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Abstract

This work is an exploration of Supremum-enriched semicategory theory (quantaloids)
and the relationship with sheaves. We begin with a review of some basic constructions
and structures then introduce enriched semicategories and taxons. Next we define the
category of sheaves for an involutive quantaloid Q@ and give an equivalence with Q-
valued sets. We close by showing that a sheaf is an infimum preserving semifunctor,

F:Q“ — REL.
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Introduction

A sheaf on a topological space (X, T) is a contravariant functor from the lattice of
open sets to the category of sets (F : 7% — SET) that satisfies a patching condition.
The lattice of opens for a topological space is a complete Heyting algebra and the
theory of sheaves for complete Heyting algebras is well understood. From a complete
Heyting algebra H, Higgs [10] constructed the category of H-valued sets and showed
that this category is equivalent to the category of sheaves on H. For Higgs an H-
valued set is a matriz that takes its values in H.

The Gelfand-Naimark theorem tells us that the category of locally compact Hausdorft
spaces is equivalent to the category of commutative C*-algebras. So in some sense the
study of C*-algebras is the study of noncommutative topologies. From a C*-algebra
A Mulvey[16] studied the lattice of closed linear subspaces of .A. This lattice is a one

object supreiched semicategory (a quantale) which is a noncommutative generalization

of complete Heyting algebras.

For a Grothendieck topos £ the category of relations on & (REL(E)) is a supremum-
enriched category with extra structure. Pitts[20] called these bounded complete dis-
tributive categories of relations (bc DCR), and showed that the category with objects
bcDCR’s and morphisms supremum preserving functors, is equivalent to the cate-
gory of Grothendieck toposes. A DCR is said by Pitts to be complete if it has all
coproducts and all symmetric idempotents split. A complete Heyting algebra H is
a bounded DCR, and if we take the category of maps in the completion of H then
what we have is the category of H-valued sets.

viii



In the past Borceux, Mulvey, Gylys et al, have studied Q-valued sets for Q a quantale
and more generally supremum-enriched semicategories (quantaloids). Using the work
of Higgs as a guide these authors have defined a Q-valued set to be a matrix, taking

its values in Q, satisfying a set of axioms.

In the present work we set out to answer two questions. What is the correct notion

of presheaf and sheaf for a quantaloid? What is the relationship between Q-valued

sets, sheaves and semicategories?

To answer the first question we start with a short analysis of the work of Higgs. To
show the equivalence between H-valued sets and sheaves on H, for H a complete
Heyting algebra, Higgs used singleton H-valued sets and their associated morphisms.
Building on this we define the category of Q-valued sets (Q-SET) for Q a supremum-
enriched semicategory, to be the completion (in the sense of Pitts) of Q. The objects
are idempotent matrices and the arrows are the left adjoint matrices in the idempotent
splitting completion of the category of matrices of Q. Of particular interest are the Q-
valued sets (X, p, §) that are completely determined by the morphisms with codomain
(X, p,0) and domain a singleton Q-valued set.

For H a complete Heyting algebra, thought of as a one object quantaloid, if we take the
category whose objects are the idempotent arrows in H and arrows the left adjoints,
we then recover H as a lattice. Applying this process to an involutive quantaloid Q
we construct a category Q@ and define the category of presheaves to be the category
SET®™. We then define a sheaf in this category to be a functor that has a unique
amalgamation for every matching family. Generalising the work of Higgs we construct
an associated sheaf functor that factors through the category Q-SET. With this we
can show that the category of sheaves on Q is equivalent to the category of Q-valued
sets for Q pseudo-rightsided.

To answer the second question we must begin with an exploration of enriched semicat-

egory theory. For semicategories the notion of transformation is problematical since



the usual notion of transformation is tied to the existence of identities. This leads
to the idea that we should define transformations using the arrows. Unfortunately in
the most general setting there is no natural way to define the composition of transfor-
mations. If we ask that the composition in a semicategory be a coequalizer then we
can overcome the difficulties. Such a semicategory is called a tazon (Koslowski[12]).
Our main interest is with taxons enriched in the monoidal categories ORD, SUP
and INF. In these settings we can define lax-semifunctors and lax-transformations,

the latter comes in two flavours: modular and strong.

A relational presheaf on a quantaloid @ is an infimum preserving lax-semifunctor,
F : @® — REL. We show that the category of relational presheaves and modular
lax-transformations between them is equivalent to the semicategory of modules on
the matrices of Q. This result helps us show that for pseudo-rightsided supremum-

enriched taxons, a sheaf is an infimum preserving semifunctor F : Q“° — REL.

Since a SUP-enriched semicategory Q is like a bicategory we can talk about the
category Q-TAX. The objects are exactly the Q-valued sets and the arrows are
Q-semifunctors defined in the obvious way. With a little work we can show that
Q-T AX is equivalent to the category Q-SET for Q a pseudo-rightsided quantaloid.
Thus Q@-TAX is equivalent to the category of sheaves on Q.

We finish with a look at the Grothendieck construction of the category of elements
for a relational presheaf. For @ a quantaloid we show that the category of relational
presheaves and the modular lax-transformations between them is equivalent to the
category whose objects are faithful supremum preserving semifunctors L, : Q; — Q
(@: a quantaloid) satisfying Frobenius reciprocity, and a morphism 7 : (Q;,L;) —
(Q2, L) is a subprofunctor of @(L,—, Ly—). If a SUP-taxon Q is pseudo-rightsided,
then if we restrict to the faithful semifunctors F : Q; — Q, that satisfy Lo F = L;.

The resulting category then is equivalent to sheaves on Q.



Chapter 1

Constructions and Structures

1.1 V-Categories and Matrices

1.1.1 V-Categories

It is well known that the free completion with respect to coproducts of a category C

is the category FAM(C). In many instances some of the structure that C may have
is lost in FAM(C).

Example 1.1.1 A category is said to be supremum-enriched if every hom set is
a complete lattice with all suprema preserved by the composition. The category 1
admits a unique supremum-enrichment and FAM (1) = SET admits none. For if X
is a non-empty set then SET(X, 0) = 0, which underlies no complete lattice.

In this section we investigate a particular class of examples, which we call V-categories,
and the construction of matrices on a V-category, which completes the category with

respect to coproducts while maintaining the structure.

Definition 1.1.2 A V-category is a category C together with an operation

V: C(A, B)* — C(A, B)
for each set a, such that, forevery b: B— B’,a: A’ — A, and (h; : A — B)ica-

1
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V = lcap (1.1)

bo ¥ (h) = ¥ (bo(h)) (12)

V(h)oa = V((h)oa) (13)

%oné = VirYvn=a (1.4)
i€f ief

% = aVI for any isomorphic sets a, a'. (1.5)

Such a category then has a distinguished element in every hom set C(A, B) given by
9

V. We will refer to this element as 1. Notice that for any arrow f in C(A, B) we
have f1 = 1, (since % (fol)= 1) and \27' (f, L) = f (since 6:% o(% X 6)). A

V-functor F : C — D, between V-categories is a functor that preserves V.

Example 1.1.3 Any supremum-enriched category is a V-category with V = V. So
as a special case a Heyting algebra with composition given by A is a V-category.

In a V-category if the coproduct of a family of objects exists then the resulting object
is the product object as well, the proof of which follows the lines of Mac Lane [13].

Definition 1.1.4 For a family (A4;);cs of objects in a V-category C, a J-biproduct

consists of a diagram
L .
]

Ajes C

J
such that the following equations hold

1, ifj=k
Pjlk = J J . (16)
1 otherwise

V(p5) = lc.



Theorem 1.1.5 For a family of objects (A;);ey, in a V category C, the following

are equivalent.
1. The product of (A;) e exists,
2. (Aj)jes has a J-biproduct diagram,
3. The coproduct of (A;); e, exists.

Proof: Assume the product of (A;) cs exists and examine the following diagram.

/ | \\
lAj ] L
|

A gy Ties A = A

where j # k. Clearly the first set of equations for a biproduct diagram holds when

we set p; = p;.
PV (yp) = ¥ (Pxtsp;)
= é (Pe, L;) from 1.6 above
= é (P&, L) since V (Lica) = L

= Pk

This implies that é (¢ipj) = 174, thus 1 implies 2. Now assume we have a J-
biproduct diagram and arrows f; : D — A;. We have the arrow é (¢if5) : D - C
which satisfies pj é (¢i f;) =é (pxt;jf;) = fi. Now if there is another arrow h : D — C
such that p;h = f; then we have

h = é(bjpj)h
= ¥ (ypsh)
= é(‘jfj)-



Thus the arrows p; together with the object C form a product for the family (A;);e..
Thus 2 implies 1. By duality we have 2 if and only if 3. [

This tells us that if we complete a V-category C, with respect to coproducts as a

V-category then we will also be completing C with respect to products.

1.1.2 Matrices

If we wish the completion, with respect to coproducts, of a V-category as a V-category
then we need more than what Fam(C) gives us. What turns out to be the correct

notion is the category of matrices of C, Mat(C) (Pitts [20]).

Definition 1.1.6 Fora V-category C, define the category of matrices of C, MAT(C),

as follows.

Objects: pairs (X, p) where X is a set and
p: X — C is a functor.

Arrows: M :(X,p) — (Y,p) is a function M : Y x X — arrows(C)
such that M(y,z) : p(z) — p(y).

In oth ds
other wor Y x X

x* =y
NS
c
is a natural transformation.
The composition of arrows M : (X, p) — (Y,p) and N : (Y, p) — (Z, p) is given by
y
NM(z,z) = V(N(z,y) o M(y, z)).

Theorem 1.1.7 MAT(C) is a V-category with the identities given by the Kronecker
delta and V defined pointwise.



Proof: Clearly 6 M = M. Since V is defined pointwise %=°V for any pair of

isomorphic sets. So axiom (1.5) holds.

(@ [[% M)z ) = Voll(¥ My(z.9)

i€g i€f
= v M;(z,y) for j € o and [[y=8

So (1.4) holds. Now for (1.2) and (1.3)
(& M)N(z,z) = VYV {Mi(z,y)0 N(z.2)}

= 9V {M(z,y)o N(y,2)} by 1.5
= V{M;N(z,z)}.

|
Theorem 1.1.8 For C a V-category M AT(C) has all coproducts.
Proof: For (X, p;)icr the coproduct is given by
(X, p:) = (X, p:)
where
(X, pi) = (L X, )
and
lx, ifa=5b
w(a,b) = x. ifa (17)
1 otherwise.
i

We will frequently be working in the context of semicategories. In that setting we

will make use of the Mat(C) construction, but without the existence of identities this




need not have all coproducts. Here we have defined coproduct in terms of a universal

cone.

There is a natural embedding, &, of C into M AT (C) which sends an object C € C to
the pair ({C}, p), where p(C) = C. The embedding then sends an arrow f : C — C' to
the matrix ({C}, p) M ({C'}, p), where M;(C',C) = f. Since V is defined pointwise
in MAT(C), the embedding, x, preserves V.

Theorem 1.1.9 If there is a V-functor L from a V-category C to a V-category
D with all coproducts, then there is an essentially unique coproduct preserving V-
functor L' : MAT(C) — D, such that L'x = L.

Proof: L' sends an object (X,p) to the object [] L(p(z)) and a morphism M :
(X, p) — (Y, p) to the unique morphism given by

L(M(y, 7))

L{p(z)) L(p(y))

I L(p(z)) —L—,(m" I L(p(y))

The arrow L'(M) is unique since [ L(p(y)) is also the product. In the same manner
M is the unique arrow that we get from the trivial matrices (x(p(z)) ~(MGg.e) k(p(y))
in MAT(C). So it follows that L’ is essentially unique. |



1.2 Complete Heyting Algebras and Quantales

In this section we will explore the basic structure of complete Heyting algebras which
generalise the lattice of opens for a topological space. We begin with an exploration

of partial orders and lattices.

1.2.1 Orders and Lattice Theory

Definition 1.2.1 A partial order O is a set together with a transitive, reflexive and

antisymmetric relation.

An equivalent way to define a partial order is as a category for which each hom set

has at most one element and the only isomorphisms are the identity arrows.

Example 1.2.2 The power set of a set X is a partial order with the order given by

subset inclusion.

Example 1.2.3 For a partial order O we create another partial order D(Q); where
an element A of D(O) is a subset of the elements of O that satisfies the condition that
ifa <be€ Athena € A. We call such sets down sets. There is an embedding of O into
D(O) given by sending an element a of O to the down set | (a) = {b€ O | b < a}.

We will later see that this construction gives us the free sup-lattice on a partial
order. A morphism of partial orders is an order preserving function (categorically a

morphism is a functor). We denote the category of partial orders by ORD.

Definition 1.2.4 A lattice is a partial order with all finite suprema (also known as
finite sups or joins) and finite infima (also known as finite infs or meets). The lattice is
complete if it has all suprema. The category of sup-lattices has as its objects complete
lattices and morphisms supremum-preserving functions. We denote this category by
SUP.



When we think of a partial order as a category then it is a lattice if and only if it
has all finite products and all finite coproducts. It is complete if it has all colimits.
A morphism of sup-lattices is a functor that preserves colimits (a left adjoint order

preserving functor).

Proposition 1.2.5 A partial order O is a sup-lattice if and only if the embedding
1: O — D(O) has a left adjoint.

Example 1.2.6 The open sets of a topological space form a sup-lattice with the
order given by subset inclusion and supremum by union. Here, binary meet (intersec-
tion) preserves suprema in each variable separately (this will be our defining property

of a complete Heyting algebra).

1.2.2 Complete Heyting Algebras

One of the properties that the category of sets has is that the union of sets distributes
over the intersection (U;(A;NB) = (U; A;)NB). This property also holds for the lattice
of opens of a topological space. This naturally leads us to complete lattices with the
added property that binary infima distribute over suprema and more generally to

complete lattices with an associative binary operation that distributes over suprema.

Definition 1.2.7 A complete Heyting algebra H is a sup-lattice for which the map
—Aa:H — H, for each a € H, has a right adjoint a = —: H — H.

Theorem 1.2.8 A sup-lattice £ is a complete Heyting algebra if and only if for
every h,< h; >;c; elements of £ the following equation holds

Vier(h A hi) = h A (Vigr hi).

Proof: For complete lattices X, A, X 4, Ahasa right adjoint if and only if it

preserves suprema. So in particular this is true for —Aa: H — H. [ |

A complete Heyting algebra is a one-object V-category with V given by the supremum

and composition given by meet.



Example 1.2.9 A complete boolean algebra is a complete Heyting algebra.

Example 1.2.10 The lattice of open sets of a topological space forms a complete

Heyting algebra.

Example 1.2.11 For O a partial order, D(O) is a complete Heyting algebra. We
have binary meets given by intersection and suprema given by union. To show that
this is Heyting we need that A N (U;er B;) is equal to Ui (A N B;), for down closed
subsets A and B;¢r of O.

teAN(JB) & ze€Aandze|B;
iel iel
& r€Aand 3; z € B;

1.2.3 Quantales

The Gelfand-Naimark theorem tells us that the category of commutative C*-algebras
is equivalent to the category of locally compact Hausdorff spaces. This naturally leads
to the question of what is the appropriate notion of a noncommutative topology and
the associated lattice of opens. As an answer to this question Mulvey [16] introduced
quantales as a non-commutative generalisation of complete Heyting algebras. These

abandon the meet operation in favour of an arbitrary binary operation.

Definition 1.2.12 A quantale Q is a complete lattice together with an associative
binary operation & : @xQ — Q such that the maps —&a : @ — Qand b&— : Q — Q
have right adjoints — = a: Q — Q and b < — : @ — Q respectively. Frequently we
will write q&p as gp. If the quantale contains an element e that satisfies e&q = ¢ =

q&e for every q in Q then we say that the quantale is unital
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Theorem 1.2.13 A complete lattice £ with an associative binary operation is a

quantale if and only if for ¢ and < ¢; >;cs elements of £ the following equations hold

Vig&a:) = q&(\/ @)

i€l iel
Vig&e) = (V a)&q
icl iel

Proof: A morphism has a right adjoint if and only if it preserves the suprema. [

Of particular interest to us are quantales that come equipped with an involution.

Many of the interesting examples are involutive and the involution will help us later

in our analysis of sheaves.

Definition 1.2.14 An involutive quantale is a quantale Q together with a supre-
mum preserving operation ()* : Q® — Q (called the involution) such that for every

g in Q we have ¢** = ¢

Example 1.2.15 For a C* — algebra A we construct the quantale of closed linear
subspaces M AX (.A) by taking the composite of subspaces A and B to be the subspace
A&B = Closure(Span{ablacA and beB}). MAX(A) is unital if .4 is unital, and in
that case the unit is given by span{1}. M AX(A) is also involutive with the involution
on a closed linear subspace X given by X* = {z* | z € X}
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1.3 Enriched Categories

The definition of semicategory is obtained by deleting from the definition of category
the existence of identity arrows (and the equations they are required to satisfy).
Thus semicategories with one object are precisely semigroups in the same way that
categories with one object are monoids. For categories the notion of enrichment is well

known, as also the notions of enriched functor and enriched natural transformation.

In this work we will need enriched semicategories. In particular we will need SUP-
enriched semicategories. To motivate this recall that a quantale can be described as a
SUP-enriched semigroup. To say that a quantale is unital is to say that it, together

with its unit, is a SUP-enriched monoid.

It is not useful to merely adjoin a unit to a quantale that is not unital. Consider the
quantale MAX(A) for A a C*-algebra. For commutative C*-algebras the existence

of the identity element encodes compactness, along the Gelfand-Naimark equivalence.

In considering enriched semicategories we are led to the counterparts of functor and of
natural transformation. The latter requires some care. Accordingly we begin with a
review of monoidal categories and categories enriched in them and focus our attention

on two equivalent definitions of natural transformations.

Definition 1.3.1 A monoidal category C is a category together with a functor
® : C xC — C (for which A® B may be abbreviated by AB), an object I, and natural
isomorphisms a : (A® B)@C - A®(B®C),p: AQI - Aand A\: IQA— A
satisfying

«a

A(B(CD)) (AB)(CD) ((AB)C)D

la al

A((BC)D) (A(BC))D
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A(IB) (AD)B
AB

Example 1.3.2 The category of partial orders and order preserving functions, ORD,
is a monoidal category. The tensor product is given by the product of sets with the

partial order on the tensor defined piecewise.

Example 1.3.3 The category of complete lattices and supremum preserving func-

tors, SUP, is a monoidal category. For complete lattices @; and Q; their tensor

product Q; ® Q, is the set
{(WeD(QxQ) | (VSxT e D(Q; x Q) SxT C W implies (VS,VT) € W}

[26].

Example 1.3.4 The category of INF-lattices and infimum preserving functors is a
monoidal category. This category is denoted by INF. The functor ()% : SUP — INF

is an involutive isomorphism of categories [19].

Definition 1.3.5 For V a monoidal category, a V-category C consists of the following
1. a class of objects, |C|
2. for every pair A, B of objects, an object C(A, B) of V

3. for every triple A, B, C of objects, a morphism in V, known as ‘composition’,

CaBc : C(A,B)®C(B,C) = C(A,C).

