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Alice laughed: “There’s no use in trying,” she said;
“one can’t believe impossible things.” “I daresay
you haven’t had much practice,” said the Queen.
“When I was younger, I always did it for half an
hour a day. Why, sometimes I'’ve believed as many

as siz impossible things before breakfast.”

Lewis Carroll
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Abstract

We continue the study of paired-domination. introduced by Haynes & Slater [27]. and
initiate the study of the related topic of paired-irredundance. In particular. we obtain
results regarding paired-domination and paired-irredundance in products of graphs:
characterize all well paired-dominated graphs of girth at least eight: and characterize
all graphs of girth at least seven in which there is a minimum paired-dominating set
which induces a maximal matching.

Our attention then turns toward dynamic domination. We study the game of Cops
and Robber and introduce two variations of that game: the precinct game and the
dragnet game. For both games we find upper bounds on the number of cops required
to win the game, and for the precinct game. we find exactly the minimum number of
cops required to win in such graphs as trees and grids. Finally. we examine isometric
embeddings of graphs. and the relationship between the strong isometric dimension
of a graph and the minimum number of cops required to win the game of cops and

robber.
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Introduction

Domination in graphs is a topic that has prompted much study. The original problem
of finding a dominating set in a graph has inspired numerous variations of the problem.
including the one presented in this thesis. In this thesis. the variation involves finding
a dominating set in which the vertices in the set can be paired via a matching edge.
Such a set is called a paired-dominating set.

A subject closely associated with the subject of domination is irredundance. It.
therefore. seemed a natural progression to define a paired-irredundant set. While a
paired-irredundant set is not necessarily an irredundant set. the relationship between
paired-domination and paired-irredundance is analogous to that of domination and
irredundance.

[n Chapter L. we give a brief survey of result in domination and irredundance and
then present results for paired-domination and paired-irredundance. The problems
examined include paired-domination and paired-irredundance in products of graphs
and characterizing classes of graphs that contain a paired-dominating set which satis-
fies some additional criteria. The first criteria is that all minimal paired-dominating
sets have the same cardinality. Graphs containing such a paired-dominating set are
called well paired-dominated. We characterize all well paired-dominated graphs with
girth at least eight. The second criteria is that there is a minimum paired-dominating
set in the graph such that there is a maximal matching induced on the set. We show
that every leafless graph of this type with girth at least seven belongs to an infinite
family based on the 9-cvcle.

We then move from these static dominating sets to consider dynamic domination.



[nstead of finding a set of vertices which dominate the entire graph. we wish to find a
series of vertex sets such that after some point in the series the vertex sets dominate
some moving target on the graph. There are many possible interpretations of this
problem of dynamic domination, subject to the conditions placed on the choice of
sets and the movement of the target.

One dynamic domination problem we study takes the form of the game of Cops
and Robber. This game has been studied extensively and we discuss its development
in Chapter 2. We then propose variations of the game in which the cops are restricted
to particular sets of vertices. or beats. in the graph. If each beat is both a retract
and a copwin graph. then a single cop on each beat is eventually able to “protect™ his
beat. From that point forward, the robber will be immediately captured if he moves
onto that beat.

[n the precinct version of the game each cop can only move to vertices in his beat.
and in the dragnet version each cop is restricted to his beat unless it is the final move
of the game. By studyving these games we gain information about the original game
of cops and robber. but we also discover problems which are interesting outside of the
context of the game. For example, the problem of finding the minimum number of
cops required to win the precinct game is actually the minimum number of isometric
paths required to cover the vertices of a graph. This is called the precinct number of
the graph. We are able to find the exact precinct number for all m x n grids. We
also find a lower bound on the precinct number for all d-dimensional grids.

This cops and robber theme continues in Chapter 3. where an attempt to find an
upper bound on the number of cops required to win the game leads to a more algebraic
study of the structure of a graph. The hope is that by isometrically embedding a graph
into the strong product of paths we will be able to see possible ~get-away ™ routes for
the robber. This leads to the definition of the strong isometric dimension of a graph.
[t is the least number of paths such that the graph can be isometrically embedded in
the strong product of those paths. For graphs with strong isometric dimension two.

this proves to be a good technique for finding the minimum number of cops required.



Some progress has also been made for graphs with strong isometric dimension three.
As for graphs with larger strong isometric dimension. while no good results are readily
available. it is still thought to be a promising technique.

Determining the strong isometric dimension of a graph has also proved to be an
interesting problem in its own right and is seen to have close ties to finding the injective
hull of a graph. For some graphs. such as cycles and hypercubes. it is relatively easy
to find the strong isometric dimension. For other graphs, such as trees. this problem
is more difficult. We are. however, able to find upper and lower bounds on the strong
isometric dimension of a tree that vary by a factor of two.

After studying cops and robber in a graph with strong isometric dimension two.
we decided there was no reason to restrict ourselves to the strong products of paths.
We show that if a graph can be isometrically embedded in the strong product of two
trees. a cvcle and a tree or two cycles. then good upper bounds can be found on the
minimum number of cops necessary to win. These bounds are obtained by finding
another means of dyvnamically dominating the graph. In this case the series of vertex
sets required are cut sets.

Besides the relationship between the strong isometric dimension of a graph and
its injective hull. there is little in Chapter 3 that can be related to any known results.
Therefore. an account of the history behind the problems in the final chapter was too
brief to warrant its own section.

Note that throughout this thesis. known results given for historical perspective
only will be highlighted in quotation form. while those used in proving new results
will be stated as Theorems. Lemmas. etc. and will credit the author(s) of the result.
New results will also be displayed as Theorems, etc. but will not display a name nor

a citation.
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Definitions and Symbols

A graph G = (V. E) is a set V' of elements called vertices, together with a set £ of
two element subsets of 1" called edges. Two vertices, r and y. are said to be adjacent
if they are joined by an edge. This is denoted by + ~ y. Otherwise they are non-
adjacent which is denoted by r L y. A set of vertices is said to be independent if
no two vertices in the set are adjacent. The set of all vertices adjacent to a vertex r is
called the neighbourhood of r and is denoted N(z). The cardinality of .V(x) is said
to be the degree of r. The closed neighbourhood of z. V[z]. is the set .V(x)U{z}.
We say that the neighbourhood of a set S. :V(S5), is the union of the neighbourhoods
of all its elements. The closed neighbourhood of a set is defined similarly. An edge
between vertices .r and y is said to have r and y as end vertices. It is also said that
the edge is incident with & (or with y). A set of edges is said to be independent if
no two edges share a common end vertex.

A walk in G is a set of vertices {a.....a,} such that e;a;4y € E for each i/ =
l.....n — 1. This walk is called a path (or a path from a, to «,) if all the vertices
are distinct. An n-path is any path on n vertices. It is said to have length n — 1.
denoted {(P) = n — 1. Two vertices are connected if there is a path between them.
A graph ( is connected if every pair of vertices in (i are connected. The distance
between connected vertices r and y in G is the minimum length of all paths from
r to yin G. This is denoted d(r.y) or dg(z.y) if we wish to emphasize that this
occurs in the graph . The diameter of a connected graph G. denoted diam(G) is
the maximum distance between two vertices in (/. A set S in a connected graph &

is called a cut set if for some pair of vertices x.y in G such that .y & S every path

xvii



from r to y contains a vertex of S.

A cycle is a set of vertices {a;.a,.....a,} such that a;a;;, € E for each i =
1.2..... n—1and a, ~ a;. A cycle on n vertices is also called an n-cycle. The girth
of a graph is the minimum n such that the graph contains an n-cvcle. A tree is a
connected graph containing no cycles. A graph is bipartite if it contains no n-cycle

for any odd n.

For other terms please see [10] and [L1].
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Chapter 1

Paired-Domination and

Paired-Irredundance

1.1 Introduction

A dominating set in a graph. G. is a set of vertices. S. such that every vertex in
G either belongs to S or is adjacent to a vertex in S. The minimum cardinality of a
dominating set in a graph G is called the domination number of (¢ and is denoted
7(() and the maximum cardinality of a minimal dominating set is denoted ['((r). If
S is a dominating set. we say that every vertex of G is dominated by some vertex
in S.

Figure 1.1 shows two minimal dominating sets in a graph & with minimum and

maximum cardinality. respectively. (The solid vertices in each graph are those in the

dominating set.) Hence. 4(G) = 2 and I['(G) = 3.

A A

Figure 1.1: A graph G in which v =2 and ['(G) = 3.
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A set of vertices X is irredundant if for no vertex v in X is .V[v] a subset of
N[X '\ {¢}]- If this is the case we say that each vertex of X has at least one private
neighbour. That is. every vertex v in .X has at least one neighbour. perhaps even v
itself which is not adjacent or equal to any other vertex in X. Let ir(G) and [R(()
denote the size of the smallest and largest maximal irredundant sets. respectively.
and call ir(G) the irredundance number of G.

Figure 1.1 shows two maximal irredundant sets in (¢ with minimum and maximum

cardinality, respectively. Hence. :r(G) = 2 and I R(G) = 3.

K2 KA

Figure 1.2: A graph G in which :r(G) =2 and [R(G) = 3.

A matching is defined to be a set of independent edges in a graph. We say that
a vertex is met by the matching M if that vertex is an end vertex of some edge
in the matching. and we let V(M) denote the set of all vertices met by the matching
M. Define a set of vertices S to be saturated if every vertex in S is met by the
matching: that is. § C V/(.M/).

We will call a matching V/ a dominating matching or dom-matching for short.
if the set V(M) is a dominating set. Figure 1.3 shows two minimal dominating
matchings in the path on the {-path. P. The edges in the matching are represented

by dashed lines.

c—e---——- o---o—0---9

Figure 1.3: The graph P; with dom-matchings containing one and two edges. respec-
tively.

A set of vertices S is defined to be paired-dominating set. if there is a dom-

matching M such that § = V(M). A paired-dominating set S is minimal if there is



a minimal dom-matching M such that V(M) = 5. For example. if we have the path
Py = {a.b.c.d}. then both S| = {a.b.c.d} and S, = {b. c} are paired-dominating sets.
Even though S, is strictly contained in S;. they are both minimal paired-dominating
sets. This is because the matchings M, = {ab.cd} and M, = {bc} are both minimal
dom-matchings. Let 7,((/) and I';(G) denote the size of the smallest and largest
minimal paired-dominating sets in GG. Call any paired-dominating set with minimum
cardinality a v,-set. So. 7,(FPs) =2 and [(P) = 4.

We will call a matching M an irredundant matching or ir-matching, if for no
edge uv in M is N[{u.v}] a subset of N[V (M) \ {u.v}]. Hence. for every pair in
V(M) at least one vertex in the pair has a private neighbour. We call the set V(W)
a paired-irredundant set. A set X is a paired-irredundant set if there is an ir-
matching M such that V(M) = X. A paired-irredundant set X" is maximal if there
is a maximal ir-matching M such that V(M) = X. Let ir,(G) and [R,(G) denote
the size of the smallest and largest maximal paired-irredundant sets. respectively, and
call ir,(G') the paired-irredundance number of (i. Figure 1.1 shows two maximal
ir-matchings in a graph (/. These are the smallest and largest maximal matchings.

respectively. so ir,(G) = 2 and [R,(G) = 4.

Figure 1.4: A graph G with ir,(G) =2 and IR,(G) = 4.

In Section [.2. we present known results in the theoryv of domination and ir-
redundance and prove some analogous results for paired-domination and paired-
irredundance. A well known result in the theory of domination and irredundance

is the following string of inequalities:

ir<~<T<IR.



We show a similar result for paired-domination and paired irredundance:
irp <7, <L, < IR,

We define several graph products in Section 1.3 and investigate the parameters =,.
['p. ir, and IR, with respect to these products. We obtain various upper and lower
bounds for these parameters.

In Section l.4. we examine the class of graphs where every minimal paired-
dominating set is a minimum paired-dominating set. We show that any such graph
with girth at least eight is either a 9-cycle or its stems form an independent domi-
nating set.

Finally. in Section 1.5, we characterize all leafless graphs of girth at least seven in
which there exists a maximal matching. M, such that V'(.W) is a v,-set. This family

of graphs. denoted G. turns out to be an infinite family based on the 9-cvcle.

1.2 Historical Development and
Preliminary Results

The theory of dominating sets was formally introduced by Ore [42] and Berge [3].
and has since received much attention. In [8]. Berge used dominating sets to model
a set of radar stations where each station has itself and all adjacent vertices under
surveillance. Another representation of dominating sets involves a communication
network where the dominating set is a set of cities which. acting as transmitting
stations. can transmit messages to every city in the network.

[t was shown by Ore [42] that:

If G ts a graph with no isolated vertices and S is a minimal dominating

set, then V(G)\ S is also a dominating set.
This result gives the following corollary:

If G is a connected graph with p vertices then 4(G) + ['(G) < p.



To show this we let S be a minimal dominating set of size ['(G). Since V(G)\ Sis a
dominating set, then |V(G)\ S| > 7(G). The result follows because [V(G)\ S| +|S] =
p.

A total dominating set is a set of vertices, S. such that every vertex in G is ad-
jacent to a vertex in S. In other words. every vertex must be externally dominated
by a vertex in S. Using the radar station scenario, this would represent a case where
a station was incapable of monitoring itself, so it needs to monitored by some other
station. Note that any graph with no isolated vertices can be totally dominated. The
minimum cardinality of a total dominating set in a graph & containing no isolated
vertices is denoted by ~,(G).

Total dominating sets were introduced by Cockayne, Dawes & Hedetniemi [13].

They showed. among other things. that:
If G is a connected graph with p vertices then v(G) < 2p/3
and

If G has marimum degree A = \(G) and p vertices. none of which are

isolated, then +(G) < p— A+ 1.

Now suppose we change our model slightly. such that instead of radar stations we
have a set of guards where each guard protects all vertices adjacent to him. Hence.
the guards must form a total dominating set in order to protect all the vertices. In
addition. suppose each guard has a partner and they are assigned so each guard must
protect his partner. Hence. we wish to find a dominating set where pairs of vertices
in the set can be matched via edges in the graph. The set in question is the paired-
dominating set which was introduced by Haynes & Slater [27]. They noted that every
paired-dominating set is also a total dominating set and that a paired-dominating set
would be at most twice the size of any dominating set. This resulted in the following

bounds on 7,:
If G is a graph with no isolated vertices then

G) £ 7(G) < 7(G) < 29(G).



[t was also shown in [27] that
1(G) < 27%(G) - 2.

This is due to the fact that at least two vertices in a total dominating set can be
paired with each other. Hence, at most +,((’) — 2 vertices need to be added to a total

dominating set to ensure a paired-dominating set is contained within it.

As previously noted. a paired-dominating set can always be found by taking the
end vertices of the edges in a dom-matching. Every maximal matching is a dom-
matching since every edge of ¢ has at least one end vertex that is met by the matching.
Let p(C) denote the cardinality of the smallest maximal matching in . Then. as
shown in [27].

(G < 2u(G).
Therefore. any graph with no isolated vertices contains a paired-dominating set.

This approach to the problem leads to a slightly different application. If we find
a dominating matching. M. then the edges of M could be patrolled by |V/| guards.
Although the set of guards do not form a dominating set. we are trading constant
surveillance for a saving of half the number of guards. perhaps not an unrealistic

approach.

Cockayne. Hedetniemi & Miller [L3] were the first to introduce the concept of

irredundance in graphs and provided the following preliminary result:

Theorem 1.2.0.1 ([15]) A set of vertices is irredundant and dominating if and only

if it is @ minimal dominating set.
This results in the following well known corollary:
Corollary 1.2.0.2 ([15]) For any graph G. ir(G) < v(G) < T(G) < [R(G).

Another inequality relating v and ir was independently obtained by Allan &

Laskar [2] and Bollobds & Cockayne [9]:

+(G) < 2ir(G) ~ 1.
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The next major contribution to the theory of irredundance came from Cockayne.
Favaron. Payan & Thomason [14] who provided the first results obtained for the

parameter [ R((7). They proved that:

If G has no isolated vertices and X is an irredundant set in G then V(G)\

X is a dominating set.

This provided the following inequalities as corollaries. where p is the number of ver-
tices in G

+G)+ [R(G) < p
ir(G) + T(G) < p

and

ir(G) + [R(G) < p.

In [15]. Cockayne. Hedetniemi & Miller obtained a result which related +,(G) and

ir(C’) where G is a graph with no isolated vertices. [t stated that
7(G) < 2ir(G).

Using a technique similar to the one used in proving this inequality. we prove the

following theorem:
Theorem 1.2.0.3 For any graph G with no isolated vertices. v,(G) < 2ir(G).

Proof: Let § = {v1.va..... Um} be a maximal irredundant set of size ir(G) in G.

loss of generality assume that this is the case for all ¢ = 1.2.... k for some k£ < m
Let M' = {uv;:i=1.2..... k}
Now. forall i =k +1.b+2..... m we have v; = N[v;]\ V[S\ {vi}]. Let H =

G\ {wi.v;i:i=1,2.....k}. Let M” be the largest matching in H such that every

edge in M"” has at least one end vertex in T = {vp4q. Vgga..... tm}. Hence. every



[79]

vertex in I' which is not met by V" has all its neighbours met by either M’ or M".
We claim that M = M’U M" is a dom-matching in G.

If M is not a dom-matching then there is some vertex x which is not in V(M)
and r is not adjacent to any vertex in V(M). Then N(r)N V(M) = 0. Therefore.
N(r) € NV[S]. since any vertex in S not met by M is in T and has all its neighbours
met by the matching.

Consider Sy = SU{z}. Suppose N[v;] C N[5\ {v:}] forsome: =1.2.....k. then
N{ei] \ V[S\ {vi}] € N[r] which implies that u; € N[z]. This contradicts the fact
that r is not adjacent or equal to any vertex in V(M). If N[v;]\ N[S\ {v:}] C V[u]
for some : = k+1.k+2.....m. then v; € NV[z]. Since v; is either met by the matching

M or has all its neighbours met by M, this contradicts the fact x is not in V(M) or

adjacent to any vertex in V' (V).

then S, is an irredundant set. This. however. contradicts the fact that S was a
maximal irredundant set. Hence. it must be the case that V(M) is a dominating set.
and M is a dominating matching. Hence. V'(M) is a paired-dominating set such that

[V(M)| < 2|S|. Since |V(M)] > 7,(G) and |S| = ir(G). we have v,(G) < 2ir(G). O

We now turn our attention to the concept of paired-irredundance. Due to our
definition of an ir-matching. the following result. similar to that of Theorem 1.2.0.1.

is evident:

Theorem 1.2.0.4 A matching is @ dom-matching and an ir-matching if and only if

it ts @ minimal dom-matching.
This gives us a string of inequalities analogous to that in Corollary 1.2.0.2:
Corollary 1.2.0.5 [f G is a graph with no isolated vertices then

ir)(G) < %(G) < T,(G) < IR, (G).



There are examples in which one or more of the inequalities are strict. The graph
in Figure 1.5 has ir, = 4 and v, = 6 while the graph in Figure 1.6 has [R, = 4 and

r,=2.

*---- ----0

Figure 1.5: An maximal ir-matching of size 2 in a graph where v, = 6.

Figure 1.6: A maximal ir-matching of size 2 in a graph where ', = 2.

Theorem 1.2.0.6 If GG is a graph with no isolated vertices then [R,(G) < 2[R(G).

Proof: Let M be an ir-matching in G such that |V(M)| = [R,(G). At least one
end vertex of any edge. €. in M has a neighbour which is not a neighbour of any
vertex met by M \ {e}. Therefore. we can construct an irredundant set by choosing

the appropriate end vertex of each edge in M. If X is that set of vertices then

[R,(G)/2 = |X| < IR(G). Hence. [R,(G) < 2[ R(G). o

1.3 Products

We use = as the symbol for an arbitrary product where the product graph is defined

by V(G = H) = {(z.y) : € V(G).y € V(H)} and whether two vertices in this
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product are adjacent depends entirely on the adjacency relations in the factors. This
can be represented by a 3 x 3 matrix. called the edge matrix. The rows (columns)
are labeled by £ which denotes adjacency of the vertices of the first (second) factor:
.V which denotes nonadjacency: and A which denotes the case where the vertices are
the same. An E in the matrix indicates there is an edge between the vertices of the
product: an V nonadjacency: and in the case where the relationship in both factors

is A then the two vertices are the same and so the entry is A.

E AN
E - - -
A - A -
N - - -

Since the rows and columns will always be labelled in this fashion we drop the
labels from this point forward.

Since a graph can be defined in terms of non-edges. there is the notion of a comple-
mentary product. Specifically. if G is the complement of G the the complementary
product ¢ to a product = is given by G = H = (?TZ—?)

This “edge matrix™ notation was introduced by Imrich & [zbicki [29]. They showed
that out of 256 possible products there are 10 associative products which depend on
the edge structure of both factors. Definitions of nine of these follow. and examples
of the product of the 3-path. P3. with itself are found in Figures 1.7 and 1.8. The
tenth is the product whose edge matrix is the transpose of that of the lexicographic

product. We do not consider this product. Note that of the nine products listed. all

but the lexicographic product are commutative.
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Strong Lexicographic

55)

Equivalence Symmetric Difference

Figure 1.7: The edges of the product of P3 with itself.

%>

Disjunction Co-Cartesian Co-Categorical

Figure 1.8: The nonedges of the product P; with itself.
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These products can be ordered by “inclusion”: that is. = < 2 if for each pair of
graphs ¢ and H. E(G = H) C E(G © H). For example. x < ®8 < ® < 0O° The
1.9.

suborder of all nine products of interest is shown in Figure

¢ Co-Cargesi X € Co-Categorical

© Equivalence Disjunction X ¢

Lexicographic ®

Strong

Symmetric Difference \/

X Categorical Cartesian []

Figure 1.9: A partial ordering of products under inclusion.

1.3.1 Results

We call a graph product. . dominating (total-dominating, paired-dominating,
irredundant, paired-irredundant) multiplicative if for any two graphs (¢ and H
and any two dominating (total-dominating, paired-dominating, irredundant. paired-
irredundant) sets A C V(G) and B C V(H). the set A x B is a dominating (total-
dominating. paired-dominating, irredundant, paired-irredundant) set in G = H. This

was investigated by Nowakowski & Rall [38] who gave the following result:

Lemma 1.3.1.1 (Nowakowski & Rall [38]) Let = be a graph product.

(a) If = > & then = is dominating multiplicative.
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(b) If > > x then = is total-dominating multiplicative.

(c) [f © < & then 5 is irredundant multiplicative.

We show a similar result for paired-dominating sets.

Lemma 1.3.1.2 Let = be a graph product. If © > x then = is paired-dominating

multiplicative.

Proof: Suppose & > x. Let A = {a1.aa,....a3n-1.a2,} and B = {b;.by.....b3pm_.
bam} be paired-dominating sets in graphs (¢ and H. respectively. such that M, =
{aziray : ¢ = 1.2..... n} is a dom-matching in GG and Mp = {by;_1bs; : j =
1.2.....m} is a dom-matching in H.

Since - and B are paired-dominating sets. then they are also total-dominating
sets. Hence. by Lemma 1.3.1.1. A x B is a total-dominating set in G= /. Furthermore.
since x < 3. then (azi—1,b2j—1) ~ (az.by;) and (azi—y.bz;) ~ (az.bzj—;) for all
i=1.2..... nand j =1.2..... m. Therefore. Maxp = {(azi—1-b2j—1)(az. b2j)-
(azi—1.b2j)(@2i b2j—y) = £ = L.20.... n. j = 1.2,....m} is a matching in G = H.
Since V(Wixg) = A x B then M is a dom-matching in G = H and A x B is a

paired-dominating set. Hence. = is paired-dominating multiplicative. o
Corollary 1.3.1.3 Let G and H be connected graphs. If x < = then
(G 3 H) < %(G)r(H).

Lemma 1.3.1.4 Let = be a graph product such that = > ®. If A is a paired-
dominating set in G and B is a dominating set in H. then Ax B is a paired-dominating

set in G = H.

Proof: Suppose = > ®. Let A = {a.as.....a3,-1.a2,} such that My = {as_1ay; :
r=1.2..0.. n} is a dom-matchingin G. and let B = {b,,b,.....b,,} be a dominating

set in H. Since A and B are dominating sets in G and H. respectively. then by Lemma

L.3.1.1. A x B is a dominating set in ¢ 5 H. Furthermore. M = {(aai_1.b;)(a2:b;) :



t=1.2....n. J = L2..... m} is a perfect matching in the subgraph induced on

A x B. Hence. A x B is a paired-dominating set in G & H. g

Figure 1.10 shows a paired-dominating set in P;. a dominating set in P; and the
paired-dominating set in Py ®@ P; which results from the construction given in Lemma

1.3.1.4.

=| © o----o o
@ S
q --- b
@ )

Figure 1.10: A paired-dominating set in Py & P;.

Lemma 1.3.1.5 Suppose A is a paired-irredundant set in G and B is an irredundant

set in H. Then A x B is a paired-irredundant set in G = H f = € {0.&}.

Proof: Let A = {ay.a..... (2n—1.Q2,} such that My = {ay_1ay =1 = 1.2..... n}
is an ir-matching in G. and let B = {b,.by.....b,} be an irredundant set in H.
The matching M = {(a2;-1.b;)(axb;) : 1 = 1.2..... nj=1.2.....m} is a perfect

matching in the subgraph induced on A x B in G 5 H. We claim that V(M) is a
paired-irredundant set under this matching. Since A and B are paired-irredundant
and irredundant. respectively. there is a vertex. v, in N[{«,.a2}] such that ¢ is not in
N[A\ {a1.a,}]. and there is a vertex, w. in N[5 ] such that w is not in N[B\ {b;}]
Casel: Let = = 0. Suppose w € N(b;). Then the vertex (a,.w) is not in the set
A x B. Suppose (a,.w) ~ (a.b) for some («.b) € A x B. Since w # b; for any
J=1l....mand w~b;only if j = l. then ¢ = a; and b = ;. Hence. the only vertex
in A x B adjacent to (a;.w) is (a;. b,). Therefore. (a;.w) € N[{(a,.b,). (a2, b1)}]. but
(ar.w) & N[A x B\ {(a1.b1). (a2.b1)}].
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Suppose the only vertex in N[b;] which is not in N[B\ {b,}] is b, itself. Suppose
(r.b) ~ (a.b) for some (a.b) in A x B. Then b = b; and v ~ a. Therefore. ¢ = a, or
a = as. So. (v.b1) € N[{(a1.b1).(a2.b1)}]. but (v.b) &€ N[A x B\ {(a;.b;)- (a2 b;)}]-
Case 2: Let = = ®. Suppose. (v.w) ~ (a.b) for some (a.b) € A x B. Then either
v~aand w =bor v =aand w~ b Due to the choice ot v and w. it must be
the case that b = b, and « = a, or a;. Therefore, (v.w) € N[(a;.b1).(az2-b;)]. but
(v.w) € N[A x B\ {(ar.b). (a2, b1)}]-

[n either case. NV[(a;.b1).(az2,b0)] € N[A x B\ {(a1.b61).(a2.6)}]- [t can be
similarly shown that V[(azi_1. ;). (a2.6;)] € N[A x B\ {(a2i-1.b;).(as:.b;)}] for all
t=1.2..... nand j =1.2..... m. Hence. A x B is a paired-irredundant set in G = H

where © € {0O. ®}. a

Figure 1.11 shows a pair-irredundant set in P,. an irredundant set in P; and the
paired-irredundant sets in Py & P3; and P;OP; which result from the construction

given in Lemma 1.3.1.5.

x| ®---e—e---e 0 ?o----o—o----o

Figure L.11: A paired-irredundant set in both P, ® P; and P,0OP;.

Now. Lemma 1.3.1.4 and Lemma 1.3.1.5 together give the following corollary:

Corollary 1.3.1.6 For any two connected graphs, G and H.
(a) IR, (G = HY > IR, (GYIR(H) if© € {0, a}:
(b) 1p(CG ® H) < 7,(G)v(H):
(c) T,(G & H) > [,(G)D(H).
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Proof: (a) Suppose A is a maximum paired-irredundant set in ¢ and B is maximum
irredundant set in . Then, by Lemma 1.3.1.5. A x B is a paired-irredundant set in
G H if 2 € {0. ’}. Therefore. IR, (G © H) > |A x B| = [R,(G)R(H).

(b) (c) Suppose A is a minimal paired-dominating set in G with associated dom-
matching M and B is a minimal dominating set in H. Since M is a minimal dom-
matching then it is an ir-matching, by Theorem 1.2.0.4. and 4 is a paired-irredundant
set. Furthermore, since every minimal dominating set is an irredundant set. by The-
orem 1.2.0.1. then B is an irredundant set. So, 4 x B is a paired-irredundant set
in G ®& H, by Lemma 1.3.1.5. Furthermore. by Lemma 1.3.1.4. A x B is also a
paired-dominating set in G & H. Since A x B is both paired-dominating and paired-
irredundant. then by Theorem 1.2.0.4 4 x B is a minimal paired-dominating set.
Hence. 7,(G¢ ®8 H) < |A x B} < I[,(G & H). If we choose A and B such that
[Al = 7(G) and B = 5(H) then v,(G & H) < ~,(G)v(H). If |4] = [H(G) and
|Bl =T(H) then T')(G v H) > T,(G)[(H). o

We now consider the lexicographic and disjunction products.

Lemma 1.3.1.7 [fe < = then v,(G = H) < 7,(G). If ®° < = then 5,(G = H) <
min{7,(G). v (H)}.

Proof: Suppose that ¢ < . Let W = {as;_1a-;:7=1.2..... n} be a dom-matching
in (¢ and let v be any vertex in H. Then {(az-1.v)(ax.¢):¢{ = 1.2..... n}is a
dom-matching in & = H. Therefore. v,(G & H) < 7,(G). The second part of the
lemma follows since the lexicographic product and the product whose edge matrix is

the transpose of the lexicographic matrix are both less than ®°. a
We now turn our attention to the Cartesian product. For two graphs &G and H.
T(GOH) < v,(G)|V(H).

This is because the subgraph induced on the vertices {(z.v)P : x+ € V(G)} for
any v € V(H) is isomorphic to G. Therefore, GOH can be partitioned into |V'(H)|



subgraphs. each of which is isomorphic to G. By taking a paired-dominating set of
size 7,(() in each of these |V (H )| subgraphs. we obtain a paired-dominating set in
GOH of size 7,(G) |V (H)|-

This can be improved. however. as shown in the next lemma.
Lemma 1.3.1.8 Let M be a matching in G. Then
p(GOH) < 2{M|v(H) + ([V(G)| = 2| M |)7,(H)-

Proof: Let M = {azi—yax : ¢{ = 1.2,...,m} be a matching in G. and let B =
{b1.bs.....b} be a dominating set in H. The vertices met by the matching M’ =
{(a2i—1. bj)(az.b -) re=1.2..... mj=1,2..... k} in GOH dominate all the vertices
in V(M)x H. If S is the set of vertices not met by M. then the vertices in S x i can be
dominated by the set § x (" where C' is a paired-dominating set in H. Furthermore.
the vertices (s.c;) and (s.c;) in § x C are paired if ¢; and ¢, are paired in C.
Hence, (V(M') x B)U (S x C) is a paired-dominating set in GOH. It follows that
$(GOH) < 2M|5(H) + (IV(G)] = 21 M|)p(H). 0

To demonstrate that this is an improvement. we consider the 3-path. Ps. The
largest matching on P; consists of two edges. and therefore. meets four vertices. This
matching is shown in Figure 1.12 along with a minimum dominating set of size two
in Ps. The matching is also a minimum dom-matching in Ps. Therefore. we can find
a paired-dominating set of size 12 in Ps0OP; from the construction given in Lemma

1.3.1.8. This is also shown in Figure 1.12.

= *r——s—¢ ' o}
L} : : L]
ey :
o---—¢—o---9 ) .
3 = & 2 S} $ b
, | $ :
‘ : i ;
*o---0—0——0---9 ' Y
1 | : ! ! .
¢ 1 H ]
> ————2 ¢ 2

Figure 1.12: An paired-dominating set in Ps0OP;.
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Since v,(P5)|V(Ps)] = 20. the advantage of the construction given in Lemma
1.3.1.8 is clear. However. this does not give the minimum paired-dominating set for
Ps & Ps since there is a paired-dominating set of size ten, as shown in Figure 1.13. In
fact. v,(PsOPs) = 10. This is because in any dom-matching of P; & F;. four distinct
edges are required to dominate the corners, and none of these can also dominate the

center vertex. Hence. at least five edges are required.

