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Abstract 

This hesis is a study of several statistical modeling problems by stochastic com­

plexity. 

At first, an index of predictive power, using the concept of complexity or minimum 

description length, is proposed as a criterion to select the principal components of a 

random vxtor distributed in a parametric family. 

Then, we consider the problem of selecting a model with the best predictive ability 

in a class of generalized linear models. A predictive least quasi-deviance criterion is 

proposed to measure the predictive ability of a model. Some results concerning the 

consistency of this criterion are given. The method is also modified for finite sample 

applications. 

Thirdly a density estimation based complexity decision rule is proposed, which 

uses the quality of these estimators to estimate the corresponding unknown element 

of the true probability density. The resulting complexity density decision procedure is 

shown to be admissible, to achieve the minimum expected risk, and to form a minimal 

complete class. 

Fourthly a generalized histogram density estimator with unequal-width subinter-

vals is used to find both optimal and predictive optimal description of a sample. Both 

optimal descriptions are expressed in terms of the stochastic complexity. Uniform, 

almost sure asymptotic expressions for both descriptions are given. 

Finally, as an application of the stochastic complexity for optimal data description, 

a new test procedure for hypotheses of homogeneity is proposed. Some examples and 

simulation studies are further given to illustrate this test procedure. 

ix 
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Chapter 1 

General Introduction 

1.1 Introduction 

In recent years a new general approach to problems of statistical inference, stochas­

tic complexity, has been developed by Jorma Rissanen. This approach takes the point 

of view that any statistical model is merely a human attempt to describe or explain 

the truth in the system generating data; and that such models are to be assessed in 

terms of their success at this task. In the theory of stochastic complexity, the model 

assessment is conducted under the principle of minimum description length (MDL). 

To find the description length (or predictive description length, or stochastic com­

plexity) of an employed model with a sequence of an observed data string, a prefix 

coding procedure is supplied to encode the data string into a sequence of binary digits 

in two steps. The first step is to encode the data string under the employed model 

while the second step is to give a codeword indicating how comphx it needs to be 

to specify the employed model in the assumed model class. The resulting two-part 

code length gives a measurement indicating the success of describing or explaining 

the random structure in the observed data string. The stochastic complexity is an 

abstract notion giving the shortest required length for describing the data by using 

the models in the assumed model class (or model classes). It provides the rationale for 

the minimum description length principle, which was developed under the inspiration 

1 
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of the algorithmic notion of information by Solomonoff (1964), Kolmogorov (1965), 

Chaitin (1975) and others. 

The theory of stochastic complexity has a great potential in statistical analysis. It 

is well suited to statistical model selection, where it generalizes the maximum likeli­

hood principle, the maximum entropy principle, Akaike's AIC and Jeffreys-Schwarz-

BIC penalized log-likelihood criterion. This thesis studies several statistical modeling 

problems by applying the idea of stochastic complexity. It includes the principal com­

ponents selection in multivariate analysis, generalized linear model selection, decision 

settlement of stochastic complexity estimation, nonparametric testing hypothesis of 

homogeneity and general nonparametric histogram density estimation. However, be­

fore the full display of the study, we will briefly introduce the theory of stochastic 

complexity in this chapter. 

First we describe the connection between modeling and coding of data. Then 

we describe the coding of integers. As an important element in the development of 

stochastic complexity, the complexity in a coding system is demonstrated. Section 1.5 

to Section 1.8 gives the main part of the theory of stochastic complexity, including 

the two-part codes, the stochastic complexity, the predictive coding and the minimum 

description length principle. 

The materials in this chapter mainly come from the first three chapters of Pis-

sanen's "Stochastic Complexity in Statistical Inquiry (1989)", and from his papers 

(1983,1986a,1987). In addition, we describe some of the latest development in this 

area. 

1.2 Modeling and Coding of Data 

When encountering a real world phenomenon it is often necessary and useful 

to understand it, to find out the pattern it follows, and then in turn to improve 

our understanding of it. This way of knowing the world might be accomplished by 

regarding the phenomenon studied as being generated from an unknown system, and 
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by describing the structure and behavior of the system. 

To describe and analyze the system is not easy because what are generally available 

are only the observations about the system, not the whole system itself. We must 

collect measurements of various kinds, which we think give us information about the 

unknown system, and then try to piece them together to give us an understanding 

of its secrets. Based on this understanding we explain the observed phenomenon and 

possibly further give a prediction for the future. This procedure of finding a pattern 

in the observed data is called model building or modeling. 

In information theory, description of a system car be made by the way of coding. 

Let A denote a finite or countable set called an alphabet. Write An for the set of 

all strings of length n — each string consists of elements of A — and A* = U^=o ^ n 

for their union. For convenience, A0 consists of the empty string, written as A. The 

system of study is usually referred to an information source {A, P), which is defined 

by the alphabet A and a probability function P with domain A* and range [0,1] 

such that P(\) = 1. The definition of information source is so general that a great 

deal of flexibility of study is allowed. The observed measurements of the system are 

expressed in terms of a finite string x = xi, • • •, xn € A", called a message. The coding 

of the observed message is important for studying the complexity and properties of 

the information source. 

A code C is a single valued mapping from A* into B*, the set of all finite binary 

strings. For a message x in ;4*, C(X) is also called a code without any confusion. 

Nothing essential is lost by restricting the code alphabet to be binary. 

To write a code for any message x = Xi, • • • ,x„ in A*, it is enough to define a 

codeword for each element in A if we assume all the x,'s are generated independently. 

In this way a message x in A* can be encoded into a binary string by replacing 

x.'s by their corresponding codewords and concatenating them together without any 

commas. It is desirable that any encoded message of A" can also be decoded back 

instantaneously. The word "instantaneously" means that for any code of a message 

of A", we can decode to the point we have reached with no necessity of reading the 
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whole code first. 

If the code C is instantaneously decodable, it is called a prefix code. To ensure C 

is a prefix code, the Kraft inequality must be hold, i.e. 

£ 2-i(a> < 1 (1.2.1) 

where L(a) = \C(a)\ denotes the length of the codeword for a. Conversely, if we 

are given a sequence of positive integers no, «i ,••• , n* satisfying the Kraft inequality 

E L O 2 ~ " ' < 1 (here k could tend to infinity), we are also able to construct a prefix 

code for each element of alphabet {0, • • •, k} with length defined by these integers. 

Therefore, the Kraft inequality is equivalent to the prefix property, Rissanen (1989, 

p. 23). 

One of the mau; objectives with coding in information theory is to shorten the 

description of a long data string (message). The question arises of how to construct 

an optimal prefix code for an information source {A, P). The formulation of the 

optimization problem can vary. However, it is related to the distribution P and the 

following inequality plays a fundamental role in answering this question. 

Theorem 1.2.1 Let A be a finite or countable set, and let P and Q be two distribu­

tions on A. Then 

-Ep(°) los Q(a) * - £ p(«) loe W (1-2-2) 

Moreover, the equality holds if and only ifQ(a) = P(a). 

Here and thereafter in this thesis, the logarithm is base 2 unless otherwise indi­

cated. The proof of this theorem can easily be completed by using Jensen's inequality 

and therefore is omitted. 

Suppose C is a prefix code for A", i.e. (1.2.1) is true. Then we can define a 

distribution on A as follows, 

2 -L(o) 

0 ( a ) = r ^m *»«ny«€A. (1.2.3) 
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From Theorem 1.2.1 we have 

£ P(a)L(a) + log ( £ 2 - * M ) > - £ P(o)log P{a) (1.2.4) 

The inequality (1.2.4) can be interpreted to mean that for any prefix code C, mean 

code length of C is bounded from below by the entropy 

H(P) = ~ £ p(°) lo6 p(°)' (1-2.5) 

This is the famous noiseless coding theorem due to Shannon (1948), 

On the other hand, with the distribution P defined by the information source 

{A, P} , a prefix code for A can be constructed whose mean code length does not 

differ from the entropy by more than one bit. In Section 2.2.2 of Rissanen (1989) an 

elegant algorithm — due to Huffman — for constructing an optimal prefix code for 

A was given with code length as close as possible to — log P(a) for each a € A. The 

perfect match for — log P(a) is not possible unless the probabilities of a,'s are integer 

powers of 1/2. 

Ignoring the difference of at most one bit, define LF(<*) = — log P(a) for a € A, as 

a length function generated by P. Then we have the following results due to Dawid 

(1992). 

Theorem 1.2.2 For any information source {A,P} with finite or countable alphabet 

and a prefix code C with length function Lc, we have for all e > 0, 

P(Lc(a) < LP(a) - e) < 2"e. (1.2.6) 

If we use xn = xi, X2, • • •, xn to denote any message in {A, P}, then further Lp(xn) — 

Lc(xn) is bounded above with P'•probability 1 as n —* oo. 

Proof: Denote Ee = {a e A\Lc{a) < Lp(a) - e). Then for any a € Ee, it is easily 

shown that P(a) < 2~e2~Lc(a). Summing over all elements of Ee and applying the 

Kraft inequality gives P{Ee) < 2"e £ a € B , 2~Lc{a) < Te which is (1.2.6). 

For the proof of the second part, we assume without loss of generality that C 

satisfies Kraft inequality with equality. Otherwise we could shorten the code length 
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by - log(Eag>i2- i c ( o )) for each element a € A. Define Un = 2£",<*n>-tc<xn> = 

Pc(xn)/P(xn) where Pc(xn) = 2~Lc(xn) can be shown to be a distribution. It is 

readily shown that Un is a non-negative martingale under P i id hence is bounded 

above with P-probability 1 as n -* oo and so is Lp(xn) — Lc(xn). n 

Theorem 1.2.1 and Theorem 1.2.2 may be taken as establishing Lp as a length 

function for the optimal prefix code of the information source {A, P}. In particular, if 

we apply Theorem 1.2.2 to the encoding of long sequences of symbols, the per-symbol 

message length achieved by any prefix code can not improve on that given by Lp by 

more than a negligible amount, with arbitrarily high probability under P. 

If we treat An, the set of all strings of length n in {A, P} , as a new alphabet, an 

extended information source {i4n,Pn} is obtained, where Pn is defined by indepen­

dence as assumed above. With these arguments we can construct an optimal prefix 

code for An with mean code length not differing from the entropy H(Pn) = nH(P) 

by one bit. 

So far we have discussed the coding which treats the symbol occurrences as inde­

pendent only. In practical situations, the independence condition cannot always be 

guaranteed and for this reason, a powerful coding technique, the arithmetic coding, 

which i3 designed to do the coding for general discrete random process, stationary or 

not, was introduced. For detail, see Rissanen (1976, 1989), Rissanen and Mohiuddin 

(1989), and Rissanen and Langdon (1981). 

1.3 Coding of Integers 

In addition to encoding a message coming from an information source {A, P } , we 

also need to encode in a prefix manner, positive integers for which no distribution 

is given. There is an efficient prefix code due to Elias (1975) for the set of positive 

integers, which we describe below. 

To understand the code construction, we start by encoding the integer n as its 

binary representation. Such a code cannot be a prefix code, because its length function 
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or its upper bound log(2n), does not satisfy the Kraft inequality. On the other hand, 

if the binary representation were followed by other binary symbols, as is usual in the 

case when we encode a set of integers, we would not be able to recognize where the 

representation ends. To overcome this difficulty, we supply the length /i of the binary 

representation of n as a preamble, the length l2 of the binary representation of /j — 1 

as another preamble, the length /3 of the binary representation of fa — 1 as a third 

preamble, and so on, until the Ar-th step where Ik = 2. By this iteration, we obtain a 

monotone decreasing sequence of integers n, /i, f2,13, • • •, /fc. Now we find the binary 

representations of lk-\ — 1, h-2 — 1, ••• ,h — 1, n and paste them together, and add 

a symbol 0 to the end to indicate that the preceding binary representation is for the 

integer n. By doing so, we construct a prefix code w(n) for n. Some examples are: 

w(l) = 0, w{2) = 10 0, w(3) = 11 0, u>(4) = 10 100 0, w(7) = 10 111 0, 

u>(14) = 11 1110 0,w(15) = 111111 0, u;(16) = 10 100 10000 0, 

w(65651) = 10 100 10000 10011011100010011 0. 

Here we insert some blanks in the codes for easier reading which, of course, are not 

needed to decode the number n. Note that lk, the final length, is 2, so lk-i = 3 or 4, 

and the binary representation of h-i — 1 is either 10 or 11. If k =s 1 which implies 

/1 = 2 or 1, then n = 1 or 2 or 3; the code of which is 0 or 100 or 110. For codes other 

than these three, we can decode it as follows. First decode the first two symbols in 

the code to the length lk-i- Then using this information decode the next /*_» symbols 

to get /fc_2, and so on, until decode the binary representation of n. For example, we 

decode 16 out of u>(16). We get 2 by decoding the first two symbols 10, this tells us 

to decode the next 3 symbols 100 which returns 4, so we need to decode the next 5 

symbols 10000, which is 16, then we run against 0 which means 16 is n but not the 

length information. 

It is apparent that the length function of this code is approximately 

I(n) = log*n + logc (1.3.1) 

where log* = log n + log log n + • • • in luding only the non-negative terms, and c is 
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a constant such that the Kraft inequality holds. Among these values of the constant 

c, we can select one which satisfies the Kraft inequality with equality. Such a value 

of c is c* « 2.865064, Leung-Yan-Cheong and Cover (1978) and Rissanen (1983). 

From Section 1.2 we know there exists a prefix code with length function L*(n) = 

log* n + logc* and further from Bentley and Yao (1976) we know that any monotone 

non-decreasing length function L(n) of positive integers, which satisfies the Kraft 

inequality, must equal or exceed L*(n) — 2k*{n) infinitely often, where k*(n) denotes 

the number of terms in log*(n). 

Define Q*(n) = 2~L'^n\ Q* is a distribution on the set of positive integers and by 

(1.3.1) 

Q'{n) = [c'n log n log log n- - - ) - 1 . (1.3.2) 

Rissanen calls Q"(n) the universal prior for the positive integers. This prior can be 

extended to all non-negative integers by defining Q*(0) = 1/2 and replacing c* by 

2c*. To extend this distribution to the set of all integers, add one to L*(n) and define 

Q'(-n) = Q*(n). 

Q* has the following optimum property, Rissanen (1983). 

Theorem 1.3.1 For any distribution P{n) for the positive integers such that 

(i) P(n) > P{n + 1), n > M, for some M (1.3.3) 

(«'*) " E„>i P(n) log P(n) = oo, (1.3.4) 

the following holds 

lim H-^r^^L (1.3.5) 
" - * - En=, P{n) log P(n) V ' 

Since it follows from Theorem 1.2.1 that the limit can not be smaller than unity, 

we conclude that, if we encode large integers with the code length L*(n), we can do 

no better even if with a distribution P(n) with which to design the code. Hence, 

L"(n) can be taken to be just about the ideal code length for large positive integers. 
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Besides encoding one integer in a prefix manner, frequently there is a need to 

encode a set of them. If the integers in this set are completely independent in the 

sense that no one is affected by the others, then we only need ipaste their individual 

prefix codes together to encode them. However, it is often the case that she integers 

are of the same order of magnitude, a fact which we can take advantage of. Consider, 

then, a set of integers n\, n2, • • •, nTO, of which, say, m+ are non-negative. A prefix 

code of them can be constructed with about 

L(ni,---,nm) = L'(n)+ log J L+^g J > (1.3.6) 

bits, where n = Ĵ ELj ln«l> Rissanen (Sect'on 2.4,1989). The coding process is briefly 

described below. First encode the sum n = ££L, |n,| in a prefix manner. Then, 

associate with the absolute values of the integers |ni|, • • •, |nm |, a binary string. It 

begins with \ni\ O's followed by a 1, |n2| O's followed by a 1, and so on, until we reach 

|nm|, for which only \nm\ O's are added without adding a 1 term. This terminates the 

string. This string has length n + m — 1 and has m — 1 l's. Conversely, any binary 

string of that length with m — 1 l's defines a set of m non-negative integers. Hence, 

encoding such sets of integers is equivalent to encoding the binary string associated 

with them. Define a probability distribution for the set of binary strings of length n 

such that for each such string x 

*,„ = « (,,7) 
where m = m(x) denotes the number jf l's in x. Thus a prefix code can be constructed 

of length log ; ^ ^ , for a binary ^/mg with length n + rn-1 and m - 1 l's. Finally, 

using (1.3.7), a prefix code can be constructed with length log m %^jm \t for the 

binary string with length m and m — m+ l's which is used to represent the signs of 

the integers. In total, we need a prefix code with length (1.3.6) to encode ni, • • •, nm. 

Because of the relationship amongst the Kraft inequality, the prefix code and the 

probability distribution, the length function of a prefix code is more important than 

the code itself. The length function plays an important role in selecting an optimal 

statistics model. 
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1.4 Complexity in a Coding System 

In Section 1.2 we demonstrated that for any information source {A,P} with a 

finite or countable alphabet and a positive probability function P(x), — logP(x) is 

actually established as an optimal length function for a prefix code. Namely, the 

per-symbol message length achieved by any prefix code cannot improve on that given 

by — logP(x) by more than a negligible amount, with probability 1 if n, the length 

of the message string x, tends to infinity. For such reasons the number 

/.(*) = - log P(*) (1.4.1) 

is defined to be the Shannon complexity of the string x, relative to an information 

source {A, P} . This is the fundamental idea of complexity, although it leaves the 

crucial part, the information source, unspecified. For each message or event there 

are necessarily two numbers, the event's probability and its information (the optimal 

prefix code length), end they are connected by (1.4.1). 

An important issue in information theory is the construction of the most suitable 

information source with which to represent the observed data. As seen above, we can 

either search for one in terms of probability functions which define random process, 

or we can look for suitable prefix codes. Such an information theoretic framework is 

called a coding system, and the associated complexity is fundamental in determining 

it. 

For further study we need to give a precise definition of the coding system. Let A 

be a finite or countable alphabet. Denote B = {0,1} as the binary alphabet. Then a 

coding system is defined to be a (decoding) function 

D : S -» A" (1.4.2) 

from a subset S of B* onto A*. Usually, the decoding function is not a one-to-one 

correspondence, which means that each string x € A* may have more than one binary 

string as the codeword to describe it. 
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A coding system can be constructed from a universal computer, which belongs to 

the theory of algorithmic complexity, Chaitin (1975), Leung-Yan-Cheong and Cover 

(1978), Solomonoff(1978) and Zhvonkin and Levin (1970). 

A coding system used in this thesis is the one constructed from a family of para­

metric distribution {P(x|0),x € A*,0 € 0 ) . where 0 is assumed to be countable. 

From Section 1.2 for each $ € 0 , — log P{x\9) determines a prefix code for A*. Denote 

% as the set of all codewords of A* under a distribution P(x|fl), and S\ = Usee S$. 

Then it is easy to see that the decoding function D\ : S\ —• A* is a coding system. 

It is not appropriate to simply use the coding system to describe the system gen­

erating the observed data, as a redundancy exists in the sense that possibly more 

than one codeword can describe each data string. We must eliminate this type of re­

dundancy to find a most suitable information source for the observed data generating 

system. 

For the coding system (1.4.2) and an arbitrary x € A", denote D"1(x) as the 

invers, image of x, i.e. D -1(x) is the set of all codewords for x under D. Partition 

D -1(x) into a class of equivalent sets, where two binary strings u and v are said 

equivalent if either u is an extension of v or vie > versa. If u is an extension of v we 

say v < u and v is a prefix of u. For a set E of binary strings among which none is 

a prefix of others, it can be seen £u€£;2_'ul < 1, where |w| is the length of u. This is 

the essential property the Kraft inequality characterizes. 

Now take the minimal element from each equivalent class, the set of which is 

denoted as D~1(x). It is readily seen that 

P'(x) = £ 2-H (1.4.3) 
u€/>_ ,(i) 

is les3 than or equal to 1. If E*€>f P'(x) = *> P'(x) w ' ^ De a w e ^ defined probability 

distribution on A*. The associated information source {P\A} gives an optimal de­

scription for the observed data, which can be seen from the inequality — log P'{x\ < 

\u\ for all u G £)_1(x), i.e. the prefix code associated with P'(x) is the shortest under 

the coding system D. 
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If Eig/i* p'(x) < 1> we define a probability distribution P(x) and accordingly an 

information source {A,P}, by the recursive normalization 

^-'^-iSS (L4-4) 
where xn, z denotes the string of length n -f 1 formed by concatenating xn with the 

symbol z. By this way the prefix code length — log P(x) can be further shortened 

from - log P'(x). 

The complexity of x, relative to the coding system D, as defined by Rissanen 

(1989), is 

7(x|D) = - logP(x) . (1.4.5) 

From (1.4.5) and (1.4.3) it is easily shown that the prefix code length — logP(x) 

for x is shorter than the length of any code of x in the coding system. Therefore by 

describing x in terms of — logP(x) we remove the redundancy of the coding system 

and obtain a shortest description. 

1.5 Two-part Codes 

In this section, we give the description of the data generated from an unknown 

probabilistic model which belongs to an assumed class. The description procedure is 

the so-called two-step encoding process, Rissanen (1989). 

Let the assumed model class be denoted by 

M1 = M1(k) = {p(x\0),*(0)} (1.5.1) 

where x takes values in a measurable space X and $ = {9i,02, • • • ,0fc) denotes a As-

component parameter vector ranging over a closed subregion Oj. of the fc-dimensional 

Euclidean space 7£*. Here k is the dimension of the parameter 0 and we treat it as a 

parameter. Suppose p(-\0) is au almost surely positive density function with respect 

to a known complete, <r-finite dominating measure i/(), so that the usual discrete and 

continuous distributions are included. Here the n(0) is a probability density of 0 on 



13 

ilk, i.e. /nfc ir(0)d0 = I. It is classically regarded as a prior density but later we will 

give an information theoretic interpretation. 

Now the description of the data depends on the selection of the model from Mi. It 

is natural to conauct the description in two steps. First use a prefix code to describe a 

model of M\ from which the data is assumed to be geneiated. Next, encode the data 

into another prefix code using the assumed model, and then take the concatenation 

of the two prefix codes as the description of the data. 

However we have to overcome some difficulties before we can construct any prefix 

code for the data. The prefix codes are built on the data or the message in which 

each term ranges over a finite or countable alphabet A. When each data item ranges 

over an uncountable set, as in the case of continuous distribution, there will be no 

finite-length prefix code for the data. Such a problem also exists in describing the 

models of M\ if its size is uncountable. 

To overcome these difficulties a quantization process should be employed before 

conducting the two-step encoding process. A class of discrete distiibutions, M{, whose 

size is countable can be constructed based on the quantization to approximately 

represent the model class M\. Then the two-step encoding applied on M[ gives us a 

two-part code for the data x and thi^ two-part code can be optimized by the optimal 

parameters and quantization. We regard the resultant optimal two-part code as the 

description of x relative to M\. 

The quantization for the data x is natural since x is usually observed to a pre 

scribed precision. However the quantization for the parameters 0 must be optimized. 

Denote [x] as the quantization region that contains x; and d = i/([x]) as the 

precision of x. Suppose ihe data x is observed to the precision d, then in each [x] 

only one x can be observed and there is no confusion using [x] to represent it. We 

write \X\ as the whole set of [x]. Suppose, in addition, we truncate the parameters 

0 = (0X,. • •, 0k) to 8 = (0i, • • •,0k) to some precision 6 = (6X, • • •, 6k), and write the 

whole set of 8 as ft*. With this notation, it is easy to see that 

M( = {P([x]|0"),n(0-)} (1.5.2) 
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is a class of discrete distributions, the size of which is countable. Here P((x]|0) = 

ft^p(x\9)v(dx) « p(x|0)i/([x]) and U(9) « T(0)n?=i^i if the quantization is suffi­

ciently fine. Now we construct a prefix code C(0) for each 0 € ft* by using the results 

in Section 1.2, the code length of which is given by L\(0) = — log 11(0). Similarly, we 

can construct a prefix code C{x\0), the length of which is L\(x\9) = — logP([x]|0), 

for the observed data x if we employ P([x]|0) as the generating distribution. The 

resultant two-part code 

C{x,9) = C(9)C{x\0) (1.5.3) 

can then be seen as a natural description of x relative to P([x]|0) and its total code 

length is given by 

Lx(x,9) = I,(d)) + Li(x|fl) 

= - logP([x] |0)- lo gn(0) 
k 

= ~\ogp(x\0) - log7r(0) - X > g 6 , - log !/([*)) + 0(1) (1.5.4) 
t = l 

if the quantization is sufficiently fine and p{x\0) and ir(0) satisfy some smooth condi­

tions. Usually the precision d for x is already implied in the observations so i'{[x\) is 

a constant. As our objective is to find a measure for model selection, we choose only 

the dominating terms in (1.5.4) and define 

k 

I , ( M ) = - logp(x|0) - logTr(^) - X > g £ (1.5.5) 
»=i 

as the two-part code length for x relative to p(x\0). 

Among all the possible code lengths L\{x,0) where 9 € tik, it is natural to choose 

the one with the smallest length as the most suitable description of the data x, if we 

only consider two-part encoding process; namely, we choose a 9 and its corresponding 

information source {p(x|£), [X]} as if the data x is generated from it so that it achieves 

the minimum two-part code length 

min j-logp(x|0") - \ogir{0) - 5 > g £ j . (1.5.6) 
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The rationale for this choice of 0 lies on the results of Section 1.2 where we have 

already demonstrated that — logQ(x) gives the optimal code length for x if Q is the 

distribution generating x. 

Suppose the probability density functions p(x\6) and ir(9) are smooth enough so 

that the minimization of L\(x, 9) is achieved at one finite point 0. Now £i(x, 0) can be 

expanded in Taylor's series around 0 and we can get information about the optimizing 

precisions. Note that, subject to the smooth conditions, 0 which achieves (1.5.6) is 
A 

close to 0 within the truncation precision 6. Therefore by Taylor's expansion 

L,(X,0) = Ltiz^ + lfi-imo-ef 
1 k 

< -logp(x\8)-\ogir(0) + -6Z6T-jr\og6i (1.5.7) 
1 t= i 

where S denotes the matrix of the double derivatives of the function L\(x,9) with 

respect to 9 evaluated at some point near 9. By taking derivative with respect to 6 

of the right hand side of (1.5.7), a minimax upper bound for L\(x,8) is 

1 k 

L^xJJ) = -\ogp(x\9)-\og*(9) + -fc~6T-Yi\og6i 
1 i=i 

= - l o g p ^ - l o g x ^ + ^ - ^ l o g ^ (1.5.8) 
J «=i 

A 

where S is the solution of the equation 

(*,,-••, ^ ) E = (<51-1,---,5;1)ln2. (1.5.9) 

A A A 

The estimated precision 6 is optimal, and by (1.5.7) L\(x, 0,6) gives us an optimal 

worst case two-part code length of the data x. Since (1.5.8) does not involve the 

precision d and the truncation precision 6 for 0 is optimized, we also regard it as the 

optimal two-part code length for x relative to M\. 

In statistical model selection we are often interested in selecting an optimal num­

ber of parameters for the assumed model. From (1.5.8) we can derive, under some 

conditions, an asymptotic approximation which is quite useful for solving this di­

mension selection problem. Suppose that -\ogp{x\0) grows proportionally to the 
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[• 

number of observations n, which is normally satisfied in most situations, the elements 

of S = S/n are of the order of 1 regardless of n. Then from (1.5.9) Si = Ci(n)jy/n, 

where Ci(n) is finitely bounded, and the expression (1.5.8) simplifies to the form 

MDLi(k) = - log (p(x\0)ir(0J) + ~ Inn + 0(k). (1.5.10) 

For large number of observations, (1.5.10) with the last term 0(k) removed could 

serve as a criterion to select the optimal dimension of the model, which is called the 

MDL (minimum description length) principle. See Section 1.8 for more discussion. 

In addition to the usual Bayesian interpretation, ir(0) can also be described as 

a measure for the complexity of the model and therefore an order of preference: we 

would prefer a model which is as simple as possible subject to the requirement that 

it provides an efficient description for the da' i. Technical advantages of using ir(0) 

can be found in the next section where we obtain a closed form of the stochastic 

complexity from the coding system which was introduced in the previous section. 

If the data x comes from a distribution without a prior distribution we can use 

the universal prior of integers to describe the distribution and then give the two-part 

code length. This was done by Rissanen (1983), and described briefly as follows. 

Suppose the model class for the data x is 

M2 = M2(x) = {p(x\0)} (1.5.11) 

where x € X, 0 € ilk and p(x\0) is a density function all defined the same as for 

Mi. Assume moreover that the usual smooth conditions for p(x\0) hold so that 

the maximum likelihood estimate 0 exists and the Taylor's expansion of — logp(x|0) 
A 

around 0 is available. 

To describe the data x, we need first to describe 0 in a prefix manner and then 

describe x with the employed density p(x|0). The resulting two-part code length is 

L2(x,0) — L2(x\0) + L2(0). For a fixed 0, L2(x\9) is equivalent to — logp(x|0) except 

for a constant. This constant is completely determined by the natural precision of x, 

and not important for the code length. With the same argument as before, we still 

need a quantization for 0/t, otherwise no finite uniquely decodable code exists. 
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Usually we want the first term in L2(x,0) to be dominant. We also want the 

minimizing values for each set of parameters to be close to the maximum likelihood 

estimates. The problem thus is to decide on the precision to be used for the maximum 

likelihood estimates of 0. Clearly, if we use a coarse precision, the second term L2(9) 

in L2(x,0) will be small, but the first term will grow from its minimum, since we 

are generally no longer using the correct maximum likelihood estimates due to the 

truncation. 

Keeping these in mind, we partition ilk into a set of identical ^-dimensional par­

allelepipeds and truncate every 9 in ilk to the center 9 of the parallelepiped in which 

it falls. The truncation precision 6 for the parameter 9 is determined by 

SM(0)ST = 7 (1.5.12) 

which comes from the Taylor's expansion 

- \ogp(x\§) « - \ogp(x\9)) + ^(1 - 9)M(9)(9 - 9)T (1.5.13) 

in which we wish to control the second term by a temporarily prescribed 7. Here 

M(9) is the matrix of the double derivatives of the function — logp(x|#)), and 0 is 

iihe center of the parallelepiped containing 0. 

Now we start from the parallelepiped which is in volume the largest inscribed 

rectangle of the ellipsoid (0 - 9)M(9)(9 - 9)T < 7. Its the volume is ^(7) = 

(47/fc)*/2y det M(9). Shift this parallelepiped respectively along each of its k sides by 

the corresponding distance 2 J7/(fcA,), where A, denotes the i-th eigenvalue of M(0)), 

then proceed with the same shifting for each of the k new parallelepiped and continue 

the operation until Uk is covered by these parallelepipeds. The resulting set is denoted 

by ilk = {9,0 € ilk}- Next we order these parallelepipeds by assigning an integer 

index to each of them. This can be done by using the natural distance 0M(9)0T and 

enumerating ilk in a right-handed system. As a consequence of this enumeration the 

index n(0) is given approximately by the ratio of the volume enclosed by the ellipsoid 

{y : yM(0)yT < 0M(0)0T) to the volume V(7), i.e. n(0) = Ck(k0M(0)9T/(4i))k'2, 
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where Ck is defined as the volume of the fc-dimensional unit ball, which equals to 

f (27r)fc/2 / K * W ^ " J K even, - .v [(fc/2)!2*'2] k even, 

-l)/a2*+!((ib + l)/2)!/(Jb + l)! !: odd. 

Applying the universal prior to {n(0),0 € n*}, we can find a prefix code for ft* the 

length of which equals to L*{n{9)) = log* n(9) + log 2.865. 

With the quantization of ilk and the universal prior for n(0), the two-part code 

length for x relative to M2 is given by 

L2(x,9) = -logp(x|£) + L>(0 ) ) 

< - logp(x|0) + ^7 + log* n{§) + log2.865. (1.5.15) 

We may ask for the value of 7 which minimizes the quantity 

^ + \og-n(§). (1.5.16) 

If we approximate log* by log, the optimum value for 7 is A: log e. Substituting the 

optimum 7 into the right hand side of (1.5.15) the minin um upper bound for L2(x,0) 

is 

- logp(x|0) + logCfc + I \og9M(9)0T + 0(k) 

= -logp(x|<9) + ^ l o g ^ + A log H ^ + 0(k) (1.5.17) 

where 1 1 % ^ = JOM(0)8T/n and I{0) = M{0)/n. The expression (1.5.17) gives us 

an optimal worst case two-part code length and we regard it as the minimum two-part 

code length of x relative to M2. 

Assuming that — logp(x|0) grows proportionally to the number of the observations 

n, the minimum two-part code length simplifies to the form 

MDL2(k)) r= - logp(x|0) + £ log n + O(Jfc). (1.5.18) 

Therefore for large number of observations, the right hand side of (1.5.18) with the 

last term removed can be used as a criterion for dimension selection. 
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In addition to the two-part code length function, discussed here for parametric 

models both with or without a prior distribution, it is also possible to construct a two-

part code length function for nonparametric model classes. For details see Rissanen et 

al. (1992), Yu and Speed (1992), Speed and Yu (1992) and Hall and Hannan (1988). 

We will also discuss this case in Chapter 5. 

1.6 Stochastic Complexity 

From the two-part encoding procedure discussed in the last section, a coding 

system can be obtained relative to model class Mi or M2 which is defined as 

D : S -» [X]. 

Here S is the set of codewords C(x,0) = C(0)C[x\0), where C(9) is the prefix code 

for the truncated parameter 9, and C(x\9) is the prefix code for x under the employed 

model p(x|0). Similar to that in Section 1.4, we can construct an information source 

by which the data is described with the shortest code length relative to Mi or M2. 

One may ask the relationship between this shortest code length and the optimal 

two-part code lengths derived in Section 1.5. 

Obviously the length of the two-part code C(x,0) is longer, irrespective of the 

•-;alue of 0, since C(x,0) actually gives us more than we want. We initially set out to 

encode the data x, and ended up encoding both the data and some parameters. On 

the other hand, the optimal tv/o-part code length relative to Mi (or M2) is the one 

among those of C(x, 0) which is the closest to the shortest code length. In fact, as 

it will be shown later, they are equal in an asymptotic sense under some smoothness 

conditions for the model distribution. 

First we derive the shortest code length relative to Mi following the procedure in 

Section 1.4. Since the two-part code C(x,0) is prefix, we may substitute the code 

length (1.5.5) into (1.4.3) with the result 

p\x) = £ 2 - L ' < ^ = £p (* | 0> (0 ) n * (16.1) 
S 9 •'=! 
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where the summation is taken over all the truncated parameter values 9. p'(x) is al­

ready a probability density function so there is no need for the recursive normalization 

(1.4.4). Now letting 6 —• 0 the sum in (1.6.1) goes over to the integral 

p(x) = f p(x\0)ir(9)d9. (1.6.2) 
Ja 

From (1.4.5), — logp(x) is the shortest code length relative to the coding system D. 

Hence we define the stochastic complexity of the data x, relative to the model class 

Mi, as 

/(xlMO = -logp(x) = - log / p{x\9)ir{9)d$. (1.6.3) 

The fact that the code length — logp(x) was obtained by the removal of a redun­

dancy in the coding system, which is defined by the model class, lends it a natural 

sense of minimality, which is certainly difficult to achieve otherwise. That (1.6.3) is 

nmaller than the optimal two-part code length is easy to see: the sum (1.6.1) is clearly 

larger than any of its terms, including the maximum. 

Suppose p(x\9)ir(9) is smooth enough so its logarithm admits Taylor's expansion 
A 

about 0 maximizing p(x|0)7r(0), i.e. 

logp(x|0)7r(0) = logp(x|0>(0) - \{0 - 0)t(0 - 0)T 

A 

where S is the Hessian matrix of the double derivatives of — logp(x|0)7r(0) evaluated 

at some point near 0. Then p(x|0):r(0) = p(x\0)ir{0)2-^6-§^$-§>T and 

p(x) = p(x\0)ir(0)J2-^e-§)t{e-^TS = p(x|0>(0)|S|3O*(l). 

So 

/(x|M,) = - logp(x) = - logp(x|0>(0) + l- log |S | + 0(k) 

= -logp(x) = -logp(x|0>(0) + ^logn + 0(k) (1.6.4) 

A ^ ^ 

if S is of order n. The asymptotic equivalence between the stochastic complexity 

(1.6.3) and the optimal two-part code length (1.5.10) under some smoothness condi­

tions is clearly visible now. 



21 

From this asymptotic equivalence we conclude that even though the two-part 

encoding procedure for the data x is ad hoc in the sense that it involves redundancy 

in the description, it reduces the redundancy to a minimal, negligible amount when 

the procedure is optimized. The use of the stochastic complexity an 1 the optimal 

two-part code length for model selection is further discussed in Section 1.8. 

The stochastic complexity relative to the model class M2 was derived recently 

by Rissanen (1994a). By taking into account the Fisher information and removing 

an inherent redundancy in the two-part codes a sharper code length is given as the 

stochastic complexity. In Section 1.5 we described the two-part code for M2 which 

is computed by Rissanen (1983). There the data are encoded with the maximum 

likelihood model and preceded by the encoded parameters 0 truncated to a precision 

S. Here this procedure is refined in two ways. First, the truncation is made to be 

dependent on equivalent classes R(0) which are determined by the Fisher information. 

Then with 

i-h****** (1-6-5) 
an inherent redundancy in the earlier procedure is removed, and the total nonredun-

dant two-part code length is given by 

L(x,6) = - \ o g ^ l + L(0). (1.6.6) 

There is no longer any optimal precision, and the shortest worst case code length 

results from the infinite precision 6 = 0. Since it is nonrcdundant, and can be 

approximated by a two-part code with error as small as possible, we regard this 

shortest code length as the stochastic complexity relative to M2. Under the main 

condition that the maximum likelihood estimates satisfy the central limit theorem, 

an asymptotic expression for this stochastic complexity is given by 

7(x|M2) = - logp(x|0) + k- log ^ + log fo y/fiWB + o(l) (1.6.7) 

where 1(0) is the Fisher information matrix 

m-\-E~d0wr)' 
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See Rissanen (1993) for further details. 

1.7 Predictive Coding 

As an alternative to the two-step encoding process, there is another encoding 

process, called predictive coding, which describes the data generated from an unknown 

probabilistic model. In this process, the encoder does not need to provide a prefix 

code for the model (usually it turns out to describe the parameters that characterize 

the model). Instead he estimates the parameters characterizing the model from the 

available data according to an optimal procedure known to the decoder. Then writes 

a prefix code for ihe next observation based on this model fitted from the previous 

data. Each time the encoder obtains a new observation he updates the estimate of 

the parameters and encode the next observation with the latest fitted model. The 

predictive coding process removes the redundancy of the coding system in a way that 

is quite different from that of the stochastic complexity. The resulting predictive code 

length for the observed data string is called the predictive stochastic complexity. 

The predictive stochastic complexity and, accordingly, the predictive minimum 

description length principle, was proposed and studied by Rissanen (1986a). However, 

the predictive process was also discovered by Dawid (1984,1991b), who proposed it 

as a prequential method for probabilistic forecasting. There is also a closely related 

technique by Hjorth (1982), called forward validation, whose main objective is to 

reduce the bias in the estimates of the variance of parameter estimators. 

A brief overview of the derivation of the predictive complexity is given below. 

Without loss of generality, we consider only the model class M% introduced in Sec­

tion 1.5. Rewrite M2 as 

M2 = M2(A:) = {pkA*\* € X,0 € ilk) , (1.7.1) 

and denote x = xi,--- ,x„ = xn as a sample of observations generated from an 

unknown density function belonging to M2. To be general, x is assumed to be a 
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random process satisfying the compatibility condition 

J Pk,o(xi>-• •>xt,z)v(dz) - Pk,e(xu• • •,x t)- (1.7.2) 

We now proceed to describe x using a predictive coding process. Predictive coding 

means that we want to find the conditional density for the next observation xj+i 

(regarded as a random variable) based upon the previous observations xi <• •, xt, 

PMW^'+i |*i, ••-,*<) (1-7.3) 
A 

where 0(t) is estimated from xi, • • •, xt using a procedure known to the decoder. With 

this conditional density the minimum code length needed to encode Xe+i in a prefix 

manner is — logp f c^(xt+ i |xi , • • •, xt). The total code length is 
n - l 

L(x\k) = - £ logpfc g(t)(x1+i|x,, • • •, x t). (1.7.4) 

A A 

This may be minimized with respect to A; to give the estimate A;(n) = A:(xn). 

