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Abstract 

In a baseband system, the digital information signal required to be transmitted over a 

channel, has a wide frequency spectrum. This wide frequency spectrum gets attenuated due 

to the band limited response of the filters utilized for communication. This band limiting 

of the signal pulses, causes them to expand outward thereby interfering with each other and 

causing a phenomenon known as Inter-Symbol Interference. The known techniques used 

for avoiding this limitation have used bandwidth greater than the minimum required 

bandwidth for no interference given by Nyquist. The physical increase in bandwidth of the 

filters can cause high frequency noise to interfere with the transmitted information signal. 

This thesis presents an innovative way to reduce Inter-Symbol Interference in the received 

signal by utilising a special filter designed by using Linear Prolate Functions. The results 

compare the signal reconstruction capabilities of a prolate filter with those of an ideal low 

pass filter.  
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CHAPTER 1: INTRODUCTION 

The term ‘Baseband Transmission’ refers to the transmission of low frequency digital data 

i.e. a signal whose frequency range extends from zero or dc (direct current) value to a 

certain finite value [1]. In telephony the baseband signal bandwidth extends from 0 to 3.5 

KHz. In television the baseband is the video band occupying 0 to 4.3 MHz. Similarly, for 

digital data using unipolar signalling at the rate of Fb pulses per second, the baseband signal 

bandwidth extends from 0 to Fb Hz [2]. Baseband transmission is performed without any 

modulation because the baseband pulses have sizeable power such that they can be 

transmitted satisfactorily through different channels. Common examples of baseband 

channels are optical fibers, twisted pair cables and co-axial cables. Digital data in its raw 

form is not compatible with the different baseband channels mentioned before. Hence 

before transmission, this data is converted into rectangular pulses which are compatible 

with every basebands channel used in today’s applications [3].    

 

Digital data has a wide frequency spectrum and in order to transmit such a broad spectrum 

of data, the channel must ideally contain a flat pass band and a bandwidth large enough to 

pass all the frequencies [1]. In reality, most channels have a response which causes the 

digital pulses to expand thereby affecting adjoining pulses leading to a phenomenon known 

as Inter-Symbol Interference (ISI). Inter-Symbol Interference is caused in transmission by 

two main factors namely:  
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 Band-limited frequency response of the filter at the receiver  

 Additive white Gaussian noise present in the channel.  

The major focus of this thesis will be to reduce Inter-Symbol Interference caused by band-

limited frequency response of the filter at the receiver. The inter-symbol interference 

impedes the correct formation of the signal at the receiver which causes bit errors in the 

reconstructed data stream. In order to eliminate this effect different pulse shaping 

techniques are used such as: 

 Reducing the width of the impulse response of the transmitted signal so that 

eventually when the impulses do expand after passing through the channel they will not 

affect each other. 

 Creating raised cosine impulses which causes the sidebands to have a reduced 

amplitude thereby reducing the interference between sidebands of the previously 

transmitted symbol and main lobe of the next symbol. 

 Using a guard time period between two impulses so that the impulses are given 

enough room to expand which minimizes the probability of interference between them. 

In baseband transmission, the main objective is to reduce the required system bandwidth 

as much as possible. For instance, in case of a telephone channel the amount of bandwidth 

available to each user is much less because different users utilize the same channel at the 

same time. Hence, by keeping the bandwidth available for each user to a minimum, the 

data rate can be increased and in turn lead to a greater utilization of total available 

bandwidth in the channel [3]. The last two pulse shaping techniques mentioned previously 

require additional bandwidth as compared to the bandwidth required by the first technique. 
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In this thesis, an innovative approach will be shown which will perform significantly better 

than other two techniques mentioned before. This approach will lead to a highly precise 

signal reconstruction at the receiver, while satisfying the main objective of a baseband 

communication system. This approach was possible because of Linear Prolate Functions. 

These functions have some favourable properties which can be utilised to resolve some of 

the shortcomings in various applications in optics and signal processing. The only reason 

these functions have not been researched thoroughly in the signal processing field and its 

various applications is because it is too complicated to calculate them accurately. This 

major limitation has been overcome in this research by utilizing a proprietary algorithm 

which calculates highly accurate Linear Prolate functions in a software known as 

Mathematica.  
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1.1. Motivation 

Baseband transmission is a branch of Electrical engineering in which digital data in the 

form of rectangular pulses with lower frequencies and sizeable power is transmitted from 

a transmitter to a receiver via a baseband channel. These pulses undergo distortions as they 

travel through the channel and this phenomenon is known as inter-symbol interference. A 

filter is generally employed at the receiver to reduce this interference. But due to the band 

limited nature of the filter response, the signal is not reproduced accurately at the receiver.  

 

Nyquist [4] had proposed a criteria for the filter bandwidth by which transmission of the 

digital data can be done without any interference.  However, this criteria when 

implemented practically also had its flaws which will be discussed later. The other methods 

which modify the filter response to reduce this interference require additional bandwidth 

as compared to the bandwidth required by the method proposed by Nyquist. Hence, there 

is a need for a technique which can provide interference reducing capability with less 

bandwidth consumption. This research hopes to fulfill that need by studying and simulating 

a filter which was designed using linear prolate functions. The prolate functions greatly 

enhances the inter-symbol interference reducing capability of the filter and the total 

bandwidth consumed to achieve this is equal to the Nyquist bandwidth. In this thesis, most 

of the illustration explained through graphs have their axes normalized and hence will have 

no specific units mentioned for them. Furthermore, the application of linear prolate 

function in the field of digital communication will be the main original contribution of this 

research.  
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1.2. Sampling and Aliasing 

Before introducing Inter-symbol Interference and studying its effects at the receiver of a 

baseband communication system, one needs to understand aliasing which is an effect 

occurring at the transmitter of a communication system. Aliasing primarily occurs while 

converting an analog signal into a digital signal. The first step of any analog to digital 

converter is sampling. If the analog signal is sampled at a lower sampling rate, aliasing 

occurs in the system. In order to comprehend aliasing and its effects the sampling theorem 

put forth by Nyquist has to be understood. 

 

The sampling theorem states that a band-limited signal can be reconstructed exactly from 

its samples, if the sampling frequency is greater than twice the maximum frequency of the 

signal being sampled [2]. The sampling theorem can be can be analysed as follows [2]: 

 

Figure 1.1. A Signal and its Frequency Spectrum [2] 

Consider an analog signal 𝑔(𝑡) whose frequency spectrum is band-limited to B Hz as 

shown in Figure 1.1. The signal is sampled with the help of a discrete train of impulses 
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with a rate of 𝑓𝑠 Hz. The sampled signal is thus obtained by multiplication of the signal 

𝑔(𝑡) with the train of impulses 𝛿𝑇𝑠 where 𝑇𝑠 = 
1

𝑓𝑠
. Hence, 

 𝑔̅(𝑡) = 𝑔(𝑡)𝛿𝑇𝑠 = ∑𝑔(𝑛𝑇𝑠)𝛿(𝑡 − 𝑛𝑇𝑠)

𝑛

 (1.1) 

 

Figure 1.2. A Sampled Signal and its corresponding Frequency Spectrum [2] 

Any periodic signal can be represented by a Fourier series and as the impulses are periodic 

in nature, they can also be represented by a Fourier series as follows: 

𝛿𝑇𝑠(𝑡) =  
1

𝑇𝑠
[1 + 2 cos(𝜔𝑠𝑡) + 2 cos(2𝜔𝑠𝑡) + 2 cos(3𝜔𝑠𝑡) + ⋯ ] (1.2) 

Thus, 𝑔̅(𝑡) can be represented as follows: 

 𝑔̅(𝑡) =  
1

𝑇𝑠
[𝑔(𝑡) + 2𝑔(𝑡) cos(𝜔𝑠𝑡) + 2𝑔(𝑡) cos(2𝜔𝑠𝑡) +

2𝑔(𝑡) cos(3𝜔𝑠𝑡) + ⋯ ] 

(1.3) 

In order to obtain the frequency spectrum of the sampled signal, Fourier transform 

operation has to be performed on Equation (1.3). Hence, the Fourier transform of the first 
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term in Equation (1.3) is 𝐺(𝜔). The Fourier transform of the second term is 𝐺(𝜔 − 𝜔𝑠) +

𝐺(𝜔 + 𝜔𝑠). This means that the spectrum 𝐺(𝜔) has shifted to −𝜔𝑠 and +𝜔𝑠 as shown in 

Figure 1.2. The samples of 𝐺(𝜔) will continue to be shifted to −𝑛𝜔𝑠 and +𝑛𝜔𝑠 until it 

reaches infinity. This shows that the spectrum of the sampled signal consists of periodically 

repeating samples of the spectrum 𝐺(𝜔). 

 𝐺̅(𝜔) =  
1

𝑇𝑠
 ∑ 𝐺(𝜔 − 𝜔𝑠)

∞

𝑛 = −∞

 (1.4) 

In order to reconstruct the original signal the fundamental frequency 𝐺(𝜔) is required. This 

can be done by utilizing an ideal low pass filter with a frequency response which is same 

as the maximum bandwidth B as shown in Figure 1.2. The sampling frequency should not 

be considered equal to twice the maximum bandwidth. This is because in practise, it is 

difficult to fabricate an ideal low pass filter and the practical filters generally have a 

transition band where the filter transitions from pass band to stop band. Thus for exact 

reconstruction of the analog signal from its samples the sampling frequency must be greater 

than twice the maximum bandwidth of the signal being sampled i.e.  

