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Abstract

The Makishima Mackenzie model, used to predict the elastic properties of glass,

is explored in terms of both accuracy and predictive properties. Its limitations are

outlined, in particular for borate glass, and a new framework is proposed to explain the

mechanics that underlie the elasticity of network systems. This framework explains

the limitations of the Makishima Mackenzie model, and why it functions in many but

not all cases. The overall level of rigidity of the system can be predicted with the

counts of the number of constraints and degrees of freedom in a system.

Simulations are also performed that explore the dependency of elastic properties

on various variables. The density of a system is found to be independent of elasticity,

while the average coordination number is found to be strongly dependent. A new

equation is determined that connects the Young’s modulus and the average coordi-

nation number, applicable for constrained systems.
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Chapter 1

Introduction

The elastic properties of materials describe how they respond to small deformations

- deformations that do not fracture the material and allow it to return to its original

state once the deformation is no longer applied (1). Material requirements for vari-

ous applications differ greatly, from very stiff to compliant. In order to create a new

material that has a desired elasticity, it is necessary to understand how elastic prop-

erties arise and to be able to predict them. A good understanding of how varying the

chemical composition will make the process of selecting a new material more efficient

by narrowing the choice to the most promising of potential materials (2).

Glass in particular is an exciting field of research, with many different possible

applications, from smartphone covers, to fibre optic networks, to basic window glass.

Each of these applications require different elastic properties, and so different types

glass are used for them. The importance of methods to connect the macroscopic

properties of glass to the chemical structure was outlined in a paper from Corning

Incorporated in 2014 (2) which states, ”It is ... critical to conduct fundamental re-

search to develop a detailed understanding of the composition ... dependence of glass

structure and its relationship to macroscopic properties.” This fundamental research

will build on the model that was outlined in the 1970s by A. Makishima and J. D.

Mackenzie (3) that aims to predict the elastic properties of oxide glasses based on the

structural properties of their component crystal oxides.

The glasses considered in this study, and indeed most types of glass, are composed

of different oxide crystals combined at high temperatures. Crystals have long range

1
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Figure 1.1: The Difference Between a Glass and a Crystal. Figure reproduced from
reference (4).

order, and are made up of repeating units throughout the whole material. In contrast,

glass has no long range order. However, it shares its short range order with the crystals

it is made up of, and has the same basic chemical units as in a crystal. The difference

is that there is no order in how those units are arranged over long distances. This

difference is illustrated in figure 1.1. In the case of SiO2, the silicon atoms are bonded

to four oxygen atoms in a tetrahedral coordination, and each oxygen atom is bonded

to two silicon atoms in a bent coordination. The chemical bonding properties are very

similar in both the glass and the crystal, so the properties of the crystal should be

correlated with the properties of the glass.

Indeed, the Makishima Mackenzie model uses the properties of the component

crystals that are used to create a glass to predict its properties. To be able to make

this prediction, the model must develop a way to account for the lack of long range

order in glass - long range order that is present in the crystal. The model works

rather well for many different types of glass, but unfortunately fails quite badly for
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glasses made from B2O3, as outlined in the original Makishima Mackenzie paper.

Its successes and failures are a result of its description of how elastic properties are

related to the underlying structure of the glass. It posits that glass is made up of a

series of units defined by the coordination centres (Silicon and Oxygen in the case of

silicate glass) and assumes these centres interact as a group of elastic balls, with their

stiffness defined by their bond dissociation energy. The bond dissociation energy used

was determined using the methods created by Sun and Huggins in 1946 (5).

Makishima and Mackenzie’s model has been used frequently to predict the elastic

properties of glasses, with over one hundred citations. It was originally derived for the

Young’s modulus, but later extended to calculations of the other elastic properties (6).

There are numerous examples of the MM model being used to confirm experimental

measurements in a large variety of systems: phosphate glasses (7), borate glasses

(8; 9; 10), and silicate glasses (11), with various different components in the glass.

The researchers in all these cases used the key elements of the MM model to make

arguments about the underlying structural properties of the glasses tested.

However, if there are problems with the model, making structural arguments on its

basis may be problematic. For example, for borate glasses, the researchers generated

their theoretical predictions using a correction proposed by Makishima and Mackenzie

in their original paper (8; 9; 10). Huang’s et al. DFT and MD calculations give reason

to dispute the validity of this correction (12; 13).

Additionally, the model is found to fail in a number of papers, not matching

experimental properties well: some papers showed predicted values far from those

calculated by the MMmodel (14; 15), others had success for only specific compositions

and not across a glass series (16). These failures suggest some limitations of the

model, and others have attempted to improve the model to avoid similar failures. In

a paper on “Elastic Properties and Short-to Medium-Range Order in Glasses” in the

Journal of the American Ceramics Society, Rouxel outlines the assumptions of the
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MM model, and questions in particular a logical leap the model makes from crystal to

glass structure (17). This question will be considered in more detail below. In another

piece for the same journal, Inaba et al. (18) suggest improving the model by refining

the data input, but do not question any of the model’s underlying assumptions. These

result in empirical improvements to the predictions of the model for specific systems.

Applications of empirical improvements however are unsatisfactory, as the dra-

matic failure of the model for borate glass suggests that there may be more fun-

damental issues. Thorpe (19) suggests a connection between elastic properties and

bond order. His paper in The Journal of Non-Crystalline Solids outlines the concept

of percolation and suggests a new one of rigidity percolation. Rigidity percolation

explains how the elastic properties of network systems depend on the connectivity in

the system. The model system studied by Thorpe was a simple one, as outlined in a

concurrent paper (20), with two-body Hookean springs representing bonds between

atoms, and no other forces present. Interestingly, the paper found that the c11 elastic

constant decreased to zero at an average coordination number of 2.4 for the system,

the same coordination found in borate glasses. This suggests a connection between

the average coordination number and elastic properties in a system.

The paper by Thorpe was expanded upon significantly in a later paper by Boolc-

hand, Lucovsky, Phillips, and Thorpe (21). This work built on the original Thorpe

paper by adding three-body potentials to its analysis to be able to examine elastic

properties other than just c11. More importantly however, it added a new model for

understanding the rigidity of network systems, based on a comparison of the numbers

of constraints and degrees of freedom present in a system. This would explain why

the elasticity of network systems is related to the average coordination number of

the bonding centres. An increased bonding in the system would increase the number

of constraints, and thus the rigidity of the system, while a decrease would cause the
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opposite (or even cause the system to collapse). The principles of this model of rigid-

ity explains the relationship of rigidity to the average coordination observed in the

experiments below, and suggest how the MM model might be improved.

The next chapters will develop a series of computations to test a more advanced

model of network materials, i.e. glasses and crystals, for the calculation of elastic

properties. They will examine how different microscopic and macroscopic properties

affect the elastic properties of the material, and show which ones are the most im-

portant to include in a predictive model. In the course of this examination, it will

be revealed that the Makishima Mackenzie model mistakenly accounts for certain

factors, while ignoring others. In its place, the author proposes a new model, the

constraints model, which explains why the MM model works for certain glasses, but

not others. Based on this model, one can develop an equation that better includes

the properties most important to predicting elasticity. This equation is then applied

to systems previously studied by the MM model. Based on these results, the author

proposes a pathway forward to develop a more comprehensive model for predicting

the elasticity of glasses.



Chapter 2

Theory

In this chapter, the background theory underlying the methods used throughout this

thesis will be explained. First the bulk modulus will be calculated for a six-coordinated

mono-atomic periodic system, with bonds defined as Hookean springs. This compu-

tation will introduce basic concepts and provide an example of how to solve for an

elastic property of a simple system. Next the methods used to solve larger and more

complex problems will be outlined - these are the methods used to calculate elas-

tic properties for the models in this work. These predicted elastic constants will be

connected to actual experimental parameters, and the estimations and assumptions

made in this connection will be outlined. Finally, the Makishima Mackenzie model

will be presented.

2.1 Solving a Mono-Atomic Periodic Hooke Spring System

To begin, the bulk modulus is defined, then the model system to be solved is described,

and finally the bulk modulus is computed for this system.