The code length (1.7.4) does not provide a complete description of x since the 

information about the dimension k of the parameter 9 is unknown to the decoder. 

Therefore another prefix code for k is required, the optimal length of which is L*(k) = 

log* A; + logc", the one defining the universal prior of the integers in Section 1.3. We 

call the corresponding minimum code length 

I,P(x\M2) = min {L(x\k) + L'(k)) (1.7.5) 
k 

the semi predictive stochastic complexity. The word "semi" suggests that the optimal 

dimension k(n) is not determined the predictive way. Still, using k(n) to denote the 

optimal k is to emphasize that the main factor of determining the dimension of 

the parameters in (1.7.5) is the first term, and in almost all the cases of interest 

the minimizations of (1.7.4) and (1.7.5) produce exactly the same dimension of the 

parameters. 

Modifying the above procedure of describing the data sequence a purely predictive 

stochastic complexity can be defined as 
n - l 

/p(x|M2) = - £ log p ^ j ^ X j + i |*|, •••,*«)• 0-7-6) 
(=0 
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At each time t the A; in (1.7.4) is now replaced by the optimal k(t), which minimizes 

L(x*\k), so that an optimal conditional density pk,tx §it\(xt+i|xi, • • •, xt) is obtained to 

encode the next observation x t+i with the optimal code length — logpj/{) $/t)(a?«+i| xi, 

• • •, xt). Therefore, (1.7.6) completely represents the description of the data x relative 

to Ma, and we do not need the prefix code for the dimension of the parameters because 

the algorithm of determining it is already known by the decoder. 

The selection of the optimal estimate 0(t) in (1.7.4) for each k proceeds as follows. 

One might think of choosing 0 so that the code length for x t + i , — \ogpk<$(xt+i\xi, 

• • •, x t), is minimized. But such 0 would be a function of xt+i which would make the 

decoding impossible. To avoid this, we apply the essential idea of inductive inference: 

In the light of past observations the best single value of the parameter for encod­

ing the "next" observations, x,+i, i = 0,1, • • •, t — 1 is the value that minimizes the 

sum — £,=o logPM(z»'+i|£i>' * •, Xi), i.e. the maximum likelihood estimate 0 (Rissa­

nen,1986a). Such a selection of 0 is based on the hope that the prediction distribution 

(1.7.3) for the new observation xi+i is like it was in the past. 

To carry out the computation of the predictive complexity for a data sequence 

there are still several points needed to be clarified, i.e. the order of the data sequence 

((1.7.4),(1.7.5) and (1.7.6) are affected by the order of the data, especially the order 

of the first few data points) and the initial estimate 0(0). For details of these issues, 

refer to Rissanen (1986a and Chapter 5 of 1989) and Section 4.4 of this thesis. 

Understanding the asymptotic behavior of stochastic complexity is helpful in 

studying the optimal properties of the model selection by stochastic complexity. Re­

sults for the asymptotic behavior for several model classes are available in the liter­

ature. See Rissanen (1986a, 1987, 1989) for the parametric density ciass; Rissanen 

(1986b) for the class of Markov chains; Rissanen (1986c) and Speed and Yu (1993) 

for the Gaussian regression problem; Rissanen et al. (1992), liall and Hannan (1988) 

and Yu and Speed (1992) for the nonparametric density class; Rissanen (Chapter 6, 

1989), Hannan et al. (1989), Hemerly and Davis (1989), Gerencser (1989,1992) and 

Gerencser and Rissanen (1992) for time series. Also a related work is Barron and 
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Cover (1991) which applies the algorithmic complexity to density estimation. 

Here we give some of the important results concerning the stochastic complexity 

relative to a parametric density class. 

Theorem 1.7.1 (Rissanen, 1986a). Let for each k the parameters 0 range over a 

compact subset ilk with nonempty interior of the k-dimensional Euclidean space. We 
A 

assume that there exist estimates 0(xn) satisfying the central limit theorem such that 

the tail probabilities are uniformly summable as follows 

P*( \ /n | | 0 (x n ) -0 | |> logn) <6(n) for all 9 and £ n S(n) < oo. (1.7.7) 

where ||0|| denot?* •>, wm. If g is any density defined on the observations, satisfying 

the ccmpatibiliiy ^iidtlions for a random process, then for all k and all 9 € fife, except 

in a set of Lebesgue measure zero, 

• » M ^ y ^ > 1. (1-T.8) 
"-«> (A:/2)logn 

The mean is taken relative to the distribution defined by pk,e. 

This theorem states that for all A;, all positive number e, and for all points 0 € fife, 

except in a null get, 

Ek,e\og^^->(1--s)k\ogn. (1.7.9) 

This is a generalization of Shannon's famous coding theorem, in that the average 

prefix code length Ek,$ log g(xn) is not only greater than or equal to the entropy but 

exceeds it by a positive number, which represents the amount of uncertainty in the 

class of models. From (1.7.9) it follows that the minimum two-part code length in 

Section 1.5 and the stochastic complexity in Section 1.6 both reach asymptotically the 

minimum bound, provided that the model densities satisfy certain mild smoothness 

conditions. This gives a rational basis for using stochastic complexity as a model 

assessment measure. 

It has also been proved that the minimum bound in (1.7.9) can be achieved for the 

semi predictive complexity if the data points are independent. This result is stated 

below. 
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Theorem 1.7.2 (Rissanen, 1986a). Let the family of densities satisfy the conditions 

for independence for each k and6 € ilk, namely, pk,o(x) = ITEsi Pk,e(xt), and let k,c(xt) 

be three times continuously differenliable with respect to 9 in the interior of a compact 
A 

set fife. Further, let the rcural limit theorem hold for some estimates 9(xn) of 0 in 

the interior points such that the four first moments of*/n(0(xn) —0) converge. Then 

7,p(xn|M2), defined by the equation (1.7.5), is optimal M that for all k and all 0 in 
ilk, 

k 
Jsp(xn|M2) < -Ek,elogpk,e(xn) + 5 logn + o(log n). (1.7.10) 

If the model class is nonparametric and the density g in Theorem 1.7.1 is restricted 

to be histogram type, then the minimax bound of Ep log ZfpA has been shown to be 

of order n1^ assuming xi,- •• ,xn is a simple random sample. This bound can also 

be achieved both in expectation and almost surely by histogram densities induced by 

the predictive stochastic complexity (see Yu and Speed (1992), Rissanen et al. (1992) 

and Barron and Cover (1991) for detail). 

1.8 Principle of Minimum Description Length 

In traditional statistical inference if a probability density p(-|0) for the observed 

data string x is given, where 0, with its dimension fixed, belongs to a parametric space 

il, then one of the most important methods to estimate the unknown parameter is the 

maximum likelihood principle. The traditional measure for goodness of the estimators 

is their variance, or some other related utility function. An unbiased estimator is 

called efficient if its covariance achieves the lower bound set by the Cramer-Rao 

inequality. Numerous results of the consistency and asymptotic efficiency of the 

maximum likelihood estimate can be found in the literature, e.g. Lehmann (1986a). 

If we consider a prior distribution for the parameter, the parameter estimation may 

be carried out in many cases by the maximum posterior or the ML-II technique (Good 

(1983) and Berger (1985)). 
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However, if the dimension of the parameter 0 is unknown and is to be estimated, 

as in a regression model, f ime series model and the unsupervised classification prob­

lem, the above traditional methods for parameter estimation do not work. Instead, 

the traditional hypothesis testing technique is used, like the likelihood ratio test. But 

in many cases the hypothesis testing procedure has some unsatisfactory features: the 

selection of the level of significance, which should depend on the amount of data, is 

subjective; most powerful test usually does not exist, etc. Needless to say, there are 

remedies for estimating the dimension r f the parameter. Two widespread methods 

are Akaike's AIC, Akaike (1970, 1974a, 1974b,1977) and the cross-validation tech­

nique, Geisser and Eddy (1979) Stone (1974,1977a,1977b). In this section, however, 

we introduce the competent minimum description length (MDL) principle, Rissanen 

(1986a,1987,1989). 

The MDL principle contains a three-level hierarchy of modeling problems and a 

redevelopment of estimation theory. On the lowest level, it assumes the model class 

generating the data string to be a set of probabilistic distributions with the fixed num­

ber of parameters. The task is to find good or even optimal estimates of the unknown 

parameters. The choice of the parameter estimate is the one that minimizes the code 

length relative to the model class. From the process of deriving (1.5.10), (1.5.18) and 

(1.7.4) we note that the proposed parameter estimates are exactly or asymptotically 

the same as the maximum likelihood estimates or the maximum posterior estimates. 

We regard the resulting shortest code length as the stochastic complexity even though 

we have already used the concept in Section 1.6. These, however, are shown to be 

equivalent to each other in the asymptotic sense. 

On the next level in the hierarchy, the model class assumed to generate the data 

string is generalized to be a family of model classes, each of which has its own di­

mension for the parameters. At this stage, the traditional estimating methods do not 

work while the traditional hypothesis testing procedure lacks the sufficient capabil­

ity. However, by looking for the shortest description of the data under the current 

model family an optimal estimate of the dimension of the parameters, as well as their 



28 

estimates, can be obtained. Notice that while there may exist a model class under 

which the stochastic complexity of the observed data is very small, the code length 

required to describe the model class itself could be very large. An example of an 

extreme case is when we put probability 1 on the observed x and 0 elsewhere, we 

need 0 length code to describe x under such a model. But the complexity of the 

model uself would be so large that it can not be specified unless we know the true 

distribution of x. The stochastic complexity and the predictive stochastic complexity 

described in the previous sections (like (1.5.10), (1.5.18), (1.6.7) and (1.7.5)) give a 

criterion under v/hich the optimal dimension of the parameter can be obtained by 

balancing the complexity of the data under the employed model and the complexity 

of the employed model class in the best possible manner. After the optimal dimen­

sion is found, the stochastic complexity relative to the current model family can also 

be calculated as the shortest two-part code length under the specified model family, 

namely, one part for the stochastic complexity relative to a model class and the other 

for the complexity of the employed model class. 

Using the MDL principle for the dimension estimation has been found to be very 

successful in many statistical problems, such as the regression modeling (where the 

MDL principle is known as the predictive least square and the predictive least quasi-

deviance), times series, classification and density estimation. The consistency of the 

dimension estimate has been proved for several modeling problems (see Rissanen 

(1986c, 1986d, 1989), Hannan et al. (1989), Hemerly and Davis (1989) and Gerencser 

(1989,1992)). 

Finally, an attempt is made to find other possible model families so that a better or 

even the best model for generating the observed data string may be found. While such 

problem goes completely beyond the reach of traditional statistics, it has important 

use in practice. For example, in regression analysis there are several useful estimates 

for the regression model: the simple linear regression estimator, the polynomial spline 

regression estimator, the projection pursuit regression estimator and other nonlinear 

regression estimators. Not only do we want to find an optimal regression model 
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estimate under each regression method, but we also want to compare these estimates 

to obtain the best model estimate. The stochastic complexity or the shortest abstract 

code length gives a global measure to compare these different estimates. We can 

begin by finding the stochastic complexity of the data relative to each model family. 

Then calculate the abstract two-part code length for the data relative to a set of 

model families, provided that an algorithm is available to describe this set of model 

families. In practice it is not difficult to find the shortest code length to describe the 

model families because we usually study a preselected set of families. Theoretically or 

conceptually, however, finding a shortest code length for the description of the model 

families is extremely difficult and it depends critically on the particular formalization 

of the ground language. For the detailed discussion, refer to Section 3.6 of Rissanen 

(1989). 

The complete statistical estimation or modeling problem, which consists of the 

above three levels, is handled by the minimum description length principle in a uni­

form manner. Beginning from the highest level, we search for the model family which 

results in the minimum abstract code length relative to a set of preselected model 

families for the data. We call it Mm, the best family we know. Next we seek the best 

model class to minimize the two-part code length of the data relative to M*, which is 

specified in terms of the best dimension of the parameters A;*. The best model class 

is denoted as Mm
k.. Finally, we find the best model within M*k» which is the one with 

the optimal parameter values. In this case, there is no need to assume the existence 

of a "true" model or "true" parameters for the data in the preselected families. If the 

"true" model is in the preselected set of model families, then the best model family 

would most likely contain this "true" model, and so would the best model class, and 

our best model would most likely be the "true" model. This can be seen from the 

asymptotic results of the stochastic complexity introduced in the previous sections. 

On the other hand, the selection of good model families is precisely the place where 

human intuition and intelligence are indispensable. 

In this thesis we study the application of the MDL principle in several statistical 
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modeling problems. This includes the principal components selection (Chapter 2), 

generalized linear model selection (Chapter 3), decision settlement of stochastic com­

plexity estimation (Chapter 4), nonparametric testing hypothesis of homogeneity and 

general nonparametric histogram density estimation (Chapter 5 and 6). A number of 

new results have been obtained and will be presented in these chapters. 



Chapter 2 

Principal Components Selection 

by the Criterion of the Minimum 

Mean Difference of Complexity 

2.1 Introduction 

Principal components analysis, the first systematic account of which was developed 

by Hotelling (1933) as a data analytic technique, provides us with a method to deal 

with a large number of correlated variables, by which the dimension of the problem 

(that is, the number of variables) can be reduced without sacrificing too much of the 

information in the data. (For details see Kshirsagar (1972), Muirhead (1982) and 

Anderson (1984).) 

In classical principal components selection, the criterion used to measure the lost 

information due to the reduction of the dimension of the observed variables is directly 

based on the covariance matrix E and can be applied only under the assumption of 

multinormality. When the observed variables do not follow a multinomial distribution 

the selection process, based on the covariance matrix E, does not provide a satisfactory 

explanation of the lost information. The theory of stochastic complexity or description 

length, which was developed in the works of Kolmogorov (1965), Rissanen (1989), 

31 
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Wallace et. al. (1987), Barron and Cover (1991) etc. (see Chapter 1 for a more 

extended list of references), opens up a possibility to overcome this difficulty. 

Let Mfe denote a class of probability models, Mfc = {P(x|0)} where 9 = (0i, 02, • • •, 

0fe) denotes a A;-component parameter vector ranging over a subset ilk of the k-

dimensional Euclidean space Rk with non-empty interior. This last condition is for 

convenience to ensure that the parameters are "free". Though the natural parameters 

are sometimes not free, one can always assume that by certain transformation some 

of the components can be eliminated and only the free ones remain. For a simple 

random sample Xj,x2, •••,!„, drawn from a q x 1 random vector £. with probability 

function P, P £ Mk, the shortest code length for the description or complexity of the 

data is defined as 

MDL(Mk) = mm | L ( 0 ) + log ^ ^ j } (2-1-1) 

The nonnegative numbers L(0) are assumed to satisfy Kraft's inequality £ « j 2~L^" ) 

< 1, where 01 is the truncated vectors of 0 to the precision T,- = 2~q', i = 1, • • •, A;, 

qi are the number of fractional binary digits taken in the truncation, so that L(0) 

corresponds to a prefix code C which describes the parameter vector 6. 

In principal components analysis it is important that MDL(Mk) is invariant under 

linear transformations of X. The choice of a particular coordinate system, or units 

of measurement, is also very important as the principal components are meaningful 

only if all the variables are measured in the same units. If they are not, it is rec­

ommended that the analysis be performed on the standardized observations; in this 

case, questions of interpretation arise and the problems of inference are exceedingly 

complex, see Anderson (1963). For the sake of conciseness, we assume that all of the 

coordinates of X_ are measured in the same units and use orthogonal transformation 

so that the minimum description length is invariant under it. 

Let H = (hi, h2, • • •,ft,) be a q x q orthogonal matrix. If the random vector X_ 

is to be replaced by some variables in bJX_,hj2L- • • • ,lcJL, q < n, \t is natural to 

consider one with the least difference in description length from the original data. 
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In this chapter we introduce the notion of an index of predictive power 

ipp<y"> - A {^»+E° (•« ̂ j g y ) } <»*> 
where V-,?, r < q is the Stiefel manifold defined by 

H,g = { ? x r matrix H\ satisfying Hf H\ - 7r). (2.1.3) 

PHAH\X j 0') is the marginal probability function of HjX., with the parameter 

vector 0' ranging over a Ar'-dimensional Euclidean space with non-empty interior. 

k' < k because the probability function P(X_ \ 0) is parameterized by the parameter 

vector 0 € Uh having non-empty interior. 

The components of H^X_, for which H\ achieves the right hand side of (2.1.2), are 

called the principal components of X-

IPP(Vriq) represents the expected difference of the complexity between the origi­

nal variables and the principal components. If the parameter vector 0 is known, we 

can find the value of Hi for a prescribed number r (which indicates the number of 

principal components we will use) by solving the minimization problem of the right 

hand side of (2.1.2). For unknown 0 we will show, by using the theory of the stochas­

tic complexity, that the estimate IPP(Vr>q) obtained by substituting the MLE of 0 

in IPP(Vr,q) results in an optimal estimate of the expected difference of the complex­

ity IPP(Vr,q). We can therefore use IPP(Vr<q) for finding principal components and 

regard the IPP(Vr<q) or IPP(VT<q) as a criterion for principal components selection. 

It will be shown that this criterion is equivalent with the classical one in which 

the covariance matrix E is used when the distribution is normal. The justification 

of the suggested selection process will be followed by a discussion of the principal 

components analysis for a class of e-contaminated normal distributions, in which we 

show that the principal components change in a continuous manner with respect to 

e in a small neighborhood of the "true" distribution. 
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2.2 Selection Principle for model {P(X \ 9)} 

Let xx, x2, • • •, xn be a simple random sample drawn from a q x 1 random vector 

with probability function P(X | 0). After Rissanen (1983) and (1978), the description 

length for x,, x2, • • •, xn, per observation, is defined as 

i** . o) = - I ± iog /.(,.. i«)+± log (*p)+i w w + o fa*) 
(2.2.1) 

where X = (x l5 x2, • • •, xn) and J2?=i l°g P(2Li I 0) denotes the log likelihood of the 

data for 0. \\0\\ji0) = \ 0 M(0)0/n denotes the natural norm induced by the 

quadratic form associated with the A; x A; matrix M(0) of the second derivatives of 

- E?=i log P(x{ | 0) and 1(0) = M(0)/n. 

Expression (2.2.1), within a constant, is the negative logarithm of the joint proba­

bility of the data and the parameters. It can be obtained by optimizing the precision 

needed to express the parameters, and then using a universal prior distribution for 

the resulting integers, where the probability of integer n is proportional to 2~log*n. 

The function log* is defined as log* y = log y + log log y -) , where only the positive 

terms are included in the sum. Notice that in deriving (2.2.1), Rissanen treated Ar as 

a variable, rather than a fixed number, so that both the estimation of the optimal 

0 as well as A; <\u)d be based on (2.2.1). But here we prescribe A;, the dimension 

of the parameter 0, as fixed by assuming a parametric family Mk, hence the term 

O(().ogk)/n) could be replaced by 0(l/n). 

1(0) is of order 1, provided that - £"=i log P(x, | 0) grows proportionally with n, 

as is the case normally . Then (2.2.1) can be expressed approximately as 

-L(X, 0) = - - £ log P(x, | 0) + i log n + 0 (-) . (2.2.2) 

If the random vector A. is not discrete, then no finite-length uniquely decodable 

codes exist. Nevertheless, quantization of the sample space of X does lead to outcomes 

that are finitely describabie. Let [X] denote the quantization region that contains 

2£, p(x | 0) denote the probability density function of X with respect to a known 
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er-finite dominating measure u(dx) which, for sake of simplicity, is chosen to be the 

usual Lebesgue measure , then p(x | 0) = limP([x] | 0)/i>([x]) for almost every x, 

(where the limit is taken for a refining sequence of quantization regions that generates 

x). Consequently, logP([x] | 0) « logp(x | 0) + logi/([xJ) if the quantization is 

sufficiently fine. Using this approximation, for proper precision d used to express 

the sample values Xi,x2, • • • ,xn, the description length for the sample, expressed per 

observation, is approximately given by 

-L(X,0) = -i£>gp(x, | 0) + i-logn - q\ogd + 0 (-) . (2.2.3) 

The term —qlogd is the code length in coding the sample precision which can be 

regarded as fixed when the sample is given. The corrected description length then 

can be defined as 

h(X,0) = -l£\o«p(xi | tf) + Alogn + 0 ( I ) . (2.2.4) 

This description length is minimized when 0 is replaced by its maximum likelihood 

estimate 0. 

For arbitrary q xr matrix H\ € VM, the Stiefel manifold defined by (2.L3) with 

r < q, we can find a q x (q — r) matrix H2, so that H\ = (Hi,H2) is an orthogonal 

matrix, then the density function of Hf X, denoted by pnx(Hjx \ TJ(0)), can generally 

be obtained by integrating the density of HTX_ with respect to H2 x. 

Often in stochastic models, the components in the parameter vector are not inde­

pendent in the sense that they satisfy, either implicitly or explicitly, certain relation­

ships among them. In the cases discussed, however, we assume that the dependent 

parameters have been eliminated after some transformation on them, and that the re­

maining A; parameters range over the A;-dimensional Euclidean space with non-empty 

interior. 

By introducing some transformation Hi € Vr,q of the random vector 2£» we may 

impose more restrictions on the freedom of the parameter 9 because of the reduction of 

the dimension for /ffX. Thus we may assume that the parameter vector is de< ermined 



36 

by tj(9) in the marginal density pn, (Hfx \ ri(9)) that ranges over a Ar'-dimensional 

Euclidean space with non-empty interior where k' < k, which is a function of 9 and Hi 

and in which the dependent structure has been removed by a certain transformation. 

For convenience we also assume that A;' does not depend on the values in Hi but is 

determined by r, the rank of Hi, as in the multinomial case. Under this assumption 

it can be shown that A;' is an increasing function of r with k'(q) = A\ 

As in (2.2.4), the description length per observation for the data sequence H*xx, 

h(H?X,V(9)) - - I f ] \ogpHl(Hhi I *(«)) + ^ log n + 0 ( I ) . (2.2.5) 

To replace X by H{ X_ without too much loss of the information, we should select Hi 

that minimizes the reduced description length 

n £? PU. 10) 2n 

This quantity is a random variable depending on 2Li, i = 1,2,• • • ,n, for given 0 

and Hi. In order to understand the behavior of this minimization process, we replace 

(2.2.6) by its expected value and investigate the corresponding minimization problem. 

Definition: The index of predictive power of VTtq (with respect to a model p(x \ 0) 

and sample size n) is defined by 

The components of H?X are the corresponding principal components, where Hi is 

the matrix minimizing (2.2.7). 

IPP(Vr>q) is to be computed or estimated for every r = 1,2, • • • ,q — 1. If for 

some small m, IPP(Vmtq) is found small relative to Eg((l/n)L(X,9)) then most 

of the information in X is explained by (H[m')TX (where the m x q matrix Hi 

corresponds to IPP(Vm,q)). (Hx )TX is proposed to be used as the first m principal 

components. 
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The solution Hi is a function of 9. Since (l/n)L(X,9) is the description length 

of the least redundant encoding program for the observed xt, x2, • • • ,x.n it provides a 

natural estimate Hi of Hi by replacing 9 with its maximum likelihood estimate 0. 

Accordingly, the estimate of IPP(Vr,q), denoted as IPP(VTtq), can be computed, and 

is identical with the minimization of the right hand side of (2.2.7) at 0 = 9. The 

minimum is achieved at Hi. 

In the light of the principle of the minimum description length (MDL) (which is 

a generalization of the maximum likelihood principle), the root of one optimal prop-

erty of the estimate 9, obtained by minimizing the description length (that happens 

to be the maximum likelihood estimate here), lies in the fact that the Kullback-

Leibler distance between p(X \ 9) and p(X | 9) reaches asymptotically the minimum 

under certain mild smoothness conditions (see Theorem 1.7.1). This suggests that 

optimality might be achieved by using the corresponding estimates Hi and IPP. 

Unfortunately the large-sample distributional properties of this are still unclear and 

the construction of a test procedure for the validation of the selected principal com­

ponents is intractably difficult. However, as we will see in Section 2.4, a universal 

test procedure can still be found with some desirable asymptotic properties based on 

the theory of the stochastic complexity. 

If Hi is a solution corresponding to IPP(VT%q), then it is easy to see that for any 

r x r orthogonal matrix Q, HiQ is also a solution corresponding to IPP(Vr,q). For 

the case of the normal distribution the principal components are uniquely defined 

except for a rr/iltiplicative r xr orthogonal matrix. 

2.3 Principal Components in Normality Case 

To illustrate the relationship between principal components selection by 7PP and 

by the classic method we consider the case of the normal distribution. Let X_ be a 

qx\ random vector with multinormal distribution N(p^, E) and X = (x.x,x.2, • • • ,£n) 

be a simple random sample drawn from X- For Hi € Vr<q, the distribution of Hj2L 
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is NtfTfr HfSHi). The description length for X is 

+ 9(« + 3) 
4n 

= | log(27r) + i log |E| + ̂  £ tr ( E ^ x , - £)(x, - E)T) 

9(9 + 3) logn + o ( I ) . (2.3.1) 
4n 

The description length for HfX is given by 

WHfX^f^HfZHi) 

= ""Sl0S ((2x)-/»|̂ |»/aCXP H ( ^ ' " ̂ T 

(HfZHirHHfxi - Hftt)}) + ^ ± H l o g n + 0 ( I ) 

= 5 log(2:r) + I log ItffSi/i | + ̂  £ tr ((HfXHi r ' f l j f o - £)(x,- - yfHi) 

After some simplification, the expected value of (2.2.6) is 

E (-L(X,fi,E) - hwfX^T^HfZHi)) = 

"T"1<>g(27r) + 2 l°S IWE^j + 2 " 2 + Tn l0gn' (2'3-3) 

For the minimization of (2.3.3), the following Poincare separation theorem from ma­

trix theory is useful (see Chapter 1 in Rao (1973)). 

Lemma 2.3.1 (Poincare): Let E be a qxq positive definite matrix whose eigenvalues 

are \i > \2 > • • • > \q, Hi £ Vr,q. Denote by \\ > A'2 > • • • > X'T the eigenvalues of 

HfZHi, then 

A,-r+, < A;-< A,, i = l,2,---,r. (2.3.4) 
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By the lemma above, (2.3.3) is minimized at \HTEHI\ = AiA2 • • • Ar and Hi a n 

be chosen as the unit and orthogonal eigenvectors of E corresponding to At, A2, • • •, Ar 

respectively. If E is replaced by its maximum likelihood estimate S = (1/n) £"_i(x.< -

x)(xi — x)T, where x = (l/n)E"=:i x.i, then Hi can be estimated by the first r or­

thogonal and unit eigenvectors of S corresponding to its first r eigenvalues. Let 

*i > h > • • • > lq be the eigenvalues of S, then the estimated IPP(Vr>q) is 

lTP(Vr,q) = i^ log(2,re)-f ( < ? ~ r ) ( * + r + 3 ) logn-f \ _ £ log/,, r « l , . . . , , - l . 

(2.3.5) 

From the discussion above it follows that the principal components under criterion 

(2.2.7) are the same as the usual principal components for multinomial distribution. 

2.4 Validation of the Principal Components 

In Section 2.2 we deduced the index of predictive power as a descriptive measure 

for studying the dependence or correlational structure of multivariate samples drawn 

from a parametric model. Now the question arises whether the estimate of IPP(Vr,q) 

adequately describes the mean difference of complexity, how much confidence one can 

have in such principal-component estimation and how to construct hypothesis testing 

for principal-component selection with the associated confidence. 

In classical principal components analysis, a number of large-sample distributional 

properties of the component coefficients and eigenvalues are derived. In addition 

to providing knowledge of the stability of these quantities through their variance-

covariance structure, these asymptotic distributions allow the construction of tests 

of hypothesis and confidence intervals for the population component structure. The 

results have been summarized by Anderson (1984) and Muirhead (1982). Waternaux 

(1976) and Davis (1977) have studied the robustness of the principal-component dis­

tributions to nonnormality in the original observations. Waternaux concluded that 

tests or confidence intervals based on asymptotic distributional results could be se­

riously affected by nonnormality. Davis investigated the effects of nonnormality on 
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the hypothesis tests and confidence intervals for the eigenvalues and the eigenvectors, 

and gave conditions for the inferences to be conservative. 

In our study, if the probability function of the assumed model are reasonably 

smooth, the principal-component coefficients matrix Hi and hence IPP(VT<q) will 

hold some smooth analytical properties such as continuity and differentiability. From 

the large-sample properties of the maximum likelihood estimate, it follows that the 

distribution of y/n9 converges to the normal distribution with some mean 9* and 
A A 

covariance E* under quite weak conditions, where 9 = 9(xt,x2, • • • ,xn) is the MLE 

computed from a sample x1? x2, • • •, xn. This E* gives us an idea of the spread of 0 

at least for large n and we «.n construct a confidence interval for 9 based on E*. 

Accordingly, the confidence interval for Hi and IPP(Vr,q) can be obtained. 

In complexity theory, there is no need to assume the existence of any "true" 

parameter in th" suggested model (see Rissanen (1989)). Frequently we fit parametric 

models of a certain kind to the observed data even though none of the models may 

capture all the major relevant features. We then solve the parameter estimate with 

which the induced model has the minimum description length or complexity among 

the suggested parametric models, and regard the induced model as the best model 

until a larger parametric model class is considered and/or another model is found 

with smaller complexity. 

In practice, the bootstrap techniques are frequently used to provide Monte Carlo 
A A 

type estimates of covariance of 0 and Hi. We consider both the parametric and the 

nonparametric methods of bootstrap. 

Nonparametric bootstrap: first we form an empirical distribution from the ob­

servations X = (xux2, • • -,xn) with 1/n the probability assigned to each x,. Then 

generate a sample Xi of length n by sampling this empirical distribution n times 
A 

and calculate a new estimate 9(X\). Repeat the process N times and compute the 

means 0* = ( l / i V ) £ £ , 0 ( X . ) A ' = ( l /W)EJIi / / i (X t) and the desired covariance 

estimates 

s* = (i/tf)B0(xo-r)(0(x,-)-0*)T, 
1=1 



41 

N 

Sir, = (W£vec(Hi (Xi ) - H'i)(vec(Hi(Xi) - H;))' 
1=1 

In parametric bootstrap, we generate a new series of samples by sampling from 

the distribution P(x | 0) instead of the empirical distribution, where 0 is the MLE 

from the original sample X = (xx, x2, • • •, xn). 

When the index of predictive power (IPP) (2.2.7) is employed as a criterion 

for principal components selection, one need to deal with th problem that the IPP 

is a function of the unknown parameter 0. In order to turn it into an applicable 

data-based criterion we need to replace it by a suitable estimate IPP. Because 

of the fixed A: in our assumed model class Mk, the maximum likelihood estimate 

0 is also the minimum description length estimate (refer to expression (2.2.4) and 

ignore the term 0(l/n)). Consequently, it also provides us with an optimal density 

estimate p(x \ 0) under the framework of the principle of minimum description length. 

Therefore IPP may be obtained by performing the minimization (2.2.7) at 0 = 0. 

It is sometimes quite difficult to calculate the second term in the right hand side of 

(2.2.7) at 0 = 0, in which case we can approximate it by calculating the moment 

estimate ( l /n )£" = i \og(pHl{HT*i I V(0))/p(xi I *))• 

As we have seen in Section 2.2, the selection of the principal components can be 

based on testing a series of hypotheses. Suppose the ratio of the lost information 

to the total information of the random vector X, when using principal components 

instead of the original variables, is restricted to a prescribed value c, where 0 < c < 1. 

If (Hi)T2L are the first r principal components, where H\ is obtained by minimizing 

(2.2.7), the lost information when using (H\[ ) r X is 

7(H<",«) = ^ l o g ^ _ _ 

while the total information of X is the entropy 

K(0) = -E6(\ogp(X\0)), 

then our requirement becomes J(H[r\0)/K(0) < c. Notice that, the entropy with 

this definition may be negative and depends on the chosen coordinate system. For 
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simplicity, we assume that K(0) is positive which can be achieved by choosing the co­

ordinate system suitably, as in the case of multinormality. Using these notations, we 

can find how many principal components need to be used to meet such a requirement 

by testing the following hypotheses. First we test Ai : J(H[ \0)/K(0) < c versus 

Bi : J(Hl1], 9)1 K( 9) > c. If Ai is rejected we go on to test A2: J(H?\ 0)1 K(0) < c 

versus the corresponding B2, etc. This procedure is continued until at some stage we 

can no longer reject the hypothesis Ar : J(Hi,0)/K(0) < c, where r = 1,2,• • • ,q. 

The first r principal components (//{ ) r X can then be used to replace the original 

variables X in a statistical analysis without sacrificing more information than per­

mitted, r = q means that the dimension of the problem can not be reduced without 

violating the requirement that the proportion of the lost information is less than or 

equal to c. 

Applying the idea of complexity, we propose a universal test statistic 

TlX) = _ J ^ ! M _ _ C 
{ ' (l/n)Ee(L(X,9))\e=Q 

k-k' 
2n 

/ P/J(r)((//}
r))rX|»?(0))\ 

logn + E9 (tog i pm$) j \9Jb 
-c (2.4.1) 

^\ogn-Ee(\ogp(X\9))\0^ 

for each hypothesis Ar : J(H\r),9)/K(9) < c versus Br : J(Hir),9)/K(9) > c, 

r = 1,2, • • • ,q. To find a critical region for this test one may proceed in the usual 

manner to find a large-sample asymptotic distribution of T(X), and then construct 

the critical region T(X) > t where t is determined by the asymptotic distribution of 

r (X) at J(H(
X

T),9)IK(9) = c. However, we shall follow a different path here. 

Consider the numerator of the first term of T(X). It consists of two parts: the 

second part is the estimate of the lost information in the data when using the first 

r principal components, while the first part is a quantity measuring the reduction of 

the complexity of the model (in terms of the dimension of the parameter). Combining 

these two parts we get the estimate of the mean difference of the description lengths 

of X and //, 'X, or the index of predictive power IPP( Vr,q) as derived in Section 2.2. 
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Similarly, the denominator of the first term of T(X) consists of the estimate of the 

information per observation of the data X (the entropy) combir. >d with the measure 
A 

of the complexity of the proposed model p(x | 9) (in terms of the dimension of the 

parameter), and forms the mean minimum description length per observation of X. 

In this sense, the first term of T(X) is not a simple estimate of J(Hi,9)/K(9)', 

it estimates J(Hi,9)/K( 9) by attaching to it the penalty terms (A;/2n)logn and 

((A; — kf)/2n) log n, which are justified by providing the complexity and the reduction 

of the complexity respectively, for the model employed to give such an estimate. 

Now we are in a position to suggest a critical region according to which the 

null hypothesis Ar is accepted if T(X) < 0, but rejected otherwise. With this test 

procedure the explicit knowledge of the distribution of the test statistics T(X) is not 

required. Nor do we need to select the size of the test, or the type I error, for it is 

defined automatically from P(T(X) > 0 | Ar), which depends on the two penalty 

terms and corresponds to an intuitively chosen significance level for some common 

sample sizes. Similar conclusion could be drawn for the type II orror. 

To clarify this, we abbreviate J(HX,9) as J, K(9) as K and 
k-k> log n + J 

TIX) = -£*—-—-4- - c. 
£ l o g n + /< 

Also suppose that the MLE 9 satisfies the central limit theorem at each interior point 

of ilk such that y/n(9 — 9) —» N(Q, E") in distribution and (J/K)', the derivative 

with respect to 9, exists and ^ 0, then we know that 

^(J/K - J/K) - N(Q,((J/Ky)TZm(J/K)') 

in distribution for each interior point of ilk-

From Section 2.2 we also know that A: and A;' are fixed after stating AT and BT. 

The size of the test is then 

p(r(X) > o 140 = p(k~fXo?,n+l-c>*\A\ 

p(J__J_ logn k (J k-k'\ 
U K> 7n k\K k ) 
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+ PlnH(-*M 
which is determined by the last two terms and tends to 0 when n —• co for J/K < c 

under the assumptions above. For J/K = c the expression above gives an asymptotic 

size of 0.5 for the test when n —* oo. Hence the type I error could be fairly large for Ar 

versus BT. But notice also that our test procedure is based on a series of hypotheses. 

For the fixed c our J(Hi+l',9)/K(9) will be less than c (this can be seen from the 

definition of J,K and IPP), therefore the size of the test for Ar+i versus JBr+i will 

tend to 0 as n —• oo. In short, for fixed c, the type I error of our principal components 

selection process (ignoring the mistake that the number of the principal components 

selected is one more or one less than the true number) is asymptotically 0 as n —* co. 

By similar argument the type II error of T(X) for Ar versus Br, 

1 k^k' log n + J X 

±logn + K 

\I< K - 2n K \K k ) 

ftrH(-*M 

P(T(X) < 0 | B r ) = P | \n
t
 & I -c<0\BT 

+ 
0 as n —* oo 

based on the same assumptions for deriving the size in the limit. Thic indicates some 

sort of asymptotic optimality of the power of the test statistics T(X). In practice, both 

the size and the power could be found approximately by a Monte Carlo technique. 

In the case of multinormal distribution T(X) is given by 

TIX) = *? l 0 g ( 2 * C ) + ( , " " ) < r ^ l Q g " + * E U + 1 lQS U c (242) 
aiog(2*e) + 2k±3>logn + iE?=ilog/,. 

2.5 "e-contaminated" Normal Random Vectors 

In this section we discuss an important application of the principal components 

selection described above for the case of an "e-contaminated" normal distribution, 

where the contaminating distribution is also normal. 
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Let X be distributed as an "e-contaminated" normal distribution with density 

function 

p(x,E,aa) = (1 -e ) ( 2 y ) t ^ | E | 1 / a exp{-i,x,TS-^} 

+ £ ( 2 7 ^ e X p { - 2 ^ £ T 4 <2JU> 
where a1 is less than the minimum eigenvalue A, of E. Without loss of generality we 

assume that X has zero mean. 

The marginal density function of Hf X is 

PHl(H(x,H{ VHuo*) = (1 - ^ / W s / / l | i , 2 

exp{-\(H?x)T(HlXHi)-*(H?x)} 

+ £ ( 2 ^ e x p { - ^ < * f *>'<"?*>} • (2-5-2) 
In order to find the expected value of the difference in description lengths (2.2.6), 

we first compute 

£(logp(X,E,a2)) 

= log(l - e) - \ log(2x) - \ log |E| - l-E(tr(^XJLT)) 

+E(log(l^^e,p{-\tr((±I-^)XXT)})) 

= log(l - e) - | log(2x) - I log |E| - ^r(E-x((l - e)E + e<r2/)) 

+sr-> ̂  te)J ^ * («p{-i" ((*' - s i ^T)}) 
= log(l - e) - | log(2x) - \ log |E| - | (1 - e) - ^ t r E " 1 

J?(logpWl(^
TX,^iTSi/i,<r2)) = 

log(l - e) - \ log(27r) - 1 logIT/fEtfil - f(l - e) 

£tr(H?XHi)-* -r e + t ^ j g ^ + 0(£
3). (2.5.4) 

Similarly 

£2_ 
2 
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The expected difference of the description lengths is then 

E (-L(X, E, a2) - -L(HjX, H?ZHi, a2)) 

= ( * - r ) l r + 1 ) l°g » + *T lo«(2ir) + * ? C1 " £) 

+5 log m$k\ + f ^ S " 1 - (HfXHi)-*) 

. I _£. f l,tfiTStfil PI , "l . /v-sx f 2 «i 5} 

The minimization of (2.5.5) is equivalent to the minimization of 

p(Hi) = l ogJIL-r^MS- 1 -^^^) - 1 ) 

+ 1 - e<r\2H?LHi- *»/|»/» ( ' 

when e is sufficiently small. Using the notation of Lemma 2.3.1, we obtain 

F(Hi) = ±^ogXt +
 £^y±(\ogK + £-^j 

(2.5.7) 

and 

dF(Hi) 1 . 5 2 ! . 

