Biblotheque nationale du Canada
Cataloguing Branch

- Canadian Theses Divisiop-

Ottawa, Canada
K1A CN4

NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming Every effort has beem made to ensure the highest quality of reproduction possible

If pages are missing, contact the unversity which granted the degree

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter nibbon or if the university sent us a poor photocopy

* Previously copyrighted materiais (journal articles, published tests, etc) are not filmed

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, RSC 1970, c C-30 Please read the authorization forms which accompany this thesis

> THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

AVIS

La qualite de cette microfiche depend grandement de la qualite de la these soumise au microfilmage Nous avons tout fat pour assurer une qualite superieure de reproduction

Sil manque des pages, veullez communiquer avec l'universite qui a confere le grade

La qualite d'mpression de certanes pages peut laisser a desimer, surtout siles pages orginales ont ete dactylographiees a l'aide d'un ruban use ou si l'universite nous a falt parvenir une photocopie de mauvaise qualite

Les documents qui font deja l'objet d'un droit d auteur (articles de revue, examens publies, etc) ne sont pas microfilmes

La reproduction, même partielle, de ce microfilm estsoumise a la Loi canadienne sur le droit d'auteur, SRC 1970 , c C-30 Veuillez prendre connaissance des formules d autorisation qui accompagnent cette thèse

LA THĖSE A ÉTÉ MICROFILMEE TELLE QUE NOUS L'AVONS REÇUE

APPROXIMATE EQUTLIBRIA TN AN ECONOMY

1
WITH INDIVISIBLE, GOODS
by
Ho N. Nguyen


```
9
```

-

Submitted in partial Fulfillment of the

 Requirements for the Degree of Doctor of philosophy s atDalhousie University
\qquad ,Dalhousie University

2.1 Equilibrium Concepts, , 45
2.2 Assumptions on E. 43
2.3 The Convexafied Economy with Modified preference 64
2.4 Notes 5
CHAPTER 3: THE RESULTS 58
3.0 Preliminary Results 53
3.1 The Main Theorems 61
3.2 Proofs of the results 63
1
Chapter 4: relations with the literature 73
BIBLIOGRAPHY 32

ABSTRACT

 of a finite economy where motion divisible and indursiblo sommodataes axe present, TeGmada conditions dictate that the number of wavishble goods in the economy mast, be at least one.

* - It is found that since anavisibility encompasses nom convexity, the equilibrium in, this indivisible economy is plagued by the nonconvexity related problem of infeasibility, On the other hand, indivisubxlity entails the unique problem that some consumption bundles may not be optimal an equilibrim. The conclusion of possible nonoptatmality in the present model, is confirmed by similar findings of existing. Indivisible models. However, the present result reflects an improvement in restricting the potentially nonoptimal sitatons to a very small set.
The strength of this study is derived from the use of a recent equilibrium existence theorem by Gale and Mas-colell.. This application enables the thesis to produce the above results under fewer and less rigid conditions than existing alternative models.

misti of notations

$$
\underbrace{\operatorname{mog} 20}_{i}
$$

for every
there exist?

$$
\because
$$

these does not exist.

$$
\Rightarrow \quad, \quad \text { implies } * \quad \rightarrow
$$

af andonly of"

$$
\begin{aligned}
& \{\ldots\} \\
& 0
\end{aligned}
$$

$$
\text { . } \quad \text {. is an element of }
$$

$$
\text { is not an element of }{ }^{\circ}
$$

$$
=\quad \text { intersection }
$$

* Set Theory

$$
\begin{array}{ll}
\text { Sot Theory } \\
\{\ldots\} & \text { set defunjtan } \\
1
\end{array}
$$ Is an element of

union

is a subset of
is not a subset of
.is not a subset of set exclusion the empty set

$<$

Eucladean space

The Set of proper points

the index set of cohsumers, $\{1, \therefore . ., m\}$ the index set of producers, $\{1, \ldots, \ell\}$
the index set of commodaties, $\{1, \ldots, n\}$
the $i-t h$ consumer
the j-th producex
the $k-t h$ commodity
the index set of spanning sets an R^{n}, \{玉,.... q$\}$
the spanning set of. x
the i-th consumption set
the supply set
the $n-1$ unit simplex *
the intome distribution functipn.
the profit function
the not-worse-than x set
the basic economy
the convexifued economy

ACKNOWLEDGEMENT

I wash to express my deep gratatude to my teachex, pxof. W. Klein, who inmtiated my anterest in general economic equilubrium, He has generously offered kus encouragement and guadance wathout) which this thesms could not have been comm pleted.

I would also lake to thank the members of my examining commattee for sagrifacing their precious time in reading thas admittedyy tedious work,

Flnally, my appreciation x s extended to Ms, Patty Drew Who cheerfully volunteered her typing skill'for this diffim cult manuseript..

I realuze that the opportunity costs of allythose who have assisted with this thesis are very high. Therefore this acknowledgement may be considered only as a small initial payment of my debt to them.

Chapter 0. Introduction

0.0 General Backqround.

The spectrum of economic systems encompasses'a vast range whach x b bounded at one pole by the centralızed system and the other pole by the decentralized system. Briefly, a centralm Ized system is one in which economic activities are planned and manipulated by one group of agents on behalf of all others to reach certain premefined social welfare or goals. On the other hand, \quad n a decentralized system economic decisions are undertaken by the $u n d z v a u a l$ economac unats, each motavated solely by its self-interest. The text book case of perfectly competitive or market economy is an example of a decentralızed system. In a market economy, the actions of the andividual. economic agent (consumer or producer) have no effect on the conomic paxameters (prides). Each agent takes these parameters as given and behaves accordingly (adjusts his consump tion or production bundle) to obtain has selfish objective (maximizing satisfaction or profit).

Numerous writers from Adam Smuth on have demonstrated the theoretical superiority, in a specific way, of the decentralized system, over the centralized one in the allocation of scarce economic fesources. Whale the question of efficiency in resource distribution is important in its own right, herem after we will only focus our attention on the other equally interesting ifsue: that of the logical consistency of "a'
 compatibility of the actions of all the cohomic agents in tho system; of the abilsty of the system to allow the actions of ats numergins agents to becarried out simultaneously. certanniy the existence, of a state of mutual compatability an a system where there is a large number of different agents cach acting out of greed $2 s$ far from beang travial. The anvestigation of thas state of mutual compatibility of an economac system falls under the area of general equilibrium analysas.

A condensed recount of the early contributions and developmént of general equilibrium analysis is founa in Arrow \& Hahn [3, Ch.1]. The most original and notable eaxly contrabutor an this area's generally conisidered to be Walras [28] who described the economy as a system of equations where equilibrium is etpressed as a state of equality between supply and demand $2 m$ each and every market. The existence of such a state was first rigorously shown by the mathematician wald [27]. von Neumann followed shortly with the proof of the existence of general equilibrium using game theory approach in an economy with production only [23] more signsficance and relevance o to the present study are the contributions during the past two and , half docadesin which mathentical rigor and finesse have been greatly developed. Some of these recent works are represented by McKenzie [22], Arrow \& Debreu [2], Gale [15] and Debreu [9], the last being the most formal and complete. A common feature Omong these modern treatments of the subject is the construction of an axiomatic economic model in which an equilibrium, i.e.

Abstract

a state of mutual compationinty, is shown to exist as a Logtoal and mathomatigal deductaon of the ohosen axioms. As will bo explamed in moxe' details latex in thas chaptex, the basac obyectuve of thas thesis in to andyne the state of mutual compationlaty, in an economic model where somo of tho mathematically standard axaoms have been relaxed.

0.1 Fixed-ponnt Theorems and the convexity Assumption

The investigation of the state of general equilurium and uts existence y positivo in nature and thus adapts $2 t \operatorname{sed} f$ readily to mathematical analysism The predominant mathematacul tool employed an the majority of equilubrium economic models is a class of theorems known as the fixed-pount theorems (Seo Berge [6]. Kakutani [18], and Klen [19]). The fact that the, Exxed-point theorems have become the standard modern tool an the analysus of general equilibrium is summarized by klean: "We do not exaggerate $1 f$ we say that the problem of the exism tence of a general equilibrium in a closed economy model is nothing but the problem of the existence of a fixed-point for some suitable mapping, defined in terms of the components of the model." [19, p.122]. This view is further supported by Hildenbrand and kirman who suggested that their text on equilıbrıum analysis may be approprlately described by the subtitle: "Variations on themes by Edgeworth and Walras scored for modern instruments, convex sets and fixedmpoints." [17, p.v]. In order to apply the fixed-point theorem to the proof of ${ }^{\prime}$ existence, equilibrium models have incorporated axioms that are
$\$$
not only a respectable reflectan of economac reality, they must also conform to the required mathematical conditions of the theoxem. One such axiom, which as well known in many major modelsem the axiom of convexity of consumer preference ordering and of the production set: In the diseiussion mmedately below, we wall only comsader the convexity of the consumer preference ordering:

There are three concepts of convex preferences, whe first is referrea/to as weak convexify which states that if x and y are any two consumplion bundles with x being preferred - or indifferent to y, then any proper convex combination of x and y is preferred or indifferent, to y, (if $x \geqslant y$ then $\lambda x+(1-\lambda) y \geq y$ for $\lambda \varepsilon] 0,1[1$. The second concept is called regular convexity which requires that if bunde x° is strictly preferred to bundle y then any proper convex combination of x and y ls strictly preferred to $y, ~(i f k>y$ then $\lambda x+(1-\lambda) y>y$ for $\lambda \varepsilon] 0,1[)$. Jastly, strong convexuty says that any convex combination of two indafferent bundles as strictly preferred to both, (1f $x \geqslant y$ then $\lambda x+(1-\lambda) y>y$ for $\lambda \varepsilon] 0,1[1$. Weak convexity allows for the possiblinty of thick indifference class and the presence of locd satiation. Indifference class under regular convexity assumption may include linear segments which in turn imply multi-valued demand mapping. strict con-

[^0]Figure 0.0

(a)

Weak Convexity

(b)

(c)
strong convexity
vexity, whach is equavalent to tho pxuncuple of damuashing marginal rate of substitution, results an sangle-valued demand mapping. These concepts of convoxaty preferences are illustrated \perp (n figures 0.0 (a), (b), and (e) ruspectively.

Whatever version of convex prefexonco ordering is assum ed, it anvolves numerous amportant economac amplicationsu One geonomac antexpretation of tho axiom of convex preference 15 that it prevents the consumer from reacting drastically to anfinatesamai change an prices. Even uf the consumer response $1 s^{\circ}$ extreme, as under regular convexity, all commodity bundles between the extremes are possible. Mathematically, this characteristic of consumer behavior generally assures the continulty (upper-sompeontinuity) of the demand function (correspondence).' This property of the demand mapping will be seen to be vital to the application of the fixed-point theorems.

A brief dagression at this point as useful to mlustrate the effect of the absence of convex preference and the resultang discontinuous demand mapping on the existence of equilıbrıum.

The demand curve DD for commodity X_{1} expressed as a function of the price ratio P_{1} / P_{2} in Figure 0.1 (b) is derived from the convex indifference classes in figure 0.1 (a), w denotes the bundle of initial endowment. Suppose that the supply curve for X_{1}, given by $S S$ in figure, 0.1 (b). If single market equilibrium is defined as the price ratio at which demand equals supply, then in Figure 0,1 (b) equilibrium for ;

- • $\quad . \quad$

3
Figure 0.1

4^{x}

(b)

x_{1} market n obtaned at the price level a where demand and supply coincide at' $\mathrm{s}_{1}{ }^{*}$ 。

The same gaven supply curve $S S$ as arawn in fagure 0,2 (b). mhe domand, curvo $D^{\prime} D$ ' in thas case 10 deraved from the nonconm vex preference classes of tigure 0.2 (a). There 3 . dasconm tinuzty at prico ratio a and equilibxium ac dofined no longer exists. That is. there exists no price ratio $p_{1} p_{2}$ where the corresponding amounts of x_{1} demanded and supplicd are equal. If partaal equilibrium for x manket 4 not obtainable then obviously genexal equilubium for the whole system does not exist.

It is interesting to observe that if the nonconvexity in Figure 0.2 (a) $1 s$ elminated by bridging the nonconvex gaps wath linear Inne segments then the resulting mindiference classes wal be convex as shown $2 n$ Pigure 0.3 (a). Tne corresm pondang demand curve $D^{\prime \prime} D^{\prime \prime}$ as drawn in Fag . 0.3 (b) where all amounts between points e and i are possible thus the disconm tinuxty of the demana curve $D^{\prime} D^{\prime}$ in Figure 0.2 (b) $1 s$ avolded, In this case an equilibrium exists at price retio a. As will be seen latex, this bridging or convexification is the basic method employed in tackling the nonconvex problem.

As shown above, convexity of preference oraering generates Whe continuity property of demand mapping which is necessary to the application of the fixed-point theorem. Despite this mathematical convenience, the axiom of convex preferences is economically restrictive in that at disregards the classes of anticomplementary commoditues and indivisible commoditaes. .

