, 8, 9, 10]. Interacting closely with

their host, these microorganisms play an important role in human biological processes

and disease states [11, 12, 13, 14, 15, 16]. For example, the intestinal microbes are

capable of producing some required vitamins that the human body cannot synthesize,

such as vitamin B12 and vitamin K [17]. Iron absorption [18, 19, 17] and the formation

of antioxidants [20] in the human body also rely heavily on microbes. Microbes are

also linked to different diseases, such as inflammatory bowel disease [21, 22, 11],

periodontal disease [23, 24, 25, 15, 26, 27] and skin disease [28, 29, 30, 31].

The human oral cavity is one of the most diverse and complex microbial habitats to

analyze, for several reasons. First, many ecologically distinct sites including different

types of plaque, different oral surfaces, and saliva are found in close proximity to one

another [12, 32, 33], which makes it easier for microbes to migrate among these sites.

Second, the oral habitat is highly variable with frequent inputs of nutrients, often

followed by mechanical removal of the biofilm (e.g., via tooth brushing). Third, the

oral microbiome is also implicated in a number of diseases, including dental caries,

periodontal disease and even infections in heart and liver [34, 35, 15].

Traditional microbiome studies were performed using laboratory culture meth-

ods [6, 36, 37, 38], which identify the microorganisms by plating samples on different

artificial media. Culture-based approaches are slow and limit the detectable organ-

isms to the minority that could be grown in a laboratory environment. DNA se-

quencing refers to the process of determining the order of nucleotides in a specific

molecule of DNA. In a microbiome study, these sequences can reveal genetic infor-

mation about the microorganisms. Recent developments in high-throughput DNA

sequencing techniques allow a large number of microbial sequences to be identified

1
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in a short time [39, 40]. With so much microbiome data available, interpretation

of these huge datasets is a daunting challenge. Machine-learning approaches can be

used to identify critical information to classify or distinguish microbiome samples.

Several studies have constructed microbial features from DNA sequence and used

machine-learning algorithms for classification [41, 42, 43, 44]. Classifying the samples

between major body sites is relatively “easy” and commonly performed, however,

differentiating samples within sites is challenging.

In our work, we tackled the problem of classifying human oral cavity samples, espe-

cially those associated with hard plaque. Integrating phylogenetic information among

these microbes improved classifier performance. The work in this thesis is geared to-

wards improving classifiers in order to better characterize microbial communities in

the oral cavity. Important features for the classifiers also reveal the discriminative

microorganisms and key functions within the microbial community.

1.1 Human Microbiome

1.1.1 Microbiome Interactions and Human Host

The term “human microbiome” was first proposed by Joshua Lederberg: “Microbiome

is the ecological community of commensal, symbiotic, and pathogenic microorganisms

that literally share our body space” [45]. Taking different parts of our body as their

habitats, the microbes have substantial effects on human biological processes and

disease states.

Microbial communities often interact with the host in a non-disease-inducing way.

Members of these communities can have mutualistic relationships with the human

host, where both partners derive some benefit from the association. Intestinal mi-

crobes inhabit in the human body and rely on nutrients from the host to survive.

At the same time, these bacteria also produce vitamins and other substances which

are vital elements for human health. Not all commensal microbes provide products

that benefit the human body, some of them are associated with the enhancement of

health. For example, immunological studies found probiotic bacteria, such as lac-

tic acid bacteria in human milk contribute to the maturation of the baby’s immune

system [46].
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Disease-associated microorganisms are also associated with the human body. Many

medical conditions are associated with the breakdown in microbial balance in the

human body, termed dysbiosis, which is readily detectible through changes in the

diversity or composition of human-associated microbes [13]. For example, the abun-

dance shifts in intestinal microbes have been identified as a vital factor of Crohn’s

disease [47, 48]. Some conditions such as psoriasis and acne are caused by an inap-

propriate immune response on the skin; this dysregulation was found to result from

a change in skin microbes [31].

Some microorganisms play an indeterminate role in the human body. They are

harmless to humans most of the time, but can switch to pathogenic status under

some conditions. An example of such an “opportunistic pathogen” is Staphylococcus

epidermidis. It is a permanent and commensal colonizer on human skin, but was

found to be one of the most important causes of infections. Normally, they keep

a benign relationship with their hosts and do not cause disease. However, when

foreign bodies intrude into our body, S.epidermidis can cause infections. Because

S.epidermidis can form a biofilm around foreign bodies, where biofilm is a number

of densely-stick microbial cells growing on a surface. Due to the protection of this

biofilm, our immune system cannot eliminate the infection [49, 50].

The oral cavity plays host to many complex microbial communities. Periodontal

disease, one of the most common inflammatory and bone lytic diseases, is caused by

abnormal composition of microorganisms in the gums [51, 15]. Besides the direct

impacts of oral disease, periodontitis has been associated with systemic diseases such

as cardiovascular disease and diabetes [25, 52]. Food is chewed and mixed in the

oral cavity before reaching stomach and intestinal tract. If there was gingival crevice

or other oral injury, some bacteria may follow the bloodstream to reach other body

sites and cause infections. As one of the main communities of oral microbes, dental

plaque refers to a condensed layer of bacteria on the teeth [53, 54]. Plaque is com-

monly associated with a number of diseases, including tooth decay and periodontal

disease [55, 26]. While tooth brushing is an important mechanical control for plaque,

many people fail to clear away all the plaque with regular tooth brushing, leading

to very high prevalence of dental disease. The role of dental plaque in oral health

and disease makes the oral cavity, and plaque in particular, worthwhile targets for



4

microbial community profiling and classification.

1.1.2 Microbial Communities of the Human Body

Microbial community ecology draws on concepts from traditional ecology to generate

insights into the human microbiome: key aspects of microbial ecology include analysis

of taxonomic proportions, functions, and interactions between microorganisms and

environment [56, 57, 58].

Taxonomy provides approaches to define groups of organisms based on their com-

mon physiological or genetic characteristics. A taxon (plural: taxa) consists of a

number of related organisms that share certain similarities. Recursively aggregating

taxa forms higher-level groups, which creates a hierarchical taxonomic classification

system. Organisms are typically assigned names at each rank of a taxonomic hierar-

chy comprising the ranks of kingdom, phylum, class, order, family, genus and species.

Major body sites show very distinctive composition at all taxonomic levels; for exam-

ple, healthy human gut samples are dominated by members of phyla Bacteroidetes

and Firmicutes, while skin samples tend to be much richer in Actinobacteria and

other groups [59, 60, 61]. Variation in environmental conditions results in the growth

of various sets of bacteria. For example, hard plaque is subdivided into subgingi-

val plaque below the gumline, and supragingival plaque above the gumline. Because

of the oxygen-free environment, subgingival plaque consists mainly of anaerobic or-

ganisms, such as Clostridia, Fusobacterium and Prevotella, while aerobic bacteria,

such as Bacilli and Betaproteobacteria are dominant members of the supragingival

plaque [7, 32]. Taxa in human body is easy to be affected by factors, such as age,

lifestyle, ethnicity and living environment. However, related studies found functional

profiles within one site varies little between individuals. Functional profiles summa-

rize metabolic or other traits existing in the samples, which is often a more stable

measurement of microbial communities than taxonomic composition. Since functional

traits characterize the microbial community from a different aspect, we might expect

function to provide powerful features for microbial classification problem.
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1.1.3 Microbiome Analysis

To characterize the microbiome requires the choice of a marker to identify and analyze

the microorganisms. Genetic markers allow us to identify individuals, populations or

species within the community. Although marker genes are a key tool for microbial

study nowadays, the identification of microorganisms has undergone several decades

of developments.

Culture-based approaches were applied to identify the microbes, but this method

limited the range of microbes to those that can grow in the laboratory environ-

ment [62, 36, 63]: some authors have claimed that less than 10% of microbes can

be cultured, thus preventing most microorganisms from having taxonomic names

assigned [64]. The first use of molecular (i.e., DNA or protein) sequences for evolu-

tionary analysis took place in the 1960s [65, 66, 67]. If all organisms possess similar

genes that evolve relatively slowly, these sequences can be used to infer the evolu-

tionary history of the organisms. The 16S ribosomal RNA (16S rRNA) gene emerged

as the standard for identification of microorganisms. This gene is a constituent of

ribosomes, which are responsible for synthesising proteins in the cell; since this is a

universal function, all living organisms have ribosomes and the gene that encodes this

ribosomal RNA. Several reasons justify the 16S rRNA gene (referred to hereafter as

16S) as a genetic marker for microbial diversity [68, 6, 37, 69]:

First, ribosomal RNA is present in all microorganisms, which makes it a universal

target.

Second, the 16S rRNA sequence is a stable genetic marker. Many regions of the

gene change slowly and 16S has a lesser chance of gene loss, mutation or genetic

exchange between organisms (e.g. lateral gene transfer [70]). The evolutionary relat-

edness of the organisms can be inferred from these sequences.

Third, the 16S sequences include highly conserved and variable regions (Fig-

ure 1.1). The variable regions are different from species to species, which allows

us to identify the taxa in the community. The conserved regions work as start-end

marks on sequences to locate the variable regions.

Identifying the microbial diversity based on the 16S marker gene is widely used

today, but there is still a large number of microbes that have not been character-

ized. Since we still have 16S sequences that cannot be reliably classified in taxonomy.
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1.1.4 Human Microbiome Project

The recognition that microorganisms in the human body may play a more central

role in health and disease that previously thought, motivated the development of

large-scale projects to assess the microbiome in many individuals. To facilitate the

understanding of the human microbiome, the National Institutes of Health launched

the Human Microbiome Project (HMP) in 2008 [77, 78]. The goals of HMP included:

1) collecting samples from multiple body sites to produce an overall characteriza-

tion of the microbial communities;

2) exploring the relationships between health state and changes in the microbiome;

3) providing researchers with a standard dataset and technology for further studies

of the microbiome.

The HMP collected samples from 242 North American volunteers (129 males and

113 females) aged between 18 and 40. Microorganism samples were collected from

the five major sites of greatest interest: the oral cavity, the nasal cavity, the skin, the

gastrointestinal tract and the urogenital tract. In many cases several sub-sites were

sampled from each site: for example, a total of nine different locations in the mouth

were sampled from most study participants. A diagram of the oral cavity drawn by

Sitepainter can be found in Figure 1.2. All generated sequences, developed software

and related standard operating protocols in HMP have been released to the public,

which can be accessed from HMP Data Analysis and Coordination Center (DACC)

[Link: www.hmpdacc.org].

Works studying the HMP data found that Firmicutes is the prevalent phylum

in the oral cavity, and Streptococcus, a genus of Firmicutes, has the most abun-

dance at the genus level [7, 32]. However, through the digestive tract from mouse

to gut, the abundance of Firmicutes typically decrease while the amount of Bac-

teroidetes increases. Following Streptococcus, other abundant species are different at

sites: Haemophilus were found in the buccal mucosa, Actinomyces and Prevotella

were in Supragingival plaque and Subgingival plaque [52]. Comparing to other sites,

communities in the oral cavity and stool are diverse in microbial memberships and the

taxonomic composition varies a lot between each individual. In addition, a number

of metabolic processes were widely distributed on digestive tract, such as carbohy-

drate metabolism and the synthesis of energy molecules(e.g., adenosine triphospate
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Figure 1.2: Human oral cavity diagram drawn by SitePainter [1].

(ATP)) [32].

1.2 Machine-learning Methods

Machine learning is the science of designing algorithms to recognize patterns in data,

and making predictions based on these discovered patterns. Machine learning has

been widely applied in many fields, such as text categorization, image recognition and

intelligent robot control [79, 80, 81]. Recently developed “next-generation sequencing”

technologies can produce a huge number of DNA sequences in a short time and

low cost. To deal with such large amount of sequences, powerful computation tools

and algorithms are required. Machine learning has been applied to many problems

in bioinformatics [82, 83, 84, 85]; applying it to microbiome data may give better

characterizations of the microbial community [44, 86, 41].

1.2.1 Overview

For the sake of consistency, this section introduces the definitions used throughout

the thesis. The dataset that is used to build and evaluate the model is a collection of

samples, also called instances or examples. Each sample is described by a number of

features, which can also be referred to as attributes, variables or dimensions. Features

can be assigned with values in continuous, categorical, or other data types. Training

is the process of building a predictive model by learning from a subset of the entire
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labeled dataset. To see how well the model performs on new samples, testing is

performed using samples that were not used in the training process. The complete set

of samples can be separated into training and testing set to evaluate the performance

of the model. K -fold cross-validation is a common strategy that extends the idea of

training and test sets by dividing the samples into k equal sized subsets. For each

cross-validation process, the ith (i=1,2,...,k) set is used for testing while the other k -1

sets are for training iteratively. Repeating the process k times and averaging the k

results produces the final estimation.

Machine-learning methods are often split into two major categories. Supervised

learning uses prior defined labels (for example, the body location associated with a

given sample) and tries to build a mapping function between them according to the

category they belong to. Unsupervised learning attempts to associate samples based

on measures of between-sample similarity, without reference to any previously defined

categories. Commonly used methods such as ordination and clustering are able to

find out the associations from the most salient patterns, however, sometimes the

achieved patterns may not reveal features with much interest [29]. Since supervised

classification approaches use knowledge of features to train models that can draw on

any pattern of co-variation in the data, it may give patterns with higher relevance to

categories of interest than unsupervised approaches.