2.1.1 Bulk modulus

The bulk modulus describes the resistance of a substance to uniform compression. It

is defined as:

B = −V
(
∂P

∂V

)
T

, (2.1)

6
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where V is the volume of the system, P is its internal pressure, and T is its tem-

perature. However, to facilitate calculation in a simulation model, the bulk modulus

must be expressed in terms of potential energy, not pressure. So, pressure is defined

in terms of internal energy, Ui:

P = −
(
∂Ui
∂V

)
S

, (2.2)

where S is the entropy of the system. Substituting 2.2 into 2.1 gives

B = V
(
∂2Ui
∂V 2

)
T,S

. (2.3)

Now the bulk modulus is defined in terms of variables which can be solved for directly.

Temperature and entropy must be kept constant for this definition to be correct.

2.1.2 The Model System

The system under study is represented by a cell. The cell is primitive cubic, with unit

side lengths, and therefore a unit volume. It is a periodic cell, so it represents a system

that repeats to infinity in each axis. The unit cell contains a single atom, supposed

to be at the corner. Each atom is six-fold coordinate, with unit bonds lengths. This

is illustrated in figure 2.1.

Bond Length = a = 1 V = a3 = 13

Figure 2.1: The unit cell of the model system (1)

Because B is defined in terms of the change in the potential with respect to changes

in volume, the volume of the cell will need to be varied. To do this, each side length
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is dilated by x, which is equal in every direction. This also changes the definitions of

the bond lengths in the cell and of the volume, as shown in figure 2.2.

Z1 Z1

Z2 Z2

Z3 Z3

1
1

Unit cube unstrained

1 + x1

1 + x3

1 + x2

Strained
(a) (b)

1

Bond Length = (1 + x) V = (1 + x)3

Figure 2.2: The perturbed unit cell of the model system (1)

In this system, varying x will not vary the temperature or entropy of the system,

allowing the equation for bulk modulus previously defined to be used. This is due to

the fact that the temperature remains at zero kelvin for the system at all times, and

the number of states remains fixed when changing the volume of the system.

2.1.3 The Potential

As previously stated, this is to be a Hooke spring system, so every bond will be a

Hooke spring, with potential energy

u = 12kd
2, (2.4)

where k is the spring constant and d is the bond length. Here, the potential is zero

at d = 0, but the energy ought to be zero at the unperturbed state of the model, or

where x = 0 and d = 1. So the zero of the potential is shifted:

u = 12kd
2 → u = 12k(d− 1)2. (2.5)

The effect of this potential shift is represented in figure 2.3.
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Now to find the total energy of the system, the potentials of all the bonds are

added together:

U = 12
∑
<i,j>

1
2k(dij − 1)2, (2.6)

where dij is the distance from atom i to j, the sum is over nearest-neighbour pairs,

and the additional factor of 12 avoids double counting of pairs.

Figure 2.3: Shifting a harmonic potential to represent a zero-energy bond length

The energy per unit cell is simply

U = 3 · 12k(d− 1)2, (2.7)

as there is a single atom with 6 bonds.
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2.1.4 The Solution

Although the bulk modulus was defined in terms of internal energy, because this is

a classical system without any quantum effects, and because the temperature is set

to 0 K, the internal energy is equal to the potential energy of the system. Thus, the

bulk modulus can be defined by equation 2.3.

To compute the bulk modulus, d is substituted with the bond length, 1 + x,

U = 32kx
2. (2.8)

If the system is unperturbed, at x = 0, the total energy is zero. Next, the potential

is redefined in terms of the volume, so the equation for bulk modulus can be used:

V = (1 + x)3 → x = V 1/3 − 1,

∴ U = 32k(V
1/3 − 1)2. (2.9)

In the series expansion of equation 2.9 around the energy minimum, V = 1, the

first term has a coefficient of 16 , while the second term has the much lower coeffi-

cient of 154 . To find the bulk modulus of a system with a volume of one, only minor

perturbations need to be made. With small perturbations, the first term dominates

and higher order terms need not be considered. This limitation of small perturbations

would apply to solutions for much larger and more complex systems as well: these

systems can only be considered to be symmetric in positive or negative compression if

the perturbations are small relative to their size of the system. In the series expansion,

the linear order term vanishes, and the first non-zero term is the quadratic term. It

is good that the linear order term vanishes, as with a coefficient of 32 , it would have

a dominant effect on the system, and the potential would no longer be symmetric

around the energy minimum of the system.
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at V = 1,

U
.= 16k(V − 1)2. (2.10)

Finally, the derivative solves for the bulk modulus:

B = −V0
(
∂2U

∂V 2

)
= 13k · V0. (2.11)

2.2 Calculation of Elastic Properties for Complex Systems

2.2.1 Stress, Strain, and the Elastic Tensor

The elastic properties of solids describe how solids react to the deformations of stress

and strain. To measure an elastic property, one must apply a specific stress or strain

to the system. Stress is defined as the force per unit area on a solid, while strain is

change in length per unit length:

σ = F/A, (2.12)

ε = ΔL/L, (2.13)

where ε is the strain, L is the length of the system, ΔL the change in length, σ is

the stress, F is force, and A is area.

Define σij to be a stress tensor and εij to be a strain tensor. These are both 6x6

tensors that define the way the deformation is applied to the system. Each individual

element of the tensor defines magnitude this deformation in a particular direction,

which makes the values of the elements interdependent. For stress, σxz would be the

magnitude of force in the x direction over the area of the face normal to z. Thanks
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to the interdependence of elements, this is equal to εzx. For strain, εij would equal

to the magnitude of internal length change in the x direction over the length of z.

Remember that if σxz is non-zero, so are σzx, σxx, and σzz.

For very small stresses and strains, the influence of these two different types of

deformations is related by the elastic tensor defined by Hooke’s Law. Hooke’s Law

assumes that the deformation of the system is linear with respect to the applied stress.

Linearity means that each stress component is linearly related to the strains, through

the following equation:

σij = cijklεkl, (2.14)

where sums over repeated indices are implied.

As εij and σkl are 2nd order tensors with 9 elements each, cijkl is a 4th order

tensor with 81 elements This is called the elastic stiffness tensor. However, since the

strain and stress are symmetric tensors with only 6 independent elements each, the

number of independent elements of c can be reduced to 36 elements.(1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1
σ2
σ3
σ4
σ5
σ6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 c44 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1
ε2
ε3
ε4
ε5
ε6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.15)

In the above matrix, the indices for each element are defined by Voigt notation,

which takes the symmetry of the tensors into account and means the tensors no longer

need to be expressed in terms of all ijkl, but in terms of ij where ij → i and kl→ j.
In Voigt notation, the directions xx, yy, zz, yz, xz, xy are defined as 1, 2, 3, 4, 5, 6.

The inverse relationship between strain and stress defines the compliance tensor,

the inverse of the stiffness tensor:

εi = (cij)−1σj = sijσj. (2.16)
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2.2.2 Relation to Potential Energy

To solve for the tensor elements, the tensor elements (or elastic constants) must be

defined in terms of potential energy, as potential energy is what theoretical models

calculate. The product of stress and strain turns out to be the stored mechanical

energy density:(1)

∂W = σi∂εi = cijεj∂εi, (2.17)

where W is work. Since applying small strains that satisfy Hooke’s law is an ap-

proximately adiabatic process, this relationship can be redefined in terms of potential

energy, using the first law of thermodynamics,

∂U

∂εi
= σi = cijεj. (2.18)

Taking the second derivative solves for c:

∂U

∂εi∂εj
=
∂σi
∂εj
= cij. (2.19)

These formula are conveniently defined as derivatives in terms of changes in the

strain tensor. This is useful, as it is computationally more straightforward to apply

an internal deformation of the whole system than it is to apply an outside force. Thus,

a computation of total energy can be used to obtain the elastic constants.

Alternatively, if stress are available, the second part of equation 2.19 can be used:

∂σi
∂εj
= cij.

As previously stated, the stress tensor is defined as σij = Fi/Aj. This is conveniently
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also the definition of the local pressure tensor(22) pij = Fi/Aj. The effect on the stress

from the changes in strain can be measured to get the elastic constants.

2.3 Predicting Experimental Elastic Constants from Theoretical

Calculations

It has been demonstrated how to calculate an elastic property for a simple theoretical

model, and how to calculate the entire elastic tensor from the potential energy of

any solid. The connection must to be drawn from these calculated constants back

to experimentally determined elastic constants. Two key elastic constants will be

considered: the rigidity modulus S and bulk modulus B. Calculate these may be

calculated from either the strain tensor c or the compliance tensor s. Two averaging

methods, the Voigt and Reuss methods (23; 24), define these three constants from

the two tensors in different ways.

