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Abstract

This hesis is a study of several statistical modeling problems by stochastic com-
plexity.

At first, an index of predictive power, using the concept of complexity or minimum
description length, is proposed as a criterion to select the principal components of a
random v-ctor distributed in a parametric family.

Then, we consider the problem of selecting a mode. with the best predictive ability
in a class of generalized linear models. A predictive least quasi-deviance criterion is
proposed to measure the predictive ability of a model. Some results concerning the
consistency of this criterion are given. The method is also modified for finite sample
applications.

Thirdly a density estimation based complexity decision rule is proposed, which
uses the quality of these estimators to estiniate the corresponding unknown element
of the true probability density. The resulting complexity density decision procedure is
shown to be admissible, to achieve the minimum expected risk, and to form a minimal
complete class.

Fourthly a generalized histogram density estimator with unequal-width subinter-
vals is used to find both optimal and predictive optimal description of a sample. Both
optimal descriptions are e pressed in terms of the stochastic complexity. Uniform,
almost sure asymptotic expressions for both descriptions are given.

Finally, as an application of the stochastic complexity for optimal data description,
a new test procedure for hypotheses of homogeneity is proposed. Some examples and

simulation studies are further given to illustrate this test procedure.

ix
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Chapter 1

General Introduction

1.1 Introduction

In recent years a new general approach to problems of statistical inference, stochas-
tic complexity, has been developed by Jorma Rissanen. This approach takes the point
of view that any statistical model is merely a human attempt to describe or explain
the truth in the system generating data; and that such models are to be assessed in
terms of their success at this task. In the theory of stochastic complexity, the model
assessment is conducted under the principle of minimum description length (MDL).
To find the description length (or predictive description length, or stochastic com-
plexity) of an employed model with a sequence of an observed data string, a prefix
coding procedure is supplied to encode the data string into a sequence of binary digits
in two steps. The first step is to encode the data string under the employed model
while the second step is to give a codeword indicating how comp!~x it needs to be
to specify the employed model in the assumed model class. The resulting two-part
code length gives a measurement indicating the success of describing or explaining
the random structure in the observed data string. The stochastic complexity is an
abstract notion giving the shortest required length for describing the data by using
the models in the assumed model class (or model classes). It provides the rationale for

the minimum description length principle, which was developed under the inspiration



of the algorithmic notion of information by Solomonoff (1964), Kolmogorov (1965),
Chaitin (1975) and others.

The theory of stochastic complexity has a great potential in statistical analysis. It
is well suited to statistical model selection, where it generalizes the maximum likeli-
hood principle, the maximum entropy principle, Akaike’s AIC and Jeffreys-Schwarz-
BIC penalized log-likelihood criterion. This thesis studies several statistical modeling
problems by applying the idea of stochastic complexity. It includes the principal com-
ponents selection in multivariate analysis, generalized linear model selection, decision
settlement of stochastic complexity estimation, nonparametric testing hypothesis of
homogeneity and general nonparametric histogram density estimation. However, be-
fore the full display of the study, we will briefly introduce the theory of stochastic
complexity in this chapter.

First we describe the connection between modeling and coding of data. Then
we describe the coding of integers. As an important element in the development of
stochastic complexity, the complexity in a coding system is demonstrated. Section 1.5
to Section 1.8 gives the main part of the theory of stochastic complexity, including
the two-part codes, the stochastic complexity, the predictive coding and the minimum
description length principle.

The materials in this chapter mainly come from the first three chapters of Ris-
sanen’s “Stochastic Complexity in Statistical Inquiry (1989)”, and from his papers
(1983,1986a,1987). In addition, we describe some of the latest development in this

area.

1.2 Modeling and Coding of Data

When encountering a real world phenomenon it is often necessary and useful
to understand it, to find out the pattern it follows, and then in turn to improve
our understanding of it. This way of knowing the world might be accomplished by

regarding the phenomenon studied as being generated from an unknown system, and



by describing the structure and behavior of the system.

To describe and analyze the system is not easy because what are generally available
are only the observations about the system, not the whole system itself. We must
collect measurements of various kinds, which we think give us information about the
unknown system, and then try to piece them together to give us an understanding
of its secrets. Based on this understanding we explain the observed phenomenon and
possibly further give a prediction for the future. This procedure of finding a pattern
in the observed data is called model building or modeling.

In information theory, description of a system car be made by the way of coding,.
Let A denote a finite or countable set called an alphabet. Write A™ for the set of
all strings of length n — each string consists of elements of A — and A* = |J3%, A"
for their union. For convenience, A® consists of the empty string, written as A\. The
system of study is usually referred to an information source { A, P}, which is defined
by the alphabet A and a probability function P with domain A* and range [0, 1)
such that P(A) = 1. The definition of information source is so general that a great
deal of flexibility of study is allowed. The observed measurements of the system are
expressed in terms of a finite string z = x,,-- - ,z, € A*, called a message. The coding
of the observed message is important for studying the complexity and properties of
the information source.

A code C is a single valued mapping from A* into B*, the set of all finite binary
strings. For a message = in A*, C(z) is also called a code without any confusion.
Nothing essential is lost by restricting the code alphabet to be binary.

To write a code for any message z = z;,*+,Z, in A*, it is enough to define a
codeword for each element in A if we assume all the z;’s are generated independently.
In this way a message z in A* can be encoded into a binary string by replacing
z;’s by their corresponding codewords and concatenating them together without any
commas. It is desirable that any encoded message of A® can also be decoded back
instantaneously. The word “instantaneously” means that for any code of a message

of A*, we can decode to the point we have reached with no necessity of reading the



whole code first.

If the code C is instantaneously decodable, it is called a prefix code. To ensure C
is a prefix code, the Kraft inequality must be hold, i.e.

Y 2ol < (1.2.1)

a€A
where L(a) = |C(a)| denotes the length of the codeword for a. Conversely, if we
are given a sequence of positive integers ng,n, - -, n; satisfying the Kraft inequality
Tk 52™™ <1 (here k could tend to infinity), we are also able to construct a prefix
code for each element of alphabet {0,---,k} with length defined by these integers.
Therefore, the Kraft inequality is equivalent to the prefix property, Rissanen (1989,
p. 23).

One of the maiu objectives with coding in information theory is to shorten the
description of a long data string (message). The question arises of how to construct
an optimal prefix code for an information source {A, P}. The formulation of the
optimization problem can vary. However, it is related to the distribution P and the

following inequality plays a fundamental role in answering this question.

Theorem 1.2.1 Let A be a finite or countable set, and let P and @ be two distribu-
tions on A. Then

— Y P(a)logQ(a) 2 = Y_ P(a)log P(a). (1.2.2)

a€A a€A

Moreover, the equality holds if and only if Q(a) = P(a).

Here and thereafter in this thesis, the logarithm is base 2 unless otherwise indi-
cated. The proof of this theorem can easily be completed by using Jensen’s inequality
and therefore is omitted.

Suppose C is a prefix code for A*, i.e. (1.2.1) is true. Then we can define a
distribution on A as follows,

9-L(s)

Q(a) = SR for any a € A. (1.2.3)



From Theorem 1.2.1 we have
Y P(a)L(a) + log (Z 2"‘(")) > —Y_ P(a)log P(a) (1.2.4)
agA a€A a€A
The inequality (1.2.4) can be interpreted to mean that for any prefix code C, mean
code length of C is bounded from below by the entropy
H(P)=-Y_ P(a)log P(a). (1.2.5)
a€A
This is the famous noiseless coding theorem due to Shannon (1948).

On the other hand, with the distribution P defined by the information source
{A, P}, a prefix code for A can be constructed whose mean code length does not
differ from the entropy by more than one bit. In Section 2.2.2 of Rissanen (1989) an
elegant algorithm — due to Huffman — for constructing an optimal prefix code for
A was given with code length as close as possible to — log P(a) for each a € A. The
perfect match for — log P(a) is not possible unless the probabilities of a;’s are integer
powers of 1/2.

Ignoring the difference of at most one bit, define Lr(a) = —log P(a) for a € A, as
a length function generated by P. Then we have the following results due to Dawid
(1992).

Theorem 1.2.2 For any information source { A, P} with finite or countable alphabet

and a prefiz code C with length function Lc, we have for all ¢ > 0,
P(Lc(a) < Lp(a) —€) < 27°. (1.2.6)

If we use " = x,,%3,++, T, to denote any message in {A, P}, then further Lp(z")—

Lc(z™) is bounded above with P-probability 1 as n — oo.

Proof: Denote E, = {a € A|Lc(a) < Lp(a) — €}. Then for any a € E,, it is easily
shown that P(a) < 2-°2-%<(?), Summing over all elements of E, and applying the
Kraft inequality gives P(E,) < 27° Y ueg, 2-4(®) < 2-¢ which is (1.2.6).

For the proof of the second part, we assume without loss of generality that C

satisfies Kraft inequality with equality. Otherwise we could shorten the code length



by —log (2aEA 2’[‘0(“)) for each element @ € A. Define U, = 2Lp(=")-Lcl=") =
Po(z")/P(z") where Po(z®) = 27L¢(=") can be shown to be a distribution. It is
readily shown that U, is a non-negative martingale under P :ad hence is bounded
above with P-probability 1 as n — oo and so is Lp(z") — L¢(z"). 0

Theorem 1.2.1 and Theorem 1.2.2 may be taken as establishing Lp as a length
function for the optimal prefix code of the information source { A, P}. In particular, if
we apply Theorem 1.2.2 to the encoding of long sequences of symbols, the per-symbol
message length achieved by any prefix code can not improve on that given by Lp by
more than a negligible amount, with arbitrarily high probability under P.

If we treat A", the set of all strings of length n in {A, P}, as a new alphabet, an
extended inforn-ation source { A", P"} is obtained, where P" is defined by indepen-
dence as assumed above. With these arguments we can construct an optimal prefix
code for A" with mean code length not differing from the entropy H(P") = nH(P)
by one bit.

So far we have discussed the coding which treats the symbol occurrences as inde-
pendent only. In practical situations, the independence condition cannot always be
guaranteed and for this reason, a powerful coding technique, the arithmetic coding,
which is designed to do the coding for general discrete random process, stationary or
not, was introduced. For detail, see Rissanen (1976, 1989), Rissanen and Mohiuddin
(1989), and Rissanen and Langdon (1981).

1.3 Coding of Integers

In addition to encoding a message coming from an information source {A, P}, we
also need to encode in a prefix manner, positive integers for which no distribution
is given. There is an efficient prefix code due to Elias (1975) for the set of positive
integers, which we describe below.

To understand the code construction, we start by encoding the integer n as its

binary representation. Such a code cannot be a prefix code, because its length function



or its upper bound log(2r), does not satisfy the Kraft inequality. On the other hand,
if the binary representation were followed by other binary symbols, as is usual in the
case when we encode a set of integers, we would not be able to recognize where the
representation ends. To overcome this difficulty, we supply the length [, of the binary
representation of n as a preamble, the length I; of the binary representation of {; — 1
as another preamble, the length I3 of the binary representation of I; — 1 as a third
preamble, and so on, until the k-th step where I, = 2. By this iteration, we obtain a
monotone decreasing sequence of integers n,l, 5, l3,+ -+, {k. Now we find the binary
representations of Iy — 1, li_a — 1, -+-,l; — 1, n and paste them together, and add
a symbol 0 to the end to indicate that the preceding binary representation is for the

integer n. By doing so, we construct a prefix code w(n) for n. Some examples are:

w(l) =0, w(2) =100, w(3) =110, w(4) = 101000, w(7) =10 111 0,
w(14) = 11 1110 0, w(15) = 11 1111 0, w(16) = 10 100 10000 0,
w(65651) = 10 100 10000 10011011100010011 0.

Here we insert some blanks in the codes for easier reading which, of course, are not
needed to decode the nuraber n. Note that I, the final length, is 2, so l;,_; = 3 or 4,
and the binary representation of I,_; — 1 is either 10 or 11. If k = 1 which implies
I =2o0r 1, then n = 1 or 2 or 3; the code of which is 0 or 100 or 110. For codes other
than these three, we can decode it as follows. First decode the first two symbols in
the code to the length I;_,. Then using this information decode the next lx; symbols
to get Iz, and so on, until decode the binary representation of n. For example, we
decode 16 out of w(16). We get 2 by decoding the first two symbols 10, this tells us
to decode the next 3 symbols 100 which returns 4, so we need to decode the next 5
symbols 10000, which is 16, then we run against 0 which means 16 is n hut not the
length information.

It is apparent that the length function of this code is approximately
L(n) =log"n + log c (1.3.1)

where log* = logn + loglogn + - - - in luding only the non-negative terms, and c is



a constant such that the Kraft inequality holds. Among these values of the constant
¢, we can select one which satisfies the Kraft inequality with equality. Such a value
of ¢ is ¢* ~ 2.865064, Leung-Yan-Cheong and Cover (1978) and Rissanen (1983).
From Section 1.2 we know there exists a prefix code with length function L*(n) =
log® n + log ¢* and further from Bentley and Yao (1976) we know that any monotone
non-decreasing length function L(n) of positive integers, which satisfies the Kraft
inequality, must equal or exceed L*(n) — 2k*(n) infinitely often, where k*(n) denotes
the number of terms in log*(n).
Define Q*(n) = 2-L"("), Q* is a distribution on the set of positive integers and by
(1.3.1)
Q*(n) = (c¢’nlognloglogn---)7. (1.3.2)

Rissanen calls Q*(n) the universal prior for the positive integers. This prior can be
extended to all non-negative integers ty defining @*(0) = 1/2 and replacing ¢* by
2¢". To extend this distribution to the set of all integers, add one to L*(n) and define
Q*(-n) = Q*(n).

Q" has the following optimum property, Rissanen (1983).

Theorem 1.3.1 For any distribution P(n) for the positive integers such that

(1) P(n)2P(n+1), n>M, for some M (1.3.3)
(23) = Lap1 P(n)log P(n) = oo, (1.3.4)
thc following holds N
. Tp= P(n)L*(n)
A;l-rgo - ZfﬂlP(n)log P(n) L (1.35)

Since it follows from Theorem 1.2.1 that the limit can not be smaller than unity,
we concluce that, if we encode large integers with the code length L*(n), we can do
no better even if with a distribution P(n) with which to design the code. Hence,
L*(n) can be taken to be just about the ideal code length for large positive integers.



Besides encoding one integer in a prefix manner, frequently there is a need to
encode a set of them. If the integers in this set are completely independent in the
sense that no one is affected by the others, then we only need paste their individual
prefix codes together to encode them. However, it is often the case that zhe integers
are of the same order of magnitude, a fact which we can take advantuage of. Consider,
then, a set of integers n,, ny, - -, nn, of which, say, m, are non-negative. A prefix
code of them can be constructed with about

(n + m)!
nl(m - 1)!

(m +1)!

+lo mil(m — my)!

L(nla e ,Tlm) = L‘(n) + lOg

(1.3.6)

bits, where n = "7, |n;|, Rissanen (Sect'on 2.4,1989). The coding process is briefly
described below. First encode the sum n = Y72, |n;| in a prefix manner. Then,
associate witl the absolute values of the integers |n,|, -+, nm|, & binary string. It
begins with |n,| 0’s followed by a 1, |n,| 0’s followed by a 1, and so on, until we reach
|7ym |, for which only |n,,| 0’s are added without adding a 1 term. This terminates the
string. This string has length n + m — 1 and has m — 1 1's. Conversely, any binary
string of that length with m — 1 1’s defines a set of m non-negative integers. Hence,
encoding such sets of integers is equivalent to encoding the binary string associated
with them. Define a probability distribution for the set of binary strings of length n
such that for each such string

m!(n — m)!

(n+1)!

where m = m(z) denotes the numiiser 5f1's in . Thus a prefix code can be constructed

P(z|n) = (1.3.7)

n+m)!

m—T)i] for a binuvy -tring with length n+m — 1 and m — 1 1’s. Finally,

of length log ¢
using (1.3.7), a prefix code can be constructed with length log M+!”:n+-lni+ ; for the
binary string with length m and m — m,. 1’s which is used to represent the signs of
the integers. In total, we need a prefix code with length (1.3.6) to encode ny, -+, npy.

Because of the relationship amongst the Kraft inequality, the prefix code and the
probability distribution, the length function of a prefix code is more important than
the code itself. The length function plays an important role in selecting an optimal

statistics model.
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1.4 Complexity in a Coding System

In Section 1.2 we demonstrated that for any information source {A, P} with a
finite or countable alphabet and a positive probability function P(z), —log P(z) is
actually established as an optimal length function for a prefix code. Namely, the
per-symbol message length achieved by any prefix code caniot improve on that given
by —log P(z) by more than a negligible amount, with probability 1 if n, the length

of the message string z, tends to infinity. For such reasons the number
I,(z) = —log P(z) (1.4.1)

is defined to be the Shannon complexity of the string z, relative to an information
source {A, P}. This is the fundamental idea of complexity, although it leaves the
crucial part, the information source, unspecified. For each message or event there
are necessarily two numbers, the event’s probability and its information (the optimal
prefix code length), end they are connected by (1.4.1).

An important issue in information theory is the construction of the most suitable
information source with which to represent the observed data. As seen above, we can
either search for one in terms of probability functions which define random process,
or we can look for suitable prefix codes. Such an information theoretic framework is
called a coding system, and the associated complexity is fundamental in determining
it.

For further study we need to give a precise definition of the coding system. Let A
be a finite or countable alphabet. Denote B = {0, 1} as the binary alphabet. Then a

coding system is defined to be a (decoding) function
D:S—- A" (1.4.2)

from a subset S of B* onto A*. Usually, the decoding function is not a one-to-one
correspondence, which means that each string 2 € A* may have more than one binary

string as the codeword to describe it.
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A coding system can be constructed from a universal computer, which belongs to
the theory of algorithmic complexity, Chaitin (1975), Leung-Yan-Cheong and Cover
(1978), Solomonoff(1978) and Zhvonkin and Levin (1970).

A coding system used in this thesis is the one constructed from a family of para-
metric distribution {P(z|0),z € A*,0 € O}, where O is assumed to be countable.
From Section 1.2 for each ¢ € O, — log P(z|0) determines a prefix code for A*. Denote
Sp as the set of all codewords of A* under a distribution P(z|8), and S, = Upee Ss.
Then it is easy to see that the decoding function D, : §; — A® is a coding system.

It is not appropriate to simply use the coding system to describe the system gen-
erating the observed data, as a redundancy exists in the sense that possibly more
than one codeword can describe each data string. We must eliminate this type of re-
dundancy to find a most suitable information source for the observed data generating
system.

For the coding system (1.4.2) and an arbitrary ¢ € A*, denote D~'(zx) as the
invers . image of z, i.e. D™!(z) is the set of all codewords for z under D. Partition
D~1(z) into a class of equivalent sets, where two binary strings u and v are said
equivalent if either u is an extension of v or vic: versa. If u is an extension of v we
say v < u and v is a prefix of u. For a set E of binary strings among which none is
a prefix of others, it can be seen Y,z 271! < 1, where |u] is the length of u. This is
the essential property the Kraft inequality characterizes.

Now take the minimal element from each equivalent class, the set of which is

denoted as D~!(z). It is readily seen that

Pz)= Y o™ (1.4.3)
u€D~1(z)
is less than or equal to 1. If "¢ 4. P'(z) =1, P'(z) will be a well defined probability
distribution on A*. The associated information source {P’, A} gives an optimal de-
scription for the observed data, which can be seen from the inequality — log P/(z) <
|u] for all w € D~?(z), i.e. the prefix code associated with P’(z) is the shoricst under
the coding system D.
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If ¥.cie P'(z) <1, we define a probability distribution P(z) and accordingly an
information source {A, P}, by the recursive normalization
P(z™)P'(z")
zzeA P’(zn7 Z)

where z", z denotes the string of length n + 1 formed by concatenating =™ with the

(1.4.4)

P(z% =1, P(z"*!) =

symbol z. By this way the prefix code length —log P(z) can be further shortened
from - log P'(z).
The complexity of z, relative to the coding system D, as defined by Rissanen
(1989), is
I(z|D) = —log P(z). (1.4.5)

Frem (1.4.5) and (1.4.3) it is easily shown that the prefix code length ~ log P(z)
for z is shorter than the length of any code of z in the coding syst-m. Therefore by
describing = in terms of ~ log P(z) we remocve the redundancy of the coding system

and obtain a shortest description.

1.5 Two-part Codes

In this section, we give the description of the data generated from an unknown
probabilistic model which belongs to an assumed class. The description procedure is
the so-called two-step encoding process, Rissanen (1989).

Let the assumed model class be denoted by
My = My(k) = {p(2l6), 7(6)} (1.5.1)

where z takes values in a measurable space X and 6 = (6,,0,,---,0;) denotes a k-
component parameter vector ranging over a closed subregion €. of the k-dimensional
Euclidean space R*. Here k is the dimension of the parameter 8 and we treat it as a
parameter. Suppose p(-|0) is an almost surely positive density function with respect
to a known complete, o-finite dominating measure v(-), so that the usual discrete and

continuous distributions are included. Here the () is a probability density of 4 on
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O, i.e. fo, 7(0)d0 = 1. It is classically regarded as a prior density but later we will
give an information theoretic interpretation.

Now the description of the data depends on the selection of the model from M,. It
is natural to conauct the description in two steps. First use a prefix code to describe a
model of M; from which the data is assumed to be gene.ated. Next, encode the data
into another prefix code using the assumed model, and then take the concatenation
of the two prefix codes as the description of the data.

However we have to overcome some difficulties before we can construct any prefix
code for the data. The prefix codes are built on the data or the message in which
each term ranges over a finite or countable alphabet A. Wher each data item ranges
over an uncountable set, as in the case of continuous distribution, there will be no
finite-length prefix code for the data. Such a problem also exists in describing the
models of M, if its size is uncountable.

To overcome these difficulties a quantization process should be employed before
conducting the two-step encoding process. A class of discrete dist.ibutions, M}, whose
size is countable can be constructed based on the quantization to approximately
represent the model class M;. Then the two-step encoding applied on M; gives us a
two-part code for the data r and th.. two-part code can be optimized by the optimal
parameters and quantization. We regard the resultant optimal two-part code as the
description of z relative to M.

The quantization for the data z is natural since z is usually observed to a pre-
scribed precision. However the quantization for the parameters § must be optimized.

Denote [z] as the quantization region that contains z; and d = v([z]) as the
precision of z. Suppose ihe data z is observed to the precision d, then in each [z]
only one z can be observed and there is no confusion using [z] to represent it. We
write [X] as the whole set of [z]. Suppose, in addition, we truncate the parameters
0= (6;,--+,6;) to 8§ = (6y,---,0) to some precision § = (6y,---,8), and write the

whole set of 8 as ;. With this notation, it is easy to see that

M; = {P([z]|9), 11(9)} (15.2)
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is a class of discrete distributions, the size of which is countable. Here P([z]|f) =
Jiz) p(z)0)v(dz) ~ p(z|@)v([z])) and TI(f) ~ =(8) 1%, & if the quantization is suffi-
ciently fine. Now we construct a prefix code C() for each § € Q; by using the results
in Section 1.2, the code length of which is given by L,(#) = — log I1(). Similarly, we
can construct a prefix code C(z|0), the length of which is L,(z|f) = —log P([]|0),
for the observe: data z if we employ P([z]|d) as the generating distribution. The

resultant two-part code

C(z,8) = C(6)C(z|f) (1.5.3)

can then be seen as a natural description of z relative to P([z]|0) and its total code
length is given by

Ly(z,6) = Li(6)) + Li(2|0)
= - log P([z}|0) — log I1(6)

k
= —logp(x]0) — log () - ) log 6 — log v([z]) + o(1)  {1.5.4)

i=1
if the quantization is sufficiently fine and p(z|0) and 7 (0) satisfy some smooth condi-
tions. Usually the precision d for z is already implied in the observations so v([z]) is
a constant. As our objective is to find a measure for model selection, we choose only

the dominating terms in (1.5.4) and define

Ly(z,8) = —log p(z|8) — log () ~ Elogc? (1.5.5)
i=1
as the two-part code length for z relative to p(z|0).

Among all the possible code lengths L,(z,8, where § € €, it is natural to choose
the one with the smallest length as the most suitable description of the data z, if we
only consider two-part encoding process; namely, we choose a § and its corresponding
information source { p(mla), [X]} as if the data z is generated from it so that it achieves

the minimum two-part code length

i=1

min {— log p(x|0) — log 7 (0 Z log §; } (1.5.6)
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The rationale for this choice of 8 lies on the results of Section 1.2 where we have
already demonstrated that — log @(z) gives the optimal code length for z if @ is the
distribution generating z.

Suppose the probability density functions p(z|0) and 7(#) are smooth enough so
that the minimization of L,(z, 8) is achieved at one finite point 6. Now L, (z, 8) can be
expanded in Taylor’s series around 6 and we can get information about the optimizing
precisions. Note that, subject to the smooth corditions, 6 which achieves (1.5.6) is

close to § within the truncation precision 8. Therefore by Taylor's expansion
Li(z,0) = Ly(z,0) + %(é - bz -0

k
< —logp(z|f) — log (f) + %626T =Y logé; (1.5.7)

i=1
where T denotes the matrix of the double derivatives of the function L,(z,8) with
respect to 8 evaluated at some point near é. By taking derivative with respect to 6

of the right hand side of (1.5.7), a minimax upper bound for Ll(z,é) is

k
Li(z,0,8) = —logp(z|f) - logx(f) + %msT -~ Y logé;

i=1
. ~  In2 k .
= —logp(z|0) - log = (0) + Tk - logé (1.5.8)

i=1

where § is the solution of the equation
(61, -+, 8)E = (671, -+, 6 ) In2. (1.5.9)

The estimated precision 4 is optimal, and by (1.5.7) Ly(z, 6,6 ) gives us an optimal
worst case two-part code length of the data z. Since (1.5.8) does not involve the
precision d and ‘he truncation precision § for 8 is optimized, we also regard it as the
optimal two-part code length for = relative to M;.

In statistical model selection we are often interested in selecting an optimal num-
ber of parameters for the assumed model. From (1.5.8) we can derive, under some
conditions, an asymptotic approximation which is quite useful for solving this di-

mension selection problem. Suppose that —logp(z]0) grows proportionally to the
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number of observations n, which is normally satisfied in most situations, the elements
of S = £/n are of the order of 1 regardless of n. Then from (1.5.9) §; = ci(n)/ /7,

where c;(n) is finitely bounded, and the expression (1.5.8) simplifies to the form
MDL,(k) = —log (p(xlé)ﬂ'(é)) + g— Inn + O(k). (1.5.10)

For large number of observations, (1.5.10) with the last term O(k) removed could
serve as a criterion to select the optimal dimension of the model, which is called the
MDL (minimum description length) principle. See Section 1.8 for more discussion.

In addition to the usual Bayesian interpretation, 7(#) can also be described as
a measure for the complexity of the model and therefore an order of preference: we
would prefer a model which is as simple as possible subject to the requirement that
it provides an efficient description for the da‘ . Technical advantages of using ()
can be found in the next section where we obtain a closed form of the stochastic
complexity from ‘he coding system which was introduced in the previous section.

If the data = comes from a distribution without a prior distribution we can use
the universal prior of integers to describe the distribution and then give the two-part
code length. This was done by Rissanen (1983), and described briefly as follows.

Suppose the model class for the data z is
M = My(z) = {p(=|0)} (L.5.11)

where z € &, 0 € Q; and p(z]0) is a density function all defined the same as for
M,. Assume moreover that the usual smooth conditions for p(z|d) hold so that
the maximum likelihood estimate 0 exists and the Taylor’s expansion of — log p(x|0)
around 0 is available.

To describe the data z, we need first to describe 8 in a prefix manner and then
describe = with the employed density p(x|@). The resulting two-part code length is
Ly(z,0) = Ly(z|0) + La(0). For a fixed 8, L(x|0) is equivalent to — log p(z]6) except
for a constant. This constant is completely determined by the natural precision of z,
and not important for the code length. With the same argument as before, we still

need a quantization for )i, otherwise no finite uniquely decodable code exists.



17

Usually we want the first term in Ly(z,60) to be dominant. We also want the
minimizing values for each set of parameters to be close to the maximum likelihood
estimates. The problem thus is to decide on the precision to be used for the maximum
likelihood estimates of 8. Clearly, if we use a coarse precision, the second term Ly(0)
in Ly(z,0) will be small, but the first term will grow from its minimum, since we
are generally no longer using the correct maximum likelihood estimates due to the
truncation.

Keeping these in mind, we partition €}, into a set of identical k-dimensional par-
allelepipeds and truncate every 8 in Q, to the center 8 of the paralielepiped in which

it falls. The truncation precision é for the parameter 8 is determined by
SM(6)6T = 5 (1.5.12)

which comes from the Taylor’s expansion

1

S0~ )M (6)(d - 6)T (1.5.13)

L~

~ log p(z|6) ~ - log p(z|6)) +

in which we wish to control the second term by a temporarily prescribed vy. Here
M(0) is the matrix of the double derivatives of the function — logp(z|6)), and b is
.he center of the parallelepiped containing .

Now we start from the parallelepiped which is in volume the largest inscribed
rectangle of the ellipsoid (8 — §)M(6)(6 — 6)7 < 4. Its the volume is V(v) =
(4y/k)*1?\/det M (é) Shift this parallelepiped respectively along each of its k sides by
the corresponding distance 2\/m, where ); denotes the i-th eigenvalue of M (é)),
then proceed with the same shifting for each of the k new parallelepiped and continue
the operation until {2, is covered by these parallelepipeds. The resulting set is denoted
by Qi = {0,0 € 0,}. Next we order these parallelepipeds by assigning an integer
index to each of them. This can be done by using the natural distance §M(8)07 and
enumerating ) in a right-handed system. As a consequence of this enumeration the
index n(0) is given approximately by the ratio of the volume enclosed by the ellipsoid
{y : yM(B)yT < OM(6)87} to the volume V(v), i.e. n(f) = CL(kIM ()87 [(47))*/?,
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where Cj is defined as the volume of the k-dimensional unit ball, which equals to

- { (2742 [ [(k/2)124/2) k even,

1.5.14
=DM ((k +1)/2)(k +1)! % odd. e

Applying the universal prior to {n(8),8 € 4}, we can find a prefix code for Q the
length of which equals to L*(n(8)) = log* n(6) + log 2.865.
With the quantization of ; and the universal prior for n(f), the two-part code

iength for z relative to M, is given by

A

Ly(x,0) = —logp(z|f) + L"(n())
< —logp(:clé)+-;-'y+log' n(0) + log 2.865. (1.5.15)

We may ask for the value of ¥ which minimizes the quantity
%‘y + log” n(a) (1.5.16)

If we approximate log* by log, the optimum value for v is kloge. Substituting the
optimum v into the right hand side of (1.5.15) the minizr um upper bound for Ly(z, )

is

— log p(z|6) + log C + g log M (8)67 + O(k)
n

7+ klog 116116, + OCk) (1.5.17)

Ak
= ~logp(zd) + 5 log

where ||é||i(5) = \/5A'I(é)éT/n and I(f) = M(0)/n. The expression (1.5.17) gives us
an optimal worst case two-part code length and we regard it as the minimum two-part
code length of = relative to M,.

Assuming that — log p(z|6) grows proportionally to the number of the observations

n, the minimum two-part code length simplifies to the form
MDLy(k)) ~= — log plz|6) + glog n + O(k). (1.5.18)

Therefore for large number of observations, the right hand side of (1.5.18) with the

last term removed can be used as a criterion for dimension selection.
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In addition to the two-part code length function, discussed here for parametiric
models both with or without a prior distribution, it is also possible to construct a two-
part code length function for nonparametric model classes. For details see Rissanen et
al. (1992), Yu and Speed (1992), Speed and Yu (1992) and Hall and Hannan (1988).
We will also discuss this case in Chapter 5.

1.6 Stochastic Complexity

From the two-part encoding procedure discussed in the last section, a coding

system can be obtained relative to model class M, or M; which is defined as
D:S - [X].

Here S is the set of codewords C(x,8) = C(8)C(z|f), where C(8) is the prefix code
for the truncated parameter 9, and C(z|0) is the prefix code for z under the employed
model p(z|6). Similar to that in Section 1.4, we can construct an information source
by which the data is described with the shortest code length relative to M; or M,.
One may ask the relationship between this shortest code length and the optimal
two-part code lengths derived in Section 1.5.

Obviously the length of the two-part code C(z,8) is longer, irrespective of the
-alue of 6, since C(x,0) actually gives us more than we want. We initially set out to
encode the data z, and ended up encoding both the data and some parameters. On
the other hand, the optimal two-part code length relative to M; (or M3) is the one
among those of C(z,8) which is the closest to the shortest code length. In fact, as
it will be shown later, they are equal in an asymptotic sense under some smoothness
conditions for the model distribution.

First we derive the shortest code length relative to M, following the procedure in
Section 1.4. Since the two-part code C(z,0) is prefix, we may substitute the code
length (1.5.5) into {1.4.3) with the result

i=1

~ _ _ k
plz) = 26: 9-Li(=d) - 20: p(=|8)x(8) T] & (1.6.1)
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where the summation is taken over all the truncated parameter values 8. p/(z) is al-
ready a probability density function so there is no need for the recursive normalization
(1.4.4). Now letting 6§ — 0 the sum in (1.6.1) goes over to the integral

pz) = /ﬂ p(z|0)7(8)dd. (1.6.2)

From (1.4.5), — log p(z) is the shortest code length relative to the coding system D.
Hence we define the stochastic complexity of the data z, relative to the model class
M,, as
I(z|M,) = —log p(z) = —log /ﬂ p(z|0)7(0)dd. (1.6.3)
The fact that the code length — log p(z) was obtained by the removal of a redun-
dancy in the coding system, which is defined by the model class, lends it a natural
sense of minimality, which is certainly difficult to achieve otherwise. That (1.6.3) is
smaller than the optimal two-part code length is easy to see: the sum (1.6.1) is clearly
larger than any of its terms, including the maximum.
Suppose p(z|0)n(#) is smooth enough so its logarithm admits Taylor’s expansion

about § maximizing p(z|0)=(8), i.e.
log p(z16)7(9) = log p(z1)(9) ~ (6 ~ §)5:0 ~ )7

where ¥ is the Hessian matrix of the double derivatives of — log p(z|0)n(6) evaluated
at some point near 0. Then p(z|0)x(8) = p(z|0)x(6)2-FC-HEE-HT 4pq

plz) = plalf)n(d) [ 2730200 dp = p(alf)(B)|EIHO4().
So
HalMy) = -logp(s) = - logplzld)x(d) + 5 log 5] + O(k)
= —logp(z) = —log p(z|f)n(8) + g—logn + O(k) (1.6.4)

if £ is of order n. The asymptotic equivalence between the stochastic complexity
(1.6.3) and the optimal two-part code length (1.5.10) under some smoothness condi-

tions is clearly visible now.
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From this asymptotic equivalence we conclude that even though the two-part
encoding procedure for the data z is ad hoc in the sense that it involves redundancy
in the description, it reduces the redundancy to a minimal, negligible amount when
the procedure is optimized. The use of the stochastic complexity ani the optimal
two-part code length for model selection is further discussed in Section 1.8.

The stochastic complexity relative to the model class M, was derived recently
by Rissanen (1994a). By taking into account the Fisher information and removing
an inherent redundancy in the two-part codes a sharper code length is given as the
stochastic complexity. In Section 1.5 we described the two-part code for M, which
is computed by Rissanen (1983). There the data are encoded with the maximum
likelihood model and preceded by the encoded parameters d truncated to a precision
6. Here this procedure is refined in two ways. First, the truncation is made to be

dependent on equivalent classes R(a) which are determined by the Fisher information.
Then with

>l

I - 1-6.5
B3 = [, eny PE0) (1.65)

an inherent redundancy in the earlier procedure is removed, and the total nonredun-
dant two-part code length is given by

L(z,8) = —log ”—%Q + L(0). (1.6.6)
There is no longer any optimal precision, and the shortest worst case code length
results from the infinite precision § = 0. Since it is nonredundant, and can be
approximated by a two-part code with error as small as possible, we regard this
shortest code length as the stochastic complexity relative to M;. Under the main
condition that the maximum likelihood estimates satisfy the central limit theorem,

an asymptotic expression for this stochastic complexity is given by

I(z|M3) = ~ log p(z|) + glog % + log/n V1(0)d + o(1) (1.6.7)
where I1(6) is the Fisher information matrix

2 0
10) = {_E____f’ e )}
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See Rissanen (1993) for further details.

1.7 Predictive Coding

As an alternative to the two-step encoding process, there is another encoding
process, called predictive coding, which describes the data generated from an unknown
probabilistic model. In this process, the encoder does not need to provide a prefix
code for the model (usually it turns out to describe the parameters that characterize
the model). Instead he estimates the parameters characterizing the model from the
available data according to an optimal procedure known to the decoder. Then writes
a prefix code for vhe next observation based on this model fitted from the previous
data. Each time the encoder obtains a new observation he updates the estimate of
the parameters and encode the next observation with the latest fitted model. The
predictive coding process removes the redundancy of the coding system in a way that
is quite different from that of the stochastic complexity. The resulting predictive code
length for the observed data string is called the predictive stochastic complexity.

The predictive stochastic complexity and, accordingly, the predictive minimum
description length principle, was proposed and studied by Rissanen (1986a). However,
the predictive process was also discovered by Dawid (1984,1991b), who proposed it
as a prequential method for probabilistic forecasting. There is also a closely related
technique by Hjorth (1982), called forward validation, whose main objective is to
reduce the bias in the estimates of the variance of parameter estimators.