Pirstly, antacomplementary commodities refex to certain pairs or groups of commodities, "such as sleeping pillg and an evendig at the theatre, which may be antagonistac an smultaneous conm sumption. Arrow \& Hahn [3. p. 173$]$ observed that a proper cona vex combination of trape à la mode de caen and filet de sole Margubry maght not be haghly regarded by a gourmet. (they commented, however, that perhaps the dishes of chinese cuisine may, be more (surtable for convex preferences.) secondiy, economic reality admits the presence of numerous commodities which are produced and consumed only in whole units, these units maght be of such enormous proportaon or physical nature triat they can hardiy be considered davisuble, a property'subsumed by convexity, Figure 0.4 (a) illustrates a commodity space consisting of all indivisible goods while 0,4 (b) shows a space of mixed indivisible and divisible goods, Obviously, neither of these cases allows convex preference ordering as defined earlier.

For these reasons, It is easily concelved that the possim biluty of nonconvex preferences existing in reality is very lukely. It is desixable, thexefore, that theoretical economic models of consumer behavior should incorporate this reflection of reality. As lt turns out, a considerable amount of research has been directed toward this area.
0.2 Literature on Nonconvexity and Indivisibility

One of the first authors to argue that the assumption of convexity is less than absolutely necessary is farrell [14].

Figuza 0.1 •

7

(a)
∞
,

H1s paper genorated interesting debates on the subjeot by Bator [5] and Rothenberg [24]. Unfortunately, these discussions on nonconvexity wexe confined to the fiat worid of wo commodities, The most rigonous analysis of nonconvex prew ferences un general, n-space 3 s by starr [25]. In this paper the standard proof of existence of equilibrium by Mckenzie [22] was applied to an exchange economy wath duvishble goods where the origanal. nonconvex preferences have been replaced by their convex hulls, or "synthetic" preferences. Using mathematacal results on nonconvex sets due to I. S. Shapley and J. H. Folkman, Starr next showed that the aiscrepancy between thas equilibrium and an associated (quasi-) equilibrium in the original nonconvex economy us bounded. The size of this discrepancy depends on the degree of nonconvexity, not on the numper of agents an the system. Thus the discrepancy becomes ansignificant as the number of agents increases. Arrow \& Hahn [3, ch. 7] restated starx's results through the concepts of social-approximate and individual-approximate compensated equilibria in án economy with production. '
'Induvisibility $2 m p l a e s$ the presence of nonconvexity; however, the converse is not necessarily true, Therefore while it" is natural that an economic model with indivisible commodities may share some problems in equilibrium with divisable but nonconvex model, $1 t$ should be expected that andavisibulity anvolves additional theóretical problems unique to itself. For thas reason the investigation of indivisibility must be consadered quate separately from that of general nonconvexity,

Dierker [1.] analysea tine state of general aquilibrium 1 m an economy wath only indavisible commoditaes. He proved the exustence of a neax-equilibrium an thas model by using the concepts of consumex pruce insensutivaty and "near fisedpoint". Thas solution technique is mnovativo, however, even when consumer insensitavity to price is decreased, the result. Ing neas-equilubrium still suffors from, two major inexactnesses. Frrstly, the near-equilibxium allocation is only approxamately feasible. Secondly, it may be that the allocated bundles for some consumers are not optimal within their budget constraints. Working ith an indivisable envaronment in whach there is at least one davisible good, Broome [7] employed the more con- . ventional method of convexification to create a synthetically continuous 'demand correspondence'. The well-known proof by D ebreu [9]. Is applied to guarantee the existence of an equi- O 0 Inbryum, thins artificially convex model from which an assom cigted approximatemequilibrium in the oraginal madivisible model $1 s$ foind. Despite the differences in the basic models and mathematical approaches, Broome's approximate-equilibrium is smilar to Dierker's in the sense that at alsquvolves anfeasibility, and: under cextain circumstances nonoptimality. Whale the Eirst drawbaćk is common to all economies with general nonconvexity, the second seems to be peculiar to those with anduvisabality.

It should be noted in passing that one author, Aumann [4]. rngeneously circumvented the difficulties of nonconvexity altogether by using an entirely dafferent mathematical approach,
that of measure otheory. Argumg that tho antumtave notion of perfect competition cannot be truly reflected an any system wath a finite number of agents, Aumann chose to represent the set of agents by a 'continuum' whach of courso contanns an mixinnte, number of pointso whereas the moasure (Integral) ovex the entire contanum as "positave, the weaght of eachagent (point) $1 s$ nil. Thas lattex property corresponds t'o the perfect competition notion that individual economic agents have no $h^{n} n f$ luence in the market-and are simply -price-takers, This mathematical technique is elegant and, analyses the general equilibrium solution in the ideal limat o. whereas modols with rinite number of partionpants approach the solution from the mathematically, less than ideal, state and then let the number of agents increase to the limit.

0.3 The present study

This thesis is an analysis of the, state of general equilibrium in a finite, indivisabie economy with at least one divisible commodity and wath production. Its aim is twofold. Farstly, it seeks to provide sampler proof of existang resultes in this type of economy by using aifferent mathm ematıcal technique and/or by ancorporating less'restrictive 4n secondiy, it strives to improve present results by introducing certain new assumptions into the model. In relation to the first objective, the proposed, proof of existence will be based on the recent mathematical results by Mas-Colell [21] and Gale and Mas-Colell [16] on general : \therefore
ogutimbrium modelo wathont complofe, orderea ox mancative preferances. To the best knowledge of thas wrator, thas 10 the first time tneso xesulto have been applica to a finite. o
'Indevisible conomy. Sanco Indyvicibility automatically
ninvolves nonconvexitifn the diffacultacs of nonconvexity will be treated in thas (study by the standard technacue, a la scarro In other words, the discontrnurty associated witn nonconvexity as cemporaxily overcome by working with the convex hulls of the relevant sets. once the existence of equilibrium as obtained \ln thas synthotac environment, the result is related back to the origanal model through the established properties ón nonconvex sets by Shapley and Folkman.

- Regarding the second objective, it will be shown that certain concepts of pseudo convexity in an indivisible system may be used to eradicate some weaknesses of the exisinng rem sults.
0.4. Organization of the study \quad The thesis consists of five chapters which are organized as follows. The present chapter, chapter 0 , is a general introduction to thas study. It briefly reviews some of the relevant literatures and leads to a discussion of the purpose of this work. Chapter 1 contains the mathematical concepts, properties and their proofs which are to be used in later chapters. It is mathematicalky selfmcontained and inm cludes known results by Carathêodory, shapley-Folkman, and Mas-Colell sunce these are indispensable to this thesis. Of
paxtaculax importance to the resultr in Thoorem 4 is the
 In Ghupter 2 the basio induvassble economy. 1 t. 3 aspumptiong and the various concepts of equmibria are tirst defined. The basic economy is then modixica by convexsfying coxtam sets and altering the preforence ordering, the altoration of the preferences is vital to the application of the Maso Colell theorem to the present model. The core of the thegro. Chapter 3 , contains the mathematical results and theix proofs." Economzc interpretation of these results are also included in thas chapter. Whe final chapter, Chaptex 4, is a comparin son of the present fandangs to those in the related litexam. ture.
0.5 Notes
-

Some chapters are accompanied at the end by a seation desig-.
nated "Notes". This section serves as a general footnote to the entrre chapter. It either elaborates on some point made In the body of the chapter and/or relates certann part of the chapter to the relevant references.

Recent interature in the area of general equilibrium
analysis is growing. A general up-to-date introduction to the field $1 s$ the newly published text by Hildenbrand and kirman [17] whach offers "a sample but formal account of work done to date in that part of economacs which we have chosen to call. equilibrium analysis".

The discussion of nonconvexity in section 0.1 was con-

Eaned to the consumption coctox, Noneonvox productan oet and tus problems are olaborated here.

The precence of nonconvoz production set in an coonomy. analogous to the case of nonconvex preferences, implios that the exastence of equalibxaum 2 so longer gaaranteed, fagure 0.5 (a) showg a nonconvex production set. X. in a 2 mommodity worid whth y_{2} beang tne mput and y_{2} the output. At price matios less than a the price of the anput $1 s_{A}$ expensive relative to the price of the output and consequently no production takes place, $2 . e$. the demand for the mput y_{1} is zero. At price
 the producer $1 s$ indafferent between shutting-down or produc3ng at point A. The demand for the unput y_{1} corresponding to the price ratio a is then either o or y_{1}^{a}. The demand curve for y_{1} at various price ratios p_{2} / p_{1} is shown as segments ($0, A$). ((D, D) an Figure 0.5 (b). Assume that y_{1} as only used for production and its supply $1 s$ constant at \bar{Y}_{1} with $0<\vec{y}_{1}<y_{1}^{a}$, then there $1 s$ no price ratio at which the demand for the input Y_{1} equals $u t s$ supply \bar{Y}_{1}. Note, however, that the discrepancy from exact equilibrium at the price ratio a can never exceed $y_{1}^{a} / 2$.

The lack of exact equilibrium may be artificially elıminated by convexifying the production set y in figure 0.5 (a). This $1 s$ done by bridging the nonconvex part of y by the linear segment of, the corresponding demand curve for y_{1} is then expressed as ($0, a, e, D^{\prime}$) in Figure $0.5(c)$. Clearly equilibrium occurs at point E with price ratio a and quantity \bar{y}_{1}. .
naguve 0.4

(a)

4

(b)

Figure 0.5

(c)

(d)

To mluastrate the fact that the discxepanoy due to nonconvexity does not depend on the number of economac agents. assume that there are two adentical producexs wath production sots y shown in pagure 0.5 (a). At the relative prace ratio $p_{2} / p_{1}=a$ enther one or both producers could shut down or produce at point A. The corresponding demand for input at price ratio a is $3-v a l u e d, ~\left(0, y_{1}^{a}, 2 y_{1}^{a}\right)$, rae entixe demand curve is shown in Figure 0.5 (d). If the supply of input \quad. s Eixed at \bar{Y}_{1} and $0<\bar{Y}_{1}<2 Y_{1}$ then there oxists no exact equim IIbrium. However, the devaation from exact equalibrium as again at most $y_{i}^{a} / 2$, the, same as u the case of only one prom ducer. It as interesting to note $\operatorname{linstly}$ that the increase In number of economic agents does not expand the sise of the discrepancy. Secondyy, in equilibrium the behavioxs of adentical agents may be quite different. This discussion of nonconvex production set $1 s$ adapted from Arrow \& Hah [3, Chapter 7].

0

Chapter 1: Mathematzcal Dxelamanaries

1.0 Some Concepts and propertaes 2.5 Eucludean mogpace
1.0.0 General commodity Space

All economic modeas an thas thenis consist of a inite number of econpmic agents as well as fan fine number of commodities. The modulied oconomac model in the noxt chapter further requires a duvisible setting, wherefore it is approprate to examine $u n$ some details the propertaes of the finite Euclidean space R^{n}.

Let \mathbb{R} denote the set of real numbers., It can also be considered as the fuclidean lwspaee. A typical element of R 15 denoted $b y \mathrm{x}$, or $\mathrm{x} \in \mathrm{R}$.

The Cartesian product ${ }^{n} R=\mathbb{R}, \ldots \times R=R^{n}$ then denotes the Euclidean $n m s p a c e$ with elements beang $n-t u p l e s x=\left(x^{2} \ldots x^{n}\right)$ where $x^{k} \in \mathbb{R}$ for $k^{\prime}=1, \ldots, n$. The Euchadcan $n-s p a c e ~ i s ~ a ~ v e c t o r ~$ space, thus $x \in \mathbb{R}^{n}$ is also known as a vector and n is the di-. mension of the space.

The operations of vector addition, vector multiplication, and scalár multiplication are defined on R^{n} respectively as follows:

Let $x \in R^{n}, Y \in R^{n}$, and $\lambda \in R$, then:
$x+y \equiv\left(x^{1}+y^{1} \ldots x^{n}+y^{n}\right) \in R^{n} ;$
$x y \equiv\left(x^{1} y^{1}+\ldots+x^{n} y^{n}\right) \in R^{\prime}$
$\lambda x=\left(\lambda x^{1}, \ldots, \lambda x^{n}\right) \cdot \in R^{n}$.

Hereafter, superscripts are used"to denote the components
of a yector whoreas subsompte x any are used to zuentify dafferent vectors.

Sometzmes the discussion of a mazticular \mathbb{R}^{n} space may be restracted only to a portion of $1 t$, such as the non-negative parbe denoted by R.

$$
\Omega \equiv\left\{: \subset \subset \mathbb{R}^{n} \mid \times 0 \geqq \theta\right\}
$$

where $\theta=(0, \ldots 0) \in \mathbb{R}^{n}$ as the element with all components equal to pero, the origin of R^{n}.