4. for every object A, a ‘unit’ morphism in V, C4 : I — C(A, A).
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These morphisms must satisfy

(C(A, B)® C(B,C)) ®C(C, D) Casc®l L C(A.C)®C(C,D)
C(A, B) ® (C(B,C) ® C(C, D)) Caco
1®Csecp l
C(A, B)®C(B, D)

C(A, D)

CaBD

A
I®C(A, B) ——C(A,B)~—2—C(A,B)®I
CA@ll IC(A.B)\ 19C

C(A, A) ® C(A, B) —C(A, B)~——C(A, B) 8 C(B, B)

Caas ABB

Definition 1.3.6 For V a monoidal category, and V-categories A, B a V-functor
F : A — B consists of the following

1. A function F : |A| — |B|.

2. for every pair of objects A;, A; in A, a morphism Fjy, 4, : A(A1, A2) — B(FA;, FA))

in V, such that the following diagrams commute.

'A 1A2A3
A(Ali A2) ® A(A2a AS) ArdaA A(Al, A3)

Fa,a, ® Faya, Fa,a,

B(FA,, FA2) @ B(FA,, FAj) B(FA,, FAy)

Bra,FA;FAs

[—A4 . A4, 4)

zsp\

B(FA, FA)

FAA
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Definition 1.3.7 For V a monoidal category, A, B two V-categories, and F,G :
A — B two V-functors an object-based V-natural transformation v : F — G consists

of an |A| indexed family of arrows v, : I — B(FA,GA) in V such that the following

diagram commutes.

A(A1, A2)® T e B(FA,, FA>) ® B(FA;, GA»)

p! { JBFAIGA;GA:;
A(Ay, A2) B(FA,,GA,)

At ' Bra,Fa,Ga,

I® A(Ay, As) B(FA,,GAz) @ B(GA2,GA,)

Recall that for a category, there is an equivalent arrows-based definition of a natural
transformation (Mac Lane[13] pg 19). This is also true in the more general setting of
V-enriched categories.

Definition 1.3.8 For V a monoidal category, A, B two V-categories, and F,G :
A — B two V-functors an arrows-based V-natural transformation v : F — G consists
of an |A| x | A| indexed family of arrows < 74,4, : A(A1, A2) — B(FA;,GAz) > such

that the following diagrams commute

A(A1, Az) ® A(A2, A;) B(FA, FA;) ® B(FA,, GAy)

F YAz2A3

Bra,Fa:GAs

A4, 4,4,
A(A1, A3) RATED B(FA;,GAs)

B(FA,,GAs) ® B(GAs, GAs)

A(A;, A2) ® A(A2, A3)

YA A2

AA1A2A3 BFA;GA:GA:;

A(A1, A3) YArAs B(FA,,GAs)
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Theorem 1.3.9 The two definitions are equivalent.

Proof: We start by describing how to construct an object-based V-natural transfor-
mation from a given arrows-based V-natural transformation < 4,4, : A(4;, A2) —
B(FA;,GA;) >. For an object A € A define 7 to be the family of arrows < I %
A(A,A) ¢ B(FA,GA) >. The following diagram chase shows us that this fam-
ily is an object-based V-natural transformation since the boundaries of the diagram

represent the boundaries of the defining square.

A(Alv A2)

7\

A(Al, A2 ® I I® A(Ah A2

1® Aa, Aas, ®1

A(A}, A2) @ A(A,, As) A(A1, A1) ® A(AL, Ag)

Afh& /4.41.41/12

A(Als A?

F ® 74,4, Yaa, ®G

B(FA,, FA;) ® B(F A, GA)

YA 1Az
BF A1FA2GA2

B(FA,,GA,) ® B(GA,,GA»)

/BFAchxGAz

B(FA;,GAs)
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Now given an object-based V-natural transformation < v4 : I — A(A, A) > we define

an arrows-based V-natural transformation by

< A(A1, A) B A(A A) @ 1 T

B(FA,, FA;) ® B(F A, GAy) 5 B(FA,GA,) >.

The following diagram chases give the defining squares for the arrows-based definition.

A(A, A2) ® A(A2, As)

AAlAV

-1
'A(Aly A3) 1® P
o
AAlAzAs ®1
A(AL, A3) QT A(A, Ay) @ A(A2, A3)® T
Fe TAs FOF® YAs

BFAxFAzFA:; ®1
B(FA,, FA;3) @ B(FA;,GA,) B(FA,, FA;) ® B(FAy, FA3) @ B(F A3, GA;)

Bra,FasGas 1 ® Bra,Fa;cas

B(F Ay Gds) ~—p———— B(F A\, FAs) ® B(F Ay, Gs)
1 3 3

The boundaries of this diagram give us the following square which is the first of the

two required in the arrows-based definition.

A(A1, A2) ® A(Az, A;)

B(FA,, FA;) ® B(FA,, GA3)
F ® 74,4,

AaAz4; Bra,Fa;Gas

A(A,, As3) TAiAs B(FA,, GAs)
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The diagrams on the next two pages show that the second of the two required diagrams

(below) in the arrows-based definition holds.

A(A}, A2) ® A(Az, As) B(FA;,GAz2) ® B(GA2,GAy)

YA, A2 ® G
AAlAzAs BFA10.420A3

A(Ar, As) Y4145 B(F Ay, GAs)

The left boundary of the first diagram (below) matches up with the right boundary
of the second diagram (next page), and putting the two together gives us the required
equality.

A(A1, Az) ® A(Az, As)

,\-‘y/ \<®1

I ® A(A1, A2) ® A(A2, As) A(A1,A2) ® I @ A(A2, A3)

Ya ®G®G F®7A2®G
2

B(FA,, FA;) ® B(FA;, GA;) ® B(GAs, GAs)
B(FA,,GA;) ® B(GA,, GA;) ® B(GA;, GAs)

Bra,Fa,ca, ®1
1 ® Bga,ga.cas A1GA1GA, ® 1 FA1FA:GA

J
B(FA;,GA;) ® B(GA,, GAy) B(FA,,GAz) ® B(GA,, GAs)

BFAIGA% %FA[GA:GA:}

B(FA11 GA3)
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A(AL, Az) ® A(Aq, A3)
Aaiaa el
A(Al, Aa) I® A(Al, A ® A(A21 AS)

! \‘ 14, ® G ® Gl

A(A, A3)® 1 I® A(A,, As) B(FA;,GA,) ® B(GA,,GAy)

®B(GA2 ’ GA3
F ®va, 14, ®G
4 A \ /1 ® Bea,cascas

B(FAI, FA3) ®B(FA3, GA3 B FAI, GA1 ® B(GA[, GA3

BFAIFA;;% Amcmcm

B(FA;,GAs)

This shows us that we have an arrows-based V-natural transformation. We now
want to show that by applying the constructions twice we return to the original
transformation. Assume that < I — B(FA,GA) > is an object-based V-natural
transformation. Converting into an arrows-based natural transformation and back

again yields the object-based V-natural transformation given by

<12 A4,4)% .A(A Aol
B(FA,FA)® B(FA,GA) 5 B(FA,GA) >.

The following diagram shows us that this family is the original family.
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A(A, A)
ol B(FA,FA) I®I
%A ®\® YA
Fl A1
AA,A) 1 B(FA,FA)®I I®B(FA GA)*— B(FA,GA)
F®~va 1® 74 1a(Fa.ca)

B(FA,FA)® B(FA,GA)

BraracA

B(FA,GA)

Finally given an arrows-based V-natural transformation we construct a new arrows-
based V-natural transformation by first converting it into an object-based one and
then converting back. The final diagram below shows us that the new arrows-based

V-natural transformation

< A(Ar, A2) D A(Ar A2) ® "2 A(A), 42) ® A(Ar, Ap) 25"
B(FAh FAQ) ® B(FAQ, GA2) B, B(FAI’ GA2) >

is the same as the original one.



A(A1,A) T

/ YA;&

A 2
A(A1, Ag) Adeds  A(A1, Ay) ® A(As, Ag)
YA A2 Fe® YA242
B(FA;,GA,) B(FA;, FA;) ® B(F Az, GA,)
BFA;FAzGAz

So this gives us that the arrows-based and object-based definitions of V-natural trans-

formation are equivalent [ |



1.4 Enriched Semicategories and Taxons

The Gelfand-Naimark theorem tells us that the category of commutative C*-algebras
is equivalent to the category of locally compact Hausdorff spaces and that the category
of compact Hausdorff spaces is equivalent to the category of unital C*-algebra. This
has led many to refer to non-commutative C*-algebras as non-commutative topologies.
Mulvey[16] extended the Gelfand-Naimark theorem to non-commutative C*-algebras
A. For his work he used the associated quantale MAX(A). This result indicates
that we should work with structures that need not have a unit. This is problematical
though, because the simple idea of dropping the unit from a category is insufficient
when we wish to work with natural transformations. When we choose to work with an
arrows-based definition of natural transformations there is no natural way to define
their composite. In this section we will explore a class of structures, called Tazons,
which overcomes this difficulty. These were introduced by Koslowski [12] in his work
on interpolads.

Definition 1.4.1 For V a monoidal category a V-semicategory consists of

1. a class of objects, |C|
2. for every pair A, B of objects, an object C(A, B) of V

3. for every triple A, B,C of objects, a morphism in V, known as ‘composition’,
Casc : C(A,B) ® C(B,C) — C(A,C), such that for objects A, B,C,D the
following diagram commutes

CaBc®1
(C(A,B)®C(B,C))®C(C, D) C(A,C)®C(C, D)

|

C(A,B)® (C(B,C)®cC(C, D))
1®Cacol

C(A,B)®C(B,D)

Cacp

C(A, D)

CaBD
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Definition 1.4.2 For V a monoidal category, and V-semicategories A, B a V-

semifunctor F : A — B consists of the following
1. for every object A in A an object FA in B.

2. for every pair of objects A, A; in A, a morphism
Fa,a, : A(A1, Ay) = B(FA,, FA2) in V, such that the following diagram com-

mutes.

AA( A2A3

A(A}, Ay) ® A(A2, A3) A(Ay, As)
Fa,a; ® Faga, Fa a
B(FA,, FA;) ® B(FA,, FA3) B(FA,, FA;)
FAI1FA2FA;

When V is the monoidal category SET we will refer to the V-semicategories and
V-semifunctors simply as semicategories and semifunctors and denote the resulting
category by SCAT. We saw that for V-categories C and D, and V-functors F,G :
C — D there are two equivalent definitions of natural transformations between F' and
G to choose from, the object-based and arrows-based definitions. The equivalence
between the two was determined by how the arrows-based definition acts on the
identity arrows. This indicates that the object-based definition is closely tied to the
existence of identity arrows. So with their absence we should use the arrows-based
definition. Unfortunately for semicategories composing natural transformations using
the arrows-based definition is a problem. This difficulty is overcome using tazons

(Koslowski[12]). This though does require that V have all coproducts.

Definition 1.4.3 : If the monoidal category V has all coproducts a V-tazon is a V-
semicategory C for which the unique arrow m : [[x C(A, X) ® C(X, B) — C(A, B),
obtained from the universal property of coproducts and the arrows Caxpg, is the

coequalizer of
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1
Ly C(A,U) ® C(U, V) 8 C(V, B) 'ln 1x C(A, X) ® C(X, B)
om

where 1 om and m o1 are also obtained from the universal property of coproducts in

the obvious way.

This is enough to allow us to define the composite of natural transformations for the
arrows-based definition. For a monoidal category V we will denote the category of
V-taxons and V-semifunctors by TAXy ( The standard notation is V-TAX, but for
simplicity we prefer TAX, ). For the monoidal category SET we will denote the
resulting category TAXsgr by TAX and an object will be called a tazon. One of
the consequences of the definition is that every arrow in a taxon C can be written as

a composite.

Definition 1.4.4 For V a monoidal category, A, B two V-taxons, and F,G: A — B
two V-semifunctors a V-natural transformation v : F — G consists of an |A| x [A]
indexed family of arrows (v4,4, : A(A), A2) — B(FA;, GA2)) such that the following
diagrams commute

.A(Al,Az) ®A(A2, A3) B(FAI, FAQ) @B(FAQ,GA:;)

YAz243
AA1A2A3 BFAxFAzGA:
YA Aa
A(A;, A;) B(FA,;,GA3)
A(A;, A2) ® A(A,, A3) B(FA,,GA;) ® B(GA;, GA3)
Y4, ® G
AAlAzA:! BFAxGA:GAa
A(AL, As) A4 B(FA,,GAs)

For two V-natural transformations F — G — H, their composite (07)4p is defined

to be the unique arrow, in the following diagram, satisfying (67)ap = (0 0 T)as.
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[Ix C(A, X)®C(X,B) m C(A, B)

[y
C(A,Y)®C(Y,B) (oo (6T)aB

l TR0
D(F(A),G(Y)) @ D(G(Y). H(B)) D(F(A), H(B))

Draav)Hs)
Here (o o 7) 48, derived from the universal property of coproducts, coequalizes 1 om
and m o 1. Observe that for a V-semifunctor F' : C — D there is an associated V-
natural transformation 77 : F — F, defined by TFaiap = Fz, 4, which is the identity

V-natural transformation on F'.

In addition to the natural transformations 7 and ¢ assume we have semifunctors
JJK,L : D — £, and natural transformations J % K 23 L If we define the
horizontal composite (¢ o 7); to be the natural transformation given by the family

< ¢, >, then the interchange law holds.

[(¥)o(or)ly = (¢¥)er,
= (¢¥)o,n, for every gh = f
= ¢o,¥n,
= (¢00)(¥oT)n
= [(goa)(@or),

So we have that TAX together with TAX(A, B) and o is a 2-category.

Definition 1.4.5 For C and D taxons, an adjunction from C to D is a quadruple
< F,G,n,e > such that F:C — D and G : D — C are semifunctors and n: 1 — GF

and € : FG — 1 are natural transformations that satisfy the following:

F-E1. por ¢ crg

\EF \N

F G

Ge




These triangles say that for arrows C L' 5 ¢C"inCandarrows DL D' S D" in

D, the following equations hold
erg) F(m) = F(gh) and G(er)ngs) = G(rs)

For such an adjunction we say that F is left adjoint to G and G is right adjoint to
F, and denote the adjunction by F 4 G.

For C and D taxons and F,G : C — D semifunctors, a natural isomorphism is a
transformation 7 : F — G such that there exists a transformation ¢ : G — F

satisfying 7o = 7¢ and o7 = 7. We will usually denote o by 7~!.

Definition 1.4.6 Two taxons C and D are said to be equivalent if there exist semi-

functors F : C — D and G : D — C and natural isomorphisms 7 : 1 — GF and
e: FG— 1p.

For a taxon C the idempotent splitting completion (also known as the Karoubian

envelope) has objects idempotent arrows in C and arrows f : g — h satisfying the

following:
A f B
g \ h
A B
f

We can now show that the idempotent splitting completion, KAR : TAX — CAT
is a 2-functor and right adjoint to the inclusion of CAT into TAX.

Th 1.4.7
eorem KAR

CAT T TAX

L

Proof: First we wish to show that KAR is functorial. For C and D taxons and
F : C — D a semifunctor KAR(F) : KAR(C) — KAR(D) is defined by the
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mapping on the following square, which is an arrow in KAR(C),

A—r . p Fa) 2 ppy
f \ g = F(f) W> F(g)
A B F(A) — F(B)

h F(h)

Clearly we have KAR(GF) equal to KAR(G)KAR(F). For G : C — D another
semifunctor and 7 : F — G a natural transformation define KAR(7) : KAR(F) —
KAR(G) to be the natural transformation defined on an arrow h : f — g in
KAR(C), by KAR(1), = 4. For arrows h and k in KAR(C) the following shows
that KAR(7) is a natural transformation from KAR(F) to KAR(G).

KAR(T).KAR(F)(h) = 7.F(h)
= Tkh

= KAR(T)kh.

Similarly we have KAR(G)(k)KAR(7)r = KAR(7). If we have a third semifunctor
H : D — & and a natural transformation o : G — H then clearly we have KAR(o7)y,
equal to KAR(c)sKAR(T), so KAR is a 2-functor. It is well know that for a category
there is an embedding of C into KAR(C) given by taking C € C to 1¢ and an arrow
f to f. We take this embedding to be the unit for our adjunction. For a taxon C,
the counit is defined to be the forgetfull arrow ¢ : KAR(C) — C. Note that e¢ is a
genuine semifunctor, even for C a category, since it does not preserve identities. It is
now clear that (KARe)(nK AR) is the identity transformation.from KAR to KAR

while (e¢)(¢n) is the identity transformation on the inclusion &. i

Observe that if A is a taxon the category TAX(1,.4), which has as its objects semi-

functors and arrows transformations, is equivalent to the category K AR(A). This



follows since each semifunctor picks out an idempotent arrow in .A while a transfor-
mation picks out an arrow in A that satisfies the two triangles. That is n F(1) = n
and G(I)Tl =7N.
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1.5 Order and Supremum-enriched Taxons

Recall that complete Heyting algebras are one-object SUP-enriched categories with
composition given by meet while a quantale is a one-object SUP-enriched semicate-
gory. A quantale is said to be unital if it has an identity morphism. Our particular
interest is with the more general semicategories and taxons enriched in the monoidal
categories, ORD and SUP. We will call a semicategory enriched in the category
SUP a quantaloid.

Example 1.5.1 The category of relations is sup-enriched. This category has as its
objects sets, morphisms relations and the supremum of relations is the union of sets.

For any Grothendieck topos £ the category of relations on £ is SUP-enriched.

Example 1.5.2 For a semicategory C we can construct a SUP-enriched semicat-
egory PC, where the objects of PC are the same as in C, and the arrows from A
to B are the subsets of C(A, B). The composite of two arrows, X C C(A, B) and
Y CC(B,C), is the subset {gf | fe X, g€ Y}.

Rosenthal[21] showed that P is a functor from the category of locally small categories
into the category of locally small SUP-enriched categories and that it is left adjoint
to the forgetful functor. It turns out that the category of algebras for this adjunction

is the category of locally small supremum-enriched categories.

Example 1.5.3 For an ORD-semicategory O, we can construct a quantaloid D(O),
where the objects of D(QO) are the same as in O, and the arrows from objects A to
B are the downsets of O(A, B). For down sets X C O(A,B) and Y C O(B,C) the
composition of X and Y is given by, Y X = {yz|y € Y, = € X}! and the supremum is
the union of sets. Here we write St = {z | 3, z < y € S} for the downset associated
to an arbitrary subset of an ordered set. For z an element of an ordered set we will
denote {z}! by | z. If O is involutive then D(Q) is also involutive. For X a downset
the involution is given by setting X* = {z* | z € X}.



The free SUP-enriched category PC of a category C is a special case of the following
theorem, where each hom set of C is endowed with the trivial order.
Theorem 1.5.4 For O an ORD-taxon, D(O) is the free SUP-enriched taxon of
0.
Proof: We have D : TAXorp — TAXsup given by
e On Objects ¢ For O an ORD-taxon, D(O) has
|D(O)| = |0
D(0)(A,B) = {X C O(A, B) |X is a down set }
with composition XY = {zy |z € X,y e Y}!

e On Arrows e  For O, A, O,, order preserving
Df(A)={f(a) | a € A}.

