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ABSTRACT

A high-resolution, high-sensitivity, automated AC
calorimeter capable of heat capacity measurements on very
small samples (m < 10 mg) with a temperature resolution of a
few mK in the AC mode is described. This calorimeter also
can be operated in the relaxaticn mode to provide absolute
heat capacity values with precision and accuracy of around
2%. A microprocessor was employed tn generate a stable
oscillatory heating signal and to control the heater power,
in order to improve the sensitivity of the measurement over
other designs. A new very sensitive and miniature
temperature probe (a film flake of a thermistor material),
which increased measurement resolution and minimized the
heat contribution of the addenda relative to other methods,
was used.

This calorimeter was tested by measuring the heat
capacity of gadolinium (Gd) over its ferromagnetic phase
transition for several single crystals of Gd. The results
agree well with the literature data giving, however, better
resolution of the heat capacity in the critical region.

The critical behaviour of Gd was analyzed in terms of
power laws with critical exponents and the logarithmic form
expected for uniaxial dipolar systems. The results of the

analysis are discussed and compared with othe: studies.

xi
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Chapter 1. INTRODUCTION

Calorimetry is one of the oldest and most extensively
used research methods. Heat capacity data have a wide range
of utility; for example they can be used to determine
various thermodynamic quantities and to reveal and
characterize phase transitions.!

The progress made in the physics of critical phenomena
in the two decades since Wilson? formulated the
renormalization group (G) approach to phase transitions in
1971, has created a need for data giving the temperature
dependence of the heat capacity, C(T), at temperatures
extremely close to the critical value, T,. The required heat
capacity resolution can be of the order of a few mK, in
order to give reduced temperatures, t=(T-T,)/T., less than
10%. Such high-resolution heat capacity data can be used
for testing and further develcpment of existing RG models of
phase transitions.

Despite impressive theoretical advances there is still
a quite limited amount of experimental, high-resolution data
available on the critical behaviour of heat capacity for
various systems (this is particularly true for phase
transitions in magnetic systems).’ This situation appears to
reflect experimental difficulties involved in high-

resolution measurements. The available data on critical
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behaviour of heat capacity and other physical quantities
often are not suitable for RG analysis and testing of RG
predictions because they lack sufficient resolution around
T, .45

The commonly used and well-known calorimetric methods
are not very suited to high-resolution measurements.
Adiabatic calorimetry, based on the heat-pulse method, is
considered to be one of the most accurate calorimetric
methods®, but its precision drops dramatically for very
small temperature increments. This method, however, has been
used successfully for high-resolution heat capacity studies
at very low temperatures, when heat loss by radiation
becomes negligible.’” The use of digital techniques of
measurement also has led to the improvement of the precision
of the heat-pulse method.?

Differential scanning calorimetry can be quite
sensitive but it also lacks resolution and because of
relatively high scanning rates there are problems with
sample equilibrium when the heat capacity changes
rapidly.®%!®

There have been several ingenious methods of high-
resolution heat capacity measurement devised to remedy this
situation. For example, in a continuous warming
calorimeter, a thermally isolated sample is heated at a
constant power and the heat capacity is derived from the

rate of temperature increase.’! The principal source of



error in this method is the uncertainty involved in

determination of the temperature drift rate, which can be of

the order of the actual drift rate for very slow temperature

drift rates.

Another method appropriate for high-resolution
measurements is the relaxation time method.!? In this
method, the sample temperature is increased by AT with

respect to the heat sink temperature, and then the heat is

turned off and the temperature relaxation curve is recorded.

The heat capacity is determined from the temperature
relaxation time constant and from the experimentally
determined heat conduction between the sample and the
surroundings. This method was used in this work to
calibrate the measurements made in the AC mode and will be
described in more detail in later sections.