. £2 n;=iA; 
i - ^ r n : = i ( 2 A j - < 7 ^ / 2 

e2 IW;(A;-<T2) 

0A( A; A;2 ̂  1 - e <r n;=i(2A; - o*y/2(2X[ - a2) 
< 1 , g , g2 n,+ K(K-o*) 
- A; + AJ + I - e <r n;=, (2A; - ^ ) I / 2 ( 2 A ; - **) 

= - d - g ) V n;=i(2A^ - <T2)*/2(2A; - < r 2 ) + e n ; ^ A;(A; - <r2) 
(i - C)A:<T- nj-,(2A; - ^ ) V 2 ( 2 A ; - ,*) {*'°-0) 

by the condition <r2 < A„ e < 1 and A,_rJ., < A( < A„ i = 1,2, • • •, r. (2.5.8) < 0 if 

( l - c )V(2A;-«7 2 ) 1 / a >e 2 ^ . i = l,2,-.-r (2.5.9) 

and (2.5.9) satisfies if A, < T<T2, where r = 1/(1 - ^1 - (e/(l - e))4). Hence we 

conclude that if e is sufficiently small, F(Hi) is minimized when X't = A,, i — 1,2, • • •, r 

and so is (2.5.5). 
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The first r principal components coefficients, i.e. the matrix Hi, are therefore thv 

r orthogonal eigenvectors of unit length of E corresponding to the first r eigenvalues 

of E respectively. 

Actually, to satisfy condition (2.5.9), the requirement for e need not be too strin­

gent. Table 2.1 below shows some e and r values and the corresponding values of e3 

which indicate the precision in (2.5.3) — (2.5.5). 

Table 2.1: 

e 
T 

£3 

0.05 
260642 

0.0001 

0.10 

13122 

0.001 

0.15 

2062 

0.003 

0.20 0.25 

511.5 161.5 

0.008 0.016 

0.30 

58.8 
0.027 

0.35 
23.3 

0.043 

0.40 
9.6 

0.064 

0.45 
3.9 

0.091 

The estimation of H\ can also be done through the maximum likelihood estimate 

of E. Within a constant, the log likelihood function for X = (xx, x2, • • •, xn) is 

- l̂og |E| - !*E-S) + ± ,og (, + ̂ K ! exp [J^ (£ , _ E-) „}) 
(2.5.10) 

where S = (l/n)£?=ix.,-xj. 

If e is small enough, (2.5.10) can be approximately expressed as 

W,*X) - -'.^.^^^-1^,-^)3)) 

where Si > 62 > • • • > Sq are the eigenvalues of 51^2E~1S'X/2. 

Because a2 is less important than E we use a2, which equals to the smallest 

eigenvalue of (1/2)5, to replace o2 in (2.5.11). This way we could guarantee that the 



48 

condition a2 < A, holds in most cases. From gS ' ' = 0, i = 1,2, • • •, q, we obtain 

+ T^7 ! ! ! | r ! (n /7" ! )=0, . = 1,2,...,,. (2.5.12) 

Solving this, we get 

* 1 « n|5|»/» / „ , " p i r n • , = 1,2,-..,9. tf.5.13) 

The solutions S^s of (2.5.13) for i = 1,2, • • •, q are identical and the common value is 

the solution of 

S = ^ - ^ ^773-22 ?-i 2.5.14 
1 _ -i-"lgl1/2 fl-9/2 V ' 
1 1 - e <x« ° 

which is equivalent to a polynomial equation for 8. Noticing that 

dSidSi sti» + uW 

for i,j = 1,2, • • •, q, where &j = 1 for i = j and 0 otherwise, the MLE's of Si in (2.5.11) 

exist and are unique if e is small enough. If we denote the solution by Si = 1 + v, then 

v is a continuous function of e and lim^o v = 0, and the MLE of E is E = (1 -J-1/)-15. 

The Hi which minimizes (2.5.5) can be estimated by the first r orthogonal eigen­

vectors of unit length of E. When e —• 0, the estimate of Hi tends to that of the 

solution which minimizes (2.3.3). This result is summarized in the following theorem. 

Theorem 2.5.1 / / H{' is the solution corresponding to IPP(VTiq) for the "e-con­

taminated" normal distribution (2.5.1) and Hi is the solution corresponding to the 

normal distribution N(0, E), then their MLE estimates, denoted by Hi and Hi, are 

approximately the first r orthogonal eigenvectors of unit length of (1 + j / ) - 1 5 and 

S respectively. Furthermore, lime_o#i = Hi. For the ue-contaminated" normal 

distribution (2.5.1), IPP(VT>q) is estimated by 

lTP'V,„) = (^i±r±l},o6n+<lll>l„g(2™'-<) 
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I f , t ea2 « 1 
* i=r+l * i=r+l A, 

, i g2 / n u A, m=iA, v 
21 - « W nu(2A< - &*yi* a" n?=i(2A< - &*y>r '" 

1 A A A 

where &* equals to the smallest eigenvalue of (1/2)5 and Ai > A2 > • • • > Xq are the 

eigenvalues o/E = (1 + v)~lS. 

Remark 1: In the discussion above, it is necessary to assume that a2 < Xq. This 

assumption is a reasonable one if, as usually is the case, the contaminating observa­

tions take up only a small part of the sample and have a smaller variation than the 

uncontaminated part. 

Remark 2: The above discussion can be extended to more general e-contaminated 

normal models 

(1 " £W/'|Sl|V* CXP {-2-'r(E"(i " *X* " *)T)} 

* W W * e"P H"-<S'"<* ~ HM ~ bf)} (2.5-16) 

where y^,^, Ei, E? and e all are unknown. 

After some calculation, it can be shown that finding the solution of H\ for model 

(2.5.16) is asymptotically equivalent to finding H\ £ VT<q which minimizes 

F(Hi) = -loglHfZiHil-'-trUHfZiHirHHfXtHi)) 

"f (#iT(i£2 -M T ( t f i T ^rWte 2 -Hi)) 

+ 1 A WSifrl 
2 1 - e l / t f E ^ i p / W ^ E i - E2)//i|

1/2 

exp {^iT(i£2 - ^(HUiHi^HK^ - H l))} . (2.5.17) 

With p., E,- and e being fixed, this problem can be solved by an appropriate numerical 

method. The remaining question is to find the maximum likelihood estimates of £., 

E, and e. Fortunately good results already exist and the computation for MLE's is 

fairly routine. A detailed account is given in Everitt and Hand (1981), and Wolfe 
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(1970), where it is shown that the likelihood equations for finite mixtures are the 

weighted averages of the likelihood equations arising from each component density in 

the mixture separately. The weights are the posterior probabilities of an observation 

arising from a particular component. Generally, the equations must be solved by some 

type of iterative procedure, the most useful being the E-M algorithm of Dempster et 

al. (1977). 

Finally, we present the results of a simulation study which illustrate the theoretical 

results for the e-contaminated normal model. 

An artificial 6 x 1 random vector X_ = (Xi,X2, • • • ,Xe) was generated with joint 

density (2.5.1), where n = 115, e = 15/115 « 0.13, a2 = 0.4 and 

\ 
/ 3.5536 1.4463 0.3891 0.8356 -0.5784 -0.2497 

1.4463 3.5536 -0.3892 -0.8357 0.5783 0.2496 

0.3891 -0.3892 1.4717 -1.8686 0.2738 -1.0102 

0.8356 -0.8357 -1.8686 8.0128 -2.1330 2.2440 

-0.5784 0.5783 0.2738 -2.1330 1.5730 -0.4447 

-0.2497 0.2496 -1.0102 2.2440 -0.4447 1.8351 

The results are listed in Table 2.2. These are to be compared with the classical 

principal components and with two kinds of robust principal components obtained 

through minimum volume ellipsoid covariance matrix estimate (MVE) and through 

weighting on Mahalanobis distance (Table 2.3, 2.4 and 2.5, respectively). The results 

are quite close to each other (note that the last two rows in Table 2.3 and 2.5 are 

exactly the same; it is so because the weights are all 1 in this case). For details 

about the robust estimates of covariance matrix, see Lopuhaa and Rousseeuw (1991), 

Rousseeuw (1991), Rousseeuw and van Zomeren (1990). 



Table 2.2: Principal Components based on model (2.5.1) 

eigenvalues 

coefficients 
of principal 
components 

IPP 
* 

10.0 
Li 

-0.0851 
0.0851 
0.2083 
-0.8126 
0.2377 
-0.2568 
7.8366 
73.86% 

5.0 

A2 
-0.6854 
-0.6854 

0.0 
0.0 
0.0 
0.0 

5.6859 
53.59% 

3.0 

A3 
-0.6106 
0.6106 
-0.4986 
-0.0516 
0.3302 
0.4687 
3.8018 
35.83% 

0.8 

£4 
0.0 
0.0 
0.0 

0.2981 
0.5987 
-0.3891 
2.4722 
23.30% 

0.7 

A5 
-0.3238 
0.3238 
-0.2644 
0.0820 
-0.5254 
-0.7457 
1.1784 
11.11% 

0.5 
h& 

-0.4074 
0.4074 
0.9980 
0.2878 
-0.0842 
0.0910 

0.0 
0.0% 

Table 2.3: Principal Components based on the Sample Covariance Matrix 

eigenvalues 

coefficients 
of principal 
components 

** 

*** 

9.3481 
Ai 

0.2199 
0.0794 
-0.2421 
0.8643 
-0.2524 
0.2757 
7.8479 
73.96% 

4.9491 

A2 
0.7591 
0.6072 
0.1064 
-0.1756 
0.0299 
-0.1093 
5.6914 
53.64% 

2.7464 

A3 
-0.4258 
0.6299 
-0.4177 
-0.0907 
0.3207 
0.3693 
3.8025 
35.84% 

0.7626 

A. 
-0.3136 
0.3511 
-0.0919 
-0.0718 
-0.7712 
-0.4124 
2.5188 
23.74% 

0.7185 
As 

0.1286 
-0.1236 
0.0650 
-0.3876 
-0.4864 
0.7597 
1.1814 
11.13% 

0.4135 
As 

0.2813 
-0.2994 
-0.8619 
-0.2421 
-0.0353 
-0.1687 

0.0 
0.0% 
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Table 2.4: Principal Components based on the MVE Covariance Matrix Estimate 

eigenvalues 

coefficients 
of principal 
components 

** 

*** 

8.5540 
Ai 

0.2360 
0.0260 
-0.2033 
0.8704 
-0.2779 
0.2598 
7.8455 
73.94% 

4.4575 
A2 

0.7579 
0.6102 
0.1256 
-0.1383 
0.0639 
-0.1196 
5.6924 
53.65% 

2.2117 
A3 

-0.4147 
0.6420 
-0.4033 
-0.0354 
0.2811 
0.4159 
3.8037 
35.85% 

0.7856 
A4 

-0.3299 
0.3876 
-0.0778 
0.0231 
-0.6436 
-0.5658 
2.5285 
23.83% 

0.6967 
As 

-0.0787 
0.0196 
-0.1326 
0.3869 
0.6451 
-0.6403 
1.1839 
11.16% 

0.3811 
Ae 

-0.2880 
0.2533 
0.8699 
0.2680 
0.0969 
0.1226 

0.0 
0.0% 

Table 2.5: Principal Components based on the Weighted Covariance Matrix Estimate 

eigenvalues 

coefficients 
of principal 
components 

** 

*** 

9.2668 
Ai 

0.2199 
0.0794 
-0.2421 
0.8643 
-0.2524 
0.2757 
7.8479 
73.96% 

4.9060 

A2 
0.7591 
0.6072 
0.1064 
-0.1756 
0.0299 
-0.1093 
5.6914 
53.64% 

2.7225 
A3 

-0.4258 
0.6299 
-0.4177 
-0.0907 
0.3207 
0.3693 
3.8025 
35.84% 

0.7559 
A* 

-0.3136 
0.3511 
-0.0919 
-0.0718 
-0.7712 
-0.4124 
2.5188 
23.74% 

0.7123 

As 
0.1286 
-0.1236 
0.0650 
-0.3876 
-0.4864 
0.7597 
1.1814 
11.13% 

0.4099 

Ae 
0.2813 
-0.2994 
-0.8619 
-0.2421 
-0.0353 
-0.1687 

0.0 
0.0% 

The ratio of IPP to expected description length per observation 
which is 10.6104 computed using (2.5.3). 
The expected difference of the description lengths (2.5.5). 
The ratio of ** to 10.6104, the expected description length per 
observation. 



Chapter 3 

Generalized Linear Model 

Selection by Predictive Least 

Quasi-deviance Criterion 

3.1 Introduction 

Several criteria are available in the literature of model selection. See e.g. Akaike, 

1973,1974; Efron, 1983,1986; Jaynes, 1957,1982,1985; Mallows, 1973; Schwarz, 1978; 

Shao, 1993; Shibata, 1981; and Stone, 1974. In addition we have seen in Chapter 1 the 

development of two new general approaches to problem of statistical inference: pre-

quential analysis (Dawid, 1984,1991a, 1991b) and stochastic complexity (Solomonoff, 

1978; Rissanen, 1978, 1986a, 1987, 1989). The former approach is based on the idea 

that one of the purposes of statistics is to make sequential probability forecasts for fu­

ture observations, and statistical methods should be assessed by means of the validity 

of the predictions that flow from them. Whereas in the latter approach a statistical 

model is characterized in terms of the length of a coded message needed to trans­

mit the data, and the empirical assessment of the models are based on these code 

lengths. These two approaches are particularly well suited to model selection in the 

sense that both methods compare different models by their accumulated prediction 
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errors although with different interpretations. (For relationship between these two 

approaches see Dawid (1992).) 

One of the basic notions in Rissanen's approach is the concept of predictive 

stochastic complexity, and in association with it a model selection procedure called 

the predictive minimum description length principle (Rissanen, 1986a, 1987, 1989). 

This principle, unlike for example the maximum likelihood method, permits optimal 

identification of the values as well as the number of the parameters. When restricted 

to Gaussian regression models, the predictive minimum description length principle 

gives rise to the predictive least squares principle (Rissanen, 1986b). Whereas the 

usual least squares technique minimizes the sum of squared fitting errors (residuals), 

the predictive least squares principle minimizes the accumulated squared prediction 

errors of the observations. Its minimization criterion contains the sum of the squared 

"honest" prediction errors (by "honest" we mean that only past data are used to 

identify the parameters in the model) which is shown to be an approximation of the 

predictive stochastic complexity of the data except for a multiplicative constant. (For 

a discussion of the predictive least squares principle see Hannan et al (1989), Hemerly 

and Davis (1989), Speed and Yu (1993), Wax (1988) and Wei (1992).) 

In this chapter we propose a criterion for generalized linear model selection based 

on the predictive minimum description length principle and the idea of prequential 

analysis, as well as on some results in the theory of quasi-likelihood functions (Mc-

Cullagh and Nelder, 1989; Wedderburn,1974). 

Suppose the components of the response n-vector Y = (yi,"m,yn)
T are inde­

pendent variables with mean vector p = (pi,- •• ,/xn)T and each with a covariance 

a2Vi(pi), where the scalar a2 is a constant of probably unknown value and Vi(-) is a 

known positive function. It is assumed that the p x 1 vector /? is the parameter of 

interest and it is connected with p through a generalized linear regression equation 

g(p) = X/3, where X = (xi, • • •, xn)
T is an n x p matrix of the observed p x 1 covariate 

vector x (the predictors) and g(-) is a link function. 

Now we consider the problem of selecting a model (i.e., a regressor X/3) that 
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minimizes the sum of the "honest" predictive quasi-deviance 

SLw* (3-u) 
where £,-(«) is the estimate of the mean of yi based on the first i — 1 response values 

and the corresponding values of the employed predictors through the usual maximum 

quasi-likelihood method. 

If the likelihood of Y takes the form 

exp [<r-2(YT0 - b(0)) + c(Y, a)} (3.1.2) 

for suitably chosen functions b(0) of the n-dimensional parameter 0 and c(Y, <r), it will 

be seen that (3.1.1) is the predictive stochastic complexity of Y relative to this model, 

or equivalently the negative prequential log-likelihood of the model on Y, all being 

in agreement up to an (data-dependent) irrelevant quantity for the model selection. 

Therefore, the model selection based on (b.1.1) can actually be interpreted as an 

extension of both the stochastic complexity approach and the prequential analysis. 

All of our results are obtained for a class of finite dimensional models, in contrast 

with those discussed in Shibata (1983a, 1983b), Breiman and Freedman (1983) etc., 

where infinite dimensional models are also considered. 

The main result of this chapter is to show that by minimizing (3.1.1) over a 

sufficiently large class of models, the probability of selecting the right model converges 

to 1, and the selected model converges to the optimal model in expectation. Here 

the optimal model is defined to be the correct model g(p) = X/3 relative to a link 

function g(-), which has the smallest dimension among all the available ones. By using 

a resampling technique the proposed Monte Carlo predictive least quasi-deviance 

method is shown through a simulation study to have fairly strong power to enhance 

the efficiency in selecting the optimal model. 
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3.2 Model Selection and the "Honest" Predictive 

Error 

Using the notations and assumptions described above, we consider the generalized 

linear regression model in which the systematic component is g(p) = X/3. 

Suppose the covariate vector x contains all the possible explanatory variables 

available, and suppose also that the dimension of x, denoted as p, is finite, which 

is usually the case in the practical situation. By including all these variables in the 

regression model we make use of all the information of the data. This, however, may 

be inefficient because some of the components of ft may equal to zero, so that the 

corresponding explanatory variables are superfluous. The question arises then: how 

to choose the explanatory variables so that the resulting regression model is correct 

as well as efficient? 

If some of the components of /? are zero, a more compact model might be 

9(Pa) = XcPa, (3.2.1) 

where a is a subset of size pa of {1, • • • ,p}, pQ < p, fla is a pa x 1 vector containing 

the components of /? indexed by the integers in a, XQ = (i,ia,- • • ,xno)
T containing 

the columns of X indexed also by the integers in a, and pa = (pa\, • • •,Pom) is the 

assumed mean of Y under this model. 

There are in total 2P — 1 possible different models of the form (3.2.1) each of which 

corresponds to a subset a and is denoted by MQ. The dimension (or size) of Ma is 

defined to be pa, the dimension of the vector fla. Let A denote all nonempty subsets 

of {1, • • • ,p}. Following Shao (1993) the class of models Ma can be grouped into two 

categories: 

Category I: At least one non-zero component of ft is not in /3a; 

Category II: $a contains all non-zero components of /?. 

Clearly, the models in Category 1 are incorrect models and the models in Category 

II are correct, but possibly inefficient, due to their large size. Among the 2V — 1 
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models an optimal model, denoted by M„ is defined to be the model in Category II 

with the smallest dimension. Note that a model is meant to be optimal relative to 

a fixed link function g(-). Generally the optimal model does not have to be unique 

(e.g. an essential explanatory variable is included twice in x), but if we assume that 

the components of x are linearly independent (i.e. if there exists a p x 1 vector b such 

that xTb = 0 then b = 0), the optimal model is unique relative to the fixed J7(-) and 

identical to the model in Category II with the smallest dimension. 

Either by properly designing the experiment or by an appropriate transformation 

of the explanatory variable or both the linear independence of the components of a; 

can usually be achieved. It is therefore meaningful to perform the model selection 

based on the above classification of the models in Ma, which is equivalent to the 

problem of variable (predictor) selection. 

For other model selection procedures like Akaike's AIC or Schwarz's BIC, which is 

so formulated that each employed model is indexed by its dimension, refer to Akaike 

(1974), Nishii (1984) and Schwarz (1978) for detail. 

Under the specified conditions and assumptions for Y the log quasi-likelihood 

function for Y is given by 

^YHXM)dt 

and the quasi-deviance function for Y is 

D(Y;p) = -2a2Q(p;Y) = 2 £ / * ^ d t . 
,_, Jn, Vi[t) 

provided that the summands exist. 

For generalized linear regression models, the quasi-likelihood method, suggested 

by Wedderburn (1974), behaves like the maximum likelihood method. The difference 

is that the assumptions of the former method concern only the first and the second 

moments and some additional regularity conditions relating to the regression equa­

tion. This relationship may be understood by looking at the least squares method 

and the maximum likelihood method in a linear regression model. For a detailed 
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description of the quasi-likelihood method, see Wedderburn (1974) and McCullagh 

and Nelder (Chapter 9, 1989). 

Let us suppose that the components of Y are ordered and let Yi = (j/i, • • •, j/i-i)T 

and X^) = (*!,• • -,Xi-i)T be (i — 1) x p matrices comprising rows of covariates 

(predictors) corresponding to the response variables, i = 2, • • •, n. X = (xi, • • •, x„)T 

is an n x p covariates matrix. 

Under the proposed model Ma of the form (3.2.1), the maximum quasi-likelihood 

estimate f$a(i) of /3a, based on the first i — 1 response values Yi and the corresponding 

X ^ , satisfies the estimating equations U(/3a(i)) = QPa with QPa a pa x 1 zero vector. 

Here 

U^-DZiV-^Y-pU)/*2 

is the quasi-score function. In this expression the components of the matrix Dai of 

order (i - 1) x pa are Daijk = dpai/dftak, Vai = diag{Vi(pai),•••,Vi-i(pa{i-i))} and 

tht mean vector pa^ = (pai,•••,pa{i-i))T, where the paj
fs are the proposed means of 

Vj's under Ma 
«(0) 

Starting with an arbitrary initial value 0Q (i) sufficiently close to /?a(i), which 

is supposed to exist, a sequence of parameter estimates generated by the Newton-

Raphson method with Fisher scoring is 

A"(0 =K?(i) + 02**S»-V>ff)-,1>2T«S,-,<1! '&%)) (3.2.2) 

and the quasi-likelihood estimate J3a(i) may be approached by subsequent iterations. 

Instead of starting with an arbitrary initial value, we may also start the iteration 

with $J(«) = J3a(i — 1) as long as 0a(i — 1) is available. If J3a(i) converges as i —• oo, 

this will be a more efficient way to compute the sequential maximum quasi-likelihood 

estimates {fta(i)}. Such a technique has been used in Jain (1983). 

Having thus obtained 0Q(i), the estimate pai(i) of the proposed mean pai of the 

i-th response value yi, based on the first i — 1 observations, can be obtained through 

(3.2.1). It is in fact the predicted value of the future observation y, based on the first 

i — 1 observations. 
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Definition: The predictive quasi-deviance function for the vector Y under the gen­

eralized linear model (3.2.1) is defined as 

nf^'M-) Vi(t) 

Noting that Sa>n = ^E?=i D(yr,pa,(i)) , where D(yi] pai[i)) is the prediction 

error in terms of the quasi-deviance function for a future value j / ; , we have (3.2.3) as 

the sum of the "honest" prediction errors. 

It is apparent that for a model Ma of the form (3.2.1), the estimated mean 

values /*ai(l), • • • ,Papa(pa) can not be determined since the corresponding A»(») (i — 

1, • • • ,pa) can not be calculated fiom (3.2.2). The large sample behavior of (3.2.3) 

are not affected by these first pa < p mean values, so we can set arbitrary finite 

values to pc (i) where i < pa < p. However the arbitrary setting of these mean values 

do affect . finite sample performance of (3.2.3). One possible way to reduce this 

eh>" ;- earrange the order of the first pa response value YPa as follows. First 

set pai(l) = 0 or some other prescribed value. Then choose as the first data point 

3/(1) the one from YPa which can be predicted best, i.e. the one with the smallest 

D(y(iy,pai(l)). As j/(2) we select the nearest data point among YPa to y^ in terms 

of the quasi-i'eviance D(t/(2);j/(i)) and define /ia2(2) = j/(i). Then fit j/(i) and j/(2) 

using the generalized linear model containing only the first parameter of /?0, calculate 

the prediction value for each of YPa except j/(i) and j/(2) based on this model, and 

choose as j/(3) the observation among YVa which gives the smallest quasi-deviance. 

The corresponding prediction value for 3/(3) is defined as /ia3(3). The next step is to 

fit the generalized linear model containing the first two parameters of /?0, find 3/(4) and 

define #Q4(4). Continue this procedure until the new order of YPa is determined and 

£<*i(l)> • " ,fLap„(pa) are defined. While the procedure just discussed can determine 

the first pa estimated means and control the prediction errors of the first pa terms of 

(3.2.3) to some extent, it still has some disadvantages. One is that a different model 

will probably yield a different ordering of the data. The model comparisons will thus 

not be based on the same order of the data. The other is the amount of computation 
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needed to determine the order which could be fairly large. In Section 3.4 we will again 

discuss the strategy to deal with the effect of the first pa estimated mean values. 

If the 3/,'s are normally distributed with constant variance, (3.2.3) becomes the 

sum of the squared "honest" prediction errors, which was shown by Rissanen (1989) 

to be an approximation of the predictive stochastic complexity of Y except for a 

multiplicative constant. If the j/.'s have a likelihood function of the form (3.1.2), it 

can be seen by a straightforward calculation that D(yi\pi) is the same as the log-

likelihood function of j / , with respect to //,-, except for a term which does not involve 

the parameter of interest pi (part of Theorem 2 in Wedderburn, 1974). Thus in this 

case (3.2.3) is (except for a quantity unrelated to the model selection) the predictive 

stochastic complexity of Y relative to model (3.2.1), or equivalently the negative 

prequential log-likelihood of the model on Y. In general, the use of (3.2.3) as an 

empirical assessment of the model is an extension of Rissanen's predictive minimum 

description length principle and Dawid's prequential statistical approach. 

3.3 The Predictive Least Quasi-deviance Crite­

rion 

3.3.1 Main Results 

Because of the above connections between (3.2.3) and the predictive stochastic 

complexity on the one hand, and prequential analysis on the other, a model selection 

procedure similar to those employed in the predictive minimum description length 

principle aud "prequential" principle can be formulated for the generalized linear 

model selection: from the class of models A we select the one which minimizes Sa<n, 

or the most parsimonious one if it is not unique. This is the so-called predictive least 

quasi-deviance (PLQD) criterion. 

We know that a generalized linear model depends not only on the covariate (pre­

dictor) variables, but also on the link function </(•). For a fixed </(•) we can use the 
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predictive least quasi-deviance criterion to select a model Ma with the smallest Sa,n 

among the models of the form (3.2.1). If another link function gi(-) is proposed, the 

same procedure can be applied to obtain another model Mgi. The predictive quasi-

deviance function (3.2.3) for these two models can then be compared and the smaller 

one is elected. The same procedure can be used in the case of more than two link 

functions. The problem of comparing two different model classes has recently been 

discussed by O'Hagan (1994). 

So far we have considered only the model selection from a set of models A corre­

sponding to a fixed link function g(-). Now we consider the question of optimality of 

the model selection by the predictive least quasi-deviance criterion. 

Denote iPa = D^V^Dd, and jPa = D^^VJV^ Dai where w = {l,---,p} 

indicating the full model. Also denote lpa = —a2 Jf"' where U(/3a) is the quasi-

score function based on the first i — 1 observations and the model Ma of the form 

(3.2.1). With these notations we have the following results. 

Theorem 3.3.1 Suppose the components of the response n-vector Y ars independent 

with mean p — (pi, • • • ,pn)
T and each with a variance o~2Vi(pi) where a2 is a constant 

of probably unknown value and Vi(-) is a known functions. We consider selecting a 

model M.a of the form (3.2.1) from A, given the matrix of observed covariaie vectors 

X = (xi, •••, xn)
T. Suppose furthermore that the following conditions are satisfied. 

(a). 

(b). 

(c). 

E 
•/£<..(«) Vd (.) Vi{t) 

< oo for any i > 1. (3.3.1) 

2-i ,-2 
,•=1 l 

[M 1 , 

•/£<,.(.•) Vi(t) 

2 

< oo. (3.3.2) 

liminf-V / ' , dt > 0 for any Ma in Category I. (3.3.3) 
n-̂ oo nf^JEHaiii) Vi(t) 

(d). ipa = 0(i) and jpa = 0(i) for all /3a. Moreover, both i~xipa and jpa have 

positive definite limit as i —* oo. 
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(e). Ipa = 0(i) and Ipa is nonsingular almost surely as i —• oo. 

(f).E(U(EK(i)))=0(i>t2). 

(g). The maximum quasi-likelihood estimate J3a(i) of (ia in (3.2.1) exists for all i 

greater than pQ + 1. 

(h). The link function g(-) is second-order differential and g~l is well defined. 

(i). There exists a positive constant S such that V(') > S. 

Then 

5 . , - ^ r t + I t j k ^ a + ^ l ) (3.3.4) 

if Ma is in Category I, and 

Sa,n = ±D(Y;p) + op(l) (3.3.5) 

if MQ is in Category II. 

Furthermore 

lim pr{the selected model is in Category 1} = 0. (3.3.6) 

Equation (3.3.6) follows directly from (3.3.4), (3.3.5) and (3.3.3) and answers the 

question of whether the selected model is asymptotically correct. However it may not 

be op'uimal. The following theorem gives a result concerning selecting the optimal 

model. 

Theorem 3.3.2 In addition to the assumptions of Theorem 3.3.1, suppose that the 

following conditions are true. 

(j). Vi(pi) is second-order differentiate for i = 1, • • •, n. 

(k). For any model Ma in Category II, \pai(i) ~ Pi\ < o(l) almost surely as i —* oo. 

(I). For any Ma in Category II, lpi — ip = o(i) holds for any fl'a in o(l) neighbor­

hood of true Pa. 
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Then for any Ma in Category II 

E(5fl,,) = ±E(D(K;p)) + ± £ ^L-)E(pai(i) - p,)2 + c{n'1 logn) (3.3.7) 

and Mere exists a non-negative number cn such that for n sufficiently large 

E(Sa,n ~ Sa.<n) > cnn~l logn + o(n~l logn). (3.3.8) 

Here a* C a corresponds to any model in Category II which is nested to Ma- Cer­

tainly the optimal model is nested to MQ. 

The proofs of Theorem 3.3.1 and 3.3.2 are given in Section 3.6. 

In Dawid (1992) the consistency problem of the Bayesian model selection by the 

prequential approach was also considered. It was shown that the model-selection 

method which proceeds by maximi?ing the adjusted prequential likelihood, or equiv­

alently minimizing the "adjusted stochastic complexity" of the data, would be (almost 

surely) consistent. 

3.3.2 Remarks on Some Conditions of Theorem 3.3.1 and 

3.3.2 

Note that if the likelihood function of the data is of the form (3.1.2) and g(-) is a 

canonical link function, then Dat — Va,Xa^ where X ^ = (xi0, • • •, X(,_i)Q)T being an 

(i - 1) x pa matrix. Therefore, iPa = X^TVatX^K Ha = X^V^X^ and l&a = iPa. 

Hence the conditions (d), (e) and (1) are obviously true in this situation if X = 0(1). 

We know that £ ~ -^r; < oo for any e > 0. So if K(/*,)£[/£,(l) j^dtf is 

bounded by 0(i/log1 + e i) , the condition (b) will hold. When the likelihood function 

is of the form (3.1.2) and g(-) is a canonical link function 

E[£,ISi$*f-*[* / ,'-*M-(<)]' 
= ^«»Kl9.(<))*«. + *l(EPM - M(Eh(') - fl.f*.. = 0(1) 

using Lemma 3.6.1. Similarly condition (a) also holds in this case. 
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If n$ denotes the number of terms satisfying IE^U) VW^ > ^ for i = 1,• • • ,n, 

then a sufficient condition implying (c) is 

flfi 

lim inf — > 0 for some S > 0. 
n-»oo n 

Obviously ns/n is an empiri<~ •' probability for a function of the covariate vector x. 

An explanation for the use of condition (k) in (3.3.2) is that the convergence 

in probability does not imply the convergence in expectation unless the integrand 

function in the expectation is dominated almost surely by a integral function. 

3.4 An Approximate PLQD and A Monte Carlo 

PLQD 

The predictive least quasi-deviance principle has a great intuitive appeal. For one 

thing, if there is any mechanism which restricts a future observation in a manner 

similar to the past, and which can be captured by the selected class of parametric 

functions, then we will find that mechanism. Conversely, if no such mechanism exists, 

then our predictions will be bad, but so will all other predictions that use the same 

class of paramatric functions. Moreover, the criterion we seek to minimize expresses 

the quantity which does not involve the hypothetical "true" distribution itself, namely, 

the accumulated prediction errors of the observations (or the predictive stochastic 

complexity of the data if the likelihood function of the data is of the form (3.1.2).). 

Finally, the principle involves a few arbitrary choices that need to be made by "sound 

judgment"; such choices are the selection of the parametric class and the link functions 

which, however, are inevitable. 

A drawback of the predictive least quasi-deviance technique is that the prediction 

errors for the first few response observations may be fairly large, and if the sample size 

n is not large enough the predictive quasi-deviance function (3.2.3) may be seriously 

affected by these large prediction errors.. 

To overcome this difficulty, we drop the first few terms of (3.2.3) which do not 
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affect the asymptotic behavior, but which are always troublesome when computing 

the predictive quasi-deviance values. The number of terms dropped is proportional 

to the number of the explanatory variables available. We call this the approximate 

predictive least quasi-deviance method (abbreviated as APLQD). According to our 

experience, the number of terms dropped is about fp, where 7 is a finite positive 

number less than 5, so that large prediction errors are avoided and little information 

is lost. 

As another modification to the predictive least quasi-deviance method we consider 

the following resampling technique: Draw (without replacement) a random collection 

C of r permutations of {1,• • • ,n} and select a model by minimizing 

cMPLQD _ * v* cc 

r c€C 

where S£ n is the predictive quasi-deviance value computed by using the approximate 

predictive least quasi-deviance method based on the permutation c €C and r = 0(n). 

This is called the Monte Carlo predictive least quasi-deviance method (abbreviated 

as MPLQD). Because of the resampling technique used here, the Monte Carlo predic­

tive least quasi-deviance method greatly reduces the effect of large initial prediction 

errors which seriously affects the performance of the predictive least quasi-deviance 

method, and is expected to have higher efficiency than the approximate predictive 

least quasi-deviance method, especially for medium sample size. This can be inter­

preted as follows. In using the approximate predictive least quasi-deviance method 

the effect of large initial prediction errors is reduced by dropping the first few terms 

of (3.2.3), but at the same time the information originating from predicting these 

deleted observations by other observations is lost. The Monte Carlo predictive least 

quasi-deviance method seems to compensate for the lost information by resampling. 

Asymptotically the Monte Carlo predictive least quasi-deviance method behaves sim­

ilarly to the predictive least quasi-deviance method: (3.3.6) as well as (3.3.8) hold, 

with the probability being interpreted as the joint probability corresponding to Y and 

the Monte Carlo selection of the permutations. 

Besides the above proposals to solve the effect of the first few terms of (3.2.3), this 
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initialization problem, inherent in the general predictive principle, can be overcome 

as follows. The data sequence is subdivided into segments of length d, and each 

subsequent segment is predicted with the model fitted to the preceding segments. If 

the very first segment is predicted in the same manner by all the models, the segment 

length d can be optimized along with the numbers of parameters in the models. Such 

a technique has been applied successfully to neural networks (Rissanen (1994)). Use 

of such a technique can also be found in density estimation (Yu and Speed, 1992). 

3.5 A Simulation Study 

In this section we assess the finite sample performance of the predictive least quasi-

deviance method. For the purpose of comparison with other methods we first consider 

the linear model selection and choose the following example from Shao(1993). 

Example 3.5.1: Consider the following model: 

y% = ftxi, + /?2x2, + A3X3, + PAXAX + fcxsx + e„ 

where i = 1, • • • ,40, e,'s are identically independently distributed with the standard 

normal distribution JV(0,1), X*, is the ith value of the fcth predictor variable x*, 

X\t — 1> and the value of x*,, k = 2,••• ,5, i — 1,• • •,40, listed in Table 1, are 

taken from Gunst and Mason(1980). Some of the /^'s may be zero. Thus we are 

selecting some predictor variables from five possible variables {x i , - - , x s} and we 

wish to select a model with the best predictive ability. Note that there are thirty-one 

possible models, and each model is denoted by a subset of {1, • • •, 5} which contains 

the indices of the variables Xk in the model. 

Because j/,'s are normally distributed with constant variance, the quasi-deviance 

function of 3/,'s is the usual quadratic function. We consider the two modified predic­

tive least quasi-deviance methods: the APLQD and the MPLQD given in Section 4.2 

with 7 = 2 (the first 9 terms are dropped when using the approximate predictive least 

quasi-deviance method and the Monte Carlo predictive least quasi-deviance method) 
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and r = 80(= 2n). Then we compare the results with the ones obtained by cross-

validation methods: the Monte Carlo cross-validation (MCCV(n„)) and the approx­

imate cross-validation (APCV(n„)) with n„ = 25 and b = 2n (for details about the 

Monte Carlo cross-validation and the approximate cross-validation techniques and 

related simulation results see Shao,1993). Table 2 and Table 3 give the empirical 

probabilities(based on 1000 repetitions) of selecting each model in several different 

cases. 

In this last section we assess the finite sample performance of the predictive 

least quasi-deviance method. For the purpose of comparison with other methods we 

choose the following example from Shao(1993). 

The following is a summary of the results in Table 2 and Table 3. 

1. In terms of the probability of selecting the optimal model, the Monte Carlo 

predictive least quasi-deviance method and the Monte Carlo cross-validation 

have the best overall performance among the four methods considered. 

2. When the true model has fewer parameters the Monte Carlo cross-validation is 

slightly better than the Monte Carlo predictive least quasi-deviance technique. 

However, for the full model the Monte Carlo cross-validation is the worst among 

all the criteria and the Monte Carlo predictive least quasi-deviance method is 

the best one. 

3. The probability of selecting a model from Category I (incorrect model) is neg­

ligible for all four methods if all fax, values are quite comparable to a, the 

standard deviation of the error. Here x,- is the sample mean of x,-. If, however, 

some of the /3,-x, values are relatively small comparing to a, this probability can 

not be controlled. 

4. Although the approximate predictive least quasi-deviance method selects the 

optimal model in expectation, its performance is not as good as expected. This 

indicates that in order to have a better performance the approximate predictive 

least quasi-deviance method may require a larger sample size. 
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In addition to the good performance of the Monte Carlo predictive least quasi-

deviance method for linear model selection, it provides a powerful tool for generalized 

linear model selection as well. The following two examples illustrates the performance 

of the predictive least quasi-deviance method to generalized linear model selection. 

Example 3.5.2: Consider the following generalized linear model 

log(p) = /?0 + Axi + &x2 + 03x3 

in which the response y has a Poisson distribution. The observations of the predictor 

variables x's are given in Table 4. The sample size is 36. The values of y are generated 

from the Poisson distribution with the mean given by the above model. Thus we can 

obtain the empirical probability of selecting the optimal model by the two modified 

predictive least quasi-deviance methods. The results at 7 = 4.75 (or drop the first 19 

terms when compute the predictive quasi-deviance) and r = 10,20,40,80 are listed in 

Table 5. From Table 5 we find the Monte Carlo predictive least quasi-deviance method 

generally has a quite satisfying performance. It also implies that the approximate 

predictive least quasi-deviance method would require a larger size sample to achieve 

a better performance. In addition, the probability of selecting a model from Category 

I is negligible for the Monte Carlo predictive least quasi-deviance metuod if all /?,-Xj 

values are comparable to each other and are not close to zero; it is not the case 

otherwise. 

Example 3.5.3: The data in Table 6, taken from Schoener(1970), have already 

been analyzed by Fienberg(1970), Bishop et a/.(1975) and by McCullagh and Nelder 

(1989, Section 4.6). Data concerning the daytime habits of two species of lizard, gra-

hami and opalinus, were collected by observing occupied sites or perches and recording 

the appropriate description, namely the species involved, the time of day, the height 

and the diameter of the perch and whether the site was sunny or shaded. The pur­

pose of analyzing this set of data is to compare the two species with regard to their 

preferred perches. 

We now consider an analysis using a linear logistic model fitted by maximum 

likelihood suggested in McCullagh and Nelder (1989). Since there are four factors H, 



69 

D, S and T available, we have a class of models C each member of which includes some 

of the four factors and one two-factor interaction. There are 40 different models in this 

class and the largest model contains 8 independent variables. The response variable 

here is the observed number of sites occupied by grahami lizards or, equivalently, the 

observed proportion of total sites that were occupied by grahami lizards. We then 

choose a model in C which fits the observations of the response variable best by using 

the Monte Carlo predictive least quasi-deviance method with 7 « 2.5(or drop the 

first 19 terms in computing the predictive quasi-deviance) and r = 50(w 2n). The 

resulting optimal model can be written symbolically as H + D + S+T, the second best 

model is H + D + S + T + H.D and the estimated predictive deviance for these two 

models are 0.0618 and 0.0632 respectively. Based on the optimal model, comparison 

with regard to the preferred perches of the two species can be obtained. 