Due to the large variety of prediction algorithms, different evaluation measures

have been proposed. For supervised learning algorithms, widely used evaluation meth-

ods assess the performance mainly from the proportion of correct predictions, sum

of error and correlation coefficients [87]. The proportion of correctness reflects the

percentage of samples that are correctly predicted, which can also be derived from

the number of True Positive (TP), True Negative (TN), False Positive (FP) and False

Negative (FN) predictions (description of TP, TN, FP and FN in Chapter 3.3). Sum

of error approaches calculate the distance between the prediction and true label of

the sample, while correlation coefficients measure the amount of agreement between

them.

Typically, the performance of an algorithm is evaluated after repeating the pre-

diction for a number of times. Although the performance can fluctuate during each
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time, the deviation should always be within a reasonable scale. To verify the pre-

dicting results, statistical methods are usually used. Basic statistical descriptions

include central tendency, consistency and range of a sample. In addition, a statistical

hypothesis test can also be used to prove that results are not achieved by chance,

which increases the soundness of the algorithm.

1.2.2 Important Considerations in Classification

The goal of classification is to generate a model that can maximize the accuracy

under a given criterion. However, no single classifier can give optimal results on

every dataset. Several factors may lead to the failure of classification, from the

sample initialization to final evaluation [2]. Successful classification depends on a

large number of factors, including:

• Creating an appropriate feature set is essential. Features are like the bricks

that will be used to construct a building: if the bricks are poor, even the best

architecture cannot make it strong. Raw data are not usually in a form that

classifiers can use directly: for example, microbiome samples are based on DNA

sequencing, models based directly on nucleotide sequences are unlikely to give

good accuracy. To solve such problems, different feature construction strate-

gies are required. For example, in sequence classification, a k -mer approach

is used to create features, whose values represent the frequency of all possible

k -length subsequences appearing in the target sequence [88]. For document

categorization, features are constructed via a bag-of-words model, which counts

the occurrences of each word in the document. Features can be constructed

using various strategies [89].

• Biological datasets are often high dimensional, with many more features than

there are samples. This is often described as the curse of dimensionality [90].

Many datasets in biology are of this type: gene microarray data records the

expression level of thousands of genes under different conditions, but typically

for under 100 samples [91]. Biological sequence data such as DNA and pro-

tein are often converted to features using a k -mer approach, which generates

a large number of features (4k for DNA and 20k for protein) [92, 93, 88]. An
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obvious problem caused by high-dimensional feature set are the high cost in

running time and memory space. Moreover, overfitting may occur if the clas-

sifier is trained using a large number of features [94, 2]. Since feature space

of large-dimension usually results in a complex model. Several strategies are

available to counteract the curse of dimensionality. One way is to select an algo-

rithm that can handle high-dimensional input features, such as Support Vector

Machine (SVM) [95] and Random Forest (RF) [96]. Dimensionality reduction

can also be used to reduce the size of the feature space. Feature selection and

extraction are two commonly used types of approach. Feature selection (e.g.

Information Gain [97], Feature Permutation [98]) chooses a subset of features

highly relevant to the labels with different strategies. Feature extraction (e.g.

Principal Component Analysis(PCA)) transforms all the features into a new

feature space, where the first few dimensions captures most of variance about

the dataset. These features may contain more useful information to the clas-

sifiers than those from feature selection, but the transformed features cannot

reflect their biological meaning directly. Last, taking advantage of the proper-

ties of dataset and algorithms, for example, SVM gives predictions based on the

similarity scores between pairs of samples. If information in the original feature

space can be transformed into similarity scores, the high-dimensional problem

will be avoided. Moreover, meaningful correlations often exist in biological data.

For instance, several genes together may affect the same characteristic, a pro-

cess known as epistasis [99]; and it may be a group of microorganisms, rather

than a single one, that differentiates the communities [32]. If one representative

member of this set can be picked out, the number of features would be reduced.

• Information leakage usually happens when the training data gets information

about the labels in testing test beforehand, resulting in unrealistically good pre-

dictions. A typical example of a leaked model would be that it gives predictions

based on the target label itself. This type of leakage is analogous to saying it

is sunny on sunny days [100]. Although the predictions from such models look

very satisfactory, they are not reliable. Information leakage can occur in most

steps of the machine learning process, including feature construction, feature

reduction, training and testing. An instance of leakage in feature construction
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was seen in the KDD-Cup competition in 2008 [101]. One challenge required

methods to predict if a patient had breast cancer based on her mammography

data. The patient ID feature showed an extremely powerful ability to predict the

label, because the ID string is encoded with the patients’ health condition [102].

Information leakage can also occur when applying feature selection [103]. Fea-

tures are first ranked on all the dataset using information gain or other criteria.

Then a number of important features are selected, people build the model with

these features and use cross-validation to measure the performance. But actu-

ally, all the data has already been known before testing, meaning the selected

features leak the labels of all samples. So in this case, feature selection should

be performed during cross-validation, that is divide the samples into training

and testing set, rank the features based on training set and evaluate the model

with testing set. Repeat this process for k times to get the result.

• The accuracy of machine-learning classifiers is rarely perfect on anything. Peo-

ple usually try to decrease the error by optimizing the training model. Bias and

variance are two indicators of measuring the models [104]. Assume a training

set (xi, yi) fit an hypothesis H(x), bias describes the average error made by

H(x), while variance measures the amount of consistency of the predictions.

Figure 1.3 visualizes the concept of bias and variance [105]. When a model is

too simple, it may make consistently incorrect predictions. Although the con-

sistency keeps a low variance, the value of bias will be very high. This situation

is described as under-fitting. In contrast, if a model is too complex, even if it

works well on training set, the prediction accuracy on the test set may not be

that precise. This scenario leads to low bias and high variance, which is known

as over-fitting. Since a decrease in bias implies an increase in variance and

vice versa, there must be one point where the trade-off of bias and variance is

optimal with respect to classification accuracy. A bias-variance trade-off curve

graphically describes this idea (in Figure 1.4).

Over-fitting can be avoided by reducing the complexity of the model.. Some

algorithms reduce it via tuning specific parameters, others by controlling the

number of parameters. Regularization is another way to control model com-

plexity. From Figure 1.5 we find that the boundary generated by an over-fitted
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model is usually highly curved, since it tries to get close to every training point.

However, regularization can smoothe the curve functions by using different tech-

niques [106].

1.3 Related Work

Supervised approaches have been used to classify the human microbiome [41, 107, 43,

108] with the abundance of different taxa (e.g., species) or Operational Taxonomic

Units (OTUs) serving as feature vectors. OTUs were defined based on the similarity

sharing between marker genes [109, 110]. For OTUs in microbiome, they are groups

of sequences, typically 16S sequences, with a specific amount of similarity.

Knights et al performed one of the first supervised classification studies of the

human microbiome, applying five classification algorithms [41], including RF and

SVM. These classifiers were applied to five microbial datasets, comprising samples

from healthy human volunteers, that were originally described in Costello et al [29,

111]. RF achieved the highest accuracy on three of the datasets when all features were

used. However, SVM showed similar accuracy after being given a selected subset of

features. Samples labeled with major body sites were easy to separate: for example,

a classifier trained to distinguish external auditory canal (e.g., the ear), gut, hair,

nostril, oral cavity and skin samples yielded an accuracy of 88.8%. Sub-sites were

more difficult to distinguish: for example, a classifier trained on twelve different skin

sites got an accuracy of 56.8% (s.d. 6.7%) on average.

Supervised classification has also been used to distinguish samples labeled with

disease states. Galimanas et al found that microbial communities from supragingi-

val plaque and the tongue dorsum can serve as alternative biomarkers for Chronic

Periodontitis (CP), a disease of the subgingiva [12]. Subgingival, supragingival and

tongue plaque samples from 11 healthy and 13 diseased subjects were analyzed in

their study. In tongue dorsum, they found a group of disease-indicating OTUs, in-

cluding Treponema denticola and Treponema forsythia, have a small proportion in

healthy samples but are present in high abundance in people with CP. The amounts

of Porphyromonas gingivalis and Filifactor alocis in supragingival plaque were found

at significantly increased levels in people suffering from CP.
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Statnikov et al tested the performance of several major classifiers and feature

selection strategies [43]. They found that classification tasks of separating body

sites or subjects yielded relatively high accuracy, while distinguishing healthy from

diseased states was more difficult: for example, when classifying the samples from

people with and without psoriasis (labels: control, psoriasis normal and psoriasis

lesion), the performance of all classifiers were poor, whose accuracy is about 10% to

60% lower than classifying healthy body sites. When comparing the classification

methods, their result was consistent with Knights et al ’s: RF and SVM were two

most effective machine-learning methods, followed by Kernel Ridge Regression and

Bayesian Logistic Regression. Studies done previously recognized that the 16S rRNA

data is of high sparsity and redundancy when expressed as input features. Wang et al

present a feature reduction algorithm called Feature Merging and Selection (FMS),

which integrated the Linear Discriminant Analysis [108]. FMS was able to reduce the

feature space without losing original accuracy, and the relationships between features

can also be preserved. They tested the pneumonia data (binary classification) with

SVM and k -nearest neighbor (kNN) models. Results showed that features selected by

FMS gained better performance than some popular feature selection methods: 5.5%

(SVM) to 13.9% (kNN) improvement in accuracy.

For the high-dimension and sparsity of the feature space, an efficient machine

learning algorithm for microbial classification is also in demand, especially multi-

class classification. Liu et al integrated the SVM and KNN learning methods, and

proposed a sparse distance-based learning algorithm for classifying 16S metagenomic

data [42]. In their algorithm, the predictions were made by a kNN model. However,

the distances between samples in the kNN model were given different weights, which

is optimized via an efficient quadratic SVM method. They showed its efficiency in

classifying 16S rRNA data and the suitability to unbalanced datasets.

Microbiome data is typically high dimensional, with potentially thousands of

OTUs observed in each sample. Feature selection aims to identify a subset of all

features that are most promising for classification, thereby eliminating uninformative

features and decreasing the running time for the classifier [112]. Even when the ac-

curacy of a classifier is not substantially improved, feature selection can still reveal

key species or molecular functions of particular biological interest, because only the
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set of features that are most useful to classification (typically a very small subset of

all features) is retained.

1.4 Contributions

Supervised methods are effective for many classification problems; however, few stud-

ies have tackled the classification of the oral microbiome specifically. An important

objective of this project is to augment standard representations of microbial commu-

nities (for example, OTUs) with additional biological and evolutionary information.

For example, support vector machines (SVMs) can base their classifications on cus-

tomized similarity values between samples from the same or different body sites; dis-

tances such as UniFrac [113, 114, 115] can be informed by phylogenetic relationships

amongst species or OTUs.

Similarly, the use of OTUs in classification builds on an assumption that groups

of closely related organisms can be treated as units sharing key similarities. This

assumption may be violated by strain-level variation, and conversely may apply to

aggregations of phylogenetic groups (i.e., clades that encompass all OTUs descended

from a common ancestor) that comprise many OTUs, which again suggests a phylo-

genetic approach.

Finally, while taxonomic representations can contain a great deal of information,

different microorganisms have different functional sets of genes involved in processes

such as biosynthesis of important compounds, environmental adaptation, and antibi-

otic resistance. Information of functional genes are typically obtained by sequencing

metagenomic data described in Chapter 1.1.3, however, this approach is costly. The

recently developed Phylogenetic Investigation of Communities by Reconstruction of

Unobserved States (PICRUSt) [116] (see Chapter 4.3) algorithm can map taxonomic

samples to functional profiles, based on known gene repertoires of closely related

organisms: these functional approaches may provide complementary information to

taxonomic features. Functions may be similar between distantly related lineages

and PICRUSt can potentially identify sets of clades whose similarities are functional

rather than phylogenetic. Some of these approaches yield significant increases in

classification accuracy, while feature selection highlights key phylogenetic and func-

tional features. We have implemented these ideas in a machine-learning framework,
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and used oral microbiome samples from the Human Microbiome Project [78, 77] as a

challenging test case.

1.5 Thesis Outline

The remainder of this thesis is organized into five chapters. A brief description of

the 16S rRNA dataset used in the thesis and standard data preprocessing are given

in Chapter 2. Chapter 3 shows a preliminary experiment on the whole dataset and

lists all the challenges encountered. Our exploration of this classification task, with a

focus on samples from subgingival and supragingival plaque, is described in Chapter

4, which includes the prediction results, the key phylogenetic and functional features

and classification with ensemble method. The conclusion of this thesis is in Chapter

5, which summarizes the results we achieved so far and gives ideas for future work.



Chapter 2

Data Preparation and Exploration

The 16S sequences used in the thesis came from HMP and all the sequences were

processed via standard microbiome analysis software. The analysis of microbial com-

munity involves the following: quality filtering on 16S sequences, picking OTUs,

representative sequence alignment, phylogenetic tree construction, diversity analysis

and sample visualization. As a feature file for our classification problem, the OTU

abundance table was analyzed from some basic statistical points of view. Preliminary

interpretations of the microbial communities on different body sites were also given,

including the comparison of taxonomic composition and phylogeny within the OTUs.

2.1 Microbiome Data

We retrieved the oral microbiome marker-gene dataset from the HMP DACC [77] in

February 2014. There are nine sampled sites within the oral cavity: saliva, supragin-

gival plaque and subgingival plaque (plaque above and below the gingival margin),

tongue dorsum (top surface of the tongue), hard palate (roof of the mouth), buccal

mucosa (inside lining of the cheek), attached keratinized gingiva (gums covering the

jaw bones), and palatine tonsils (sides at the back of the throat) (see Figure 1.2).

Samples in HMP were collected up to three times per site from each individual in a

non-invasive manner. The process of sample collection obeyed the strict procedures;

details were described in Manual of Procedures [117, 118]. Sequences in this dataset

included amplified V1-V3 and V3-V5 regions of 16S rRNA gene, although there were

more sequences associated with the V3-V5 region (see Table 2.1 for summary statis-

tics).