Remarg: If there is a finzto number, say n, of distiact and divismble goods and services produced and consumed un the nomy, then the space of commodities may naturally be represented by the muclidean n-space R^{n}. Each vector $x \subset R^{n}$ is then called a bundie of goods where $x^{k} \in$ Ref for $k=1, \ldots n$ denotes the quan- k taty of the k-th good in the bundle. The (ommodities in the followng economic models are well-defined in the sense of Debreu [9]:

1.0.1 Distance and Related Concepts

The notion of distance 1 s basic to the definntions of numerous other motric concepts in a vector space. fet $x \in \mathbb{R}^{n}$ and $y \in R^{n}$, the real value $d(x, y)$ defined $p y$: $d(x, y)=\left[\Sigma\left(x^{k}-y^{k}\right)^{2}\right]^{\frac{3}{2}}$

* is called the Euclidean distance between x and y. clearly It can be shown that $d(x, y)$ satisfies all the axioms of a dasm tance function:

$$
\text { 1. } d(x, y) \geq 0 \text { and } d(x, y)=0 \text { if and onI } y \text { if } x=y
$$

$$
\begin{aligned}
& \text { 3. } d(x, y)=d(y, y): \\
& \text { 3. } d(x, 2)=d(x, y): d(y, 3)
\end{aligned}
$$

The dofingtaon of the nexghboriood of a veetor follows
 of a vector $x \in \operatorname{Ra}^{\text {mo }}$ as the sot of vectozs whach, azo located

 by $\mathbb{N}(x, 0), 25:$

$$
N(x, \delta) \equiv\left\{y \in \mathbb{R}^{n} \mid A(x, y)<\delta\right\}
$$

Eet $X \subset \mathbb{R}^{n}$ and $x \in \mathbb{A}$, there exists a neighborhood of x which as entareay contammed an X then x as called an anternox ponnt of X. The set of all anternor ponts of X is said to be the minterior of x.

Formallyp if $X \in \mathbb{R}^{n}$ then the interior of K_{g} denoted Int X, IS:

$$
\operatorname{Int} X \equiv\left\{x \in \mathbb{R}^{n} \mid \exists \delta>0: N(x, \delta) \in X\right\}
$$

A set is open $1 f^{*}$ all ies elements are intexior points of itiself. That is, let $X \in R^{n}, X$ is an open set if Int $X=X$.

A set $3 s^{*}$ sam to be glosed if $1 t s$ complement $1 s$ open.
In other words, let $X \subset \mathbb{R}^{n}$ then:
X is closed if Int $\left(R^{n} \backslash X\right)=R^{n} \backslash X ;$
where denotes set exchusion and $R^{n} \backslash X=\left\{Y \in R^{n} \mid Y \notin X\right\}$.
Remaxk: The empty set \varnothing and \mathbb{R}^{n} are sumultaneously closed and open while $N(x, \delta)$ defined above is open.

- A boundary point of $X F \mathbb{R}^{n} 2 s$ a point which is neither in the anterior of X nor an the interior of $R^{n} \backslash x$. The set of all boundary points of x is called its boundary and denoted
by Bna x 。
Lot $X \in R^{n}$ thon $x \subset R^{n}$ zs a boundary ponnt of X if $x \& \operatorname{Int} x$ and $x \operatorname{Int}\left(R^{n}(x)\right.$.

Bnd $x \equiv\left\{x \in \mathbb{R}^{n} \mid x \mathbb{R}^{n} \operatorname{Int} x\right.$ and $x \in \operatorname{Inc}\left(X^{n}(X)\right\}$.
Obviously a set $x \in R^{n}$ may or may not contamn its boundary, depending on wnether it as closed or open respectuvely.

The $\frac{c l o s u r e}{f}$ of a set $X \in R^{n}$, denoted $C 1 X$, if che set composed of all anterior and boundary poants of s;
$C 1 X \equiv \operatorname{Int} X U B n d X$.
Dropertres: Let $X \subset \mathbb{R}^{n}$ and $\delta \subset R_{\text {, }}$

1. Bnc $\mathbb{X}=\operatorname{Bnd}\left(\mathbb{R}^{\mathrm{n}}(\mathrm{X})^{\prime}\right.$.
2. Int x \cap Bnd $x=0$.
3. $X \cup$ Bnd $x=$ Int $X \cup B n d x$.
4. X is closed $1 f X=C 1 X$.

5. $C l X=\left\{x \in \mathbb{R}^{n} \mid \psi \delta>0: \mathbb{N}(x, \delta) \cap X \neq \emptyset\right\}$.

Another concept derived from the idea of distance is the boundedness δf a set. Inturtively, a set is bounded if the distance between any two points in the set is finite.

Formally, $X \in \mathcal{R}^{\text {n }}$ us said to be bounded if for $x \in X$, $a \delta>0$ exists such that $X \in N(x, \delta)$.
A set $X \subset R^{n}$ is said to be compact if it is closed and bounded:

Examples:

1. The non-negative orthant, Ω defined eariler is closed but not bounded,
2. ${ }^{\circ} \operatorname{Lec} \mathrm{X}=\{\mathrm{x} \subset \mathrm{B} \mid 1<\mathrm{x}<\mathrm{x}=10\}$, then:
$\operatorname{Int} X=X:$
Dnd $X=\{1,10\}_{:}^{i} \sim$
$C 1 \pi=\{x \in R \mid 1 \leq s \leq 10\}$.
Obviousiy x is an open and bounded sét.
3. Etet $X=\left\{x \subset R \mid 1 \leq \leq \leq 10^{\circ}\right\}$, then:
$\operatorname{Int} \mathbb{S}=\{\dot{Z} \in \mathbb{R} \mid 1<\mathrm{x}<\mathbf{1 0}\}$:
Bne $X=\{1,10\} ; \quad$ * \quad *
$\mathrm{cl} x=x$.
Glearly $\mathrm{X}, ~ 2 \mathrm{~s}$ crosed and bounded, 1 , e. compact.
1.0.2 Convexuty and Nonconvexaty
a, very amportani manemeacal concepr in modern economic theory 15 that of the convexity of a set. A set is called convex if the Inne segment connecting any two points of the set is entirely contained in the set.

Formally, let $X \subset R^{n}$ and $x, y \in X$ then X is convex $I f$ $\lambda x+(1-\lambda) y \in \mathbb{X}$ for $\lambda \in[0,1]$.

Illustrations of convex and nonconvex sets are found in Flgures 1.0.

Propertzes:

I. The antersection of any number of convex sets is also convex.
2. If $X \subset \mathbb{R}^{n}$ is convex then $I n t X$ and $C I X$ are aiso convex.
3. If X is closed and convex then $2 t$ is not possible to partation X anto two closed, disjonnt subsets,

```
\(\psi\)
```

Figure 1.0

$*$
Convex
ξ
elgure 1.1

Nonconvex

a

$$
\because \quad
$$

Nonconvex

That is, there exist no closed sets x_{1} and x_{2} such that: $x_{1} \cup x_{2}=x$ and $x_{1} \cap x_{2}=\varnothing_{0}$

The convex hull of a set is fommed by taking the interm section of all closed convex sets contamang the oraganal set. It follows that the convex hull of $X \subset \mathbb{R}^{n}$, denoted by exther Conv X or \dot{x}, as the smallest closed convex set containing X.

The convex hulls of sets in figure 1.0 are shown in Fagure 1.1.

Let $X \subset R^{n}$:
Conv $X \equiv \dot{X} \equiv\left\{x \in \cap y_{i} \mid X_{1}\right.$ is closed, convex and $\left.X \in y_{1}\right\}$.

property:

If $X \in R^{n}$ is closed and convex then conv $X=X$.
A measure of the degree of nonconvexity of a set is the next topic of discuission. However, the following defingtions. are needed first.

Let $X \in \mathbb{R}^{n}, x \in \operatorname{conv} x$ and $s=\left\{x_{1}, \ldots, x_{n}\right\} \in X$. If $x=\Sigma \lambda_{2} x_{i}$ for $\lambda_{i} \geqslant 0$ and $\Sigma_{i} \lambda_{I}=1$ then x is said to be spanned by s or s spans x.

A closed sphere in R^{n} with center at $\overline{\mathrm{x}}$ and radius K is the set:
$\therefore \quad . \quad\left\{x \in \mathbb{R}^{n} \mid d(x, \bar{x}) \leq k\right\}$ wher'e $k \in R$ and $k>0$.
The radus of a set $X \subset R^{n}$, denoted rad (X), is defined as the radius of the smallest closed sphere containang x.

Let $\{S\}$ be the collection of finite subsets of x that span the elements of conv x [The exastence of s for every x c Conv x is guaranteed by the caratheodory's Theórem,

The $\frac{\text { nner radius of } x^{\circ} \text { denoted } r(x)}{1}$ us defined as.

The inner radius of the set x is determined by taking for each element $x \in$ Conv x the smallest of rad(s) as s varies over all spanning sets of that point x, then take the, largest over all x in Conv \bar{x} of his infimum.

Remaxk.
(a) Conv $x=X$ iff $x(x)=0$
(b) X is nonconvex iff $r(X)>0$.

Therefore $x(X)^{4}$ may be considered as a measure of the degree of nonconvexity of \dot{x} :
1.1 The set of proper poants

The Euclidean n-space was found to be suitable in representing the commodity space of, an economy with a finite number of divisible goods. It will be assumed, latex, however, that- some commodities fuy be produced and consumed only in, whole units and are thus not divisable. In such an environment economic activities will actually be confoned tof a subset of "proper points", caliled F, in R^{n}.

$$
\begin{aligned}
& P \equiv\left\{x \in R^{n} \mid \Psi k \in,\left\{1, \ldots, n_{d}\right\}: x^{k} \in R,\right. \text { and } \\
& \left.\forall k \in\left\{n_{d}+1, \ldots, n\right\}: x^{k} \in z^{n}\right\}=R^{n} d \times z^{n-n} d
\end{aligned}
$$

where $n d$ denotes the number of divisible commodities in the.
 The set Z aenotes the set of integers. Eiach vector in F
ropresents a commodity bundie which contauns mavisable and nana indavisible commoditzes.

It will furcher be assumed in the Eoxmal model that the number of divisible goods is at least one, fowever. for the sake of simplification of the notations and exposim talons of the concepts and properties in \mathbb{F}, the specific case of exactly one divisible good, $n_{d}=1$, will be consudered hereafter. Therefore, for the rest of chis study the set of proper points is confiñed strictly Eo
$\mathrm{E} \equiv \mathrm{R} \times \mathrm{z}^{\mathrm{n}-1}$.
An Illustration of F for the case of $n=21 s$ found in Figure 0.4 (b) of Chapter 0 .

An important vector in F is now defined. The unat vector in the divisible direction, denoted by e, as the point:
$e \equiv(1,0, \ldots, 0) \in E$.
The set of proper points in \mathbb{R}^{n}. may be described as a collection of grid lines. The grid line through a poinc $\vec{X} \in E$ is defined as the following set:
$\because \quad\{x \in \mathbb{F} \mid x=\bar{x}+\lambda e, \forall \lambda \in \mathbb{R}\}$. .
*Some of the topological concepts defined earlier in \mathbb{R}^{n} are no langer valid in the subset F. These concepts are now "modified for F.

Let $X \in F:$
The $\delta-n e 1 g h b o r h o o d$ of $\bar{x} \in X$ in F, denoted by $N(\bar{x}, \delta) F$, 1s defined by:

$$
N(\bar{x}, \delta)_{F} \equiv\{x \in E \mid d(\bar{x}, x)<\delta\}
$$

 the δ-neaghborhood of \bar{x} aerined earizer for \mathbb{R}^{n}.
The set $X \in F$ as said to pe elosed in P if for every

The upper edge of $X \equiv \operatorname{OE}(X) \equiv\{x \in \mathbb{X} \mid(x+\lambda c) \& X, \mp \lambda>0\}$.
The upper rest of x

$$
\equiv U R(X) \equiv X \backslash \operatorname{IE}(X) \equiv\{x \in \mathbb{X} \mid X \in \mathbb{X}(X)\}
$$

The lower rest of x

$$
\equiv \operatorname{LR}(X) \equiv X \backslash \operatorname{UE}(x) \equiv\{x \subset x \mid x \in \operatorname{UE}(x)\}
$$

The hyperplane defined by $p \in \mathbb{R}^{n}$ and $a \in R$ is che set:

$$
\mathbb{H}(p, \alpha) \equiv\left\{x \in \mathbb{R}^{n} \mid p x=\alpha\right\}
$$

The hyperplane $I(p, 0)$ ss said to support $X \in F$ Irom below at pount x If:
(1) $x \in \mathbb{H}(p, \alpha) \cap X ;$
(2) $H(p, 0) \cap \cup R(X)=0$.
The support is said to be from above if conalition (2) is changed to:
$\left(2^{\prime}\right) \quad H(p, \alpha) \cap L R(X)=\varnothing$.
The terms "upper", "lower", "from below" and "from above" are rather cumbexsome. Therefore they will be dropped whenever the context $1 s$ clear. Hereafter the above concepts will be referred to as: the edge of $X, E(X)$; the rest of $X, R(X)$; and the hyperplane $H(p, \alpha)$ "supports X at x.
Figures 1.2 (a) and (b) illustrate the edge and the rest of X respectuvely.
Convexity $3 s$ clearly not possible $1 n$ the set of proper

Edge of x

(b)

Rest of X
points due to tia construction. A concept of pondo-convexity is introduced here specifically for sets an F .