Our conclusion is the same as that of McCullagh and Nelder (19°°), who infor­

mally used the analysis of deviance method to remove the interaction term from the 

model, but different from that of Fienberg (1970) and Bishop et a/.(1975), who found 

significant interaction between H and D and between S and T regarding their effect 

on species' preferences. The reason for the difference appears to be the fact that, as 

pointed in McCullagh and Nelder (1989), these authors attempted to consider sev­

eral unrelated issues simultaneously using only a single model, and did not condition 

on the totals of the occupied sites which are regarded as ancillary in the method of 

generalized linear regression. 

3.6 Proofs of Theorems 3.3.1 and 3.3.2 

The following result in martingale theory will be useful in the sequel (see Section 

3.3 of Stout,1974). 

Let \Z„Ti,i > 1} be a sequence of martingale differences, where Ti is the borel 

field generated by Zu • • •, Zu i >1,F0 = {0, ft}. Define Sn = £"=i Z{. 

Theorem 3.6.1 [Chow, 1960,1967] 
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If for some r > 2 
oo 

5>WA,+r/2<«>, 
i'=l 

then Sn/n -* 0 almost everywhere as n —> oo. 

Lemma 3.6.1 t/nder the conditions (d)-(h) of Theorem 3.3.1, the following state­

ments are true. 

(i). cov0a(i)) = 0(i-») and &(») - £(/?„(«)) = Op(i~
ll2). 

(ii). E (&(»') - #») ()9a(j) - /?a)
T = 0(i~l) and 0a(i) - /3a = Cy?'"1'2) i / R is in 

Category II. 

(Hi). var(pai(i)) = 0(i~l) and pai(i) - E(pai(i)) = Op(i~
1/2). 

(iv). E\pai(i) — Pi\ = 0(i~l) and pai(i) — pi = Op(i~
ll2) if Ma is in Category II. 

Proof If we denote $a(i) as the maximum quasi-likelihood estimate, then U(f3a(i)) 

= 0. Applying Taylor expansion to £/(/3a(i)) around EJ3a(i) for any Ma in Category 

I, it can be seen that 

6Pa = u(Epa(i)) - °-2ip.a(k(i) - Epa(i)) 

where lp* is the observed information evaluated at a point /?* lying on the line segment 
A A 

joining @a(i) and Ef5a(i). Thus 

A,(t) - E0a(i) = a2Ip}U(Epa(i)) = 0(i~l)V(Epa(i)). (3.6.1) 

By the condition var(U(E$a(i))) = JEpaii)
 = 0(i) and the condition (f), we have from 

(3.6.1) cov0a(i)) = 0 ( r x ) and by Chebyshev's inequality & ( i ) - F0a(i) = 0P(*'~1/2), 

which is (i). 
A 

T"y expanding U(0a(i)) around &,, similarly we can obtain (ii). 
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Using the expansion 

\pai(i)-Epai(i)\ = \9-l(xJJa(i))-g-l(xlEpQ(i)) 

+9-1(xlE0a(i))- Eg-\xUa(i))\ 

< |ff-l(*L«)||*L(4.(0-^A.(0)| 

+E[\9-1(xl^\ximi)-Epa(i))\] 

and part (i), it can be seen (iii) is true. Similarly (iv) follows. • 

( (ATCA)~l 0 \ 
is a non-negative definite ° ° ' 

matrix, where C is an m x m positive definite matrix, A is an m x a matrix, B is a 
m x b matrix, a + b <m and rank(A, B) = a + b. 

The proof of Lemma 3.6.2 is straightforward. 

Proof of Theorem 3.3.1. Using the notation of Section 3.2, (3.2.3) can be rewritten 

as 

n £ i ^ . Vi(t) n^[J'nat(i) Vi(t) 

1 " r* pi-t. 1 - ,BMl) w , f 

n ti JBMi) V,(t) + ntiLd) Vi(t) 

={ ±D(Y;p) + h + I2 + h (3.6.2) 
In 

where I\, I2, 1$ denote the second, third and fourth term of the right hand side. 

This decomposition of 5a ,n can be explained as follows. The first term is half of the 

average quasi-deviance of Y, I2 + I3 measures the bias sequence {//, — pai(i)}, where 

I2 measures the {//, — Epai(i)} part and 3̂ for {pai(i) — Epai(i)}, and /1 is some kind 

of cross-product term. 

Since pai(i) depends on the first i — 1 observations we have 

<^fiitu---'^)--m-->''))L*W)it=« 
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i = 2, • • •, n. Thus {/£),«) 1wft^t * — 1»"""»n>"''} *s a sequence of martingale dif­

ferences if E /£),(,•» JvTjTi'dt < oo, which is true from the condition (3.3.1). By Theo­

rem 3.6.1 it is known that I\ —* 0 almost surely as n —• oo if (3.3.2) is true. 

From (iii) of Lemma 3.6.1 and by Lyapunov's inequality it is easy to know that 

E\pai(i) — E(pai(i))\ = 0(i~ll2). Therefore it can be seen that under the condition 

(i) J3 converges to 0 in Li and accordingly h = op(l) in probability. 

Suppose that the chosen model Ma is the correct one. From (iv) of Lemma 3.6.1 

it is easily known that E \pai(i) — P%\ = 0(i~1^2). Therefore 

Pi-t 

i~°°JEiia,{i) Vi( 
-dt = 0 

Vi(t) 
and lirrin—oo I2 = 0 if Ma is in Category II. 

For any model Ma in Category I and M-, in Category II it is not difficult to com­

prehend that the difference of the corresponding predictive quasi-deviance functions 

Sa,n — S-y,n > 0 in probability 

if (3.3.3) is true. Note that I2 > 0 for any fixed n when MQ is in Category I. (3.3.3) 

is therefore a quite reasonable assumpt;-'n. 

Theorem 3.3.1 follows from the above results for Ii, I2 and J3 and the decompo­

sition (3.6.2) of 5„,„. • 

Proof of Theorem 3.3.2. Rewrite Sa,n as 

2n n t i ' W ' l K'(0 n £ j •/*«.(•') Vi(t) 

Define f(s) = ft1 yi&dt and by Taylor expansion for f(s) around pi we obtain 

1 

nf^h^V^t) 2nti :(pai(i)-pi)2 + 0({pai(i)-pir) 
.V5(w) 

Thus by the independence of 3/, and pai(i), and the condition (k) it is easily known 

that 

**•* = s^rt+srS 1 £(/U<) - W ) ' + <K£tf«(') - w)2) 
[KM 

- s**1™+h£w^M i ) ~*?+°(n"'logn) 
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since E\pai(i) - Pi\ = 0(i~xl2). From (3.6.1) and the condition (1) f}a(i) - fta = 

Ip}U(pa) = (1 + o(l))iplU(l3a). Thus by Taylor expansion 

pai(i)-Pi = g^^iPoM-g-'&a) 

= (*-1)'(*LA.)(*£A,(0 - *L&) + *(*£&(*) - *£&) 
= to-V&Ml + O(l))(xl0a(i) - «£&) 

Therefore by noting that Vaj = V î, p^ = p^} and x?a/?a = xf/? for any A ô in 

Category II we have 

E(pai(i) ~ Pi? = \(g-l)'(x^)\2 (1 + 0(l))xliplxiQ. 

Similarly 

E(Pa'i(i) ~ Pi? = {(g-^Xxfp)}2 (1 + 0(1))X^>,- , 

•'•fc. ° From Lemma 3.6.2 we know ii*1 - I "Pa' I is a non-negative definite matrix, 
*" \ 0 0 / 

therefore 

i A kwfff 
i f - 1 - »»fc. 0 

0 0, 
â io + o(n~ logn) 

> c„n logn-fo(n logn) if n is sufficiently large. 

D 
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Table 3.1: The Values o/xjt, in Example 3.5.1 

X2, X3, X4, X5, 

0.36 0.53 1.06 0.5326 
1.32 2.52 5.74 3.6183 
0.06 0.09 0.27 0.2594 
0.16 0.41 0.83 1.0346 
0.01 0.02 0.07 0.0381 
0.02 0.07 0.07 0.3440 
0.56 0.62 2.12 1.4559 
0.98 1.06 2.89 4.0182 
0.32 0.20 0.76 0.4600 
0.01 0.00 0.07 0.1540 
0.15 0.25 0.50 0.6516 
0.24 0.28 0.59 0.0611 
0.11 0.35 0.40 0.1922 
0.08 0.13 0.28 0.0931 
0.61 0.85 0.49 0.0538 
0.03 0.03 0.23 0.0199 
0.06 0.11 0.50 0.0419 
0.02 0.08 0.25 0.1093 
0.04 0.24 0.08 0.0328 
0.00 0.02 0.04 0.0797 

X2, X3, X4, X5, 

0.09 0.18 0.59 0.1855 
0.02 0.16 0.24 0.1572 
0.02 0.11 0.21 0.0998 
0.05 0.24 0.43 0.2804 
0.11 0.39 0.29 0.2879 
0.18 0.11 0.43 0.6810 
0.04 0.09 0.23 0.3242 
0.85 1.33 2.70 2.6013 
0.17 0.32 0.66 0.4469 
0.08 0.12 0.4l» 0.2436 
0.38 0.18 0.49 0.4400 
0.11 0.13 0.18 0.3351 
0.39 0.38 0.99 1.3979 
0.43 0.46 1.47 2.0138 
0.57 1.16 1.82 1.9356 
0.13 0.03 0.08 0.1050 
0.04 0.05 0.14 0.2207 
0.13 0.18 0.28 0.0180 
0.20 0.95 0.41 0.1017 
0.07 0.06 0.18 0.0962 



75 

Table 3.2: Probabilities (Based on 1000 Repetitions) of Selecting Each Model 

/3= 
(2,0,0,4,0) 

(2,0,0,4,8) 

0= 
(2,9,0,4,8) 

(2,9,0,4,0.1) 

Model 
1,4 

1,2,4 
1,3,4 
1,4,5 

1,2,3,4 
1,2,4,5 
1,3,4,5 

1,2,3,-̂ ,5 
1,4,5 
1,3,5 

1,2,4,5 
1,3,4,5 

1,2,3,4,5 
1,4,5 

1,2,4,5 
1,3,4,5 

1,2,3,4,5 
1,2 
1,4 

1,2,3 
1,2,4 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 
1,2,3,5 
1,2,4,5 
1,3,4,5 

1,2,3,4,5 

Category 
Optimal 

II 
II 
II 
II 
II 
II 
II 

Optimal 
I 
II 
II 
II 
I 

Optimal 
I 
II 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Optimal 
I 
II 

MCCV 
0.926 
0.023 
0.021 
0.028 
0.002 
0.000 
0.000 
0.000 
0.956 
0.001 
0.026 
0.016 
0.001 
0.019 
0.956 
0.003 
0.022 
0.000 
0.010 
0.000 
0.949 
0.000 
0.001 
0.000 
0.000 
0.020 
0.000 
0.020 
0.000 
0.000 

APCV 
0.501 
0.116 
0.085 
0.172 
0.038 
0.039 
0.037 
0.012 
0.651 
0.000 
0.161 
0.131 
0.057 
0.000 
0.818 
0.000 
0.182 
0.002 
0.017 
0.003 
0.496 
0.003 
0.017 
0.002 
0.019 
0.199 
0.005 
0.158 
0.016 
0.063 

APLQD 
0.532 
0.108 
0.069 
0.211 
0.012 
0.038 
0.021 
0.009 
0.785 
0.000 
0.113 
0.078 
0.024 
0.002 
0.797 
0.OCJ 
0.201 
0.000 
0.018 
0.000 
0.773 
0.000 
0.001 
0.000 
0.000 
0.107 
0.000 
0.086 
0.002 
0.013 

MPLQD 
0.921 
0.025 
0.020 
0.033 
0.001 
0.000 
0.000 
0.000 
0.951 
0.000 
0.038 
0.011 
0.000 
0.011 
0.962 
0.007 
0.020 
0.000 
0.005 
0.000 
0.910 
0.000 
0.000 
0.000 
0.000 
0.024 
0.000 
0.054 
0.000 
0.007 



Table 3.3: Continued to Table 3.2 

(2,9,6,4,8) 

(2,0.3,0,0,1.4) 

Model 
1,2,3,5 
1,2,4,5 
1,3,4,5 

1,2,3,4,5 
1 

1,2 
1,3 
1,4 
1,5 

1,2,3 
1,2,4 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 
1,2,3,5 
1,2,4,5 
1,3,4,5 

1,2,3,4,5 

Category 
I 
I 
I 

Optimal 
I 
I 
I 
I 
I 
I 
I 

Optimal 
I 
I 
I 
I 
II 
II 
I 
II 

MCCV 
0.001 
0.006 
0.031 
0.962 
0.000 
0.045 
0.000 
0.019 
0.900 
0.001 
0.000 
0.025 
0.000 
0.008 
0.000 
0.000 
0.002 
0.000 
0.000 
0.000 

APCV 
0.000 
0.000 
0.001 
0.999 
0.002 
0.042 
0.006 
0.033 
0.418 
0.011 
0.007 
0.104 
0.016 
0.118 
0.078 
0.013 
0.044 
0.042 
0.043 
0.023 

APLQD 
0.000 
0.002 
0.005 
0.993 
0.000 
0.018 
0.001 
0.021 
0.632 
0.003 
0.000 
0.030 
0.016 
0.179 
0.049 
0.006 
0.014 
0.010 
0.020 
0.001 

MPLQD 
0.001 
0.001 
0.023 
0.975 
0.000 
0.057 
0.000 
0.018 
0.886 
0.001 
0.000 
0.028 
0.000 
0.007 
0.002 
0.001 
0.000 
0.000 
0.000 
0.000 

Table 3.4: The Values ofxk, in Example 3.5.2 

Xii X2i I3 , 

0.412 0.284 0.97 
0.805 0.296 1.082 
0.485 0.23 0.743 
0.235 0.173 1.038 
C.224 0.16 0.796 
0.31 0.136 0.832 
0.262 0.285 0.387 
0.51 0.103 0.436 
0.614 0.208 0.88 
0.453 0.204 0.224 
0.095 0.197 0.67 
0.841 0.533 0.531 

Xn X2l X3, 

0.484 0.885 0.83 
0.249 0.969 0.108 
0.443 0.949 0.363 
0.594 0.948 1.195 
0.541 0.959 1.147 
0.464 1.003 0.564 
1.15 1.045 0.906 
0.982 0.948 0.221 
0.734 1.042 0.711 
0.628 0.924 0.833 
0.944 0.985 0.731 
0.562 0.938 0.36 

Xi, X2i x 3 , 

0.993 0.51 0.469 
0.784 0.577 0.404 
0.754 0.559 1.031 
0.964 0.53 0.742 
0.729 0,502 0.711 
1.13 0.559 0.92 
0.896 0.515 1.169 
0.672 0.54 1.032 
1.484 0.51 0.358 
0.931 0.533 0.355 
0.566 0.5 0.653 
0.841 0.533 0.531 
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Table 3.5: Probabilities (Based on 1000 Repetitions) of Selecting Each Model 

0= 
(2.1 " ">) 

0= 
(2,2,2,0) 

0 = 
(2,1,0.5,0.35) 

0 = 
(2,3,0,0.1) 

Model 

1 
1,2 
1,3 
1,4 

1,2,3 
1,2,4 

1,2,3,4 
1,2,3 

1,2,3,4 
1,2 
1,3 

1,2,3 
1,2,4 

1,2,3,4 
1,2 

1,2,3 
1,2,4 

1,2,3,4 

Category 

I 
Optimal 

I 
I 
II 
II 
II 

Optimal 
II 
I 
I 
I 
I 

Optimal 
I 
I 

Optimal 
II 

APLQD 

0.008 
0.571 
0.003 
0.002 
0.182 
0.182 
0.052 
0.777 
0.223 
0.015 
0.001 
0.144 
0.040 
0.800 
0.350 
0.111 
0.417 
0.122 

r = 1 0 
0.000 
0.693 
0.000 
0.000 
0.150 
0.132 
0.025 
0.842 
0.158 
0.001 
0.000 
0.066 
0.004 
0.929 
0.403 
0.083 
0.426 
0.088 

MPLQD 
r = 20 
0.000 
0.711 
0.000 
0.000 
0.138 
0.117 
0.034 
0.856 
0.144 
0.000 
0.000 
0.061 
0.005 
0.934 
0.400 
0.080 
0.423 
0.097 

r = 40 
0.000 
0.710 
0.000 
0.000 
0.136 
0.123 
0.031 
0.860 
0 140 
0.000 
0.000 
0.056 
0.006 
0.938 
0.412 
0.081 
0.423 
0.084 

r = 80 
0.000 
0.719 
0.000 
0.000 
0.131 
0.125 
0.025 
0.861 
0.139 
0.000 
0.000 
0.060 
0.003 
0.937 
0.413 
0.081 
0.429 
0.077 

Table 3.6: A comparison of site preferences of two species of lizards, 
grahami and opalinus 

s 
Sun 

Shade 

Perch 
D H 
(in) 
<2 

>2 

<2 

>2 

(ft) 
<5 
>5 
<5 
>5 
<5 
>5 
<5 
>5 

G 
20 
13 
8 
6 

34 
31 
17 
12 

Early 

0 
2 
0 
3 
0 

11 
5 

15 
1 

Total 
22 
13 
11 
6 
45 
36 
32 
13 

G 
8 
8 
4 
0 

69 
55 
60 
21 

T 
Mid-day 

O 
1 
0 
1 
0 

20 
4 

32 
5 

Total 
9 
8 
5 
0 

89 
59 
92 
26 

G 
4 

12 
5 
i 

18 
13 
8 
4 

Late 

O Total 
4 8 
0 12 
3 8 
1 2 

10 28 
3 16 
8 16 
4 8 

H, perch height; D, perch diameter; S, sunny/shady; T, time of day; 
G, grahami; O, opalinus. 



Chapter 4 

On Stochastic Complexity 

Estimation — A Decision 

Theoretic Approach 

4.1 Introduction 

The raw material of a statistical investigation is a set of observations, which are 

the observed values of some random variable X whose distribution F is at least partly 

unknown. Statistical inference is concerned with methods of using this observational 

material to obtain information concerning the probabilistic structure of F. A general 

formulation of the problem was given by Wald's theory of decision procedures (Sec­

tion 1.1 of Wald, 1950 and Chapter 1 of Ferguson, 1967) according to which the aim 

of statistics is the selection of a decision rule which minimizes the resulting risk. 

For the purpose of describing the information contained in the observational ma­

terial the related notions of stochastic complexity and description length provide 

a global measure in the sense that the derivation of these quantities involves the 

consideration of not only the randomness in the observational material but also the 

properties of mathematical formulation used to model the observations (refer to Chap­

ter 1). With such measures one can hope to determine a decision procedure with some 
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universal optimum properties for many statistical problems. 

Let Xi, X2, • • •, Xn = Xn be a sample independently drawn from a (at least partly 

unknown) probability density function p(-) which is assumed to belong to a density 

class T. The X,'s are assumed to take values in a measurable space X and the density 

function p(-) is taken with respect to a known complete, a-finite dominating measure 

&»(•). The description length for the sample Xn relative to p is then defined as a 

two-step codelength 

C(p) + logpT^)' ( 4 , u ) 

where p(Xn) = n?=iP(X), C(p) is the part of the code length for encoding the 

underlying density p and the logarithm is in base 2. 

An interpretation as well as some necessary restrictions are given as follows. Sup­

pose the class T contains at most countable infinite number of densities, {C(p),p € T} 

is then a sequence of nonnegative numbers satisfying Kraft's inequality Hp er 2~c^ < 

1 and each C(p) is interpreted to be the codelength for the description of the corre­

sponding density. There is also a Bayesian interpretation of the numbers 2 ~ c ^ as 

prior probabilities. In Kolmogorov's complexity theory C(p) is equal to the minimum 

codelength of the programs ip that encode p on a universal computer which consists 

of finite length binary programs satisfying the prefix property (Rissanen, 1989 pp. 

45-52). Since the description of Xi,X2,••• ,Xn in (4.1.1) follows the code for p, the 

prefix condition is essential for decoding the two steps. Kraft's inequality gives nec­

essary and sufficient conditions for the prefix property, i.e. the existence of instant 

and decodable binary codes. By Shannon's work, if p is given, then (log(l/p(Xn))] is 

the length of an instantaneous code that describes the sample X\, X2, • • •, Xn-

In order to make Kraft's inequality meaningful the countability of the size of the 

density class V is necessary. Although in statistical inference the employed model 

class is often of uncountable size (like the usual parametric model class), we can 

circumvent the problem by applying the encoding process to the parameters which 

are truncated to a fixed precision and then, by using a limit process, to extend it to 

a model class of uncountable size. The countability of the model class is, therefore, 
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of no importance to the results following. Nevertheless, for the sake of simplicity we 

will assume the countability of T, except in Section 4.3. Hence T is often specified by 

a sequence of parametric models with the parameter values restricted to a prescribed 

precision, and in the ideal case T consists of all computable probability densities. 

When the descriptive programs for the densities in the class T are determined, 

the two-step codelength (4.1.1) is a function of the unknown part of the true density 

Po provided that po is in the class T. It is natural to consider the minimization 

of the two-step length to determine the unknown part of p0. This is the so-called 

minimum description length (MDL) method. However, the minimum description 

length based on (4.1.1) is still not entirely satisfactory as the shortest codelength 

of the sample Xi, X2,- • • ,Xn relative to the density class T, for it is the result of a 

specific coding construct, and by encoding both the sample and the density we get 

more than we really need. To eliminate such redundancy in describing the data, a 

concept of stochastic complexity is introduced by Rissanen (1986a, 1987, 1989). In 

our case, the stochastic complexity of the sample Xi, X2, • • •, Xn relative to T and C 

is defined as 

I(Xn | T,C) = -log r£p(Xn)2-c^) . (4.1.2) 

It represents the shortest code length for the data that can be achieved by the densities 

in T under C. Based on the stochastic complexity a density can be defined to replace 

the true density in the inferential process. 

Now suppose that the unknown part of the density p can be written as (j> — <p(p) 

which is a mapping, called the descriptive mapping, from a large class of densities V 

to a space A, called the description space. The large class V contains the plausible 

densities p for the unknown population density of Xn, which usually includes T, 

the convex hull of T T*, all the empirical densities of Xn, and so on. In the most 

general situation V contains all the probability density functions. The structure 

of A and the form of <b are determined by the particular decision problem. Any 

function (or mapping) S = S(Xn) that maps the sample space Xn into A is called 

a decision rule. The class of all decision rules is denoted by D, the decision space. 
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In a decision problem, if p is fixed, <t>(p) will be completely determined. A general 

decision problem, in which p is at least partly unknown, is then specified by assigning 

p a correct decision in the decision space D to estimate <j>(p) using the information 

contained in the observations and using a loss function L to evaluate such decision. 

The great variety of the possible decision structures is illustrated by the following 

cases: 

i) Hypothesis testing in which one wishes to decide which of the propositions i4i or 

A2 is true for the density p0 . Here A = {Ai,i42} and <)>(po) = Ai if Ai is true 

and A2 if A2 is true. The decision rule S(Xn) can be any function taking the 

value of either 1 or 0 corresponding to A\ and A2 respectively. 

ii) Identification A straightforward generalization of (i) in which there is a choice of 

s alternatives Ax, A2, • • •, A3. Here A = {Ai, A2, • • •, A3) and </>(po) = Ai if Ai 

is true, i = 1,2, • •• ,s. 

iii) Estimation on the other hand requires a numerical assessment of some quantity 

related to the unknown part of po- In this case <f> = <j>(p) is a fc-vector functional 

of p and A is the Euclidean space IZk or its subset. 

For an account of these cases in somewhat different forms see Rissanen (Chapter 4, 

1989) for (i), Rissanen and Ristad (1992) and Rissanen (Chapter 7, 1989) for (ii), and 

Barron and Cover (1991), Barron et al. (1992), and Rissanen et al. (1992) for (iii). 

In this chapter we address these problems within the framework of decision theory. 

The choice of a loss function is still to be discussed. 

For a decision rule S = S(Xn), we define the loss functions, respectively, to each 

case above as follows. 

i) 

i w M M o - r :;*!p!=^ <4.u» 
<Kp) = M, 

f 0 if. 

TO if 

\ b if* <b(p) = Ai, 
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" ) 

a and b are the losses which can be adjusted according to the relative importance 

of the two types of error. 

The risk function becomes 

R(<j>(p),S) = EpL(<j>(p),S(Xn)) 

bP(S(Xn) = A2) H<l>(p) = Ai 

aP(S(Xn) = Ai) \i<j>(p) = A2 •I (4.1.5) 

L(<f>(P),AJ) = n1 (4.1.6) 

for <j>(p) = Ai,j = 1,2, • • •, s and i = 1,2, • • •, s. rij is the penalty for misclassi-

fying <j>(p) of proposition .4, to proposition Aj. r^ = 0 if i = j . 

The risk function is 

R(<t>(p), *) = £ rijP(S(Xn) = Aj) (4.1.7) 
i=\ 

for 4>(p) — Ai,i = 1,2, • • • ,s. 

iii) 

L(<f>(p), 6(Xn)) = v(p)\S(Xn) - <j>(p)\\ (4.1.8) 

the usual form of the squared error loss. 

From now on we use the triplet (I\ D, R) to denote a statistical decision problem. 

In this chapter we concentrate on estimating <p(p) of the density p. By using 

Rissanen's concept of stochastic complexity we introduce a complexity decision rule: 

first we define a stochastic complexity density estimate pn of p with respect to the 

sample Xi,X2, • • •,Xn, the density class T and the description length sequence C(p), 

then we use <f>(pn) to estimate the quantity <j>(p). We show that this decision procedure 

is admissible, achieves the minimum expected risk and forms a minimal complete class 

under very general conditions. Applications to parametric distribution families is also 

considered after a discussion of consistency. 
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4.2 Complexity Decision Rule 

To estimate the quantity t£(p), a general and straightforward selection procedure 

can be obtained from a set of candidate probability densities T subject to the infor­

mation provided by the sample Xi,X2, • • •, Xn. Denote the density chosen as p„, tV" 

estimate of (j>(p) can then be written as < (̂pn) and the decision rule S(Xn) = <£(pn), 

The concept of description length and stochastic complexity suggests that a nat­

ural and optimal choice for the density p might be the one that minimizes the de­

scription length or the one generated by the minimum stochastic complexity. We now 

discuss such procedure in detail. 

Let's first define minimum description length of the data Xi, X2, • • • ,Xn relative 

to T and C as 

B(X«) = mm(C(p) + l o g ^ ) (4.2.1) 

and 

pn = arg minper(C(p) + log ̂ r ^ ) (4.2.2) 

which is called the minimum description length density estimator relative to T and C 

(Barron and Cover, 1991). In case of ties, the density pn is chosen for which C(pn) is 

shortest (and any further ties are broken by selecting the density with the smallest 

index in T). 

From Section 4.1 we know that {C(p),p € T} must satisfy the summability re­

quirement 

£ 2 - C ( p ) < l . (4.2.3) 
per 

In the remainder of this chapter we assume, for the purpose of convenience, that 

{C(p),p G T} satisfies the regularity condition 

£ 2 - C ( p ) = l. (4.2.4) 
per 

Actually, if the regularity condition is not satisfied, we can define a new coding 

process for the densities in V so that the description length for each p in T is the C'(p) 
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that satisfies 

2-C{p) 

E ^ 2 ^ ( 9 ) 
2_C ' (P) = ^ ^ ° r C'(P) = C{p) + log [ E 2 ~ C l , ) ) • (4-2.5) 

Thus for the new sequence {C'(p),p G T} the regularity condition (4.2.4) holds and 

the minimum description length of Xn relative to T and C" differs from the one 

relative to V and C by only the constant log(£,er2~ c^). 

Now for each density p in the candidate class T and for the corresponding descrip­

tion length C(p) there exists a coding process in which the length of the codeword 

for each sample Xn = Xi,X2,• • •,Xn, written as 6(A'" | p,C), is equal to 

c{p) + logpW) (4-2-6) 

in difference of a constant less than 1. The corresponding binary code is instantaneous 

and decodable so that Kraft's inequality holds. This coding process can be described 

by the following coding system. 

Suppose each observation Xi is observed to a prescribed precision a. The mea­

surable space X can then be quantized into a countable alphabet [X] over which 

the observation ranges. Let us write [X]n for the set of all observation strings of 

length n and [X]* = U^Lo W *°r ^eir union. Let B denote the binary alphabet 

and B* = U£Lo Bn- We define a coding system relative to T and C as a (decoding) 

function 

G : H -* [X]' (4.2.7) 

from a subset il of B" onto [X]'. Here il is the set of all codewords of observation 

strings obtained by the coding process defined by T and C. Any member 6,- of il, 

such that G(bi) = Xn is said to be a codeword of the sample A"n. The length |6,| of 

bi is the number of binary digits in it. It is easy to see that the inverse image of Xn 

unc*er the decoding map G is G _ 1 (^ n ) = ib(Xn \ P,C),p € T}. By the regularity 

condition (4.2.4) the sum 

P'(Xn) = £ 2-l6<x"lp-c>l = £ p(Xn)2~cW (4.2.8) 
per per 
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is well defined (indeed, its integral on the measurable space Xn equals to one). In 

fact, p'(Xn)v(b\Xn\) represents the probability of finding a codeword for Xn in a 

game of fair coin tossings, where A[ATn] denotes the quantization region containing 

Xn. Hence we get the stochastic complexity of Xn = Xi, X2, • • •, Xn relative to T and 

C as 

I(Xn | T, C) = - log ( £ p(A-n)2-c<p> J . (4.2.9) 

It can be regarded as the code length obtained by the removal of the redundancy in 

the coding system G and represents the shortest code length for the data Xn that 

can be achieved by the densities in T under C (Rissanen, 1989, pp. 45-67). 

By the criterion (4.2.2) a minimum description length (MDL) density estimator 

pn(X) can be obtained for the observations Xx, X2, • • • ,Xn, which exists with proba­

bility one (Barron and Cover, 1991). For a future observation X a natural question 

that may be asked is if the MDL density p„ would still produce the minimum descrip­

tion length for XnX = Xi,X2,•••,Xn,X. The answer is negative because the MDL 

density estimator depends on the observed sample. The following example provides 

an illustration. 

Example 4.2.1 Let Xi, X2, • • •, Xn be a sample from a normal distribution N(j, 1) 

where j takes some positive integer 1,2, • • •. The density description length C(N(j, 1)) 

= j , so that regularity condition (4.2.4) is satisfied. 

For each A(j, 1) the description length for the sample Xn is 

j + \ ( D X < - J )2) log e + n log V27. (4.2.10) 

Expression (4.2.10) is minimized when j = j n = [mi(Xn) — l/(nloge) + 1/2] where 

mi(Xn) = (l/n)£"=i X,- is the sample mean. The MDL density estimator N(j„,l) 

changes according to the sample. However, when n is sufficiently large, by the law of 

large numbers j n is uniquely determined and so is the MDL density estimator. 

In general we have the following result obtained in Barron and Cover (1991). 
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Theorem 4.2.1 (Barron and Cover, 1991) Suppose that C(p) satisfies the regularity 

condition (4.2.4)- If the true density p0 £ T, then 

Pn=Po (4.2.11) 

for all sufficiently large n, with probability one. 

The following corollary for the estimator <f>(pn) holds. 

Corollary 4.2.1 Suppose that <f>(p) can be expressed in the form of a linear functional 

<f>(p) = Evf(X) = j f(x)p(x)u(dx) (4.2.12) 

for any p € T, where f(x) is a v-measurable function with Ep \f(x)\ < oo and is called 

a kernel of (j). If p0 € T, then 

<£(pn) = 0(po) (4.2.13) 

for all sufficiently large n, with probability one. 

A disadvantage of the MDL estimator is that it yields no closed expression for the 

estimator until a concrete form of p as well as T is given. In addition, because of the 

redundancy in the two-stage coding system, the MDL (4.2.1) overestimates the real 

code length. 

Motivated by such considerations, we define a density, called the stochastic com­

plexity density estimator as 

«-)*«^)-^£^P? ( 4„4> 
which is generated by the difference between the stochastic complexity of XnX and 

the stochastic complexity of Xn, i.e. by the stochastic complexity of X given A". 

To see this notice that -log (£PerP(A')p(A'n)2~c*p)) is the stochastic complexity 

for XnX and - log (Ep€rP(*n)2"C ( , , )) is the stochastic complexity for A'". From 

the fact that pn has integral one with respect to x on the measurable space X and by 

(4.2.8) we have the following proposition. 
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Proposition 4.2. i For almost every sample Xn p„ is a probability density that sat­

isfies (4.2.14) for almost every x € X. 

We have obtained a new estimate <t>(pn) of t̂ (p) which we call the stochastic com­

plexity estimator. Note that pn, a reasonable estimate of the density for A"1, may not 

belong to T since T is not necessarily a convex set. This is of no consequence because 

r is only a proposed density class, and the assumption that the true density belongs 

to T may not be true. Further, the quantity of interest is <j>(p) rather than the density 

p itself, so even if the true density p0 is in T, <p(q) may still be the same as <j>(po) 

for some q outside T. The relationship between <t>(pn) and the minimum description 

length estimator <f>(pn) is established by the following result. 

Theorem 4.2.2 Suppose that C(p) satisfies the regularity condition (4-2.4) and that 

for any given sample Xn pn is the MDL density estimator defined by (4-2.2). Suppose, 

moreover, that for any p 6 T 

c{p) + log pW) = C{pn) + log S(3F)+ Ap'xn) (4-2'15) 

where p„(A"n) = n"=iPn(A',) andr2(p,Xn) is a positive functional satisfying 

Urn (r2(p, A"+1) - r2(p,Xn)) = 0 (4.2.16) 

uniformly for p € T. Then for each x, except a set N of measure 0, 

lim pn(x) = lim p„(x) = p0(x) (4.2.17) 
n—too v n—too * ^ ' * x > * ' 

with probability one, where p„ is defined by (4-2.14) and po G T is the true density of 

Xn. 

Proof: We know from Section 4.1 that X is a random variable defined on the prob­

ability space (X,B(X),P). By Kolmogorov's theorem on the extension of measures 

(Shiryayev, 1984, pp. 161), there exists a probability space (X°°,Bao(X),P) for 

the sequence Ai,X2,- • •,Xn,• • •• Now from Theorem 4.2.1 there exists a B°°(X)-

measurable set M with P(M) = 0 so that for each observation sequence (Ai, A"2, • • •, 

A n , - - . ) €M C 

pn = po for all sufficiently large n (4.2.18) 
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If for each X G X we regard XnX as a new sample, then by (4.2.15) 

p(A>(A'n)2-c ( p ) = pn + , (X)pn + i (Xn)2- c^>>2-T a ( p , x n-x ) (4.2.19) 

where pn+i = p„+i(- | Xn,X) is the MDL density estimator based on XnX. (Notice 

that pn does not depend on the order of A"n, thus the MDL density estimator based 

on XXn is also p„+i.) 

Next we show that there exists a 5(A')-measurable set N with P(N) = 0 so that 

for each X G Nc 

pn+i = po for all sufficiently large n and all (Ai, • • •, A"„, • • •) € Mc. (4.2.20) 

Let A be the set of all X G X that does not satisfy (4.2.20). Clearly 

A = {AT G X | (X, Ai, • • •,Xn, - • •) G M and (A',, • • •, Xn, • • •) G Mc) (4.2.21) 

and A x Mc C M. 

Hence P(A) = 0 because 0 = P(M) > P(A x Mc) = P(A)P(MC) = P(A), and 

we obtain N = A. 

Now for any x G Nc rewrite pn as 

_ p ; i + i(x)pn .M(A-")2- c(p^-)Ep er2-T a ( p-x n )
 (. , w 

P n _ " pn(A-«)2-^(p")Ep €r2-T 2^n) ' l j 

From (4.2.18),(4.2.20),(4.2.4) and (4.2.16) the result (4.2.17) follows. D 

A similar consistency result derived from a prequential analysis approach is given 

by Dawid (1992). 

Example 4.2.2 (Example 4.2.1 continued) The stochastic complexity for Xn is 

I(X» \ N(j,l),C) = - | 0 g ^ £ ^ c x p ( - i f ; ( X 1 - - j ) a ) 2 - ^ 

= n\ogV2~ir+ -nm2(Xn)loge - -nmJ(A"n)loge 

- log ( f > x p {-\*{i - mi(* n ) ) 2 ) 2- ' j (4.2.23) 
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where m2(A"n) = (l/n)E"=i X2. By the concavity of logx, 

- i n c l o g e > l o g f £ e x p ( - i ' i ( i - ^ i ( A - " ) ) 2 ) 2 - M 

> ( / - i n l o g e ) f ; ( j - m 1 ( X n ) ) 2 2 ^ 
v - ' J = i 

= -^n(6-4m,(A" n ) - | -m 2 (X n ) ) loge (4.2.24) 

where c > 0 is a constant. Thus we can obtain an estimated range for I(Xn \ 

N(j,l),C) 

log V2ir + (m2(X
n) - m2(Xn)) log y/l + clog y/e 

< -I(Xn I N(j, 1),C) < log V2^ + (m2(X
n) - 4mi(A'n)) log yfe + 3. (4.2.25) 

n 

The stochastic complexity density estimator p„ for given Xn is 

= E~i T j ^ W exp (-1 (Er=1(A-t - j)2 + (x - j)2)) 2-' 
Pn *' Er=i (2^7* exp ( - j Er=i(^. - j)2) 2- j 

= J _ e x p f-lx2(l - J - ) + n m i ( X n ) x - nm?(XW)>i X 
v/27 P \ 2 X ( 1 n + i ; + n + 1 * 2(n + l ) / X 

Er=iexp(-|(n + l)(;-^^)2)2 

E S l i e x p ( - } n ( i - m , ( X » ) ) a ) 2 - ' 
(4.2.26) 

Suppose the true density is N(p, 1), where /̂  is some positive integer. Since i?|Ai|r < 

oo for any 1 < r < 2, by Marcinkiewicz's strong law of large numbers (Stout,1974, 

pp. 126) 
EIU X ~np^Q ( 4 2 2 ? ) 

Hence 

mi(A"n) = p + en a.s. (4.2.28) 

where 

en = c(n- (1"1/ r )) for 1 < r < 2. (4.2.29) 
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Now we can write 

a.s. (4.2.30) 
E - i e x p ( - | ( n -c 1) (j - ^ i ^ ) 2 ) 2-i ^ + Q ( , n + i ) 

E°l i exp ( -±n( j - m^A"*))2) 2~> «>„ + <>K) 

where «;„ = exp(—nc2/2)2~'1. Then it is easy to ste that 

= n
1 i m

3
e X p ( - 2 n ( e « + l - £ n ) - 2 e " + 1 ) = 1 a 'S ' ( 4 > 2 , 3 1 ) 

by (4.2.29) and en+i - en = -mi(Xn)/(n + 1) + x/(n + 1). From these results we 

have 

Urn pn(x) = ^ e x p ( - i ( x - ^)2) a.s.. (4.2.32) 

4.3 Application to Parametric Families 

In this section we study the stochastic complexity estimation in an important class 

of densities, namely, the parametric families, either with a prior density ir(6) for the 

parameters 

r6 = {p(x|0),7r(0)} (4.3.1) 

or without one, i.e. 

Te = {p(x|0)}. (4.3.2) 

In both cases 9 = (9i,02, • • • ,9k) denotes a fc-component free parameter, i.e. a 

vector ranging over a subset 0 of the A:-dimensionai Euclidean space %k with non­

empty interior. (Often in such models some of the natural parameters are not free 

but a relationship, either implicit or explicit exists among them. However, we assume 

that the dependent parameters have been eliminated and only the free ones remain 

in the model.) 

