
STREAMING NETWORK TRAFFIC ANALYSIS USING ACTIVE
LEARNING

by

Jillian Morgan

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

March 2015

c© Copyright by Jillian Morgan, 2015

Table of Contents

List of Tables . iii

List of Figures . iv

Abstract . v

List of Abbreviations Used . vi

Acknowledgements . viii

Chapter 1 Introduction . 1

Chapter 2 Literature Review . 4

2.1 Active Learning . 4

2.2 Streaming Data Classification . 6

2.3 Detection of Malicious Behaviour Among Network Traffic 8

Chapter 3 Methodology . 12

3.1 Datasets and Features Employed . 12

3.2 Learning Algorithms and Budgeting Strategies 20
3.2.1 Massive Online Analysis . 20
3.2.2 Labels, Budgeting, and Active Learning 21
3.2.3 Budgeting and Active Learning Strategies 21
3.2.4 Learning Algorithms . 22

Chapter 4 Evaluation and Results . 25

4.1 Results of Using Learning Algorithms Together with Budgeting Strategies 26

4.2 Adaptive Artificial Neural Network Results 61

Chapter 5 Conclusion . 66

Bibliography . 68

ii

List of Tables

3.1 Summary of the datasets . 15

3.2 Dataset Attributes and Descriptions for the KDD Cup 1999
Dataset [6] based on descriptions given in [7] and [23] 16

3.3 Dataset Attributes and Descriptions for the NIMS1 dataset [9]. 18

3.4 Dataset Attributes and Descriptions for the ISOT and Zeus vs.
Alexa datasets. 19

3.5 Dataset Attributes and Descriptions for the CTU-13 datasets
(CTU-2 dataset and CTU-11 dataset). 20

3.6 Attributes that are common between datasets and their given
attribute names. 20

4.1 Overall prediction Accuracy (ACC) and Detection Rate (DR)
and of different budgeting strategies using Kdd 1999 Cup dataset.
The algorithms Naive Bayes (NB) and Hoeffding Tree (HT) are
represented. 27

4.2 Overall prediction ACC and DR and of different budgeting strate-
gies using NIMS1 dataset. NB indicates Naive Bayes and HT
indicates Hoeffding Tree. 28

4.3 Overall prediction accuracy and detection rate of different bud-
geting strategies using the ISOT dataset. NB indicates Naive
Bayes and HT indicates Hoeffding Tree. 29

4.4 Overall prediction accuracy and detection rate of different bud-
geting strategies using Alexa vs. Zeus dataset. NB indicates
Naive Bayes and HT indicates Hoeffding Tree. 30

4.5 Overall prediction accuracy and detection rate of different bud-
geting strategies using CTU-2 Dataset: Neris. NB indicates
Naive Bayes and HT indicates Hoeffding Tree. 31

4.6 Overall prediction accuracy of different budgeting strategies us-
ing CTU-11 Dataset: Rbot. NB indicates Naive Bayes and HT
indicates Hoeffding Tree. 31

4.7 Overall accuracy and detection rate when using Adaptive Arti-
ficial Neural Networks on various datasets. 61

iii

List of Figures

3.1 Script functionality for generating web traffic. 16

4.1 Prequential accuracy on KDD 1999 Cup Dataset using the Ho-
effding Tree Algorithm with a 10% budget. 34

4.2 Prequential detection rate on KDD 1999 Cup Dataset using the
Hoeffding Tree Algorithm with a 10% budget. 34

4.3 Prequential accuracy on KDD 1999 Cup Dataset using the Ho-
effding Tree Algorithm with a 100% budget. 35

4.4 Prequential detection rate on KDD 1999 Cup Dataset using the
Hoeffding Tree Algorithm with a 100% budget. 35

4.5 Prequential accuracy on KDD 1999 Cup Dataset using the
Naive Bayes Algorithm with a 10% budget. 36

4.6 Prequential detection rate on KDD 1999 Cup Dataset using the
Naive Bayes Algorithm with a 10% budget. 36

4.7 Prequential accuracy on KDD 1999 Cup Dataset using the
Naive Bayes Algorithm with a 100% budget. 37

4.8 Prequential detection rate on KDD 1999 Cup Dataset using the
Naive Bayes Algorithm with a 100% budget. 37

4.9 Prequential accuracy on NIMS Dataset using the Hoeffding Tree
Algorithm with a 10% budget. 38

4.10 Prequential detection rate on NIMS Dataset using the Hoeffding
Tree Algorithm with a 10% budget. 38

4.11 Prequential accuracy on NIMS Dataset using the Hoeffding Tree
Algorithm with a 100% budget. 39

4.12 Prequential detection rate on NIMS Dataset using the Hoeffding
Tree Algorithm with a 100% budget. 39

4.13 Prequential accuracy on NIMS Dataset using the Naive Bayes
Algorithm with a 10% budget. 40

4.14 Prequential detection rate on NIMS Dataset using the Naive
Bayes Algorithm with a 10% budget. 40

iv

4.15 Prequential accuracy on NIMS Dataset using the Naive Bayes
Algorithm with a 100% budget. 41

4.16 Prequential detection rate on NIMS Dataset using the Naive
Bayes Algorithm with a 100% budget. 41

4.17 Prequential accuracy on ISOT Dataset using the Hoeffding Tree
Algorithm with a 10% budget. 42

4.18 Prequential detection rate on ISOT Dataset using the Hoeffding
Tree Algorithm with a 10% budget. 42

4.19 Prequential accuracy and prequential detection rate (right) on
ISOT Dataset using the Hoeffding Tree Algorithm with a 100%
budget. 43

4.20 Prequential detection rate on ISOT Dataset using the Hoeffding
Tree Algorithm with a 100% budget. 44

4.21 Prequential accuracy on ISOT Dataset using the Naive Bayes
Algorithm with a 10% budget. 44

4.22 Prequential detection rate on ISOT Dataset using the Naive
Bayes Algorithm with a 10% budget. 45

4.23 Prequential accuracy on ISOT Dataset using the Naive Bayes
Algorithm with a 100% budget. 45

4.24 Prequential detection rate on ISOT Dataset using the Naive
Bayes Algorithm with a 100% budget. 46

4.25 Prequential accuracy on Alexa vs. Zeus Dataset using the Ho-
effding Tree Algorithm with a 10% budget. 46

4.26 Prequential detection rate on Alexa vs. Zeus Dataset using the
Hoeffding Tree Algorithm with a 10% budget. 47

4.27 Prequential accuracy on Alexa vs. Zeus Dataset using the Ho-
effding Tree Algorithm with a 100% budget. 47

4.28 Prequential detection rate on Alexa vs. Zeus Dataset using the
Hoeffding Tree Algorithm with a 100% budget. 48

4.29 Prequential accuracy on Alexa vs. Zeus Dataset using the Naive
Bayes Algorithm with a 10% budget. 48

4.30 Prequential detection rate on Alexa vs. Zeus Dataset using the
Naive Bayes Algorithm with a 10% budget. 49

v

4.31 Prequential accuracy on Alexa vs. Zeus Dataset using the Naive
Bayes Algorithm with a 100% budget. 49

4.32 Prequential detection rate on Alexa vs. Zeus Dataset using the
Naive Bayes Algorithm with a 100% budget. 50

4.33 Prequential accuracy on CTU-2 Dataset: Neris using the Ho-
effding Tree algorithm with a 10% budget. 52

4.34 Prequential detection rate on CTU-2 Dataset: Neris using the
Hoeffding Tree algorithm with a 10% budget. 53

4.35 Prequential accuracy on CTU-2 Dataset: Neris using the Ho-
effding Tree algorithm with a 100% budget. 53

4.36 Prequential detection rate on CTU-2 Dataset: Neris using the
Hoeffding Tree algorithm with a 100% budget. 54

4.37 Prequential accuracy on CTU-2 Dataset: Neris using the Naive
Bayes algorithm with a 10% budget. 54

4.38 Prequential detection rate on CTU-2 Dataset: Neris using the
Naive Bayes algorithm with a 10% budget. 55

4.39 Prequential accuracy on CTU-2 Dataset: Neris using the Naive
Bayes algorithm with a 100% budget. 55

4.40 Prequential detection rate on CTU-2 Dataset: Neris using the
Naive Bayes algorithm with a 100% budget. 56

4.41 Prequential accuracy on CTU-11 Dataset: Rbot using the Ho-
effding Tree algorithm with a 10% budget. 56

4.42 Prequential detection rate on CTU-11 Dataset: Rbot using the
Hoeffding Tree algorithm with a 10% budget. 57

4.43 Prequential accuracy on CTU-11 Dataset: Rbot using the Ho-
effding Tree algorithm with a 100% budget. 57

4.44 Prequential detection rate on CTU-11 Dataset: Rbot using the
Hoeffding Tree algorithm with a 100% budget. 58

4.45 Prequential accuracy on CTU-11 Dataset: Rbot using the Naive
Bayes algorithm with a 10% budget. 58

4.46 Prequential detection rate on CTU-11 Dataset: Rbot using the
Naive Bayes algorithm with a 10% budget. 59

4.47 Prequential accuracy on CTU-11 Dataset: Rbot using the Naive
Bayes algorithm with a 100% budget. 59

vi

4.48 Prequential detection rate on CTU-11 Dataset: Rbot using the
Naive Bayes algorithm with a 100% budget. 60

4.49 Prequential accuracy vs. prequential detection rate on the Zeus
and Alexa dataset. 62

4.50 Prequential accuracy vs. prequential detection rate on the KDD
1999 Cup dataset. 63

4.51 Prequential accuracy vs. prequential detection rate on the
NIMS1 dataset. 63

4.52 Prequential accuracy vs. prequential detection rate on the
ISOT dataset. 64

4.53 Prequential accuracy vs. prequential detection rate on the
CTU-2 Dataset:Neris. 64

4.54 Prequential accuracy vs. prequential detection rate on the
CTU-11 Dataset:Rbot. 65

vii

Abstract

The aim of this thesis is to evaluate the performance of different budgeting strate-

gies, as well as an Adaptive Neural Network, in analyzing streaming network traffic,

specifically, for the purpose of detecting malicious/botnet activity. In previous works,

researchers have generally measured the classification performance by the overall ac-

curacy of their strategy. However, this method of analyzing performance is not nec-

essarily the most effective. Thus, in addition to accuracy, performance is measured

by analyzing detection rate, prequential accuracy, and prequential detection rate.

Measuring the detection rate of a strategy provides a performance metric that is not

biased in terms of class distribution. The prequential accuracy and prequential de-

tection rates offer additional performance analysis in that these performance metrics

present the changes of accuracy and detection rate throughout the network stream.

In a real life scenario network traffic is unending and constantly being streamed,

resulting in large datasets that require a large number of resources to train a classi-

fier on. Thus, budgeting strategies that select a small portion of data instances on

which to train on have been developed. In this thesis, five budgeting strategies are

evaluated; Random, Fixed Uncertainty, Variable Uncertainty, Random Variable Un-

certainty, and Select Sampling. Performance of the budgeting strategies is measured

at budgets of 10% and 100%. The aforementioned strategies are tested in conjunc-

tion with two different classifiers; Naive Bayes and Hoeffding Tree. In addition to

the budgeting strategies, an adaptive Neural Network Strategy is also evaluated. The

proposed strategies are applied to six different streaming network traffic datasets that

include different malicious or botnet activity.

The results demonstrate that all of the budgeting strategies (with the exception

of the fixed uncertainty strategy) are suitable candidates for classification of stream-

ing network traffic where some of the state-of-the-art classifiers achieved accuracies

in the range of 90% or higher. Furthermore, limiting labeling budgets to 10% does

not affect performance negatively, thus its use is recommended as to save computing

resources.

viii

List of Abbreviations Used

ACC Accuracy.