 𝑓𝑠 > 2𝐵 (1.5) 

Equation (1.5) is the analytical form of the sampling theorem as proposed by Nyquist. If 

the sampling rate is less than twice the maximum bandwidth then it leads to a phenomenon 

known as aliasing as shown in Figure 1.3:  
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Figure 1.3. The Aliasing effect [2] 

The sampling theorem was based on the assumption that the signal is band-limited. In 

reality, most signals are limited in the time-domain because of which they have a frequency 

spectrum which ideally spans up to infinity. As the signal cannot be time and band-limited 

at the same time, the overlapping of the frequency spectrum is a constant occurrence in any 

communication transmitter system. The aliasing effect can be avoided if a filtering process 

is used. This filter is termed as an anti-aliasing filter and it is present in many applications 

in use today. There are two ways in which anti-aliasing can be done namely pre-filtering 

and post-filtering [3]. In the pre-filtering process, the frequency spectrum of the analog 

signal is limited to a certain frequency namely 𝑓𝑠/2 before sampling due to which when 

the data is sampled there is no overlap between two spectral components. On the other 

hand, for a post filtering process the filtering operation is done after the sampling process. 

After the aliasing has occurred the filter attenuates the frequencies beyond 𝑓𝑠/2. In both 

cases there is appreciable loss of signal components. 
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1.3. Inter-Symbol Interference 

There are many different kinds of noise present in a system but this thesis will primarily 

focus on Inter-Symbol Interference and provide a solution to reduce its effects. Inter-

Symbol Interference is a kind of signal distortion in which the transmitted pulses expand 

outward after being transmitted through a channel and filtered through filters. Due to this 

expansion they interfere with each other as shown in the Figure 1.4:  

 

Figure 1.4. Inter-Symbol Interference in a Signal 

The following derivation as in [1] helps in understanding inter-symbol interference 

analytically. Consider a digital communication system as seen in Figure 1.5: 

 

Figure 1.5. A Digital Communication System 

In this system, the binary information signal is encoded by a line coder. Essentially a line 

coder is similar to a pulse amplitude modulator where in it assigns a certain amplitude to a 

1.0 0.5 0.5 1.0
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certain bit. The coder converts the information signal into a unipolar non-return to zero 

(NRZ) signal i.e.  

 𝑎𝑘 = {
1 𝑖𝑓 𝐼𝐾 = 1
0 𝑖𝑓 𝐼𝐾 = 0

 (1.6) 

A Coder is utilized in this case as it is more suitable to transmit pulse waveforms instead 

of individual data bits through the channel. The sequence of short pulses are then passed 

through a transmit filter having an impulse response 𝑔(𝑡).  

 𝑠(𝑡) =  ∑𝑎𝑘 ∗ 𝑔(𝑡 − 𝐾𝑇𝑏)

𝑘

 (1.7) 

The transmit filter shown in a baseband transmission system is used as an anti-aliasing 

filter. This signal is then passed through a channel which has a band-limited frequency 

response 𝐻(𝑓) where 𝐻(𝑓) = 0  for frequencies above a cut-off frequency. Since the major 

focus of this thesis is to reduce inter-symbol interference caused by band limited nature of 

the devices, the additive white Gaussian noise is assumed to be zero. This noisy signal is 

then passed through the receive filter with response 𝑐(𝑡) which tries to reconstructs the 

original transmitted signal. The unipolar NRZ signal 𝑦(𝑡) is then sampled and used to 

recreate the original binary information signal by means of a decision device. The 

amplitude of each sample is compared with a pre-set threshold value. If the value is greater 

than the threshold value the output bit is 1 and if it is less the output bit is 0.  

The output 𝑦(𝑡) of the receive filter is written as follows: 

 𝑦(𝑡) =  𝜇 ∑𝑎𝑘 ∗ 𝑝(𝑡 − 𝐾𝑇𝑏)

𝑘

 (1.8) 
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Where µ is a scaling factor and 𝜇𝑝(𝑡) is the scaled pulse and is obtained by convolving the 

impulse response of transmit filter 𝑔(𝑡), the impulse response of the channel ℎ(𝑡) and the 

impulse response of the receive filter 𝑐(𝑡).   

 𝜇𝑝(𝑡) =  𝑔(𝑡) ⊛ ℎ(𝑡) ⊛ 𝑐(𝑡)   (1.9) 

where ⊛ denotes convolution. The receive filter output is then sampled at time 𝑡𝑖 = 𝑖𝑇𝑏 

which gives  

 𝑦(𝑡𝑖) =  𝜇 ∑ 𝑎𝑘𝑝[(𝑖 − 𝑘)𝑇𝑏]

∞

𝑘= −∞

 (1.10) 

 𝑦(𝑡𝑖) =  𝜇𝑎𝑖 +  𝜇 ∑ 𝑎𝑘𝑝[(𝑖 − 𝑘)𝑇𝑏]

∞

𝑘= −∞
𝑘 ≠𝑖 

 (1.11) 

In the Equation (1.11), ai denotes the required information signal and the second term 

represents the residual effect which leads to Inter-Symbol Interference during transmission. 

The Equation (1.9) in the time domain can also be written in the frequency domain as 

follows: 

 𝜇𝑃(𝑓) =  𝐺(𝑓)𝐻(𝑓)𝐶(𝑓) (1.12) 

where 𝑃(𝑓), 𝐺(𝑓), 𝐻(𝑓) 𝑎𝑛𝑑 𝐶(𝑓) are Fourier transforms of 𝑝(𝑡), 𝑔(𝑡), ℎ(𝑡) 𝑎𝑛𝑑 𝑐(𝑡) 

respectively.  

 

In signal processing terms, rectangular pulses are transmitted through the transmit filter 

where a discrete Fourier transform is performed on these pulses. The Fourier transform of 
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a rectangular pulse is a sinc signal whose side lobes extend from -∞ to +∞. The side lobes 

close to the main lobe, also known as pre and post-main lobe tails contain important 

information required to reconstruct the signal. This signal is then passed through a channel 

and the receive filter which have a band limited frequency response similar to that of an 

ideal low pass filter. The side lobes of the sinc signal consequently get attenuated because 

of the band limitation. Due to lack of information caused by the attenuation of the side 

lobes, when an inverse Fourier transform is performed at the receive filter the output is 

distorted and this phenomenon is known as Inter-symbol Interference. 

 

Nyquist proposed a criteria where if the response of the receive filter is as shown in Figure 

1.7, then there will be no Inter-Symbol Interference in the received signal. The pulses are 

timed in such a way that the side lobe of the previous pulse will be zero when the magnitude 

of the next transmitted pulse is maximum. As a result of this the signal reconstructed at the 

receiver will be identical to the transmitted pulse. 
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Figure 1.6. Received Pulse Shape in Time 

Domain with no Inter-Symbol Interference 

 

 

Figure 1.7. Frequency Response of Nyquist 

filter with Zero Inter-Symbol Interference  

The sinc signal shown in Figure 1.6 can only be obtained if the response of the transmit 

filter is identical to that of an ideal low pass filter. But it is immensely complicated to 

fabricate a circuit to generate an ideal response. Furthermore, it is more likely that there 

will be timing errors in the sinc signal which can cause this theory to fail.  

 

To avoid this a raised cosine filter could be used. A raised cosine filter is used to optimize 

the ideal low pass filter response by varying the steepness of the filter roll off. The filter 

response can be expressed as follows: 

𝐻(𝑓) =  

{
 
 

 
 

1

cos2 (
𝜋

4
∗
 |𝑓| +𝑊 − 2𝑊0

𝑊 −𝑊0
)

0

𝑓𝑜𝑟 |𝑓| < 2𝑊0 −𝑊

          𝑓𝑜𝑟 2𝑊0 −𝑊 < |𝑓| < 𝑊

𝑓𝑜𝑟 |𝑓| < 𝑊 }
 
 

 
 

 (1.13) 

where W is the absolute bandwidth and W0 is the minimum Nyquist bandwidth for a 

rectangular spectrum and – 6db bandwidth for raised cosine spectrum. The roll-off factor 

represents the excess bandwidth as a fraction of W0 which is given by 𝑟 =  
(𝑊 −𝑊0)

𝑊0
⁄  

h t
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where r = roll-off factor which lies in the range 0 ≤ r ≤ 1. 

 

Figure 1.8. Frequency Response of a Raised Cosine Filter 

Figure 1.8 illustrates the frequency response characteristics of a raised cosine filter. In this 

response the Nyquist minimum bandwidth for no inter-symbol interference W0 = 1. The 

raised cosine filter allows excess bandwidth to be passed while keeping the amplitude of 

the side lobes for the sinc signal as small as possible. The smaller side lobe amplitude will 

mean lesser likelihood of errors caused by timing difference and will lead to reduced inter-

symbol interference during transmission. But, a greater utilisation of bandwidth leads to a 

requirement of greater revenue for the telecommunication service provider. Although the 

raised cosine filters can be realised physically, the major disadvantage that plagues this 

filter is the excess amount of bandwidth required to be transmitted with the information 

pulses. This major disadvantage can be avoided with the help of a filter design which takes 

advantage of Linear Prolate Functions and its various useful properties.  
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1.4. Objectives  

1. To simulate a filter designed using linear prolate functions in Mathematica which 

can provide highly accurate reconstruction of a rectangular pulse after filtering. 

2. To compare signal reconstruction capabilities of a prolate filter with those of an 

ideal low pass filter. 

3. To improve performance of the prolate filter by varying the threshold value ‘M’ of 

the filter. 