A brief overview of the derivation of the predictive complexity is given below.
Without loss of generality, we consider only the model class M, introduced in Sec-

tion 1.5. Rewrite M; as
M2 = MQ(k) = {Pk.o(l‘),l‘ € X)o € Qk} ' (17'1)

and denote z = z,,:+,z, = z" as a sample of observations generated from an

unknown density function belonging to M;. To be general, = is assumed to be a
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random process satisfying the compatibility condition

/pk,o(a:l, ooy Ty 2)0(d2) = pro(Ty, - e 0, Ty). (1.7.2)

We now proceed to describe = using a predictive coding process. Predictive coding

means that we want to find the conditional density for the next observation z4,

(regarded as a random variable) based upon the previous observations z; « -, z,
Pk,é(:)(-’"¢+1|$1, RN 1)) (1.7.3)
where 9(t) is estimated from z,, - - -, z; using a procedure known to the decoder. With

this conditional density the minimum code length needed to encode x4, in a prefix

manner is — log pk'é(t)(wt,ql:c], +-+, ). The total code length is
n-1
L(z|k) = - Z logpk,é(g)(wmlwh ey T) (1.74)
t=0

This may be minimized with respect to k to give the estimate k(n) = k(z").

The code length (1.7.4) does not provide a complete description of = since the
information about the dimension k of the parameter 0 is unknown to the decoder.
Therefore another prefix code for k is required, the optimal length of which is L*(k) =
log*® k + log ¢*, the one defining the universal prior of the integers in Section 1.3. We

call the corresponding minimum code length
Ly(2|M;) = min {L(z|k) + L"(k)} (1.7.5)

the semi predictive stochastic complexity. The word “semi” suggests that the optimal
dimension k(n) is not determined the predictive way. Still, using k(n) to denote the
optimal k is to emphasize that the main factor of determining the dimension of
the parameters in (1.7.5) is the first term, and in almost all the cases of interest
the minimizations of (1.7.4) and (1.7.5) produce exactly the same dimension of the
parameters.

Modifying the above procedure of describing the data sequence a purely predictive

stochastic complexity can be defined as

n-1

]p(lel’) == Z log pi:(t),é(t)(xt-ﬂ [Z1, -+ &1). (1'7'6)
t=0
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At each time ¢ the k in (1.7.4) is now replaced by the optimal k(t), which minimizes
L(z!|k), so that an optimal conditional density Pie).d()(Tea |1, -+, x¢) is obtained to
encode the next observation x4, with the optimal code length — log pi(t)’o'(t)(xt.'.ll T,
«++, ;). Therefore, (1.7.6) completely represents the description of the data t relative
to M,, and we do not need the prefix code for the dimension of the parameters because
the algorithm of determining it is already known by the decoder.

The selection of the optimal estimate () in (1.7.4) for each k proceeds as follows.
One might think of choosing 0 so that the code length for x4, — log pkg(zes1]21,
- ++, T3), is minimized. But such 6 would be a function of Z¢41 which would make the
decoding impossible. To avoid this, we apply the essential idea of inductive inference:
In the light of past observations the best single value of the parameter for encod-
ing the “next” observations, ;4,7 = 0,1,---,¢ — 1 is the value that minimizes the
sum — Y'23 log pio(Zipal21, - -, 2;), i.e. the maximum likelihood estimate é (Rissa-
nen,1986a). Such a selection of 0 is based on the hope that the prediction distribution
(1.7.3) for the new observation z,4; is like it was in the past.

To carry out the computation of the predictive complexity for a data sequence
there are still several points needed to be clarified, i.e. the order of the data sequence
((1.7.4),(1.7.5) and (1.7.6) are affected by the order of the data, especially the order
of the first few data points) and the initial estimate §(0). For details of these issues,
refer to Rissanen (1986a and Chapter 5 of 1989) and Section 4.4 of this thesis.

Understanding the asymptotic behavior of stochastic complexity is helpful in
studying the optimal properties of the model selection by stochastic complexity. Re-
sults for the asymptotic behavior for several model classes are available in the liter-
ature. See Rissanen (1986a, 1987, 1989) for the parametric density v.ass; Rissanen
(1986b) for the class of Markov chains; Rissanen (1986c) and Speed and Yu (1993)
for the Gaussian regression problem; Rissanen et al. (1992), dall and Hannan (1988)
and Yu and Speed (1992) for the nonparametric density class; Rissanen (Chapter 6,
1989), Hannan et al. (1989), Hemerly and Davis (1989), Gerencsér (1989,1992) and

Gerencsér and Rissanen (1992) for time series. Also a related work is Barron and
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Cover (1991) which applies the algorithmic complexity to density estimation.
Here we give some of the important results concerning the stochastic complexity

relative to a parametric density class.

Theorem 1.7.1 (Rissanen, 1986a). Let for each k the parameters 6 range over a
compact subset Q) with nonempty interior of the k-dimensional Euclidean space. We
assume that there exist estimates é(w”) satisfying the central limit theorem such that

the tail probabilities are uniformly summable as follows
Py (\/Ené(m") -~ 0]] 2 log n) < §(n) for all @ and T, 6(n) < oo. (1.7.7)

where ||0]| denates . nsvm. If g is any density defined on the observations, satisfying
the cempatibility .. dviions for a random process, then for all k and all 0 € QU except

in a set of Lebesgue measure zero,

.. Ek()log [Pk o(mn)/g(mﬂ)]
y ’ > . ol
h,,“._.l",onf ( k / 2) log n 1 (1 7 8)

The mean is taken relative to the distribution defined by pi.

This theorem states that for all k, all positive number €, and for all points 9 € ,
except in a null set,

Eip logglf'—e—(‘T—l 2 (% —~€)klogn. (1.7.9)

g(z")
This is a generalization of Shannon’s famous coding theorem, in that the average

prefix code length Ej ¢ log g(z") is not only greater than or equal to the entropy but
exceeds it by a positive number, which represents the amount of uncertainty in the
class of models. From (1.7.9) it follows that the minimum two-part codz length in
Section 1.5 and the stochastic complexity in Section 1.6 both reach asymptotically vhe
minimum bound, provided that the model densities satisfy certain mild smoothness
conditions. This gives a rational basis for using stochastic complexity as a model
2ssessment measure.

It has also been proved that the minimum bound in (1.7.9) can be achieved for the
semi predictive complexity if the data points are independent. This result is stated

below.
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Theorem 1.7.2 (Rissanen, 1986a). Let the family of densities satisfy the conditions
for independence for each k and 8 € S, namely, pro(z) = [Ti, Pro(zt), and let ;. ¢(x)
be three times continuously differentiable with respect to 0 in the interior of a compact
set Q. Further, let the coural limit theorem hold for some estimates (z™) of 0 in
the interior points such that the four first moments of - /h_(@(a;") —0) converge. Then
Lp(z"\M,), defined by the equation (1.7.5), is optimal m that for all k and all 0 in
D,

Iy(z"|M;) < —Ej¢log pio(zn) + -122 logn + o(log n). (1.7.10)

If the model class is nonparametric and the density g in Theorem 1.7.1 is restricted
to be histogram type, then the minimax bound of E,log :J(-:% has been shown to be
of order n!/3 assuming z;,+-+,z, is a simple random sample. This bound can also
be achieved both in expectation and almost surely by histogram densities induced by
the predictive stochastic complexity (see Yu and Speed (1992), Rissanen et al. (1992)
and Barron and Cover (1991) for detail).

1.8 Principle of Minimum Description Length

In traditional statistical inference if a probability density p(-]@) for the observed
data string « is given, where 8, with its dimension fixed, belongs to a parametric space
€}, then one of the most important methods to estim~te the unknown parameter is the
maximum likelihood principle. The traditional measure for goodness of the estimators
is their variance, or some other related utility function. An unbiased estimator is
called efficient if its covariance achieves the lower bound set by the Cramer-Rao
inequality. Numerous results of the consistency and asymptotic efficiency of the
maximum likelihood estimate can be found in the literature, e.g. Lehmann (1986a).
If we consider a prior distribution for the parameter, the parameter estimation may
be carried out in many cases by the maximum posterior or the ML-II technique (Good
(1983) and Berger (1985)).
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However, if the dimension of the parameter 8 is unknown and is to be estimated,
as in a regression model, fime series model and the unsupervised classification prob-
lem, the above traditional methods for parameter estimation do not work. Instead,
the traditional hypothesis testing technique is used, like the likelihood ratio test. But
in many cases the hypothesis testing procedure has some unsatisfactory features: the
selection of the level of significance, which should depend on the amount of data, is
subjective; most powerful test usually does not exist, etc. Needless to say, there are
remedies for estimating the dimension ¢ [ the parameter. Two widespread methods
are Akaike’s AIC, Akaike (1970, 1974a, 1974b,1977) and the cross-validation tech-
nique, Geisser and Eddy (1979) Stone (1974,1977a,1977b). In this section, however,
we introduce the competent minimum description length (MDL) principle, Rissanen
(1986a,1987,1989).

The MDL principle contains a three-level hierarchy of modeling problems and a
redevelopment of estimation theory. On the lowest level, it assumes the model class
generating the data string to be a set of probabilistic distributions with the fixed num-
ber of parameters. The task is to find good or even optimal estimates of the unknown
parameters. The choice of the parameter estimate is the one that minimizes the code
length relative to the model class. From the process of deriving (1.5.10), (1.5.18) and
(1.7.4) we note that the proposed parameter estimates are exactly or asymptotically
the same as the maximum likelihood estimates or the maximum posterior estimates.
We regard the resulting shortest code length as the stochastic complexity even though
we have already used the concept in Section 1.6. These, however, are shown to be
equivalent to each other in the asymptotic sense.

On the next level in the hierarchy, the model class assumed to generate the data
string is generalized to be a family of model classes, each of which has its own di-
mension for the parameters. At this stage, the traditional estimating methods do not
work while the traditional hypothesis testing procedure lacks the sufficient capabil-
ity. However, by looking fcr the shortest description of the data under the current

model family an optimal estimate of the dimension of the parameters, as well as their
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estimates, can be obtained. Notice that while there may exist a model class under
which the stochastic complexity of the observed data is very small, the code length
required to describe the model class itself could be very large. An example of an
extreme case is when we put probability 1 on the observed z and 0 elsewhere, we
need 0 length code to describe z under such a model. But the complexity of the
model iself would be so large that it can not be specified unless we know the true
distribution of z. The stochastic complexity and the predictive stochastic complexity
described in the previous sections (like (1.5.10), (1.5.18), (1.6.7) and (1.7.5)) give a
criterion under which the optimal dimension of the parameter can be obtained by
balancing the complexity of the data under the employed model and the complexity
of the employed model class in the best possible manner. After the optimal dimen-
sion is found, the stochastic complexity relative to the current model family can also
be calculated as the shortest two-part code length under the specified model family,
namely, one part for the stochastic complexity relative to a model class and the other
for the complexity of the employed model class.

Using the MDL principle for the dimension estimation has been found to be very
successful in many statistical problems, such as the regression modeling (where the
MDL principle is known as the predictive least square and the predictive least quasi-
deviance), times series, classification and density estimation. The consistency of the
dimension estimate has been proved for several modeling problems (see Rissanen
(1986¢, 1986d, 1989), Hannan et al. (1989), Hemerly and Davis (1989) and Gerencsér
(1989,1992)).

Finally, an attempt is made to find other possible model families so that a better or
even the best model for generating the observed data string may be found. While such
problem goes completely beyond the reach of traditional statistics, it has important
use in practice. For example, in regression analysis there are several useful estimates
for the regression model: the simple linear regression estimator, the polynomial spline
regression estimator, the projection pursuit regression estimator and other nonlinear

regression estimators. Not only do we want to find an optimal regression model
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estimate under each regression method, but we also want to compare these estimates
to obtain the best model estimate. The stochastic complexity or the shortest abstract
code length gives a global measure to compare these different estimates. We can
begin by finding the stochastic complexity of the data relative to each model family.
Then calculate the abstract two-part code length for the data relative to a set of
model families, provided that an algorithm is available to describe this set of model
families. In practice it is not difficult to find the shortest code length to describe the
model families because we usually study a preselected set of families. Theoretically or
conceptually, however, finding a shortest code length for the description of the model
families is extremely difficult and it depends critically on the particular formalization
of the ground language. For the detailed discussion, refer to Section 3.6 of Rissanen
(1989).

The complete statistical estimation or modeling problem, which consists of the
above three levels, is handled by the minimum description length principle in a uni-
form manner. Beginning from the highest level, we search for the model family which
results in the minimum abstract code length relative to a set of preselected model
families for the data. We call it M*, the best family we know. Next we seek the best
model class to minimize the two-part code length of the data relative to M*, which is
specified in terms of the best dimension of the parameters k*. The best model class
is denoted as M;.. Finally, we find the best model within M}. which is the one with
the optimal parameter values. In this case, there is no need to assume the existence
of a “true” model or “true” parameters for the data in the preselected families. If the
“true” model is in the preselected set of model families, then the best model family
would most likely coutain this “true” model, and so would the best model <lass, and
our best model would most likely be the “true” model. This can be seen from the
asymptotic results of the stochastic complexity introduced in the previous sections,
On the other hand, the selection of good model families is precisely the place where
human intuition and intelligence are indispensable.

In this thesis we study the application of the MDL principle in several statistical
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modeling problems. This includes the principal components selection (Chapter 2),
generalized linear model selection (Chapter 3), decision settlement of stochastic com-
plexity estimation (Chapter 4), nonparametric testing hypothesis of homogeneity and
general nonparametric histogram density estimation (Chapter 5 and 6). A number of

new results have been obtained and will be presented in these chapters.



Chapter 2

Principal Components Selection
by the Criterion of the Minimum

Mean Difference of Complexity

2.1 Introduction

Principal components analysis, the first systematic account of which was developed
by Hotelling (1933) as a data analytic technique, provides us with a method to deal
with a large number of correlated variables, by which the dimension of the problem
(that is, the number of variables) can be reduced without sacrificing too much of the
information in the data. (For details see Kshirsagar (1972), Muirhead (1982) and
Anderson (1984).)

In classical principal components selection, the criterion used to measure the lost
information due to the reduction of the dimension of the observed variables is directly
based on the covariance matrix ¥ and can be applied only under the assumption of
multinormality. When the observed variables do not follow a multinormal distribution
the selection process, based on the covariance matrix £, does not provide a satisfactory
explanation of the lost information. The theory of stochastic complexity or description

length, which was developed in the works of Kolmogorov (1965), Rissanen (1989),

31
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Wallace et. al. (1987), Barron and Cover (1991) etc. (see Chapter 1 for a more
extended list of references), opens up a possibility to overcome this difficulty.

Let M, denote a class of probability models, My = { P(x|0)} where 8 = (61,0, -,
0,) denotes a k-component parameter vector ranging over a subset () of the k-
dimensional Euclidean space R* with non-empty interior. This last condition is for
convenience to ensure that the parameters are “free”. Though the natural parameters
are sometimes not free, one can always assume that by certain transformation some
of the components can be eliminated and only the free ones remain. For a simple
random sample z,,z,, - ,,,, drawn from a ¢ X 1 random vector X with probability
function P, P € M,, the shortest code length for the description or complexity of the

data is defined as

MDL(M;) = moin{L(O) +log (2.1.1)

1
o Plz) }
The nonnegative numbers L(#) are assumed to satisfy Kraft’s inequality PIPY 9-L(8")
< 1, where &’ is the truncated vectors of 8 to the precision 7; = 2~%, ¢ = 1,-.-,k,
gi are the number of fractional binary digits taken in the truncation, so that L(8)
corresponds to a prefix code C which describes the pararneter vector 8.

In principal components analysis it is important that M DL( M) is invariant under
linear transformations of X. The choice of a particular coordinate system, or units
of measurement, is also very important as the principal components are meaniugful
only if all the variables are measured in the same units. If they are not, it is rec-
ommended that the analysis be performed on the standardized observations; in this
case, questions of interpretation arise and the problems of inference are exceedingly
complex, see Anderson (1963). For the sake of conciseness, we assume that all of the
coordinates of X are measured in the same units and use orthogonal transformation
so that the minimum description length is invariant under it.

Let H = (hy,hy,++-,b,) be a ¢ x ¢ orthogonal matrix. If the random vector X

T

is to be replaced by some variables in Lz_lTl{_ , bg' X.--+,h; X, ¢ < n, it is natural to

consider one with the least difference in description length from the original data.
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In this chapter we introduce the notion of an index of predictive power

- m ~- K Py, (HTX | 0)
IPP(V,,) = A2ip { 5 logn + Eg (log P(X | 8) (2.1.2)
where V. ,, r < ¢ is the Stiefel manifold defined by
Vig = {g X r matrix H, satisfying HTH, = I,}. (2.13)

Py,(Hfz | 0') is the marginal probability function of HY X, with the parameter
vector ' ranging over a k'-dimensional Euclidean space with non-empty interior.
k' < k because the probability function P(X | 6) is parameterized by the parameter
vector @ € Q* having non-empty interior.

The components of HY X, for which H; achieves the right hand side of (2.1.2), are
called the principal components of X.

IPP(V,,) represents the expected difference of the complexity between the origi-
nal variables and the principal components. If the parameter vector @ is known, we
can find the value of H; for a prescribed number r (which indicates the number of
principal components we will use) by solving the minimization problem of the right
hand side of (2.1.2). For unknown 8 we will show, by using the theory of the stochas-
tic complexity, that the estimate I?P(V,,q) obtained by substituting the MLE of 8
in IPP(V, ) results in an optimal estimate of the expected difference of the complex-
ity IPP(V,,). We can therefore use IFP(V,M) for finding principal components and
regard the IPP(V,,) or IPP(V,,) as a criterion for principal components selection.

It will be shown that this criterion is equivalent with the classical one in which
the covariance matrix ¥ is used when the distribution is normal. The justification
of the suggested selection process will be followed by a discussion of the principal
components analysis for a class of ¢-contaminated normal distributions, in which we
show that the principal components change in a continuous manner with respect to

¢ in a small neighborhood of the “true” distribution.
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2.2 Selection Principle for model {P(X | 6)}

Let z,,z,,*+,z, be a simple random sample drawn from a ¢ x 1 random vector
with probability function P(X | @). After Rissanen (1983) and (1978), the description

length for z,,z,,:--,z,, per observation, is defined as

1 1 k 2men k log k
L10X,0) = =1 3 1og P(z:6) + - tog (%) + E oo, + 0 (2E)
(2.2.1)

where X = (z,,2,,-+,2,) and 17, log P(z; | @) denotes the log likelihood of the
data for 0. |0 10 = V 07 M(6)8/n denotes the natural norm induced by the
quadratic form associated with the k x k& matrix M (@) of the second derivatives of
— Lo log P(z; | 6) and 1(0) = M(6)/n.

Expression (2.2.1), within a constant, is the negative logarithm of the joint proba-
bility of the data and the parameters. It can be obtained by optimizing the precision
needed to express the parameters, and then using a universal prior distribution for
the resulting integers, where the probability of integer n is proportional to 2-18°»,
The function log" is defined as log* y = logy + loglogy + - - -, where only the positive
terms are included in the sum. Notice that in deriving (2.2.1), Rissanen treated k as
a variable, rather than a fixed number, so that both the estimation of the optimal
0 as well as k < -uld be based on (2.2.1). But here we prescribe k, the dimension
of the parameter 8, as fixed by assuming a parametric family M, hence the term
O((log k)/n) could be replaced by O(1/n).

1(0) is of order 1, provided that — Y""_, log P(z; | @) grows proportionally with n,
as is the case normally . Then (2.2.1) can be expressed approximately as

Lp(X,0) = -1 3 log P(z; | 0) + - logn + 0 (1) . (2.2.2)
n n 2n n

If the random vector A is not discrete, then no finite-length uniquely decodable
codes exist. Neverthelecs, quantization of the sample space of X does lead to outcomes
that are finitely describabic. Let [X] denote the quantization region that contains

X, p(z | 9) denote the probability density function of X with respect to a known
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o-finite dominating measure v(dz) which, for sake of simplicity, is chosen to be the
usual Lebesgue measure , then p(z | 8) = lim P([z] | 8)/v([z]) for almost every z
(where the limit is taken for a refining sequence of quantization regions that generates
z). Consequently, log P([z] | 8) =~ logp(z | 8) + log v([z]) if the quantization is
sufficiently fine. Using this approximation, for proper precision d used to express
the sample values z,,z;, -, z,, the description length for the sample, expressed per
observation, is approximately given by
L1(X,0) = ~23 logplz; | ) + = logn ~ qlogd + 0 (-1-) . (2.2.3)
n n i 2n n
The term —qlogd is the code length in coding the sample precision which can be
regarded as fixed when the sample is given. The corrected description length then
can be defined as

1 1& k 1
;L(X,B) = —;glogp(gc_,- | 6) + o logn + O (;u-) . (2.2.4)

This description length is minimized when @ is replaced by its maximum likelihood
estimate 8.

For arbitrary ¢ x r matrix H, € V;,, the Stiefel manifold defined by (Z.i.3) with
r < ¢, we can find a ¢ x (¢ — r) matrix Hj, so that H, = (H,, H;) is an orthogonal
matrix, then the density function of HT X, denoted by py, (HT z | (8)), can gencrally
be obtained by integrating the density of HT X with respect to HY z.

Often in stochastic models, the components in the parameter vector are not inde-
pendent in the sense that they satisfy, either implicitly or explicitly, certain relation-
ships among them. In the cases discussed, however, we assume that the dependent
parameters have been eliminated after some transformation on them, and that the re-
maining k parameters range over the k-dimensional Euclidean space with non-empty
interior.

By introducing some transformation H; € V;4 of the random vector X, we may
impose more restrictions on the freedom of the parameter 8 because of the reduction of

the dimension for HY X. Thus we may assume that the parameter vector is defermined
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by 1() in the marginal density py, (H z | 7(8)) that ranges over a k'-dimensional
Euclidean space with non-empty interior where &’ < k, which is a function of 8 and H,
and in which the dependent structure has been removed by a certain transformation.
For convenience we also assume that k' does not depend on the values in Hy but is
determined by r, the rank of Hj, as in the multinormal case. Under this assumption
it can be shown that &’ is an increasing function of r with k'(q) = k.
As in (2.2.4), the description length per observation for the data sequence HY z,,

lel?.za HxTLB.n is

1 r 1 & T K 1

S UHTX,(0) =~ 3 logpm, (HTz: | (0) + 3 logn+0 (1) (229
To replace X by H# X without too much loss of the information, we should select H,

that minimizes the reduced description length

— 1o pHI(HTQZi | 77(0)) k—k
al= n ;log p(z; | 6) + 2n log n. (2.2.6)
This quantity is a random variable depending on X;, : = 1,2,.-.,n, for given 6

and H;. In order to understand the behavior of this minimization process, we replace
(2.2.6) by its expected value and investigate the corresponding minimization problem.
Definition: The index of predictive power of V;, (with respect to a model p(z | 9)

and sample size n) is defined by

pu(HTX | n(0)
2X0) )} . (2.2.7)

The components of HY X are the corresponding principal components, where Hj is

. [k-F
IPP(V,,) = oty { o logn + Eg (log

the matrix minimizing (2.2.7).

IPP(V,,) is to be computed or estimated for every r = 1,2,.--,9 — 1. If for
some small m, IPP(V,,,) is found small relative to Eg((1/n)L(X,0)) then most
of the information in X is explained by (Hl('"))TX (where the m x ¢ matrix H{"')
corresponds to IPP(Vy4)). (H{"‘))T_)_(_ is proposed to be used as the first m principal

components.
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The solution H, is a function of 8. Since (1/n)L(X, @) is the description length
of the least redundant encoding program for the observed z,,z,,: -, z, it provides a
natural estimate H; of 4, by replacing 6 with its maximum likelihood estimate 6.
Accordingly, the estimate of IPP(V,,), denoted as I?P(W,q), can be computed, and
is identical with the minimization of the right hand side of (2.2.7) at @ = §. The
minimum is achieved at ﬁl.

In the light of the principle of the minimum description length (MDL) (which is
a generalization of the maximum likelihood principle), the root of one optimal prop-
erty of the estimate 8, obtained by minimizing the description length (that happens
to be the maximum likelihood estimate here), lies in the fact that the Kullback-
Leibler distance between p(X | 8) and p(X | §) reaches asymptotically the minimum
under certain mild smoothness conditions (see Theorem 1.7.1). This suggests that
optimality might be achieved by using the corresponding estimates H, and IPP.
Unfortunately the large-sample distributional properties of this are still unclear and
the construction of a test procedure for the validation of the selected principal com-
ponents is intractably difficult. However, as we will see in Section 2.4, a universal
test procedure can still be found with some desirable asymptotic properties based on
the theory of the stochastic complexity.

If H; is a solution corresponding to IPP(V,,), then it is easy to see that for any
r X r orthogonal matrix @, H,Q is also a solution corresponding to IPP(V,,). For
the case of the normal distribution the principal components are uniquely defined

except for a maltiplicative r x r orthogonal matrix.

2.3 Principal Components in Normality Case

To illustrate the relationship between principal components selection by /PP and
by the classic method we consider the case of the normal distribution. Let X be a
g % 1 random vector with multinormal distribution N(y,X) and X = (z;,23,"**,Z,)
be a simple random sample drawn from X. For H; € V,,, the distribution of HTX
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is N(HT p, HT % H,). The description length for X is

1 1 _
21 g( ISR IRE e"p{_i(z‘“-‘i)Tz I(Q‘“E)})

s—l

q(q4+ 3) log +0 ( )

= log(21r) + = log |Z] + -2— Z tr ( - )z - E)T)

=1

q(q4+ 3) logn + O ( ) (2.3.1)

1
;L(X, J22) 2)

The description length for HT X is given by

LL(HTX, HT p, HTSH,)

_ 1y 1 { )
B ".-);log((%r)'/”lH,T TH, 72 P S(H]z; — H w)T

(HTSH,)"\(HTz; - H )}) + —-—-—”(T 3 logn +0 ()

= Llog(2r)+ llog |\HTS H, | + 5 Zt" ((H LHy) T HY (z; - p)(a; - E)THl)

|—1

+r('"4+ 3 logn +0 ( ) (2.3.2)

After some simplification, the expected value of (2.2.6) is

E (-'I;L(X, #,X) - %L(HIT X, H p, HY EHI)) =

12| +g_ rola=r)gtr+3)
IHTEH1| 2 4n

q-.

5 log n. (2.3.3)

" og(27) + -;- log

For the minimization of (2.3.3), the following Poincaré separation theorem from ma-
trix theory is useful (see Chapter 1 in Rao (1973)).

Lemma 2.3.1 (Poincaré): Let £ be a q x g positive definite matriz whose eigenvalues
are \y 2 Ay 2 -+ 2 A, Hy € V4. Denote by X| > X, > --- > X, the eigenvalues of
HIZH,, then

A—rti SAS N, i=1,2,--0,1 (2.3.4)
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By the lemma above, (2.3.3) is minimized at |[HTESH,| = A A;--+ A, and H; cin
be chosen as the unit and orthogonal eigenvectors of ¥ corresponding to Ay, Ag, -+, A,
respectively. If ¥ is replaced by its maximum likelihood estimate S = (1/n) -0, (z; —
z)(z; — z)T, where 2 = (1/n) L%, z;, then H, can be estimated by the first r or-
thogonal and unit eigenvectors of S corresponding to its first r eigenvalues. Let

ly 213 > -« > [, be the eigenvalues of S, then the estimated IPP(V,,) is

———, — — q
IPPV,,) =1 . " log(2me) + (g r)(Zn+ r+3) logn+% 3 logh, r=1,---,q—1.
t=r+l
(2.3.5)

From the discussion above it follows that the principal components under criterion

(2.2.7) are the same as the usual principal components for multinormal distribution.

2.4 Validation of the Principal Components

In Section 2.2 we deduced the index of predictive power as a descriptive measure
for studying the dependence or correlational structure of multivariate samples drawn
from a parametric model. Now the question arises whether the estimate of IPP(V, )
adequately describes the mean difference of complexity, how much confidence one can
have in such principal-component estimation and how to construct hypothesis testing
for principal-component selection with the associated confidence.

In classical principal components analysis, a number of large-sample distributional
properties of the component coefficients and eigenvalues are derived. In addition
to providing knowledge of the stability of these quantities through their variance-
covariance structure, these asymptotic distributions allow the construction of tests
of hypothesis and confidence intervals for the population component structure. The
results have been summarized by Anderson (1984) and Muirhead (1982). Waternaux
(1976) and Davis (1977) have studied the robustness of the principal-component dis-
tributions to nonnormality in the original observations. Waternaux concluded that
tests or confidence intervals based on asymptotic distributional results could be se-

riously affected by nonnormality. Davis investigated the effects of nonnormality on
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the hypothesis tests and confidence intervals for the eigenvalues and the eigenvectors,
and gave conditions for the inferences to be conservative.

In our study, if the probability function of the assumed model are reasonably
smooth, the principal-component coefficients matrix H; and hence IPP(V,,) will
hold some smooth analytical properties such as continuity and differentiability. From
the large-sample properties of the maximum likelihood estimate, it follows that the
distribution of \/n@ converges to the normal distribution with some mean 8* and
covariance £* under quite weak conditions, where o= é(gl, Z9,+++,Zy,) is the MLE
computed from a sample z,,z,,:-,z,. This £* gives us an idea of the spread of 6
at least for large n and we can construct a confidence interval for @ based on Z*.
Accordingly, the confidence interval for Hy; and IPP(V,,) can be obtained.

In complexity theory, there is no need to assume the existence of any “true”
parameter in th~ suggested model (see Rissanen (1989)). Frequently we fit parametric
models of a certain kind to the observed data even though none of the models may
capture all the major relevant features. We then solve the parameter estimate with
which the induced madel has the minimum description length or complexity among
the suggested parametric models, and regard the induced model as the best model
until a larger parametric model class is considered and/or another model is found
with smaller complexity.

In practice, the bootstrap techniques are frequently used to provide Monte Carlo
type estimates of covariance of 6 and H,. We consider both the parametric and the
nonparametric methods of bootstrap.

Nonparametric bootstrap: first we form an empirical distribution from the ob-
servations X = (z,,2,,**,Z,) with 1/n the probability assigned to each z;. Then
generate a sample X, of length n by sampling this empirical distribution n times
and calculate a new estimate 8(X;). Repeat the process N times and compute the
means § = (1/N) Y, 0(X;),H; = (1/N) N Hy(X;) and the desired covariance
estimates

. N

£ = (IYN)(0(X:) - 8)b(x:) -8,

i=1
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a N A A " -
i = (1/N)) vec(H\(X;) - Hy)(vec(H\(X;) — H}))".

i=1

In parametric bootstrap, we generate a new series of samples by sampling from
the distribution P(z | é) instead of the empirical distribution, where  is the MLE
from the original sample X = (z,,z,,:-+,2,).

When the index of predictive power (IPP) (2.2.7) is employed as a criterion
for principal components selection, one need to deal with th problem that the /PP
is a function of the unknown parameter 8. In order to turn it into an applicable
data-based criterion we need to replace it by a suitable estimate IPP. Because
of the fixed k£ in our assumed model class M;, the maximum likelihood estimate
0 is also the minimum description length estimate (refer to expression (2.2.4) and
ignore the term O(1/n)). Consequently, it also provides us with an optimal density
estimate p(z | 6) under the framework of the principle of minimum description length.
Therefore IPP may be obtained by performing the minimization (2.2.7) at 8 = 8.
It is sometimes quite difficult to calculaté the second term in the right hand side of
(2.2.7) at @ = 0, in which case we can approximate it by calculating the moment
estimate (1/n) S0, log(pa, (HTz: | n(8))/p(z: | 6)).

As we have seen in Section 2.2, the selection of the principal components can be
based on testing a series of hypotheses. Suppose the ratio of the lost information
to the total information of the random vector X, when using principal components
instead of the original variables, is restricted to a prescribed value ¢, where 0 < ¢ < 1.
If (Hfr))T_X__ are the first r principal components, where Hf') is obtained by minimizing
(2.2.7), the lost information when using (H{")T X is

P (H)TX | n(a)))

J(H{,0) = Eg |1
(#70) 0(°g WX T0)

while the total information of X is the entropy
K(8) = —Eg (logp(X | 9)),

then our requirement becomes J (H{') ,0)/K(8) < c. Notice that, the entropy with

this definition may be negative and depends on the chosen coordinate system. For
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simplicity, we assume that K(@) is positive which can be achieved by choosing the co-
ordinate system suitably, as in the case of multinormality. Using these notations, we
can find how many principal components need to be used to meet such a requirement
by testing the following hypotheses. First we test A, : J (Hl(l),ﬂ)/ K(8) < c versus
By : J(H™,8)/K( 8) > c. If A, is rejected we go on to test A, : J(H,0)/K(8) < ¢
versus the corresponding B;, etc. This procedure is continued until at some stage we
can no longer reject the hypothesis A, : J(H{",0)/K(8) < c, where r = 1.2,---,q.
The first r principal components (flfr))TZ(_ can then be used to replace the original
variables X in a statistical analysis without sacrificing more information than per-
mitted. r = ¢ means that the dimension of the problem can not be reduced without
violating the requirement that the proportion of the lost information is less than or
equal to c.

Applying the idea of complexity, we propose a universal test statistic

IPP(V,,) _
(1/n)Eg(L(X,98)) |g_g
k=K o ()T X1 8))
108" + By | log = —rp; l6-9

= ~C 2.4.1
Elogn = Fg (ogp(X 19)) y_g (241

T(X)

C

for each hypothesis A, : J(H{",8)/K(8) < c versus B, : J(H",8)/K(8) > ¢,
r=1,2,---,9. To find a critical region for this test one may proceed in the usual
manner to find a large-sample asymptotic distribution of T'(X), and then construct
the critical region T(X) > t where t is determined by the asymptotic distribution of
T(X) at J(H'",8)/K(8) = c. However, we shall follow a different path here.
Consider the numerator of the first term of T(X). It consists of two parts: the
second part is the estimate of the lost information in the data when using the first
r principal components, while the first part is a quantity measuring the reduction of
the complexity of the model (in terms of the dimension of the parameter). Combining
these two parts we get the estimate of the mean difference of the description lengths

of X and H,(')X , or the index of predictive power I PP(V,,) as deriv.d in Section 2.2.
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Similarly, the denominator of the first term of T(X) consists of the estimate of the
information per observation of the data X (the entropy) combir 'd with the measure
of the complexity of the proposed model p(z | 8) (in terms of the dimension of the
parameter), and forms the mean minimum description length per observation of X.
In this sense, the first term of T(X) is not a simple estimate of J(H,('),O)/K (8);
it estimates J (H,('),O)/K ( @) by attaching to it the penalty terms (k/2n)logn and
((k = k')/2n) log n, which are justified by providing the complexity and the reduction
of the complexity respectively, for the model employed to give such an estimate.

Now we are in a position to suggest a critical region according to which the
null hypothesis A, is accepted if T(X) < 0, but rejected otherwise. With this test
procedure the explicit knowledge of the distribution of the test statistics T'(X) is not
required. Nor do we need to select the size of the test, or the type I error, for it is
defined automatically from P(T(X) > 0 | A,), which depends on the two penalty
terms and corresponds to an intuitively chosen significance level for some common
sample sizes. Similar conclusion could be drawn for the type II error.

To clarify this, we abbreviate J(H(",8) as J, K(8) as K and

5—k' 7
T(X)= m 187+
2—""logn + K

Also suppose that the MLE 0 satisfies the central limit theorem at each interior point
of U such that /n(@ — 8) — N(0,X") in distribution and (J/K)’, the derivative

with respect to 8, exists and # 0, then we know that
Vr(J/K = J/K) = N(0,((J/K))TE*(J/K))

in distribution for each interior point of ).
From Section 2.2 we also know that k and k’ are fixed after stating A, and B,.
The size of the test is then
=3 J
P(T(X)>0]4,) = P|2—8"F"_.50|4,
3o logn + K

—_ P '_i. i>__logn_k_ i]_..._..__k-kl
B kK K~ 2 kK\K k
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(B (%) 14)
which is determined by the last two terms and tends to 0 when n — oo for J/K < ¢
under the assumptions above. For J/K = ¢ the expression above gives an asymptotic
size of 0.5 for the test when n — co. Hence the type I error could be fairly large for A,
versus B,. But notice also that our test procedure is based on a series of hypotheses.
For the fixed ¢ our J (H{"”),O)/ K (8) will be less than ¢ (this can be seen from the
definition of J,K and IPP), therefore the size of the test for A,4, versus B4, will
tend to 0 as n — oo. In short, for fixed ¢, the type I error of our principal components
selection process (ignoring the mistake that the number of the principal components
selected is one more or one less than the true number) is asymptotically 0 as n — oco.

By similar argument the type II error of T(X) for A, versus B,,
"—;ni' logn + J
ﬁ logn + K
7 I
- r(f-p b (5-5Y)

(22 (2 2)

— 0 asn—o

P(T(X)<0|B,) = P( —csow,)

based on the same assumptions for deriving the size in the limit. This indicates some

sort of asymptotic optimality of the power of the test statistics T'(X). In practice, both

the size and the power could be found approximately by a Monte Carlo technique.

In the case of multinormal distribution T'(X) is given by

T(X) = 2" log(2me) + U=l log n 4 1L logli .
Llog(27e) + Ut ogn + 170 logli

(2.4.2)

2.5 “c-contaminated” Normal Random Vectors

In this section we discuss an important application of the principal components
selection described above for the case of an “c-contaminated” normal distribution,

where the contaminating distribution is also normal.
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Let X be distributed as an “c-contaminated“ normal distribution with density

function
1 1 -
pla,5,0%) = (1"€)WGXP{~-§72 ‘@.}

1 1 T
+€mexp{ oy Py _:l_t} (2.5.1)

where 0? is less than the minimum eigenvalue ), of £. Without loss of generality we

assume that X has zero mean.