—

1]
B

g

G @ —

.

L]

.
5 5 &

Figure 1.13: A minimum paired-dominating set in P;0PF;.

There are also cases. however. in which Lemma 1.3.1.8 gives us a minimum paired
dominating set. Consider Py0P;. A maximum matching in P, consists of two edges
and ¥(P;) = 1. The resulting pair-dominating set in P;0P; of size four is shown in
Figure 1.14. In fact +,(P;0P;) = 4 since P,OP; has no dom-matching of size one.

Hence. Lemma 1.3.1.8 gives us v,( P10 Ps) exactly.

- @---eo—@---9

| —e—%

Figure 1.14: A minimum paired-dominating set in P,0PF;.



1.3.2 Problems

We now pose some problems that, while not further addressed in this thesis, provide

some potential topics for future investigations.
In Corollary 1.3.1.6 it was shown that for any two connected graphs G and H.

(G & H) < v,(G)4(H) and T,(G & H) > T,(G)T(H).

Problem 1.3.2.1 [s there a pair of connected graphs G and H such that
(a) 1(G & H) < min{v,(G)y(H). % (H)7(G)}?
(b) T ,(G & H) > max{I',(G)['(H).[,(H)[(G)}?

We saw that for Ps & P;. Theorem 1.3.1.8 did not give the actual paired-domination

number.

Problem 1.3.2.2 Can we find an improved upper bound for ~,(GOHY) for any two
connected graphs G and H?

The graph P;0P; can not be dominated by four matching edges. Therefore.

p(Ps0P5) > v,(P5)%(Fs).
Problem 1.3.2.3 [s 5,(GOHY) > v,(G)~(H) for all connected graphs GG and H?

Note that this is similar to Vizing’s Conjecture [49] which states that:

For all graphs G and H. +(GOH) > ~(G)~(H).

1.4 Well Paired-Dominated

A graph is said to be well dominated if all of its minimal dominating sets are of
the same cardinality: that is. every minimal dominating set is minimum. We will
extend this terminology to paired-dominating sets and define a graph to be well
paired-dominated if all its minimal paired dominating sets are 5,-sets. For brevity.

we will say that a well paired-dominated graph has property W. Since only graphs



containing no isolated vertices have a paired-dominating set. then no graph with
isolated vertices has property . Also note that for an unconnected graph. the
graph has property W if and only if each of its components have property .

We denote a leaf to be a vertex of degree one and a stem to be a vertex adjacent
to any leaf. In the case of a single edge. we set one vertex to be the leaf and the
other the stem. Hence. according to this terminology. a single edge does not have two
adjacent stems.

[n this section. we present a technique for reducing any graph with property
W and girth at least six to obtain a smaller graph with property V. This gives
a characterization of the graphs with property W and girth at least six that can
be reduced to the empty graph via a particular reduction, as well as a complete

characterization of graphs with property W and girth at least eight.

1.4.1 Preliminary Results

Lemma 1.4.1.1 Suppose G is a graph with property W. [fuv is an edge in G such
that the graph G' = G\ N[{u.v}] has no isolated vertices. then G’ also has property
W

Proof: Suppose G’ does not have property H'. Then (' has two minimal dom-
matchings. say M; and 5. such that |M;| < [M]. Obviously. M, U {ur} and
M, U {ur} are two dom-matchings in (& of different sizes. Since M; is also an ir-
matching. by Theorem 1.2.0.4. and N[u.v] € N[r.y] for any edge vy € V;. then
M; U {uv} is an ir-matching in G for i = 1.2. Therefore. by Theorem 1.2.0.4 we have
two minimal dom-matchings in & of different sizes. This contradicts the fact that ¢

has property . Hence. (' must also have property 1. a

Corollary 1.4.1.2 Suppose G is a graph with girth at least six and no leaves. If G
has property W, then for any edge uv in G. ' = G\ N[{u.v}] has property V"

Proof: Since (i has no leaves and girth at least six. then every vertex has some
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neighbour besides u or v. Hence. G’ = G\ N[{u.v}] has no isolated vertices and. by

Lemma 1.4.1.1. also has property W. m]

Call this process of removing an edge and its neighbours an edge-reduction on

G.

Lemma 1.4.1.3 Suppose GG is a graph with property W. [fu is a stem in G. then
G' = G\ N[u] has property V.

Proof: Let uv be an edge in G such that u is a stem and v is a leaf. Since N[u] =
N[{u.v}] then G' = G \ N[{u.v}]. Hence, by Lemma 1.4.1.1. G’ has property W’ if
(' has no isolated vertices. Suppose this is not the case.

Let [ be the set of all isolated vertices in ' and let H be the subgraph induced
on the vertices V[u]U I. First. we take a minimal dom-matching in H which consists
of the edge ur and edges from N[u] to /. This matching must contain at least one
edge. say ab. where b € [ since no vertices in [ are adjacent to either u or v. Call
this matching M. Next. let 1/, be the matching of smallest size in ' \ [ such
that M; U M, is a dom-matching. (We know that such an M, exists since any dom-
matching in G’ \ [ together with the edges in M; forms a dom-matching in (.) Let
M = M, U M,. This is a minimal dom-matching since no vertex in [/ U {v} has a
neighbour met by the matching M,.

Now. let M’ = (M \ {ur.ab})U {ua}. Then V(M) = V(M)\ {c.b}. Since V(M)
is a dominating set then we need only verify that V(W) dominates N[v] and .V[b]
to show that M’ is a dom-matching. This is obviously the case since u is the only
neighbour of v. all the vertices of .V(b) are in :V(u) and b is adjacent to a. However.
| M| < [ M]. contradicting the assumption that (& has property I1". Hence. ¢’ has no

isolated vertices and. therefore. by Lemma 1.4.1.1. has property W'. O

Corollary 1.4.1.4 [fG is a graph with property W. then GG can not contain adjacent

stems.



Proof: If G contains two adjacent stems. say = and y, then the leaves adjacent to y
would be isolated vertices in the graph G\ N[z]. Hence. by Lemma 1.1.1.3. if G has

property W then GG does not contain two adjacent stems. a

Call the procedure of removing a stem and its neighbours a stem-reduction on
G. Let ¢ = Gjp. Suppose we perform a sequence of stem-reductions to obtain the
graphs {Gqo.G,.....Gr} where Gy is obtained by performing a stem-reduction on
G and the graph G has no stems. Hence. G is either a graph with no vertices of
degree one or the empty graph. If a series of stem-reductions on G always results
in the empty graph. despite the choice of stems, then we will say that ¢ is stem-

reducible. Otherwise, say (i is stem-irreducible.

1.4.2 Graphs with Property W and Girth at Least Eight

We now wish to characterize all graphs of girth at least eight which have property 1.
We do so by partitioning the graphs with property W into two sets: those which are
stem-reducible and those which are stem-irreducible. The following theorem applies

to all stem-reducible graphs of girth at least sur:

Theorem 1.4.2.1 Let GG be a graph with girth at least sir and let S be the set of
stems in GG. Then G is a stem-reducible graph with property W& if and only if S is an

tndependent dominating set in (.

Proof: Let (G be a stem-reducible graph with girth at least six and property 1"
Obviously. by Corollary 1.4.1.4. S must be an independent set. Suppose. however.
that S is not a dominating set in (G. Then the graph Gy = G-\ V[5] is a non-empty.
stem-reducible graph. Since Gy is stem-reducible. then for some & > | there exists a
collection of vertices {7 = {ug. u;,.... ux—;} such that for each i € {0.1..... k—1}. u;
is a stem in G;. Gy = G\ N[w;] and G = 0. Let S"=SUUl. Note that §"is a
dominating set in G.

Let Mg be a matching in G such that the set S is saturated by My and every edge

in Ay is from a stem to a leaf. For : =0.....k — 1. let My, = M; U {w,;v;} where v;
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is some leaf adjacent to u; in G;. Let M = M. Then M is a dom-matching since
S'C V(M) and S’ is a dominating set in (¢. The dom-matching M is also minimal.
as every leaf in (¢ is only externally dominated by its adjacent stem. and the vertex
v; is only externally dominated by u; for all i =0.....k — I.

Since Gy = 0 then every vertex in G/x_; is contained in N[u;_;] where ux_, is a

stem in G_;. Hence. Gr_; = K}, for some n > 1.

Case 1: Suppose n = 1. Then G-, consists of the single edge ui_yvi—;- Since
G-, contains none of the original leaves in G, then neither ux_; nor vx_; is a leaf
in (. Hence. uj-; and vi_; have neighbours in (. say r and y. respectively. Due
to girth restrictions we know that = and y are distinct. Since x and y were removed
in a previous step. but all of their neighbours were not removed. then + € V(u) and
y € N(u') for some u.u’ € 8. Let uv and u'v’ be the edges in M incident with u and
u’. respectively. Note that the vertices u, «’. v and v’ are all distinct since the contrary
would result in a cycle of length five or a pair of incident edges in the matching.
Now let M’ = M\ {up—ve_q.uv.v’v’'} U {ru.yu’}. Then V(M') = V(M) \
{up—r.vecr v v’} U{e.y}. Since S”\ {ur_} dominates all vertices other than wus_;

" is a dom-

and vg—;. then 5" U {r.y} dominates all vertices in . Therefore. M
matching since S’ U {z.y} C V(M’). Hence. G does not have property I’ since

|M'| < | M| and M is a minimal dom-matching.

Case 2: Suppose Gi-1 = KA\, where n > 2. Let {w;.w,....w,} be the leaves
adjacent to the stem uy_; where w; = v4_;. Since w;.....w, were not leaves in (.
they have neighbours r,..... r,. respectively. in (. The vertices {z.....x,} must be

distinct. due to girth restrictions.

Let W' = W\ {up_yw }U{wizy. wors. .. .. wnala}. Then V(M) = V( M)\ {ur_ }U
{ws..... W Lye....Tn}t. Since S"\ {ug—y.vr—1} dominates all vertices of (¢ except
{up—y.wy- wa. . ... wn}. then S\ {up—y. ey U {1 wa, .. ...y .. .. r.} is a domi-

nating set in (G. Hence. M’ is a dom-matching. Since | W’| > | M| and & has property

. then M/’ must not be minimal.
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If M’ is not minimal then for some edge ur € M’ the matching W'\ {uv} is also
a dom-matching in . [f uv is an edge in M \ {ux~;w,} then it either has one end
vertex which is a leaf in the original graph or uv = w;v; for some i = 0..... k—2.
Obviously. if the former case holds uv can not be removed. In the latter case. w
know that v; is a leaf in ; which means it is not dominated be any vertex met by
the matching M \ {u;.v;}. Hence. no edge in M \ {ur—,w;} can be removed.

Since no edge in M \ {ux—jw} can be removed, then the edge in question must
be wjr; for some j € {l.....n}. Consider the edge w,z,. Since w, is not adjacent to
any u; or v; for any ¢ = 1.....k — 2, nor is it adjacent to w; or xr; for any j =2..... n.
then its only neighbour in V' (M’) is r;. Hence. the edge w;r; can not be removed
from the set M’. Similarly. no edge w;r; for j =1..... n can be removed. Therefore.
M must be minimal and ¢ does not have property W'

Hence. if (¢ is stem-reducible and has property I then its stems must form an

independent dominating set in G.

Conversely. suppose that S is an independent dominating set in (i. Since the leaves
of ¢ can only be dominated by the stems. any dom-matching must saturate the set
S. Since the stems are independent. no edge in M can have both end vertices in S.
Hence. any dom-matching in (& has at least |S| edges. Since S is a dominating set. any
edges in addition to those which saturate S are unnecessary in any dom-matching.
Hence. every minimal dom-matching has exactly |S| edges and such a dom-matching
can be obtained by matching each stem with one of its leaves. Therefore. (i has
property .

Since (' has property 1. then by Lemma 1.4.1.3. any stem reduction on ( results
in a graph with property W and. hence. no isolated vertices. Similarly. no stem-
reduction in the series performed on G will result in an isolated vertex. Furthermore.

a stem-reduction is possible as long as all the stems in S have not been selected. Since

G\ N[S] is the empty graph. we can conclude that G is stem-reducible. o

Lemma 1.4.2.2 Let P, and C, be the path and cycle on n vertices. respectively.
(a) P, has property W only if n =2.3.5 or6.



(b) C, has property W only if n =3.4.5.6,7 or 9.

Proof: (a) Suppose n # 1 (mod 3) and n > 5. A stem reduction on P, results in
the path P,_3. Hence. a series of stem reductions on P, will eventually result in
either P, or Ps. both of which are obviously stem-reducible. So, for all n # | (mod
3) and n > 2. the path P, is stem-reducible. Therefore, by Theorem 1.14.2.1. P, has
property VI only if its stems are an independent dominating set in (¢. This only holds
for n = 2.3.5 and 6.

Now suppose n = 1 (mod 3). Obviously. P, does not have property I} since it is
an isolated vertex. Furthermore, for any P, such that n > 1 and n =1 (mod 3). P,
can be reduced to P, by a series of stem-reductions. Hence. by Lemma 1.1.1.3. P,
does not have property W for any n = | (mod 3).

(b) If n = 3 or 4. then we can see that one edge is always sufficient to dominate
Cn. If n =5 or 6 then two edges are always both necessary and sufficient. Hence. (',
has property W for n =3.1.5.6. [f n = 7, then at least two edges are necessary and
three edges will always result in a dom-matching that is not minimal. Hence. C'; has
property VW' Similarly. for (g at least three edges are necessary and four edges results
in a dom-matching that is not minimal. Hence. three edges are always sufficient and
(9 has property . We can see in Figure 1.15 that both (’s and ('jp have two minimal
matchings of different cardinalities. Hence. (', does not have property V" for n = 3
or 10. Finally €', does not have property W™ for any n > Ll. since an edge-reduction
on (', results in the path P,_,, where n — 4 > 7. By Lemma 1.1.1.2. P,_; does not

have property . and therefore. C';, does not have property 11" for any n > 11. O

Suppose we have a graph G of girth at least six which is stem-irreducible. Then
either (+ has no stems or a graph with no stems can be obtained via a series of
stem-reductions on (. If the former case holds. let ¢ = H. Otherwise let H be
the stem-free graph obtained through stem-reductions. Hence. H consists of a set of
components. each of which is either an isolated vertex or a graph with minimum degree
two. Suppose H is not entirely composed of isolated vertices. Then we can perform

an edge-reduction on H. Let H' = H\ N[{u. v}] be the edge-reduction on H. Suppose
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Figure 1.15: Two minimal dominating matchings in each of C's and (.

H has components {H,..... H;} for some k > 1 and. without loss of generality. uv is

an edge in H,. Then H' = {H|. H,. ..., H} where H] = H, \ N[{u.v}]. The graph
H] is either a stem-reducible graph or contains a stem-irreducible component. If H]
is stem-irreducible. then H’ contains at least as many stem-irreducible components
as H.

We wish to perform reductions on (& to obtain a graph which is. in a sense. mini-
mal with respect to being stem-irreducible. To obtain this graph we perform a series
of stem- and edge-reductions where a stem-reduction is performed whenever possi-
ble. and an edge-reduction which does not decrease the number of stem-irreducible
components is performed otherwise. This sequence of reductions on & will result in

a graph H = {H,.H,..... H} such that for any i = 1..... k. either H; is an isolated

vertex or H; \ N[{u.v}] is a stem-reducible graph for every edge uv in H;.

Lemma 1.4.2.3 Let C = {v).v2..... 09} be a 9-cycle. For any pair of vertices in C’

there is « minimal dom-matching in C which meets both vertices.

Proof: Without loss of generality, there are four pairs of vertices in ' to consider.
(vr-v2. ). (vr.v3). (v1.vy) and (vy. v5). The matching M = {v1v2. v3ey. v7es} is a mini-
mal dom-matching which meets ¢;. v2. v3 and vy. Hence. this is a matching which sat-

isfies the lemma for the first three pairs. The minimal dom-matching {v, 2. vyes. vres}



[
(v}

meets both vertices in the final pair. Hence. for any pair of vertices in C there is a

minimal dom-matching which meets both of them. a

Theorem 1.4.2.4 Let (G be a connected. stem-irreducible graph with girth at least
eight. Then G has property W if and only if G is a 9-cycle.

Proof: Suppose G is a stem-irreducible graph with property W and girth at least
eight. Suppose we perform stem- and edge-reductions. as described above. to ob-
tain the graph H = {H,.H,...., H;} which is “minimal” with respect to stem-
irreducibility. Since &' has property W and girth at least eight. then by Corollary
1.4.1.2 and Lemma 1.4.1.3, the graph H also has property IW'. Hence. no component
of H is an isolated vertex. Furthermore. for any edge uv in H,. for example. the
graph H, \ NV[{u.v}] is stem-reducible.

The component H; has minimum degree two. Suppose there is a vertex. r. in H,
which has degree at least three. Let y be a neighbour of r. Since H, is leafless. y has
another neighbour « which in turn has a neighbour v. Due to girth restrictions. these
are all distinct vertices and no vertex in N[{u.v}] other than y is adjacent to . Let
H{ = H, \ N[{u.v}]. Then r is in H| and has at least two neighbours in H].

By Corollary 1.4.1.2. H| has property W’ since H, has property W’. Since H’ is
stem-reducible. then by Theorem 1.4.2.1. the set of stems in | must be an indepen-
dent dominating set in H|. Therefore, r is either a stem in H| or is adjacent to a stem
in H{. Hence. r is at most distance two from some vertex. say {. which is a leaf in
H{. The graph H, had no leaves. so the vertex ¢ is adjacent to a vertex in .V[{u.v}]
in H,. Hence. there is a path from z to u through ¢ in A, which has length at most
five. This would result in a cycle of length at most seven in A, which is contrary to
the girth restriction. Therefore. all vertices in H;. and similarly all components of .
have degree two. Hence. every component is a cycle. Since the only cycle of girth at
least eight with property W is the 9-cycle, then every component of H is a 9-cycle.

[f & itself was not a 9-cycle. then there was some series of reductions to obtain
H. Let KA’ be the first graph in the series to contain all of {H,. H,..... H.} as

components. Since the number of stem-irreducible components can not decrease. then



K’ contains no other stem-irreducible components. It may. however. contain stem-
reducible components. say R = {R;..... Rn}. Since G # H and G was connected.
then ¢ # R’ and A" was obtained by some reduction on a graph A'. Hence A =
K\ N[{u.v}] for some edge uv in A'.

Since A" does not have {H,. H,..... H} as components. then there is some vertex

Without loss of generality suppose z € N(u) \ {v} and r is adjacent to a vertex in

H,. (See Figure 1.16.)

Figure 1.16: The graph A obtained by stem- and edge-reductions.

Case 1: Suppose A’ was obtained from A" by a stem-reduction. Then u is a stem and

vis aleaf. Let Hy = {v1.0va..... ve} and suppose that r is adjacent to v,. Let M, be

in A'. Note that | M| =3 forall:=1.2..... k since H; is a 9-cycle.

However. the matching M’ = {uzx} U {vavy. vres} U Mo --- My, is also a dom-
matching in A'. Since |M’'| = |M| — 1. then M was not a minimum dom-matching
and A" does not have property W. Hence. by Lemmas 1.4.1.1 and 1.4.1.3. (& does
not have property V. Figure L.17 shows the edges of M and M’ contained in the
subgraph induced on H; U N[u].

Case 2: Suppose A’ was obtained by an edge-reduction. Then the graph A" contains
no stems. and therefore. no leaves. So. every vertex in w € :V(v)\ {u} has some

neighbour besides v: that is .V(w) \ {v} is nonempty. Due to the girth condition.
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Figure 1.17: Two minimal dom-matchings in H; U N[u].

N(w)\ {v} must be in A”. We wish to find a minimal dom-matching in A" such that
for every w € ~N(v)\ {u}. all vertices in :V(w) \ {v} are met by the matching. Let
X = Urenvenge} V(w)\ {v}. Hence, every vertex in X must be met by the matching.

Consider X N H, for some: =1.2.....k. Suppose there are three vertices a.b.c €
X N H;. Then some pair of {a.b.c}. say « and b are distance at most three apart on
H;. There is also a path from a to b through v which is length at most four. The
result would be a cycle of length at most seven. which contradicts the girth restriction.
Hence. [X N H;| £ 2 and. by Lemma 1.4.2.3. all the vertices in X N H; can be met by
a minimal dom-matching V; in H;.

Now consider the set X N R. Suppose there is some vertex ¢« € X N R; which is
not a leaf in R;. Then a is distance at most two from a leaf ¢ in R;, since the stems of
R; form a dominating set. The vertex € was not a leaf in A'. Therefore. { is adjacent
to some vertex in .V[{u.v}]\ {u.v} in K. Hence, there is a path from a to ¢ through
v which has length at most five. This results in a cycle with length at most seven in

R which contradicts the girth restriction. Hence. X' N R; consists entirely of leaves

in R;. Then X N R consists entirely of leaves in R.
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Since each leave in R is adjacent to a vertex in .V{u.v] then no two leaves in R share
a common stem. This would create a cycle of length at most seven. which contradicts
the girth restriction. Hence, each stem in R is adjacent to exactly one leaf. Since the
stems of R form an independent dominating set, then the set of edges which have
a stem and its adjacent leaf as its end vertices form a minimal dom-matching in R.
Call this matching My ;. Then all the vertices in X N R are met by the matching
M.

Hence. every vertex in X is met by the matching M, U M, ---U M U My, where
each M;. ¢t = 1.2..... k + 1 is as described above. Since each M; is a minimal
dom-matching in H; for all : = 1.2..._. k and M4y is a minimal dom-matching in
R. then M = {ur} U M, UMy U---U My, is a minimal dom-matching in A" and
(M| = 3k + | My | + L.

[t was previously noted that there is a vertex x which is a neighbour of « in A’
such that r is adjacent to some vertex in H,. Let H, = {v;..... ve} where v is
adjacent to r. [f there is a vertex y € .V(v) \ {u} such that y is adjacent to H, then.
without loss of generality. either y ~ v4. y ~ v5. y ~ vg or y ~ v-. The cases y ~ vy
and y ~ vy are symmetric. as are the cases y ~ vs and y ~ vg. Therefore. we will
only consider y ~ vy and y ~ vs. (See Figure 1.18.) Note that there is no vertex in
N(e)\ {u} besides y is adjacent to H,. due to girth restrictions.

v, v,

H, H,

Figure 1.18: The two possible cases if a vertex in N(v) \ {u} is adjacent to some
vertex in H;.

[f y ~ vy or no such y exists then let M’ = {uz.vavq. vres} UM U - U Miyy.

Since ¢y is met by the matching, y is dominated. All the vertices in V(u) \ {¢}



are dominated by « and all the vertices in V(v) \ {u.y} are dominated by one of
My M. ... . Miy,. Hence. M’ is a dom-matching of size 3k + | M| < [M]. This
contradicts the fact that A” has property W'

Suppose that y ~ vs. If the vertex r is dominated by one of the matchings
My Ms. . ... Wiy then let M’ = {vy.vovz.vreg} U Mo U --- U M. Then M’ is a
dom-matching of size 3k + |Myiy1| < [M]. This contradicts the assumption that A’
has property V. Hence. we may assume that r. and similarly y. are not adjacent to
any vertex met by the matching Mo U---U Myy,.

Let M’ = {xv), vy. vavs. tsve. vge} U My U ---U Myyy. If K has property W then
M' can not be a minimal dom-matching since it has cardinality 34 + | M| + 2.
Hence. some edge can be removed and the remaining matching is dominating. We see
that. due to girth restrictions. the vertices vs. vs and vs have no neighbours besides
2. 5 and vg. respectively. which are met by the matching. Hence. none of vye3. v5u6
and vgve can be removed from M’. Since u and v have no neighbours besides .r and y.
respectively. which are met by the matching, neither rv; nor ¢y can be removed from
the matching. Suppose there is an edge ab in M, U --- U M. which can be removed.
Without loss of generality, suppose ab is in Ms. If ab can be removed. then there is
some vertex in .V(a) \ {b} which is met by the matching. Since a has no neighbours
in H; for any ¢ # 2 nor is it adjacent to either r or y. then @ must be dominated
by another vertex met by the matching V. Similarly. 6 must be dominated by a
vertex in fl,. other than a which is met by the matching ;. Since | M| = 3 then
M, consists of three consecutive edges in H,. However. there is no such minimal
dom-matching in H, since H, = (9. Hence. no edge in M>U---U M} can be removed.

Suppose an edge in My, can be removed. All the edges in My, are from a
stem to a leaf in R. Let sl be the edge to be removed where s is a stem and ( is a
leaf in R. In order to remove s€. the vertex s must be adjacent to some vertex met
by the matching. besides ¢. This is impossible, however. since the stems in R are
independent and s has no neighbour in H U V[{u.v}]. Therefore. no edge of M4,

can be removed.
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Hence. no edge in M’ can be removed such that the result is a dom-matching.
Therefore M’ is a minimal dom-matching of size 3k + | M| +2 > |M|. This
contradicts the fact that G has property W'.

So. our assumption that H was obtained through reductions was incorrect and
G = H. Since G was connected. then G consists of a single 9-cycle. Therefore. if ¢
is stem-irreducible. has girth at least eight and has property W', then G is a 9-cvcle.

By Lemma 1.4.2.2. the 9-cvcle has property . The theorem. therefore, follows. O

Hence. Theorem 1.4.2.1 and Theorem 1.4.2.4 together give us:

Corollary 1.4.2.5 4 connected graph G with girth at least eight has property W if

and only if the stems of (¢ form an independent dominating set in G or G is a 9-cycle.

1.4.3 Problems

Now that the graphs of girth at least eight with property W have been characterized.
the next step is to examine graphs of some girth less than eight. Since Corollary 1.4.1.2
and Theorem 1.4.2.1 apply to graphs with girth at least six. this seems the obvious
choice. Since. by Theorem 1.4.2.1. those stem-reducible graphs with property ¥ and
girth at least six have been characterized, we need only consider stem-irreducible
graphs.

Let (¢ be a graph with property W and girth at least six. If (7 is stem-irreducible
then we can reduce (& to obtain H. Suppose there is a cut-edge vev in H;. One
minimal dom-matching in H, consists of ur and any minimal dom-matching in A} =
Hy \ N[{u.v}]. Note that the stems of H] must be independent and dominating by
Theorem 1.4.2.1. Now consider the edges ux and vy for some = # v and y # u. There
is a minimal dom-matching in H| which does not dominate either .r or y. Therefore.
this matching in ff] together with ur and vy is a minimal dom-matching in H,; larger
than that containing uv. This contradicts the fact that G has property W. Therefore.

H does not contain a cut-edge.
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Problem 1.4.3.1 What do the components of H look like for a stem-irreducible graph
G with property W and girth at least six?

Problem 1.4.3.2 Characterize those graphs with girth at least sixr and property W',

1.5 Paired-Domination and Maximal Matchings

As previously discussed. 7, is always bounded above by twice the size of any maximal
matching (since the end vertices of a maximal matching form a paired-dominating
set). In this section we shall focus on those graphs which have a maximal matching
whose end vertices actually form a minimum paired-dominating set. or 7,-set. That
is. there is a maximal matching that is also a minimum dom-matching.

Let G denote the leafless graphs of this type which have girth at least seven. In this
situation where there are no cycles of length six or smaller. we completely characterize

these graphs showing they must belong to an infinite family based on the 9-cycle.

1.5.1 Preliminary Results

Let us consider a graph ¢ in G. That is. (; has some maximal matching. say M. such

that V'(M) forms a ~,-set.

Lemma 1.5.1.1 Let G be a leafless graph with girth sir or more and let M be a
marimal matching such that V(M) is a ,-set in G. Then no end rerter of an edge

in M can be adjacent to an end verter of another edge in M.

Proof: Suppose that (¢ and M satisfy the hypothesis but assume there are two edges.
pq and rs say. in M such that ¢ is adjacent to r. Since ( is leafless and has girth at
least six. p must have a neighbour. say v. which is not on the {-path {p.¢.r.s}. Now
v has a neighbour. say u. which is also not on the 4-path {p.q.r.s} due to the girth
restriction and the leafless situation. Since W is a maximal matching either « or ¢

must be incident with some edge in M. Hence. any neighbour of p. other than ¢. is



adjacent to a vertex in V(M) besides p. Similarly. any neighbour of s other than r
is adjacent to a vertex in V(M) besides s. Thus we could certainly interchange the
two pairs represented by the edges pq and rs for the single pair ¢ and r and have a

paired-dominating set that is smaller than 2| M| which is a contradiction. a

Observe that the girth restriction in Lemma [.5.1.1 is sharp as illustrated by C;
(7p = 4)- The leafless property is also essential as shown by the graph in Figure 1.19

where {a.b.c.d} is a y,-set and {ab.cd} is the dom-matching.

a b c d

Figure 1.19: An example showing the necessity of the leafless property in Lemma
1.5.1.1.

We now proceed to show the importance of 9-cvcles in these graphs.

Lemma 1.5.1.2 Let GG be a graph in G. and let M be a marimal matching such that
V(M) is a yp-set. [f there is an 8-path. say {a.b.c.d.e. f.g.h}. in which ab. de. and
gh belong to M. then that 8-path must be part of a 9-cycle.

Proof: Assume that (/ is a graph and M be a maximal matching satisfving the
hypothesis of the lemma. Let {a.b,c.d.€. f.g.h} be an 3-path where «b. de. and gh
belong to .M. Note that since M is maximal. every vertex not met by M has all its
neighbours met by M.

Let M’ = (M \ {ab.de.gh})U {bc. fg}. Since |[M'| < |M| and M is a 7,-set. then
M’ is not a dom-matching. Hence. there is a vertex ¢ in & that is not dominated by
V(M'). Note that v is neither in V(M) nor on the 3-path. since all those vertices

are dominated by V'(M’). Hence. N(v) C V(W) and N[v]N V(M) = 0. So. N(v) C
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V(M) \ V(M') = {a.d.e.h}. Since G has minimum degree two and girth at least
seven then N(v) = {a.h}. Therefore. a and h share a neighbour that is not on the

S-path. implying that the 8-path is part of a 9-cycle. =
Corollary 1.5.1.3 If G belongs to G. then the girth of G is at most nine.