We have that [[x O(4, X) x O(X, B) = O(A, B) is a coequalizer. Now the arrow
D : ORD — SUP is left adjoint to the inclusion, and thus preserves coequalizers
and coproducts. Also it is known that for partial orders O; and Oz, D(O; x O2) =
DO; ® DO,. Thus it follows that DO is a SUP-taxon. We now show that D 4 U,
where U is the 2-functor that forgets suprema. The unit of the adjunctionn:1 — UD

is the natural transformation defined by:
For O, R O, an order arrow
ns(z) =1 f(=).
The counit of our adjunction € : DU — 1 is the natural transformation defined by:
For &, LN Q2 a supremum arrow
en(X) = V{h(z) | € X}.
Given O, ER O, 2 0, we have for X a down set of O,
epgDne(X) = epg{f(z) | z € X}
= L:J L(gf(=))
= Dgs(X).
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Now for 9, A, Qs LA Q3 we have

Ueanun(q) = Uee(l h(q))
= V{k(z) | z < h(q)}
kh(q).

And so we have that D 4 U. [ |

1.5.1 Constructing ORD-Semicategories

In this section we will explore some ways to construct new ORD-enriched semicate-

gories or SUP-enriched semicategories from given ones.

Earlier we defined V-categories to be categories together with a V structure. In
the obvious way we define V-semicategories to be semicategories together with a V

structure.

Example 1.5.5 If Q is a quantaloid then M AT (Q) is a quantaloid. For matrices
XYYy we say that M < N if and only if M(y,z) < N(y,z) foreveryy € Y,z € X.
For a family of matrices Y &z , we take é’ Ricr to be the pointwise supremum. It

is easy to show that this is the supremum.

Definition 1.5.6 For O, an ORD-semicategory, the semicategory of modules on O,
MOD(O) has



e Objects o

e Arrows e
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f an endo arrow in O
such that

ff<f

For f: A— Aand g: B — B objects
r:f—gisanarrowr: A— B

such that

rf<randgr<r.

Rosenthal[22], et al, studied the category of bimodules on a SUP-enriched category Q.
This category of bimodules is the full subcategory of MOD(M AT (Q)) determined by
those matrices ¢ : (X, p) — (X, p), for which 1(x, < & in MAT(Q)((X, p), (X, p)).
(These objects are what Walters[24] called Q-categories, where Q is regarded as a
bicategory). In our case we are interested in quantaloids that may not have identities.
We will call an object of MOD(MAT(Q)) a Q-semicategory and denote it by (X, p, §).

Definition 1.5.7 For O an ORD-semicategory, the semicategory of right modules

consists of

e Objects ¢ f an endo arrow in O

e Arrows e

such that
fff

For f: A— A and g: B — B objects
r.:f—gisanarrowr: A— B

such that

rf=rand gr <r.

It is easy to see that the semicategory of right modules (RMOD(0O)), for O an

ORD-semicategory, is also an ORD-semicategory.



32

Recall that for O an ORD-semicategory the idempotent splitting completion (Karoubian
envelope) KAR(O) has

e Objects ¢ f an endo arrow in O

such that
ff=Ff

e Arrowse For f: A— A and g: B — B idempotents
r:f—gisanarrowr: A — B
such that
rf=r=gr.
Observe, for Q@ a SUP-semicategory, the arrow dd < d in MAT(Q)((X,p), (X, p))
coequalizes the arrows < 04, do <: §66 — 86 (both of which are the arrow 666 < 64
in MAT(Q)((X, p),(X,p))) if and only if 66 = §. We will thus call an object of
KAR(MAT(Q)) a Q-tazon.

Clearly for O an ORD-semicategory KAR(Q) is an ORD-semicategory. Similarly
for @ a quantaloid, MOD(Q), RMOD(Q) and KAR(Q) are quantaloids.

For a SUP-category Q we will frequently be working with the left adjoints in Q.

#
That is the elements A & B in Q, such that there exists an arrow B & A satisfying

Fa
)

14

pp* < 1

In this case we denote p left adjoint to p* by p 4 p#. We will call a left adjoint
p a map and write MAP(Q) for the SUP-category with |[MAP(Q)| = |Q| and the
arrows the maps of Q. We can expand this slightly to ORD-semicategories of the
form MOD(O) since each object comes equipped with a distinguished arrow although
there may be no identities. For O, an ORD-semicategory, a map in MOD(O) is an
arrow p: f — g, together with an arrow p# : ¢ — f such that
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p¥p

IA

f
pp* < g.

Denote the O-semicategory of maps on MOD(O) by MAP(MOD(O)).
Lemma 1.5.8 For @ a SUP-category and p : A — B a map we have the following
1. p=pp¥p
2. p is monomorphic if and only if p¥p = 14
3. p is epimorphic if and only if pp* = 15
4. p is isomorphic if and only if it is both a monomorphism and an epimorphism.

Proof: For the first result we have
p = pla < pp*p < lagp = p
Secondly, if p is a monomorphism then we have pla = pp¥p implying that 14 = p#p.

The opposite direction is clear. By duality we have the third and fourth properties.
B

1.5.2 Involution

Definition 1.5.9 For V a monoidal category a V-semicategory C together with a V-
semifunctor ()* : C° — C that is the identity on the objects and satisfies ()*()*” = 1¢
is an involutive V-semicategory. A semifunctor F : C — D between two involutive

V-semicategories is involutive if it preserves the involution.

Denote the category of involutive V-taxons and involutive semifunctors by *TAXy
(similarly for V-semicategories). Unless otherwise stated we will assume that a semi-

functor between involutive V-semicategories preserves the involution.
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For C a semicategory an endo arrow f is said to be symmetric (self adjoint) if f =
f*. Similarly for ORD and SUP enriched semicategories. Denote by *KAR(C)
the full subcategory of KAR(C) generated by the symmetric idempotents. Clearly
*KAR(C) is involutive. This is because the objects are symmetric. This together

with Theorem(1.4.7) gives us the following result.

Theorem 1.5.10 *KAR : *TAX — *CAT is right adjoint to the inclusion of
*CAT into *"TAX (where *CAT is the category of involutive categories and involution

preserving functors).

For O an involutive ORD-semicategory *MOD(Q) is the full sub ORD-semicategory
of MOD(O) generated by the symmetric modules.

For Q an involutive SUP-semicategory, M AT(Q) is involutive with the involution
defined pointwise. For a matrix M : (X, p) — (Y, p) define M° : (Y, p) — (X, p) by
setting M°(z,y) = M(y,z)*. A symmetric map in a SUP-category is a map p such
that p* = p*. The category *MAP(Q) has objects |*MAP(Q)| = |Q| and arrows the
symmetric maps. In particular our interest is drawn towards those matrices which
satisfy M - M°. If we interpret a matrix as a type of relation, then M - M°, tells
us that M is ‘functional’.

Theorem 1.5.11 For Q an involutive SUP-semicategory *MAP(Q) is a category.

Proof: For maps p and q, if p < q then by adjunction we have ¢* < p*. But the

involution preserves the order so we have p* < ¢*. Thus p* = ¢* and so p =gq. |

Example 1.5.12 The category of relations REL is involutive with the involution
given by taking the opposite relation. This is the category *KAR(M AT(Q)), where
Q is the Heyting algebra 1 < T and the involution is the identity on Q. It is easy to
see that M AT (Q) is equivalent to REL and since all symmetric idempotents split in
REL it follows that *KAR(MAT(Q)) is equivalent to REL.
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Example 1.5.13 For a C*-algebra A we can construct a quantaloid Q4 by taking
as our objects the sub C*-algebras of A. For two sub C*-algebras A, B an arrow

M : A — B is a closed linear subspace M of A such that
MA = Closure(span{ma | m € M,a € A}) = M

and similarly BM = M. Note that Q 4 is equivalent to the category KAR(M AX (A)).
The involution on A makes this an involutive quantaloid. That is for X, a closed

linear subspace of A, X* is the set {z* | z € X}.

Definition 1.5.14 An involutive quantaloid Q satisfies Freyd’s law of modularity
if for every triple of arrows f : A - B, g: B — C,and h : A — C we have

gf AR < g(fAg°h)

Example 1.5.15 For H a Heyting algebra, H taken as a one object involutive
quantaloid satisfies Freyd’s modular law. Since composition is the meet and involution

is the identity this is just the inequality gA f AR < gA(fAgAh).

Example 1.5.16 For a group G if we take as objects the sub groups of G and as
arrows F' : A — B the subsets of G that satisfy FA = {fa|feF and aeA} = F and
BF = F then we have a quantaloid Q¢. Note that Q¢ is *KAR(P(G)), where P(G)
is the quantale of subsets of G. This is an involutive quantaloid with the involution
given by inverse. That is for X C G we have X* = {z7! | z € X}. This satisfies
Freyd’s law of modularity.

Example 1.5.17 The category of relations satisfies Freyd's modular law. Given
relations R: X - Y ;S:Y - Z and T : X — Z assume that 2(SR A T)z. This
means that zT'z and there is a y in Y such that zSyRz. So we have y(R A S°T)x
and zSy which gives us 2zS(R A S°T)z.

Definition 1.5.18 An involutive quantaloid Q is said to be pseudo-rightsided if for
every ¢ € Q we have ¢¢*q < ¢ implies that q¢*q = q.
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Lemma 1.5.19 For Q an involutive quantaloid, if for every ¢ € Q, ¢ < qT and if
Q satisfies Freyd’s modular law then Q is pseudo-rightsided.

Proof: Let g : A — B be an arrow of Q, and assume Q satisfies Freyd’s law of
modularity. Then we have ¢T A g < q(T A g¢*q). This is just ¢ < qq°q, so if g¢°¢ < q
then equality immediately follows. [ |

We would like to say that for a C*-algebra A, the quantale MAX(A) is pseudo-
rightsided. Unfortunately we have not been able to show that this is true though we
strongly suspect that it is the case. The reason for this is that for A a closed linear
subspace of A, if AA*A < A then AA*AA* < AA*. This implies that AA* is a sub
C*-algebra of A and thus has an aproximate unit constructed out of elements of A

and A*. So it seems reasonable to expect that if AA*A < A then we can recover all

of A from the aproximate unit.

Lemma 1.5.20 If Q is a pseudo-rightsided quantaloid then *MAP(*RMOD(Q) is
equivalent to *MAP(*KAR(Q)).

Proof: Assume q is an object in *RMOD(Q). Then we have qqq < qq < ¢, hence
q is a symmetric idempotent. Now if p : g1 — ¢ is an arrow in *MAP(*RMOD(Q)
then we have pp*p = p and so p = pp*p < ¢2p < p implying that p is an arrow in
*MAP(*KAR(Q)). The result now follows. |

Lemma 1.5.21 If ¢ is an involutive SUP-category satisfying Freyd’s law of modu-
larity then p < ¢ implies that ¢ = p*.

Proof: First

pq=pqq*'q < q*q and q'p* =q'p'pp* < pp°.



Using these we now apply Freyd twice. We first show that q < p°.

Now to show that p* < ¢

Thus we have ¢ = p*.

Example 1.5.22 Pitts[20] studied a class of SUP-enriched categories called dis-
tributive categories of relations(DCR). For a DCR there is an involution which is
derived from other data and satisfies Freyd’s law of modularity. For @ a DCR, Q
is said by Pitts to be complete if all symmetric idempotents split and if it has all
coproducts. The completion of Q, in this sense, is given by KAR(MAT(Q)). Q is
bounded if it has a set of generating objects. Denote the category of bounded com-
plete DCRs by be DCR. Expanding on the work of Carboni-Walters[6], Pitts showed
that if Q was bounded and complete then M AP(Q) is a Grothendieck topos and if
£ is a Grothendieck topos then REL(E) (the category of relations on £) is a bcDCR.

Al

IA

[ VAN |

IA

lq
P'a'aNg
p*(a°q A pq)
P’pq

*

.

p
gpp” Ap*
q(pp* A q'p°)
qq’p’
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Pitts also showed that MAP : bcDCR — GTOP® and REL : GTOP® — bcDCR
are functors such that MAP - REL is an equivalence.
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1.5.3 Lax-Semifunctors and Transformations

One of our main goals is to explore the relationship between the constructions of
the previous section and laxity. In this section we will explore what this means in
the world of ORD and SUP enriched semicategories. (We will also be interested in
laxity for semicategories enriched in the monoidal category of infimum lattices. SUP-
lattices and INF-lattices are related via () : SUP — INF which is an involutive

isomorphism [19].

Recall that ORD and SUP are monoidal. Also recall that for O an ORD-taxon
the unique arrow m : [[x O(A, X) ® O(X, B) — O(A, B), constructed from the
composition arrows via the universal property of coproducts is a coequalizer. For the

monoidal category ORD the tensor product — ® — is given by the product — x —.

Definition 1.5.23 For O, and O,, ORD-taxons [SUP-taxons|, a laz-semifunctor
F : O, — O, consists of the following:

1. a function F : |O| — |Os]

2. For every pair of objects A;, A; in || a morphism Fg,4, : O1(41, A2) —
0,(FA,, FA;) in ORD [SUP], such that

(¢}
O1(A1, Ag) ® O1(Ag, Az) —22% L 0,(Ay, As)

<

Fa,a,® Faya, Fa,a,

Oy(FA,, FA2) ® Oy(F Ay, FAj)

O,(FA,, FAs3)

2FA FAF A3
Since the universal property of natural transformations is given in terms of two com-

muting diagrams we have some choice in how we define laxity.

Definition 1.5.24 For O, and O,, ORD-taxons [SUP-taxons] and F,G : O; — Os
lax-semifunctors a strong laz-transformation v : F — G is a family of ORD [SUP]
morphisms (’74142 : 01(Ay, A) — O,(FA;, GA2))AI.A2€|Oll such that
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(¥}
O1(A1, A2) ® O1(A, A3) A L 0,(A, As)

FA;A: ®‘/A1A:| YA A3

O2(FAy, FAz) ® Oy(F Az, GAy)

O2(FA,, GA;)
2FAFARF A,
(]
O1(A1, Ag) ® O1(Ag, A) —228% L (A, As)

<

Ya,42 ® Gaza, YA; As

O(FA,, GAz) ® 02(GAz, GAy)

O2(FA;,GA;)

2FA1GA;G A,

The composition of strong lax-transformations is given similar to the composition
of natural transformations. So for 7 : F - G and ¢ : G — H, strong lax-
transformations between ORD-semifuntors, we define (07); = 0,7, for some f = hg.

Between SUP-semifunctors the composition is (67); = Vo,T, where hg < f.

Recall that for O, and O,, ORD-categories a lax-transformation (Pitts[20]) 7: F —
G between ORD-functors F, G : O — O», satisfies for every arrow f: A — B

G(f)ra < 78F(f).

Theorem 1.5.25 For O, and O,, ORD-categories, F,G : O; — O, functors, the
concepts of strong lax-transformation and lax-transformation (in the sense of Pitts)

coincide.

Proof: Given a strong lax-transformation 7 the family of arrows 7y, clearly gives a
lax-transformation. For a lax-transformation w define 7y to be the arrow wy, F(f).
We have

TtF(g) = w1, F(f)F(9) = w1, F(fg) = Tgq

G(f)'rg = G(f)wlBF(g) SwlAF(f)F(g) = Tfq-
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Thus this is a strong lax-transformation. It is easy to see that going back and forth

gives back the original transformations. [ |

Definition 1.5.26 For O, and 0,, ORD-taxons [SUP-taxons| and F,G : O — O»
lax-semifunctors a modular laz-transformation v : F — G is a family of ORD [SUP]
morphisms (7441/12 : Ol(Al, Az) — OQ(FAl, GA2)>A1.A:GI01I such that

O 3
O1(A1, A2) ® O1(Ag, A3) —22222 L 0,(Ay, As)

<
FAlAz ®7A2A:| - 7A1A3

0a(FA,, FA) ® Oy(F Ay, GAs)

0 (FA,, GA3)

2FAFAFA,

()
O1(A1, A2) ® Oy (Ag, Az) —222% L 0,(A,, A3)

YA A2 ® GA:A: S YA, A3
Ox(FA|,GAy) @ 05(GAy, GA3) ———— (,(FA,;,GAs)
ozFA;GA:GA;

The composition of modular lax-transformations is identical to the composition of
lax-transformations. A lax-semifunctor F : O; — O, gives rise to a modular lax-
transformation 7 where 7r,, = Fyp. Call a lax-semifunctor F' an idempotent if
T7pTr = 7. We will denote the semicategory of order preserving lax-semifunctors
and strong lax-transformations by SLAX, 4(0:, ;) and that of lax-semifunctors
and modular lax-transformations by M LAX,r4(0,, Oz). Similarly for supremum and
infimum preserving lax-semifunctors and modular lax-transformations we denote the
respective semicategories by SLAX,,,(0,,02) and MLAX,,,(O,, 0,).

Observe that for the category 1, the semicategory SLAX,4(1,0) is equivalent to
RMOD(0O) and MLAX4(1,0) is equivalent to MOD(O).
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We will say that a modular lax-transformation, 7, between lax-semifunctors is a

natural transformation if both defining diagrams commute.

Lemma 1.5.27 For O; and O, ORD-taxons (SUP-taxons) and F,G : O, — O,
lax-semifunctors, a modular lax-transformation 7 : F — G is a natural transformation

if and only if

TGT =T =TTF.

Proof: The following diagrams give the result

Lix O(A, X) ® O(X, B) m O(A, B)
% '
O(A,Y) & O(Y, B) —g o O(FA,GB)
IIx O(A, X) ® O(X, B) m O(A, B)
M '
O(A.Y) @ OY, B) —g———rs— O(FA,GB)

Observe that in the first diagram the arrow 7 is the arrow 77¢ by definition of the

composite. And in the second diagram the arrow 7 is the arrow 7¢7. [

The following is an immediate consequence of this

Corollary 1.5.28 For O; and O, ORD-taxons (SUP-taxons), a lax-semifunctor
F : 0, = O, is a semifunctor if and only if the induced modular lax-transformation

is idempotent.

Corollary 1.5.29 For Q; and Q;, SUP-taxons, KAR(MLAX s,,p(Q1, Q2)) is equiv-
alent to TAX,up(Ql, QQ)



42

Proof: For 7 : F — F an idempotent modular lax-transformation define a lax-

semifunctor F, by

For an object A, F.(A) = F(A)
For a morphism ¢, F~, (z,y) = 7(z,y)-

Since 7 is idempotent the induced lax-semifunctor F; is idempotent and therefore is a
semifunctor. Any modular lax-transformationw : 7 — o in KAR(MLAX 4,,p(21, Q2)),
by lemma(1.5.27) is a transformation from F; to F,. It is easy to see that we have
a functor ¥ from KAR(MLAX 4;(Q1, Q2)) to TAXup(Q1, Q2). This together with
the inclusion ¢ of TAX,,(Q1, Q2) into KAR(MLAX 4,p(Q1, Q2)) gives us the equiv-
alence. Clearly . is the identity on T AX,p(Q1, Q2). For 7, an idempotent modular
lax-transformation, ¥.(7) is the idempotent 7 : F, — F,. Now 7 is an isomorphism
between the objects 7 : F — F and 7 : F, — F; telling us that ¥. is isomorphic to

the identity functor. |



Chapter 2

Sheaves and O-valued Sets

2.1 Sheaves on a Heyting Algebra

A sheaf on a Heyting algebra H is a functor F : H? — SET satisfying a patching

condition. The following example is a canonical example of a sheaf.