The marginal density function of H X is

1
U R AL

exp{—%(Hh)T(HTzHl)-‘(H&)}
+€-(Er—)-lr/—20-;exp{ s (T2 (B 2)}. (2.5.2)

In order to find the expected value of the difference in description lengths (2.2.6),

PH,(HITQ, IJITEH;,G’Z) = (] -

we first compute

E(log p(X, X, %))
= log(1 - ¢) - & log(2r) - 110g 5| - -;-E(tr(z-l_x_)f))
+E (log (1 + lgl%ﬁ,—’feXp {~4tr ((F1-2) xx7)})

=log(l —¢)— = log(27r) - llog |Z| - %tr(E"((l —€)L +ea?l))
o, G ( =) L”LE (exp {-er (o1 - =) xx7)})

1-¢
=log(l1 —¢) — 2 1 10g(2r) — -2- log || — (1 —-€) - ——--trE -1
+e+ %,T—,T,J_ELT,‘T +0(%). (2.5.3)

Similarly
E(logpy,(HT X, HTSH,,0%)) =
log(1 ~ €) — § log(2r) — Llog |[HTEH,| — §(1 —¢)
—tr(H{SHy) " +e 4+ 1-e7rT2_H"}'{'ﬁTl%77 + O(e%). (2.5.4)
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The expected difference of the description iengths is then
E (%L()_(_, %, 0%) — %L(HIT X, HT Z’Hl,az))
= (8=r)@drdl jog g 4 2T Jog(2r) + £55(1 —€)
+} log ey + 5tr(S! - (HTSH)™)
+i% (s ~ ) +0@). @59
The minimization of (2.5.5) is equivalent to the minimization of

X + eo’tr(S7) — (HTSHy)™)

FUR) = log ey
e? |HTSH, |
+1 —co|2HTSH, — P12 (2.5.6)
when ¢ is sufficiently small. Using the notation of Lemma 2.3.1, we obtain
9 2 r co?
F(H) = 3 (log A+ -ef-\ -3 (log M+ —:—)
=1 7 1=1 ]
62 H::l A:
+1 —eo"[Ii, (2N — a2)1/2 (2.5.7)
and
OFUL) _ 1, et & [uXi-o)
aX I R Y [1=1(2X; - 0?)1/2(2)\! — a?)
Lo, @ TaXX-o)
= N TN T 1-eo [T, (2N, — 02)12(2X, = %)
_(1 -— 6)20" n;=1(2A; — 02)1/2(2)‘: _ 0.2) 2 el nr=l A;(A: _ 62) (2 5 8)

(1 — )Xo [T-1(2X) = a2)1/2(2A; — 0?)
by the condition 62 < Ay, e <1land Aoy, S M <A, i =1,2,--,r. (2.5.8) <0 if

(1-€)a(@X, —a?)/2> 2N, j=1,2,---r (2.5.9)

and (2.5.9) satisfies if A, < 702, where 1 = 1/(1 — \/1 —(e/(1 —€))*). Hence we
conclude that if ¢ is sufficiently small, F(H,) is minimized when A} = A,,i =1,2,:--,r
and so is (2.5.5).
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The first r principal components coefficients, i.e. the matrix H;, are therefore th:
r orthogonal eigenvectors of unit length of ¥ corresponding to the first r eigenvalues
of ¥ respectively.

Actually, to satisfy condition (2.5.9), the requirement for ¢ need not be too strin-
gent. Table 2.1 below shows some ¢ and 7 values and the corresponding values of &3
which indicate the precision in (2.5.3) — (2.5.5).

Table 2.1:

£ 005 010 015 020 025 030 035 040 045
T | 260642 13122 2062 511.5 161.5 588 233 96 3.9
¢>] 0.0001 0.001 0.003 0.008 0.016 0.027 0.043 0.064 0.091

The estimation of H; can also be done through the maximum likelihood estimate

of £. Within a constant, the log likelihood function for X = (z,,z5,+++,%,) is

- Zlog|8] - Str(EZ78) + 3 log (1 F '20':/2 exp{—l T ( - 2-‘) })
. (2.5.10)
where S = (1/n) T, z;27.
If € is small enough, (2.5.10) can be approximately expressed as

_r _ By e nlZf?r 1 (_1_ _ -.) )
og || = Ztr(5718) + =2 (1 tr (021 5 s)

2,
(X, 0% X) 5

-—log|S|+ Llog& - —25

t-l 9—1

+1e nISP/2 (H 5-1/2)( _.2__t,5+ 25) (2.5.11)

l'-l

where 8, > 8, > -+« > §, are the eigenvalues of §/25-18V/2,
Because o? is less important than ¥ we use 4%, which equals to the smallest

eigenvalue of (1/2)3, to replace o2 in (2.5.11). This way we could guarantee that the
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condition 02 < A, holds in most cases. From ﬂ%%—'& =0,i=1,2,---,q, we obtain

1 e nfSI'2 (& 12\
51 pr H6 5; 1-2 trS + = zs

12 [ q
e _nls| (Hﬁj_-l/z):(), =120 (25.12)

1 - & 0‘9 j=l
Solving this, we get

1— e¢ sllz (H;-l 6—1/2) ( _ trS +1 Z,-x )
1- 1:en§vm (HJ—I 6—1/2) ,

The solutions 6;’s of (2.5.13) for i = 1,2, - -, q are identical and the common value is

b = i=1,2-,q. (2.5.13)

the solution of

/
1— ;5 28R 5-0/2 (1 — LytrS + 46)
1 — = nISE2 s_g/2
- &9
which is cquivalent to a polynomial equation for §. Noticing that

:(T,6% X 1
—(mf‘l = —ﬁfu + O(¢)
2 1

fori,j =1,2,-++,q, where§;; = 1 for i = j and 0 otherwise, the MLE’s of §; in (2.5.11)

exist and are unique if ¢ is small enough. If we denote the solution by & = 1+ v, then

6=

(2.5.14)

v is a continuous function of ¢ and lim.g v = 0, and the MLE of £ is & = (1+v)71S.
The H, which minimizes (2.5.5) can be estimated by the first r orthogonal eigen-
vectors of unit length of $. When ¢ — 0, the .stimate of H; tends to that of the

solution which minimizes (2.3.3). This result is summarized in the following theorem.

Theorem 2.5.1 If Hf’) is the solution corresponding to IPP(V,,) for the “c-con-
taminated” normal distribution (2.5.1) and H, is the solution corresponding to the
normal distribution N(Q,X), then their MLE estimates, denoted by ﬂ{‘) and H,, are
approzimately the first r orthogonal eigenvectors of unit length of (1 + v)~'S and
S respectively. Furthermore, lim._o ﬂf” = H,. For the “-contaminated” normal
distribution (2.5.1), IPP(V,,) is estimated by

r)(Z tr+l) logn + ___(q 1) log(2me! =)

IPP(Vy) = U= .
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g

g N 22
+-;- Z log/\.-+—e%- 2 L

i=r+l i=r41 Xl'
1 e ( M, A i, M )
+- = - = 2.5.15
21 e \& 1., (2 — 62)1/2 6oL (2N — G212 ( )

where &* equals to the smallest eigenvalue of (1/2)S and Ay > A3 > -+ > Xo are the
eigenvalues of £ = (1 + v)~18.

Remark 1: In the discussion above, it is necessary to assume that o2 < A,. This
assumption is a reasonable one if, as usually is the case, the contaminating observa-
tions take up only a small part of the sample and have a smaller variation than the
uncontaminated part.

Remark 2: The above discussion can be extended to more general ¢-contaminated

normal models

1 | “ls v
(=) s <P {3t 5 (&~ )X - )"}
1 1 -
+€W exp {-'2-"(22 X~ p ) (X~ Ez)T)} (2.5.16)
where Bys by ¥1, ¥, and ¢ all are unknown.
After some calculation, it can be shown that finding the solution of H, for model

(2.5.16) is asymptotically equivalent to finding H; € V,, which minimizes

F(H) = —log|HTS, Hy|~ —;-tr((H,T.ElHl)"l(HlTZng))
£ -

= (HT (s, — ) (HT S B (HT (g, = )
+1 e? |HT £, H,|

21 — ¢ |HT S Hhi 2| HT (28, — £2) Hy|'7?
1
exp {-2-(H1T (g, — &,)) (HTZ Hy) 7 (HY (8, — g, ))} . (25.17)

With g, ¥; and ¢ being fixed, this problem can be solved by an appropriate numerical
method. The remaining question is to find the maximum likelihood estimates of u,
¥; and ¢. Fortunately good results already exist and the computation for MLE’s is
fairly routine. A detailed account 1s given in Everitt and Hand (1981), and Wolfe
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(1970), where it is shown that the likelihood equations for finite mixtures are the
weighted averages of the likelihood equations arising from each component density in
the mixture separately. The weights are the posterior probabilities of an observation
arising from a particular component. Generally, the equations must be solved by some
type of iterative procedure, the most useful being the E-M algorithm of Dempster et
al. (1977).

Finally, we present the results of a simulation study which illustrate the theoretical
results for the e-contaminated normal model.

An artificial 6 x 1 random vector X = (X;, X3, -+, Xs) was generated with joint
density (2.5.1), where n = 115, £ = 15/115 ~ 0.13, 0% = 0.4 and

(35536 1.4463 0.3891 0.8356 —0.5784 —0.2497 )
1.4463  3.5536 —0.3892 —0.8357 0.5783  0.2496
0.3891 -0.3892 14717 —1.8686 0.2738 —1.0102
0.8356 —0.8357 —1.8686 8.0128 —2.1330  2.2440
~0.5784 05783  0.2738 —2.1330 15730 —0.4447
| ~0.2497 02496 —1.0102 22440 —0.4447 1.8351 )

The results are listed in Table 2.2. These are to be compared with the classical
principal components and with two kinds of robust principal components obtained
through minimum volume ellipsoid covariance matrix estimate (MVE) and through
weighting on Mahalanobis distance (Table 2.3, 2.4 and 2.5, respectively). The results
are quite close to each other (note that the last two rows in Table 2.3 and 2.5 are
exactly the same; it is so because the weights are all 1 in this case). For details
about the robust estimates of covariance matrix, see Lopuhaa and Rousseeuw (1991),

Rousseeuw (1991), Rousseeuw and van Zomeren (1990).



Table 2.2: Principal Components based on model (2.5.1)

eigenvalues | 10.0 3.0 3.0 0.8 0.7 05 |
by b, hs hy hs he
coefficients | -0.0851 | -0.6854 | -0.6106 | 0.0 | -0.3238 | -0.4074
of principal | 0.0851 | -0.6854 | 0.6106 0.0 0.3238 | 0.4074
components | 0.2083 00 |-04986| 0.0 |-0.2644 | 0.9980
-0.8126 | 0.0 |-0.0516 | 0.2981 | 0.0820 | 0.2878
0.2377 0.0 0.3302 | 0.5987 | -0.5254 | -0.0842
-0.2568 | 0.0 0.4687 | -0.3891 | -0.7457 | 0.0910
IPP 7.8366 | 5.6859 | 3.8018 | 2.4722 | 1.1784 0.0
* 73.86% | 53.59% | 35.83% | 23.30% | 11.11% | 0.0%

Tabie 2.3: Principal Components based on the Sample Covariance Matrix

eigenvalues | 9.3481 | 4.9491 | 2.7464 | 0.7626 | 0.7185 | 0.4135

by by hs by hs he
coefficients | 0.2199 | 0.7591 | -0.4258 | -0.3136 | 0.1286 | 0.2813
of principal | 0.0794 | 0.6072 | 0.6299 | 0.3511 [ -0.1236 | -0.2994
components | -0.2421 | 0.1064 | -0.4177 | -0.0919 | 0.0650 | -0.8619
0.8643 | -0.1756 | -0.0907 | -0.0718 | -0.3876 | -0.2421
-0.2524 | 0.0299 | 0.3207 | -0.7712 | -0.4864 | -0.0353
0.2757 | -0.1093 | 0.3693 | -0.4124 | 0.7597 | -0.1687

** 7.8479 | 5.6914 | 3.8025 | 2.5188 | 1.1814 0.0

*xx 73.96% | 53.64% | 35.84% | 23.74% | 11.13% | 0.0%

51
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Table 2.4: Principal Components based on the MVE Covariance Matrix Estimate

eigenvalues | 8.5540 | 4.4575 | 2.2117 | 0.7856 | 0.6967 | 0.3811
by by bs hy hs he
coefficients | 0.2360 | 0.7579 | -0.4147 | -0.3299 | -0.0787 | -0.2880
of principal | 0.0260 | 0.6102 | 0.6420 | 0.3876 | 0.0196 | 0.2533
components | -0.2033 | 0.1256 | -0.4033 | -0.0778 | -0.1326 | 0.8699
0.8704 | -0.1383 | -0.0354 | 0.0231 | 0.3869 | 0.2680
-0.2779 | 0.0639 | 0.2811 | -0.6436 | 0.6451 | 0.0969
0.2598 | -0.1196 | 0.4159 | -0.5658 | -0.6403 | 0.1226
** 7.8455 | 5.6924 | 3.8037 | 2.5285 | 1.1839 0.0
oEx 73.94% | 53.65% | 35.85% | 23.83% | 11.16% | 0.0%

Table 2.5: Principal Components based on the Weighted Covariance Matrix Estimate

eigenvalues | 9.2668 | 4.9060 | 2.7225 | 0.7559 | 0.7123 | 0.4099
h b, hs by h he
coefficients | 0.2199 | 0.7591 | -0.4258 | -0.3136 | 0.1286 | 0.2813
of principal | 0.0794 | 0.6072 | 0.6299 | 0.3511 | -0.1236 | -0.2994
components | -0.2421 | 0.1064 | -0.4177 | -0.0919 | 0.0650 | -0.8619
0.8643 | -0.1756 | -0.0907 | -0.0718 | -0.3876 | -0.2421
-0.2524 | 0.0299 | 0.3207 | -0.7712 | -0.4864 | -0.0353
0.2757 | -0.1093 | 0.3693 | -0.4124 | 0.7597 | -0.1687
ok 7.8479 | 5.6914 | 3.8025 | 2.5188 | 1.1814 0.0

ok 73.96% | 53.64% | 35.84% | 23.74% | 11.13% [ 0.0%

The ratio of IPP to expected description length per observation
which is 10.6104 computed using (2.5.3).

**:  The expected difference of the description lengths (2.5.5).

***. The ratio of ** to 10.6104, the expected description length per
observation.



Chapter 3

Generalized Linear Model
Selection by Predictive Least

Quasi-deviance Criterion

3.1 Introduction

Several criteria are available in the literature of model selection. See e.g. Akaike,
1973,1974; Efron, 1983,1986; Jaynes, 1957,1982,1985; Mallows, 1973; Schwarz, 1978;
Shao, 1993; Shibata, 1981; and Stone, 1974. In addition we have seen in Chapter 1 the
development of two new general approaches to problem of statistical inference: pre-
quential analysis (Dawid, 1984, 1991a, 1991b) and stochastic complexity (Solomonoff,
1978; Rissanen, 1978, 1986a, 1987, 1989). The former approach is based on the idea
that one of the purposes of statistics is to make sequential probability forecasts for fu-
ture observations, and statistical methods should be assessed by means of the validity
of the predictions that flow from them. Whereas in the latter approach a statistical
model is characterized in terms of the length of a coded message needed to trans-
mit the data, and the empirical assessment of the models are based on these code
lengths. These two approaches are particularly well suited to model selection in the

sense that both methods compare different models by their accumulated prediction
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errors although with different interpretations. (For relationship between these two
approaches see Dawid (1992).)

One of the basic notions in Rissanen’s approach is the concept of predictive
stochastic complexity, and in association with it a model selection procedure called
the predictive minimum description length principle (Rissanen, 1986a, 1987, 1989).
This principle, unlike for example the maximum likelihood method, permits optimal
identification of the values as well as the number of the parameters. When restricted
to Gaussian regression models, the predictive minimum description length principle
gives rise to the predictive least squares principle (Rissanen, 1986b). Whereas the
usual least squares technique minimizes the sum of squared fitting errors (residuals),
the predictive least squares principle minimizes the accumulated squared prediction
errors of the observations. Its minimization criterion contains the sum of the squared
“honest” prediction errors (by “honest” we mean that only past data are used to
identify the parameters in the model) which is shown to be an approximation of the
predictive stochastic complexity of the data except for a multiplicative constant. (For
a discussion of the predictive least squares principle see Hannan et al (1989), Hemerly
and Davis (1989), Speed and Yu (1993), Wax (1988) and Wei (1992).)

In this chapter we propose a criterion for generalized linear model selection based
on the predictive minimum description length principle and the idea of prequential
analysis, as well as on some results in the theory of quasi-likelihood functions (Mc-
Cullagh and Nelder, 1989; Wedderburn,1974).

Suppose the components of the response n-vector Y = (y,:++,y,)T are inde-
pendent variables with mean vector g = (p1,+++, )T and each with a covariance
o2V;(p:), where the scalar o2 is a constant of probably unknown value and V(-) is a
known positive function. It is assumed that the p x 1 vector 3 is the parameter of
interest and it is connected with u through a generalized linear regression equation
g(p) = XB, where X = (z1,---,2,)7 is an n x p matrix of the observed p x 1 covariate
vector = (the predictors) and g(:) is a link function.

Now we consider the problem of selecting a model (i.e., a regressor X3) that
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minimizes the sum of the “honest” predictive quasi-deviance

Z/ VD (3.1.1)

i=1
where ji;(?) is the estimate of the mean of y; based on the first ¢ — 1 response values
and the corresponding values of the employed predictors through the usual maximum
quasi-likelihood method.

If the likelihood of Y takes the form

exp {o™(YT0 - b(6)) + c(Y, o) } (3.1.2)

for suitably chosen functions 5(9) of the n-dimensional parameter 6 and ¢(Y, o), it will
be seen that (3.1.1) is the predictive stochastic complexity of Y relative to this model,
or equivalently the negative prequential log-likelihood of the model on Y, all being
in agreement up to an (data-dependent) irrelevant quantity for the model selection.
Therefore, the model selection based on (..1.1) can actually be interpreted as an
extension of both the stochastic complexity approach and the prequential analysis.

All of our results are obtained for a class of finite dimensional models, in contrast
with those discussed in Shibata (1983a, 1983b), Breiman and Freedman (1983) etc.,
where infinite dimensional models are also considered.

The main result of this chapter is to show that by minimizing (3.1.1) over a
sufficiently large class of models, the probability of selecting the right model converges
to 1, and the selected model converges to the optimal model in expectation. Here
the optimal model is defined to be the correct model g(p) = X g relative to a link
function g(-), which has the smallest dimension among all the available ones. By using
a resampling technique the proposed Monte Carlo predictive least quasi-deviance
method is shown through a simulation study to have fairly strong power to enhance

the efficiency in selecting the optimal model.
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3.2 Model Selection and the “Honest” Predictive
Error

Using the notations and assumptions described above, we consider the generalized
linear regression model in which the systematic component is g(x) = X 8.

Suppose the covariate vector z contains all the possible explanatory variables
available, and suppose also that the dimension of z, denoted as p, is finite, which
is usually the case in the practical situation. By including all these variables in the
regression model we make use of all thc information of the data. This, however, may
be inefficient because some of the components of 3 may equal to zero, so that the
corresponding explanatery variables are superfluous. The question arises then: how
to choose the explanatory variables so that the resulting regression model is correct
as well as efficient?

If some of the components of 3 are zero, a more compact model might be

g(l‘a) = XaBa, (321)
where a is a subset of size p, of {1,---,p}, pa < P, B is @ p, X 1 vector containing
the components of 3 indexed by the integers in a, X, = (214, *,Zna)7 containing

the columns of X indexed also by the integers in a, and go = (fa1,** -, ftan) is the
assumed mean of Y under this model.

There are in total 2? —1 possible different models of the form (3.2.1) each of which
corresponds to a subset a and is denoted by M,. The dimension (or size) of M, is
defined to be p,, the dimension of the vector 3,. Let A denote all nonempty subsets
of {1,---,p}. Following Shao (1993) the class of models M, can be grouped into two

categories:

Category I: At least one non-zero component of 3 is not in G,;

Category II: 3, contains all non-zero components of £.

Clearly, the models in Category 1 are incorrect models and the models in Category

IT are coirect, but possibly inefficient, due to their large size. Among the 2P — 1
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models an optimal model, denoted by M,, is defined to be the model in Category 11
with the smallest dimension. Note that a model is meant to be optimal relative to
a fixed link function g(-). Generally the optimal model does not have to be unique
(e.g. an essential explanatory variable is included twice in z), but if we assume that
the components of z are linearly independent (i.e. if there exists a p x 1 vector b such
that 27b = 0 then b = 0), the optimal model is unique relative to the fixed g(-) and
identical to the model in Category II with the smallest dimension.

Either by properly designing the experiment or by an appropriate transformation
of the explanatory variable or both the linear independence of the components of =
can usually be achieved. It is therefore meaningful to perform the model selection
based on the above classification of the models in M,, which is equivalent to the
problem of variable (predictor) selection.

For other model selection procedures like Akaike’s AIC or Schwarz’s BIC, which is
so formulated that each employed model is indexed by its dimension, refer to Akaike
(1974), Nishii (1984) and Schwarz (1978) for detail.

Under the specified conditions and assumptions for Y the log quasi-likelihood

function for Y is given by

Qu;Y) = i/“ ﬁvj(:)dt

i=1YW

and the quasi-deviance function for Y is
9 n Y Yi — 4
D(Y;w) = -20°Q(u;Y) =2 [ %==dt.
=1V ‘/l(t)

provided that the summands exist.

For generalized linear regression models, the quasi-likelihood method. suggested
by Wedderburn (1974), behaves like the maximum likelihood method. The difference
is that the assumptions of the former method concern only the first and the second
moments and some additional regularity conditions relating to the regression equa-
tion. This relationship may be understood by looking at the least squares method

and the maximum likelihood method in a linear regression model. For a detailed
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description of the quasi-likelihood method, see Wedderburn (1974) and McCullagh
and Nelder (Chapter 9, 1989).

Let ue suppose that the components of Y are ordered and let Y; = (1, -+, ¥i-1)T
and X% = (z;,--+,2;-1)T be (i — 1) x p matrices comprising rows of covariates
(predictors) corresponding to the response variables, i = 2,+++,n. X = (z1,-++,2a)7
is an n X p covariates matrix.

Under the proposed model M, of the form (3.2.1), the maximum quasi-likelihood
estimate ﬁa(z) of B,, based on the first i — 1 response values Y; and the corresponding
X0, satisfies the estimating equations U(3,()) = 0,, with 0p, a ps x 1 zero vector.

Here

U(Ba) = DV (Yi ~ pi))/o?

is the quasi-score function. In this expression the components of the matrix D, of
order (i — 1) X po are Do jk = Optay/0Bak, Voi = diag{Vi(fta1),"**, Vic1(pa(i-1))} and
the mean vector u{) = (sa1, -, pai-1))7, Where the pqo;’s are the proposed means of
Y;’s under M.,

Starting with an arbitrary initial value Bio)(i) sufficiently close to A3, (i), which
is supposed to exist, a sequence of parameter estimates generated by the Newton-

Raphson method with Fisher scoring is
Ba @) =B + DR VPO DR TV —i00w)  (329)

and the quasi-likelihood estimate 3, (i) may be approached by subsequent iterations.

Instead of starting with an arbitrary initial value, we may also start the iteration
with 39(i) = B (i — 1) as long as 8,(i — 1) is available. If 3,(i) converges as i — oo,
this will be a more efficient way to compute the sequential maximum quasi-likelihood
estimates {f4(i)}. Such a technique has been used in Jain (1983).

Having thus obtained ﬁa(i), the estimate fi,;(:) of the proposed mean p,; of the
i-th response value y;, based on the first ¢ — 1 observations, can be obtained through
(3.2.1). It is in fact the predicted value of the future observation y; based on the first

¢ — 1 observations.
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Definition: The predictive quasi-deviance function for the vector Y under the gen-
eralized linear model (3.2.1) is defined as

1 ooy —t
San = - "_"‘dt. 3.2.3
"= Y;/.zq.m Vo) (3:23)

n
i=

Noting that S, = 5‘; "1 D(Wi; fiaa(?)) , where D(y;; fiai(i)) is the prediction
error in terms of the quasi-deviance function for a future value y;, we have (3.2.3) as
the sum of the “honest” prediction errors.

It is apparent that for a model M, of the form (3.2.1), the estimated mean
values fla1(1), -+, flapa (Pa) can not be determined since the corresponding fa(3) (i =
1,:+,pa) can not be calculated fiom (3.2.2). The large sample behavior of (3.2.3)
are not affected by these first p, < p mean values, so we can set arbitrary finite
values to fi. (¢) where i < p, < p. However the arbitrary setting of these mean values
do affect . finite sample performance of (3.2.3). One possible way to reduce this
e - earrange the order of the first p, response value Y,, as follows. First
set fio1(1) = O or some other prescribed value. Then choose as the first data point
Yq) the one from Y, which can be predicted best, i.e. the one with the smallest
D(yqy; ra1(1)). As y(2) we select the ncarest data point among Yy, to y(;) in terms
of the quasi-deviance D(y(3);y)) and define f,2(2) = ya). Then fit yi) and y(y
using the generalized linear model containing only the first parameter of 3,, calculate
the prediction value for each of Y,, except y(;) and y(;) based on this model, and
choose as y(3) the observation among Y;, which gives the smallest quasi-deviance.
The corresponding prediction value for y(3) is defined as fi,3(3). The next step is to
fit the generalized linear model containing the first two parameters of 3,, find y(4) and
define jio4(4). Continue this procedure until the new order of Y, is determined and
Ba1(1)y +++, flape(Pa) are defined. While the procedure just discussed can determine
the first p, estimated means and control the prediction errors of the first p, terms of
(3.2.3) to some extent, it still has some disadvantages. One is that a different model
will probably yield a different ordering of the data. The model comparisons will thus

not be based on the same order of the data. The other is the amount of computation
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needed to determine the order which could be fairly large. In Section 3.4 we will again
discuss the strategy to deal with the effect of the first p, estimated mean values.

If the y;’s are normally distrituted with constant variance, (3.2.3) becomes the
sum of the squared “honest” prediction errors, which was shown by Rissanen (1989)
to be an approximation of the predictive stochastic complexity of Y except for a
multiplicative constant. If the y;’s have a likelihood function of the form (3.1.2), it
can be seen by a straightforward calculation that D(y;; ;) is the same as the log-
likelihood function of y; with respect to y;, except for a term which does not involve
the parameter of interest u; (part of Theorem 2 in Wedderburn, 1974). Thus in this
case (3.2.3) is (except for a quantity unrelated to the model selection) the predictive
stochastic complexity of Y relative to model (3.2.1), or equivalently the negative
prequential log-likelihood of the model on Y. In general, the use of (3.2.3) as an
empirical assessment of the model is an extension of Rissanen’s predictive minimum

description length principle and Dawid’s prequential statistical approach.

3.3 The Predictive Least Quasi-deviance Crite-

rion

3.3.1 Main Results

Because of the above connections between (3.2.3) and the predictive stochastic
complexity on the one hand, and prequential analysis on the other, a model selection
procedure similar to those employed in the predictive minimum description length
principle and “prequential” principle can be formulated for the generalized linear
model selection: from the class of models A we select the one which minimizes S, ,,
or the most parsimonious one if it is not unique. This is the so-called predictive least
quasi-deviance (PLQD) criterion.

We know that a generalized linear model depends not only on the covariate (pre-

dictor) variables, but also on the link function g(-). For a fixed g(-) we can use the



61

predictive least quasi-deviance criterion to select a model M, with the smallest S, ,
among the models of the form (3.2.1). If another link function gy(-) is proposed, the
same procedure can be applied to obtain another model My,. The predictive quasi-
deviance function (3.2.3) for these two models can then be compared and the smaller
one is <=lected. The same procedure can be used in the case of more than two link
functions. The problem of comparing two different model classes has recently been
discussed by O’Hagan (1994).

So far we have considered only the model selection from a set of models A corre-
sponding to a fixed link function g(-). Now we consider the question of optimality of
the model selection by the predictive least quasi-deviance criterion.

Denote ig, = DLV;;'Dy, and jg, = DI,V;'V,:iV;' Do where w = {1,--+,p}
indicating the full model. Also denote Ig, = —02—[]5%%1 where U(f,) is the quasi-
score function based on the first ¢ — 1 observations and the model M, of the form

(3.2.1). With these notations we have the following results.

Theorem 3.3.1 Suppose the components of the response n-vector Y arc independent
with mean gt = (g1, -+, pin)T and each with a variance o2V;(p;) where o? is a constant
of probably unknown value and V() is a known functions. We consider selecting a
model M, of the form (3.2.1) from A, given the matriz of observed covariaie vectors

X = (x4, ,2,)T. Suppose furthermore that the following conditions are satisfied.

(a).

E < oo foranyi 2> 1. (3.3.1)

/: o Vil )d
(b).

2

[e] 0.2‘/i ; i 1
5> i;P)E[La'()mdt < 0. (3.3.2)

1=1

(c).
lim inf — Z/;suu.(,) Vit dt >0 for any M, in Category I. (3.3.3)

n—=o00 n 1
=

(d). ig, = O(i) and jg, = O(i) for all B,. Morecover, both i~'is, and j, have

a

positive definite limit as ¢ — oo.
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(e). I, = O(i) and Iy, is nonsingular almost surely asi — oo.

(). E (U(EBa(3))) = O*/?).

(g). The mazimum quasi-likelihood estimate B4(i) of By in (3.2.1) exists for all 4
greater than p, + 1.

(h). The link function g(-) is second-order differential and g=! is well defined.

(i). There ezists a positive constant § such that V(-) > é.

Then
Sam = —D(Y; [ B dt 3.3.4
y 2 l‘l) ; E#a.(i) V +0P( ) ( )
if M. is in Category I, and
Sam = EI;D(Y;,L) +ay(1) (3.3.5)
if M, is in Category II.
Furthermore
'}Lrg pr{the selected model is in Category I'} = Q. (3.3.6)

Equation (3.3.6) follows directly from (3.3.4), (3.3.5) and (3.3.3) and answers the
question of whether the selected model is asymptotically correct. However it may not
be oplimal. The following theorem gives a result concerning selecting the optimal

model.

Theorem 3.3.2 In addition to the assumptions of Theorem 3.3.1, suppose that the

following conditions are true.

(7). Vi(u:) is second-order differentiable fori=1,.--,n.
(k). For any model M, in Category II, |fioi(2) — pi] < o(1) almost surely asi — oo.

(1). For any M, in Category II, I3; —ig = o(i) holds for any B, in o(1) neighbor-
hood of true 3,.
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Then for any M, in Category Il

E(Soz,n) = 2_E (D(Yal‘) Z

e V( N E(fiay(1) ~ m)’ + o(n"" logn)  (3.3.7)

and there ezists a non-negative number c, such that for n sufficiently large
E(San — Sarn) 2 cantlogn + o(n~! log n). (3.3.8)

Here a* C a corresponds to any model in Category II which is nested to M,. Cer-

tainly the optimal model is nested to M,.

The proofs of Theorem 3.3.1 and 3.3.2 are given in Section 3.6.

In Dawid (1992) the consistency problem of the Bayesian model selection by the
prequential approach was also considered. It was shown that the model-selection
method which proceeds by maximizing the adjusted prequential likelihood, or equiv-
alently minimizing the “adjusted stochastic complexity” of the data, would be (almost

surely) consistent.

3.3.2 Remarks on Some Conditions of Theorem 3.3.1 and
3.3.2

Note that if the likelihood function of the data is of the form (3.1.2) and g(:) is a
canonical link function, then Dg, = V,, X where X" = (214, *,Z(,-1)a)” being an
(1 — 1) X p, matrix. Therefore, 15, = XWTV,, X, j5. = XTIV, X and I, = ig,.
Hence the conditions (d), (¢) and (1) are obviously true in this situation if X = O(l)

We know that ¥"f° iToEl‘T— < oo for any ¢ > 0. So if V| p.)E[ (1) det]
bounded by O(i/log"** i), the condition (b) will hold. When the likelihood function

is of the form (3.1.2) and ¢(-) is a canonical link function
1y T 5 /1%
£ [/ua.(:) vi(t )dt] = Elrufe- %Ba(l)l.
= m,acov(ﬂa(z))w.a + zm(Eﬂa(i) - ﬁa)(Eﬂa(z) - Ba)Txm = 0(1)

using Lemma 3.6.1. Similarly condition (a) also holds in this case.
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If ns denotes the number of terms satisfying f,f,,‘;-‘m(,-) ‘f,:('—,;-dt >éfori=1,--.,n,

then a sufficient condition implying (c) is
. . pN§
liminf — > 0 for some é > 0.
n—o00 n

Obviously ns/n is an empiri~ ! probability for a function of the covariate vector x.
An explanation for the use of condition (k) in (3.3.2) is that the convergence
in probability does not imply the convergence in expectation unless the integrand

function in the expectation is dominated almost surely by a integral function.

-

3.4 An Approximate PLQD and A Monte Carlo
PLQD

The predictive least quasi-deviance principle has a great intuitive appeal. For one
thing, if there is any mechanism which restricts a future observation in a manner
similar to the past, and which can be captured by the selected class of parametric
functions, then we will find that mechanism. Conversely, if ¢ such mechanismni exists,
then our predictions will be bad, but so will all other predictions that use the saine
class of parameiric functions. Moreover, the criterion we seek to minimize expresses
the quantity which does not involve the hypothetical “true” distribution itself, namely,
the accumulated prediction errors of the observations (or the predictive stochastic
complexity of the data if the likelihood function of the data is of the form (3.1.2).).
Finally, the principle involves a few arbitrary choices that need to be made by “sound
judgment”; such choices are the selection of the parametric class and the link functions
which, however, are inevitable.

A drawback of the predictive least quasi-deviance technique is that the prediction
errors for the first few response observations may be fairly large, and if the sample size
n is not large enough the predictive quasi-deviance function (3.2.3) may be seriously
affected by these large prediction errors..

To overcome this difficulty, we drop the first few terms of (3.2.3) which do not
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affect the asymptotic behavior, but which are always troublesome when computing
the predictive quasi-deviance values. The number of terms dropped is proportional
to the number of the explanatory variables available. We call this the approximate
predictive least quasi-deviance method (abbreviated as APLQD). According to our
experience, the number of terms dropped is about 4p, where 4 is a finite positive
number less than 5, so that large prediction errors are avoided and little information
is lost.

As another modification to the predictive least quasi-deviance method we cunsider

the following resampling technique: Draw (without replacement) a random collection

C of r permutations of {1,---,n} and select a model by minimizing
1 -
suriao Ly g,
r ceC

where S’;m is the predictive quasi-deviance value computed by using the approximate
predictive least quasi-deviance method based on the permutation ¢ € C and r = O(n).
This is called the Monte Carlo predictive least quasi-deviance method (abbreviated
as MPLQD). Because of the resampling technique used here, the Monte Carlo predic-
tive least quasi-deviance method greatly reduces the effect of large initial prediction
errors which seriously affects the performance of the predictive least quasi-deviance
method, and is expected to have higher efficiency than the approximate predictive
least quasi-deviance method, especially for medium sample size. This can be inter-
preted as follows. In using the approximate predictive least quasi-deviance method
the effect of large initial prediction errors is reduced by dropping the first few terms
of (3.2.3), but at the same time the information originating from predicting these
deleted observations by other observations is lost. The Monte Carlo predictive least
quasi-deviance method seems to compensate for the lost information by resampling.
Asymptotically the Monte Carlo predictive least quasi-deviance method behaves sim-
ilarly to the predictive least quasi-deviance method: (3.3.6) as well as (3.3.8) hold,
with the probability being interpreted as the joint probability corresponding to Y and
the Monte Carlo selection of the permutations.

Besides the above proposals to solve the effect of the first few terms of (3.2.3), this
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initialization problem, inherent in the general predictive principle, can be overcome
as follows. The data sequence is subdivided into segments of length d, and each
subsequent segment is predicted with the model fitted to the preceding segments. If
the very first segment is predicted in the same manner by all the models, the segment
length d can be optimized along with the numbers of parameters in the models. Such
a technique has been applied successfully to neural networks (Rissanen (1994)). Use

of such a technique can also be found in density estimation (Yu and Speed, 1992).

3.5 A Simulation Study

In this section we assess the finite sample performance of the predictive least quasi-
deviance inethod. For the purpose of comparison with other methods we first consider
the linear model selection and choose the following example from Shao(1993).

Example 3.5.1: Consider the following model:

Y= ﬂlmh + ,323:2: + ﬂ3w3| + ﬂ‘lw‘h + ,351'51 + e,

where i = 1,---,40, e,’s are identically independently distributed with the standard
normal distribution N(0,1), x4, is the ith value of the kth predictor variable zy,
zy, = 1, and the value of z},, ¥ = 2,---,5, ¢« = 1,.--,40, listed in Table 1, are
taken from Gunst and Mason(1980). Some of the fix’s may be zero. Thus we are
selecting some predictor variables from five possible variables {z,---,z5} and we
wish to select a model with the best predictive ability. Note that there are thirty-one
possible models, and each model is denoted by a subset of {1,---,5} which contains
the indices of the variables z in the model.

Because y,’s are normally distributed with constant variance, the quasi-deviance
function of y,’s is the usual quadratic function. We consider the two modified predic-
tive least quasi-deviance methods: the APLQD and the MPLQD given in Section 4.2
with 4 = 2 (the first 9 terms are dropped when using the approximate predictive least

quasi-deviance method and the Monte Carlo predictive least quasi-deviance method)
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and r = 80(= 2n). Then we compare the results with the ones obtained by cross-
validation methods: the Monte Carlo cross-validation (MCCV(n,)) and the approx-
imate cross-validation (APCV(n,)) with n, = 25 and b = 2n (for details about the
Monte Carlo cross-validation and the approximate cross-validation techniques and
related simulation results see Shao,1993). Table 2 and Table 3 give the empirical
probabilities(based on 1000 repetitions) of selecting each model in several different
cases.

In this last section we assess the finite sample performance of the predictive
least quasi-deviance method. For the purpose of comparison with other methods we
choose the following example from Shao(1993).

The following is a summary of the results in Table 2 and Table 3.

1. In terms of the probability of selecting the optimal model, the Monte Carlo
predictive least quasi-deviance method and the Monte Carlo cross-validation

have the best overall performance among the four methods considered.