Proof: Suppose G is a graph in G. and M is a maximal matching in G such that
V(M) is a v,-set. Let ab be any edge in M. Since G is leafless. every vertex has
degree at least two. Then b has some neighbour. say ¢ such that « # c. The vertex ¢
can not be met by the matching M due to Lemma 1.5.1.1. Now. ¢ has some neighbour
d such that d # b. The vertex d is also distinct from a due to girth restrictions. The
vertex d must be met by the matching since M is a maximal matching. Let de be
the edge in M having d as an end vertex. Note that the vertices {a.b.c.d. €} are all
distinct. Now. € has a neighbour f which is not met by the matching. due to Lemma
1.5.1.1. and f has a neighbour g which is met by the matching since M is maximal.
Due to girth restrictions. {a.b,c.d. . f. g} are all distinct. Hence. we have an 8-path
such that ab. de and fg are all edges in M. By Lemma 1.5.1.2. this 3-path lies on a

9-cycle. and ( has girth at most nine. a

Since the edge ab was arbitrarily chosen from the edges of }/. then every edge of
M must lie on a 9-cycle. Since M is maximal. any edge not in M has one of its end
vertices met by M. Hence. any edge not in M could be labelled bc where b is the
end vertex met by the matching. Now. choose @ to be the vertex such that ab is in
M. Using these as the choices of {a.b,c} in the above proof. we see that bc lies on a

9-cycle. Hence. ervery edge of a graph in G lies on a cycle of length nine.
Lemma 1.5.1.4 [f (i belongs to G then GG does not contain a 7-cycle.

Proof: Assume that ( satisfies the above hypothesis but does contain a 7-cycle. sayv
C = {a.b.c.d.e. f.g}. Let M be a maximal matching of &G such that V(M) is a

yp-set. Then. by Lemma 1.5.1.1. C' contains at most two edges of M.
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Suppose C contains two edges of M. We may assume, without loss of generality.
that the edges ab and de are in M. Then no edge of M is incident with f or g. by
Lemma 1.5.1.1. But then fg is neither in M nor incident with any edge in M. This
contradicts the fact that M is maximal. Hence. C' contains at most one edge of .M.

Suppose C contains exactly one edge, say ab. of M. By Lemma 1.5.1.1, neither c
nor g is incident with an edge in M. Hence, d and f must each be incident with an
edge in M. Otherwise. cd and fg would neither be in M nor incident with an edge
in M. Let rd and yf be the edges in M. We now have the path {y. f.g.a.b.c.d.z}
where yf. ab. and dr are in M. Therefore. by Lemma 1.5.1.2, the vertices r and y
must have a common neighbour. say =. But this results in the 6-cvcle {z.z.y. f.e.d}
which contradicts the girth restriction. Hence. C' contains no edge of M. This too is
impossible, however. Since M is maximal. at least one end vertex of each edge of
must be in V' (M). Because C is of odd length, this results in two edges of M having
adjacent end vertices. We know this can not be the case due to Lemma 1.5.1.1. Hence

the girth of (7 is at least eight. o

Therefore. by Lemmas 1.5.1.2 and 1.5.1.4. any graph in G must have either girth

eight or girth nine.

Lemma 1.5.1.5 Let &G be in G. [f M is a marimal matching in G such that V(M)

ts a “p-3€t. then no edge of M lies on an 8-cycle.

Proof: Suppose (i contains an 8-cycle. say ' = {a.b.c.d.e. f.g.h}. Let M be a
matching satisfving the hypothesis. By Lemma 1.5.1.1. C contains at most two edges
in M.

Suppose C' contains two edges of /. By Lemma 1.5.1.1. we may assume. without
loss of generality. they are either the pair ab and de or the pair ab and ef. If the
former case holds then ¢ must be incident with an edge in M. Let rg be the edge in
M. But then {r.g.h.a.b.c.d. €} is an 8-path with rg. ab. and de in M. Therefore.
by Lemma 1.5.1.2. z and € must have a common neighbour. say y. Now we have the

5-cycle {r.g. f.e.y} which contradicts the girth restriction. Hence. the edges ab and



ef must be in M. However. this results in the edges cd and gh being neither in M
nor incident with any edge in M, by Lemma 1.5.1.1. This contradicts the fact that
M is maximal. Hence. C' contains at most one edge of V.

Suppose (' contains exactly one edge of M. say ab. Then both d and g must be
incident with edges in M which are not in C. But then, by Lemma 1.5.1.1. the edge
ef is neither in M nor incident with any edge in M. This is impossible since M is

maximal. Hence. ' contains no edge of M. a

Lemma 1.5.1.6 Suppose G is in G. [f M is a maximal matching such that V(M)
is a yp-set. then any verter of G that has degree at least three must be incident with

an edge of M.

Proof: Let (& and M satisfy the hypothesis. and let v be a vertex having degree at
least three. Assume that v is not incident with any edge of M.

Suppose v has neighbours a. b and ¢. They each must be incident with some edge
of M. since M is maximal. Let az. by and ¢z be the edges in M. Since ¢ has no
leaves and girth at least seven. & must have a neighbour. say u. which is adjacent to
neither y nor =. The vertex u itself must have another neighbour. say p. The vertex
p can not be adjacent to y nor = since this would create a 7-cycle in contradiction to
Lemma [.5.1.4. By Lemma [.5.1.1. the vertex u is not incident with any edge in M.
Hence. p must be incident with an edge in M. since M is maximal. Call this edge pq.
By Lemma 1.5.1.1. ¢ can not be adjacent to y nor =. However. {¢.p.u.r.a.v.b.y}
is an 8-path with ¢p. ra and by in M. By Lemma 1.5.1.2. this path must be part
of a 9-cycle. Hence. ¢ and y share a common neighbour. say r. Similarly. ¢ and =
share a common neighbour. say s. The vertices r and s must be distinct due to girth
restrictions. But now we have the 8-cycle {q.r.y.b.v.c. =z, s} containing two edges
which are in M. This is impossible by Lemma 1.5.1.5. Hence. we conclude that ¢

must be incident with an edge in M. a
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1.5.2 The Characterization of All Graphs in ¢

We now wish to characterize all the graphs contained in the set G.

Define the infinite family of graphs. F. to be the set of those graphs H which
can be obtained from three nonempty sets of parallel edges, {u,v, : r = 1..... k}.
{wsrs = s = 1..... [} and {ypz¢ : t = 1..... m}. by connecting each of the pairs of
vertices (.. ws). (Ts.y:) and (. u,) with a path of length two. Hence. for each such
pair of vertices a new vertex is introduced which is a common neighbour of these
vertices. We will call the original set of & + [ + m parallel edges the associated
matching of H. Figure 1.20 shows the graph in F where k = [ = m = 2. The

dashed edges indicate the associated matching.

z y

Figure 1.20: The graph in F in which A =[l=m = 2.

The graphs in F are obviously leafless and have girth at least eight. Furthermore.
the associated matching of any graph in F is a maximal matching. Note that if
=1 =m = 1. then H is the 9-cycle and the end vertices of associated matching
form a y,-set. Hence. the 9-cycle is in G.

We are prepared to show:

Theorem 1.5.2.1 A graph &G is in F if and only if G is also in G.
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Proof: First. we show that every graph in F is also in G. Let G be any graph
in F. Partition the edges in the associated matching into the sets U'V = {u,¢, :
r=1,....k}. WX = {wsz, : s = 1.2,....0}.and YZ = {yz - ¢t = 1.2..... m}.
as previously described. We wish to show that v, > 2(k + [+ m). That is. any
matching (not necessarily maximal). say M. such that V' (A{) is a paired-dominating
set contains at least k£ + [ + m edges.

Let M be a matching such that V(M) is a paired-dominating set. Since every
u, and z; share a common neighbour of degree two. then either all the vertices {u, :
r=12.... k} or all the vertices {z, : ¢ = 1.2,...,m} must be incident with an

edge in M. Similarly. either all of {v, : r=1.2..... k} orallof {w,:s5=1.2..... [}

must be incident with an edge in M, and either all of {z;:s = 1,2.....1} or all of

{ye:t=1.2..... m} must be incident with an edge in .M. Without loss of generality

assume that all the vertices {u, :r =1.2..... k} are met by the matching.

Case 1: Suppose that all the edges of [/} are in V. The end vertices of these
edges are not adjacent to any of the vertices {w; : s = 1.2,....[} nor the vertices
{ze:t=1.2..... m}. Since no pair of vertices in {w,.z, :s = 1..... lE=1.2..... m}
are adjacent or have a common neighbour, each vertex in this set requires a unique
vertex to dominate it. Furthermore. no such set of dominating vertices contains an
adjacent pair. Hence. another [ + m edges are required and | M| >+ &k + m.

This also includes the case where WX C M or YZ C M.

Case 2: Suppose that UV € M. WX € M and YZ € M. By Lemma 1.5.1.1. no
two edges of M can have adjacent end vertices. Therefore. both u, and v, are met by
M only if u,v, is in M. Since all of the vertices {u, : r = 1.2,....k} are met by M
and UV & M. then some v, is not met by the matching. Therefore. all of {w, : s =
l.2..... [} must be met by the matching. Since WX & A . then by Lemma [.5.1.1
there is some r; not met by the matching. Therefore. all of {y, : ¢t = L[.2..... m}
must be met by the matching. This gives us a total of k + [+ m vertices all of which
must be met by the matching, but none of which are adjacent. Therefore. at least

k 4+ [+ m edges are required and |M| > [+ k + m.
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So. at least ({ + & + m) edges are required in any matching, M. where V(W) is
a paired-dominating set. Therefore. 7, > 2(k +{ + m). But we know the edge set
{upercwsrs yeze :r=1,...,k,s = 1.2..... [.t =1....m} is a maximal matching of

size k+ {4+ m. Hence. v, = 2(k 4+ [+ m). and the vertex set of this maximal matching

is a yp-set. Therefore. any graph in F must also be in G. a

[t has been shown that for any graph in F. the vertex set of the associated
matching is a v,-set. In fact. for every graph in F. other than the 9-cycle. the
associated matching is the only maximal matching with this property. This can be

easily verified using Lemma 1.5.1.1 and Lemma 1.5.1.5.

We will now show that every graph in G is also in F. We proceed by induction
on v,. Suppose G is a graph in G and 7, = 6. Then G has a maximal matching. say
M. such that |M| =3 and V(M) is a paired-dominating set. By Lemma 1.5.1.2. we
know that ' contains a 9-cycle, say C' = {a.b.c.d.e. f.g.h.i}. If G = C then we
are done since C' is obviously in F. Suppose G # C. Since M is maximal and C
has odd length. according to Lemma 1.5.1.1 there must be at least one edge of the
matching which lies on C'. Without loss of generality. let ab be that edge. Due to
Lemma 1.5.1.1. the vertex c¢ is not incident with any edge in M. Hence. d must be
incident with an edge in M. since M is maximal. Similarly. A must be incident with
an edge in M. [f de is not in M. then the vertex f must be incident with an edge in
M. This. however. is impossible since | M| = 3. Hence. de and. similarly. gh are in M.
Hence V(M) = {a.b.d.e.g. h} is a paired-dominating set in (. Since ¢ # C there is
some vertex. say v. which is not on €. This vertex must be adjacent to at least one
of {a.b.d.e.g.h}. Without loss of generality. we can assume that v is adjacent to a.
Since G is leafless. v has another neighbour. say w. which must also be adjacent to
one of {a.b.d.e.g.h}. This. however. results in a cycle of length at most seven. This
is a contradiction due to the girth restriction together with Lemma 1.5.1.5. Hence.
the only graph in G with v, = 6 is the 9-cycle.

Let M be a maximal matching in & such that V(M) is a y,-set and |V'(M)] =

2n > 6. Choose any edge. say uv. in M. Let N(u) = {v.uj.us..... ur} and let



N(v) = {u.vi.ve.....1n}. We know from Lemma 1.5.1.1 that no u;. { = [..... k.
orvj. )= 1l..... [. is incident with an edge in M. Hence. by Lemma 1.5.1.6. each
u; and v; must have degree two. Let w; be adjacent to u; for each { = 1.2,... k.

Similarly. let r; be adjacent to v; for each j = 1.2.....{. Note that each w; and

must be incident with an edge in M, since M is maximal. Let {w;y; : ¢ = L..... k}.
and {z;z; : y = 1.2.....{}. be the edges in M. Now, by Lemma 1.5.1.2. it must be
the case that y; and z; have a common neighbour. say ¢;;. for all i = 1.2..._, k and
J=L12... .0l Let § = {w.v.ujwi.y;.vj.x;.55.q5 £ = 1.20.... k. j=12.....1}

Note that due to girth restrictions and Lemma 1.5.1.5. all the vertices in S must be

distinct.

Case 1: Suppose that at least one of the w;’s or r;’s has a neighbour not in S.
Without loss of generality assume that w; has a neighbour, say «. not in S. By
Lemma 1.5.1.1 and Lemma 1.5.1.6, a has degree two and is not incident with an edge
in M. In addition. ¢ is not adjacent to any vertex in S due to girth restrictions.
Lemma 1.5.1.4 and Lemma 1.5.1.5. Hence. ¢ has another neighbour. say b. where b
is incident with an edge in M. Let bc be that edge.

Forall j =1.2..... [. we have the path {r;.z;.q1-y1.wi.a.b.c} where r;z;. yj1,
and bc are in M. Hence. by Lemma [.5.1.2. r; and ¢ have a common neighbour.
say r;. for all ¢ = 1.20.... [. Furthermore. for all / = 1.2..... k. we have the path
{wi.yi.qir- z1- x1.r1.c.b}. Hence. by Lemma 1.5.1.2. w; and b have a common neigh-
bour. say s;. forall : = 1.2..... k. Note that each r; and s; has degree two. due to
Lemma 1.5.1.1 and Lemma 1.5.1.6. and that deg(u) < deg(b) and deg(r) < deg(c).
Now we wish to show that equality holds for both of these inequalities.

Suppose this is not the case. and that ¢ has another neighbour. say d. Since M/
is maximal. d has a neighbour. say e. which is incident with an edge in M. Note
that neither d nor € is in S U {a.b.c} U {s;or; : i = 1,....k ) = L.2..... [} due
to girth restrictions. Now. let ef be the edge in M. By Lemma 1.5.1.2. the path
{f.e.d.c.b.a.wy.y;} implies that f and y, must have a common neighbour. say g.

This gives us the path {e. f.g.y;. w;. u;. u. ¢} which, by Lemma 1.5.1.2. implies that
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e and ¢ have a common neighbour. Hence. ¢ is adjacent to v; for some j = 1.2..... L
Without loss of generality, assume that € is adjacent to v;. However. we now have
the 6-cyvcle {e.d.c.ry, r;. v}, which is impossible due to the girth restriction. Hence
deg(v) = deg(c). It can be similarly shown that deg(u) = deg(b).

Let us now consider the graph. A = G'\ (V(«)U N(v)). This graph is connected.
leafless. and has girth at least seven. Furthermore. the matching M’ = M \ {uc} is
a maximal matching in H such that V(M’) is a 7,-set in H. Hence. H is in G where
vp(H) = 2n — 2. Then. by the induction hypothesis. H must be in F and M’ is its
associated matching. The edges of the associated matching of H can be partitioned
into three sets of parallel edges. since H is in . The graph G is obtained from H by
adding one more edge. uv. to the set of parallel edges containing bc. Therefore. (i is

also be in F.

Case 2: Suppose that all of the neighbours of the w;’s and ;s lie in 5. Hence.
the only vertices which may be adjacent to some vertex not in S are the y;’s and
zj’s. Suppose y; has a neighbour which is not in S. Let a be that neighbour. Since
(7 is leafless @ has another neighbour, say . Note that b is neither in nor adjacent
to any vertex in S due to Lemma 1.5.1.1. Lemma 1.5.1.5 and the girth restriction.
Since M is maximal. b must be incident with some edge in M. Let bc be the edge
in M. Now we have the path {v.u.uj.w,.y;.a.b.c} where vu. w1y, and bc are
in M. Hence. by Lemma 1.5.1.2. the vertices ¢ and ¢ have a common neighbour.
Since N(v) = {u. vy va.. ... v}. we can assume. without loss of generality. that ¢ is
adjacent to both ¢ and c. This is impossible. however. since the only neighbours of
vy are v and .y which are both in S. Hence. y, has no neighbours other than those
in 5. Similarly. no y; or =; has a neighbour outside of S. Hence. V(&) = S.
Obviously. if both u and v have degree 2 then G = Cy and 5, = 6. Therefore. at
least one of u and v must have degree at least three. Without loss of generality. assume
that u has degree at least three. Let H = G\ {u;.wi.yy.quj:j = 1..... [}. Then H
is connected. leafless. and in G. Furthermore. the edge w,y,; is parallel to wyy,. which

is contained in the associated matching of /. By the induction hypothesis. A is in
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F. and. therefore. the graph G is also in F.

Therefore. the sets G and F are equal. a

Corollary 1.5.2.2 If G belongs to G and contains an 8-cycle. then GG contains the
graph F. shown in Figure [.2]. as an induced subgraph.

Figure 1.21: The graph F € F in which k=({=2and m = 1.

Proof: Suppose (¢ € G and F is not a subgraph of G. Then at least two of k. [ and

m are are equal to one. Such graphs clearly do not contain any 3-cycles. m)

1.5.3 Problems

Suppose we define an infinite family £ to be the set of those graphs that can be
obtained from two nonempty set of parallel edges [V = {u,v, : r=1.2..... k} and
WX = {wsrs; : s = 1.2.....[} by connecting each of the pairs (¢,.w,) and (.r,. us)
with a path of length two. If £ = [ = 1. then the graph is the 6-cycle. Hence. £ is
an infinite family based on the 6-cvcle. The set 'V U W .X is a maximal matching
which is also a minimum dom-matching. The proof of this is similar to part one of

the proof of Theorem 1.5.2.1 (F C G).

Problem 1.5.3.1 Let H be the set of all leafless graphs of girth at least sir which

have a marimal matching whose end vertices form a ~,-set. Does H =E U F?



To this point we have only investigated leafless graphs. since Lemma 1.5.1.1 only

applies to leafless graphs of girth at least six.

Problem 1.5.3.2 What complications arise when leaves are added?



Chapter 2

Cops and Robbers

2.1 Introduction

The game of Cops and Robber is a pursuit game played on a graph. The game was
introduced by Nowakowski & Winkler {37] and independently by Quilliot [45]. The
cop side consists of some set of & cops and the robber side consists of a single robber.
The rules of the game are as follows: first each cop chooses a vertex and then the
robber chooses a vertex then they move alternately. The cops™ move consists of some
(possibly empty) subset of the cops moving to an adjacent vertex and the robber’s
move is to move to an adjacent vertex or stay at his current position. The game is
playved with perfect information: that is. the cops and robber are aware of the other’s
position at all times. The cops win if one or more cops manage to occupy the same
vertex as the robber. The robber wins if he manages to avoid this situation forever.

Since k cops can always win if & is large enough (for example & = +(()). then
the obvious question is how few cops are sufficient to ensure the apprehension of the
robber. The minimum number required to catch a robber on a graph G is called the
copnumber of & and is denoted ¢(¢). Graphs in which one cop is sufficient are
called copwin graphs. These graphs were characterized by Nowakowski & Winkler
[37].

In Section 2.2, we examine known results, including the characterization of copwin

16
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graphs. upper and lower bounds on cop numbers and the cop numbers of products of
graphs. Using the traditional game as inspiration. we then propose new variations of
the game in which the cops’ movements are restricted. In Section 2.3. we introduce
the precinct version of the game. The vertices of the graph are partitioned into
subsets. or beats. then one or more cops is assigned to each beat and no cop is ever
permitted to move off of his beat. The second variation. introduced in Section 2.4 is
the dragnet version of the game. This is similar to the precinct game in that each
cop is assigned a beat. but in this case the cop is allowed to move to a vertex outside
of his beat if it is the final move of the game. As it was for the game of cops and
robber. the problem is to determine the minimum number of cops required to win.
For both games. we establish upper and lower bounds on this number for various

types of graphs. as well as compare these with the actual cop numbers of the graphs.

2.2 Historical Development and Known Results

Regard all graphs as reflexive. An induced subgraph H of (¢ is a retract of (/ if there
is an edge preserving map f from G to H such that f|g is the identity map on H. It

was shown by Nowakowski and Winkler [37] that:

The strong product of a finite collection of copwin graphs is also a copwin

graph
and
Any retract of a copwin graph is also a copwin graph.

First suppose we have the strong product. H. of a finite collection {G;..... Ga}
of copwin graphs. There is a projection of H onto each (; which is edge preserving.
Hence. the projection of the cop and robber on each G; is a game in itself. The cop
takes his winning strategy on each G; and plays the composition of those n moves

on H. Once he captures a robber on one projection he stays with the robber in that



projection until he catches the robber in the other projections. Eventually. the robber
will be caught on all &; and. hence. on H.

Now. let f be a retraction map of a copwin graph G onto a graph H. The cop
has a winning strategy on (G no matter how the robber moves. When plaving on
the retract H the cop considers his winning strategy on the larger graph G and then
plays the image of that winning strategy under the retraction map. f. Hence, the cop
can catch the image of the robber and then stay with the image. Since the robber
is restricted to the subgraph H and f is the identity on H then the cop catches the
robber.

If a graph ( is copwin then there is a final move where the cop moves onto the
robber. Consider the robber’s position prior to his last move. Call this vertex p. The
robber obviously had no move which would put him on a vertex nonadjacent to the
cop’s position. Therefore. the vertex. say d. occupied by the cop was adjacent to
every vertex in the closed neighbourhood of p: N[p] C N[d]. We will call the vertices
p and d a pitfall and its dominating vertex. respectively. Obviously. any graph
with no pitfalls is not a copwin graph. However. if a pitfall is present we can remove

it and not change the status of the graph in terms of being copwin. as shown in:

Lemma 2.2.0.3 (Nowakowski & Winkler [37]) Let p be a pitfall in a graph G
and let G' = G\ {p}. Then G is copwin if and only if ' is copwin.

Let p be a pitfall. and d be its dominating vertex in (G. The graph ¢’/ = G\ {p}
is a retract of (¢ where f(p) = d and f is the identity on . The cop can. therefore.
take his winning strategy on ¢ and use it in G’. except that whenever p is to be
occupied in G. d is occupied in G’. This is a winning strategy in G’.

Now suppose G is copwin. If f is the map of (G onto GG’ then the cop can catch
the image of the robber on (. Suppose the image is caught on a vertex r. If r # d
then the robber is on his image and the robber has been caught. If &+ = d then the
robber is on p or d. If he is on d then he has been caught. and if he is on p then every
possible move will leave him adjacent to the cop who is on d. Hence. the robber will

be caught on the next move.
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Using Lemma 2.2.0.3. Nowakowski and Winkler [37] showed that:

A graph is copwin if and only if there is an ordering of the vertices of G.

say {vy.va.. ... tn}. such that v; is a pitfall in G\ {vy.ve.....vi_1} for all

Call this a copwin ordering of the vertices of .
Aigner and Fromme [1] noted that if a copwin ordering exists. it can be obtained
by choosing v; to be any pitfall in G\ {vy,va,.... vi—1 }. Hence, the characterization

of copwin graphs could be restated as:

A graph is copwin if and only if the successive removal of pitfalls results

in a single verter.

A graph G is bridged if for every cvcle C of length greater than three in ¢ there
are a pair of vertices. say r and y on C such that dc(r.y) > dg(r.y). This means
that on each cycle of length greater than three there is a “shortcut™ between two
vertices on the cycle. A chordal graph is one in which there are no induced cycles of
length greater than three. Hence. every chordal graph is also a bridged graph. It was
shown by Anstee & Farber [3] that every nontrivial bridged graph contains a pitfall
and that the removal of that pitfall results in another bridged graph. Hence. they

concluded that:
Every bridged graph is a copwin graph.

Furthermore. it was shown by Chepoi [12] that the pitfalls in a bridged graph can
be found by performing a breadth first search on the graph. If we let ¢, be the first
vertex labelled by the search. v,_; be the second. v,_, the third and so on. then the

ordering {vy.va..... tn} is a copwin ordering.

With copwin graphs completely characterized. Aigner and Fromme [1]. turned
their investigation toward establishing upper and lower bounds on the cop number of

certain classes of graphs. One such result:



For any graph G with minimum degree () and girth at least five.
o(G) > §(G)

showed that there are graphs which require an arbitrary number of cops.
Noting that every planar graph with minimum degree at least four contains a

3-cycle or a 4-cvcle. they proved that:
For any planar graph G. ¢(G) < 3.

They also conjectured that for everv increase of one in the genus at most two ad-
ditional cops need to be added. This extension of the planar result was proved by

Quilliot [46] who showed that:
If G is a graph with a given genus k. then ¢(G) < 2k + 3.

Aigner and Fromme’s work also inspired Frankl [21] who investigated the cop

numbers of graphs with large girth. He showed that:

If a graph has girth g > 8t — 3 then c(G) > (6(G) — 1)'. where §(G) is the

minimum degree of the vertices of .

For t = 1 this result reduces to the lower bound given by Aigner and Fromme [1] for
graphs of girth at least five.

Seeing that ¢((G') could be bounded below by 8(G) if (s girth was sufficiently large.
Neufeld [35] posed the question what is the minimum girth that ensures ¢(G) > 6(G)?

He proved that:
If a graph G has girth ¢ > 9 then c(G) > 6(G).

Another line of investigation into the cop numbers of graphs has used the prop-
erties of retracts. It has been shown that the retract of any copwin graph is copwin.

Using a similar argument. Berarducci and Intrigila [7] showed that:

If H is a retract of a graph G. then ¢(H) < c(G).



Suppose f is a retraction map of (G onto H. Then ¢(G) cops can win on H by taking
their winning strategy in the graph GG and then playing the image of each move under
the retraction map f. Furthermore, if ¢(H ) cops move on the subgraph H in G. then
after a finite number of moves the robber will be caught if he ever moves onto a vertex
of H. This is due to the fact that every vertex on H is its own image. Therefore. it

can be shown. as in [7]. that:

Lemma 2.2.0.4 [f H is a retract of G then ¢(H) cops moving on H can. after a

finite number of moves. guarantee the robber’s capture if he moves onto H.

The ¢(H) cops can catch the image of the robber under the retraction map f on
H. Once this is done. one cop continues to move on the image. thus preventing the
robber from moving onto H.

Berarducci and Intrigila [7] noted that once some cop was on the robber’s image
in A under the retraction map then ¢(G \ H) cops could catch the robber on the

subgraph G \ H to which the robber is now restricted. They gave the following

corollary:
If H is a retract of a graph G then ¢(G) < max{c(H).c(G\ H) + 1)}.

I[f H is a retract of (¢ then it is necessarily an isometric subgraph of (. An
isometric subgraph of ¢ is defined to be a subgraph H of & such that for all x.y €
V(H). dy(x.y) = dg(x.y). While it is the case that every retract is an isometric
subgraph. not every isometric subgraph is a retract. There are. however. certain
classes of graph which are retracts whenever they are isometric subgraphs. These
graphs are called absolute retracts. Paths are contained in the set of absolute
retracts. as are complete graphs. [t has also been shown by Nowakowski and Rival

[39] that trees and certain cycles are absolute retracts.

Lemma 2.2.0.5 (Nowakowski & Rival [39]) Let G be a graph.
a) Every cycle of minimum order in GG is a retract.
b) If T is a connected subgraph of G without cycles then T is a retract of GG if an

only if T is isometric in G.
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In Figure 2.1. (¢ is an induced subgraph of both H and [ (indicated by the larger
circles) but ¢ is only an isometric subgraph of H. whereas in Figure 2.2. G is an

isometric subgraph of both H and [/ but is only a retract of /.

N ] N
N

Figure 2.1: Graph G is an [sometric Subgraph of H but not of [.

AN

G H [

Figure 2.2: (7 is an Isometric Subgraph of H and a Retract of /.

The use of absolute retracts played a central role in Aigner and Fromme’s proof
that all planar graphs have cop number at most three. The retraction used was a
map of (i onto an isometric path in ;. Knowing that paths are copwin graphs. the

following result becomes evident.

Lemma 2.2.0.6 (Aigner & Fromme [1]) Let P be an isometric path in a graph
G. A single cop moving on P can guarantee that after a finite number of moves the

robber will be immediately caught if he moves onto P.



[n this case. the retraction map f : ¢ — P. where P = {aqg.qy..... a,} is an

isometric path in (. was defined by

ar ifk=d(ap.v)and k < n
f(v)—{ ’

a, otherwise

For future reference. we will call this particular retraction map onto an isometric
path the canonical retraction, and once the cop catches and stays with the robber’s

image under this mapping. he will be said to be shadowing the robber.

Another area of investigation has been into the cop numbers of products of graphs.
The game of cops and robber on Cartesian products of graphs was first explored by
Tosi¢ [48] and Maamoun & Meyniel [34]. Tosi¢ [48] showed that for two graphs G
and H.

c(GOH) < c(G) + c(H).
This can be extended to the more general result for any finite collection of graphs
{G\.Gs. ... Gr}.
c(O%,Gy) < Z c(G5).

Maamoun and Mevniel [34] found the copnumber of the Cartesian product of trees:
If{N.T..... Tk} is a collection of trees then c(O%_T;) = [(k + 1)/2].

The examination of Cartesian products continued with Neufeld [33] who looked

at products of cvcles and trees. He showed that:

If {C,.C..... Cr} is a collection of cycles. each with length of at least
four. then «(O% C) = k + 1.

He also proved that:

If G =0%,C; and H = O_,T; where {C,.Co..... Cr} is a collection of
cycles each with length of at least four and {T|,T5,.... T;} is a collection
of trees. then c(GOH) = c¢(G)+c(H) -1 =k+[(j + 1)/2].



Another product which has received attention has been the strong product. We
saw that the strong product of two copwin graphs is also a copwin graph. Neufeld
& Nowakowski [36] found the following generalized result for the strong product of

graphs with arbitrary cop numbers:
For any graphs G and H. ¢(G & H) < ¢(G) +c(H) — 1.

Suppose we take the projection map of G ® H onto ¢ & w for some vertex w in H.
[t takes ¢(() cops to catch the image of the robber under this projection. Once the
robber is caught one cop is left on his image. Add one more cop to the remaining
c(Gr) — 1 cops and catch the image of the robber again. Now two cops can be left to
move on the image of the robber. Another cop is added and the image of the robber is
caught again. This is repeated until there are at least ¢(H) cops on the image of the
robber under this projection. Hence. at most ¢(G) + ¢(H) — 1 cops have been used.
Now. those ¢(H) can win by playing a composition of moves so that theyv stay on
the robber in the projection onto G and play their winning strategy in the projection

onto H.

2.3 Precincts

The Aigner & Frommeresult in Lemma 2.2.0.6 prompted the idea of playing a game of
cops and robber where each cop is assigned a “beat™ and his movements are restricted
to that beat. If each beat is an isometric path, then the minimum number of cops
required to apprehend the robber is exactly the minimum number of isometric paths
required to cover all the vertices of the graph. Call this number the precinct number
of (¢ and denote it pn((’). Sayv a set of isometric paths covers G if every vertex of &
lies in at least one of the paths in the set.