Example 2.1.1 For (X,T) a topology, there is a functor F : T — SET, defined
forUCVinT by

F(U) = {f: U — R, continuous}
with
FU CV)(f) = fiu-

Notice that for a family of functions f; : U; — R, if each pair of functions (f;, f;)
agree on U; NU; then this tells us there is a unique function on the union of the U;
which when restricted to Uj, for some j, is equal to f;. This is the property that is
used to define the notion of sheaf. In the following if £ < h in a Heyting algebra H,
then for z € F(h) we will denote the element F(k < h)(z) by |, and we will say
that z is restricted to k.

Definition 2.1.2 For M a complete Heyting algebra and h an element of H, a cover
of h is a family of elements < h; >;¢s in H such that V; h; = h.

43
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Definition 2.1.3 For < h; >;c; a cover of h an element in a complete Heyting
algebra H and F : H® — SET, a matching family consists of a family < z; €

F(hi) >ies such that zy, . = Tjjy s, forallz,jel.

Definition 2.1.4 For a Heyting algebra H, F': H? — SET and a matching family
< z; € F(h;) >ier, an amalgamation is an element z € F(h) such that z;, = z; for
alli e [I.

Definition 2.1.5 For a Heyting algebra H, F : H? — SET is a sheaf if every

matching family has a unique amalgamation.

Example 2.1.6 For X € DH, we have the following functor

{x} ifheX

® otherwise.

FX(h) = { (2.1)
Theorem 2.1.7 For X € DH, FX is a sheaf if and only if X is a principal down

set.

Proof: If FX is a sheaf then for each z € X there is an associated singleton {*} in
F(z). The elements of X form a cover of \V X and the singletons {*} are a matching
family for this cover. Since FX is a sheaf there is an element in the set F(\V X), which

implies that V X € X. Thus X is a principal downset.

Now assume that X is a principal downset. Let {(h;):c; be a cover of h and let (zi)ier
be a matching family. Since there is a matching family for the cover that implies that
each set F'(h;) is non-empty. Thus each h; is an element of X. So V h; is an element
of X since X is a principal downset. This tells us the there is an unique element in

F(V h;) which is an amalgamation of the matching family. i

We will later see that all sheaves share a more general version of this.

The full subcategory of SETH” generated by sheaves will be denoted by SHV (H).
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The following results are well known and will be a consequence of the work to come.
The first proposition below will follow from the more general work that will be done

in the last section of this chapter.

Proposition 2.1.8 The inclusion functor from SHV (H) to SETH" has a left ad-
joint, the associated sheaf functor.

In the next section we define the category of H-valued sets for H a complete Heyting
algebra and then prove that for O a partial order that the category of DO-valued sets
is equivalent to SETP9”. In the last section we also show that the category SHV (H)
is equivalent to the category of H-valued sets. Putting these results together gives
the following results.

Proposition 2.1.9 For O a partial order, the category of sheaves on DO is equiv-
alent to SET®.

Corollary 2.1.10 For H a complete Heyting algebra, SHV (DH) is equivalent to
SETH”,
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2.2 H-Sets

2.2.1 'H Valued Sets

In 1984 Dennis Higgs[10] defined the category of H-Valued Sets, for H a complete
Heyting algebra, and showed that this category is equivalent to the category of sheaves
on H. This new way of looking at the category of sheaves has been the main area
of study for exploring sheaves on a quantale and more generally a quantaloid. We
will explore the category of H-Valued Sets as Higgs defined them and show their

relationship to some of the constructions in preceding sections.

Definition 2.2.1 For H a complete Heyting algebra, an H-valued set is a pair
(X, 8), where X is a set and 4 is a function § : X x X — H satisfying the following

two conditions

é(z,y) = O(y,z)  symmetry (2:2)
oz, y)Nd(y,2) < O(z,2) transitivity. (2.3)

The H-valued set (X,d) then is a symmetric module on the category of matrices on
H. Recall that M AT (H) satisfies Freyd’s law of modularity so it immediately follows
that d is a symmetric idempotent. A morphism R : (X,d) — (Y, d) of H-valued sets

consists of a function R : Y x X — H satisfying the following conditions.

R(y, 1) Adx(z1,2) < R(y,z) (2.4)
oy (y,%1) A R(yr,z) < R(y,z) (2.5)
R(y1,z) A R(y2,z) < Oy (y1,92) (2.6)
) = dx(z,z). (2.7)

VR(y.z

For another morphism S : (Y,8) — (Z,8) the composite morphism SR is given by
SR(z,z) = \/{S(z,y) A R(y,z)}. We will denote the category of H-valued sets by

H-SET.
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Note that for R : (X,4) — (Y,6), dx, dy and R are H-valued matrices. We next
show that the category of H-valued sets can be characterized in terms of certain

constructions on H.
Theorem 2.2.2 The category H-SET is MAP(* KAR(M AT (H))).

Proof: We have that for the H-valued set (X,4), 4 is a symmetric idempotent. Let
R:(X,6) — (Y,6) be an H-SET morphism. We need to show that R§ = R = R
and R - R°. By (2.4) and (2.5) we have that Rdx < R and yR < R. (2.7) tells
us that R(y,z) < dx(z,z) so R(y,z) Adx(z,z) = R(y,z) givingus R < Réx
and so R = Réx. By (2.6) we have

R(y,z) = R(y,z)AR(y,z) A R(y,x)
< dy(y,y)AR(y, z)

and so R = éyR.

(2.6) tells us that R°R < &y. All we have left to show is that §x < RR°. By (2.7)

we have
\y/{R(y,r)} = \y/{R"(z,y)/\R(y,x)}
~ R°R(z,z).
Thus
Ox(z1,z2) = 6Ox(z1,22) A 8(z2,12)

Il

0x(z1,22) A R°R(z2,12)
< ROR(x11$2)‘

So we have that every H-valued set morphism is a left adjoint in the category
KAR(MAT(H)). Clearly a symmetric idempotent matrix is an H-valued set. Now
let us assume that R : (X,8) — (Y,6) is a left adjoint in KAR(MAT(H)). (2.2),
(2.3) and (2.4) are automatic so all we need to show is that V,{R(y, )} is equal to
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6(z, z). By the adjunction we have §(z,z) < R°R(z,z) so d(z,z) < V,{R(y,z)}.
Now R(y,z,) Aé(z1,z) < &8(z1,z) < §(z,z). Thus R(y,z) < &(z,z) which now
gives the required equality. [ |

Recall that there are two different ways to view a complete Heyting Algebra: as a

partial order and as an involutive SUP-enriched category.

Lemma 2.2.3 For a complete Heyting algebra H interpreted as a one object SUP-
enriched category the category MAP(KAR(H)) is H interpreted as a partial order.

Proof: The objects of MAP(KAR(H)) are the idempotents of H, which are all of
the elements of H. An arrow h; < hy in KAR(H) is just an element that satisfies
k Ahy, =k = k A hy. This implies that k < h; and k < hy. Now if k 4 k¥ is a map
then h; < k¥ A k. Which implies that &, < k. So we have k is a map if and only if
hy =k < h,. [ |

This relationship is key to allowing us to define the category of presheaves on a

quantaloid. Recall that for O a partial order the partial order DO is a complete
Heyting algebra.

Theorem 2.2.4 For O a partial order the category DO-Set is equivalent to SET”.

Proof: We define our functors as follows. For ¥ : DO-Set — SET®,
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e On objects (X,d) o ¥((X,d)) = ¥y is given by
For z € O; VY4(h) = {z € X|h € é(z,z)}/ ~»
where z ~, y if and only if h € §(z,y)
we will denote the elements of ¥s(h) by [z]s

For h.1 < hg, ‘I’g([:t]hz) = [x]h;-

e On arrows R o V(R) = Vg where
Yr([z]x) = [y]n where h € R(y,z).
We need first to show that ~, is an equivalence relation. By the definition of ¢,
reflexivity and symmetry are clear. If h € §x(z,y) and h € §x(y, z) then h € 6x(z, 2)
by definition of the composition of matrices. Now we need to show that ¥p is well
defined. Since R is a left adjoint we have that if h € dx(z,z) then h € R°R(z, z),
so there exists y such that h € R(y,z). If h € dx(z,Z) then we have h € R(y,Z)
since R0 = R so the set of y such that h € R(y,z) is independent of the choice of
representative of the class [z],. We will now show that this set is the class of y. If
h € R(§, =) as well then h € RR°(3,y) which by the adjunction property implies that
h € 8y(7,y). Now h € by (y,y) implies that h € R(7, z) since dy R = R. Thus ¥p is

well defined. If S is an arrow composable with R then we have

Usr([z]n) =[2]n & h € SR(z2)
& 3Jy:heS(z,y) and h € R(y, x)
& Jy: Us([yln) = [2]n and Yp([z]n) = [v]x
& YsUp([z]h) = [2]n-

For & : SET9” — D(0)-Set.
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e On objects F o ®(F) = (XF,dF) is given by
XF = UaEO F(a)
For z € F(a1),y € F(a2); 0r(z,y) = {a € Oz, = y.}.

e On arrows 7 ¢ ®(7) = &, where
®-(y,z) = {a € O|7(z). = y.}-
We wish to show that dr is an H-valued set. Clearly 0 is symmetric. To show that

it is idempotent we have
0rdr(z,z) = {a€ 0|3, a€dp(z,y) and a € ép(y, 1)}
= {aGOI 3y 2, =Y. =z,a}
= {a€0] 2z, =1,}

= 5p(z, .’L‘).

To see that ¥, is a morphism we have
®.4(y,z) = {a€0O| 3 ac P (y,Z) and a € 6(Z,1)}
= {a €O [ 3z Yo = ’l’(.’l_,‘)i,x and f|n = .’L‘|°}
= {a€0|y, =1(z).}
= &,(y,z).

Similarly 6®, = ®,. To show that ®, is left adjoint to ®;.

a €6r(z,I) & z,=73,
= 7(z), = 7(T).
& a€ d (r(x), %)
= a€ 9P, (z,Z).

The last implication follows since if a € dp(z, Z) then a € dr(z, z) so a € ®,(7(z), T).

a€ q’f(p:('ylr y2) < 3:: a€ <I>,(:z:, yl) and a € (p"'(zl y?)
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& 3 (), = Y. and 7(z), = Y2,
= Yy, =Y,

e a € dc(y1,y2).

Before we define the unit and counit for our adjunction let us examine the composite
functors ¥® and ®V. For F : O — SET we have
VO(F)(a) = {z€Xr|a€ir(z,z)}/ ~a
{zlz,=2.}/~a
{z |z e F(a)}
= F(a).

For a; < ay YP(F)(a) < az)(x)

= [z]o,

= .’L'lnl .
This tells us that the composite ¥® is the identity. And so we can take as the counit
the identity transformation. Now for (X, d) a D(O)-Set we have

QU = {[x]a la€ 5(23,1‘)}.

PU5([2]a, [y]az) = {a€O| [:B]Bu, = [y]agla}
= 4(z,y)N | aiN | as.

Now we define the unit for the adjunction ¥ - @. The unit 1 - ®¥ is defined on an
object (X, d) as follows

M5([z]a, ¥) = 0(z,y) N | a.

We need to show that 7; is a morphism.

150([z]a, 2) = Uy{n([z]a,y) N6(y,2)}
= Uy {land(z,y)Nd(y,2)}
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= land(z,z)

= 776([:”]03 Z).

Usms([z]as 2) = Upy), {¥Ps([2]as [)or) Nms([w]er, 2)}
= Uy, {{ enlad' né(z,y)Nd(y, 2)}
= |and(z,z)}
= 7([z]a, 2).
For 7° defined in the obvious way the preceeding equalities follow. Now we show that

75 is a left adjoint. We will in fact show that 7 is an isomorphism.

°n(z,z) = Uy, {n°( [yle) No(yle, 2)}
= Uy, {lad Nné(z,y)Nd(y,=2)}
= (z,2).

m*([zlars [2la) = Uy{n(lzlar, ¥) N0°(y, [2]a,) }
= Uy{l aiN | a2Né(z,y) Nd(y, 2)}
= laN | a;Né(z,2)
= UPs([z]a;, [2]a)-

So 7; is an isomorphism. The counit £ : ¥® — 1 is defined on a functor F' : O% — Set

to be the identity transformation. Thus we have an equivalence. [ |

Corollary 2.2.5 For H a complete Heyting algebra we have SET™™ is equivalent
to DH-Set.

2.2.2 Singletons

We turn our attention to the concept of a singleton H-valued set for H a complete
Heyting algebra. Higgs used the singleton H-valued sets and associated morphisms
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to show that the category of H-valued sets and their morphisms is equivalent to the
category of sheaves on H. We will introduce the ideas here but we will save the proof

of the equivalence until we study Q-valued sets and sheaves on Q for Q a quantaloid.

Definition 2.2.6 A singleton H-valued set is an H-valued set (X,d), for which

X = {*} is a one element set.

Example 2.2.7 Given h € H there is a singleton ({*}, 6") given by &(*,*) = h. In

fact all singletons are of this form.

The following lemma turns out to be very important when we want to define sheaves

on a quantaloid.

Lemma 2.2.8 The full subcategory of H-Set whose objects are the singletons is
equivalent to the partial order H.

Proof: Let Sing(H) denote the full subcategory of H-Set generated by the singleton
objects. We define the functors ® : Sing(H) — H and ¥ : H — Sing(H) as follows.
Given a : ({x},6) — ({*},7), an H-valued set morphism, ® sends ({*},8) to the
element 4(x, *) and ({*},7) to v(*, ). We have §(x,*) < a®a(*,*) and aa’(x,*) <
¥(*, *). This is if and only if §(*,*) < a(x,*)and a(*,*) < (*,*). Notice though
that we also have ad(*, *) = a(*,*) which tells us that a(*,*) < d(*,*). Hence a
is a morphism from ({*}, ) to ({*},v) if and only if §(*,*) < ~v(*,*). On the other
hand if A < k then ¥ sends this to the H-valued sets ({*},6") and ({*},48*) where
0"(*,*) = h and 6%(+,*) = k and the unique morphism between them. [

In future we will denote a singleton ({},d) by [h], where h € H and h = &(x, *).
Given an H-valued set (X, 4), for each z € X denote the singleton [§(z, z)] by [z].

We will denote the singleton matrix associated to [z] by 4.

Lemma 2.2.9 Given an H-valued set (X,4), for each z in X there is a monomor-

phism a; : [z] — (X, d) where a,(z,*) = §(z,, z).
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Proof: : First we show that a, is a morphism in KAR(MAT(H)).

o 0x(y,*%) = az(y,*) & dz(*, %)
= d(y,z) & d(z, 1)
= §(y,x) (since (y, =) < §(z,z))

= a(y,*).

dya(y, *) = V{J(y, II) & a:l:(zlv *)}

= V{o(w.#) & 8(z', )

= 0y, z)
= a.(y,*).
With a2(*,2’) = é(z, z’) we have
a:a3(T1,%2) = az(T1,*) & aZ(*,22)}
= d(z;,z) & 6(z, z7)
< 6($1,$2).

ala(*,*) = \({a;(*,x') & a.(*, 1)}
= \({6(1:, ') & §(z', z)}
= 6(z,z).

Thus a; is a monomorphism of H-valued sets. [ |

Observe that for a singleton morphism « : [h] < (X, §) the family of arrows (a(z))zex
is a cover of h. We will see later that we can interpret the elements of X to be a
matching family for this cover and that a can then be thought of as the unique

amalgamation for this matching family.
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We finish off this section with two propositions. The first tells us of an adjunction
between the category of pre-sheaves on H and the category of H-valued sets. The
second by Higgs[10] shows that the category of sheaves on a Heyting algebra H is
equivalent to the category of H-valued sets. Combining these gives us the associated
sheaf functor. The proofs of these will follow automatically from the work we will do

when we explore the relationship between sheaves on a quantaloid and Q-valued sets.
Proposition 2.2.10 There is an adjuction ¥ 4 & : SET"" — H-Set.

® takes a functor to the H-valued set (Xp,dr) where X = [, F(h) and d(z,y) =
V{h | z|, =y} ¥ takes an H-valued set to the functor Fs where Fs(h) = {[h] —
(X,4)}, the set of monomorphisms from [k] to (X, d). The restriction for k£ < h takes

a singleton and precomposes with the unique arrow [k] = [A].

Proposition 2.2.11 (Higgs) The category of H-valued sets is equivalent to the

category of sheaves on H.

Corollary 2.2.12 For O a partial order, SET®” is equivalent to SHV(DO).
Corollary 2.2.13 (The associated sheaf functor) There is an adjuction a - ¢ :
SET"" — SHV(H).

The results of this section can be encapsulated by the following diagram:

\Y

DH-Set L H-Set
0
a

SET"” L SHV(H)
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2.3 O-Sets

After Higgs constructed the category of H-valued sets for a Heyting algebra H and
showed how they are related to the category of sheaves on H, Nawaz, Borceux, Gylys
et al [4, 5, 8, 9, 18], used this template to define sheaves for quantaloids. Starting
from matrices on a quantaloid Q, Q-Sets have been described by a set of axioms
that these matrices and their morphisms must satisfy. The most interesting work
has resulted when the category of Q-Sets on a quantaloid Q is defined to be the
category MAP(KAR(MAT(Q))). An early result of Pitts[10] showed that when Q
is a bounded distributive category of relations (bDCR) then the category of sheaves
on @ in this sense is a Grothendieck topos. Moreover he showed that the category
of complete bDCR’s is equivalent to the category of Grothendieck toposes, where
completeness means that all symmetric idempotents split and all coproducts exist.
Van den Bosche[23] explored the category of sheaves on a quantaloid constructed out

of a ring R. The quantaloid is a two object (0, 1) quantaloid where the hom sets are

Q(0,0) 2 sided ideals
Q(0,1) Left sided ideals
Q(1,0) Right sided ideals
Q(1,1) Additive sub groups.

Using this Van den Bosche was able to show some nice relationships between the
ring R and Q-Sets on the above quantaloid. Recently Gylys[9] has also studied this
category. He defines sheaves to be a subcategory of MAP(KAR(MAT(Q))). We
will explore Gylys’ notion of strict Q-valued sets and its relationship to sheaves. In
particular a sheaf for Gylys is a strict and separated Q-valued set that is complete.

For this work we will only use the strictness property.