4. To verify if a prolate filter can be used as an anti-aliasing filter.    
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1.5. Outline of the Thesis 

This thesis is divided into seven chapters. Chapter 1 introduces the problem of Inter-

Symbol Interference present in a baseband transmission system. It also provides 

information about traditional methods used for reducing the interference. It also provides 

details on the research problem and objectives of this thesis. Chapter 2 provides an 

overview of Linear Prolate Functions and its various advantageous properties. The time-

bandwidth concentration problem and its similarity with problems in quantum mechanics 

is also discussed. Chapter 3 presents a review of important literature which provides 

significant contextual information regarding the basic theory used to solve the Inter-

Symbol Interference problem in the system. Chapter 4 describes and confirms the theory 

used for creation of a prolate filter for reducing the interference problem and some results 

simulating the sampling theorem are also detailed. Additionally, it also provides a brief 

introduction of a software used for simulating the filter, known as Mathematica. Chapter 

5, details the application of the prolate filter i.e. in a baseband receiver for reducing Inter-

Symbol Interference and in a baseband transmitter for anti-aliasing. Moreover, further 

variations of the prolate filter are also illustrated. Chapter 6 provides concluding remarks 

which summarizes the major advantages and outcomes of this research. Additionally, 

potential applications of the prolate filter in other fields are suggested.          
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CHAPTER 2: LINEAR PROLATE FUNCTIONS 

The previous chapter has provided details on the inter-symbol interference problem. It can 

be seen that the current methods also have a basic flaw of requiring additional bandwidth 

to reduce interference in the signal. The filter mentioned earlier of reducing inter-symbol 

interference was designed using Linear Prolate Functions. This chapter introduces Linear 

Prolate Functions and its various advantageous properties. It also describes the similarity 

between the time-bandwidth concentration problem in signal processing field with a 

problem in quantum mechanics field described by Heisenberg’s uncertainty principle. 

   

It is a well-known fact that there is an inverse relationship between Time and Frequency. 

A small instant in time leads to infinitely long bandwidth in the frequency domain. Every 

physical device has a band-limited response which causes its output to undergo severe 

attenuation if a high frequency signal is applied at its input. This band-limiting nature of 

the device gets in the way of successfully reconstructing a signal. If a signal is confined to 

a specific interval or band in both time and frequency domain, it can be exactly 

reconstructed after transmission. But, there are no signals currently present which are 

maximally enclosed in a specific time interval and frequency band. This conundrum of 

simultaneously confining the signal and its amplitude spectrum has been present for a long 

time in digital communication; specifically signal processing. 

 

In terms of Quantum Mechanics the confining problem can be expressed by Heisenberg’s 

Uncertainty Principle. It simply states that certain physical properties of an entity are 
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complementary. For example, if the position of some particle is accurately known then it 

becomes difficult to accurately predict the momentum of said particle. Gabor was the first 

one to relate this theory to signal or information processing. He was able to make this 

hypothesis because there is an apparent duality between particles and waves. Consider a 

signal 𝑟(𝑡) having unit energy [5] such that 

 ∫ 𝑟2(𝑡)𝑑𝑡 =  ∫|𝑅(𝑓)|2 𝑑𝑓 = 1

∞

−∞

∞

−∞

 (2.1) 

Gabor-Heisenberg’s uncertainty principle thus can be expressed mathematically [5] as 

follows: 

 𝜎𝑟
2𝜎𝑅

2 ≥ 
1

(4𝜋)2
 (2.2) 

where 𝑟2(𝑡) 𝑎𝑛𝑑 |𝑅(𝑓)|2 can be considered as probability densities and 𝜎𝑟 𝑎𝑛𝑑 𝜎𝑅 are 

their corresponding variances. From the expression above the inverse relationship between 

variances of time and frequency can be clearly seen. 

 

Mathematically speaking, a meaningful measure of concentration for a signal 𝑟(𝑡) can be 

seen in equation (2.3) [5]: 

 𝛼2(𝑇) =  
∫ 𝑟2(𝑡)𝑑𝑡
𝑇/2

−𝑇/2

∫ 𝑟2(𝑡)𝑑𝑡
∞

−∞

 (2.3) 

If 𝑟(𝑡) is time-limited in equation (2.3) from (−𝑇/2 𝑡𝑜 𝑇/2) then 𝛼2(𝑡) will have a 

maximum value of unity. But because of the inverse relationship, the band-limiting of a 



20 
 

signal will not allow it to be time-limited. Hence, to solve the problem of obtaining a unity 

value for 𝛼2(𝑡) while keeping 𝑟(𝑡) band-limited, was undertaken by three scientists from 

Bell laboratories namely; H. Pollak, H. Landau, and D. Slepian which lead them to develop 

a set of band-limited functions that were maximally concentrated in a given time interval. 

These functions are known as Prolate Spheroidal Wave Functions.  

 

The Helmholtz wave equation for steady waves is given by [6], 

 (∇2 + 𝑘2)𝜓 = 0 (2.4) 

𝑤ℎ𝑒𝑟𝑒 𝑘 =  
2𝜋

𝜆
, 𝜆 = 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ, 

 

The solution for the wave equation in spheroidal co-ordinates can be found by using three 

different ordinary differential equations as shown below [6]: 

𝑑

𝑑𝑡
[(1 − 𝑡2)

𝑑𝑆(𝑐, 𝑡)

𝑑𝑡
] + [𝐴 − 𝑐2𝑡2 − 

𝑚2

1 − 𝑡2
] 𝑆(𝑐, 𝑡) = 0 (2.5) 

𝑑

𝑑𝜉
[(𝜉2 − 1)

𝑑𝑅(𝑐, 𝜉)

𝑑𝜉
] − [𝐴 − 𝑐2𝜉2 + 

𝑚2

𝜉2 − 1
]𝑅(𝑐, 𝜉) = 0 (2.6) 

𝑑2Φ(𝜑)

𝑑𝜑
+𝑚2Φ(𝜑) = 0 (2.7) 

where S is the angular component, R is the radial component and Φ is the azimuthal 

component. By solving Equation (2.5) and Equation (2.6) we get two kinds of solutions for 

radial and angular components namely 𝑅𝑚𝑛
1 (𝑐, 𝜉), 𝑅𝑚𝑛

2 (𝑐, 𝜉), 𝑆𝑚𝑛
1 (𝑐, 𝑡), 𝑆𝑚𝑛

2 (𝑐, 𝑡). The 
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azimuthal solution is not required for determining prolate functions and hence will not be 

considered in this thesis. The angular and radial solutions of the first kind are used to 

determine prolate spheroidal wave functions. Alternatively, the second kind solutions are 

required for the oblate case which will not be taken into consideration in this thesis. By 

considering 𝑚 = 0 the prolate spheroidal angular function 𝑆0𝑛
1 (𝑐, 𝑡) can be used to 

compute a set of functions having many advantageous properties over trigonometric 

functions which are extensively used. Therefore, a one dimensional prolate spheroidal 

wave function can be termed as a Linear Prolate Function designated by 𝜓𝑛(𝑐, 𝑡). 

Similarly, the prolate spheroidal radial function 𝑅0𝑛
1 (𝑐, 1) can be used to determine the 

corresponding linear prolate eigenvalues designated by 𝜆𝑛(𝑐). Mathematically, linear 

prolate functions and their corresponding eigenvalues are expressed as follows [7] [8] [9]: 

 
𝜓𝑛(𝑐, 𝑡) =  

√𝜆𝑛(𝑐)/𝑡0

√∫ (𝑆0𝑛(𝑐, 𝑡))2 𝑑𝑡
1

−1

∗  𝑆0𝑛 (𝑐,
𝑡

𝑡0
), 

(2.8) 

 𝜆𝑛(𝑐) =  
2𝑐

𝜋
[𝑅0𝑛(𝑐, 1)

2] (2.9) 
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2.1. Mathematical Notations 

Different researchers have used different notations and normalizations for the prolate 

spheroidal wave functions. In this thesis the mathematical notations and normalizations are 

similar to those used by Flammer [10] and Slepian [7]. As seen in Figure 2.1, linear prolate 

functions 𝜓𝑛(𝑐, 𝑡) are dependent on four factors [11]: the time parameter t, the time-limited 

interval t0, the order of the function n, and the space bandwidth product parameter c. The 

bandwidth parameter 𝑐 = 𝑡0Ω0, 

𝑤ℎ𝑒𝑟𝑒 Ω0 is the finite bandwidth to be considered. 

  

Figure 2.1. Linear Prolate Functions of different orders 

It is important to note that both the linear prolate functions 𝜓𝑛 and their eigenvalues 𝜆𝑛 are 

dependent on space bandwidth product parameter ‘c’. The significance of this parameter 

can be understood by considering a Fourier transform on a rectangular pulse obtained by 

using the usual trigonometric functions. The width of the main lobe of the sinc pulse 

obtained from the operation is determined by the width of the rectangular pulse. There is 

no other free parameter which can vary this width which proves to be practically 

disadvantageous. On the other hand, if a Fourier transform is performed on a rectangular 
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pulse created by using linear prolate functions the space-bandwidth parameter ‘c’ can be 

used to vary the width of the main lobe of the sinc pulse. Similar to Slepian’s literature the 

parameter ‘c’ will not be specifically stated in further expressions, with the awareness that 

all the prolate quantities are dependent on c. The space-bandwidth parameter is an extra 

advantageous parameter provided by linear prolate functions which will be studied in detail 

in the results. Furthermore in this thesis, the interval under consideration t0 will always be 

from −1 <  𝑡0  <  1. 
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2.2. Important Properties of Linear Prolate Functions 

Linear Prolate functions have some important properties which will be detailed in this 

section. The following properties were first proposed by Slepian and Pollak in [7] and were 

discussed analytically in detail by Frieden in [8]. This research has further proved these 

properties with simulated results in Mathematica software as shown below:  

 Linear Prolate functions are invariant to finite or infinite Fourier transform: 

∫ 𝜓𝑛(𝑥) 𝑒
𝑗𝜔𝑥 𝑑𝑥 = 𝑗𝑛 (2𝜋𝜆𝑛𝑥0/Ω)

1
2 𝜓𝑛(𝜔𝑥0/Ω) 

𝑥0

−𝑥0

 (2.10) 

In the expression above the left hand side denotes the Fourier transform of the 

prolate function and the right hand side is a scaled version of the same prolate 

function with a constant multiplier. It can be clearly seen that the finite Fourier 

transform of the prolate function is proportional to the same prolate function. The 

analytical result above can also be proved by simulation as follows: 

Consider a linear prolate function 𝜓20 as shown in Figure 2.2 
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Figure 2.2. Linear Prolate Function with order n = 20 

In this case the prolate function is even symmetric so only the positive half of the 

signal is shown. The negative half of this signal will be the exact mirror image of 

Figure 2.2. After performing Fourier transform we get the following result 

 

Figure 2.3. Fourier Transform of a Prolate Function 

It is observed from Figure 2.3 that the Fourier transform follows 𝜓20 exactly. 