2. When the true model has fewer parameters the Monte Carlo cross-validation is
slightly better than the Monte Carlo predictive least quasi-deviance technique.
However, for the full model the Monte Carlo cross-validation is the worst among
all the criteria and the Monte Carlo predictive least quasi-deviance method is

the best one.

3. The probability of selecting a model from Category I (incorrect model) is neg-
ligible for all four methods if all §;z; values are quite comparable to o, the
standard deviation of the error. Here Z; is the sample mean of z;. If, however,
some of the 3;%; values are relatively small comparing to o, this probability can

not be controlled.

4. Although the approximate predictive least quasi-deviance method selects the
optimal model in expsctation, its performance is not as good as expected. This
indicates that in order to have a better performance the approximate predictive

least quasi-deviance method may require a larger sample size.
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In addition to the good performance of the Monte Carlo predictive least quasi-
deviance method for linear model selection, it provides a powerful tool for generalized
linear model selection as well. The following two examples illustrates the performance
of the predictive least quasi-deviance method to generalized linear model selection.

Example 3.5.2: Consider the following generalized linear model

log(p) = Bo + Py + Paz2 + Pazs

in which the response y has a Poisson distribution. The observations of the predictor
variables z’s are given in Table 4. The sample size is 36. The values of y are generated
from the Poisson distribution with the mean given by the above model. Thus we can
obtain the empirical probability of selecting the optimal model by the two modified
predictive least quasi-deviance methods. The results at 4 = 4.75 (or drop the first 19
terms when compute the predictive quasi-deviance) and r = 10, 20, 40, 80 are listed in
Table 5. From Table 5 we find the Monte Carlo predictive least quasi-deviance method
generally has a quite satisfying performance. It also implies that the approximate
predictive least quasi-deviance method would require a larger size sample to achieve
a better performance. In addition, the probability of selecting a model from Category
I is negligible for the Monte Carlo predictive least quasi-deviance metuod if all 5;;
values are comparable to each other and are not close to zero; it is not the case
otherwise.

Example 3.5.3: The data in Table 6, taken from Schoener(1970), have already
been analyzed by Fienberg(1970), Bishop et al.(1975) and by McCullagh and Nelder
(1989, Section 4.6). Data concerning the daytime habits of two species of lizard, gra-
hami and opalinus, were collected by observing occupied sites or perches and recording
the appropriate description, namely the species involved, the time of day, the height
and the diameter of the perch and whether the site was sunny or shaded. The pur-
pose of analyzing this set of data is to compare the two species with regard to their
preferred perches.

We now consider an analysis using a linear logistic model fitted by maximum
likelihood suggested in McCullagh and Nelder (1989). Since there are four factors H,
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D, § and T available, we have a class of models C each member of which includes some
of the four factors and one two-factor interaction. There are 40 different models in this
class and the largest model contains 8§ independent variables. The response ‘ariable
here is the observed number of sites occupied by grahami lizards or, equivalently, the
observed proportion of total sites that were occupied by grahami lizards. We then
choose a model in C which fits the observations of the response variable best by using
the Monte Carlo predictive least quasi-deviance method with 4 ~ 2.5(or drop the
first 19 terms in computing the predictive quasi-deviance) and r = 50(= 2r). The
resulting optimal model can be written symbolically as H+ D+ S+T, the second best
model is H + D + S + T + H.D and the estimated predictive deviance for these two
models are 0.0618 and 0.0632 respectively. Based on the optimal model, comparison
with regard to the preferred perches of the two species can be obtained.

Our conclusion is the same as that of McCullagh and Nelder (19°"), who infor-
mally used the analysis of deviance method to remove the interaction term from the
model, but different from that of Fienberg (1970) and Bishop et al.(1975), who found
significant interaction between H and D and between S and T regarding their effect
on species’ preferences. The reason for the difference appears to be the fact that, as
pointed in McCullagh and Nelder (1989), these authors attempted to consider sev-
eral unrelated issues simultanecusly using only a single model, and did not condition
on the totals of the occupied sites which are regarded as ancillary in the method of

generalized linear regression.

3.6 Proofs of Theorems 3.3.1 and 3.3.2

The following result in martingale theory will be useful in the sequel (see Section
3.3 of Stout,1974).

Let {Z,, F;,i 2 1} be a sequence of martingale differences, where F; is the borel
field generated by Z,,---,2;,1 2 1, Fo = {0,9}. Define S, = T, Z:.

Theorem 3.8.1 [Chow, 1960,1967]
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If for some r > 2
Y. E|Z| /i < o,

=1

then S,/n — 0 almost everywhere as n — oo.

Lemma 3.6.1 Under the conditions (1)-(h) of Theorem 3.3.1, the following state-

ments are lrue.
(i). cov(Ba(i)) = O(™) and fa(i) = E(Bali)) = O,(i7/%).
(i). B (Buld) = Ba) (Bali) = Ba) = OG™) and fuli) = Ba = Op(i™1%) if Mo is in
Category II.
(iii). var(fai(i)) = O(™) and fiai(3) — E(jiai(i)) = Op(i™/%).

(). E i) — pi]* = O(™) and fioi(s) — i = O,(i"1/2) if M, is in Category II.

Proof. If we denote f(,(¢) as the maximum quasi-likelihood estimate, then U(f4(%))
= 0. Applying Taylor expansion to U(8,(i)) around EfB,(i) for any M, in Category

I, it can be seen that

O, = U(EBa(3)) — 07*153(Ba(s) — Ea(i))

where I, is the observed information evaluated at a point 3 lying on the line segment
joining B4 (i) and EB,(:). Thus

Ba(i) = EBu{i) = 0’15, U(Ea(3)) = O(™")U(Ea(i). (3.6.1)

By the condition var(U(EBa(i))) = j Epa(i) = O() and the condition (f), we have from
(3.6.1) cov(Ba(1)) = O(i~1) and by Chebyshev’s inequality 3,(s)— FB,(2) = 0,(i1/?),
which is (i).

"y expanding U(f,(i)) around B, similarly we can obtain (ii).
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Using the expansion

|fai(G) = Efai(i)] = |o7(=a(0) - 97 (=F EBu(i)
+97 (e EBa(d)) - Eg7 (2TBu(3)|

< o7 %8| |2h(Bali) - EBali))|
+E [|g7 (=L.8)| |eh(Bali) - EButi))|)
and part (i), it can be seen (iii) is true. Similarly (iv) follows. 0

(ATCA)™ 0
0 0

matriz, where C is an m X m positive definite matriz, A is an m X a matriz, B is a

m x b matriz, a + b < m and rank(A, B) = a +b.

Lemma 3.6.2 ((A4, B)TC(A, B))™! - ( ) is a non-negative definite

The proof of Lemma 3.6.2 is straightforward.
Proof of Theorem 3.3.1. Using the notation of Section 3.2, (3.2.3) can be rewritten

as
1 ks [
San = = dt + — /
! n i=1 v/u. V(t .2; “al(‘) V( )
1 / — 1 /El‘m(') Bi -~
= dt + = B2
z #al( ) V n Z; Bai (i} M(t)
ef 1
def %D(Y; py+ L+ 1+ 13 (3.6.2)

where I, I, I3 denote the second, third and fourth term of the right hand side.
This decomposition of S, 5, can be explained as follows. The first term is half of the
average quasi-deviance of Y, I, + I3 measures the bias sequence {g; — fini(2)}, where
I, measures the {g; — Efi,i(¢)} part and I3 for {jiai(i) — Efiai(2)}, and I is some kind
of cross-product term.

Since ji4(i) depends on the first 7 — 1 observations we have

By l

#a yz = K
s i = s — Ji —'—dt = 0
E(/nm(n) Vi(t) gy & Ty gia) = (B =y ))/na.(i) Vi(t)
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i =2,---,n. Thus {[3 %70 brbsdi i =1,---,n,---} is a sequence of martingale dif-

ferences if E f‘f“;(i) “{,ﬁdtl < 00, which is true from the condition (3.3.1). By Theo-

rem 3.6.1 it is known that I; — 0 almost surely as n — oo if (3.3.2) is true.

From (iii) of Lemma 3.6.1 and by Lyapunov’s inequality it is easy to know that
E |f1ai(2) — E(f24i(2))] = O(:~'/?). Therefore it can be seen that under the condition
(i) I converges to 0 in L; and accordingly I3 = 0,(1) in probability.

Suppose that the chosen model M, is the correct one. From (iv) of Lemma 3.6.1
it is easily known that E |fi.(i) — pi| = O(i7"/?). Therefore

fim [ Bty
mm =
=0 JEja, (i) Vi(t)

and lim,_ I; = 0 if M, is in Category II.
For any model M,, in Category I and M, in Category Il it is not difficult to com-

prehend that the difference of the corresponding predictive quasi-deviance functions
San — Syn > 0 in probability

if (3.3.3) is true. Note that I, > 0 for any fixed n when M, is in Category 1. (3.3.3)
is therefore a quite reasonable assumpti~n.
Theorem 3.3.1 follows from the above results for I, I, and I3 and the decompo-
sition (3.6.2) of S, n. a
Proof of Theorem 3.3.2. Rewrite S, ,, as
1 & i | R
Som = —-—D(Y,u )+ — }:/ﬂmm T ;‘ dt + EE/ﬁa.u)ﬂ_V.-Wdt

nia i=1

Define f(s) = [ “i,lf;—;dt and by Taylor expansion for f(s) around p; we obtain
1 n /l‘c — 2 . . 3]
ai i)°+ O iai(2) — 1))} -
n; - V(t ; i .)(u ) (i (i) — mi)?)
Thus by the independence of y; and fiai(2), and the condition (k) it is easily known
that

ESoen = ——ED(Y,p)-{- Z{

|-'l

1
Vi(ws)

= S ED(Y3p) 4 5= 30 7 < E(fai(i) — i)’ + o{n™ logn)

2n n =1 V( ')

(mﬁrwm+«mmmrwmﬂ



since E|jiqi(s) — pil = O(E"?). From (3.6.1) and the condition (1) fBa(i) -- Bu =
I ";IU (Ba) = (14 0(1))i52U(Bs). Thus by Taylor expansion

fai(®) = i = 97 (L56(d)) - 97 (=1, 0)
= (97" (#hBa) (&L Bali) — 2Ba) + o(eL,fali) - 21,Pa)
= (97" (ehaBa)(1 + o(1))(=L,Bu(i) — 2F.B0)
= (97" (@I B)(1 + o(1))2,i5 U(Ba)-

Therefore by noting that Vi = Vi, g = p) and z¥ 8, = TS for any M, in
Category II we have

E(iai(d) = ) = [0 (7B)] (1 + o(1))aLiz i
Similarly

E(fiasi() ~ ) = [(671Y(&TB)]" (1 + o{1))alsei5l, Ziae.
115, 0

From Lemma 3.6.2 we know uE: - ( 0 0

) is a non-negative definite matrix,

therefore

it 0
E San—sa'n = [ ] T fa Tia+o0 n_llo n
> can”! logn + o(n"1 logn) if n is sufficiently large.

O



Table 3.1: The Values of x4, in Example 3.5.1

T2

T3

T4

sy

I

T3,

T4

Tse

0.36
1.32
0.06
0.16
0.01
0.02
0.56
0.98
0.32
0.01
0.15
0.24
0.11
0.08
0.61
0.03
0.06
0.02
0.04
0.00

0.53
2.52
0.09
0.41
0.02
0.07
0.62
1.06
0.20
0.00
0.25
0.28
0.35
0.13
0.85
0.03
0.11
0.08
0.24
0.02

1.06
5.74
0.27
0.83
0.07
0.07
2.12
2.89
0.76
0.07
0.50
0.59
0.40
0.28
0.49
0.23
0.50
0.25
0.08
0.04

0.5326
3.6183
0.2594
1.0346
0.0381
0.3440
1.4559
4.0182
0.4600
0.1540
0.6516
0.0611
0.1922
0.0931
0.0538
0.0199
0.0419
0.1093
0.0328
0.0797

0.09
0.02
0.02
0.05
0.11
0.18
0.04
0.85
0.17
0.08
0.38
0.11
0.39
0.43
0.57
0.13
0.04
0.13
0.20
0.07

0.18
0.16
0.11
0.24
0.39
0.11
0.09
1.33
0.32
0.12
0.18
0.13
0.38
0.46
1.16
0.03
0.05
0.18
0.95
0.06

0.59
0.24
0.21
0.43
0.29
0.43
0.23
2.70
0.66
0.4
0.49
0.18
0.99
1.47
1.82
0.08
0.14
0.28
0.41
0.18

0.1855
0.1572
0.0998
0.2804
0.2879
0.6810
0.3242
2.6013
0.4469
0.2436
0.4400
0.3351
1.3979
2.0138
1.9356
0.1050
0.2207
0.0180
0.1017
0.0962
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Table 3.2: Probabilities (Based on 1000 Repetitions) of Selecting Each Model

Model | Category | MCCV | APCV | APLQD| MPLQD
B= 1,4 Optimal | 0.926 0.501 0.532 0.921
(2,0,0,4,0) 1,24 J 0.023 | 0.116 0.108 0.025
1,34 I 0.021 | 0.085 0.069 0.020
14,5 Il 0.028 0.172 0.211 0.033
1,2,34 I 0.002 | 0.038 0.012 0.001
1,2,4,5 11 0.000 0.039 0.038 0.000
1,34,5 I 0.000 | 0.037 0.021 0.000
1,2,3,4,6 11 0.000 0.012 0.009 0.000
= 1,4,5 Optimal | 0.956 0.651 0.785 0.951
(2,0,0,4,8) 13,5 I 0.001 | 0.000 0.000 0.000
1,2,4,5 Il 0.026 0.161 0.113 0.038
1,3,4,5 I 0.016 | 0.131 0.078 ¢.011
1,2,3,4,5 II 0.001 0.057 0.024 0.000
5= 14,5 I 0.019 | 0.000 | 0002 | 0011
(2,9,04,8) | 1,2,4,5 | Optimal | 0.956 | 0.818 0.797 0.962
1,3,4,5 I 0.003 | 0.000 0.0Gy 0.007
12345 11 0.022 | 0.182 | 0201 | 0.020
= 1,2 I 0.000 | 0.002 0.000 0.000
(2,9,0,4,0.1) 1,4 I 0.010 0.017 0.018 0.005
1,2,3 I 0.000 | 0.003 0.000 0.000
1,2,4 | 0.949 0.496 0.773 0.910
12,5 I 0.000 | 0.003 | 0.000 | 0.000
1,3,4 I 0.001 0.017 0.001 0.000
1,3,5 I 0.000 0.002 0.000 0.000
14,5 I 0.000 | 0.019 0.000 0.000
1,2,3,4 I 0.020 0.199 0.107 0.024
1,2,35 I 0.000 | 0.005 0.000 0.000
1,2,4,5 | Optimal | 0.020 | 0.158 0.086 0.054
1,3,4,5 I 0.000 | 0.016 0.002 0.000
1,2,3,4,5 11 0.000 | 0.063 0.013 0.007

£



Table 3.3: Continued to Table 3.2

Model | Category | MCCV | APCV | APLQD| MPLQD
B= 1,2,3,5 I 0.001 0.000 0.000 0.001
(2,9,6,4,8) 1,2,4,5 I 0.006 0.000 0.002 0.001
1,34,5 I 0.031 0.001 0.005 0.023
1,2,3,4,5 [ Optimal | 0.962 0.999 0.993 0.975
B= 1 I 0.000 0.002 0.000 0.000
(2,0.3,0,0,1.4) 1,2 1 0.045 0.042 0.018 0.057
1,3 I 0.000 0.006 0.001 0.000
1,4 I 0.019 0.033 0.021 0.018
1,5 I 0.900 0.418 0.632 0.886
1,2,3 I 0.001 0.011 0.003 0.001
1,24 I 0.000 0.007 0.000 0.000
1,2,5 Optimal | 0.025 0.104 0.030 0.028
1,34 I 0.000 0.016 0.016 0.000
1,3,5 I 0.008 0.118 0.179 0.007
1,4,5 I 0.000 0.078 0.049 0.002
1,2,3,4 | 0.000 0.013 0.006 0.001
1,2,3,5 11 0.002 0.044 0.014 0.000
1,2,4,5 11 0.000 0.042 0.010 0.000
1,3,4,5 I 0.000 0.043 0.020 0.000
1,2,3,4,5 I 0.000 0.023 0.001 0.000
Tabie 3.4: The Values of x4, in Ezample 3.5.2
T14 L2 T3 T T I3, T T T3,
0412 0.284 097 |0.484 0.885 0.83 [0.993 0.51 0.469
0.805 0.296 1.082 | 0.249 0.969 0.108 | 0.784 0.577 0.404
0.485 0.23 0.743 | 0.443 0.949 0.363 | 0.754 0.559 1.031
0.235 0.173 1.038 | 0.594 0.948 1.195!0.964 0.53 0.742
0.224 0.16 0.796 { 0.541 0.959 1.147(0.729 0,502 0.711
031 0.136 0.8320.464 1.003 0.564 |1.13 0.539 0.92
0.262 0.285 0387 [ 1.15 1.045 0.906 [ 0.806 0.515 1.169
0.51 0.103 0.436 ] 0.982 0.948 0.221 | 0.672 0.54 1.032
0.614 0.208 0.88 | 0.734 1.042 0.711 | 1.484 0.51 0.358
0.453 0.204 0.224 | 0.628 0.924 0.833 | 0.931 0.533 0.355
0.095 0.197 0.67 | 0944 0.985 0.731]0.566 0.5 0.653
0.841 0.533 0.531 ] 0.562 0.938 0.36 |0.841 0.533 0.531

76



Table 3.5: Probabilities (Based on 1000 Repetitions) of Selecting Each Model

7

Model | Category | APLQD MPLQ@D
r=10]r=20|{r=40|r =80
B= 1 I 0.008 | 0.000 ! 0.000 [ 0.000 | 0.000
(2.3 7 1,2 | Optimal | 0.571 0.693 | 0.711 | 0.710 | 0.719
1,3 I 0.003 | 0.000 | 0.000 | 0.000 | 0.000
1,4 I 0.002 | 0.000 | 0.000 | 0.000 | 0.000
1,2,3 11 0.182 | 0.150 | 0.138 | 0.136 | 0.131
1,2,4 I 0.182 | 0.132 | 0.117 | 0.123 | 0.125
1,2,3,4 11 0.052 | 0.025 | 0.034 | 0.031 | 0.025
= 1,23 | Optimal | 0.777 | 0.842 | 0.856 | 0.860 | 0.861
(2,2,2,0) 1,2,3,4 II 0.223 0.158 | 0.144 | 0140 | 0.139
= 1,2 I 0.015 | 0.001 | 0.000 | 0.000 | 0.000
(2,1,0.3,0.35)| 1,3 I 0.001 0.000 | 0.000 | 0.000 | 0.000
1,2,3 | 0.144 0.066 | 0.061 | 0.056 | 0.060
1,2,4 I 0.040 | 0.004 | 0.005 | 0.006 | 0.003
1,2,3,4 | Optimal | 0.800 0.929 | 0.934 | 0.938 | 0.937
B= 1,2 I 0.350 | 0.403 | 0.400 | 0.412 | 0.413
(2,3,0,0.1) 1,2,3 I 0.111 0.083 | 0.080 | 0.081 | 0.081
1,2,4 | Optimal 0.417 0.426 | 0.423 | 0.423 | 0.429
1,2,3,4 11 0.122 | 0.088 | 0.097 | 0.084 | 0.077

Table 3.6: A comparison of site preferences of two species of lizards,
grahami and opalinus

T
Perch FEarly Mid-day Late
D H
S (in) (t) G O Total G O Total G O Total
Sun <2 <5 20 2 22 8 1 9 4 4 8
25 13 0 13 8 0 8 12 0 12
>2 <6 8 3 11 4 1 5 5 3 8
25 6 0 6 0 0 0 i 1 2
Shade <2 <5 34 11 45 69 20 8 18 10 28
>5 31 5 36 5 4 59 13 3 16
>2 <5 17 15 32 60 32 92 8§ 8 16
25 12 1 13 21 5 26 4 4 8

H, perch height; D, perch diameter; S, sunny/shady; T, time of day;
G, grahami; O, opalinus.



Chapter 4

On Stochastic Complexity
Estimation — A Decision

Theoretic Approach

4.1 Introduction

The raw material of a statistical investigation is a set of observations, which are
the observed values of some random variable X whose distribution F' is at least partly
unknown. Statistical inference is concerned with methods of using this observational
material to obtain information concerning the probabilistic structure of F. A general
formulation of the problem was given by Wald’s theory of decision procedures (Sec-
tion 1.1 of Wald, 1950 and Chapter 1 of Ferguson, 1967) according to which the aim
of statistics is the selection of a decision rule which minimizes the resulting risk.

For the purpose of describing the information contained in the observational ma-
terial the related notions of stochastic complexity and description length provide
a global measure in the sense that the derivation of these quantities involves the
consideration of not only the randomness in the observational material but also the
propert:es of mathematical formulation used to model the observations (refer to Chap-

ter 1). With such measures one can hope to determine a decision procedure with some

8
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universal optimum properties for many statistical problems.

Let Xi, X3,:++,Xn = X" be a sample independently drawn from a (at least partly
unknown) probability density function p(-) which is assumed to belong to a density
class I'. The X;’s are assumed to take values in a measurable space A’ and the density
function p(-) is taken with respect to a known complete, o-finite dominating measure
v(-). The description length for the sample X" relative to p is then defined as a
two-step codelength

C(p) + log ——— (4.1.1)

(X ")’
where p(X") = [Ii, p(Xi), C(p) is the part of the code length for encoding the
underlying density p and the logarithm is in base 2.

An inte: pretation as well as some necessary resrictions are given as follows. Sup-
pose the class I contains at most countable infirite number of densities, {C(p),p € '}
is then a sequence of nonnegative numbers satisfying Kraft's inequality 3, 2-C) <
1 ard each C(p) is interpreted to be the codelength for the description of the corre-
sponding density. There is also a Bayesian interpretation of the numbers 2-€®) ag
prior probabilities. In Kolmogorov’s complexity theory C(p) is equal to the minimum
codelength of the programs ¢ that encode p on a universal computer which consists
of finite length binary programs satisfying the prefix property (Rissanen, 1989 pp.
45-52). Since the description of Xy, X3, -+, X, in (4.1.1) follows the code for p, the
prefix condition is essential for decoding the two steps. Kraft’s inequality gives nec-
essary and sufficient conditions for the prefix property, i.e. the existence of instant
and decodable binary codes. By Shannon’s work, if p is given, then {log(1/p(X™))] is
the length of an instantaneous code that describes the sample X;, X3, -+, X,.

In order to make Kraft’s inequality meaningful the countability of the size of the
density class T' is necessary. Although in statistical inference the employed model
class is often of uncountable size (like the usual parametric model class), we can
circumvent the problem by applying the encoding process to the parameters which
are truncated to a fixed precision and then, by using a limit process, to extend it to

a model class of uncountable size. The countability of the model class is, therefore,
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of no importance to the results following. Nevertheless, for the sake of simplicity we
will assume the countability of I', except in Section 4.3. Hence I is often specified by
a sequence of parametric models with the parameter values restricted to a prescribed
precision, and in the ideal case I consists of all computable probability densities.
When the descriptive programs for the densities in the class I' are determined,
the two-step codelength (4.1.1) is a function of the unknown part of the true density
po provided that pg is in the class I'. It is natural to consider the minimization
of the two-step length to determine the unknown part of py. This is the so-called
minimum description length (MDL) method. However, the minimum description
length based on (4.1.1) is still not entirely satisfactory as the shortest codelength
of the sample X;, X,,: -+, X, relative to the density class I', for it is the result of a
specific coding construct, and by encoding both the sample and the density we get
more than we really need. To eliminate such redundancy in describing the data, a
concept of stochastic complexity is introduced by Rissanen (1986a, 1987, 1989). In
our case, the stochastic complexity of the sample X;, X5, -+, X}, relative to I and C

is defined as
I(X"|T,C) = —log (Z p(X" )2-00’)) : (4.1.2)

per
It represents the shortest code length for the data that can be achieved by the densities
in I’ under C. Based on the stochastic complexity a density can be defined to replace
the true density in the inferential process.

Now suppose that the unknown part of the density p can be written as ¢ = ¢(p)
which is a mapping, called the descriptive mapping, from a large class of densities P
to a space A, called the description space. The large class P contains the plausible
densities p for the unknown population density of X", which usually includes T,
the convex hull of T' T, all the empirical densities of X", and sc on. In the most
general situation P contains all the probability density functions. The structure
of A and the form of ¢ are determined by the particular decision problem. Any
function (or mapping) § = §(X™) that maps the sample space X™ into A is called

a decision rule. The class of all decision rules is denoted by D, the decision space.
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In a decision problem, if p is fixed, ¢(p) will be completely determined. A general
decision problem, in which p is at least partly unknown, is then specified by assigning
p a correct decision in the decision space D to estimate ¢(p) using the information
contained in the observations and using a loss function L to evaluate such decision.
The great variety of the possible decision structures is illustrated by the following

cases:

i) Hypothesis testing in which one wishes to decide which of the propositions A; or
A, is true for the density py. Here A = {4,, A;} and ¢(po) = A, if A, is true
and A; if A, is true. The decision rule §( X™) can be any function taking the

value of either 1 or 0 corresponding to A; and A, respectively.

il) Identification A straightforward generalization of (i) in which there is a choice of
s alternatives Ay, Ay, -+, A,. Here A = {A;, Ag,- -, A,} and ¢(po) = Ai if A,

is true, 2 =1,2,..-,s.

iil) Estimation on the other hand requires a numerical assessment of some quantity
related to the unknown part of py. In this case ¢ = @(p) is a k-vector functional

of p and A is the Euclidean space R* or its subset.

For an account of these cases in somewhat different forms see Rissanen (Chapter 4,
1989) for (i), Rissanen and Ristad (1992) and Rissanen (Chapter 7, 1989) for (ii), and
Barron and Cover (1991), Barron et al. (1992), and Rissanen et al. (1992) for (iii).
In this chapter we address these problems within the framework of decision theory.
The choice of a loss function is still to be discussed.

For a decision rule § = §(X™), we define the loss functions, respectively, to each

case above as follows.

i)
£ 6(p) = Ay,
L(4(p), A1) = { : ;f ZEZ; _ A: (4.1.3)
0 if ¢(p) = Az,
L(#(p), Az) = { , :f ZEZ; ~ A2 (4.1.4)
= 1],
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¢ and b are the losses which can be adjusted according to the relative importance

of the two types of error.

The risk function becomes

R(¢(p),6) = E,L(¢(p),6(X™))

_ { bP(6(X™) = A;) if ¢(p) = As (4.15)
aP(6(X") = A;) if ¢(p) = A2
ii)

L(¢(p), A;) =14 (4.1.6)
for ¢(p) = Ai,j =1,2,---,sand i = 1,2,---,s. r; is the penalty for misclassi-
fying ¢(p) of proposition A; to proposition A;. r;; = 0if ¢ = j.

The risk function is
R(4(p),8) = 3_rijP(6(X") = A;) (4.1.7)
i=1
for ¢(p) = Ai,i=1,2,.--,s.
iii)

L(4(p), 6(X™)) = v(p)|6(X™) - ¢(P)I*, (4.1.8)

the usual form of the squared error loss.

From now on we use the triplet (I', D, R) to denote a statistical decision problem.

In this chapter we concentrate on estimating ¢(p) of the density p. By using
Rissanen’s concept of stochastic complexity we introduce a complexity decision rule:
first we define a stochastic complexity density estimate p, of p with respect to the
sample X, X3, -+, X;, the density class I' and the description length sequence C(p),
then we use ¢(,) to estimate the quantity ¢(p). We show that this decision procedure
is admissible, achieves the minimum expected risk and forms a minimal complete class
under very general conditions. Applications to parametric distribution families is also

considered after a discussion of consistency.
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4.2 Complexity Decision Rule

To estimate the quantity ¢(p), a general and straightforward selection procedure
can be obtained from a set of candidate probability densities I' subject to the infor-
mation provided by the sample X;, X3,---, X,,. Denote the density chosen as p,, th~
estimate of ¢(p) can then be written as ¢(p,) and the decision rule 6(X") = ¢(pn).

The concept of description length and stochastic complexity suggests that a nat-
ural and optimal choice for the density p might be the one that minimizes the de-
scription length or the one generated by the minimum stochastic complexity. We now

discuss such procedure in detail.

Let’s first define minimum description length of the data X, X, -+, X, relative
tol and C as
1
™) = mij —_— 4.2.
B(X™) min(C(p) + log p(X")) (4.2.1)
and
1
P = i —_— 2.
Pn = arg min,r(C(p) + log (X )) (4.2.2)

which is called the minimum description length density estimator relative to I' and C
(Barron and Cover, 1991). In case of ties, the density p, is chosen for which C(p,) is
shortest (and any further ties are broken by selecting the density with the smallest
index in T').

From Section 4.1 we know that {C(p),p € I'} must satisfy the surumability re-
quirement

Yo 27et <, (4.2.3)
pel

In the remainder of this chapter we assume, for the purpose of convenience, that

{C(p),p € T'} satisfies the regularity condition
Y270k =, (4.2.4)
pel

Actually, if the regularity condition is not satisfied, we can define a new coding

process for the densities in I" so that the description length for each p in I is the C'(p)
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that satisfies

92-C(p)

9-C'p) = =
Yoqer 209

or C'(p) = C(p) + log (Z 2-0(*')) : (4.2.5)

q€T

Thus for the new sequence {C’(p),p € I'} the regularity condition (4.2.4) holds and
the minimum description fength of X™ relative to I' and C’ differs from the one
relative to T and C by only the constant log(¥,er 27@).

Now for each density p in the candidate class I' and for the corresponding descrip-
tion length C(p) there exists a coding process in which the length of the codeword
for each sample X™ = X, Xs,- -+, X,,, written as (X" | p,C), is equal to

C(p) + log ;)—(-}l-(—n—) (4.2.6)
in difference of a constant less than 1. The corresponding binary code is instantaneous
and decodable so that Kraft’s inequality holds. This coding process can be described
by the following coding system.

Suppose each observation X; is observed to a prescribed precision a. The mea-
surable space X' can then be quantized into a countable alphabet [X] over which
the observation ranges. Let us write [X]" for the set of all observation strings of
length n and [X]" = |22, [X]" for their union. Let B denote the binary alphabet
and B* = |J32, B". We define a coding system relative to I' and C as a (decoding)
function

G: Q= [A) (4.2.7)
from a subset £ of B* onto [X]". Here Q2 is the set of all codewords of observation
strings obtained by the coding process defined by I' and C. Any member b; of 2,
such that G(b;) = X™ is said to be a codeword of the sample X". The length |b;| of
b; is the number of binary digits in it. It is easy to see that the inverse image of X"
under the decoding map G is G~'(X") = {b(X" | p,C),p € I'}. By the regularity
condition (4.2.4) the sum

P(X™) = Z 9-16(X"p.C)| Z p( X" )2'0(") (4.2.8)
pel p€l
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is well defined (indeed, its integral on the measurable space X" equals to one). In
fact, p'(X™)v(A[X"]) represents the probability of finding a codeword for X" in a
game of fair ccin tossings, where A[X™] denotes the quantization region containing
X™. Hence we get the stochastic complezity of X™ = X, X3, -+, X, relative to I' and
C as

I(X"|T,C)= —log (}: p(X")2'C(”)) . (4.2.9)

pel
It can be regarded as the code length obtained by the removal of the redundancy in

the coding system G and represents the shortest code length for the data X™ that
can be achieved by the densities in I' under C (Rissanen, 1989, pp. 45-67).

By the criterion (4.2.2) a minimum description length (MDL) density estimator
Pn(X) can be obtained for the observations X;, X3, -, X,, which exists with proba-
bility one (Barron and Cover, 1991). For a future observation X a natural question
that may be asked is if the MDL density p, would still produce the minimum descrip-
tion length for X" X = X,, X,,---, X,, X. The answer is negative because the MDL
density estimator depends on the observed sample. The following example provides

an illustration.

Example 4.2.1 Let Xj, X3, -, X, be a sample from a normal distribution N(j,1)
where j takes some positive integer 1,2, - - -. The density description length C(N(j,1))
= j, so that regularity condition (4.2.4) is satisfied.

For each N(j,1) the description length for the sample X" is

n
i+ -;- (Z(X,- - j)2) loge + n log v2r. (4.2.10)
i=l

Expression (4.2.10) is minimized when j = j, = [mi(X") — 1/(nloge) + 1/2] where
my(X™) = (1/n) X%, X; is the sample mean. The MDL density estimator N(j,,1)
changes according to the sample. However, when n is sufficiently large, by the law of

large numbers j, is uniquely determined and so is the MDL density estimator.

In general we have the following result obtained in Barron and Cover (1991).
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Theorem 4.2.1 (Barron and Cover, 1991) Suppose that C(p) satisfies the regularity
condition ({.2.4). If the true density po € T, then

Pn = Po (4.2.11)
for all sufficiently large n, with probability one.
The following corollary for the estimator ¢(p,) holds.

Corollary 4.2.1 Suppose that §(p) can be expressed in the form of a linear functional

#p) = Epf(X) = [ fl@)pla)v(de) (4.2.12)

for any p € T, where f(z) is a v-measurable function with E, |f(z)| < oo and is called
a kernel of ¢. If po €T, then

é(pn) = ¢(Po) (4.2.13)

for all sufficiently large n, with probability one.

A disadvantage of the MDL estimator is that it yields no closed expression for the
estimator until a concrete form of p as well as I' is given. In addition, because of the
redundancy in the two-stage coding system, the MDL (4.2.1) overestimates the real
code length.

Motivated by such considerations, we defiuic a density, called the stochastic com-

plezity densiiy estimator as

—
Fo(z) & (2| X™) = Zeer PEMX)Z7 (4.2.14)

Y per P(X™)2-ClP)

which is generated by the difference between the stochastic complexity of X" X and

the stochastic complexity of X", i.e. by the stochastic complexity of X given X™.
To see this notice that —log (E,,ep p(X)p(X ")2‘0(”)) is the stochastic complexity

for X*X and —log (Zpel‘ p(X")Q'C(")) is the stochastic complexity for X™. From

the fact that p, has integral one with respect to z on the measurable space X and by

(4.2.8) we have the following proposition.
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Proposition 4.2.i For almost every sample X" P, is a probability density that sai-
isfies ({.2.14) for almost every z € X.

We have obtained a new estimate ¢(p,) of ¢(p) which we call the stochastic com-
plezxity estimator. Note that p,, a reasonable estimate of the density for X", may not
belong to I' since I' is not necessarily a convex set. This is of no consequence because
I is only a proposed density class, and the assumption that the true density belongs
to I may not be true. Further, the quantity of interest is ¢(p) rather than the density
p itself, so even if the true density po is in T', ¢(g) may still be the same as ¢(po)
for some q outside I'. The relationship between ¢(p,) and the minimum description

length estimator ¢(p,) is established by the following result.

Thecrem 4.2.2 Suppose that C(p) satisfies the regularity condition ({.2.4) and that
Jor any given sample X™ p,, is the MDL density estimator defined by (4.2.2). Suppose,

moreover, that for anyp e T

1
C(p) +lo = C(pn) + log = + 7%(p, X" 4.2.15
) ey (Pn) 8 5 X" (p, X") (4.2.15)
where p,(X") = [T, Pu(X,) and 7%(p, X™) is a positive functional salisfying
nllxg(rz(p, X" — 3 (p, X")) =0 (4.2.16)

uniformly for p € I'. Thea for each x, except a set N of measure 0,
lim fn(z) = Jim a(2) = po(c) (4:2.17)

with probability one, where P, is defined by (4.2.14) and py € T is the true density of
X",
Proof: We know from Section 4.1 that X is a random variable defined on the prob-
ability space (X', B(X), P). By Kolmogorov’s theorem on the extension of measures
(Shiryayev, 1984, pp. 161), there exists a probability space (X, B*(X), P) for
the sequence Xy, X3,:--, Xy, ---. Now from Theorem 4.2.1 there exists a B®(X)-
measurable set M with P(M) = 0 so that for each observation sequence (X;, X3, *+,
Xoyoor) € M°

Pn =po for all sufficiently large n (4.2.18)
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If for each .¥ € X we regard X" X as a new sample, then by (4.2.15)
PX)P(X™)27C®) = poyy (X)prgr (X)27Cntidp=r(pX™X) (4.2.19)

where o1 = Pnsr(- | X, X) is the MDL density estimator based on X" X. (Notice
that p, does not depend on the order of X", thus the MDL density estimator based
on X X" is also pnt1.)

Next we show that there exists a B(X')-measurable set N with P(N) = 0 so that
for each X € N°¢

Pnt1 =po  for all sufficiently large n and all (X;,--+, Xy, -:) € M°.  (4.2.20)
Let A be the set of all X € X’ that does not satisfy (4.2.20). Clearly
A={XeX|(X, X1, -, Xn,--') € M and (X;,---, Xn,-+-) € M}  (4.2.21)

and A x M° C M.
Hence P(A) = 0 because 0 = P(M) > P(A x M¢) = P(A)P(M¢) = P(A), and
we obtain N = A.