A set $X \in P$ is said to be Integer convex $2 E:$
$\operatorname{Conv} X \cap \mathbb{X}=X$.
: Tho concept of integer convexity $2 s$ illustrated in Figure I.3.
 involved as attributed solely to the presence of anduvasabianty. and not to consumer preference or production technology which as the case of nonconvexity in a divisible environment. In other words, if the indivisible goods had been made available in divisible quantities, then integer convex sets would have been convex in the standard sense.

A set of properties of integer convex sets which are useful for later application is given and proved here.
proposition 1: Let $x \in F$ be integer convex and $H(p, a)$ support X at \bar{X}. If for every $x \in X:(x+\lambda e) \in X$ for all $\lambda>0$ then $p^{1} \neq 0$.

Proof: $\bar{X} \subset H(p, \alpha) \cap X$ by hypothesis.
This implies $p \bar{x}^{1}=p^{1-1}+\ldots+p^{n-n}$

$$
=\alpha
$$

Suppose $\mathrm{p}^{1}=0^{*}$.
For any $\lambda>0:(\bar{x}+\lambda e) \subset R(X)$.

$$
\mathrm{p}(\overline{\mathrm{x}}+\lambda e)=\mathrm{p} \overline{\mathrm{z}}+\lambda \mathrm{pe}
$$

$=0$.
since $=e^{2}=\ldots=e^{n}=0$.
Thus $(\bar{x}+\lambda e) \in H(p, a) n R(X)$ which contradicts the
.

Figure 1.3

Integer Convex
,

Integer Nonconvex

4
.
 proposition 2: ret $\left\{2_{2}\right\}$ be a family of sett in t, then: $\operatorname{Conv}\left(\operatorname{Siz}_{i}\right)=\sum \operatorname{Conv} X_{i}$.

Proof: Phis proposition and proof follow directly the results an more general \mathbb{R}^{n} space found an Arrow \& Hahn [30 p,307]. proposition 3; Let $\left\{x_{i}\right\}_{\text {act }}$ be a family of sets $2 n$.

If X_{1} as integer convex for every 3 I then \sum_{1} is also integer convex.

Bros: (I) Take $x \in\left(\mathbb{S}_{1}\right)$ (F 。
This implies $\exists \mathrm{X}_{\mathrm{I}} \subset \dot{X}_{2} \quad \Psi_{I} \subset \mathrm{I}$ such that $E X_{3}=\mathrm{x}$.

This implies $\exists \mathrm{X}_{\mathrm{i}} \in \mathrm{X}_{\mathrm{I}} \mathrm{HI} \in \mathrm{I}$ such that $\sum \mathrm{X}_{\mathrm{a}}=\mathrm{X}$ 。

 Thus $\Sigma x_{1}=x \in \Sigma \dot{x}_{1} \cap \mathrm{~F}$, or: $\sum \mathrm{X}_{2} \subset\left(\dot{X}_{i} \cap \Gamma\right)$.
(I) and (II) "together Yield: $E \dot{X}_{i} \cap E=\Sigma X_{1}$, which implies that $\Sigma X_{1}{ }^{1 s}$ integer convex. Q.E.D.

Proposition 4: Let $\left\{X_{2}\right\}_{\text {xCI }}$ be a family of integer convex sets in F. For every $x \in E\left(\Sigma X_{1}\right)$ there exists $X_{1} \in E\left(X_{1}\right)$ for all

 $(x-\lambda e) \subset \Sigma x_{z}$ 。

But this mplios that, $\Sigma_{2}=x \in \mathbb{E}\left(8 x_{2}\right)$, a contradiction.

Proposition 5, Let $H(p, \alpha)$ support \dot{x} and $\dot{\dot{y}}$ at \bar{y} with $p x \geq \alpha$ for $a l l x \subset \dot{x}$ and $p y \leq \alpha$ for all $y \subset \dot{Y}$. If x and y are integer convex in F then $H(p, o) \cap X \cap Y \neq \emptyset$.

Proof: $H(p, \alpha) \cap \dot{x} \cap \dot{y} \neq \beta$ by hypothesis.
$\bar{y} \in \mathbb{H} \cap \dot{\mathrm{X}} \rightarrow \exists^{*} \mathrm{a}$ spanning set $\mathrm{S}_{\mathrm{X}} \subset \mathrm{X}$ such that $\bar{Y} \in \dot{\mathrm{~S}}$ or $\bar{y}=\Sigma \lambda_{i} x_{i}$ for $x_{i} \in S_{x}$ and $\lambda_{I}>0, \sum \lambda_{i}=1$.

Thys implies $\forall x_{1} \in S_{x}: X_{I} \in E(p, a)$.
\rightarrow H $n \mathrm{x} \neq \varnothing$.

Suppose ($H \cap \dot{X} \cap \dot{Y}$) $\dot{f} F$ then the spanning sets $S_{x} \in 甘 \cap X$ and $S_{y}=H \quad n y$ of \bar{y} do not exist. This contradicts the statement of the Carathéodory's theorem, Therefore $(H \cap \dot{X} \cap \dot{Y}) \subset F$ and sance $H \cap \dot{X} \cap \dot{X} \neq \varnothing$, $H \cap \dot{X} \cap \dot{Y} \cap F \neq \varnothing$. But, $\dot{X} \cap F=X$ and $\dot{X} \cap E=Y$, Therefore $H \cap \dot{X} \cap \dot{Y} \cap F=H \cap X \cap Y \neq \varnothing$. Q.E.D.

1.2 3narp Bniations and orderngg

In bae models of later chaptors th wril be assumed that conomze agents make rataonal deciazons. For emamples aach concuncr 25 assumed to choose cho best bundlersi, besca on a well-dofanca prozozence, Erom a cercan subset or has consmmption set. It 2 relevant, taerocosen to dascuss here ane concopts of bsnary relataon and ordering on set $\operatorname{sn} \pi^{n}$.
 a guvon statement 15 enthex true or false then thas starement defanes a binary relation on X. Denote this relation by
 between a and y, orherwise $x \not y$ or $(x, y) \& \in$.
 Then is sazd to be:

1. transutave if $: y$ and $y \ominus z \rightarrow x \oplus z ;$

2. Symmetric if $x \otimes y \rightarrow y \in s ;$
3. a-symmetric if x o y ty ϕ;
4. antr-symmetrac is x © y and $y * x \rightarrow x / y$;
5. complete x exther x y or y for all $x, y \in x$.

A set X is said to be partially preordered by the relation tif (s reflexave ana transitive. If 1 n addition Is also complete then X is saia to be completely preordered by . A partially (completely) preordered set is sald to

```
%
```



``` symoters.
```

```
    A bamary rolatzon on a set is mo samd so dofmne an
```

 A bamary rolatzon on a set is mo samd so dofmne an
 egurvalonce relatzon za uc ug trancmtive, zotaezave and

```
egurvalonce relatzon za uc ug trancmtive, zotaezave and
```



```
x y and y a }->\mathrm{ { a;
```

x y and y a }->\mathrm{ { a;
* (a) fox cvary is c is;
* (a) fox cvary is c is;
X*,Y Y Y X.

```
    X*,Y Y Y X.
```

1.3 Other Results :

The following well-known results on convex hulas and equilibrium existence will play important roles an laser chapters and are therefore grouped here for convenience.

Caratheodory's Theorem: Let $y \in \mathbb{R}^{n}$. For every $x \in \operatorname{conv} x$ there exists a spanning set S a of x whin ar most $n+1$ elements.

The above theorem as used extensively in several non-. convex economic models. Its proof may be sound in Eggleston [13, pp. 35-36].

Starr's Extertaon of Shapley-polkman Theorem: Let 4 $\left\{X_{1}\right\}_{i \in I}$ be a family of compact sets $\ln R^{n}$ with $r\left(X_{1}\right) \leqq k$
 $\bar{X} \subset \sum X_{2}$ such that $d(\bar{x}, x) \leq k \sqrt{\mathrm{I}}$.
stary fisst meportod sumylaz yesult on nonoonven sets by Shapley and Folkman an has papex [25; Mppendix] where the above refined version $3 s$ also gaven. Arrow \& Hahn [3. pp. 399-400] also discussed and proved chis cheorem. It as manaly used an relatang an equalabrium in che convexiEned economy to an appromimate equilibriuminn the original nonconvex model.

Gale and Mas-Colell Exnstennce Theorem:

The following condutions are sufficient for the existence of equalıbraum:

The set Y is closed, convex, contans the negative orthant, and has a bounded intersection with the positive oxthant.

The sets \mathbb{x}_{1} are closed, convex, nonmempty and bounded below.

The preference mappings P_{1} are u rofeflexuve [that $u s$, $\left.x_{1} A_{1}\left(x_{1}\right)\right]$, have an open graph in X_{1}, x_{i} and therr values are non-empty, convex sets.

The functions $\alpha_{i}(p)$ are continuous and satisfy $\alpha_{i}(p)>\operatorname{lnf} p X_{2}$ for all p in Δ^{\prime}.

The proof of this theorem $1 s$ found in Gale and Mas-colell, [16]. It shopld be explamed braefly that the set y refers to the production set, X_{1}, 15 the $1-\operatorname{th}$ consumption set, α_{3} is an ancome dustribution function from A^{\prime} to R where Δ^{\prime} is
the get of punt pance vectorg wiada yaela fanite prosuts. The equalabman reqorred to in the theorem is equavalent to the walras equalibx ma to be defined in chapter 2.

1.4 Motes

The concepr of anteger convexnty may be considered to be rescractive. mowewer, acs anclusion wall strengthon the results on the state of equilibrium considerably. For another applicabion of integer convexity, see conn and ilaloy [8].

The defanition of convex huli given in thas chapiex dato Fers slightly from the standard defanitaon , The standard definition of convex hull requires conv x to be the intersection of all convex, but not necessarily closed, sets which contann x. The stronger defination used in this study sumplifies the analysis but does not arfect the basic outcome of the model.

- L
*

2.0 The Basic Economy

A1I the actuvities of the followang dascussion wall take place an a general framework called an economy. Intuatively, an economy consists of a produccion sector, a consumption sector anda finite collection of wellmefined. commodities. Each unzt in the production sector, referred to as a producer, selects from among the rechnologically feasibie combanations of mpurs and outputs one which maxmmzes his profit. Symmetritally each consumption unzt. called a consumer, chooses from has set of affordable bunn ; dies one that he most prefers. The optamal decision of each unat as constrained by the prices of the commodities 1 which nezther a sangle producer nor consumer can influence.

Definition (2.0): Formally, an economy with production" is defined by the following set of primitive concepts:

1. A total supply set $Y \subset \mathbb{R}_{0}^{n}$ of all possible. . "combinations of commodities available for consumption in the economy;
2. A finite number of consumers indexed by the Q a $\operatorname{set} I=\{1, \ldots, m\} ;$
$3_{v} \quad A_{0}$ consumption set $X_{i} \subset \mathbb{R}^{n \times} \tilde{S}_{0} x$ every $i \in I_{i}$
3. A preference relation y_{1} defined on X_{2} for every a \in If
4. An Income distribption function
$C_{i}: A \rightarrow R$ for each $\mathcal{A} \in I$ which assigns to the Both consumex a fraction ${ }^{\circ} \alpha_{1}$ (p) of the proric II $(p)=$ sup $p y$, the sum of all shares. $\sum_{2 \mathrm{E} I} \alpha_{1}(p), 2 s$ equal to the total profit Il (p). Δ as the $n=1$ price simplex $\left\{p \in \mathbb{R}^{m} \mid p \geq 0, ~ \Sigma p_{2}=1\right\}$. Noterionally, an economy is expressed as:

$$
E \equiv\left\{\left(X_{2}{ }^{\prime} z_{2} 0 I\right), Y, a_{2}\right\}
$$

Remark: For the sake of simpliczty, the supply side is assumed to consist of only one producer. It is conceivable, however, that the toral supply set Y may be treated as the sum of numerous individual production sets and the buna dle of inatiol resources $1, e^{\text {a }}$

$$
Y=\sum_{J \in J}^{Y} Y_{J}+\{w\}_{0}
$$

where. J as the finite andex set. of producers, y_{j} is the Jmeh producer's production set, and $\{w\}$ represents, the total amount of all goods avallabige initially.

The preference pelation \gtrsim_{1} in $D(2.0)$ may be given the verbal interpretation of "at least as desured as", This relation is used to define a very mportant type of set in each consumption set.

Definition (2.1): In each consumption set the class of. not-worse-than sets is defined as a correspondence, C_{2} ", from X_{1} into its power set:
where

The set $C_{1}\left(\bar{x}_{2}\right)$ consists of all those comodazy bundies In X_{z} which are considered better than or indifgerent to the given bundie \bar{z}_{i} by the $2-c h$ consumex. pigure 2.0 IIIustrates the set $C_{2}\left(\bar{x}_{1}\right)$ and 1 cs convex hull.

Two related relations $>_{1}$ and N_{1}, are dorswed from z_{1}.

Definition (2.2):
Let $x, y \in X_{z}:$
(a) $x>_{1} y$ if $x \in C_{1}(y)$ and y f $C_{1}(x)$;
(b) $x \sim_{i} y$ If $x \in C_{2}(y)$ and $y \in C_{i}(x)$.