2.3.1 ©Q-Valued Sets

We begin by defining the category of Q-valued sets for @ a quantaloid and show some

simple consequences of the definition that will be useful later.
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Definition 2.3.1 For @ a quantaloid the category of Q-valued sets is the category
MAP(KAR(MAT(Q))).

So a Q-valued set is a triple (X, p, §) where d is an idempotent matrix on (X, p). If Qs
involutive then the category of Q-valued sets is the category *MAP(* KAR(M AT (Q))).

So a Q-valued set is then a symmetric idempotent matrix.

A morphism of Q-valued sets then is a matrix, R : (X,p,8) — (Y,p,d), that is a
map. That is a pair of matrices R : (X, p) — (Y,p) and R¥ : (Y, p) — (X, p) (if Qs
involutive then we ask that R¥ be equal to R°), such that as matrices the following

equations hold
Réx =R and 6xR*¥ = R*
byR=R and R%§y = R*
éx < R*R
RR* < by.
We will denote the category of Q-valued sets by Q-SET.

Recall that for H a Heyting algebra the category H-Set is equivalent to the category

Q-SET when we interpret H as a one-object involutive quantaloid.

Define () : DQ-Set — Q-Set as follows
e On objects (X, p,0) ® (X,/;, ) equals (Y,ﬁ, 3)

e On Arrows R e R(z,y) = V{q:q€ R(z,y)}

Lemma 2.3.2 For Q a quantaloid 6 is a functor.
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Proof:

If Q is involutive then & is symmetric

-

8°(z,y) = ¥y, z)*
= V{f | fedy, )}
= V{f*| f €d(y,2)}
= V{1 7 € (z,v)}

-

= d(z,y).

Now to show that it is an idempotent matrix we have

8(z,y) = V{g(:r, z) & 3(27?!)}
= V{Via:a€d(z,2)} & V{g2: 0 € d(zy)}}
= V{@g2: ¢ €6(z,2) and ¢» € 6(2,9)}

= V{g:9€6(z,y)}
= &(z,).

Now to show that the matrix R is a Q-valued set morphism we have

6R(z,y) = V{g(f, z) & R(z,v)}
= V{{a:q €d(z,2)} & {g2: %2 € R(2,9)}}
= V{a142: q1 € §(z, 2) and ¢2 € R(z2,y)}

= \{q:q€R(z,y)}
= ﬁ(m,y).

In a similar way we have R4 equal to R and that B 4 R¥. If S: (Y, p,8) — (Z, p, 6),
is another morphism then SR = SR. |
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Lemma 2.3.3 If a quantaloid Q is pseudo-rightsided then there is a lax-functor
1: KAR(MAT(Q)) — KAR(MAT(DQ)).

Proof: For (X, p,8) with § a symmetric idempotent, let {(X,p,8) = (X, p,5) where
o(z,y) =1 &(z,y)
58(z,2) = LyJ{s(Z,y) &5y, z)}
- Ly){i §(z,y) & | &y, 2)}
= Uls(z.9) & 6(y, 2)}*

y
< |z, 2).
We have 6(z, z) & d(z, 2)* & 8(z, 2) < &(z, z), and since Q is pseudo-rightsided this is
an equality. This gives us | 8(z, z) =1 6(z,z) & | &(z, z) and so & = 66. In a similar
manner we define [R for a morphism R : (X, p,8) — (Y,p,0). Using | 6(z,2) = |
d(z,z) & | 6(z, 2) it is easy to see that this is a morphism in KAR(MAT(Q)). For
S: (Y,p,8) = (Z, p,8) the composite (SR) gives

SR(z,z) = | (SR(z1))
= (V{S(z,) & R(y, )}
> {f13, f<S(zy) & R(y,z)}
= SR(z,z).

Since we only get a lax-functor we do not obtain a morphism from Q-SET to DQ-

SET since | does not preserve maps. If we restrict 6 to KAR(MAT(DQ)) then
we have 61 = 1 and there is a strong lax-transformation I() < 1. For morphisms
(X,0.8) B (Y. p,6) 2 (Z,p,6) define ep(z,z) = [R(z,x). Since () is a functor we

get 1Ser = esp and clearly we have esR < es| R so € is a strong lax transformation.

2.3.2 Singletons and Strictness

An integral part of Higg’s proof of the equivalence between the category of H-valued

sets and the category of sheaves on H was the notion of a singleton H-valued set. In
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this section we explore singletons for the category of Q-valued sets and its relationship

to the strictness condition of Gylys[9].

Definition 2.3.4 For Q a quantaloid, a singleton is a Q-valued set of the form

({x},,9).

Theorem 2.3.5 The full subcategory of Q-SET generated by the singleton objects
is equivalent to the category MAP(KAR(Q))-

Proof: Denote the full subcategory of Q-SET generated by the singleton objects
by Sing(Q). Examine ({*},p,8) = ({*},p,7). 8(*,%) and y(*,*) each pick out
(symmetric) idempotent arrows of Q (call them g; and g; respectively). a(*, ) is then
a pair of Q arrows ( p, p*) with p : dom(go) — dom(q:) and p* : dom(q,) — dom(q2),
satisfying, ¢1p = p = pge; and ¢; < p*p and pp* < ¢o. That is (p,p*) is an arrow
in MAP(KAR(Q)). Given an arrow in MAP(KAR(Q)). This then is clearly a full
and faithfull functor from Sing(Q) to MAP(KAR(Q)) which is a bijection on the
objects. 1

We can thus represent a singleton by [g], where ¢ is a (symmetric) idempotent in Q.
That is an object in KAR(Q). The essence of a singleton is that it represents the

unique amalgamation for a matching family.

Example 2.3.6 For (X,p,d), a Q-valued set, and z in X such that §(z,z) is a
(symmetric) idempotent in Q then [6(z, z)] is a singleton. We will call such an element
of X a (symmetric) idempotent element of X and denote the singleton [§(z,z)] by

[=].

Definition 2.3.7 For (X, p, ), a Q-valued set, a singleton morphism for (X, p, d) is
a morphism a : [g] — (X, p, ), from a singleton [g] into (X, p, ). We will denote the

arrows a(z, ), a*(*, ) by a(z) and a¥(z) respectively.
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Our interest is drawn towards those Q-valued sets that can be described by their
singleton morphisms, which represent a matching family for a cover. The singleton

morphisms of interest are the monomorphic morphisms 7 : [g] < (X, p, d).

Example 2.3.8 If for a Q-valued set (X, p,d), £ € X satifies §(z,y) & 6(y,y) =
d(z,y) for all y € X, then there is a monomorphic singleton morphism a;, : [z] —

(X, p, 6) given by a(y, *) = §(y, 7).

Definition 2.3.9 A Q-valued set, (X, p, d), is atomic if
Vr# =5,
M

where we take the supremum over the monomorphic singleton morphisms v : [q] —
(X, p,9).

Lemma 2.3.10 For a singleton morphisms « : [g] — (X, p, ) we have
\V a#yy* = ot
v
Vrfa=a,
M

where the supremum is taken over all the monomorphic singleton morphisms 7 :

[¢] = (X,p,9)
Proof:

ot = a*acd*® < \ofny* < o6 = o
b

and similarly for the other equation. |

Lemma 2.3.11 For (X, p,5) a Q-valued set, there is an atomic Q-valued set (X, 5,9)

where,

1. X is the set {a: [q] = (X,p,0)}
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2. pla) = dom(q) where a:[q] = (X,p.6)
3. 8a,B) = a*p.
Proof:

86(c, B) = V{8(a.7) & 5(v, )}
= V{a*n*8)}

Y
= a¥*g.

If Q is involutive then
6(a,8) = a°B
— (ﬂoa)o
= (8(8,a))
5°(a, B).

Thus it is a Q-valued set. To show that it is atomic observe that §(a,a) & §(a, 8) =

8(ct, B) and a°a(*, *) is an idempotent. Thus by examples (2.3.6) and (2.3.8) above

we have § = \/+#+. [
Y

Lemma 2.3.12 For R: (X, p,d) — (Y, p,d) 2 morphism in KAR(MAT(Q)), there
is a morphism R : (X, 5,8) — (Y,p,08) in KAR(MAT(Q)) defined by R(a,8) =
a*RB and R*(8,a) = *R*a.

Proof:

o]

dR(a,B8) = V{8(a,7) & R(v,B)}
= V{e*1*Ra}

= a*Rg.
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Ré(a,8) = \/{R(a,7) & 8(v,8)}
V{a*Rvy* B}
= a*Rg.

Similarly we can show that the equalities hold for R#. [

The following shows that for a map R, we can guarantee that R is a map if the

domain of R is atomic.

a*f

a*8p3

a*R* RS

a* R*SR. '

V{a* R*¥yv* R} since dom(R) is atomic
y

8(a, B)

IN

]

= R*R(a,p).

For Q a quantaloid denote the subcategory of KAR(MAT(Q)) generated by the
atomic Q-valued sets by atomic(Q). We can show that () : KAR(MAT(Q)) —

atomic(Q) is a lax-functor. All we need to show is that () acts on a composite in the

appropriate way.

R S(a, B)

V{R(e,7v) & 5(7. 8)}
M
= V{a'Ryy"SB}
M
< a*RéSpH
= a*RSp
= RS(a,B).
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with equality if and only if the middle Q-valued set is atomic. Clearly M AP(atomic(Q))
is equivalent to the full subcategory of MAP(KAR(MAT(Q))) generated by the

atomic Q-valued sets.
Lemma 2.3.13 If (X, p, §) is an atomic Q-valued set then (X, p, ) is isomorphic to
(X,5,0).
Proof: We define the morphism (X, p,8) = (X, 5,8) as follows
g(la, ) = a*(z)
e#(z,a) = afz).

To show that ¢ is an isomorphism we first show that ¢ is a morphism then that it is

an epimorphism and a monomorphism.
eb(a,z) = V{e(a3) & 6(2,7)}
= \}{a#(f) & 6(z,z)}

- ot

= ¢&(a,z).

de(a,z) = V{d(e,7) & e(7,z)}
= Vietn#(s.2)

-
= a*(z)
= ¢&(a,1).

Similarly for #, so € is a morphism in KAR(MAT(Q)). Now we show that ¢ is an

isomorphism. We will show that it is both an epimorphism and a monomorphism.
ee#(a,8) = V{ele,z) & e¥(z,8)}
= V{a#(x2) & B(z, %)}
— a*f(e

= 8(a,B),
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which tells us that ¢ is an epimorphism. Now to show that we have a monomorphism
e¥e(z,y) = Y{e#(x, ) & &(7,9)}
= \!{7(3, +) & v#(*,y)}
= Y{vv#(x, )}
= (z,y).

It now follows that the two Q-valued sets are isomorphic. [ |

This immediately gives us the following corollary.

Corollary 2.3.14 For Q a quantaloid () : atomic(Q) — atomic(Q) is isomorphic

to the identity functor.

When an involutive quantaloid is pseudo-rightsided then every Q-valued set is atomic.
Automatically we have aa® < 6. Pseudo-rightsidedness tells us that (z,z) is a
symmetric idempotent and so there is a singleton morphism o, : [z] — (X, p,0)
which takes the values a(y, *) = é(y, z). Equality now follows.

We have seen that () is a lax-functor from K AR(M AT(Q)) into atomic(Q) and that
the inclusion of atomic(Q) into KAR(MAT(Q)) composed with () is isomorphic to
the identity functor. There also happens to be a strong lax-transformationn: 1 — 0.
For R: (X,p,8) — (Y, p,6) define ng : (X,p,8) — (¥, 5,8) by nr(e, ) = a* R(*,z).
Now assume we have arrows (X, p, 8) Lt (Y, p,9) A (Z, p,6) then
Snr(8,z) = \{S(B,a) & nr(a, )}

= V{8*Saa*R(x,z)}

< B*S6R(x,z)

= B*SR(x,z)

= nsr(B, )
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and
nsR(B,z) = \y/{ns(ﬁ.y) & R(y,z)}
= V{6*S(+,y) & R(y,z)}
= ﬂy#SR(*, T)
= nsr(B, )
So 7 is a strong lax-transformation. Observe that if (X, p,d) is atomic then 7 is a
transformation and recall that () is then a functor. Later we will use these to show

that atomic Q-valued sets and the strictness property of Gylys[9] are essentially the

same.

Definition 2.3.15 For (X, p,d), a Q-valued set, and = a (symmetric) idempotent

element of X, if

o(z,z) & §(x,Z) = 6(z,7)
0(z,z) & 8(z,z) = 6(Z,x)

for every Z in X, then we say that z is strict. A Q-valued set (X, p,d) is said to be
strict if every = in X, is strict. Note that every arrow (Z,z) is then an arrow in
KAR(Q) (6(Z,z) : [z] — [Z]). Denote the subcategory of Q-Set generated by the
strict objects by Strict(Q).

Example 2.3.16 If z is a strict element of (X, p,d) then there is a singleton mor-
phism a, : [z] — (X, p,d), given by a.(Z, *) equal to §(Z, z) and a¥(x,Z) equal to

d(z, ). Note that a, is a monomorphism.

Example 2.3.17 Every singleton Q-valued set is strict since d(x, *) is an idempo-

tent.

Example 2.3.18 If the Q-valued set (X, p,d) is strict then for every = in X there
is an associated singleton morphism a,, as in example 2. In other words there is a

singleton morphism that equals 4(z, £), for every z and Z in X.
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Lemma 2.3.19 For ¢ a (symmetric) idempotent in Q and «a : [g] — (X,p,8) a
singleton morphism, if z in X is strict then
o(z,z) & a(z) = a(z)
a*(z) & é(z, ) a¥#(z).

Proof:

a(z) = V{i(z.7) & o(2)}

= {/{6(1‘, z) & 8(z, %) & a(Z)}
= ;(:1:,1:) & \{4(z,2) & a(2)}
= §(z,7) & o(z).

The argument for o#(z) is similar. |

This tells us that the morphisms a(z) and a#(z) are morphisms in KAR(Q). So
we will want to describe a matching family as a family of morphisms in KAR(Q)

satisfying some conditions. This we will do in the next section.

Lemma 2.3.20 If an involutive quantaloid Q is pseudo-rightsided then each Q-
valued set is strict.

Proof: This follows immediately from the fact that pseudo-rightsidedness of Q gives
6(z,y) = §(z, y)&d(y, T)&6(z, y). 8

Example 2.3.21 Every complete Heyting algebra H satisfies Freyd's modular law

and thus every H-valued set is strict.

Example 2.3.22 A bounded complete distributive category of relations Q satisfies

Freyd’s modular law and so every Q-valued set is strict.
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Lemma 2.3.23 If (X, p,d) is a strict Q-valued set then \/{y7¥#} =4
Y

Proof: Clearly we have
V{r*} <a
Y

Since (X, p, d) is a strict Q-valued set we have monomorphic singleton morphisms a,

with aza?(z,y) = (z,z) & §(z,y), so \/ aza = 4. : ]
Putting all the pieces together immediately gives us the following.

Theorem 2.3.24 For a quantaloid Q, Strict(Q) is equivalent to atomic(Q)

Proof: The functors for the equivalence are given by

0
Strict(Q) atomic(Q)

L

First we have to show that for (X, p,d) an atomic Q-valued set, § is strict. Observe

that

8(a,a) & 6(a, B) = a*aa*f = a¥fB = §(a, B)
8(a, B) & 8(8,B) = a*BB*B = a*B = §(a, B)

Thus 3 is strict. We already have that () is isomorphic to the identity on atomic(Q)

and since strict implies atomic we have that for a Q-valued set () : Strict(Q) —

Strict(Q) is isomorphic to the identity on Strict(Q). |
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2.4 Sheaves for an Involutive Quantaloid

Much of the study of sheaves for a quantaloid Q, has depended on the definition
of Q-valued sets. Few of these definitions have been given in terms of set valued
functors. In this section we give a definition of sheaf for an involutive quantaloid as a
set valued functor which has a unique amalgamation for every matching family. We

begin by first describing the category of presheaves for an involutive quantaloid Q.

2.4.1 Presheaves for a Quantaloid

We saw in the previous section that the subcategory of Q-valued sets generated by
the singleton objects is equivalent to MAP(KAR(Q)). We also saw that an atomic
Q-valued set was equivalent to the Q-valued set constructed out of the monomorphic
singleton morphisms and that if Q is pseudo-rightsided every Q-valued set was strict.
Recall that for H a Heyting algebra considered as a one object SUP-enriched category,
MAP(KAR(H)) is equivalent to H when we interpret it as a multiple object category.
Note that every arrow in MAP(KAR(H)) is a monomorphism. This is the key that

we will use to describe the category of presheaves for Q.

Definition 2.4.1 For Q an involutive quantaloid define Q to be the category
MONO(MAP(*KAR(Q))). That is the category with objects the symmetric idem-
potents in @ and arrows the monomorphic maps (Recall that when Q is involutive

we ask that a map p satisfy p* = p*).

Example 2.4.2 Recall that the category of relations, REL, together with the func-
tor that sends a relation to the opposite relation is an involutive SUP-category. REL
is then the category with objects symmetric transitive interpolative relations dx, and
arrows maps f : x — Oy, such that 0y f = f = féx and f°f = dx. By eliminating
those elements that are not related to themselves (dx(z,z) = 0), we can associate dx
with a set. The morphism f then is a one to one function from dx to dy. We then

have that REL is equivalent to the category with objects sets and morphisms one to

one functions.
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Definition 2.4.3 For Q an involutive quantaloid, the category of pre-sheaves for Q
is the functor category S ETS”.

2.4.2 Sheaves for a Quantaloid

We now give a definition of a sheaf in terms of the amalgamation of matching fami-
lies. This definition is applicable to all involutive quantaloids but we will achieve an

equivalence with the category of Q-valued sets only for pseudo-rightsided quantaloids.

Definition 2.4.4 For ¢ : A — A, a symmetric idempotent in Q, a cover of qis a
family of arrows in *KAR(Q)
(p‘i g Q1) '
such that
Vi{pipi} = ¢
Definition 2.4.5 For a cover (p; : ¢ — ¢;) and F a presheaf, a matching family is
a family (z; € F(g;)) such that
L pp; < Vipips:zi, =g, } foralli,j
2. If:z:,-,m =Zj, then pyp3p; < p; forallid,j.
Where p; : 7 — ¢; and p; : 1 — g; are arrows in Q.

If H is a complete Heyting algebra then it is easy to see that a cover (h;) and a
matching family (z; € F(h;)) in the traditional sense is a matching family and cover
in this sense. On the other hand if we have a cover and a matching family in this
new sense then we need not have a matching family in the classic sense since Liln;an,
need not equal z;, ., . We do have V{k | z;, = z; } = h; Ah;. This does represent
a cover and matching family. The cover being the k such that z; = z; and the
matching family < Ty, >- So we have many covers and matching families patched

together.



71

Definition 2.4.6 For a matching family (z; € F(g;)) of the cover (p;:q — ¢;) an

amalgamation is a y € F(q) such that for every i € I;
pi = V{pwps:zi, = y,}

Definition 2.4.7 For Q a quantaloid a presheaf F is a sheaf if every matching fam-
ily has a unique amalgamation. Denote the full subcategory of SET?" determined
by the sheaves by SHV(Q).