ACK Acknowledgement Flag.

ANN Artificial Neural Network.

API Application Programming Interface.

C&C Command and Control.

CTU Czech Technical University.

DDoS Distributed Denial of Service.

DR Detection Rate.

FIN End Flag.

HT Hoeffding Tree.

HTTP HyperText Transfer Protocol.

IP Internet Protocol.

IRC Internet Relay Chat.

ISOT Information Security and Object Technology.

MOA Massive Online Analysis.

NB Naive Bayes.

NIMS Network Management Information and Security.

P2P Peer-to-Peer.

ix

PSH Push.

QBC Query-by-Committee.

REJ Rejection.

ROC Receiver Operator Characteristic.

RST Reset.

SVDD Support Vector Domain Description.

SVM Support Vector Machine.

SYN Synchronize.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

URG Urgent Flag.

x

Acknowledgements

This research is supported by Raytheon SAS. The research is conducted as part of

the Dalhousie NIMS Lab at https://projects.cs.dal.ca/projectx/

xi

Chapter 1

Introduction

In recent years, malicious network activity, such as viruses, denial of service attacks,

man in the middle attacks, and botnets, has become a growing concern for busi-

nesses and the general public alike. Botnets, in particular, are a serious threat as

they provide a platform for malicious activities to be performed in high volumes in a

distributed fashion. Botnets are made up of a collection of infected hosts, called bots.

These bots are controlled by a botmaster using Command and Control (C&C) chan-

nels that allow for the botmaster to remain anonymous and have the bots perform

tasks automated by the botmaster [17]. Computers can be infected by a botnet by

a number of different means. These methods include but are not limited to: viruses,

software and web browser vulnerabilities, social engineering and Trojan horses.

A computer infected by a botnet can now be controlled by the botmaster in order

to perform a number of malicious activities. Botnets can be used to collect personal

information from infected machines, such as passwords and credit card information,

by way of keyloggers (i.e. malicious software that records the keystrokes performed

on a keyboard). The collected information is sent to the botmaster for the purpose

of financial gain, identity theft, or even blackmailing. Botnets can also be used as

computing resources for the botmaster. On the less threatening end of the spectrum,

botmasters may use these resources to sell unique views to web pages or videos, or

ad clicks which a consumer may purchase in order to garner ad revenue. These re-

sources can also be used to generate vast amounts of spam via email. These emails

can be used as phishing scams that attempt to gather personal information from the

recipient, or to harvest email addresses to later sell to groups such as marketing firms.

These emails can be used to spread malware and even the botnet itself to other ma-

chines.

On the more threatening end of the spectrum, the botmaster may use the host

resources to perform Distributed Denial of Service (DDoS) attacks. A DDoS attack

1

2

is performed with the intention to interrupt the services of a host or hosts on the

Internet. A botmaster may choose to attack a particular host in order to hinder

competition, political reasons (disagree with an organization’s views), blackmail an

organization, or even just for their own amusement. A botnet usually performs a

DDoS by issuing commands to its bots to attempt to overwhelm the target system

by forcing the system to utilize all its resources (processing power, memory, network

connections, bandwidth, etc.). Botnets are able to consume these resources by way of

a number of different methods: ping Floods, User Datagram Protocol (UDP) Floods,

Smurf Attacks, Transmission Control Protocol (TCP) Synchronize (SYN) Attacks,

Tear Drop Attacks, and Land Attacks.

Unfortunately, most hosts that are infected with a botnet are not aware. Detec-

tion of malicious network activity, such as botnets, as it occurs is important since it

can assist the network management teams in preventing further damage on their sys-

tems and networks, as well as the systems and networks of others. Therefore, it is of

interest to aim to classify network activity as it is being streamed. Many researchers

propose the use of different learning techniques in order to accurately analyze and

classify the network traffic in streaming environments [32][31] in order to detect bot-

net activity [27][30][26].

Even when using a machine learning algorithm, classification within a streaming

environment poses many challenges. One of the main challenges is that one cannot

have access to all available data in a streaming scenario at once, as in the case of

non-streaming environments such as offline streaming scenarios. Thus, classification

of streaming data can be quite costly in terms of resources as datasets can grow to be

quite large. Furthermore, because a complete set of data cannot be viewed at once

it is difficult to determine if given data instance attributes (features) are represen-

tative of others in the same class. Additionally, network traffic patterns can slowly

change over time or even immediately. Indeed, such problems are also exhibited in

other streamed datasets. To this end, active learning has often been implemented to

alleviate these issues [34][33]. Active learning is the task of selecting a data instance

on which to query the true classification label and retrain the learning algorithm.

Selection of labels is not a simple task as one must consider how many and which

3

labels will represent the entire dataset and allow for the most accurate prediction of

future data instances.

Many researchers in the literature [30][34][33][21] determine the success of clas-

sification by measuring the overall accuracy (the number of successful classifications

over the total amount of classifications made) of the chosen classification algorithm

and active learning strategy. This is not necessarily the best solution in determining

classification success as it does not account for class distribution. If a dataset has an

unbalanced distribution of classes then the resulting prediction accuracy may not be

representative of the actual performance of the given classification strategy. Thus, a

performance metric that factors class distribution into account is necessary.

In this research, I aim to benchmark the performance of previously existing

active learning and query budgeting strategies as well as an Adaptive Artificial Neural

Network approach when performed on network traffic flows, specifically in order to

detect malicious network activity, such as botnets. In evaluating the performance of

these strategies, I include two performance measures; (i) prequential accuracy and

(ii) prequential detection rate. My new contribution is analyzing and classifying

malicious behaviour among network streaming traffic using various budgeting and

active learning strategies while using prequential accuracy and prequential detection

rate as a performance metric.

The rest of the thesis is organized as the following: Chapter 2 discusses the

related work in this field. The methodology employed in this research is detailed in

Chapter 3. Evaluations are presented and the results are given in Chapter 4. Finally,

the conclusions are drawn and the future research directions are discussed in Chapter

5.

Chapter 2

Literature Review

There are many works on the detection of malicious activity within network traffic,

classification of streaming data, and active learning, as separate topics. However, to

the best of my knowledge there are no works that combine all of these to evaluate

and analyze their performances on the detection of malicious behaviours on network

traffic. It should be noted that, some techniques have been proposed that utilize a

subset of these ideas. The works most relevant to the study are described in detail

below. In this case, the related works are discussed under three categories; active

learning, streaming data classification, and detection of malicious activity among

network traffic.

2.1 Active Learning

S. Liu et al. [24] propose a method of Peer-to-Peer (P2P) traffic identification that

utilizes active learning in conjunction with a Support Vector Machine (SVM). In this

work, the authors use a partially labelled dataset for their training set. Instances are

first filtered using a technique called Support Vector Domain Description (SVDD)

that filters the dataset to include the instances that are most useful to learning.

Once the dataset has been filtered the active learning portion of the authors method-

ology is implemented. The active learning strategy proposed in this work chooses

instances on which to train on by maintaining two principles: (i) the entirety of the

data selected to train on represents a balanced dataset, and (ii) query the label with

the highest certainty. The instance that had been queried for its true label is then

used to train the SVM. Thus the entire proposed process for classification of peer-

to-peer traffic is as follows. First the SVDD is invoked. All labelled instances are

then used to train the SVM. Next the active learning strategy is used with a portion

of the unlabelled data and produces the instance on which to train the SVM. The

active learning strategy is then invoked on the other subsets of the dataset until all

4

5

data has been processed. The authors use a benchmarking dataset that includes ten

different types of network traffic. Performance was measured by accuracy. The re-

searchers concluded that overall their strategy achieved higher performance accuracy

than when using a similar strategy without balancing or a similar strategy without

using SVDD for filtering instances.

R. Wang et al. [32] focus on a strategy utilizing computational intelligence in

the form of fuzzy rough sets combined with a SVM. This strategy is performed on

both binary and multi-class benchmarking datasets where the performance is evalu-

ated by measuring accuracy, time costs for labeling new examples from the data, and

paired Wilcoxon rank-sum tests. The results of this strategy are compared to other

existing strategies such as Random Sampling, SVM Active, and Query-by-Committee

(QBC). The researchers conclude that this new strategy is generally successful when

compared to other tested strategies in terms of accuracy and the paired Wilcoxin

rank-sum tests, however, this comes at a higher time cost as labeling instances takes

longer when using this strategy.

Zliobaite et al. [34], also endeavour to produce new active learning strategies.

However, the active learning strategies they designed are created with the intention

of being used on drifting streaming data. These methods focus on retraining a learn-

ing algorithm when confidence of successful prediction of an entity falls below a set

threshold and randomly selecting entities. The selection of entities to train on was

limited by a set budget for querying new labels on which to train the model. The

strategies that were developed were tested on a series of publicly available big data

sets, which were categorized as either being a prediction or textual dataset. Predic-

tion datasets required a prediction from the classifier and textual datasets required

a recommendation from the classifier. Performance of the active learning strategies

was evaluated by applying these strategies to the Naive Bayes algorithm and the

Hoeffding Tree algorithm. Accuracy of these techniques using different datasets and

labeling budgets (10 and 100 percent) was measured. The researchers concluded that

the strategies are effective for reducing computation costs while maintaining perfor-

mance.

Like the previous researchers, Zhu et al. [33] proposed another active learning

6

strategy for the implementation of streamed datasets. The strategy they designed

features a weighted classifier ensemble framework with an emphasis on reducing vari-

ance. The researchers reported that by decreasing the classifier ensemble variance, the

error rate of the classifier ensemble would decrease as well. Thus, a minimum-variance

principle was introduced whereas labels were queried for instances that produced a

high ensemble variance. The combination of a weighted classifier ensemble and a

minimum variance principle were employed over three publicly available prediction

datasets. Performance of this strategy was evaluated by determining the accuracy

and runtime when using this strategy on various data chunks and data chunk sizes.

These results were then compared to the results of simpler solutions. The researchers

concluded that their strategy was effective at dealing with multi-class problems in a

streaming environment.

2.2 Streaming Data Classification

Dalal et al. [15] demonstrated various data mining prediction techniques used to

predict user-perceived streamed media quality. The researchers proposed the use of a

nearest neighbour algorithm, in which unlabelled instances in a stream are given the

label (i.e. the normalized user-perceived quality rating) of the instance in the training

set of the instance within the closest distance. The researchers tested this algorithm

using two different types of distance metrics; summary statistics and dynamic time

warping. The algorithm was employed over three different data streams; a commer-

cial, a movie trailer, and a news segment. The authors measured performance using

hit rates, that is, the percentage of predictions within 0.8 standard deviations of the

normalized user quality rating for the given stream. The researchers concluded that

the chosen techniques performed effectively. They expanded upon their work further

[16] by performing similar tests in real time using TCP-based streams rather than

offline using UDP-based streams. They conclude that the performance accuracy was

hopeful (falling between 75 to 87 percent accuracy) but could be improved further.

Moreover, Cunha et al. [14] evaluated the performance of Naive Bayes and C4.5

Decision Trees algorithms in classifying different failure states when streaming video

data. Specifically, the researchers wanted to be able to predict whether a server fail-

ure was a performance anomaly or was caused by overloading produced by clients.

7

Performance was measured by; True Positive Rate, False Positive Rate, Precision,

Recall, F-measure, Receiver Operator Characteristic (ROC) Area, and Root Mean

Squared Error. The researchers concluded that both algorithms were adequate but

C4.5 performed slightly better than Naive Bayes.