SV = 1
15(c11 + c22 + c33)− (c12 + c23 + c31) + 3(c44 + c55 + c66) (2.20)

BV = 19(c11 + c22 + c33) + 2(c12 + c23 + c31) (2.21)

15
SR
= 4(s11 + s22 + s33)− 4(s12 + s23 + s31) + 3(s44 + s55 + s66) (2.22)

1
BR
= (s11 + s22 + s33) + 2(s12 + s23 + s31) (2.23)

Here SV is the Voigt average for S, SR is the Reuss average; BV is the Voigt average

for B, BR is the Reuss average. The Voigt averaging method performs the calculation

from c, assuming uniform strain, while the Reuss averaging method assumes uniform

stress and thus uses s. This means that neither of these averages match the true exper-

imental conditions; there are bound to be variations in stress and strain throughout

the sample. But there is one exception for cubic cells: bulk modulus. Since measuring
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bulk modulus involves only an isotropic volume change, the stress and strain can be

assumed to be both uniformly distributed. From the above formula 2.21 and 2.23,

BR = BV = 13(c11 + 2c12). (2.24)

For calculations of the rigidity modulus, as well as other moduli, a further average

must be made to get a reasonable approximation of true experimental values: the

Voigt-Reuss-Hill approximation (25). As both Voigt and Reuss methods assume an

opposite extreme, the average of the two of them is used to predict realistic experi-

mental elastic constants:

S = 12(SV + SR). (2.25)

And so, it has been demonstrated how to solve for the bulk modulus in a simple

repeating lattice, how to generally calculate the elastic tensor for any solid from its

potential energy, and finally how to use these tensor elements to calculate experi-

mental elastic properties. In the following chapters, these core theories are applied to

form the basis for the work of this thesis.

2.4 The Makishima Mackenzie Model

Before the aforementioned theories are applied, the theory of the model that motivates

this work must first be outlined: the Makishima Mackenzie model. The MM model

was introduced in a paper published in the Journal of Non-Crystalline Solids in 1973

by A. Makishima and J. D. Mackenzie. (3) The model estimates the elastic properties

of glass using the atomic properties of their component oxides in crystal form as input

variables. This model works reasonably well for predicting the elastic properties of a

wide variety of glasses with different component oxides, but unfortunately does not

generate very good predictions for boron oxide glasses. The derivation of the model for
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determining the Young’s modulus of glass, the implications of the derived equations,

and the assumptions behind them will be outlined. Then, the model’s failure for

borate glasses will be shown, followed by the proposed correction to the model for

this failure, as described in the original paper.

2.4.1 Derivation

To begin the derivation of the Makishima Mackenzie model, the Young’s modulus (E)

for an ionic crystal is derived. So, the electrostatic energy of attraction, U , is defined

for a pair of ions with opposite sign:

U = −e2/r0, (2.26)

where e is the charge of the ions, and r0 is the distance between the ions. Next,

this energy is multiplied by the Madelung constant α to account for the many ionic

interactions within a crystal, giving the Madelung energy, Um:

Um = αU. (2.27)

Remembering the definition of stress in equation 2.12, and using the fact that the

force between ions is ∂Um/∂r, the stress σ is

σ =
1
r20

(
∂Um
∂r

)
. (2.28)

The change of stress for a change in r is dσ/dr,

dσ =
dr

r20

(
∂2Um
∂r2

)
. (2.29)
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This is equal to Edε, according to the definition of E = dσ
dε
, where the strain dε =

dr/r0, as previously defined in equation 2.13. Therefore,

E =
dσ

dε
=
1
r0

(
∂2Um
∂r2

)
=
2αe2

r40
. (2.30)

This inverse relationship to r40 has been experimentally confirmed. Thus, the Young’s

modulus for ionic crystals can be defined in terms of their energy of attraction and

interatomic spacing:

E =
2α
r30

(
e2

r0

)
= 2
Uα

r30
. (2.31)

The working assumption so far has been for a system of ionic crystals. However,

for oxide glasses, a Madelung constant can no longer be adopted as the system has no

long range order. Therefore, Um/r30 is replaced by the product of dissociation energy

per unit volume, G, and the packing density of ions, Vt. This is the critical point

where the MM models makes its leap from a system with long range order to one

with only short range order. The volumetric dissociation energy is a substitute for the

whole term. However the dissociation energy is calculated per volume of the whole

cell, while equation 2.31 is defined in terms of the ionic volume. The packing density

Vt corrects for this difference, giving the key MM model equation,

E = 2GVt. (2.32)

For polycomponent glasses,

E = 2Vt
∑
i

GiXi, (2.33)

Vt =
ρ

M

∑
i

ViXi, (2.34)

where M is the effective molecular weight and ρ is the density of the glass, Xi is

the mole fraction of component i, and Vi is the packing factor obtained for an oxide
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AXOY :

Vi = 6.023× 1023 43π(XR3A + Y R3O), (2.35)

with RA and RO the respective ionic radii of the metal and oxygen. The packing

fraction can be thought of as the proportion of space filled in the cell by spheres

around the atoms. The radii of these spheres is defined by their ionic radii. A totally

full cell would give Vt = 1 and an absence of atoms would have Vt = 0.

E = 2GVt is the form that will be returned to later in this thesis, as working with

poly-component glasses would only complicate the analysis.

For the purposes of the model, neither the interatomic spacing nor the bonding

strength is assumed to change between the ionic oxide crystal that makes up the glass,

and for the properties of the glass itself. Also, the atoms are assumed to interact as

spherical ions in both the crystal and the glass. Therefore, the model can be thought

of as representative of a set of ionic balls whose repulsive strength is defined by the

dissociation energy per volume of the glass. This is illustrated for a crystal in figure

2.4, and the MM model applies this metaphor to glass.

Figure 2.4: Ionic repulsive balls - the assumption Makishima Mackenzie model makes
for glass (26)
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2.4.2 Borate Glasses

Unfortunately, while equation 2.32 works well for predicting the elastic properties of

silicate glass, it appears to fail rather badly for borate glass.

Material Makishima Mackenzie Experiment

Silicate Glass 79.6 GPa 73 GPa

Borate Glass 114.4 GPa 17.4 GPa

Phosphate Glass 36.8 GPa 31.3 GPa

Germanium Glass 66.7 GPa 43.3 GPa

Table 2.1: Makishima Mackenzie Young’s modulus predictions vs experimental values

Makishima Mackenzie Young’s modulus predictions vs experimental values. (27)

To explain this discrepancy, the original paper proposes that the value of dissocia-

tion energy calculated from the B2O3 crystal is too high: “The low Young’s modulus of

boric oxide is probably caused by the weak binding forces between planes of interlink-

ing BO3 triangles.” The paper compares this structure to the structure of graphite,

with strong intra-planar bonding, but weak inter-planar bonding. To calculate the

strength of these proposed inter-planar bonds, the authors inserted the experimental

value of the Young’s modulus for borate glass and the packing density into equation

2.32 (E = 2GVt), and solved for the dissociation energy. They then took this value

of G and defined it to be the dissociation energy of bonds on four coordinate boron

centres in the glass, called G4. G4 was more than four times smaller than the ex-

perimental value of G for B2O3, which they defined as G3. They proposed that G4

would apply to all BO4 cross linking centres in the glass, while G3 would apply to

BO3 centres. They then substituted G in equation 2.32 with

GB = γ(G4 −G3) +G3, (2.36)
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where G4 = 15.6kJ/cm3 and G3 = 111.5kJ/cm3. They used estimations of what

the ratio γ would be for unknown glasses, not proposing a method for determining

this ratio. With this new adapted value for the dissociation energy, with input vari-

ables defined by experimentally derived output values, they were able to get more

reasonable predictions for the Young’s modulus of B2O3 glass.

There is little theoretical or experimental basis to believe this assumption about

two different types of bonds in borate glass is correct. Recent DFT and MD calcula-

tions performed by Huang et al. (12; 13) propose a variety of possible B2O3 structures,

including an amorphous (glass-like) phase, that match experimental properties. None

of these structures has a layered graphite style structure, and all the bonds are of

equal and high strength. The assumption made in the MM model for borate glass ap-

pears to be unjustified. More troublingly, the method of determining the G4 constant

is by working backwards from the experimental elastic properties of borate glass,

turning the model on its head. The G4 constant is essentially an empirical fix to the

poor theoretical prediction, with flimsy reasoning to back it up. This suggests that

something is breaking down with the model, when such a fix is required for such a

broad set of glasses.