For H a Heyting algebra and F a sheaf in this sense, if we have h; = \/{k | Ty, =Y, }
then the k’s are a cover for h; and the T;, area matching family for the cover. Thus
there is a unique amalgamation of this. This immediately implies that z; = y, since

both are an amalgamation for this family.

2.4.3 The Associated Sheaf Functor

For F an object in SET? , define U(F) to be the triple (Xr, pr, Vr) where

Xr = ¥,F(q)
pr(z) = dom(q) if z € F(q)

And for z € F(q;) and y € F(q2)
Ur(z,y) ={P1&p3 | pr:7 = qiip2: 7T — qo; and 7, =y, }.
For a natural transformation F — G define ¥, : ¥ — ¥¢ by

V.(,9) = {n&p;: 7, = 7, I

It follows immediately that ¥.(z,y) = ¥¢(z,7,). Where for y € F(q), 7, is short for
T4(y). Also define V2 by

‘I’:(yaz) = {pz&pilem = Ty|p2 }l'

As before we immediately have ¥ = ¥g(7, 7).
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Theorem 2.4.8 For a pseudo-rightsided quantaloid Q, V¥ is a functor from SET®
to DQ-SET.

Proof: Clearly ¥r : (Xp, pr) — (XF, pr) is an endo matrix. We first show that ¥z

is a symmetric idempotent.

rly,z) = Ur(z,y)°
= {{p &pi |z, =y, '}
= {(p1 & p3)* | 21, =y, }
= {p2 &} | 2, =y, }}
¥(y,z).

Thus we have that ¥ is symmetric.

Vr¥p(z,y) = LZJ{‘I’F(-T, z) & ¥(z,y)}
- LzJ{QﬂIz | (91 € F(z,2) and g € F(z,y)}
= Ulpiwipeni | 2p, = 2, and 2, =y}
Now assume that z;, = y,, (that is p\p; € ¥p(z,y)). Then clearly pip; =

npip1p; € Yp¥p(z,y). Which shows that ¥p < ¥pW¥p. To obtain idempotency

we need the following lemma.
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Lemma 2.4.9 if p; : 7y < qi, pa: 7 < qo, p3 : T — G, Pg : T9 = qs, then we

have the following diagram in Q.

P1 P2 P3 P4

290 P3D2P3P3

P3P2p3D3
Proof:

To show that p3p.p3p; is an idempotent observe that we have

P3p2(p3p2)pipa(p3p2) = P3P2P3P3P3P2P2P3
< Pp3p2p3ps.

Since Q is pseudo-rightsided the above becomes an equality. Now we clearly have that

P3p2p3p3 is a monomorphism from p3p.p3ps to r2 To show that p3p; is a morphism
from p3p2p3ps to 7 the only difficult part is to show that pipsp3papsips is equal to

p3p3. Again we must rely on the pseudo-right sidedness of Q since we do have that

D3Pap3P2p3ps < p3ps by adjointness. {

This lemma tells us that if : 7|, = 2, and z,, =y, then Zlpiprn

= Ylpergpargea”

Thus if pip3psp; € Yr¥r(z,y) then (p,pips)(pipop3pap;) is an element in ¥p(z,y).

As we saw pseudo-rightsidedness implies that pipsp3papsps = p3ps.

So we have

P1p3pap; is an element in Yp(z,y). This shows that ¥p¥r < ¥p. Thus we have

U is an idempotent and so a Q-valued set.

The next lemma tells us directly what the value of ¥g(z, z) is. This will help when

we examine how ¥ acts on morphisms.
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Lemma 2.4.10 If z € F(q) then ¥p(z,z) = [q.

Proof: For every ¢; <» g we have pp* < q and ¢ is a mono subobject of itself so the
result follows. O

The next lemma explicitly tell us that for a natural transformation 7: F — G, ¥, is
a morphism in KAR(MAT(DQ)).
i
q2

Lemma 2.4.11 U {¥¢(z, 7.)&¥r(z,y)}} = Ye(z, 7))
and U, {¥r(z,y)&¥c(ry, 2)} = Ve(Ts, 2).

Proof: First we clearly have
U:{%c(z, 7:)&¥r(z,y)H 2 ¥g(z, )&V F(y, ).

Now assume that for € G(q1), z € F(q2) and y € F(gs) we have that z, =7,

and 2z, =y, . Pictorially we have

G(q) G(q2) F(q2) F(qg3)

NN
N

G(r1) F(r,)
G(p3ps / (p3p2p3Pa)
G(p3p2p3p3)
Now if we trace z and y through the diagram we see that Lppses = W . So

P4P3P2P3P3

we have that p,p3psp; is an element of ¥¢(z, 7). Thus U, {¥c(z, 7:)&¥F(z,7) M C
Uc(z,7,), hence we have the desired equality. The argument for the other equality

is similar. This is how the composite of morphisms is defined in DQ-SET, thus we

have that ¥, is a morphism in KAR(MAT(DQ)). ¢

Now we need to show that ¥, is a map.



75

Lemma 2.4.12 V¢(7:,7y) 2 Yr(z,v).
Proof: Assume that for z € F(q;) and y € F(g2), 7,, = ¥, Pictorially

AC) Cla)

q
7(q1)

2)
F(q) G(q1)
(\p)\ A b\ G(p2)
7(r) G(r)

F(r)

By naturality of 7, T, = Toipg and so we have ¥g(7:, 7)) 2 ¥r(z,y). O

We can now show that V., is a map.

\I’:\I’r(z,y) = U{‘I’:(I,Z)&\Ilf(z,y)}l
= U{‘Pa(Tz,Z)&‘I’G(Zva)}l

‘I’G(Tza Ty)

2 \I’F(x: y)

0,0(z,y) = (U, 2)&T3(z, )}

- 0{\110(1:, 7.)&¥e(r., y)}
c f){xpc(:c,w)éic\llc;(w,y)}l
= ;c(x,y)-

Thus ¥, is a DQ-Set morphism. Now let G = H be another natural transformation

and examine the composite transformation.
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Vo ¥-(z,y) = (H¥o(z,2)&¥- (2 9)}

= H{¥n(z.0.)&¥06(z,7,)}
= Uy(z,0om,) by 2411

= V.. (z,y).

VI (v, z) = LZJ{‘I'i(y,‘Z)&‘I’Zi(z,:'r)}1
= H{¥c(n, 2)&¥x(0., z)}
= \Izl;{(a‘ry,x) by 2.4.11
= Vor(y,1).

Finally for the identity transformation 7r : F — F we have
Ure(z,y) = ¥p(z,7r(y)) = Yr(z,y)

and so V¥ is a functor. [ ]

Composing ¥ with 6 : DQ-SET — Q-SET gives us a functor from Set®  to O-
SET. We will refer to the composite 6@ simply as 0.

We now construct the right adjoint to . We will presently see that composing with

U is the associated sheaf functor. We define ® : O-Set — Set® as follows;



e Objects ® Given a Q-Set (X, p, d),

for ¢ a (symmetric) idempotent,
D5(q) = {a:[qg — (X,p.0)}

for q; LR g2 a morphism
Ps(p)(@) = [aa] < gl < (X, 0,0).

e Arrows e  Given a morphism R : (X, p,d) — (Y, p,9)
Ba(e) = [g > (X,p.0) & (Y,p,0).

Recall that for a symmetric idempotent g, [g] is the associated Q-Set. Clearly & is
functorial.

Theorem 2.4.13 ¥ - &.

Proof: Define the unit 7: 1 — ®V as follows; for F : @ — Set and q a (symmetric)

idempotent,
1F,(z) = az:[q] — ¥F,
where a.(y,*) = ¥r(y, z).

To show that 7 is natural we show that for every natural transformation 7 : F — G,

the following diagram commutes

F, i ol
Tq Q\‘I;fq
G, TG, o¥c,

For z € F, the top of the square takes z to ¥, o a., while the bottom takes z to a-,
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Groa(yx) = V{¥(y, 2)kou(z %))
= V{@G(vaz)&‘ip(z,z)}
= Ye(y,7)

= a,r

)

Thus 7 is natural. We now define the counit € : ¥®& — 1 as follows, for (X, p,d) a
Q-Set let e5(z,a) = a(z, *).

Lemma 2.4.14 ¥®;(a,8) = a°B.
Proof: Assume aa, = Bo,,. Then we have

_— o
ap 0y = O apap

[+
P2

a’aap oy,
= a°ﬁapza;2
< a®fd,,
= a°f.

This tells us that @%(a, B) < a°. Now examine the following diagram

(X, p,9)

(1] (q2]

a°p Beaa’f
[B°aa®B(x, *)]

Using the adjunction inequalities the composite 33°aa°f is less than or equal to

aa®B. We now have
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aa’B = aa’BB°ac’aa’B by pseudo-rightsidedness
= aa’fB°aa’f since a is mono
< 480°aa’p adjointness
= Bf°aa’S.

It follows that 83°aa’f and aa’B are equal. Thus a°B86°aa’B (pip3), is equal to
a°( by pseudo-rightsidedness. This is less than @Q;(a, B), hence we have equality.

¢

It is now clear that for a morphism R : (X, p,8) — (Y,p,8), ¥®r(a,B) = a°RB.
Now from work done in the previous chapter, ¢ is a natural isomorphism. To show
that this forms an adjunction we show that the triangle equalities hold. First examine
o5 22 oTd; -2, @;. nes(B : [a] = (X, p,8)) is the arrow Rs(7,*) = ¥®5(7,8) =
v°B. So we have ®.n¢,(0) is equal to e5R3.

esRg(z, %) = \!{66(331 1) & Ra(7, %)}
= \!{‘7(13 *) & 7°B(*, *)}
= \I/{'rfﬂ(z, *)}
= \/{0xB(z,*)} atomic
= B(x, *).
Thus we have that the composite ®; a8, ‘I)‘f"ba 2, &; is the identity transformation
on ®. Now examine the other triangle ¥ % 21 Ejfr V. Note that EGpr (z,a) =

a(z, *), where a : [¢g] — ¥, and
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‘f’q,.-(ﬂ,y) = V{Plpézamﬁ = ap, 0y }
= E’(I)"I}F(ﬁvay)

= ﬂoay(*, *).

So the composite becomes

o Tnrl@y) = Vleg, (.0) & Ty (o)}
= Via(@#) & a"ay(x %))
= Y{a(z,*) & \z/{a°(*,2) & ay(z,*)}}
= Via(z,*) & a®(+,2) & a,(z,%)}
- Vi) & 00} atomic

= ‘f’p(.’L‘, Z).

So we have ¥ 4 ®. [ |

The results of the next subsection show that the composite ®U is the associated sheaf

functor.

2.4.4 Q-SET is Equivalent to SHV (Q)

Recall that €; is an isomorphism if (X, p, 8) is a strict Q-Set and further that pseudo-
rightsidedness implies that every Q-valued set is strict.

Lemma 2.4.15 For Q a pseudo-rightsided quantaloid, F is a sheaf if and only if g

is an isomorphism.

Proof: Assume that F is a sheaf. Then for a Q-SET morphism a : [q] — ¥ the

following family of arrows,
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(Q(I) ‘q—- i’F‘(-’L I))J:EX

is a cover of g and (z € F(¥r(z,z))) is a matching family since we have

-~

a(z) & a®(z) < Yr(z,y) = Vipps -z, =, }-
If z,, = yy,, then we have
pp; & aly) < V{mps:z,, =y, & aly)

Ur(z,y) & a(y)

< a(z).

So there is a unique amalgamation zo such that
a(z) = \{pp;:z), =20,,}
= Qg(z).

Thus 7F is an isomorphism. Now assume that 7 is an isomorphism and let (p; : ¢ — ¢;)ies

be a cover of q and (z; € F(q;)) a matching family.

Define a : [g] — ¥F by

pi fr=ux;
a(z) =
1 otherwise

ao(z) — {pi fz=uz;

1 otherwise.

We need to show that a is a morphism.

ade(z, %) = a(z) & q
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q’p&(ﬂ?,*) = V{‘fl(:ﬁ:,y)&a(y)}

Vipps : zlp, = ylp} & a(y)

= V{plpaa(y) : ZTlpy = Ylpo }

< ot(:z:).

But we know that for the symmetric idempotent q., we have that a(z) = ¢.q.a(z).

So it follows that ¥ra(z, *) is equal to a(z).
a’a(x,*) = \{a’(z) & o(z)}
= V(P;Pi) =4q

If a(z) = L then we clearly have a(z) & a°(y) < ¥r(z,y). So assume z and y are

such that z = z; and y = z; for some i, j.

ac’(z,y) = a(z) & a°(y)

pip;
V{plp; : zlp; = ylpz}
"‘I}F(xv y)

IA

Thus there is a unique y € F(q) such that

pi = a(zi) = ayz;) = V{P1p53xi|” =Y, }-
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Theorem 2.4.16 For Q a pseudo-right sided quantaloid, SHV(Q) is equivalent to
Q-SET.

Proof: We know that for any F, U is strict. Also since Q is pseudo-rightsided every
Q-valued set is strict thus the counit of the adjunction ¢ is a natural isomorphism.
So we want to show that for (X, p,d) a Q-SET, ®; is a sheaf. We will show that
&5 =% dTd; is an isomorphism from which the result follows. Let A : [q] — ¥®;.
We wish to find an a : [g] — (X, p, 6) such that A(G, *) is equal to ¥®;(8,a) = [°a.

To this end examine

AB,*) = TB;A(8,*)
= V{¥®s(8,7) & A(v, *)}

= V{B°v(x*) & A, %)}
= \:/{\z/{ﬂ°(*, z) & 7(z, %)} & A(7, %)}
= \I/{ﬂ°(*,z') & Y{v(r, *) & A(y,+)}}.
Notice that we have 3° composed with ‘something’. We define a : [g] — (X, p,4) as
a(z,*) = V,{v(z,*) & A(7,%)}
a’(x,z) = V,{4°(*,7) & v°(*,z)}.

To show that a is a morphism we have

da(z,*) = V{d(z,y) & a(y,*)}
= \y/{J(z,y) & V{r(y, *) & A(r,%)}}
= \j/{\y/{5($, ) ;5 v(y, *)} & A(r, %)}
Y{W(z, x) & A(v, %)}

= a(z,*),



The results for a° are

aa®(z,y)

a’a(*,*) =

84

ady(z,*) = alz,*) &q
= V{v(z.*) & A7, %)} & ¢
= V{r(z,%) & A(7,*) & q}

= V{r(z,*) & A(~, %)}

= a(z,*).

similar. To finish off we show that a is a monomorphic map.

= a(z,*) & a®(*,v)
= V{é(z, %) & A(E, %)} & V{A°(%,7) & v(+9)}
I3 v

= V{€(z, *) & A(E, *) & A°(%,7) & 7°(+,)}
3]

= V{&(z. %) & AA°(£,7) & 7°(+)}
13

< V{&@, %) & TO(&,7) & 7°(*,)}
&y

= Vi) & &1(% %) & 7(x,9)}
&

= V{1 (z,9)}

&y
< 44(z,y) by adjointness
= 4(z,y).

\/{a°(*,z) & a(z, *)}
VIV{A(*,€) & &(x,2)} & V{(z.*) & A(7,*)}}
z ¢ v

V{A°(%,€) & V{&°(*,z) & ¥(z, %)} & A(7,+)}
3] T
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- y{A°(*,§) & £°%(%,*) & A(v,%)}
Y
= V{A°(x,€) & PB(E,7) & Ay, %)}
= :°A(*, *)
= q.
Thus a is a monomorphic singleton arrow with the property that

A(B,*) = U®(8,a).

If & is another such morphism then we have a°@ equal to o°a, and &°a equals a°a

7 is an isomorphism. Thus when restricted to the categories Q-SET and SHV(Q),
the functors ¥ and & give an equivalence of categories. [ |

which givesus @ > aa®a@ = a,and @ > a from which the equality follows and so

Corollary 2.4.17 For Q pseudo-rightsided SHV(Q) is a reflective subcategory of
SET?".

Proof: With the counit of the previous adjunction a natural isomorphism, the result

follows. [ |

For H a Heyting algebra we have that the traditional notion of the category of sheaves
is equivalent to this definition since both are equivalent to the category of H-valued
sets. The following diagram captures the relationship between Q-SET and Sheaves
on Q for a pseudo-rightsided quantaloid Q.



DOQ-SET

SETY”

-}

L))

5]

Q-SET

SHV(Q)
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Chapter 3

Relational Presheaves

3.1 Relational Presheaves and Q-Taxons

3.1.1 Q-Categories

We begin this section with a short review of the work that Rosenthal[22] has done
on Q-categories and Q-functors for @ a supremum-enriched category. In this case
MAT(Q) is a supremum-enriched category with the identity arrows given by the
Kronecker delta A.

Definition 3.1.1 For Q a SUP-category, a matrix § € MAT(Q)((X,p), (X, p)) is
a Q-category if

66<dbdband A<$é
If Q is involutive then we ask that § = 4°.

Definition 3.1.2 For Q a SUP-category and (X, p,d) and (Y, p, ), Q-categories a
Q-functor f: (X, p,d) — (Y, p,9) is a function f: X — Y such that

px(z) = py(f(z)) and 8x (21, 22) < by (f(21), f(22))-

Denote the category of Q-categories and Q-functors by Q-C AT

87
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Definition 3.1.3 For a SUP-category Q a relational presheaf is an infimum pre-
serving lax-functor F : @®° — REL. For an arrow ¢ : A — B in Q denote the
relation F picks out by F;. If Q is involutive then we require that Fo. = F7. A
morphism of relational presheaves F' and G is a colax-transformation 7 : F - G

(that is 775 0 F; < G4 0 75 4) such that for every A € |Q|, T4 is a function.

Denote the category of relational presheaves and their morphisms by R(Q). Rosenthal
refers to a infimum preserving relational presheaf as a continuous relational presheaf.
For an arrow g : A — B in Q, F a relational presheaf, and y € F(A),z € F(B), we
will denote z F, y by Fy(z,y) = 1. Observe that the colax-transformations are not

required to preserve the infima.

Definition 3.1.4 ForC a category and F, G : C — REL lax-functors, a strong colaz-
transformation T : F' — G is a modular lax-transformation that satisfies 77 < 7 and

TGT = T.

Theorem 3.1.5 For C an involutive category and F,G : C — REL involutive lax-
functors, a strong colaz-transformation 7 : F — G satisfies 77 < 7°7 and 77° < 76 (a

map) if and only if for every A € |C|, 71, is a function
Proof: Assume 77 < 7°7 and 77° < 7¢. So (7°7)1,(a,a) = 1 for every a € F(A).

(T°t)i(a,a) =1 & (3fg =14)(3b){7s-(b,a) =1 and 1y(b,a) = 1}

To(ba)=1 & 7¢,1,(ba)=1 since T¢T =T

< (3a){7g,(b,@') =1 and 7,,(a’,a) = 1}.