We first give a lower bound on the precinct number that is dependent on diameter
and show some classes of graphs in which this lower bound is met. We then show
that for any tree T. pn(T) = [{/2] where € is the number of leaves in the tree. In

Sections 2.3.3 and 2.3.4. we examine grid graphs. We show the precinct number for
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an m x n grid is exactly [‘2/3(m +n—Vvm?+n?— mn)] . For higher dimensional
grids we establish a lower bound on precinct number by examine subgraphs of the
grid. We also show a scheme for coving larger grids by “blowing up”™ a covering of a
smaller grid. We can. therefore. determine an upper bound on the precinct numbers
of some grids.

We then consider the problem of covering a graph with types of beats other than
isometric paths. such as trees and complete graphs. The motivation for doing so is. in
part. to establish an upper bound on the cop number of certain graphs. Obviously. if
a set of cops can win the precinct version of the game, they can win the regular game.
Unfortunately. this can be very wasteful in terms of manpower. as we see when the
beats are isometric paths. However. we can often reduce the number of cops needed if
we change the beats, and come closer to the actual cop number of the graph. Finally.

we pose some problems.

2.3.1 Preliminary Results

The diameter of a graph (. denoted diam((). is defined to be the length of the
longest isometric path in (. Therefore. a single isometric path in (¢ contains at most
diam(G) + 1 vertices. This gives us the following lower bound on the precinct number

of G-

Theorem 2.3.1.1 Let (& be any connected graph with verter set V. Then

: 14
pr(C) 2 [diam(c;) ¥ 1] '

For some common graph families, Theorem 2.3.1.1 is exact.

Theorem 2.3.1.2 Let P, C, be defined as previously. and let K, and E, be the
complete graph and edgeless graph. respectively, on n vertices. Then

(a) for all n > 1. pn(P,) = L. pn(K,) = [n/2]. and pn(E,) = n:

(b) for all n > 3. pn(C,) = 2:

(c) foranyk > 1 and 1 < ny < ny--- < ng. pn(&E | P,,) = Hf;lln,-.



Proof: The proofs of (a) and (b) are straight forward, so we leave them out.

For (c). let G = ®5 P, forsome k¥ > 1 and 1 < n; < ny--- € ng. Then

diam(G) = max{n; : { = 1.2..... k} — 1 = ng — 1. Since |V| = [1¥_,n; then by
Theorem 2.3.1.1. pn(G) > ¥ !n;.
Now. let H = ®*;!P,, and P,, = {c1.23.....2,,}. Then V = {(v.2;) : ¢ €

(v.rn. )} This is an isometric path in G. Hence. the set P = {P. : v € V(H)} is a
set of |V'(H)| = I¥!'n; isometric paths which cover G. Therefore. pn(G) = 15 !'n;.

a

There is also a relationship between the precinct number of a graph and the

precinct numbers of its isometric subgraphs.

Theorem 2.3.1.3 Let & be any graph and H be any isometric subgraph of ;. Then
pr(H) < pn(G).

Proof: Suppose pn(G) = n and G can be covered by isometric paths P = {P;. Ps.....
P.}. Let H be an isometric subgraph in G and suppose H = G\ S. for some set of
vertices S. For any path P in P. the set of vertices in PN H. if nonempty. constitute
a set of paths in H. Hence. PN H = Q' U Q*>U --- U Q* for some & > | where
each Q' is a path in H for : = 1.2..... k. Since H is an isometric subgraph of .
there is a path in A from the last end vertex in Q° to the first end vertex in Q*+!
that is isometric in both H and (. This path contains no vertices of P N H other
than its end vertices, due to the isometry of P. Hence. by adding the isometric paths
joining Q* to Q*! for each 7 = [.2..... k — 1 to the set {Q'.Q%..... Q*} we obtain
a path. Q. Since P was an isometric path in . then Q is an isometric path in H.
and Q contains all the vertices in P\ S. Therefore. we can find a set of isometric
paths {Q;.Qs..... @.}. some of which may be empty. which cover all the vertices of

G\ S = H. Hence. pn(H) < pn(G). a

Such a relationship does not exist between the precinct number of a graph and

its induced subgraphs. Consider the graphs Figure 2.3. The graph ( can be covered
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with two isometric paths. while the graph H. which is an induced subgraph of (.

requires three.

Figure 2.3: H is an induced subgraph of G such that pn(G) < pn(H).

The removal of an edge can either increase or decrease the precinct number. as
well. For example. the precinct number of a cycle is two. [f we remove any edge of a
cyvcle we obtain a path which has precinct number one. However. if we take a path of
length at least two and remove an edge the result is a disconnected graph consisting

of two paths. Such a graph has precinct number two.

2.3.2 Trees

Since every path is a tree is necessarily an isometric path. then the problem is to find

a set of paths that covers all the vertices in the tree.

Theorem 2.3.2.1 [fT is any tree then pn(T) = [€(T)/2] where ((T) is the number

of leaves in T.

Proof: Any path in a tree. T. may contain at most two leaves. Therefore. if T has
((T) leaves. then pn(T) > [€(T)/2]. Hence. it suffices to show that there exists a
set of [¢(T)/2] isometric paths which cover all the vertices of T. We will show that
the edges. and hence the vertices of T can be covered with [((7)/2] isometric paths.
While the vertices of a tree can be covered without covering all the edges. a covering
of the edges is required for the induction which follows.

We now proceed by induction on the number of vertices in T. If T is a tree with

two vertices then T = A’; and one isometric path covers all edges of T. Inductively



assume that for some n > 2 and all & such that 2 < &k < n. the edges of a tree. T.
with &k vertices can be covered with [¢(T)/2] isometric paths.

Now. suppose that T is a tree with n vertices. Since T has more than two vertices.
it must have a diameter of at least two. If the diameter of T is exactly two then
T=AK,- and {T) =n — 1. We will now find a set of isometric paths which cover
the edges of T. If T has an even number of leaves then pair each leaf with another
leaf. If T has an odd number of leaves then pair n — 2 of the leaves with each other
and pair the remaining leaf with the vertex of degree n — 1. Now. take the path
between each pair. This gives us a set of [¢(T)/2] isometric paths which cover all the
edges of T.

Suppose T has a vertex. v. of degree two. and suppose u; and u, are distinct
neighbours of v. Let T" = T o u;v be the tree obtained by contracting the edge u;v
and let u] be the vertex created by associating u; and . Then T’ is a tree with n — 1

vertices and ¢(T') = ¢(T"). By induction, the edges of T’ can be covered with a set of

[€(T7)/2] = [€(T)/2] isometric paths. Let {P{.P;..... Pl; 1)/} be those paths. For
k=1.2.....[¢T)/2]. let
P if uju, € P
Pk = 4 14 . 7 I
Pl 4+ uje + v — wju,. if uju, € P
Then {P. Ps..... Precry/21} is a set of isometric paths in T which cover all the edges
of T.

This leaves one final case where T has diameter at least three and no vertices of
degree two. Then T must contain two leaves. say ¢ and v,. with distinct neighbors
uy and wu,. respectively. Then T' = T \ {v|.v2} is a tree with n — 2 vertices and
{(T') = {T) — 2. (Since T has no vertices of degree two then u, and u, have
degree at least two in T”.) Thus. the edges of T’ can be covered with [((T')/2] =
[(((T)—2)/2] = [€(T)/2] - | isometric paths. These paths along with a path from
vy to vy cover the edges of T. Therefore. the edges of T can be covered with a set of
[((T)/2] isometric paths. Hence. for any tree. T. with (T) leaves pn(T) = [€((T)/2].
a



2.3.3 Grids

We now determine the precinct number of a grid. An m x n grid is the Cartesian

product of an m-path and an n-path. We denote it by G ... and label the vertices

given by d((a.b).(c.d)) = |c—a| + |d — b]. We also wish to assign a direction to every
isometric path. P.in Gn.,. The first end point of P will be that endpoint of P
with the minimum first coordinate. or if the first coordinates are the same then with
minimum second coordinate. Hence. P = {(ag. bo). (a1, b1)..... (@n.bn)} implies that
either ap < a, or ag = a, and by < b,. Let P[(a;.b;).(a;.b;)] denote the subpath of

P from (a;.b;) to (a;.b;) for any i < j.

Lemma 2.3.3.1 Suppose P = {(ap.bo)-- ... (ak.bi)} is an isometric path in G .
then

(a} a; < ajyy foralli =0.1..... k—1:

(b) if bg < by then b; < b;yy foralli =0.1..... k—1:

(c) if bg > by then b; > b,y for alli =0.1..... k—1.
Proof: (a) Let P = {(ao-bo).(a1.b1)..... (ak.bx)} be a path in G,.,. Now suppose

that for some i. a¢; > a;4,. Hence. ¢;4y = a; — | and b;; = b;. Since P is an isometric

path. each subpath of P is also isometric. Hence.

d((ao-bo). (ax.br)) = d((ao.bo).(ai.b;)) + d((ai. b;). (@iy1.bix1)) +
d((ais1: bit1)- (ak. b))
= |ai — aof + [bi — bo| + 1 + |ax — @iy | + by — bit1]
> lai—ao+ar —a;+ 1|+ |b; — bo + by — b;| + 1
= d((ao.bo). (ar-bx)) + 2.

This contradiction implies that ¢; < a;4y forall i =0.1.... k.

Parts (b) and (c) can be shown similarly. @]
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For any path P = {(aq.bo)..-..(ar.bx)} if (a). (b) and (c) hold then P is an
isometric path. Therefore. we may categorize each isometric path in G, as one of
two types. Call the path rising if by < b; and sinking if by > br. Note that rising
paths include those in which b; = b;; forall i =0.... .k — 1.

Suppose P = {(aq.bg).....(ar.br)} is a path with end points (1.1) and (m.n).
Then P cuts the grid into two components. one which lies “above™ the path and one
which lies “below™. Therefore, if @ is a path with vertices in both components of the

grid, as determined by P. then @ must intersect P at some vertex.

Theorem 2.3.3.2 (Fisher & Fitzpatrick [20]) Let G,n., be an m x n grid. Then
(Grn) > [2/3 (m +n—vm?2+n2— mn)] .

Proof: Suppose p = pn(Gm.,) where 1 < m < n. Obviously. m isometric paths are
sufficient to cover all the vertices of G,,... Hence. p < m. Let P be a set of p isometric
paths which cover all the vertices of (7,,... The set P can be partitioned into a set
of rising paths and a set of sinking paths. denoted R and S. respectively. Suppose
p=r+ s where r = |R| and s = |S]|.

We first consider the paths in R. Without loss of generality. we can assume that
each path in R has end points (1, 1) and (m.nr). (If this is not the case. the path
can be extended to contain these vertices by adding a rising path from (1.1) to the
first end point of the path and a rising path from the last end point to (m.n)). We
wish to show that the maximum number of vertices covered by the paths in R is
(m + n)r — r?. We proceed by induction on m.

Suppose (G = Gy, for some n > 1. Then ( is a path. and obviously one rising
path covers at most n vertices in GG. If G = (5, then one rising path on ( covers at
most n + | vertices and two rising paths cover at most 2n vertices. Hence. the result
holds for m =1 and m = 2.

Assume that for all & such that 1 < £ < m. the maximum number of vertices
covered by a set of r rising paths in G = Gy,. where r < k. is (k + n)r — r2.
Also, assume that for any set of r rising paths in G there is another set of rising paths

{P[..... P!}. which covers the same vertices as the original set. but has the additional
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property that each P/ has first end point (. 1) and last end point (k.n —¢+ 1) for all
t=1..... r.

Let G = G, and let R be a set of r rising paths in G. Let (1.5) be the vertex
covered by R such that no vertex (1. j) is covered by R for anyv j > b. Similarly. let
(a.n) be the vertex covered by R such that no vertex (i.n) is covered by R for any
t < a.

Suppose no single path in R contains both (1.56) and (a,n). Then a > 1 and n > b.
Let P and Q be distinct paths in R containing (1,b) and (a, n). respectively. The
paths P and @Q must intersect on the subpaths P[(1.5).(m.r)] and Q[(L. ). (g.n)].

Let the vertex (z.y) be on both P[(1.5),(m.nr)] and Q[(1.1).(a.n)]. We wish to
consider new paths P* = P[(L.1).(z.y)]JUQ[(z.y).(m.n)] and Q@ = Q[(1.1).(x.y)]U
P[(x.y).(m,n)]. These paths are both rising and, hence. isometric. Replace P and
@ with P and Q™ in R. The new set. R*. of rising paths is the same size and covers
the same vertices as the set R.

If a single path. say P. contains both (1.5) and (a.n). then P = P and R~ = R.

In either case. R~ is a set of r paths which cover the same vertices as the paths
in R. Furthermore. the path P~ in R~ contains all the vertices covered by R which
have either 1 as a first coordinate or n as a second coordinate. Therefore. the vertices
covered by R™\ P~ but not by P~ lie in the set {(:.j)[l </ < m.l < j < nr}. The
subgraph induced by these vertices is the graph G- -

Therefore. by the induction hypothesis. the maximum number of vertices of the
subgraph covered by the r — 1 paths in R*\ P is (m—=1l+n—-1)(r—=1)—(r—1)? =
(m+n)(r—1)=r?+1. Since P~ covers m+n — | vertices. the total number of vertices
covered by the paths in R is at most (m+n—1)+(m+n)(r—1)—r’+1 = (m+n)r—r=.

Also by induction. the vertices covered by any set of r — 1 in (G,i_1..-1 can also
be covered by a set of r — | paths which have {(:.1):/=1.2..... r — 1} as the set
of all first end points of the paths and {(m — l,n —¢): ¢ = 1.2..... r— 1} as the
set of all final endpoints. This was. however. assuming that the grid was labelled so

that the first coordinates ranged from | to m — 1 and the second coordinates ranged



from | to n — 1. Since the (m — 1) x (n — 1) subgrid of (i, , has coordinates from 2
to m and | to n — L. it follows that there is a set of r — 1 paths. say {P;.P;..... P’}
which cover the same vertices as R~ \ P~ such that P!/ has end coordinates (i.1) and
(mn—:+1)fort=2.3.....r. Since P~ has end points (1.1) and (n.n). if we let
P| = P~. then {P|.P;..... P!} a set of r paths which have the end points required

for the induction.

Hence. for any 1 < m < n. the maximum number of vertices covered by a set. R.
of r rising paths in G, is (m + n)r —r?. Furthermore. by induction. there is a set of
r rising paths which cover the same vertices as R and can be ordered {P;. P;..... P}
such that P; has end vertices (¢. 1) and (m.n—i{+ 1) forall i = 1.....r. Call this set
R'.

Similarly. we can find a set of sinking paths. $' = {Q,,.... Qs}. such that each @Q;

has end vertices (j.n) and (m.j) forall j =1...... s. and the set S8’ covers the same
vertices as the original set. S. Hence. the number of vertices covered by &’ alone is
at most (m + n)s — s2. However, each path in $’ must intersect every path in R'.
To demonstrate. consider a rising path. P, with end vertices (:.1) and (m.n —¢ + 1)
and a sinking path. P; with end vertices (j.n) and (m.j). where { < r and ; < s.
[f P, contains either (j.n) or (m,7). then P, and P, obviously intersect. Otherwise.
P, cuts the grid into two components. one containing (J, n) and the other containing
(m.y). Hence. P; must intersect P, at least once.

Therefore. foreach j = 1..... k. there are r vertices in ; which have already been
counted in the set of vertices covered by the rising paths. Therefore. for j = 1...... S,
the path @Q; contributes at most |@Q ;| —r new vertices to our total. Hence. the number
of vertices covered by S’ but not by R’ is at most (m + n)s — s> — rs.

Therefore. the total number of vertices covered by R'US’. and thus by P = RUS.
is at most ((m+n)r—r2)+((m+n)s—s%)—rs = (m+n)p—p>+rs. where s+r =p

2

and rs = s(p — s) = sp — s°. We maximize rs at s = p/2 and. hence. at most

(m + n)p — 3p*/4 vertices in G, are covered by P. [f p paths are sufficient to cover
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all the vertices of Gy, . then mn < (m + n)p — 3p®/4. Hence.

3p° /4 —(m+n)p+mn <0

p22/3(m+n—\/m2+n2—mn)

Hence. pn(Gn.n) > [2/3 (m +n—vVm24n?— mn)]. O

Now. suppose we have a set of r rising path and s sinking paths which cover the
vertices of G\ .». Define this cover to be normal if the rising paths cover the vertices
{(r.1).(r=1.2)....(Lir).(m—=r+ Ln),(m=r+2.n—-1),.... (m.n—r+1)}

and the sinking paths cover the vertices

{(m—s+1.1).(m—s+2.2)...., (m.s).(l.n—s+1).(2n—s+2).....(s.n)}.

Figure 2.4: A cover of (/s 1o with four rising paths and two sinking paths is normal
if the rising paths cover the circled vertices and the sinking paths cover the boxed

vertices.

Theorem 2.3.3.3 (Fisher & Fitzpatrick [20]) Let r.s.m.n be nonnegative inte-

gers. If
(m—r—s)(in—r—s)<rs

then r rising paths and s sinking paths are sufficient to cover all the vertices of Gy .
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Proof: Suppose r + s < min(m.n). Without loss of generality. assume r < s and
m > n (if r > s. flip the graph to interchange the bottom and top: if m < n. flip
along the : = j diagonal). Also assume that r < n. since there is an obvious cover of

G m.n otherwise.

Then
(m—r—s)(n—r—s)<rs

(n—r—s)2§s2
n<r+2s.

Note that if r + s < min(m. n) then the inequality (m —r —s)(n —r—s)<rsis
not satisfied for r = 0. Hence. we may assume 1 < r < s.

Suppose r + s > min(m.n). Then for 1 < k& < r, let the k** rising path on G .
go from (l.k) to (m — k + 1.k) to (m —k + L.n). And for | < € < s. let the *
sinking path go from (l.n — ¢+ 1)to (m—¢+1.n —€+1) to (m'—€+1.1). Hence.
in this case there is a normal cover of G, , with r rising and s sinking paths. (See

Figure 2.5 for an example).

Figure 2.5: A Normal Cover of i, . when r + s > n. This shows a normal cover of
G/y1.7 with 3 rising paths (on left) and 5 sinking paths (on right).

Suppose r + s < min(m.n). We proceed by induction on n. Let ¢ = GG, 3. Then
r = s =1 are the only possible values that need to be tested. Hence, (m —r —s)(n —
r—s)=(m-=2)(3-2)=m—2. Hence, ( m—r —s)(n—r—s)<rsonlyifm<3.

Since m > n. then m = 3. Therefore, m = n = 3 and r = s = | are the only values



which satisfy the inequality, and in fact there is a normal cover of G335 with one rising

and one sinking path (see Figure 2.6).

*—

¢

—eo

Figure 2.6: A normal cover of G35 with one rising path and one sinking path.

For induction purposes. assume there is a normal cover of G,+,» with r’ rising and
s’ sinking paths if ' < (m' —r' = ') (n =1 = 5') < s, r' + 8 < min(m’.n’). and

3 < n’ < n. We now cover part of G, , as follows:

o For I <k < r. the kt* rising path goes from vertex (k.1) to (k.n —s —k + 1)
to(n—s+hkn—s—~k+1).

e For 1 < < r+2s— n. the j* sinking path goes from vertex (I.n —j + 1) to
(r+s—j+1l.n—j+1). Forr+2s—n < j < s. the j** sinking path goes from
vertex (l.n—j+1)to(r+s—j+1l.n—j+1). thento(r+s—j+Ll.s—j+1)

and finally to (m.s — j + 1).

This set of paths covers all the vertices in the first n — s columns and the first
n —r — s rows of G/ n. This leaves an (m — (n —s)) x (n —(n — r — s)) grid to cover.
However. the r rising and the first r + 2s — n sinking paths described above enter this
“subgrid” in such a way that a normal cover of G, , can be completed if there is a
normal cover of the (m — n + s) x (r + s) grid with r rising paths and r +2s — n
sinking paths.

Let M = m—n+s.n"=r+s r =rands =r+2s—n Suppose first
that r’ + s’ < min(m.n). Then. by induction. there is a normal cover of G v if

(m'—r' = s")Y(n—-r"—s")—r's’ <0. This is true because

(m'—r' =Y n=r"=§)=r's = m=2r—s)(n—r—s)—r(r+2s—n)
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Figure 2.7: The problem of covering (ig,14 with 4 rising paths and 7 sinking paths is
reduced to the problem to finding a normal cover for G35, with 4 rising paths and 1
sinking paths.

= (m—r—s)(n—r—s)—rs

< 0.

Suppose r’ + s’ > min(m’.n’). Note that max(r’.s’) < s < min(m’'.n’). Hence. as
previously shown. there is a normal cover of (7p,r v with r’ rising and s’ sinking paths.
Therefore. there is 2 normal cover of (7, ,, with r rising and s sinking paths where

(m-—r—s)(n—r—s)<rs. O

Figure 2.8 illustrates the normal cover of Gy 14 with four rising and seven sinking
paths given by the construction in the proof of Theorem 2.3.3.3. This requires a
normal cover of (713, with four rising and four sinking paths which in turn requires
a normal cover of Ggs with four rising paths and one sinking path which in turn
requires a normal cover of (G55 with three rising paths and one sinking path which
in turn requires a normal cover of G4 with two rising path and one sinking paths
which in turn requires a normal cover of G52 with one rising and one sinking path.

This last cover uses the construction in Figure 2.5 resulting in an edge on the right
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side that is in both a rising and a sinking path.
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Figure 2.8: A normal cover of Gy14 with four rising paths and seven sinking paths.

Theorem 2.3.3.4 (Fisher & Fitzpatrick [20]) For all m.n > 1. we have

2
p(Gmn) < l% (m +n—Vm2+4n2-— mn)] .

Proof: Suppose p = [;’ (m+n— vm? —mn +n2)]. Then
%(n7+n——\/m2+nz—mn) <p< l-i-%(m-f-n—\/mz-i-n'l—mn).

Since m.n > 1. then vVm?2 + n2 — mn > 1. Therefore.

g("l+"—\/m2+n2—mn) Sp<§(m+n+\/mz+n2—mn).

This means that p lies between the roots of the quadratic equation _?;’-.1'2—(n1 +n)r+mn.

Therefore.

3,
2P = (m+n)pt+mn <

(34

pP—(m+n)p+mn <

R

(m —p)(n—p) <

£



If m > n. we have

p < 1+;(m+n—\/m2—nzn+n2)

o

[

< 1+§(m+n—\/m2-—mn+n2/4)

= 1+§(m+n—-(m—n/2))

= l+n.

Since p is integer. p < n if n < m. Similarly, p < m if m < n. Therefore.
p < min(m.n).

Suppose p is even. If we let r = £ and s = £ then

— p)(n — p)

(m—r—s)(n—r—s)

IA
2y

and

r+s=p<min(m.n).

Hence. by Theorem 2.3.3.3. (¢, can be covered with p/2 rising paths and p/2 sinking
paths.

Suppose p is udd. Note that the left side of (1 — p)(n — p) < p?/4 is integer. while
the right side is an integer plus a quarter. Therefore. (m — p)(n — p) < (p? — 1)/4

So.if welet r=(p—1)/2and s =(p+1)/2 then

(m—r—=s)(n—r—s) = (m-p)(n—p)
< el
- 4

and

r+s =p < min(m.n).
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Hence. by Theorem 2.3.3.3. (¢, , can be covered with (p — 1)/2 rising paths and

(p + 1)/2 sinking paths. Therefore, G, . can always be covered with

"+5=P=|§(m+n—\/m2-—mn+n2)]

isometric paths. and

o

pr(Gma) < |

B

| o

(m+n—\/m2—mn+n2)}.

-

Hence, Theorem 2.3.3.2 and Theorem 2.3.3.4 together give us:

Corollary 2.3.3.5 [f G is an m x n grid for some integers m.n > 2 then

p(Grn) = I% (m+n —Vm?2 — mn +n2)] .

2.3.4 Higher Dimensional Grids

The d-dimensional n x n x --- x n grid is the Cartesian product of d n-paths and is

denoted G?. Let the vertex set be {(aj.ay.....a7): 1 <a; <n.i=1.2..... d}. We
will call any vertex (a;.as..... aq) in G’fl acornerifa;=lornforalli=1..... d.
and specifically. we will call the vertex (1.1..... 1) the l-corner of G¢.

Lemma 2.3.4.1 For all integers d.n and k such that d.n > 2 and k < n — 1. the

number of vertices distance k from a particular corner of the d-dimensional grid G¢

A4+d—1
d—-1 )

Proof: Since the grid (¢ is symmetric. the number of vertices at distance & from each

s

corner i1s the same. Therefore. we will determine the number of vertices at distance
k from the l-corner of G¢.
Let (a;.as,..... a4) be a vertex at distance k from the l-corner. Then "7, |a;—1| =

kand 311, @; = k+d. So. there are as many vertices at distance & from the l-corner as



d—-1

vertices at distance k from the l-corner of G2 for d > 2. i

h+d-1
there are positive integer solutions of 3"/~ r; = k+d. Hence. there are ( )

Lemma 2.3.4.2 Let GG be the d-dimensional grid for some integers d > 2 and n > 3.
If k is an integer such that k < n/2 — | then no verter in G2 is distance at most k

from more than one corner.

Proof: Without loss of generality, suppose b = (b;, b2, ....b4) is a vertex at distance
k from the l-corner of G¢ for some k& < n/2 — 1. Note that 1 < b; < n for all
t=1.2..... d. Since k = ?___l(b,-— 1). then it must be the case that b; < k+1 < n/2
forall:=1.2...., d

Now suppose the same vertex b is distance at most & from another corner of G:%.
Let ¢ = (¢1.ca.- ... cn) be that corner. Since. d(b.c) = YL, |ci — b)) < n/2 —1 and

Il <b; <n.then b; > n/2 + 1 for all i such that ¢; = n. We see that this can never

be the case. and b is distance at most & from only one corner. a

Let H, be the subgraph obtained from G¢ by removing all the vertices in ¢ which
are distance less than f from some corner. For example. H; is the subgraph obtained
by removing all the corners from G¢. and H, contains exactly (n¢ — 2¢) vertices.

The number of vertices at distance less than ¢ from one corner for t < n is

‘Z“l k+d-1 t+d—1

k=0 d - 1 B d )
By Lemma 2.3.4.2. for all ¢ < n/2 no vertex is distance less than ¢ from more than
t+d—-1

d

grid G¢. where n = 2. all the vertices are corners and H; is empty.

one corner. Then H, has exactly n? — 2¢ ( ) vertices. Note that for any

Lemma 2.3.4.3 For any integers t.n and d such that1 <t <nf2. n >3 andd > 2.
let a and b be two vertices in the subgraph H, of G. Then the distance from a to b

in G¢ is at most dn —d — 2t.



(by.bs.....by). We will assume that b; > a; forall 1 = 1.2..... d. (If this is not the

case we could simply relabel the grid.) Then d(a.b) = ¥¢, |b; — ai| = Z:-;l(b; — a;).

Since a is in H,. then a is distance at least ¢ from the 1-corner. Hence. Zfi:l(a,-—-l) > t.

Similarly. b is distance at least ¢ from the corner (n.n.....n). So. ¥ (n — b;) > ¢.
Therefore.
d d d
Z(b,— —a;) = — (Z(a; - 1)) —d - (Z(n - b;)) +dn < =2t —d + dn.
i=1 i=1 i=1
Hence. d(a.b) < dn — d - 2t. 0

[n fact. this upper bound is actually attained. Suppose | <t < n/2 and n > 3.
Let @ = (¢.2.1.1.....1) and let ¢ = (¢;.¢2.....cq) be any corner in G¢. Since ¢, = |

or n.

d
dla.c) =) lei—ail > |er —t| +]e2 = 2| 2 |er — ¢ + L.

i=1
[fe, = L then|c;—¢|+1 = tand d(a.c) > t. Ifc; = nthen|e,—t|+1 = |n—t|+1 > t+1
since n > 2t. Therefore. ¢ is in H,. Let b =(n —t+1l.n—1l.n.n....n). Then.
similarly. d(b.¢) > ey —n+t =1l +|ca—n+1| > i —n+t—1]|+ 1. If ¢, = n then
ley—n+t—1|+1 =t Ifcy=1then|c;—n+t—1|+1=|n—t|+1>t+1. Hence.

bis also in H,. Finally.

dla.b) = (n—t+1—-8)+(n=-1-=-2)4+(d=2)(n—-1)
= 2n—-2t—-24+dn-2n—-d+2

= dn—d -2t
So. there are two vertices in A, which are distance dn — d — 2t apart.
Theorem 2.3.4.4 [fn.d and t are integers such that n.d > 2 and 0 < t < n/2. then

d _ o t+d-1
- d

dn —d -2t +1

pn(Gy) 2
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Proof: It has been shown that for any 1 <t < n/2 and n > 3. the subgraph H, of
t+d—1

d

) vertices. In Lemma 2.3.4.3. it was shown that
the distance between any two vertices in H, is at most dn — d — 2t. Therefore. no

G2 has exactly n¢ — 2¢ (

isometric path in G can contain more than dn — d — 2t + 1 of the vertices contained

nd_-zd(H'd_l)
d
pn(Gyr) 2 :

- dn —d -2t +1

in the subgraph H,. Therefore.

[f ¢t =0 and n > 2. then the result is exactly the result of Theorem 2.3.1.1. O

s 3_ 3 24 . . . .
If d =3 then pn(G3) > = 44‘:‘_‘2:'3; +28) By substituting different values of ¢ into

this inequality. we obtain lower bounds for some small r x n x n grids shown in Table

2.1.

2 3 4 5 6 7 8 9 10 I 12 13
pr(G3)>1{ 2 4 T Il 16 21 2T 35 12 51 61 7l

n 14 15 16 17 18 19 20 21 22 23 21 25
5 107 122 136 152 167 185 202 222 211 262

Table 2.1: Lower Bounds on pn(G?) for small values of n.

If we let n = 2% and ¢ = 2¥~! — | then the lower bound of pn(G?) is
5(45-1) 4+ 1
3 ’
This always gives an integer since 5(4*~!) 4+ 1 = 0 (mod 3). Therefore. to achieve this
lower bound every path in > must use 2n — 2t — | vertices of H, and there can be

no intersection of paths in H,;. The lower bounds for pr(G3) where n = 2* are given

in Table 2.2.



n [[2 4 8 16 32 64 128 256 @ 512
2 T 27 107 427 1707 6827 27307 109227

Table 2.2: Lower Bounds on G2 for n = 2*.

d n3—4/3(t34+3¢2

+2t) .
oy Yo, has been maximized

For the small values of n we have considere
at either t = [3]—1lort = [2] —1. However, for larger values of n these values of ¢ do
not give the bests lower bound for precinct number. We can see this by maximizing
the function f(¢) = "3’442(:32;*'_3;2+2') over all values of ¢ where 0 < ¢t < /2. First. we

find the derivative of f(£):

(42 =38t — 3)(3n — 2t — 2) + 2(n® — 36 — 44? — §)>

It —

AQ (3n — 2t —2)2

Note that s 6

2n® —8n + 3

Y 3
and .
,(n\ _ —zn®—38n?+ 2

/ (5) T (2n —2)2

Therefore. f/(0) > 0 and f'(2) < 0 for all n > 3. So. there is exactly one root

of f'(t) which lies between 0 and

5. In fact. f'(¢) = 0 when ¢ = .4574n. Hence. if
{ = 4572n is an integer. this will give the best lower bound on precinct number.