F. Stahl et al. [29] take an evolving rule based approach, named eRules, in

order to make classifications on a streaming dataset in a data mining scenario. In-

terestingly, with this approach the authors do not desire to make classifications on

instances that a set of rules does not currently exist for. This means that at the

end of the classification process, not all instances will be classified. The researchers

argue this is beneficial in some scenarios where an incorrect classification is more

than just a nuisance. The authors name medical applications as such a scenario. The

eRules technique involves the use of if x then y type rule set where the class of an

instance is determined by what rule the instance falls into based on its attributes.

The eRules approach first takes a subset of incoming data instances and trains the

classifier to create an initial set of rules. Once the first set of rules has been generated

instances are streamed through the eRules algorithm one by one and are processed

as follows. If an instance is not covered by any rules then it is added to a buffer

of unclassified instances and remains unclassified. Once the buffer is full a new set

of rules is generated based on these unclassified instances and the buffer is cleared.

Instances that will fall under existing rules will be classified, with rules being updated

to reflect whether or not the classification made was correct. Finally, if the number of

instances that are unclassified becomes too high then the classifier will be retrained

on a subset of the incoming data. The proposed eRules technique was tested on three

software generated data streams. Performance of the eRules approach was measured

by the total accuracy, the percentage of instances that were not classified, and the

percentage of correct classified instances. The researchers conclude that the classifi-

cation performance performed well in most cases but could very well be improved by

changing parameter settings. It should be noted that in most cases the number of

classifications that were not made are fairly high (over 50% in most cases), thus this

is not a useful technique if one aims to classify most instances.

Vahdat et al. [31] designed and developed a framework for employing genetic

programming in order to perform classification on streamed data while maintaining

8

a labeling budget. They employed artificially generated, as well as publicly avail-

able, datasets. They measured the performance not only by the aforementioned

performance metrics but also by prequential accuracy. They conclude that genetic

programming with labeling budgets is an effective method for making classifications

on streaming data.

2.3 Detection of Malicious Behaviour Among Network Traffic

The use of flow-based network traffic in detecting malicious activity among network

traffic appears to be quite popular within existing literature. A network traffic flow

is a sequence of network traffic packets with 5-tuple information over a specific pe-

riod defined by the Internet Engineering Task Force [13]. This 5-tuple information

includes; the source/destination IP addresses, source/destination port numbers and

the protocol. In Stevanovic et al’s [30] study, network traffic was converted into net-

work flows in which to be classified. To evaluate the validity of using such a technique

to detect malicious activity, a number of classifiers were tested; Naive Bayes, Bayesian

Network, Logistic Regression, Artificial Neural Networks, Support Vector Machines

with a linear kernel, C4.5 decision tree, Random Tree, and Random Forest. The pro-

posed technique was implemented on a combination of datasets featuring traffic from

Storm and Waledec botnets and normal traffic. In order to measure performance,

they employed precision, recall, F-measure, and a correlation coefficient. Addition-

ally, they measured the training and classification time when using each classifier.

The researchers concluded that C4.5, Random Tree and Random Forest were the

most successful algorithms for their task.

Similarly, Nogueira et al. [26] proposed the use of a flow based system in order

to detect botnet activity among network traffic. They employed a Neural Network

model in conjunction with a flow-based system. However, the employed system also

features a user interface to visualize illicit activity that was detected for further action

by an administrator. In identifying botnet activity a feed-forward propagation neural

network with three layers was implemented. Performance was evaluated by testing the

framework on traffic generated by known safe applications such as Skype. Malicious

activity was artificially generated. The authors concluded that the detection of the

botnet activity using their methodology was quite successful.

9

Hsiao et al. [21] also proposed the use of flow-based network traffic for the pur-

pose of detecting malicious behaviour amongst said traffic. Flows were generated from

network flows collected by the researchers. What differentiates this study from others

is that the authors varied the number of flow attributes and which flow attributes

were presented between experiments. Thus, they created four sets of attributes to be

tested; NetFlow variables, Temporal Variables, Spatial Variables, and a combination

of Temporal and Spatial variables. In these experiments, the classification algorithms

chosen to employ on the flows were as follows; Naive Bayes, Decision Tree and SVM

algorithms. The results showed that using a combination of temporal and spatial

attributes provided the best prediction accuracy.

On the other hand, Saad et al. [27] implement a slightly different approach to de-

tecting malicious botnet behavior than the aforementioned studies that share the same

goal. They used not only flow based attributes but also used host-based attributes

(i.e. attributes that are exhibited in communications between hosts). They employed

the following classification algorithms: Nearest Neighbor, Linear SVM, Artificial Neu-

ral Network, Gaussian Based Classifier, and Naive Bayes. With these methods, the

researchers aimed to meet three botnet detection requirements; adaptability, novelty

detection, and early detection. The authors used a combination of three datasets

for their experiments. The first two datasets were generated by a botnet infected

machine where all packets incoming and outgoing were captured. Each machine was

infected with a different botnet; Storm or Walodec. The third dataset was made up of

normal traffic. These datasets were then combined into one larger dataset in order to

simulate a real world scenario. To determine the performance of the selected method-

ology the researchers adopted four performance metrics: training time, classification

time, accuracy, and classification error. The researchers concluded that the selected

methodology did not sufficiently satisfy the three stated requirements for effectively

detecting botnets.

P. Narang et al. [25] argue that it is of more use to limit the amount of features

(attributes) used when making classifications on flow based network traffic. The re-

searchers contend that some of the attributes in a flow are redundant or irrelevant,

thus these attributes should be removed. The researchers state that by removing

these features that training time for the model will be reduced as well as reduce over

10

fitting. Three methods of selecting which features will be removed are proposed and

are listed as follows: Correlation-based feature selection, Consistency based subset

evaluation and Principal component analysis. The effectiveness of the chosen meth-

ods was determined by utilizing these methods with three different machine learning

techniques: Decision tree, Naive Bayes, and Bayesian Network Classifier. The strate-

gies were tested on a dataset of network traffic containing botnet activity that was

generated by the researchers. Performance of the chosen methods was measured by

classification accuracy, and the rate at which botnet behavior is correctly detected.

The number of features extracted by each method was also noted. The researchers

conclude that using smaller amounts of features gave similar results when compared

to the results when using all features of the dataset. However, the researchers note

that the training models using the smaller feature sets were much faster to build, thus

feature selection is beneficial.

In my previous work [19], we proposed a new framework to detect HyperText

Transfer Protocol (HTTP) based botnet activity based on botnet behavior analysis.

To achieve this, we employed machine learning algorithms on flow-based network

traffic utilizing NetFlow (via Softflowd). The proposed botnet analysis system was

implemented by employing two different learning algorithms, namely C4.5 and Naive

Bayes. For this work we had used False Positive and True Positive rates, complexity

(i.e. computation time, the number of attributes that are used, and tree size when us-

ing the C4.5 algorithm) as my performance metrics. My results showed that the C4.5

learning algorithm based classifier obtained very promising performance on detecting

HTTP based botnet activity. However, that work did not employ any streaming or

budgeting strategies.

On the other hand, in this thesis, I aim to apply and benchmark existing active

learning strategies on network streamed traffic in order to make classification predic-

tions for malicious network behavior. This approach differs from the aforementioned

related work as the previous work has not combined active learning strategies with

the streaming data classification on network traffic. In this thesis, I employ such an

approach, specifically to detect botnet activities under a streaming scenario. I also

aim to compare the performance of these strategies with an adaptive Artificial Neural

Network Approach and determine which is more effective in performing the desired

11

task.

Last but not least, I also introduce the use of performance metrics; prequential

accuracy and prequential detection rate. Prequential detection rate has not been

used to measure performance under Massive Online Analysis scenarios. Prequential

detection rate is a useful metric when unbalanced distributions of classes are present

in a given dataset, because unlike accuracy, prequential detection rate can reflect the

difference of correctly classifying data instances of the smaller classes in the data.

To give an example, if a data set has 99% of class-normal and 1% class-malicious,

by classifying everything as class-normal, a classifier can reach 100% accuracy! Even

though false positive rates may show the picture a bit clearer, in streaming environ-

ments this kind of metric can be ineffective and cannot measure the performance

correctly. This is important to consider as looking at accuracy alone can skew how

one perceives the performance of the algorithms on an unbalanced dataset. I also

analyze the prequential values for both accuracy and detection rate as this allows for

one to see how these values change over time.

Chapter 3

Methodology

In this research, the goal is to utilize the algorithms as discussed in [34], and determine

the success of these algorithms when classifying streamed network traffic data for

detecting malicious botnet behavior. In order to achieve this, I enacted three major

steps: data collection, implementation of learning algorithms in conjunction with

various active learning budgeting strategies, and performance analysis.

3.1 Datasets and Features Employed

In this research, six datasets are employed in the evaluations. These are:

1. KDD Cup 1999: The KDD Cup 1999 dataset is a simple to classify dataset

that contains malicious and normal network traffic flows, where each instance

to be classified is a connection record [6]. The malicious traffic is broken into

four types; denial of service, unauthorized remote access, unauthorized access to

root commands, and probing. For my purposes, I only aimed to detect whether

or not a connection is malicious, thus, I combined the four attack types into one

class. Even though, it is an old dataset, it is chosen to provide a baseline and

reference point for the other results. This dataset is suitable for this purpose as

it is one of the first datasets that was made publicly available for benchmarking

computational intelligence techniques for network security purposes.

2. NIMS1: The NIMS1 dataset can be retrieved from the Network Management

Information and Security (NIMS)[9]. The dataset is a collection of network

traffic flows. Unlike the other datasets, where I aim to detect malicious behavior

among network traffic, with this dataset, I aim to classify application type.

Thus, this dataset is chosen to provide a comparison of results when aiming to

classify different applications on streaming network traffic as opposed to making

classifications between normal and malicious network behaviours.

12

13

3. ISOT: The Information Security and Object Technology (ISOT) dataset is a

collection of publicly available malicious and normal datasets [5]. These traffic

datasets were generated by using a series of machines with different MAC ad-

dresses and IP addresses. The traffic generated was captured by the open source

packet capturing tool, Wireshark1, in order to combine the smaller datasets into

the larger ISOT dataset. Thus, I employed this dataset to predict whether or

not a connection was malicious.

4. Zeus vs. Alexa: This dataset is generated by the NIMS Lab to be used for

botnet detection purposes in 2014. To this end, I generated a traffic dataset that

exhibited an approximate balance of malicious and normal network traffic. In

order to generate this dataset, lists of valid malicious and non-malicious domain

names were obtained [19]. I obtained the list of non-malicious (normal) domain

names from Alexa, a website that ranks the top 500 websites on the Internet

according to page views [2]. Because the domains listed are some of the most

popular domains on the Internet, it is fair to assume that the traffic generated by

accessing these domains is representative of normal, everyday, network traffic.

For the malicious domains, I obtained a list of domain names that are known

to belong to the Zeus botnet [1][3]. To simulate web traffic to these domains, a

script was written to randomly connect to either a normal or malicious domain

using the wget command in Linux. These steps are detailed in Fig.1.

5. CTU-2 Dataset: This dataset is one of thirteen different datasets within

the CTU-13 dataset generated by Czech Technical University (CTU) in Czech

Republic in 2011 [18][10]. The dataset is referred to as Scenario 2 or CTU-

Malware-Capture-Botnet-43 in the literature. However, for ease of differentia-

tion between the other datasets used in this research, it will be referred to as

CTU-2 Dataset. The malicious traffic in this scenario was generated by a com-

puter infected with the Neris botnet. This dataset, in particular, is a collection

of flows that include normal, background, and malicious traffic. However for the

purposes of this thesis research, normal and background traffic were combined

into one class as the aim was to detect malicious traffic among the remaining

1Wireshark: https://www.wireshark.org/

14

traffic.