Now for any = € N° rewrite p, as

- _ B (X)2 O] 5 2 X (42.22)
n B (X)2-Clon) Yper 92-73(p.X")

From (4.2.18),(4.2.20),(4.2.4) and (4.2.16) the result (4.2.17) follows. O
A similar consistency result derived from a prequential analysis approach is given

by Dawid (1992).
Example 4.2.2 (Example 4.2.1 continued) The stochastic complexity for X" is

I(X"| N(j,1),0) = - log (f:(-é;})—mexp (-3 i(x;-j)’) 2-")

j=1 f=1

= nlog V2r + %nmg(X") loge — %nmf(){") log e

—log (2 exp (—%n(j - ml(X"))z) 2"’) (4.2.23)
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where m2(X™) = (1/n) T, X2. By the concavity of log ,

_.;-ncloge > log (Z exp (-—%z(] - 'fnl(Xn))z) 2'1)

1=1

> (--énlog e) i(] — mq(X™))2277

J=1

- —%n (6 — 4ma(X™) + m2(X™)) loge (4.2.24)

where ¢ > 0 is a constant. Thus we can obtain an estimated range for I(X™ |

N(3,1),C)

log V37 + (ms(X™) — m(X"))log V& + clog V&
< ;ll-l(X" | N(j,1),C) < log Vr + (my(X™) — 4my (X)) log Ve +3.  (4.2.25)

The stochastic complexity density estimator p, for given X" is

(X = 3) 4 (2 - §)h) 27

2 ;=1 _]) )Z‘

1 1, nmy(X")  nmi(X")

- —\/—2_—7?exp<—-2-a:(l 1 n+l o (n+1))
251 €XP <-%(n +1) (j - L‘L"_ﬂﬁi)ﬂ) ) 9~

3 Z-xWeXP( -3 (Z
Pa(z) =

p (-3

1

+

Z.7"~1 21r)"7 ex

)+

n+l

52 exp (~2n(j — mi(X"))?) 2

Suppose the true density is N(p, 1), where p is some positive integer. Since E|X;|" <

(4.2.26)

oo for any 1 < r < 2, by Marcinkiewicz’s strong law of large numbers (Stout,1974,
pp. 126)

Z?: Xl — nl‘

——Ln—l—}r—— — 0 a.s.. (4.2.27)
Hence

mi(X")=p+e, as. (4.2.28)
where

en =e(n”(7V) for1<r<2 (4.2.29)
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Now we can write

o 1 . nmy(X")+x 2\ -
L= exp( 2(n-1) (-7 W ) )2 J _ Wni1 + 0(Wny1)

T2, exp (—in(G ~mi(Xn)2) 23w+ o(wn)

as.  (4.2.30)

where w,, = exp(—n:2/2)2~#. Then it is easy to sce that

. W41
lim
=00 Wy,

. 1 1
= ,}Lngo exp (‘5(" +1)en + 5”5:)

. 1 1
= lim exp ("5”(53.4-1 ) §e,2,+,) =1 as (4.231)
by (4.2.29) and ep41 — €n = —mi(X™)/(n + 1) + z/(n + 1). From these results we

have

1 1
nll.r& pu(z) = Ton exp (-—§(a: - p)z) a.s.. (4.2.32)

4.3 Application to Parametric Families

In this section we study the stochastic complexity estimation in an important class

of densities, namely, the parametric families, either with a prior density = (8) for the

paramcters
Iy = {p(z]6),7(6)} (4.3.1)
or without one, i.e.
Ie = {p(=]0)}. (4.3.2)
In both cases & = (6,,0,,---,0;) denotes a k-component free parameter, ie. a

vector ranging over a subset © of the k-dimensional Euclidean space R* with non-
empty interior. (Often in such models some of the natural parameters are not free
but a relationship, either implicit or explicit exists among them. However, we assume
that the dependent parameters have been eliminated and only the free ones remain
in the model.)

First we find the stochastic complexity for the sample X" relative to I',. Notice

that there are an uncountable number of densities in I', and thus we cannot construct



91

a prefix code for each density in it. But by the argument in Rissanen (1989, pp. 53-
67), the parameters are considered to be truncated to some finite precision, say 0;
to the precision a; = 27% where g; is the number of fractional binary digits taken
in the truncation. Then a prefix code can be constructed which assigns to each such
iruncated parameter vector § a codeword with length C(v) given by the least integral
upper bound to —log #(09) — f=, log a;. The two-step codelength for the sample X"

relative to each truncated paramneter is
_ _ k
— log p(X™|0) — log m(0) — > _log a; (4.3.3)
i=1

where p(X"|0) = [IT%, P(X:|0) and § denotes the truncated parameter vector 8 to
the precision (o, - ,a). Letting a; — 0, j = 1,2,---,k, by (4.2.9) the stochastic

complexity of X, relative io I'; goes to the integral
I(X. | Ty) = — log ( /e p(X"|0)1r(0)d0) (4.3.4)

Therefore, with the same argument that yielded (4.2.14) we can define the stochastic
complexity density estimator for X, drawn from I, as

= (o) = JoP(z10)p(X"|6)(6)d8
Pala) = Jo p(X™|0)x(6)do (4.3.5)

and the stochastic complexity estimator for ¢(p) is ¢(p.). (4.3.5) as follows. Assume
a distribution

For a sample coming from the set of densities I'. = {p(z|0)} we can still define a
coding system in which a prefix code is constructed for the data for each parameter
value. The stochastic complexity is obtained by applying a procedure similar to
(4.2.8) and (4.2.9). The key point here is to use a universal prior for integers to
define an optimum code for each truncated parameter as well as its enclosing optimum
precision. The procedure is to quantize the parameter space with quantization regions
of identically shaped rectangles. The shape of this rectangle is decided by the ellipsoid
9 - é,.)TM(é,.)(O - é,.) < d such a way that each rectangle is identical with the

maximum intersecting rectangle of this ellipsnid. Here 8, is the maximum likelihood
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estimate, M(0) is the Hessian matrix of the double derivatives of — log p(z]¢) and d
is any fixed number which will be optimized further. These quantization regions are
ordered according to their natural distance ||6||p(6) = \/OTW whereby a sequence
of integers are obtained indicating their position. Then we use the universal pric: to
provide a codelength for each position-index integer.

The universal prior assigns each integer a codelength
C'n-1)=loge+log'n, n=12,... (4.3.6)

where ¢q is a constant of about 2.865064 and log”y = logy + loglogy + - -+, where
only the positive terms are included in the sum. This length function C*(n) has the

optimum property that for any distribution P(n) for the positive integers such that

i) P(n)2 P(n+1),n>M for some M

if) — sy P(n) log P(n) = oo,

the following holds
N PICH ) _
N—eo — 5N "P(r)log P(n)

n=0

(4.3.7)

which indicates that we could do no better even if a distribution P(n) to design the
code with were given.

The universal prior 2-°"(") can be considered a modification of the improper
prior {1/n} of Jeffreys which is sometimes used to express complete ignorance. It
is derived from coding of integers in a manner that certain natural coding theoretic
requirements are satisfied and it objectively expresses cne’s initial ignorance when
this notion is made precise (see Elias (1975) and Rissanen (1983) for details). When
some constraints for the parameters exist the universal prior for the integers, which
presupposes no prior knowledge, should no longer be used in the coding process. In
that case Jaynes’ maximum entropy principle could guide us to construct a prior
distribution for the two-step codelength of the sample (Jaynes,1978).

By the derivation of Rissanen (1983) the two-step codelength for X™ relative to
I is

— log p(X"18) + log” (V(k)([10llmne))*) (43.8)



_—_— .

o3

where A,(0) is the Hessian matrix of the double de.ivatives of function — .og p( X™|6)

and V(k) is the volume of the k-dimensional unit ball

{ kj2 ¢ 19k/2 k
Vik)= i fr2<'7:-)1>/2g'=\fl/(2()k24r 1)/2)/(k 1)} k :;n (4:59)
The stochastic complexity of X" relative to [, is
I(X™|Te) = —log /e p(X "|0)c12"°5'(V(")(""”Mu(O))")dO (4.3.10)
where ¢, is a constant satisfying
¢l = /9 9 108" (V (K)ol aea(e)*)
and the stochastic complexity density estimator for X" drawn from I, is
_ Joplal0)p(X7[9)27 5 VOl .

n(2) fo p(X710)2- 15 (VR WTato)) dg

All the quantities (4.3.8), (4.3.10) and (4.3.11) appear to be more of theoretical
rather than practical value. When — log p(X™|0) grows proportionally to n, as nor-
mally is the case, the elements of M,(6) are of order n and log*(V(k)(||0]|m.(6))*)
is dominated by log(V (k)(||0lla.9))*)- (4.3.8), (4.3.10) and (4.3.11) can then be ap-
proximated by substituting log(-) for log*(-).

4.4 Minimum Expected Risk and Admissibility

In the previous sections we proposed a stochastic complexity density estimator
and a related stochastic complexity estimator for ¢(p).

To evaluate the quality of the stochastic complexity density sstimator we define a
loss functional L(p, q) for any two densities p and ¢ defined on s-dimensional Euclidean

space

L) = [, 105(t) = boOPW(dt) = [ (93(0) — Ba()B(t) - be(t)o(d) (4:4)
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where ¢, and ¢, are the characteristic functions of p and q respectively, and ¥ is
the corjugate function of . The characteristic function of p is defined as ,(t) =
Jre P(X) exp{i(X,t)}v(dX), where (X,1) i> the inner product in R® and ¢ € R°.
The integrai [r. |[#/p(t)|?v(dt) may not always exist and the condition of absolute
quadratic integrability of the characteristic function should be assumed here. How-
ever, for most of the usual densitier this condition is satisfied. There are other possible

definitions of the loss functional such as

Lip.a) = [, Ip - alv(dX) (442
which is just the Hellinger distance H, and
La(p,) = [ (p = 0)*(X) (44.3)

in which [, p?v(dX) < oo is assumed. (See Devroye, 1987, pp. 1-11).
Notice that when & is the usual Euclidean space R* or its subset the two loss

functionals L and L, are equivalent in the sense that

[ ot = w0 v(dt) = 2o [ (p(X) = g(X))u(dX),
which can be obtained by Parseval-Plancherel formula (Hazewinkel et al, 1991, pp.
163) due to the fact that v, — 1, is the Fourier transformation of p — ¢.

Let X3, X;,--+, X, be a sample independently drawn from a density p which is
assumed to belong to I' with countable number of densities. The X;'s are assumed
to take values in a measurable space X C R* and the density p is taken with respect
to a known complete o-finite dominating measure v. {C(p),p € I'} is a sequence of
description numbers for the densities in ' satisfying regularity condition (4.2.4). For

any density estimator § Lased on the sample X" the risk functional is

Rp.6) = E,L(p8) = | ([ 1y(®) = ss(0)Fdt)) pX")(dX")  (444)
for p € T'. Thus the expected risk is

r(6]1C) = R(p,6)27°%
pel

=% [ ([ 14s() - ss()Pv(dt)) pXM2OPw(dX™).  (44.5)

pel’
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We have the following results.

Theorem 4.4.1 The stochastic complezity density esi'mator p, minimizes the ez-
pected risk functional r(6 | C) among all the dersity estimators of p.
If there exists some &' such that r(¢' | C) < oo, then p, is the unique density

estimator minimizing r(§ | C).
Proof: We prove only the second part, the first part easily follews. Let § = 6(X,,: -,
X,) be an arbitiary density estimator of p € I' based on the sample X™. Then

w610)=X [ ([ 1a(e) = de(o)w(a) ) p(X")2-00u(ax™)

p€el’
. p(Xn)Q—C(P)
= Z/X" (/R. lp(t) — ¢6(t)|2"(dt)) T oer 4(X™)2-C@ X

per

(E q(X")2‘C(")\) v(dX™)
g€l

/
_ p(Xm)2-@)
- _/,Vn/ s L% |9s(t) — '/’S(t)P qur q(Xn)z—C(q)] X

(Z a(X")2 -C(.,)) v(dt) v(dX") (4.4.6)

q€r

The operations of integral and summation are interchangeable because the integrand
is non-negative. p(X")2-¢()/ (qul g(X ")Q‘C(")) can be regarded as a posterior
probability density given the observations X™.
To minimize r(é | C') is now equivalent of minimizing
p(X")2-C®)
o(t) — Ps(2))? for any fixed t and X" 4.4.7
Zl P( ) ( )’ qu[‘ Q(X")Q_C(q) y ( )

pel

It is easy to see that when

_ Sperh(t)p(Xm)270 )
d"&(t) - pzqe:q(xn)2_o(q) - ¢Pn(t) (4.4.t)

(4.4.7) is minimized, and for any &' such that ~(§' | C) < oo, the minimum is the

same at least for some t and X". Consequently

Xn)2-C(p)
6= n(e) = Evg::’r(zsz‘n);ﬂq) (449)
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is the unique density to minimize r(§ | C). O

The same conclusion holds for the loss functional L.

Theorem 4.4.2 The stochastic compierity density estimator p, minimizes the ex-
pected risk

r(61C) =3 / ( (6—p) u(dX)) p(X™)2-C®) y(dX™) (4.4.10)

pel’

among all the density estimators of p.
If there exists some &' such that r5(8' | C) < oo, then P is the unique density

estimator minimizing ro(6 | C).

In practice many quantities of interest ¢(p) can be expressed in the fori: of a

linear functional
8(p) = Bf(2) = | fl@)pla)v(da) (4.4.11)
If we use the loss func'ion (4.1.8) with v(p) = 1 to evaluate the stochastic com-

plexity estitaate ¢(p,), then similarly to Theorem 4.4.1 we get

Theorem 4.4.3 I'he stochastic complezity estimator $(p,) minimizes the ezxpected

risk function

r6,8)= ¥ [, 16— o(p)p(X")2 Pu(dX") (44.12)

pel
among all the estimators of ¢(p).
If there exists some &' such that r3(¢,8') < oo, then ¢(p,) is the unique estimator

minimizing r3(@,0).

Remark: Generalization of Theorems 4.4.1,4.4.2 and 4.4.3 to a parametric family
follows naturally.

Next we show the admissibility of the stochastic complexity estimator of a density
and ¢(p) in the countable set I' among estimators based on the data Xy, X2,-++, X,.
By definition, a density estimator p{!) (or an estimator §()(X™) of ¢(p)) is inadmissible

]

™ 2
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if there is another density estimator p(? (or 6®¥(X™)) such that

/ (/ |¢~(z) t)— zﬁp(t)l’u(dt)) p(X")w(dX")

/ (/ [, (2) = p(t) v (dt)) p(X™)v(dX™) for all peT  (4.4.13)
and
L (L 00— w(0u(ae)) pOx7yw(ax™)
< /X ( /R Iwﬁw(t) - ¢‘p(t)|21/(dt)) p(X™)v(dX™) for some peT'  (4.4.14)
(or
[ 169087 - g(p) P Xw(dx™)
s /X I6V(X™) - d(p)Pp(X")w(dX™) forallpeT  (4.4.15)
and

[ 189X™) = $(p) (X ™)u(dX")
< /X" 16M(X™) - o(p)|?p(X")v(dX™) for some p € T). (4.4.16)
In this case p{?) (6(*)(X™)) is said to dominate p(V) (6®)(X™)). If no such uniformly

dominating estimator exists, then p{!) (6')(X™)) is said to be admissible. The follow-

ing proposition is a consequence of Theorems 4.4.1 to 4.4.3.

Theorem 4.4.4 The stochastic complezity density estimator p, (¢(pn)) is admissible
for the estimation of a density p (¢(p)) in the class T.

4.5 Completeness

Completeness is another optimum property related to admissibility. Let D be the
class of all density decision rules § with finite risk R(p,6) for any p € ' = {p1,p2,--*}

which consists of at most countable number of densities. A class of decision rules
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D' C D is said to be complete if given any rule 6 € D not in D’ there exists a rule
8o € D' that dominates 6. D’ is said to be minimal complete if D' is complete and no
subclass of D' is complete.

To achieve the main result in this section we assume there exists a complete class
D, C D and a positive constant m > 1 satisfying 3°;2, m~/ R(p,,6) < oo for any
6 € D,. This assumption implies that any subsequence of {R(p,,6)} could tend to
infinite but at a restricted rate, by which it will be seen that we can define a metric
in a related space to facilitate our mathematical proof.

Now we consider the set S, defined as
S1 ={y =(¥1,¥2,-*) | for some 6 € Dy,y, = R(p,,6) for j =1,2,---}.  (4.5.1)

It is easily seen that 352, m™7y, < oo for any y € ). Denote by Do the class of all

stochastic complexity density estimators in D, and let
So ={y =(y1,¥2,"-*) | for some 6 € Dy,y, = R(p,,6) for j =1,2,--:}.  (4.5.2)

Clearly Sp is nonempty and Sy C S;. 5 and Sp can be transformed to obtain two
subsets of [!, where [' denotes the space of all sequences {z,} of points of R* such

that 320, |zn] < 00, i.e.
Si1(m)={y =(y1,y2, ) |for some é € Dy,y,=m ™ R(p,,6) for j =1,2,---} (4.5.3)
and

So(m)={y =(y1,y2," - )| for some 6 € Dg,y,=m™’ R(p,,6) for j =1,2,--:}.
(4.5.4)
Let S} be the convex hull of S; defined as the set of all finite convex linear
combination of the points of S,, that is
k k
S;i={z:z2=Y Ay, ¥, € S, A>0,) A\ =1} (4.5.5)
1=1 1=1
Similarly we can get S}(m) as the convex hull of S;(m) and a subset of I'. We know
that if S is a convex set, then the closure of S is convex, and the intersection of two

convex sets is also convex.
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For the discussion of the completeness of the stochastic complexity estimators we
need some concepts from Ferguson (1967, pp. 63-64).

A set S in the space {! is said to be bounded from below if there exists a finite
number M such that for every y = (y1,¥2,-:) € S, y, = —-M for j=1,2,-.-.

Let & be a point in I'. The lower quantant at , denoted by Qgz, is defined as the

set
Qz ={yely, <z, for j=1,2,---}. (4.5.6)

A point @ is said to be a lower boundary point of a convex set SCI'if Qe NS =
{x}, where S is the closure of S. The set of lower boundary points of a convex set S
is denoted by A(S).

A convex set S C [! is said to be closed from below if AM(S) C S.

Lemma 4.5.1 If a nonempty convex set S C I' is bounded by 0 from below, then
A(S) is not empty.

Proof: Let wy, w,, - - - be a sequence of positive numbers satisfying Y2, w; = 1, and let

T denote the set of all numbers of the form ¢ = 372, w,y,, where y = (y1,92,--*) € S.

T ={t=)_w,y, for somey € S}. (4.5.7)

=1
T is bounded by 0 from below because S is boundea by 0 from below. Let to =
inf{t : t € T} and let ¥ € S be a sequence of points for which ¥ 32, w,yin) — to.
Since w, > 0 it follows that each sequence y§") is bounded from above. Thus, using
the principle of diagonal selection we can find a subsequence y™) of y(™ with a
finite limit which converges coordinatewise to a point y° for which 52, w;y) = t.
Therefore ¥° is a limit point under the I' metric || ||;.

Now we show that y® € A(S). First we note that {y°} C Qqo N S because y° is a
limit point of 3, i.e. y° € S. On the other hand Qo NS C {y°}, for if y' is any point
of Qqo other than y° itself, then Y52, w,y) < to. This contradicts the assumption
that 2o is a lower bound of T. Thus Qgo NS = {y°}, implying that y° € M(S). Hence

A(S) is not empty. O
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Lemma 4.5.2 If a nonempty convez set S C I' is bounded by 0 from below, then
for any & € S but not in A(S), there exists a point y in \(S) so that y; < x; for

J=12,--- and yy < zj for seme j'.

Proof: Suppose & € S but ¢ A(S). Because S is convex S is also convex, thus
S" = Qz N S is convex too and nonempty. S’ is bounded by 0 from below, for S is
bounded by 0 from below. By Lemma 4.5.1 A(S’) is nonempty. Let y € A(S’), then by
definition {y} = QyN'S’. Furthermore, y € Qg sincey € §' = QzN3CQx =Qa.
Finally, y € A(S) because {y} = QyNT = QyQe NS = QyNQe NS = QynS.
Now, we know that y € Qg — {2}, hence y, < z,, j = 1,2,--. and at least for some
iy <zp. O

By Theorem 2.5 of Valentine (1964, pp. 22) any hyperplane H in space {! can be
expressed as H = [f : &], where f is a linear functional nonidentically zero on {!, &
is a real constant and [f : k] denotes the set of all points @ € {! for which f(x) = &.
The hyperplane H bounds a set S C ! if either f(S) > & or f(S) < & holds, and H
separates two sets U and V in {! if either f(U) 2 &, f(V) < kor f(U) <k, f(V)2 &
holds.

Lemma 4.5.3 (Valentine, 1964, pp. 25) A hyperplane H = (f : &) in [ bounds a
nonempty open set if and only if f is continuous with f # 0.

Lemma 4.5.4 (DeVito, 1978, pp. 42-43) The vector space of all linear continuous
functionals on I is equivalent to [°, where [ denotes the space of all sequences {z,}

of R® such that sup{|z,| |n=1,2,---} is finite.

Lemma 4.5.5 (Separation Theorem (Valentine, 1964, pp. 24) Suppose U and V are
two nonempty convexr subsets of a linear space L. Also suppose the interior of U is

nonempty and that V NintU = (. Then there ezists a hyperplane H which separates
UandV.

Lemma 4.5.6 (Ferguson, 1967, pp. 55) If a set of decision rules D' is a complete

class, it must contain all admissible rules.
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Theorem 4.5.1 If Si(m) and S;(m) are defined as above, Sy is bounded by 0 from
below and clesed from below, then A(S;(m)) C So(m).

Proof: Because S;(m) is also closed from below, A(S3(m)) C S5(m). If & € A(S7(m)),
then {2} = Qz N S;(m) = Qx N S;(m). Thus, Qz — {x} and S;(m) are disjoint
convex sets. By the Separation Theorem, their exists a hvperplane H which separates
Qz — {z} and Sj(m) and by Lemma 4.5.3 H = [f : &], where « is a real constant
and f is a nonidentically zero continuous linear functional on I*. From Lemma 4.5.4
it follows that there exists {f;} satisfying sup, |3i| < oo such that

f(@)=3 Bizi=p"= (4.5.8)

i=1

for any # € I'. Thus 8Ty < 37z for any y € Q¢ — {x} and z € S;(m). If one of
the coordinates 3; of @ were negative, then by choosing y so that y; is sufficiently

negative, we would have 37 y > 87x. Hence 8; > 0 for all j. By the continuity of f
BTz < BTz will hold for all z € S}(m). (4.5.9)

By the definition of Sj(m), there exist Ay, Az, -+, A\ with A; > 0 and 2?:1 A =1so
that 2 = Y°F_, \;y; where y; € S;(m). From (4.5.9)

Zk: )\,ﬂT'y,- < BTz forall z ¢ S1(m), (4.5.10)
which implies -
BTy = min BTz for i=1,2,,k (4.5.11)
From
0yl = %lsr‘} nTz for i=1,2,---,k (4.5.12)

where 7; = m™7§; and yh = miy, 7 = 1,2,--+, i = 1,2, k, it follows that
71 M S sup;|B;| < oo and yi € S; for i = 1,2,.--,k. Normalizing by letting

15 = n;/ 521 1, we have

LY I : T ) = e
"yl = minn™z for 1 =1,2,-.-,k. (4.5.13)
So by Theorem 4.4.1 yi =y3 = - =yr =y "€ Soand hence y, =y, = =y, =

z € S¢/m). O
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Theorem 4.5.2 If, for a given decision problem (I', D, R), there erists a complete
class D C D and a positive constant m > 1 satisfying 3°32, m™ R(p,,6) < oo for
any 6 € Dy, and S}, the convez hull of S defined above is bounded from below and
closed from below, then Dy is a minimal cor:plete class and consists of ezactly all the

stochastic complezity density estimators.

Proof: For any é € Dy not in Dy, let y; = m™R(p,,6), j = 1,2, which implies
that y € Sy(m) C S7(m) but not in Se(m). By Theorem 4.5.1 y ¢ A(S7(m)). From
Lemma 4.5.2 and Theorem 4.5.1 again, there exist a point y’' € AM(S}(m)) C So(m:) so
that y; <y, for j = 1,2,--- and at least for some j’, y}, < y,. This means that there
exists a stochastic complexity density decision 6’ € Dy so that y) = m~’ R(p;, §') and
§" dominates 8. Dy is therefore a complete class.

As a consequence of Theorem 4.4.4, every decision rule in Dy is admissible. Hence
no proper subclass of Dy could be complete because (Lemma 4.5.6) every complete
class must contain all admissible rules. This implies that Dy consists of exactly the
admissible rules and exacily all the stochastic complexity density estimators, and
forms a minimal complete class. O

Remark: The condition of boundedness from below is not necessary since the

definition of the risk function already implies it.



Chapter 5

Stochastic Complexity in
Histograms and Testing
Homogeneity

5.1 Introduction

In digital data-transmission systems, analogue input signals are first converted into
digital form at the transmitter, then transmitted through a communication channel
and finally reconstructed into analogue signals at the receiver. The resulting output
is not identical with the input due to a quantization process in which the whole
range of input amplitudes is divided into a finite number of amplitude sub-ranges
at the transmitter, and the input amplitudes in each sub-range are converted into
the same digits. This idea of quantization of the input signal can be transplanted
and generalized naturally to the problem of estimating the probability distribution
or density for an observed system.

Suppose we observe a finite data-string X™ = X, X3, -, X, from a system and we
wish to describe the probability distribution of this data-string. Through a quantizer,
the whole range of X" is divided into a finite number of subintervals the widths of
which can be either equal or unequal. In each subinterval we select a representative
value, then each observation in X™ is replaced by a representative value which falls

in the same subinterval as this observation. Thus the resulting quantized data-string
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is encoded in a string of binary digits and transmitted through a communication
channel, where it is decoded to provide the output. To make the code words uniquely
decodable, the encoding system must be prefix.

From Chapter 1, the determination of the encoding system is equivalent to finding
some kind of predictive probability density of the data generating system. In most
cases, the underlying probability density is unknown and must be estimated. Fortu-
nately, the quantizer in the data-transmission system gives us an access to an estimate
of the unknown density. The density estimator can be used to construct an encoding
system, and vice versa, under an encoding system the code words of the observed
data-string X™ should be as small as possible so that the cost of transmitting the
code words is small. This requirement is the key for a criterion to find the optimal
quantizer.

It is possible to construct a histogram-type density estimation for X" when the
number of subintervals, their width and probabilities are given. For a fixed number of
subintervals with fixed location, the probability of each subinterval can be determined
by the maximum likelihood principle. The locations of the subintervals can also be
determined by the maximum likelihood principle and a recursive method. After that,
a temporary histogram density estimator is obtained from which a prefix code for X"
can be constructed. The optimal number of subintervals will generate the shortest
code words and consequently an optimal histogram density estimate. The optimal
description of X™ is then the code words under an optimal coding system.

The code words of X™ can be obtained by either a non-predictive or a predic-
tive manner (see Chapter 3 of Rissanen (1989)). Even though the predictive coding
requires more code words for the encoding o, X", it enables the data-transmission
system for self-adjustment and updating by using the latest observations.

In Section 5.2 below we first discuss an optimal quantization scheme of the data
for optimal description which provides a system of recursive equations for determining
the optimal locations of the subintervals in the histogram. Then both the idealized

code length and the idealized predictive code length are given fur the description of



105

X™. Finally, uniform almost sure asymptotic expansion and the almost sure lower
and upper bounds for both code lengths are derived and the results are list in Theo-
rem 5.2.2 to Theorem 5.2.4.

In Hall and Hannan (1988) and Yu and Speed (1992), the same type of stochastic
complexity based histogram estimation is considered under the assumption of equal
subinterval widths. Our results agree with that of Yu and Speed (1992) when this
assumption applies.

As an application of stochastic complexity for optimal data description, in Sec-
tion 5.3 we consider the problem of testing of homogeneity, i.e. the testing of the
hypothesis that several independent samples are generated from the same population.
A test procedure is proposed in which we use the difference of shortest predictive code
lengths under the null and the alternative hypotheses respectively as a universal test
statistics. The size of the test procedure is shown to be determined by the part of
the code lengths which is used to describe the parameters in the histogram densities.

The asymptotic power of the test procedure is shown to be 1.

5.2 Data Compression for Optimal Information
Description

Suppose X" = X;, X3, -, X, is a simple random sample from an unknown den-
sity function f on [s,t], where s, t are finite real numbers. If f were known, the
description of the sample could be accomplished by constructing a string of predic-
tive binary codes for X™ under the information source determined by f (see Rissanen
(1989)). In other words, the description of the sample is the same as finding a pre-
dictive probability density for the sample.

To estimate an unknown density f the most frequently used method is based on
data compression: first quantize the data set by partitioning the interval [s,t] into
a sequence of subintervals and then construct a histogram on the partition. The
choice of the partition and the estimate of the probability for each subinterval may

be determined by the maximum likelihood method if a fixed number of subintervals
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are assumed.

Let ¢™ = go,m)Q1,m;* ** , gm,m denote an increasing sequence of numbers, partition-
ing the interval [s,?] into m subintervals [go,m, q1m)s (@sm> @2mde ***y (Gm=tymy Gmom)s
written as Q1,m, @2m, ***y @m,m, Where go,m = 8, gm.m = t and m is a fixed integer
satisfying m < n. Denote r, ;n = ¢,m — qi—1,m as the lenglh v{ @, ,, and r =t — s, the
range of X™. Consider the histogram densities defined by

flelo™, a" 1) = 35 B gg (5.21)

=1 Twm

where p™ = p1m,P2.my ** » Pm,m denotes a sequence of nonnegative parameters with
sum unit, and Ig, ,, is the usual indicator function. The set of densities of the form
(5.2.1) is denoted by H,,.

With the above notations, the log-likelihood function of the sample X" under Hy,

is

L Hn) = Ylog (3521, 0(X,))

=1 Tym
= Z o m log 22 (5.2.2)
=1 Tym

where n,m = Y)-; 19, n(X;) is the number of data points falling into @, m. (All
logarithms are in base 2 throughout this chapter unless stated otherwise.) Since n,
may be zero, the corresponding p, m» can not be optimized through maximization of
L(X™; Hy), and the log-likelihood function needs to be modified to overcome that
difficulty. This may ne dore by introducing m numbers y;, ¥z, ***, ¥ (abbreviated
as y™), where y, is rega.deu as an observation from the uniform distribution on Qi m,
and blending them thoroughly with the n observations X™ as if both y™ and X™
were generated from the same distribution. Then the log-likelihood function of X"
and y™ is

Ly(X™ H,) = Z(n. n+1)log Pem (5.2.3)
=1

which does not depend on the particular values of y™, and can, therefore be regarded
as the log-likelihood function of X™.
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Applying the maximum likelihood principle the optimal partition ¢™ and prob-
abilities p™ for a fixed m are the ones which maximize L,(X", H,;) subject to the

conditions that 3" p,,» =1 and ¥ r,,, = r. Denoting
m m m
F=Y (nm+1)log :‘M + M pm = 1)+ 2 rm — 1), (5.2.4)
1=1 Hym =1 1=1
differentiating F' with resper t to p,’s and setting the derivatives equal to zero we have

oF _Mym+

1
Opm - Pym loge + A =0, 1=1,2,-+-,m (5‘2‘5)

from which p,,n = (ni,m + 1)/(n + m). Differentiating F' with respect to p,’s twice,
the resulting second derivative matrix

O*F ) ( nim + 1 nmm+1)
7| = (log e}diag | —~—5—, -+, ~—5—} < 0.
( Opim aPJ.m ( & ) g %.m P?n m

Therefore a necessary condition for the maximization of (5.2.4) is that the probabili-
ties p, m are equal to the relative frequency (n, . + 1)/(n + m).

Since the allocation of n, ,,’s depends on the partition g™, so are the ranges 7, ,»’s.
The function F is not continuous with respect to r,,,’s unless the allocation of n,,,’s
is fixed. Under such allocation the local extreme value of L,(X™; H,,) is achieved or
approached when the r,,,’s tend to their boundary values, since all @, s, except
@1,m, are half-closed half-open intervals. In order to keep the code length needed
to describe the model short, we impose the restriction that the end points of every
subinterval @), ., except the two end points s and t, i.e. the sequence of break points
G1,my * **s §m—-1,m, should be at least d units away from the nearest observations, where
d > 0 is half of the precision of X™. In other words, if the locations of the sample X™
are expressed in an ascending order 2N =2 <23 <+ < 2N, where N < n because

of possible ties, then ¢™ is a subsequence of the (2N + 2) long sequence
S % —d’ 21+dv 22-‘11 22+d,"’,21v—d, zN+d7 t,

denoted as s(X™) = 31,32, ,32n42, With go,n = 8 and ¢mm = t, such that the

selected ¢™ have the largest likelihood L,(X™; H,,) among all the selections.
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m—1
is to be found. In the following we provide a recursive method for finding the optimal

There are ( ) different selections for ¢™ within which the optimal sequence

q™ as well as the associated maximum likelihood values. A similar technique is used
in Rissanen et. al. (1992). Let

Li(X"m) = .,m’é‘,?}(..)l“(x";ﬂ"‘)
e Nim + 1
= wm + 1) log —=——. 2.6
It is easy to see that
Ly(X™im) = max { max Ly(X™am=1.m),
’m—lSQm—l,mes(x"(r)) {Ql.mv“';‘lm--),m}ES(X"(Q""'I'"'))

Hype) + (n(r) = n{gmetym) + 1) log Wl 2Imotm) + 1 }

(n{T) + m)Tomm
= Ly(X":m -1
am-xsTe?((Xv-(r)){ i m — 1)

+(n(r) = n(v) +1)log n,(f,));n,s:)),:,; } (5.2.7)

where X™¥) denotes the sequence of the observations falling within [s, v], and n(v)
denotes the number of the observations in X™*). The recursive equations (5.2.7) are
to be solved for m > 1 and v € s(X™™) until the desired range includes all the
observations. That is, the following maximum log-likelihood functions need to be

solved in sequence
L;(X"("?),l), Ly(X™=) 1), .-, Ly( X, 1),

L;(Xﬂ(as)’2), L;(X"("),2), Tty L;(xn(f)’2), (5 2 8)

Ly(Xeme), m), Ly(X"Cms2),m), -.o, LH(X™7),m),

for m < n, where

LI(X™) 1) = (n(si) + 1)log ——, 2<i< 2N +2

8 — 38
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and

n(si41) — n(s;) + 1
k) +k—1)(sip1 — 5)’

P
X0 = 1) = X (n(sin) = nlsi) + log

i=t
for 2 < k < n+1. For any fixed m < n, the evaluation of (5.2.7) gives the maximum
log-likelihood of X™ as well as the optimal partition {Q;»} with about m(4N + 3 ~
m)/2 < 2m(n + 2) — m?/2 operations. The corresponding optimal sequence of break
points will be denoted by §™ = §im,* *,Gdmm, and the + uths of the subintervals
by fimy***,"mm. In this chapter data quantization will always be based on the
optimal partition {Q.-,,,.} (except in the case of equal width quantization). For sake
of simplicity the number of the data points falling into Q.-,m will still be denoted as
R = Ljmy 1 Q‘,m(X,-).
With an optimal procedure for the compression ol the data, we are in a position
to find the description of the data X™.
Following Rissanen (1989), the description length of the data X™, for fixed m and

corresponding ¢™, is defined as a two-part code length
= Ly(X";m) + La(§™, m, 6) (5.2.9)

where the first part —Lj(X";m) can be interpret=d as the code length needed to
describe the data X™ under the given partition and histogram, and the second part
L, is the code length needed to describe the functional form of the model employed.
La can be evaluated by first truncating the parameters n. and §™ to a prescribed
precision é and then encoding the resulting integers with the technique introduced
in Elias (1975) and Rissanen (1989). Denotc @ = [a/6] as the nearest integer to a/é,
then

Ly(¢g™,m,6)=log ( m Iii.m - ;E;' +m-2 )

m -2
+log 2.865 + log* (M + |3| + 7 + 1) +
(M + |3] + 7 + 3)! |
d]. 2.
tog (7 + |5} + 7)12! +‘°ga+!(3 “ap)! +logé|. (5.2.10)
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Here log*(a) = loga +logloga + - - -, where the sum includes all the: positive iterates,
and a4 is the number of nonnegative items in {m, §,#}.

The length function (5.2.10) consists of three parts. Since the encoding of §™ is
equivalent to the encoding of 7y y —7/m, -, Fu—y,m —r/m, this will be achieved by a
binary string beginning with #, ,, — r/m 0’s and a 1, followed by #3,, — r/m 0's and
a 1, and 50 on until F_1,m — r/m 0’s being added, but without attaching a 1 at the
end, provided that n:, s,t and d are given. Under this non-prefix encoding procedure
the first term of (5.2.10) gives the code length of §™. The second to the fifth terms
of (5.2.10) are the code length needed for encoding m, § and t (equivalent to m, §
and 7) in a prefix manne:. In general we can encode a set of integers {6,---,0,} in
a prefix manner with about

O+0) 1 (b 1)

La(01,-+, ) = 10g2.865 + log™(0 + 1) + log Grr7"—y; b, \(b— b,)!

bits (Section 1.3). Here 8 = ¥, |0:|, and b, is the number of nonnegative items in
{61,--, 8s}. The last term gives us the code length for encoding the truncation
precision 6. Since a, equals either 2 or 3, the fifth term of (5.2.10) can be replaced
by 1 reflecting the fact that ore digit is needed to tell if 3 is negative or nonnegative.

With the description length defined by (5.2.9) the shortest code length for the

data X™ by the above encoding procedure is

min {~ L{(X";m) + La(§™,m, )}

ime + 1

i T aldm,8) (5.2.11)

= - Z{n,"mo + 1) log

i=1
where the minimization is done by searching for an optimal integer m* < n and 6 is
a prescribed precision.