Thus for every a € F(A) there is an a’ € G(A) with 7,(a’,a) = 1. Now assume
that there exist a’,a” € G(A) with 7,(d’,a) = 1 and 7,(a”,a) = 1. So we have
77°(a’,a") = 1 and since 777, < 7G,, we imediately have a =d" Thust,isa

function.
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Now assume that for every A € |C|, 7, is a function. If for f : A — B and
a € F(A),b € F(B) we have 7r,(b,a) = 1. Then 7, (a,a) =1 and 75, (b,b) = 1.
We know that 77, is a function so there exists b’ € G(B) such that 7, (b',b) = 1.
Thus 7(¥,a) = 1 (since 77 < 7). So we now have (7°7)s(b,a) =1 (77, (b, ¥') = 1).

Therefore 7 < 7°7. Finally assume that (77°)¢(b,a) = 1.

(r7°)s(b,a) =1 & (3gh = f)(3c){ry(b,c) = 1 and 7-(a,c) = 1}

74(b,c)=1 & (7g,m,)(bc)=1
& () g, (b,c') =1and 7, (c'c) = 1}.

Similarly we have 73.(a,c) = 1 if and only if there exists ¢” such that 7¢,.(a,c") =1
and 7,,(c",¢c) = 1. Since 7, is a function we have that ¢’ = . So we have that

76,76, (b, @) = 1 which implies that 7¢,(b,a) = 1. And therefore 77° < 7¢. [ |

Lemma 3.1.6 There is a bijective correspondence between relational presheaves

and Q-categories.
Proof: For F : Q°° — REL define a Q-category (Xr, pr,dr) by
Xr= I} F(A)
pr(z) = A ifand only if z € F(A)
dr(z,y) =V{q | Fy(z,y) = 1}.
Since F is an infimum preserving lax-functor we have
opdr(z,y) = \Z/{JF(-'L‘, z) & 6r(2,9)}

= Vo2 | Fp Fpp(zy) = 1}
< Vgl Fy(z,y) = 1}
= 6p(.’£,y).

Now for (X, p, ) a Q-category create an infimum preserving lax-functor F' as follows
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For an object A, set F(A) equal to {z | p(z) = A}

For a morphism ¢: A — B and z € F(B),y € F(A)
set Fy(z,y) =1 ifand only if ¢ <d(z,y).

F so defined is an infimum preserving lax-semifunctor because:

F,Fp(z,y)=1 & 3, Fy(z,2) =1and Fy(z,y) =1
& 3,q9<6(z,z) and p < d(z2,9)
= gp<4(z,y)
o Fp(z,y)=1.
To show that F preserves infima we have
FVq;(zv y) =1 & VQi S 6(1‘1 y)
& for every i, ¢; < 6(z,y)
& for every i, Fy(z,y)=1.
If Q is involutive then
F(z,y)=1 & Fly,z)=1
& ¢<i(y, 1)
& ¢ <(z,y)
o Fpe(z,y)=1

Now it is easy to show we have a bijection of sets. il

Theorem 3.1.7 For a SUP-category Q the categories R(Q) and Q-CAT are iso-
morphic.

Proof: For F,G : 9 — REL relational presheaves and f : 6p — 8¢ a Q-functor
define 7; : F — G by 7;.4(z) = f(z). To show that 7y is a morphism of relational

presheaves we must show that forg: A— B
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Tr.B©° Fg S Gg O Tf A-

Since 74 g is a function a typical element of the relation 74,5 Fy has the form 75 g Fy (2, z) =
1 where z = f(y), 7(f(y),y) = 1 and F,(y,z) = 1 for some y. Since f is a Q-
functor it follows that G,(f(y), f(z)) = 1. We know that 7;4(f(z),z) = 1 thus

Gy17a(f(y), ) = 1, thus 7 is a colax transformation.

Now assume (X, p,d) and (Y, p, §) are Q-categories and that 7 : Fx — Fy is a colax-

transformation. Define a Q-functor f, by
For z € F(A), f-(z) = Ta(z).

Clearly f, is a function so assume ¢ < dp(y,z). This is the case if and only if
Fy(y,z) = 1. By definition of 7, 75(y) = f-(v) and since 7 is a colax transformation
t8F,(t8(y),z) = 1 implies that G,7a(7(y),z) = 1. But 74 is a function so we
must have Gy(78(y), Ta(z)) = 1 which means that ¢ < dc(f-(y), f-(z)). So f- isa
Q-functor.

That the constructions above define two functors is easy to see and tracing back and

forth easily gives us that the two categories are isomorphic. |

3.1.2 @Q-Taxons

The previous theorem required the existence of identities only when defining the
morphisms of relational presheaves. The colax-transformations were defined using
the objects notion of transformation. We also had the added requirement that for
each object A and a colax-transformation 7 the morphism 74 was a function. Observe
though that it does not follow that in the arrows-based definition of 7 all of the
morphisms are functions. But we do know that the associated colax-transformation
is a map. On the other hand the fact that A < § and that F was a lax-functor was
not needed in the proof. In this section we explore the category of Q-taxons and

its relationship to the category of sheaves. In the future, for Q a quantaloid, or O
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an ORD-semicategory a relational presheaf will refer to an infimum preserving lax-
semifunctor F : @°° — REL or an order preserving lax-semifunctor F' : O — REL
(the context will be clear). If Q is involutive then we assume that the relational
presheaves preserve the involution. All the results that follow, easily extend to the

involutive case.

For Q an involutive quantaloid a Q-semifunctor f : (X, p,d) — (Y, p, 8) gives rise to
a pair of matrices Ry : (X,p,8) — (Y, p,d) and R} : (Y,p,0) — (X, p, d) defined by

Re(y,z) = \({5v(y,f(x'))&5x(r',x)}

Ry(z,y) = \({5(1:,1’)&¢5y(f(z),y)}-
These matrices satisfy
Rsdx = Ry, d0yRy = Ry
oxR; = Ry, 0y = Rj
o0x < R}R; and RyR; < dy.

That R; is a morphism in *KAR(MAT(Q)) is automatic. To show that Ry is a map

we have,

R}Rs(z1,25) = \/{R}(z1,9) & Ry(y,z2)}

=V {0x(z1,7) & oy (f(z').y) & by (v, f(z")) & Ox(z", z2)}

y.T1,Z22
2 V {6X (zlv z’) & 6)((1,‘,, 2:”) & 6X(z”a 172)}

= JX(zlsz)v

and

R;R}(y1,%2) = V{Rs(y1,7) & Ry(z,32)}
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=V {dv(y1, f(z') & Ox(2,2) & bx(z,2") & dy (f(z"),52)}

I,Il ':Il

<V {ov(y, f(2) & oy (f(2), f(z))
& oy (f(z), f(z")) & oy (f(z"), 92)}
< (Y1, y2)-
Definition 3.1.8 For Q a quantaloid the category of Q-semicategories consists of

e Objects ¢ Q-semicategories.

e Arrows ¢  Q-semifunctors, f : (X, p,d8) — (Y, p,9)
a function f : X — Y that satisfies

p(z) = p(f(z))
dx(z1,T2) < Oy (f(z1), f(z2))-

Denote the category of Q-semicategories by Q-SCAT. Recall, from section 1.5.1, a
Q-semicategory (X, p,d) is a Q-taxon if and only if § is an idempotent.

Definition 3.1.9 For Q a quantaloid the category of Q-tazons consists of

e Objects ¢ Q-taxons.

e Arrows e  Q-semifunctors, f : (X, p,8) — (Y, p,0)

Denote the category of Q-taxons and their morphisms by Q-TAX. Recall that for Q
a pseudo-rightsided quantaloid there is an equivalence between Q-SET and SHV(Q)
given by the functors ¥ and ®.

Lemma 3.1.10 For Q a pseudo-rightsided quantaloid and R : (X, p,8) — (Y, p,0)
a Q-SET morphism ¥®(R) is a Q-semifunctor.

Recall that if a : [g] — (X, p,0d) is a singleton then the transformation 75 : &x —
®y is given by composition with R. That is 7,(a) = Ra. It was also shown that
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‘i’a,\— (a,8) < l'I\'d,_\,(Ra, Rp). Since the resulting morphism is a morphism of Q-valued
sets we have that ¥®(R) is a Q-semifunctor. [

Lemma 3.1.11 For Q an involutive quantaloid, there is a functor ¢ : Q-TAX — Q-
SET.

Proof: The functor is given by sending a Q-semifunctor f to the induced matrix
R;. Clearly R, is dx and thus is the identity morphism. We need to show that the
composition is preserved. For f : (X,p,8) — (Y,p,8) and g : (Y,p,06) — (Z,p,9),

composible Q-semifunctors we have

Ryp(z,z) = Rypbx(z,2)
\({Rgf(zvx’) & ox(z',z)}
\3/93', z"{6z(2,9f(z")) & ox(z", ') & 6(z', 2)}
z}/y’{éz(z,.t](y')) & oy(y, f(z') & (', )}
‘V {62(2,9(y")) & &y (¥, y") & oy (y", f()) & §(<',2)}

-’l-".y' 'yll

V{Ry(2,4") & Ry(y", )}

yll

= RyRy(z,z).

[ IAN I

Thus we have that R,y < R,R;. Since Q is involutive we know that Q-SET is a
category and since Ry, and RyR; are Q-SET morphisms they then must be equal. il

Corollary 3.1.12 For Q a pseudo-rightsided quantaloid the functor ¥ : Q-SET —
Q-SET factors through Q-TAX.

Proof: Every Q-valued set is a Q-taxon. This together with the previous lemmas
give the desired result. i
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Theorem 3.1.13 For Q a pseudo-rightsided quantaloid the category Q-SET is
equivalent to the category Q-TAX.

Proof: We know that ¥® is naturally isomorphic to 1g_sgr. We need to show
that U is naturally isomorphic to 1g_74x. For (X, p,8) a Q-taxon define the Q-
semifunctor ex : (X, p,d) — ¥ds by ex(z) = ;. Recall that a, is the singleton
morphism that satisfies a(z’, *) = dx(z’, ). Now to show that ¢ is a natural trans-

formation, let f : (X, p,d) — (Y, p,0) be a Q-semifunctor.

¥0,e(a,7) = V{¥/(a,7) & £(7,2)}

= V{¥%(a,7) & T®(v,a.)}

5
= VaoRf’y’)‘oa,,-

= C:ORfa,\’(*,*)

= a’Rsd(x,z)

= a’0R;(x,z)

= \y/{a°ayR,(y,z)}

= \!{\flfb(a,ay)&R!(y:-’L')}

= \{ele,y) & Ry(y,2)}
y
= st(a,z).

This tells us that € is a natural transformation. Now we will show that it is a natural

isomorphism.

eses(z,y) = \V{es(x,1) & e5(7, )}

~

= V{\fl@(a,,'y) & TO(v,ay)}
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= Vain'e,

= c:;ay(*,*) strictness
= V{aZ(*»Z)&ay(z,*)}

= V{J(z z) & 6(z,y)}

= 5(:1:, ).

So this tells us that e§e; = 9

€s€5(01. B2) = V{e:& B, z) & €3(zB2)}
V{w B,az) & ¥®(az, 5)}
- Vaas

= P16 atomic

986, 5,).

We used the fact that since (X p,§) is strict we have \/a;a, = §x. Thus we have

€565 = Ud. [

Corollary 3.1.14 For Q a pseudo-rightsided quantaloid the category of sheaves on
Q is equivalent to the category Q-TAX.

3.1.3 ORD-Relational Presheaves

We now explore the relationship between relational presheaves and modules for ORD-

semicategories and SUP-semicategories.

Lemma 3.1.15 For O an ORD-semicategory a lax-semifunctor F : 0 — REL
preserves the order if and only if for every pair a € F(A) and b € F(B) the set
{q | Fy(a,b) =1} is a downset.



97

Proof: Assume that F preserves the order. So if p < g € {q| F,(a,b) = 1}, we have
F; < F; thus p € {q | Fy(a,b) = 1}. If for every pair a,b the set {g | Fy(a,b) = 1} is
a downset then for p < q and Fy(a,b) = 1 we have Fp(z,y) =1 [ |

Recall that for O an ORD-taxon the composite of transformations F > G < H :
ORD% — REL is given by
(07)f = onTy for some f = hg.
Since O is an ORD-taxon this is the same as
(o7)f = U OgTh,
=gh
because the composite does not depend on the choice of gh = f. Also recall that for

F 5 G : O° — REL, a modular lax transformation between two lax-semifunctors,

that 7 is a transformation if and only if we have 77 = 7 and g7 = 7.

Using these ideas we define laxity and the composition of transformations if @ is an
ORD-semicategory. We begin by first defining how the composite of transformations

will work

Lemma 3.1.16 If O is an ORD-taxon, and 7 : F - Gand o : G — H are
transformations then

U gem= U ogm.

f<gh f=gh
Proof: Clearly

U OgTh 2 U OgTh-

f<gh =gh
Since (o7) is order preserving, if f < gh and (07)gu(b,a) = 1 then we must have
(07)s(bya) = 1. And since Q is a SUP-taxon it must be the case that for some

f =gh, ogth(b,a) = 1. [ |
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Definition 3.1.17 For O an ORD-semicategory, F,G,H : O — REL a pre-
transformation 7 : F — G is an |O| x |O| family of order preserving arrows (745 :
0O“(A,B) — REL(FA,GB)). For another pre-transformation ¢ : G — H the
composite pre-transformation o7 is given by (07)s(a, b) = 1 if and only if there exists
f < gh such that o,7,(a,b) = 1. That is
(07)r= |J o7
f<gh

Lemma 3.1.18 A family of arrows (r4p : O“(A, B) — REL(F A,GB)) is a pre-
transformation if and only if for every pair a € F(A) and b € F(B) the set of arrows
{q| Fy(a,b) = 1} is a downset.

Proof: The proof is the same as for lemma(3.1.13) [

We want to show that the composite of pre-transformations is a pre-transformation.

To that end let a € F(A) and b € G(B). We have
(o7)s(b,a) = 1if and only if 3y<gn 047(b,a) =1

Thus if £ < f then clearly (67)i(b,a) = 1. By the lemma we have that the composite

is a pre-transformation.

For F : O — REL a lax-semifunctor there is an associated pre-transformation
Tr: F — F given by 74 = Fap. For two pre-transformations o, 7 : F' — G we say

that o < 7 if for every arrow f in O we have oy < 7.

Definition 3.1.19 For O an ORD-semicategory a pre-transformation 7 : F — G
between relational presheaves is a transformation if 77p = 7 and 7¢T7 = 7. Tis a
strong laz-transformation if 77 < 7 and 767 = 7. T is a modular laz-transformation

ifrrr<tand g7 <7

Denote the semicategory of modular lax-transformations by MLAX,.4(Q%, REL), of
strong lax-transformations by SLAX,.4(Q%, REL). The following is an immediate

consequence of the definitions
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Theorem 3.1.20 For O an ORD-taxon the two definitions of transformations and

their composition coincide.

3.1.4 SUP-Relational Presheaves

Lemma 3.1.21 For Q a SUP-semicategory an order preserving lax-semifunctor
F : Q® — REL preserves infima if and only if for every pair a € F(A) and b € F(B)
the set {q | F,(b,a) = 1} is a principal downset.

Proof: If F preserves infima then we must have Fy(, | £,(z.y)=1}(Z,¥) = 1 and so
{q | F4(z,y) =1} is a principal down set. On the other hand We automatically have
Fyq < AiFy. Assume AF(z,y) = 1. Then for every i, F,(z,y) = 1 thus since
{q | Fy(z,y) = 1} is a principal down set we have F\,(z,y) = 1. [ ]

Recall that for two complete lattices Q; and Q, the tensor product is given by the

set {W € D(Q;xQ)| SxT C W implies (VS,VT) € W}. In SUP the coproduct

is product so an element of [[ Q(A, X) ® Q(X, B) is a family (Wx)x¢g- For Q a
X

SUP-taxon the composite of the transformations F 5 G 5 H : @ — REL is then

given by

(67)y = ooT(Wx) for some f = m(Wx)
= () onry forsome f=m(Wx)
(y‘h)éwx
Also recall that for the coequalizer m,
mWx)= \/ kg
(g.h))éWx
As we did with ORD-semicategories we can define transformations and laxity for Q

a SUP-semicategory.

Lemma 3.1.22 For Q@ a SUP-taxon, 7 : F — G and ¢ : G — H two transforma-

tions of relational presheaves
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U (ﬂathyu)= U (nahiTgi)

f<Vhyg; [=Vhig,
Proof: Clearly we have
U owm) > U NowTs)
J<Vhigi f=Vhig;
Since Q is a SUP-taxon if we have N o7, (b,a) = 1 then (0T)yn,g(b,a) = 1. This
immediately implies that (07);(b,a) = 1 since the transformations preserve order.
Thus there is a family (W) with m(Wx) = fand [ ow7e(ba) =1 [ |

X
(h.g)eWx

Definition 3.1.23 For Q a SUP-semicategory, F,G,H : Q° — REL a pre-
transformation T : F — G is a |Q| x |Q| indexed family of infimum preserving arrows
(TaB : @°(A, B) —» REL(F A, GB)). For another pre-transformation o : G — H the
composite pre-transformation o7 is given by (67)(b,a) = 1 if and only if there exists
a family of arrows (g, h;), with f < Vh;g; and Noy,7,,(b,a) = 1. That is

(07)r= U Qonm.)-

f<Vhig;

Lemma 3.1.24 A family of arrows (t45 : 9°° — REL(F A, GB)) is called a pre-
transformation if and only if for every pair of elements a € F(A) and b € F(B) the
set {q | 74(b,a) = 1} is a principal downset.

Proof: The proof is the same as for lemma (3.1.19) f

For the composite above we have
(07)s(b,a) =1 ifand only if 3Icyng, (NOw, Ty (b a) = 1).

So if we have a family of arrows f; such that (o7)y,(b,a) = 1 then for each j we
have a family of arrows (gy;, hi;) with f; < V;h;;9:;; and Non,; g, (b,a) = 1. It now
follows by the definition of composition that (07)y s;(b,a) = 1. This tells us that

the composite is a pre-transformation.
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For a relational presheaf F : Q°° — REL there is an associated pre-transformation
Tr, where T4 = Fup. For 0,7 : F — G, two pre-transformations, say that ¢ < 7 if

for every arrow f in Q we have o < 7y.

Definition 3.1.25 For Q a SUP-semicategory a pre-transformation 7 : FF —» G
between relational presheaves is a transformation if 777 = 7 and 7¢7 = 7. Tisa
strong laz-transformation if T7p = T and 7¢7 < 7. T is a modular laz-transformation

ifrrr<7Tand 1gr <.

Denote the semicategories of modular lax-transformations and strong lax-transfor-
mations by MLAX,,;(Q°, REL) and SLAX;.;(Q°, REL) respectively. The follow-

ing theorem is an immediate consequence of the definitions.

Theorem 3.1.26 For Q a SUP-taxon the two definitions of transformations coin-

cide.

We can now explore the relationship between relational presheaves and sheaves. In
particular for @ a pseudo-rightsided quantaloid we will answer the question ‘when is

a relational presheaf a sheaf’?