The first relation says that bundle x° considered "stractly preferred co" bindle y by the 1 oth" consumer if, x . Is "at least as desired as" y and y is "not at least as desired" as x. The second relation reads: bundie is is" "Indifferent to" bundle; in the imth consumer's"view if they are considered "at lease as desired as" to each othez simulcaneously. Thas defirition satisfies the conditions of an 'mequivalence" relation.

Definition (2.3): (a) An allocation x is an m-tuple of vectars, $\left.x_{1}=\left(s_{1}, \ldots\right)_{n}\right)_{\text {, where }} x_{2} \in X_{z}$ for evexy $1 \in\{1, \ldots, m\}$; thus $x \in \prod_{x \in I_{0}} X_{1}{ }^{`} \equiv \mathbb{X}$.
(b) An allocation ls'sajd to be feasíble if

$$
\sum_{I \in I}^{*} X_{I} \in Y
$$

Ax ay Xocatzon 20 then nothang but a vector whoce components aze comodaty bundes, each astochated whth 2 consumer, π Eeasmblo allocation is one whose component sum conncides wath some supply bundle.

2.1 Egunisbrium Concepts

So far the description of the economy has not andam caled whether or not the actions of the indivadual economic units will bramg a situation of mutual satiseaction to the system. The state of simulancous satistaction of all manvidual actions $2 s$ called a state of equilibxium, The different concepts of equilibrium wall be formally dem fined in thas section and the question of exsstence as answered in the following chapter.

Definition (2,4): A price vector $\overline{\mathrm{p}} \in \Delta$, an allocation $\bar{z}=\left(\bar{X}_{1} \ldots, \bar{X}_{m}\right) \in X$, and a supply bundle $\bar{Y} \in Y$ is sald to constitute a Walras equilibrium of the economy if the following conditions are satisfied:
(a) $\bar{p} \bar{Y} \geqq \bar{P} Y$ for every $y \in \mathbb{Y}$
(b) $\bar{p} \bar{x}_{1}=\alpha_{1}(\vec{p})$ for every $1 \in I$:
(c) Fot all $I \in I$ and $\left.x_{2} \in X_{1}: X_{1}\right\rangle_{2} \bar{x}_{1}$ implies $\overline{\mathrm{p}}_{1} \Rightarrow \overline{\mathrm{p}} \overline{\mathrm{x}}_{\mathrm{I}} ;$
(d) $\Sigma \bar{x}_{1}=\bar{Y}$.

The Walras equilabrium is also known as competitive equalibrium in the literature. It 15 the equilibrium whose
oxmstence is assuted by tho gate and mas-coien mineomems It desczabes the adeal suate of compatablinty $2 n$ the ooonomy. Condztaon (a) statos that the cquilibraum suppiy bundie ä yzolds the haghest not rovonue to tho producer compared to all ocher technologacaily possable bundies. whus the objece tive of profit mazmiaation is net in the production sector. The second condition reflocts the adea that, for every conm sumer, the equalabram consumphaon bundie \bar{x}_{i} requires the exhaustion of income, This zs due to che amplicit.assumption an the model that decisions are made over the late spans of the economze undts and thus mo sevings"and no furure periods are considered, Condition (c) says thac for any bundle which is strictly preferred to the chosen bundle, $2 t$ nust be that this preferred bundle can only be bought at a hagher level of ancome than the equilubrum ancone, Thzs signzfies that the chosen bundle is the best bundle that can be purchased given the income and preference. Thus condition (c) sarisfies the preference maximizing behavior of the consumer, For this reason, condition (a) is called the condicion of "optimality" The last condation requires that the desired consumption of all consumexs is exactly equal to the desired supply and is referfed to as the "feasibility" condatzon,

Under less than ideal economic circumstances there may be less than ideal state of equilibrium, The first of such weakened concepts of equalibrium is defined as follows,

 K 2E the follownag conextaoms azo satasfied

 $\bar{p}_{z_{2}} \geq \bar{p}_{z_{3}} ;$
(d') $d\left(\sum_{z} x^{\prime} y\right), 5 k$ where $k i s$ a guven constant.
The concept of Weak'appromamate Equilibraum defined
above is closely related to the approximace equilibria deInned by Broome and Dierker. The first two conditions of profit maximazarion and maome exhanstion axe strin sarisfied. However condition (c^{\prime}) now states that for any β bundie in the consumer's consumption set whach is consadered to be at teast as desnred as the chosen bundle, zt must cost the same or more to purchase than the equilibrium bundie. Thus it is possible that the ancome needed to buy the equalibrium bundle may be sufficient to buy another which is stractiy preferred. If this as the case then the condition of "optimalaty" as not met. Furthermoxe, condition (da) no longer assures exact feasibility. It allows for total consumptaon to ajverge from total supply by a bounded measure. Thus "feasibulity" is also absent,

Two other variations of che, concept of equilibrium complete thas section on definitions of equilibrium.

caliod an optamal Approszmato Eguadibusum (O.A.E. ot magnam thac $x 5$ at gataseaos che rollowhing condatzono:
(a) $\overline{\mathrm{y}} \mathrm{y} \geq \mathrm{by}$ for overy y e 叉i
(b) $\vec{p}_{z}=a_{z}(p)$ EOR evory $a c i:$
(c) For $a 11$ I G and $x_{1} e x_{2}: x_{2} y_{2} \ddot{x}_{i}$ implies

Dexingtion (2.7): The tuple ($\overline{0}, \bar{x}, \bar{y},) \in(\Delta \times X x y)$ is callea a Feasmbe Appzoxmate Equilibrium af at sathsfies the followngly condurions:
(a) $\overline{\mathrm{D}} \overline{\mathrm{Y}} \geq \overline{\mathrm{p}} \mathrm{y}$ for every $\mathrm{y} \in \mathrm{Y}$:
(b) $\vec{p}_{1}=\alpha_{2}(\bar{p})$ fox every $2 \in I$:
(c') Por all a ϵ and $x_{1} \in X_{1}: x_{1} \sum_{2} \bar{x}_{1}$ mplimes () $\bar{p}_{\mathrm{s}_{2}} \geq \overline{\mathrm{p}}_{\mathrm{z}} \bar{y}^{\prime}$
(d) $\Sigma \bar{x}_{2}=\bar{y}_{0}$

Obvaously, an optamal approximate equilibrium is nothing but a Walras equalibrium wathout the condution of exact Eeasibility. This equalabraum concept Is samilar to the quasi-equalubcium found in a divisible but nonconvex econony by Staxr. A feasible approximate equilibrium, on the other hand. meets all the conditions of a competitive equilibrium with the exception of optimality.

2.2 ssaumotions on E

A set of ascumptions and thezz antompretatzon ze now stated tor the conomy E doninod in D(2.I).

A: Assumptzons on the consumpizon secs and pacterence relation z_{1}

Por every \mathfrak{m} E:
$A \cdot I(H) X_{2} \subset E:$
(İ) $a_{a} \geq 1$.
A. $2 X_{1} 15$ ciosed 2 n 2.
A. 3 There exasts a g_{i} Q such that for every $x_{1} \subset X_{i}$ $x_{I} \geqslant g_{2}$.

A. $5 \gg z_{r}$ as reflexive and transinave,

 closed In F -

A. 9 For every $x \in X_{2}$ and $\left.\lambda>0:(x+\lambda e)\right\rangle_{i} x$.
B. Assumptions on the supply set Y.
B.I Y \mathcal{I}.
B. 2 Y is closed in F .
B. $3 \quad(-\Omega \cap \mathrm{E}) \subset \mathrm{Y}$.
B. $4, Y \cap R(\Omega \cap F)$ is nonempty and bounded.
\rightarrow
C: Other assumptions on E

$$
\begin{aligned}
& \text { C. } A \text { y } \sum_{2} X_{2} \neq 0 .
\end{aligned}
$$

Math tie exception of two. $A, 1$ and $A .9$. all athos asewmpo trons on the consumption sector are basic and may be Found in most literature on general equilibrium analysis. The above standard assumptions, however, have been adapted to the present Indivisible environment. The "closedness" assumption. $A, 2$, stares that $i f$ a bundle $1 s$ in the consumption set then any other bundle on the same grad line very close to at is also In the consumption set. Assumption $A, 3$ "lower boundedness". 1 a physiological constraint on the consumer "s inputs and outputs. It applies the physical condition that one can neither work more than 24 hours in a day nor survive on less than some minimum amount of food. Assumption A. 4 states that for a given bundle in the consumption set, then any other bundle (in F) with the same or greater quantity an one or more commodities is also in the consumption set. Thus is known as the "unlimited consumption" assumption. A. 5 is an assumption on the behavior of the consumer. Firstly, the consumer must regard every bundle in his consumption sec as "at least as desired" as itself. Secondly given any three bundles in his consumption set, if the consumer regards the forest to be "at, least as dosured as" the second and the sem conk as "at least as desired as" the third, then the first must also be regarded "at least as desired as" the third.

 on the consumperon sot. The "uontananty assumptron. A. 7 . assures tho closedness of tho notabetter-than and the notworsemthan sets corresponding to any given bunde. Thot is, if a buncle is "at least as desired as" for "ar most as desim red as") a given mande dhen any other bundle very close to It $u s$ aso "at least as cesired as" (oz "at most as desired as") the given bundie. The monotonscity" assumption. $A .8$. refleces the consumer taste of always prezerring more to loss.

Whe ingst nonbasic assumption. A.I. alloweythe possibiInty of consumer choxce takng place in a mased environment of divisible and andivisible commodities. Rowever at rem stricts the number of davisible goods to be at least one. This makes the present model 'divisible a la Broome'. It Is interesting to note that Broome made expliant use of the demand correspondence in his method and thus requared the presence of at least one divasible commodacy in smoothang this correspondence. As will be evident later, the demand correspondence does not appear in this paper, However, assumpzion $A, 1$ (II) is still crucial in asserting certain continuliy related properties of the modified preference rem lation. In order to perform its smoothing function, the inm davisible good must have positive valuation. This property Is anplied by the assumption of "strict monotonicity in the divisible good". A.9. which is, also adopted directly Erom !

 30 always strictly preferred to a luttle less.

Wath the esseption of thoas adaptataon to khe andavasabie case, assumpinan. B. 2 and $B: 3$ are considered basic in nose ection IIbrium models. The closedness of the supply set. B.2. has. samilar interpretacion as assurptan a. a on the consumptan set. B.J, the "ryee azsposal" assumption, allows the melevant portion of the non-posatuve orthant to be mincluded in y. - Its economic interpretation is that outputs may be disposed of whinout usang any inpurs. It excludes, therefore, the possabuliey of "penaltzes" or negatave prices. Assumption B, I \cdots Eequases the procuction secror to operate under the adentical condition of maxed duvisibulity and andivisibility as the consumption sector. It should be emphasized that the indivisio blimty uncer ajscussion $2 s$ duc to the physical "nature of the comaodnties rather than due to the technical condytions of production. The last assumption on the supply set, $B .4$, spem ciries a nonempty and bounded intersection between Y and the proper porcion of the posacive orthant, Thas deviates greally from whe basic assumptions found in many models with produc'tion and may appear quite objectionable at first giance. However, the boundedness of the above intersection dactares that only lamited outputs may be possible without using any anputs. rhis as reasonable because by construction the supply set y mncludes the vector on initial resources. Thus reven if no produdtion activity takes place, the anitial resources are
stall avamablo Eot conoumperon. thas assumpeaon 2 n necesm saxy for the applicataon or the Gale and frameolell Existance Theoren.

The assumptions on tho incone dastribucion iunction.c. 1 and"c.2, are taken dusectiy Erom the Gale and mas-colitell model. C. 1 requares the Eunction to be contamuous over tho set of relevanc prices and c. 2 makes certan that the circular fion of ancome 15 , an equalibrıun. That is, total ancome received by consumers must commade wath the profic generated in the production sector. The sec or relevant prices, A' ancludes only chose price vectors which yield finite prozits.

$$
\Delta^{\prime}=\{p \in \Delta \mid \sup p \mathbb{p}<\infty\} \in \Delta_{0}
$$

The above function dastrabutes income with respect co price vectors. However, as noted by Gale and rasmColel1. any other comennuous income distribution scheme (based on the consumers" weaghts or hanr colors for anstance) would have been acceptable.

Assumprion C. 3 states that Eor all relevant levels of ancome, the consumer must be able to purchase a bundie an the rest of has consumptron set. This wall be shown to be equavalent to the Gale and Mas-Colell condition that no consumex will be permitted to starve, regardiess of the existang pxice vectopf. As pornted out an the" pure exchange models. thas condition $2 s$ mec $2 f$ each frader $2 s$ assumed to possess a strictly posztive "anztial endowment". Pinally, assumption C. 4 is strazght forward in making sure that the set of fea-
sxble allocaczon 3 s nomompty. clearyy. economac actaviny cannoe take place ac all if cins assumption is not sabmsized.

2.3 Ghe Converafacd Gconomy with Modisaed preference

In thas seccion a ner economy defined an the davisibie. : enviromment of $\mathbb{R}^{\mathbb{R}}$ as deraved from the andivasubie economy by convenifyang the supply and consumption secs. the preference relation $\underset{i}{ }$ defaned on X_{z} eF must also be modafied to cover all points in A^{n}, not just proper pounts.