In 1968 Sullivan and Seidel” introduced a new method
of measuring heat capacity which has subsequently been
called "AC calorimetry". A number ot publications have
appeared since that time using this method in the study of
phase transitions in solids'"?®, liquid crystals and
fluids''® and biological materials.” AC calorimetry
offers very high (mK) resolution coupled with high
sensitivity. This arises from the fact that this method
measures amplitudes of periodic, millidegree temperature
waves propagated through the sample. The changes in the

temperature wave amplitude, which are caused by heat
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4
capacity variations with temperature, can be very accurately
measured with a lock-in amplifier. Advances of materiéls
science and electronics have allowed the use of AC
calorimetry in measurements on extremely small samples
(m=25ug)'"® and in noisy environments.!®

In this thesis the design and the construction of an AC
calorimeter for the study of phase transitions in solids is
reported. This calorimeter also can be operated in the
relaxation mode giving absolute values of heat capacity. 1In
the following sections the theories of AC calorimetry and
relaxation time calorimetry are described. The design of
the electronics, which is crucial for the resolution of the
calorimeter and which also allows one to rur the calorimeter
in the relaxation time mode, is described in detail. The
designs of the cryostat and the sample assembly also are
described in detail. Emphasis is put on the design of the
sample heater and on the choice of the temperature probe,
which allowed high-resolution heat capacity measurements
while minimizing the heat capacity contribution of the
addenda.

The physics of critical phenomena is reviewed in this
thesis. The RG results for the systems whose critical
behaviour is relevant to the critical behaviour of Gd is
discussed. The discussion is concerned with ferromagnets
with dipolar interactions and with phase transitions in

disordered systems, including the phase transition in a



random dipolar Ising system.

The procedures employed to analyze experimental heat
capacity data in terms of the RG theory are described.

The effect of an extarnal magnetic field and a
demagnetizing field on the heat capacity of a ferromagnet is
discussed and mean field calculations of the contributions
of demagnetization effects to the heat capacity of Gd are
presented.

The literature results of experimental and theoretical
studies of the critical behaviour of Gd are described and
discussed.

The calorimeter presented here was used for high-
resolution heat capacity measurements on several single
crystals of gadolinium (Gd) in the vicinity of the
ferromagnetic phase transition. These measurements tested
the performance of the calorimeter. The results obtained
agreed well with the literature data giving, however, better
resolution of the heat capacity in the critical region.

The high-resoluticn heat capacity data around T, were
used to study the critical behaviour of Gd. The dependence
of the heat capacity curve in the vicinity of T, on sample
preparation procedure, including sample annealing also was
investigated. The results of this study ares discussed and
compared with results of other studies of the critical

behaviour of Gd.



Chapter 2. THEORY OF AC CALORIMETRY AND RELAXATION TIME

CALORIMETRY

2.1 Alternating current (AC) calorimetry

The theory of AC calorimetry has been discussed
extensively in a number of publications'®*? and
theses??®, Therefore only a brief review of the theory
following the analyses given elsewhere®?® and pertinent to
the geometry of the apparatus used in this work will be
given here.

Consider the simplified model of an AC ~xperiment shown

in Fig. 1. The sample is a thin slice of material of
uniform thickness, d. This sauple, which has a resistance
heater attached to one face and a temperature sensor on the
other face, is loosely coupled thermally tc the reservoir at R
temperature T, via an exchange gas and connection leads.
The thermal conductance of this thermal link is K and the
heat capacity of the sample assembly is C. If the sample
has infinite thermal conductivity and the thermal link has
zero heat capacity, then the difference in temperature of
the sample and the reservoir is given by Newton’s law of

cooling,

CAT(t)=P(t)-KAT(Et) , (2.1)

- e
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Fig. 1.1 1Idealized one~dimensional heat flow problem.
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where AT(t) is the temperature difference between the sample
and the reservoir and P(t) is the heater power.

For a phase-sensitive detection at the second harmonic
the oscillatory power used is P(t) = P, cos! wt and the
steady state solution to Eq.(2.1) is
Py, Py 1 cos (2w t-$)

2K ZoC 141 sind ' (2.2)
(2wT)?

AT -

where 1=C/K is the external time constant and ¢ is the phase
shift (tang = 2wr). If (wr)? >>1 the solution can be

written in the form:

Py P,

AT = =5+ wccos(zwt—cp)EATDC+ATACcos(2wt—¢) , (2.3)

where AT,. is the constant temperature difference between
the sample and the heat sink and AT,. is the amplitude of
the AC temperature oscillations (the phase shift is around
m/2). A lock-in amplifier detects the second harmonic of
the temperature oscillation which is inversely proportional
to C. Detecticn at the second harmonic is useful because of
a built-in advantage of discrimination against leakage from
the heater voltage.

In a real system two time constants serve to
characterize the thermal dynamics of the system.?? One
time constant, 7,, characterizes the thermal coupling

between the sample and its surroundings. The other time



constant, 7,, characterizes the thermal relaxation within
the sample and is determined by the thermal diffusivity, D,
and thickness of the sample, d.