Furthermore, by carrying out an infinite Fourier transform on equation (2.10) it can 

be seen that these prolate functions are also invariant to the infinite Fourier 

transform: 

∫ 𝜓𝑛(𝑥) 𝑒
−𝑗𝜔𝑥  𝑑𝑥 =  {

𝑗−𝑛 (2𝜋𝑥0/Ω𝜆𝑛)
1
2 𝜓𝑛 (

𝑥0𝜔

Ω
) , 𝑓𝑜𝑟 |𝜔| ≤  Ω

0,                                                  𝑓𝑜𝑟 |𝜔| >  Ω

∞

−∞

 (2.11) 
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Although there are certain functions such as 𝑒−𝜋𝑥
2
, |𝑥|−1/2 𝑎𝑛𝑑 sech(𝜋𝑥) which 

are invariant to an infinite Fourier transform, only prolate functions have the 

property to be invariant to a finite Fourier transform. Most of the following 

properties were formed as a result of Fourier transform property of prolate 

functions.  

 

 Eigenvalues 𝜆𝑛 are also eigenvalues of a sinc kernel 

In matrix theory, 𝜆 is said to be an eigenvalue of a function if it satisfies the 

following equation [12]: 

𝐴 𝑣 =  𝜆 𝑣 (2.12) 

where v is a non-zero vector known as an Eigen function. The special property of 

an Eigen function is that the eigenvector only gets scaled, even when any operation 

is performed on it by a matrix. Alternatively, most vectors get scaled and rotated 

by most matrix operations [12]. In case of prolate functions by taking a finite 

Fourier transform of equation (2.10),  

∫ 𝜓𝑛(𝑥)
sinΩ(𝑦 − 𝑥)

𝜋 (𝑦 − 𝑥)
 𝑑𝑥 =  𝜆𝑛 𝜓𝑛(𝑦)

𝑥0

−𝑥0

 (2.13) 

it is evident that the result as seen in equation (2.13) satisfies the general equation 

for eigenvalues and eigen functions. In this way, 𝜆 can also be considered as an 

eigenvalue for a sinc kernel as the eigen function.  
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 Linear Prolate functions are complete and orthonormal in a finite interval and 

orthogonal over an infinite interval:  

In number theory, real numbers are considered to be complete as they have no 

missing terms between two numbers. Alternatively, rational numbers are 

considered incomplete since irrational numbers are present between rational 

numbers. Trigonometric functions such as 𝑠𝑖𝑛(𝑥) and 𝑐𝑜𝑠(𝑥) are orthogonal and 

complete only over a finite interval. On the other hand, linear prolate functions are 

orthogonal and complete over an infinite and finite interval:   

∫ 𝜓𝑚(𝑥)  ∗  𝜓𝑛(𝑥) 𝑑𝑥 =  {
0, 𝑓𝑜𝑟 𝑚 ≠  𝑛
1, 𝑓𝑜𝑟 𝑚 =  𝑛 

∞

−∞

 (2.14) 

∫ 𝜓𝑚(𝑥)  ∗  𝜓𝑛(𝑥) 𝑑𝑥 =  {
0,             𝑓𝑜𝑟 𝑚 ≠ 𝑛
𝜆𝑛,           𝑓𝑜𝑟 𝑚 = 𝑛

𝑥0

−𝑥0

 (2.15) 

Mathematically, the completeness property can be confirmed as follows [8]: 

It is understood from (2.11) that the linear prolate functions are band-limited over 

an infinite interval. If a band-limited function 𝑓(𝑥) is given, it can be expanded 

using prolate functions using the expression seen in equation (2.16): 

𝑓(𝑥) =  ∑ 𝑎𝑛 𝜓𝑛(𝑥)

∞

𝑛 = 0

 (2.16) 

Using equation (2.14), the coefficient 𝑎𝑛 can be expanded as follows: 

𝑎𝑛 = ∫ 𝑓(𝑦) 𝜓𝑛(𝑦) 𝑑𝑦

∞

−∞

 (2.17) 
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Substituting this 𝑎𝑛 back into equation (2.16) and exchanging the orders of 

summation and integration, we get: 

𝑓(𝑥) =  ∫ 𝑓(𝑦) 𝑑𝑦 ∑𝜓𝑛(𝑦) 𝜓𝑛(𝑥)

∞

𝑛=0

∞

−∞

 (2.18) 

Multiplying equation (2.16) with 𝜓𝑚(𝑥) and integrating on both sides over a finite 

interval |𝑥| ≤ 𝑥0 and by using orthonormality property of prolate functions in a 

finite interval given by equation (2.15), we get: 

𝑎𝑛 = 
1

𝜆𝑛
 ∫ 𝑓(𝑥) 𝜓𝑛(𝑥) 𝑑𝑥

𝑥0

−𝑥0

 (2.19) 

Using equation (2.13), equation (2.16), and equation (2.19), we can prove that:  

∑𝜓𝑛(𝑦) 𝜓𝑛(𝑥)

∞

𝑛=0

= 𝜋−1Ω 𝑠𝑖𝑛𝑐Ω(𝑦 − 𝑥) (2.20) 

Therefore, substituting equation (2.20) into equation (2.18), we get, 

𝑓(𝑥) =  𝜋−1Ω ∫ 𝑓(𝑦) 𝑠𝑖𝑛𝑐Ω(𝑦 − 𝑥) 𝑑𝑦

∞

−∞

 (2.21) 

Equation (2.21) is similar to a proven mathematical property which states that a 

band-limited function is its own sinc transform. This proves that the series provided 

in equation (2.16) converges to the required band-limited function 𝑓(𝑥) and that 

the prolate functions are complete on an infinite interval.   
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 Extrapolation property of Linear prolate functions 

Eigenvalues 𝜆𝑛 of prolate functions are an infinite scalar set of real positive 

numbers obeying the following relation:  

1 ≥ 𝜆0 > 𝜆1 > 𝜆2 > .  .  . > 0 (2.22) 

 

Figure 2.4. Progressively decreasing eigenvalues for increasing order ‘n’ 

Dividing equation (2.15) by equation (2.14), we get: 

 𝜆𝑛 = 
∫ [𝜓𝑛(𝑥)]

2 𝑑𝑥
𝑥0

−𝑥0

∫ [𝜓𝑛(𝑥)]2 𝑑𝑥
∞

−∞

 (2.23) 

Equation (2.23) clearly shows that 𝜆𝑛 measures the energy content of the linear 

prolate function in the interval. From Figure 2.4, for a fixed ‘c’ value the 

eigenvalues 𝜆𝑛 can be seen to reduce slightly from unity value until their order 

reaches a critical value given by: 

𝑛𝑐𝑟𝑖𝑡 = 
2𝑐

𝜋
 (2.24) 

After this critical value 𝜆𝑛 rapidly approaches zero but never truly reaches zero 

value. Furthermore, in terms of energy it can be seen that as the value of order ‘n’ 
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is increased the energy content of the prolate function moves outside the interval 

under consideration i.e. [−1,1]. Thus, the prolate function has an inherent 

extrapolation property with which the behaviour of the function everywhere with 

infinite limits can be predicted if the behaviour of the same function in band limited 

form is known over a finite interval. Mathematically an extrapolation formula can 

be derived by substituting equation (2.19) into equation (2.16): 

𝑓(𝑥) =  ∑ 𝜆𝑛
−1 𝜓𝑛(𝑥) ∫ 𝑓(𝑥′) 𝜓𝑛(𝑥′) 𝑑𝑥′

𝑥0

−𝑥0

∞

𝑛 = 0

 (2.25) 

The prolate filter extensively makes use of this extrapolation property for reducing 

inter-symbol interference.  

 

 Linear Prolate Functions are symmetric and they have exactly ‘n’ zeros in the interval 

±𝑡0 

 

Figure 2.5. Entire Prolate Function 𝜓20 

From Figure 2.5, it is observed that the prolate functions are symmetric in the 

interval t0 under consideration. Additionally, the number of zero crossings are 
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exactly equal to the order ‘n’ of the linear prolate function. In this case there are 20 

zero crossings since the order 𝑛 =  20. 

 

It is evident from Figure 2.5 that a linear prolate function is time-limited. The Fourier 

transform property states that the Fourier transform of a linear prolate function is a scaled 

version of the prolate function itself. Hence, it can be stated that the prolate function is 

band-limited as well. In this way, the prolate functions are able to solve the time-bandwidth 

concentration in the signal processing field.       
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CHAPTER 3: BACKGROUND INFORMATION 

In the previous chapter, the time-bandwidth concentration problem present in signal 

processing was solved by making use of linear prolate functions and its properties. In this 

chapter, the resolution problem in optics will be shown to be similar to the inter-symbol 

interference problem in baseband communication. Furthermore, some background 

information will be provided which helps in understanding the different techniques used 

by researchers to solve the resolution problem in optics.   