18
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2.2 Sequence Analysis

Many microbiome studies follow a standard protocol for sequence analysis and OTU

construction. In human microbiome collection, related information about the sample

donors such as sex, age and ethnicity is a vital factor for subsequent association

studies. DNA sequence was then extracted from the collected samples. Sequences

can be extracted using different experimental protocols, but it is essential that a single

protocol be employed consistently in one study.

2.2.1 Sequence Quality Control

The small amount of sequence initially extracted from each sample was not enough

for further study. So DNA amplification is performed to obtain a larger quantity of

sequences. However, because of the employed technique, contaminant sequences are

introduced in this process. So it is inevitable that microbial dataset usually comes

with noise. The quality of raw sequences needs to be assessed in Quality Control

(QC) steps.

There is not a gold standard to assess all sequences; QC strategies vary among

sequencing techniques. For example, sequences from Sanger and Illumina sequencing

machines come together with a quality file, which records the scores for each nucleotide

directly [119]. For 454 or SOLid methods, each quality score is given as the probability

of this nucleotide being wrong [120]. After assessing the quality, sequences with a

Table 2.1: Details of human oral cavity samples from HMP, with associated
abbreviations.

Sub-sites Acronym Samples OTUs Seqs/sample OTUs/sample

Saliva SAL 281 6166 8596 ± 6034 521 ± 183

Attached keratinized gingiva GING 304 3741 8998 ± 5756 313 ± 105

Buccal mucosa BUCC 301 5370 9465 ± 10268 447 ± 166

Hard palate HPAL 300 5848 8935 ± 6575 441 ± 154

Palatine tonsils PTON 304 5339 9586 ± 7247 448 ± 146

Throat THRO 301 6278 9053 ± 7233 422 ± 147

Tongue dorsum TONG 305 4400 10351 ± 10450 398 ± 129

Subgingival plaque SUB 301 6782 9877 ± 5926 495 ± 147

Supragingival plaque SUPRA 305 5277 10413 ± 6564 497 ± 152
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higher error rate than previously defined will be removed.

2.2.2 Building Operational Taxonomic Units

The definition of unique sequences has large effects on the identification of microor-

ganisms [121]. Several degree of sequence divergences exists within the organism to

define the organisms, the concept of OTU was proposed [109, 110]: based on the

similarity shared among marker gene, sequences can be binned into groups. Differ-

ent thresholds of similarity cutoffs denote different taxonomic levels, such as 97% for

species level, 95% for genus level [122]. The assessment of sequence similarity can be

done either by examining pairs of sequences within each sample, or by comparing each

collected sequence to standard reference sequences from a reference database such as

GG. With OTU abundance available, characterisics of the microbial communities

such as microbial diversity and phylogenetic relationships can be inferred.

The approaches of clustering sequences into OTUs or OTU picking can be divided

into three categories: de novo, closed-reference and open-reference (in Figure 2.1). In

the de novo approach, sequences are compared against one another just within the

samples; no external database is used as a reference. In the closed-reference OTU pick-

ing process, each sequence is compared against the sequences in a reference database

such as GG. The sequence will be binned into the OTU centered on one reference

database sequence, if their similarity is larger than the cutoff. As a compromise of

de novo and closed-reference picking strategy, open-reference can be used. Sequences

that succeed in finding a hit to the reference database are assigned as in the closed-

reference approach, while the remainders are clustered using a de novo approach.

Closed-reference strategy discards sampled sequences that do not match any refer-

ence sequence at the specified threshold, which limits the identified OTUs. However,

closed-reference OTU picking is fast since the implementation can be fully paralleliz-

able. Moreover, the taxonomic assignment and the phylogenetic trees generated in

the next steps are more reliable because all the OTUs are defined based on the well-

constructed reference database. OTUs in our work were picked via a closed-reference

strategy. For the reference database, although the RDP [72] and SILVA [73] have their

own advantages and disadvantages, we adopted GG (gg 13 08) [74] as our reference

database, which is consistent with our adopted pipeline’s default setting.
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Sequence alignment is a process trying to allow maximum number of identical nu-

cleotides or amino acid be aligned against each other [125, 126]. By allowing sub-

stitutions and gaps, similar regions located of sequences can be identified. If a pair

of sequences shares significant sequence similarity, there is a large chance that they

evolved from a common ancestor, which refers to the parent node in the phylogenetic

tree.

Branches and nodes are two main features in a phylogenetic tree. For each node in

the tree, external nodes (leaves) represent the living individual in samples and inner

nodes are their common ancestors. Branches in the tree represent the evolutionary

relationships among a subset of the whole species and the degree of divergence between

pairs of species. Phylogenetic tree can either be rooted, with a unique node that is

ancestral to all other nodes, or unrooted, in which no common ancestor is explicitly

defined (in Figure 2.2). These two types of tree can be interconverted. Simply

removing the root of a rooted tree results in an unrooted tree, while giving a root to

an unrooted tree needs more information. It can be done by adding a known outgroup

sequence or finding an uncontroversial criterion that can split the whole species into

two groups, such as bacteria and archaea.

Phylogenetic trees are mainly constructed with three different approaches: dis-

tance matrix, maximum parsimony and maximum likelihood. The distance method

relies on a distance matrix that records the amount of mismatches or gaps between

each pair of sequences in the set. Commonly used distance-based algorithms are

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) [127, 128] and

Neighbor Joining (NJ) [129]. Their main procedure is similar to sample clustering:

two nodes with the smallest distance merges together and then forms a new node; this

process is repeated until all species are assigned to the leaves. Most distance methods

are pretty fast, but building tree with only a distance matrix loses much information

of the sequences themselves [130]. Maximum parsimony is a character-based algo-

rithm that tries to construct a tree with minimum number of substitutions over all

sequences, that is the smallest number of steps to map characters to reach the phy-

logenetic state [131]. This method is avoids providing sequences as a single distance,

but searching the tree space takes much time. Moreover, parsimony assumes all sub-

stitutions in sequences happen with equal chance, but actually nucleotides change at
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different frequency rates. Maximum Likelihood approaches address this limitation by

taking the probability of substitutions into consideration [132]. After assuming an

empirical substitution matrix and a starting parsimony tree, the probability of differ-

ent tree shapes can be calculated. The tree with highest likelihood will be selected at

last. Although maximum likelihood is expensive in computation, it tends to create

an accurate and robust evolutionary model. In our thesis work, FastTree [133] algo-

rithm was adopted to build the tree, which is an approximately-maximum-likelihood

method. Since instead of using a distance matrix as standard maximum-likelihood

method, FastTree stores the sequences information of internal nodes. Together with

other fast tree pruning and likelihood estimating algorithms, FastTree is efficient in

both computational time and memory cost.

2.2.4 Measures of Microbial Diversity

Microbial diversity measures the variability among all types of microorganisms living

in the community. High diversity can allow a community to cope with a chang-

ing and unpredictable environment, which increases their chances of survival [134].

The diversity of microorganisms in the oral cavity is higher than many other sites,

since the wide variety of intaken food, changes in temperature and oxygen and saliva

mixture make human mouth an unstable habitat. For human health, a number of

diseases were found to correlate with variation of microbiome diversity [11], which

also makes microbial diversity a potential indicator of disease detection, and possibly

other conditions as well.

Alpha and beta diversity are two major categories of diversity measurements [6].

Alpha diversity represents the richness of taxa within a single community [135, 136].

This diversity criterion can vary a great deal between body sites: the study found

that the alpha-diversity of microorganisms inhabiting in female is larger than that

in males [137]. Beta-diversity quantifies the degree to which pairs of samples differ.

The dissimilarity is usually expressed as a distance between communities [135, 138].

Simple distance measures such as those based on Euclidean or Manhattan distance

use only information about the presence and absence (qualitative beta diversity) or

the abundance (quantitative beta diversity) of OTUs in samples to calculate the dis-

tance. Those non-phylogenetic measures implicitly assume all organisms are equally
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related in evolutionary history. However, phylogenetic information is lost under this

assumption. Phylogenetic measurements can take different degrees of evolutionary re-

latedness into account. Two phylogenetic beta-diversity measures commonly used in

microbial ecology are the weighted and unweighted UniFrac distances [113, 114, 115],

which are described in Chapter 4.1.2.

However, because of the sequencing technique, the number of sequences in each

sample is different. This variation can affect the estimation of microbial diversity:

the more sequences, the more species will be found. Now people usually address this

problem through two strategies: rarefaction and normalization. In rarefaction, N

sequences will be randomly selected from each sample. The diversity is only calculated

from those sampling sequences [139]. If the number of sequences in a sample is

less than N , the entire sample will be omitted. Rarefaction eliminates low-quality

samples with few sequences, but too many sequences may be excluded if N is given

a very large value. Moreover, rarefaction is a random sampling process, there is

no guarantee for a global optimal answer. In contrast to rarefaction, normalization

attempts to adjust the sequence number to a common scale. The most straightforward

approach to normalization, total-sum scaling (TSS) [140, 141], divides the number of

sequence in each OTU by the total amount of sequences in that sample. In addition,

other normalization methods were also proposed, for example scaling the number of

sequence by the 75th percentile of the non-zero abundance in each sample, which

can normalize the dataset based on the sequence-count distribution. Paulson et al

extended this idea [86], so that their cumulative sum scaling (CSS) is better suited

for marker gene dataset.

2.2.5 Visualization of Microbial Community Structure

A number of different approaches can be used to visualize the beta diversity within

a set of samples; two widely used approaches are Principal Coordinates Analysis

(PCoA) plots [142] and hierarchical clustering [143]. PCoA is a scaling method that

tries to represent the dissimilarity between samples in a low-dimensional space. PCoA

transforms the distance matrix into a set of uncorrelated axes containing the max-

imum amount of dissimilarity information [144]. The axes are ranked by their im-

portance in a descending order. The importance refers to the amount of variation
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(a) (b)

Figure 2.3: Two visualization methods (a) PCoA and (b) hierarchical clus-
tering show the distances between each pairs of samples.

in the matrix that can be captured by this axis. PCoA sometimes is confused with

Principal Component Analysis (PCA) that also tries to display much information

in a low-dimensional space [145]. However, PCA calculates from an initial variable

matrix, whereas PCoA uses a distance matrix as its input. PCoA can accept distance

matrices generated from any distance measurement such as weighted or unweighted

UniFrac distance, which makes it possible for us to compare the samples based on

different expressions of beta diversity. An example to explain PCoA can be found in

Figure 2.3(a).

Hierarchical clustering expresses relationships among samples by grouping them

into a tree (in Figure 2.3(b)). Process starts with finding the pair of samples with

shortest distance, and then merging them into a common node. Repeating this process

until all samples are clustered in the tree. A rooted tree will be generated in the end,

reflecting the distances among samples.

2.3 Sequence Processing and Initial Data Analysis

Raw 16S sequences were processed and built into OTUs. A phylogenetic tree was

constructed based on the representative sequences in each OTU. Different beta di-

versity measures were also calculated, reflecting the dissimilarity between samples. A

preliminary exploration of the dataset helps us to better understand its main charac-

teristics. Exploratory Data Analysis (EDA) is an approach for data analysis that uses

visualization and basic statistical techniques [146]. EDA has become a critical step
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before experiments: it allows an investigator to detect missing values and mistakes;

know the range and distribution of the dataset; understand the biological meaning

of features. We examined several important properties of our oral dataset via EDA.

Comparing the OTU proportions at different ranks, and the precision to which differ-

ent OTUs were classified (for example, at the phylum, genus or species level) is useful

since we will use abundance information to classify the samples. The phylogenetic

tree visualizes the relationships between OTUs, which gives us ideas to create new

features.

2.3.1 Processing Workflow

All samples were processed using the Quantitative Insights Into Microbial Ecology

(QIIME) software, version 1.8.0 [147], which is an open-source software pipeline to

analyze and visualize microbial communities. HMP reviewed the data for quality

and published necessary quality assurance report to declare the sequences are rela-

tively complete and clean. So the sequences downloaded from DACC have already

passed QC. All 16S sequences were clustered into OTUs at 97% similarity using

UCLUST version 1.2.22q [148], using a closed-reference OTU-picking strategy with

GreenGenes (gg 13 08) as our reference database. Representative sequences were

aligned using QIIME’s default alignment method Python Nearest Alignment Space

Termination (PyNAST) version 1.2.2q [149], which implements the NAST alignment

algorithm in Python. We used the default settings of PyNAST, which removes se-

quences with alignment length <150 nucleotides or <75% identity with the reference

dataset. A phylogenetic tree of OTUs was constructed from the sequence alignment

using FastTree version 2.1.3q [133]. Trees were visualized with Python Environment

for Tree Exploration (ETE) version 2.1 [150]. Four beta-diversity metrics were used

to calculate the distance between each pair of samples with QIIME. To visualize the

dissimilarity of the samples, Principal Coordinates Analysis (PCoA) was performed

to observe the samples in a low-dimensional space. We also used UPGMA approach

to build hierarchical clusters. The workflow can be found in Figure 2.4.
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16S rRNA 
Sequences

QIIME
Pick OTUs at 97% similarity 

with UCLUST

Reference DB
GreenGenes (gg_13_08)

Phylogenetic Tree
Align sequences with PyNAST

Build tree with FastTree

OTU table
GG taxonomy information

Functional profile
Predicted with PICRUSt

Microbial diversity
PCoA visualization

Figure 2.4: Sequence data processing workflow. Raw 16S sequences were ob-
tained from HMP and put into QIIME to pick OTUs with a closed-reference strategy
(GG as reference database). Steps also include building a phylogenetic tree of these
OTUs, calculating the microbial diversity of each samples and visualization with
PCoA. PICRUSt was used to predict the functional profiles based on the OTU table
created.
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2.3.2 Basic Statistical Description of Samples

A total of 2,706 human oral cavity samples from nine oral sites were collected from

the HMP database. Some of the samples have sequences from both V1-V3 and V3-V5

regions, and some of samples have either one of them. We split each sample based

on the variable regions, resulting in a total of 1,542 included sequence data from

the V1-V3 region of the 16S rRNA gene, while 2,702 samples contained information

from the V3-V5 region. Because of the disparity in data set size, and less accurate

results obtained with the V1-V3 region (see Chapter 3.3), we focused on information

retrieved from V3-V5.