The effect of these time constants on the AC
temperature oscillations can be investigated by solving the
one-dimensional heat flow problem for the model situation
described in Fig.l. For this purpose the sample is assumed
to have thermal conductivity «,, density p,, and heat
capacity per unit mass c¢,. The sample is surrounded by gas
of thermal conductivity k, , density p,, and heat capacity
per unit mass ¢, and the reservoir walls are at distances 1,
and 1, from the sample, and are kept at temperature T,. The
heat flux per unit area is given by P(t)=P, + P, producing
a one-dimensional heat flow along z-axis. One has to solve

the heat conduction equation®:

IT(z,t) _ , 0'T(z,t)
—a T T @4

where D=«,/pc, is the thermai diffusivity of the gas (i=gqg)
or of the sxmple (i=s). The boundary conditions are that
the heat flux and the temperature are continuous on the
interfaces and that at the reservoir walls
T(l,+d,t)=T(~1,,t)=T;,. At the heater side of the sample the

boundary conditions are:

T(0,t) |, = T(O, t) (2.5)

0"
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and those on the opposite side of the sample are:
T(d' t) d* - T(d' t) Id‘ (2'7)
oT aT
“Kg==| = -k == . .
79ty 9dtly (2.8)
The steady-state time-dependent solution to this problem
inside the sample is of the form*:
T(z,t) = Ty+tAT,-(Z2) +AT,(Z2) e , (2.9)
where AT,-(2) can be written in the form:
AT,. = a+bz , (2.10)
and AT,.(2) is of the form:
AT, (2) = Ae+Be™ , (2.11)

where g’=iw/D, and D, is the thermal diffusivity of the
sample. Next the boundary conditions can be written
explicitly and solved for the coefficients of the AT,. and
AT,c parts of the solution. After algebraic manipulations
one obtains for the DC part of the solution:

pyl, . Bl, dk, +x 1

- z
d +x (1,+1,) Ko dr +x (1+1,)

AT,.(z) = . (2.12)

If the thermal conductance of gas between the sample and the
reservoir is much smaller than that of the sample, Eq.

(2.12) for 2z=0 reduces to:



P,
ATpc(0) % 2=
&

11

(2.13)

where kg=«,/l; is the effective thermal conductance of the

gas per unit area and 1,41,1,/(l,+1;). 1In this case
ATpc(d)®ATy-(0), i.e., the sample has a single DC
temperature.

The coefficients of Eq. (2.11) are:

P 1+ 1+ -1
- L (y,-1) vl (149,) (1+v,)

AT vg T
and
B - Aol (1+7,) '
T (1)
where
Y - {%‘.i.;j_:.f rcoth(qu.Q) '
and

172
Yy - {pgcgf(x] coth(qgl,) .

s s

The AC temperature at the back face of the sample is:

B, -
Tield) = —(sinn(gQ) (1+ (v, +7,) coth(g.d) +ym]) "

$4s

{2.14)

(2.15)

(2.16)

(2.17)

(2.18)

In order to extract useful information from Eg. (2.18) one

can define an external relaxation time, 7,, by:
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= th . .
Tor, (v, +7,) coth(gqd) (2.19)

The external relaxation time, r,, takes on a simple meaning
if 1,/1<<1 and 1,/1,<<1, and also d/1,<<1l where 18=(Dg/<..s)“2 and
1=(D,/w)'? are the characteristic thermal diffusion lengths
of the gas and the sample, respectively. In practice these
conditions are satisfied by regulating the amount of thermal
link between the sample and the surroundings, thinning the
sample and adjusting the operating frequency of the AC power
input. Making the approximations: coth(gqd) = 1/(qd),
coth(q,l;) = 1/(qg,1,), and coth(q,l,) = 1/q,]l,, one obtains:

- pscsdleﬁ -

T, 2 4 S
1 v !
Kg Keﬁ

(2.20)

where K.=«,(S/1ly) is the effective thermal conductance of
the gas, S is the sample surface area, c, is the sample heat
capacity per unit mass and C, is the total sample heat
capacity. Thus 7, can be identified with the relaxation
time from Eq. (2.2).

Eq. (2.18) can be simplified if one assumes that
wr,>>1. In this case wr;>>1 then y,y,<<y,+y, and the 7v;y, term
can be neglected in Eq. (2.18).