 

In the field of digital communication due to the band limited nature of the filter, the pulses 

transmitted through the channel expand outward and interfere with each other. The 

interference known as inter-symbol interference makes it difficult to obtain an accurate 

signal reconstruction at the receiver of a baseband communication system. A similar 

limitation can be seen in the resolving power of optical systems such as microscopes or 

telescopes. In imaging systems, each point being projected on a screen is expected to have 

a Dirac Delta response. However due to diffraction, the delta response stretches outwards 

and a pattern similar to a sinc function in two dimensions is obtained. The sinc function 

pattern in two dimensions appears as an airy disk with a main lobe or disk having maximum 

intensity and the side lobes of the sinc functions appear as surrounding disks with reducing 

luminous intensity. If two such airy disks are brought close to each other, it becomes 

demanding to isolate them. In other words, the resolving capability of the system is 

affected. Similar to Nyquist criteria, the lower limit for resolving two points projected on 

a screen as separate was provided by Rayleigh criterion. According to this criterion two 

points are considered to be resolved when the principal maximum of one of disk coincides 
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with the first minimum of the other [13]. According to the Rayleigh criterion a limit can be 

obtained at which an imaging system, such as a microscope is just able to resolve the two 

point as separate entities. This limit is as follows: 

 𝑑 =  0.61 
𝜆0

𝑛 sin 𝜃
 (3.1) 

where 𝜆0 is the wavelength of light in vacuum and 𝑛 sin 𝜃 is also known as the Numerical 

Aperture of the imaging system. For an imaging system, the numerical aperture describes 

the ‘light gathering power’ [13] i.e. the different angles over which the system can accept 

light. In this case, the illumination will be incoherent and the aperture will be circular.  

 

It is evident that the resolution problem in optics field is similar to the inter-symbol 

interference problem in digital communication field. Hence, the methodologies used for 

solving the resolution problem in optics can also be used to solve the inter-symbol 

interference problem. The best way to solve the resolution problem will be to reduce the 

width of the Airy disk or main maxima created by the point source thereby increasing 

resolution beyond Rayleigh limit. But this creates a detrimental effect of increase in 

brightness of the rings surrounding the main maxima. Several researchers in photonics field 

have tried to overcome this limitation with varying results. The methodologies used by 

different researchers and their disadvantages are detailed in the subsequent section.  
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The theory of reducing the main maxima width to increase the resolution was obtained 

from the field of microwave theory. After the introduction of microwave techniques 

researchers were looking into ways to obtain highly directional antennas. Schelkunoff [14] 

proposed that the amplitude of the signal radiated by a linear end fire array antenna of ‘n’ 

elements can be represented by a polynomial: 

𝐴0 + 𝐴1 exp[𝑖𝜓] + 𝐴2 exp[2𝑖𝜓] + ⋯+ 𝐴𝑛−1 exp[(𝑛 − 1)𝑖𝜓]

= 𝐴0 + 𝐴1𝑧 + 𝐴2𝑧
2 +⋯+ 𝐴𝑛−1𝑧

𝑛−1 

(3.2) 

where 𝐴0, 𝐴1 are complex amplitudes and 𝜓 =  
2𝜋𝑙

𝜆
, where 𝑙 is the spacing between 

elements of the antenna. In the complex plane for a uniform array, its zeroes are equispaced 

along the entire unit circle but Schelkunoff was able to show a remarkable increase in 

directivity by keeping the zeroes inside the unit circle corresponding to cos(𝜃)  ≤ 1.  
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Figure 3.1. Directive properties of two end fire antenna arrays with 𝑙 = 𝜆/8 [15]. 

In Figure 3.1, the curve A denotes the radiation pattern of a uniform array while curve B 

denotes highly directive antenna array due to zeroes being equispaced inside the unit circle. 

Although this theory was revolutionary at that time, it was difficult to implement this theory 

practically as there would be immense reactive currents generated by this antenna array.  

 

G. Toraldo Di Francia [15] understood the theory and translated it into optical terms. 

According to him diffracted rays are actually evanescent waves which get attenuated along 

a direction perpendicular to the pupil. A uniform antenna array has its zero’s or cones of 

silence spaced out equally in the region of radiating waves (cos(𝜃)  ≤ 1) and in the region 

of evanescent waves (cos(𝜃) > 1). Schelkunoff in his theory has removed the zeros from 

the evanescent region and transferred them into the radiating region. Due to this, the power 

wasted in the side lobes has been reduced while leaving the power transmitted in the main 
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lobe intact, thereby increasing the total directivity of the antenna. Similarly, in order to 

solve the optical problem G. Francia removed the rings surrounding the central maxima up 

to the region of evanescent waves or in practical terms outside the field of the instrument 

as shown in Figure 3.2:  

 

Figure 3.2. Stretching the luminous rings outside field of the instrument [15] 

He achieved this by making use of ring apertures of different diameters. Although this 

method achieved the desired objective of increase in resolution, a major disadvantage of 

this method was that large amount of luminous flux would be wasted in the ring aperture 

structure if higher reduction in the ring diameter was required. It was thus observed that 

the efficiency of this method was very poor.  

 

H. Osterberg and J. Wilkins [16] [17] have described a new approach to reduce the maxima 

of the Airy disk. Instead of using bulky ring apertures, they suggested to apply a coating to 
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the exit pupil such that it will reduce the diameter of the Airy disk and the rings surrounding 

the maxima will have low luminous intensity.  

 

Figure 3.3. An Optical System [16] 

This coating will alter both the amplitude and phase distribution of the diffraction pattern 

over the exit pupil. They deduced that such a coating could be obtained by expressing the 

diffraction pattern over the exit pupil as a series of Sonine Integrals. Each series of Sonine 

integrals had a unique coating function which described the amplitude and phase 

information of the refracting material which was to be coated on the exit pupil. In [16], 

they have presented results for a coating which only aims to reduce the radius of the central 

maxima of the Airy disk.  
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Figure 3.4. Comparison of four Sonine type Diffraction curves [16] 

In Figure 3.4, the dotted curve is the one observed for uncoated diffraction while the other 

4 curves are obtained by using a coating derived from Sonine Integrals. Even though the 

size of the maxima has reduced, the intensity of the maxima has also reduced which is 

unfavourable for the optical system. In [17], J. Wilkins has tried to negate this problem and 

increase the intensity of the maxima. 
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Figure 3.5. Diffraction pattern of varying radii of central maxima of Airy disk [17] 

Even though, the intensity of the maxima has increased as compared to Figure 3.4, it is still 

less than the intensity obtained for the uncoated diffraction pattern as seen in curve 1 in 

Figure 3.5. The limitation present in this theory is mainly due to finite scanning aperture.  

 

J. Harris in [18] has provided two important conclusions through his findings. Firstly, he 

has made use of the identity theorem or uniqueness theorem which states that for an 

absolute resolution limit to exist, the two objects need to have identical spectral frequencies 

within the pass band of the optical system and non-identical spectral frequencies outside 

the pass band. As two objects cannot have the same spectra (images), he concluded that 

limited precision is the only major factor limiting the resolving power of the system. This 

limit is determined by noise present in the system. He also stated that if the frequency 

spectra of an object within the pass band of an optical system is known, then it can be used 
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to determine the spectrum of the object beyond the pass band of the optical system. Finally, 

he also utilized the sampling theorem in the frequency domain to show the mathematical 

nature of a spatially bounded object. An object having finite dimensions can be defined 

completely using the Fourier series. He derived a formula relating the frequency 

spectrum 𝐺(𝑓𝑥, 𝑓𝑦) with the Fourier coefficients 𝐺𝑚𝑛. The expression is as follows: 

𝐺(𝑓𝑥, 𝑓𝑦) = 𝑋𝑌 ∑ ∑ 𝐺𝑚𝑛  
sin𝜋[(

𝑚
𝑋
) − 𝑓𝑥]𝑋

𝜋[(
𝑚
𝑋
) − 𝑓𝑥]𝑋

 ∗  
sin 𝜋[(

𝑚
𝑌
) − 𝑓𝑦]𝑌

𝜋[(
𝑚
𝑌
) − 𝑓𝑦]𝑌

∞

𝑛=−∞

∞

𝑚=−∞

 (3.3) 

Thus, by extrapolating the Fourier spectrum and taking the inverse Fourier transform, an 

image can be obtained which has more detail as compared to the original image, due to the 

increase in resolution. 

 

C. Barnes in [19] was the first one to effectively make use of prolate functions in object 

restoration procedure. He stated that any imaging system can be characterized by a linear 

integral operation  

 𝑏(𝜉) =  ∫𝑔(𝜉, 𝑥) ∗ 𝑎(𝑥)𝑑𝑥 (3.4) 

where  𝑏(𝜉) is the complex amplitude of the image and 𝑎(𝑥) is the complex amplitude of 

the object and 𝑔(𝜉, 𝑥) is the imaging kernel or the point amplitude response. By making 

use of various favourable properties of prolate functions, he concluded that by increasing 

the order ‘N’ of the prolate functions the response of the image kernel becomes more like 

a Dirac Delta function: 
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Figure 3.6. Point response of an imaging 

system using prolate functions N = 2 

 

Figure 3.7. Point Response of an imaging 

system using prolate functions N = 8 

In Figure 3.6 and Figure 3.7, the dotted line is the point response of an ordinary imaging 

system without the use of prolate functions. The main aim in such type of object restoration 

procedure is to have a point response as narrow as possible. A fine point amplitude response 

will provide a higher resolution which will increase the amount of detail in the image. This 

increase in detail will provide a sharper and visually better restored image. Although, the 

procedure suggested by Barnes solved the illumination problem present in the works of 

Osterberg and Wilkins, it still had its limitations. The point response outside the 

range (−1,1) becomes extremely large as we increase the order ‘N’ of the prolate functions 

(to obtain a perfect Dirac delta response). In practice, to obtain a perfect response, great 

care has to be taken not to allow any stray light to be present. 

 

In this way, several researchers have used various techniques to solve the resolution 

problem. But each method explained previously has a drawback which was solved by 

Frieden in [8] which will explained in the next chapter.  
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CHAPTER 4: IMPLEMENTATION 

In this chapter the theory used to develop the filter algorithm by Frieden, which overcomes 

all of the previously mentioned limitations will be explained. Additionally, the theory will 

also be verified by comparing the results of Frieden with simulated results obtained in the 

Mathematica software package. The sampling theorem which was detailed in Chapter 1:, 

was simulated in Mathematica software and its results are presented in this chapter. 