We now turn our attention toward establishing an upper bound on pr(G?). For
n =2 and n = 4. the n x n x n grid can be covered with 2 and 7 isometric paths.
respectively (see Figure 2.9). Therefore, pn((3) = 2 and pn(G3) = 7. We can improve
the lower bound for n = 3 by simply taking into account that all grids are bipartite
graphs. If we partition the vertices of G3 into a set of L.l ~black™ vertices and a set
of 13 ~white” vertices, then any path in G3 must alternate between black and white
vertices. [f a path contains four white vertices then it must contain at least three

black vertices as well. However. every isometric path with seven vertices begins and



ends at a corner. all of which are black. Hence. no isometric path contains more than
three white vertices. Therefore. pn(G3) > [13/3] = 5. In fact. pr(G3) = 5 since G3

can be covered with exactly five isometric paths. as in Figure 2.9.

”— ¢
. ¢ v

~ ¢ —
—@ 3 o

NN NN

BN

o :

Figure 2.10: A covering of the outer “walls™ of 3

The grid G2 can be covered with 12 isometric paths. Consider Figure 2.9. This
shows three of the outer “walls™ of the 53 x5 x 3 cube. If we sit the 4 x4 x4 cube inside

of these walls and connect the appropriate vertices we obtain the entire cube Gi3. The



-1
Ut

paths which cover the grid G3 in Figure 2.9 can be extended to include the vertices
of G} which are shown in Figure 2.10. Some extensions are to single vertices. others
are to paths. indicated by dotted lines. The remaining vertices can be covered with

5 isometric paths. giving a total of 12 isometric paths. Hence. 11 < pn(G3) < 12.

The next theorem shows that if we have a way of coving the cube G2 then we can
use this as a guide to find a cover for G2 | for any m > 1. While this may not be the

optimal cover. it does provide an upper bound for pn(G3 ).

Theorem 2.3.4.5 [fG3 can be covered by p isometric paths then G>_ can be covered
n p m

n

by pm? isometric paths.

Proof: Consider the cube G2 and suppose it can be covered with p isometric paths.
A vertex & = (&, rj.xx) in G2 corresponds to an m x m x m subcube of G2 by
(riixj.xi) = {(mri+a.me;+Jd.maz+6):0<a,3.6§ <m—1}.

Let P = {z%2'..... 27} be one of the p isometric paths used to cover G3. and
assign a direction to the path from Tg to T. We can assume that for any pair of
vertices «° and ¢ on P such that s < ¢. 27 < o 0¥ < ot and 23 < of. If thisis
not the case. then we can simply change the orientation of the coordinates of 3.

l

Therefore. for each 0 < s < n — 1. +°*! is one of the following:

L (27 + L] 1)

(V)
:

(zf.x) + L.xy)
3. (wf.xs ey + 1)

Now we will construct a set of m? paths in G3 | associated with P which cover

n

all the subcubes associated with the vertices {20.zT.....: r™}. First. suppose that the
vertex r! is of the form (zf.xj.xp) = (29 +1.29.0}). Then for each 0 < 3.6 < m—1.
the vertices {(mr{ + (. mz9+ 3.mad +6): 0 < € < m — 1} form an isometric path in

ra.n- Therefore. there is a set of m? isometric paths in G2, which cover all the vertices

of the subcube associated with 29 and have the set {(+94+m—1. r9.x}} as end vertices.



There are similar sets of paths in G, which cover the same vertices and have either
{(maf+3.maf+m—1. mad+6): 0 < 3.6 < m—1} or {(ma?+3. ma9+6. mad+m—1):
0 < 3.6 <m—1} as end vertices.

Without loss of generality. assume that z[*' = 27 + 1 for some 0 < r < n — 1.
Inductively. assume that there is a set of m? isometric paths covering all the subcubes
associated with {z%.x.....77} such that {(mz] + m — L.me? + d.mrp +6):0 <
3.6 < m— 1} is the set of end vertices of the paths. Also assume that for each path.
the coordinates of the vertices are increasing along the path.

Let P3s be the path ending at (ma] + m — 1.mz7 + 3. mx} + §) for each 0 <
3.6 < m — 1. Let the next vertex on P35 be (maT + m.ma" + 3.mal + 6) =

r+l1 r+l1 r+l1
i.maTomrT).

(mx

If 27%2 = r™' + 1 or 27+2 = I7 then let the next section of the path Pj3s include
all the vertices {(mr*! + ¢. mait + 3. maftt +6) : 0 < € < m — 1}. The vertices of
the subcube corresponding to z™+! are now covered and the end vertices of the paths
are {(mz™™' 4+ m — Lm.r;-+l +3.mrtt+6):0< 3.6 <m—1}}.

If 2712 = 27! 41 then let Psy include the vertices {(mr{*'+(. mrit 4+ 3. msit +
8): 0 <€ < m—3—1}. and then continue on to include the vertices {ma' +m — 3 —
L.mzr] +{€.ms; +6:0 <€ <m-—1}. The vertices of the subcube have been covered
and the ends of the paths are {(z/*'+m —dJ—1. mzri+m—l.mr;+6:0< (< m—1):
0<3é6<m—-1}={(me/"' +3 mz" +m—Lmae*' +6}:0<3.6<m~ 1}

Similarly. if #;*? = x;*' 4 | then the paths can be extended to cover the subcube
associated with r"+! so that the the end vertices of the paths are {(mxi*'4 3. m.l'J'-+l +
domet'+m—-1)}:0<3.6<m~1}.

In all cases. the paths have been extended in such a way that no coordinate
decreases. Therefore. each path Pjs; is isometric. Hence, by induction. we have a set
of m? isometric paths which cover all the subcubes associated with P. Therefore. if a

set of aths cover the vertices of G3. then a set of pm? paths cover all the vertices
PP n P P

3
of G}, a

This result can be extended to d-dimensional graphs for all d > 3.



Corollary 2.3.4.6 [fG? can be covered by p isometric paths then G can be covered

with pm?=" isometric paths.

meg+aq) : 0 < a;, <m-—-1:; =

1.2,....d}. then the remainder of the proof is similar to that of Theorem 2.3.4.5.

Since we have obtained upper bounds on pn(G3) for n = 2.3.4.5. we can use

Theorem 2.3.4.5 to obtain upper bounds for n = 2m.3m.1tm or 5m for any m > 1.

We can obtain upper bounds on other values of n by using the following lemma:

Lemma 2.3.4.7 For any integer n > 2. pn(G3_|) < pn(G3)

Proof: Obviously. G3_, is an isometric subgraph of G3. Therefore. by Theorem
2.3.1.3. pn(G3_,) < pn(G3). a)

Since we have an upper bound on pn(G?) for each of n = 2.3.4.5. we can use

Theorem 2.3.4.5 and Lemma 2.3.4.7 to obtain an upper bound on pn(G?3) for all

n 2 2. This is done in Table 2.3 for small values of n.

n |2 3 5 6 7 8 9 10 11 12 13
pr(G3)<2 5 7 12 18 28 28 45 48 63 63 93
n 4 15 16 17T 18 19 20 21 22 23 24 25
pn(G3) <98 108 112 162 162 175 175 2145 252 252 252 300

Table 2.3: Upper Bounds on pr(G?3) for small values of n.

2.3.5 Other Beats

We have only investigated one possibility for assigning beats: the one in which beats

are isometric paths. We see that in many cases the precinct number obtained from
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using this beat is very different from the cop number of a graph. For example. we
can make the precinct number of a tree arbitrarily large by adding leaves. while the
cop number of a tree is always one. If we wish to establish reasonable upper bounds
on the cop numbers of particular graphs using this technique. we need to investigate
the use of other types of beats. Some obvious choices are those graphs which are
absolute retracts. Let F represent a particular family in the set of absolute retracts.
such as trees or complete graphs. Let the F-precinct number of (¢ be the minimum
number of cops required to capture the robber if each cop is restricted to an isometric

subgraph of G which is also in F. Denote the F-precinct number of &G. Fpn(G) .

Theorem 2.3.5.1 Let (& be any graph and let T and K be the sets of all trees and
complete graphs. respectively.

[) If m is the minimum number of isometric trees required to cover the vertices of G.
then T pn(G) = m.

2) If m is the minimum number of complete graphs required to cover the vertices of

G. then Kpn(G) = m.

Proof: Since a minimum of one cop is required on each beat. then m < Fpn(G) for
F =T and F = K. [f a graph H is a retract of GG then ¢(H) cops moving on H
can. after a finite number of moves. ensure the robber’s capture if he ever moves onto
H. Since ¢(T) = | for any tree. T and ¢(A,) = | for any complete graph A',. then

Tpn(G) <m and Kpn(G) < m. a

By chosing copwin graphs such as paths. trees. and complete graphs which are
isometric subgraphs of (/. we have guarenteed a retraction map of & onto each of
the subgraphs. and therefore. a strategy for keeping the robber off of that subgraph.
Depending on the graph G. there may be other copwin graphs which are retracts in
(r which are not absolute retracts.

Suppose H; is a retract of G such that H, is a copwin graph. Once a cop catches
the image of the robber under the retraction of G onto H,, the robber is restricted

to moving in G \ H, if he is to avoid capture. Obviously, if we find another copwin



graph, M, that is a retract of G, one cop can. after a finite number of moves. prevent
the robber from moving onto H,. However. if H, is a retract of G\ H,. then one cop
can catch the image of the robber under the retraction map of G\ H; onto H,. This
is due to the fact that the robber can not move out of G\ H; without being captured
by the cop in H;. In fact, if H, is a retract of any induced subgraph of G containing
G\ H,. a single cop can. after a finite number of moves. capture the robber if he

moves onto f,. Therefore, we have the following result:

Lemma 2.3.5.2 Suppose H = {H,.H>,....H,} is a set of subgraphs of a graph
G such that Hy is a retract of G and Hiyy is a retract of an induced subgraph of
G containing G\ {Hy.Hy.....H;} forall i = 1.2,....n — L. [f the subgraphs in

H together cover the vertices of G and H; a is copwin for all i = 1.2.....n. then

c(G) < n.

So. the problem is to cover a graph with copwin subgraphs such that a single cop

on each subgraph can prevent the robber from moving onto his subgraph.

2.3.6 Problems

We were able to establish lower bounds for the precinct numbers of d-dimensional
grids and a means of finding upper bounds if we have small examples to begin with.
While finding the precinct number of G¢ for all values of n seems to be a difficult
problem. the asymptotic problem may be more reasonable. We saw that for d = 3
the lower bound on pn(G3) was best when ¢ =~ .4574n. If we let n approach infinity

we have pn(G3) > .4183n2.

Problem 2.3.6.1 s n approaches infinity. does the precinct number of G2 ford > 3
approach the marimum of the lower bound given in Theorem 2.3.4.4 over all values

of t?



2.4 Dragnet

We wish to extend the idea of each cop being assigned to a particular beat. but
perhaps give them some freedom to move off of their beat. In this section a cop will
be allowed to move off his assigned beat if he can immediately apprehend the robber.
Hence. the cop’s move from his beat will be the final move of the game.

Again we will assume that each beat is an isometric path and that more than
one cop can walk part or all of the same beat. Call the minimum number of cops
required to apprehend the robber in this version of the game the dragnet number of
the graph and denote this by dn(G). Hence. the dragnet number of G is at least the
cop number of G.

We will first consider the set of all graphs that contain an isometric path whose
vertices form a dominating set. We show that the dragnet number of such graphs is
at most four and determine the upper bound on the dragnet number of various classes
of graphs in this set. We also characterize all those graphs with a dragnet number of
one. We then look at graphs in which the vertices of no less than d isometric paths
dominate the graph. We show that at most 3d — | cops are required to win. and we
examine conditions that will allow us to decrease the number of cops to 4d and d.

respectively. Finally. we pose some problems.

2.4.1 One Isometric Path Dominates

Suppose we are given a graph & and an isometric path P = {ugy..y.....2,} such that
P is a dominating set. Call P an isometric dominating path. The path P will
serve as the beat for the cops. We wish to partition the vertices off the path according
to their neighbours on the path. Vertices off the path will be placed in the same set

if their ~“first”™ neighbour on the path is the same. Specifically. for all i = 0.1.....n let

Gi={v:i= min (¢v~uxj).v ¢ P}
J=0.1....n



XO XI X2 X3 X4

Figure 2.11: An example of a graph with an isometric dominating path and the
resulting partition of the vertices off the path.

Now. define a function, r. which maps the set V" onto the set {0.1.....n + 1} as
follows:
l. if v e Cr',
I'(U) = ! tv
[ i+1 ife=uay
For each edge ry such that x is not in P we define the stretch of xry. denoted st(ry)
as follows:
st(zy) = r(y) — r(x).
For example. in Figure 2.12 st(ab) = r(b) — r(a) = 2 — 0 = 2 and st(ar,) = r(r2) —

rla)=3-0=3.

A g

[t} ]

Figure 2.12: An example of a graph in which st(«¢b) = 2 and st(ax,) = 3.

Suppose we have a path @ = {vg,v1.....0n} for some m > 1 such that Q does

not intersect P except possibly at the final vertex. v,. We define the stretch of the

path @ to be

m

sU(Q) = D sty v:) = F{tm) = r(ro).

=1
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Because P is isometric. the stretch of the path is bounded above. as seen in the

following lemma:

Lemma 2.4.1.1 [f G contains a path Q = {vo.vy..... Um} for some m > 1 such that

Proof: Let @@ be a path as described above.

Case 1: Suppose vy, is not on the path P. Then vo € G and v,, € G; for some
i.jef{0,1..... n}. Hence. |st(Q)| = |r(vm) — r{vo)| = |7 — {|- Now consider the path
(ri.Q.x;). This path has length m + 2. Therefore. d(z;.z;) = |j —{| < m +2 and
[st(@Q)] < m + 2.

Case 2: If v,y isin P then vy = xf for some b € {0.1..... n}. Hence. r(vy,) = k+1.
Furthermore. g is in G; for some ¢ and r(vg) = 7. Hence. [st(Q)| = |k + 1 — | <
|k — | + L. The path (r;.Q) has length m + L. Hence. d(z;.zx) = |k —i| < m+1 and
[st(Q)] < m + 2. a

Corollary 2.4.1.2 Let (i be a graph with dominating path P = {xrg..x\.....x}. If
u€ G; forsomei=1..... n then

a) if u~ v for some v € P then there is some j such that v € G and |j — {| < 3.

b) ifu~wjthent < j<i+2.

These are merely specific cases of Lemma 2.1.1.]1 where m = 1.

As the game is played. each cop moves along the path P = {xg.2y.....2,}. We
will say that a cop moves up the path if he moves from some vertex r; to vertex
riri. Similarly, he moves down the path if he moves from r; to r;_;. We also
wish to define A; = U’_;(G; U x;) to be the set of all vertices ahead of r; and
B; = U'Z4(G; U 1) to be the set of vertices behind z;. Hence. if a cop occupies
vertex .r; and the robber occupies some vertex in A; (B;) then the robber is ahead of
(behind) the cop. Note that there are no vertices ahead of r, or behind xq.

We now wish to consider what happens if we have ¢ cops which initially occupy

the first ¢ vertices of the isometric path and then either move up the path on their



turn or move to apprehend the robber whenever possible. Obviously. the robber will
initially occupy some vertex ahead of the cops. However. he cannot stay ahead of
the cops forever because he will simply run out of vertices. Hence. his only hope of
avoiding capture is to move behind the cops at some point. If the cops wish to win
using this simple strategy. then it must be the case that the robber’s move behind
them is to a vertex adjacent to at least one of them. This is proved in the following

lemma:

Lemma 2.4.1.3 Let G be a graph with isometric dominating path P = {zg.r|.....x,}.
Suppose that for some ¢ > 1 and all k =0,.... n — c. any verter w € By, with a

neighbour in Agy._y also has a neighbour in {xiyy.Tiqp2.....Trye}. Then dn(G) < c.

Proof: Let P = {xq.x},....7,} be an isometric dominating path in G and assume that
G satisfies the hypothesis of the lemma. Place the cops on vertices {xg..r;..... Ie_1}
of the path. To avoid being caught. the robber must choose a vertex which is not
adjacent to any of the cops’™ positions. Hence. the robber will choose a vertex which
is ahead of all the cops. He. therefore. chooses a vertex in A._,.

Now suppose the cops™ strategy is for each cop to move up the path on their
turn unless the robber is adjacent to the current position of one of them. In that
case. the cop in question will move onto the robber. Due to this strategy. the robber
cannot always move onto a vertex ahead of the cops. We know this because there
are no vertices ahead of r,. Suppose that for some & > 0. the robbers™ first &
moves are ahead of the cops. After their &** moves the cops occupy the vertices
{rg...... rt4c—1} and the robber occupies some vertex in Agq.—1. The cops now move
up the path to {&i41.....2k4c}. Suppose the robber now moves behind the cops.
then he moves to some vertex w € Byy,. However. «w must also be adjacent to one of
{@hars Thgasennns tr+c}- Hence. any move behind the cops will result in the robber’s
immediate capture. Therefore. the cops” strategy will ensure the apprehension of the

robber and dn(G) < ec. ]

Theorem 2.4.1.4 If G is a graph containing an isometric dominating path then
dn(G) < 1.
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Proof: Consider any vertex w € Bjy for some 0 < k£ < n — 4. By Corollary 2.4.1.2.

w has no neighbours in Ai43. Hence. by Lemma 2.4.1.3. dn(G) < 4. a

Xo Xl Xz X3

Figure 2.13: An example of a graph in which dn(G) = 4

Note that the number of cops required is sharp. Consider the graph in Figure
2.13. There are four vertices. one in each G; for : = 0.1.2.3. such that each has
exactly one neighbour on the path P = {xg,.r,.r;.23}. and together they form an
induced A’y. If there are at most three cops on P then the robber can always avoid
capture by moving on the above mentioned A;. Furthermore. P is the only isometric
dominating path in the graph. since each leaf must be dominated.

[n this example there was only one choice of an isometric dominating path in the
graph. However. there are graphs which contain more than one isometric dominating
path. and the number of cops required on a single beat may vary depending on the
choice of beat. For example. in Figure 2.14 we have a graph with isometric dominating
path {rg.r,.r;.x3}. If the cops move on this beat then four cops are required due
to the Ay formed by the vertices a. b. ¢ and d. But. if we take the same graph and
use {xg.a.d.r3} as our beat, only three cops are required. (Place one cop one each
of g. @ and r3.)

A comparability graph is one in which the edges can be assigned a transitive
orientation. It was shown in [23] that a graph is a comparability graph if and only if

each odd cycle has at least one triangulating chord. This gives the following result:
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X, a d X,

Figure 2.14: An example of a graph with two different isometric dominating paths.

Lemma 2.4.1.5 Let (G be a comparability graph with an isometric dominating path
P = {xo-r1..... 5t }. [f there is an edge uv such that u € G; and ¢ € Giys for some

:=0.1..... n — 2. then u is adjacent to either riy, or riy).

Proof: Let (¢ be a comparability graph with a dominating path P = {xy.ry..... r.}.
and suppose there some edge uv where u € GG; and v € G;». Then {i .y . i+2.i+1}
forms a cycle of length five. Since (& is a comparability graph then this cvcle must

have a triangulating chord. Therefore. either u ~ x;1; or u ~ ;4. a
We can now show the following:

Theorem 2.4.1.6 [f G is a comparability graph with an isomelric dominating path

then dn(G) < 3.

Proof: Let P = {xq.ry.....T,} be an isometric dominating path in (;. Place the cops

on {rg.r;.r2}. To avoid capture the robber must choose a vertex in A,. Suppose



the cops’ strategy is for each of them to move up the path if the robber is ahead of
them and to move onto the robber if he is ever adjacent to one of them. Obviously.
the robber cannot always stay ahead of the cops because he will simply run out of
vertices. At some point he will be forced onto a vertex adjacent to one of the cops
or he will have to move behind all of them. We will consider what happens the first
time the robber moves to a vertex which is not ahead of the cops.

Suppose that for some & > 1, the robber is ahead of the cops for his first & — 1
moves, but does not stay ahead of them on his k** move. Hence. after their & — 1°
move the cops occupy the vertices {zy_;.Ir.Tr+1} and the robber occupies a vertex
in Ag4r. On their. £ move the cops move to {zy, Ziy1. Lrs2}- Now assume that the
robber can avoid moving onto a vertex adjacent to one of the cops. Then the robber
must move to a vertex w € By \ {zx—1}.

Since v € Axy; and w € By \ {rr-1} then by the definition. r(¢) > A + 2 and
r(w) < k—1. By Corollary 2.4.1.2. |st(vw)| = |r(v) — r(w)] < 3. Hence. r(v) =k +2
and r(w) = k—1. This implies ¢ € Giy9 and w € Gi—,. We may assume that w L ry
and w L rgq. since the robber could be immediately captured otherwise.

Now move the cops to the vertices {i_;. rr. rr42} and suppose the robber moves
to some vertex r. By Lemma 2.4.1.5. r is not in Gy since a 3-cycle with no
triangulating chord would otherwise result. Also assume that r is not adjacent to
any vertex occupied by one of the cops. Hence. .r is either in A;4) or Bi—y \ {xx-2}-
If v € Apyy then r(r) > &+ 3. Since r(w) = k — 1 this implies [st(w.r)| > 1 which
contradicts Corollary 2.4.1.2. So. it must be the case that + € By \ {r«-2} and
r(r) < k—2. Now. let @ = {x.w.v}. By Lemma 2.1.1.1. [st(Q)| = r(v) — r(x) =
k+2 — r(xr) <. which gives r(r) > k& — 2. Hence. r(2) = k — 2. Since . is adjacent
to the vertex w in G4_;. then by the definition of each G;. x can not be on the path
P. Hence. by the definition of r(x), r € Gr_s.

The cops now move to {rp_2. 4y, Tes1}. Since & L ry_;.xi. then by Lemma
2.4.1.5. xr has no neighbour in G. The robber is in a similar situation in that the

only vertices he can safely move to are those in Bi_;. Furthermore if he moves to
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a vertex y € Bi_, it must be the case that y € Gi_3 since |st(Q’)] < 5 where
Q' = {y.r.w.v}. This continues, by induction until the robber occupies a vertex in
Go. The cops then move to {rq.z;,z3}. The robber is then forced to move to a vertex

which is adjacent to at least one of the cops and he is immediately apprehended. O

Corollary 2.4.1.7 If (G is a bipartite graph with an isometric dominating path then
dn(G) < 3.

Proof: A graph is a comparability graph if every odd cycle has a triangulating chord.
Since any bipartite graph. (7. has no odd cycles, then it is also a comparability graph.

Hence. by Theorem 2.4.1.6. dn(G) < 3. o

[n Figure 2.15. we see that the upper bound given in Theorem 2.1.1.6 is strict.
The graph in this figure is a bipartite. and therefore. comparability graph. There are
two choices for an isometric dominating path. each of which must include ry and .

and in either case three cops are necessary.

XO Xl )(2 X3

Figure 2.15: An example of a bipartite graph in which dn(G) = 3.

2.4.2 Onebeat Graphs

We can characterize those graphs G for which dn(G) = 1. Call these graphs onebeat
graphs. Obviously. onebeat graphs contain an isometric dominating path. Let P =

{zo.x1......L.} be an isometric dominating path in . We define G; forall i =0..... n
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as previously. Now for each : we wish to consider those vertices in (+; which have a
“forward” edge in this layout. That is, any vertex in G; which has a neighbour ahead

of r;. Let F;={r € G;: N(x)N A; # 0} be that set of vertices in ;.

Theorem 2.4.2.1 Let GG be a finite connected graph. Then GG ts a onebeat graph if
and only if G contains an isometric dominating path P = {rq.x,.....x,} and for all

t=0.1.....n —1 each u € F; satisfies the following:
(a) u~zip

(b) if u~ v such that v € G;y> then u ~ T,4>

(c¢) uLlv forallveGia

Proof: Suppose that for some & > 0 there is a vertex w € B4, such that w has a
neighbour v € A;. We wish to show that w ~ x4y Suppose v is on the path. P.
Then v = r; for some j >k + 1. If j = &k + 1. then w is obviously adjacent to zj41.
Suppose j > k+2. Then. by Corollary 2.4.1.2, it must be the case that v = xr4» and
w € Gi. Since w € Fi. condition (a) gives us w ~ Iiy,.

Suppose v is not on the path. Then v € G for some { > k + L. By the definition
of G; it must be the case that w is not on the path either. Hence. w € (; for some
J < k. By Corollary 2.4.1.2. ; > k£—2 and by condition (c) of the theorem. j # k£ —2.
Hence. j = &k — | or j = k. By applying conditions (a) and (b). we conclude that
W~ Ty

Hence. for all A = 0..... n — L. any vertex w € By, with a neighbour in Ay is

also adjacent to ry4y. Therefore. by Lemma 2.4.1.3. (G is a onebeat graph.

Now suppose G has an isometric path P = {z¢.z;.....2,}. If condition (b) or
(c) is not satisfied. then there is a vertex r € F; such that r has a neighbour y. and
moreover, r and y have no common neighbour in P. Therefore. no matter where the
cop is on P the robber can safely occupy either x or y. since the cop can never be

adjacent to both vertices at once.



Suppose condition (a) is not satisfied. but conditions (b) and (c) are satisfied.
Then there are two cases left to consider : (1) u ~ ¢ where u € F; and v € G4, and
(2) u ~ riy2 where u € F;. Suppose we have case (1). Then the robber can safely
occupy either u or v no matter where the cop is.

If case (2) applies. then let the robber occupy vertex « until the cop moves to a
vertex adjacent to u. This only occurs when the cop moves onto either r; or r;».
If the cop moves onto r; then the robber can safely move from u onto r;;,. If the
cop moves to ;.2 then the robber can move from u to x;. In either case. this is a
safe move for the robber. The robber now waits until the cop moves to an adjacent
vertex. This will only occur when the cop moves onto vertex z;;;. The robber then
moves back to vertex u. This is a safe move since © L x;4;. The entire process then

repeats itself. Hence. the robber will never be caught. m

Recall that a graph is bridged if it contains no isometric cycles of length greater
than three. This means that each cycle of length greater than three has a shortcut.
Hence. every chordal graph is also a bridged graph. It was shown by Anstee & Farber

[3] that a bridged graph is copwin.

Theorem 2.4.2.2 [f( is a bridged graph with an isometric dominating path then G

(s a onebeat graph.

Proof: Suppose (i has a dominating path P = {xg..r,......,} and we partition the
vertices not on the path into GG;’s. We wish to show that ( satisfies the conditions of
Theorem 2.4.2.1.

Case 1: Suppose we have a vertex u € (i; and a vertex v € G4y U {142} for some
te{0.1..... n—1} such that u ~ v. Hence. we have the 4-cycle {r;. x;4;.v.u}. Since
(7 is bridged ¢/ can not contain an induced cycle of length four. Therefore. there must
be a chord and the only possibility is the edge from u to x;4,. Hence u ~ r;;, in G.
Case 2: Suppose we have a vertex u € G; and a vertex v € (s for some ; €
{0.1..... n — 2} such that u ~ v. Hence. we have the cycle {x;. ri.,. Liya.v. u} of

length five. Since G is bridged ¢ can not contain an induced cycle of length five.
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Therefore. there must be a chord and the only possibilities are the edge from u to
riyq or the edge from u to r;42. In fact. both edges are required since the absence of
either creates an induced cycle of length four. Hence u ~ r;y; and u ~ r;y, in G.
Case 3: Suppose we have a vertex r € G; and a vertex v € G;;3 for some { €
{0.1.....n—3} such that u ~ v. Hence. we have the 6-cycle {x;. riy1. Tiyo. Tizs. . u}.
Since ( is bridged there must be a “shortcut™ between two of the vertices of the cvcle.
This takes the form of a chord between two vertices on the cycle or a path of length
two between two vertices which are distance three on the cycle.

Suppose there is a chord on the cycle. The only possibilities are an edge from u to
Iiyp oranedge fromuto riys. Ifu ~ ;4 then thereis a 5-cycle {u. xiyy. Liya. Tiga. v}
Hence. this cycle must contain a chord. Since. u L i +3 the edge from u to r;y, must
be in (. Hence. u ~ riy, in ;. This creates the 4-cycle {u.z;42.r;43.v}. Since G is
bridged. this cycle must have a chord. However, there is no candidate for the chord
since u L r;y3. Due to this contradiction we can conclude that there can not be a
chord on this 6-cycle. Therefore. if G is bridged there must be a path of length two
between two vertices which are distance three on the cycle.

The only possibilities are a path of length two from u to r;ys or from r;y; to v.
Suppose there is a path {u.w.ri;2}. Then we have the 5-cycle {&;.ri41. Lig. w. u}.
As seen previously. u L r;4; and v L r;4» Therefore. the chords on the five cy-
cle must be the edges wr; and w.r;+;. Hence w € G;. We also have the 5-cvcle
{vig2. tigg-v.u.w}. This cycle must have two chords. Since u L r;jy3. w L riy3 by
Corollary 2.4.1.2. the only possible chord is from w to v. However. this creates a
{-cycle {x;42. rip3. v.w} which has no chord. By this contradiction we conclude there
is no path of length two from u to r;y,.

Hence. there is a path {r;4,.w.v}. Then we have the 5-cycle {z;41. 2ip2. Liy3. v 2w},
Since (' is bridged this cycle must have two chords. The only possibilities are the
edges wriy2 and wriy3. We also have the 3-cycle {x;, xiy1, w.v.u}. This cycle must
also have two chords. Since w ~ r;;13 it must be the case that «w L r;. by Corollary

2.4.1.2. Since u L iy, there is only possible chord on this cvcle is from u to . Hence.
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there can not be two chords on this 3-cycle which contradicts the assumption that
G is bridged. Hence. if (i is bridged then there is no edge from a vertex in G; to a
vertex in Gig3.

Since a bridged graph. ;. with an isometric dominating path satisfies the condi-

tions of Theorem 2.4.2.1. then G is onebeat. O

Corollary 2.4.2.3 If G s a chordal graph with an isometric dominating path then

G is onebeat.

This is an obvious consequence of Theorem 2.4.2.2, since all chordal graphs are

bridged graphs.

2.4.3 Asteroidal Triple - Free

A class of graphs which seems a good choice to use in the study of this dragnet game
are the asteroidal triple-free graphs. This is due to the fact that these graphs
always have an isometric dominating path.

An asteroidal triple is an independent set of vertices r.y.: such that for each
pair of vertices there exists a path joining them that avoids the neighbourhood of the
third. This concept was first introduced by Lekkerkerker & Boland [33]. It was later
shown by Corneil. Olariu & Stewart [16] that every asteroidal triple-free graph has
a dominating pair. That is. a pair of vertices such that every path between them
is a dominating path. Hence. any shortest path between such a pair will serve as an
isometric dominating path. I[n [L7] a linear time algorithm was given for finding all

dominating pairs in a connected asteroidal triple-free graph.
Theorem 2.4.3.1 If G is an asteroidal triple-free graph then dn(G) < 3.