6. CTU-11 Dataset: This dataset is another one of thirteen different datasets

within the CTU-13 dataset generated by CTU in Czech Republic in 2011

[18][10]. The dataset is referred to as Scenario 11 or CTU-Malware-Capture-

Botnet-52 in the literature. However, for ease of differentiation between the

other datasets used in this research, it will be referred to as CTU-11 Dataset.

The malicious traffic in this scenario was generated by a number of computers

infected with the Rbot botnet. Rbot is an older botnet that uses Internet Relay

Chat (IRC) to perform DDoS or spam attacks [4]. What is most worrisome

about this botnet is that its code has been made easily available to the public

[11]. The flows in this dataset consisted of three classes but were combined into

two classes as is described for CTU-2 Dataset.

Unlike the other datasets, ISOT and Zeus vs. Alexa datasets had not been

preprocessed into flows when retrieved from their sources. Thus traffic from these

datasets was replayed on a test bed network to emulate a real life scenario of streaming

traffic. The streaming traffic is then converted to flows as the traffic runs and then,

the network flows are used as input for the streaming classifiers. Usually, in a real life

scenario, the router (such as a Cisco router with NetFlow) will do this on the flow.

To emulate such a scenario, the following open source tools were employed to convert

the packets into flows:

• Softflowd: Softflowd2 is an open source tool that accepts network packets and

exports them into NetFlow3 flows.

• Nfcapd: Nfcapd4 captures the exported flows and stores them for further pro-

cessing. The flow data that Nfcapd records are not in a human readable format,

thus, further processing is required.

• Nfdump: NfDump5 takes the recorded flow data and converts it into a human

readable format.

2http://www.mindrot.org/projects/softflowd/
3Netflow:http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
4Nfcapd: http://nfdump.sourceforge.net/
5NfDump: http://nfdump.sourceforge.net/

15

Table 3.1: Summary of the datasets

Dataset Instances Attributes Class Distribution

Total
Number

of
Classes

KDD Cup
1999

494021 41
Normal: 97278
Malicious: 396743

2

ISOT 2084216 15
Normal: 2020948
Malicious: 63268

2

NIMS 713851 22

Telnet: 1251
FTP: 4140
HTTP: 11904
DNS: 38016
Lime: 646271
Local Forwarding: 2557
Remote Forwarding: 2422
SCP: 2444
SFTP: 2412
X11: 2355
Shell:2491

11

Zeus vs.
Alexa

11468 15
Normal: 7877
Malicious: 3591

2

CTU-2 6351188 7
Normal: 6296755
Malcious: 54433

2

CTU-11 408835 7
Normal: 130943
Malcious: 277892

2

The streaming datasets were converted into flows by different sources where dif-

ferent types of attributes are chosen to represent a flow, thus the number of attributes

for each dataset varies. A summary of the datasets is described in Table 3.1 while

a more detailed description of the attributes and the classes used for each dataset is

listed in Tables 3.2, 3.3, 3.4 and 3.5. Table 3.6 shows the attributes that are common

among all of the datasets and what the attribute name is refereed to in each dataset.

It should be noted that for the purposes of this thesis source and destination port

numbers and Internet Protocol (IP) addresses have been removed from the datasets.

16

Figure 3.1: Script functionality for generating web traffic.

Table 3.2: Dataset Attributes and Descriptions for the KDD Cup 1999 Dataset [6] based
on descriptions given in [7] and [23]

Attribute Description
duration Duration of the connection.
protocol type Type of protocol used in the connection.
service Type of service used in the connection.
flag Indicates whether or not the connection has a normal or

error status.
src bytes Total number of bytes moving from source to destination

during the connection.
dst bytes Total number of bytes moving from destination to source

during the connection.
land Indicates whether or not the connection indicates a land

attack (i.e. the connection destination and source are
the same host or port).

wrong fragment Total amount of fragments marked as wrong.
urgent Total number of urgent packets in during a connection.
hot Total number of hot indicators found during a connec-

tion.
num failed logins Total number of failed logins made during a connection.
logged in Indicates whether or not the connection was considered

to be logged in or not.
num compromised Indicates the number of compromised conditions exhib-

ited within the connection.
root shell Indicates whether or not the root shell was being used

or not during the connection.
su attempted Indicates whether or not the su root command was ini-

tiated during a connection.
num root Total number of times root has been accessed during the

connection.
num file Total number of files created during the connection.

Continued on next page

17

Table 3.2 – continued from previous page
Attribute Description

num shells Total number of shell prompts exhibited during a con-
nection.

num access files Total number of operations that have been performed
on access controlled files during a connection.

num outbound cmds Number of outbound commands exhibited during an ftp
connection.

is host login Indicates whether or not the current login information
provided belongs to the host or not.

is guest login Indicates whether or not the current login information
provided belongs to the guest or not.

count Total number of connections made to the current host
within the last two seconds.

srv count Total number of connections made to the current service
within the last two seconds.

serror rate The percentage of connections that have exhibited syn-
chronization SYN errors.

srv serror rate The percentage of connections that have exhibited SYN
errors.

rerror rate The percentage of connections that have exhibited SYN
errors.

srv rerror rate The percentage of connections that have exhibited Re-
jection (REJ) errors.

same srv rate The percentage of connections that have exhibited REJ
errors.

diff srv rate The percentage of connections made to different services
than the current service being used is this connection.

srv diff host rate The percentage of connections made to different hosts
than the current service being used is this connection.

dst host count Total number of connections made that have the same
destination host as the current connection.

dst host srv count Total number of connections made that have the same
destination host and are using the same service as the
current connection.

dst host same srv rate Percentage of connections made that have the same des-
tination host and are using the same service as the cur-
rent connection.

dst host diff srv count Total number of different services running on the current
host.

dst host same src port rate The percentage of connections on the current host
thatare using the same source port.

Continued on next page

18

Table 3.2 – continued from previous page
Attribute Description

dst host srv diff host rate The percentage of connections that are using the same
source port on the current host.

dst host serror rate The percentage of connections that exhibit an S0 error
on the current host.

dst host srv serror rate The percentage of connections using the current service
with the current host.

dst host rerror rate The percentage of connections to the current host that
exhibit a Reset (RST) error.

dst host srv rerror rate The percentage of connections to the current host that
are using the current service that are exhibiting a RST
error.

Table 3.3: Dataset Attributes and Descriptions for the NIMS1 dataset [9].

Attribute Description

min fpktl The size of smallest packet moving forward in a flow.
mean fpktl The mean size of all packets moving forward in a flow.
max fptkl The size of the largest packet moving forward in the

flow.
std fpktl The standard deviation from the mean size of the pack-

ets moving forward in a flow.
min bpktl The size of the smallest packet moving backwards in the

flow.
mean bpktl The mean size of all packets moving backward in a flow.
max bpktl The size of the largest packet moving backward in the

flow.
std bpktl The standard deviation from the mean size of the pack-

ets moving backward in a flow.
min fiat The smallest amount of time elapsed between two pack-

ets moving forward in a flow.
mean fiat The mean amount of time elapsed between two packets

moving forward in a flow.
max fiat The largest amount of time elapsed between two packets

moving forward in a flow.
std fiat The standard deviation from the mean of time elapsed

between two packets moving forward in a flow.
min biat The smallest amount of time elapsed between two pack-

ets moving backward in a flow.

Continued on next page

19

Table 3.3 – continued from previous page
Attribute Description

mean biat The mean amount of time elapsed between two packets
moving backward in a flow.

max biat The largest amount of time elapsed between two packets
moving backward in a flow.

std biat The standard deviation from the mean of time elapsed
between two packets moving backward in a flow.

duration Overall duration of a flow.
proto The protocol used.
total fpackets The total number of packets moving forward in a flow.
total fvolume The total number of bytes moving forward in a flow.
total bpackets The total number of packets moving backwards in a flow.
total bvolume The total number of bytes moving backwards in a flow.

Table 3.4: Dataset Attributes and Descriptions for the ISOT and Zeus vs. Alexa datasets.

Attribute Description

Duration Duration of a flow.
Protocol Protocol used in a flow.
FlagsU Indicates whether or not the Urgent Flag (URG) has

been used in a flow.
FlagsA Indicates whether or not the Acknowledgement Flag

(ACK) has been used in a flow.
FlagsP Indicates whether or not the Push (PSH) flag (PSH) has

been used in a flow.
FlagsR Indicates whether or not the RST flag has been used in

a flow.
FlagsS Indicates whether or not the SYN flag has been used in

a flow.
FlagsF Indicates whether or not the End Flag (FIN) has been

used in a flow.
ToS Type of service used in a flow
Packets The number of packets in a flow.
Bytes The number of bytes in a flow.
PPS The average number of packets per second in a flow.
BPS The average number of bytes per second in a flow.
BPP The average number of bytes per packet in a flow.
Flows The number of flows used (should always be 1).

20

Table 3.5: Dataset Attributes and Descriptions for the CTU-13 datasets (CTU-2 dataset
and CTU-11 dataset).

Attribute Description

Duration The total duration of the flow.
Protocol The protocol used in the flow.
Flags Indicates the flags that are used during the flow.
ToS Indicates the type of service used during the flow.
Packets Indicates the number of packets moving in the flow.
Bytes Indicates the number of bytes in the flow.
Flows Indicates the number of flows used (should always be 1).

Table 3.6: Attributes that are common between datasets and their given attribute names.

Attribute
Name

KDD 1999
Cup

NIMS1 ISOT
Zeus vs.
Alexa

CTU-2
Dataset

CTU-11
Dataset

Duration duration duration Duration Duration Duration Duration
Protocol protocol type proto Protocol Protocol Protocol Protocol

3.2 Learning Algorithms and Budgeting Strategies

As mentioned previously, the goal of this study is to benchmark the performance

of existing active learning strategies on streamed network traffic flows. Thus, in

this section the data stream mining tools, the budgeting strategies, and performance

metrics I employed in my evaluations are presented.

3.2.1 Massive Online Analysis

Massive Online Analysis (MOA)6 is an open source tool for data stream mining [8].

It has proved very useful for this study as it is able to simulate a data stream with

a provided input. Furthermore, MOA provides users the ability to implement the

use of various machine learning algorithms and active learning strategies on the data

as it is being streamed. Additionally, MOA includes an Application Programming

Interface (API) suite that allows for users to create and modify the functionality of

existing code to suit their own evaluation needs.

6http://moa.cms.waikato.ac.nz/

21

3.2.2 Labels, Budgeting, and Active Learning

In a real world streaming network traffic environment, it is assumed that the amount

of incoming data is infinite and dynamic. This means that the data attributes and

how they relate to one another can change over time either slowly (concept drift)

or suddenly (concept shift). Thus it can be assumed that it is of more use to train

a classifier on incoming data than to use a preexisting model. In this scenario, a

classifier predicts the class of an instance based on the attributes of instances received

prior. Once the prediction has been made, the classifier will query the actual class

from a human provided label. The classifier will then train on the current instance

with the intention of increasing prediction accuracy for future oncoming instances.

In a network streaming environment where one aims to classify between normal or

malicious behavior this would mean that for every flow that arrived at the network

the classifier would have to be provided with its true classification label (i.e. whether

the flow was normal or malicious network traffic behavior). As mentioned previously,

attempting to perform classification tasks on such a large dataset can be quite costly

in terms of human effort (providing true classification labels) time efficiency and

hardware required to handle such large datasets. Thus, the concept of budgeting

is introduced. Budgeting involves limiting the amount of queries that can be made

to retrieve the true classification label of an instance in a data stream [34]. Active

learning incorporates this idea of budgeting but adds a learning aspect in which the

system makes an educated guess on which classifications labels are most useful to

query.