If the sequence of break points are distributed uniformly in the interval [s, ¢}, then
#im = r/m and the first term of (5.2.10) becomes zero. The expression (5.2.11) turns
out to be

min {-— S (nim +1)log

=1

(n,-,m + l)m

n s )y + La(m, 3,7) + Ilogﬁl}. (5.2.12)
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An alternative to (5.2.11) is to use the idea of shortest predictive code length.
This idea involves the ordering of the data X", either by location or by time of
arrival, then finding the histogram density estimate based on the past and making
appropriate modifications each time a new observation comes (Rissanen (1989) and
Yu and Speed (1992)). In our situation the data X" is ordered by location, as
Xqa) £ X(g) £ -+ £ X(n). For any fixed m < n, an optimal sequence of break points
¢™ is obtained by solving the recursive equation (5.2.7). Let i(X(,)) be the unique
integer ¢ such that X,y € Qum, and 1, m(v) = Y xi<v IQ”"(XI) be the number of
those X;’s satisfying X; < v and falling into the i-th subinte'rva,l Q..m. The histogram

density estimate based on the first j observations X(y), - -, X{;) can be written as

. , ym X(J) +1
f(-'l' l X(I)v $A(J)’ Z (] + m)r' m Qa.m(x)

and the likelihood function of X™ can be constructed in a predictive manner as
f(xmm) = H (X | Xy -2 Xgo1)om)

m nyx,)m(X(-1y) +1

I1 7

=l ] - 1 + m) l(X(J)),m

(5.2.13)

m—-1 ™ .
(1)H,

!
eyl G (5.2.14)

In Rissanen et.ai. (1992) —log f(X";m) is defined as the stochastic complexity of
X" under the given partition. Now the shortest predictive code length for the data
X" is

mm{ logf m) + Lao(¢™, ms5)}

= (i — 1)! .
= ;logrhm +§nx T log"'nm lOg (n +— 1)!+L’.‘,(q ,m,6) (5215)
where the minimization is achieved at /i < n and 6 is a prescribed precision. In

particular, when the subintervals are of equal length, the expression (5.2.15) becomes

~1
n}gn{n log;:;- + log ( " ) + log (n tm ) + Li(m,3,7) + |log6|} .
R1my 'y Pm,m n

(5.2.16)
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The relationship between the shortest code length (5.2.11) and shortest predictive
code length (5.2.15) is established by the following results.

Theorem 5.2.1 Let X™ be a simple random sample from an unknown density func-

tion [ on [s,t]. Suppose the following conditions are satisfied:
(i). 0 < a1 < f < e < oo, where 1, ¢, are two constants;

(ii). The number of subintervals m in the quantization of X" satisfies
n" <m<n?,
where v, and v, are two constants satisfying 0 < 7 < 7, < 1;
(iii). The width 7, of each optimal subinterval Q, . satisfies
bym™ < Fim < bym™?

uniformly for integers m in [n™,n™], where by, by, ay, a; are constants satis-

fyingl < a; < % +2—1,;2-, and max{0,2a1 - ;12-} <a; <l

Then uniformly in m € [n™,n™), the difference between the shortest code length and

the shortest predictive code length of X™
~log f(X™;m) + L} (X™;m) = a'mlogm + %m logn + O(m) ea.s. (5.2.17)
where —1on <o’ < -3 4 ay.

Note that if the support of the density f is finite, then a; < 1 < a; is implied by

the condition (iii). Another useful implication of (ii) and (iii) isa; <1< ay < % <

L
"’

Theorem 5.2.2 In addition to the conditions (i), (ii) and (iii) in Theorem 5.2.1,
suppose that

(iv). f is absolutely continuous with derivative f a.e. such that | f(z)| < es.
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Then uniformly in m € [nM,n™|
(1) — Am®™ + (az — a)mlogm + o(nm=?*? + mlog m)
< _L;(Xn; m) + Lz(qm’m76) + log fn(Xn)
< (a1 —1)mlogm + Cynm™2*? 4 o(nm~2°? + mlogn)  a.s.(5.2.18)
if either ay # 1 oraz # 1, and
— L}(X™;m) + Ly(g™,m,8) + log f*(X™) = O(nm™%? + mlogn) a.s. (5.2.19)
tfay =a; =1.
1 3 -2
(2) —-Am™ 4+ Emlogn + (az - §a1) mlogm + o(nm™*** + mlogm)
< —log f(X™;m) + Ly(§™,m, §) + log f*(X")
< %mlogn +(2al —g)m logm + Cimm ™2 4+ o(nm™2*? + mlogn) a.s.(5.2.20)
if either ay #1 or az # 1, and

—log f(X";m) + Ly(§™, m,8) + log f*(X™) =
%m log% + C'}nm'2 +O(nm™% + mlogn) a.s. (5.2.21)

if @ = az = 1. Here log f*(X") = [1}-, f(X,), Cs = %ﬁf: f;, A > 0 is a constant

and C} is a constant between 9{:—’ and Cy.

From Rissanen (1989) we know that —log f*(X"), the so-called Shannon Com-
plexity, represents the optimal code length of X™ if the underlying density f is known.
Thus the equations (5.2.18) and (5.2.20) represent, respectively, the redundant code
length when using the coding processes corresponding to (5.2.11) and (5.2.15). There-
fore uniform minimax bounds for the shortest code length (5.2.11) and the shortest

predictive code length (5.2.15) respectively can be constructed as follows.

Theorem 5.2.3 Under the conditions of Theorem 5.2.1 and Theorem 5.2.2 and hav-

ing either oy # 1 or a; # 1, we have

=M;(n**™ + n" log n)
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< min_ {=L}(X";m) + Ly(¢™,m, 8)} + log f{X™)

meE[n n2)

< Myn ™ (logn) ™ a.s. (5.2.22)
and

—M3(n"'™ 4+ n™ log n)
< min_{~log f(X";m) + Ly(§™,m, 6)} + log f*(X")

melnm ,nz)

2ap
< M4n1+;°2 (logn)™=2  a.s. (5.2.23)
where My, My, M3, My are positive constants depending on f.

Finally we give a result for the special case of a; = a; = 1.

Theorem 5.2.4 Under the conditions of Theorem 5.2.1 and Theorem 5.2.2 and oy =

ay = 1, the following statements hold.

(@) min_ {~Lj(X"ym)+ Lao(§™,m, 6)} + log /*(X")

me€[n7 n712)

= O(n3(logn)?) as., (5.2.24)
() | min_ {~log f(X"5m) + Ly(™,m,6)} + log f*(X")

= Msni(logn)}  a.s., (5.2.25)
(c) m* = O((n/logn)’) as., (5.2.26)
(d) 1h = Mg(n/logn)? a.s.. (5.2.27)

where Ms, Mg are positive constants depending on f.

The proofs of Theorem 5.2.1 to Theorem 5.2.4 will be presented in Section 5.4.

The equations (b) and (d) agree with (ii) and (iv) of Theorem 2.4 of Yu and Speed
(1992). Note that even though the predictive code length (5.2.20) is longer than the
code length (5.2.18) with an infinite number of digits as n — oo, both of them have
the minimax bound of the same order. In addition, the estimates (b) and (d) are
better than (a) and (c) respectively. The predictive encoding process is therefore

preferable and will be the subject of study in the remainder of this chapter.
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From Theorem 5.2.3 and Theorem 5.2.4 it follows that for variable-width subin-
tervals the minimax bound for the predictive code lengths (5.2.15) is no better than
for the uniform width subintervals (see Theorem 2.4 of Yu and Speed (1992)) - unless
ay = a; =1, i.e. #, = O(m™?) - in which the same order of the bound is achieved.
This is somewhat surprising and discouraging. It suggests that even though the fi-
nite sample behavior of a variable-width subinterval histogram is very likely to be
better than that of an equal-width one, the use of the former histogram density is

recommended only when the optimal widths #;,,’s are of order O(m™!).

5.3 Hypothesis Testing for Homogeneity
5.3.1 Background

One of the basic problems in statistical inquiry is ¢he two-sample problem of
testing the equality of two distributions, and more generally, the k-sample problem of
testing the homogeneity of the distributions of several populations (k > 2). A typical
example, commonly referred to as the one-way layout problem, is the comparison of
several of treatments with a control, where the hypothesis of no treatment effect is
tested against the alternative of at least on- effec..

Under a parametric setting when the rormality of the populations is assumed, the
appropriate test is based on Student’s t for the problem of equal means of two pop-
ulations. However, when approximate normality is suspected but not fully trusted,
one may replace the t-test by its permutation analogue, which can again be approxi-
mated by a t-test. For the case of homogeneity of means of more than 2 populations,
the appropriate F test is used which is based on the assumption of normality and a
common variance of the populations, the latter of which is tested by some more or
less robust tests like the classic Bartlett’s test. For the case where the assumption of
a common variance can not be maintained, the so-called generalized Behrens-Fisher
problem, other tests have been proposed. For a review see Lehmann (1986b).

To achieve robustness against the violation of some of the assumptions of the
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parametric tests one may consider nonparametric alternatives. Usually a distribution-
free statistic which is based on the ranks of the observations, and satisfying some
invariance principles, is constructed to test homogeneity. The two most familiar ones
are the two-sample Wilcoxon test and the Kruskal-Wallis test. The theory of these
and related rank tests can be found in Hajek and Sidék (1967), Lehmann (1975),
Randles and Wolfe (1979), and Hettmansperger (1984), and others.

All the tests cited above require that the different populations have the same
distcibutional shape with the difference only in the location or the scale parameter,
which sometimes can be explained by an additive or multiplicative treatment effect
or both. But seldom are these claims statistically tested. Moreover, while these tests
are sensitive to the location or scale difference, they may not detect differences of
other types. The most commonly employed Smirnov test (see, for example, Conover
et al., 1971) is consistent against all types of differences that may exist among the k
populations.

By using the data compression method developed in Section 5.2, we will argue
that the principle of stochastic complexity and minimal description length (MDL)
have important roles to play in testing the homogeneity of the k populations against
any type of difference among them.

Suppose we are given a set of data consisting of k independent random sam-

ples: X1, X2, -, Xin, with size of ny, X1, Xag,+ -, X2, with size of ny, -+, and

Xi1, Xk2,* ++y Xkn, With sizeof ng, k > 2 and all the observations are independent. Let
Fi(z), F5(z),- -+, Fi(z) represent, respectively, their unknown population distribution
functions and fi(z), fa(z),- -, fe(x) their corresponding density functions. We are

now interested in testing if these k distributions are identical against the alternative
that some kind of difference exists among them.

Our test procedure operates as follows. First, an idealized code length, the stochas-
tic complexity, based upon the class of histogram density estimators with equal-width
bins is computed for each independent random sample, which, when minimized, gives

the optimal number of the bins with the associated density estimator and the proper
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measurement of the information contained in each sample (Hall and Hannan (1988),
Rissanen et.al (1992)). Second, the same kind of stochastic complexity is computed
for the pooled sample, which, when minimized gives the estimator of the associated
mixed density. Finally, a comparison is made between the stochastic complexity of
the pooled sample and the sum of the stochastic complexities of all the samples; if
the former one is smaller then the hypothesis of homogeneity of the k distributions
are accepted, the hypothesis is rejected otherwise.

The novelty of our approach lies in using the principle of minimum description
length and stochastic complexity instead of the classic methods which employ the
empirical distribution. A major drawback of the commonly used classic tests is that
they may be applied only to samples of equal sizes. This is because tables for the
case of unequal sample sizes are unavailable, and must be obtained individually in
each case. From a practical standpoint, however, the required calculations could even
overtax the capacity of a computer. Qur proposed method removes this difficulty
because (a) it does not require the knowledge of the distribution of the test statis-
tic, and (b) the procedure is justified for all continuous distributions and all sample
sizes. Furthermore, with this new method one does not need to choose the level of

significance of the test, for it becomes defined automatically.

5.3.2 The Test Procedure

Let (X1, X1ny )y (X2, -y X2y )y -+, and (Xiq,y -+, Xin, ) (abbreviated as X,
X3, -+, XP*) be k independent random samples with sizes ny,ng, -+, g, Yorey B
= n, and unknown population density functions fi(z), fo(z), - - -, fu(x) respectively.

The problem is that of testing the hypothesis

Hy: fHi=fi=--= fi against
H, : at least two of them are not equal. (5.3.1)

We begin the analysis by first establishing the information contained in each of

these k samples. If the densities fy, f2,:- -, fi are known, the Shannon’s entropy (if



118

exists)
—E/fl(XtJ)IOSfl(Xu)qu = —nn/f. log f,,
=t
t = 1,---,k, respectively, will give us the optimal mean code length for each sam-

ple.(In this chapter all logarithms are in base 2.) In this sense,

k n

k
=33 [ XY log f(X,)dX,y = = 3o, [ filog S,

=1 ;=1 =1
gives us a measurement of information contained in the k samples.

Suppose now that we mistakenly ignore the differences that may exist among the
k density functions and encode the k samples of the data as if they were from a single

information source. The mean code length then is

k n,
_EZ/fv(Xu)log friz(Xyy )X, = "n/fnnz log fmiz,

=1 y=1

where f,; = ):f=1(n./n)f. is a mixture density of fy,-- -, fi.
The inequality — Y%, n, [ filog f; < =1 [ finz 10g finiz, which holds due to the

convexity of zlogz, i.e.

k n k n
—_ ZZ/f%(X:J)logft(Xu)qu <- ZZ/];(X,])lOg f""-""(X'J)dXtJ (5_3.2)

=1 =1 1=1 =1
where equality holds if and only if all the densities f;,-- -, fx are equal (except a set of
measure zero), suggests that if the data are encoded in two distinct ways, each sample
separately as well as a pooled sample, and the resulting code length for the latter is
found larger than that of the former, then the conclusion that the null hypothesis
Hy is violated may be warranted. Indeed, this makes sense because, following the
arguments by Shannon (1948) and Rissanen (1989), the optimal mean code length
per symbol is a bound which can only rarely be beaten by any other per symbol code
length, refer to Theorem 1.2.1 and 1.2.2.
The principle of minimum description length (MDL) and the notion of stochastic
complexity (Rissanen, 1989) point out the way to estimate the optimal length en-

coding of the data. Suppose the unknown densities f,’s belong to a parametric or a



119

nonparametric model class M. To achieve the aptimal encoding of a given sample,
say X, we need to select a density f; in M based on which the resulting length of
the code for X", —log (I'[J_l f.(X;,—)), is as short as possible while at the same time
L(f), the code length for encoding f; itself, is not too long. In other words, we select
a density f; for X" so that the resulting two-part code length achieves the following

min{~log HXP) + L(f)}, =12,k (5.33)

Similarly, if we combine the k samples together and encode the pooled sample, the

resulting optimal code length will be

k
min {— log [] fmiz(XT) + L(fmiz)} (5.3.4)

S fh€M il

There are some difficulties in performing the minimizations (5.3.3) and (5.3.4),
because these are not directly computable from the data. To overcome these, we apply
the so-called stochastic complexity based nonparametric histogram density estimator
and compute the associated minimum description length of the data.

Suppose the data of each sample X, fall in the interval [s;,?;], and the data of
the combined k samples fall in the interval [s,t], where s = min{s;,1 < ¢ < k} and
t = max{t;,1 < < k}. Let M; be the class of histogram densities with equal-width
bins, on which we shall demonstrate the minimizations (5.3.3) and (5.3.4). If we
partition [s;, ;] into m; congruent subintervals C;; for each sample, for 1 < j < m;
and 1 < ¢ < k, our histogram density estimator f.(a:) will take the value (m;/r;)p;;
when z € C;;, where r; = t; — s; is the range, p;; 20 and X7y pi; =1, =1,---,k.
As in Hall and Hannan (1988) and Risannen, Speed and Yu (1992), we assume the
uniform prior 7(p;) = (m; — 1)! on the simplex defined by pi= (pi1,-*,FBim,) and
evaluate the marginal likelihood of the sample X

KXPssrom) = [ T1AOG)r(pd

i=1

/( ) (Hp"") (m; — 1)ldp

- (B)

i

(5.3.5)
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where n;; denotes the number of the data points in sample X that fall in the
subinterval C;;. Then the stochastic complexity, i.e. the abstract shortest code length

for X" relative to the set of all histograms with fixed s;,r; and m;, is given by

I(X | siyriymg) = —log Li(XT; 84,15, m;)

i 28 itmi—1
= n; log-r— + log ( " ) + log ( nitm ) , (5.3.6)
mi N1yt 0y i, ng
t=1,--,k
n; n;+m; ~1
h ' =2i-and [ = (dmol) gy )
where ( nit, i ) H;I'T]' an ( ", ) (1)1 y the same

argument, the stochastic complexity for the pooled sample X™ == (X7, X32..--, X;*)

relative to the set of all histograms, given s,r(= b — s) and m equal-width bins, is

-1
I(X"|s,r,m)= nlogI- + log " + log nEm . (8.3.7)
m LS PR (R n

Here, n.; denotes the number of the data points in X™ that falls in the ith bin of the
partitioned interval [s, b).

Note that if m; > n; (or m > n), there will always be some subintervals containing
no observation. To describe the employed model we have to take some code length for
the encoding of these unnecessary subintervals. This is hardly reasonable. Therefore

we restrict in the class of histograms that
1<m;<n; (t=1,---,k}and 1<m<n.

For the minimizations (5.3.3) and (5.3.4) we still need the code lengths required
to encode the parameter sets {s,,r;,m;,i = 1,---,k} and {s,r7,m}, which will be
combined, respectively, with (5.3.6) and (5.3.7) to provide us the data-based two-
part code length corresponding to (5.3.3) and (5.3.4). Since the optimal m; and m
usually depend on the sample size, the code lengths needed to encode the parame-
ters could be quite comparable to the stochastic complexities (5.3.6) and (5.3.7)—
especially for small and medium sized samples—which would reduce the impor-

tance the stochastic coraplexity is playing in dominating the random structure of
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the data. However, we can avoid such an unpleasant situation by truncating the
number of decimal digits kept in the parameters, and encode instead the resulting
{[:/10%), [r:/10%), [m;/10%),i = 1,-- -, k} and {[s/10%],[r/10%], [+7/107]} as well as the
optimized precision d, where [y] denotes the nearest integer to y. (In the sequel we
shall use § to denote [y/10%].) This means that the difference between each parameter
and values within its neighborhood of width 10? is ignored.

There is a natural restriction for the precision d that it ranges from minus the
largest number of effective digits after decimal point of the observations to one less
than the largest number of digits before the decimal point of the observations. For
example, if the measurements of a given sample are all rounded to 3 decimals and
the largest absolute value of the sample is 347.635, then d will be restricted within
the interval [-3,2]. In the following analysis we assumed that d is given in advance.

Section 1.3 showed that for a set of integers {6,,02, - --,0,} a prefix code can be

found with about

. 0 + b)! b+ 1)
L3(01, 02, SN 05) = log 2.865 + log (0) + lOg b('—(—b——%)' + log ?h-'—('(—'b_—g-;)-'- (53.8)

number of bits. Here 8 = 3_;|0;|, b4 is the number of non-negative itemnsin {0y,---,6}
and log®(n) = logn + loglogn + - - -, where the sum includes all the positive iterates.
For a prescribed precision d we are now in a position to obtain the data-based

expression of the idealized code length for a sample, which equals to
n'}.in{I(X,-"' | i, 7i,m:) 4 La(5i, 7, ;) + | log 10%]} (5.3.9)
for the sample X", i =1,---,k, and
rryxjn{I(X“ | s,7,m) + La(3,7,m) + |log 10%|} (5.3.10)
for the pooled sample X". Note that (5.3.9) and (5.3.10) cxactly agree with (5.2.16).
Therefore, in the case of unequal densities fi, fa,- -, fi, tue idealized code length
for encoding X7, ., X;* is

k
min {Z I(X[ | siyri,m;)

my My "
=1
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+La(81, 71, -+, 8, Py i) + | log 10%)}

. u s u Ry
= ,min anlog;i+§log( )

=1 LD TR (1T

k n;+m,—1 k
+ log ( ) +10g 2.865 + log™ Y _(|3i] + 7 + my)

i=1 ng i=1

(5 (18] + 7 + 773) + 3k)!
+log ] £-‘=1(i§;| 7+ m))\(3k ~ 1)!
(3k +1)!

8 R, 13k = (3051 T 118 ”’d'}

+1 (5.3.11)

where (3/:', :1livates the number of non-negative values in {31, 1, my, s3, ry, my,

*+y Sky Tk, vz 7. Note that in (5.3.11) we use the shorter L3(3y, 71,7, 8k, Tk, M)
k

instead of the longer Y./, L3(5i, 7., ;). The efficiency lies in the fact that the former
length is obtained in a prefix manner.

By the theory of stochastic complexity, under the right probabilistic model (here
the density function), or the right constraints inside the probabilistic pattern of the
observations, the corresponding encoding process is expected to produce a shorter
code length than the one corresponding to the wrong model, or one that ignores
the right constraints in the underlying model. Therefore we could conclude that if
the alternative hypothesis H, is true the code length in (5.3.11) should be less than
that in (5.3.10), since the encoding procedure corresponding to (5.3.10) is based on
the wrong model stated in Hy. If, however, the null hypothesis is true, then (5.3.2)
implies that both encoding procedures corresponding to (5.3.10) and (5.3.11) should
give virtually the same code length. (5.3.10) on the other hand would more lik:ly to
result in smaller code length because in (5.3.11) one needs to encode more parameters.
Clearly then, (5.3.10) and (5.3.11) can be used as test criteria to test Ho against H,
in which the code lengths of the parameters play the role of determining the size of
the test. Moreover, it enables us to go further and detect which of the k densities are
different and which of them are identical by trying to beat the code length (5.3.11)

by a more precise modeling of the data.
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By Section 5.2, a more general encoding process, based on the histogram density
with variable-width subintervals, can be applied to obtain the idealized code length
for each data sample. Suppose the alternative hypothesis H,; from (5.2.15) the total
predictive code leng! h needed for the k samples X7, X732, ..., X* is

min {— zk:logf.- + zk: La(g;™, m, 10“)} (5.3.12)

m LEX /(9 " "
 WiaRE LLL] i=1 i=1

if we suppose the parameter truncation is based on the same precision d. Here fi =
fi(X™;m;) is the likelihood function of the i-th sample X" defined as (5.2.14), i.e.

F o (?n‘ — 1)' n'»]v'mc
fi= (ni + mi — 1)} I_]; ":;’m""' (5:3:13)

where #; ;s are the widths of the optimal partition {Q; ;m,} of the i-th sample.
These are obtained by the maximum likelihood principle (5.2.4) for fixed number of
subintervals m; applied to the i-th sample. n;,,, is then the number of data points
falling into the j-th subinterval Q; ;m,.

Because all of the k£ samples are encoded simultaneously, the second term of
(5.3.12) could be further reduced by a more efficient encoding process for the pa-

rameters my, ---. my, 8 and ¢ defined as

=1 m; — 2
+La(m,, -, M, 5,7F) + |log 10¢]  (5.3.14)

m—l = T
o 28 m.——— m; — 2
L4(é;n”"'a‘il?kamly"'imk’ Zlog( I o |+ )

where §; is the sequence of break points corresponding to the optimal partition
{Q:jm,}- Therefore under the hypothesis H, the total predictive code length (5.3.12)
for the k samples can be replaced by a shorter code length

C(XP, -+, XP) = min { zlogf Xo+;m)

+La(@ 1ml,"‘,mk,10d)} (5.3.15)

-

where the minimum is attained at m,, - -, ;.
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If the null hypothesis Hjy is true, that is the k samples X1, .-+, X}'* arve drawn
from the same population distribution, we can describe the information in the k
samples using only the optimal code words required to encode the pooled sample
X" = (X, -+, X;¥). By regarding the pooled sample X™ as drawn from a mixed
distribution with density fn.. = YF, & f;, the shortest predictive code length for

i=l n

encoding X" is the one defined by (5.2.15):
C(X™) = min {— 10g fiz(X™; ) + La(m.- m, 10%)}

” LU . Th - 1 ! ~1h N :
==Y logn,a! + ) nymlogr,, — log (_rI(IT“n_—)—l—)" + La(gmizps ™,10%)(5.3.16)
;=1 =1 '

where the minimum is attained at .
The large sample asymptotic behavior of the discussed test procedure is presented

in the following theorem.

Theorem 5.3.1 Let X7, --,X* be simple random samples, respectively drawn from
the unknown density functions fy, ---, fi on [s,t], and X™ = (X7, -+, X;*) the
pooled sample. Suppose that the conditions (i) to (iv) listed in Theorem 5.2.1 and
Theorem 5.2.2 are satisfied for each X" and the corresponding f,. Then the following

statements hold.

(i). If at least two of f1,---, fx arve not equal almost everywhere, there ezists a con-

stant n < 0 such that

%[C(X{",-'-“X,"”‘)—C(X")] <n as. (5.3.17)
asny — 00, +++, N — 00 satisfying B > >0, <+, B > g, > 0 for any set
of prescribed constants €, - -, €.

(i). If fi=fa=--+= fi a.s., then
%[C(x;n,...,x;‘*)—C(X")] ~0 as. (5.3.18)

as ny — 00, *++, Nk ~ 00.
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The proof of Theorem 5.3.1 will be given in section 5.4.

Since (5.3.10) and (5.3.11) are the special situation of (6.3.16) and (5.3.15) respec-
tively, the above theorem is also true for the test procedure based on the encoding
process for histograms with equal-width subintervals.

From part (i) of the above theorem we know that the asymptotic power of our
test procedure is 1 in the limit as the sample sizes tend to infinity, i.e., almost surely,
the ~hortest predictive code length under H, is less than that under Hy when H, is
true. However, when the null hypothesis Hp is true, the difference of the two shortest
predictive code lengths per observation tends to be zero almost surely as the sample
sizes tend to be infinity. This implies that we need some threshold value for (5.3.18)
to control the type I error when Hj is true.

When the sample sizes are finite, the size of the test is essentially determined by
the part of the code lengths required for encoding the parameters. In the encoding
process corresponding to (5.3.15) there are more parameters (g7, -+, g =, My, -+,
my, d) to be encoded than in the encoding process corresponding to (5.3.16) in which
only ¢, m and d are to be encoded. Thus the code length (5.3.15) is more likely to
be larger than (5.3.16) if the null hypothesis Hp is true. Furthermore, the size of the
test varies with d, the precision truncating the parameters. If the parameters are not
truncated, the code length used to describe the parameters will be quite comparable
to that used to describe the data under the given histogram estimate, and the type
I error will be quite small, while the type II error is likely to be large. On the other
hand if the parameters are truncated too heavily, i.e. too much information suggested
by the parameters is ignored, the type I error is likely to be large even though the type
II error will be well controlled. As a rule of thumb, we use the precision of X" as 10¢
used to truncate the parameters. Exact formula for determining the optimal precision
d is not available, but some heuristic grasp of how the power of the test varies with the
precision d can be obtained by the simulation study later in this section. In Rissanen
(1994a). Fisher information is used to find the stochastic complexity of a set of data

coming from a parametric model class. As a consequence, there is no need at all to
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choose the optimal precision to truncate the parameters. Some works on applying

this idea to test the hypothesis of homogeneity is currently pursued by the author.

5.3.3 Two Examples

The first example uses the “PRQO Football Scores” data of R. Lock (1992). In
order to get an idea of how the criterion works, we compare only the pointspread
(abbreviated as pts., Oddsmaker’s points to handicap the favored team) data in the
third week, the eighth week and the fourteenth week to assess the presence of a time

shift in the scores.

Scores of the third week:
75 35 70 100 25 65 85 25 40 75 1.5 3.5
45 40 95 20 55 9.0 3.0 9.0 35 55 9.0 7.0
105 2.0 14.0 20 140 3.5 90 2.0 30 3.0 15 3.5
20 75 60 80 3.0 4.0

Scores of the eighth week:

70. 65 25 20 25 40 60 3.0 40 6.0 85
65 20 20 65 55 25 25 90 35 6.0 130
40 35 00 00 55 70 120 125 55 1.0 4.0
40 20 7.0 4.0 13.0

Scores of the fourteenth week:
120 1.0 120 6.5 3.0 60 30 9.0 1.5 95 100
80 50 00 135 45 55 35 130 7.5 50 2.0
65 40 40 30 30 65 80 55 9.0 9.5 11.0
1.5 55 70 85 50 6.5

with sample sizes n, = 42,n, = 38,n3 = 39 respectively.
Under the null hypothesis of no time shift in the pointspread, the idealized code
length (5.3.10) for the pooled sample with m < 119, is 363.27, and the corresponding

optimal m = 119 and d = 1 (one less than the largest number of digits before the
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decimal point in the cbservaticus). Under the alternative hypothesis. of some time
effects in the pointspread, the idealized code length (5.3.11) for the three independent
samples is 445.27, achieved at m; = 5, my = 2, m3 = 1 and d = 1. Becaise the
idealized code length for the pooled sample is considerably smaller than that of the
three independent samples, we conclude that there is no evidence of time effect in the
pointspread, which concurs with the conclusion of the classic Student’s ¢ test for the
mean difference of every two of the three samples. Figure 1 and Figure 2 show how
the idealized code lengths of each individual sample and the pooled sample change
with the number of bins employed in the corresponding histogram densities and with
the precision d used to truncate the parameters.

In the second example, we generated two independent samples with sizes ny = 15
and ny; = 12, respectively, from Gamma(4,3) and Uniform(4,18) distributions. The

two samples are as follows

X, = 7362 8876 5219 10.506 12.590 9.552 10.203 11.144
27296 3.1056 8.995 4.955 4.065 10.822 11.097

X, = 6645 6246 7.589 4.563 11.131 4371 6.743 16.647
15.412 6.202 15.134 6.951

Under the null hypothesis Hj that there is no difference between the distributions
which generated the two samples, the idealized code length (5.3.10) is 120.78 with m =
3 and d = log,, 17, while under the alternative hypothesis H, that there is a difference
between the two distributions, the idealized code length (5.3.11) is 115.00 with m, =
3,my = 7 and d = log;q25. The difference is clearly indicated by (5.3.10) and
(5.3.11), but neither the classic Student’s ¢ test, which gives the p-value=0.7026, nor
the Smirnov test, which is not significant at & = 0.2, would indicate that difference.
It is also interesting to note that (5.3.10) is always minimized at m = 3 when d is
chosen to be from 0, log,o2, log,o3, : -, log,(27, while (5.3.11) is always minimized
at m; = 3 and m; = 7. Figure 3 illustrates the relationship among (5.3.10), (5.3.11)
and d.
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Figure3: Relationship between Code Length and Precision
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5.3.4 Simulation Studies

In this subsection we assess the finite sample performance of the proposed test
procedure, based on the encoding process for histograms with equal-width subinter-
vals, by a simulation study. We compare our method with the two sample ¢-test and
the Smirnov test for equal and unequal sample sizes. The comparisons are in terms
of the power of the test and based on 1000 repetitions. The results are summarized
in Table 5.1 and Table 5.2.

Instead of using the optimal precision we choose some different but reasonable
precision to truncate the parameters. It is found that there usually exists a precision
d which makes both type I and II errors reasonably small.

The tables illustrate the following findings:

(i). When the samples are generated from normal distributions, the three tests are
all efficient if the difference of the populations is the result of a mean shift.
Both the Smirnov test and the stochastic complexity test are efficient when the

difference is the result of a change in the variance, but the latter is better.



(ii).

(iii).

(iv).

(v).

(vi).

(vii).
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When the data are generated from uniform distributions, the stochastic com-

plexity test is quite efficient, and also the best of the three methods.

When the data are generated from lognormal distributions, the Smirnov test is

the best and the other two tests are inefficient.

When the data are from exponential distributions, all the three methods are

efficient, but the two sample ¢ test is the best.

When the data are from logistic distributions, both the Smirnov test and the
stochastic complexity test are quite efficient to indicate a difference in the shape

of the distributions with the latter method superior in performance.

When the data are from gamma distributions, both the Smirnov test and the

stochastic complexity test are efficient with comparable power.

When the two samples are from different families of distributions, the stochastic

complexity test is quite efficient and performs best.

From the simulation study it seems that the stochastic complexity test is a promis-

ing method which can be expected to be further improved as better ways to estimate

the unknown densities are employed.
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Table 5.1: Comparison of the Power of the Test in Two Sample Case (Sizes n, = n, = 15 and Based on 1000
Simulations)

Distributions Two Sample t-test Smirnov Test Stochastic Complexity Test

a1 05 01 |a: 184 076 .026 |d: 0 1 2 3 ;] g7 1.0
N(10, 9) & N(10, 49) 107 052 011 487 229 093 | 410 482 .547 .603 .783 .875 .970
N(10, 49) & N(10, 49) .104 .048 .013 73 077 023 | .005 .012 .022 .032 .086 .173 .371

N(10, 9) & N(10, 9) .094 .058 .012 J84 078 023 | .033 .045 .079 .099 .220 .347 .447
N(12, 4) & N(10, 4) 824 717 464 837 .684 503 |.279 .333 .406 .454 .639 .748 .813
N(13, 4) & N(10, 4) 988 977 894 988 952 877! 655 .7T10 .758 .815 .891 .941 .965
N(13, 4) & N(13, 4) 095 .044 .008 85 084 025 .030 .047 .057 .079 .185 .326 .444
N(10, 4) & N(10, 4) 08 055 .007 200 .083 .023}.033 .045 .073 .100 .235 .384 .427
N(10, 16) & N(10, 18) 04 049 011 201 .084 .031(.039 .056 .074 .104 .219 .362 .611
N(2, 16) & N(2, 16) 090 .048 .015 71 .078 .030 § .017 .029 .033 .048 .113 .205 .513

N(10, 0.64) & N(10,0.64) | 099 .049 011 | .186 .076 .020 | .053 .073 .097 .133 .214 .396 .626
N(5, 0.64) & N(5,0.09) | 095 053 .008| .560 .311 .152 |.873 .890 .902 .923 .986 .988 1.0
N(5,0.09) & N(5,0.09) | .111 061 .007| .189 .077 .026|.137 .159 .231 .331 .687 .695 .964
N(25, 1) & N(25, 1) 112 056 .009| .201 084 .032|.003 .005 .012 .018 .060 .131 .428
Unif(0, 1) & Unif(0,1) | .094 049 011 | .191 087 .026|.103 .102 .203 251 .844 .848 .851

(A3



Table 5.1 continued

Distributions Two Sample ¢-test Smirnov Test Stochastic Complexity Test
a.l 05 .01]|a:.184 076 .026|d:0 .1 2 3 5 7 10
Unif(1,4) & Unif(1,4) 100 .052 .016 182 079 .029 [ .037 .039 .060 .055 .203 .470 .835
Unif(-2,3) & Unif(-2,3) 087 .037 .007 81 .068 .022,.011 .018 .021 .020 .145 .240 .851
Unif(1,4) & Unif(-2,3) 1.0 .998 .965 998 984 937 (.999 999 999 1.0 10 10 1.0
Unif(2,8) & Unif(3,7) 100 .053 .009 311 124 046 | 244 305 .425 .398 .807 .793 1.0
Unif(2,8) & Unif(2,8) 086 .049 .007 173 071 .023 | .007 .011 .015 .020 .079 .115 .465
Unif(3,7) & Unif(3,7) 107 .061 .010 .206 .080 .030 |.007 .011 .017 .028 .097 .096 .865
Unif(5,14) & Unif(3,10) 957 921 .762 924 814 .640 | .909 .948 970 974 990 1.0 .997
Unif(5,14) & Unif(5,14) 103 .051 .008 179 070 .020 | .001 .02 .004 .007 .033 .085 .090
LogN(1,1) & LogN(.5, v2) | .111 .050 .005 410 244 (129 ).112 129 .163 .193 .292 .399 .559
LogN(.5,v2) & LogN(.5, v2) | 070 .026 .003 2201 .082 .038 |.108 .130 .158 .177 .233 .308 .418
LogN(1,1) & LogN(1,1) | .088 .035 .004| .165 .070 .023)|.046 .062 .082 .112 .200 .291 .457
LogN(1,1) & LogN(0,v/3) 221 151  .043 737 574 379 (.210 250 .294 .338 .436 .521 .647
LogN(0,/3) & LogN(0,/3) | .055 .017 .000 169 077 .021 [.182 .202 .225 .238 .296 .352 .439
LogN(7,2) & LogN(1,4)* 491 .307 .080 1.0 10 .995].510 .518 .536 .548 .568 .600 .628

*: The power will equal to .802, .875 and .925 respectively for d=3.0,4.0 and 5.0.