At this point it is also convenient to introduce the

internal relaxation time for the sample, 7,:

5

@ _cC
T) = o = S 2.21
2% 3 X’ ( )
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where K, is the thermal conductance of the sample.
Under the conditions that (wr,)? >>1, and (w7,)? << 1 and
keeping two terms of the expansion of sinh(qd) in the

Taylor series one obtains from Eg. (2.18):

P 11, 7, I
T (d) & —— tgm v it v =2 . (2.22)
ac(d) .wp,c,dP Iut, 6 % 6T,

The amplitude of the temperature oscillations on the heater

face of the sample is thus:

— )
wp.cd [ “(wr,)? 36 361,

P 1 1 7,0 | 2 .
|Tuc(d) |[mete L+ +ae (WT)) 2 2 . (2.23)

Eq. (2.23) can be written in more transparent form by
expanding the square root in the Taylor series und keeping

terms to the order of (71,,)%:

P 1 (wt)? T3 (2.24)

Ty (d) | = 1-
I Tac (| wp,cdl” 2(wty)? 72 7242

For a sufficiently thin sample the heating frequency can be
chosen so that the correction terms in the bracket in Eq.
(2.24) contribute less than 0.1% to AT,..

If the sample is not heated uniformly (for instance, if
the resistance heater leaves bare strips of the sample
surface along its edges) then one has to consider the
lateral heat flow in the sample. For this purpose assume
that a strip of the sample from x=0 to x=a in the direction

of the x—-axis is not heated. (The sample is assumed to be
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infinite in the x~-and y-directions with its surface
perpendicular to the z-axis.) Then the amplituce of the AC
oscillation at the back face in the heated part of the

sample for x>a, T(X),c, is®:

T(x) ac ™ |T.qc(d) |(1-Sinh(a/ls) exP("X/ls) ) (2.25)

For typical experimental conditions the lateral
dimensions of the sample are much larger than the thermal
diffusion length and the ratio a/l; << 1, so the correction
term for a temperature probe placed in the centre of the
sample is very small (for samples described in this thesis
it was of the order of 10%). The temperature probe senses
the average AC temperature oscillations within the radius of
the thermal diffusion length, the amplitude of which is
determined by the local heating power and the heat capacity
of the sample per unit of the sample surface area. Knowing
the power density and the sample surface area one can
calculate the total absolute heat capacity value from Eq.
(2.3). However, because of the uncertainties involved in
accurately determining the sample surface area and the
heater surface area, and inhomogeneities in the heater
coverage, this procedure can give only a rough estimate of
the absolute heat capacity of the sample.

A much better way to calibrate data from AC calorimetry
is by using the relaxation time method, which is the subject

of the next section.
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2.2 Relaxation time method

In the thermal relaxation method, the heat sink
temperature is stabilized at some temperature T,. Current
is then passed through the sample heater, dissipating power
P and increasing the temperature of the thermometer-sample
assembly to T, + AT, where AT = P/K, and K is the thermal
conductance between the sample and the heat sink. The
current in the scmple heater is then turned off, and the

sample temperature, T, relaxes exponentially,®

t

(-=)
T(t) =Ty+ATe * , (2.26)
to T, with the time constant
C
== 2.27
K ( )

where C is the total (sample plus addenda) heat capacity.
The above expression assumes that the thermal link K has
zero heat capacity. Bachmann et al.® showed that
approximately 1/3 of the heat capacity of the thermal link
should be included as addendum.

This simple model gives good results in many cases, but
if the thermal conductance of either the sample or the
sample-substrate bond is comparable to that of the heat leak
or if the heat capac 'ty of the connection wires is

appreciable, T(t) must be represented by a more complicated
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sum of exponentials with different time constants.?® The
cooling curves in that case are characterized by an
abnormally high initial slope compared to the rest of the
decay. For experimental purposes, if the ratio 7,/7, of the
time constants defined in the previous section is of the
order of 10?2 or smaller then Eq. (2.26) is a reasonable
approximation.