Definztion (2r.8); The new economy denoced by E, consists of the followng entities:
2. A coral supply séi $\dot{y}=\operatorname{Conv} y \subset \mathbb{R}^{n}$;
2. A Ennte number of consumers nndesed.by $I=\{1, \ldots, n\} ;$
U

4. A preference relation P_{i} defzned on \dot{X}_{1} for every i ϵ I where ${ }_{2}$ is* defined by $D(2.9)$;
5. An ancomé asstrabution function; ${ }_{2}: \Delta \rightarrow B$ defrned maentically to the function in $D(2.0)$.

Formally, t as expressed by:

Most of the components in the new economy are erther identacal to those in the original economy (q_{2}, I) or are convex hulls of the or2gnal components ($\left.\dot{X}{ }_{i}, \dot{Y}\right)$. The only component which is radically different in the new economy is the prefexence relation P_{I} defined on each consumption set \mathbb{H}_{2}.

This preference plays a vital part an the proos of exastence and zes constrinctron based on $z 2 \mathrm{~s}$ elabozated in tho follow2ng dorinalson.

Derination (2,9): The preference relation P_{i} dezanded
 pover set:

$$
P_{i}: \dot{x}_{2} \rightarrow 2^{\dot{x}_{2}}
$$

 wath $\mathrm{c}_{2}: \dot{x}_{2} \rightarrow 2^{\dot{x}_{i}}$

In genefal. for every. point $x_{1} \in \mathcal{Z}_{1}$ (on ox off the gfid Ines of X_{1}, the set $P_{2}\left(x_{2}\right)$ as the antexior of ene smallest convex hull of the notmorsemthan set whach conrams the ponnt x_{3}. Of course, in the speciap case where $x_{1} \in \dot{X}_{2}$ is a proper point (on the $g x a d$ Ine $)^{\circ}$ then $p_{1}\left(x_{2}\right)$ is smply the set:
$\left.\left\{x \in \dot{x}_{y}\right\} x \in \operatorname{Int} \dot{C}\left(x_{1}\right)\right\}$.
The construction of the set $p_{2}\left(x_{1}\right)$ for $x_{2} \in$ ix $_{1}$ is illustraced in Figure 2.1. The heavy grid lines in Figure 2.1 (a) constitute the set $\mathrm{F}\left(\mathrm{x}_{\mathrm{i}}\right)$ which is the set of all proper points in X_{1} whose notmorsemthan convex hulis contains x_{i}. Figure 2.1 (b) depiots the set $\bar{c}_{1}\left(x_{1}\right)$ which is equal to the smallest not-

the set $p_{1}\left(x_{1}\right)$ in figure 2.1 ((0) is the interiór or $\vec{C}_{1}\left(: a_{1}\right)$. 2.4 Notes

The set Y is designaced the supply set-rather than the more, common name of production set. Thxs is due to the faci that y consiste nor only of the andyudual production tech." nologies \underline{Y}_{-j} but also the veccor'of anitial endowmencio This construction makes $2 t$ reasonable to assiume B.A.

Diexker [12f suggested that the conceipe of approzimate equilibrium may be defined by relaxing different conditions "of exact competacive equilibrium. The Feasible approsamate Equilibirium concept defined by $D(2.7)^{\text {a }}$ is an ateorapt in this darection。 It weakens optamality while retaming feasibility.

The assumptions of the basic economy are, for the most \because part, basic to, the licerature. Even the: few not so standard assumptions have appeared in other models. Thererore, wich the erception of anteger convemity, the other assumptions of the present model are not at all strong.

Cinapter 33 The Reculto

Tho set of assumptions in section 2,2 and a fen addzeronal ones stal2 to be maposed aro gufxicment to yaead the results of thas opoper. Tor the sabe of contanuzty these resulta whil farse b'e shated and discussod an sections $=3$ Ko and 3.1. thear cozmal prooss are given separatoly in Secs $\operatorname{din}^{2} 3,2$.

9

3.0 Exelımanary resulis

3^{\prime}

 at x_{1} then $p^{\text {I* }} \neq 0$ for $p \in \Delta^{0}$.
\qquad
Roparis: It wili be shown Ioter [Jemma-(5)] that if the Hople $(\vec{p} ; \mathbb{N}, \bar{y}) \in(\Delta \times X \times Y)$ as an equilibrium chen the hyper-
 property and the result of Lemma (I) mply that any equilim brium price vector must have zts farst component difeerent from zero. Therefore, herafcet the analysus is restricted to $\Delta "$ " che set of relevant price vectors" whose first comm ponent is nonzero.

$$
\Delta^{\prime \prime}=\left\{p \in \Delta^{\prime} \mid p^{1} \neq 0\right\} \subset \Delta_{0}
$$

\&

The anterpretation of thas rescriction is that if the J
divisible good is to play a role in the model, it must have

Value to tho oconoma unates othorwisop 2 it the divicablo good as free thon the moded is practacally trancformed anto a case of comploce nndavasibunty.

$$
0_{1}(p)>2 n E p x_{2} \text { for all } p \in \Delta^{n}:
$$

Bomati: Thas lomma assures that tho wealth assigned to every nadividual $2 s$ sufficient to kocp him Enom starvinga G regardiess of the praces. Thas as ont or the several properties which prepare the stage for the application of the Gale and hasmcolell Theorem.

Eemma (3): Let assumption A. 3 hola and define
 for \dot{E}, then there exists a vector \bar{g}_{I} such that $\boldsymbol{x}_{1}<\bar{g}_{2}$ for all 3 C I.

The existence of an upper bound for all feasible consumption set \dot{x}_{1} is guaranteed by the above lemma, Thus the following definztion $1 s$ possible.

```
Definition (3.0):
```

(a) $\hat{x}_{1} \equiv\left\{x_{2} \in \dot{x}_{1} \mid x_{2} \leqq \vec{g}_{1}\right\}$.
(b) $\hat{p}_{i}: \hat{X}_{1}+2^{\dot{X}_{3}}$

$$
\hat{\mathrm{P}}_{1}\left(x_{1}\right) \equiv\left\{x \in \hat{\mathrm{X}}_{1} \mid x \in \operatorname{Int} \hat{c}_{2}\left(x_{1}\right)\right\}
$$

wham $\hat{\mathrm{C}}_{2}: \hat{\mathrm{a}}_{2}=2^{\frac{\square}{2}}$

 economy denoted by $\underset{\sim}{E}$ is derived.

$$
\hat{E} \equiv\left\{\left(\hat{X}_{2}, \hat{P}_{2}, T\right), \dot{\mathbb{Q}}_{0} 0_{2}\right\}
$$

 For \hat{E} as also a Varas equilibrium for \dot{E}.

Iemma (A): Let assumptans A. 1 through $A, 9$ hold. Then. for every $I^{\circ} \in I$ and every $x_{2} \in \hat{X}_{A}$,

$[b] \operatorname{Inc} \hat{C}_{1}\left(x_{2}\right) \neq \varnothing ;$

The importance of these result, will be evident in the proof of Theorem (1).
 Then:
[a] $M\left(\bar{p}_{p} \Pi(\bar{p})\right)$ supports both the set \dot{y} and $C 1\left(\sum_{2} \dot{p}_{2}\left(\bar{x}_{2}\right)\right.$ $\operatorname{in} \sum_{1}$:
$[b] H\left(\bar{p}_{\rho} \alpha_{2}(\vec{p})\right)$ supports $G I\left(P_{2}\left(\bar{x}_{2}\right)\right)$ in $\bar{x}_{1} 。$

 cupply and tocal concumpaion. At the ame theo the hyperplane $\mathcal{H}\left(\overrightarrow{\mathrm{P}} \mathrm{Q}_{3}(\mathrm{P})\right)$ supports the elosure of che andaymual serictiy
 perty it ised an the proof of mheorem (a)。
3.1 The Hann Theorems

Theorem (1): (Existence of Walras equalibnium)
Iet the serfof assumpinons A, B and C in section 2.2 hola for E. Then'its associdted converified economy thas a walras dqualabraum.

Remark: The equilibrium allocation stated in Theoxem (1) corresponds to the modified econony E. Clearly, chis theorem does not refer to the oragamal conomy $E_{\text {e }}$ The W. A. Emistence theorem mandately below shows a weaker result is possible for the original economy E. However, even wath thas wealser result the followang additional assumptions specifying Che deqree of nonconvexaty of the sets Y and $C_{i}(x)$ are necesm sary.

Assumptions on the degree of nonconvexity:
A. 10 For all $\rightarrow \in \mathrm{I}$ and all $: \mathrm{B}_{2}: \quad \mathrm{r}\left(\mathrm{C}_{2}(x)^{\prime}\right) \leq K$ 。 $B .5 \quad x(X) \leq K$.

Theorem (2): (W, A. B . Exastence Theorem)
Let the conditions of theorem (1) and assumptions $A .10$ and

Tho rosult of Theoren (2)'a woak in the acnoo of locto ang boch ozact opermalzty and soasibyizey. pho nowe biocech stawes the condation whach elamanotos tho pocozinazty of nonopermalaty. The result of wheoron 9 . thomocora, as equavelont to, the approamate equalzbraun normaty osporzatod with a nonconvers but divisible model.

Pheorem (3): (Optimainty Condzazon)

Iet $\left(P^{*} .3^{*} * Y^{*}\right)$ be the $W . A . E$ of economy E accotang to
 ($p^{*}, x^{*} \cdot y^{*}$) as an $0 . A_{0}$. of magnatude $k \sqrt{n}$ in E.

The Iast cheorem improves the weakness of a wod. R. In another direction, namely renoving mfeasibninty. In addiEion co the assumptions stated an Section 2.2 it requires the followng pair of assumptions on the tvoe of nonconvesity.

Assumptions on the type of nonconvexity in F :
 B. 6 : $\cap P=Y$ 。

Theorem (4): ($\mathrm{F}, \mathrm{A}, \mathrm{E}$. Exastence ' Theorem)
Let the conditions of wheorem (1) and assumptions A. Il and B. 6 hold. Then chere exists a $F . A . \mathbb{E}$. ($\mathrm{p}^{*} \mathrm{x}^{*}, \mathrm{Y}^{*}$), in the economy" \bar{E}.

The amplacatzon of mhoorem (a) as hhat at who nonconvenzty in the ox2ganal conony E 25 solozy duc to the presence of 2nduvasibilimy rather than due to conswmer taste and pro-

3.2 Proofs of the Resulco

Proot of Lomma (1):

By defanacion, $\left(x_{2}-\lambda e\right) \subset \mathbb{R}\left(C_{2}\left(x_{2}\right)\right)$.
 chen:

(b) $E\left(P_{r} \mathrm{C}\right) \cap \operatorname{R}\left(\mathrm{C}_{2}\left(\mathrm{~S}_{2}\right)\right)=0$.

Suppose $p^{3}=0$. Then:

$$
\begin{aligned}
p\left(x_{2}+\lambda e\right) & =p x_{2}+\lambda p e \\
& =a+\left(p^{2} e^{2}+\ldots+p^{2 n} e^{n}\right) \lambda \\
& =0+0
\end{aligned}
$$

sunce $p^{1}=e^{2}=\ldots=e^{n}=0$.
 the condition that $H(p, \alpha) \cap R\left(C_{1}\left(x_{z}\right)\right)=\varnothing$.

Theresore $p^{2} \neq 0 . \quad$ Q.E.D.

Proof of Lemma (2):
Take $x \in \mathbb{R}\left(X_{1}\right) \cap\left\{x \in \mathbb{F} \mid p x \leq \alpha_{1}(p)\right\}$ for some $p \in \Delta^{n}$. The closedness of $X_{2} \Rightarrow \exists \lambda>0$ such that $(x-\lambda e) \in X_{2}$.
$0 \quad$ clearly $p(x-\lambda e)=p x-\lambda p e<p x \leq c_{1}(p)$ because $p^{1}>0, e^{1} \Rightarrow 0$, and $\lambda>0$.

\because

P2002 05 Enema (3):

 every $x_{2} 20$ bounded Exon below by $g_{2} \in \mathbb{F}$.
Thus, every $\stackrel{\circ}{3}_{3}$ is also bounded x mon below by g_{2} cE. It follows chen, that there casts a vector of $G \mathbb{R}^{n}$ such that:

Define: $\vec{Y} \equiv\{y \subset \dot{Y} \mid y \geqq u\}$.
$\dot{\mathrm{Y}}$. which as now bounded from below as well as above (because
 all Eeasable allocations.
 Cor any feasible allocation $x=\left(x_{1} \ldots \ldots x_{m}\right) \epsilon$ 多
-4

$$
\sum_{Z} \Sigma_{2}^{\alpha}=Y<E .
$$

Proof of Lemma (9).

By the Caratheodory's theorem, there exists a finite sec of ar most $n+1$ elements in $\hat{X}_{2} \cap_{2} X_{2}$ that spans i_{2} ie.