The samples covered the V3-V5 region of the 16S rRNA gene (in Table 2.1). All

sites had at least 281 associated samples. A total of 12,845 OTUs were generated

by the closed-reference picking process, and OTU richness across all samples of a

given site varied from a minimum of 3,741 (attached keratinized gingiva) to over

6,000 (saliva and throat). The average number of sequences per sample ranged from

approximately 8,500 to 11,500, although the variation within each site was high. In

terms of community members, the number of OTUs in a single sample varied between

313 (attached keratinized gingiva) and 521 (saliva).

A large number of identified OTUs were of low abundance (see Figure 2.5(a)). A

number of 7,752 (60.4%) of the OTUs have fewer than 5 sequences, and 3,865 (30.1%)

of them are singleton OTUs comprising only a single sequence. However, these low-

abundance OTUs may nonetheless be useful for classification, so none of them was

removed. Because of the high dimensionality of the data, the OTU table is very

sparse. Figure 2.5(b) shows the number of OTUs presenting in different numbers

of samples. Fewer than 1,105 (8.6%) OTUs are present in >10% of the samples,

while 4,325 (33.7%) of them are present only in one sample. Rare and site-specific

OTUs are common in microbial datasets, for several reasons. Rare OTUs can in

fact be artifacts that arise from sequencing errors. Some microorganisms may be

viable only in a subset of all sampled sites, while others may simply be rare. Specific

human body sites typically comprise microbes from similar high-level groups such as

phylum or family: for example, the gut microbiome is typically dominated by phyla

Firmicutes and Bacteroidetes. However, when OTUs are clustered at very high levels

of similarity, the overlap in composition tends to decrease dramatically. Different
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Figure 2.5: Statistical summary of the input features. Numbers on X-axis
are displayed in logarithmic scale with base 2. (a) Each feature (OTU) has a dif-
ferent number of sequences. With the abundance of OTUs increasing, the number
of corresponding features become less. (b) Features appear in different number of
samples.

body sites support different kinds of microorganisms, and the body conditions also

vary from person to person. Although some of the distinct features may not facilitate

classification, we still kept all of them. Feature reduction strategies would be used to

remove them alternatively.

2.3.3 Taxonomic composition of samples

The purpose of microbial community classification is definitely not only for a higher

accuracy, identifying the discriminative taxa that differentiate the microbial com-

munities is also important. Bacteria on the oral sites were compared at different

taxonomic levels. Based on the GG taxonomic assignments, more than 60 phyla were

detected, but four of these phyla constituted nearly 99% of the entire set of char-

acterized OTUs (in Figure 2.6(a)). They are: Firmicutes (43.0%), Proteobacteria

(20.4%), Bacteroidetes(17.8%) and Fusobacteria (9.4%). More than 180 classes were

found in samples, and the top four classes covered 69% of OTUs that were classified

at this rank: Bacilli (30.6%), Bacteroidia (14.1%), Gammaproteobacteria (12.4%)

and Clostridia (12.3%) (in Figure 2.6(b)).

At the phylum level, Proteobacteria (20.4 ± 3.9% s.d.) has an even distribution

across all body sites, with a 3.9% standard deviation., while Firmicutes varies a lot

(43.0 ± 13.9% s.d.). Buccal mucosa, hard palate and attached keratinized gingiva are
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the three sites with the most Firmicutes, while subgingival plaque and supragingival

plaque have the smallest proportion. All sites have similar amount of Bacteroidetes

except buccal mucosa. Although subgingival plaque and supragingival plaque consist

of similar microorganisms, they are quite different from the other seven sites.

At the class level, the two major classes of Firmicutes together occupy more than

55.0% of the whole taxa on attached keratinized gingiva, buccal mucosa and hard

palate. However, the amount of these two classes, Bacilli and Clostridia are extremely

different. The ratios of Bacilli to Clostridia on these three sites are 9.0, 11.89 and

4.68. Since Bacilli are aerobic (i.e., they respire oxygen), these three sites are usually

exposed to air. Palatine tonsils, throat and tongue dorsum are similar in proportion,

25.8% of Bacilli followed by 16.8% and 18.0% Clostridia and Bacteroidia. There is not

a dominant class in saliva, since Clostridia and Bacteroidia have similar proportion.

Although the taxa at phylum level on subgingival plaque and supragingival plaque

are quite similar, they show some difference at the class level.

When coming to the genus level, Streptococcus (26.0 ± 13.8%s.d.) comprises a

major population in the oral cavity. Two species of Streptococcus mainly appear in

dental plaque of healthy human mouth, they are S. sanguinis and S. mutans. Both

of them were found to be associated with dental caries. Streptococcus salivarius is

fairly abundant in tongue dorsum, while Streptococcus mitis in other sites, such as

buccal mucosa. Haemophilus also has a large population in the oral cavity, especially

saliva samples. Haemophilus parainfluenzae is the biggest species of Haemophilus

in oral cavity, which is reported to be highly associated with the pathogenicity of

Haemophilus parainfluenzae.

OTUs were mapped into a phylogenetic tree whose root separates Bacteria and

Archaea. The tree structure shows the evolutionary distance and relatedness of OTUs.

The microbial communities are usually not distinguished by a single OTU, but a

group of related members together. Phylogenetic tree put closely related species into

a common branch. With the tree structure, the analysis did not need to be limited

on the leaves (OTUs). Taking a branch of OTUs as a new taxonomic unit may give

more information.
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Figure 2.6: Taxonomic composition of the microbes in nine oral cavity sites
based on average relative abundance of 16S rRNA sequences. Taxa from
top 5 phyla (a), 8 classes and the remaining taxa are described as “Others”. The full
name of each abbreviations can be found in Table 2.1
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Figure 2.7: Phylogenetic trees shows the relationships of OTUs from all oral
samples. OTUs are assigned to (a) phylum and (b) class level. The most abundant
groups are highlighted in different colors.



Chapter 3

Classification of Oral Cavity Samples

In this thesis, 16S rRNA sequences were used as marker genes to identify the taxa

in microbial communities. A supervised learning approach, SVM, was used to dis-

tinguish samples from nine different oral sites. Thousands of features were generated

in our work, many of which are likely to be uninformative. With the help of feature

selection, those uninformative features can be removed, resulting in an efficient train-

ing process. Moreover, a number of discriminative features were examined to uncover

their biological relevance.

3.1 Feature Space

In our work, the OTU abundance calculated from the 16S rRNA samples acted as

input features; the body site that the sample came from was the label attribute.

Assume the raw dataset is a sample-by-taxon abundance matrix X(m,n), which

can be displayed as follows:

X =
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where m and n indicate the number of samples and features. xij denotes the

abundance of the ith OTU in the jth sample. Class label y indicates the body sites,

yi ∈ C = {c1, c2, . . . , cg}. In our classification task, C= {saliva, attached kera-

tinized gingiva, buccal mucosa, hard palate, palatine tonsils, throat, tongue dorsum,

supragingival plaque, subgingival plaque}.

Data normalization or scaling converts the values of features into a specific range,

which is usually performed as a data-reprocessing step. In SVM, scaling features

34
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to [−1,+1] or [0,+1] is good for building the classifiers, since the algorithm may

have less sensitivity to features with a small numeric range than a very large one.

In addition, features in this numeric range also reduce the computational time in

training step [151].

The number of sequences in each sample varied between approximately one and

ten thousands, so we first converted raw abundance to proportions, or relative OTU

abundance in each sample. The relative abundance was then scaled such that the

largest value in each sample was set to 1.0.

3.2 Support Vector Machine

Support Vector Machines (SVMs) have been widely used in various applications since

their introduction by Cortes and Vapnik in 1995 [95]. SVMs are model-based clas-

sification methods that try to maximize the width of a decision boundary between

categories. This decision boundary or hyperplane is typically defined by a small num-

ber of boundary cases (the support vectors) with relatively small distances to cases of

the other type [152]. A key attribute of SVMs is their ability to accept any similarity

values that satisfy a set of constraints; the “kernel trick” allows mapping of cases into

a higher-dimensional space where the linear SVM classifier can perform well [153].

3.2.1 Linear SVM

Suppose S is our training set containing n samples: S = {(x1, y1), (x2, y2), . . . , (xn, yn)},

xi are the feature vectors of the samples and yi ∈ {−1,+1} represents the labels of the

instances. To separate the positive and negative samples, SVM defines a hyperplane

as:

f(ω, x) = ωTx+ b (3.1)

which has the largest distance to the support vectors. This distance is called largest

margin of the decision boundary. For all training samples on the right side of the

margin, they should satisfy:

ωTx+ b

⎧

⎪

⎪

⎨

⎪

⎪

⎩

≥ 1, when yi = 1

≤ −1, when yi = −1

(3.2)
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Searching for the optimal hyperplane f(ωT , b) is a process of solving a quadratic

programming problem to minimize:

1

2
|ω|2 (3.3)

under the constraints:

∀i = 1, 2, . . . , n

s.t. yi(ωTxi + b) ≥ 1

(3.4)

The Lagrange multiplier is introduced to solve this problem yielding the final decision

function:

f(ω, x) = ωTx+ b

=

(

n
∑

i=1

aiyixi

)

x+ b

=
n
∑

i=1

aiyi ⟨xi, x⟩+ b

(3.5)

This is the simplest SVM, which can only cope with a linearly separable training

set. However, real-world datasets are typically more complex, with various amounts

of noise and outliers. Samples cannot be correctly separated since noise and outlier

cases can interfere with correct separation. The classifier will go worse if noise or

outliers appear in the support vectors , since a small number of support vectors

determines the decision boundary. The introduction of slack variable ξi blurs the

decision boundary, so that the abnormal incorrectly separated points can be given

less weight. So the optimization problem can be converted to minimize:

1

2
|ω|2 +

n
∑

i=1

ξi (3.6)

under the constraints:

∀i = 1, 2, . . . , n

s.t. yi(ωTxi + b) ≥ 1− ξi

(3.7)

Where the cost penalty C is used to control the model complexity of SVM, which

allows the optimal trade off between bias and variance. When C is too large, the

hyperplane will try to classify each training sample correctly while ignoring the test
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Figure 3.1: Illustration of two labeled groups of samples in feature space
separated by a hyperlane.

set. This usually causes an over-fitting problem. However, if C is too small, all

samples will be separated by a very large margin. It will hard to segregate the

samples into their respective classes. However, there is no well-developed theory for

determining an appropriate C value, and the typical approach to optimize C is to

exhaustively try a number of values and chose the one with highest cross-validation

accuracy.

3.2.2 Non-linear SVM

Finding a hyperplane on a linear separable dataset is straightforward given the formu-

lation of the SVM, however, many real-world samples are distributed in a non-linear

space. The kernel technique maps low-dimensional features into higher space and

tries to separate the samples in this space. It also largely improves the computational

efficiency of SVM, since the computation cost increases a lot with dimensionality. In

SVM, kernel method works more like kernel trick. For the decision boundary is de-

fined from the inner products of pair-variables and this inner product can be directly
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replaced by kernel. So SVM does not actually compute the coordinates in that high

and complex feature space, but gets this result directly from the kernel functions. If

the input feature vector xi can be expressed as:

x
′

i = ψ(xi) (3.8)

Then a kernel function can be introduced to satisfy:

K(x1, x2) = ⟨ψ(x1),ψ(x2)⟩ (3.9)

So the decision function becomes:

f(x) =
n
∑

i=1

aiyiK(xi, x) + b (3.10)

An example of classifying nonlinear data with kernel function is given in Figure 3.2.

The points form two curves on X − Y space, so it is impossible to find a hyperplane

that perfectly separates the two classes. However, when points are mapped to a third

dimension, the boundary is obvious. There are a few commonly used kernels in SVM,

including linear, polynomial, radial basis function (RBF) and sigmoid kernels. The

RBF kernel was used as our baseline because of its reasonable number of parameters

and widely applied in many problems. The formula can be given as:

K(x1, x2) = e−
|x1−x2|

2

2δ2 (3.11)

A replacement of γ = 1
2δ2 is usually used to simplify the equation as:

K(x1, x2) = e−γ|x1−x2|
2

(3.12)

where γ define the influence of each training sample can have. When γ is small,

samples can have far-reaching influence. So the separation will be smooth. However,

if γ is too large, the model will be very specific and highly sensitive to noise. Figure 3.3

explains how points were mapped into higher space using RBF kernel.

The kernel trick can convert a nonlinear separable problem into a linearly separable

one. Because of the multiple choice of kernel functions, SVM works well on many

different types of datasets.
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3.2.3 SVM in Multi-class Classification

SVM itself is a binary classifier, however it can be applied to multiclass classification

by decomposing the multiclass task into several binary ones. One-vs-all and one-vs-

one are two commonly used strategies [154].

A one-vs-all classifier treats the samples from the ith class as positive samples

and the others as negative. It is computationally efficient, since only n classifiers

are needed when there are n classes. But the sub-samples for each classifier are

unbalanced; the number of negative samples outnumbers positive samples n−1 times.