Theorem 3.1.27 For O an ORD-semicategory, M LAX,,4(O°, REL) is equivalent
to MLAX;,;(DO®, REL).

Proof: This is a straight forward consequence of the fact that for an order preserving
semifunctor F : O°° — REL each set {f | Ff(z,y) = 1} is a down set and the

supremum in DQ is the union of sets. B

For a semicategory C we can define lax semifunctors from C into REL and trans-
formations between them in the obvious way. Denote the resulting semicategory by
MLAX(C,REL). When we interpret C as an ORD-semicategory with the trivial

order on each hom set we obtain the following corollary.

Corollary 3.1.28 MLAX(C,REL) is equivalent to MLAX,;(PC®, REL).
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Proof: A semifunctor F : C — REL trivially preserves the order so clearly
MLAX(C,REL) is equivalent to the semicategory M LAX,.4(C, REL). [ |

For Q a quantaloid the following theorem gives us the relationship between modular
lax-transformations and the quantaloid MOD(MAT(Q)). From this result we can

explore the relationship with sheaves.

Theorem 3.1.29 For Q a quantaloid the semicategory M LAX;,;(Q%, REL) is
equivalent to the semicategory MOD(MAT(Q)).

Proof: First we define the appropriate semifunctors. ¥ : MLAX;,;(Q®, REL) —
MOD(MAT(Q)) is given by sending a relational presheaf F to the module (Xr, pr, 0F)

where

Xr= [I F(4)
A€lQ|

plr)=A if and only if z € F(A)
6(z,y) = V{g | Fy(z,y) = 1}.

For G another relational presheaf a modular lax-transformation 7 : F — G is sent to

the morphism R, where
R-(z,y) = V{q | 74(z,y) = 1}

We need to show that df is a module and that R, is in fact a morphism.

‘SF&F('T’ y) = V{&p(z, Z) & 6F(Z’ y)}
= V{Via | Fu(z,2) =1} & V{g: | Fu(zy)=1}}
= \/{qIQQ | Fou(z,2) =1 and Fg,(2,y) =1}

< Vgl Fy(z,y) =1}
= JF(zv y)
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Showing that R, is a morphism follows the exact same lines. If ¢ : G — H is a second

modular lax-transformation then we have

R,R.(z,y) = \/{R.(z,z) & R.(2,9)}
= V{V{a | og(z,2) =1} & V{g | 7o(2,9) = 1}}
= V{ag|0q(z,2) = 1 and 1,(2,9) = 1}

V{QI‘D | dqlTQ2(I: y) = 1}
= V{al(o7)g(z,9) =1}
= Raf(zi y)'

Thus ¥ is a semifunctor. For ® : MOD(MAT(Q)) — MLAX;,((Q®, REL) we send
a module (X, p, §) to the relational presheaf Fx where

Fx(A4) = {z | p(z) = A}

and for ¢: A — B and z € Fx(B), y € Fx(A) we have Fx (z,y) =1
if and only if
g < 4z9)

For a morphism of modules R : (X,p,8) — (Y,p,0) we define a modular lax-

transformation 7 : Fx — Fy by
7R, (¥,z) = 1 if and only if ¢ < R(z,y).

To show that FY is a lax semifunctor we first need to show that Fx preserves infimum.
This follows automatically since each set {q | Fx,(z,y) = 1} is a principal down set.

For laxity we have for composable arrows pq

Fx,Fx, (z,y) =1 3; such that Fx,(z,2) =1 and Fx (z,y) =1
pq < 6(z,y)

<
& p<é(z,z) and ¢ < 4(2,9)
=
& Fx,(z,y)=1
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And so F is a lax semifunctor. In a similar manner we can show that for the morphism
R, T is a modular lax-transformation. For a second morphism S : (Y, p,d) — (Z, p, d)

the composite transformations have
(1s7R)e(z:2) =1 & < \{pp2 |75, 7R, (2,2) = 1}
& ¢< \y/{Plp2 | 7sp, (2,9) = 1 and 7g,, (y, ) = 1}
& ¢< V{pwp2 | p1 < S(2,9) and p; < R(y, 7)}
® ¢< I:"!S(z, v)
& Tgs,(z,y) =1L

Thus & is a semifunctor. Clearly we have ¥ =1 and ¥Y® = 1. |

In a straightforward way we can extend the result to involutive quantaloids and with
a minor modification we can show that SLAX;,((Q%, REL) and RMOD(MAT(Q))

are equivalent. We now have the following series of corollaries.

Corollary 3.1.30 For Q a quantaloid, Q-SET is equivalent to
MAP(KAR(MLAX,;(Q®,REL)))

Proof:

Q-SET = MAP(KAR(MAT(Q)))
MAP(KAR(MOD(MAT(Q))))

MAP(KAR(MLAX,,,(Q°, REL))).

fle 0

IR

This tells us that an idempotent modular lax-transformation is directly related to a

Q-valued set.

Corollary 3.1.31 For Q a SUP-taxon we have MAP(T AX;n;(Q%, REL)) is equiv-
alent to Q-SET.
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Proof: KAR(MLAX;,;(Q, REL)) is equivalent to TAX;f(Q°, REL). [ |

Corollary 3.1.32 If Q is a pseudo-rightsided SUP-taxon then SHV(Q) is equiva-
lent to *MAP(TAX;.;(Q®, REL)).

This tells us that a sheaf for a pseudo-rightsided sup-taxon Q, is an INF-semifunctor
F : Q®° — REL. Alternatively a sheaf is a SUP-semifunctor F : @ — REL®. For
H a complete Heyting algebra we know that the category of H-valued sets of Higgs is
equivalent to @-SET when we think of H as a one object SUP enriched semicategory
Q. Higgs showed that the category of H-valued sets is equivalent to the category of
sheaves on H. Recall that every complete Heyting algebra satisfies Freyd’s law of
modularity, and thus is pseudo rightsided. This tells us that the category of sheaves
on H, H-Set is equivalent to the category of sheaves H-SET in this new sense. Thus
a sheaf on a Heyting algebra is an INF preserving semifunctor F : H* — REL.

The previous theorem now gives the following result, which is similar to theorem

3.1.5.

Corollary 3.1.33 If Q is a pseudo-rightsided SUP-taxon then Q-TAX is equiva-
lent to *MAP(TAX;,s(Q”, REL))
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3.2 A Grothendieck Construction

3.2.1 The Category of Elements

We now examine the Grothendieck construction on lax-semifunctors and modular

lax-transformations from a semicategory C into REL. We also wish to know what

properties the resulting categories have.

Definition 3.2.1 For C a semicategory and F : C — REL a lax-semifunctor the
Grothendieck construction of the semicategory of elements, Cr, for F consists of

e Objects ¢ Pairs (a, A) such that a € F(A).
(usually we will denote the object (a, A) just by a).

o Arrows e Cp(a,b) = {f:A— B | Fg(b,a) =1 for b€ F(B),a € F(A)}.

That this is a semicategory follows since laxity of F' guarantees that the composite
arrows exist while we inherit associativity from C. There is the usual forgetful semi-
functor Ur from Cp into C. It sends the objects (a, A) to the object A and an arrow
(a, A) -1 (b, B) to f. Note that U is faithful.

Definition 3.2.2 For F — G a lax-transformation construct a profunctor v, :

CF x Cg — SET as follows,
¥-(a,b) = {f | 74(b,a) = 1}.

Note that v, is a subfunctor of C(Ur—, Ug—). Since it is a subfunctor it is compatible
with Cr and C¢ in the sense that if (a, A) ER (b,B) and (c,C) % (d, D) and h € v(b, c)
then hf € 4(a,c) and gh € (b, d).

Using the properties above we define a semicategory with objects semi-functors and

morphisms profunctors.
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Definition 3.2.3 The category PROF/C is defined as follows

e Objects @ Pairs < D, L > such that D is a semicategory
and L : D — C is a faithful semi-functor.

e Arrowse <D, L, >-Fi< D,, L, > is a subprofunctor of C(L,—, Ly—)

To say that P is a profunctor is to say that it is compatible with L; and L, in the sense
that if (a, A) 5 (b, B) and (c,C) % (d, D) and h € P(b,c) then Ly(g)h € P(a,c) and
hL.\(f) € P(b,d).

If we have two arrows < Dy, L >F.< D,, L, >2< Dj, Ly > then define the

composite @P by
QP(C,A)={fg](38)( g€ Q(B,A) and f € P(C,B))}.

Notice that this is the usual composition of profunctors in the category setting. The

composition is

QP(C,A) =[I{P(B,C) x Q(A, B)}/ ~

B

where ~ is generated by the pairs (Q(h, A)(g), f) ~ (g, P(B,h)(f)), for all g €
Q(A',A), f € P(B',B) and h : B' — A’. One of the pairs in the relation is (1, gf) ~
(g, f), so every pair (f,g) can be associated with the composite of its elements. If

gf = ¢'f' then we have

(f.9) ~ (1,9f)
(1,g'f)
~ (f,’gl)

On the other hand if (f,g) ~ (f',¢’) then there is a zig zag of composites that gives
us gf = ¢'f’. So two pairs (f,g) and (f', g') are related if and only if gf = g'f'.

Theorem 3.2.4 PROF/C is equivalent to MLAX(C,REL).
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Proof: The construction of the category of elements and the morphisms between
them is clearly a semi-functor EL : MLAX (C,REL) — PROF/C. Given a faithful

semi-functor D —= C define a lax semi-functor Fp :C — REL as follows,

On objects A€ [C|]  F.(A)={De€|D| | L(D) = A}.

On Arrows f: A— B Fy (Dy,D;) =1 if and only if
there exists f' : Dy — D, such that L(f') = f.

Also if < Dy, L, >Ei< Dy, Ly > is a morphism in PROF/C then define a lax

transformation 7p : Fr, — F, by,
rp!(Dl, D;) =1 if and only if f € P(D,, Dy).

This gives us a semi-functor I' : PROF/C — MLAX(C,REL). The composite ['.EL
is the identity semi-functor on MLAX(C,REL). Define € : 'EL — 1 to be the
identity transformation. For (D, L) £, (€, M) define np : (D,L) - EL.I'(E, M) by

ne(D,< E,C >) = P(D, E).
For (D, L) - (€, M) -2 (F, N) we have

mrP(D, < F,C>) = {fg|(3E) (9 € nr(E,< F,C >) and f € P(D, E))}
= {fg9](3e) (9 € R(E, F) and f € P(D, E))}
— RP(D,F)
= nre(D, F).

ELTgpnp(D,< F,C>) = {fg9| (3<ec>) (f € ELTr(< E,C’' >, < F,C >)
and genp(D,<E,C' >))}
= {fg|(3e) (f € R(E,F) and g € P(D, E))}
= RP(D,F)
nre(D, F).
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Thus 7 is a natural transformation. Since the € is the identity transformation we have
erpl(nr) =Tplr =Tpr
EL(e;)ngLe = EL.EL, = EL,,.

These tell us that [ 4 EL. For (D,L) = (£, M) define np : ELT(p 1) — (€, M)
by np(< D,C >,E) = P(D,E). Exactly as with n we see that 7’ is a natural
transformation. For (D, L) £, (&€, M) £, (F,N) we have

nrnp(< D,C >,< F,C' >) = ELTgp(< D,C >,< F,C" >)
and

So we have that 7' is the inverse of . Thus PROF/C is equivalent to M LAX(C,REL)
i

3.2.2 Order Preservation and the Semicategory of Elements

Definition 3.2.5 For O, and O, partial orders a functor f : O, — O, satisfies
Frobenius reciprocity if for every a € Oy we have | f(a) = {f(z) | z < a}.

For O an order enriched semicategory, we construct the semicategory of elements for
an ORD lax-semifunctor F as above. Note that in this case the forgetful semifunctor
Ur has the added property that it preserves the order and for a,b objects in Op,
Ur, , satisfies the Frobenius reciprocity condition. In addition to this for a modular
lax-transformation 7 : F — G we have that the profunctor I', takes its values in the
category ORD instead of in SET. That is we have I'; : OF x O¢ — ORD. This
is still a sub semifunctor of O(Up—, Ug—).

Definition 3.2.6 For @ an ORD-semicategory the category PROF/O consists of
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e Objects e Pairs (O, L;) such that O; is an ORD-semicategory
and L; : O; — O is a faithful ORD-semifunctor

satisfying Frobenius reciprocity.

e Arrows e (Oy, L)) LA (04, Ly) is a ORD-subprofunctor of O(L,—, L,—)

The composition of the morphisms
(01, L) 5 (O, Lz) 2 (O, L)
is defined on objects A and C by
QP(C,A) = LBJ{fg | 9 € Q(B,A) and f € P(C, B)}.
Theorem 3.2.7 The category PROF/Q is equivalent to M LAX,.4(O,REL).

Proof: The functors are essentially the same as for Theorem (3.2.4). Frobenius
ensures that we have the necessary downset property of modular lax-transformations.
We just need to show that the new composite is preserved. For P,Q composable

morphisms in PROF/O we have

7pQ,(D3,D1) =1 & f € PQ(D\, Ds)
& (IB,s<qn) (9 € P(B,D;) and h € Q(Dy, B))
& (3B.s<on) (Tp,(D3, B) =1 and 1q, (B, D1) = 1)
& (tp1o)s(Ds, D)) = 1.

Now for composable modular lax-transformations 7 and o

ELar(Dl, D3) = {f I UTI(D31 Dl) = 1}
= {gh | agmn(Ds, D;) = 1}}
= (J{gh | 04(Ds, B) = 1 and 74(B, Dy) = 1}}
B

= |J{gh | 9 € ELo(B,Ds) and h € EL.(D\, B)}
B
= EL,EL-,»(D], D3)
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3.2.3 Supremum Preservation and the Semicategory of Ele-

ments

For @ a supremum-enriched semicategory and F : Q@ — REL a supremum pre-
serving lax-semifunctor, we construct the semicategory of elements for F' in a similar
manner. The forgetful functor Ur : Qf — @, has the added property that it is
supremum preserving. For 7 : F — G a lax transformation the associated profunctor

', takes its values in the monoidal category SUP. That is I'; : Q?’ x Qc — SUP.

Definition 3.2.8 For Q a SUP-semicategory the category PROF/Q consists of
e Objects o Pairs (@), L;) such that Q, is a SUP-semicategory
and L; : ©Q; — @ is a faithful SUP-semifunctor
satisfying Frobenius reciprocity.
o Arrows e (Q1, L) 5 (Q,, L,) is a SUP-subprofunctor of Q(L,—, Ly—)
The composition of the morphisms
(@1, L) B (@5, L) 2 (Qs, La)

is defined on objects A and C by
QP(C,A)=(\/{fg|9€Q(B,A) and f € P(C, B)})".
B
Theorem 3.2.9 PROF/Q is equivalent to MLAX;,(Q%, REL)

Proof: Again Frobenius ensures that the necessary downset property on the modular

lax-transformations holds. Since we are working in SUP the downsets are principal.



All we need to show is that the composition as now defined is preserved. For P,Q

composable morphisms in PROF/Q we have
TpQ,(D3, D) =1 <« f € PQ(D,Ds)
< f<V\{gh|ge€ P(B,Ds) and h € Q(Dy, B)}
& f< \7{gh | 7p,(D3, B) =1 and 70, (B, D) = 1}
e (TpTQB)f(Dg,Dl) =1

Now for composable modular lax-transformations = and o

EL,:(D\,Ds) = {f|(o7)s(Ds,D1) =1}
= (V{gh | ogm(Ds, Dy) = 1})*
= (\/{gh | 04(Ds,B) =1 and 7,(B, D) = 1})*
= (\B/{gh | g € EL,(B, D3) and h € EL.(D,, B)})!
- E‘LEL,(Dl, D). B

3.2.4 Q-TAX and the Semicategory of Elements

In this section we will explore the relationship between Q-taxons and the grothendieck
construction. Recall that the semicategory MLAXn;(Q%, REL) is equivalent to
MOD(MAT(Q)). Using this as a guide we convert the elements construction to Q-
semicategories. Given a quantaloid Q and (X, p,d) a Q-semicategory, the category

of elements FLy has

e Objectse |ELx| = X.

e Arrowse q:z; — z, if and only if

g < 6(z2, 71).

For Q; a quantaloid and L : @, — Q a faithful SUP-semifunctor that satisfies
Frobenius reciprocity, define a Q-semicategory (X, pr,d1) by
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X =2
pr=L:|Q — Do
0L(z2, 1) = L(Tz,2,)

where T;,z, : £, — z5 is the top arrow in Q,(zy, z,).

Observe that if Q is pseudo-rightsided then (X, pr,dL.) is a Q-taxon. Now we want
to see what a Q-semifunctor gives us. If f : (X, p,8) — (Y, p,0) is a Q-semifunctor
then define a SUP-functor Fy: ELx — ELy by

Fp:X-Y = f: XY

Forg:z, — z5 in ELx let
Fi(q) = q:f(z1) — f(z2).

The action on arrows is well defined since dx(z,, z2) < dy(f(z1), f(z2)). Observe that
F¢ composed with the forgetful Uy : ELy — Q equals the forgetful Ux : ELx — Q.
That is Uy Fy = Ux. Now for (q), L;) and (g2, Ly) two objects in PROF/Q and a
SUP-semifunctor F : @; — @, that satisfies LoF = L; we have a Q-semifunctor
fr: (Xe,,pL,0L,) — (XL,;,01,,01,). For an object A in Q,, fr(A) = F(A) and
0r,(21,22) < 0L, (fr(z1), fr(z2)) since LoF = L.

Definition 3.2.10 For Q a quantaloid, the category SUP/Q consists of
e Objects ¢ |SUP/Q| =|PROF/Q)|.

o Arrows e (Qy, L)) 5 (Qy, Ly)
is a SUP-semifunctor F : Q; — Q,, such that
L2F = Ll.

It is easy to see that the constructions given above give two functors EL : Q-SCAT —
SUP/Q and () : SUP/Q — Q-SCAT. The composite ()EL : Q-SCAT — Q-SCAT

is the identity functor 1g_scar.
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Theorem 3.2.11 For Q a quantaloid Q-SCAT is equivalent to SUP/Q.

Proof: We need to show that there is a natural isomorphism between lsyp,o and
EL(). For an object (g, L), ELp, is the quantaloid with objects |Q;|. There is a
morphism ¢ : A — B if and only if ¢ < 8., (B, A) if and only if ¢ < L,(T'4p). Since L,
is faithful and Frobenius there is a unique arrow ¢’ in Q,(A, B) such that L,(¢') = q.
Define 7., to be the SUP-semifunctor that is the identity on the objects and which
maps an arrow ¢’ to the arrow L;(q’) = ¢q. The inverse maps the arrow ¢ to the unique

arrow ¢'. [ |

Corollary 3.2.12 For Q a pseudo-rightsided quantaloid SUP/Q is equivalent to
SHV(Q).

Proof: Since Q is pseudo-rightsided, every Q-semicategory is a Q-taxon. Thus we

have

SUP/Q = Q-SCAT = Q-TAX = SHV(Q)
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