Near a phase transition the simple exponential decay
becomes more complicated and one has to consider the full
equation,

T ___K
T-T, C(T) '

(2.28)

from which Eq. (2.26) was derived, i.e., near transitions,
not only must T be measured, but also its time derivative,
T, must be known. This one of the principal sources of
error in this method and the source of its basic limitation
for studies of phase transitions. However, the relaxation
time method can be used for accurate absolute heat capacity
measurements (to ca. 2%) and if the total heat input to the
sample can be known accurately it is a very convenient way

to calibrate AC calorimetry data.?
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Chapter 3. REVIEW OF THE PHYSICS OF CRITICAL PHENOMENA

3.1 Introduction

Changes of phase - the boiling of water, the melting of
iron - have long fascinated scientists. In many cases, by
varying the temperature or other thermodynamic parameters,
two distinct phasez can be made more and more similar in
their properties until, at a certain critical point, all
differences vanish®. Beyond this point only one
homogeneous equilibrium phase can exist. Familiar examples
of such critical point are: the critical point which
terminates the coexistence curve of a liquid and its vapour
at a characteristic temperature, pressure and density; the
critical point of phase separation in a binary fluid mixture
(or a binary metallic alloy), which marks the temperature
above which (or sometimes below which) the components mix
homogeneously in all proportions; the Curie point or
critical point of a ferromagnetic crystal at which the
spontaneous magnetization, and hence the difference between
two differently oriented magnetic domains, goes continuously
to zero; the Néel point at which the alternating spin order
of an antiferromagnet goes to zero; the critical point of a
metallic superconductor below which the electrical
resistance vanishes and a permanent current may flow.

It was noticed long ago that near a critical point the

17
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behaviour of quite dissimilar systems exhibited many similar
features. When Pierre Curie, in 1885, measured the magnetic
equaticn of state of nickel, he was struck by the similarity
between curves obtained by plotting magnetization as a
function temperature, and density-temperature isobars of
carbon dioxide near the critical point.?® since that time,
it has been found that the richness and variety of critical
behaviour can be understood and classified from a common
point of view. Books by H.E. Stanley® and S.-K. Ma"
contain a general review of physics of critical phenomena;
the Domb-Green-Lebowitz series gives detailed reviews of the
theoretical and experimental progress in that field.¥

The phase below the critical point is an ordered phase;
it can be characterized by an order parameter that goes to
zero at the critical point. 1In ferromagnets, the order
parameter is the magnetization vector, M, and the magnetic ‘
susceptibility, x, (change in magnetization induced by a
small applied field) is its response function which diverages
at the critical point, indicating that the system has
reached a limit of stability. When the response function
diverges, large-scale fluctuations of the order parameter
can occur at low cost in free energy. (In liquids, these
manifest themselves in an anomalous scattering of light
called "critical opalescence", which gives a fluid near its
critical point typical milky appearance¥). A way of

describing this divergence is by means of the correlation

B dnrpe s e



19
function, G(r), which measures the extent to which local
spin fluctuations a distance r apart are correlated. The
correlation length, ¢, i.e. the range of G(r), diverges in
the vicinity of the critical point, which means that large-
scale fluctuations extending over regions containing very
many particles are present in the system. Because of those
fluctuations the details of the particles’ interactions are
irrelevant and considerable similarity can be found in the
critical behaviour of diverse systems.

Critical phenomena can be classified into two
categories, static and dynamic. Static phenomena concern
equilibrium properties such as magnetization, susceptibility
and specific heat. Dynamic phenomena concern time-dependent
phencrana such as relaxation times, heat diffusion and spin
wave propaga.ion. At present, the static critical phenomena

are better understood than dynamic critical phenomena.
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3.2 Definition of static critical exponents

A problem of central interest in physics of critical
phenomena is the determination and explanation of the
asymptotic laws describing the way in which various physical
quantities (heat capacity, susceptibilities, etc.) diverge
to infinity or converge to zero as the temperature or other
variable approaches its critical value. Critical exponents
are used to characterize the critical behaviour
numerically.?

The static critical exponents are conveniently
discussed in the cecntext of magnetic critical phenomena.
The temperature dependence of the various magnetic
quantities (such as magnetization) can be expressed by a
series expansion about the critical temperature, T,. For a

quantity L(T) the expansion can be written as®%:
L(T) =Ly  t|*(1+Y a,| t]"), (3.1)

for T>T,, where L, and {a,} are constants, t=(T-T,)/T. and the
same function with primed coefficients for T<T,. The

critical exponent A, for that quantity is defined as

A = lim _1RL (3.2)

t =0 lnltl
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so that sufficiently close to T,, L(T)=L, |t]|*, t>0 and

L(T)=Ly’ |t]", t<O.