Furthermore, some basic concepts of interpolation which is the most important step in the 

filter algorithm will also be detailed.  

 

4.1. Basic Theory 

B. Frieden [8] combined the different methodologies mentioned previously in the review 

of literature and fashioned a theory which has solved most of the shortcomings in the work 

done previously by various researchers. He used linear prolate functions to construct a 

point amplitude response whose side-lobes do not increase in size even when the order ‘n’ 

of the prolate function is increased. It is known that the Fourier transform of a unity 

function is a Dirac Delta function. But this statement is not true if a finite Fourier transform 

is used. Thus, we can say that there are no functions available today whose finite Fourier 

transform is a Delta function. However, with the help of linear prolate functions we can 

obtain a function whose finite Fourier transform can provide a Dirac delta function up to a 

finite extent. 

 

Therefore, we need a function which has the following property: 
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 ∫ 𝑑𝜔 𝑈(𝜔) ⋅ 𝑒𝑗𝜔𝑥 =  𝛿(𝑥)  𝑓𝑜𝑟 |𝑥| ≤  𝑥0

𝛺

−𝛺

 (4.1) 

Since 𝑈(𝜔) is only defined over a finite interval |𝜔| ≤  Ω, equation (4.1) can also be 

written as 

 𝑈(𝜔) =  ∑ 𝑎𝑛 ⋅  𝜓𝑛(𝜔𝑥0/𝛺)

∞

𝑛 = 0

 𝑓𝑜𝑟 |𝜔| ≤  Ω (4.2) 

Substituting equation (4.2) back into equation (4.1) we find that coefficient 𝑎𝑛 is needed to 

satisfy 

(2𝜋𝛺/𝑥0) 
1/2

 ∑ 𝑗𝑛 𝜆𝑛
1/2

∞

𝑛 = 0

 𝑎𝑛 𝜓𝑛(𝑥) =  𝛿(𝑥) 𝑓𝑜𝑟 |𝑥| ≤  𝑥0 (4.3) 

The completeness and orthogonality property of linear prolate functions as seen in equation 

(2.15) can also be written as follows: 

 ∑ 𝜆𝑛
−1 𝜓𝑛(0) 𝜓𝑛(𝑥) =  𝛿(𝑥)  

∞

𝑛 = 0 

𝑓𝑜𝑟 |𝑥| ≤  𝑥0 (4.4) 

By comparing equation (4.3) and equation (4.4) we can find coefficient 𝑎𝑛 

 𝑎𝑛 = (𝑥0/2𝜋𝛺)
(1/2) 𝑗−𝑛 𝜆𝑛

−3/2 𝜓𝑛(0) (4.5) 

Substituting 𝑎𝑛 from equation (4.5) back into equation (4.2) 

UM(ω) = (x0/2πΩ)
(1/2) ∑ (−1)n/2λn

−3/2ψn(0)ψn(ωx0/Ω)

M

n (even) = 0

 (4.6) 
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In order to evaluate equation (4.6) in practice, the upper limit of the summation was 

changed from ∞ to M. ‘M’ indicates the maximum number of terms required to get the 

required response. In the rest of this thesis ‘M’ will be referred to as the threshold value. 

In optics, the function U40(ω) is also known as the Pupil function. A Pupil function 

indicates how a light wave is affected as it travels through an optical imaging system such 

as a camera or a microscope. The function U40(ω) obtained in the frequency domain is as 

follows: 

 

Figure 4.1. Pupil Function for M = 40 [20] 

The inverse Fourier transform of the pupil function provides the required Dirac delta 

function as seen in equation (4.7) and the response it generates is as seen in Figure 4.2: 

 𝛿𝑀(𝑥) =  ∑𝜆𝑛
−1

𝑀

𝑛=0

 𝜓𝑛(0) 𝜓𝑛(𝑥) (4.7) 
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Figure 4.2. Point Amplitude response of pupil function for M = 40 and for an uncoated 

aperture [20] 

In Figure 4.2, the dotted curve is the point amplitude response from an uncoated aperture 

while the solid curve is obtained from the inverse Fourier transform of the pupil function 

with a threshold value of M = 40. The response denoted by the solid curve can be improved 

by increasing the threshold value in equation (4.6).   
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4.2. Interpolation 

Interpolation was an important step required in the algorithm for implementing inverse 

Discrete Fourier transform with high precision and accuracy. The idea for using 

interpolation while maintaining high precision of the values before integration was 

obtained from a concept proposed by A. Devasia and M. Cada in [21]. In [21], a piecewise 

polynomial interpolation is used to calculate the overlap integral with high precision. It is 

well understood that two points form a straight line. To be exact, these two points define a 

polynomial of a certain degree (one in case of two points) whose graph passes through 

these two points. In the same way ‘n’ number of points can define a specific ordered 

polynomial given by: 

 𝑝𝑛 = 𝑎0 + 𝑎1𝑥
1 + 𝑎2𝑥

2 + 𝑎3𝑥
3 +⋯+ 𝑎𝑛𝑥

𝑛 (4.8) 

where ‘n’ denotes the number of coefficients as well as the order of the interpolating 

polynomial. In this way, the entire time interval for a linear prolate function 

between [−1,1] which contains 2001 samples is divided into 8 segments i.e. each segment 

contains 251 samples of the scalar product contained within the overlap interval. A 

piecewise polynomial interpolation as seen in (4.8) is applied on each of these samples due 

to which a polynomial of high order is obtained which is then integrated to obtain the 

required overlap integral [21]. The sampling process provides the user with points which 

describes the behavior of the function over a time period. In most cases while simulating 

continuous data with discrete data points, interpolation is used on the known values so that 

a value in between these known values can be found. This value approximates the behavior 

of the function between those two points most accurately. There are different types of 
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interpolations defined in the literature. Due to the simplification of the numerical analysis, 

the amount of interpolation error depends upon the interpolation type and the data used. 

Papoulis in [22] has provided some important conclusions regarding the problem of 

estimating errors arising from simplification of various numerical operations involving 

band limited signals. He states that the maximum value of the interpolation error can be 

minimized only by properly selecting the interpolation coefficients.   

In this case Hermite Interpolation is used as it provides the desired high accuracy due to 

which the inverse Fourier transform is possible. In this type of interpolation, first order 

derivatives are also used to provide a better approximation of the function. The 

interpolation error when Hermite interpolation is used depends on the space between two 

data points. Thus a major disadvantage observed in this interpolation type is, when higher 

order polynomials are used the interpolation starts to exhibit oscillatory behavior near the 

end points. 
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4.3. Implementation Using Mathematica     

In this thesis, the entire theory was implemented on a software package known as 

Mathematica version 9.0. Mathematica is a type of computational software which utilizes 

symbolic mathematics for calculation and analysis purposes. It was invented by Stephen 

Wolfram and is developed by Wolfram Research of Champaign, Illinois. The reasons why 

Mathematica was used are as follows: 

 Mathematica provides a very high accuracy for any results obtained through various 

operations as compared to other universally used commercial software such as Matlab, 

C++ or Java. 

 In order to perform higher order calculations such as summation or integration 

multiple times, other software requires construction of various functions and loops but in 

Mathematica the same thing can be done with relative ease with the help of a single 

command. 

 Automatic translation of English language into Wolfram code. 

 Support for complex numbers, interval arithmetic and symbolic computation. 

 Tools for parallel programming. 

For the implementation of B. Frieden’s theory to be successful the prolate functions had to 

be calculated to a very high accuracy. Machine accuracy is of only 15 digits meaning that 

after the decimal point only 15 digits are considered correct or significant, while the 

remaining digits are wrong or insignificant. This limited accuracy was a major reason why 

researchers in the past have not been able to use prolate functions effectively in various 

applications. Dr. Michael Cada was able to successfully implement prolate functions in 
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Mathematica with a very high accuracy of 200 digits. In previous literature the researchers 

have only been able to use c (space bandwidth product parameter) values up to 40, but with 

very low accuracy. However, with the help of a proprietary algorithm developed by Dr. 

Cada the c values up to 200π or higher can be easily defined with very high accuracy. In 

this thesis three c values namely 2π, 10π, and 20π were used for modelling of the prolate 

filter in Mathematica. Furthermore, all the different input signals for the algorithm were 

generated by making use of highly accurate linear prolate functions. 

 

Initially the linear prolate filter was designed in Mathematica. Its time domain response 

obtained from an inverse Fourier transform was then compared with the time domain 

response of an ideal low pass filter with bandwidth ± 2𝜋. The low pass filter can be 

generated using linear prolate functions as seen in equation (4.9):  

𝑓(𝑥) =  ∑ (−1)𝑛/2 𝜆𝑛
(−
1
2
) 𝜓𝑛(0) 𝜓𝑛(ωx0/Ω)

𝑀

𝑛 (𝑒𝑣𝑒𝑛) = 0

 (4.9) 

where all the prolate functions and eigenvalues are dependent on 𝑐 = 2𝜋. The response is 

seen in Figure 4.3: 
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Figure 4.3. Frequency domain response of an ideal low pass filter 

The time domain response of the ideal filter can be obtained by an inverse Fourier 

transform as seen in Figure 4.4.  

 

Figure 4.4. Time Domain Response of an ideal Low pass filter 

The frequency domain response of the prolate filter is obtained from equation (4.6). The 

corresponding frequency and time domain response plots for the prolate filter are as seen 

in Figure 4.5 and Figure 4.6 respectively: 
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Figure 4.5. Frequency Domain Response of Prolate filter with M = 60 

 

Figure 4.6. Time Domain Response of Prolate Filter with M = 60 

The response obtained in Figure 4.6 from a prolate filter can also be obtained from the ideal 

low pass filter if the bandwidth of the filter is increased. But this increase in bandwidth 

leads to several limitations which will be explained in the results and discussion chapter.    
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Figure 4.7. Comparison of time domain response of ideal filter with prolate filter 

In Figure 4.7, by comparing the two time domain plots it can be clearly seen that the prolate 

filter has artificially increased the bandwidth of the low pass filter which provides an 

increased resolution in the time domain response. This response can be improved further 

by increasing the threshold value ‘M’. Furthermore, the total increase in resolution can be 

defined by equation (4.10) [8]. 