$\sum_{h \in Q} \lambda_{h}=1, s_{h} \in S\left(x_{1}\right)$ for every $h \in Q$ and $Q \equiv\left\{1, \ldots, C_{i}\right\}$
with $q \leq n+1$.

Observe thar $s\left(x_{2}\right)$ is compact (fanrte), and that of is continuous and complete on X_{2}. Fence $\left.\exists s_{h} \subset S_{i}\right)$ such chat

$$
x_{2} c \dot{c}_{2}\left(o_{h}\right)
$$

 and by $D(3.0): \hat{C}_{2}\left(x_{2}\right)=\dot{c}_{3}\left(5_{n}\right)$.

By contantaty, transitivity am e completeness of zit the collect-
 as compact. $\hat{\mathrm{C}}_{2}\left(3_{2}\right)$ as closed beng an intersection of closed sets, and thus equals to tho palest set an the collection ane.

$$
\dot{f} \quad \hat{c}_{2}\left(x_{1}\right)=\operatorname{man}\left\{\dot{c}_{2}(x) \mid x \in \tilde{x}_{2}\left(x_{1}\right)\right\}
$$

Define: $\bar{\lambda} \equiv$ max $\lambda>0$ such chat $z_{1} \subset \dot{C}_{\mathbb{Z}}\left(s_{h}+\tilde{\lambda} e\right)$.

It follows that $\dot{C}_{2}\left(x_{2}\right)=\dot{C}_{i}\left(s_{h},+\bar{n} e\right)=\dot{C}_{1}\left(x_{2}^{\prime}\right)$ with $x_{i}^{\prime} \equiv s_{h^{0}}+\bar{A} e$.

$$
\therefore \quad \text { Q.E.D. }
$$

[b] Take the vector s_{h}, tine $=x_{z}$ of resume [a] above for which
 follows that $x_{1} \in C_{I}\left(x_{1}^{1}\right)$ so that $\dot{C}_{1}\left(x_{1}^{1}\right) \neq D_{0}$ By $A .4$ and $A .9: x_{2}^{i}+\lambda e \in X_{1}$ and $x_{i}^{i}+\lambda e x_{i} x_{i}^{\prime}$ for $\lambda>0$.

Q.E.B.
[e] tee x_{1}, \hat{x}_{2}. By whe resuic of [a] aDove, $\bar{j} x_{2}^{\prime} c x_{2}$

$$
\bar{i} \equiv \operatorname{ara}\left\{\lambda \geq 0 \mid z_{1}<\dot{C}_{3}\left\{s_{h}+\lambda e\right)\right\}:
$$

 Theterore $z_{2}\left(\right.$ Bnd $\hat{c}_{3}\left(x_{2}\right)$. Q.E.D. Proor of Ienma (5):
[a] Sance ($\bar{p}, \bar{z}, \vec{Y}$) as a Walxas equalibrium, one has:

$\bar{p} \Sigma \vec{z}_{1}=\vec{p} \vec{y}=\vec{p}_{z_{1}} \because \ldots+\bar{p}_{m}$
$=a_{1}(\bar{p})+\ldots+a_{n}(\bar{p})$
$=\varepsilon a_{2}(p)=\Pi(p)$

 choosé z en($\overline{\mathrm{D}}, \mathrm{A}(\mathrm{D})$) n Inc $\dot{\mathrm{y}}$ 。

One sass:

$$
\begin{aligned}
& \overline{\mathrm{p}} 2 \mathrm{py} \text { sos every y in }
\end{aligned}
$$

(2) Next one shows that $\operatorname{li}(\vec{p} \cdot \Pi(\bar{p}))$ supports CI $\left(E P_{2}\left(\bar{x}_{2}\right)\right.$ at $E \bar{x}_{2}$.

Hence $\vec{p} \Sigma x_{3}=\underline{p} x_{1}+\ldots \circ+\vec{p} x_{m}>\vec{p} \Sigma x_{n}=\pi(\bar{p})$

$$
\Rightarrow \mathrm{x}_{2} \in \mathrm{a}(\overline{\mathrm{p}}, \mathbb{M}(\overline{\mathrm{p}}))
$$

But $x_{1} \in P_{i}\left(\bar{x}_{1}\right)$ applies $x_{1} \in \operatorname{Int}\left[C l\left(P_{z}\left(\bar{x}_{2}\right)\right)\right]$.

" [b] For every 2 cI one has that

$$
\bar{p}_{1}=c_{2}(\vec{p}) \quad 2 \operatorname{mplaes} \vec{x}_{2} \in H\left(\bar{p}, c_{2}(\vec{p})\right)
$$

Furthermore, $\ddot{x}_{z} \in \operatorname{cl}\left(p_{I}\left(\bar{x}_{I}\right)\right)$ as shown earlier. Thus:


```
#yOOS of Theoren (2):
```

 conditions stated an the Gule and masmeqlezi gatgtence, meorem,

1. Supply set:
y as closed and conver by the dexamation oniconves hull (B.3: $\quad(-\Omega \cap \mathrm{F}) \subset \mathrm{X}^{\prime} \Rightarrow=\Omega \subset \dot{\mathrm{y}}$
B. 4: $X \cap \mathbb{R}(\Omega \cap F)$ nonempty and bounded \Rightarrow in \cap nonm empty and bounded
2. Consumption sex: \ddagger I \mathcal{C}
$\hat{X X}_{3}$ as closed and conver by $D(3,0)$ and convers hull definirion
$A .3, \mathrm{~A} .4$ and Lemma (3) $\Rightarrow \operatorname{it}_{I} \neq \emptyset$.
x_{2} Is lower bounded $\Rightarrow \hat{X}_{2}$ as also. lower bounded
3. Preference relarıon: $\forall \geq \in I$
$D(3.0)$ and Lemma $(4)-[c] \Rightarrow H_{i} \in \hat{X}_{2} ; X_{z} \in \hat{X}_{2}\left(x_{i}\right)$
Leman (4)-[b]: $\operatorname{lam}_{2} \in \hat{X}_{1} \operatorname{Int} \hat{c}_{1}\left(x_{2}\right) \neq \emptyset \Rightarrow \hat{p}_{2}\left(x_{1}\right) \neq \emptyset$
property 2 [section 1.0 .2$] \Rightarrow \hat{E}_{i}\left(X_{i}\right)$ is convex
$D(3,0) \Rightarrow$ open graph
4. Incono dascrabutaon Eunction: $F i c t$
C.Is c_{2} as continuous

Proof on Theorem (2):

\dot{E} as guaranteed by wheorem (1).
One has $\bar{y} \underset{y}{*}$. Hence by che caratheodory's cheorem, there existsa smalest spanning set $S(\bar{y}) \subset \mathbb{y}$ of \bar{y} such chaw
$\bar{y}=\Sigma \lambda_{h} Y_{h_{g}}$ where $y_{h} \in S(\vec{y})$ and $\Sigma \lambda_{h}=3, \lambda_{h}>0$ π
witn $h \subset Q \equiv\{1, \ldots, G\} a n d \in \leq n+1$.

Substituting $E \lambda_{h} Y_{h}$ For \bar{Y} :
$\bar{p} \bar{p}=\bar{p}\left(\Sigma \lambda_{h} y_{n}\right)=\Sigma \lambda_{h} \bar{p} y_{h}$

This ampizes that with $\lambda_{h}>0: \overline{p y}_{h}{ }^{\circ}=\overline{p y}$ for every in $\in Q$.
Sumiarly, for every \mathcal{E}.

by Lemma (4) $-[a]$.
Hence by the Caratheodory's theorem, there exsts a
smallest spanning ser $S\left(\bar{x}_{1}\right) \subset C_{2}\left(x_{i}\right)$ of X_{2}.
By the same argument as above, $\overline{\mathrm{p}} \mathrm{x}_{\mathrm{h}}=\overline{\mathrm{p}}_{\mathrm{z}}=\alpha_{1}(\overline{\mathrm{p}}), \mathcal{Z} \in \mathrm{I}$.
Now consider the sec $\left\{\Sigma \dot{S}\left(\bar{x}_{2}\right)-\dot{S}(\bar{y})\right\}: B y$ the (extended)
Shapley and rolkman theorem:
 chat:

$$
a\left[\left(\Sigma_{2}-\bar{y}\right)_{0}\left(\Sigma_{2}^{*}-y^{k}\right)\right] \leq \in \sqrt{n}
$$

Since $E \tilde{x}_{1}=\bar{y}$ g this last inequality adios:

$$
d\left(\sum_{1} x_{1}^{2}, Y^{*}\right) \leq k_{5} \sqrt{n} \quad-D(2.5)-\left(d^{8}\right)
$$

$D(2.5)-(b)$

and $\bar{p}_{z}=\bar{p} x_{i} \Rightarrow \bar{p}_{z} \geq \vec{p} x_{i}, x_{z} \subset C_{I}\left(x_{i}^{*}\right)$. $D(2,5)-\left(c^{9}\right)$

> Q.E.D.

Proof of Theorem (3):

We need to show only that the tuple (p*,s*oy*) satienzes condition (c) of $D(2.4)$.

Take some $x_{1}^{\prime} \in H\left(p *, \alpha_{1}(p *)\right) \cap C_{2}\left(x_{2}^{*}\right)$ and assume that x_{I}^{\prime} is an anomalous point with $\left.x_{1}\right\rangle_{I} x_{i}^{*}$.

By the statement of the theorem, $x_{I}^{\prime} \&\left(X_{2}\right)$.
This means $X_{z}^{\prime} \subset R\left(X_{i}\right)$ and that there exists $N>0$ such that ($\left.x_{2}^{\prime}-\lambda e\right) \in X_{1}$ with $x_{1}^{\prime} \gamma_{1}\left(x_{2}^{\prime}-\lambda e\right)$ and $\left(x_{1}^{\prime}-\lambda e\right) \sim_{2} x_{2}^{*}$.

But $p^{*}\left(x_{2}^{1}-\lambda e\right)=\left(p^{*} x_{i}^{1}-\lambda p * e\right)<p^{*} x_{I}^{\prime}=p^{*} x^{k}$.

This last inequality contradicts condition (0°) of D(2) 5) wh2chatequares that:

$$
\psi_{0}^{x_{1}^{0}} z_{1} x_{2}^{*}: " p^{*} x_{2} \geq p^{*} x_{1}^{*}
$$

Proof of Theorem (4):

 economy't as guaranteed, by theorem ((1).

where $x_{1}^{\prime} \in \tilde{X}_{2} 2 \dot{s}$ vent of \sum_{i} man (4 人 $-a$.

Assumption $A \cdot 11$ on the integer convexity of $C_{I}\left(x_{1}^{\prime \prime}\right)$ in $\in I$
 integer convex.
解

$$
\begin{aligned}
& D(2.4)-(0)
\end{aligned}
$$

$\therefore \therefore_{2}^{*} \in\left(C_{z}\left(x_{i}^{:}\right)\right) \operatorname{such} \operatorname{chat} \sum_{2}^{*}=y^{*} \quad D(2.4)-(d)$ 。
Furchexmore, $\Pi(\vec{p})=\vec{p} y^{*}=\overrightarrow{\mathrm{p}} \sum \mathrm{x}_{2}^{*}$

$$
\begin{aligned}
& =\alpha_{1}(\bar{p})+\ldots+\alpha_{m}(\bar{p})
\end{aligned}
$$

Sance $\vec{p} x_{1}^{*} \geq \alpha_{2}(\bar{p})$, this 1 mplies:

Lastiy, $x_{2}^{*} C_{i}\left(x_{1}^{y}\right)$ mplies $C_{2}\left(x_{2}^{*}\right)$ in contanned
1n $C_{2}\left(x_{1}^{5}\right)$. Thus:
butt $\operatorname{cil}_{1}\left(x_{i}^{j}\right)=\hat{c}_{1}\left(\bar{x}_{1}\right)=c 1\left(\mathcal{P}_{1}\left(\bar{x}_{1}\right)\right)$
Thus. $\bar{p} x_{2} \geq{\underset{0}{1}}_{p}^{p}=p x_{2}^{*}$

$$
D(2.5)_{0}-\left(c^{\circ}\right)
$$

 economy. : \quad Q. $\mathrm{B}_{\mathrm{D}} \mathrm{D}$

The connectan of thas thosas to soveral pumizshed worles 33 evadent throughout tho proceding chapters. Is as tho case uith many of the recenc papers on cqualibarum anam 1ysis, the gencxal flavor style and Formutation of the ir prexent probiom may be traced bacis to the maflucncial wozks of Debreu, mis modern axionatac reertment of general equa1abrium amalysus stamulates a flood of investagataons of which this paper mos smail, specaalized papr. phe thesas has also benericed from the works of weddepohl this 15 reflected by the present chozoe of novations and the formal defingtion of the conomy whach are similar to chose found In Weddepohl [29] and [31]. Incidentally, Weddepohi ${ }^{\circ}$ s - 1 results on "dual sets and dual correspondences and themr application to equalmbrium theory were anitaally considered as a potential solutzon to the present problem or nonconvom. 2ty and mndivasibaluty. However; preImanary investigation ; Indicared, that the process of dualaration does not satisfactorily elmanate disconcinumty and the attempt was aborted.