First we find the stochastic complexity for the sample Xn relative to IV Notice 

that thtre are an uncountable number of densities in Tb and thus we cannot construct 
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a prefix code for each density in it. But by the argument in Rissanen (1989, pp. 53-

67), the parameters are considered to be truncated to some finite precision, say 9j 

to the precision aj = 2~'-» where qj is the number of fractional binary digits taken 

in the truncation. Then a prefix code can be constructed which assigns to each such 

truncated parameter vector 9 a codeword with length C(d) given by the least integral 

upper bound to — log jr(0) — E*=i log Qj. The two-step codelength for the sample Xn 

relative to each truncated parameter is 

k 

- log p(Xn \9) - log 1,(9) - £ log aj (4.3.3) 
i=i 

where p(Xn\9) = nr=iP(-^«'l^) a°d 9 denotes the truncated parameter vector 9 to 

the precision (QI, ••-,a*). Letting aj —• 0, j = 1,2, • • • ,k, by (4.2.9) the stochastic 

complexity of A"n relative to Tb goes to the integral 

I(Xn | Tb) = - log Q£ p(Xn\9)n(9)d9^j (4.3.4) 

Therefore, with the same argument that yielded (4.2.14) we can define the stochastic 

complexity density estimator for Xn drawn from Tb as 

(x)_hp(x\9)p(X»\9)*(9)d9 
M ) ~ Jep(X-\9H9)d9 (4-3>5) 

and the stochastic complexity estimator for <f>(p) is <f>(pn)- (4.3.5) as follows. Assume 

a distribution 

For a sample coming from the set of densities Te = {p(x\9)} we can still define a 

coding system in which a prefix code is constructed for the data for each parameter 

value. The stochastic complexity is obtained by applying a procedure similar to 

(4.2.8) and (4.2.9). The key point here is to use a universal prior for integers to 

define an optimum code for each truncated parameter as well as its enclosing optimum 

precision. The procedure is to quantize the parameter space with quantization regions 

of identically shaped rectangles. The shape of this rectangle is decided by the ellipsoid 

(9 — 9n)
TM(9n)(9 — 9n) < d such a way that each rectangle is identical with the 

maximum intersecting rectangle of this ellipsoid. Here 9n is the maximum likelihood 
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estimate, M(9) is the Hessian matrix of the double derivatives of — logp(x|0) and d 

is any fixe^ number which will be optimized further. These quantization regions are 

ordered according to their natural distance ||0||M(0) ~" J9TM(9)9 whereby a sequence 

of integers are obtained indicating their position. Then we use the universal prioo to 

provide a codelength for each position-index integer. 

The universal prior assigns each integer a codelength 

C*(n - 1 ) = log co -I- log* n, n = l,2,--- (4.3.6) 

where CQ is a constant of about 2.865064 and log'y = log y + log logy + • • •, where 

only the positive terms are included in the sum. This length function C"(n) has the 

optimum property that for any distribution P(n) for the positive integers such that 

i) P(n) > P(n + 1), n > M for some M 

ii) -Zn>iP(n)\ogP(n) = oo, 

the following holds 

lim 5rf?">f w , = i <«•»> 
" - » - E 2 L o J , ( n ) l o s J » 

which indicates that we could do no better even if a distribution P(n) to design the 

code with were given. 

The universal prior 2~c'^ can be considered a modification of the improper 

prior {1/n} of Jeffreys which is sometimes used to express complete ignorance. It 

is derived from coding of integers in a manner that certain natural coding theoretic 

requirements are satisfied and it objectively expresses one's initial ignorance when 

this notion is made precise (see Elias (1975) and Rissanen (1983) for details). When 

some constraints for the parameters exist the universal prior for the integers, which 

presupposes no prior knowledge, should no longer be used in the coding process. In 

that case Jaynes' maximum entropy principle could guide us to construct a prior 

distribution for the two-step codelength of the sample (Jaynes,1978). 

By the derivation of Rissanen (1983) the two-step codelength for Xn relative to 

r e i s 

- \ogp(Xn\9) + log' {V(k)(\\9\\Mn(e))
k) (4.3.8) 



P3 

where M„(9) is the Hessian matrix of the double deiivatives of function — iogp(An|0) 

and V(k) is the volume of the A:-dimensional unit ball 

f (2TT)*/2 / [k/2)\2kl2 k even, 

-i)/22*+i((A; + l)/2)!/(fc r 1)! k odd. v(k)=iy_,j„:::;:r^,„ _ ; -;;" (4.3.9) 

The stochastic complexity of A"" relative to Te is 

I(Xn I Te) = - log / P(Xn\9)ci2-{^v^\e^nw)k)do (4.3.IO) 

where c\ is a constant satisfying 

c - l = f 2-«»8*(V(fe)(ll«llAf„(8))fc)^ 
1 Je ' 

and the stochastic complexity density estimator for Xn drawn from Te is 

• , A /ePl^l%(^"l^)2- l o 8 , ( V ( f c ) ( l | e | |^- ( ' " )* )^ 
feP(X»\9)2-lcW!WW"^kU9 { ' 

All the quantities (4.3.8), (4.3.10) and (4.3.11) appear to be more of theoretical 

rather than practical value. When — logp(Xn|0) grows proportionally to n, as nor­

mally is the case, the elements of Mn(9) are of order n and log*(V(A;)(||0||Mn(0))fc) 

is dominated by \og(V(k)(\\9\\Mn{t))
k). (4.3.8), (4.3.10) and (4.3.11) can then be ap­

proximated by substituting log(-) for log*(). 

4.4 Minimum Expected Risk and Admissibility 

In the previous sections we proposed a stochastic complexity density estimator 

and a related stochastic complexity estimator for (f>(p). 

To evaluate the quality of the stochastic complexity density estimator we define a 

loss functional L(p, q) for any two densities p and q defined on s-dimensional Euclidean 

space 

Jfaf) = j n . \M) - MWMdt) = JjM*) - *t('))(&(0 - tf.(*)M*) (4-4.1) 

I 
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where xj>p and \j>q are the characteristic functions of p and q respectively, and $ is 

the conjugate function of ty. The characteristic function of p is defined as fpp(t) = 

J-R0p(X)exp{i(X,t)}u(dX), where (A-, t) ia the inner product in W and * € TV. 

The integral /TJ. |^>p(t)|
2i/(dt) may not always exist and the condition of absolute 

quadratic integrability of the characteristic function should be assumed here. How­

ever, for most of the usual densities? this condition is satisfied. There are other possible 

definitions of the loss functional such as 

Li(p,q) = jx\p-q\i,(dX) (4.4.2) 

which is just the Hellinger distance Hi and 

£2(P,9)= l(p-q)2v(dX) (4.4.3) 

in which fxp
2v(dX) < oo is assumed. (See Devroye, 1987, pp. 1-11). 

Notice that when X is the usual Euclidean space TV or its subset the two loss 

functional L and L2 are equivalent in the sense that 

L \Mt) - Mt)\2»(dt) = (2*)' / (p(X) - q(X))2»(dX), 

which can be obtained by Parseval-Plancherel formula (Hazewinkel et al, 1991, pp. 

163) due to the fact that ^p - »/>, is the Fourier transformation of p — q. 

Let A*i, A"2, ••' ,Xn be a sample independently drawn from a density p which is 

assumed to belong to T with countable number of densities. The Ai's are assumed 

to take values in a measurable space X C 71s and the density p is taken with respect 

to a known complete c-finite dominating measure u. {C(p),p G F} is a sequence of 

description numbers for the densities in T satisfying regularity condition (4.2.4). For 

any density estimator S lased on the sample Xn the risk functional is 

R(p,S) = EpL(p,S)= I (f WP(t)-Mt)\2»(dt))p(Xn)u(dXn) (4.4.4) 

for p G T. Thus the expected risk is 

r(S\C)=^R(p,S)2-c^ 
per 

= £ /J]*.-**® ~ Mt)\M*J) p(Xn)2'CMu(dXn). (4.4.5) 
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We have the following results. 

Theorem 4.4.1 The stochastic complexity density estimator pn minimizes the ex­

pected risk functional r(S \ C) among all the density estimators of p. 

If there exists some S' such that r(S' \ C) < oo, then pn is the unique density 

estimator minimizing r(S | C). 

Proof: We prove only the second part, the first part easily follows. Let S = S(Xi, • • •, 

Xn) be an arbitiary density estimator of p G T based on the sample Xn. Then 

*•(* I c) = EjXn (jn, \Mt)-Mt)\Mdt))P(xn)2-c^u(dxn) 
per 

per-

[£q(Xn)2-c^)u(dXn) 

hq(X
n)2-c^)u(dt)u(dXn) 

\«jer / 
(4.4.6) 

The operations of integral and summation are interchangeable because the integrand 

is non-negative. p(A"n)2~c(p'/ (E?ei q(Xn)2~clqn can be regarded as a posterior 

probability density given the observations Xn. 

To minimize r(S \ C) is now equivalent of minimizing 

p(Xn)2"c<p) 

It is easy to see that when 

for any fixed t and X" 

, m _ E P € r V v ( Q p ( * n ) 2 - c ( p ) , m 
Mt)~ E-r«(*")2-*M "*•<'> 

(4.4.7) 

(4.4.8) 

(4.4.7) is minimized, and for any S' such that r(S' \ C) < oo, the minimum is the 

same at least for some t and Xn. Consequently 

Ep e rp(*)p(*n)2-C ( p ) 

S = pn(x) 
E,6r9(*n)2-C<'> 

(4.4.9) 
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is the unique density to minimize r(S \ C). Q 

The same conclusion holds for the loss functional L2. 

Theorem 4.4.2 The stochastic complexity density estimator pn minimizes the ex­

pected risk 

r2(S | C) = £ j ^ (Jx(S - p)2v(dX)) p(Xn)2~c^u(dXn) (4.4.10) 

among all the density estimators of p. 

Jf there exists some S' such that r2(6' \ C) < oo, then pn is the unique density 

estimator minimizing r2(6 \ C). 

In practice many quantities of interest <f>(p) can be expressed in the fori.; of a 

linear functional 

<Kp) = Epf(x) = / f(x)p(x)v(dx) (4.4.11) 

If we use the loss function (4.1.8) with v(p) = 1 to evaluate the stochastic com­

plexity estimate <j>(pn), then similarly to Theorem 4.4.1 we get 

Theorem 4.4.3 The stochastic complexity estimator <£(p„) minimizes the expected 

risk function 

r3(d>,S) = £ / \6- <t>(p)\2p(Xn)2-c^u(dXn) (4.4.12) 
per Jx" 

among all the estimators of <f>(p). 

If there exists some S' such that r3(<f>,S') < oo, then <f>(pn) is the unique estimator 

minimizing r3(<f>,S). 

Remark: Generalization of Theorems 4.4.1,4.4.2 and 4.4.3 to a parametric family 

follows naturally. 

Next we show the admissibility of the stochastic complexity estimator of a density 

and <f>(p) in the countable set T among estimators based on the data Xi, X2, • • •, Xn-

By definition, a density estimator pj,1' (or an estimator S^(Xn) of <j>(p)) is inadmissible 

! 
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(or 

and 

if there is another density estimator pn
2^ (or S^(Xn)) such that 

L ( L |v,p(«)(°_ ^{twuw) p(xnxdxn) 
< f ( f |V>.(.)(0 - i>p(t)\

2v(dt)) p(Xn)v(dXn) for all PeT (4.4.13) 
Jxn \Jn> Pn / 

and 

LXL {^){i) ~ ̂ w^w) tixnxdxn) 
<J (I t\xl}£)(t)-xl>p(t)\

2u(dt)\p(Xn)v(dXn) forsomepGT (4.4.14) 

/ \SW(Xn)-<t>(p)\2p(Xn)»(dXn) 

< I \S(l\Xn)-<f>(p)\2p(Xn)v(dXn) foral lpGr (4.4.15) 
JXn 

j \S&(Xn) - <j>(p)\2P(Xn)v(dXn) 

< j \S(1)(Xn)-<t>(p)\2p(Xn)v(dXn) for some p G T). (4.4.16) 
Jxn 

In this case pj2) (S^(Xn)) is said to dominate pn^ (^^(A")). If no such uniformly 

dominating estimator exists, then pj,1' (^'(A"")) is said to be admissible. The follow­

ing proposition is a consequence of Theorems 4.4.1 to 4.4.3. 

Theorem 4.4.4 The stochastic complexity density estimator pn (<j>(pn)) is admissible 

for the estimation of a density p (<j>(p)) in the class T. 

4.5 Completeness 

Completeness is another optimum property related to admissibility. Let D be the 

class of all density decision rules S with finite risk R(p, S) for any p G T = {pi,p2, • • •} 

which consists of at most countable number of densities. A class of decision rules 
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D' C D is said to be complete if given any rule S G D not in D' there exists a rule 

#o G D' that dominates S. D' is said to be minimal complete if D' is complete and no 

subclass of D' is complete. 

To achieve the main result in this section we assume there exists a complete class 

Di C D and a positive constant m > 1 satisfying E^=i m~1R(p1,S) < co for any 

S E Di. This assumption implies that any subsequence of {R(p},S)} could tend to 

infinite but at a restricted rate, by which it will be seen that we can define a metric 

in a related space to facilitate our mathematical proof. 

Now we consider the set Si, defined as 

Si = {y =(3/1,3/2, •••) | for some S G Duyj = R(p3,S) (or j - 1 , 2 , - } . (4.5.1) 

It is easily seen that E ^ i m^ j / , < oo for any y G Si. Denote by D0 the class of all 

stochastic complexity density estimators in D\ and let 

So={2/=(j/i,J/2,---) | for some S G D0,y} = R(p},S) for j = 1,2,--}. (4.5.2) 

Clearly So is nonempty and So C Si. Si and So can be transformed to obtain two 

subsets of I1, where I1 denotes the space of all sequences {x„} of points of TV° such 

that E£Li \xn\ < co, i.e. 

5i(m) = {y =(yi ,y3 ,"-) | for some Se Di,y] = m-}R(pJ,S)ioT j = 1,2, •} (4.5.3) 

and 

S0(m) = {y =(yi,y2,---)\ior some 6 G Do^y^m'3R(p},S) for j = 1,2,---}. 

(4.5.4) 

Let Si be the convex hull of Si defined as the set of all finite convex linear 

combination of the points of Si, that is 

S; = {z:z = ^Kyt,y, G S„A, > 0 , £ A , = 1}. (4.5.5) 

1=1 t= i 

Similarly we can get Sj"(m) as the convex hull of Si(m) and a subset of I1. We know 

that if S is a convex set, then the closure of S is convex, and the intersection of two 
convex sets is also convex. 
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For the discussion of the completeness of the stochastic complexity estimators we 

need some concepts from Ferguson (1967, pp. 63-64). 

A set S in the space ll is said to be bounded from below if there exists a finite 

number M such that for every y = (j/i, j / 2 , • • •) G S, y} > —M for j = 1,2, • • •. 

Let a be a point in ll. The lower quantant at x, denoted by Qx, is defined as the 

set 

Qx = {y€l1;yJ<xJ for j = 1,2,---}. (4.5.6) 

A point x is said to be a lower boundary point of a convex set S C I1 if Qx f)S = 

{x}, where S is the closure of S. The set of lower boundary points of a convex set S 

is denoted by A(S). 

A convex set S C I1 is said to be closed from below if A(S) C S. 

Lemma 4.5.1 / / a nonempty convex set S C I1 is bounded by 0 from below, then 

X(S) is not empty. 

Proof: Let Wi, w2, • • • be a sequence of positive numbers satisfying EJSi w* = 1, a n d let 

T denote the set of all numbers of the form t = E^=i WJVJ, where y = (j/i, j / 2 , • • •) G S. 

oo 

^ = {* = ]C " W *or s o m e 1/ € S}. (4.5.7) 
j = i 

T is bounded by 0 from below because S is bounded by 0 from below. Let to = 

inf{t : t G T) and let y(n) G S be a sequence of points for which E^=i Wjj/j —* *o-

Since w3 > 0 it follows that each sequence y^ is bounded from above. Thus, using 

the principle of diagonal selection we can find a subsequence y ^ of y ^ with a 

finite limit which converges coordinatewise to a point y° for which E ^ i WjJ/j = to. 

Therefore y° is a limit point under the I1 metric || | |i. 

Now we show that y° G A(S). First we note that {y0} C Qyo H S because y° is a 

limit point of S, i.e. y° G S. On the other hand Qyo (~l S C {y0}, for if y' is any point 

of Qyo other than y° itself, then E ^ i w]y'j < 'o- This contradicts the assumption 

that <0 is a lower bound of T. Thus QyoOS = {y0}, implying that y° G A(S). Hence 

A(S) is not empty. • 
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Lemma 4.5.2 / / a nonempty convex set S C I1 is bounded by 0 from below, then 

for any x G S but not in \(S), there exists a point y in X(S) so that j / , < Xj for 

j = 1,2, • • • and yj> < Xjr for some j ' . 

Proof: Suppose x G S but x £ A(S). Because S is convex S is also convex, thus 

S' = Qx H S is convex too and nonempty. S' is bounded by 0 from below, for S is 

bounded by 0 from below. By Lemma 4.5.1 A(S') is nonempty. Let y G A(S'), then by 

definition {y} = QyOlP. Furthermore, y G Qx since y G S7 = Qx n S C Qx = Qx-

Finally, y G A(S) because {y} = Qy n S7 = Qy n Q x n 5 = Qy D Qa; H S = Q y n S. 

Now, we know that y G Qx — {x}, hence t/j < x_,, j = 1,2, • • • and at least for some 

j ' , Vj' < Xj1- D 

By Theorem 2.5 of Valentine (1964, pp. 22) any hyperplane H in space I,1 can be 

expressed as H = [f : K), where / is a linear functional nonidentically zero on / !, K 

is a real constant and [/ : /c] denotes the set of all points x G ll for which f(x) = K. 

The hyperplane H bounds a set S C lx if either f(S) > K or f(S) < K holds, and H 

separates two sets U and V in I1 if either f(U) > K, f(V) < K or f(U) < K,f(V) > K 

holds. 

Lemma 4.5.3 (Valentine, 1964, PP- %<>) A hyperplane H = [f : K] in /' bounds a 

nonempty open set if and only if f is continuous with / ^ 0. 

Lemma 4.5.4 (DeVito, 1978, pp. 4%-43) The vector space of all linear continuous 

functionals on I1 is equivalent to l°°, where l°° denotes the space of all sequences {xn} 

of TV0 such that sup{|x„| | n = 1,2, •••} is finite. 

Lemma 4.5.5 (Separation Theorem (Valentine, 1964, PP- 24) Suppose U and V are 

two nonempty convex subsets of a linear space C. Also suppose the interior of U is 

nonempty and that V f~l intU = 0. Then there exists a hyperplane H which separates 

U and V. 

Lemma 4.5.6 (Ferguson, 1967, pp. 55) If a set of decision rules D' is a complete 

class, it must contain all admissible rules. 
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Theorem 4.5.1 If Si(m) and SJ'(m) are defined as above, S{ is bounded by 0 from 

below and closed from below, then A(Sj(m)) C So(m). 

Proof: Because Sj"(m) is also closed from below, A(Sj(m)) C Si(m). If z G A(Si(m)), 

then {x} = Qx H S{(m) = Qx H Si(m). Thus, Qx — {x} and Si(m) are disjoint 

convex sets. By the Separation Theorem, their exists a hvperplane H which separates 

Qx ~ ix) a n d Si(m) and by Lemma 4.5.3 H = [f : K], where K is a real constant 

and / is a nonidentically zero continuous linear functional on I1. From Lemma 4.5.4 

it follows that there exists {/?,} satisfying sup,-1/?,-| < co such that 

f(x) = '£0ixi = 3Tx (4.5.8) 

«=i 

for any x G I1. Thus (3Ty < 3Tz for any y G Qx - {«} and z G Si(m). If one of 

the coordinates 0j of 3 were negative, then by choosing y so that j/j is sufficiently 

negative, we would have 3T y > 3Tx. Hence 0j > 0 for all j . By the continuity of / 

3Tx < 3Tz will hold for all z G S;(m). (4.5.9) 

By the definition of Si(m), there exist Ai, A2, • • •, A* with A,- > 0 and E*=i Ai = 1 so 

that SB = Ef=i A.y,- where y, G Si(m). From (4.5.9) 

k 

£ WTVi ^ PTz for a11 z € Si(m), (4.5.10) 
i=l 

which implies 

From 

/3Ty,= min 3Tz for t = 1,2, • • • ,ib. (4.5.11) 
Z6Sj(m) 

r}Ty* = min r\Tz for i = 1,2, • • •, k (4.5.12) 

where «j = m~}0j and y,̂  = mJi/ij, j = 1,2,•••, t = 1,2,••-,&, it follows that 

Ej=i "j < supj |/?j| < co and y- G Si for i = 1,2, • • •, k. Normalizing TJ by letting 

"j =Vj/T,T=\Vj, we have 

i/"Ty; = min »7*Tz for i = 1,2, • • •, Jb. (4.5.13) 
ZtzSi 

So by Theorem 4.4.1 y\ = y\ = --- - y*k = y* e S0 and hence yj = y2 = • • • = yk = 

x G Sc'm). D 
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Theorem 4.5.2 //, for a given decision problem (T,D,R), there exists a complete 

class Di C D and a positive constant m > 1 satisfying EJ=i tn~3R(p},S) < oo for 

any S G D\, and S{, the convex hull of Si defined above is bounded from below and 

closed from below, then Do is a minimal cohiplete class and consists of exactly all the 

stochastic complexity density estimators. 

Proof: For any S G A not in Do, let yj = m~3R(p},6), j = 1,2,••• which implies 

that y G Si(m) C S{(m) but not in S0(m). By Theorem 4.5.1 y & A(S,'(m)). From 

Lemma 4.5.2 and Theorem 4.5.1 again, there exist a point y' G A(Sj'(m)) C So(m) so 

that y'j < y3 for j = 1,2, • • • and at least for some j ' , y', < y}r. This means that there 

exists a stochastic complexity density decision 6' G Do so that y'3 = m~}R(pj,6') and 

8' dominates S. Do is therefore a complete class. 

As a consequence of Theorem 4.4.4, every decision rule in Do is admissible. Hence 

no proper subclass of Do could be complete because (Lemma 4.5.6) every complete 

class must contain all admissible rules. This implies that Do consists of exactly the 

admissible rules and exaclly all the stochastic complexity density estimators, and 

forms a minimal complete class. • 

Remark: The condition of boundedness from below is not necessary since the 

definition of the risk function already implies it. 



Chapter 5 

Stochastic Complexity in 
Histograms and Testing 
Homogeneity 

5.1 Introduction 

In digital data-transmission systems, analogue input signals are first converted into 

digital form at the transmitter, then transmitted through a communication channel 

and finally reconstructed into analogue signals at the receiver. The resulting output 

is not identical with the input due to a quantization process in which the whole 

range of input amplitudes is divided into a finite number of amplitude sub-ranges 

at the transmitter, and the input amplitudes in each sub-range are converted into 

the same digits. This idea of quantization of the input signal can be transplanted 

and generalized naturally to the problem of estimating the probability distribution 

or density for an observed system. 

Suppose we observe a finite data-string Xn = Ai, A"2, • • •, Xn from a system and we 

wish to describe the probability distribution of this data-string. Through a quantizer, 

the whole range of A*n is divided into a finite number of subintervals the widths of 

which can be either equal or unequal. In each subinterval we select a representative 

value, then each observation in A" is replaced by a representative value which falls 

in the same subinterval as this observation. Thus the resulting quantized data-string 
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is encoded in a string of binary digits and transmitted through a communication 

channel, where it is decoded to provide the output. To make the code words uniquely 

decodable, the encoding system must be prefix. 

From Chapter 1, the determination of the encoding system is equivalent to finding 

some kind of predictive probability density of the data generating system. In most 

cases, the underlying probability density is unknown and must be estimated. Fortu­

nately, the quantizer in the data-transmission system gives us an access to an estimate 

of the unknown density. The density estimator can be used to construct an encoding 

system, and vice versa, under an encoding system the code words of the observed 

data-string A"" should be as small as possible so that the cost of transmitting the 

code words is small. This requirement is the key for a criterion to find the optimal 

quantizer. 

It is possible to construct a histogram-type density estimation for A"" when the 

number of subintervals, their width and probabilities are given. For a fixed number of 

subintervals with fixed location, the probability of each subinterval can be determined 

by the maximum likelihood principle. The locations of the subintervals can also be 

determined by the maximum likelihood principle and a recursive method. After that, 

a temporary histogram density estimator is obtained from which a prefix code for Xn 

can be constructed. The optimal number of subintervals will generate the shortest 

code words and consequently an optimal histogram density estimate. The optimal 

description of Xn is then the code words under an optimal coding system. 

The code words of Xn can be obtained by either a non-predictive or a predic­

tive manner (see Chapter 3 of Rissanen (1989)). Even though the predictive coding 

requires more code words for the encoding oi A"", it enables the data-transmission 

system for self-adjustment and updating by using the latest observations. 

In Section 5.2 below we first discuss an optimal quantization scheme of the data 

for optimal description which provides a system of recursive equations for determining 

the optimal locations of the subintervals in the histogram. Then both the idealized 

code length and the idealized predictive code length are given for the description of 
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Xn. Finally, uniform almost sure asymptotic expansion and the almost sure lower 

and upper bounds for both code lengths are derived and the results are list in Theo­

rem 5.2.2 to Theorem 5.2.4. 

In Hall and Hannan (1988) and Yu and Speed (1992), the same type of stochastic 

complexity based histogram estimation is considered under the assumption of equal 

subinterval widths. Our results agree with that of Yu and Speed (1992) when this 

assumption applies. 

As an application of stochastic complexity for optimal data description, in Sec­

tion 5.3 we consider the problem of testing of homogeneity, i.e. the testing of the 

hypothesis that several independent samples are generated from the same population. 

A test procedure is proposed in which we use the difference of shortest predictive code 

lengths under the null and the alternative hypotheses respectively as a universal test 

statistics. The size of the test procedure is shown to be determined by the part of 

the code lengths which is used to describe the parameters in the histogram densities. 

The asymptotic power of the test procedure is shown to be 1. 

5.2 Data Compression for Optimal Information 
Description 

Suppose Xn = Xi,X2,- • • ,Xn is a simple random sample from an unknown den­

sity function / on [s, t], where s, t are finite real numbers. If / were known, the 

description of the sample could be accomplished by constructing a string of predic­

tive binary codes for Xn under the information source determined by / (see Rissanen 

(1989)). In other words, the description of the sample is the same as finding a pre­

dictive probability density for the sample. 

To estimate an unknown density / the most frequently used method is based on 

data compression: first quantize the data set by partitioning the interval [s,t] into 

a sequence of subintervals and then construct a histogram on the partition. The 

choice of the partition and the estimate of the probability for each subinterval may 

be determined by the maximum likelihood method if a fixed number of subintervals 
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are assumed. 

Let qm = q0,m, 9i,m, • • •, 1m,m denote an increasing sequence of numbers, partition­

ing the interval [s,t] into m subintervals [?o,m,9i,m], (9v«,?2,mf„ •••, (?m-i,m, flm.m], 

written as Qi,m, Q2>m, • • •, Qm,m, where q0<m = s, qm,m = t and m is a fixed integer 

satisfying m <n. Denote rl<m = qt<m — g,_i,m as the length «f Q,,m and r — t — s, the 

range of A"n. Consider the histogram densities defined by 

f(x\pm,qm,s,t) = '£P^IQlim(x) (5.2.1) 
i = l r*<m 

where pm = Pi,m,p2,m, • • • ,Pm,m denotes a sequence of nonnegative parameters with 

sum unit, and Iqtm is the usual Indicator function. The set of densities of the form 

(5.2.1) is denoted by Hm. 

With the above notations, the log-likelihood function of the sample Xn under Hm 

is 

L(X";Hm) = t^sfE—h.JX,)) 
m n 

i = l r « , m 

where n,<m = J2"=i lQ,,m(Xj) is the number of data points falling into Q,,m. (All 

logarithms are in base 2 throughout this chapter unless stated otherwise.) Since n,,m 

may be zero, the corresponding p1>m can not be optimized through maximization of 

L(Xn;Hm), and the log-likelihood function needs to be modified to overcome that 

difficulty. This may r>e dor-e by introducing m numbers yi, y2, •••, ym (abbreviated 

as ym), where y% is regcdeu as an observation from the uniform distribution on Qi,m, 

and blending them thoroughly with the n observations An as if both ym and Xm 

were generated from the same distribution. Then the log-likelihood function of An 

and ym is 

Li(Xn>,Hm) = f > , . m + l ) l o g ^ (5.2.3) 
«=i r»."» 

which does not depend on the particular values of ym, and can, therefore be regarded 

as the log-likelihood function of A"". 
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Applying the maximum likelihood principle the optimal partition qm and prob­

abilities pm for a fixed m are the ones which maximize Li(Xn,Hm) subject to the 

conditions that E P*,m = 1 and E r«,m = r. Denoting 

m m m 

F = £ ( n , , m + l)log ^ + Xi(£Pt,m - 1) + A 2 (£r t , m - r), (5.2.4) 
. = i r«."» t = i «=i 

differentiating F with respc t to p,'s and setting the derivatives equal to zero we have 

j ^ = n'-m + 1 loge + A 1 =0 , i = l ,2 , - - - ,m (5.2.5) 
Opx,m Pt,m 

from which pt<m = (n,,m + l)/(n + m). Differentiating F with respect to p.'s twice, 

the resulting second derivative matrix 

/ &F \ ( nhm +1 nm,m + l\. 

Therefore a necessary condition for the maximization of (5.2.4) is that the probabili­

ties p,,m are equal to the relative frequency (n,iTn + l ) / ( " + m). 

Since the allocation of n,,m's depends on the partition qm, so are the ranges r, im 's. 

The function F is not continuous with respect to r,im's unless the allocation of n,,m's 

is fixed. Under such allocation the local extreme value of Li(Xn; Hm) is achieved or 

approached when the r,im's tend to their boundary values, since all Q,,m's, except 

Qi,m, are half-closed half-open intervals. In order to keep the code length needed 

to describe the model short, we impose the restriction that the end points of every 

subinterval Q,,m, except the two end points s and t, i.e. the sequence of break points 

9i,m, • • •, 9m-i,m, should be at least d units away from the nearest observations, where 

d > 0 is half of the precision of An . In other words, if the locations of the sample Xn 

are expressed in an ascending order zN = zi < z2 < • • • < ZN, where N < n because 

of possible ties, then qm is a subsequence of the (2N + 2) long sequence 

s, Zi — d, zi + d, z2 — d, z2 + d, • • •, ZN — d, ZN + d, t, 

denoted as s(A"n) = 8i,s2,-- • ,S2N+2, with ô,m = s and qm<m = t, such that the 

selected qm have the largest likelihood Li(Xn;Hm) among all the selections. 
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( . " ) 
There are I J different selections for qm within which the optimal sequence 

\ m - 1 / 
is to be found. In the following we provide a recursive method for finding the optimal 

qm as well as the associated maximum likelihood values. A similar technique is used 

in Rissanen et. al. (1992). Let 

I I (X";m) = max Li(A-";//m) 
qmC»(Xn) 

= max X ( n , , m + l ) l o g , n ' ' m H ; 1 • (5-2-6) 

It is easy to see that 

n(T)-rn\ — tnav J m a v L. I V»(«m-l.m) { ma 
{9l,m>—,<?m-2,m}€ 

L\(Xn(T);m) = max { max LX(X 
»m-l<?m-l,meS(X"(r))|>{„m , . . . , ,m . .2 |m}6,(X"( *»-i.™)) 

rr \ , / / \ / x , 1 \ I n ( T ) ~~ n0?m-l,m) + 1 1 

^ - , ) + (n ( r ) - .n ( f a - 1 , m ) + l)Iog ( n ( T ) + m ) r m m } 

max \L\(Xn(u)\m-\) 
S m_i<*e*(*"<••)) l 

where A'n(") denotes the sequence of the observations falling within [s,u], and n(u) 

denotes the number of the observations in Xn(v\ The recursive equations (5.2.7) are 

to be solved for m > 1 and v € s(A"n(T)) until the desired range includes all the 

observations. That is, the following maximum log-likelihood functions need to be 

solved in sequence 

L\(X<**\\), L\(X^\\), ••-, L\(X<^,\), 

L*i(X»M,2), L'i(X"M,2), -•-, L\(X^\2), 

£j(X»(»m+i),m), L'i(Xn^^\m), ••-, L\(Xn(T\m). 

for m < n, where 

L\(Xn(a'\\) = (n(si) + l)log—!—, 2 < i < 2N + 2 
3 | —' 3 

(5.2.8) 
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and 

mx*.*,* -1)=!<»(,«) - »W+1) >og ( n ( ^ : ^ ' , o ' 

for 2 < k < n + 1. For any fixed m <n, the evaluation of (5.2.7) gives the maximum 

log-likelihood of A"" as well as the optimal partition {Q«,m} with about m(4AT + 3 — 

m)/2 < 2m(n 4- 2) — m2/2 operations. The corresponding optimal sequence of break 

points will be denoted by qm = qi,m,--- ,qm,m, and the ' ;Jths of the subintervals 

by n.m," • ,fm,m- In this chapter data quantization will always be based on the 

optimal partition {Qi,m} (except in the case of equal width quantization). For sake 

of simplicity the number of the data points falling into Q,,m will still be denoted as 

"«,». = Ej=i V). (Xj). 

With an optimal procedure for the compression of the data, we are in a position 

to find the description of the data Xn. 

Following Rissanen (1989), the description length of the data A"n, for fixed m and 

corresponding qm, is defined as a two-part code length 

-Lmi(Xn;m) + L2(q
m,m,S) (5.2.9) 

where the first part — L\(Xn\m) can be interpreted as the code length needed to 

describe the data Xn under the given partition and histogram, and the second part 

L2 is the code length needed to describe the functional form of the model employed. 

L2 can be evaluated by first truncating the parameters m and qm to a prescribed 

precision 6 and then encoding the resulting integers v/ith the technique introduced 

in Elias (1975) and Rissanen (1989). Denotr a = [a/S] as the nearest integer to a/S, 

then 

+ log 2.865 + log* (m + \s\ + f + 1) + 
, (m + Isl + f + 3)! , 4! .. cl /B „ 1rt, 
l0S(m + | ; - |+ f ) !2!+ 'O 6Z^^)J+ | l 0 8 { | - (5-2-l0) 
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Here log* (a) = log a + log log a + • • •, where the sum includes all th* positive iterates, 

and a+ is the number of nonnegative items in {m,s,f}. 

The length function (5.2.10) consists of three parts. Since the encoding of qm is 

equivalent to the encoding of ri,m — r/m, • • -, fm-iim — r/m, this will be achieved by a 

binary string beginning with fi,m — r/m O's and a 1, followed by f2,m — r/m O's and 

a 1, and so on until rm_i,m — r/m O's being added, but without attaching a 1 at the 

end, provided that m, s,t and d are given. Under this non-prefix encoding procedure 

the first term of (5.2.10) gives the code length of qn. The second to the fifth terms 

of (5.2.10) are the code length needed for encoding m, s and i (equivalent to m, S 

and f) in a prefix manner. In general we can encode a set of integers {9i, • • • ,9b) in 

a prefix manner with about 

L3(9i,---,9b) = log 2.865 + log*(0 + 1) + log J f + b}[, + log - ( - + ^ 
0! (6- l ) ! ' °b+\(b-b+)\ 

bits (Section 1.3). Here 9 = Ei l̂ «'|, ar*d b+ is the number of nonnegative items in 

{9i,---, 9b}. The last term gives us the code length for encoding the truncation 

precision S. Since a+ equals either 2 or 3, the fifth term of (5.2.10) can be replaced 

by 1 reflecting the fact that one digit is needed to tell if s is negative or nonnegative. 

With the description length defined by (5.2.9) the shortest code length for the 

data A"n by the above encoding procedure is 

min {-I*(A"n; m) + L2(q
m, m, S)} 

m* n . 4- 1 
= - £ ( * . - + Dlog . ' • " . ; + L2(<T\rn',S) (5.2.11) 

where the minimization is done by searching for an optimal integer m* < n and S is 

a prescribed precision. 

If the sequence of break points are distributed uniformly in the interval [s, t), then 

rim = r/m and the first term of (5.2.10) becomes zero. The expression (5.2.11) turns 

out to be 

min 
m 

( - E K m + l ) l o g ( " " m
x

+ \ ) m + L3(fh,s,r) + \\ogS\). (5.2.12) 
I i=t (n-|-m)r J 
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An alternative to (5.2.11) is to use the idea of shortest predictive code length. 

This idea involves the ordering of the data A"", either by location or by time of 

arrival, then finding the histogram density estimate based on the past and making 

appropriate modifications each time a new observation comes (Rissanen (1989) and 

Yu and Speed (1992)). In our situation the data Xn is ordered by location, as 

A î) < A"(2) < • • • < A"(n). For any fixed m < n, an optimal sequence of break points 

qm is obtained by solving the recursive equation (5.2.7). Let i(X^)) be the unique 

integer i such that A^j G Q,,m, and n,,m(i/) = Ex,<i/^A (Ai) be the number of 

those Ai's satisfying A"/ < v and falling into the ?-th subinterval Q,,m. The histogram 

density estimate based on the first j observations Aii), • • -, X^ can be written as 

/ (xlA- ( i ) , - - - ,A^ ) ,m) = f : W ; ; ^ + 1 / , (x) (5.2.13) 
, = 1 (J T m)rl<m Vi,m 

and the likelihood function of A" can be constructed in a predictive manner as 

/(X»;m) = n / ( * 0 ) I *<i>.-••.*O-i>."0 
J=I 

A ".(Jf0)).m(^(,-l)) + 1 

/=! 0" " 1 + m)ff(Xb)),m 

- ( m " 1 , ! fir^- (5-2.H) (n + m - l ) ! j j f ,,«"•.*' 

In Rissanen et.al. (1992) — log/(A"n;m) is defined as the stochastic complexity of 

A"" under the given partition. Now the shortest predictive code length for the data 

A"nis 

mm {-log f(Xn;m) + L2(q
m,m,8)} 

= -D<*».\*! +E»..*logr..A " log, \ . ,'+L2(t^S) (5.2.15) 
,=i ,=i (n + m- 1)! 

where the minimization is achieved at m < n and S is a prescribed precision. In 

particular, when the subintervals are of equal length, the expression (5.2.15) becomes 

min Jn log — + log [ j + log | j + L3(m, s, r) + [logS\ > . 
ro I m \ni>m ,---,nm>m/ \ n / J 

(5.2.16) 
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The relationship between the shortest code length (5.2.11) and shortest predictive 

code length (5.2.15) is established by the following results. 

Theorem 5.2.1 Let Xn be a simple random sample from an unknown density func­

tion f on [s, t]. Suppose the following conditions are satisfied: 

(i). 0 < Ci < / < c2 < co, where Ci,c2 are two constants; 

(ii). The number of subintervals m in the quantization of Xn satisfies 

n1* < m < n72, 

where 71 and f2 are two constants satisfying 0 < 71 < f2 < 1 ; 

(iii). The width f,>m of each optimal subinterval Q,,m satisfies 

bim~ai < r,,m < b2rn-a> 

uniformly for integers m in [n7l,n72], where bx, b2, a\, a2 are constants satis­

fying 1 < Qi < ~ + j - , and max [0,2c*i - — j < a2 < 1. 

Then uniformly in m G [n71 ,nyi\, the difference between the shortest code length and 

the shortest predictive code length of Xn 

- log/(A"n; m) + L'i(Xn;m) = a'm logm + ]-m logn + O(m) a.s. (5.2.17) 

where — | Q I < a' < — | + ai. 

Note that if the support of the density / is finite, then a2 < 1 < ai is implied by 

the condition (iii). Another useful implication of (ii) and (iii) is a2 < 1 < ai < •*- < 
± 

Theorem 5.2.2 In addition to the conditions (i), (ii) and (iii) in Theorem 5.2.1, 

suppose that 

(iv). f is absolutely continuous with derivative f a.e. such that \f(x)\ < C3. 
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Then uniformly in m G [n71^72] 

(1) — Am0"1 + (a2 — ai)mlogm + o(nm~2a3 + mlogm) 

< -L*i(Xn;m) + L2(q
m,m,S) + logfn(Xn) 

< (ai - l)mlogm + Cfnm~2a2 + o(nm~2a2 + mlogn) a.s. (5.2.18) 

if either ax ^ 1 or a2 ^ 1, and 

-L*i(Xn;m) + L2(q
m,m,S) +log fn(Xn) = 0(nm-2 +mlogn) a.s. (5.2.19) 

if ai = a2 = 1. 