3.2.a Magnetization as a function of t: the exponent f

When the external magnetic field B vanishes, the
magnetization M below T, decreases with increasing T,
and vanishes at T,. Very close to T, the power

law behaviour is a common feature®:

M x|t]? (3.3)

with B being the critical exponent associated with the
magnetization. The observed value of § for ferromagnets
like Fe and Ni is around 0.37 and around 0.33 for
anisotropic magnetic materials like MnFe,, CroO, and
fluids.3®3343  (por fluids the corresponding definition

can be obtained by substitution of M by p, -p;, where p, is
the density at the liquid side of the coexistence curve and
P 1s the density at the gas side of the coexistence

curve) . ¥

3.2.b The magnetic susceptibility (order parameter
susceptibility), x, for H = 0 as a function of t: the

exponent vy
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As T approaches T,, x diverges and its divergence is

characterized by the exponents 4’ and y:

X *« t7, T>T,

\ 3.4
x t™, T<T,. ( )

Data are usually consistent with <4’ = 4 but the
proportionality constants in the two cases are not the
same.

Experimentally observed values of y are slightly larger
than unity, e.g. ¥ = 1.33 for ferromagnets like Fe and
nickel and y = 1.23 for anisotropic magnetic materials

30,31,34,33

such as CrBr, and for fluids. (For fluids y describes

the divergence of the isothermal compressibility.¥)

3.2.c Critical isotherm (H as a function of M at T=T,): the

exponent §

One observes, for very small magnetic fields®:

H o M?, t=0. (3.5)

The observed value of § falls in the range from 4 to 4.4.*
(For fluids one replaces M with (p,-p;) and H with (p-p.)
where p; is the density at the liquid side of the
coexistence curve and p; is the density at the gas side of
the coexistence curve and p and p, are the pressure and the

critical pressure respectively.¥)
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3.2.d Heat capacity and the exponent a

The heat capacity C at H = 0 is observed to have a

singularity at T,, characterized by exponents a«’ and a:

C, - aA(t‘“-—l), T>T,
A/ (3-6)
- -a—/(("t)-d'l)r T<T.,

[

where A and A’ are different proportionality constants

and a ® 0.1 for uniaxial anisotropic magnets and for fluids,
while @ ® 0 for the lambda transition in ‘He, and a = -0.1
for Ni, Fe and other isotropic magnets.®¥¥3 Note from Eq.
(3.6) that ¢ = 0 implies a logarithmic divergence as can be
seen by taking the limit « - 0 in this equation. It is

usually observed that a’= a within experimental error.
3.2.e. Microscopic correlations

In addition to thermodynamic critical behaviour, the
variations of microscopic correlations among magnetic
moments with temperature are of particular interest in the
critical region. These correlations are described by the

spin-spin correlation function, G(r):
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G(L) =<[S(E)-<5>]" [S(0) -<5>]> , (3.7)

in which ;X;) denotes a (localized) spin at site r. The
angular brackets indicate statistical averaging over all
possible spin configurations. The spin density function,
o(X) is also used in place of E];). The average <s> gives
the magnetization, which is nonzero if T<T,. The thermal
average in Eq. (3.7) is thus the correlation function of the
deviation from the average spin, i.e, spin fluctuation. One
also can introduce a Fourier transform, G(g), of the spin
correlation function. There is an important identity,

relating G(q) to the susceptibility x:

Tx = G(qg=0) . (3.8)
Thus the susceptibility can be derived from neutron
scattering experiments, which measure the correlation
function.¥
At the critical point, the correlation function

involves the exponent 7:

G(r) «cr @, t=0, H=0, (3.9)

where d is the lattice dimensionality and the exponent 7,
which is difficult to measure experimentally, is observed to

lie in the range 0.01-0.1.%%
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The correlation length, ¢, is a measure of the range
over which spin fluctuations are correlated (the degree of
correlation being given by the correlation function) or the
average size of the region in which a sizeable fraction of
spins point in one direction. The correlation length enters
the expression for the correlation function for t - 0 (but

t#0):
G(r) o:r"exp(—.g.'). (3.10)

The correlation length diverges at T, and the divergence,
asymptotically, can be described by a power law:

£ x(-t)”, T>T,

, (3.11)
xt, T<T

c !