The treatment of general monconvexity in thas thesis is directiy, related to the technique inntiated bystarr [25] ang] elaborated by Arrow and Hahn $[3, C h, 7]$, It involves the, result by shapley and"rolkman' which anturtavely states that for every point in the sum of the convox hulls of a collecm. ition of compact sets thexe is a point"in the "sum of the orin ginal sets located close to it. The proximfty of these two
ponnts doponds on the degroo of nonconvozaty or bho socs znvalved, rhas proporty was used to octabligh tho socults雷 on approximately foaspbie equilabrac in pheocen (2) and wheoram (3).

The objectaves of thas thesas could nos have beon $\stackrel{1}{2}$ reached whout the applicetion of the Gale and ras-colell Existonce wheorem, It 2 g clear Erom Chaptex 2 and chaprer 3 that the modzEned economy partacularly the sederined proferm once, had been molded to satisfy tho surezeient condmozono of thas theorean. Phas method of provang equanibrium exism vence for the indzusibie model' 3 m meh more simple and darect than the eristing alternarives. The desirabilucy of thas theorem, in the presenu oonrext wall be discussed in more detalls below.

There are fed"suudies of general (approzimate) equilam
 a recent paper entatled "Exchange Equilibxiun in an Economy with dindrvasible commoditzes" by Alexander, floyd and nowa crost [1] turns out to be quite different and zncompanible The the present thesis, xt stapulates consumer choice in o commodaty space znvolvang future tame pertods and dafferent methods of payments which do not conform wath the coinnodity, space, of the presenc model.

Anothes, 2ndavionible monn whach appears to be more
 -0conomy wntn ali commochwiob beang zndzwnoible, Dzerker

cqualabzan state which lacts both asact Eeacabzaty and optamalily．Fiowever，that the resulto of Dzerteris model seem to be＂alzemated＂and arseconcylabio＂wath thoge of a model wath at least one davasibie commodity has been dasm －cussed 确 length by Broome［7］．

The present model of andivasabaliey which anclucec at －least one divisablo comodaty as more parallel to that of Droome．Thzs＇smaiazity enebles a more dazcotiand meanzng－ Eul comparison．

Usang the proof of exisconce by Deoreu and the resuites on convershulls by shapley and Tolkman．Broome obtalned a ＂Bear Equilibriun＂existenco theorem which is reproduced here for discussion ousing has notations． Broome＂ 7 ，pp．241－242］＇4．11．Theorem＇．＂Near Equilibrium＂． Let Assumptions＇2．1，＇2．2， $2.4,2.5,2.6,2.7$, and 2,0 be satiszzed．Wrate $k^{b}=\max \left\{r^{2} \mid \geq \in I\right\}$ 。 $\exists{ }^{0} p^{*} \geq 0$ 。 $\exists\left(x^{*} x^{2} \cdot x^{*} x^{2} \therefore \therefore x^{*}\right)$ ：
（a）$\left[[F] \in I: x^{\prime} x^{+2} \mid \in \mathbb{X}^{2}\right] \&$

$x \&$ edge $\left.\left.\left.x^{2} n\left\{x \mid p * s=p * w^{2}\right\}\right] \Rightarrow x^{*} *^{2} x\right]\right] \&$

$$
\therefore \text { (d) }[\exists x^{\pi^{t}} \leqq w^{t}: \mid x^{*} \underbrace{\sum x^{*} k^{2} \mid}_{1 \in I} \leq k^{b} \sqrt{n}]] \text {. }
$$

？

Tho mear ogum nban un in tar abovo thooron anolves two weaknosses. Rarotiy, the dosired aggrogate congumpzion nay not conncide whit the doszmod uggregato supply, The sazo of tho devation 25 detomanod by the-genucturo of the model. Thas as eshabated by condztan (d) of the theorem. Dsoome
 whenever nomeonvesay 20 presont. Thas finaing does not conflict with that establushed by Scart in a divisible seto ting. Secondyy, the buncle alyocated to time eongumer an a noar equily inman may not bo hat optzmal chozee under the
 prefersed bungle warch he con purchase wath the equalibrinu nncome. whas possability us sinown by condztan (e) Broome. attraputed thas problem solely to the présence of andavisuble commodities in the system. Wowever, he showed that chis problem is'very unlarely to occur since it happens only in the antersection of the ancome hyperplane and the edge of the consumption set. This exceptional case of monoptimality 15 called the "problem of the edge".

The weak Approximate Equilibrium established by wheorem (2) of this chesis is very similar to the near equilibrium fonm cept above. Fxcepr for the aifferent notations, conaztion ($d^{\prime \prime}$) of $D(2.5)$ expresses an identical infeasibility to that found by Broome. Condition (c) oivD(2.5) also refers to ${ }^{\circ}$ potential nonoptimality. It allows. the possibiluty that in Weak Approximate Equilibrium some consumers may be able to
 Howewer, the recult of thoorem (2) at gomownat woater than
 nonopinmality whthont panpozntang the area or ocouronce. Dospate whis znabilty to spocsty who expeumetanges of nons optimality, Theoren (2) is not as frustloss as th beens." Its strength $12 e s$ an the fact what it gacids zesunts which are almoot as stcong as Broome's theoron yot requiring fower and samplet assumptions. Disregarding the set ot actumprions on the ancome dastrainutaon function and the supply set (Broome worked. with a pure owchange system and dad not $2 n v o l v e$ prom duction) the other assumptions of the present model are both basic and smalar to those used by Droone. Fusthermore. Theorem (2) of this thenns 25 profed whout the followng two nonbasic assumptions. Ficstiy, Broome required Assumption 2.5 on the "overridng desmrabulity of the aivisible comodyty" to demonstrate the upper-femamontanumty of the demand corrospondence. Thas 3 the second of two assumptions made on the desurability of the duvisuble goode and in Broone's own wardssft'seems an "unfortunate superinuaty". Secondiy. Broome made' Assumption 2.6 to make sure "thera' is always some spanning 'se't with a significant member in rest $x^{\prime \prime}$ " This assumption "1s not only complaçated to stare, bute also appears to have inttie contact with intuition". [7. p.229].

* Theorem (3), of this thesps specifies the condztion under which optimal choice of every consumer is guaranteed in an

 the butget plano and the odge sis are anomaloug points the

 the edge of x_{2} and the noteworscmthan set corresponding to who oquniabrzum bumeze, Obviousiy the second antorcection Is a proper subset of the farst interscotion and thereforo It contams fewer anomalows polnts. Thas dituses the nonm optamalacy an whoorem (3) of thas thesus as Iesc probable to occur than-Broome's "problam or the edge". The difforence between these two results is milustrated 3 a paguro 400

The introduction of, integer conves areference and prym duction set's enables this thesis to expand the discussion on inamusibiluty in another amxection. Recall that anteger convexity may be antexpreted as a specjal type of npacono - vesuty whach-3 caused strictiy by the andivisable natura of. the comoditues racher than by consumer preference structure cor production techyology (e.g, ancreasang revurns)。 In , otner words, thef assumption of anteger convexuty conveys.the sdea that ceteris paribus, यf complece divzsibinaty coula somehow be introduced moto the system: then'all relevant production and consumption sets woula have peen convex. *Uader thas assumption, Theorem (4) guarantees the existence of'ä Feasible Approxmate Equalabrium in an economy fith Indivisible goods, Thas approxiamte, equilibrium concept

Гaguso 4.0

 that of optamal chozec for every anduvidual consumer pae resules of Theosan (A) presenus an ancorostarg combrast to emastang results an conpletely davisuble modela vith noncon-
 yuada opezmalaty buc lacks exact zaasabilaty whereas an nadzusable nodel wath nonconverity purged (2.e. anteger conversey assumed wall have amact feasmbuldey but suffers from non - optamainty. Finezefore 3 a as capeceec that nonoptamaluty
 cated wich nonconversity.

It may be concluded Irom the roregoang ascussion chat this thesis has achzewed thé objectives suted, in section, 0, 3. Firstly, the mathemarical cechnique employed in this study is relatuvely less complex than those an the esisting luteretute. At the same time, the present results have begn deruved uncer iewer and more relaxed comaltzons chan the ocher models: In the field. The findings of the thesis further coninim Brome's conclusion that has "problem of the edge". or the posszbalaty of nonoptamal consumptaon for some indariduals In equilib=2um, Is a problea specifically associated with the presence of zadyvisubulity and seems"to be meradicable. However, the thesis succeeds in reducing the probability of thas occurence by confinng the anomalous ponnts to a maller set. It appears, tnerefore, that. while the ilkelmood of nonoptimal equilibrium consumption may be decreased, the
possmazaty of monopeamazay cannot be elamanazed as lomg

1
re o

d

maperences

 Commodaties" paper presenced at C.t. Quebec caty. 『ay 1976.
[2] Arrow \mathbb{K}. and Debreu, G. "Buasceace of an Equalabxam Soz a Conpetztzye Economy"。 Ecomometzzea, Vol. 22. PP. 265-290. 195 $4^{\circ}{ }^{\circ}$.
 rolden-Day, San Eramezsco. 1972.
 Marlets wath a Contrnum of Traders* Economerrice. Vol. 34; pe: 1-17\% 1966.
[5] Bator. 5 . M. "Convexicy, Effzesemcy, and markets" Journal of Poluticat Economy. VoI: 69. po. 480-433. 1961.
[6] Berge, C., "ropological Spaces", Oluver \& Boyd, Bainburgh a Iondon. 1963.
[7] Broome. J. "Approximate Equilibrium in Economies with Indivisible Commodities: Journal of Economic Theorye 5 , pp. 224-249. 1972.
[8] Conn, D. and Malloy, A. smhe pareto properties of General Equilibrium whth Indivisuble Commodities" Stony Brook Working Paper No. 109. Economac Research Bureau. S.U.N.Y., Stony Brook, 1973.
[9] Debreu, G., "Theory of Value", Yale Unzversity press, " New Haven, 1959.
[10] Debreu, G: "New Concepts onc Technyques Eor Equanabraum
 PQ. 257-273. 1962.
 Econonetrica, Vol. 38, pp. 387-392, 1970. "
 with Induvisible Comoditues". Economecrica. Vol. 39. pp. $997-1008,1971$.
 Cambzidge. 1958.
[14] Farrell. Pi, 3. "The Convesity Assumption in che Theory of Competrcuve Markets", Journal of Policacal Economy, Vol. 67. pp. 377-391, 1959.
[15] Gale, D. "The ${ }^{\text {Taw }}$ of 'Supply añaDemand" "Matheriatica" Scandinavia。Vo1. 3. pp. 155-169\% 1955.
[16] Gaie, D, and Más-ColeII, A. "An Equilibrium Tristence Theorem for a General Model whthouc ordered. Preferences" Journal or llathematical economics, vol. 2, po. 9m15, 1975. -
[170] Hildenbrand, W, and Kırman, A, P. "Incroductiont to Bquil=braum Analysis", Northomolland, Amsterdam, 1976.
[18] Rakutanz, S. MA Generalization of Brouwer's paxedmpont. Theorem", Duke Mathematical Journaly Vol. B, pp. 451-459, 1941.
[19] Klein, E. "Mathematical Methods in Theoretical Bconomics" - Acadenz press. New York. 1973.
[20] Koopmans, w. C. whimecntsmay on the state of Eoonome

[21] Mas-Cole11, A. "An Equalibraun Exzstence Theoren Whehout Complete or ryansztave preferences", Journel of Hachemarical Beonomacs, vol. 1, P9. 237-246. 1974.
[22] McRenaze, I. W. 0 "On the Esistence of General Equilibrium Eom a Competicate Hazket", Bconomerzaca, Vol. 27, pp. 54-71s. 1959.
"[23] von Meumann。J. "A Model of General equilibrium"。 Revare of economic studaes, vol. 13. pp. 1-9, 1945-46.
[24] Rothenberg, J., "Non-Convexity, Aggregation, and pareto Optrmality", Journal of Politxcal Economy, Vol. 68, pp. 435-468. 1960.
[25] Starr, R." "Quası-Equalıbria an Markets with Non-Convex Preferences", Econometrica, Vol. 37. pp. 25-38. 1969.
[26] Valentane, F. A. "Conver Sets", McGraw-Hill, New York. 1964.
[27] Wald. A. "on Some systems of Equations of Machematical EConomics", Econometrica, VoI. $19 . \mathrm{pp}$. $368-403,1951$.
 Homewood. I11., 1954.
[29] Weddepohi, H. H. "Axiomatic chozce Modelos and "Duairty", Rotterdam Unaversiry Press, Rotcerdam, 1970.'
[30] Weddepohl, II., N. "Dualucy and Equilibrium", Zeischirfit Fir Nationalokonomıe, VoI., 32, pp, 163-187, 1972.
[31] Wedaepohl, H^{2}, N, "Dual Gets and Dual Correspondences and their Application to Equilibrium Theory", Tilbury - Institute of Economics, Tilburg, Research Memorandum. E.T.T. NO. 38. 1973.

[^0]: †. A proper convex combination of a set of vectors is defined as a weighted sum of these vectors, each weight being positive and the sum of all the weights equals unity. other technical terms and notations encountered in this section will be formally defined in later chapters.