Chapter 3

Method

A set of programs and scripts were created to test different aspects of the Makishima

Mackenzie model. There where two core programs used: Lammps (28), and a custom

code for generating Lammps input and managing its output. Lammps is a large clas-

sical molecular modelling program with a wide array of functions and applications,

and it provides the core energy minimization and elastic potential calculation capa-

bility that generated the results in this thesis. It was chosen for its free and open

source nature, power, and customizability. The custom input generator and output

manager code allows for the tuning of input experimental systems for Lammps and

analyzing the output for different metrics. The scripts used were to run multiple

calculations at once, to vary deletion parameters, calculate various properties, and

generate streamlined output for data analysis.

3.1 Lammps Calculations

The calculations of the elastic constants were performed in Lammps. The key method

used by Lammps to determine the elastic constants was outlined in the previous

theory chapter. This equation for elastic constants in terms of the change in the

pressure tensor and the change in strain was used in equation 2.19:

∂εi
∂σj
= cij.

21
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The general structure of the calculations can be found in the elastic example pro-

vided with Lammps. The first step in performing the calculation involved inputting

the details of the structure being modelled, structures that were generated by the

custom input code. Specifically, the atomic positions, bonds, atomics, and unit cells

vectors were input and defined to be fully periodic. Next, the potential was defined,

and so were the parameters for minimization, in particular the convergence criteria.

The conjugate gradient minimization method was used for these calculations, with

convergence occurring once forces fell below 10−10 eV/angstrom. Then the energy of

the system was minimized, and the unperturbed pressure tensor elements calculated.

Twelve different strains were applied to the system, one positive and one negative

strain in each of the six independent directions, as defined by the strain and stress

tensors. The change in each of the six pressure tensor elements was calculated for

each of these strains. For the symmetric positive and negative strains, the change in

each pressure tensor element is theoretically equal for small strains, so the average of

the two changes for the same pressure tensor element was taken:

(
∂εi
∂σj(+)

+
∂εi
∂σj(−)

)/
2 = cij. (3.1)

The two separate strains are applied only in the positive or negative direction and

averaged together. From the combination of each of the six strains and six pressure

elements, the 36 elastic tensor elements could be calculated.

3.2 The Potential

The potential used for the energy minimizations and pressure tensor calculations was

a combination of a harmonic linear bond potential and a harmonic angle potential.

The bottoms of the potential wells, or the zero potential energy points, were set at

the average bond length and bond angle of Si-Si bonds in diamond cubic pure silicon.
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The k constant values for the two angle and bond potentials were determined by

calculating the series expansions of the Stillinger-Weber (29) potential at the same

minimum energy diamond silicon angle and bond lengths, and using the constant in

front of the quadratic term for k. There are two additive parts of the Stillinger-Webber

potential, a linear bond energy and an angular bond energy, hence the use of both a

linear and angular harmonic potential, and therefore two different k values.

The Stillinger-Weber potential was chosen as it does a good job of predicting

experimental elastic constants for pure silicon, and so to see in further experiments

a good approximation of the effect on experimental elastic constants from different

manipulations of the input structure. The reason the potential was simplified to a set

of harmonic potentials was that it would reduce the computational load, that since

only minor perturbations would be applied the reaction of the potential energy would

be very similar, and most importantly that it allowed the break down of the potential

and specific bonds so the bonding structure could be investigated in a number of

different ways. The elastic properties generated from the harmonic potentials matched

those for the full potential for fully bonded Silicon.

3.3 Input Generation

A program was written to be able to control the atomic and bonding structures input

into Lammps. In the program, there are two core classes that define the functioning

of this program: the atom class and the function class. The atom class contains all

functions for manipulating atoms and for calculating their various properties and

relationships. It also stores all atom data, primarily the atomic positions, the list of

atoms, and the adjacency matrix for all atoms. Where the atom class stores the actual

data about the atoms, the function class contains the data about the bonding of the

atoms, allowing for the bonding system to be manipulated without losing information

about the atoms and their nearest neighbours. In figure 3.1, this separation between
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the two classes is shown.

The input for the generator is any unit cell with an orthogonal set of cell vectors,

and a set of starting atom positions in equilibrium. It then increases the size of the

cell to that desired by the user. For all the calculations performed here, a 4096 atom

cell was used as at this point the elastic properties were found to be converged for

partially bonded systems. This cell increase is done by simply duplicating the contents

of the cell along each cell vector any number of times. Next, based on a user input

distance of nearest neighbours in the input cell, the nearest neighbour list is created

for the enlarged cell.

Once the bonding system is prepared, a series of different methods are available

for changing the bonding structure of the cell, and these will be further elaborated

in the following sections. However, all these methods have a key deletion algorithm

in common. This algorithm randomly removes bonds from the system based on a

specific constraint: that no atom may have fewer than two bonds. That constraint is

chosen because an atom with fewer than two bonds is effectively removed from the

system; bonding effects are the only forces an atom exerts on the system and a single

hanging bond will always sit at zero energy. It is undesirable to have atoms effectively

removed from the system in an algorithm for deleting bonds.

The algorithm is constructed so as to maximize efficiency of the run, as these

methods run in large nested loops, resulting in a large number of bonds. The way

the algorithm does this is by making a random selection and removing ineligible

bonds from the list at the same time. First, a list of eligible bonds for deletion is

generated. The challenge is that this list of eligible bonds is no longer totally correct

once bonds start being deleted, since some bonds that were once eligible for deletion

without breaking the constraint had too many neighbours removed and thus they are

no longer eligible. Therefore, the algorithm must randomly choose a bond from a list

of unknown length, removing ineligible bonds from the list as it encounters them, and
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Figure 3.1: The structure of the random deletion input generation program
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it ideally does this in a single loop. The solution is to hold the first eligible candidate

in memory, and have a random chance of replacing it with another eligible candidate

further down the list, with the probability this replacement decreasing the farther into

the list the algorithm progresses. When the end of the list is found, the candidate left

in memory has been randomly chosen from the list of eligible bonds for deletion. The

result is a random selection.

This algorithm is looped to perform as many random bond deletions as desired

to get the desired level of bonding order in the structure. Additionally, by modifying

the restrictions, the structure can be tuned to have different bonding orders. These

’guided’ deletions are described in the next section. Additionally, atoms can be ran-

domly deleted just like bonds, with the same algorithm used. The restriction on the

atomic deletion algorithm is that atoms cannot be deleted that would reduce their

neighbours below two bonds. This is again chosen so that only the specified atom

is removed from the system, and other atoms are not accidentally deleted while the

program still thinks they are within the bonding structure.

Once the list of bonded atoms is finalized, a full bonding list and an angle list

are generated for output to Lammps. These two lists correspond to the two poten-

tials outlined in the potential section. New cell vectors, the atom list, bond list, and

angle list are output to an input file for Lammps. Additionally, a number of metrics

about the system are prepared: average coordination number, density, bond density,

the number atoms of each coordination, the average coordination around each spe-

cific coordinate atom (i.e. the average coordination of the neighbours of 4, 3 and 2

coordinate atoms), and a few other parameters that provide information about the

run of the program. From this point, a Lammps run can be undertaken to calculate

the elastic properties of the generated system.

Additionally, a small output manager protocol was added to the same input gen-

erator code. This protocol has the simple function of taking Lammps output atomic
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positions and bonding connections and returning a list of atomic or bonding positions

in a different format.

3.4 Methods for Guiding Deletion

The core function that determines the conditions for deletion eligibility has a number

of different options available to change the way bonds are deleted. That way, instead

of random bond deletion, there are now have semi-random forms of deletion that can

affect the resulting structure in various ways. The core mechanism for determining

candidates for deletion is based on setting the minimum bond order on the atoms on

either side of a bond. For the random deletion, these minima are set at two for both

atoms in the bond. The first form of guiding is to restrict the minima to be 3 and

2. The purpose of this is to approximate a structure similar in bond order to B2O3.

Another guiding method involves restricting the deletions to only coordinations of

3 or greater on both atoms. These types of restrictions greatly limit the number of

bonds that can be removed from the system.