Proof: Suppose that (i is an asteroidal triple-free graph such that there is an edge
vw such that v € Agy2. w € Biyy. and w is not adjacent to any of riqy. T2 OF Tpys
for some 0 < & < n — 3. By Corollary 2.4.1.2 it must be the case that w € G} and

v € Gria. Hence. we have the 6-cycle {w. g, Tps1. Tip2- Tigs. v}. This cycle has no
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chords due to the isometry of P. the definitions of each ; and the assumption that
w is not adjacent to rg4y.Trs2 Or Trys. This, however results in the asteroidal triple
{w.riqp1. Tre3}. which contradicts the fact that G is asteroidal triple-free. Hence. it

must be the case that w is adjacent to one of ryyy. rry2.Zre3. Hence. by Lemma
2.1.1.3. dn(G) < 3. ()

This bound is sharp. Consider the graph in Figure 2.16. This graph is asteroidal
triple-free and P = {xg, r|. x>} is the only isometric dominating path in the graph. If
there are at most two cops on P then the robber can always avoid capture by moving

on the induced A3 that lies off the path.

XO Xl XZ

Figure 2.16: An example of an asteroidal triple-free graph in which dn(G) = 3.

Hence. if (i is an asteroidal triple-free graph then ¢(G) < 3.

A co-comparability graph is a graph whose complement is a comparability
graph. Golumbic. Monma & Trotter [24] showed that the set of co-comparability
graphs is strictly contained in the set of asteroidal triple-free graphs.

An interval graph is the intersection graph of intervals on a line. Recall that a
chordal graph is one that contains no induced cycle of length greater than three:
i.e. every cycle has a triangulating chord. It was shown in [33] that a graph G is
an interval graph if and only if it is both chordal and asteroidal triple-free. Interval
graphs are also precisely those which lie in the intersection of co-comparability graphs

and chordal graphs.
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The class of co-comparability graphs also includes permutation graphs which
includes all graphs which are both comparability and co-comparability graphs. See
Figure 2.17 for a partial ordering of these classes of graphs under inclusion. Figure

2.18 gives an example of a graph in each of these classes.

Copwin
Asteroidal Triple-free Bridged
Comparability Co-comparability Chordal

Bipartite Permutation Interval

Figure 2.17: A partial ordering of classes of graphs under inclusion.
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Figure 2.18: (a) Asteroidal Triple-free. but not Co-Comparability. (b) Co-
Comparability. but not Interval, (¢) Copwin. but not Bridged. (d) Bridged. but not
Chordal. (e) Chordal. but not Interval. (f) Co-comparability. but not Permutation.
(g) Comparability. but not Permutation. (h) Comparability. but not Bipartite.



Lemma 2.4.3.2 Suppose G is a co-comparability graph. Then G does not contain

an induced cycle of length five.

Proof: Suppose GG has an induced cycle of length 5. Then the complement of (.
denoted (. contains an induced cycle of length 5. Hence. G has an odd cycle
without a triangulating chord and is not a comparability graph. Therefore. G is not
a co-comparability graph and no co-comparability graph contains an induced cycle of

length five. a

Theorem 2.4.3.3 [f (' is a co-comparability graph then dn(G) < 2.

Proof: Suppose (¢ is a co-comparability graph. Since G is asteroidal triple-free. it has
an isometric dominating path. say P = {z¢.2),....2,}. By Lemma 2.4.1.3. if every
vertex in Byy, with a neighbour in Agy, is also adjacent to one of .ryy; and wpys. for
k=0.1.....n — 2. then dn(G) < 2.

Suppose that for some 0 < & < n — 2 there is an edge vw such that v € A .
w € Biy. By the definition of &; and the isometry of P. w is not on P. Hence.
w € G; for some ¢ < k.

Suppose v is on the path P. Then by Corollary 2.4.1.2. it must be the case that
v = Iry2 and w ~ rggpp. If ¢ is not on P then it is in G for some j > k + 2. By
Corollary 2.4.1.2. either it =k —land j=k+2:i=kand j =k +3:0r ¢/ =%k and
J=k+2
Case 1: Suppose v € G4z and w € G—;. Then we have the 6-cycle {w. r_y. o Tpyy.
Irs2.U}. Since G is asteroidal triple-free it contains no induced 6-cvcles. Therefore.
this cycle contains a chord, and the only candidate is an edge from w to one of r.
LTrt1. OF Tpyn. However. by Corollary 2.4.1.2. w L1 xy4s. Hence. w must be adjacent
to rpygq O Lpgo.
Case 2: Suppose v € Giry3 and w € (. Then we have the 6-cycle {w.ry. rry.
Tkt2. Tra. v} and w must be adjacent to one of xyyy. Trq2, Tres. However. w L rpqs

due to Corollary 2.4.1.2. Hence, w is adjacent to rry; or Irso.
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Case 3: If v € G4y and w € G\ then we have the 3-cvcle {w. .y, Ty Try2.v}. By
Lemma 2.4.3.2. this cycle is not induced. Hence. there must be chord. and the only
possibilities are an edge from w to either x4 or r4qa.

Therefore. if there is an edge vw with v € Agyy. w € Bpy. then w must be
adjacent to at least one of the vertices iy, and riy2. Hence. by Lemma 2.1.1.3.

dn(G) < 2. a
Corollary 2.4.3.4 [f G is a permutation graph then dn(G) < 2.

This is an obvious consequence of Theorem 2.4.3.3. since all permutation graphs

are co-comparability graphs.

The upper bound for the dragnet number of co-comparability and permutation
graphs is sharp in both instances. Consider the graph & and its complement. G°.
in Figure 2.19. The edges of (¢ and G have been assigned a transitive orientation.
Therefore. both G and G* are comparability graphs. and therefore. both permutation
graphs. The graph G has no pitfalls. so it is not copwin. The graph G° is not copwin
since the removal of the pitfalls b and e results in a 4-cycle which is not copwin.
[f a graph is not copwin. then it is obviously not onebeat. Therefore. we have two
examples of permutation graphs. and thus co-comparability graphs. with dragnet

number two.

e
G G*

Figure 2.19: A transitive orientation assigned to the edges of a graph and its comple-
ment.
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The following is a corollary of Theorem 2.4.2.2.
Corollary 2.4.3.5 [f G is an interval graph then G is onebeat.

Proof: It has been previously stated that interval graphs are both chordal and as-
teroidal triple-free. Hence. if GG is an interval graph then it is a bridged graph which

contains an isometric dominating path. Hence. by Theorem 2.4.2.2. dn(G) =1. O

2.4.4 More than One Path Required to Dominate

There are obviously graphs in which a single isometric path can not dominate all
the vertices. We will now examine graphs in which some set of isometric paths are
required to dominate. That is. there is some set P = {P,. P,..... P4} of isometric
paths in & such that every vertex of (i is either in P; or adjacent to P; for some
it =1.....d. Since we must have at least one cop on each path in a dominating set.

we have a natural lower bound on the dragnet number of a graph:

Theorem 2.4.4.1 [f d is the minimum number of isometric paths required to domi-

nate GG then dn(G) > d.
We will now examine various upper bounds on the dragnet number.

Lemma 2.4.4.2 Suppose P = {xg, Iy.....r,} is an isometric path in GG and f : G —
P is the canonical retraction map of GG onto P. If there is an edge uv such that

flu)=x; and v ~ r; for somei.j=1..... n.thent —2<j;<i+2.

Proof: Since f(x;) = x;.x; ~ vand fis edge-preserving. then f(v) € {&j_1.2j. 241}

Similarly, since u ~ v then f(v) € {x;-y.xi,zis1}- Therefore.i —2< j<:i+2. O

Theorem 2.4.4.3 [fG is a graph such that a set of d isometric paths. say {P,. Ps. . ...
P;}. dominates GG then dn(G) < 3d — 1.



Proof: Place five cops on each of the paths {P;. Ps..... P} and place four cops on
P;. After a finite number of moves the cops on the first d — | paths can prevent the
robber from moving onto any vertex on the paths or adjacent to the paths.

To demonstrate. let P = {z¢,r;.....2,} be an isometric path in & and let f be
the canonical retraction map of G onto P. Suppose that we have five cops and that
P has at least six vertices. (If P has any less then the result is obvious). Place the
cops on five consecutive vertices in P. Let C' be the third. or middle. cop. Let C
catch the shadow of the robber. The other cops will move such that the vertices one
and two moves up the path from C. as well as the vertices one and two moves down
the path from C are all occupied. Once C is shadowing the robber. the robber will be
caught if he ever moves onto the path. Suppose the robber moves from a vertex u to
a vertex t once he is shadowed. Then the cop is on f(u) = r; for some ¢ = 1..... n.
If v ~ x; for some r; € P then. by Lemma 2.4.4.2. : —2 < j < ¢4 2. Due to the
cops’ strategy. we know that there must be a cop on the vertex r;. and therefore. the
robber can be captured on the cops’ next move. So. if the robber is to avoid capture
he must avoid moving onto any vertex in the closed neighbourhood of P.

Therefore. after a finite number of moves. the robber can be prevented from mov-
ing onto a vertex in or adjacent to any of the paths {P.Ps..... P;_1}. Hence.
the robber is restricted to moving in the subgraph induced on N[P;]. By Lemma
2.4.1.1. only four cops arc required to capture the robber in this subgraph. There-

fore. dn(C) < 5d — 1. m|

We can show that this bound is obtained if we are required to use a particular
set of isometric paths. Consider the graph. ¢. in Figure 2.20 with isometric paths
Py = {xg. r1. 2. 23. x4} and Py = {yo.y1-y2. y3- y4}- The vertices not on either of these
paths form the graph A’55. If we have four cops on each of the paths. the robber will
obviously be able to avoid capture by moving on the subgraph A5 ;5. Hence. if we use
these two beats. exactly 3(2) — 1 = 9 cops are required. We can similarly construct
graphs with d isometric paths which require 5d — | cops. Instead of two paths and

the complete bipartite graph A’55. we use d paths and a complete d-partite graph
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with five vertices in each partition where each partition is dominated by a different

isometric path.

o
4
I
.
!

Figure 2.20: An example of a graph in which nine cops moving on given beats are
necessary to capture a robber.

The remaining results in this section show situations in which the upper bound
on the dragnet number can be decreased from 3d — 1. In most instances this will
depend on which paths intersect the neighbourhood of a particular vertex. So. for
each vertex . in G\ P. we denote DP(r) to be the set of paths in P which dominate
r. That is. the set of paths such that .« is adjacent to at least one vertex on each of

the paths.

Theorem 2.4.4.4 Given a graph G and a set of d isometric dominating paths P.
suppose for every edge ry such that neither verter is on a path in P. |DP(x)| +
|[DP(y)| > |P}|. Then dn(G) < 1d.

Proof: Let P = {P,.Ps..... P;} be the set of isometric dominating paths. For every

path P € P place four cops. say (C'.C3.C3.Cy). on P. Let f be the canonical
retraction map of (¢ onto P and let ('3 shadow the robber on P. The cops €', and (',
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occupy the vertices one and two moves down the path from (3 and let C’y occupy the
vertex one move up the path from ;. If, on some move. no such vertices exist then
the cop in question can simply share a vertex with another cop. With this strategy.
after a finite number of moves by the cops. the robber cannot move onto any of the
paths.

Suppose once he is shadowed on each of the paths. the robber moves from a vertex
u onto a vertex v, which is adjacent to some path P € P where P = {wg.xy.....0,}.
I[f f(u) = x; then. by Lemma 2.4.4.2, v ~ x; where i —2 < j < ¢+ 2. So. for the
robber to avoid capture it must be the case that t +2 < n and j =7+ 2.

Since P is isometric and v ~ r;;,, then d(xo.v) > i+ 1. In fact. f(v) = rip
since f is edge-preserving and u ~ v. So (3 moves to r;;; and the other cops move
accordingly. Hence. whenever the robber moves onto a vertex adjacent to a path
P. C3 moves up the path and the other cops move accordingly. Note that if (5 is
occupying the vertex r,—, in P then the robber has no safe move adjacent to P.
Therefore. if this situation occurs for all the paths in P then the robber has no safe
move and will be immediately apprehended.

Let C'5 be the third cop on Py for k = 1.2..... d. Suppose on the /** move after
(% has started to shadow the robber on Py, the cop ¥ occupies vertex .r.. Let
S(i) = T¢_, c. If the robber now moves to vertex r then DP(x) is the set of paths
which dominate r. Assuming the robber can not be caught on this move then. as
previously shown. the third cops’ positions on each path in DP(x) will increase by
one. On paths which are not in DP(x). the third cop on that path will. at worst.

move down that path. Therefore,
S(i+ 1) 2 S()+[DP(r)| = (P = |DP(x)])
Suppose the robber now moves on to a vertex y. Then
S(i+2) 28+ 1)+ [DP(y) - (IP| = [DP(y)])
Since |DP(x)| + |DP(y)| > |P| then

S(i+2) 2 5(2) +2|DP(x)] + 2[DP(y)| - 2|P| > S(:)
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Therefore. after every two moves, more of the C5 cops have moved up the path
than down the path. If the robber remains uncaptured. then for k& = I....d. each C'¥
will move to occupy either the last or second to last vertex of P;. Once this is done.
there are no vertices that the robber can safely occupy. Therefore. the robber will
be forced to move to a vertex dominated by one of the cops and he will be captured.

Hence. dn(G) < 4d. o

Lemma 2.4.4.5 Let P = {xg.1).....2,} be an isometric path in G and let f : G — P
be the canonical retraction map of G onto P. If f(u) = x; and u ~ ; for some verter

u and some i.j =1..... n.theni—1<;<t+1.

Proof: Suppose f(u) = r; and u ~ x; for some .y =1..... n. Then

J =d(ro.rj) < d(xg.u)+d(u.x;)=1+1

and

¢ =d(xe.u) < d(xg.xj) +d(rj.u)=j+ 1.
Therefore. 1 — 1 < j <+ 1. m|
Theorem 2.4.4.6 [f there are d isometric paths P = {P,. Ps..... P;} which dom-

inate a graph G such that for every cycle C in G\ P. Nrec DP[xr] # 0. then
dn(G) < 4d.

Proof: For each P € P place four cops. say ('|.(5.(3.C’y on P. Let f be the
canonical retraction map of G onto P. and let cop (', shadow the robber on P. The
cops ('y. ('3 and Cy occupy the vertices one move down the path. one move up the
path. and two moves up the path from C), respectively.

Suppose that the robber is being shadowed by (', on each path P € P. We now
change the strategy. If the robber’s image moves up the path then let ('3 shadow
the robber. If the image moves down the path let ('; shadow the robber. And if the
image does not move then the cops do not move either. Hence, every time the robber

changes direction. we change the cop who shadows him.
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By using this strategy we accomplish two things. First. we prevent the robber
from moving onto any vertices on the paths. Second. we prevent the robber from
using the same edge twice in a row without being caught. This follows because if u is
a vertex in (¢ such that u is adjacent to a path P € P and f(u) = r; then. by Lemma
2.4.45. u~rjforsome j =i —1.:.0 4+ 1. Now suppose the robber moves to a vertex
v. Then f(v) = xi—y. r; or z;4y. If f(v) = x;_; then (', moves to the vertex r;_,.
Therefore. C3 and €, occupy z; and z;4,, respectively. Since u is adjacent to at least
one of these. then the robber can not safely move back to «. Similarly. if f(v) = x;
or r;t+1. the vertices r;_y. r; and r;4; will be occupied by the cops. Therefore, the
robber can not safely move back to u.

Now. in order for the robber to win he must be able to move onto some vertex
more than once. (Otherwise. he simply runs out of vertices.) Since he can not use the
same edge twice in a row. this can only be accomplished by moving around some cycle
in the graph. By assumption. every cycle in the graph is dominated by a common
path. Suppose the robber moves around a cycle, R = {uq....u.}. which is dominated
by a path P. Without loss of generality. suppose f(ug) = x; for some { = 1..... n.
and the cop ('3 moved onto ;. [f the robber’s move from ug to u; was a safe move.
then uy ~ riy2 and u; L r; for all j < i+ 2. Therefore. f(u;) = r;y; and ('3 moves
up the path onto r;y;. Similarly. if the move from u; to u; was a safe move then
u; ~ rigs. uy L xj for j < ¢+ 3. Therefore. f(uy) = 4y and ('3 moves to I ,.
By induction. we see that in order to make safe moves on vertices adjacent to P the
robber must move to a distinct vertex on each move. [f he moves around the cyvcle R
he must move onto some vertex which is adjacent to one of the cops. Therefore. the

robber can not avoid capture and dn(G) < 4d. a

Lemma 2.4.4.7 Suppose (G can be dominated by a set of d isometric paths. P =
{Py.Ps..... P;}. and G has girth greater than 2(d + 2). Let r and y be two distinct
rertices which are not on any path in P such that DP(x) N\ DP(y) # 0. Then there
is no path fromx toy in G\ P.
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Proof: Let P = {P,. P,..... P,;} be a set of isometric paths which dominate G.
Suppose G has girth greater than 2(d + 2). Suppose there exists at least one pair
of distinct vertices which are dominated by a common path and are in the same

component of G\ P. Let r and y be such a pair whose distance in G\ P is minimum.

Let Q@ = (r = vy.v2..... v, = y) be the path of minimum length between r and y in
G\P.

Without loss of generality. suppose P = {z¢.r).....r,} is a path in P that domi-
nates both r and y. It must be the case that no vertex {vs.vs..... tn} is dominated

by P nor does any pair in the set share a common dominating path. Otherwise. the
choice of & and y as the required pair with minimal distance would be contradicted.
Hence. there must be n — | distinct paths in P.i.e. d > n — L.

Since r and y are adjacent to P. then r ~ r; and y ~ r;. Since {z;,.Q.z,;} is a
path of length n + | from x; to r; and P is isometric. then |j — | <n+ 1 < d+ 2.
This means there is a cvcle of length at most 2(d +2) in . This contradicts the fact
that the girth of G is greater than 2(d + 2).

Hence. no two distinct vertices dominated by a common path in P are in the same

component of '\ P. a

This means that there are at most d vertices in any component of G\ P and. due

to the girth restriction. all the components are trees.

Theorem 2.4.4.8 Suppose d isometric paths are required to dominate a graph GG and

G has girth greater than 2(d + 2). Then dn(G) = d.

Proof: Let P = {P,. P,.....P;} be a set of isometric paths which dominate .
Suppose G has girth greater than 2(d +2). By assumption. no fewer than d isometric
paths will dominate (. Therefore, dn((/) > d. Place one cop on each path in P. Let
each cop shadow the robber on his respective path. Once this is done the robber is
forced to move onto a vertex which is not on any of the paths.

Suppose the robber occupies a vertex. r. which is not on any path in P. and the

cops shadow the robber on each of their respective paths. The robber now moves to
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a vertex. y. If P € DP(x) then move the cop on P to the vertex adjacent to r on
P. There is only one such vertex due to girth restrictions. and this move is available
to the cop by Lemma 2.4.4.5. For every path not in DP(z), let the cop on that path
continue to shadow the robber. The cops on DP(x) will now remain stationary unless
they can immediately capture the robber. Repeat this strategy with each following
move.

The vertex r was contained in some component H in G\ P. We know by the
previous lemma that H is a tree with at most d vertices. The cops” strategy ensures
that two moves after the robber initially occupies a vertex in H. he can never occupy
that vertex again. Hence. the robber must leave the component H in order to avoid
capture. To do so he must move onto a path in P. Let v be the vertex occupied by
the robber just prior to his first move onto a path. P. in P. Therefore. P € DP(v).
The robber can not move onto any path where the cop is on his image. He must.
therefore. move onto a path in D P(w) where w is some vertex in (¢ \ P which he has
previously occupied. Hence. P € DP(w) N DP(v). If v and w are distinct vertices
then. by Lemma 2.4.1.7. there is no path from ¢ to w in ¢\ P. Therefore. v = w
and the robber’s move was actually a pass. Following the robber’s pass. the cop on
P moved onto the only vertex in P adjacent to v. Hence. if the robber moves from
v onto the path. he will be moving onto the cop. So. the robber has no escape and

dn(G) = d. )

Theorem 2.4.4.9 Let G be a chordal graph. Suppose d isometric paths are required
to dominate G¢. Then dn(G) = d.

Proof: Let P = (P,. P .... P;) be the d paths which dominate (. and suppose we
have d cops. (C'.C2.....C%). Fori=1..... d. place the cop C* on the first vertex
of the path P;. From this point on if the robber moves to a vertex which is adjacent
to P; then C"* moves up the path. otherwise C* stays where it is.

Let H; be the subgraph induced on N[P;]. Hence. P; = {r;...... r,} is an isometric

dominating path in H;. Suppose through some series of moves the robber occupies



distinct vertices u and v in H;. Let {u = ug.u;....ur = v} be the shortest path from
u to v among those vertices which the robber has used. and assume that ug and u,
are the only vertices on this path which lie in ;. Suppose that u is ahead of C"* in
H; and v is behind C*. Let P = {z¢,z)..... r,}. Suppose after the robber moved onto
u the cop moved from rr_; to ri. This is assuming that « L x4_,. since the robber
could be apprehended otherwise. Since ( is chordal and no vertices of {u;..... Un—1}
are adjacent to P then it must be the case that u = v. Therefore, as in the case when
one path dominated a chordal graph. v ~ ;. So. there is in fact no safe move from
a vertex ahead of C"* to a vertex behind C* for all i = 1..... d.

Note that for each : = I..... d. the robber’s first move into H; is to a vertex
ahead of C'. Since the robber can never safely move to a vertex behind the cop "
in H;. then if he is adjacent to P; he must be ahead of C". This means that he will
eventually run out of safe vertices and be captured. Therefore. dn(G) < d. and since

no fewer than d isometric paths will dominate G. dn(G) = d. a

2.4.5 Problems

[f a graph is bridged and has an isometric dominating path then it has dragnet number

one.

Problem 2.4.5.1 Hhat is the dragnet number of a copwin graph containing an iso-

metric dominating path?

We saw that in Figure 2.20 that nine cops were needed if the beats were P, =
{ro.r1.22.03. 04} and Po = {yo-y1. y2- y3-y4}. The number of cops could be reduced
to five. for example. by taking isometric paths from r; to y; for i = 0.1..... 1 that
together cover all the vertices of the graph. Since only one cop per path is necessary.

then dn < 3.

Problem 2.4.5.2 [s there an erample of a graph G in which d paths are required to

dominate and dn(G) =3d — 17
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For asteroidal triple-free graphs, there is a linear time algorithm for finding an

isometric dominating path.

Problem 2.4.5.3 What is the complerity for determining whether d isometric paths

are sufficient to dominate a graph G?

When investigating precincts. we noted that in some cases there were distinct
advantages to changing the beats from isometric paths to other subgraphs. such as
isometric trees and complete graphs. While the fact that there is a retraction map
onto an isometric path was not always put to use in the dragnet game. for certain

graphs it was important to the strategy.

Problem 2.4.5.4 Are there graphs in which a good strategy for playing the dragnet
game can be found if every beat is

(e} an isometric tree?

(b) a complete graph?

(c) any retract that is also a copwin graph?



Chapter 3

Isometric Embeddings

3.1 Introduction

The isometric dimension of a graph G has been defined as the least number of
paths needed so as to be able to isometrically embed ( in the Cartesian product
of the paths (see [50]). This is not always possible unless there is a relaxation of
the isometry condition. (For example ('3 can not be isometrically embedded in any
Cartesian product of paths.) IWe are interested in finding when a given graph is an
isometric subgraph of the strong product of paths. The strong isometric dimension
of a graph ( is the least number & such that there is a set of k& paths {P;. Py..... P}
with G an isometric subgraph of ®%_  P;. We denote this by idim(G) = k.

Figure 3.1 shows that :dim(Cy) < 2 and since ' is not an induced subgraph of
any path then idim(C;) = 2. Cycles require a lot of space. indeed. in Lemma 3.2.2.10
we show that idim(C,) = [n/2]. In contrast. the strong product of n edges is the
complete graph A,n. thus idim(K,,) = [log, m].

In Section 3.2 we also investigate the relationship between strong isometric dimen-
sion and the categorical notion of the injective hull. We then show that idim () exists
for any finite. reflexive graph (¢ and establish upper and lower bounds for idim(G).
These bounds are used to find the strong isometric dimension of particular graphs

such as cycles and hypercubes.
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Figure 3.1: An Isometric Embedding of Cy in P; & P;.

The motivation for examining the strong isometric dimension of a graph comes in
part from the game of cops and robber. The representation of & in the strong product
of paths allows the “holes’ of G to appear. These are structures which the robber can
use to evade the cops. Generally speaking. the greater the complexity of the “hole the
more options the robber has and therefore the more cops are needed to capture the
robber. However. the degrees of the vertices in a product of & paths are bounded by
3* and so the size of the strong isometric dimension bounds the possible complexity
of the ~holes’. This question is addressed is Section 3.3 where we determine the cop
numbers of graphs with strong isometric dimension two.

In Sections 3.4 and 3.5. we extend this idea of embedding graphs in the strong
product of paths to the strong products of other graphs. In the former section we
look at the case when one of the graphs in the product is a tree and in the latter
we consider the case when one of the graphs is a cycle. We see that by embedding a
graph in such products. we are able to cover the vertices of the graph with subgraphs
where each subgraph is a retract.

We have seen throughout this thesis that retracts have proved useful in devising
winning strategies for the game of cops and robber. In Section 3.6. we find that this
continues to be the case. If we are given a graph G which is an isometric subgraph
of H & [ where [ is either a tree or a cycle. we can find a winning strategy in G

by playing a new “roadblock” game on H. This gives us upper bounds on the cop
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numbers of isometric subgraphs of T ® T. T ® C and C' ® C. where T is any tree

and C is any cycle.

3.2 The Strong Isometric Dimension of a Graph

As previously noted. one of the motivations for examining the strong isometric di-
mension of a graph is to find upper bounds on the cop number of a graph. The other
is its relationship to the concept of the injective hull of a graph [30. 31. 10. 11]. We
investigate this notion and give two examples of the construction of the injective hull
of a graph.

We then proceed to establish upper and lower bounds on idim(('). One such
bound shows that if we have Ak vertices such that the distance between each pair
is diam(G) then idim(G) > k. This allows us to determine the strong isometric
dimension of cyvcles and hypercubes.

We also show that the embedding of a graph in the strong product of paths can
be represented by a set of orientations on some subset of edges of the graph. This
technique proves useful in finding the strong isometric dimension of a tree to within

a factor of two. Finally. we pose some problems.

3.2.1 Injective Hull

Every graph can be isometrically embedded in an absolute retract. In fact. for any
graph ( all minimal absolute retracts into which ¢ can be isometrically embedded
are isomorphic. as shown in [41]. This graph is called the injective hull of ;. One
way of finding the injective hull for a graph G is to embed (; in a strong product of
paths then take the smallest retract of the product that contains that image of G.

This is due to the following result by Pesch [44]:

A graph G is an absolute retract of reflexive graphs if and only if it is a

retract of some finite strong product of reflexive graphs.
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So. if we isometrically embed a graph G in the strong product of the fewest paths.
F : G — &% P. and retract what we can while leaving F(G) fixed. then we obtain
the smallest absolute retract containing GG. Hence, we have obtained the injective
hull of G.

In [30]. Isbel gives a means of constructing the injective hull of a graph by regarding
a graph G as a metric space X. this construction gives the injective hull of a graph.
We now reproduce this method of construction for the injective hull.

First. define an extremal function f : X — Z as a integer-valued function which

is pointwise minimal subject to

f(2) + f(y) = d(z.y)

for all r and y in X. (Pointwise minimal means that for every r € X there is
some y € X such that » # y and f(r) + f(y) = d(z.y).) The difference between
any two extremal functions is bounded. thus the set €X of all extremal functions
is a metric space with the distance between any two extremal functions f and g
defined by d(f.g) = sup|f(r) — g(x)|- If we define the mapping ¢ : X — eX by
(e(xr))(y) = d(r.y) then € is an isometric embedding.

For example. if we use as our set X the vertices of the -cycle. ' = {a.b.c.d}.
There are exactly five point-wise minimal functions. f. which satisfv f(r) + f(y) >

d{.y). They are listed in Table 3.1.

[ fla) | £(8) | fle) | f(d)

A l 1 1 L
B, 0 l 2 l
By l 0 1 2
B. 2 l 0 1
By l 2 1 0

Table 3.1: Extremal functions on C' = {a.b.c.d}.
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Now we can calculate the distance between each pair of extremal functions. For
example. d(A. B;) =sup{l — 0.1 — 1.2 - 1.1 — 1} = 1. We find the other distances

similarly and obtain the distance matrix presented in Table 3.2.

d A B, B, B. By
A0 1 11 l
B, 0 L2 l
By 0o r 2
B. 0 1
By 0

Table 3.2: Distances between pairs of extremal functions.

B

[o4

Figure 3.2: The injective hull of the 4-cycle.

We can represent the metric space €X' by the graph in Figure 3.2. where the vertex
set is the set of extremal functions and there is an edge between any two vertices which
are at distance one. as given in Table 3.2.

Finally. we can map {a.b.c.d} to {A. B,. By. B.. By}. For example. (e(a))(xr) =
d(a..r). Since d(a.r) = B,(c) for all + € {a.b.c.d}. then e(a) = B,. Similarly.
€(b) = Bs. €(c) = B. and e(d) = By. This gives an isometric embedding of the {-cycle

into the graph in Figure 3.2.



Now suppose X is the set of vertices of the 6-cycle C' = {a.b.c.d.e. f}. There are
exactly fourteen point-wise minimal functions. g. which satisfy g(r) + g(y) > d(r.y).

They are listed in Table 3.3.

g |lga) | g(b) | g(c) | g(d) | ge) | g(f)

Aabe L 1 L 2 2 2
Agbe 1 l 2 2 i 2
T, L | T [ 2 2 21
Aqce I 2 L 2 l 2
Abed 2 1 1 1 2 2
L | 2 | T 2] 1] 2 |1
Acde 2 2 1 1 1 2
A 2 1 2] 2 1] 1] 1
B, 0 1 2 3 2 1
By l 0 1 2 3 2
B. 2 1 0 1 2 3
By 3 2 1 0 1 2
B. 2 3 2 1 0 l
B, 1L 123 21T o0

Table 3.3: Extremal functions on C' = {a.b.c.d.e. f}.

We see that any pair of distinct “A” functions are distance one apart. The dis-
tances between each of the ~B” functions are given in Table 3.4. The distances

between the ~4A’s and “B”s are presented in Table 3.5.

B. B; B, By
B, | 0 1 2 3 2 l
By 0 I 2 3 2
B. 0 1 2 3
By 0 1 2
B. 0 l
By 0

Table 3.4: Distances between pairs of extremal "B™ functions.
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d |B, B, B. B, B. B
A [ L T 1 2 2 2
Age | 1 1 2 2 1 2
Awg| L 1 2 2 2 |
Awe [ 1 02 1 2 1 2
a2 1 1 1 2 2
A |2 1 2 1 2 1
Ae |2 2 1 1 1 2
Aes |2 2 2 1 1 1

Table 3.5: Distances between extremal “A” functions and extremal “B™ functions

Finally. the isometric embedding is given by e(z) = B, for all + € {a.b.c.d.e. f}.
This is an isometric embedding of C into the graph shown in Figure 3.3. Note that
the “A” functions form the complete graph on eight vertices which is drawn as a cube

in the figure. and the “B” functions are situated around the cube.

Figure 3.3: The injective hull of the 6-cycle.

While finding the injective hull of a graph does not provide its strong isometric

dimension. a graph G can only be embedded in the strong product of & paths if its
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injective hull can be embedded. Hence. the lower bounds on idim(G) to be presented

can also be applied to the injective hull of GG, which may prove to be more useful.