𝛿𝑀 ≈ 
3𝑐

𝑀𝜋
 (4.10) 

where c is the space bandwidth product parameter and M is the threshold value of the pupil 

function in equation (4.6). 𝛿𝑀 in the equation (4.10) indicates the approximate width of the 

main lobe of the sinc signal obtained after performing inverse Fourier transform on the 

prolate filter. In this case, for 𝑀 = 60 the core width is approximately 0.1. 
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4.4. Implementation of Sampling Theorem in Mathematica     

According to sampling theorem, the phenomena of aliasing occurs in a signal if the signal 

is sampled at a frequency less than twice the Nyquist frequency. Nyquist frequency as 

stated in Chapter 1:, is equal to the maximum frequency of the input signal. Hence, in order 

to verify if a prolate filter can be used as an antialiasing filter, the sampling theorem must 

first be simulated so that the Nyquist frequency can be obtained from the simulation. All 

of the signals used for the simulation are obtained by making use of prolate functions with 

a Slepian frequency of 𝑐 = 2𝜋. 

The input signal used for implementing sampling theorem in Mathematica is as shown in 

Figure 4.8: 

 

Figure 4.8. Input Signal in the Time Domain 

The frequency domain response of the input signal to determine the maximum frequency 

of the input signal is as shown in Figure 4.9: 
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Figure 4.9. Frequency Domain Response of the Input Signal 

The maximum frequency of the input signal is 𝑓𝑁 = 8 𝐻𝑧. Hence, in order to avoid aliasing 

in the signal the sampling frequency should be greater than 16Hz. The input signal was 

initially sampled by a train of impulses with a sampling frequency 𝑓𝑠 = 25.78 𝐻𝑧 as shown 

in Figure 4.10: 

 

Figure 4.10. Train of Impulses with sampling frequency 𝑓𝑠 = 25.78 𝐻𝑧  

The effect of aliasing can be easily observed from the Frequency domain hence the sampled 

signal is converted to the frequency domain by using a Fourier transform. As the sampling 
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frequency is greater than twice the maximum frequency of the input signal i.e. 𝑓𝑠 > 2𝑓𝑁, 

no aliasing is obtained in the frequency domain of the signal as seen in Figure 4.12:   

 

Figure 4.11. Time Domain Response of the Resultant Signal  

 

Figure 4.12. Frequency Domain Response of the Resultant Signal 

The input signal was then sampled by a train of impulses with a sampling frequency less 

than twice the maximum frequency of the input signal i.e. 𝑓𝑠 < 2𝑓𝑁 which is as seen in 

Figure 4.13: 
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Figure 4.13. Train of Impulses with sampling frequency 𝑓𝑠 = 16.20 𝐻𝑧 

The frequency domain response of the resultant sampled signal is as seen in Figure 4.14: 

 

Figure 4.14. Frequency Domain Response of the Resultant Sampled Signal 

 As 𝑓𝑠 < 2𝑓𝑁, aliasing occurs in the signal which is an undesirable effect as it complicates 

the reconstruction of the signal at the receiver.  

Thus, the sampling theorem was implemented in Mathematica and the Nyquist rate for an 

input signal was calculated. Furthermore, Frieden’s methodology for reducing the width of 

the main lobe while keeping the amplitude of the side lobes to a minimum was successfully 
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implemented in Mathematica software. The highly accurate linear prolate functions was 

the main feature added to this research. The major advantage of using highly accurate linear 

prolate functions is that higher values of order ‘n’ and higher c values can be obtained with 

ease. The calculated Nyquist frequency will be used to verify, if a prolate filter can be used 

as an antialiasing filter which will be seen in the next chapter. The different results, 

obtained by using the prolate filter in the receiver of a baseband transmission system for 

various c values, will also be detailed in the next chapter.  
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CHAPTER 5: RESULTS AND DISCUSSION 

In the previous chapter B. Frieden’s theory of super-resolving pupils and the sampling 

theorem was successfully implemented in Mathematica. This chapter will be divided into 

three main sections. Firstly, the results of using prolate filter at the receiver side of a 

baseband communication system will be detailed. Secondly, the results of a simulation 

used to verify if a prolate filter can be used as an anti-aliasing filter will also be described. 

Finally, the effects of varying different important parameters of the prolate filter on the 

output of the receiver will also be shown.  

 

5.1. Application of the prolate filter in a Baseband Receiver 

In this section Frieden’s theory discussed in the previous chapter will be used to solve a 

major limitation in the digital communication field. In a nutshell, the prolate filter will be 

used to reduce the inter-symbol interference in a digital communication system. In the field 

of digital communication, baseband transmission of information pulses is severely affected 

by Inter-symbol interference which occurs because of the band limited nature of the filters 

and it causes the apparent widening of the pulses after travelling through the 

communication channel.  

 

Figure 5.1. A Communication Channel 

Consider a simple communication channel as seen in Figure 5.1 where an information 

signal with data bits 1001 is generated by the transmitter: The data which is initially 

Transmitter Channel Receiver 
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generated at the transmitter is converted into rectangular pulses for transmission as seen in 

Figure 5.2. 

 

Figure 5.2. Transmitted Digital Signal 

In signal processing for calculating the output of any system, time domain analysis using 

convolution can be extremely complex and time consuming. Hence, in order to simplify 

the calculations, a frequency domain analysis is considered by performing a Fourier 

transform operation on the input signal as seen in Figure 5.3: 
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Figure 5.3. Fourier Transform of the Transmitted Signal 

Any communication channel generally adds noise to the transmitted signal which can be 

removed at the receiver with a low pass filter. Inter-symbol interference due to bandwidth 

limitation is the major issue considered in this thesis. Hence, the bandwidth under 

consideration i.e. ± 2𝜋 of the channel is considered noiseless.  

 

Figure 5.4. Frequency Response of an ideal low pass filter at the receiver  

Since frequency domain analysis is used, the input signal at the receiver will be the product 

of the Fourier transform of the transmitted signal multiplied by the frequency response of 
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the filter at the receiver as seen in Figure 5.4. With the aim of obtaining the information 

signal back in the time domain at the output, an inverse Fourier Transform operation is 

performed. But due to the band-limited response of the filter, side-lobes of the sinc signal 

which contain valuable information for signal reconstruction are lost. The reconstruction 

of the information signal is severally affected because of this as seen in Figure 5.5: 

 
Figure 5.5. Reconstructed Signal using Ideal Low pass Filter 

The reconstruction of the signal can be vastly improved by expanding the bandwidth of the 

low pass filter at the receiver. The reconstructed signal obtained by expanding the 

bandwidth of the low pass filter is as seen in Figure 5.6:  

 

 
Figure 5.6. Reconstructed Signal Using a filter with increased bandwidth 
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There are several factors which limit this expansion of bandwidth in the filter. Firstly, if 

the bandwidth of the filter is increased further it increases the high frequency noise in the 

signal which defeats the major purpose of a low pass filter. Secondly, the increase in 

bandwidth also increases the amount of losses in the hardware circuit used to realize the 

filter in physical form. Moreover, the increase in bandwidth also leads to a phenomenon 

known as Skin effect where the electrical signals passing through the wires travel towards 

the edge of the wire. This increases the amount of losses in the system and also decreases 

the signal to noise ratio. This can be avoided by increasing the tolerance levels of the 

components but it causes the components to become more bulky which is unfavorable for 

a communication system. 

 

In order to overcome these limitations of physically increasing the bandwidth of the filter, 

one can increase the bandwidth artificially by making use of a prolate filter. The response 

equation of the prolate filter in question is as seen in equation (4.6) and the response it 

generates is as seen in Figure 5.7. The bandwidth range of the prolate filter in this case is 

from -2π to +2π. 
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Figure 5.7. Frequency Response of a Prolate Filter with order M = 40 

The reconstructed signal obtained by using a prolate filter is as seen in Figure 5.8 and is 

the same as the one obtained by physically increasing the bandwidth of the filter as seen in 

Figure 5.6.  

 
Figure 5.8. Reconstructed Signal using prolate filter with M = 40 

The response of the prolate filter can be improved further by increasing the threshold value 

‘M’ in equation (4.10) as seen in Figure 5.9.  
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Figure 5.9. Reconstructed Signal using prolate filter with M = 60 

It can be seen from Figure 5.10 and Figure 5.11 that the prolate filter successfully reduces 

inter-symbol interference in a system even when the input information signal is changed. 

 
Figure 5.10. Reconstructed Signal obtained from Data Signal – 1001001 with maximum 

order M = 40. 
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Figure 5.11. Reconstructed Signal obtained from Data Signal – 1001001 with maximum 

order M = 60. 
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5.2. Application of the prolate filter in a Baseband transmitter 

An anti-aliasing filter is a filter used to reduce the undesirable phenomena of aliasing from 

the input signal. The anti-aliasing filter can be used before sampling the signal (pre-

filtering) or even after sampling the signal (post-filtering). In practice, when the signal 

structure is not entirely known, pre-filtering is used. In this simulation, pre-filtering method 

is used as well and the Slepian frequency used for generation of various signals in this 

entire simulation was 𝑐 = 2𝜋. The simulation was divided into three main stages where 

first, results were obtained using an ideal low pass filter for anti-aliasing. Second, results 

were obtained using a prolate filter for anti-aliasing after which both results were compared 

to verify if the prolate filter could be used as an anti-aliasing filter.  