The next methods of guiding deletion involve setting triggers at which point the

conditions for deletion change. This allows the removal of bonds from a highly re-

stricted set, then allows further deletions from a less restricted set. The first of these

methods only allow a minimum of 3 coordination on both atoms at first, and then

allow deletions down to coordinations of 2. The point at which the restriction change

is triggered can also be modified. The trigger is a comparison of the number of 4

coordinate and the number of 3 coordinate atoms in the structure. The trigger is set
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to occur in three different ways:

5×# coord 4 = # coord 3

# coord 4 = # coord 3

# coord 4 = 5×# coord 3

This way highly restricted deletions can be occurring for only a short time, or the

restrictions can be reduced once almost all eligible bonds are removed. The last dele-

tion guide based on bond order restrictions used was to restrict deletions to 3 and 3

coordinate bonds, then allow 3 and 2 coordinate bonds. Figure 3.1 summarizes these

different methods. The first row defines the number of the deletion (0 for random

deletions). The second row defines the minimum coordinations on bonded atoms at

the beginning of the deletion cycle. The third row defines the comparison between

counts of each coordination that triggers the change to different minimum bonded

coordinations. For the deletion guides that do not change, numbers 0 through 2, no

trigger is specified. Finally, the last row defines the new set of restrictions on bonded

coordinations.

# Initial Restriction Trigger Final Restriction
0 2, 2 2, 2
1 3, 2 3, 2
2 3, 3 3, 3
3 3, 3 5 × # 4 = # 3 2, 2
4 3, 3 # 4 = # 3 2, 2
5 3, 3 # 4 = 5 × # 3 2, 2
6 3, 3 5 × # 4 = # 3 3, 2

Table 3.1: The different deletion guides

The final method of guiding deletion was to introduce a bonding phase difference

within the cell. This is accomplished by the restriction of all deletions to within a

certain radius from the middle of the cell. The result of this restriction is that the



29

outside edges of the cell have fully coordinated bonds, while the interior of the cell has

a highly decimated structure. The result of these different deletion guides is that the

effects on elastic properties from different coordination distributions can be examined.

Several metrics are determined about the input generated. The state of disorder

in different distributions can be estimated through the equation

σ =
4∑
n=2

x · ln(x), where x = #n coord
# atoms

. (3.2)

Also measured is the average coordination number of atoms bonded to each specific

coordination. For instance, the average coordination of atoms bonded to 3 coordinate

atoms. This provides information on how close different deletion guides get to similar

experimental systems.

3.5 Measurement of Voronoi Cell Volumes

One additional measurement made of the structures generated was to calculate their

average Voronoi cell volumes and the distributions of those volumes. Voronoi cells

are defined for any system of points in space. In these measurements, the system of

points are either atoms positions or bond midpoints. A Voronoi cell around an atom

is defined as the set of points closer to that atom than any other atom. An illustration

of Voronoi cells is shown in figure 3.2.

In other words, the Voronoi cell defines the space nearest to an atom. This mea-

surement can be of use as it allows the measurement of the amount of empty space

in the cell. As the Voronoi cell size grows, the distances between the atoms or bonds

grow and there is more open room inside the cell. The reason for calculating Voronoi

cell volumes for both atoms and bonds is that some of the experiments conducted

in this work involve the deletion of bonds while keeping atoms constant, and others

remove atoms. Voronoi cell volumes only centred on atoms would be constant for the
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Figure 3.2: A 2-D example of Voronoi cells (30)

bond deletion experiments. The output manager described in the Input Generator

section was used to take Lammps output and process it into either atomic or bond

positions for Voronoi cell calculations. The Voronoi cells themselves were calculated

with voro++. (31)

3.6 Submission Scripts

A few different scripts were written to streamline the running of these different pro-

grams together and to vary the input variables. The basic submission script performs

increasingly large deletions as a percentage of the overall number of bonds in the sys-

tem. Each deletion is run 20 times and the average taken to smooth out the random

variations in each individual run. To accelerate this process, and as the custom pro-

gram is not multithreaded, each individual run was submitted to one computational

core, allowing the performance gains of multithreaded calculation without major soft-

ware engineering investment. Finally the script parsed the Lammps results for the

key output parameters and generated output for data processing in Excel.

From this basic input script, a number of modifications were written to calculate

various properties, including the ones described in previous sections of this chapter.

There were scripts written for each of the guided deletion methods. A script was

created for the radial deletion guiding that looped over different values of deletion
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radius. For the Voronoi cell calculations, a script was made that took the output from

the Lammps calculations, processed it with the output manager, and ran voro++ (31)

on it. Additionally, there was a script that ran different combinations of atomic and

bond deletions to see what effect these different deletions had on the elastic properties.

And finally, a script was made that varied the Stillinger Webber derived k constants

for the angle and bond harmonic potentials, to see which of these potentials had a

greater effect on elasticity.
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Results

The first set of results and the largest quantity of them was from the different ran-

domized bond decimations. In the following graphs (figures 4.1 through 4.9), two key

sets of data about the calculated systems are reported: three elastic constants, c11,

c12, and c44 (the 3 sets of stars); and the absolute number of atoms with the 3 possible

coordination numbers of four, three and two (the 3 coloured lines). This data was col-

lected to test the relationship between the average coordination number and elastic

properties. Additionally, data is plotted on atom decimation, to see the dependence

of elasticity on density. Next, data on the level of bonding disorder in the system is

presented in figure 4.10 for the different deletion guides, to determine the dependence

of elastic properties on the bonding distribution in the system. Following that are

a series of graphs on Voronoi cell calculations for the random deletion calculation:

figures 4.11 through 4.15. These graphs attempt to see what relationship there is be-

tween void space in the system and elastic properties. Finally, figures 4.16 and 4.17

present data from modifying k values in the potential, to see how different potential

strengths affect the elasticity.

4.1 Random and Guided Deletion

In the figures on random and guided deletion, the coordination counts and elastic

constants are plotted in terms of the average coordination number of the system,

which at the left of the graphs is 4 for a fully coordinated diamond lattice, down

towards an average coordination number of 2 for the systems which were the most

32
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decimated. The left most data point is the same on all the following graphs, and the

different coordination distributions show how the different deletion guides operate.

The elastic constants are all reported in gigapascals on the right y axes, as is standard

for elastic properties. The coordination counts are reported on the left y axes - these

correspond to the solid lines, and these, as the average coordination number, are

unit-less.

Figure 4.1 shows the results of the random bond deletion experiment. In the fully

coordinated system, with 512 four coordinate atoms, the elastic properties match

those for the Stillinger-Webber potential: c11 = 151GPa, c12 = 76GPa, c44 = 56GPa

(29). As the random deletion algorithm progresses, a rise and fall in the number

of 3 coordinate atoms in the system can be seen, with mostly 2 coordinate atoms

present at the end of the run. It’s worth noting that the weighted average of the three

coordination counts (for 4, 3, 2 coordinate atoms) gives the average coordination

number on the x axis. Most significantly, as the average coordination approaches

2.4, the elastic constants all converge to zero and stay at zero for lower average

coordinations. This confirms the results of Thorpe (19), and also corresponds to the

average coordination number of B2O3.

Graphs 4.2 and 4.3 show the results from tightening the restrictions on eligible

bond deletions, first to bonds with coordinations greater than 3 and 2 on the bonded

atoms, and then with coordinations of greater than 3 and 3. (These guides are the

same as those previously outlined in Table 3.1.) This has the effect of limiting the

total number of deletions allowed to take place, and thus the calculations terminate

at higher average coordination numbers than the random deletion experiment. This

is demonstrated in the second guiding, where only deletions from 4 coordinate atoms

are allowed, and thus the number of 2 coordinate atoms stays at zero throughout the

run. There are fewer snapshots taken in the experiments after the random deletion

experiment, as the same overall trends can still be seen, which is why fewer points for
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Figure 4.1: Random bond deletion in a diamond lattice

the elastic constants appear. The problem with these deletion guides two and three is

that the high restrictions prevent the average coordination number from decreasing

down to the area relevant to B2O3. That is why the next deletion guides changed

the restrictions at some point during the calculation, to allow access to lower average

coordination numbers.

In the next set of guides (figures 4.4 to 4.6,) the high restriction of no coordi-

nations below 3 is chosen at the beginning of the run, and then relaxed to allow

coordinations of 2 at various points in the run. This results in different distributions

of coordinations throughout the runs, while still allowing the system to reduce to low

average coordination numbers. Despite the significant differences in the coordination

distributions, the elastic constant curves still follow broadly similar shapes to the

random deletion experiment, and go to zero around an average coordination of 2.4.