(2) — Amai + - m log n + (a 2 — - a i J m log m + o(nm~2a* + m logm) 

< - log f(X"; m) + L2(q
m,m, S) + log fn(Xn) 

< -m log n +(2ai - - Jm log m -f Cfnm-2a2 + o(nm~2ai + m log n) a.s. (5.2.20) 

i/ either ai ^ 1 or a2 / 1, and 

-log/(A-";m) + L2(9m,m,«)-rlog/"(A-") = 
1 n 
- m log h C'/nm"2 + 0(nm"2 + m log n) a.s. (5.2.21) 
2 m ' 

ifcti = a2 = 1. #ere log/n(A"n) = n"=i / ( * , ) , C} = |* /,' «£, A > 0 is a cons*an* 

and Cy is a constant between -^-J- and C/. 

From Rissanen (1989) we know that — log/n(A"n), the so-called Shannon Com­

plexity, represents the optimal code length of A*" if the underlying density / is known. 

Thus the equations (5.2.18) and (5.2.20) represent, respectively, the redundant code 

length when using the coding processes corresponding to (5.2.11) and (5.2.15). There­

fore uniform minimax bounds for the shortest code length (5.2.11) and the shortest 

predictive code length (5.2.15) respectively can be constructed as follows. 

Theorem 5.2.3 Under the conditions of Theorem 5.2.1 and Theorem 5.2.2 and hav­

ing either ai ^ 1 or a2 ^ 1, we have 

-Mi fa^+n^ logn) 
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< min {-I*(A-«;m) + L2(q*»,m,S)} + log /"(AT") 
mein^l.n^J 

1 2<»2 

< Af2n »+a«a (log n) »+a«»a a.s. (5.2.22) 

and 

-M3{nai'r'+nnlogn) 

< mm {-log/(A""; m) + L2(q
m,m,S)} -rlogfn(Xn) 

< Mtn^&Z (log n ) 7 ^ " a.s. (5.2.23) 

to/iere Mi, M2, M3,M* are positive constants depending on f. 

Finally we give a result for the special case of ai = a2 = 1. 

Theorem 5.2.4 Under the conditions of Theorem 5.2.1 and Theorem 5.2.2 and ai = 

a2 = 1, the following statements hold. 

(a) min {-Ll(Xn;m) + L2(q™,m,S)} + log fn(Xn) 
m€[n~i,n~2] 

= 0(n3(logn)3) a.s., (5.2.24) 

(6) min (-log/(A""; m) + L2(q
m,m,S)} + log/"(A"") 

= M5n3(logn)5 a.s., (5.2.25) 

(c) m* = 0((n/ log n)5) a.s., (5.2.26) 

(d) m = M6(n/log n)i a.s.. (5.2.27) 

where MS,MQ are positive constants depending on f. 

The proofs of Theorem 5.2.1 to Theorem 5.2.4 will be presented in Section 5.4. 

The equations (b) and (d) agree with (ii) and (iv) of Theorem 2.4 of Yu and Speed 

(1992). Note that even though the predictive code length (5.2.20) is longer than the 

code length (5.2.18) with an infinite number of digits as n —> co, both of them have 

the minimax bound of the same order. In addition, the estimates (b) and (d) are 

better than (a) and (c) respectively. The predictive encoding process is therefore 

preferable and will be the subject of study in the remainder of this chapter. 
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From Theorem 5.2.3 and Theorem 5.2.4 it follows that for variable-width subin­

tervals the minimax bound for the predictive code lengths (5.2.15) is no better than 

for the uniform width subintervals (see Theorem 2.4 of Yu and Speed (1992)) - unless 

ai = a2 = 1, i.e. f,-rTO = 0(m~x) - in which the same order of the bound is achieved. 

This is somewhat surprising and discouraging. It suggests that even though the fi­

nite sample behavior of a variable-width subinterval histogram is very likely to be 

better than that of an equal-width one, the use of the former histogram density is 

recommended only when the optimal widths r,tm's are of order 0(m~l). 

5.3 Hypothesis Testing for Homogeneity 

5.3.1 Background 

One of the basic problems in statistical inquiry is che two-sample problem of 

testing the equality of two distributions, and more generally, the Ar-sample problem of 

testing the homogeneity of the distributions of several populations (k > 2). A typical 

example, commonly referred to as the one-way layout problem, is the comparison of 

several of treatments with a control, where the hypothesis of no treatment effect is 

tested against the alternative of at least on" efFec. 

Under a parametric setting when the rormality of the populations is assumed, the 

appropriate test is based on Student's t for the problem of equal means of two pop­

ulations. However, when approximate normality is suspected but not fully trusted, 

one may replace the t-test by its permutation analogue, which can again be approxi­

mated by a <-teiit. For the case of homogeneity of means of more than 2 populations, 

the appropriate F test is used which is based on the assumption of normality and a 

common variance of the populations, the latter of which is tested by some more or 

less robust tests like the classic Bartlett's test. For the case where the assumption of 

a common variance can not be maintained, the so-called generalized Behrens-Fisher 

problem, other tests have been proposed. For a review see Lehmann (1986b). 

To achieve robustness against the violation of some of the assumptions of the 
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parametric tests one may consider nonparametric alternatives. Usually a distribution-

free statistic which is based on the ranks of the observations, and satisfying some 

invariance principles, is constructed to test homogeneity. The two most familiar ones 

are the two-sample Wilcoxon test and the Kruskal-Wallis test. The theory of these 

and related rank tests can be found in Hajek and Sidak (1967), Lehmann (1975), 

Randies and Wolfe (1979), and Hettmansperger (1984), and others. 

All the tests cited above require that the different populations have the same 

distributional shape with the difference only in the location or the scale parameter, 

which sometimes can be explained by an additive or multiplicative treatment effect 

or both. But seldom are these claims statistically tested. Moreover, while these tests 

are sensitive to the location or scale difference, they may not detect differences of 

other types. The most commonly employed Smirnov test (see, for example, Conover 

et al., 1971) is consistent against all types of differences that may exist among the k 

populations. 

By using the data compression method developed in Section 5.2, we will argue 

that the principle of stochastic complexity and minimal description length (MDL) 

have important roles to play in testing the homogeneity of the k populations against 

any type of difference among them. 

Suppose we are given a set of data consisting of k independent random sam­

ples: An , Ai2,• • •, Ai„, with size of nj. A2i, A22,• • •,X2n3 with size of n2, • - -, and 

Ajfci, Xk2, • • •, Xknk with size of n/t, k > 2 and all the observations are independent. Let 

Fi(x), F2(x), • • •, Fk(x) represent, respectively, their unknown population distribution 

functions and fi(x),f2(x),---,fk(x) their corresponding density functions. We are 

now interested in testing if these k distributions are identical against the alternative 

that some kind of difference exists among them. 

Our test procedure operates as follows. First, an idealized code length, the stochas­

tic complexity, based upon the class of histogram density estimators with equal-width 

bins is computed for each independent random sample, which, when minimized, gives 

the optimal number of the bins with the associated density estimator and the proper 
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measurement of the information contained in each sample (Hall and Hannan (1988), 

Rissanen et.al (1992)). Second, the same kind of stochastic complexity is computed 

for the pooled sample, which, when minimized gives the estimator of the associated 

mixed density. Finally, a comparison is made between the stochastic complexity of 

the pooled sample and the sum of the stochastic complexities of all the samples; if 

the former one is smaller then the hypothesis of homogeneity of the A: distributions 

are accepted, the hypothesis is- rejected otherwise. 

The novelty of our approach lies in using the principle of minimum description 

length and stochastic complexity instead of the classic methods which employ the 

empirical distribution. A major drawback of the commonly used classic tests is that 

they may be applied only to samples of equal sizes. This is because tables for the 

case of unequal sample sizes are unavailable, and must be obtained individually in 

each case. From a practical standpoint, however, the required calculations could even 

overtax the capacity of a computer. Our proposed method removes this difficulty 

because (a) it does not require the knowledge of the distribution of the test statis­

tic, and (b) the procedure is justified for all continuous distributions and all sample 

sizes. Furthermore, with this new method one does not need to choose the level of 

significance of the test, for it becomes defined automatically. 

5.3.2 The Test Procedure 

Let (Aii, • • •, Aim ) , (A"2i, • • •, A"2„2), • • •, and (Aii, • • •,Xknic) (abbreviated as A""1, 

X2
2, •••, A"£*) be k independent random samples with sizes ni,n2 , ••*,«*, Ei=iwi 

= n, and unknown population density functions fi(x),f2(x), •••,/jt(x) respectively. 

The problem is that of testing the hypothesis 

Ho : / i = /2 = • • • = fk against 

Ha : at least two of them are not equal. (5.3.1) 

We begin the analysis by first establishing the information contained in each of 

these k samples. If the densities fi,f2,---,fk are known, the Shannon's entropy (if 
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exists) 

~ E //.(*«) log/.(*„)««„ = -». //.log/,, 

i = 1, • • •, k, respectively, will give us the optimal mean code length for each sam-

ple.(In this chapter all logarithms are in base 2.) In this sense, 

- E E [f,(xt3)iogft(xt])dx,3 = - E « . //.log/, 
«=i j = i j «=i j 

gives us a measurement of information contained in the k samples. 

Suppose now that we mistakenly ignore the differences that may exist among the 

k density functions and encode the k samples of the data as if they were from a single 

information source. The mean code length then is 

fc n , 

~ E E / f*(XtJ)]og fm„(XtJ)dXtJ = - n / /m.ilog/m.x, 
«=i ]=iJ J 

where fmtx = Ej=i(n«/n)/« is a mixture density of / i , • • •, fk-

The inequality — E?=i ", / /< log / , < — n f fmtxlogf,niX, which holds due to the 

convexity of x log x, i.e. 

- E E f Uxv)\ogft{xv)dxMJ < - E E [f,(x%J)iogfm,x(xt])dx,} (5.3.2) 
t = i j = i j 1=1 ]=ij 

where equality holds if and only if all the densities / i , • • •, /* are equal (except a set of 

measure zero), suggests that if the data are encoded in two distinct ways, each sample 

separately as well as a pooled sample, and the resulting code length for the latter is 

found larger than that of the former, then the conclusion that the null hypothesis 

Ho is violated may be warranted. Indeed, this makes sense because, following the 

arguments by Shannon (1948) and Rissanen (1989), the optimal mean code length 

per symbol is a bound which can only rarely be beaten by any other per symbol code 

length, refer to Theorem 1.2.1 and 1.2.2. 

The principle of minimum description length (MDL) and the notion of stochastic 

complexity (Rissanen, 1989) point out the way to estimate the optimal length en­

coding of the data. Suppose the unknown densities /,'s belong to a parametric or a 
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mm 
fu-,Sk€M 

nonparametric model class M- To achieve the optimal encoding of a given sample, 

say A?', we need to select a density /,• in M based on which the resulting length of 

the code for A""', —log (llj=i fi(Xij)), is as short as possible while at the same time 
A 

L(f), the code length for encoding /,• itself, is not too long. In other words, we select 

a density /, for A""' so that the resulting two-part code length achieves the following 

mm{-logfi(X?) + L(fi)}, i = l,2,---,k (5.3.3) 
/ i€A1 

Similarly, if we combine the k samples together and encode the pooled sample, the 

resulting optimal code length will be 

{ - log II fmix(X?>) + L(fmix)\ (5.3.4) 

There are some difficulties in performing the minimizations (5.3.3) and (5.3.4), 

because these are not directly computable from the data. To overcome these, we apply 

the so-called stochastic complexity based nonparametric histogram density estimator 

and compute the associated minimum description length of the data. 

Suppose the data of each sample A""', fall in the interval [s,-,/,], and the data of 

the combined k samples fall in the interval [a,t], where s = min{s,-, 1 < i < k} and 

t = max{ti, 1 < i < k). Let Mi be the class of histogram densities with equal-width 

bins, on which we shall demonstrate the minimizations (5.3.3) and (5.3.4). If we 

partition [s,-, <,•] into m,' congruent subintervals Cij for each sample, for 1 < j < m,-

and 1 < i < k, our histogram density estimator f(x) will take the value (rrii/r^pij 

when x G Cij, where r, = t, — s, is the range, pij > 0 and E £ a Pij = 1, * = 1, • • *, >̂ 

As in Hall and Hannan (1988) and Risannen, Speed and Yu (1992), we assume the 

uniform prior 7r(p,) = (m,- — 1)! on the simplex defined by pi= (pn,"-,Pim,) and 

evaluate the marginal likelihood of the sample A""' 

/, ,(A?';si,ri,mi) = / f[ kXijMpJdpi 
J i=i 

- /(^"'(np^K-D* 

-G) m t-^(m,--l)!n^i-»<jl 
(n,- + m,- - 1)! 

(5.3.5) 
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where n^ denotes the number of the data points in sample A""' that fall in the 

subinterval Cij. Then the stochastic complexity, i.e. the abstract shortest code length 

for A""' relative to the set of all histograms with fixed Si,ri and m,-, is given by 

7(A?' | sun,mi) = -log/,(AT';s,-,ri,m,) 

fi; , / n* \ . / ni + mi — 1 \ 
= n . l o g _ L + log + log , (5.3.6) 

m« \ nn.- - - .n im, / \ n« / 
t = 1,- •• ,k. 

™here ( "' ) - iffeand ("'+m< ' ' ] - ftSsSf-By the — 
\ w i l , ' ' ' ,nim, J 3 \ nf / 

argument, the stochastic complexity for the pooled sample An — (A"1, A"2
 2 -,-•-, X^k) 

relative to the set of all histograms, given s, r(= b — s) and m equal-width bins, is 

7 (X" | s , r ,m) = n l o g - + log| " J + log I ) . (5.3.7) 
m \ n , . . . n 

Here, n.i denotes the number of the data points in Xn that falls in the ith bin of the 

partitioned interval [s,b]. 

Note that if mj > n,- (or m > n), there will always be some subintervals containing 

no observation. To describe the employed model we have to take some code length for 

the encoding of these unnecessary subintervals. This is hardly reasonable. Therefore 

we restrict in the class of histograms that 

1 < mi < rii (i = 1, • • •, k) and 1 < m < n. 

For the minimizations (5.3.3) and (5.3.4) we still need the code lengths required 

to encode the parameter sets {s,,ri,mi,i = 1,••-,&} and {s,r,m}, which will be 

combined, respectively, with (5.3.6) and (5.3.7) to provide us the data-based two-

part code length corresponding to (5.3.3) and (5.3.4). Since the optimal m, and m 

usually depend on the sample size, the code lengths needed to encode the parame­

ters could be quite comparable to the stochastic complexities (5.3.6) and (5.3.7)— 

especially for small and medium sized samples—which would reduce the impor­

tance the stochastic complexity is playing in dominating the random structure of 

http://nn.---.nim
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the data. However, we can avoid such an unpleasant situation by truncating the 

number of decimal digits kept in the parameters, and encode instead the resulting 

{[si/lO'], [ri/10d], [mi/10d],z = 1, • • •, k} and {[s/10rf], [r/10d], '[m/\0d]} as well as the 

optimized precision d, where [y] denotes the nearest integer to y. (In the sequel we 

shall use y to denote [y/10''].) This means that the difference between each parameter 

and values within its neighborhood of width 10d is ignored. 

There is a natural restriction for the precision d that it ranges from minus the 

largest number of effective digits after decimal point of the observations to one less 

than the largest number of digits before the decimal point of the observations. For 

example, if the measurements of a given sample are all rounded to 3 decimals and 

the largest absolute value of the sample is 347.635, then d will be restricted within 

the interval [-3,2]. In the following analysis we assumed that d is given in advance. 

Section 1.3 showed that for a set of integers {9t,92, • • ',9b} a prefix code can be 

found with about 

(9-rb)\ (6+1)! 
L3(9i ,92,-.-,9b) = log 2.865 + log*(0) + log } +_ > + log * * _ > (5.3.8) 

number of bits. Here 9 = Ei l̂ i'l, b+ is the number of non-negative items in {9i, • • •, 9b} 

and log*(n) = logn + log logn + • • •, where the sum includes all the positive iterates. 

For a prescribed precision d we are now in a position to obtain the data-based 

expression of the idealized code length for a sample, which equals to 

min{/(A",n' | Si,n,mi) + L3{8Ufumi) + |log 10rfj} (5.3.9) 
m,-

for the sample A""', i = 1, • • •, k, and 

min{/(A"n | s, r, m) + L3(s, f,m) + \ log 10d|} (5.3.10) 

for the pooled sample Xn. Note that (5.3.9) and (5.3.10) exactly agree with (5.2.16). 

Therefore, in the case of unequal densities fi,f2,---,fk, tne idealized code length 

for encoding X?1,- • •, X? is 

m™X {p(xnsi,n,mi) 
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+L3(si, n , mi, • • •, sk, h, mk) + | log 10d|} 

g>, log -L + £ log 
™»i . • • • > " * * mi »=i 

k 

-r log 2.865 + log* E ( l * | + f< + m() 
.=1 

+ log?^fc 
( E f = i ( N + f , + m,) + 3fc)! 

(EL( |5 , | + fi + m,))!(3fc-l)! 

where (3/.;;, i ̂ h.'.i^es the number of non-negative values in {si, ri , mi, s2, r2, m2, 

•-,sk,rk^ 'hi'i. Note that in (5.3.11) we use the shorter £13(31,ri,mi,•• -,Sk,fk, fhk) 

instead of the longer E?=i £,3(*i,r,, fh,). The efficiency lies in the fact that the former 

length is obtained in a prefix manner. 

By the theory of stochastic complexity, under the right probabilistic model (here 

the density function), or the right constraints inside the probabilistic pattern of the 

observations, the corresponding encoding process is expected to produce a shorter 

code length than the one corresponding to the wrong model, or one that ignores 

the right constraints in the underlying model. Therefore we could conclude that if 

the alternative hypothesis Ha is true the code length in (5.3.11) should be less than 

that in (5.3.10), since the encoding procedure corresponding to (5.3.10) is based on 

the wrong model stated in Ho- If, however, the null hypothesis is true, then (5.3.2) 

implies that both encoding procedures corresponding to (5.3.10) and (5.3.11) should 

give virtually the same code length. (5.3.10) on the other hand would more likely to 

result in smaller code length because in (5.3.11) one needs to encode more parameters. 

Clearly then, (5.3.10) and (5.3.11) can be used as test criteria to test Ho against Ha 

in which the code lengths of the parameters play the role of determining the size of 

the test. Moreover, it enables us to go further and detect which of the k densities are 

different and which of them are identical by trying to beat the code length (5.3.11) 

by a more precise modeling of the data. 
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By Section 5.2, a more general encoding process, based on the histogram density 

with variable-width subintervals, can be applied to obtain the idealized code length 

for each data sample. Suppose the alternative hypothesis Ha\ from (5.2.15) the total 

predictive code length needed for the k samples A"1, A"2
2, • • •, A*£* is 

min | - E l o g / i + EL2(o,' l ,,mi,10< ')} (5.3.12) 

if we suppose the parameter truncation is based on the same precision d. Here fi = 

/,(A"';m f) is the likelihood function of the i-th sample A^ defined as (5.2.14), i.e. 

(m - IV m' n • • 
fi = (n I'm IV A 5 S T (5-3-13) 

(n> + m> ~ lV-j=i ri,i,m, 

where r, J im | 's are the widths of the optimal partition {Qi'j.m,} of the i-th sample. 

These are obtained by the maximum likelihood principle (5.2.4) for fixed number of 

subintervals mi applied to the i-th sample. n,iJimi is then the number of data points 

falling into the j-th subinterval Qi,j,m, • 

Because all of the k samples are encoded simultaneously, the second term of 

(5.3.12) could be further reduced by a more efficient encoding process for the pa­

rameters mi, • • v mjt, s and t defined as 

k I fpm,-l ~ L. _!_«,. — O 
r /-mi ~mt c\ V* 1 I ^-J=l • J-m< m, ~ * 

^4(?r i,---,</fc*,Wi,--.,mfc,6) = 2^1og I "*'! 
•=i V m,- - 2 

+ I - 3 K , • • •, mfc, s, r) + I log 10" I (5.3.14) 

where $"' is the sequence of break points corresponding to the optimal partition 

{Q,j,m,}. Therefore under the hypothesis Ha the total predictive code length (5.3.12) 

for the k samples can be replaced by a shorter code length 

C W , . . . , A T ) = mmin ( - E l o g / i W ' j m i ) 

- r £ - 4 ( ? r , , - - - ^ r , ^ i , - - , ^ , 1 0 < ' ) } (5.3.15) 

where the minimum is attained at rhi, •• •, rhk-
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If the null hypothesis £f0 is true, that is the k samples A""1, • • •, A""* are drawn 

from the same population distribution, we can describe the information in the k 

samples using only the optimal code words required to encode the pooled sample 

Xn — (X^, - • • ,Xlk). By regarding the pooled sample An as drawn from a mixed 

distribution with density /TO,-r = E L i ^ / n *ne shortest predictive code length for 

encoding Xn is the one defined by (5.2.15): 

C(Xn) = min { - log fmix(X
n; r:) + L2(C„- m, 10d)} 

= - E l oS%* ! + E »,,* loS^m - log f \ J n , + L2(q*ix, m, 10")(5.3.16) 
j^l j=l vn "+• r n *•)• 

where the minimum is attained at rh. 

The large sample asymptotic behavior of the discussed test procedure is presented 

in the following theorem. 

Theorem 5.3.1 Let A""1,* • • ,A"£* be simple random samples, respectively drawn from 

the unknown density functions fi, ••-, fk on [s,t], and Xn — (A""1, • • •, A"£H) the 

pooled sample. Suppose that the conditions (i) to (iv) listed in Theorem 5.2.1 and 

Theorem 5.2.2 are satisfied for each A""' and the corresponding /,. Then the following 

statements hold. 

(i). If at least two of fi,- ••, fk are not equal almost everywhere, there exists a con­

stant n < 0 such that 

-[C(X?\---,XZk)-C(Xn)]<n a.s. (5.3.17) 

as ni —r oo, • • -, tik -* oo satisfying ^ > £i > 0, • • •, ^ > e* > 0 for any set 

of prescribed constants £i • • •, £k-

(ii). If fi= f2 = •-- - fk a.s., then 

-[C(X?,---,Xlk)-C(Xn))-+Q a.s. (5.3.18) 
n 

as ni —> oo, - •', nk -+ co. 
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The proof of Theorem 5.3.1 will be given in section 5.4. 

Since (5.3.10) and (5.3.11) are the special situation of (5.3.16) and (5.3.15) respec­

tively, the above theorem is also true for the test procedure based on the encoding 

process for histograms with equal-width subintervals. 

From part (i) of the above theorem we know that the asymptotic power of our 

test procedure is 1 in the limit as the sample sizes tend to infinity, i.e., almost surely, 

the -hortest predictive code length under Ha is less than that under Ho when Ha is 

true. However, when the null hypothesis Ho is true, the difference of the two shortest 

predictive code lengths per observation tends to be zero almost surely as the sample 

sizes tend to be infinity. This implies that we need some threshold value for (5.3.18) 

to control the type I error when Ho is true. 

When the sample sizes are finite, the size of the test is essentially determined by 

the part of the code lengths required for encoding the parameters. In the encoding 

process corresponding to (5.3.15) there are more parameters (gmi, • • •, gm*, mi, • • •, 

mk, d) to be encoded than in the encoding process corresponding to (5.3.16) in which 

only gJUij., m and d are to be encoded. Thus the code length (5.3.15) is more likely to 

be larger than (5.3.16) if the null hypothesis Ho is true. Furthermore, the size of the 

test varies with d, the precision truncating the parameters. If the parameters are not 

truncated, the code length used to describe the parameters will be quite comparable 

to that used to describe the data under the given histogram estimate, and the type 

I error will be quite small, while the type II error is likely to be large. On the other 

hand if the parameters are truncated too heavily, i.e. too much information suggested 

by the parameters is ignored, the type I error is likely to be large even though the type 

II error will be well controlled. As a rule of thumb, we use the precision of Xn as 10rf 

used to truncate the parameters. Exact formula for determining the optimal precision 

d is not available, but some heuristic grasp of how the power of the test varies with the 

precision d can be obtained by the simulation study later in this section. In Rissanen 

(1994a). Fisher information is used to find the stochastic complexity of a set of data 

coming from a parametric model class. As a consequence, there is no need at all to 
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choose the optimal precision to truncate the parameters. Some works on applying 

this idea to test the hypothesis of homogeneity is currently pursued by the author. 

5.3.3 Two Examples 

The first example uses the "PRO Football Scores" data of R. Lock (1992). In 

order to get an idea of how the criterion works, we compare only the pointspread 

(abbreviated as pts., Oddsmaker's points to handicap the favored team) data in the 

third week, the eighth week and the fourteenth week to assess the presence of a time 

shift in the scores. 

Scores of the third week: 

7.5 3.5 7.0 10.0 2.5 6.5 8.5 2.5 4.0 7.5 1.5 3.5 

4.5 4.0 9.5 2.0 5.5 9.0 3.0 9.0 3.5 5.5 9.0 7.0 

10.5 2.0 14.0 2.0 14.0 3.5 9.0 2.0 3.0 3.0 1.5 3.5 

2.0 7.5 6.0 8.0 3.0 4.0 

Scores of the eighth week: 

7.0 6.5 2.5 2.0 2.5 4.0 6.0 3.0 4.0 6.0 8.5 

6.5 2.0 2.0 6.5 5.5 2.5 2.5 9.0 3.5 6.0 13.0 

4.0 3.5 0.0 0.0 5.5 7.0 12.0 12.5 5.5 1.0 4.0 

4.0 2.0 7.0 4.0 13.0 

Scores of the fourteenth week: 

12.0 1.0 12.0 6.5 3.0 6.0 3.0 9.0 1.5 9.5 10.0 

8.0 5.0 0.0 13.5 4.5 5.5 3.5 13.0 7.5 5.0 2.0 

6.5 4.0 4.0 3.0 3.0 6.5 8.0 5.5 9.0 9.5 11.0 

1.5 5.U 7.0 8.5 5.0 6.5 

with sample sizes ni = 42, n2 = 38, n3 = 39 respectively. 

Under the null hypothesis of no time shift in the pointspread, the idealized code 

length (5.3.10) for the pooled sample with m < 119, is 363.27, and the corresponding 

optimal m = 119 and d = 1 (one less than the largest number of digits before the 
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decimal point in the observations). Under the alternative hypothesis, of some time 

effects in the pointspread, the idealized code length (5.3.11) for the three independent 

samples is 445.27, achieved at mi = 5, m2 = 2, m3 = 1 and d = 1. Beca lse the 

idealized code length for the pooled sample is considerably smaller than that of the 

three independent samples, we conclude that there is no evidence of time effect in the 

pointspread, which concurs with the conclusion of the classic Student's t test for the 

mean difference of every two of the three samples. Figure 1 and Figure 2 show how 

the idealized code lengths of each individual sample and the pooled sample change 

with the number of bins employed in the corresponding histogram densities and with 

the precision d used to truncate the parameters. 

In the second example, we generated two independent samples with sizes ni = 15 

and n2 = 12, respectively, from Gamma(4,3) and Uniform(4,18) distributions. The 

two samples are as follows 

X, = 7.362 8.876 5.219 10.506 12.590 9.552 10.203 11.144 

27.296 3.105 8.995 4.955 4.065 10.822 11.097 

X9 = 6.645 6.246 7.589 4.563 11.131 4.371 6.743 16.647 

15.412 6.202 15.134 6.951 

Under the null hypothesis HQ that there is no difference between the distributions 

which generated the two samples, the idealized code length (5.3.10) is 120.78 with m = 

3 and d = log1017, while under the alternative hypothesis Ha that there is a difference 

between the two distributions, the idealized code length (5.3.11) is 115.00 with mi = 

3,m2 = 7 and d = log1025. The difference is clearly indicated by (5.3.10) and 

(5.3.11), but neither the classic Student's i test, which gives the p-value=0.7026, nor 

the Smirnov test, which is not significant at a = 0.2, would indicate that difference. 

It is also interesting to note that (5.3.10) is always minimized at m = 3 when d is 

chosen to be from 0, log102, log103, •••, log1027, while (5.3.11) is always minimized 

at mi = 3 and m2 = 7. Figure 3 illustrates the relationship among (5.3.10), (5.3.11) 

and d. 
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Figure3: Relationship between Code Length and Precision 
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5.3.4 Simulation Studies 

In this subsection we assess the finite sample performance of the proposed test 

procedure, based on the encoding process for histograms with equal-width subinter­

vals, by a simulation study. We compare our method with the two sample t-test and 

the Smirnov test for equal and unequal sample sizes. The comparisons are in terms 

of the power of the test and based on 1000 repetitions. The results are summarized 

in Table 5.1 and Table 5.2. 

Instead of using the optimal precision we choose some different but reasonable 

precision to truncate the parameters. It is found that there usually exists a precision 

d which makes both type I and II errors reasonably small. 

The tables illustrate the following findings: 

(i). When the samples are generated from normal distributions, the three tests are 

all efficient if the difference of the populations is the result of a mean shift. 

Both the Smirnov test and the stochastic complexity test are efficient when the 

difference is the result of a change in the variance, but the latter is better. 
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(ii). When the data are generated from uniform distributions, the stochastic com­

plexity test is quite efficient, and also the best of the three methods. 

(iii). When the data are generated from lognormal distributions, the Smirnov test is 

the best and the other two tests are inefficient. 

(iv). When the data are from exponential distributions, all the three methods are 

efficient, but the two sample t test is the best. 

(v). When the data are from logistic distributions, both the Smirnov test and the 

stochastic complexity test are quite efficient to indicate a difference in the shape 

of the distributions with the latter method superior in performance. 

(vi). When the data are from gamma distributions, both the Smirnov test and the 

stochastic complexity test are efficient with comparable power. 

(vii). When the two samples are from different families of distributions, the stochastic 

complexity test is quite efficient and performs best. 

From the simulation study it seems that the stochastic complexity test is a promis­

ing method which can be expected to be further improved as better ways to estimate 

the unknown densities are employed. 
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Figure 1: Relationship between Code Length and Number of Equal-width-bins 
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Table 5.1: Comparison of tbe Power of the Test in Two Sample Case (Sizes nL = n2 = 15 and Based on 1000 
Simulations) 

Distributions 

N(10, 9) & N(10, 49) 

N(10, 49) & N(10, 49) 

N(10, 9) & N(10, 9) 

N(12, 4) & N(10, 4) 

N(13, 4) & N(10, 4) 

N(13, 4) & N(13, 4) 

N(10, 4) & N(10, 4) 

N(10, 16) & N(10, 16) 

N(2, 16) & N(2, 16) 

N(10, 0.64) & N(10, 0.64) 

N(5, 0.64) & N(5, 0.09) 

N(5, 0.09) & N(5, 0.09) 

N(25, 1) & N(25, 1) 

Unif(0, 1) & Unif(0,1) 

Two Sample t-test 

a: .1 .05 .01 

.107 .052 .011 

.104 .048 .013 

.094 .058 .012 

.824 .717 .464 

.988 .977 .894 

.095 .044 .008 

.308 .055 .007 

.104 .049 .011 

.090 .048 .015 

.099 .049 .011 

.095 .053 .008 

.111 .061 .007 

.112 .056 .009 

.094 .049 .011 

Smirnov Test 

a: .184 .076 .026 

.487 .229 .093 

.173 .077 .023 

.184 .078 .023 

.837 .684 .503 

.988 .952 .877 

.185 .084 .025 

.200 .083 .023 

.201 .084 .031 

.171 .078 .030 

.186 .076 .020 

.560 .311 .152 

.189 .077 .026 

.201 .084 .032 

.191 .087 .026 

Stochastic Complexity Test 

d: 0 .1 .2 .3 .5 .7 1.0 

.410 .482 .547 .603 .783 .875 .970 

.005 .012 .022 .032 .086 .173 .371 

.033 .045 .079 .099 .220 .347 .447 

.279 .333 .406 .454 .639 .748 .813 

.655 .710 .758 .815 .891 .941 .965 

.030 .047 .057 .079 .185 .326 .444 

.033 .045 .073 .100 .235 .384 .427 

.039 .056 .074 .104 .219 .362 .611 

.017 .029 .033 .048 .113 .205 .513 

.053 .073 .097 .133 .214 .396 .626 

.873 .890 .902 .923 .986 .988 1.0 

.137 .159 .231 .331 .687 .695 .964 

.003 .005 .012 .018 .060 .131 .428 

.103 .102 .203 .251 .844 .848 .851 



Table 5.1 continued 

Distributions 

Unif(l,4) & Unif(l,4) 

Unif(-2,3) & Unif(-2,3) 

Unif(l,4) & Unif(-2,3) 

Unif(2,8) & Unif(3,7) 

Unif(2,8) & Unif(2,8) 

Unif(3,7) & Unif(3,7) 

Unif(5,14) & Unif(3,10) 

Unif(5,14) & Unif(5,14) 

LogN(l,l) k LogN(.5, v/2) 

LogN(.5,V2) & LogN(.5, >/2~) 

LogN(l,l) & LogN(l,l) 

LogN(l,l) & LogN(0,v^) 

LogN(0,v/5) & LogN(0,v/3) 

LogN(7,2)&LogA'(l,4)* 

Two Sample <-test 

, Q : .1 .05 .01 

.100 .052 .016 

.087 .037 .007 

1.0 .998 .965 

.100 .053 .009 

.086 .049 .007 

.107 .061 .010 

.957 .921 .762 

.103 .051 .008 

.111 .050 .005 

.070 .026 .003 

.088 .035 .004 

.221 .151 .043 

.055 .017 .000 

.491 .307 .080 

Smirnov Test 

a: .184 .076 .026 

.182 .079 .029 

.181 .068 .022 

.998 .984 .937 

.311 .124 .046 

.173 .071 .023 

.206 .080 .030 

.924 .814 .640 

.179 .070 .020 

.410 .244 .129 

.201 .082 .038 

.165 .070 .023 

.737 .574 .379 

.169 .077 .021 

1.0 1.0 .995 

Stochastic Complexity Test 

d: 0 .1 .2 .3 .5 .7 1.0 

.037 .039 .060 .055 .203 .470 .835 

.011 .018 .021 .020 .145 .240 .851 

.999 .999 .999 1.0 1.0 1.0 1.0 

.244 .305 .425 .398 .807 .793 1.0 

.007 .011 .015 .020 .079 .115 .465 

.007 .011 .017 .028 .097 .096 .865 

.909 .948 .970 .974 .990 1.0 .997 

.001 .002 .004 .007 .033 .085 .090 

.112 .129 .163 .193 .292 .399 .559 

.108 .130 .158 .177 .233 .308 .418 

.046 .062 .082 .112 .200 .291 .457 

.210 .250 .294 .338 .436 .521 .647 

.182 .202 .225 .238 .296 .352 .439 

.510 .518 .536 .548 .568 .600 .628 

*: The power will equal to .802, .875 and .925 respectively for d=3.0,4.0 and 5.0. 