Consider an input signal as shown in Figure 5.12: 

 

Figure 5.12. Time Domain Response of the Input signal 

The frequency response of this signal whose maximum frequency is 𝑓𝑁 = 8.13𝐻𝑧 is as 

seen in Figure 5.13: 
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Figure 5.13. Frequency Response of the Input Signal 

In order to observe aliasing phenomena in this signal as seen from the previous chapter, 

the sampling frequency i.e. 𝑓𝑠 is kept lower than twice Nyquist frequency i.e. 2𝑓𝑁. In the 

first stage of the simulation, the signal is pre-filtered by an ideal low-pass filter with 

maximum frequency equal to 8.13Hz which is as seen in Figure 5.14:  

 

Figure 5.14. Frequency response of ideal low pass anti-aliasing filter 

An inverse Fourier transform operation was performed on the resultant pre-filtered output 

signal in order to obtain the time domain response which is as seen in Figure 5.15:  
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Figure 5.15. Time domain response of the pre-filtered signal 

This pre-filtered signal was then sampled with sampling frequency 𝑓𝑠 = 16.2𝐻𝑧 which is 

less than twice the maximum frequency of the input signal 2𝑓𝑁, as seen in Figure 5.16: 

 

Figure 5.16. Time Domain Response of train of impulses with 𝑓𝑠 = 16.2𝐻𝑧 

The aliasing was then observed by plotting the frequency response of the sampled signal 

as seen in Figure 5.17: 
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Figure 5.17. Frequency response of the sampled signal using ideal low pass filter 

If frequency response of the pre-filtered signal, as seen in Figure 5.17, is compared with 

the frequency response of the signal without pre-filtering, as seen in Figure 4.14, it is seen 

that the aliasing present due to lower sampling rate has not reduced. If the bandwidth of 

the ideal low pass filter is reduced further then the aliasing present in this case can be 

completely removed but this will cause loss of signal components which is undesirable in 

baseband applications. 

In the next stage of the simulation, a prolate filter was used as a pre-filter with its virtual 

bandwidth equal to the bandwidth of the ideal low pass filter with maximum frequency 

equal to 8.13Hz and it physical bandwidth was kept equal to 6.25Hz. A prolate filter with 

Slepian frequency 𝑐 = 2𝜋 was tested but the accuracy of the resultant calculations was not 

high enough due to which the inverse Fourier transform operation failed. Hence, the 

Slepian frequency used for the prolate filter in this simulation is 𝑐 = 10𝜋. All the steps 

used for pre-filtering were kept same as the steps in the first stage. The frequency response 

of the prolate filter and the resultant frequency response of the sampled signal is as seen in 

Figure 5.18 and Figure 5.19 respectively:  

20 10 10 20
Frequency

0.2

0.4

0.6

0.8

1.0

Amplitude



70 
 

 

Figure 5.18. Frequency response of the Prolate filter with 𝑐 = 10𝜋 

 

Figure 5.19. Frequency response of sampled signal using prolate filter 

If the frequency response of the output sampled signal in Figure 5.19 is observed, it is seen 

that aliasing is not reduced by using prolate filter for anti-aliasing. Thus, the prolate filter 

in this instance did not prove to be a good anti-aliasing filter because the virtual bandwidth 

of the prolate filter was greater than its physical bandwidth. If the virtual bandwidth of the 

prolate filter is reduced further then it will also reduce the physical bandwidth of the prolate 

filter which may lead to loss of signal components which is undesirable. But, it is worth 

noting that even though frequency response of the output sampled signal obtained in both 

6 4 2 2 4 6
Frequency

0.4

0.2

0.2

0.4

0.6

0.8

1.0

Amplitude

20 10 10 20
Frequency

0.2

0.4

0.6

0.8

1.0

Amplitude



71 
 

cases is the same, the bandwidth requirement for the ideal low pass filter case (𝐵𝑊 =

8.13𝐻𝑧) is more as compared to the physical bandwidth required by the prolate 

filter (𝐵𝑊 = 6.25𝐻𝑧). The reduced physical bandwidth of the filter will provide various 

practical advantages such as construction of the filter using cheaper components, reduction 

in RC losses which will reduce the noise interference in the system. 
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5.3. Effects of variation of space-bandwidth parameter ‘c’ on the prolate 

filter 

The linear prolate functions used to design prolate filters are dependent on space bandwidth 

product parameter ‘c’. The prolate filters described until now have a parameter value of 𝑐 =

2𝜋. For a total filter bandwidth range of −10𝜋 < 𝐵𝑊 < 10𝜋 and 𝑐 = 10𝜋 the 

reconstruction of an input signal is as seen in Figure 5.20 and Figure 5.21:  
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Figure 5.20. Reconstructed Signal obtained from Data Signal – 1001001 with maximum 

order M = 60 with 𝑐 = 10𝜋. 

 
Figure 5.21. Reconstructed Signal obtained from Data Signal – 1001001 with maximum 

order M = 96 with 𝑐 = 10𝜋. 

Similarly, for a total filter bandwidth range of −20𝜋 < 𝐵𝑊 < 20𝜋 and 𝑐 = 20𝜋 the 

reconstruction of an input signal is as seen in Figure 5.22 and Figure 5.23: 
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Figure 5.22. Reconstructed Signal obtained from Data Signal – 10101 with maximum 

order M = 60 with 𝑐 = 20𝜋. 

 
Figure 5.23. Reconstructed Signal obtained from Data Signal – 10101 with maximum 

order M = 96 with 𝑐 = 20𝜋. 

For suitable signal reconstruction the value of space-bandwidth parameter ‘c’ must be 

equal to or greater than the bandwidth of the channel under consideration as seen in Figure 

5.24 for a channel bandwidth of ± 2𝜋:  
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Figure 5.24. Reconstructed Signal using a prolate filter with c ≥ BW of the filter. 

 

 If the value of c is less than the bandwidth of the channel, then the prolate filter fails as 

seen in Figure 5.25 for a channel bandwidth of ±20π: 

 
Figure 5.25. Reconstructed Signal using a prolate filter with c ≤ BW of the filter. 
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5.4. Effects of variation of threshold value ‘M’ on the prolate filter  

The critical value for 𝑐 = 2𝜋 is approximately 4 and the threshold value ‘M’ which 

provides satisfactory signal reconstruction is equal to 40 or higher which is almost ten times 

the critical value. Consider a prolate filter with a bandwidth of range −20𝜋 < 𝐵𝑊 < 20𝜋 

and 𝑐 = 20𝜋. For a threshold value M = 40 the signal reconstruction is as seen in Figure 

5.26.  

 
Figure 5.26. Reconstructed Signal for c= 20Pi and M = 40. 

The signal reconstruction obtained from a prolate filter is the same as the one obtained 

from an ideal low pass filter. In order to improve the fit of the signal the extrapolation 

property is extremely useful. For satisfactory signal reconstruction the threshold value M 

should be above the critical value ncritical as seen in equation (2.24). By using the inherent 

extrapolation property of the linear prolate functions the orders above ncritical can be utilized, 

thereby using the large amount of energy available outside the interval to improve signal 

reconstruction as seen in Figure 5.27. 
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Figure 5.27. Reconstructed Signal for c= 20Pi and M = 96. 

 

Thus, it was shown that a prolate filter can be used to effectively reduce the inter-symbol 

interference in a baseband communication system. It can also be used as an antialiasing 

filter in the transmitter section if loss of signal components is acceptable. Additionally, the 

interference reducing capability of the filter can be improved further by increasing the 

threshold value ‘M’ of the prolate filter.  

  



78 
 

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

6.1. Conclusions 

This thesis presents an innovative way to design a filter which can reduce Inter-symbol 

interference in a baseband communication system. Highly accurate linear prolate functions 

were used to design the filter. The major advantage of using a prolate filter is that it 

physically consumes bandwidth similar to an ideal low pass filter while providing an 

interference reducing capability similar to a low pass filter which has an extended 

bandwidth. Hence, it can be stated that the prolate filter synthetically increases the 

bandwidth of the ideal low pass filter. The interference reducing capability of the filter can 

be further improved by increasing the threshold value ‘M’ of the filter.  

 

The interference reducing capability of a prolate filter will be same as an ideal low pass 

filter when the threshold value is equal to 𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 given by 
2𝑐

𝜋
. The artificial increase in 

bandwidth works only for a threshold value above 𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙. Furthermore, in order to reduce 

complexity and to obtain the best interference reduction capability, the value of space-

bandwidth parameter ‘c’ should be equal to the bandwidth required by the channel. 

 

It was also shown that although the filter performance of the prolate filter is similar to that 

of a normal ideal low pass anti-aliasing filter, its bandwidth requirement is lower as 

compared to the normal filter. Hence, if the prolate filter is realised physically, its use will 

lead to use of cheaper components which is practically quite advantageous. 
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6.2. Future Work    

Even though, this research has proved the effectiveness of a prolate filter in reducing Inter-

symbol interference in a baseband transmission there is still scope for future work. Firstly, 

the simulation based results in this thesis can also be obtained in the real world by 

implementing the prolate filter physically on an integrated circuit (IC). Secondly, in order 

to further improve the filter performance a comprehensive noise analysis with respect to 

the linear prolate functions can be done and the complex response of the prolate filter i.e. 

with respect to phase can also be studied. In Chapter 2: of this thesis, problems in the field 

of optics and quantum mechanics have been shown to be similar to those in the digital 

communication or signal processing field. Past literatures [19], [20] have shown that these 

functions have been used in optics to increase the resolution of a beam by narrowing its 

point amplitude response. If these highly accurate linear prolate functions can solve the 

Inter-symbol interference problem in digital communication, they can also be used to solve 

problems in other fields. Additionally, the increased accuracy of the prolate functions can 

further improve the results of past literatures. Similarly, the prolate filter can be used in the 

field of image processing to obtain super resolution in images.      
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