3.2.2 Bounds on the Strong Isometric Dimension of a Graph

A projection of H C @f-":lG’,- onto G; is a map w; : H — G; defined as =;(ay.a,.....
a;) = a;. A realizer of (7 is a set of paths {P;:i=1..... k} with &£ = idim(G) and
an edge-preserving map F : G — ®&%_, P: such that F(G) is an isometric subgraph of
=%, P;.. We will put @ = F(a). The vertices of a path in the realizer will be a range
of consecutive integers. This will allow us to refer to the next and previous vertex
along a path as =;(a) + 1 and =;(a) — L.

We say that vertices a.b € V(() are separated by (H. f) if H is a graph and
f : G — H is an edge-preserving map where d(a.b) = d(f(a). f(b)). Often the
separating graph A will be a path P; from a realizer and the projection onto P; will
be the corresponding map. [n this case. we have d(a.b) = d(7;(a).=i(b)) and we sav
that a.b (a@.b) are separated in the ith coordinate.

Let &G be a Graph and let P, = {v = vg,vy,....v} be an isometric path of G.
Let P-={0.1.2..... k} be a path disjoint from . The distance retraction map
fi : G — P? is defined by fr(x) = d(v.x) if d(c.x) < k else f7(x) = k. Note the

sense of direction with these maps.

Lemma 3.2.2.1 Let P. = {v = vo. 1. ..., .t} be an isometric path of G. Then P,
is a retract of G. moreover v is separated by (Pr. f7) from r € V(G) ifd(v.r) < k.

Proof: Define g : P7 — P, by g(¢) = v; and it is easy to verify that ¢ is edge-
preserving. Also. if r ~ y in & then |d(v.r) —d(v.y)| < | and thus f3(r) >~ fi(y) so
f: is edge-preserving. Now. go f; maps G onto P, and g o f is the identity map on
P.. Therefore P, is a retract.

Ifd(v.x) = j < k then d(f;(v). fi(x)) = j and thus ¢ and r are separated by
(P f2). o
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[t is necessary to separate all pairs of vertices to find the strong isometric dimen-

sion.

Lemma 3.2.2.2 [f every pair of vertices in & is separated by at least one of (P,. f1).
(P f2). - . (Pr. fi). then tdim(G) < k.

Proof: Let H = &% | P; and define the map F : V(G) — V(H) by F(x) = (fi(x)%,-
We claim that F(G) is an isometric subgraph of H. Consider vertices ¢ and w

in V(G) with dg(v.w) = d. Since each f; is edge preserving. dp, (fi(¢). fi(w)) < d

forall :=1..... k. Furthermore, since v and w are separated by at least one path.
dp,(fi(v). fi(we)) = d for some (. Therefore dyg(F(v). F(w)) = d and F(G) is an
isometric subgraph of H. O

The next result not only shows that the strong isometric dimension exists for every

finite. connected. reflexive graph but also gives the first upper bound.

Theorem 3.2.2.3 Lel G be a finite. connected. reflerive graph. then idim(G) <
V(G

Proof: For each v € V' (() let v’ be a vertex such that d(v.¢') is maximum. Let P,
be a shortest path in & from v to v’. Clearly. P, is isometric. Now consider a pair
of vertices v and w in V((G) with dg(v.w) = d. Since P, is a longest isometric path
starting at v, [( P.) > dg(v. w). Hence. with the distance-retraction map f : (¢ — P7.
we have dg(v.w) = dp.(f(v). fi(w)). and ¢ and w are separated by (P]. f7). Hence.
{(P:. f7) : v € V(()} separate every pair of vertices in V(&) and. by Lemma 3.2.2.2.
idim(G) < |V(G)). a

The construction in the previous result is inefficient. A slightly better result is:

Corollary 3.2.2.4 Let GG be a finite. connected. reflerive graph. then

idim(G) < |V(G)| = diam(G).
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Proof: Find {P> : v € V(G)} as in the previous theorem. Now choose a vertex r
such that (P} = diam(G). If v # r and v € V' (P;) then eliminate P from the
collection of paths. This new collection of paths also separates every pair of vertices
in Gi. This follows since for any v. P separates v from V(G)\ {v} and also separates
a and b for all a.b € P,. Thus P separates all pairs of vertices on P,: also if y € P,
and : € P, then y and = are separated on P-. Thus the paths P;. y € P\ {z} are

unnecessary. Hence, by Lemma 3.2.2.2, idim(G) < |V(G)| — diam(G). a

As expected. there is a relationship between the strong isometric dimension of
a graph and its isometric subgraphs. as well as a pair of graphs and their strong

product.
Theorem 3.2.2.5 [f H is an isometric subgraph of G then idim(H) < idim(G).

Proof: If G is a graph such that idim(() = & then ( is an isometric subgraph of

@ | P; for some collection of paths {P;, P..... P.}. If H is an isometric subgraph
of G then it is also an isometric subgraph of ®%_, P;. Hence. idim(H) < k. a

This is not necessarily true if H is only an induced subgraph of (. For example.
('s is an induced subgraph of P, & Ps. as seen in Figure 3.4. It is later shown in

Lemma 3.2.2.10 that idim(Cs) = 3. Hence. idim(C’s) > idim(P; & Py) = 2.

Figure 3.4: ('s is an induced subgraph of Py & P;.

Theorem 3.2.2.6 [f G and H are any two graphs then

idim(G & H) < idim(G) + idim(H).



Proof: Suppose (i and H are two graphs such that idim(G) = k and idim(H) = L.
Then there are distance-preserving maps F; and F, such that F} : G — &% | P; and

Fy: H — &%, | P.. for some collection of paths {P,. P;..... Piii}. Thegraph G & H

has vertex set {(u.v): u € V(G),v € V(H)}. Let F: G & H — &*P, be defined
by F(u.v) = (Fi(u). Fy(v)) for all (u.v) € V(G & H). F is distance-preserving since

d(F(u.v). F(u'. "))

= d((Fi(u). Fa(v)). (R(u). F(c))

= max(d(Fy(u), Fi(«)). d(Fa(v). Fa(v")))
= max(d(u. '), d(v. "))

= d((u.v). (u" ).

Therefore. GG ® H is an isometric subgraph of &% | P. and idim(G @ H) < k+1 =
idim(G) + idim(H). o
Equality need not hold. For example, idim(h; Ks) = idim(K,5) = 4 but

itdim(K3) + tdim(RK5) =2+ 3.

The idea of direction in the distance-retraction maps is generalized in the next
result which will be used later in evaluating the strong isometric dimension of hyper-
cubes and trees.

From any graph (G we can obtain a directed graph by specifving a direction on
each edge of E((). Such a directed graph is called an orientation of ;. If an
orientation is placed on a subset of the edges of £(G) this called a sub-orientation
of G.

Suppose we have a walk W = {vo.vy.....v,}. We say an edge (v;_,¢;) is for-
ward directed on W if v;_;, — v;. backward directed on W if v;_; « ¢;. and
undirected otherwise. Forward and backward directed edges on the closed walk
X = {vg.vy..... v, = vo} are defined similarly. Define the edge-sum of a (closed)

walk to be the number of forward edges minus the number of backward edges on that

(closed) walk.



Lemma 3.2.2.7 Suppose G is a finite connected graph. Then idim(G) < k if and
only if there is a set of k sub-orientations of G. {G1.G,.. ... G }. such that for every
pair of vertices in V(G) there is a directed isometric path between them in at least
one of the k sub-orientations. and for each t € {1...., k} the edge-sum of every cycle

in G; is zero.

Proof: Let tdim(G) = k and let {P,.... P} be a realizer for G. For 1 < i < k.
construct ; as follows: for each edge ab € E(G) let « — b if m;(b) — m;(a@) = 1. let
b — a if 7;(b) — mi(@) = —1. and leave ab undirected otherwise.

Now consider a pair of vertices {r.y} in V(G). Let P(z.y) = {z = ro. 7). ... ry =

y} be an isometric path from r to y in (&. Suppose that r and y are separated in the
i** coordinate and that =;(7) > 7i(Z). Then. forall j = 1,....d. 7i(F;) —7(XT;=1) =1
and so r;_; — r;. Hence, P(r.y) is a directed isometric path from x to y in G,.

Let ' = {vo.vy.-... tn = g} beacyclein G; forsomei=1..... k. Since v, = v,.
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and the edge-sum of (' is zero.

To prove the converse. suppose that {G;.Ga.. ... Gii} is a set of sub-orientations
of (¢ such that for every pair of vertices in (¢ there is a directed path between them in
at least one of the & sub-orientations and for each / = I..... k every cyvcle in (; has
edge-sum zero. This latter fact implies that every closed walk in ¢; has an edge-sum
of zero. Therefore. for any pair of vertices r.y € V(G;) the edge-sums of every walk

from r to y are equal.

r=1.2..... k.Pi={—d.—d+1...., d}. We now define a set of maps { fi. fa..... Ji}
where f; : G — P,. Choose a vertex v € V(') and set fi(v)=0for 1 < i< k. Now

for each vertex r € V() and 1 < ¢ < k. let fi(¥) equal the edge sum of any path
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from v to r in G;. Choose any pair of vertices z.y € V(G;). Then fi(y) — fi(z) is
the edge sum of any path from r to y. Since there is a path of length d(r.y) we have
|fi(g) — f(&)| < d(r.y) foralli=1...., , k. Since there is a directed path between ¢
and y in G, for some ¢ then |fi(y) — fi(T)]| = ) for at least one value of :.
Finally. let F(r) = (fi(x))%,. Then F(z:) maps V'(G) into ®%_, P.. Note that F
is edge preserving and any pair of vertices r.y is separated on P; for those ¢ in which
there is a directed path between them in G;. Hence. by Lemma 3.2.2.2. :dim(G) < k.

a

In the case that ( is a tree. the cycle condition is not required.

Corollary 3.2.2.8 Suppose T is a tree. Then idim(T) < k if and only if there s
a set of k orientations of T. {T\.Ts,....T}. such that for every pair of vertices in
V(T) there is a directed path between them in at least one of the k orientations of T .

Proof: This follows from the proof above except that when defining each T; let « — b
if m:(b) —mi(a) > 0 and let a «— b otherwise. Since every edge of T is given a direction.

we have an orientation of T rather than a sub-orientation 0

We say that (¢ has a diameter n-tuple if there exists n distinct points {«;.a;.....
a,} where d(a;.a;) = diam(G) whenever ¢ # j. For convenience. a 2-tuple will be
called a pair and a 3-tuple a triple. For example. the l-cycle " = {«a.b.c.d} has
two diameter pairs. (a.c) and (b.d). The leaves of the graph A, form a diameter
n-tuple.

The next result gives a good lower bound in many cases and allows us to find the
strong isometric dimension of cycles and hypercubes exactly. These are given in the

subsequent two lemmas.

Theorem 3.2.2.9 Let GG be a graph which contains no diameter {-tuples or triples.
If there are p dislinct diameter pairs then idim(G) > p.

Proof: Let {P,: i =1..... k} be a realizer for GG. Let the diameter pairs be (a;.b;)
for | </ < k. Let dtam(G) =d. Thus, [(P)<dforall:=1,.... k. Recall that the
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distance between two vertices in the product is the maximum distance in a coordinate
(i.e. the projection onto a path) over all coordinates. If two diameter pairs (a;. b;)
and (a;, b;) are separated in the same coordinate then they produce a diameter triple
or 4-tuple. Thus. each pair must be separated in a distinct coordinate and so at least

p paths are required and idim(G) =k > p. m]
Lemma 3.2.2.10 For n > 3. idim(C,) = [n/2].

Proof: A cycle has no diameter triples or 4-tuples. Let C = {co.....¢cn—1}. There
are [n/2] distinct diameter pairs, specifically ¢;,ciyjns2). 0 < ¢ < [3] — I. Hence.
by the previous lemma idim(C,) > |[n/2] for all n > 3. So for n even we have
idim(Cn) > [n/2]

In the case of odd cycles we can improve the lower bound by one. We label the
vertices as {cg.....Com}- We may assume that ¢y and ¢,, are separated by the first
coordinate with ¢y being mapped to 0 and ¢, to m. Now ¢;. 0 < ¢ < m. is mapped
to {. Consider ¢; and ¢n4+,- They can not be separated in the first coordinate and
thus require a second coordinate. Again. in the second coordinate the vertex c;.
Il <i<m+ 1 is mapped to : — L. Inductively. consider ¢; and cm4;. These vertices
can not be separated in the first j — | coordinates. since ¢; is not mapped to 0 or m
in any of these coordinates. Thus they must be separated in say the j** coordinate
and cj4+; is mapped to ¢ for 0 <: < m.

For 0 < j < m — 1, this is just making specific the proof of the preceding lemma.
We now continue. Consider ¢, and ¢;,,. The m coordinates of ¢,, are completely
specified and are m.m — 1,....1. If only m coordinates were to be used then this
pair must be separated in the first coordinate and the first coordinate of ¢4, is
m — i. Inductively again. consider cn4; and ¢;—;. j < m. For ¢,y only the j + 1%
coordinate is m and none is 0. Thus. this pair must be separated in the ; + 1%
coordinate. Therefore, the j+ 1°* coordinate of ¢y 4 is m — i. Finally, consider cap.

Now all its coordinates are specified and are 0.1....,m—1, and so are the coordinates

of ¢;p—y specifically m—1.m—2,....0. But then the distance of the image of ¢,,, from



Cm—1 15 less than m — | which is impossible. Hence. another coordinate is required to

separate this pair and idim(C,) > [n/2] when n is odd.

To show that idim(C,) < [n/2]. let C = {cy...., .c.} and also let {P,. P,.....
Prn/21} be the set of paths of C' such that P; = {¢;. cit1- .- .. Citlnyaytfori=1..... [51-
Also let f7 be the distance retraction map of (¢ onto P7. We will now show that every
pair of vertices is separated on at least one of these paths.

Choose any two vertices ¢, and ¢, on ' where 1 < a < b< n. If a < [n/2] then
¢, and ¢ are separated on the path P;. If [n/2] < a < b then both ¢, and ¢; lie
on the path Pp,/; and are therefore separated on Ff, 5. Hence. by Lemma 3.2.2.2.
idim(C,) < [n/2] and we have idim(C,) = [n/2]. a

Note that idim(C,) = [n/2] = |V(C,)| — diam(C,). This satisfies the upper

bound on strong isometric dimension given in Corollary 3.2.2.4.

Let upper girth of a graph G. denoted by ug(G). be the cardinality of the longest
isometric cycle in (. Since the strong isometric dimension of a graph is at least as
big as the strong isometric dimension of any isometric subgraph the preceding result

can be used to show:
Corollary 3.2.2.11 Let GG be a finite. connected. reflerive graph. then
idim(G) > [ug(G)/2].
Lemma 3.2.2.12 Let Q. be the hypercube with 2% vertices. Then idim(Qy) = 25!

Proof: Since Q> = C, by Lemma 3.2.2.10 we have idim(Q,) = 2. Furthermore. Q,
has two diameter pairs.

Now. inductively. assume that Qr_, has 2¥~2 diameter pairs and that idim(Qr_;) =
25=2 Let Qr = Qx—10OP, where P, = {a.b}. Then V(Qi) = AU B where 4 =
{(v.a) = v, : v € V(Qr=1)} and B = {(¢v.b) = vy : v € V(Qr-1)}. Note that
do,(va.ys) = dg,_,(r.y) + | and dg, (ra-ya) = do,(T6-ys) = do,_, (2. y).



If r and y are diameter pairs in Q~; then z, and y; are diameter pairs in Q. as
are r; and y,. Hence. Q; has 2¥~! distinct diameter pairs. Since @ has no diameter
4-tuples or triples then by Lemma 3.2.2.9. idim(Qy) > 2F-1.

For each v, € 4 let P, be the longest isometric path starting at v, and let
fi. Qi — P}, be the distance retraction map. Then each vertex in - is separated
from all vertices in AU B by at least one of (P, . f; ). Furthermore. for any .y, € B
we have f. (ys) — fr.(Tp) = d(xa.yp) —d(xq. 1) =d(x.y)+ 1 — 1 = d(zxs.ys). Hence.
every pair of vertices in B are separated on at least one path. Since every pair
of vertices in V'(Qy) are separated on at least one P, . by Lemma 3.2.2.2 we have

idim(Qr) < 2% and thus idim(Qy) = 251, )

The last few lower bounds are based mainly on neighbourhood considerations.
They are in terms of the maximum degree A(G). the chromatic number \(() and
the independence number of the neighbourhood of a vertex 3(.V(v)). For our purposes

we define 3V(G) = max{3(N(v))|v € V(G)}.

Theorem 3.2.2.13 Let (& be a finite. connected. reflerive graph. Then
(a) idim(G) > [loga(ANG) + 1)]:
(b) idim(G) > [log, 3¥(G)]:
(c) idim(G) < [logo(\(G))].

Proof: Throughout this proof let {P,. P;..... P} be a realizer for ;. Let F : (¢ —
&%, P; be an isometric embedding of G in &% | P,. Recall that we denote by ¢ =
(rr.vo.. ... ri) the vertices of Ef":lP,-.

(a) Consider a vertex a € F(G) such that @ = (ay.a3....ar). Forany r € N(a) we
have |7;(2)—w;(a)] < l forevery i = l..... k. Hence. 7{(r) € {¢;—l.a;.a;+1}. Since
E # a. there are 3 — 1 possible vertices onto which + may be mapped. Since each
vertex in .\(«) must be mapped to a unique vertex in &%, P; then |N(a)] < 3* — L.

Therefore. A((7) < 3% — | and thus k > log,(A(G) + 1).

(b)If idim(G) = 2 then it is easy to see that 3V(G) < 4.



Choose any a € F(G) and where @ = (a;.as....ax). Then for each ¥ € .V(a).
dp(7i(z).7(a)) < | foreach: = 1..... k. If [ C N(a) is an independent set then
each pair of vertices in [ must be separated by at least two on some F;.

We proceed by induction on k assuming that in a product of k— 1 paths 3¥(G) <
k=1

Let [ be an mdependent set in N(a) with [ = AUBUC where A = {7 : 7 (T) =
ay —1}. B ={r: m(%) = a}. and C = {% : = (%) = a; + 1}. Since any two
vertices of A U B are not separated on P; they must be separated on at least one of
the other & — | paths. Let R be the set of verticesin ®@%_,P; obtained from AU B by
dropping the first coordinate. Thus R is an independent set and |R| = |A U B|. By
induction we have |4 U B| = |R| < 2%~!'. Similarly. we have [BU (| < 2!, Thus.
lAUBUC|=|I| <2*

(c) For each path P. i = I..... .k.in the realizer. let v; be an end vertex of P;.
Consider vertices r.y € ®5_ P,. We wish to place r and y in the same colour class if
dp (vi.7i(2)) = dp (vi.7:(y)) (mod 2) for every ¢ = 1....k. Hence. there are at most
2% colour classes. We must now show that no two adjacent vertices have been placed
in the same colour class.

Suppose . and y are two adjacent vertices in ®%_ ,P;. Then =;(r) and =;(y) are
adjacent in P; for at least one . Therefore. dp (v;.7:(z)) — dp (vi.7i{y)) = | (mod

2) for some i. Hence. r and y are in different colour classes and \( ®@%_, /) < 2%, In

fact. since ®%_, P; contains the complete graph A’ as a subgraph. \( w5 Py =2k,
Since (@ is a subgraph of ®m%,P; then \(G) < \(&%,P) and log,(\(()) <
log,( &% P;) = k = idim(G). a

Note that in the proof of part b). we have that |A| 4+ |B] < 2*~! and. similarly.
|IB] + |C'| < 2¥=!. Thus |A| +2|B| + |C| < 2*. Thus. for [{| = |A| +|B|+|C| =2~
we must have |B| = 0. Therefore, an independent set of this size is unique and is

{((l,’ + Ei)f:l c €= I or —1}



3.2.3 The Strong Isometric Dimension of Trees

We know show that the strong isometric dimension of trees is bounded in terms of
the number of leaves. The main result gives the bounds and the proof follows by
showing that for every tree T there are two associated trees T} and T>. obtained from

T by contraction or subdivision of edges such that idim(7T,) < itdim(T) < idim(T3).
Theorem 3.2.3.1 Let T be a tree with k leaves. Then
[log, k] < idim(T') < 2[log, k].

The theorem is proved by a series of lemmas. The first result is the basic manip-
ulation technique giving us a means of associating with a tree two other trees whose
strong isometric dimension is easier to calculate.

If ab is an edge of (& then G o ab denotes the graph after the edge has been

contracted.

Lemma 3.2.3.2 Let GG be a graph and ab € E(G) be a cut edge of (. Then
(a) idim(G o ab) < idim(G): and
(b) idim(H) = idim(G) where H is the graph obtained by subdividing the edge ab.

Proof: There are some general results needed in proving both parts of the lemma. Let

{P;:1<i< k}bearealizerfor (¢. Leta = (ay.a;..... ap)and b= (by.by..... bi) and
put A(ab) = b—a=(b—ay.....bp—ag). Relabelling P; if necessary allows to assume
that b; > a; for all /. If P, = {p1.p2.-...pm} thenlet Q; = {p1.pa-.... Pm-1 + pm}

Let (G,. GGy be the connected components containing «¢ and b. respectively. when
the edge ab is deleted. Suppose that © € G, and y € G,. Let P(a.y) = {z =
Loedpennnn. ry = y} be an isometric path between r and y in ¢G. Then we have
7i(y) — 7i(¥) = (7i(Xq) — 7i(Za-1)) + (Fi(Ta—1) — 7i(Ta=2)) + -+ - + (7(21) — 7i(To))-
Since every path from . to y passes through the edge ab then A(ab); = 7,(r;)—7i(T;-1)

for some 0 < j < d. Hence.

—(d —1) + A(ab); < 7i(§) — 7i(T) < d — 1 + A(ab):. (1)



If £ and § are separated by the i** coordinate then |m;(§) — 7;(F)] = d. From the

inequality above. we see that this is true only if 7;(§) > 7;(Z) and A(ab); = L.

(a) Note that the distance between r € (¢, and y € () is reduced by one after
the edge is contracted. Let g : G o ab — ®X_ | P be defined by g(v) = ¢ if v € G,
otherwise g(v) = ¢ — A(ab). Note that g(ab) is well defined: g(ab) = a by the first
part of the definition of g and equals b — A(ab) by the second part. but this latter is
equal to a. We claim that g is an isometric embedding of G o ab.

[fr.y € G,\{a.b}orzr.y € Gy\{a.b} then d(z,y) = d(g(r).g(y)) since m;(g(r))—
7i(g(y)) = 7i(T) — Aab)i — 7i(y) + Aab); = 7i(T) — 7i(y)-

I[f r € (G, and y € Gy then by equation (1). |7:(g(y))—7i(g(z))] = |7:(§) —A(ab);—
m(Z)|<d-1forall:=1..... k. Therefore. if ¢ is a separating coordinate of r and gy
we have 7;(g(y)) — 7i(¢9(xr)) = d — 1. Hence. i is also a separating coordinate of g(.x)
and g(y).

Since ¢ is an isometric embedding and thus an edge-preserving map and since
every pair of vertices are separated in at least one coordinate then by Lemma 3.2.2.2.

tdim(G o ab) < k = idim(G).

(b) H is obtained by removing the edge «b in (¢ and then adding a vertex. c. and
the edges ac and be. Let GG, and G, be the connected components containing a and
b. respectively. when the edge ab is deleted in G. Note that the distance between
r € G, and y € G 1s increased by one once the edge is subdivided.

Let g : H — =% Q; be defined by g(v) = ¢ if v € G,. g(v) = &+ A(ab) if ¢ € Gy
and g(c) = b. We claim that ¢ is an isometric embedding of H.

[fr.y € G,ora.y € Gy then d(x.y) = d(g(x).g(y)) since m;(g(r)) — =i(g(y)) =
7i(Z) + Aab); — 7i(y) — A(ab); = 7i(F) — 7:(§)-

Now suppose that + € G, and y € (. Then from (1) we have |7i(g(y)) —
m(g(x))] = |7:9) + A(ab); — 7i(Z)| < d(x.y) + 1. If [ is a separating coordinate
of ¥ and y then ={(y) > #:(r) and A(ab); = L. Therefore =;(g(y)) — =i(g9(x)) =
i
9(y)-

4

) + A(ab); — () = d + | and so ¢ is also a separating coordinate of g(x) and
)
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For any r € G,. d(g(c).g(x)) = d(b. £) = d(b.x). For any y € G,. d(g(c).g(y)) =
d(b.§ + A(ab)) = d(a + \(ab). § + A(ab)) = d(a.§) = d(a.y).

Since g is edge-preserving and every pair of vertices are separated in at least one
coordinate idim(H) < k = idim(G). Furthermore. G = H o ac. Hence. by part (a)
of the lemma idim(H) = idim(G). a

Proof of first inequality of Theorem 3.2.3.1. Let T = T be a tree with £ leaves.
We apply Lemma 3.2.3.2 a). to an interior edge of T and call the result T;. We
continue this and produce a sequence of trees ending with T;. a star with the same
number of leaves as Ty. From Theorem 3.2.2.13 b). we know that idim(T;) = [log, k].

Since T; has the same number of leaves as T, we therefore have what we require. i.e.
tdim(T) > idim(Ty) > --- > idim(T}) = [log, k]

Proof of second inequality of Theorem 3.2.3.1. We first construct from T the
required associated tree which has maximum degree three and no vertices of degree
two and whose isometric dimension is at least that of T.

Suppose there is a vertex ¢ in I such that NV(¢v) = {¢1.va..... v.} and n > 1L
Let T} be the graph obtained by removing the vertex v and adding the vertices .y
and the edges {rv).cvo. 0y yes. .. .. yv.}. Note that deg(r) = 3 and deg(y) = n — 1.
Since T = T, o xy then from Lemma 3.2.3.2 a). we have idim(T) < idim(T,). We
continue this producing a sequence of trees ending with 7. a tree with maximum
degree three. If T has no vertices of degree greater than three. let T, = T. [n either

case.
tdim(T) < idim(Ty) < --- < idim(T;).

Now suppose that T; has a degree two vertex. v. Let T;3; = T; o (vw) for some
vw € E(T). Note that by Lemma 3.2.3.2 b). we have that idim(T;4,) = idim(T}).
We can continue this thereby obtaining a sequence of trees ending with T}, such
that

tdim(T;) = tdim(Tj4,) = - -+ = idim(Tj4.).



Hence. there is a tree T/ = T;., with the same number of leaves as T such that
i+

all vertices of T’ are degree one or three and idim(T") > idim(T).

Suppose S is a tree such that all vertices have degree one or three. Obviously.
if S has only two leaves it is an edge and idim(S) = 1. Suppose that S has four
leaves. There is only one case to consider. We can find two orientations of S such

that there is a directed path between every pair of vertices. Hence. idim(S) < 2. (In

.

fact. idim(S) =2.)

e
S S,

Figure 3.5: The Orientations of the Associated Four-leaved Tree.

Lemma 3.2.3.3 Let S be a tree with 2™ leaves. n > | and all rertices of degree one or
three. Then there exists a degree three verter. v. such that each connected component

of S\ {v} has at most 2"~ leaves.

Proof: Suppose for every vertex. ¢ € V'(S) there is one component in S\ {v} with
more than 2"~! leaves. Let r be a vertex such that the number of leaves in that
component is minimized. Let A. B. and C be the three components of S\ {r}
where A has more than 2"~! leaves. Let y be the vertex in A which is adjacent
to r. Obviously. deg(y) = 3 since A contains more than one vertex. Consider the
components of S\ {y}. The component containing r is simply BU C U {x}. Since
A has greater than 2"~! leaves. BU C' U {r} has less than 2"~! leaves. Furthermore.
the other two components of S\ {y}. together with y form A. Hence. each of these

two components has fewer leaves than A. This contradicts the choice of r. Hence.



there exists a vertex v such that the components of S\ {¢} each contain at most 2"~

leaves. m|

We now continue the proof and assume that if S is a tree with 2™ leaves where
m < n — | and all vertices of degree one or three, then idim(S) < 2m.

Now consider a tree S with 2" leaves and all vertices of degree one or three.
Let v be a vertex such that all components of S\ {v} have at most 2! leaves.
Each component has an associated tree with all vertices of degree one or three. By
induction. each of these associated trees has strong isometric dimension at most 2n —
2. Hence. by construction of the associated tree. each component also has strong
isometric dimension at most 2n — 2. Then. by Corollary 3.2.2.8. each component has
a set of 2n — 2 orientations such that each pair of vertices in that component has a
directed path between them in at least one of the orientations. Let A. B. and C be
the three components. The component A has orientations {A;. >, ..... Aan_2}. Let
the orientations of B and C be denoted similarly.

For:=1..... 2n — 2 we can define the orientation S; as follows: if € is an edge
in A (respectively. B. (') assign e the same direction in S; as it has in 4; (B;. ().
Direct the three edges incident with v arbitrarily.

For S5,_, we wish to have directed paths from all the vertices in A to ¢ and
from v to all the vertices in BU (. This can be accomplished by directing the edge
connecting ¢ with A toward v. and then for each edge ry in E(A) direct & — y if
d(v.r) > d(v.y) and y — & otherwise. Then direct the other two edges incident with
v away from v and for each edge (y) in BU C direct ©+ — y.

For S,, we wish to have directed paths from all the vertices in 4 U B to ¢ and
from v to all the vertices in ('. This orientation is achieved in a manner similar to
the construction of S5,_;.

We now verify that there is a directed path between every pair of vertices in at
least one of these 2n orientations of 5. Suppose we have two vertices r.y such that
both are in A (respectively. B.(C). Obviously there is a path between the two in one

of the first 2n — 2 orientations of 5. Suppose that + € A and y € BUC. Then there
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is a path from r to y in Sy,—;. Suppose r € B and y € C'. Then there is a path
from r to y in S,,. Finally. there is a directed path between r € AUBUC and v in
both S5,_; and S,,. Hence. there is a directed path between every pair of vertices.

Therefore. by Corollary 3.2.2.8 :dim(S) < 2n.

To complete the proof. note that the given tree T with & leaves. where 2™~! <
k < 2™, can be isometrically embedded in a tree § with 2™ leaves by adding the extra
leaves at any interior vertex. There is also a tree S’ associated with S which only has
vertices of degree one and degree three. We know that tdim(T) < idim(S). Lemma
3.2.3.2 part b. gives that idim(S) < idim(S’) and the preceding argument shows that

tdim(S’) < 2m. Putting this together we obtain the desired result:

idim(T) < 2[log, k].

3.2.4 Problems.
Both cycles and hypercubes have an strong isometric dimension of [|V(G)]/2].
Problem 3.2.4.1 [s there a graph G such that idim(G) > [|V(G)]/2] 7

[s the upper bound for trees given in Theorem 3.2.3.1 the correct one? Both
binary trees and caterpillars have a strong isometric dimension of [log, {] where ¢ is

the number of leaves.

Problem 3.2.4.2 [s there a tree T such that idim(T) > [log, (]?

3.3 Cop Number of Graphs with Strong Isomet-
ric Dimension Two

[n this section we show that any graph with strong isometric dimension two has

cop number at most two. The strong product of two paths is known to have cop
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number one while the 4-cycle has cop number two. Hence. this bound is sharp. In
proving this bound we use the canonical retraction map. We use this result to obtain
an upper bound of diam(G) + 3 on the cop number of any graph G with strong
isometric dimension three. We then show that there are graphs with arbitrarily high
genus which have strong isometric dimension two. Therefore. high genus does not
necessarily translate to a high cop number. Finally. we pose a problem concerning
the possibility of extending the result for strong isometric dimension two graphs. to

graphs with higher strong isometric dimension.