Table 5.1 continued 

Distributions 

Exp(l) k Exp(.2) 

Exp(.2) k Exp(.5) 

Exp(.2) k Exp(.6) 

Exp(.2) k Exp(.2) 

Exp(.2) k Exp(.7) 

Exp(.6) k Exp(.6) 

Exp(.7) k Exp(.7) 

Logis(2,2) k Logis(2,2) 

Logis(2,3) k Logis(2,4) 

Logis(2,3) k Logis(2,3) 

Logis(2,5) k Logis(2,5) 

Logis(2,3) k Logis(2,5) 

Logis(2,2) & Logis(2,7) 

Logis(2,7) & Logis(2,7) 

Two Sample <-test 

a: .1 .05 .01 

.989 .939 .632 

.719 .545 .193 

.862 .721 .336 

.100 .049 .007 

.919 .823 .449 

.089 .043 .005 

.095 .039 .006 

.093 .046 .007 

.096 .047 .008 

.112 .056 .007 

.107 .052 .013 

.079 .034 .010 

.088 .047 .006 

.104 .054 .OOd 

Smirnov Test 

a: .184 .076 .026 

.982 .946 .848 

.716 .525 .359 

.854 .705 .526 

.181 .077 .021 

.898 .798 .651 

.185 .088 .026 

.179 .082 .017 

.190 .075 .023 

.209 .092 .034 

.177 .079 .025 

.180 .076 .033 

.266 .118 .046 

.714 .409 .192 

.189 .075 .024 

Stochastic Complexity Test 

d: 0 .1 .2 .3 .5 .7 1.0 

.917 .940 .958 .961 .982 .992 .994 

.416 .462 .509 .544 .661 .769 .841 

.599 .646 .683 .729 .824 .886 .923 

.017 .026 .039 .053 .129 .216 .370 

.728 .765 .804 .829 .889 .938 .960 

.089 .108 .133 .164 .338 .411 .682 

.110 .134 .162 .192 .342 .428 .745 

.026 .038 .057 .084 .175 .298 .584 

.014 .021 .031 .048 .093 .173 .345 

.008 .010 .020 .031 .078 .155 .338 

.002 .003 .004 .011 .032 .060 .151 

.032 .049 .064 .087 .157 .257 .425 

.517 .580 .643 .710 .817 .879 .938 

.002 .003 .004 .008 .024 .044 .116 



Table 5.1 continued 

Distributions 

Logis(2,3) k Logis(2,7) 

Logis(2,3) k Logis(2,8) 

Logis(2,5) k Logis(2,8) 

Logis(2,8) k Logis(2,8) 

Logis(2,4) k Logis(2,7) 

Gamma(4,2) k Gamma(2,3) 

Gamma(2,3) k Gamma(2,3) 

Gamma(4,2) k Gamma(4,2) 

Gamma(2,4) k Gamma(4,2) 

Gamma(5,2) k Gamma(2,5) 

Gamma(2,5) k Gamma(2,5) 

Gamma(5,3) k Gamma(3,5) 

Gamma(5,l) k Gamma(l,5) 

Gamma(6,2) k Gamma(2,6) 

Two Sample <-test 

o: .1 .05 .01 

.100 .045 .011 

.113 .055 .010 

.113 .058 .010 

.103 .047 .008 

.092 .042 .005 

.392 .271 .102 

.099 .050 .007 

.096 .047 .010 

.108 .057 .018 

.116 .050 .012 

.100 .050 .011 

.101 .049 .006 

.132 .088 .040 

.109 .056 .014 

Smirnov Test 

o: .184 .076 .026 

.460 .224 .084 

.573 .300 .135 

.266 .108 .049 

.186 .070 .022 

.307 .136 .042 

.566 .370 .210 

.180 .080 .029 

.167 .069 .024 

.260 .115 .044 

.318 .150 .062 

.187 .085 .025 

.226 .119 .041 

.587 .368 .200 

.370 .172 .084 

Stochastic Complexity Test 

d: 0 .1 .2 .3 .5 .7 1.0 

.132 .169 .210 .267 .387 .518 .697 

.238 .270 .327 .379 .489 .623 .785 

.013 .019 .028 .039 .092 .156 .278 

.002 .003 .004 .004 .009 .024 .078 

.033 .043 .052 .070 .138 .247 .419 

.089 .113 .153 .196 .328 .471 .712 

.030 .040 .055 .066 .154 .250 .457 

.019 .037 .059 .080 .166 .245 .538 

.048 .071 .091 .121 .244 .364 .639 

.069 .097 .131 .171 .308 .422 .644 

.012 .020 .029 .036 .079 .137 .289 

.012 .018 .031 .046 .106 .187 .305 

.384 .434 .488 .547 .715 .825 .917 

.085 .104 .155 .187 .327 .471 .624 



Table 5.1 continued 

Distributions 

Gamma(7,2) k Gamma(2,7) 

Gamma(7,3) k Gamma(3,7) 

Gamma(8,2) k Gamma(2,8) 

Gaxnma(8,3) k Gamma(3,8) 

Gamma(9,2) k Gamma(2,9) 

Gamma(5,2) k Gamma(5,2) 

Gamma(5,3) k Gamma(5,3) 

Gamma(3,5) k Gamma(3,5) 

Gamma(5,l) k Gamma(5,l) 

Gamma(l,5) k Gamma(l,5) 

Gamma(6,2) k Gamma(6,2) 

Gamma(2,6) k Gamma(2,6) 

Gamma(7,2) k Gamma(7,2) 

Gamma(2,7) k Gamma(2,7) 

Two Sample t-test 

a: .1 .05 .01 

.114 .067 .005 

.110 .062 .019 

.094 .041 .009 

.114 .063 .013 

.117 .067 .019 

.088 .036 .003 

.105 .054 .014 

.091 .050 .013 

.109 .058 .009 

.099 .049 .012 

.095 .049 .008 

.108 .054 .007 

.067 .030 .009 

.098 .039 .005 

Smirnov Test 

o: .184 .076 .026 

.390 .216 .092 

.292 .155 .067 

.455 .242 .111 

.315 .158 .065 

.509 .286 .131 

.166 .065 .026 

.207 .082 .028 

.177 .074 .029 

.1«6 .070 .025 

.189 .089 .036 

.190 .079 .022 

.202 .086 .038 

.138 .044 .016 

.185 .074 .020 

Stochastic Complexity Test 

d: 0 .1 .2 .3 .5 .7 1.0 

.092 .136 .169 .224 .366 .519 .635 

.028 .039 .054 .073 .145 .239 .447 

.119 .157 .206 .259 .427 .566 .707 

.025 .038 .060 .087 .156 .258 .437 

.158 .209 .246 .310 .463 .609 .745 

.016 .025 .046 .065 .150 .236 .497 

.008 .010 .018 .026 .088 .152 .247 

.006 .009 .012 .018 .052 .109 .236 

.071 .094 .135 .175 .304 .513 .590 

.021 .032 .047 .061 .121 .213 .372 

.016 .021 .036 .062 .149 .246 .398 

.004 .007 .012 .020 .058 .121 .260 

.012 .018 .025 .035 .097 .175 .315 

.004 .005 .009 .015 .049 .101 .222 



Table 5.1 continued 

Distributions 

Gaimma(7,3) k Gamma(7,3) 

Gamm. .(3,7) k Gamma(3,7) 

Gamma(8,2) k Gamma(8,2) 

Gamma(2,8) k Gamma(2,8) 

Gamma(8,3) k Gamma(8,3) 

Gamma(3,8) k Gamma(3,8) 

Gamma(9,2) k Gamma(9,2) 

Gamma(2,9) k Gamma(2,9) 

N(2,16) k Logis(2,7) 

N(5,5) k Exp(.2) 

N(2,49TT 2 /3) k Logis(2,7) 

N(5,36) k ExP(.2) 

Two Sample t-test 

a: .1 .05 .01 

.118 .063 .010 

.102 .054 .006 

.081 .048 .010 

.095 .046 .007 

.115 .057 .008 

.100 .049 .014 

.113 .065 .015 

.097 .047 .010 

.118 .060 .004 

.125 .075 .027 

.101 .056 .005 

.090 .048 .009 

Smirnov Test 

a: .184 .076 .026 

.199 .092 .029 

.178 .072 .022 

.183 .083 .026 

.181 .083 .028 

.178 .074 .024 

.190 .073 .030 

.192 .087 .032 

.188 .078 .033 

.629 .367 .166 

.562 .335 .173 

.202 .087 .024 

.323 .156 .065 

Stochastic Complexity Test 

d: 0 .1 .2 .3 .5 .7 1.0 

.002 .006 .014 .026 .072 .132 .281 

.004 .006 .012 .015 .036 .075 .170 

.008 .022 .026 .041 .092 .168 .299 

.006 .009 .009 .013 .036 .080 .207 

.002 .004 .007 .008 .036 .087 .231 

.002 .006 .009 .011 .022 .051 .150 

.008 .008 .014 .020 .068 .151 .295 

.001 .002 .003 .008 .024 .066 .158 

.409 .490 .562 .635 .748 .845 .939 

.359 .421 .487 .544 .758 .841 .916 

.000 .001 .003 .004 .012 .030 .087 

.197 .240 .287 .348 .537 .692 .849 



Table 5.2: Comparison of the Power of the Test in Two Sample Case (Sizes nx = 15, n2 = 20 and Based on 1000 
Simulations) 

Distributions 

Unif(-2,3) k Unif(l,4) 

Unif(3,7) k Unif(l,4) 

Unif(2,8) k Unif(3,7) 

Unif(2,8) k Unif(4,7) 

Unif(2,8) k Unif(l,9) 

Unif(l,9) k Unif(l,9) 

Unif(4,7) k Unif(4,7) 

Unif(-2,3) k Unif(-3,4) 

Unif(-3,4) k Unif(-3,4) 

Unif(-3,4) k Unif(-4,0) 

Unif(-4,0) k Unif(-4,0) 

LogN(l,l) k LogN(.5,>/2) 

Exp(.2) k Exp(.6) 

Exp(.3) k Exp(.8) 

Two Sample f-test 

a: .1 .05 .01 

1.0 .997 .973 

1.0 1.0 1.0 

.103 .051 .011 

.232 .146 .050 

.102 .054 .012 

.108 .045 .015 

.102 .045 .011 

.079 .040 .007 

.094 .048 .012 

.998 .997 .974 

.103 .054 .011 

.092 .035 .004 

.873 .747 .350 

.857 .759 .432 

Smirnov Test 

a: .2 .1 .05 .01 

.998 .995 .984 .917 

1.0 1.0 1.0 .999 

.362 .239 .125 .029 

.655 .555 .329 .149 

.274 .139 .083 .016 

.224 .117 .068 .020 

.200 .104 .056 .011 

.287 .155 .084 .014 

.203 .105 .057 .013 

.996 .992 .961 .849 

.200 .088 .053 .011 

.470 .317 .237 .079 

.887 .797 .703 .475 

.808 .698 .598 .371 

Stochastic Complexity Test 

d: 0 .1 .2 .3 .5 .7 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 

.505 .593 .684 .666 .914 .897 1.0 

.966 .974 .974 .990 .997 .997 1.0 

.111 .156 .235 .295 .405 .811 .858 

.009 .017 .024 .027 .077 .318 .290 

.021 .026 .039 .047 .104 .225 .863 

.093 .140 .165 .182 .454 .885 1.0 

.006 .009 .012 .011 .033 .159 .295 

.991 .994 .995 .997 1.0 1.0 1.0 

.005 .007 .006 .014 .037 .037 .865 

.109 .134 .177 .211 .310 .403 .546 

.635 .680 .729 .761 .837 .892 .925 

.585 .634 .685 .723 .809 .885 .916 



Table. 5.2 continued 

Distributions 

Exp(.5) k Exp(.2) 

Logis(2,2) k Logis(2,7) 

Logis(2,4) & Logis(2,7) 

Logis(2,8) k Logis(2,3) 

N(10,9) k N( 10,49) 

N(13,4) k N(10,4) 

N(5,.64) k N(5,.09) 

N(-8,49) k N(-6,16) 

Gamma(7,2) k Gamma(2,7) 

Gamma(7,2) k Gamma(8,3) 

Gamma(4,3) k Unif(6,18) 

N(3,16) k Logis(2,7) 

N(5,25) k Exp(.25) 

Gamma(5,2)&N(ll,81) 

Two Sample /-test 

o: .1 .05 .01 

.771 .602 .238 

.085 .044 .012 

.061 .030 .008 

.094 .040 .008 

.097 .046 .009 

.998 .992 .941 

.09f .049 .011 

.325 .204 .074 

.089 .054 .013 

.993 .978 .903 

.120 .066 .017 

.089 .045 .004 

.202 .121 .040 

.099 .049 .012 

Smirnov Test 

a: .2 .1 .05 .01 

.780 .647 .548 .284 

.774 .543 .359 .097 

.322 .169 .099 .018 

.623 .430 .264 .090 

.553 .350 .221 .047 

.998 .986 .980 .881 

.674 .482 .285 .092 

.542 .383 .263 .110 

.458 .274 .192 .066 

.993 .972 .953 .843 

.323 .179 .100 .020 

.727 .499 .325 .090 

.514 .358 .263 .102 

.528 .315 .200 .060 

Stochastic Complexity Test 

\d: 0 .1 .2 .3 .5 .7 1.0 

.403 .454 .522 .569 .673 .768 .845 

.559 .616 .678 .733 .833 .910 .955 

.028 .042 .053 .073 .144 .233 .390 

.303 .342 .388 .434 .555 .669 .794 

.478 .540 .620 .679 .828 .912 .976 

.756 .796 .852 .887 .937 .964 .982 

.926 .926 .934 .956 .994 .994 .999 

.101 .129 .171 .220 .341 .473 .625 

.134 .171 .218 .269 .433 .591 .723 

.575 .636 .677 .736 .827 .898 954 

.391 .449 .536 .597 .752 .885 .922 

.475 .545 .617 .674 .803 .872 .948 

.363 .422 .489 .555 .743 .834 .924 

.290 .346 .414 .461 .649 .802 .900 
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5.4 Proofs of the Theorems 

In this section, we will provide proofs for all the theorems listed in this chapter. 

For the sake of simplicity, the logarithms in the proofs are al' natural logarithms. 

From (5.2.6) and (5.2.14), 

-\ogf(Xn;m) + L'i(Xn;m) = 
J ( m - 1 ) ! ^ n,,m! \ , ^ , n,,m + 1 

-logST-^ 7̂77 I \-—n { + / ("<,m + 1) log : — . (5.4.1) 

By Stirling's formula n! = y/2~Trnnne~nee" (0 < 0n < l/(12n)), (5.4.1) can be rewritten 

as 

m / i \ n i , m + 1 

-logf(Xn;m) + L'i(Xn;m) = -y£logr„m+ £ log 1 + 
i=l nt>rn>o \ ni,m/ 

+ 9 YI ^gntim-m\ogm-rO(m). (5.4.2) 
1 n,,m>o 

We will show that the first term of (5.4.2) is a^mlogm + 0(m) where 1 < ai2 < oi, 

the second term is 0(m) and the third term is y log —§^ where 1 < 022 <• Qi- The 

following Lemmas will be needed. 

Lemma 5.4.1 Suppose that n,,m 's have a multinomial distribution with probabilities 

Trt<m 's such that J^Li ^'.m = 1, <̂,m > b\Ci,,i~ai and £ j l , nt,m = n. Then for each 

integei w, there exists a constant aw such that 

JT n,'m nnt'm \ < ^ - " m 2 0 " " (5.4.3) 
i=l n,r«,m J 

Proof Denote Tt = £™, w ,^7r
n7 r , 'm . By the definition of the multinomial distribu­

tion and from Stirling's formula we have 

ni , m + - + n m , m = n U i = l "«.">• I = i 
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»J,m+—+nm,m=n «=1 "«,m-

oo m / _ _ \7 l | m 

< ^ e £ £ r ^ n ( , m ) , e'n,,Tn 

A r = 0 n , , m + - + n r o , m = N i = l n»."»-
, oo oo TO / \nt,m 

= v&e E ••• E gyn , e~ni'm 

nj,maO nm .m=0 t= l B i ,m« 

= V & : £ ' ( j 2 " ) (5.4.4) 

where the final expectation £ ' (Ji2™) is with respect to a series of independent Poisson 

random variables {nl<m} with parameters {nwl<m}. This technique, used by Rosen­

blatt (1975) and Stone (1985), of converting the multinomial to Poisson is called 

Poissonization. The constant c„ = ofy^J. By Shiryayev's (1984) Theorem 6 of 

Section 2.12, the 2tu-th moments of 7i can be written as a sum of its cumulants: 

E, ̂  = £ p{hr . . ̂  JJ ̂ (Ti) (5 4 5) 
Jl+-+JI=2u/ k=l 

where p(ji,m" ,ji) = j j , |."!y'j and jk > 1,1 < 2w. Because ntjm's are independent 

Poisson random variables, it follows from the section 1.4 of Lehmann (1986a) that 

the jfc-th cumulants of T\ 

*»(Ti) - £ *» ( n " m " n 7 r " m ) = £ 7 - ^ % < { W ^ - W (5.4.6) 

if jk > 1 and it]k(Ti) = 0 if jk = 1. Thus 

E'(T2-)=^p(ji,---,jl)ilK3k(Ti) 

i 

< E'Miir • • ,ji) n^i)"""1-"™0 '1"1 < a»n-wm2a*w (5.4.7) 
fc=i 

where the summation 52* is taken over all partitions of 2u> such that Y?k=i jfc = 2tw, 

jk > 2 and / < u>. Using the same notation for possibly different constants and 

substituting the last bound into (5.4.4) the lemma is proved. • 
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Lemma 5.4.2 Suppose that N is a binomial random variable with mean np. Then 

for any integer w > 0, there is a constant aw > 0 such that 

E(N - np)2w < awn*+wpw (5.4.8) 

Proof. By the same technique of Poissonization we have 

E(N - np)2w < awn*E(Ni - np)2w 

where Ni is a Poisson random variable with mean np. By the equation (5.4.5) and the 

fact that Kk(Ni - np) = np if k > 1 and «i(M - np) = 0 it follows that E(Ni - np)2w 

is a polynomial of order w, and therefore (5.4.8) must hold. • 

Lemma 5.4.3 Under the conditions that f,im > bim~°l, 1 < a\ < 1 + 5— and 

f > ci > 0, 
^i,m nKt<m 

«=1 mc. 
= o(m) a.s. (5.4.9) 

uniformly in m G [1,"""] as n —> oo, where 7r,iTn = / A / 

Proof. For any e > 0, 

P [ max 
\me[l,n1»] 

^i,m ^f»,n 

:fl.nT2l V m€[l,nT2] 

J27T, 

ftt.m TIT i,m 

i = l «7Tti„ 

> em J 

> em J 

< £ e -~m "E (y"''"1 ~ "*'."] 
2w 

(5.4.10) r -2u>„ , -2u / j 

me[l,nT2] 

where the last inequality is obtained by applying Chebyshev's inequality. From 

Lemma 5.4.1, 

P I max 
\m€[ l ,n*] t = i 

^»,m ^^I ,T/ I 

n7T, »,m 

> e m ) < £ e"2u 'm-2u 'au/n^-u 'm2o,u ' 
/ m€[l,n">2] 

< au;e-2u 'n (2a ,^-2 '»- , ) , i '+»+ 'yi (5.4.11) 

By the condition that c*i < 1 + ^ r , the series above converges in n for w > 2+^^ai 

Hence (5.4.9) follows from the Borel-Cantelli lemma. D 
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Lemma 5.4.4 Under the conditions that btm
 ai < r,,m < b2m~a'i, where 2ai — - < 

<*2 < 1 < <*i < \ + £- and 0 < cx < / < c2, 2 ' 2-n 

max 
1<«<TO 

maini<n 

n 
- maiiri<m = o(l) a.s. (5.4.12) 

uniformly in m € [l,!*""] as n —• oo. 

Proof. Denote 
, |mQln, im 

im.n = max m a i *,-,„, 
l<t<m | n 

then for any e > 0, 

I m , a x ^ / m ' n > £ ) - E ^(^m,n>£) Vmeli.n ]̂ J m € [ l n 1 2 ) 

< 
TO / 

£ E*( 
• r» _ -»o i .'—.1 V n ,6[ l , n u] i= l n I > 

< E E ^ 
me[l,n"»2] «"=1 

m a i n l2u; 

ill /t t ,m a . 

m '7r,-,m n 

= E E £ _ 2 " ' : " 2 U ' a i "" , " £ ' , (n .>-n7r , > ) 2 u ' , (5.4.13) 
m€[l,nT2]«=l 

where the last inequality is obtained by applying Chebyshev's inequality. From 

Lemma 5.4.2 and the property that cibim~ai < 7r,,m < c2b2m~a2, 

P I max Im,n > £ 1 
\me[l ,nU] / 

-2wrn2mair.-2xvrl „ i + « 7 s £ £ 
me[l,n-il]i=l 

< 0 n2"l'2+5+(2Qn'2-oi272-l)ti; 

e-—m*",**n—au,n2+u,(c262m-a2)t 

(5.4.14) 

From now on the same notation will be used for possibly diffeient constants. By the 

condition that Q2 > 2ai — ^-, the above series converges in n for w > 2 . 2 a ~*4a ^.• 

Hence (5.4.12) follows again from the Borel-Cantelli Lemma. Q 

Lemma 5.4.5 Under the conditions that f,,m < b2m~a2 and f < c2) we have 

m 

E(n«."> ~ n7r«,m)2 - n = o(n) a.s. (5.4.15) 

uniformly in m € [n7,,n] as n —» oo. 
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Proof. Suppose {iV,,m} are a sequence of independent Poisson random variables with 

mean {n7r,im} and denote T2 = EI=i(-N.,m - n7r,,m)2. We first show that tht j-th 

cumulants of T2 satisfies 

\KJ(T3)\ < a3n
}m-a2(l-x) (5.4.16) 

where a3 is a constant depending on j . 

Because {iV,im} are independent, it follows that 

TO 

«J(T2) = E^(w.--"7r«.«')2)-
1=1 

By applying again Theorem 6 of Section 2.12 of Shiryayev's (1984), the j-th. cumulants 

of (NI.TO — n7r,iTn)
2 can be written as a sum of its moments: 

K,(W,m-»»r,.»)a) = £ aJu--,ji)Y[E{(N,,m-n*%,m)2») (5.4.17) 
Jl+- +J|=J k=l 

where Q(ji,---,ji) = * - ^ j — f-, and jk > 1, / < j . From Lemma 5.4.2 we know 

that E((Nttm — nn,tm)23k) is a polynomial of order jk for njr,,m, therefore 

TO 
MTa)| < £»* . . « ) ' < a^m""^) 

1=1 

for some constant a}, hence (5.4.16) holds. 

By (5.4.5) and the identities /c,(r2 - n) = E{T2 - n) = 0 and K}(T2 -n) = n,(T2) 

for j > 2, it can be seen that 

where the summation £* is taken over all the partitions of 2io such that 5Dj=i h — 2u>, 

/, > 2 and fc < w. By (5.4.16) it fellows that 

E(T2 - n)2w < £*aayu;m-a* (2u '-* ) < fl.n^m-"1"' (5.4.18) 

for some constant aw depending on w. 
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Now for any e > 0, 

( . 
PI max 

i m€[n^i ,n] 

£ P( 
m€[n'T1 

< E e~2wn-2wE 
mtzln"1* ,n] i=l 

< E e"2u'n"2u"t"^ 
m€ln7,,nl 

ra I \ 

E( n «> ~ n7r»'.m)2 - n > en J 
«=1 I / 
m j \ 

E(n«."» ~ n7r«'.m)2 - n > en j 

E(n».™ - n,r«,m)2 - " 

1=1 

E w > -""•«> ) 2 _ n 

1=1 

2w 

(5.4.19) 

by applying Chebyshev's inequality and the technique of Poissonization. 

From (5.4.18) it follows that 

( . 
P ( max E( n «> ~ n;r«>)2 - n 

i = i 
> en 

< £ e"2u'n"2u",'*au,n
2u'm-0'2U' < awn*-c"2'nw. 

m€[nfJ ,n] 
(5.4.20) 

The above series converges for w > 2a
5 , hence from the Borel-Cantelli Lemma 

(5.4.15) follows. D 

Corollary 5.4.1 Under the conditions that bim~ai < f,,m < b2m~a2 and 0 < cx < 

f<c2, 
A (ni,m - nffj,m)2 

iTi (n*i,m)2 

uniformly in m € [n71,n] as n —r oo. 

-«(=?) « (5.4.21) 

Lemma 5.4.6 Under the conditions of Lemma 5.4-4, the following statement is true: 

£ log-2*2-= 0(m) a.s. (5.4.22) 
n«,m>0 n7r»'.m 

uniformly in m € [n7,,n'n] as n —• oo. 

Proo/. First note that 

£ log Jh?L= £ log(l-fn ' 'm~W7r ' 'm>) 
Wl(m>0 nrr«.n> n, , m >0 \ WTt,m / 
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By Taylor expansion, 

E iogffL = E ! ^ 
n,- m — n7r i,m 

, ,m * n«,m>o nJTj,m 2 

"».m~n7ri'.TO 

5 E (l+6.m)-2(n'7nir
W7;r)a+D (5.4.23) 

where Z> = - E n . m = 0
 ! ! i ^ ? 2 1 < m and |&,m| < 

Thus 

^«,TO ^""t,m 

(niri<my 

^i,TO~w^».m 
"fi.rn 

I T i , . 
< (cifti)"1 max 

m"'n< t m 

n 
max |£im | < max 

and by Lemma 5.4.4 

max |fc,m| = o(l) a.s. (5.4.24) 
l v t < m 

uniformly in m € [1, n72] as n —• oo. By (5.4.24) and Corollary 5.4.1 it follows that the 

second term of the right hand side of (5.4.23) is bounded uniformly in m € [nyi ^ ^ J 

by O (J—-) a.s.. The latter is o(m) because n > m" and at < | + £-. Therefore 

by Lemma 5.4.3 

E los 
ni>m>o 

ni,m = 0(m) a.s. 

uniformly in m € [ny,,nr2] as n —» oo. D 

Proof of Theorem 5.2.1 

By conditions (i) and (iii) we can obtain an interval estimate, respectively, for 

- YT=i fi,m and E J l j l°gn»i,m as follows: 
m 

m log m + 0 ( m ) < — 5 2 log r,-tm < a i m log m + 0 ( m ) (5.4.25) 
i = l 

m 

m log n — a i m log m + 0 ( m ) < ^ log n7r,)m < m log n - m log m + 0(m).(5.4.26) 
i=l 

Hence there exists an a' satisfying -fa < a' < - | + a i such that 

m i m i 

- 5 3 log n.m + o E l og n7r».™ ~ "»log m = a 'm log ra + - m log n + 0(m). (5.4.27) 
i = i * i = i l 

Now we turn to the second term of (5.4.2). By Taylor expansion 

"t.m + l 

£ ^(i + r-V 
= E Km + l ) ( - L - ^ ( l + ̂ r 2 - i

1 ) = 0 ( m ) , 
n,,m>o \ n «> ^ "«."» / 

(5.4.28) 
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where 0 < n,,ro < •%*—. 

From Lemma 5.4.6, (5.4.27), (5.4.28) and (5.4.2), it is easy to see that 

— log/(A" n ;m) + L\(Xn',m) = a'mlogm 4- - m l o g n + 0 ( m ) a.s. 

uniformly in m 6 [n^jn7*] as n —• oo. D 

To prove Theorem 5.2.2 we first need the following lemmas. 

L e m m a 5.4.7 Under the condition (iii) of Theorem 5.2.1, 

L2(q
m,m,S) = o(m) (5.4.29) 

Proof. From ftim-"1 < fi%m < b2m~a3 ii follows that 

i b2 r r bi \ b2 + 
< max < , > < 

{m"1 m m m0i J ma-
rt,m 

m 

r 
m"2 

From this (5.4.29) follows. D 

Let f(x | qm) denote a density in Hm which assigns the same probability as / to 

each subinterval Qi<m, i.e. for x € [s,t] let 

/(* | r) = E r^lfi (*)• 

By Lemma 5.4.7 we have 

-L\(Xn-,m) + L2(q
m,m,S) + logfn(Xn) 

= -LUXn;m)+£log/(*, \qm) + £ J^x^) + ° ( m ) - (5'4'30) 

Lemma 5.4.8 Under the conditions of Theorem 5.2.1, there exist two positive con­

stants A and B such that 

Bmai< T ntmlog^-<Amai a.s. (5.4.31) 
nt<m>o n7r'-m 

uniformly in m 6 [n71,****8] as n —» oo. 
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Proof. By Taylor expansion, 

n , - m l o g ^ r ~ = E nM»iog 1 + - i r - ; — - I 
n,,m>0 n7Tf,™ n , , m >0 V "Ti.m / 

/".,m-nflMn\ 1 
\ »»*..m J J = En«.« 

1=1 

TO 

ttt.m W7T,(m 1 2 

— x(l + ».,*) 
mr,,m I 

_ \-* (n',m — nX%,m) , y^ ,_ „ „ \ 

,=1 "ff:,m 
TO ! 

i = l 

" E 5 ( 1 + ^.,fc)-
2 ( K 7 " " T r - + K m " n , r " m ) 2 ) (5-4.32) 

S 2 \ ("TI,TO)Z N/r,,m / 

where \9,tk\ < 'n7r"" ''"* ' s o *na* maxi<«<m |#i,fc| = o(l) a.s. uniformly in m € 

[n71, n72]. The argument is similar to that used to establish (5.4.24). By Lemma5.4.4, 

Lemma 5.4.5, the property 7r,m > ijcim-011 and the following inequality obtained 

from (5.4.32) 

»i,m log - — -
«:,m>0 nTi,n 

.33) £ K m Z i " ! ^ fi + I ( 1 + et,k)-
2 (l + max " ' - -^"" '1)1 , (5.4 

JiJ n7r,tm I 2 \ i<i<m n7r,,m | /J 

the lemma can easily be established. • 

The following lemma can similarly be proved by Taylor expansion, Lemma 5.4.3, 

Lemma 5.4.4 and Corol'ary 5.4.1. 

Lemma 5.4.9 Under the conditions of Theorem 5.2.1, 

(1) Y] — = o(m) a.s. (5.4.34) 
nt.m>on'<m 

m 

(2) £ 'o g ^- (" ) " 
uniformly in m € [n71^72] as n —• oo. 

(5.4.35) 

Lemma 5.4.10 t/nder Me conditions of Theorem 5.2.1, there exists a positive con­

stant A such that 

-Ama> + (a2 - a^mlogm + 0(m) < -Z ; (X n ;m) + £ l o g / ( X , \ qm) 
j = i 
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< (ai — l)mlogm + 0(m) a.s. 

uniformly in m € [n71^72] as n —• oo. 

Proof. First note that 

(5.4.36) 

nt.m + 1 
-L\(Xn; m) + J2^g f(Xj 19ro) = En i < m log ̂  - 5 > , , r o + l)?f l . . -

j=l t = l '»'."» i = l V" "r m)ri,n 

= E I o gn.« + E"«.« lo8 n . , i + Elog . 
i = l i = l '*»,m i * i=\ " i , r o < * 

m 
+m log(n + m) - 53 log(n7Tj,m + 1). 

«=i 

The second term of the right hand side of (5.4.37) 

(5.4.37) 

A. . (n + m)ff,-,m A . 
2 ^ "».m log —— = 2_j «.,m log 
i=l n'.m + l t=l 

(n -{• m)7Tj)m n,-,m n7r,t„ 

ni,m + 1 n î,™ «t> 

= n l o g ( l + — ) - 5Z n|-,m log(l + J - E ni,m^Og—^ 
H n.',m>0 V n « , m / n;> m>0 n7r«V 

TO 

TO 

(5.4.38) 

and 

E ^ ^ ( 1 + - ! - )= 5; „ I .m[^ + I(i + %m)-»-l5) 
"i,TO>0 ^ "».«/ n,,m>0 \"«.m * "i,m / 

where 0 < n^m < 1- By Lemma 5.4.8 and Lemma 5.4.9 (1) we have 

- Ama> + 0(m) < f > , ,„ log (n + m K " » < 0(m) a.s. 
i=T n*,m + 1 

uniformly in m € [n71^72] as n —• 00. 

It can also be seen easily that 

0:2m log m + 0(m) < - V* log ( TTJ; m + - J < aim log m + 0(m) 
fTi V » / 

From (5.4.25), (5.4.39), Lemma 5.4.9 (2) and (5.4.40) it follows that 

(5.4.39) 

(5.4.40) 

•Am0" + (a2 - ai)mlogm + 0(m) < -L\(Xn;m) + 53log/(X, \qm) 

< (ai — l)mlogm + 0(m) a.s. (5.4.41) 

uniformly in m € [n71^72] as n —• 00. 
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Lemma 5.4.11 Under the conditions (i) — (iv) of Theorem 5.2.2 and f ^ 1, we 

have as m —• oo 

f m 1 r f2 

E<^7uwr%T^k.A+°(m-2°') (5'4-42) 

Proof. By the definition of f(x \ q~m) 

Jim (/(*) - f{z | D ) = Jim ^ / ^ ^ ( / W - f(y))dy = 0 (5.4.43) 

uniformly in x 6 [s,t], where 0I,TO(^) is the subinterval holding x, and r,,m(x) is the 

corresponding width. Now by Taylor expansion 

where \r]t(x)\ < ^/jl[%p and by (5.4.43) sup r |n t(x)| = o(l). Hence 

F w / y / (/-/(• U""))2 

Now by applying the technique used in Proposition 2.7 of Freedman and Diaconis 

(1981) to prove that 

V / (/-/(• Um))2 1 A 2 /• z8 . , - * * * , 5 4 4 6 > 

and by (5.4.46) the lemma follows. 
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By denoting z =• x - 9,-1,m we have 

I (/(*)-/(x|p)^ = ̂ , r , ~ + + p<f 

= ^ rm\[Zf(y + qi-i,m)dy-J- /r"m(r,,TO -y)/(y+ *-i,m)4f A 
r " T 2 

=
 rJZL fri'm\fZf(y + i , , m ) J 2 < i z - i r ^ T O - y)/(y + «.lim)<fr 

TT.-.m -/0 UO J 5Ti,m [JO 

= *!=. / r ' , m f rf(u-rqi-i,m)f(v-rqi-i,m)dudvdz 
lti,m JO JO JO 

/ ''m / *,m(ri,TO - u)(r,,m - v)f(u + qi-i,m)f(v + *li-i,m)dudv 

- _ ! ! » / • / ' (r.m _ u V v)/(u + «-i,m)/(v + 9,-_1|m)d«rft; 
7r,,m Jo Jo 

I ,,m j ' ,m(r, - tt)(f,-,m - v)/(u + qi-i,m)f(v + qi-i,m)dudv 
7Tj>m JO ^0 

= 1 I A / ' / ( t i A i ; - r i - u v ) / ( t t + 9,--i.m)/(w + 9,--i,m)rf«rft; (5.4.47) 
Tt,m JO JO r, ,m 

where u V « = max(«,v) and u Av = min(u,u). Direct computation shows that 

/"'"t.m t^i,m 1 1 o , . 
/ / (uAv- ^—uv)dudv = —r<,m

3. (5.4.48) 
Jo Jo ritm 12 

Define /,,m = J - /0
 ,,m / ( « + fc-,.m)«fci. By (5.4.47) 

' l ,TO 

f / (/ - /(• 1 ?m))2 

££•/&,« /M?m) 
= E — / '"" / ""I" A v - ^ ™ ) ( / ( « + 9i-i,m)f(v + q{-i,m) - fi<m)dudv 

•TJ Ki,m JO JO ritm 
m - 3 .£ • 9 

+ E7£-J (hm-f2(u + qt-i,m))du 
+ V tlSL. P'm ^«-.m/a(" + ft-l,m) _ / a ( « + ft-l,m)\ ^ 

S? 12 7o V ».-.m /(M + 9.--1,™)/ 

+T2tyLi$d°- (5-4-49' 
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Note that \u A v — -^— uv\ < ft<m and 
' t,m 

f(u -f qt-.hm)f(v + 9,_,,m) - /,(m| < 

f(u + 9.-l.m) ~ 7,,TO \f(v + 9.-1,TO)| + \f(v + 9«-l,m) - 7,,m 7,,, 

then 

(5.4.50) 

A t̂ TO /"r*>m /"r«."» 1 • • ~& 
L ^ / / («* A W - T— UU)(/(U + 9 , -1 ,TO) / (U -(- g.-l.m) - f%,m)dudV 
~ J 7rt>m Jo Jo r,,m 

_ ™ [f,,m I . -r I y r , , m . . . 

^ c l l^f^JQ |/(U+9-l,m)-/,,m|yo |/(« + *-l,m)| 
_ ™ fft,m I • -r I /^..m |-T j 

+Cl l^Km j / (w + 9 i - l . m ) - / , , m / /. .m 
,_7 Jo I | Jo | I 

m / I • — I /• 

<1c-ilY,Km L \f-fJf> \f • 

Using the Cauchy-Schwartz inequality 

E r , . m //) / ~ / i , m /A / 
t=l • /V«,TO I I •'Vi.m 

PAkJ-M)} [m4.J'0 
-. i r , 1 

m / I • ~ 2 2 "» /• | - | 2 2 

^ Z^r»-m /o J — JI.TO 2-»r,-m If) \->\ 
.1=1 , /V«,m I . Lt=l " / l»t,m 

where c = (t — s)b2c3 is a constant. By (2.5) of Freedman and Diaconis (1981) 

/ ( / - 7 , , T O ) 2 - 0 a s m - ^ o o . (5.4.51) m —* oo. 

Therefore the first term in the right hand side of (5.4.49) is bounded by o(m~2a2). 

Using the Cauchy-Schwartz inequality, (5.4.51) and a result similar to (5.4.51) for 

2 

-+ 0 as m -7 oo, (5.4.52) / (/-s=Y 
JM V r„ro / 
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it is easy to show that the second and the third term of the right hand side of (5.4.49) 

are bounded by o(m~2ai). Therefore (5.4.46) is true, and so is the lemma. Q 

Lemma 5.4.12 Under the conditions (i) — (iv) of Theorem 5.2.2, we have 

£ log f*x*{\m) = nEf 1°S JfJfrT) + °(nm~2a + m l°g ») as- (5-4-53) 

as n —* oo uniformly for m € [n71,**72], where a is a constant satisfying a2 < a < 

a2+2. 

Proof. Denote Zhm = log .?£ ,f.L for each X3, then Z,,TO's are i.i.d. and 

\7 . ^ — . . ! / - / ( • I ? m ) l ^ c 3 „ - „ , 
|ZJ>TO| < m a x — ( {.m) < - ^ a x r.,m. 

Thus 

|Z,,m - £Z,,m | < — max r,,m = £ , 
Ci i S * S m 

and 
c 3 . 2 def 5>(Z J ,TO)<4n^maxf- , m

2 d =l r K 
_. c\ 1<»<"» 

By Bernstein's inequality, for arbitrary e > 0 

Zw(^J.m ~ EZj,m) 
J = l 

,2 

>' p2exn-2(vfp?)}' (54M) 

where n = n(m 2a + mn l logn)e and a2 < a < a2 + | . By the definition of B and 

V, 

V + -Bn = 4n-« max f, m + -— max f, mn(m + mn" logn)e 
3 c| i<»<"» ' 3ci !<«<"* ' 

< c'nm'292 -f c"m l-aMogn 

where c' and c" are constants not depending on n and m. 

Therefore, 

n2 1 n^m""201-f mn"1 log n)2e2 

V + \Bn ~ 2 max{c'nm-2o'2, c"m>-a* log n} 

= min{c'n(m-2o+a2 + m ^ r r 1 logn)2, 

c"n2(logn)-1(m-2a-2+5^ + m^*2n-x logn)2} 
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for any m € [n71 n72] and hence 

Y— > 0 (n *<•+> (logn)-ssrrM . (5.4.55) V2 

V + lBr, 

By (5.4.55) and (5.4.54), it follows that 

£ £ P 
n = l mtZ[n"H ,n*i] 

{£(%.«. ~EZjtm) >v) 

V-* *—» f ^ -20+202 + 1 4a-2aa \ "1 

< 2 2^ 2^ e x p j - C U n »«+> (logn) »<»+» J > < oo. 

From the Borel-Cantelli lemma, (5.4.53) follows. D 

Proof of Theorem 5.2.2 

The first part of the theorem, i.e. the equation (5.2.18) can be obtained from 

(5.4.30), Lemma 5.4.10, Lemma 5.4.11 and Lemma 5.4.12 and then the second part is 

straightforward from Theorem 5.2.1. D 

Proof of Theorem 5.2.3 

min {(ax - 1 )m logm + C/nm'2"2} = Af2n
T+5S2"(logn)TT2^»", (5.4.56) 

m6[n""l ,n"<2] 

min {-Am*1 + (a2 - aj)m log m} = -Mi(n°1 7 2 + n72 logn),(5.4.57) 

the first part is obvious from Theorem 5.2.2. The second part can be established 

along similar lines. 0 

Proof of Theorem 5.2.4-

Regarding m as a real value and taking the derivative of \n log ~ 4- C'jnm~2 with 

respect to m, we get 

{ 1 71 1 1 2 

-nlog \- C'tnm'2 \ = M5ns(logn)» (5.4.58) 

and the minimization is achieved at m = Me(n/log n)». By this result and Theo­

rem 5.2.2, (a), (b), (c) and (d) are readily obtained. D 

Proof of Theorem 5.3.1. 

As in Lemma 5.4.7, it can be shown that 

L4(q7\---,q?k,m,--,mk,S) = o\£rn-\. (5.4.59) 
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If either ai ^ 1 or a2 ^ 1, then by Theorem 5.2.3 

-M 3 £« 1 7 2 +n? logn,) < C W , - - - , ^ ) + El°g/.n,W) 
«=i 1=1 

<M4£nf^2 (logn,)7^? a.s. (5.4.60) 
t=i 

and 

- M3(n
a^2 + n72 logn) < C(Xn) + logfmtx(X

n) < M 4 n T ^ ( l o g n ) ^ 7 a.s. 

(5.4.61) 

for some positive constants M3 and M» depending on f\, - • •, fk-

If ai = a2 = 1, then by Theorem 5.2.4 (b) 

C(X?,---,Xn
k>) + 2 > g r p C ) = O (53n,"(logn,)f) a.s. (5.4.62) 

1=1 \i=i / 

and 

C(Xn) + logfmtx(X
n) = 0 (ni(logn)f) a.s.. (5.4.63) 

It remaint to prove that there exists a constant n < 0 such that 

I (log/miI(*") - 5 > g / , n W ' ) ) < V a.s. (5.4.64) 

as ni —• oo, • • •, n* —• oo satisfying ^ > £i > 0, • • •, **• > £k > 0 for any prescribed 

constants ei, •••, £k, if at least two of / i , • • •, fk are not equal almost surely, and 

I (log fmtx(X
n) - E log/,"• (X- ) ) - 0 a.s. (5.4.65) 

as ni -r oo, • • •, nfc -+ oo if /i = f2 = • • • = fk a.s.. 

Because 

Eiog/.n,W') = E E l o g / . ( ^ ) ' 
1=1 1=1j=i 

log/;,*(*") = E5>g f(E?/'(^)) 
i=i j=i \ i=i n / 
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and /,'s are bounded density functions, by the strong law of large numbers for i.i.d. 

random variables it follows that 

k k 

^ E l o g / r W ) - E ^ / / . l o g / ^ ° " • (5-4.66) 
1=1 i = l 

and 

" log fmix(X
n) ~ [ fmix log fmix - 0 a.8. (5.4.67) 

n J 
as ni —» oo, • • •, n/t —• oo. By the convexity of x log x, 

/ fmix log fmix < E ~ / fi io8 /•' (5.4.68) 

for any group of samples of sizes ni, • • •, n* satisfying E-L, n,- = n, where the equality 

holds if and only if all the densities / i , • • •, fk are equal (except a set of measure 

zero). Therefore (5.4.65) is established by using (5.4.66) and (5.4.67). Also for any 

£i > 0, • £k > 0 if *•£• > ei, • • •, 2t > efc, and if at least two of / i , ••-, fk are not 

equal a ost surely, there exists a constant n < 0 depending on £i, • • •, Ck such that 

/ fmir ^g fmix " E ~ / /• log /< < V (5-4.69) 
J •_1 n J 

for any set of integers {n,} satisfying Jli=i "i = "• Hence (5.4.64) follows from (5.4.66) 

and (5.4.67). Notice that a n 2 < 1, 72 < 1 and 7 ^ < 1, (5.3.17) and (5.3.18) hold by 

(5.4.59) to (5.4.65). ° 



Chapter 6 

Concluding Remarks 

6.1 Summary 

In Chapter 2 we proposed an index of predictive power as a criterion to select 

the principal components of a random vector distributed in a parametric family. 

This criterion, when applied to the principal components selection, considers the lost 

information due to the reduction of the parameters as well as the observed variables. 

The principal components, obtained by minimizing the index of predictive power, 

turn out to be identical to the classical principal components when the assumed 

distribution is normal. A test procedure for the principal components selection was 

constructed aj d discussed. Finally, principal components for a type of £-contaminated 

normal family were given. 

In Chapter 3 we considered the problem of selecting a model with the best predic­

tive ability in a class of generalized linear models. A predictive least quasi-deviance 

criterion was proposed to measure the predictive ability of a model. This criterion is 

obtained by applying the idea of the predictive minimum description length principle 

and the theory of quasi-likelihood functions. The resulting predictive quasi-deviance 

function is an extension of the predictive stochastic complexity of the model. Under 

rather weak conditions the predictive least quasi-deviance method was shown to be 

consistent in the sense that the probability of selecting the right model converges 

to one as the number of observations goes to infinity. Also we have shown that the 
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selected model converges to the optimal model in expectation. The method was then 

modified for finite sample applications. Justifications and discussions were provided 

and examples and simulation results were presented. 