£el



Table 5.1 continued

Two Sample t-test

Distributions Smirnov Test Stochastic Complexity Test

a1 05 .01]oa: .18 .076 .026 (d: 0 1 2 3 .5 7 1.0

Exp(1) & Exp(.2) 989 939 632 982 946 .848 | .917 .940 .958 .961 .982 .992 .994
Exp(.2) & Exp(.5) 719 545 193 716 .525 359 | 416 .462 .509 .544 .661 .769 .841
Exp(.2) & Exp(.6) 862 721 336 854 .705 .526 | .599 .646 .683 .729 .824 .886 .923
Exp(.2) & Exp(.2) 100 .049 .007 181 077 .021(.017 .026 .039 .053 .129 .216 .370
Exp(.2) & Exp(.7) 919 823 449 .898 .798 651 |.728 .765 .804 .829 .889 .938 .960
Exp(.6) & Exp(.6) .089 043 .005 85 088 026 | .089 .108 .133 .164 .338 .411 .682
Exp(.7) & Exp(.7) 095 .039 .006 79 082 017 .110 .134 .162 .192 .342 .428 .745
Logis(2,2) & Logis(2,2) | .093 .046 .007 J90 075 .023 ) .026 .038 .057 .084 .175 .298 .584
Logis(2,3) & Logis(2,4) | .096 .047 .008 209 .092 034 ).014 .021 .031 .048 .093 .173 .345
Logis(2,3) & Logis(2,3) | .112 056 .007 277 079 025 | .008 .010 .020 .031 .078 .155 .338
Logis(2,5) & Logis(2,5) | 107 .052 .013 180 076 .033{.002 .603 .004 .011 .032 .060 .151
Logis(2,3) & Logis(2,5) | .079 .034 .010 266 .118 .046 | .032 .049 .064 .087 .157 .257 .425
Logis(2,2) & Logis(2,7) | .088 .047 .006 714 409 192 { 517 580 .643 .710 .817 .879 .938
Logis(2,7) & Logis(2,7) | .104 .054 .00 .189 075 024 | 0062 .003 .004 .008 .024 .044 .116
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Table 5.1 continued

Distributions Two Sample ¢-test Smirnov Test Stochastic Complexity Test

a:.l 05 0l{o:.184 076 .026|d: 0 1 2 3 5 710

Logis(2,3) & Logis(2,7) .100 045 .011 460 .224 .0841.132 .169 .210 .267 .387 .518 .697
Logis(2,3) & Logis(2,8) .113 .055 .010 573 300 .135|.238 .270 .327 .379 .489 .623 .785
Logis(2,5) & Logis(2,8) .113  .058 .010 266 .108 .049|.013 .019 .028 .039 .092 .156 .278
Logis(2,8) & Logis(2,8) 103 .047 .008 .186 .070 .022|.002 .003 .004 .004 .009 .04 .078
Logis(2,4) & Logis(2,7) .092 .042 .005 307 .136 .042.033 .043 .052 .070 .138 .247 419
Gamma(4,2) & Gamma(2,3) | .392 271 .102 .566 370 2101 .089 .113 .153 .196 .328 471 .712
Gamma(2,3) & Gamma(2,3) | .099 .050 .007 180 .080 .029|.030 .040 .055 .066 .154 .250 .457
Gamma(4,2) & Gamma(4,2) | .096 .047 .010 167 .069 .024 | .019 .037 .059 .080 .166 .245 .538
Gamma(2,4) & Gamma(4,2) | .108 .057 .018 260 .115 .044].048 .071 .091 .121 .244 .364 .639
Gamma(5,2) & Gamma(2,5) | .116 .050 .012 318 150 .062 | .069 .097 .131 .171 .308 .422 .644
Gamma(2,5) & Gamma(2,5) | .100 .050 .011 187 .085 .025].012 .020 .029 .036 .079 .137 .289
Gamma(5,3) & Gamma(3,5) | .101 .049 .006 226 .119 .041 | .012 018 .031 .046 .106 .187 .305
Gamma(5,1) & Gamma(1,5) | .132 .088 .040 587 .368 .200 | .384 .434 .488 .547 .715 825 .917
Gamma(6,2) & Gamma(2,6) | .109 .056 .014 370 172 084 |.085 .104 .155 .187 .327 471 .624

gel



Table 5.1 continued

Distributions Two Sample t-test Smirnov Test Stochastic Complexity Test

a .l 05 0l |a:.184 076 .026|d: 0 1 2 3 Ri] 710
Gamma(7,2) & Gamma(2,7) | .114 .067 .005 390 216 .092.092 .136 .169 .224 .366 .519 .635
Gamma(7,3) & Gamma(3,7) | .110 062 .019| .202 .155 .067).028 .039 .054 .073 .145 239 .447
Gamma(8,2) & Gamma(2,8) | .094 .041 .009 455 242 111 .119 157 .206 .259 .427 .566 .707
Gamma(8,3) & Gamma(3,8) | .114 .063 .013 315 .158 0651 .025 .038 .060 .087 .156 .258 .437
Gamma(9,2) & Gamma(2,9) | .117 .067 .019 509 286 (131 .158 209 .246 .310 .463 .609 .745
Gamma(5,2) & Gamma(5,2) | .088 .036 .003 .166 .065 .026|.016 .025 .046 .065 .150 .236 .497
Gamma(5,3) & Gamma(5,3) | .105 .054 .014 207 082 .028{.008 .010 .018 .026 .088 .152 .247
Gamma(3,5) & Gamma(3,5) | .091 .050 .013 177 074 0291 .006 .009 .012 .018 .052 .109 .236
Gamma(5,1) & Gamma(5,1) | .100 058 .009| .186 .070 .025|.071 .094 .135 .175 .304 .513 .590
Gamma(1,5) & Gamma(1,5) { .099 .049 .012 189 089 .036|.021 .032 .047 .061 .121 .213 .372
Gamma(6,2) & Gamma(6,2) | .095 .049 .008| .190 .079 .022|.016 .021 .036 .062 .149 .246 .398
Gamma(2,6) & Gamma(2,6) | .108 .054 .007 .202 .086 .038}.004 .007 .012 .020 .038 .121 .260
Gamma(7,2) & Gamma(7,2) { .067 .030 .009 .138 .044 .016 |.012 .018 .025 .035 .097 .175 .315
Gamma(2,7) & Gamma(2,7) | .098 .039 .005 185 074 .020.004 .005 .009 .015 .049 .101 .222
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Table 5.1 continued

Distributions Two Sample t-test Smirnov Test Stochastic Complexity Test
a:.1l 05 01|a:.184 076 .026 |d: 0 1 2 3 5 .7

Gamma(7,3) & Gamma(7,3) | .118 .063 .010 199 092 029 .002 .006 .014 .026 072 .132

Gamm.(3,7) & Gamma(3,7) | .102 054 006 | .178 072 .022|.004 006 .012 .015 .036 .075

Gamma(8,2) & Gamma(8,2) | .081 .048 .010 183 .085 .026 | .008 .022 .026 .041 .092 .188

Gamma(2,8) & Gamma(2,8) | .095 .046 .007 181 .083 .028 | .006 .009 .009 .013 .036 .080

Gamma(8,3) & Gamma(8,3) | .115 .057 .008 | .178 .074 .024|.002 .004 .007 .008 .036 .087

Gamma(3,8) & Gamma(3,8) | .100 .049 014 .190 .073 .030|.002 .006 .009 .01 .022 .051

Gamma(9,2) & Gamma(9,2) | .113 .065 .015 192 087 .032].008 .008 .014 .020 .068 .151

Gamma(2,9) & Gamma(2,9) | .097 .047 .010 188 .78 .033|.001 .002 .003 .008 .024 .066

N(2,16) & Logis(2,7) 118 060 .004 | 629 .367 .166].409 490 .562 .635 .748 .845
N(5,5) & Exp(.2) 125 075 027 562 335 .173(.359 421 .487 544 .758 .841
N(2,497%/3) & Logis(2,7) | .101 .056 .005| .202 .087 .024|.000 .001 .003 .004 .012 .030
N(5,36) & Exp(.2) 090 048 .009| 323 .156 .065(.197 .240 .287 348 537 .692

LET



Table 5.2: Comparison of the Power of the Test in Two Sample Case (Sizes n;, = 15,n; = 20 and Based on 1000
Simulations)

Distributions Two Sample t-test Smirnov Test Stochastic Complexity Test

a: .1 05 01 fa: 2 d 05 01)d0 1 2 3 9 g7 10
Unif(-2,3) & Unif(1,4) 1.0 997 973| 998 995 98 917| 10 10 10 10 10 10 10
Unif(3,7) & Unif(1,4) 10 1.0 10f 10 10 10 99| 10 10 10 1.0 10 1.0 1.0
Unif(2,8) & Unif(3,7) 103 051 011! 362 .239 .125 .029 | .505 .593 .684 666 914 897 1.0
Unif(2,8) & Unif(4,7) 232 146 .050 | 655 .555 .329 .149 | .966 .974 .974 .990 997 997 1.0

Unif(2,8) & Unif(1,9) 102 054 012 ) 274 .139 .083 .016 ) .111 .156 .235 .295 .405 .811 .858

Unif(1,9) & Tnif(1,9) 08 045 015 224 117 .068 .020 | .009 .017 .024 .027 .077 .318 .290

Unif(4,7) & Unif(4,7) 102 045 011 200 .104 .056 .011].021 .026 .039 .047 .104 .225 .863

Unif(-2,3) & Unif(-3,4) 079 .040 .007 | .287 .155 .084 .014(.093 .140 .165 .182 454 885 1.0

Unif(-3,4) & Unif(-34) | 094 048 .012| 203 .105 .057 .013|.006 .009 .012 .011 .033 .150 .295
Unif(-34) & Unif(-4,0) | 998 997 974 | 996 992 961 .840|.991 .994 995 997 10 1.0 1.0
Unif(-4,0) & Unif(-4,0) | .103 054 .011| .200 .088 053 .011.005 .007 .006 .014 .037 .037 .865
LogN(1,1) & LogN(.5,v/2) | .092 .035 .004 | .470 317 237 .079|.109 .134 .177 211 .310 .403 .546
Exp(.2) & Exp(.6) 873 747 350 | 887 .797 .703 .475|.635 .680 .729 .761 .837 .892 .925
Exp(.3) & Exp(.8) 857 759 .432| 808 698 .598 .371|.585 .634 685 .723 .809 .885 .916
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Table 5.2 continued

Distributions

Two Samp.e ¢-test

Smirnov Test

Stochastic Complexity Test

a1l 05 Olje:2 1 05 O01{d0 1 2 3 5 7 10
Exp(.5) & Exp(.2) 771 602 238 | .780 .647 548 284 | 403 454 522 569 .673 .768 .845
Logis(2,2) & Logis(2,7) | .085 044 .012| 774 543 359 097 |.559 .616 .678 .733 .833 910 .955
Logis(2,4) & Logis(2,7) | .061 030 .008) 322 .169 .099 .018 |.028 .042 .053 .073 .144 233 .390
Logis(2,8) & Logis(2,3) | .094 040 008 | 623 430 264 .000 | .303 .342 388 .434 .555 660 .794
N(10,9) & N(10,49) 097 046 .009 | .553 350 .221 047 |.478 540 620 679 .828 .912 .976
N(13,4) & N(10,4) 998 992 941 | 998 986 980 .881 |.756 .796 .852 887 937 964 .982
N(5,.64) & N(5,.09) 09¢ 049 .011] 674 .482 285 .092 | .926 .926 .934 956 .994 .994 999
N(-8,49) & N(-6,16) 325 204 074 542 383 263 .110|.101 .129 171 220 .341 473 625
Gamma(7,2) & Gamma(2,7) | .089 054 013 | 458 274 .192 066 |.134 .171 218 .269 .433 591 .723
Gamma(7,2) & Gamma(8,3) [ 993 978 003 | 993 972 953 843 | .575 636 677 .736 .827 .898 954
Gamma(4,3) & Unif(6,18) | .120 .066 017 | .323 .179 .100 .020 |.391 .449 .536 .597 .752 .885 .922
N(3,16) & Logis(2,7) 089 045 004 | .727 499 325 .090 | .475 545 .617 .674 .803 872 .948
N(5,25) & Exp(.25) 202 121 040 ] 514 358 263 .102|.363 .422 480 555 .743 .834 .924
Gamma(52) & N(11,81) | .099 049 .012| .528 .315 .200 .060 | .290 .346 .414 461 .649 .802 .900

6€1
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5.4 Proofs of the Theorems

In this section, we will provide proofs for all the theorems listed in this chapter.
For the sake of simplicity, the logarithms in the proofs are al' natural logarithms.
From (5.2.6) and (5.2.14),

logf(X" )+ Li(X™; m)-

(m-1)! 17 M Mom + 1
—1 ’ 1,m —_—e 4.1
Og{(n+m—1)s,13;,'mn..m +§(", +1)log TETSo (5.4.1)

By Stirling’s formula n! = v/2rnn"e "e (0 < 6, < 1/(12n)), (5.4.1) can be rewritten

as
. ]\ em!
—log f(X™;m) + L} (X";m Zlogr,m+ Z log (1+-——-)
Ny,m >0 m
-}-l Y. logn,m —mlogm+ O(m). (5.4.2)
2 a0

We will show that the first term of (5.4.2) is ajomlogm + O(m) where 1 £ a12 € ay,
S ay. The

the second term is O(m) and the third term is 5 log 2

following Lemmas will be needed.

Lemma 5.4.1 Suppose that n, ,, ’s have a multinomial distribution with probabilities
Tom S Such that ¥ wom = 1, Ty 2 bieria™ and 3i2  num = n. Then for each

integer w, there exists a constant a,, such that

m _ 2w
E {E " mr""‘} < a,ni~vmiov (5.4.3)

1=1 NTym

Proof. Denote T} = 3.2, o ':7;,“,:' ™. By the definition of the multinomial distribu-

tion and from Stirling’s formula we have

E(T3) = ) T?‘"nm .Hmm

Ny m+- +omm=n =1 am: 1=1
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m Ny m
E T 11 m'—’m—)-T——e‘"‘-m V2rne

nymtrRmm=n =1 nt,m'

< V2mne i z: T2 H M ym

N=0n) m+4nmm=N =1 Nym:

00 oo 9 m (nw,_m)n'»'" e
= Vame Y, - Y re ] ERem) L eonim

ng'mo

ni.m =0 ﬂm.m=0 =1

= V2mneE' (T2") (5.4.4)

where the final expectation E' (T?¥) is with respect to a series of independent Poisson

random variables {n,n} with parameters {nn,,}. This technique, used by Rosen-

blatt (1975) and Stone (1985), of converting the multinomial to Poisson is called
1

Poissonization. The constant ¢, = o(m). By Shiryayev’s (1984) Theorem 6 of

Section 2.12, the 2w-th moments of T} can be written as a sum of its cumulants:

{
B(T) = X o) [LeaT) (5.4.5)

n+etn=2w

where p(j1,:++, 1) = %;&%—'ﬂ% and jr > 1,l < 2w. Because n,,,'s are independent

Poisson random variables, it follows from the section 1.4 of Lehmann (1986a) that
the j,-th cumulants of T

— m
k(T = 3 ko (""‘ﬂﬂ)=E—1'i'i"—3(bxcx)"*n"’*m°m (5.46)

=1 NT,m 1=1 (n7r,'m )Jk

if 3x > 1 and «,, (T1) = 0if jx = 1. Thus

{
E' ( ‘2w) = E‘p(jl, e 1jl) kr—I] KJk(Tl)
i

<Y o0, 01) [ (brer) 0t %me < g n=vmia (5.4.7)
k=1

where the summation ¥_* is taken over all partitions of 2w such that Y_, jx = 2w,
J& 2 2 and | < w. Using the same notation for possibly different constants and

substituting the last bound into (5.4.4) the lemma is proved. 0
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Lemma 5.4.2 Suppose that N is a binomial random variable with mean np. Then

for any integer w > 0, there is a constant a,, > 0 such that

E(N = np)® < a,nitvp® (5.4.8)

Proof. By the same technique of Poissonization we have
E(N = np)* < a,n% E(N; — np)?

where N, is a Poisson random variable with mean np. By the equation (5.4.5) and the
fact that xx(N; —np) = npif k > 1 and &,(N, —np) = 0 it follows that E(N, — np)?"

is a polynomial of order w, and therefore (5.4.8) must hold. 0

Lemma 5.4.3 Under the conditions that ¥,,, > bym™1, 1 < oy < 1 + 5-;—; and
f 2 c > Or m
3 Do — Bum o(m) a.s. (5.4.9)

=1 NTym

uniformly in m € [1,n™] as n — oo, where 7, ,, = fQ” m f

Proof. For any € > 0,

m

Mym — NT
P max E p Twm 2 em
meE[1,n"2) =1 nhm
m
Nym — NT
< : P (Z M ILAAALLLY B em)
- nw
mefin12) =1 hm

m _ 2w
< ¥ emmE {Z Pam — Blum """’"} (5.4.10)

mef1,n1) =1 Tum
where the last inequality is obtained by applying Chebyshev’s inequality. From
Lemma 5.4.1,

m
Nim — Ny
P max Z AL
me([1,n72]

nTym

- - 1
Z em) S Z € 2wm 2wawn2 wm2agw
1=1 me[l,rﬁ?]

< aw€—2wn(201‘72-212")"'+%+77 (5411)

By the condition that a; < 1+2—,‘”, the series above converges in n for w > F‘%ﬂ%‘—i.

Hence (5.4.9) follows from the Borel-Cantelli lemma. 0
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Lemma 5.4.4 Under the conditions that bym=*' < 7 < bym™2, where 2a, — % <

a2<1<a1< +—and0<c <f<ec,

'72
max m°"nn,-’,,. - m“‘w;,ml =0o(l) a.s. (5.4.12)
uniformly in m € [1,n™] as n — oo.
Proof. Denote .
in.
Im" - 1122?,(,1 - nn"m mal”i.m )

then for any € > 0,

P(max I,,>e>$ Y PUnn>e)

me(Ln] me[1,nm)
m® n;
< 3 zp( i —m“‘w,,ml > )
me(1,n12}i=1
m m®in; 2w
< Y XEMEI———" —m"min
n

mG[L""’] i=1
Z Z€-2w:n2wmn~219E(n£'m — nﬂi,m)2w1 (5.4.13)

me[]’n72] =1

where the last inequality is obtained by applying Chebyshev’s inequality. From
Lemma 5.4.2 and the property that c;bym™ < m; ,, < cobym ™2,

m
P( max [, ,,,>€) < Z Z6'2“’m2“’°"n"'”awn%*“'(cgbgm"”’)‘”

me(1,nm) me(1,n12) i=1
< awn2'yg+%+(2anz-az‘72—1)w. (5.4.14)

From now on the same notation will be used for possibly different constants. By the

47243

oy . _ 1 h - .
condition that a; > 2a, Pt the above series converges in n for w > T T T

Hence (5.4.12) follows again from the Borel-Cantelli Lemma. o

Lemma 5.4.5 Under the conditions that 7, < bom™*? and f < ¢y, we have

Z(n. m=—NWim) —n=o0(n) as. (5.4.15)
i=1

uniformly in m € [n™M,n] as n — oo.
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Proof. Suppose {N,n} are a sequence of independent Poisson random variables with
mean {n7,n} and denote T, = ¥ (N, m — nmm)?. We first show that the j-th
cumulants of T} satisfies

I%,(Tz)) € a,n?m=b-1 (5.4.16)

where a, is a constant depending on j.
Because {N,n} are independent, it follows that

m

Ky (T2) = )_ &, ((N,'m - nw,,m)z) .
1=1
By applying again Theorem 6 of Section 2.12 of Shiryayev’s (1984), the j-th cumulants

of (N, m — nm, )? can be written as a sum of its moments:

!
By (Nem = n7um)?) = 3 CGne oo 30) IE (Num = nTm)™)  (5.4.17)

n+ +u=;

where ((j1,--+ 1) = L'—'—l%‘——l#lﬁ and ), > 1,1 €. From Lemma 5.4.2 we know

that E ((N,m — nm,m)%*) is a polynomial of order ji for nr,, therefore

m
|6,(T2)| < Za,(mr,,m)f < a]nJm“"?(J"l)

1=1
for some constant a,, hence (5.4.16) holds.
By (5.4.5) and the identities x) (T, —n) = E(T; —n) = 0 and «,(T; — n) = «,(T3)

for j > 2, it can be seen that
k
E(T- —n)® =3 p(ly,-++, ) [T #1,(T2)
=1

where the summation ¥°* is taken over all the partitions of 2w such that }:"J‘=1 l, = 2w,
[, 22 and k < w. By (5.4.16) it fcllows that

E(T; -n)™ < Z‘awnz"’m"”’““’*“ < a, n*m=o2 (5.4.18)

for some constant a,, depending on w.
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Now for any ¢ > 0,

m
P| max Nym — NTim)> — n
(mé[n"’: n) Zl( Lm |,m) nf>¢€
< Z ( n1r.,,,, —-nl > en)
me[nM,n] i=1

m 2w

> E(ni,m - n"i,m)z -n

< ¥ g

me[nM n) i=1
' m 2w
< Z e n W IE S (Nym — nmim)? —n (5.4.19)
me[n™ n} i=1
by applying Chebyshev’s inequality and the technique of Poissonization.
From (5.4.18) it follows that
S (n — )2 —
P (mén[’gz('ul Q(n.,m Nim) — 0| > en)
< ¥ g™ Mn "2+ g nMm a2 < g 3Ny, (5.4.20)
mE["‘" vn]

The above series converges for w > hence from the Borel-Cantelli Lemma

(5.4.15) follows. 0

20! mn’?

Corollary 5.4.1 Under the conditions that bym=* < 7 < bpm™? and 0 < ¢; <
f S C2,

i (ni,m - 77:774',m)2 =0 (TE) a.s. (5421)

=1 (n"rivm)z n

uniformly in m € [n",n)] as n — oo.

Lemma 5.4.6 Under the conditions of Lemma 5.4.4, the following statement is true:

Y log = Jim =0(m) a.s. (5.4.22)

N{,m>0 i

uniformly in m € [n™,n"] as n — oo.

Proof. First note that
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By Taylor expa.nsion,

Y logm —E—-———""' e~ Y (1461,) 2 Biim = ""‘,ﬁ"‘) +D (5.4.23)
n|'m>0 n""m i=1 1l7r"m n‘ m>0 ( |m)

where D = = T, eo BETR < 1 and |6 < |Timetim,

Thus

Nim = NMim -1 M i o
pax [€im| < m 08X e < (abh) e == —m 1r.',,.|,
and by Lemma 5.4.4
X |€im] =0o(1) as. (5.4.24)

uniformly in m € [1,n"]) as n — oo. By (5.4.24) and Corollary 5.4.1 it follows that the
second term of the right hand side of (5.4.23) is bounded uniformly in m € [n™,n™)
by O ("‘—:11-) a.s.. The latter is o(m) because n > m™ and o <3+ 5‘; Therefore
by Lemma 5.4.3

Z log

Ni{,m>0

=0(m) as.

nﬂ'; m
uniformly in m € [n",n™)] as n — co. W
Proof of Theorem 5.2.1
By conditions (i) and (iii) we can obtain an interval estimate, respectively, for
— ¥y Fim and Y2, log nw; ,, as follows:
mlogm + O(m) < =) log #im < aymlogm + O(m) (5.4.25)
i=1

mlogn — aymlogm + O(m) < Y lognm;m < mlogn — mlogm + O(m).(5.4.26)

i=1

Hence there exists an o' satisfying —3oy < o’ < —2 + o such that

m m
—= Y log Fim + %Zlog nmim —mlogm = a'mlogm + %m logn + O(m). (5.4.27)
i=1 i=1

Now we turn to the second term of (5.4.2). By Taylor expansion

1 Nim+t
Z log (1 + —-—-)

Nim >0 Ti,m
= Y (nm+1) (—— ~la+ Tim)? = ) = O(m), (5.4.28)
ni,m)O Nim 2 Nim
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where 0 < < =1

- Nim’

From Lemma 5.4.6, (5.4.27), (5.4.28) and (5.4.2), it is easy to see that

—log f(X™;m) + L}(X";m) = a'mlogm + -;-mlogn +O0(m) as.

uniformly in m € [n™,n™] as n — oo. o

To prove Theorem 5.2.2 we first need the following lemmas.
Lemma 5.4.7 Under the condition (iii) of Theorem 5.2.1,

La(¢™, m, 6) = o(m) (5.4.29)

Proof. From bym~=" < #; , < bym™*? iy follows that

From this (5.4.29) follows. m]
Let f(z | §™) denote a density in H,, which assigns the same probability as f to
each subinterval C:),-,,,., i.e. for z € [s,1] let

1@ =3 "m0 (o).

=1 Ty,m th

By Lemma 5.4.7 we have

—Ly(X";m) + Ly(§™,m, 6) + log f*(X")

—_ " n, - ~m = log f(XJ)
= ~L}(X"™;m) +§log f(X, 14 )+JE=1——————log Ao +o(m).  (5.4.30)

Lemma 5.4.8 Under the conditions of Theorem 5.2.1, there ezist two positive con-
stants A and B such that

Bm™ < ) ngmlog Zum < Am*™  a.s. (5.4.31)

Ty m >0 nTym

uniformly in m € [nM,n"] as n — .
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Proof. By Taylor expansion,

Z Nym lOg Pm = Z Nym lOg (1 + Nym —n1r..m)

Ny m>0 Ny m Ny m>0 m
= in-:ng,m [____.n.'m - nﬂ"om -— “1‘(1 + 0!.’6)-2 (n'nm - nﬂ“vm)z}
pyr Ny m 2 NTym
P (rem —nTm): &
=2 — + g(n.,m — Ny m)
=1 (Ryn =0Ty m)®  (Rugn — AT m)?
-y 2(14+0,,) MLV e ne 5.4.32
; 2( .k) ( (mr,'m)z nTym ( )
where |0, ;| < Iﬁ%‘?{.’ﬂl, so that maxjcicm [0kl = o(1) a.s. uniformly in m €

[n",n™]. The argument is similar to that used to establish (5.4.24). By Lemma 5.4.4,
Lemma 5.4.5, the property 7,,, > by~ and the following inequality obtained
from (5.4.32)

Nym
Z 7oy lOg

Ty, m >0 Ny
2 - 2 1 Nym — DT
< (n:,m mf:,m) 2 -2 wm 1,m 4.
< f;{ — 14 2(1 +60.6)7% 1+ 12“.2’75; _——_nm,m y (5.4.33)
the lemma can easily be established. ]

The following lemma can similarly be proved by Taylor expansion, Lemma 5.4.3,

Lemma 5.4.4 and Corollary 5.4.1.

Lemma 5.4.9 Under the conditions of Theorem 5.2.1,

(1) ) n—l— =o(m) a.s. (5.4.34)
Ny m >0 wm
= t,m + 1

2 Y log %—-—ﬁ =o(m) a.s. (5.4.35)
=1 nm

uniformly in m € [n",n™] as n — .

Lemma 5.4.10 Under the conditions of Theorem 5.2.1, there erists a positive con-
stant A such that

—Am® + (az — a)mlogm + O(m) < —Li(X™;m) + 3_log f(X, | §™)

=1
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< (a1 = 1)mlogm + O(m) a.s. (5.4.36)
uniformly in m € [n",n"] as n — oo.

Proof. First note that
Nim + 1

—L3(X™;m) + Elog F(X;1§™) En.,m log Z(n.,m + 1)(_1__):_
j=1 i=1 1m =1 ,m
n+m)1r.,,. NTim + 1
= 1 i,m f,m l —_—
Eogr. +§n. ,,,.+1 +§ ——
+mlog(n + m) — Z log(nmim + 1). (5.4.37)

i=1
The second term of the right hand side of (5.4.37)

S i log PEMTim S (4 )T R i
i=1 i,m 108 n|'m+1 & Nim 108 i,m+1 NTim Nim

1 Tim
=nlog(l+-;)— Z n,,,,log<l+—)— Z n,'mlogn

Nim>0 Rim/  nim>0 Tim

(5.4.38)

and

1 1 1 2 1
Z n,,,,.log(l-i- )-— Z Nim (m+2(1+mm) n: 2)

Nim>0 Ri,m Nim>0 im
where 0 < 7;,m < 1. By Lemma 5.4.8 and Lemma 5.4.9 (1) we have
— Am* 4+ O(m) < in;,m log (ntm)mim <0O(m) as. (5.4.39)
=1 nim + 1
uniformly in m € [n™,n™] as n — oo.
It can also be seen easily that

agmlogm + O(m) < — Z log (1r. m + ) < aymlogm + O(m) (5.4.40)

i=1

From (5.4.25), (5.4.39), Lemma 5.4.9 (2) and (5.4.40) it follows that
—Am™ + (a2 — aq)mlogm + O(m) < —Lj(X";m) + Zlog f(X;16d™)
=1

< (g —1)mlogm + O(m) as. (5.4.41)

uniformly in m € [n™,n™] as n — oo. a



150

Lemma 5.4.11 Under the conditions (i) — () of Theorem 5.2.2 and f # 1, we

have as m — o0

f — — _l_i, 2 ﬁ 0 -2a2
13,101;—-—“"6,“)_.);;24 - /Q.,m 7+ o(m™™) (5.4.42)

Proof. By the definition of f(z | §™)

lim (f(z) - f(z | §™)) = lim —=

dy = 5.4.43
m—00 m—eo rt m '/Qt m(-‘l‘) ) y= ( )

uniformly in & € [s,t], where Q, () is the subinterval holding x, and #, m(z) is the

corresponding width. Now by Taylor expansion

f e
Ao ._I/Q.mf ‘°g<” 7] ~m'q))

/Q,m = f? Imq)m)—lmlfqu(lﬂ.) (L'j'—(ff—(};%m—))g (5.4.44)

where |n,(z)| < lf—;—(i{f,;%‘l' and by (5.4.43) sup, |n(z)| = o(1). Hence

1=1

(f - f( | §™))?
Eflogf( | m) ,=1'/th |q
~01+ ) )§/Q.m(ff2f( U+ Y R
(1+o(1)) Z /Q V- f(llq;"))z (5.4.45)

Now by applying the technique used in Proposition 2.7 of Freedman and Diaconis
(1981) to prove that

./Qt (f f{(l ‘inq‘) - -}5 i:: /Qa,m .{7 + O(m-za’) (5446)

and by (5.4.46) the lemma follows.

=1
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By denoting z = ¢ — ¢ m We have

@)= |V Fom (Fome o
'/Ql xlq ) dz_ﬁi‘mL [f(z+q'-l"") f(z+qi—1,mlq )] dz

rl'm

- 2
= ;r‘" /T:.m[/ f(!l + qi-l,m)dy"‘;' /7‘:, (Fim — y)f(y+ q.'_l,m)dy] dz

=ﬁ—- Tim fy+q,_ 1,m)dy dz——— y)f Y + Gim1,m)dy 2
e [P [+ it [ [ |

;""' / L[ F @t Gam)F 0 + Gism)dudods
1 rt,m r‘,m . . 5
—;r—— / (f""‘ - u)(f‘v"‘ - v)f(u + qi-l.m)f(v + q.'_l,,,.)dudv
rt g rl,m . .
:r‘ = / / im—uV v)f(u + q:'-l,m)f(v + (i;_l,m)dudv
Fim [Tim ) 3 . X
o A Fom = 0) [+ Grorm) (0 + Graym)dudo
rl m 'I‘, m ’I‘,,m . . 5
T Tim / / (uAv— ;;uv)f (4 + Gietm)f (v + Gicrm)dudv  (5.4.47)

where u V v = max(u,v) and u A v = min(u,v). Direct computation shows that

T'. m rt m 1 1 3
/ / (u Av— —uv)dudv = . (5.4.48)

Fim 127‘. o
Define f;,, = - Joim f(u + Gioym)du. By (5.4.47)

/ (f-fC1dm)°
i=1 th f(~ I ‘im)

- f: ;‘; - [ Fim | " A — ;:il—'n—uv)( F(u+ Giam) (0 + Gictm) = Fom)dudy

1=1

TS DR Ty A N ¥

= 127 m

r.m Fim (Fom fHU+ Gimrm) S0+ it m))
LA - du
l / ( Tim f(u + qi-—l,m)

+—— 5 2 Fim /me @) 4o, (5.4.49)
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Note that |u A v — ~~uv| < 7, and
Tym !

f(" + qt-l.m)f(v + Gi-1,m) —~ ._f'?,ml <

j(“ + Gi-1,m) — ?:,m If(” + ‘is—l.m)l +

f+ Gicam) = ?.,ml l.-f.,ml )

then

m ~

3 Dum r.m/r'm 4 Ao = u0)(f(u+ Goam) (0 + diim) = Fom)dude

=1 T,m Ty,m

<cler,m/

1=1

m| . . -t t.m . .
f(+ Gmrm) = Fom| [ F 0 + Gt
;hm f‘j‘m -t
+C;l Z Ft,m / / If;.m‘
1=1 0 0

<2c,12r,m/Q‘m\f f,,,,|/Q (5.4.50)

=1

f(v + q;-—l,m) - fx,m

Using the Cauchy-Schwartz inequality

2 fol =Rl o,

1=1

<[ ( 7] [ ()]
[i Jon 7 f"'H}m: /Q,m|j|2]2
< om™2 ( Jv - ?,,m)")%

where ¢ = (t — s)b3c; is a constant. By (2.5) of Freedman and Diaconis (1981)

/[ t](f' —fom)? =0 asm — oo (5.4.51)

Therefore the first term in the right hand side of (5.4.49) is bounded by o(m=2*).
Using the Cauchy-Schwartz inequality, (5.4.51) and a result similar to (5.4.51) for

2
/”(f__gﬂ) V0 asm— oo, (5.4.52)
8.t
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it is easy to show that the second and the third term of the right hand side of (5.4.49)

are bounded by o(m=2*2). Therefore (5.4.46) is true, and so is the lemma. o
Lemma 5.4.12 Under the conditions (ij — (iv) of Theorem 5.2.2, we have

= f( J) = o f 0 -2c n
glog X, |5 nkE;l g——_f(-lﬁ"‘)+ (nm™** + mlogn) a.s. (5.4.53)

as n — oc uniformly for m € [n",n™], where a is a constant satisfying a; < a <
oz + l

Proof. Denote Z,,,, = log ﬁ-’-mL) for each X,, then Z,,,’s are i.i.d. and

|Z,m| <max |f - j( K )l < = max fym.
T S o
Thus
1Zym — EZ,m| < —;—lrn'a,)’cn Fom = B,
and

ZV(ZJ‘,R 4nc—2 max 1",,12 ey

c1<

By Bernstein’s inequality, for arbitrary € > 0

7’2
P ( 77) S 2exp {—m} ’ (5454)

where 7 = n(m™%* + mn~'logn)c and a; < a < a3 + }. By the definition of B and
v,

n

S (Zym - EZ,)| >

J=1

1 2 26 -2a -1
V+ 3Bn 4nc—1 r?ax r,,,. + 3_c1 rgeg(n Fomt{m™ + mn™" logn)e

<dnm™?* 4 "'m'"*?logn

where ¢’ and ¢” are constants not depending on n and m.
Therefore,
7’ 1 n¥m~* 4 mn~!logn)’e?
V + 1By = 2max{cnm=202 ¢'ml->zlogn}

= min{c'n(m~2***2 4 m'**2 " og n)?,

—1/ —2a-1t} 14lag. -
"n*(logn)~(m~2*"2%2%2 4 m2¥29271 Jog n)?}
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for any m € [r" n™] and hence

7’2 ( =2ctiag +1 ta=2a )

_> Za+t1 —?ﬂl

V1B 2 0 i (logn)? (5.4.55)
S ,,)

By (5.4.55) and (5.4.54), it follows that

oI |)>

n=1 me[n" m72)

<2 Z > exp{-—O (nﬂ:a_ﬁzﬂ(log n)ﬁ;f%%z)} < oo.
n=1me[n" nn)
From the Borel-Cantelli lemma, (5.4.53) follows. o
Proof of Theorem 5.2.2
The first part of the theorem, i.e. the equation (5.2.18) can be obtained from

(5.4.30), Lemma 5.4.10, Lemma 5.4.11 and Lemma 5.4.12 and then the second part is
straightforward from Theorem 5.2.1. o
Proof of Theorem 5.2.3

E(Z m EZJ'.m)

Rt ,2]{(01 —1)mlogm + Cynm™?} = Mznfﬁa_z(logn)%?, (5.4.56)
min_ {—Am® + (a2 — ay)mlogm} = —M(n™™ + n" logn),(5.4.57)

men7 n12]
the first part is obvious from Theorem 5.2.2. The second part can be established
along similar lines. m]
Proof of Theorem 5.2.4.
Regarding m as a real value and taking the derivative of 3nlog 2 + C}nm"2 with

respect to m, we get

{%nlog% + C}nm'z} = Msn’ (logn)} (5.4.58)

melinm)
and the minimization is achieved at m = Mg(n/logn)3. By this result and Theo-
rem 5.2.2, (a), (b), (c) and (d) are readily obtained. o
Proof of Theorem 5.3.1.
As in Lemma 5.4.7, it can be shown that

k
La(@™,- - 0%, my, -+ ,my, 6) = o(Zm;) . (5.4.59) .

i=1



155

If either a; # 1 or a; # 1, then by Theorem 5.2.3

k k
—M3 3 (n{ + 0 logn,) S C(XP, -+, Xp*) + 3 log £ (X[")
1=1 =1
ko1 o
< MY 0P (log n.)&ﬁ? a.s. (5.4.60)
=1

and

— Ma(n®™ 4 n™ logn) < C(X") + log f°.(X") < Myn™% (logn) ™% a.s.
(5.4.61)
for some positive constants M3 and M, depending on fy,---, fi.
If a; = a; = 1, then by Theorem 5.2.4 (b)

c(Xxy,--- X"")+Llogf"'(X"‘ = (Zn logn,)g) a.s. (5.4.62)

=1 =1
and
C(X™) +log f.,(X") = O (n3(logn)?)  as.. (5.4.63)
It remain: to prove that there exists a constant 7 < 0 such that
1 k
- (log Foe(X™) — }:log f,’“(X,"')) <7 as. (5.4.64)
=1
as n; — 00,--+,ny — oo satisfying B > ¢; >0, -+, 2% > ¢ > 0 for any prescribed
constants &, - -, &k, if at least two of f, -+, fi are not equal almost sureiy, and
(log foo(X™) = Zlog X )) —0 as. (5.4.65)
=1
asng = 00, -, —0if fy=fo=--= fi as..
Because

k
Y- log £ (X™) ZZlosﬂ Xo),

1=1 t=1)=

k n,

g f2.1(X") = 33 log (13- 2 X))
I=1

1=1 ;=1
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and f;’s are bounded density functions, by the strong law of large numbers for i.i.d.

random variables it follows that

1 & k n;
=S log (XM -3 X / filogfi =0 as. (5.4.66)
N2 i1 "
and
1 n n
~ log fis(X") - / fniz 108 fuiz = 0 2.5, (5.4.67)

as ny — 00, ++,n; — 00. By the convexity of zlog z,

k n.
[ iz tog fuie < 32 [ friog S, (5.4.68)

i=1
for any group of samples of sizes ny, - - -, nx satisfying 3.5, n; = n, where the equality
holds if and only if all the densities f;, ---, fi are equal (except a set of measure
zero). Therefore (5.4.65) is established by using (5.4.66) and (5.4.67). Also for any
1>0,- & >0if8 >¢,... % >¢, and if at least two of fi, +-+, fi are not

eaual 2 ost surely, there exists a constant 7 < 0 depending on ¢, - - -, & such that
ko,
/fmc'x log fmi:: - Z ;l_ /f; lngi <n (5469)
=1

for any set of integers {n;} satisfying S_;_, n; = n. Hence (5.4.64) follows from (5.4.66)
and (5.4.67). Noticethat a1y, < 1,792 < 1 and s2— < 1, (5.3.17) and (5.3.18) hold by

142a7

(5.4.59) to (5.4.65). o




Chapter 6

Concluding Remarks

6.1 Summary

In Chapter 2 we proposed an index of predictive power as a criterion to select
the principal components of a random vector distributed in a parametric family.
This criterion, when applied to the principal components selection, considers the lost
information due to the reduction of the parameters as well as the observed variables.
The principal components, obtained by minimizing the index of predictive power,
turn out to be identical to the classical principa! components when the assumed
distribution is normal. A test procedure for the principal components selection was
constructed ar d discussed. Finally, principal components for a type of £-contaminated
normal family were given.