3.2.3 Budgeting and Active Learning Strategies

The budgeting strategies that were chosen for this benchmarking study were chosen

based on the study performed in [34]. I chose to implement the same strategies for a

multitude of reasons. Firstly, work in [34] focuses on developing strategies for streams

with drifts, which is relevant for my study as most network streamed data will exhibit

drifts. Secondly, using the same active learning strategies gives an opportunity to

compare how the strategies perform on streamed network traffic datasets as compared

to the general prediction and textual datasets used within Zliobaite et al.’s study [34].

Because I will be comparing the results with the results of [34], I will also be using

22

budgets of 10 percent and 100 percent. The active learning strategies that were used

in the study are described below.

• Random: This strategy randomly chooses data instances to query for the true

label [34]. No active learning occurs with this simple budgeting strategy, so it

provides an effective baseline for the evaluations.

• Fixed Uncertainty: Queries the true labels of the data instances with a

confidence below a given threshold [34].

• Variable Uncertainty: Queries the true labels of the data instances with the

lowest confidence within a variable time interval [34].

• Random Variable Uncertainty: This is a combination of the Random and

Fixed Uncertainty budgeting strategies [34].

• Select Sampling: Queries the true labels randomly with a changing probabil-

ity bias [12].

It is important to note that if a query for a true label is necessary then the training

model will be trained on the instance that was queried.

3.2.4 Learning Algorithms

For this study, I selected three different algorithms to accompany the chosen active

learning strategies for streaming classification. The algorithms chosen are: (i) Naive

Bayes, (ii) Hoeffding Tree, and (iii) Adaptive Artificial Neural Networks.

Naive Bayes

Naive Bayes is a simple probabilistic classifier that is known to perform quite well

considering its simplicity [28]. The classifier makes predictions by assuming that all

attributes of a given instance do not correlate to each other in the probability of a

label being of a given class. Predicting a class using this algorithm is performed by

determining which class (C1, C2, Ck where k is the total number of classes) has the

highest posterior probability based on the input x:

23

P (Ci | x) > P (Cj | x)for1 ≤ j ≤ k, j �= i (3.1)

where:

P (Ci | x) = P (Ci | x)P (Ci)

P (x)
(3.2)

where P (Ci|x) is the priori probability and P (Ci) is the likelihood.

Hoeffding Tree

The Hoeffding Tree algorithm, also known as a Very Fast Decision Tree, is a more

complicated algorithm that incorporates the use of decision trees. It was designed to

be used on large data streams where only a subset of the data that passes through is

used to find the best split for the tree. The number of samples included in this subset

to achieve the desired confidence threshold is determined by a dynamic threshold

called a Hoeffding Bound. Hoeglinger et al. [20] describe the Hoeffding Bound as a

principle that says with a probability of 1− δ, the true mean of a variable is at least

r̄ − ε where ε is the desired error and is described as follows:

ε =

√
R2ln(1/δ)

2n
(3.3)

where l is the current leaf in the decision tree, R is the range of random variables,

r. n is the number of independent observations made so far, and 1 − δ is the error

probability. The described Hoeffding Bound is then used within a decision tree to

determine on which attribute to split. This is done by determining the largest gain

between two attributes. If the largest calculated gain is greater than the ε then the

Hoeffding Tree algorithm states that this attribute is the best attribute to split on

with a probability of 1− δ [20].

Neural Networks

I also employ a well-known bio-inspired computational intelligence technique in my

evaluations in order to systematically benchmark different learning techniques. To

this end, I specifically use adaptive Artificial Neural Network (ANN). ANNs are

learning algorithms that are designed to imitate real-world biological neural networks.

24

In this work, I use the Pattern Recognition network with a Multi-layer Perceptron

within Matlab’s7 Neural Network Toolbox. In order for the network to work properly

with streaming data I implement the use of the adapt function within Matlab. The

adapt function, as I used it in these experiments, allowed for the neural network to

adapt as data was being streamed. In other words, instead of training the network

on a training set, the neural network would be trained on each data instance as the

data (traffic) arrives. This means that a labeling budget of 100 percent is used.

It should be noted that when using the chosen learning algorithms, only the

default parameters were utilized within MOA and Matlab.

7Matlab: http://www.mathworks.com/products/matlab/

Chapter 4

Evaluation and Results

For the purpose of evaluating the performance of the chosen machine learning algo-

rithms and budgeting strategies on network datasets, two performance metrics are

employed: prequential accuracy and prequential detection rate.

Accuracy of a classifier is described as the total number of correct classifications

over all the classification predictions made (n), that is:

Accuracy =
tp

tp+ fn
(4.1)

where tp indicates the number of true positives, and fn indicates false negatives.

Similarly, prequential accuracy is the total number of correct classifications over

the total number of classifications made at a given point in time, that is;

preqACCt =
(t− 1)preqACCt−1 + Ct

t
(4.2)

where t indicates a given time point, t− 1 indicates the previous time point, and

C indicates whether or not the classification at the given time point was successful

(C = 1 if the classification was correct, or C = 0 if the classification was incorrect).

Although accuracy is used to measure the performance in some works [32][27][34]

[33][21][15][16], its use could be problematic. With the use of unbalanced datasets,

where the number of instances belonging to each class is significantly different, using

accuracy as a measure of classification performance can be misleading. For example,

if a classifier is presented with a dataset that consists of 98% normal activity and

2% malicious activity and the classification model predicts that all activity is normal

then achieve 98% prediction accuracy is achieved. However, this result does not

indicate successful classification, as no malicious activity was detected. Therefore, I

want to use a performance metric that accounts for class imbalance in addition to

false positive rates. Thus, the use of prequential detection rate is introduced as a

25

26

performance metric for these experiments.

In this research, detection rate is calculated using Eq. 4.3 and Eq. 4.4:

DR =
1

Q

Q∑
q=1

DRq (4.3)

where:

DRq =
tpq

tpq + fnq

(4.4)

where Q is the number of classes, q denotes a particular class, tp indicates true

positives, and fn indicates false negatives. Similarly, to find the detection rate at any

given time, Prequential detection rate is calculated below, where t denotes the given

point in time.

preqDRt =
(t− 1)preqDRt−1 +DRt

t
(4.5)

where:

DR(t) =
1

Q

Q∑
q=1

DRq(t) (4.6)

where:

DRq(t) =
tpq(t)

tpq(t) + fnq(t)
(4.7)

4.1 Results of Using Learning Algorithms Together with Budgeting

Strategies

When first employing the described methodology, default parameters were employed

on the budgeting strategies within MOA. However, this resulted in the Fixed Un-

certainty strategy achieving a near 0% performance in terms of both accuracy and

detection rate. With the Fixed Uncertainty strategy, a query for the true label of

an instance is only made when the confidence falls below a given threshold. If the

confidence never falls below the threshold then active learning stops and the classifier

27

is not retrained. Due to this aforementioned problem with the Fixed Uncertainty

threshold some parameter tuning was necessary. Thus the confidence threshold was

raised from the default 90% to 95%.

The computation cost of the Naive Bayes and Hoeffding Tree algorithms was

quite small in terms of processing with the Naive Bayes algorithm taking only seconds

to complete and the Hoeffding Tree algorithm taking approximately a minute to

process the largest dataset.

Table 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 show the overall results for each labeling

strategy when using different budgets with different classification algorithms (Naive

Bayes and Hoeffding Tree) over the four chosen datasets employed in this research.

Classifications predictions made on the KDD 1999 Cup dataset (Table 6) generally

appear to perform the same with a high level of performance (approximately 99%)

regardless of the budget or the learning algorithm chosen. However, an exception is

observed with the Hoeffding Tree Algorithm using the Fixed Uncertainty Strategy

where fewer correct classifications are made (approximate accuracy of 80%). Further-

more, the detection rate makes a dramatic drop from the other detection rates and

accuracies presented here. This is believed to be due to the differences between the

malicious and non-malicious behaviours being easily separable as discussed in [22].

Table 4.1: Overall prediction ACC and DR and of different budgeting strategies using
Kdd 1999 Cup dataset. The algorithms NB and HT are represented.

Perfor-
mance
Metric

Random
Fixed

Uncert-
ainty

Variable
Uncertainty

Random
Var-
iable

Uncert-
ainty

Select
Sampling

NB
100%

ACC
DR

99.87
99.70

94.21
92.64

99.73
99.62

99.84
99.79

99.81
99.75

NB
10%

ACC
DR

99.90
99.14

97.05
97.12

99.54
99.37

99.47
99.29

99.47
99.38

HT
100%

ACC
DR

99.90
99.87

80.46
50.38

98.37
96.06

99.77
99.59

99.86
99.81

HT
10%

ACC
DR

99.46
99.15

81.88
53.99

99.36
98.84

99.56
99.38

99.54
99.38

On the NIMS1 dataset (Table 4.2), all strategies that use Naive Bayes as the

classification algorithm perform similarly well (approximately 80-90%) in terms of

28

accuracy. In terms of detection rate, an even higher overall accuracy (approximately

92-95%) is observed among strategies implemented with Naive Bayes. The exception

of the Naive Bayes algorithms detection rate success in this scenario can be observed

when using the Fixed Uncertainty labeling strategy where a detection rate of only

55% is achieved.

A significant bump in performance in accuracy (approximate overall accuracy

of 95%) is observed when using the Hoeffding Tree algorithm on the NIMS1 dataset

as compared to the use of the Naive Bayes algorithm. The exception to this is

when using the Fixed Uncertainty strategy, where there is a large drop in accuracy

performance. Interestingly, with the increase of prediction accuracy a decrease in

detection rate performance is observed when using the Hoeffding Tree algorithm. The

decrease in detection rate is fairly significant (from approximately 92-95% when using

the Naive Bayes algorithm to approximately 70-88% when using the Hoeffding Tree

algorithm) but is even more noticeable when using the Fixed Uncertainty strategy

where detection rates as low as 8.96% are observed. However, it should be noted that

in this scenario an even lower accuracy performance is achieved with only 0.33% of

classifications made being correct.

Table 4.2: Overall prediction ACC and DR and of different budgeting strategies using
NIMS1 dataset. NB indicates Naive Bayes and HT indicates Hoeffding Tree.

Perfor-
mance
Metric

Random
Fixed

Uncert-
ainty

Variable
Uncertainty

Random
Var-
iable

Uncert-
ainty

Select
Sampling

NB
100%

ACC
DR

88.73
96.42

87.20
55.00

90.41
96.41

90.72
96.20

90.47
95.63

NB
10%

ACC
DR

82.16
92.24

89.73
49.17

89.17
92.79

91.11
91.70

89.31
92.85

HT
100%

ACC
DR

96.38
88.05

0.33
9.08

95.33
79.74

95.30
80.70

95.54
81.96

HT 10%
ACC
DR

93.69
71.00

0.33
8.96

94.25
74.87

94.56
75.24

94.50
75.92

On the ISOT dataset (Table 4.3), Random, Fixed Uncertainty, Random Variable

Uncertainty and Select Sampling perform roughly the same among all budgets and

29

classification algorithms (excluding the fixed uncertainty strategy used in conjunc-

tion with the Hoeffding Tree algorithm). However, there are some interesting results

when using the Variable Uncertainty strategy on this dataset. Although very poor

performance (results < 60%) are observed when using budgets of 100% with vari-

able uncertainty, when the budget is changed to 10%, an increase in performance is

achieved, bringing the results on par with the other strategies. This is important to

note, as it shows that even though training is performed on less information, training

with less information can be noticeably more effective in some cases.