Such unbalanced dataset usually generates models with bias, which have preference

to the class with more samples. The one-vs-one approach builds classifiers from

each pair of classes. In the testing process, classifiers will vote for the class they

preferred and the one with the most votes wins. The number of classifiers in one-vs-

one quadratically grows with class.

For an n-class dataset, n(n−1)
2 classifiers will be constructed. Although one-vs-

one requires O(n2) classifiers comparing to O(n), the sample size for training each

classifier is much smaller. It results in a faster and less memory-intensive training

process. Importantly, each classifier is trained from a balanced subset as long as the

original dataset is uniformly distributed.

3.3 Results Evaluation and Verification

3.3.1 Performance Evaluation

The performance of the prediction algorithm can be assessed by the accuracy, which

is usually expressed as the percentage of correct predictions, quadratic error measures

or correlation coefficients. Raw percentage can correctly reflect the performance when

the number of samples in each label bin is similar [87]. However, classes can be imbal-

anced, with one group containing many more samples than the other: for example, in

a dataset that compares diseased vs healthy individuals, there may be a much smaller

diseased set. If all samples were roughly predicted as non-disease, there still would

be a very high accuracy as the majority would be correct. To solve this problem,

predictions are summarized into a confusion matrix with four numbers: True Positive

(TP), True Negative (TN), False Positive (FP) and False Negative (FN). A confusion
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Figure 3.4: Confusion matrix of a binary classification problem, disease vs
non-disease. TP is the number of samples that are disease and predicted as positive;
FP is the number of samples that are disease but predicted as negative; FN is the
number of samples that are non-disease but predicted as positive; TN is the number
of samples that are non-disease and predicted as negative

matrix displays the number of actual and predicted samples in each class made by

the classification algorithm. Explanation of the four numbers is in Figure 3.4.

Precision and recall evaluate different aspects of the performance. Precision is

defined as the number of true positive samples over the number of all true samples,

which tells you the percentage of the selected items that are correctly predicted.

Recall provides the complementary information, which calculated as the number of

true positive samples over the total number of positive predictions. The assessment

of quadratic error methods is based on the distance between the true and predicted

label, such as Hamming or Euclidean distance [155]. Correlation coefficient measures

are frequently used in machine learning. One of the most commonly used is the

Matthews Correlation Coefficient (MCC), proposed by Matthews in 1975 [156]. The

value can be calculated as:

MCC =
TP × TN − FP × FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.13)

The result is ranged between -1 and +1, which reflects the degree to which correct

assignments agree with the predictions. A coefficient of +1 indicates a perfect predic-

tion, while -1 means a total disagreement between them. Measures mentioned above

all can be extended to the case of multi-class classification problem. The confusion

matrix displays the number of correctly predicted samples in each class. The rows
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indicate the true label for each sample, while columns indicate the label predicted by

the classifier. Detail extension of other measures can be found in [87]. We adopted

the percentage of correct predictions and confusion matrix to evaluate the classifiers,

since the dataset in the thesis is in balance.

3.3.2 Statistical Testing

Classification with different input features was repeated for 100 times with shuffling of

the samples, and the final accuracy was expressed as their mean value. To exam the

results, statistical methods were used. Basic statistical information was first given:

the mean reflects the average performance under one type of classification model;

standard deviation measures how consistent this group of results are; standard error

estimates the likely difference between the mean and future data; minimum and

maximum values give the range of the data; confidence interval establishes a range of

values that within which a future data may fall with a specific probability. A group

of accuracies was also shown with a histogram and a boxplot to examine its normal

distribution.

Compare to the benchmark done, some attempts we did improved the classifi-

cation performance, while some did not. For the significance of improvement, we

did two-sample t-tests. The two-sample t-test is used for determining whether the

means of two samples are significantly different. Assumptions behind this test in-

clude: both samples must follow normal distributions and they are independent. We

established the null hypothesis as a lack of difference between two samples. T -value

was calculated from:

t =
X̄1 − X̄2
√

S2
1

N1
+ S2

2

N2

(3.14)

where N1 and N2 are the sample sizes, X1 and X2 are the means, S2
1 and S2

1 the

standard deviations. The p-value can determined then, indicating the probability

that the null hypothesis can be accepted. A threshold of 5% was used in the thesis. If

the p-value was lower than 0.05, we can declare that the improvement did not occur

by chance.
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3.4 Classification of Nine Sub-sites

Classification was performed using the LIBSVM package [157] with RBF kernel. To

pick the best combination of kernel width γ and error penalty parameter C, a grid

search using different combinations of C and γ was done as a pre-experiment (finite

sets of attempt values for C = [log2 −5, log2 15], γ = [log2 −15, log2 3] . An one vs one

strategy was adopted to perform multi-class classification. A five-fold cross-validation

approach was adopted to evaluate the classification models. This cross-validation

procedure was repeated 100 times for each trial, each time using a different random

number seed, in order to generate distributions of accuracy scores.

3.4.1 Performance Comparison

Samples from both the V1-V3 and V3-V5 variable regions of 16S were classified

using SVM with RBF kernel. The model built from V1-V3 dataset achieved an

accuracy of 64.4%, while the V3-V5 samples contributed to a better model whose

accuracy reached 69.7%. A two-sample t-test was given to measure the significance

of improvement. The performance of the model from V3-V5 samples yielded 4.70%

(in Figure 3.5) higher accuracy than that from V1-V3 samples. Since V3-V5 regions

have 1,160 more samples than V1-V3 regions, the increased accuracy may be due to

a larger training set. Sequences from the V3-V5 regions may also be more powerful

in identifying different microorganisms, regardless of sample size. Based on the result

above, we chose to focus on samples from the V3-V5 regions only.

3.4.2 Grouping of Sites

We generated PCoA plots based on unweighted UniFrac distances between samples to

visualize the separation of points between the nine sample types (in Figure 3.6(a)). A

table containing the relative abundance of OTUs in each sample was used to calculate

the distance. A phylogenetic tree was also passed as input to inform the evolutionary

relationships between OTUs.

We used QIIME to calculate the principal coordinate axes for each sample. The

first two principal coordinates explain 15.07% of the total variance in the data set, and

do not provide clear separation of any of the nine sample types. Clustering patterns
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GING BUCC HPAL SAL SUB SUPRA PTON THRO TONG

GING 0.799 0.155 0.016 0.000 0.017 0.007 0.002 0.004 0.000

BUCC 0.135 0.734 0.067 0.008 0.014 0.014 0.008 0.011 0.009

HPAL 0.030 0.085 0.678 0.011 0.007 0.006 0.020 0.125 0.037

SAL 0.001 0.011 0.012 0.872 0.007 0.008 0.035 0.036 0.019

SUB 0.003 0.008 0.003 0.005 0.643 0.332 0.003 0.004 0.000

SUPRA 0.000 0.001 0.003 0.000 0.215 0.781 0.000 0.000 0.000

PTON 0.017 0.056 0.063 0.018 0.021 0.005 0.424 0.213 0.183

THRO 0.011 0.029 0.167 0.020 0.007 0.003 0.179 0.443 0.140

TONG 0.000 0.002 0.013 0.006 0.000 0.000 0.072 0.063 0.844

 
Predicted Class

Actual 

Class

(a) Confusion matrix of nine-way classification

Saliva

Gum 0.000

Saliva 0.732

Teeth 0.000

Mouth 0.006

Mouth

0.101

0.229

0.006

0.923

 

Actual 

Class

Predicted Class

0.029

0.020

0.969

0.019

TeethGum

0.870

0.020

0.025

0.052

(b) Confusion matrix of four-way classification

Figure 3.7: Confusion matrix of nine-way oral site classification without
feature selection. Rows indicate the correct label for each sample, while columns
indicate the label predicted by the classifier. Each cell indicates the number of samples
of a given type classified to each sample type. The classification patterns of all nine
classes (a) and a recoding into four classes (b) are shown.
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We identified four natural groupings of sites based on these patterns. 90.0% of

samples from a group comprising the attached keratinized gingiva, buccal mucosa

and hard palate samples were most often classified within the same group, which we

define as “gums”; the misclassification of 12.5% of hard palate samples to the throat

represents the only major confusion between this group and any other. Consistent

with the separation seen in Figure 3.6(a), 98.6% of subgingival and supragingival

plaque samples are classified as one of these two sites. Samples from throat, pala-

tine tonsils and tongue dorsum constitute another group responsible for 85.4% of all

classifications, although the throat and tonsils are also conflated with the hard palate

and buccal mucosa. Finally, salivary samples are relatively better classified, with an

accuracy of 87.2 %. In general, these four major groupings consist of sites that are

proximal in the mouth, corresponding roughly to gums (attached keratinized gingiva,

buccal mucosa and hard palate), plaque (supragingival and subgingival plaque), back

of the mouth (throat, palatine tonsils and tongue dorsum), and saliva. Because of

the gag reflex, collecting samples from throat is the most difficult work among the

nine sites. Samples are easy to be contaminated during the depressor getting back

from throat, so throat samples may be mixed with hard palate microbes [117].

Recoloring sample points in the original PCoA plot to reflect the four groups (in

Figure 3.6(b)) shows a clearer distinction among sites, albeit still with a substantial

amount of overlap among all but the plaque group. The nine sites were recoded

into their four constituent categories, and once again classified using an SVM with

the RBF kernel. The classification accuracy of plaque samples is 96.9%, as compared

with 73.2% accuracy for saliva, 87.0% for gums, and 92.3% for the back of the mouth.

In the four-way classification, the number of saliva samples is much smaller than that

of gums or hard plaque, which makes the decision boundary prone to labels with large

sample size. It can be one reason for the reduced accuracy of saliva samples. The

plaque samples were well separated from the other groups, but difficult to distinguish

based on the confusion matrix in Figure 3.7(b), we chose to focus on this two-class

problem in order to try and improve the classification accuracy for a tractable subset

of sites.
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3.5 Challenges

The work done in this chapter used all samples from the oral cavity. Features were

constructed from OTU abundance without any optimization. From this preliminary

attempt, three major challenges in microbial community classification can be identi-

fied:

1. High dimensionality and sparseness. A total of 12,845 OTUs were generated

at a 97% OTU identity threshold, but there are only 2,702 samples in our

dataset. High-dimensional classification is expensive both in time and memory.

Moreover, it may raise over-fitting problem. The taxon abundance feature is a

sparse matrix. Among all the OTUs, as many as (4,325) 33.7% of them appear

only once. Only (1105) 8.6% of the OTUs exist in >10% of the samples. Rare

features cannot be proved to be useless for classification, so none of them were

removed.

2. Feature dependence: many machine-learning methods and feature selection op-

erators assume that all the input features are independent. However, many

input OTUs have highly correlated patterns of abundance. In microbial clas-

sification problem, sometimes a number of OTUs cannot be useful features

independently, but they may become powerful when combined together.

3. Limited information contained within OTUs: OTUs that clustered from 16S

rRNA only contain taxonomic information within communities. However, other

information such as phylogenetic distance, functional profiles can also be used

to differentiate microbial communities. Building features space based on various

information is another challenge.

Results from the 9-class classification show the correlations among oral sites.

Saliva was mixed with microorganisms from various sources since it bathes several

sites in the mouth. Samples from teeth are quite isolated, which can be found in the

confusion matrix and the PCoA plot. However, subgingival plaque and supragingival

plaque samples were very difficult to distinguish from one another. Since these sites

provide a challenging binary classification problem, in the next chapter, we develop

and test ideas to improve classification accuracy using these two sites.



Chapter 4

Classification of Hard Plaque Samples

In the previous chapter, the microbiome of the oral cavity was characterized and sam-

ples were classified using SVMs. However, the classifiers so far were informed only by

the relative OTU abundance of each sample. Features represented in this way usually

presume that OTUs are the appropriate unit of analysis, which may not be the case.

Phylogenetic relationships among the organisms express their evolutionary distances;

these relationships may be key attributes of microbial communities. Augmenting the

classification methods with phylogenetic insights may yield better results. Represent-

ing organisms based on their phylogenetic groupings breaks the constraint of rigid

OTU thresholds, which may provide additional information to the SVM.

In addition to taxonomic information, functions in the microbial community can

also serve as useful features. Each body site differs remarkably in functions and

the microbial pathways are highly associated with the body site functions. Intesti-

nal microbes are mainly responsible for the production and absorption of nutrients,

while microbes on skin are protective against pathogenic bacteria. Functional profiles

characterize the microbial communities differently from taxonomic components. The

functional difference between body sites may provide discriminative information to

the classifiers.

Ensemble methods are algorithms that integrate a number of classifiers to give

better predictions than a single classifier does. Ensemble methods suggest another

approach, since we found the predictions from different classifiers are not always

consistent.

49
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4.1 Custom Kernels based on Phylogenetic Distances

4.1.1 Kernel Methods

Kernel methods are a set of algorithms that work on various types of dataset and find

the general relationships in it. Datasets such as, sequences, documents, and images,

all can be performed. In addition to their application in SVMs, kernel methods can

be used in a range of techniques including Fisher Discriminant Analysis, Principal

Components Analysis and Spectral Clustering. Problems are usually solved by kernel

methods in two steps: map the original dataset into the feature space that the adopted

algorithm can deal with; design a function to discover linear patterns in the mapped

feature space.

From the formula 3.8 we induced in Chapter 3:

x
′

i = ψ(xi) (4.1)

Then a kernel function can be introduced to satisfy:

K(x1, x2) = ⟨ψ(x1),ψ(x2)⟩ (4.2)

where ψ maps the original features into a dot product space, or feature space. The

inner product in the feature space is K, kernel function. Kernel function is the vital

ingredient for kernel method, since it has to be designed depending on the types of

the specific dataset and be efficient in computation. SVMs are capable of working

on nonlinear datasets, since a hyperplane can always be found by mapping features

into higher dimensions and the kernel function still works efficiently in infinite feature

space.