In Chapter 3 we considered the problem of selecting a model with the best predic-
tive ability in a class of generalized linear models. A predictive least quasi-deviance
criterion was proposed to measure the predictive ability of a model. This criterion is
obtained by applying the idea of the predictive minimum description length principle
and the theory of quasi-likelihood functions. The resulting predictive quasi-deviance
function is an extension of the predictive stochastic complexity of the model. Under
rather weak conditions the predictive least quasi-deviance method was shown to be
consistent in the sense that the probability of selecting the right model converges

to one as the number of observations goes to infinity. Also we have shown that the
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selected model converges to the optimal model in expectation. The method was then
modified for finite sample applications. Justifications and discussions were provided
and examples and simulation results were presented.

In Chapter 4 a density estimation based complexity decision rule was proposed
which uses the quality of these estimators to estimate the corresponding unknown
element of the true probability density. In the development we introduced a loss
function which includes the total variation of the squared distance of the characteristic
functions to evaluate the performance of the density decision rule. The resulting
complexity density decision procedure was shown to be admissible, to achieve the
minimum expected risk, and to form a minimal complete class.

In Chapter 5, a generalized histogram density estimator with unequal-width subin-
tervals was used to find both optimal and predictive optimal description of a data
sample. Both optimal descriptions were expressed in terms of Rissanen’s stochastic
complexity. Uniform almost sure asymptotic expressions for both descriptions were
given. Finally, as an application of a stochastic complexity for optimal data descrip-
tion, a new test procedure for hypothesis of homogeneity was proposed and proved
to have an asymptotic power 1 in the limit. Examples and simulation results are also

supplied.

6.2 Future Research

There still remains a great deal of work to develop the stochastic complexity as a
competent method in statistics inference.

In ordinary linear regression a model selection criterion by stochastic complexity
is called the predictive least square principle (PLS). 1a the case of i.i.d. normal
residua.c the PLS principle is known to be consistent. It is important to study the
effects of small deviation from independence to the PLS principle. For instance, when
the regression residuals come from a Gaussian stationary process with the long range
dependence structure, it is interesting to know whether PLS is still consistent and

whether it is still as efficient as in the i.i.d. case. Only when the behavior of this
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simple regression case is clear, it becomes possible to study the effect of long range
or other types of dependence on more complex modeling problems.

The study of principal components selection from parametric point of view may
be extended to a ronparametric standpoint. For example we can define an empir-
ical distributici, calculate the stochastic complexity of a vector variable with large
dimension based on that distribution, then formulate the index of predictive power
and conduct the principal components selection based on this index.

The fundamental idea in Chapter 3 is using the accumulated prediction error as a
model selection criterion. This may be applied naturally to other regression problems,
such as the regression using splines and polynomials, nonparametric regression and
additive regression, etc.

As it was noted in Chapter 4, it is possible to find an application of stochastic
complexity theory in finite decision-problems {identification). It is also possible to
derive a nonparametric density estimation based complexity decision rule and study
the properties of admissibility and completeness for this decision rule.

In Chapter 5 we have shown the power of using stochastic complexity to find an
optimal histogram density estimation and to proceed with other selection problems
associated with the histogram density. This contrasts with the usual way of assessing
density estimates, either subjectively or by their asymptotic properties. Knowing
that the stochastic complexity provides a global measure for evaluating the success of
modeling reality through an observed data string, we may tackle other nonparametric

density and curve estimation problems and their possible applications.



Appendix A

Programs for Chapter 3

c This is the program for Example 3.5.1. This program is used
c to select the optimal model and compute the probability of
c selecting the true model by using monte carlo PLQD method.
c It is valid for linear regression problems.

implicit double precision (a-h,o-z)
parameter(maxr=1000,maxc=20,maxt=100)

dimension x(40,5), xp(40,5)

dimension y(40,1000),yp(40,1000) ,dum(16) ,mint (1000)
dimension index(40),salpha(1000,16),sdev(1000,16)
dimension model(16,5) ,modtr(5),coeff(40,5,1000)
character*50 infilel, infile2

common model,coeff

write(*,*) ’'Input the true model’

read(*,*) (modtr(i),i=1,5)

write(*,*) 'Input the data file of independent variables’
read(*,*) infilel

open(15,file=infilel,status=’old’)
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vrite(*,*) ’Input the number of independent variables'’

read(*,*) nx

if (nx.gt.maxc) goto 10

write(*,*) ’Input the number of data points’

read(*,*) ndata

vrite(*,») °I. -~ the data file of response values’

read(*,*) infile2

open(19,file=infile2,status=’o0ld’)

write(*,*) ’Input the number of data points used to do the
& first regression’

read(*,*) nd

write(*,*) ’Input the number of monte carlo simulations’
read(*,*) nb

vrite(*,*) ’'Input the number of response variables’

read(*,*) ny

do ii=1,ndata

read(15,*) (x(ii,j),j=1,nx+1)

read(19,*) (y(ii,k),k=1,ny)

index(ii)=ii
enddo
set up a non-repeatable initial state for permutation
call g0S5ccf
’salpha’ contains the PLQD values for each response
data in each model
do i=1,ny

do j=1,2%*nx

salpha(i,j)=0.40

enddo
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enddo

do 20 ib=1,nd
set up a permutation of index
call gOSehf(index,ndata,ifail)
write(*,%) ’index is’
write(*,%*) index
creat the corresponding permutation of independent variable
data and response data
do i=1 ,ndata
do j=1,nx+1
xp(i,j)=x(index(i),]j)
enddo
do k=1,ny
yp(i,k)=y(index(i) ,k)
enddo
enddo
call predev(xp,yp,nd,ndata,nx,ny,sdev)
do i=1,ny
do j=1, 2%*nx
salpha(i,j)=salpha(i,j)+sdev(i,j)/real(nb)
enddo
enddo
continue
write(*,*) ’salpha is’
do i=1,ny
write(*,*) (salpha(i,j),j=1,2**nx)
enddo

ksum=0
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write(*,*) ’the best model is’
do iy=1,ny
do j=1,2%#*nx
dum(j)=salpha(iy,j)
enddo
mint (iy)=indexmin(dum, 2%*nx)
ks=0
do k=1,nx+1
if (modtr(k).ne.model (mint(iy) ,k)) then
ks=ks+1
end if
enddo
if(ks.eq.0) ksum=ksum+1
vrite(*,*) (model(mint(iy),j),j=1,nx+1)
enddo
write(*,*) ’the probability*1000 is’
the probability is the empircal probability of
selecting the optimal model.
write(*,*) ksum
write(*,*) ’the monte carlo PLQD value are’
write(*,*) (salpha(i,mint(i)),i=1,ny)
stop

end

This function is used to find the index where the component
of x is minimum.
function indexmin(x,n)

implicit double precision(a-h,o-z)



dimension x(n)

temp=9999999999.40

ind=-1

do ii=1,n
if(x(ii).le.temp) then
temp=x(ii)
ind=ii
endif

enddo

indexmin=ind

return

end

This one selects all the subsets of set {1,2,...n}

subroutine possmod(n,nsubset)
logical modmat(1024,10),bit
common /subs/ modmat
do i=0,nsubset-1

do )=n-1,0,-1

modmat (i+1,n-j)=bit(j,1)

enddo
enddo
return

end

This subroutine is used to find PLQD(sdev) value for (x,y),

where x is the matrix contains the x-variables values, and
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y is the matrix contains response values.

subroutine predev(x,y,nd,ndata,nx,ny,sdev)
implicit double precision (a-h,o-2z)
parameter (maxr=1000,maxc=20,maxt=100)
dimension x(40,5),y(40,1000),sdev(1000,16)
dimension xr(40,5),yr(40,1000)

dimension model(16,5),coeff(40,5,1000)

common model,coeff

do i=1,ny
do j=1,2#%*nx
sdev(i,j)=0.d0
enddo
enddo
do 30 iv=nd,ndata-1
do ii=1,iv
do j=1,nx+1
xr(ii,j)=x(ii,j)
enddo
do j=1,ny
yr(ii,j)=y(ii,j)
enddo
enddo
call coefmod(xr,yr,iv,nx,ny)
do im=1,2%%nx
do iy=1,ny
tempv=0.d0
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do ix=1,nx+1
tempv=tempv+x(iv+1,ix)*coeff (im,ix,iy)
enddo
sdev(iy,im)=sdev(iy,im)+
&(y(iv+l,iy)-tempv)*(y(iv+1,iy)-tempv)/(2.0*real (ndata-nd))
enddo
enddo 7
continue
return

end

This subroutine finds the coefficient matrix ard

all the possible models.

subroutine coefmod(xr,yr,ndata,nx,ny)

implicit double precision (a-h,o0-2z)
parameter(maxr=1000,maxc=20,maxt=100)

dimension xr(40,5),yr(40,1000),xt(40,5)

dimension model(16,5),coeff(40,5,1000)

dimension sigsq(maxr),C(maxt,maxc),coef(maxc,maxr)
dimension ipiv(maxc),wk1(maxc,4),wk2(maxt)
logical modmat(1024,10)

common /subs/ modmat

common model,coeff

call possmod(nx,2**nx)
do ii=1,2%*nx

do jj=1,nx+1
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model(ii,jj)=0
enddo
enddo
do 40 im=1,2%*nx
nvar=1
do kk=1,ndata
xt (kk,nvar)=xr(kk, avar)
enddo
model(im,1)=1
do ji=1,nx
if (modmat (im,jj)) then
nvar=nvar+l
model (im,nvar)=jj+1
do kk=1,ndata
xt (kk,nvar)=xr(kk,jj+1)
enddo
endif
enddo
ifail=0
call g02cjf(xt,40,yr,40,ndata,nvar,maxr,coef ,maxc,
sigsq,C,maxt,ipiv,wkl,wk2,ifail)
do i=1,ny
do k=1,nx+1
coeff(im,k,1)=0.d0
enddo
enddo
do iy=1,ny
do jj=1,nvar

coeff(im,model(im,jj),iy)=coef(jj,iy)
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enddo
enddo

40 continue
return

end

function(x, y, n)

: This is S-plus program, used in Example 3.5.1

It is to find the probability of selecting the optimal model

: by using approximate PLQD method based on "n" simulations.

"x" is the matrix contains columns of explanatory variable values.

"y" is the matrix contains "n" columns of response values,

#¥ # & & # #® A

: generated by standard normal distribution.

len <- nrow(y)

P <- ncol(x) - 1

beta <- c(2, 9, 0, 4, 8)

mdl <- c(1, 0, 3, 4)

y <~y + x 4*) t(beta) %*% c(i:n)

s.alpha <- matrix(0, n, 2°p)

for(i in (2 * p + 2):1len) {

s.alphal, 1] <- s.alphal, 1] + ((y[i, ] -
apply(y[1:(i - 1),]1, 2, mean))~2)/(2 * (len - 2 * p - 1))

}

mmodel <- fantas(p)

for(m in 1:(2°p - 1)) {

dum <- sum(mmodel(m, J])
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mrow <- mmodell[m, ]

xx <~ x[, 2:(p + 1)][, mrow != 0]

for(k in (2 * p + 1):(len - 1)) {

if(dum == 1) {

coeff <- 1sfit(xx[i:k], y[1:k, ])$coef

s.alphal, (m + 1)] <- s.alpha[, (m + 1)] + (y[(k + 1), 1] -
as.numeric(c(1, xx[k + 1]) %*% coeff))"2/(2 * (len - 2 * p - 1))
}

else {

coeff <- 1lsfit(xx[1:k, ], yl[i:k, ])$coef

s.alphal, (m + 1)] <~ s.alphal, (m + 1)] + (y[(k + 1), ] -
as.numeric(c(1, xx[(k + 1), J)

%) coeff))-2/(2 * (len - 2 *x p - 1))

}

}

}

model.mat <- rbind(c(rep(0, p)), mmodel)

so <- t(apply(s.alpha, 1, sort)’

lmod <- matrix(-1, n, 4)

pmod <~ 1lmod

prob <- 0

for(i in 1:n) {

sm <- model.mat[c(1:2°p)[s.alphali, ] == sol[i, 1]], ]
if(is.vector(sm))

pmod[i, ] <- sm

else pmod[i, ] <~ sm[order(apply(sm, 1, sum))([1], ]
if(sum(pmodli, ]) == 0)

lmod[i, ] <- ¢(0, 0, 0, 0)

else {
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lmod(i, J{pmodli, ] != 0] <~ c(1:p)[pmodfi, ] !'= 0]
lmod[i, J[pmod[i, ] == 0] <~ c(rep(0, p))[pmod[i, ] == 0]
}

prob <- prob + 1 - abs(sign(sum(lmod{i, ] - ndl)))

}

prob <- prob/n

print("the probability of selecting the optimal model is")
print (prob)

print ("the best model is ")

print(lmod)

print("the PLQD value is")

sol, 1]

}

#: Splus program "fantas", used to find all

#: the subsets of {1,2,...,p}.

function(p)

{

a <- array(data = 0, c(2°p - 1, p))

if(p <= 1)

a<~1

else {

al1, 1] <- 1

al[2:2°(p - 1), 1] <- c(rep(1, 2°(p - 1) - 1))
a[2:2°(p - 1), 2:p] <- fantas(p - 1)

al(2°(p - 1) + 1):(27p - 1), 1] <- c(rep(0, 2°(p - 1) - 1))
a[(2~(p - 1) + 1):(2°p - 1), 2:p] <- fantas(p - 1)
}
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This program is used to select the optimal model and compute

the probability of selecting the true model by using monte

carlo PLQD method.It is valid for generalized linear regression

model with Poisson error. It is used in Example 3.5.2.

main program

implicit double precision (a-h,o0-z)

parameter(maxr=36 ,maxc=4,maxs=8,maxyc=1000)

dimension x(maxr,maxc), xp(maxr,maxc)

dimension y(maxr,maxyc),yp(maxr),dum(maxs),n’nt(maxyc)
dimension index(maxr),salpha(maxyc,maxs),sdev(maxs)
dimension model (maxs,maxc) ,modtr(maxc)

character*50 infilel, infile2

common model

vrite(*,*) ’Input the true model’

read(*,*) (modtr(i),i=1,maxc)

vrite(*,*) ’Input the data file of independent variables’

read(*,*) infilel
the values of the first column of infilel are 1.
open(15,file=infilel,status=’o0ld’)

vrite(*,*) ’'Input the number of independent variables’
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read (*,*) nx

‘nx’ does not count the intercept term in the model.

if (nx.gt.maxc) goto 10

write(*,*) ’Input the number of data points’

read(*,*) ndata

wvrite(*,*) ’Input the data file of response values’
read(*,*) infile2

open(19,file=infile2,status=’0ld’)

vrite(*,*) ’Input the number of data points used to do the
& first regression’

read(*,*) nd

vrite(*,*) ’Input the number of monte carlo simulations’
read(*,*) nb

vrite(*,*) ’Input the number of response variables’

read(*,%) ny

do ii=i,ndata
read(15,*) (x(ii,j),j=1,nx+1)
read(19,*) (y(ii,k),k=1,ny)
index(ii)=ii
enddo
set up a non-repeatable initial state for permutation
call g0bcct
’salpha’ contains the PLQD values for each respcnse

data in each model

ksum=0
write(*,*) ’the best model is’

do 105 iy=1,ny
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do j=1, 2#%#nx
salpha(iy,j)=0.d0
enddo
do 20 ib=1,ndb
set up a permutation of index
call gOS5ehf(index,ndata,ifail)
creat the corresponding permutation of independent variables
data and response data
do i=1,ndata
do j=1,nx+1
xp(i,j)=x(index(i),j)
enddo
yp(i)=y(index(i),iy)
enddo
calli predev(xp,yp,nd,ndata,nx,sdev)
do j=1, 2%¥nx
salpha(iy,j)=salpha(iy,j)+sdev(j)/dble(nb)
enddo

continue

do j=1,2%*nx
dum(j)=salpha(iy,j)
enddo
nint (iy)=indexmin(dum,2**nx)
ks=0
do k=1,nx+1
if (modtr(k) .ne.model(mint(iy),k)) then
ks=ks+1

endif
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enddo
if(ks.eq.0) ksum=ksum+1
write(*,*) (model(mint(iy),)),j=1,nx+1)

continue

. 1.te(*,*) ’the probability*1000 is’

This probability is the empircal probability of
selecting the optimal medel.

write(*,*) ksum

write(*,*) ’the monte carlo PLQD values are’
write(*,*) (salpha(iy,mint(iy)),iy=1,ny)

stop

end

This function is used to find the index where the component
of 2 is minimum.

function indexmin(x,n)

implicit double precision(a-h,o0-2z)

dimension x(n)

temp=9999999999.40

ind=-1

do ii=1,n

if(x(ii).le.temp) then

temp=x(ii)
ind=ii
endif

enddo
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indexmin=ind
return

end

This one selects all the subsets of set {1,2,...n}
subroutine possmod(n,nsubset)
logical modmat(1024,10),bit
common /subs/ modmat
do i=0,nsubset-1

do j=n-1,0,-1

modmat (i+1,n-j)=bit(j,i)

enddo
enddo
return

end

This subroutine is used to find PLQD(sdev) values for all
the possible models (x,y), where x is the matrix containms
the x-variables values, and y is the matrix contains

response values.

subroutine predev(x,y,nd,ndata,nx,sdev)
implicit double precision (a-h,o0-z)
parameter (maxr=36 ,maxc=4,maxs=8)

dimension x(maxr,maxc),y(maxr),sdev(maxs)
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dimension xr(maxr,maxc),yr(maxr)
dimension xt(maxr,maxc),x0(maxr,maxc)
dimension model (maxs,4),coeff(maxs,4)

common model

do j=1,2%*nx
sdev(j)=0.d0
enddo
do 30 iv=nd,ndata-1
do ii=1,iv
do j=1,nx+1
xr(ii,j)=x(ii,j)
xt(ii,j)=x(ii, (j+1))
enddo
yr{ii)=y(ii)
enddo
call coefmod(xt,yr,iv,nx,coeff,x0)
do 35 im=1,2#%*nx
tempv=0.d0
do ix=1,nx+1
tempv=tempv+x(iv+1,ix)*coeff(im,ix)
enddo
sdev(im)=sdev(im)+(y(iv+1)*(dlog(y(iv+1))-
& tempv-1.d0)+dexp(tempv))/dble(ndata-nd)
35 continue
30 continue
return

end
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This subroutine finds the coefficient matrix and all
the possible models.

subroutine coefmod(xt,yr,ndata,nx,coeff,x0)
implicit double precision (a-h,o0-2z)
parameter(maxr=36,maxc=4,maxs=8)

dimension yr{ndata),xt(maxr,maxc),x0(ndata,nx)
dimension model(8,4),coeff(maxs,4)

dimension isx(maxc),b(maxc),se(maxc)

dimension cov((maxc+1)*(maxc+2)/2),v(maxr,maxc+8)
dimension wk(({maxc+1)**2+3*(maxc+1)+22)/2)
logical modmat(1024,10)

character link, mean, offset, weight

common /subs/ modmat

common model

call possmod(nx,2**nx)
do ii=1,2%*nx
do jj=1,nx+1
model (ii,jj)=0
enddo
enddo
do i=1,ndata
do j=1,nx
x0(i,j)=xt(i,j)
enddo

enddo
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do 40 im=1,2%%nx
do i=1,maxc
b(i)=0.40
enddo
do i=1,nx
isx(i)=0
enddo
nvar=0
model(im,1)=1
do jj=1,nx
if (modmat(im,jj)) then
nvar=nvar+l
model (im,nvar+1)=jj+1
isx(jj)=1
endif
enddo
do k=1,nx+1
coeff(im,k)=0.d0
enddo
ifail=-1
link=’1’
mean='m’
offset='n’
weight=’u’
ldx=ndata
ip=nvar+1
ldv=ndata
t01=0.00006d0

maxit=0
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iprint=0

eps=0.00000140

call g02gcf(link, mean, offset, weight, ndata,
x0, 1dx, nx, isx, ip, yr, wt, a,
dev, idf, b, irank, se, cov, v, ldv, tol,
maxit, iprint, eps, wk, ifail)

do jj=1,nvar+l
coeff(im,model(im,jj))=b(jj)

enddo

40 continue
return

end

function(x, y, mmodel, bm)

{
# This is the S-plus program for Example 3.5.3 of Chapter 3.

# x: data matrix contains observations of explanatory variables.
# y: observations for response variable;

# mmodel: all possible candidate models;

# bm: number of permutations( monte carlo )

len <- length(y)

num <- nrow(mmodel)

s.alpha <- c(rep(0, num))

for(j in 1:bm) {

sam <- sample(len)

y1 <- y[sam]

xi <- x[sam, ]
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for(i in 20:23) {

coeff <- as.numeric(glm(yi[1:(i - 1)] ~ 1, binomial,
maxit = 15, bf.maxit = 15, trace = F)$coef)

pihat <~ exp(coeff)/(1 + i.p(coeff))

if(y1[i] == 0) {

s.alphal1] <- s.alpha[1] ~ (log(1l - pihat))/(4 * bm)

}

else {

if(y1[i] '= 1) {

s.alpha(1] <- s.alphaf1] + (y1[i] * log(yi{il/pihat) + (1 - y1[il)
* log((1 - y1[i]1)/(1 - pihat)))/(4 * bm)

}

else {

s.alpha[1] <- s.alphal1] - (log(pihat))/(4 * bm)

}

}

}

for(m in 2:num) {

mrow <- mmodel[m, ]

xx <~ as.matrix(x1[, mrow '= 0])

for(k in 20:23) {

coeff <- as.numeric(glm(y1[1:(k - 1)] ~ xx[1:(k - 1), 1],
binomial, maxit = 15, bf.maxit = 15, trace = F)$coef)

coeff.ok <- !is.ra(coeff)

muhat <~ coeff[coerf.ok] %*% c(1, xx[k, J)([coeff.ok]

pihat <- exp(muhat)/(1 + exp(muhat))

if(y1(k] == 0) {

s.alpha[m] <- s.alphalm] - (log(1 - pihat))/(4 * bm)

}



else {

if(y1lk] 1= 1) {

s.alpha[m] <- s.alphalm] + ( y1[k] * log(yi[k]/ pihat) +
(i - y1[k]) * log((1 - y1[k])/(1 - pibat)))/(4 * bm)

}

else {

.alpha[m] <- s.alpha[m] - (log(pihat))/(4 * bm)

<]
}
}
}
}
}

so <- sort(s.alphe)

otm <- mmodel[s.alpha == so(1], ]
# print("the optimal model is")

# print(otm)

# print("the PLQD value is ")

# print(so[1])

# print("s.alpha is")

s.alpha

}
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Appendix B
Programs for Chapter 5

c This is a Fortran program for Subsection 5.3.4:

c Simulation Studies
implicit dnuble precision (a-h,o0-2z)
parameter(maxr=1000,npool=30,k=2)
integer nrh0,nk(k),maxm(k) ,maxmp,maxn
dimension obs(maxr,npool),srp(maxr,?2),sr(maxr,2,k)
dimension opstc(maxr,2),opstk(maxr,k+1)
dimension obsi(npool), obsn(k,1000),srpi(2),sri(k,2)
dimension opstcl(2),opstki(k+1)
character*50 dfilel, dfile2, dfile3, dfiled

vrite(*,*) ’input the sample sizes’

read(*,*) (nk(i),i=1,2)

write(*,*) ’input the maximum numbers of equal-width bins’
read(*,*) (maxm(i),i=1,2)

write(*,%) ’input the maximum number of equal-width bins
& for the pooled sample’

read(*,*) maxmp

write(*,*) 'input the digit’

read(*,*) dig
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vrite(*,*) ’input the data file of the nbservations’
read(*,*) dfileil

open(unit=75, file=dfilel,status=’old’)

write(*,*) ’input the smallest value and the range
& of the pooled sample’

read(*,*) dfile2
open(unit=79,file=dfile2,status=’o0ld’)

write(*,*) ’input the smallest value and the range
& of the first sample’

read(*,*) dfile3
open(unit=81,file=dfile3,status=’0ld’)

write(*,*) ’input the smallest value and the range
& of the second sample’

read(*,*) dfiled
open(unit=83,file=dfile4,status=’old’)

do ii=1,maxr
read(75,*) (obs(ii,j),j=1,npool)
read(79,%) (srp(ii,jj),jj=1,2)
read(81,*) (sr(ii,jj,1),jj=1,2)
read(83,*) (sr(ii,jj,2),jj=1,2)

enddo

maxn=nax0(nk(1),nk(2))
nrh0=0
do i=1,maxr
do j=1,npool
obs1(j)=obs(i,j)

enddo
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srp1(1)=srp(i,1)
srp1(2)=srp(i,2)
do j=1,nk(1)
obsn(1,j)=obs(i,j)
enddo
sri(1,1)=sr(i,1,1)
sr1(1,2)=sr(i,2,1)
do j=1,nk(2)
obsn(2,j)=obs(i, (nk(1)+j))
enddo
sr1(2,1)=sr(i,1,2)
sr1(2,2)=8r(i,2,2)
call opms(obsi,srpl,npool ,maxmp,dig,opstcl)
opstc(i,1)=opstci(l)
opstc(i,2)sopstc1(2)
call opms?(obsn,sri,nk,maxn,maxm,dig,opstk1l)
do jj=1, (k+1)
opstk(i,jj)=opstki(jj)
enddo
if (opstk(i,1).le.opstc(i,1)) then
nrhO=nrh0+1
endif

enddo

write(*,») ’digit=’,dig

write(*,*) ’the number of cases when HO are rejected’
write(*,*) nrh0

write(*,*) ’ideal codelength under HO, optimal m; codelength

& under Hi, optimal m’
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do i=i,maxr

write(*,*) (opstc(i,j),j=1,2),(opstk(i,j),j=1, (k+1))
enddo
stop

end

subroutine opms(obs,sr,n,maxm,dig,opstc)

Compute the idealized codelength(’opstc(1)’)
(stochastic complerity + minimum description length)
for one sample of data.

implicit double precision (a-h,o-z)

integer n,maxm

dimension obs(n),sr(2) ,opstc(2)

opstc(1)=-1.d05

do m=1,maxm

call stcmpk(obs,sr,m,n,1,n,dig,stc)

if ((opstc(1).eq.(-1 d05)).or.(opstc(1).gt.stc)) then
opstc(1)=stc
opstc(z)=m

endif

enddo

return

end

subroutine opmsz(obsn,srk,nk,maxn,maxm,dig,opstk)

Compute the idealized codelength(’opstk(1)’) (stochastic
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complexity + mirimum description length)

for tvo samples of data.

implicit double precision (a-h,o-2z)

integer nk(2) ,maxn,maxm(2)

dimension obsn(2,maxn),sri:(2,2),o0pstk(3),nvec(10000)
dimension stcc(10000,2),sr(2),para(6)

external d2l1g

do jk=1,2
sr{1)=srk(jk,1)
sr(2)=srk(jk,2)
do m=1,maxm(jk)
stce(m, jk)=0.d0
nvec(1)=nk(jk)
if (m.gt.1) then
nvec(1)=0
do i=1,nk(jk)
if ((obsn(jk,i).ge.sr(1)).and.(obsn(jk,i).1..
(sr(1)+(1.d40/m)*sr(2)))) then

nvec(1l)=nvec(1)+1

4

endif

enddo
nvec(m)=0

do i=1,nk(jk)

if (obsn(jk,i).gt.(sr(1)+((mn-1)/dble(m))
& *sr(2))) then

nvec(m)=nvec(m)+1
endif

enddo
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if (m.gt.2) then
do j=2,(m-1)
nvec(j)=0
do i=1,nk(jk)
if ((obsn(jk,i).gt.(sr(1)+((j-1)/dble(m))
*sr(2))) .and. (obsn(jk,i).le.(cr(1)
+(j/dble(m))*sr(2}))) ther
nvec(j)=nvec(j)+1
endif
enddo
enddo
endif
endif
write(*,*) ’'nvac’, (nvec(j),j=1,m)
call cplxty(sr,nk(jk),m,nvec,cplx)
stcc(m, jk)=cplx
enddo
para(3*jk-2)=dsign(dint(dabs(sr(1)/10%*(-dig))+0.5d0),sr(1))
para(3*jk-1)=dsign(dint(dabs(sr(2)/10%*(-dig))+0.5d0) ,sr(2))
enddo
write(*,*) ’stcc’
write(*,*) (stcc(i,1),i=1,maxm(1))
write(*,*) (stcc(i,2),i=1,maxm(2))
opstk(1)=-1.d05
do mi=1,maxm(1)
para(3)=dint(m1/10**(-dig)+0.5d0)
do m2=1,maxm(2)
para(6)=dint(m1/10**(-dig)+0.5d0)
call deslth(para,6,delnth)
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c write(*,*) ’delnt“2’, delnth
stck=stcc(ml, 1) +stcc(m2,2) +delnth+d21g(10**(dabs(dig)))
if ((opstk(1l).eq.(-1.d05)).or.(opstk(1).gt.stck)) then
opstk(1)=stck
opstk(2)=ni
opstk(3)=n2
else if ((opstk(1l).eq.stck).and.(dble(mi+m2).1t.
& (opstk(2)+opstk(3)))) then
opstk(2)=m1
opstk(3)=m2
end if
enddo
enddo
return

end

subroutine stcmpk(obsn,srk,mk,nk,k,maxn,dig,stck)
implicit double precision (a-h,o0-z)

integer k, maxn, mk(100), nk(100) ,nvec(10000)
dimension obsn(k,maxn),srk(k,2)

dimension sr(2),para(300)

external d2lg

c this subroutine is i1sed to compute the idealized

c codelength (’stck’) of all ’k’ samples given the

c numbers (’mk’) of equal-width bins and ’srk’ which

c is the smallest values and the ranges for the k samples,

c it consists of two parts: one is the stochastic complexity
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given ’mk’ and ’srk’, the other part is the minimun
des<ription length for mk’ and ’srk’.
’obsn’ is the data of k sampies, ’'nk’ are their sample

sizes and ’maxn’ is the maximum sample size.

stck=0.d0
do jj=1,k
nvec(1)=nk(jj)
if (mk(jj).gt.1) then
nvec(1)=0
do i=1,nk(jj)
if ((obsn(jj,i) .ge.srk(jj,1)).and.(obsn(jj,i).le.
& (srk(jj,1)+(1.d0/mk(jj))*s =(jj,2)))) then
nvec(1)=nvec{1)+1
endif
enddo
nvec(mk(jj))=0
do i=1,nk(jj)
if (obsn(jj,i).gt.(srk(jj,1)+((mnk(ji)-1)/dble(
& nk(jj)))*srk(jj,2))) then
nvec(mk(jj))=nvec(mk(jj))+1
endif
enddo
if (mk(jj).gt.2) then
do j=2,(mk(jj)-1)
nvec(j)=0
do i=1,nk(jj)
if ((obsn(jj,i).gt.(srk(jj,1)+((j-1)/dble(mk(jj)))
& *srk(jj,2))) .and. (obsn(jj,i).le.(srk(jj, 1)+



&

(j/dvle(mk(jj)))*srk(jj,2)))) .hen
nvec(j)=nvec(j)+1
endif
enddo
enddo

endif

endif

write(*,*) ’'nvecpool’, (nvec(j),j=1,mk(jj’)
sr(1)=srk(jj,1)

sr(2)=srk(jj,2)

call cplxty(sr,nk(jj),mk(jj),nvec,cplx)
stck=sstck+cplx

write(*,*) ’stck’,stck
para(3#*jj-2)=dsign(dint (dabs(sr(1)/10**(-dig))+0.5d0),sr(1))
para(3*jj-1)=dsign(dint(dabs(sr(2)/10**(-dig))+0.5d0),sr(2))
para(3#*jj)=dint (mk(jj)/10**(-dig)+0.5d0)
enddc¢
call deslth(para,3+*k,delnth)

write(*,%*) ’delnth’, delath
stck=stck+delnth+d21g(10**(dabs(dig)))
return

end

subroutine cplxty(sr,n,m,nvec,cplx)
implicit double precision (a-h, o-2z)
integer n,m,nvec(10000),nveci(10000)
dimension sr(2)

external d2lg
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this subroutine is used tc compute the ztochastic
complexity (cplx) of a set of data Y relative to u

set of histogram density functions, given the minimum
value of Y (sr(1)), the length of the range of Y
(sr(2)), the number of equal-width bins in the histogram
density (m) and the number of observations occurring in
each equal-width bin (nvec). Here n is the number

of the observations.

nsum=0
do i=1,n
nsum=nsum+nvec (i)
enddo
if (nsum.ne.n) then
write(*,*) ’summation of the number in each equal-bin
& not equal to n’
else
dun=n*d21g(sr(2)/m)
if (n.eq.1) then
cplx=dun+d21g(dfloat (m))
else
al=dun
do i=m, (n+m-1)
al=a1+d21g(dfioat(i))
enddo
a2=0d0
ncnt=0
do j=1,m
if (nvec(j).gt.1) then
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ncnt=ncnt+l
nvecl(ncut)=nvec(j)
erndif
enddo
if (ncnt.ne.0) then
do jj=i,mcnt
do ii=1,nvec1(jj)
a2=a2+d21g(dfloat(ii))
enddo
enddo
endif
cplx=al-a2
endif
endif
return

end

subroutine deslth(x,mm,delntk)

A subroutine to compute the minimum description
length (delnth) of a sequence of integers (stored
in x),’mm’ is the length of ’x’.

implicit double precision (a-h,o-z)

integer mm

dimension x(mm)

external dlgstr, d2lg

mplus=0

sumx=0.d40

do i=1,mm
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if (x(i).ge.0.d0) then
mplus=mplus+1i
endif
sunz=sumx+dabs(x(i))
anddo
dum=d21g(2.865064d0)+dlgstr(sumx+1.d0)
if (mm.eq.1) then
delnth=dum+d2lg(sumx+1.d0)+1.d0
else if ((mplus.eq.mm).or.(mplus.eq.0)) then
delnth=duwa + d21g(mm+1.d0)
do i=1,mm
delnth=delnti+d2lg(sumx+dfloat(i))
enddo
do j=1, (mm-1)
delnth=delnth-d2ig(dfloat(j))
enddo
else
delnth=dum
do i=1,mm
delnth=delnth+d21g(sumx+dfloat(i))
enddo
do j=1, (mm-1)
delnth=delnth-d2lg(dfloat(j))
enddo
do ii=(mplus+1),(mm+1)
delnth=delnth+d2lg(dfloat(ii))
enddo
do jj=1, (mm-mplus)
delnth=delnth-d2lg(dfloat(jj))
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enddo
end if
return

end

function dlgstr{x)

implicit double precision (a-h,o-z)
external d2lg

dlgstr=0.d0

dumm=d21g(x)

do while(dumm .gt. 0.40)
dlgstr=dlgstr+dumm
dumm=A21g(dumm)

end do

return

end

function d21g(x)

implicit double precision (a-h, o-z)
temp=2.40

d21g=dlog(x)/dlog(temp)

return

end
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function(obs, m, dig, dig.e)

: Splus function "stcmplxtyl".

This function is used to compute the stochastic complexity
of a set of data relative to the class of histogram
densities with m equal-width bins. It consists of two
parts, one is the stochastic complexity given m, minimum
value of the data (ss), width of the range of the data (r)
and precision of the data (d); the other part is the

* H O H R N R B B A

minimum description length used to describe {s,r,d,m}.

obs : a vector of observations
dig: number of decimal digits after the decimal point.

dig.e: 10°(-dig.e) is the precision set for the

* ® #* =

parameter (ss,r,m)

obsl <~ round(obs, dig)

ran <- range(obsl)

n <- length(obsi)

r <- ran[2] - ran[1]

ss <- ran[1]

para <- round(c(ss/10~( - dig.e), r/10°( - dig.e),

m/10"( - dig.e)), 0)

nvec <~ rep(0, m)

nvec[i] <~ n

if(m > 1) {

nvec[1] <- length(obsi[(obsi >= round(ss, dig)) &
(obsl <= round(ss + (i/m) * r, dig))])
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if(m > 1)

for(i in 2:m) {

nvec[i] <~ length(obsi[(obsl > round(ss +
((i - 1)/m) * r, dig)) & (obs1
<= round(ss + (i/m) * r, dig))])

}

}

#print(nvec)

stemp <- cmplxtyl(ss, r, n, m, nvec) + deslenl(para)
+ log(10~(abs( dig.e)), 2)

return(c(stecmp, m))

}

function(ss, r, n, m, nvec)

: Splus function “cmplxtyl".
This function is used to compute the stochastic

complexity of a set of data Y relative to a set

{

*

L

¥

# of histogram density functions, given the

# minimum value of Y (ss), the length of the range
# of the data (r), the number of equal-width bins

# in the histogram density (m) and the number of

# observations occurring in each equal-width bin

#

(nvec). Here n is the number of the observatioms.

if ((length(nvec) != m) | (sum(nvec) != n))
return("data unmatched")
return(n * (log(r, 2) - log(m, 2)) -
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(1gamma(m))/lcg(2) + (lgamma(e + m))/log(2)
- sum(lganma(nvec + 1))/log(2))
}

function(x)

{

#: Splus function "desleni".

# A function to compute the minimum description
# length of a sequence of integers (stored in a

# vector x)

mplus <- length(x[x >= 0])

m <- length(x)

n <- sum(abs(x))

return(log(2.865064, 2) + log.star(n + 1) +
(1/10g(2)) * (lgamma(n + m + 1) - lgamma(n + 1)
- lgamma(m) + lgamma(m + 2) - lgamma(mplus + 1)

- lgamma(m - mplus + 1)))

function(x)

{
# log.star(x)=log(x,2)+log(log(x,2),2)+
# log(log(log(x,2),2),2)+... where

# the sum includes all the positive iterates.

dum <- 0



dumi <- log(x, 2)
while(dumi > 0) {
dum <- dum + dumi
dumi <- log(dumi, 2)
}

return(dum)

}
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