Table 4.3: Overall prediction accuracy and detection rate of different budgeting strategies
using the ISOT dataset. NB indicates Naive Bayes and HT indicates Hoeffding Tree.

Perfor-
mance
Metric

Random
Fixed

Uncert-
ainty

Variable
Uncertainty

Random
Var-
iable

Uncert-
ainty

Select
Sampling

NB
100%

ACC
DR

99.99
99.94

90.27
94.96

19.48
58.45

99.99
99.96

99.99
99.93

NB
10%

ACC
DR

99.98
99.84

92.71
96.18

89.71
99.77

99.99
99.88

99.98
99.88

HT
100%

ACC
DR

99.99
99.99

3.03
49.98

12.94
55.10

99.99
99.99

99.99
99.99

HT
10%

ACC
DR

99.99
99.94

3.03
49.99

99.72
99.79

99.99
99.96

99.99
99.96

Results for the experiments performed on the Alexa vs. Zeus dataset are available

in Table 4.4. Again, a similar performance is observed among all strategies, budgets,

and classification algorithms except for when using the Fixed Uncertainty Strategy

with the Hoeffding Tree machine learning algorithm where performance is significantly

lower.

On the CTU-2 Dataset: Neris a variety of results are observed over all of the

implemented strategies, budgets, and machine learning algorithms. When using the

Naive Bayes algorithm the results when using the Random, Random Variable Un-

certainty, and Select Sampling are fairly similar (approximately 77% accuracy and

approximately 85% detection rate) when using a budget of 100%. However, when

using a budget of 10% a bump in accuracy performance (approximately 86%) occurs

when using the Random labeling strategy.

30

Table 4.4: Overall prediction accuracy and detection rate of different budgeting strategies
using Alexa vs. Zeus dataset. NB indicates Naive Bayes and HT indicates Hoeffding Tree.

Perfor-
mance
Metric

Random
Fixed

Uncert-
ainty

Variable
Uncertainty

Random
Var-
iable

Uncert-
ainty

Select
Sampling

NB
100%

ACC
DR

98.44
99.96

97.62
96.21

97.52
97.18

98.16
97.73

97.50
97.14

NB
10%

ACC
DR

95.80
95.23

97.50
96.01

96.15
95.60

95.40
95.61

93.85
94.47

HT
100%

ACC
DR

98.32
97.94

31.29
49.97

93.69
94.38

97.96
97.46

97.95
97.66

HT
10%

ACC
DR

96.47
95.26

31.21
49.84

94.84
94.89

95.22
95.30

94.34
94.51

On the other hand, a drop in detection rate performance occurs among the

Random and Select Sampling Strategies. When using the Fixed Uncertainty labeling

and Variable Uncertainty strategies with the Naive Bayes algorithm, detection rate is

fairly low (<50%). In terms of accuracy, interestingly it is observed that performance

accuracy more than doubles when using a budget of 10% rather than a budget of

100%. When implementing the Hoeffding Tree algorithm accuracy performance is

very high in all cases (approximately 99%) except when using the Variable Uncertainty

strategy with a 100% labeling budget where accuracy is low (44%) compared to the

aforementioned accuracy performance results.

On the other hand, there is much more variation in detection rate performance.

The best detection rate performance (70%) when using the Hoeffding Tree algorithm

occurs when using a labeling budget on 100%, with a Random or Select Sampling

labeling strategy. However, the lowest detection rate (24%) when using the Hoeffding

Tree algorithm also is observed when using a labeling budget of 100%, although this

occurs when utilizing the Variable Uncertainty strategy.

Finally, when viewing the CTU-11 Dataset: Rbot dataset the most consistent

results are achieved compared to the previously discussed datasets. The Random,

Variable Uncertainty, Random Variable Uncertainty, Select Sampling strategies per-

form similarly in that accuracy and detection rate is approximately 99% among all

aforementioned strategies. However, as is the case with the previously discussed

31

Table 4.5: Overall prediction accuracy and detection rate of different budgeting strategies
using CTU-2 Dataset: Neris. NB indicates Naive Bayes and HT indicates Hoeffding Tree.

Perfor-
mance
Metric

Random
Fixed

Uncert-
ainty

Variable
Uncertainty

Random
Var-
iable

Uncert-
ainty

Select
Sampling

NB
100%

ACC
DR

78.69
85.30

96.48
48.69

44.49
24.21

77.18
84.48

76.16
85.08

NB
10%

ACC
DR

86.00
79.41

99.14
50.0

99.14
50.00

74.92
79.01

79.54
85.13

HT
100%

ACC
DR

99.38
72.84

99.83
49.85

44.46
24.21

99.25
64.93

99.38
70.31

HT
10%

ACC
DR

99.17
57.17

99.14
50.00

99.14
50.0

99.18
62.66

99.26
62.60

datasets, Fixed Uncertainty results vary from the other strategies. When using the

Fixed Uncertainty labeling strategy the same results (32% accuracy and 50% detec-

tion rate) are achieved for all machine learning algorithms and budgets used.

Table 4.6: Overall prediction accuracy of different budgeting strategies using CTU-11
Dataset: Rbot. NB indicates Naive Bayes and HT indicates Hoeffding Tree.

Perfor-
mance
Metric

Random
Fixed

Uncert-
ainty

Variable
Uncertainty

Random
Var-
iable

Uncert-
ainty

Select
Sampling

NB
100%

ACC
DR

99.47
99.43

32.3
50.0

99.47
99.41

99.49
99.48

99.46
99.41

NB
10%

ACC
DR

98.57
98.84

32.03
50.0

98.59
98.69

98.42
98.64

97.68
98.24

HT
100%

ACC
DR

99.97
99.63

32.03
50.0

99.76
99.68

99.95
99.93

99.95
99.95

HT
10%

ACC
DR

99.89
99.87

32.03
50.0

99.75
99.65

99.15
99.07

99.90
99.88

32

In the cases where the fixed uncertainty strategy produces low rates of correct

classifications, it can be assumed that this may be because the confidence of each

instance when streaming is never low enough to invoke training. Thus, no learning

is performed. This happens with the fixed uncertainty strategy in particular as the

confidence threshold is fixed and never changes to adjust to incoming data.

In Figures 4.1 through 4.49, the prequential accuracy and prequential detection

rates are presented for each instance (time point) when using machine learning algo-

rithms (Naive Bayes and Hoeffding Tree) in conjunction with the selected budgeting

strategies.

When the selected budgeting experiments were performed on the KDD 1999

(Figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8) Cup dataset, accuracy and detection

rate increase rapidly at the beginning of the stream and then maintains a consistent

performance throughout the streaming process. This statement is true for all bud-

geting strategies used here except for the fixed uncertainty strategy, which exhibits

a different pattern. In terms of prequential accuracy, a slower rise is exhibited when

using the fixed uncertainty strategy in all cases on this dataset, except when using the

Naives Bayes algorithm with a budget of 10%. In this case, the prequential accuracy

initially increases rapidly but drops soon after in a concave formation. The prequen-

tial detection rate when employing the fixed uncertainty strategy remains around 50%

in all cases except when using Naives Bayes with a budget of 10%. In this case, the

prequential detection rate initially increases rapidly, but then drops soon after in a

concave formation.

When evaluating the employed machine learning algorithms in conjunction with

the budgeting strategies on the NIMS1 dataset (Figures 4.9, 4.10, 4.11, 4.12, 4.13,

4.14, 4.15, and 4.16), prequential accuracy tends to rise quickly and then maintains

its performance. However, the detection rate appears to increase in performance

more slowly, almost in a step pattern. These are consistent in all cases when using

this dataset except when the fixed uncertainty strategy is utilized. In that case, the

prequential accuracy rises quickly and then drops back down quickly to a very low

accuracy for the rest of the stream. When measuring the prequential detection rate,

under the fixed uncertainty strategy, it is observed that it either remains low (when

using the Hoeffding Tree Algorithm, Figures 10, 11, 12 and 13) or follows the trend of

33

the rest of the strategies but at a lower accuracy (when using the Naive Bayes Algo-

rithm, Figures 14, 15, 16, and 17) throughout the stream. On the other hand, when

these strategies are employed on the ISOT dataset (Figures 4.17, 4.18, 4.19, 4.20, 4.21,

4.22, 4.23 and 25), the Random, Random variable Uncertainty, and Select Sampling

strategies, the prequential detection rate and accuracy remain at approximately 100%

throughout the streaming process. However, with the Fixed Uncertainty strategy and

the Variable Uncertainty strategy, interesting behavior presents itself. When using a

budget of 10% with the variable uncertainty strategy, the trends exhibited follows the

patterns of the Random, Random Variable Uncertainty, and Select Sampling on this

dataset. However when using a budget of 100% with either machine learning algo-

rithm, a significant drop in the performance occurs in terms of prequential detection

rate and even greater loss in terms of prequential accuracy. When using the fixed

uncertainty strategy with the Hoeffding Tree Algorithm, a downwards slope in the

prequential accuracy occurs, while the prequential detection rate maintains a steady

performance around 50%. When this strategy is used in conjunction with the Naives

Bayes Algorithm an interesting pattern is exhibited where the prequential accuracy

and the prequential detection rate show a sharp rise and then a slight fall and then

a steady climb upwards again.

34

Figure 4.1: Prequential accuracy on KDD 1999 Cup Dataset using the Hoeffding Tree
Algorithm with a 10% budget.

Figure 4.2: Prequential detection rate on KDD 1999 Cup Dataset using the Hoeffding
Tree Algorithm with a 10% budget.

35

Figure 4.3: Prequential accuracy on KDD 1999 Cup Dataset using the Hoeffding Tree
Algorithm with a 100% budget.

Figure 4.4: Prequential detection rate on KDD 1999 Cup Dataset using the Hoeffding
Tree Algorithm with a 100% budget.

36

Figure 4.5: Prequential accuracy on KDD 1999 Cup Dataset using the Naive Bayes
Algorithm with a 10% budget.

Figure 4.6: Prequential detection rate on KDD 1999 Cup Dataset using the Naive Bayes
Algorithm with a 10% budget.

37

Figure 4.7: Prequential accuracy on KDD 1999 Cup Dataset using the Naive Bayes
Algorithm with a 100% budget.

Figure 4.8: Prequential detection rate on KDD 1999 Cup Dataset using the Naive Bayes
Algorithm with a 100% budget.

38

Figure 4.9: Prequential accuracy on NIMS Dataset using the Hoeffding Tree Algorithm
with a 10% budget.

Figure 4.10: Prequential detection rate on NIMS Dataset using the Hoeffding Tree
Algorithm with a 10% budget.

39

Figure 4.11: Prequential accuracy on NIMS Dataset using the Hoeffding Tree Algorithm
with a 100% budget.

Figure 4.12: Prequential detection rate on NIMS Dataset using the Hoeffding Tree
Algorithm with a 100% budget.

40

Figure 4.13: Prequential accuracy on NIMS Dataset using the Naive Bayes Algorithm
with a 10% budget.

Figure 4.14: Prequential detection rate on NIMS Dataset using the Naive Bayes Algo-
rithm with a 10% budget.

41

Figure 4.15: Prequential accuracy on NIMS Dataset using the Naive Bayes Algorithm
with a 100% budget.

Figure 4.16: Prequential detection rate on NIMS Dataset using the Naive Bayes Algo-
rithm with a 100% budget.

42

Figure 4.17: Prequential accuracy on ISOT Dataset using the Hoeffding Tree Algorithm
with a 10% budget.