Generic polynomial and RBF kernels are widely used, but custom kernels that

incorporate biological insights can be useful as well. For example, alignment-based

kernels improved SVM performance in predicting protein subcellular localization,

which is a vital aspect of protein function [88]. Since phylogenetic distance is an

effective measure in the comparison of microbial communities, custom kernels based

on this property may be effective in discriminating microbiome samples.
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4.1.2 Four Distance Measures

Parks et al examined 39 measures of beta diversity and analyzed their relative similar-

ity [5]. The authors identified several groups of measures with very high correlations

among predictions. We chose single representatives from four of these groups. The

custom kernels were developed based on two phylogenetic (weighted and unweighted

UniFrac distances) and two non-phylogenetic (Euclidean and Canberra distances)

measures. Non-phylogenetic measures assess community differences based only on

OTU presence and abundance, while phylogenetic measures are also informed by

evolutionary relationships between these OTUs in the phylogenetic tree.

The Euclidean distance is one of the most popular and straightforward distance

measures. It can be expressed as the length of the path connecting two points

(x1, x2, . . . , xn) and (y1, y2, . . . , yn) in n-space:

d (x, y) =

√

√

√

√

n
∑

i=1

(xi − yi)
2 (4.3)

The Canberra distance is a non-phylogenetic measurement introduced by Lance et

al in 1966 and the modified form mainly used today was suggested a year later [158,

159]. The dissimilarity sums the results calculated from the absolute difference be-

tween the pair of variables divided by their total value. The Canberra distance be-

tween (x1, x2, . . . , xn) and (y1, y2, . . . , yn) in n-space can be calculated as:

d (x, y) =
n
∑

i=1

|xi − yi|

|xi|+ |yi|
(4.4)

This metric is more sensitive to quantitative (abundance) than binary (presence-

absence) differences between samples.

Some studies found the Canberra distance works well in separating community

samples and had a better performance than the Euclidean distances [160]. Possible

reasons for these differences were proposed: the Euclidean distance does not scale the

values during calculation, while the Canberra distance uses the sum of the variables

in each dimension as a scaling factor. The Canberra distance was initially proposed

as a software metric and performed well in detecting intrusions in networks and in-

formation systems, but it has been readily adopted in ecology and genomics. Jurman

et al used the Canberra distance as an indicator to measure the stability of ranked
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(a) (b) (c)

Figure 4.1: Calculation of the UniFrac distance. Blocks in blue and red colors
indicate sequences from each of two communities. Branches in purple means taxa
from these two samples are mutually shared. (a) A tree of taxa from two similar
communities, where all the braches are shared. A minimum UniFrac distance value
of 0.0. (b) A tree of two very different communities, sequences in red and sequences
in blue appear in disjoint sets of branches. A maximum UniFrac distance value of 1.0.
(c) A tree shows that parts of sequences from these two communities share branches
on the tree, while some of them do not.

biomarkers from functional genomics, so that a reliable set of genes can be selected

for classification or annotation [161].

UniFrac distance, as a method of estimating microbial distance based on phyloge-

netic information, was proposed by Lozupone et al [113, 114, 115]. UniFrac expresses

the phylogenetic dissimilarity between each pair of samples after all taxa in these

samples have been placed into a rooted phylogenetic tree. Any branch that has taxa

from both samples as children is called a “shared branch”, whereas a branch whose

children are from one sample only are “unique branches”. The UniFrac distance of

these two samples can be calculated as the sum of lengths of all unique branches

divided by the sum of all branch lengths in the tree..

Figure 4.1 gives examples of three UniFrac distances. The two communities in

Figure 4.1(a) have similar phylogeny (minimum UniFrac distance 0.0), since all the

taxa in red and blue samples simultaneously appear in each branch. However, Fig-

ure 4.1(b) shows taxa from these two samples are in distinct braches, which leads to

a maximum UniFrac distance 1.0. Between these two extreme cases, Figure 4.1(c)

shows a UniFrac distance of 0.5, whose total branch length from shared branches and

unshared branches are equal. The formula of calculating the distance between two
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communities, x and y, is consistent with [162]:

d (x, y) =
n
∑

i=1

bi |I(P x
i > 0)− I(P y

i > 0)|
∑n

i=1 bi
(4.5)

where n is the number of braches in the phylogenetic tree, and bi corresponds to

the length of branch i. P x
i and P y

i are the taxa proportions in the ith branch from

community x and y respectively. Function I(.) indicates the presence or absence of

species within the branch.

The results from this measurement have an assumption that all taxa in the phy-

logenetic tree come with similar abundance, which is called unweighted UniFrac dis-

tance. However, the difference in abundance can be critical for distinguishing com-

munities, so a weighted UniFrac distance was developed. Weighted UniFrac distance

gives a weight to each branch based on the amount of divergence in the taxa abun-

dance. The equation can be given as:

d (x, y) =

∑n
i=1 bi(P

x
i − P y

i )
∑n

i=1 bi(P
x
i + P y

i )
(4.6)

These two measurements yield different and complementary dissimilarity score be-

tween communities. Unweighted UniFrac is sensitive only to the presence and absence

of different OTUs, which may amplify the effect of rare lineages. However, not all

rare members are important. Weighted UniFrac considers the relative abundance, but

sometimes the most abundant lineages are not the discriminative members. General-

ized UniFrac distances which offer different tradeoffs between presence and abundance

have been developed [162]. However, here we focus on the widely used unweighted

and weighted UniFrac distance.

A distance matrix is used to store the distance between each pair of samples,

which is square and symmetric. It can be represented as an n-by-n matrix:
⎡
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where d(i, j) measures the dissimilarity between sample i and j. All the diagonal

values are defined as zero, which indicates that there is no difference between the

element and itself. A value of 1.0 denotes the maximum dissimilarity.

All four beta-diversity measures in the thesis were calculated with QIIME. Con-

verting the data to a common range before applying distance calculation is necessary,

so that all the attributes can be given an equal weight. To account for disparities in

OTU counts in different samples, these similarity scores were combined with several

different OTU table preprocessing approaches, including raw OTU count, relative

abundance, rarified counts from 500 to 3,000 per samples and cumulative sum scal-

ing (CSS) normalization [86]. Since beta diversity expresses the dissimilarity between

each pair of samples, we subtracted each such value from 1.0 in order to generate simi-

larity values for the SVM classifier. The classifiers with custom kernel were performed

using Libsvm package [157].

4.1.3 Performance Comparison

Using the four beta-diversity measures above, we developed custom kernels that ex-

press the similarity between all pairs of samples. The hypothesis underlying the use of

these kernels is that similarity scores based on ecological similarity measures will out-

perform a näıve RBF kernel, especially when these measures are based on information

not available to the classifier (for example, phylogenetic information in the case of

UniFrac). The performance of SVMs with different custom kernels is given in Figure

4.2. Colors are consistent with Parks et al ’s clusters on beta diversity measurements.

Phylogenetic measures did not work better than non-phylogenetic measures: for

example, the widely used unweighted and weighted UniFrac measures yielded 74.4%

and 73.7% accuracy. The Canberra distance obtained an accuracy score of 76.5%,

which is better than the UniFrac distance, but still worse than using OTU abundance

with an RBF kernel. Although many types of microbial samples cluster well based

on beta-diversity measures such as UniFrac, this is clearly not the case with the

two types of plaque. A possible reason for the discrepancy between RBF and our

custom kernels is the optimization of the gamma parameter, since none of the four

beta-diversity measures have such process. Another reason may be that the semi-

defined distance function makes samples not satisfy the KarushKuhnTucker (KKT)
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distance_metric Canberra unweighted UniFrac weighted UniFrac Euclidean RBF

otu_count 0.762 0.729 0.734 0.695 /

otu_abundance 0.762 0.729 0.736 0.736 0.762

rarefaction 0.766 0.770 0.740 0.622 /

css 0.769 0.729 0.738 0.754 /

mean ± s.d 0.765 ± 0.003 0.739 ± 0.017 0.737 ±0.002 0.702 ± 0.051 0.762

Figure 4.2: The performance of SVMs with different custom kernels. The
distance metrics are ranked by their mean values and highlighted with colors consis-
tent to Parks et al’s cluster result. Highly correlated and prominent measures are
grouped in one color set, the calculation of correlation can be found in [5].

conditions, which is a generalized method Lagrange multipliers . So we cannot ensure

the Lagrange function is still convex, resulting that the hyperplane may not be global

optimal.

4.2 Clade Features based on Phylogenetic Relationships Among OTUs

A clade refers to a group containing a common ancestor and all its descendants,

which is a grouping of lineages based on phylogenetic relationships. The term was

first proposed by Huxley in 1957 [163]. In the phylogenetic tree, clades are nested

within one another (in Figure 4.3). A clade can have thousands of organisms or only

a few of them.

By using the phylogenetic tree generated in the sequence-processing step, sets of

closely related OTUs can be grouped into clades. Since OTUs can only be identified

after assuming a fixed similarity, OTUs cannot go into deep lineage if the similarity

were set very low. However, if the microbial communities were differentiated by taxa

in big families, a very high similarity cannot detect such groups [164]. In fact, although

many studies pick OTUs at 97% similarity, this percentage is an empirical value. So

it is reasonable to argue that OTUs at lower or higher similarity, such as 90% or

99% may better characterize the communities. To support the argument, Knights

et al identified OTUs at different similarity between 50% and 95%, besides 97% and

99% [41]. Features were constructed from these OTUs and put into RF classifiers.
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A B DC E F G H

Figure 4.3: Generation of clade-based features. Each clade in the tree corre-
sponds to a feature in the data set; for example, the darkest box encompasses OTUs
A and B.

Results show the accuracy did not change much when the similarity became larger

than 65%. However, the accuracy got worse at high levels of similarity, for example, in

addition to the more widely used 97% and 99%. Their results indicate that OTUs of

high similarity cannot always provide discriminative features for classifiers. However,

it is difficult to determine a perfect similarity before classification. To solve this

problem, we proposed the idea of clade features. The aggregation of clades breaks

the limitation by strain-level variation, so that discriminative taxa at different levels

can be found.

4.2.1 Clade Features

We constructed clades using the reference phylogenetic tree as described above, and

added each clade to the existing OTU feature space. The abundance of a clade was

calculated as the sum of abundances of all its descendants. Clade abundance reduces

the sparsity of the dataset and removes the need for a single, universal similarity

threshold. However, this method increases the number of features relative to the

original OTU table. Since the number of non-leaf clades is equal to the number of

internal nodes in the phylogenetic tree, this clade-based approach can generate a total

of l− 2 features, where l is the number of leaves in the tree, if the uninformative root

clade that includes all OTUs is ignored. To solve this problem, we applied different

feature selection strategies.
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4.2.2 Feature Selection

The clade approach generated thousands of features, many of which are likely to be

uninformative, and in aggregate can reduce the speed and accuracy of SVM training.

Although some species appear in only a small number of samples, rare features may

nonetheless be useful for classification and should not be removed by default. We used

feature selection to accelerate learning by removing uninformative OTUs. Among the

multitude of available feature selection techniques, we used two types of approach:

filter methods, which consider the usefulness of features based on their apparent

relevance to the classification problem, and wrapper methods, which assess features

by quantifying their effect on the accuracy of a trained model.

One of the filter methods used was information gain, which ranks the features

based on the amount of predictive information obtained from the presence or absence

of a term [165]. To measure the amount of information, we introduce the concept

of entropy, which tells the expected amount of information in the content. Let Y =

{y1, y2, . . . , yk} denote the set of values in the space and fit the probability function

P (Y ). So the entropy H(Y ) can be defined as:

H(Y ) = −
∑

y∈Y

p(y) log2 p(y) (4.7)

where the log is usually to the base of 2, meaning the entropy is measured in bits.

A simple example is tossing a fair coin, where the probability of heads and tails are

both 0.5. So the entropy is −0.5× log 0.5− 0.5× log 0.5 = 1.

The definition of entropy can be extended to a pair of variables, which is called

joint entropy H(X, Y ). If the variables (X, Y ) ∼ p(x, y), the conditional entropy

H(Y |X) can be defined as:

H(Y |X) = −
∑

x∈X,y∈Y

p(y, x)log
p(y, x)

p(x)
(4.8)

Conditional entropy can be regarded as the uncertainty of Y after given the infor-

mation of X. Mutual information is the difference between entropy H(Y ) and the

conditional entropy H(Y X):

MI(Y ;X) = H(Y )−H(Y |X) (4.9)
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degree of freedom. Formulas are referred from:

χ2(X, Y ) =
n
∑

i=1

k
∑

j=1

(Oi,j − Ei,j)2

Ei,j

(4.11)

Ei,j =
MiBi

N
(4.12)

where Oi,j is the number of samples has the ith feature from the jth class. Mi indicates

the number of samples has the ith feature, whatever the class is. Bj is the amount of

samples from the jth class. So the Ei,j is the expected number of samples with the

ith feature and from the jth class.

By searching the χ2 distribution table, the corresponding p-value can be found. A

small probability allows us to reject the null hypothesis, which indicates this feature

has high correlation with the class label.

Wrapper methods were also employed in the thesis. These approaches select

features according to their performance when used by a learning algorithm, as the

evaluation function. We considered Random Forest (RF) feature permutation as a

wrapper method, which is very popular in feature ranking [98]. It is easy to use and

only few parameters need to be tuned. Each feature value would be shuffled randomly

and test the performance of the model trained by those permutated features. Variables

were ranked based on the effect of randomizing their values between the categories

to be predicted. In the context of a trained RF classifier, randomizing a useful

variable would lead to a significant drop in accuracy, whereas a similar procedure

on an uninformative variable would have no effect. Measurements such as prediction

accuracy, precision or MCC can be used to evaluate the performance.