This demonstrates that the key factor in determining overall elastic properties is the

average coordination, while varying the distribution of those coordinations only has

subtle effects on the properties. (The plot for guide 6 is not presented, as it is not
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Figure 4.2: Guided semi-random bond deletion #1

Figure 4.3: Guided semi-random bond deletion #2
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Figure 4.4: Guided semi-random bond deletion #3

meaningfully different from the plot for guide 2, since the ending restriction is the

same.)

For last guide on bond deletions (figure 4.7,) an increasingly large radius of possible

deletions was chosen, and the elastic properties calculated. At the maximum deletion

radius, the experiment is equivalent to a perfectly random deletion. At small deletion

radii, there are essentially have two phases in the solid, one of highly decimated

bonding near the centre of the cell, and another of full coordination around the

outside of the cell. Plotted in figure 4.7 are all of these experiments against their

average coordination numbers. These phase differences do indeed appear to have an

effect on the elastic properties at higher coordinations, as demonstrated by the spread

in the data. However, at coordinations of 2.4 and lower, all elastic properties fall to

zero, even for experiments with a radial deletion restriction.
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Figure 4.5: Guided semi-random bond deletion #4

Figure 4.6: Guided semi-random bond deletion #5
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Figure 4.7: Radially guided semi-random bond deletion

4.2 Atom vs Bond Deletion

For the next two figures(4.8 and 4.9,) some of the deletions are atom deletions rather

than bond deletions. Here atoms are removed (and all bonds attached to them) rather

than bonds being removed. In the first of these graphs, only atoms are being removed

and bonds are not independently removed. The results match those from the random

bond deletions, trending to zeroed elastic constants at an average coordination of 2.4.

It is important to emphasize, in this experiment, because atoms are being deleted from

a cell of fixed size, the density is being reduced. In previous experiments, the density

throughout the deletions remained constant, as no atoms were removed. Thus it is

the average coordination number that has the bigger effect on the elastic properties,

not the density. Indeed, in figure 4.9, the bond and atom deletion experiments are

mixed. Every combination of atomic and bond deletions is plotted, from no deletions,

through 5% atom and 45% bond deletions, to 45% atom and 5% bond deletions. The

result of this is that there is a broad range of different atom densities appearing as
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Figure 4.8: Random atom deletion in a diamond lattice

different markers in the plot. All these combinations of deletions fall on the same

trend line, and they approach zero at the same key average coordination number of

2.4. The elastic properties appear to be independent of density for this system.

4.3 Effect of Disorder on Elastic Properties

Since there were so many different guides developed to change the bonding distribu-

tions in the system, the disorder of the bonding distributions was measured, and is

plotted in figure 4.10. Equation 3.2 defines the x axis in this plot. It can be seen that

there is no direct relationship between the distribution of coordinations in the system

and the elastic properties.

4.4 Voronoi Cell Distribution

With the previous results suggesting the importance to the elastic constants of the

average coordination number over other properties of the system, measurements were
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Figure 4.9: Combined random atom and random bond deletion in a diamond lattice

Figure 4.10: C11 vs. disorder in coordination distribution
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Figure 4.11: Average Voronoi cell volumes

taken with the goal of divulging the key reason behind the importance of the average

coordination number. The choice was made to measure the Voronoi cells of the bonds

in the random bond deletion experiments, to see how the volume available to each

bond was changing. In the first plot, figure 4.11, the average Voronoi cell volumes

around each bond are plotted as bonds are removed from the system. These results

are unfortunately not very informative, and in retrospect, rather obvious. One would

expect the average cell volume to rise around remaining bonds, as bonds are removed

from the system. These values could in fact be directly calculated from the total

volume of the system and the number of bonds in the system.

Endeavouring to see if any greater insight can be gained from Voronoi cell volumes,

the distributions of the cells were plotted at different average coordination numbers,

and a few key plots of these distributions are shown in figures 4.12 to 4.15. For

reference, at full coordination, all the Voronoi cells have a volume of 10.01. Thus, they

fall in the volume range between 10 and 10.5 Å3, and are marked by the midpoint of

that pool at 10.25 Å3. (For convenience, the volume ranges are referred to by their
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Figure 4.12: Voronoi cell distribution at average coordination 3

midpoint.) It can be seen that even at a much lower coordination of 3, most bonds

still have a cell volume not much larger than in the fully coordinated distribution.

However, over the progression from a coordination of 3 to a coordination of 2.4, the

peak point in the distribution dramatically shifts. The median cell volume increases

by 43% from 11.75 to 16.75; in comparison to an increase in the median cell volume

of 15% over the larger coordination drop between 4 and 3. This suggests that the

number of bonds with large volumes around them has a relationship to the elastic

properties.

4.5 Variation of k parameters

One final set of experiments was conducted, to see the dependence of the elastic

properties on the k values chosen for the bonding potential (the k values derived

from the Stillinger-Webber potential, as defined in the potential section of the Method

chapter.) In the final two graphs in this section, figures 4.16 and 4.17, the Voigt average

of the Young’s modulus is plotted against the k value of either the linear or angular

portions of the potential. While one k value is modified, the other k value is kept
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Figure 4.13: Voronoi cell distribution at average coordination 2.8

Figure 4.14: Voronoi cell distribution at average coordination 2.6
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Figure 4.15: Voronoi cell distribution at average coordination 2.4

constant at it default value. The default k’s are in the middle of the x axis in both

plots at a value of one. The x axis values are normalized to the default value, so the

relative scale of both graphs is the same. The dependence of the Young’s modulus is

plotted with a series of decreasing average coordination numbers, which is why there

are multiple sets of data on the graphs.

For the linear k, the plots are roughly flat until the k value approaches close to

zero. In contrast, for the angle k there is a linear relationship between the Young’s

modulus and k value. Indeed, the slopes of the linear trend-lines are four times larger

for angular k data sets than for linear k, for all average coordination values. This

suggests that forces that restrict the bending of bonds have a larger effect on elastic

properties than forces that restrict the compression or stretching of bonds. Notably

however, at an average coordination of 2.4, both trend lines had a slope near zero,

suggesting no dependency on k values. Of course, at 2.4, the Young’s modulus is equal

to zero.
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Figure 4.16: Dependence of Young’s modulus on the value of linear k

Figure 4.17: Dependence of Young’s modulus on the value of angular k



Chapter 5

Discussion

In this chapter, the relationship between elastic properties and various glass properties

will be explored: coordination number, coordination distribution, atom density, void

space, and bond strength. Two papers by Thorpe will also be examined, and how the

structures and theories proposed in them apply to the Makishima Mackenzie model.

Finally, all these discussions will be brought together to propose improvements to the

Makishima Mackenzie model.

5.1 Importance of average coordination to elastic properties

This section begins by outlining a paper by M. F. Thorpe from 1985, “Rigidity Per-

colation in Glassy Structures”(19). The theoretical and experimental set-up in the

paper is examined, and how it compares to the work in this thesis. The results of that

work will also be compared to the results of this thesis. From there, the relationship

will be examined between the average coordination number and elastic properties

found in these experiments.

5.1.1 Thorpe’s Percolation Paper

The paper explores the concept of rigidity percolation, and how it relates to the

elastic properties of a basic model system. The paper begins by demonstrating an

example of percolation theory: an insulating alloy RbMnpMg1−pF4, where Mn inter-

acts magnetically with its nearest Mn neighbours. As diamagnetic Mg replaces Mn,

the antiferromagnetism of the system falls until the system becomes paramagnetic at

46
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p ∼ 0.31. At this point there are insufficient nearest neighbour Mn atoms to sustain
long range order. Another example is electrical conductivity across a system of wires

joined at nodes. The conductivity drops to zero once sufficient nodes or wires have

been removed from the system, as there ceases to be a pathway across the system.

These examples are part of a class of problems know as connectivity percolation,

where overall connectivity is broken across the system, which reduces the measured

property to zero.

More interesting is the problem of rigidity percolation. Imagine a 2D triangular

net of atoms connected by bonds. When all bonds are present, p = 1, the system is

rigid, and has defined elastic properties. When all bonds are removed, there are no

longer any nearest neighbour interactions and the system is totally fluid at p = 0.

This breakdown to an unconnected system occurs at p = 0.35, another example of the

connectivity percolation problem. However, between p = 0.67 and p = 0.35 the system

is geometrically connected (so were it conducting, a current could still flow through

it), but the system is no longer elastically rigid and becomes floppy. One can think of

a truss bridge structure as an analogy to this. A trussed system of interlinking bars

is much stronger than a single spanning bar, much more so than the sum of the bars

uses. The network itself imparts very significant strength to the system. Similarly, once

enough bonds are removed from network system described in this thesis, the rigidity

imparted by the network disappears. There are still rigid pockets in the system, but

they are surrounded by floppy regions so the elastic properties of the system become

zero. When enough of these rigid pockets are linked, the system regains its overall

rigidity. The origin of this concept actually dates back to J.C. Maxwell (32), who

asked the question “At what point does a network of bars b and joints j become

rigid?”