3.3.1 Results

Theorem 3.3.1.1 Let G be a finite connected graph. If idim(G) = 2 then ¢(G) < 2.

Proof: Suppose idim((G') = 2. then G is an isometric subgraph of P, & P,, for some
n.m > 1. We may assume that n + m is minimum. Let V/(P,) = {l..... n} and let
f:V(G) = {(i.j): 1 £i< n.l <5< m} be an edge preserving map such that
f(G) is an isometric subgraph of P, & P,,. We identify G with this subgraph.

First. we partition the vertices of (¢ according to their first coordinate. Let -; =
{r € V(G):m(v) =i} foralli=1.2..... n. We claim that for each i = 1.2..... n
there exists an isometric path of GG which contains all the vertices of 4;. To see this.
let 4 = A, for some | <7 < n. Order the vertices of - by their second coordinate.
ie. 4 ={v.v9..... vr} where ma(v;) < ma(vj4q) forall j = 1.2....k — L. For each
J=1L12.... k — 1. let Q; be an isometric path in G from v; to vj4;. Now let R =
Q1U---UQk—_1. Note that for any pair of vertices u and v in A. d(u.v) = |ma(u)—ma(v)].
Therefore. _I;;ll d(vj.vjp1) = Zf;ll(fz(l'jﬂ) — m2(r;)) = ma(ve) — ma(vr) = d(ey. ve).
and the path R is isometric.

Hence. there exists a set of isometric paths R,..... R, such that for each i =
l..... n all the vertices of A; are on the path R;. By Lemma 2.2.0.6. we know that
one cop moving on f; can. after a finite number of moves. prevent the robber from
moving onto R;. Therefore. one cop can “protect™ the vertices in -; by moving on

the larger set R;. Now suppose that we have two cops. Place one cop on a vertex in
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A and the second on a vertex in 4,. After a finite number of moves the cops can
prevent the robber from moving onto A; and 4,. Therefore. once the cops have A;
and A, protected. the robber, if uncaptured. must occupy a vertex in A; for some
: > 2.

By induction. assume that for some & < n — | the cops have the sets A;_, and
Ay protected and the robber occupies a vertex in A; for some i > k. The cop
protecting Aj_; now leaves Rr_; and moves to protect the set A;;,. Meanwhile.
the other cop continues to protect the vertices of A;. The robber can obviously
not move from a vertex in A; for some ¢ > k to a vertex in Aj for j < k without
moving through a vertex in A;. Since a move onto A, would result in his immediate
capture, we can assume that the robber restricts his movement to the vertices in
Arpr U Agga U --- U A, Once the set Agy; is protected. the robber’s movement is
further restricted to App U AggaU---U A,

[f we continue in this manner. the cops will eventually protect the sets -,_, and
An and the robber will have no vertex which he can safely occupy. Therefore. two

cops are sufficient to apprehend the robber. a

We can extend this result to obtain an upper bound for the cop number of a graph

of strong isometric dimension three.

Theorem 3.3.1.2 Let (¢ be a finite connected graph. If idim(G) = 3 and G is an
isometric subgraph of P, &8 P, & P, where n < m < then ¢(G) < n + 2.

Proof: Let f : V(G) — {(¢.).k): 1 £i<nl <j<ml < k< I} bean edge
preserving map such that f(() is an isometric subgraph of P, ® P, & P,. I[dentify
G with this subgraph. We wish to partition the vertices of (& according to their
first and second coordinates. First. let B; = {v € V(G) : m(v) = j} and then let
Aij = {v € B; : m(r) = i}. Hence. 4;; is the set of all vertices in \"(G) with / as
their first coordinate and j as their second coordinate. As in Theorem 3.3.1.1. there
is an isometric path of G. R; ;. that contains all the vertices of 4, ;. [f 4;; is empty

for some :. j then let R;; be a path with zero vertices. Any cop assigned to an empty



set may occupy any vertex in (¢ and still be considered to be protecting that set.
Hence. the set of paths S5; = {Ry;, Ra.---. R, ;} covers all the vertices of B;. and a
set of n cops can prevent a robber from moving onto B;.

Now suppose we have a set of n+2 cops. {c1.....Cn-Cnp1-Cns2}- Let the cop ¢; pro-

tect theset 4;, fori=1..... n. Let ¢,y protect A, and ¢4, protect 45,. The cops

now force the robber to occupy some vertex in B, U B;---U B,,. Suppose. by induc-

sition. [f the robber is on some vertex. z. in Bjy, then he must be in A; 4, for some
t > p+ 1. Hence. any vertex in B, adjacent to r is protected by one of the cops.
Therefore. if the robber occupies a vertex in the set B, U---U Bp,. then it is impos-
sible for him move out of that set. The (n+2)™ cop can now move to protect the set
Ap+1.j+1 and thus. A, can be replaced with A,;,. Eventually all of B;,, is protected
by cops in B;4, and the robber will be confined to vertices in B4, U---U B,,. Note
this requires only n cops. Move the other two cops to protect A, ;> and Ay j+2 and
repeat this procedure.

By induction. the cops will eventually protect B,, and the robber will have no
vertex which he can safely occupy. Hence. the robber will be apprehended by one of

the cops and ¢(G) < n + 2. a
Corollary 3.3.1.3 [fidim(G) =3 then o(G) < diam(G) + 3.

Proof: Suppose (i is an isometric subgraph of P, ® P, & P, where n < m < |
and n + m + [ is minimized. Then [ — | = diam(G) and. by Theorem 3.3.1.2.

d(G)<n+2<[+2=diam(G) + 3. ]

We believe that the results in Theorem 3.3.1.2 and Corollary 3.3.1.3 are not the

best possible.
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3.3.2 Genus

We saw in the previous section that if i:dim((G) = 2 then ¢(G) < 2. We can contrast
this result with the genus result of Quilliot [46], ¢(G) < 2¢ + 3. It is the case that
for arbitrarily high genus. g. there is a graph of that genus with strong isometric
dimension two. and. thus. restricted clique size. To demonstrate this we use the

following theorem. where ¢g((’) denotes the genus of a graph G.

Theorem 3.3.2.1 (Battle, Harary, Kodama & Youngs [6]) [f two graphs G
and H are joined at a verter v (called G *, H) then p(G *, H) = p(G) + p(H).

Figure 3.6: G %, H

Now consider the graph Ps & Py in Figure 3.7. It has a vertex set of size 20 and
an edge set of size 35. For any planar graph. G;. |E(G)| < 3|V(G)| — 6. Hence. this
graph has genus at least 1. If we take n copies of this graph and associate vertices
as in Figure 3.8. then. by Theorem 3.3.2.1. the resulting graph has genus at least n.
By adding vertices and edges to this graph we can obtain an isometric subgraph of

P;, ® P,, that has genus at least n and cop number at most 2.
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Figure 3.7: P; 8 P,

Figure 3.8: n copies of P; ® Py with associated vertices.
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3.3.3 Problems

We saw that for any graph with strong isometric dimension two. we could partition
the vertices into sets A;, A,.... and then find an isometric path containing each A;.
Hence. the graph could be covered with subgraphs of strong isometric dimension one
where each subgraph “cut™ the graph into two parts. This resulted in a winning
strategy for two cops in the graph. If this technique is to be extended to graphs of

higher strong isometric dimension we must first answer the following questions:

Problem 3.3.3.1 Suppose (i is an isometric subgraph of P, @ P, ® P,. For each
t =1.2....n. does there exist an isometric subgraph H; in G such that idim(H;) <2

and H; contains all the vertices of A; = {v € V(G) : my(v) =1}?

Problem 3.3.3.2 [f the answer to Problem 3.3.3.1 is yes for graphs with strong
tsometric dimension three. then can we cover a graph G where dim(G) = d with

stmilar isometric subgraphs {H,. H,. . ... } such that idim(H;) <d—17

3.4 Isometric Subgraphs of the Strong Product
of a Graph and a Tree

We now show that if GG is an isometric subgraph of H = T for any graph H and tree
T. then we can cover the graph & with isometric trees. In Section 2.3 we defined the
minimum number of isometric trees required to cover a graph to be the tree-precinct
number of a graph. We determine that |V(H)| is an upper bound for T pn(G) for
any isometric subgraph G of H ® T. More important. however. is how we can use
these retracts to establish an upper bound on the cop number of G. We know that
(') < Tpn(G). but we will show an improved upper bound in Section .

Suppose H is a graph such that V(H) = {¢..... ta} and T is a tree. Suppose
there is an edge-preserving map f : V(G) — V(H & T) = {(vi.w)|w € V(T).i =
L..... n} such that f(G) is an isometric subgraph of H & T. We will associate ¢
with the subgraph f(G).
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Lemma 3.4.0.3 Suppose (i is an isometric subgraph of H @ T for some graph H
and tree T. Let A; = {v € V(G)[mi(v) = v;} for all | < i < n. Then for each
r=1.2..... n there erists a tree T; containing all the vertices in A; that is an isometric

subgraph of G. Moreover. 5(T;) is an isometric embedding of T; in T.

Proof: Let A = A;foranyi=1...., n and let {By. Bs..... B..} be a set of subgraphs

of & defined as follows:

p—

. By = {z} for some r € A.

o
.

AC B,. but A Z By for any £ < m.

3. Bry1 = B U P(u.v) where P(u.v) is an isometric path from u to v in G such
that u € Br. v € A\ By and the distance dr(7»(u).73(v)) is the minimum

among all such pairs of vertices.

We claim that the graph. B,,. is an isometric subgraph of GG and 75( B, ) is an isometric
embedding of B,, in T.

We need to show that for everv pair of vertices. r and y. in V(B,,) at least one
isometric path from x to y in (i is also in B,, and dr(72(x).72(y)) = d(r.y). The
subgraph B, is obviously an isometric subgraph of ¢ and =5(B,) is an isometric
embedding of By in T. If |A] > 2 then B, is an isometric path in . The end vertices
of the path B; are both in . and therefore. separated on T. Since B, is an isometric
path. then every pair of vertices in B> must be separated on T'.

By induction. assume that for some &£ > 1 and all 1 < j < k. B; is an isometric
subgraph of & and every pair of vertices in B, is separated on T. For any pair
of vertices r.y in G we will let d(z.y) denote their distance in G. d;(r.y) denote
their distance in B; forall i =1.2...., m and let d(73(x).72(y)) denote the distance

between m(r) and 7»(y) in T.

Case 1: Let xr and y be a pair of vertices such that r.y € P(u.v). Obviously.
dip1(r.y) = d(x.y) since P(u.v) contains an isometric path from r to y in . If the

vertices u and v are separated on T then r and y will also be separated on T'. Suppose



137

u and v are not separated on T. Then d(u.v) = d(m(u). 7 (v)) > d(72(u).7a(v)).
Since every pair of vertices in A are separated on T. then it must be the case that u
is not in A. Therefore. for some j = 1,2..... k—1.ué¢ Bj and u € Bj4+,. Suppose
Bjy1 = B; U P(r.s) where r € B; and s € A. Then u lies on the path P(r.s). but u
does not equal either r or s.

Since every pair of verticesin B; is separated on T. then d(u. s) = d(ma(u). ma(s)) >
d(m(u).7(s)). Since s.v € A we have 7 (s) = m(v). Hence. d(m(u).=(s)) =

d(m(u). 7 (v)) > d(7w2(u). m2(v)). Therefore. d(ma(u). w2(s)) > d(72(u). 72(v)). and

d(ma(r).wa(s)) = d(m2(r). m2(u)) + d(72(u), 72(s))
d(ma(r). m2(u)) + d(m2(u). m2(r))

>
2 d(ma(r). m(v)).

But d(m,(r). m2(s)) > d(w72(r). 72(v)) contradicts the choice of s and r as the pair with
minimum separation on .. Hence. all vertices on P(u.v) are separated on T. and
disr(2.y) = d(m5(2). 7).

Case 2: Now consider a pair .y such that © € B, and y € P(u.v). Let P, be an
isometric path from . to u in By and let P, be the isometric path from u to y on
P(u.v). We know the pairs (. u) and (u.y) are separated on the tree by induction
and Case L. respectively. Note that P, U P, is a path in By, since no P, is contained
in By and the path P; only has the vertex u in B.

Now. suppose that the path P = P, U P, is not separated on the tree. Since
7y is edge-preserving. it will map the path P onto a path in T. Since P is not
separated on T'. this means that P is mapped to a shorter path in T. Hence. for
some pair of vertices (a.b) in P, m3(a) = m3(b). Since P, and P, are separated on
T it must be the case that where « € P, and b € P, and neither « nor b is equal
to u. Hence. d(m(a),m2(v)) = d(72(b).72(v)) < d(72(u),m»(r)). Since a # u and
a € Bi. this contradicts the choice of u and ¢ as the pair with minimum separation
on T. Hence. P is separated on T which means that d(7s(x). 72(v)) = ((P) > d(r.y).
Since d(r.y) = d(72(r). 7(y)) then {((P) = d(x.y) = d(72(x). m2(v)). Hence. P is an



isometric path and r and y are separated on T.

Hence. for every pair of vertices = and y in Bi,, at least one isometric path
from x to y in G also lies in Bjy;. Therefore. By, is an isometric subgraph of
G;. Furthermore. every pair of vertices in By, is separated on T. This means that
d(x.y) = d(72(x).72(y)). Therefore. 73(Biy+,) is an isometric embedding of Bi,; in
T.

By induction. we conclude that T; = B,, is an isometric subgraph of G containing
all the verticesin A = A; forsome:i=1.2..... n. It is also the case that #(T}) is an

isometric embedding of T; in T. o

Obviously. each T; is a tree since there is an isometric embedding of T; in T.

T;isaretractof Gforall i =1.2..... n.. o

[n order to find a retraction mapping of G onto T; we first consider a retraction
mapping on T onto 7»(7;). One possible retraction map. g; : T — =5(7T;) maps each
vertex in T to the nearest vertex in m»(7;). Hence. we put g;(r) = y whenever

d(r.y) = uer‘rflzi(r% )((l(.r, u)).

Then g; is the identity on 72(7;) and maps every vertex in T \ m»(7T;) to the nearest
leaf in my(T;).

Let T = =»(T;) and ¢ = ¢; for some : = 1.2..... n. The map ¢ is well defined
since d(r.y) = d(r.z) = minyer(d(z. )) for some x in T, and some pair y and = in
T" implies that y = =. To show this, we let P(x.y) and P(x.z) be the paths from
to y and from & to = in T'. respectively. Since y and = are at minimum distance from

x. then P(r.y)NT' = {y} and P(z.z)NT’' = {z}. If  and y are distinct vertices
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in T’ then there is a path P(y, =) from y to = which lies entirely in 7”. This implies
that P(r.y)U P(x.z)U P(y.z) contains a cycle. This is impossible since T is a tree.
Hence. y = .

Now, we verify that g; is a retraction. Let T’ = =3(T;) and ¢ = ¢; for some
¢ = L.2..... n. Since g is the identity on 7”. it suffices to show that ¢ is edge-
preserving. Consider two vertices x and y in T such that © ~ y. If &+ and y are
both in T’ then g(x) ~ ¢(y) since g is the identity on T”. Suppose x is in T". but y
is not. Then . is the closest vertex to y in T'. Since the map is well defined then
g(y) = xr. Suppose that neither r nor y is in T’ and g(z) # ¢g(y)- Then there is a
path P(g(z).g(y)) from g(z) to g(y) which lies entirely in T’. If z and y are both
in T’ then g(r) ~ g(y) since g is the identity on T’. Suppose xr is in T'. but y is
not. Then x is the closest vertex to y in 7. Since the map is well defined then
g(y) = x. Suppose that neither = nor y is in T’ and g(x) # ¢(y)- Then there is a
path P(g(x).¢(y)) from g(x) to which lies entirely in T'. The paths P(x.g(r)) and
P(y.g(y)) intersect T' at g(x) and g(y). respectively. This implies that there is a
cycle contained in P(x.g(x))U{xy}UP(y.g(y))U P(g(x).g(y)). This contradicts the
fact that T is a tree. Hence. g(r) = g(y) and g is edge-preserving.

Since g is edge-preserving and the identity on T it is. therefore. a retraction.

Then. similarly. a retraction map. f; : G — T,.foralli = 1.2..... n can be defined

as follows: for v € V(&) put f(v) = w where
d(m2(v). m2(w)) = rur}sig(d(f«'z(v)- wa(u)).

Now. the map f; can be written as the composition of maps fi{(G) = hi(gi(72(G)))
where h; : 73(1;) — T; is the inverse of 7, restricted to T; (h;(v) = w where =m3(w) =
v). The map h; is edge-preserving since T; is separated on T'. Since 7. ¢; and h; are
all edge-preserving. then f; is edge-preserving. Furthermore. f;(T;) = T; since g¢; is
the identity on 7»(7;) and h; is the inverse of 7, restricted to T;. Therefore. f; is a

retraction map of ¢ onto T;.

Since the vertices of an isometric subgraph. G of H ® T can be covered with
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[V'(H)| isometric trees. we have an upper bound for the tree-precinct number of .

Lemma 3.4.0.5 I[f G is an isometric subgraph of H & T for any graph H and tree
T. then Tpn(G) < |V(H)|-

This follows since the tree-precinct number of G is. by Lemma 2.3.5.1. the mini-

mum number of isometric trees required to cover .

3.5 Isometric Subgraphs of the Strong Product
of a Graph and a Cycle

As in Section 3.4. we show that any isometric subgraph G of H & C'. where H is
any graph and (' is any cycle. can be covered with a set of subgraphs of &G which are
also retracts. In this case each subgraph is either an isometric path or an isometric
cvcle. Our motivation is to use these retracts to establish an upper bound on the cop
number of (;. This is addressed in Section 3.6.

Suppose (7 is an isometric subgraph of H & C for some graph H and cycle C'. Let

we can construct an isometric subgraph of ¢ which contains all the vertices of A;.

Lemma 3.5.0.6 Suppose (G is an isometric subgraph of H & C' for some graph H
and cycle C. Then for each i = 1.2.... . n there erists a graph W containing all

the vertices in A; that is an isometric subgraph of G. Moreover. wy(V") is either an

isomelric path in G or m(W) =C.

consists of a single vertex. then A is obviously an isometric path in . If |A] = 2 then
let P be an isometric path joining the two vertices of A. Hence. P is an isometric
path in G containing all the vertices of A.

Suppose |A] > 3 and let + and y be two vertices in A such that d(r.y) =

max, yea(d(u.v)). Then d(xr.y) < m/2. Since A contains at least three vertices
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then we are able to choose a vertex =z € A such that d(z.z) < m/2. Let k =

d(r.z) = d(ms(r).72(z)). Since r and = are separated on ('. we can label the
vertices of (' with integers {0.1.....m — 1}. such that 7»(z) = 0 and =»(z) = &
and 0 ~ 1 ~ -+ ~m—1~0. Now. let A = {r = wo.wy..... w,} such that

0 = ma(wo) < m2twy) < --- < ma(w,). Let a; = m(w;). Note that ag = 0.

Let P, be an isometric path in G from w;_.; to w; for each ¢ = 1.2....t. For
every pair of vertices w;_, and w;. d(w;—;.w;) = d(a;-;.¢;) < m/2. This is true for
wo and w; due to the labelling of the vertices of C'. It is true for all other w;_; and
w;. since d(aj—y,a;) = m/2 for some [ > | implies there is no vertex w € A such
that m(w) = «; for any «; such that a;-; < a; < a;. Hence. maxi_,(d(0.¢;)) =
max(d(0.a;-).d(0.a;)) < m/2 since d(0,a;—;) + d(0.a;) = m/2. This contradicts the
choice of labelling of .r.y which were chosen to be a pair at maximum distance.

There is only one isometric path on C between two vertices at distance less than
m /2 apart. Since the projection 72 of a path between two vertices separated on C’
is a one-one mapping. then 7(F;) is an isometric path from «;_; to a; on C". Due
to the labelling of C'. the isometric path #»(P;) on C' must be 7»(P;) = {ai—y.a,—1 +

Let P = U¢

=1

P;. Since the projection of two paths P; and P, on ( intersect only
at one end vertex. if at all. then the paths themselves are either disjoint or intersect
only at a common end vertex. Hence P is a path and I(P) = «a,.

If (P) = d(wo. w;) then P is an isometric path in GG containing all the vertices in
A. Hence. " = P is the desired isometric subgraph. If P is not isometric then let
P,y be an isometric path in G from w, to wg. We claim that I¥" = PU P,;, is a cycle
on m vertices. Since d(w;. wg) = d(a,.0) < a, then d{(w,.wo) = m — a,. Hence. the
isometric path Py must have the projection wm(Pry1) = {ar.ar + 1..... m — 1.0}.
Hence. P4, is disjoint from all vertices in P except wg and w,. Hence. W} is a cycle

on m vertices. Furthermore. 7y(W') = C. a

Let I} be an isometric subgraph of &G which contains all the vertices in -; such

that I is either a path or a cvcle on m vertices and w(VV;) is an isometric embedding



of W in C.

Lemma 3.5.0.7 If G is an isometric subgraph of H & C for some graph H and cycle
C and {Wy. W,..... W} are the subgraphs of G described above. then W; is a retract

Proof: It was shown in Lemma 3.5.0.6 that W’ for each { = 1.2....n is either an
isometric path or a cycle. If W; is an isometric path. then it is a retract and the
canonical retraction maps GG onto Wi. If W is a cycle then (W) = C. as shown in
Lemma 3.5.0.6. Let f : G — W; where f(u) = w whenever wy(u) = m(w). We can
write f(G) = g(72(G)) where ¢ is the inverse of 75 restricted to W;. Since 7> and ¢
are both edge preserving, and f is obviously the identity on W7. then f is a retraction

of (- onto W;. Hence. W} is always a retract of G. a.

3.6 Road Blocks and Cop Number

If we are playving a game of cops and robber on the graph G which is an isometric
subgraph of H & T then. by Lemma 2.2.0.1. after a finite number of moves. a single
cop moving on T; can guarantee the robber’s capture if he ever moves onto a vertex
in T;. and hence. ;. This follows since T; is a retract of ¢ and ¢(T;) = 1 for all
r=1.2..... n. We will say that A; is protected when the cop on T; has captiured the
image of the robber in T;.

Note that the strategy for one cop to win a game of cop and robber on a tree T
is for him to move toward the robber on the path joining their two current positions.
Then the cop makes at most diam(T) moves in capturing the robber. Since each T;
can be isometrically embedded in T'. it takes at most diam(T) moves for the cop to
catch the image of the robber on each T;.

We will find a winning strategy for a set of cops in G by considering a strategy in
H. We know that if the robber is moving in G then ¢(H) cops can catch the image of
the robber projected onto H. Suppose we attempt to translate the winning strategy

from H onto G by letting a cop in G protect A; whenever a cop in H moves onto ;.
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If 4; could be protected after a single move. then ¢( H) cops have a winning strategy
in ¢. Unfortunately. we can not alway protect A; in one move. since it may take a
series of moves to reach a vertex in T; and up to diam(T) moves to catch the image
once we are there. Meanwhile. the robber is moving as usual. During the time the
cop on I; was moving to protect A;. any moves made by the associated cop on H
have not been translated onto GG. Since the cop on & will “fall behind™ the cop on H
in such instances. it is unlikely that this strategy on G will be successful.

However, if we can find a winning strategy for a set of cops on H where the ~pace”
of the game is irrelevant to their strategy. then by translating that strategy to the
graph ¢ in the manner previously described, we also have a winning strategy in G.

Suppose the cops occupy a set of vertices S. Let the robber space be the
component of H \ S containing the vertex currently occupied by the robber. Since
we are looking for a strategy that does not depend on the pace of the game. we will
assume that the robber can reach any vertex in the robber space on his turn. We.
therefore. need to reduce the robber space to a single vertex and then capture the
robber.

We now introduce a process which begins with a cut-set S and gives a series of
cut-sets which will reduce the robber space.

The Process:

0)Let 7 =1 and let R, be any component of H \ S|.

L)If R; is not a single vertex then find a vertex y € R; and a vertex.r € S; such that no
vertex in R;\ {y} is adjacent to z. If such a pair exist then let S;1; = (S;\ {«})U{y}.
and let R;y, be any component in H \ S;;; such that R;;; N R, # 0. Replace / with

¢ + | and repeat (1).

The process terminates when R; is a single vertex or S;,; can not be formed. Let
S1.S. ... Sn be all the cut-sets formed in the process.

We claim that R, C R,-1 C R.—» C --- C R;. Suppose this is not the case. Then
there a vertex u in R; which is not in R;_;. Hence. u € H \ R;_,. Let v be a vertex

in R; N R;_; such that the path from u to v in R; has minimum length. Then the
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path from u to v goes through S; but not S,. Hence, the only path in R; from u to
v includes r. Since v was at minimum distance from u. then v ~ r. Hence. v = y.
However. y € R; since y € S;. Therefore. the claim is correct.

I[f a cut-set S; will always generate a set 5,.5;,....5, as described above such
that R, is a single vertex then call S; an initial roadblock and call {S;.5;..... Sa}
roadblocks. Let the minimum |S| for all initial roadblocks. S. be the roadblock
number of H. denoted rb( H). We chose this terminology because each roadblock
prevents the robber from moving out of his current robber space. just as an actual
road block would prevent a robber from leaving town.

Consider the graph H in Figure 3.9. Let S; = {«.b}. The graph H \ S, consists
of two single vertices and a 3-path. According to the process above. if we chose R,
to be a single vertex we are done. Suppose R, is the 3-path {f.c.g}. Then we can
let S5 = {b.c} since no vertex in R; \ {c¢} = {f.g} is adjacent to «. The components
of H\ S5, are the single vertices f and g and the 3-path {d.«.e}. Hence. R, must be
either f or g according to the process. Hence, the process terminates with R, being
a single vertex. Since the choice of S; = {a. b} as our initial cut-set will always result

in R, as a single vertex. S| is an initial roadblock for this graph.

d f

€ g

Figure 3.9: A graph H where S; = {«.b} is an initial roadblock.
The following lemma is proved by finding appropriate initial roadblocks:

Lemma 3.6.0.8 [f T is any tree and C is any cycle. then
(a) r&(T) =1:
(b) r6(C) = 2.



Proof: (a) Choose a vertex which is not a leaf in T and call that vertex v;. Then
Sy ={v1} is a cut-set. Let R, be any component of T\ {v;}. Then there is a vertex
v adjacent to vy such that v; is in Ry. If Ry # v, then let S; = {v»} it is obviously
a cut set and v, is the only vertex in R; adjacent to v,. Then R, is any component
of T'\ S, contained in R;. Since starting with S as our initial roadblock is similar to
starting with 5;. we can find S5 similarly. Since all S; can be found in this manner

and R; C R;~ the process will continue until we obtain R, which is a leaf.

then we are done. Otherwise. Ry = {vy,vs..... tn}. The only vertex adjacent to vs
in Ry is vy, so we let S, = {v;.v4}. Then Ry = {vs.v6....v,}. Then we have the
roadblocks {51, S2.....5.,-3} where S; = {v1.vi42} and R; = {vig3. Cigye-...tn} for
all:=1.2..... n —3 . Therefore. R,_3 is an single vertex and rb(C’) < 2. Any vertex
v; in C is adjacent to two vertices in C'\ {v;}. Therefore. if S| is a single vertex there

is no choice for S5. Hence. r&(C') # 1 and rb(C) = 2. o

These roadblocks can now be used to give a winning strategy for a set of ro( H)+ 1
cops to win on H. Furthermore. this strategy can be translated to a winning strategy

in . as previously described.

Theorem 3.6.0.9 [fG is an isometric subgraph of H & T where H is any graph and
T is any tree. then c(G) < rb(H) + 1.

Proof: The strategy for the rb(H) 4+ | cops to win on H is as follows: First. they
occupy an initial roadblock S, where |S;| = r6(H). Two cops will occupy a single
vertex. Deem one of these cops the “spare”™. Then R, is chosen to be the component
of H\ 5| containing the robber. The second roadblock S, is determined accordingly-.
The spare cop then moves to the vertex y; = S5\ S;. Once he occupies y,. the cop
on r; = 51\ S, is the spare. Since S, is protected. the robber is now confined to
some component R, is H \ S, where R, C R,. This process repeats until the robber
is confined to a single vertex and then the spare cop moves on him.

Now. the winning strategy on G is to take the winning strategy for the game

played on the projection of (¢ onto H and whenever a cop would move to a vertex ¢
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in H. we will move a cop to (v ® T) NG and the vertex v in H is considered to be
occupied once (v & T) N G is protected.

Therefore. the robber will be confined to the set (R, & T)NG. then (R, a T)NG.
and so on. until he is confined to (R, & T') N . where R, is a single vertex. Then

the spare cop moves to capture the robber in (R, & T)NG. O
The following is a consequence of Theorem 3.6.0.9 and Lemma 3.6.0.8:

Corollary 3.6.0.10 Let T, and T, be any trees and let C' be any cycle.
(a)If G is an isometric subgraph of Ty & T, for trees Ty and T then c(G) < 2.
(b) If ¢ is an isometric subgraph of C @ T where C is a cycle and T is a tree then
co(G) < 3.

While our discussion has centered around & as an isometric subgraph of H & T
where T is a tree. the same arguments can be used to give an upper bound for the

cop number of an isometric subgraph H & C where (' is any cycle.

Theorem 3.6.0.11 [f (i is an isometric subgraph of H ® C' where H is a graph and
C' is any cycle then o(G) < rb(H) + 2.

Proof: The winning strategy on G is the same as in Theorem 3.6.0.9 except that we

require rb( H)+2 cops to protect (S; @ C)NG. Let S; = {vy.va.. ... vepgry - Without
loss of generality suppose {I". W5 ... Wi} are cycles and {7 . Wi .. ... Wosy} are
paths. Place one cop on each W; for / = 1.2..... ro(H). Add a second cop to 7 to

capture the image of the robber on ;. Once this is done. one cop stays on the image
and the second cop moves to 1 and the two cops catch the image of the robber on
¥, This continues until the image of the robber is caught on H; forall i = 1.2..... l.
For [+ 1 < ¢ < rb(H). only a single cop is needed to catch the image of the robber.
Once each of the 11;’s is protected. a total of rb( H) cops are protecting (S, a C)NG
and we have two spare cops. The cops continue to move as in Theorem 3.6.0.9 except
in this case we always have two spare cops to catch the robber on the next retract.

. 0O



This gives us the following corollary which is evident since. by Lemma 3.6.0.3.

rb(C’) = 2.

Corollary 3.6.0.12 I[f G is an isometric subgraph of 'y ® C, for any cycles C', and
Cy then ¢(G) < 4.

3.6.1 Problems

For trees and cycles the roadblock number is small and the initial roadblocks are easy

to find.

Problem 3.6.1.1 Are there other classes of graphs in which small initial roadblocks

can be found?

Finding a roadblock in graph H was an effective way of finding an strategy for
G where (G was an isometric subgraph of either H & T or H & C because we could

cover the graph (& with retracts.

Problem 3.6.1.2 Suppose G is an isometric subgraph of [ @ H for some graphs [
and H. [s there family of graphs besides trees and cycles such that if [ is a member

of that family then we can find a set of retracts which cover all the vertices of GG?
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