Filter methods are fast and suitable for problems of high dimensionality. Since

these approaches are independent of the classification algorithm and typically consider

features one at a time, features only need to be ranked once. However, filter methods

lose the interaction with the classifiers. This means the selected features may not be

the subset that are of greatest utility to the classifier. What is worse, filter methods

treat all features as independent from one another, which is not true in fact. By

contrast, wrapper methods interact well with the learning algorithm and may take

feature dependencies into account. Features selected by wrapper methods are usually

more powerful than those by filter methods [112], but the searching process require
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long time and high computational cost. Although OTUs with strong marginal effects

(i.e., those that have good predictive power independent of any other variables) should

be identified by all three of our chosen approaches, useful combinations of variables

might be highlighted by the RF approach.

4.2.3 Performance Comparison

We augmented the OTU table with relative abundance information about clades that

contain multiple OTUs, to determine whether explicit specification of relationships

amongst OTUs might lead to better prediction accuracy. Fifty-two OTUs were lost

because their corresponding sequences failed the PyNast quality control filters, leav-

ing a total of 6,996 OTUs. To this set we added 6,994 clades, corresponding to all

internal nodes in the reference tree, minus the uninformative root node which always

has a relative abundance of 1.0. The classification accuracy obtained without feature

selection was less than that obtained from the OTU table without clade information

(73.8% vs. 76.2%). While the OTU+clade table has almost twice as many features

Table 4.1: Maximum accuracy of SVM classifiers trained with different
combinations of input features. The initial numbers show the accuracy score,
with numbers in parentheses indicating the total number of features used to train
and test the classifier. The four types of input features used were (i) OTUs only;
(ii) OTUs and clades comprising related sets of OTUs; (iii) Functional predictions
made using PICRUSt; and (iv) a dataset comprising all generated features. Feature
selection techniques used were the filter methods, information gain and Chi-square;
and the feature permutation wrapper method.

Cross-Validation Accuracy (number of features)

Features Without Feature Selection
With Feature Selection

Info Gain Chi Square Feat Perm

(i) OTU
0.762

(7048)

0.779

(60)

0.777

(50)

0.798

(20)

(ii) Clade
0.738

(14402)

0.802

(110)

0.800

(170)

0.802

(100)

(iii) Function
0.761

(6191)

0.762

(120)

0.754

(100)

0.761

(60)

(iv) Hybrid
0.777

(1556/1518)

0.804

(92/78)

0.805

(68/62)

0.805

(28/23)
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as the OTU abundance table alone and includes over 99% of the original OTUs, it

appears that the higher dimensionality of the data confounds the SVM classifier, mak-

ing it more difficult to build an accurate model. However, applying feature selection

as above gave at least 80% accuracy (results in Table 4.1, Figure 4.5). A ten-fold

cross-validation was performed and we recorded the accuracy from each fold and the

overall dispersion.. The statistical descriptions are displayed in Table 4.2.

As was observed previously with the OTU table, the filter methods required more

features to achieve their maximum classification accuracy (110 and 170 for information

gain and Chi-square versus 100 features for the RF approach). When analyzing the

selected features, all three methods selected more clades than OTUs (106 clades

for information gain, 159 clades for Chi-square and 19 clades for the RF feature

permutation). Figure 4.6 shows the performance of classifiers with different numbers

of features. The information gain (in Figure 4.6(a)) and Chi-square (in Figure 4.6(b))

approaches had similar performance: the accuracy of OTU abundance varied between

76% and 78% with different numbers of features. However, clade abundance gave

accuracy scores that were often in excess of 80%. Both OTU and clade abundance can

classify samples well with a small number of RF-ranked features (in Figure 4.6(c)), but

with the number of features increasing, the performance of OTU abundance worsened

Table 4.2: Statistical summary of the accuracies from each of ten cross-
validation folds with different features.

Features Mean Std.Deviation Std.Error
95% Confidence intervals

Min Max
Lower Upper

OTU

Info Gain 0.776 0.069 0.005 0.648 0.847 0.645 0.850

Chi Square 0.778 0.053 0.003 0.684 0.856 0.677 0.867

Feat Perm 0.783 0.064 0.004 0.664 0.863 0.656 0.867

Clade

Info Gain 0.806 0.025 0.001 0.778 0.853 0.777 0.860

Chi Square 0.792 0.053 0.003 0.698 0.870 0.691 0.881

Feat Perm 0.800 0.035 0.001 0.743 0.850 0.742 0.854

Function

Info Gain 0.756 0.057 0.003 0.659 0.816 0.653 0.817

Chi Square 0.753 0.054 0.003 0.659 0.816 0.653 0.817

Feat Perm 0.751 0.058 0.003 0.655 0.833 0.653 0.833

Hybrid

Info Gain 0.804 0.035 0.001 0.756 0.872 0.753 0.884

Chi Square 0.795 0.043 0.002 0.746 0.888 0.739 0.903

Feat Perm 0.805 0.045 0.002 0.744 0.884 0.740 0.892
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to have higher proportions of Bacteriodetes (sub: 0.254 vs supra: 0.191), Fusobacteria

(0.172 vs 0.118) and Spirochaetes (0.029 vs 0.006), whereas Actinobacteria (0.175 vs

0.247) and Proteobacteria (0.151 vs 0.215) are more abundant in supragingival plaque.

Firmicutes had similar abundance in both types of site (0.213 vs 0.220), however, at

the class level, Bacilli (0.110 vs 0.148) and Clostridia (0.103 vs 0.071) showed larger

deviations.

We then highlighted the optimal features that were selected by each method in

the phylogenetic tree. The filter methods, information gain (in Figure 4.7(a)) and

Chi-square (in Figure 4.7(c)) chose similar clades including a large clade within Bac-

teroidetes and smaller groupings within Firmicutes and Fusobacteria. The Chi-square

approach chose the largest number of features, including Spirochaetes and Clostridia

clades that were not chosen by the information gain criterion. By contrast, the RF

feature-permutation approach, which included the fewest features in its optimal set,

selected a greater diversity of features (in Figure 4.7(d)). This set of features included

unique clades of Firmicutes and Actinobacteria that were not identified by the infor-

mation gain or Chi-square approaches. For all the three feature-selection methods,

near-optimal classification accuracy was obtained for many different numbers of se-

lected features, suggesting that some of the highlighted clades in Figure 4.7 may not

Table 4.3: Improved accuracy of SVM classifiers trained with different com-
binations of input features. The initial numbers show the improvement of accu-
racy score, with numbers in parentheses indicating the p-value and t-value from t-test.
Three pairs of features were compared: (i) Clade vs OTU; (ii) Hybrid vs OTU; (iii)
Hybrid vs Clade. Feature selection techniques used were the filter methods, informa-
tion gain and Chi-square; and the feature permutation wrapper method.

Improvement of Accuracy (p-value, t-value)

Features Without F.S.
With Feature Selection

Info Gain Chi Square Feat Perm

(i)Clade vs OTU
-0.024

(p<2.2e-16;t=-34.6)

0.023

(p<2.2e-16;t=26.5)

0.024

(p<2.2e-16;t=24.8)

0.009

(p<1.7e-13;t=8.6)

(ii)Hybrid vs OTU
0.015

(p<2.2e-16;t=18.1)

0.025

(p<2.2e-16;t=25.9)

0.028

(p<2.2e-16;t=29.7)

0.015

(p<2.2e-16;t=15.6)

(iii)Hybrid vs Clade
0.039

(p<2.2e-16;t=56.9)

0.002

(p<1.1e-1;t=1.6)

0.005

(p<3.6e-5;t=4.3)

0.003

(p<7.3e-3;t=3.5)
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be important for classification purposes. The selected clades are nested; one big clade

may contain a number of small ones. Because of that, although 110 features were

selected by information gain, there are only 5 big clades highlighted in the phylo-

genetic tree. Nonetheless, the higher variety of features selected by the RF feature

permutation approach shows the value of testing combinations of features during the

selection process.

4.3 Functional Encondings

Taxonomic diversity is an important characteristic of microbial communities, however,

essential knowledge of functional capabilities helps understand the role they play. The

functional capabilities of a microbiome sample are often assessed using metagenomics

(see Chapter 1.4), but the HMP collected only 764 metagenomic samples as compared

to 2,702 16S samples. Since large numbers of samples are desirable for model training,

we used a method that predicts functions within the community from 16S rRNA gene

sequences.

4.3.1 Functional Features

The PICRUSt software [116] allows the prediction of functional gene complements in

microbial samples that have been characterized with marker genes such as 16S. We

used these predictions as the basis for classification; if the functional capacity of mi-

crobes in a system is more important than their specific taxonomic affiliations, then

a function-based approach to classification may yield higher accuracy. PICRUSt uses

phylogenetic information to make its predictions, and thus functional information will

be highly correlated with the OTU and clade data. However, since phylogenetically

distant lineages can share common functional features, the predictions made by PI-

CRUSt may identify functional similarities between OTUs that belong to different

high-level taxonomic groups such as classes and phyla. Thus the predictions made by

PICRUSt are not completely redundant with the OTU and clade features considered

in this work.

The functional profile predicted by PICRUSt is expressed as a table containing

the count of functional genes in each sample. Kyoto Encyclopedia of Genes and

Genomes (KEGG) orthologs were the gene family profiles we adopted [167]. KEGG
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is a database containing genomic information and high-level functions. The functional

assignments in KEGG connect genes into different molecular interaction and reaction

networks, such as metabolism and genetic information processing. KEGG Ortholog

(KO) groups were manually defined based on the hierarchy of pathways and used as

identifiers to map each gene function. New features were constructed from the KO

abundance in each sample, where maximum values were also scale to 1.0 to eliminate

the disparity.

To measure the reliability of the functional predictions, we calculated the Nearest

Sequenced Taxon Index (NSTI) values for each sample. The value of NSTI was

calculated from average length of the braches that can separate the OTUs from the

reference genome, given a weighted by the normalized abundance of the OTU. So the

lower the value is, the more reliable the prediction is expected to be. A 0.04±0.01 s.d.

was obtained in the thesis. It is similar to the values reported for HMP samples

(mean NSTI = 0.03± 0.02 s.d.), which were generally well predicted by PICRUSt, as

compared with 0.23± 0.07 s.d. for a less well-predicted hypersaline community [116].

4.3.2 Hybrid Features

Since both function and taxonomy can potentially characterize the community, com-

binations of the two types of feature may provide complementary information. We

combined clade and functional abundances and created new hybrid features. Results

show that classifiers were able to distinguish samples with a small number of fea-

tures, which allows us to focus on the key attributes that distinguish the two types

of plaque.

4.3.3 Performance Comparison

A total of 6,191 KEGG orthologs, which incorporate functional predictions in addi-

tion to homology information, were used as input features to an SVM with an RBF

kernel as performed above. The cross-validated accuracy of the model trained with

all features was 76.1%, almost the same with the corresponding OTU abundance

model. These observations are consistent with those of Xu et al [168], who found

that taxonomy alone was sufficient to model microbial community structure. Func-

tional features are still useful for predictive purposes, but their failure to improve
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classification accuracy may be attributable to several factors. It may be that the

crucial functions are not well annotated by KEGG, because of misannotations or a

failure to assign to any meaningful functional category. The granularity of KEGG

functional attributions and the presence of irrelevant features may also impede the

discovery of important predictive attributes.

To assess the performance of classifiers based on combined clade and functional

information, we performed feature selection on a hybrid data set containing features

of both types. The results of feature selection and classification are shown in Ta-

ble 4.1 and statistical descriptions in Table 4.2. The accuracy obtained from all

three types of feature selection was 80.4%-80.5%, and the RF feature permutation

approach yielded a maximum accuracy score with only 28 clade-based and 22 func-

tional features. The small improvement in accuracy of the hybrid approach relative

to clade-based classification alone (in Table 4.3) suggests that the functional features

do not provide much useful complementary information to taxonomy: the increase of

0.3% relative to previous wrapper-based results corresponds to only a few additional

correctly classified cases.

4.3.4 Biological Meaning of Selected Features

The selected clade-based features are mainly from Streptococcus, with several of them

restricted to the opportunistic pathogen S.anginosus. There are other clades of Strep-

tococcus, underscoring the importance of different members of this genus in the oral

cavity. Although Streptococcus is typically a more significant component of supragin-

gival plaque, consistent with its facultative anaerobic lifestyle, three of the Strepto-

coccus-containing groups were overrepresented in subgingival plaque, while the fourth

was 50% more abundant in supragingival plaque. This finding suggests that the most

common types of Streptococcus may not be the best discriminators between the two

types of plaque. Some selected features were broader in their taxonomic distributions,

including genera such as Prevotella, Fusobacterium and Dialister.

One of the selected functional features is sagA, which encodes the basic structural

unit of Streptolysin S (SLS). Bacteria such as S.pyogenes use SLS to lyse host cells

and acquire iron [169, 170]. This function appears to be strongly associated with

subgingival plaque. High correlated functional features also include a beta-lactam
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resistance protein, overrepresented in subgingival plaque; streptokinase, which can

aid the spread of Streptococcus infection through cleavage of fibrils [171]; proteins

involved in resistance to tellurium and vancomycin; and a Type IV secretion sys-

tem component. Although many of the implicated functions relate to host-microbial

interactions, we found no clear, strong connections to aerobic or anaerobic lifestyles.