Figure 4.18: Prequential detection rate on ISOT Dataset using the Hoeffding Tree Algo-
rithm with a 10% budget.

43

Figure 4.19: Prequential accuracy and prequential detection rate (right) on ISOT Dataset
using the Hoeffding Tree Algorithm with a 100% budget.

When looking at the trends when using the selected strategies and chosen ma-

chine learning algorithms on the Alexa vs. Zeus dataset (Figures 4.25, 4.26, 4.27,

4.28, 4.29, 4.30, 4.31, and 4.32). Random, Random Variable Uncertainty, and Select

Sampling strategies in conjunction with any budget and machine learning algorithm

maintain high prequential accuracy and prequential detection rates throughout this

streaming dataset. The Variable Uncertainty strategy performs similarly to the pre-

vious cases except when using the Hoeffding Tree Algorithm at a 10% budget. In this

case, the prequential accuracy and the prequential detection rate drop in performance.

As with the previous experiments, the uncertainty strategy performs differently

than the others. When using the Hoeffding Tree algorithm, the prequential detection

rate and prequential accuracy performances remain fairly low whereas when the Naive

Bayes Algorithm is used, the performance begins to go upwards again.

When viewing the prequential accuracy when using the Hoeffding Tree algo-

rithm with a labeling budget of 10% (Figure 4.33) on the CTU-2 Dataset: Neris,

the performance of each budgeting strategy remains fairly steady though out the

stream. In this scenario performance hovers at approximately 99%. A similar result

44

Figure 4.20: Prequential detection rate on ISOT Dataset using the Hoeffding Tree Algo-
rithm with a 100% budget.

Figure 4.21: Prequential accuracy on ISOT Dataset using the Naive Bayes Algorithm
with a 10% budget.

45

Figure 4.22: Prequential detection rate on ISOT Dataset using the Naive Bayes Algorithm
with a 10% budget.

Figure 4.23: Prequential accuracy on ISOT Dataset using the Naive Bayes Algorithm
with a 100% budget.

46

Figure 4.24: Prequential detection rate on ISOT Dataset using the Naive Bayes Algorithm
with a 100% budget.

Figure 4.25: Prequential accuracy on Alexa vs. Zeus Dataset using the Hoeffding Tree
Algorithm with a 10% budget.

47

Figure 4.26: Prequential detection rate on Alexa vs. Zeus Dataset using the Hoeffding
Tree Algorithm with a 10% budget.

Figure 4.27: Prequential accuracy on Alexa vs. Zeus Dataset using the Hoeffding Tree
Algorithm with a 100% budget.

48

Figure 4.28: Prequential detection rate on Alexa vs. Zeus Dataset using the Hoeffding
Tree Algorithm with a 100% budget.

Figure 4.29: Prequential accuracy on Alexa vs. Zeus Dataset using the Naive Bayes
Algorithm with a 10% budget.

49

Figure 4.30: Prequential detection rate on Alexa vs. Zeus Dataset using the Naive Bayes
Algorithm with a 10% budget.

Figure 4.31: Prequential accuracy on Alexa vs. Zeus Dataset using the Naive Bayes
Algorithm with a 100% budget.

50

Figure 4.32: Prequential detection rate on Alexa vs. Zeus Dataset using the Naive Bayes
Algorithm with a 100% budget.

is displayed when implementing the Hoeffding Tree algorithm with a budget of 100%

(Figure 4.34). However, early on in the stream the prequential accuracy when using

the Variable Uncertainty labeling strategy begins to gradually fall to approximately

45%. Thus, a lower performance is presented when using this strategy with a 100%

labeling budget as compared to using a 10% labeling budget.

Observing the prequential detection rates when using the Hoeffding Tree algo-

rithm on CTU-2 Dataset: Neris yields a more interesting series of prequential accuracy

and detection rate performance patterns. Prequential detection rate, when using the

Hoeffding Tree algorithm with a 10% budget (Figure 4.34), begins at a performance of

100% but declines sharply to approximately 50% early on in the stream for all labeling

strategies. However, the Random, Random Variable, and Select Sampling strategies

see a spike back up in performance to approximately 87%. On the other hand, Fixed

and Variable Uncertainty strategy prequential detection rate performances remain at

50% for the rest of the stream. Random Variable Uncertainty and Select sampling

prequential detection rate performance gradually fall to approximately 64% while the

51

Random strategy performance takes more of a sharp fall to this performance rate be-

fore gradually falling to approximately 57%. The prequential detection rate pattern

when using the Hoeffding Tree algorithm with a budget of 100% (Figure 4.36) yields

similar results, however there are two notable differences. The first difference is that

the Random strategy performance pattern follows the patterns of the Random Vari-

able Uncertainty and Select Sampling strategies rather than taking a sharp fall in its

decline in performance. The second and more notable difference when using a budget

of 100% rather than 10% is that after reaching a performance of 50%, the Variable

Uncertainty strategy’s performance continues to gradually fall to approximately 24%,

thus resulting in lower performance than when using a labeling budget of 10%.

In terms of the prequential detection rate when using the Naive Bayes algo-

rithm on the CTU-2 Dataset (Figures 4.38 and 4.40), the patterns displayed in the

graphs follow the same patterns as exhibited when using the Hoeffding Tree algo-

rithm. However, the Random, Random Variable Uncertainty. and Select Sampling

labeling strategies perform significantly better when using the Naive Bayes algorithm

as opposed to the Hoeffding tree algorithm in this scenario.

When using a 10% labeling budget in conjunction with the Naive Bayes machine

learning algorithm on the CTU-2 Dataset (Figure 4.37) all strategies begin with a

100% prequential accuracy performance. Early in the stream, however, a divergence

occurs in performance among the different labeling strategies. The Fixed and Vari-

able Uncertainty strategies tend to stay around 99% prequential accuracy while the

other strategies slowly decline to approximately 75-85%. When using a 100% labeling

budget (Figure 4.39), the Random, Random Variable Uncertainty, and Select Sam-

pling labeling strategies follow a similar performance pattern to when using a labeling

budget of 10%. However, the other strategies show differences between the two chosen

budgets. The Fixed strategy exhibits a slight decline before gradually climbing back

up to approximately 96%. The Variable Uncertainty strategy prequential accuracy

performance begins at 100% but declines to approximately 44%.

Finally, the results when implementing the chosen methods on the CTU-11

Dataset are discussed. In Figures 4.41 and 4.43, results are approximately the same

between budgets of 10% and 100% budgets, in terms of prequential accuracy perfor-

mance, when using the Hoeffding Tree machine learning algorithm. Even individual

52

Figure 4.33: Prequential accuracy on CTU-2 Dataset: Neris using the Hoeffding Tree
algorithm with a 10% budget.

labeling strategies perform similarly in this scenario with all strategies, except the

Fixed labeling strategy that gradually declines to a performance of approximately

32%, maintaining a prequential accuracy performance of nearly 100% throughout the

stream.

Prequential detection rate results when using the Hoeffding Tree algorithm are

fairly similar between budgets of 10% (Figure 4.42) and 100% (Figure 4.44) as well.

For both budgets, Random, Random Variable Uncertainty, and Select Sampling

strategies achieve a high performance early on, however while the jump from ap-

proximately 50% prequential detection rate to over 90% is fairly abrupt when using

a labeling budget of 100%, the change is slightly more gradual when using a budget

of 10%. It should be noted that for both budgets, the Fixed strategy performs the

same, maintaining a prequential detection rate of approximately 50% throughout the

stream.

The aforementioned result patterns when applying the Hoeffding Tree machine

learning algorithm are approximately the same when using the Naive Bayes algorithm

on the CTU-11 Dataset.

53

Figure 4.34: Prequential detection rate on CTU-2 Dataset: Neris using the Hoeffding
Tree algorithm with a 10% budget.

Figure 4.35: Prequential accuracy on CTU-2 Dataset: Neris using the Hoeffding Tree
algorithm with a 100% budget.

54

Figure 4.36: Prequential detection rate on CTU-2 Dataset: Neris using the Hoeffding
Tree algorithm with a 100% budget.

Figure 4.37: Prequential accuracy on CTU-2 Dataset: Neris using the Naive Bayes algo-
rithm with a 10% budget.

55

Figure 4.38: Prequential detection rate on CTU-2 Dataset: Neris using the Naive Bayes
algorithm with a 10% budget.

Figure 4.39: Prequential accuracy on CTU-2 Dataset: Neris using the Naive Bayes algo-
rithm with a 100% budget.

56

Figure 4.40: Prequential detection rate on CTU-2 Dataset: Neris using the Naive Bayes
algorithm with a 100% budget.

Figure 4.41: Prequential accuracy on CTU-11 Dataset: Rbot using the Hoeffding Tree
algorithm with a 10% budget.

57

Figure 4.42: Prequential detection rate on CTU-11 Dataset: Rbot using the Hoeffding
Tree algorithm with a 10% budget.

Figure 4.43: Prequential accuracy on CTU-11 Dataset: Rbot using the Hoeffding Tree
algorithm with a 100% budget.

58

Figure 4.44: Prequential detection rate on CTU-11 Dataset: Rbot using the Hoeffding
Tree algorithm with a 100% budget.

Figure 4.45: Prequential accuracy on CTU-11 Dataset: Rbot using the Naive Bayes
algorithm with a 10% budget.

59

Figure 4.46: Prequential detection rate on CTU-11 Dataset: Rbot using the Naive Bayes
algorithm with a 10% budget.

Figure 4.47: Prequential accuracy on CTU-11 Dataset: Rbot using the Naive Bayes
algorithm with a 100% budget.

60

Figure 4.48: Prequential detection rate on CTU-11 Dataset: Rbot using the Naive Bayes
algorithm with a 100% budget.

Based on the similarity in performances between using 10% and 100% budgets in

all experiments, the results indicate that it is well worth it to use a low budget as there

appears to be little to no negative effect on the overall performance. In some cases,

using a 10% yielded higher performance than when using a budget of 100%. This

may be surprising to some as one may assume that with less information provided

the classifier should have a lower performance. This is not the case, however, as

machine learning algorithms can often fall victim to over fitting. Over fitting occurs

when a classifier fits its model too closely to the instances that have already been

seen during the training rather than creating a model that effectively predicts new

incoming instances. This is especially problematic when the classifier begins to fit

its model to instances that are outliers and do correlate to other instances of the

same class. Using a lower budget reduces the problem of overfitting, as we are more

selective with what instances to train on.

One may recall from Table 3.1, that distribution of classes varied somewhat

among the datasets. However, the distribution of classes did not appear to have an

impact on performance as performance on all datasets was quite high. On the other

61

hand, concept shift appeared to have a impact on performance in terms of prequential

accuracy and prequential detection rate as we often see a dip in performance once a

large burst of instances of a new class is introduced.

Lastly, it should be mentioned that the overall accuracy and detection rates are

usually quite high when paired with the Random, Variable Uncertainty, Random

Variable Uncertainty, or Select Sampling strategies with performances averaging in

the 90%s while the fixed uncertainty strategy performed poorly in most cases.

4.2 Adaptive Artificial Neural Network Results

The overall accuracy and detection rate when applying the Adaptive Neural Network

approach on the same datasets used above are presented in Table 4.7. Here, an overall

detection rate of approximately 50% on all datasets with two classes is observed.

Some very low prediction accuracies are also observed. Furthermore, in this case,

the highest achieved overall accuracy and overall detection rate are 68% and 50%,

respectively. These results are significantly lower than most of the results presented

in the previous section. Furthermore, application of the Adaptive Artificial Neural

Network was quite costly in terms of time as datasets could take hours or even days

to process.