These ideas were applied to a face-centred cubic system, with a coordination per

atom of r = 4. The potential used in the system was defined in a previous paper
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by Thorpe on the “Effective-medium theory of percolation on central-force elastic

networks” (20). The potential simply uses two-body Hookean springs as the bonds,

with no other defined forces, just like the model defined in the beginning of the Theory

chapter, where the bulk modulus is calculated. The bonds were then randomly deleted

from the system, reducing the value of p. They found that the transition from a rigid

to floppy system occurred when the average coordination per atom 〈r〉 = 2.4. This is
illustrated in figure 5.1, where the elastic constant c11 drops to zero at 〈r〉 = 2.4.

Figure 5.1: The elastic modulus c11 as a function of mean coordination 〈r〉 for three
different random networks with 516 atoms each. The different networks are repre-
sented by the different point shapes. Figure reproduced from reference (19).
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5.1.2 Average coordination in various glasses

Now, in Thorpe’s percolation paper, only linear Hookean springs are used for the

nearest neighbour forces, and only c11 is calculated. In contrast, the potential in this

work has included angular Hookean springs, and calculated the full elastic tensor

for these systems, as previously described in the Method chapter. As the results

repeatedly show, across a wide range of deletion methods from totally random bond

deletions, to atom and bond deletions, to locally restricted deletions, and to guided

deletions, rigidity percolation in the system ceases at an average coordination of 2.4

every time (figures 4.1 to 4.9). Indeed, all elastic properties fall to zero together at

this point, showing rigidity percolation also applies to systems with angular atomic

bonding forces. This demonstrates that average coordination is a key element in the

overall elastic properties in the system.

This property, coordination, is clearly omitted from the Makishima Mackenzie

model in equation 2.32: E = 2GVt. The success of the Makishima Mackenzie model

in predicting elastic properties in silicon glasses is due to the coordination numbers

present in silicate glass lying in a small range around 〈r〉 = 2.67, as the glass former
defines the underlying structure of the system. Borate glasses, in contrast, lie around

the threshold of rigidity percolation, suggesting why the Makishima Mackenzie model

so radically overestimates the elastic properties.

5.2 Dependence of elastic properties on coordination distribution

To determine the relationship between the coordination distribution and the elastic

properties, the five previously outlined guides for deletions were used, plotted in fig-

ures 4.2 to 4.6. Only minor variations in the elastic properties were seen between these

very different distributions. Indeed, when the elastic properties were plotted against

a value for the ‘disorder’ of the distribution in figure 4.10, no direct relationship was
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found between the two. However, there does appear to be a minor effect, where in

figure 5.2 the most random guides (zero, one, and four) appear to have higher elas-

tic properties than the less random guides. There is no direct relationship with the

level of disorder here though, only the general observation can be made that more

disordered distributions of bonds often have somewhat higher elastic properties.

Figure 5.2: The Young’s modulus at an average coordination of 3.2, for the different
guides and random deletion. A more negative value of sigma corresponds to a higher
level of disorder, as defined in equation 3.2.

5.3 Dependence of elastic properties on density

Figure 4.9 is one of the most compelling of this thesis. It shows a complete indepen-

dence of elastic properties on the density in the system. A scattering of very different

densities can be seen plotted across different average coordinations, with no effect

on the overall elastic properties of the system. While in that figure only the Young’s



51

modulus was plotted, there is no relationship between density and any other elastic

property. The Makishima Mackenzie model relies on the density of the system to

calculate the packing fraction of the system, in equation 2.34. The use of density

appears to be another limitation of the model. As for why the model works despite

this limitation, it is perhaps the case that in the narrow range of elastic coordinations

present in most glasses, density works as a rough proxy to account for the variations

in coordination, with more dense atoms generally having higher coordinations and

vice versa.

5.4 Relative importance of three-body vs two-body potentials to elastic

properties

Finally, to conclude the exploration of the MM model, this section will turn its atten-

tion from the packing density portion of the MM equation (2.32), and what that factor

is omitting or mistakenly including, to the dissociation energy. This factor would seem

to continue to make sense, even with an expanded understanding of the system: no

longer a set of ionic balls, but now a set of Hookean springs. This dissociation energy

would represent the strength of the springs. However, there does appear to be a lim-

itation to using only dissociation energy, as this system relies on both the linear and

angular Hookean springs to obtain the full elastic tensor, and only from that can good

values be arrived at for experimental elastic properties. Indeed, Thorpe’s percolation

paper could only calculate c11 with only linear springs, while c12 is needed as well

to find the Young’s modulus. When the relative dependancy of the Young’s modulus

on the strength of both linear and angular springs in the system is plotted in figures

4.16 and 4.17, the system is found to be four times as sensitive to the angular bond

strength as the linear bond strength. The bond dissociation energy does theoretically

encompass all types of bonding interactions, but by being so all encompassing it does

not acknowledge the relative importance of different bonding interactions. Replacing
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it with two-body stretching and three-body bending bond energies would be an im-

provement. The bending bond energy contribution to the elastic properties would be

weighed four times higher than the stretching bond energy contribution. Perhaps ab

initio calculations could be designed to get such energy values.

5.5 Thorpe and Philips’ Constraints Theory

Now a number of limitations and issues with the Makishima Mackenzie model have

been outlined, based on the results of this study. The next question is then how do does

one move forward with an understanding of these systems, beyond the ionic space fill-

ing ball metaphor of the Makishima Mackenzie model? The paper “Self-organization

and the physics of glassy networks,” published in the Philsophical Magazine in 2005 by

Boolchand, Lucovsky, Phillips, and Thorpe, builds on the ideas outlined in Thorpe’s

Percolation paper (21). First, they bring up space filling models of network solids,

and state that connectivity, omitted in space filling models, plays a very important

role in actually understanding how such solids function. It has been demonstrated so

far in this work the limits of space filling Makishima Mackenzie model, and this work

shows the importance of connectivity to predicting the properties of the system, and

fully understanding its mechanics.

Next, they study carefully the core differentiation established previously in rigidity

percolation: between a floppy network and a rigid network. To do this, they explicitly

define the number of degrees of freedom Nd and the number of constraints Nc in a

system. The number of constraints is defined as the number of interatomic potentials,

while the number of degrees of freedom is defined by the number of atoms. When

Nc < Nd, the system is unconstrained and floppy; when Nc > Nd, the system is rigid

and stressed. The former system would have zero elastic properties, while the latter

would have non-zero elastic properties. However, there is an additional state, where

Nc = Nd. Here the system is rigid, but unstressed. These different states are outlined
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Figure 5.3: The three different states of a network solid outlined in a simple 2-D
example. There are 8 degrees of freedom for 4 atoms, but three are translational and
rotational. Each spring is one constraint. Figure reproduced from reference (21).

in figure 5.3.

Finally, they actually calculate the theoretical value of average coordination in a

system with ‘atomic’ coordination centres and ‘σ’ and ‘π’ bonding links. The number

of coordination centres defines the degrees of freedom of the system, while the two-

body σ and three-body π links define the number of constraints of the system. They

find the number of constraints equals the number of degrees of freedom at an average

coordination of 2.39. This corresponds closely to the coordination number of borate

glass, at 2.4, but is significantly below the coordination number of silicate glass, at

2.67.
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Here there is another explanation for why the Makishima Mackenzie model ap-

pears to work well for silicate glass, but fails so badly for borate glass. For a rigid and

stressed network system, as are all systems with coordinations above ∼ 2.4, the space
filling model of Makishima and Mackenzie works well enough at approximating the

network. However, at coordinations near 2.4, the number of constraints in this system

is near enough the number of degrees of freedom that the system is still rigid, but no

longer stressed. This has the implication that such a system should have significantly

lower elastic properties than a rigid and stressed system, but also elastic properties

greater than the zero values in a floppy and unstressed system. This understanding

of the properties of systems of different coordinations should hold for any system

where the dominant constraints are two and three body nearest neighbour potentials.