4.4 Combining Information from Multiple Classifiers

Empirical studies shows that no algorithm can outperform all others on all possible

datasets. Instead of trying to optimize a single learning model, combing several

different trained predictors may yield better results [2]. Ensemble methods train

a group of base classifiers on the same dataset and make decisions based on the

predictions from all of them. SVM, kNN and decision trees are all commonly used

base classifier.

4.4.1 Different Predictions from Various Classifiers

Although our focus was on SVMs, we also considered two other supervised classifica-

tion methods, SourceTracker [172] and RF [96]. SourceTracker is a Bayesian approach

that assigns probabilities that a given sample is derived from each of a set of envi-

ronment types, which characterizes the microbial community in another aspect. We

used SourceTracker version 0.9.5 software as implemented in QIIME with default

settings. Analogous to five-fold cross validation, the set of samples was divided into

5 subsets: one subset was sink samples for testing while the other four were source

samples training. We repeated this process five times with different cross-validation

subsampling.

RFs, first introduced in 2001, are an ensemble method merging decision trees with

voting schemes. Each decision tree is constructed based on M (mtry) randomly chosen

features from the input dataset. The prediction of every sample is determined by the

majority vote of all these decision trees. RF classifiers are popular both for feature

selection and classification, and were found by Knights et al to perform well on several

test datasets. RF classification was implemented with scikit-learn 0.15 [173].

RF trials were carried out in an analogous manner to SVM, using sets of 10 to

200 features ranked by the three feature selection methods. Since SourceTracker has
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a much longer running time, we only used the whole set of features to test its per-

formance. For the RF model, the lowest and highest accuracies were respectively

achieved by functional abundance and the hybrid feature set, as was observed with

the SVM classifiers (in Figure 4.8). OTUs and clades had similar performance when

features were ranked by information gain (in Figure 4.8(a)) and Chi-square (in Fig-

ure 4.8(b)), but clade abundance improved under RF feature permutation (in Fig-

ure 4.8(c)) ranked features. SourceTracker estimates the posterior probability scores

for each possible source of a sample; we used the source with the highest posterior

probability as the final prediction. The clade and hybrid feature sets did not perform

as well as OTUs, likely due to the large number of highly similar clade features that

were not removed with a feature selection process.

Both SourceTracker and RF had similar performance in distinguishing the two

hard plaque sites, with classification accuracy between 75% to 78% with OTU abun-

dance features. However, the predictions on each sample were different between

methods. Figure 4.9 contrasts the predictions made by each pair of methods on each

sample. All three methods had consistent predictions on most samples, since the ma-

jority of samples are either perfectly classified or perfectly misclassified by each pair

of methods. However, off-diagonal samples show differences between two methods,

and some samples are classified 100% correctly by one approach and 0% correctly by

the other.

4.4.2 Design of Ensemble Algorithm

Since the predictions from SVM, RandomForest and SourceTracker were sometimes

divergent, we used all three methods as base classifiers for an ensemble model. All

the samples were divided into five subsets as 5-fold cross-validation (in Figure 4.10).

Training set was then trained with SVM, RandomForest and SourceTracker respec-

tively. During this training process, another 5-fold cross-validation was adopted, that

separated the training samples into five subsets. After this inner cross-validation,

each sample was assigned a label. As was done with the individual SVM and RF

classifiers, this process was repeated 100 times with random shuffling of the cross-

validation sets. For SourceTracker, the classification was performed for one time due

to the speed of SourceTracker. However, SourceTracker are able to give predictions in











Chapter 5

Conclusion and Future Work

Hard plaque is one of the four groups we defined in Chapter 3. With the exception

of the saliva samples which were somewhat conflated with the back of the mouth,

distinguishing samples between groups was relatively easy (accuracy ≥ 87%). The

differences between samples of the same group are more subtle. Using hard plaque

samples as a test case, we proposed several improvements to the sample classification

problem. The best test-set accuracy scores obtained were in the range 80%-81%,

which demonstrates useful learning but is of little value for diagnostic applications.

Clade and clade-function abundance encodings did yield improvements in this prob-

lem, while functional abundance alone and custom-kernel strategies failed to give

better performance. The ensemble method was expected to yield higher accuracy,

but failed to improve upon the accuracy obtained from the SVM method alone.

5.1 Nine-site classification with clade and functional abundance

The principal object of this thesis is to develop new, biologically informed strategies

for microbial community classification, with the oral microbiome as a test case, so

our final analysis was to apply the successful modifications demonstrated in Chapter

4 to the 9-way classification problem first explored in Chapter 3. Although some of

the modifications are useful for the binary classification of hard plaque samples, the

whole sample set offers several other challenging cases. Most notably, classification

accuracy within the “back of the mouth” group, which comprised samples from the

throat, palatine tonsils and tongue dorsum, was very poor: over 50% of throat and

palatine tonsil samples were incorrectly assigned to other sites by the classifier.

Since none of the four custom kernels yielded better performance, we focused

on using different abundance measures on all nine oral cavity sub-sites. For clade

abundance, we used the same approach as described in Chapter 4. Ninety-one OTUs

were eliminated because of the PyNast quality control filters, yielding a total of 12,754

75
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the measures of OTU and clade abundance, reaching at least 70% accuracy with

fewer than 100 features. Since the predictions made by PICRUSt were based on

the functional similarities between numerous OTUs that belong to different high-

level taxonomic groups, a small number of functional features may contain enough

information to distinguish some communities on the oral cavity.

The accuracy obtained from the hybrid clade-function abundance encoding is con-

sistent with the classification on hard plaque samples, obtaining accuracy around 73%.

The performance of hybrid features and clade features had very similar performance,

indicating that functional features failed to provide much complementary information

to taxonomy in the 9-way classification as well.

5.2 Summary and Conclusion

The microbiome of human oral cavity is associated with both health and disease.

The analysis of HMP dataset provided a detailed view of the healthy oral cavity

microbiome, which can serve as a baseline for further studies that consider varia-

tion in disease states and therapeutic responses [7, 25, 15, 27]. A primary objective

of machine learning is to train models that can distinguish classes of entities, in

this case microbial samples encoded as OTU tables, with high accuracy. Previous

authors have tested many different machine-learning algorithms on reference data

sets [41, 172, 43, 42]; our principal focus here on SVMs allowed us to consider differ-

ent encodings of the input data. The SVM is well-suited to our microbial classification

problems. It is a robust algorithm that can deal with high-dimensional and mutually-

dependent features, such as clade and functional abundance. Various kinds of kernels

have been developed to solve different real-world problems [88]; biologically inspired

kernels were considered in the thesis. The performances of models were evaluated via

prediction accuracy and displayed in confusion matrix. Results were also described

and tested with statistical methods. Because of the limited number of accuracies in

the 10-fold cross-validation, the statistical power may not be adequate. We repeated

the classification for 100 times and used two-sample t-test to examine the difference

between models.

A preliminary classification attempt was performed on the 9-way oral cavity sam-

ples. By representing the results to a confusion matrix, we identified four distinct
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GING BUCC HPAL SAL SUB SUPRA PTON THRO TONG

GING 0.826 0.120 0.010 0.000 0.013 0.000 0.003 0.010 0.000

BUCC 0.145 0.748 0.087 0.007 0.013 0.013 0.063 0.043 0.000

HPAL 0.013 0.083 0.697 0.011 0.000 0.003 0.059 0.163 0.020

SAL 0.000 0.007 0.020 0.879 0.007 0.003 0.026 0.017 0.010

SUB 0.007 0.010 0.007 0.004 0.631 0.151 0.016 0.007 0.000

SUPRA 0.007 0.007 0.003 0.007 0.326 0.826 0.007 0.007 0.000

PTON 0.003 0.010 0.027 0.057 0.003 0.003 0.477 0.150 0.036

THRO 0.000 0.010 0.107 0.028 0.007 0.000 0.191 0.439 0.049

TONG 0.000 0.007 0.043 0.007 0.000 0.000 0.158 0.166 0.885

Actual 

Class

 
Predicted Class

(a) Confusion matrix with OTU features

GING BUCC HPAL SAL SUB SUPRA PTON THRO TONG

GING 0.859 0.105 0.013 0.003 0.010 0.003 0.003 0.003 0.000

BUCC 0.126 0.771 0.053 0.007 0.003 0.007 0.013 0.020 0.000

HPAL 0.003 0.073 0.757 0.017 0.000 0.007 0.013 0.097 0.033

SAL 0.004 0.007 0.004 0.897 0.000 0.004 0.039 0.036 0.011

SUB 0.007 0.013 0.000 0.010 0.641 0.302 0.020 0.007 0.000

SUPRA 0.003 0.007 0.007 0.003 0.157 0.820 0.003 0.000 0.000

PTON 0.007 0.069 0.063 0.016 0.016 0.003 0.490 0.207 0.128

THRO 0.007 0.027 0.176 0.030 0.000 0.003 0.143 0.482 0.133

TONG 0.000 0.003 0.016 0.013 0.003 0.000 0.052 0.033 0.879

 
Predicted Class

Actual 

Class

(b) Confusion matrix with clade features

Figure 5.3: Confusion matrix of nine-way oral site classification with feature
selection. Results of classifiers with different features (a) OTU abundance and (b)
clade abundance are shown.
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groups of body sites: gums, saliva, hard plaque and back of mouth. These patterns

were also confirmed by mapping the samples to a 2D PCoA plot, which showed a

clearer distinction among sites after recoloring the points. We focused on samples

from hard plaque to develop new approaches: the phylogenetic relationships and

functions provided more information about the similarity of communities than OTU

abundance. Therefore, our improvements on the microbial classification problem were

based on the following aspects:

• Phylogenetic distance. Four different custom similarity kernels were developed

based on ecological beta-diversity measures, with and without phylogenetic dis-

tances. However, the performance of the classifiers did not improve with the

custom kernels, possibly because the RBF kernel has the optimization of pa-

rameters in the SVM grid search, whereas the custom kernels have no such

optimization process.

• Phylogenetic relationships. Closely related OTUs were grouped into clades

based on their relationships in a phylogenetic tree. Of the modifications we

tried, clade-based representations gave the largest increase in performance. Al-

though the combinations of OTUs that constituted clades could in principle be

discovered by the classifier, it is clear that explicit clade representations yielded

some advantage in both feature selection and classification. Selected clades con-

tained genera known to be important in the human oral cavity, in particular

Streptococcus.

• Function. Our predictive approach to function did not improve the accuracy

of our classifiers, in spite of the potential for PICRUSt to identify functional

as well as phylogenetic connections between OTUs and clades. It may be that

shotgun metagenome sequencing, which generates accurate information about

even those genes that are frequently transferred, may yield higher predictive

accuracy.

In the case of oral samples, and hard plaque samples in particular, complete sepa-

ration (i.e., 100% classification accuracy) may not be achievable, for several reasons.

Chief amongst these is the physical proximity of the supragingival and subgingival
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plaque. Although the two sites are different in terms of nutrient and oxygen avail-

ability, the formation of plaque indicates that the migration of microorganisms from

supragingival plaque to subgingival plaque does exist. We can infer that communities

on these two sites are highly overlapped, so sample misidentification may appear,

which also contribute to diminished classification; indeed this was one motivation for

the development of SourceTracker. However, we expect misidentified samples will

have a minimal impact on classification, for two reasons: first, the HMP followed

very strict protocols regarding the collection and handling of samples; second, the

overlapping of sample types we see in Figure 3.6(a) suggests a gradient of diversity

from one sample type to others, rather than a few scattered outliers that might be

indicative of misclassified samples. It is also unlikely that there is a single type of

healthy subgingival and supragingival microbial community, which would impede the

ability of a classifier to learn a single, general model of classification.

5.3 Future Work

Although complete separation is not achievable on oral samples, there still may exist

room for improvement. Improvement in microbial classification is more than seeking

higher accuracy; identifying discriminative OTUs or functions is also an important

step towards understanding key processes in the microbiome. Based on the work done

in the thesis, several promising approaches can be explored:

• Use concordance of classifiers may give better prediction accuracy on a subset of

the data. Previous work suggests that a different choice of classifier may yield

higher classification accuracy; clearly further work is needed to explore this

question, and there is a multitude of different approaches that can be applied to

the data. Chapter 4 uncovered the inconsistency in predictions from different

methods and built an ensemble classifier combing SVM, Random Forest and

SourceTracker. No improvements were seen, which may reflect either a lack of

complementary information from the combination of classifiers, or insufficient

optimization of our ensemble approach. So future work trying to build a well-

designed ensemble classifier is strongly recommended.

• Changing the definition and inference of OTUs may improve performance as
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well: in particular, changing the OTU threshold from 97% to 99% would high-

light finer-scale differences in abundance, for example, differences that may

manifest only at or below the species level. In this work we used closed-reference

OTU picking because it maps sampled sequences to reference groups that are

defined prior to the analysis. However, closed-reference picking discards any

sequences that do not map to existing OTUs at the required level of sequence

similarity, a phenomenon that is especially acute at higher thresholds such as

99%. An approach that combines closed-reference and de novo OTU genera-

tion would likely be ideal, but requires that new OTUs be comparable between

samples and across studies.

• Other measurements of microbial community structure could serve as input fea-

tures as well. In additional to taxonomic abundance, functional profiles were

also constructed in Chapter 4. However, it did not obtain as much improve-

ment as clade abundance, possibly in part because the functions were predicted

from 16S rRNA gene samples rather than sampled directly from the community.

Future work could attempt to identify key functions from shotgun sequencing,

which generates direct estimates of functional abundance from the community

without the prediction step of PICRUSt. Features constructed from other mea-

surements, such as divergence-based methods described in [38] may reveal dif-

ferent characteristics of the microbial communities, since feature selection did

find out features of biological meaning.
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