Table 4.7: Overall accuracy and detection rate when using Adaptive Artificial Neural
Networks on various datasets.

KDD 1999
Cup

NIMS1 ISOT
Zeus vs.
Alexa

CTU-2
Dataset

CTU-11
Dataset

Accuracy 19.69 1.71 6.84 68.32 99.05 31.98
Detection

Rate
49.97 16.73 48.48 49.74 50.00 49.98

The trend shown when looking at the prequential detection rate using this learn-

ing technique on the datasets seems to remain at approximately 50% throughout the

streaming process (Figures 4.49, 4.50, 4.52, 4.53, 4.54). This is consistent for tests

on all datasets except for the NIMS1 dataset (Figure 4.52) where detection rate is at

16.73 and with the CTU-2 Dataset where the detection rate remains at 100% for a

short time. This is to be expected however, as there are more classes in this dataset.

On the other hand, a rapid rise in prequential accuracy is observed at the at the

62

Figure 4.49: Prequential accuracy vs. prequential detection rate on the Zeus and Alexa
dataset.

beginning, followed by either a drop or a steady state for the rest of the stream in

most of the datasets (Figures 4.49, 4.50, 4.51, 4.53, 4.54 and 4.55). This seems to

indicate that the learning algorithm is not able to detect drifts in the behaviours.

63

Figure 4.50: Prequential accuracy vs. prequential detection rate on the KDD 1999 Cup
dataset.

Figure 4.51: Prequential accuracy vs. prequential detection rate on the NIMS1 dataset.

64

Figure 4.52: Prequential accuracy vs. prequential detection rate on the ISOT dataset.

Figure 4.53: Prequential accuracy vs. prequential detection rate on the CTU-2
Dataset:Neris.

65

Figure 4.54: Prequential accuracy vs. prequential detection rate on the CTU-11
Dataset:Rbot.

Chapter 5

Conclusion

In this research, I study how to classify (analyze) streaming network traffic using dif-

ferent machine learning algorithms under different training (budgeting) strategies. As

mentioned previously, this is an important task as it allows for one to detect malicious

behaviour as it occurs among streaming network traffic in order to prevent further

damage from the malicious activity to occur. Furthermore, by introducing budget-

ing strategies and active learning, the amount of resources needed to achieve the

successful detection of malicious activity is reduced greatly. To achieve the aforemen-

tioned tasks, I analyzed the traffic using flow type features with Adaptive Artificial

Neural Network, Naive Bayes and Hoeffding Tree stream classifiers under 10% and

100% training scenarios with five different budgeting strategies to train. Further-

more, I evaluated the performance of the different combinations of these algorithms

and strategies using both the standard accuracy and detection rate as well as the

prequential accuracy and detection rate. The evaluations show that all the tested

budgeting strategies perform relatively similarly (with the exclusion of the fixed un-

certainty strategy) on the network datasets employed regardless of the number of

different classes in the datasets (NIMS1-application versus KDD Cup 1999, ISOT,

Alexa vs. Zeus, CTU-2, and CTU-11 datasets). The results are generally quite high,

averaging in the 90%’s. This indicates that any of these strategies could be used

successfully in classifying network traffic and detecting malicious activity.

Furthermore, it is observed that changing the budget to 10% does not affect

the performance of the selected strategies negatively, and can actually increase the

performance of a given strategy in some cases.

When comparing these results to the adaptive Artificial Neural Network, it is

observed that this method is not effective at classifying malicious activity among

streamed network traffic. Thus it is recommended that an active learning approach

is used instead.

66

67

Although the Hoeffding Tree algorithm has temporal dependencies, its use did

not seem to have a large impact in terms of the performance on datasets, which fea-

tured more temporal variables. In fact, the Naive Bayes algorithm, which does not

have temporal dependencies, performed similarly to the Hoeffding Tree algorithm in

most cases with the exception of the NIMS and CTU-2 datasets where the Hoeffding

Tree algorithm achieves a higher accuracy but a lower detection rate.

Future research would explore these strategies on more datasets as this will give

a better idea how these methods would perform under other real world scenarios. Ad-

ditionally, it would be interesting to look other budgeting strategies evaluated on such

datasets since in this work only two different budgets are studied. This would allow

for one to investigate what is the most effective labelling budget when factoring in

both the cost and the performance. Due to results being very similar between strate-

gies, future research should also include statistical analysis of results to determine

how significant of a performance difference there is between results. Furthermore,

it would be of interest to investigate the complexity of the trees generated by the

Hoeffding tree as well as exact processing times of the learning algorithms to gain a

better idea of the efficiency of their use. Finally, even though the performance of the

Adaptive Artificial Neural Network used in this research was very low, it would still

be valuable to conduct a parameter sensitivity analysis using this method.

Bibliography

[1] Abuse: Zeus tracker. [Online] https://zeustracker.abuse.ch/.

[2] Alexa. [Online] http://alexa.com/topsites.

[3] Dns-bh-malware domain blocklist. [Online] http://www.malwaredomains.com.

[4] ebot the ruby irc bot. [Online] http://www.darkreading.com/the-worlds-biggest-
botnets-/d/d-id/1129117?

[5] Isot botnet data. [Online] http://www.uvic.ca/engineering/ece/isot/datasets/.

[6] Kdd cup 1999 data. [Online] http://kdd.ics.uci.edu/databases/kddcup99/ kdd-
cup99.html.

[7] Kdd cup 1999 task description. [Online]
http://kdd.ics.uci.edu/databases/kddcup99/task.html.

[8] Moa (massive online analysis). [Online] http://moa.cms.waikato.ac.nz/.

[9] Nims1 dataset. [Online] https://projects.cs.dal.ca/projectx/Download.html.

[10] The ctu-13 dataset. a labelled dataset with botnet, normal and background traf-
fic. [Online] http://mcfp.weebly.com/the-ctu-13-dataset-a-labeled-dataset-with-
botnet-normal-and-background-traffic.html.

[11] The ctu-13 dataset. a labelled dataset with botnet, normal and background traf-
fic. [Online] http://ruby-rbot.org/.

[12] Nicolo Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. Worst-case analysis
of selective sampling for linear classification. In Journal of Machine Learning
Research, volume 7, pages 1205–1230, 2006.

[13] B. Claise. Specification of the ip flow information export (ipfix) protocol for the
exchange of ip traffic flow information. rfc 5101. 2008. [Online] http://www.rfc-
editor.org/info/rfc5101.

[14] C.A. Cunha and L.M.E Silva. Separating performance anomalies from workload-
explained failures in streaming servers. In Cloud and Grid Computing (CC-
Grid), 2012 12th IEEE/ACM International Symposium on Cluster, pages 292–
299. IEEE, 2012.

[15] A. Csizmar Dalai, D.R. Musicant, J. Olson, B. McMenamy, S. Benzaid, B. Kazez,
and E. Bolan. Predicting user-perceived quality ratings from streaming media
data. In 2007. IEEE International Conference on Communications, pages 65–72.
ieee, 2007.

68

69

[16] A.C. Dalal, A.K. Bouchard, S. Cantor, Y. Guo, and A. Johnson. Assessing
qoe of on-demand tcp video streams in real time. In 2012 IEEE International
Conference on Communications (ICC), pages 1165–1170. IEEE, 2012.

[17] M. Feily, A. Shahrestani, and S. Ramadass. A survey of botnet and botnet detec-
tion. In 2009 Third International Conference on Emerging Security Information,
Systems and Technologies, pages 268–273. IEEE, 2009.

[18] S. Garcia, M. Grill, H. Stiborek, and A. Zunino. An empirical comparison of bot-
net detection methods. In Computers and Security Journal, Elsevier, volume 45,
pages 100–123. ACM, 2014.

[19] F. Haddadi, J. Morgan, E.G. Filho, and A.N. Zincir-Heywood. Botnet behaviour
analysis using ip flows: with http filters using classifiers. In 2014 28th Interna-
tional Conference on Advanced Information Networking and Applications Work-
shops, pages 7–12. IEEE, 2014.

[20] S. Hoelinger and R. Pears. Use of hoeffding trees in concept based data stream
mining. In Third International Conference on Information and Automation for
Sustainability, 2007. ICIAFS 2007, pages 57–62. IEEE, 2007.

[21] Han-Wei Hsiao, Deng-Neng Chen, and Tsung Ju Wu. Detecting hiding malicious
website network traffic mining approach. In 2010 2nd International Conference
on Education Technology Computer (ICETC), volume 5, pages 276–280. IEEE,
2010.

[22] G. H. Kayacik, A.N. Zincir-Heywood, and M.I. Heywood. On the capability of an
som based intrusion detection system. In IEEE International Joint Conference
on Neural Networks, pages 1808–1813, 2003.

[23] H. Gunes Kayacik, A.N. Zincir-Heywood, and M.I. Heywood. Selecting features
for intrusion detection: A feature relevance analysis on kdd 99 intrusion detection
datasets. 2006. [Online] https://web.cs.dal.ca/ zincir/bildiri/pst05-gnm.pdf.

[24] San-Min Liu and Zhi-Xin Sun. Active learning for P2P traffic identification.
Springer US, 2014.

[25] Pratik Narang, Jagan Mohan Reddy, and Chittaranjan Hota. Feature selection
for detection of peer-to-peer botnet traffic. In Compute 13 Proceedings of the 6th
ACM India Computing Convention. ACM, 2013.

[26] A. Nogueira, P. Salvador, and F. Blessa. A botnet detection system based on
neural networks. In 2010 Fifth International Conference on Digital Telecommu-
nications, pages 57–62. IEEE, 2010.

[27] S. Saad, I. Traore, A. Ghorbani, D. Zhao B. Sayed, J. Felix W. Lu, and
P. Hakimian. Detecting p2p botnets through network behavior analysis and
machine learning. In Proceedings of 9th Annual Conference on Privacy, Security
and Trust (PST2011), pages 174–180. IEEE, 2011.

70

[28] Alex Smola and S.V.N. Vishwanathan. Naive Bayes. Cambridge University
Press, 2008.

[29] Frederic Stahl, Mohamed Medhat Gaber, and Manuel Martin Salvador. erules:
A modular adaptive classifications rule learning algorithm for data streams. In
Research and Development in Intelligent Systems XXIX, pages 65–78. Springer
US, 2012.

[30] M. Stevanovic and J.M. Pedersen. An efficient flow-based botnet detection using
supervised machine learning. In 2014 International Conference on Computing,
Networking and Communications (ICNC), pages 797–801. IEEE, 2014.

[31] Ali Vahdat, Aaron Atwater, Andrew R. McIntyre, and Malcolm I. Heywood. On
the application of gp to streaming data classification tasks with label budgets.
In GECCO Comp 14 Proceedings in the 2014 conference companion on Genetic
ad evolutionary computation companion, pages 1287–1294. ACM, 2014.

[32] Ran Wang, Sam Kwong, Degang Chen, and Qiang He. Fuzzy rough sets based
uncertainty measuring for stream based active learning. In 2012 International
Conference on MachineLearning and Cybernetics (ICMLC), volume 1, pages
282–288. IEEE, 2012.

[33] Xingquan Zhu, Peng Zhang, Xiaodong Lin, and Yong Shi. Active learning from
stream data using optimal weight classifier ensemble. In IEEE Transactions on
Systems, Man, and Cybernetics,Part B: Cybernetics, volume 40, pages 1607–
1621. IEEE, 2010.

[34] I. Zliobaite, A. Bifet, B. Pfahringer, and G. Holmes. Active learning with drift-
ing streaming data. In IEEE Transactions on Neural Networks and Learning
Systems, volume 25, pages 27–39. IEEE, 2013.