In Chapter 4 a density estimation based complexity decision rule was proposed 

which uses the quality of these estimators to estimate the corresponding unknown 

element of the true probability density. In the development we introduced a loss 

function which includes the total variation of the squared distance of the characteristic 

functions to evaluate the performance of the density decision rule. The resulting 

complexity density decision procedure was shown to be admissible, to achieve the 

minimum expected risk, and to form a minimal complete class. 

In Chapter 5, a generalized histogram density estimator with unequal-width subin­

tervals was used to find both optimal and predictive optimal description of a data 

sample. Both optimal descriptions were expressed in terms of Rissanen's stochastic 

complexity. Uniform almost sure asymptotic expressions for both descriptions were 

given. Finally, as an application of a stochastic complexity for optimal data descrip­

tion, a new test procedure for hypothesis of homogeneity was proposed and proved 

to have an asymptotic power 1 in the limit. Examples and simulation results are also 

supplied. 

6.2 Future Research 

There still remains a great deal of work to develop the stochastic complexity as a 

competent method in statistics inference. 

In ordinary linear regression a model selection criterion by stochastic complexity 

is called the predictive least square principle (PLS). hi the case of i.i.d. normal 

residual the PLS principle is known to be consistent. It is important to study the 

effects of small deviation from independence to the PLS principle. For instance, when 

the regression residuals come from a Gaussian stationary process with the long range 

dependence structure, it is interesting to know whether PLS is still consistent and 

whether it is still as efficient as in the i.i.d. case. Only when the behavior of this 
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simple regression case is clear, it becomes possible to study the effect of long range 

or other types of dependence on more complex modeling problems. 

The study of principal components selection from parametric point of view may 

be extended to a nonparametric standpoint. For example we can define an empir­

ical distribution, calculate the stochastic complexity of a vector variable with large 

dimension based on that distribution, then formulate the index of predictive power 

and conduct the principal components selection based on this index. 

The fundamental idea in Chapter 3 is using the accumulated prediction error as a 

model selection criterion. This may be applied naturally to other regression problems, 

such as the regression using splines and polynomials, nonparametric regression and 

additive regression, etc. 

As it was noted in Chapter 4, it is possible to find an application of stochastic 

complexity theory in finite decision-problems (identification). It is also possible to 

derive a nonparametric density estimation based complexity decision rule and study 

the properties of admissibility and completeness for this decision rule. 

In Chapter 5 we have shown the power of using stochastic complexity to find an 

optimal histogram density estimation and to proceed with other selection problems 

associated with the histogram density. This contrasts with the usual way of assessing 

density estimates, either subjectively or by their asymptotic properties. Knowing 

that the stochastic complexity provides a global measure for evaluating the success of 

modeling reality through an observed data string, we may tackle other nonparametric 

density and curve estimation problems and their possible applications. 



Appendix A 

Programs for Chapter 3 

c This is the program for Example 3.5.1. This program is used 

c to select the optimal model and compute the probability of 

c selecting the true model by using monte carlo PLQD method, 

c It is valid for linear regression problems. 

implicit double precision (a-h,o-z) 

parameterCmaxr^lOOO,maxc*20,maxt=100) 

dimension x(40,5), xp(40,5) 

dimension y(40,1000),yp(40,1000),dum(16),mint(1000) 

dimension index(40),salpha(1000,16),sdev(1000,16) 

dimension model(16,5),modtr(5),coeff(40,5,1000) 

character*50 infilel, infile2 

common model,coeff 

write(*,*) 'Input the true model' 

read(*,*) (modtr(i),i=l,5) 

write(*,*) 'Input the data file of independent variables' 

read(*,*) infilel 

open(15,file=infilel,status3'old') 

160 



10 write(*,*) 'Input the number of independent variables' 

read(*,*) nx 

if(nx.gt.maxc) goto 10 

write(*,*) 'Input the number of data points' 

read(*,*) ndata 

write(*,*) 'I*./- . the data file of response values' 

read(*,*) infile2 

open(19,file=infile2,status*'old') 

write(*,*) 'Input the number of data points used to do the 

ft first regression' 

read(*,*) nd 

write(*,*) 'Input the number of monte carlo simulations' 

read(*,*) nb 

write(*,*) 'Input the number of response variables' 

read(*,*) ny 

do ii=l,ndata 

read(15,*) (x(ii,j),j=l,nx+l) 

read(19,*) (y(ii,k),k=l,ny) 

index(ii)=ii 

enddo 

set up a non-repeatable initial state for permutation 

call g05ccf 

'salpha' contains the PLQD values for each response 

data in each model 

do i=l,ny 

do j=l,2**nx 

salpha(i,j)=0.dO 

enddo 
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enddo 

do 20 ib=l,nb 

c set up a permutation of index 

call g05ehf(index,ndata,ifail) 

c write(*,*) 'index is' 

c write(*,*) index 

c creat the corresponding permutation of independent variable 

c data and response data 

do i=l,ndata 

do j=l,nx+l 

xp(i,j)=x(index(i),j) 

enddo 

do k=l,ny 

yp(i,k)=y(index(i) ,k) 

enddo 

enddo 

call predev(xp,yp,nd,ndata,nx,ny,sdev) 

do i=l,ny 

do j=l, 2**nx 

salpha(i,j)=salpha(i,j)+sdev(i,j)/real(nb) 

enddo 

enddo 

20 continue 

c write(*,*) 'salpha is' 

c do i=l,ny 

c write(*,*) (salpha(i.j),j=l,2**nx) 

c enddo 

ksum=0 



write(*,*) 'the best model is' 

do iy=l,ny 

do j=l,2**nx 

dum(j)=salpha(iy,j) 

enddo 

mint(iy)-indexmin(dum,2**nx) 

ks=0 

do k=l,nx+l 

if(modtr(k).ne.model(mint(iy) ,k)) then 

ks=ks+l 

end if 

enddo 

if(ks.eq.O) ksum=ksum+l 

write(*,*) (model(mint(iy),j),j=l,nx+l) 

enddo 

write(*,*) 'the probability*1000 is' 

c the probability is the empircal probability of 

c selecting the optimal model. 

write(*,*) ksum 

write(*,*) 'the monte carlo PLQD value are' 

write(*,*) (salpha(i,mint(i)),i=l,ny) 

stop 

end 

c This function is used to find the index where the component 

c of x is minimum. 

function indexmin(x,n) 

implicit double precision(a-h,o-z) 



dimension x(n) 

temp=9999999999.d0 

inda-l 

do ii=l,n 

if(x(ii).le.temp) then 

temp=x(ii) 

ind=ii 

endif 

enddo 

indexmin=ind 

return 

end 

c This one selects all the subsets of set {1,2,...n} 

subroutine possmod(n,nsubset) 

logical modmat(1024,10),bit 

common /subs/ modmat 

do i=0,nsubset-l 

do j=n-l,0,-l 

modmat(i+l,n-j)=bit(j,i) 

enddo 

enddo 

return 

end 

c This subroutine is used to find PLQD(sdev) value for (x,y), 

c where x is the matrix contains the x-variables values, and 



c y is the matrix contains response values. 

subroutine predev(x,y,nd,ndata,nx.ny,sdev) 

implicit double precision (a-h,o-z) 

parameter(maxr»1000,maxc=20,maxt=100) 

dimension x(40,5),y(40,1000),sdev(1000,16) 

dimension xr(40,5),yr(40,1000) 

dimension model(16,5),coeff(40,5,1000) 

common model,coeff 

do i=l,ny 

do j=l,2**nx 

sdev(i,j)=0.d0 

enddo 

enddo 

do 30 iv=nd,ndata-l 

do ii=l,iv 

do j=l,nx+l 

xr(ii,j)=x(ii,j) 

enddo 

do j=l,ny 

yr(ii,j)=y(ii,j) 

enddo 

enddo 

call coefmod(xr,yr,iv,nx,ny) 

do im=l,2**nx 

do iy»l,ny 

tempv=0.d0 



do ix=l,nx+l 

tempv=tempv+x(iv+l,ix)*coeff(im,ix,iy) 

enddo 

sdev(iy,im)=sdev(iy, im) + 

ft(y(iv+1,iy)-tempv)*(y(iv+1,iy)-tempv)/(2.0*real(ndata-nd)) 

enddo 

enddo 

30 continue 

return 

end 

This subroutine finds the coefficient matrix ard 

all the possible models. 

subroutine coefmod(xr,yr,ndata,nx,ny) 

implicit double precision (a-h,o-z) 

parameter(maxr=1000,maxc=20,maxt=100) 

dimension xr(40,5),yr(40,1000),xt(40,5) 

dimension model(16,5),coeff(40,5,1000) 

dimension sigsq(maxr),C(maxt,maxc),coef(maxc.maxr) 

dimension ipiv(maxc),wkl(maxc,4),wk2(maxt) 

logical modmat(1024,10) 

common /subs/ modmat 

common model,coeff 

call possmod(nx,2**nx) 

do ii=l,2**nx 

do jj^l.nx+l 



model(ii,jj)!=0 

enddo 

enddo 

do 40 im=l,2**nx 

nvarsl 

do kk=l,ndata 

xt(kk,nvar)=xr(kk,nvar) 

enddo 

model(im,l)=i 

do jj=l,nx 

if(modmat(im,jj)) then 

nvar=nvar+l 

model(im,nvar)=jj+1 

do kk=l,ndata 

xt(kk,nvar)=xr(kk,j j+1) 

enddo 

end if 

enddo 

ifail=0 

call g02cjf(xt,40,yr,40,ndata,nvar,maxr,coef,maxc, 

sigsq.C,maxt,ipiv,wkl,wk2,ifail) 

do i=l,ny 

do k=l,nx+l 

coeff(im,k,i)=0.d0 

enddo 

enddo 

do iy=l,ny 

do jj=l,nvar 

coeff(im,model(im,jj),iy)=coef(jj,iy) 



enddo 

enddo 

40 continue 

return 

end 

=========================================:===========om«»s»»a»o«M«*»B»« 

function(x, y, n) 

{ 

#: This is S-plus program, used in Example 3.5.1 

#: It is to find the probability of selecting the optimal model 

#: by using approximate PLQD method based on "n" simulations. 

#: "x" is the matrix contains columns of explanatory variable values. 

#: "y" is the matrix contains "n1' columns of response values, 

#: generated by standard normal distribution. 

len <- nrow(y) 

p <- ncol(x) - 1 

beta <- c(2, 9, 0, 4, 8) 

mdl <- c(l, 0, 3, 4) 

y <- y + x •/.**/. t(beta) */.*•/. c(l:n) 

s.alpha <- matr ix(0, n, 2"p) 

f o r d in (2 * p + 2) : len) { 

s.alphaC, 1] <- s.alphaC, 1] + ( ( y [ i , ] -

a p p l y ( y [ l : ( i - 1 ) , ] , 2, mean))~2)/(2 * (len - 2 * p - 1)) 

} 

mmodel <- fantas(p) 

for(m in l:(2"p - D ) { 

dum <- sum(mmodel[m, ]) 



mrow <- mmodel[m, ] 

xx <- x[, 2:(p + 1)][, mrow != 0] 

for(k in (2 * p + l):(len - 1)) { 

if(dum == 1) { 

coeff <- lsfit(xx[i:k], y[l:k, ])$coef 

s.alphaC, (m + 1)] <- s.alphaC, (m + 1)] + (yC(k + 1 ) , ] 

as.numeric(c(l, xxCk + 1]) */.*•/. coeff))~2/(2 * (len - 2 * p 

} 

else { 

coeff <- lsfit(xxCl:k, ], yCl:k, ])$coef 

s.alphaC, (m + 1)] <- s.alphaC, (m + 1)] + (yC(k + 1 ) , ] 

as.numeric(c(l, xxC(k + 1 ) , ]) 

%*% coeff))"2/(2 * (len - 2 * p - 1)) 

} 

} 

} 

model.mat <- rbind(c(rep(0, p)), mmodel) 

so <- t(apply(s.alpha, 1, sort)' 

Imod <- matrix(-1, n, 4) 

pmod <- lmod 

prob <- 0 

for(i in l:n) { 

sm <- model.matCc(l:2~p)Cs.alphaCi, ] == soCi, 1 ] ] , ] 

if(is.vector(sm)) 

pmodCi, ] <- sm 

else pmodCi, ] <- smCorder(apply(sm, 1, sum))Cl], ] 

if(sum(pmod[i, ]) ==0) 

ImodCi, ] <- c(0, 0, 0, 0) 

else { 



ImodCi, HpmodCi, ] != 0] <- c( l :p) CpmodCi, ] !« 0] 

ImodCi, ]CpmodCi, ] • • 0] <- c(rep(0, p))CpmodCi, ] • • 0] 

} 

prob <- prob + 1 - abs(sign(sum(lmodCi, ] - mdl))) 

} 

prob <- prob/n 

print("the probability of selecting the optimal model is") 

print(prob) 

print("the best model is ") 

print(lmod) 

print("the PLQD value is") 

soC, 1] 

} 

#: Splus program "fantas", used to find a l l 

#: the subsets of { 1 , 2 , . . . , p } . 

function(p) 

{ 

a <- array(data « 0, c(2"p - 1, p)) 

i f (p <= 1) 

a <- 1 

else { 

aCl, 1] <- 1 

aC2:2"(p - 1) , 1] <- c(rep(l , 2~(p - 1) - 1)) 

aC2:2"(p - 1) , 2:p] <- fantas(p - 1) 

aC(2"(p - 1) + l):(2"p - 1), 1] <- c(rep(0, 2"(p - 1) - 1)) 

aC(2~(p - 1) + l):(2"p - 1), 2:p] <- fantas(p - 1) 

} 



a 

} 

c This program is used to select the optimal model and compute 

c the probability of selecting the true model by using monte 

c carlo PLQD method.It is valid for generalized linear regression 

c model with Poisson error. It is used in Example 3.5.2. 

: main program 

implicit double precision (a-h,o-z) 

parameter(maxr=36,maxc=4,maxs=8,maxyc=1000) 

dimension x(maxr.maxc), xp(maxr,maxc) 

dimension y(maxr,maxyc),yp(maxr),dum(maxs),m:nt(maxyc) 

dimension index(maxr),salpha(maxyc,maxs),sdev(maxs) 

dimension model(maxs,maxc),modtr(maxc) 

character*50 infilel, infile2 

common model 

write(*,*) 'Input the true model' 

read(*,*) (modtr(i),i=l,maxc) 

write(*,*) 'Input the data file of independent variables' 

read(*,*) infilel 

: the values of the first column of infilel are 1. 

open(15,file=infilel,status*'old') 

10 write(*,*) 'Input the number of independent variables' 



read(*,*) nx 

c 'nx' does not count the intercept term in the model, 

if(nx.gt.maxc) goto 10 

write(*,*) 'Input the number of data points' 

read(*,*) ndata 

write(*,*) 'Input the data file of response values' 

read(*,*) infile2 

open(19,file=infile2,status*'old') 

write(*,*) 'Input the number of data points used to do the 

ft first regression' 

read(*,*) ud 

write(*,*) 'Input the number of monte carlo simulations' 

read(*,*) nb 

write(*,*) 'Input the number of response variables' 

re*d(*,*) ny 

do ii=l,ndata 

read(15,*) (x(ii,j),j=l,nx+l) 

read(19,*) (y(ii,k),k=l,ny) 

index(ii)*ii 

enddo 

c set up a non-repeatable initial state for permutation 

call g05ccf 

c 'salpha' contains the PLQD values for each response 

c data in each model 

ksum*0 

write(*,*) 'the best model is' 

do 105 iy=l,ny 



do j=l, 2**nx 

salpha(iy,j)=0.d0 

enddo 

do 20 ib»l,nb 

c set up a permutation of index 

call g05ehf(index,ndata,ifail) 

c creat the corresponding permutation of independent variables 

c data and response data 

do i=l,ndata 

do j=l,nx+l 

xp(i,j)=x(index(i),j) 

enddo 

yp(i)tsy(index(i),iy) 

enddo 

call predev(xp,yp,nd,ndata,nx,sdev) 

do j*l, 2**nx 

salpha(iy,j)=salpha(iy,j)+sdev(j)/dble(nb) 

enddo 

20 continue 

do j=l,2**nx 

dum(j)=salpha(iy,j) 

enddo 

mint(iy)=indexmin(dum,2**nx) 

ks=0 

do k=l,nx+l 

if(modtr(k).ne.model(mint(iy),k)) then 

ks=ks+l 

end if 



enddo 

if(ks.eq.O) ksum=ksum+l 

write(*,*) (model(mint(iy),j),j=1,nx+l) 

105 continue 

- :..te(*,*) 'the probability*1000 is' 

c This probability is the empircal probability of 

c selecting the optimal model. 

write(*,*) ksum 

write(*,*) 'the monte carlo PLQD values are' 

write(*,*) (salpha(iy,mint(iy)),iy=l,ny) 

stop 

end 

c This function is used to find the index where the component 

c of x is minimum. 

function indexmin(x,n) 

implicit double precision(a-h.o-z) 

dimension x(n) 

temp=9999999999.d0 

ind*-l 

do ii=l,n 

if(x(i i).le.temp) then 

temp=x(ii) 

ind=ii 

end if 

enddo 



indexmin*ind 

return 

end 

c This one selects all the subsets of set {l,2,...n} 

subroutine possmod(n,nsubset) 

logical modmat(1024,10),bit 

common /subs/ modmat 

do i*0,nsubset-l 

do j=n-l,0,-l 

modmat(i+l,n-j)*bit(j,i) 

enddo 

enddo 

return 

end 

c This subroutine is used to find PLQD(sdev) values for all 

c the possible models (x,y), where x is the matrix contains 

c the x-variables values, and y is the matrix contains 

c response values. 

subroutine predev(x,y,nd,ndata,nx,sdev) 

implicit double precision (a-h,o-z) 

parameter(maxr*36,maxc=4,maxs*8) 

dimension x(maxr,maxc),y(maxr),sdev(maxs) 



dimension xr(maxr,maxc),yr(maxr) 

dimension xt(maxr,maxc),xO(maxr,maxc) 

dimension model(maxs,4),coeff(maxs,4) 

common model 

do j=l,2**nx 

sdev(j)=0.dO 

enddo 

do 30 iv=nd,ndata-l 

do ii=l,iv 

do js'l.nx+l 

xr(ii,j)=x(ii,j) 

xt(ii,j)=x(ii,(j+l)) 

enddo 

yr(ii)=y(ii) 

enddo 

call coefmod(xt,yr,iv,nx,coeff,xO) 

do 35 im=l,2**nx 

tempv=0.d0 

do ix=l,nx+l 

tempv=tempv+x(iv+l,ix)*coeff(im.ix) 

enddo 

sdev(im)=sdev(im)+(y(iv+1)*(dlog(y(iv+1))-

ft tempv-1.dO)+dexp(tempv))/dble(ndata-nd) 

35 continue 

30 continue 

return 

end 



c This subroutine finds the coefficient matrix and all 

c the possible models. 

subroutine coefmod(xt,yr,ndata,nx,coeff,xO) 

implicit double precision (a-h,o-z) 

parameter(maxr=36,maxc=4,maxs=8) 

dimension yr(ndata),xt(maxr,maxc),xO(ndata,nx) 

dimension model(8,4),coeff(maxs,4) 

dimension isx(maxc),b(maxc),se(maxc) 

dimension cov((maxc+l)*(maxc+2)/2),v(maxr,maxc+8) 

dimension wk(((maxc+l)**2+3*(maxc+l)+22)/2) 

logical modmat(1024,10) 

character link, mean, offset, weight 

common /subs/ modmat 

common model 

call possmod(nx,2**nx) 

do ii*l,2**nx 

do jj=l,nx+i 

model(ii,jj)*0 

enddo 

enddo 

do i~l,ndata 

do j=l,nx 

xO(i,j)*xt(i,j) 

enddo 

enddo 



do 40 im=l,2**nx 

do i=l,maxc 

b(i)=0.d0 

enddo 

do i=l,nx 

isx(i)=0 

enddo 

nvar=0 

model(im,l)=l 

do jj*l,nx 

if(modmat(im,jj)) then 

nvar=nvar+l 

model(im,nvar+l)=jj+l 

isx(jj)=l 

endif 

enddo 

do k*l,nx+l 

coeff(im,k)=0.d0 

enddo 

ifail*-l 

link='l' 

mean='m' 

offset='n' 

weight*'u' 

ldx=ndata 

ip=nvar+l 

ldv=ndata 

tol=0.00005d0 

maxit=0 



iprint=0 

eps=0.000001dO 

call g02gcf(link, mean, offset, weight, ndata, 

ft xO, ldx, nx, isx, ip, yr, wt, a, 

ft dev, idf, b, irank, se, cov, v, ldv, tol, 

ft maxit, iprint, eps, wk, ifail) 

do jj=l,nvar+l 

coeff(im,model(im,jj))=b(jj) 

enddo 

40 continue 

return 

end 

function(x, y, mmodel, bm) 

{ 

# This is the S-plus program for Example 3.5.3 of Chapter 3. 

# x: data matrix contains observations of explanatory variables. 

# y: observations for response variable; 

# mmodel: all possible candidate models; 

# bm: number of permutations( monte carlo ) 

len <- length(y) 

num <- nrow(mmodel) 

s.alpha <- c(rep(0, num)) 

for(j in l:bm) { 

sam <- sample(len) 

yl <- yCsam] 

xl <- xCsam, ] 



f o r d in 20:23) { 

coeff <- as .numeric(glm(ylCl: ( i - 1)] " 1, binomial, 

maxit = 15, bf .maxit = 15, t race = F)$coef) 

pihat <- e x p ( c o e f f ) / ( l + ^ p ( c o e f f ) ) 

i f ( y l C i ] == 0) { 

s .alphaCl] <- s .a lphaCl] - ( l o g ( l - p i h a t ) ) / ( 4 * bm) 

} 

e l s e { 

i f ( y l C i ] !* 1) { 

s .a lphaCl] <- s .a lphaCl] + ( y l [ i ] * l o g ( y l C i ] / p i h a t ) + (1 - y l f i ] ) 

* l o g ( ( l - y l C i ] ) / ( l - p i h a t ) ) ) / ( 4 * bm) 

} 

e l s e { 

s .alphaCl] <- s .a lphaCl] - ( l o g ( p i h a t ) ) / ( 4 * bm) 

} 

} 

} 

for(m in 2:num) { 

mrow <- mmodelCm, ] 

xx <- as .matr ix(x lC, mrow != 0] ) 

for (k in 20:23) { 

coeff <- as.numeric(glm(y1Cl:(k - l ) ] ~ x x C l : ( k - l ) , ] , 

binomial , maxit = 15, bf .maxit = 15, t race = F)$coef) 

c o e f f . o k <- ! i s . L a ( c o e f f ) 

muhat <- coeff Ccoeif. ok] •/.*•/. c ( 1 , xx Ck, ] ) Ccoef f. ok] 

pihat <- exp(muhat) / ( l + exp(muhat)) 

i f (y lCk] == 0) { 

s.alphaCm] <- s.alphaCm] - ( l o g ( l - p i h a t ) ) / ( 4 * bm) 

} 



e l se { 

if(ylCk] != 1) { 

s.alphaCm] <- s.alphaCm] + ( ylCk] * log(ylCk]/ pihat) + 

( i - ylCk]) * l og ( ( l - y lCk]) / ( l - p ihat ) ) ) / (4 * bm) 

} 

e l s e { 

s.alphaCm] <- s.alphaCm] - ( log(pihat)) / (4 * bm) 

} 

} 

} 

} 

} 

so <- sort(s.alpha) 

otm <- mmodelCs.alpha == soCl], ] 

# print("the optimal model is") 

# print(otm) 

# print("the PLQD value is ") 

# print(soCl]) 

# print("s.alpha is") 

s.alpha 

} 



Appendix B 

Programs for Chapter 5 

c This is a Fortran program for Subsection 5.3.4: 

c Simulation Studies 

implicit double precision (a-h,o-z) 

parameter(maxr*1000,npool=30,k*2) 

integer nrhO.nk(k),maxm(k),maxmp,maxn 

dimension obs(maxr.npool),srp(maxr,2),sr(maxr,2,k) 

dimension opstc(maxr,2),opstk(maxr,k+l) 

dimension obsl(npool), obsn(k,1000),srpl(2),srl(k,2) 

dimension opstcl(2),opstkl(k+l) 

character*50 dfilel, dfile2, dfile3, dfile4 

write(*,*) 'input the sample sizes' 

read(*,*) (nk(i),i=l,2) 

write(*,*) 'input the maximum numbers of equal-width bins' 

read(*,*) (maxm(i),i=l,2) 

write(*,*) 'input the maximum number of equal-width bins 

ft for the pooled sample' 

read(+,*) maxmp 

write(*,*) 'input the digit' 

read(*,*) dig 
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write(*,*) 'input the data file of the observations' 

read(*,*) dfilel 

open(unit*75, file=dfilel,status"'old') 

write(*,*) 'input the smallest value and the range 

ft of the pooled sample' 

read(*,*) dfile2 

open(unit=79,file=dfile2,status*'old') 

write(*,*) 'input the smallest value and the range 

ft of the first sample' 

read(*,*) dfile3 

open(unit=81,file=dfile3,status*'old') 

write(*,*) 'input the smallest value and the range 

ft of the second sample' 

read(*,*) dfile4 

open(unit=83,file=dfile4,status='old') 

do ii=l,maxr 

read(75,*) (obs(ii,j),j=l,npool) 

read(79,*) (srp(ii.jj),jj=l,2) 

read(81,*) (sr(ii,jj,1),jj*l,2) 

read(83,*) (sr(ii,jj,2),jj=l,2) 

enddo 

maxn=max0(nk(l),nk(2)) 

nrhO=0 

do i=l,maxr 

do j=l,npool 

obsl(j)=obs(i,j) 

enddo 



srpl(l)»srp(i,l) 

srpl(2)=srp(i,2) 

do j=l,nk(l) 

obsn(l,j)«obs(i,j) 

enddo 

srl(l,l)»sr(i,l,l) 

srl(l,2)«sr(i,2,l) 

do j=l,nkC2) 

obsn(2,j)=obs(i,(nk(l)+j)) 

enddo 

srl(2,l)»sr(i,l,2) 

srl(2,2)»sr(i,2,2) 

call opms(obsl,srpl,npool,maxmp,dig,opstcl) 

opstc(i,l)=opstcl(l) 

opstc(i,2)»opstcl(2) 

call opms2(obsn,srl,nk,maxn,maxm,dig,opstkl) 

do jj=l,(k+l) 

opstk(i,jj)=opstkl(jj) 

enddo 

if (opstk(i.l).le.opstc(i,l)) then 

nrh0»nrh0+l 

endif 

enddo 

write(*,*) 'digit"',dig 

write(*,*) 'the number of cases when HO are rejected' 

write(*,*) nrhO 

c write(*,*) 'ideal codelength under HO, optimal m; codelength 

c ft under HI, optimal m' 



c do i=:t,maxr 

c writeC*,*) (opstc(i.j),j=l,2),(opstk(i,j),j-l,(k+l)) 

c enddo 

stop 

end 

subroutine opms(obs,sr,n,maxm,dig,opstc) 

c Compute the idealized codelength('opstc(l)') 

c (stochastic complexity + minimum description length) 

c for one sample of data. 

implicit double precision (a-h,o-z) 

integer n.maxm 

dimension obs(n),sr(2),opstc(2) 

opstc(l)*-l.d05 

do m=l,maxm 

call stcmpk(obs,sr,m,n,l,n,dig,stc) 

if ((opstc(l).eq.(-l d05)).or.(opstc(l).gt.stc)) then 

opstc(l)*stc 

opstc(2)=m 

endif 

enddo 

return 

end 

subrout ine opms2(obsn,srk,nk,maxn,maxm,dig,opstk) 

c Compute the idealized codelength('opstk(l)') (stochastic 



c complexity + minimum description length) 

c for two samples of data. 

implicit double precision (a-h,o-z) 

integer nk(2),maxn,maxm(2) 

dimension obsn(2,maxn),srk(2,2),opstk(3),nvec(10000) 

dimension stcc(10000,2),sr(2),para(6) 

external d21g 

do jk=l,2 

sr(l)*srk(jk,l) 

sr(2)*srk(jk,2) 

do m*l,maxm(jk) 

stcc(m,jk)=0.d0 

nvec(l)=nk(jk) 

if (m.gt.l) then 

nvec(l)*0 

do i=l,nk(jk) 

if ((obsn(jk,i).ge.sr(l)).and.(obsn(jk.i).1.. 

ft (sr(l)+(l.d0/m)*sr(2)))) then 

nvec(l)*nvec(l)+l 

end if 

enddo 

nvec(m)=0 

do i=l,nk(jk) 

if (obsn(jk,i).gt.(sr(l)+((m-i)/dble(m)) 

ft *sr(2))) then 

nvec(m)=nvec(m)+1 

endif 

enddo 
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if (m.gt.2) then 

do j=2,(m-l) 

nvec(j)=0 

do i*l,nk(jk) 

if ((obsn(jk.i) .gt. (sr(l)+((j-l)/dble(m)) 

ft *sr(2))).and.(obsn(jk,i).le.(i;r(l) 

ft +(j/dble(m))*sr(2)))) then 

nvec(j)=nvec(j)+1 

endif 

enddo 

enddo 

endif 

endif 

c write(*,*) 'nvac', (nvec(j),j=l,m) 

call cplxty(sr,nk(jk),m,nvec,cplx) 

stcc(m,jk)=cplx 

enddo 

para(3*jk-2)=dsign(dint(dabs(sr(l)/10**(-dig))+0.5d0),sr(D) 

para(3*jk-l)*dsign(dint(dabs(sr(2)/10**(-dig))+0.5d0),sr(2)) 

enddo 

c write(*,*) 'stcc' 

c write(*,*) (stcc(i,l),i=l,maxm(l)) 

c write(*,*) (stcc(i,2),i=l,maxm(2)) 

opstk(l)=-l.d05 

do ml=l,maxm(l) 

para(3)=dint(ml/10**(-dig)+0.5d0) 

do m2=l,maxm(2) 

para(6)=dint(ml/10**(-dig)+0.5d0) 

call deslth(para,6,delnth) 



c write(*,*) 'delnt>2', delnth 

stck*stcc(ml,l)+stcc(m2,2)+delnth+d21g(10**(dabs(dig))) 

if ((opstk(l).eq.(-l.d05)).or.(opstk(l).gt.stck)) then 

opstk(l)*stck 

opstk(2)*mi 

opstk(3)*m2 

else if ((opstk(l).eq.stck).and.(dble(ml+m2).It. 

ft (opstk(2)+opstk(3)))) then 

opstk(2)«ml 

opstk(3)«m2 

end if 

enddo 

enddo 

return 

end 

subroutine stcmpk(obsn,srk,mk,nk,k,maxn,dig,stck) 

implicit double precision (a-h,o-z) 

integer k, maxn, mk(100), nk(100),nvec(10000) 

dimension obsn(k,maxn),srk(k,2) 

dimension sr(2),para(300) 

external d21g 

this subroutine is i sed to compute the idealized 

codelength ('stck') of all 'k' samples given the 

numbers ('mk') of equal-width bins and 'srk' which 

is the smallest values and the ranges for the k samples, 

it consists of two parts: one is the stochastic complexity 

c 

c 

c 

c 

c 



c given 'mk' and 'srk', the other part is the minimum 

c description length for mk' and 'srk'. 

c 'obsn' is the data of k samples, 'nk' are their sample 

c sizes and 'maxn' is the maximum sample size. 

stck=0.dO 

do jj=l,k 

nvec(l)=nk(jj) 

if (mk(jj).£t.l) then 

nvec(l)=0 

do i=l,nk(jj) 

if ((obsn(jj,i) ge.srk(jj,1)).and.(obsn(j j,i).le. 

ft (srk(jj,l)+(l.dO/mk(jj))*s '-.(jj,2)))) then 

nvec(l)=nvec(l)+l 

endif 

enddo 

nvec(mk(jj))=0 

do i=l,nk(jj) 

if (obsn(jj,i).gt.(srk(jj,l) + ((mk(jj)-l)/dble( 

ft mk(jj)))*srk(jj,2))) then 

nvec(mk(jj))=nvec(mk(jj))+l 

endif 

enddo 

if (mk(jj).gt.2) then 

do j=2,(mk(jj)-l) 

nvec(j)°0 

do i*l,nk(jj) 

if ((obsn(jj,i).gt.(srk(J3,l)+((j-l)/dble(mk(jj))) 

ft *srk(jj,2))).and.(obsn(jj,i).le.(srk(jj,i)+ 
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ft (j/dble(mk(jj)))*srk(jj,2)))) -hen 

nvec(j)=nvec(j)+1 

endif 

enddo 

enddo 

endif 

endif 

c writeC*,*) 'nvecpool', (nvec(j),j=l,mk(jj)) 

sr(l)=srk(jj,l) 

srC2)*srkCjj,2) 

call cplxty(sr,nk(jj),mk(jj),nvec,cplx) 

stck=stck+cplx 

c write(*,*) 'stck'.stck 

para(3*jj-2)*dsignCdintCdabs(sr(l)/10**(-dig))+0.5d0),sr(l)) 

para(3*jj-l)=dsign(dint(dabs(sr(2)/10**(-dig))+0.5dO),sr(2)) 

para(3*jj)=dint(mk(jj)/10**(-dig)+0.5d0) 

wnddc 

call deslth(para,3*k,delnth) 

c write(*,*) 'delnth', delnth 

stck=stck+delnth+d21g(10**(dabs(dig))) 

return 

end 

subroutine cplxty(sr,n,m,nvec,cplx) 

implicit double precision (a-h, o-z) 

integer n,m,nvec(10000),nvecl(10000) 

dimension sr(2) 

external d21g 
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c this subroutine is used to compute the stochastic 

c complexity (cplx) of a set of data Y relative to a 

c set of histogram density functions, given the minimum 

c value of Y (sr(l)), the length of the range of Y 

c (sr(2)), the number of equal-width bins in the histogram 

c density (m) and the number of observations occurring in 

c each equal-width bin (nvec). Here n is the number 

c of the observations. 

nsum=0 

do i=l,n 

nsum=nsum+nvec(i) 

enddo 

if (nsum.ne.n) then 

write(*,*) 'summation of the number in each equal-bin 

ft not equal to n' 

else 

dun=n*d21g(sr(2)/m) 

if (n.eq.l) then 

cplx=dun+d21g(dfloat(m)) 

else 

al=dun 

do i=m, (n+m-1) 

al=al+d21gCdfioat(i)) 

enddo 

a2*0d0 

ncnt=0 

do j=l,m 

if (nvec(j).gt.l) then 



ncnt*ncnt+l 

nvecl(ncnt)=nvec(j) 

endif 

enddo 

if (ncnt.ne.O) then 

do jj^l.ncnt 

do ii=l,nvecl(jj) 

a2»a2+d21g(dfloat(ii)) 

enddo 

enddo 

endif 

cplx=al-a2 

endif 

endif 

return 

end 

subroutine deslth(x,mm,delnth) 

c A subroutine to compute the minimum description 

c length (delnth) of a sequence of integers (stored 

c in x),'mm' is the length of 'x'. 

implicit double precision (a-h,o-z) 

integer mm 

dimension x(mm) 

external dlgstr, d21g 

mplus»0 

sumx»0.dO 

do i=l,mm 



if (x(i).ge.O.dO) then 

mplus*mplus+l 

endif 

sumx* sumx+dabs(x(i)) 

<*T»ddo 

dum=d21g(2.865064d0)+dlgstr(sumx+l.dO) 

if (mm.eq.l) then 

delnth=dum+d21g(sumx+l.dO)+1.dO 

else if ((mplus.eq.mm).or.(mplus.eq.O)) then 

delnth=dum + d21g(mm+l.d0) 

do i=l,mm 

delnth*delnth+d21g(sumx+dfloat(i)) 

enddo 

do j=l,(mm-l) 

delnth*delnth-d2ig(dfloat(j)) 

enddo 

else 

delnth=dum 

do i=l,mm 

delnth*delnth+d21g(sumx+dfloat(i)) 

enddo 

do j=l, (mm-1) 

delnth=delnth-d21g(dfloat(j)) 

enddo 

do ii=(mplus+l),(mm+l) 

delnth=delnth+d21gCdfloat(ii)) 

enddo 

do jj=l, (mm-mplus) 

delnth=delnth-d21g(dfloat(j j)) 
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enddo 

end if 

return 

end 

function dlgstr(x) 

implicit double precision (a-h,o-z) 

external d21g 

dlgstr»0.dO 

dumm=d21g(x) 

do while(dumm .gt. O.dO) 

dlgstr=dlgstr+dumm 

dumm>d21g(dumm) 

end do 

return 

end 

function d21g(x) 

implicit double precision (a-h, o-z) 

temp=2.d0 

d21g»dlog(x)/dlog(temp) 

return 

end 

innaassssssesBSseasBsssassasssssseBsasiann 



functionCobs, m, dig, dig.e) 

{ 
#: Splus function "stcmplxtyl". 

# This function is used to compute the stochastic complexity 

# of a set of data relative to the class of histogram 

# densities with m equal-width bins. It consists of two 

# parts, one is the stochastic complexity given m, minimum 

# value of the data (ss), width of the range of the data (r) 

# and precision of the data (d); the other part is the 

# minimum description length used to describe {s,r,d,m}. 

# obs : a vector of observations 

# dig: number of decimal digits after the decimal point. 

# dig.e: 10"(-dig.e) is the precision set for the 

# parameter (ss,r,m) 

obsl <- round(obs, dig) 

ran <- range(obsl) 

n <- length(obsl) 

r <- ranC2] - ranCl] 

ss <- ranCl] 

para <- round(c(ss/10~( - dig.e), r/10"( - dig.e), 

m/10~( - dig.e)), 0) 

nvec <- rep(0, m) 

nvecCl] <- n 

if Cm > 1) { 

nvecCl] <- length(obslC(obsl >* round(ss, dig)) ft 

(obsl <• round(ss + (1/m) * r, dig))]) 



if (m > 1) 

forCi in 2:m) { 

nvecCi] <- 1ength(obslC(obsl > round(ss + 

(Ci - D/m) * r, dig)) ft Cobsl 

<• round(ss + Ci/m) * r, dig))]) 

} 

} 

ftprintCnvec) 

stcmp <- cmplxtylCss, r, n, m, nvec) + deslenlCpara) 

+ logClO-CabsC dig.e)), 2) 

return(c(stcmp, m)) 

} 

function(ss, r, n, m, nvec) 

{ 

#: Splus function "cmplxtyl". 

# This function is used to compute the stochastic 

# complexity of a set of data Y relative to a set 

# of histogram density functions, given the 

# minimum value of Y (ss), the length of the range 

# of the data (r), the number of equal-width bins 

# in the histogram density (m) and the number of 

# observations occurring in each equal-width bin 

i Cnvec). Here n is the number of the observations. 

if((length(nvec) !• m) I (sum(nvec) !* n)) 

return("data unmatched") 

returnCn * ClogCr, 2) - logCm, 2)) -



(IgammaCm))/lcgC2) + ClgammaCn + m))/logC2) 

- sumClgammaCnvec + l))/log(2)) 

} 

function(x) 

{ 

#: Splus function "deslenl". 

# A function to compute the minimum description 

# length of a sequence of integers (stored in a 

# vector x) 

mplus <- lengthCxCx >= 0]) 

m <- lengthCx) 

n <- sumCabsCx)) 

returnClog(2.865064, 2) + log.star(n + 1) + 

Cl/logC2)) * ClgammaCn + m + 1) - IgammaCn + I) 

- IgammaCm) + IgammaCm + 2) - lgamma(mplus + 1) 

- lgamma(m - mplus + 1))) 

} 

function(x) 

{ 

# log.star(x)=log(x,2)+logClogCx,2),2)+ 

# log(log(logCx,2),2),2)+... where 

# the sum includes all the positive iterates. 

dum <- 0 
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duml <- logCx, 2) 

while(duml > 0) { 

dum <- dum + duml 

duml <- logCduml, 2) 

} 

returnCdum) 

} 
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