Indeed, the fact that 2.4 coordinate borate glasses have low but non-zero elastic prop-

erties, that higher coordinate systems have higher elastic properties, and that there

do not appear to exist lower coordinate systems implies that the assumption of only

two and three-body bonding forces is a good one for glassy networks.

The imposition of additional constraints on the system would change the coordi-

nation at which the system is rigid but unstressed. It should indeed be possible to

predict the rigidity phase of the system based on an analysis of the most significant

constraints present in the system. An interesting further case study would be phos-

phate glass, as for networking purposes phosphate oxide has a coordination of 2.4, but

each phosphate centre has an additional double bonded terminal oxygen attached to

it, imposing additional angular but not linear constraints on the system. This may ex-

plain why a system such as phosphate oxide, with low networking coordination, still

has its properties well predicted by the space-filling Makishima Mackenzie model,

which works for mostly higher coordinate systems. These questions would require

further study.
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5.6 Suggestions to improve model

So to this point a number of failings of the Makishima Mackenzie model have been

outlined, a new theoretical framework for how to approach studying network glasses

has been proposed, and explanations have been provided for why the Makishima

Mackenzie model appears to work well in certain cases despite its simplifications.

However, to move beyond the model, one must provide a mathematical formula that

actually describes the dependence on the coordination of the system.

Focusing again on the Young’s modulus, one sees that when average coordination

is plotted in an exponential, the previous curve from figure 4.1 breaks into three

discontinuous areas in figure ??. These areas correspond to 〈r〉 � 2.52, 2.52 � 〈r〉 �
2.4, and 2.4 � 〈r〉. These three regions would appear to correspond to the three
different phases of rigidity available to a network system: Nc > Nd, Nc = Nd, and

Nc < Nd. Any system with the same number of constraints per networking bond

should have its general range of elastic properties predicted by what coordination

range it falls into.

Figure ?? shows that for floppy systems with coordinations below 2.4, the Young’s

modulus is zero - only random fluctuations are present. For rigid systems with coor-

dinations slightly above 2.4, the Young’s modulus is non-zero, but small and largely

independent of the coordination. For coordinations significantly above 2.4, there is a

roughly exponential relationship between the Young’s modulus and the coordination.

One can define an equation that describes this last relationship:

E = C(e〈r〉−2.4 − 1), (5.1)

where C is a constant that would include other physical properties of the system.

One can further refine c, as it must include the bond energy of the system Eb, so

C = Eb ∗ C∗. If good values are found for the bending and stretching bond energies,



56

Figure 5.4: The Young’s modulus from random deletions replotted with an exponential
x axis. Coordinations from 3 to 2.1 are plotted.

Eb could be further refined: Eb = 4Eangular + Elinear. It is unclear what else beyond

the bond energy may be included in C.

One can create similar plots (figures 5.5 and 5.6) for the bulk and shear moduli,

showing this phase separation based on the average coordination number occurs for

all elastic properties of the system. While the actual trends are different for each plot,

the discontinuities in the lines occur at the same points.

To demonstrate that this new model makes comparable predictions to the MM

model, calculation have been performed to predict the Young’s modulus for the glass

series 8-12, as presented in Makishima and Mackenzie’s original paper (3). This is the

series (SiO2)1-x(Li2O)x, where x = 0.1, 0.15, 0.2, 0.25, 0.3. For the calculation, the MM

form E = 2VtG is used, equation 2.32, and Vt is replaced with the new coordination
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Figure 5.5: The Bulk modulus from random deletions replotted with an exponential
x axis. Coordinations from 3 to 2.1 are plotted.

Figure 5.6: The Shear modulus from random deletions replotted with an exponential
x axis. Coordinations from 3 to 2.1 are plotted.
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factor. This gives the equation

E = 2G ∗ (e〈r〉−2.4 − 1), (5.2)

where 2G remains the same factor derived in the MM model. The results of this

equation are plotted in the following table. Comparisons with experimental values

and MM model values for the Young’s modulus are also plotted.

Glass Number x Coordination Model Experiment Makishima Mackenzie
8 0.10 56.7 GPa 74.2 GPa 69.7 GPa
9 0.15 65.7 GPa 76.4 GPa 72.0 GPa
10 0.20 74.9 GPa 76.9 GPa 74.0 GPa
11 0.25 84.2 GPa 78.4 GPa 76.1 GPa
12 0.30 93.7 GPa 78.8 GPa 78.7 GPa

Table 5.1: Makishima Mackenzie Young’s modulus vs experimental values vs coordi-
nation model for (SiO2)1-x(Li2O)x

One can see that the coordination model does follow the same trend that ex-

perimental calculations follow. It does not perform as well at predicting the rate of

change across the series as the MM model does, and there are several possible reasons

for this. First of all, for these calculations, the A constant in front of the coordina-

tion term (equation 5.1) was simply assumed to be 2G, like in the MM model. This

is likely missing important factors, and this approach requires further development.

While a density term has been ruled out as a candidate, there is a possibility that

a volumetric term would be present, as suggested by the Voronoi cell calculations.

Another possible term could be a bonding density term (as distinct from an atomic

density term). These could correct for the steep trend predicted by the coordination

model. Secondly, it is important to understand how lithium interacts in this glass

series. While these calculations assumed it is a 4 coordinate species, this may be not

entirely accurate. Because lithium-oxygen bonds are so ionic in nature, a coordination

based understanding of its bonding may overestimate the resistance of those bonds
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to deformation. It may have a significantly lower effective coordination than 4, for

constraint purposes.

The exploration of this question gets at the most interesting dichotomy between

the Makishima Mackenzie model and a coordination based understanding of elasticity.

Glass formers are generally covalent in bonding, which explains why the MM model’s

more ionic approach appears to fail, in particular for low coordinate systems like

borate glasses. However, glass modifiers are often ionic in nature, which illustrates

the limitations of the constraints based approach, and why the MM model is more

effective at making predictions across a glass series. There appear to be two ways

forward to resolve this dilemma: move forward with the constraints based approach,

and determine an effective ionic correction to ionic bonding centres; or, hybridize the

MM model’s approach with the constraints based approach, using the MM model to

calculate the effects of ionic glass modifiers, and the coordination based approach to

calculate the starting elastic properties for the covalent glass formers.



Chapter 6

Conclusions

This work set out to answer a simple question: why does the Makishima Macken-

zie model work for predicting the elastic properties of silicate and other glasses, yet

fail so badly at predicting the properties of borate glasses. Thorpe’s percolation pa-

per inspired the exploration of this question, in particular the fact that in a system

of springs, the elastic properties decreased to zero when the average coordination

number of the system fell to 2.4 (19). The coincidence of this number to the actual

experimental average coordination of pure boron oxide glass lead to the idea that the

relationship between the coordination number of a system and its elastic properties

should be further explored.

A model system was set up that was able to reproduce the experimental elastic

properties for a silicon diamond lattice, and then bonds and atoms were randomly

removed from it from it in a variety of ways, testing various properties of the system.

To accomplish this, a sophisticated input generation program had to be implemented,

one that allowed fine tuning of various aspects of the model. With the results of these

calculations, the dependency of the elastic properties of the system to various param-

eters was explored. It was found that including both two and three-body potentials

was critical to getting the elastic properties of the system correct, that there was a

strong dependency of the elastic properties on the average coordination number of

the system, and that the elastic properties were independent of the density of the

system.

To further develop an understanding of how glasses behaved elastically, a theory of

60
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rigidity ‘phases’ in network systems was used, outlined by Thorpe, Philips et al. in a

paper from 2005 (21). This theory provided an understanding of how the relationship

between average coordination and elastic properties changed at low coordinations.

The key to this relationship was the relative numbers of constraints and degrees

of freedom present in the network system, represented by the average coordination

number of the system. Using this constraints based understanding of glassy systems,

an explanation was developed for why the Makishima Mackenzie model fails for borate

glasses, but still works for silicate glasses. A basis for improvement to the Makishima

Mackenzie model was proposed that took the coordination number of the glass into

account. Also, a method was proposed to determine whether a system could have its

properties accurately predicted by the model, or whether its coordination was too low

for that method to be effective.

To apply this new understanding of the relationship between elasticity and coor-

dination, a system first considered in the original Makishima Mackenzie paper was

examined (3). This examination found that the new equation could be applied to con-

firm the experimental trend, but it exaggerated the trend in its predictions. These re-

sults contrasted the strengths and weaknesses of the MM model and the coordination

approach. This contrast suggests a pathway forward to synthesize these approaches

for a model that better understands how elasticity arises in glass systems.
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