where v and v’ are the associated exponents. The
proportionality constants in the two cases generally are
different. It is observed experimentally that v=¢’ and the
value of v falls in the range from 0.6 to 0.7 for three

dimensional magnets.*®
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3.3 Scaling theory, critical exponents equalities, critical

point universality

The first successful attempt to bring order into a
variety of critical exponents and power laws was based on
the static scaling hypothesis which asserts that the
singular part of the free energy is a generalized
homogeneous function of its two independent variables (t and

H in the magnetic case) such that:

Fe (Nt NH) = NF, (t,H) , (3.12)

sing
where p and q are two critical exponents, d is the
dimensionality and A is an arbitrary constant.¥

The alternative and original formulation of the scaling
hypothesis was due to Widom’, Kadanoff¥ and Griffiths®.
In this formulation, which is often used in the literature,

the homogeneity relation for the free energy, F,, (t,H), is

written as

F-""'B (t'H)_tZ-a sing (tﬁa/H) ’ (3-13)
where the exponents a,f and § are defined in the preceding
section.

The scaling form of the magnetic equation of state is®

H(M,T)=M|M|*'h(t M| . (3.14)
All critical exponents defined in the preceding section now

may be expressed as combinations of p, q, and d. This can
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be done by taking various partial derivatives of the free
energy in the scaling form given in Eq. (3.12) in order to
obtain corresponding thermodynamic quantities and then
equate them to their power law counter-parts. In the next
step, relations among various critical exponents are
obtained.® A list of scaling relations is shown in Table
3.1. It should be noted that many scaling relations can be
proven in the form of rigorous inequalities without making
the scaling assumption.®

The physical basis for the homogeneity property of the
free energy was initially unknown. However, it became clear
lates that the homogeneity property follows from the role
which the correlation length plays in critical phenomena.®

In this context the scaling hypothesis asserts that the
correlation length, £, is the longest and the only relevant
length in explaining critical phenomena.’ oOther lengths,
such as the interatomic distances, are too short to play a
role. In other words, physical quantities depend on t only
through their dependence on the correlation length. Thus,
the divergence of { is responsible for the singular

behaviour of physical quantities.
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Table 3.1 Relations among the critical-point exponents

predicted by the scaling hypothesis.

(1) a+ 28 +y =2

(2) Y= (2 -

(3) @ =2 -

(4) Bs =B + v

(5) §=(d+2=-19)/(d=-2+n)
(6) a’ = a

(7) vo=y

Under a scale change, the correlation length changes and
since the correlation length is proportional to |t|” this
change corresponds to a change in temperature. Therefore,
near T, the temperature dependence of a physical quantity
can be deduced from the way it behaves under a scale change.
One of the implications of the scaling hypothesis formulated
in this way is the scaling form of the free energy (Eqg.
(3.12)). A simple example applying this idea follows. The
free energy per unit volume F, . (£) becomes Sq%m(f) when the
volume of the system ‘s shrunk by a factor of s; d is the
dimension. Therefore one has F,,({/s) = s“Fmg(E) . Since s

is arbitrary, one sets s = (. Thus:

sing

Fong (§) -s-dpm(%) =t (1) | E|™ . {3.15)

By taking the second derivative with respect to temperature
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of this scaled free energy scaling relation (3) from Table
3.1 can be obtained.

The important feature of critical phenomena highlighted
by current theories and experiments is the concept of
universality introduced by Kadanoff.¥ According to the
universality principle, the variety of systems that show
critical behaviour can be divided into equivalence classes
called universality classes. At present, the following
factors are thought to distinguish the various universality
classes: d, the spatial dimensionality of the system; n, the
number of components of the order parameter; the symmetries
of the Hamiltonian of the system; the range of the
microscopic interactions responsible for the phase
transition; the presence of disorder. These features of
critical phenomena has been emphasized by the
renormalization group theory described in subsequent

sections.
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3.4 Classical theories of critical behaviour

In an attempt to understand critical behaviour, there
have been many theoretical models proposed that have
critical-point phase transitions.?®’® The earliest models,
i.e. the van der Waals theory and the Weiss molecular-field
theory, are mean field theories. The classical predictions
of the van der Waals theory and the Weiss molecular field
theory are derived by an approximate theoretical treatment
in which the crucial assumption is that the fluctuating
forces acting on a single element of the system, i.e. spin,
may be replaced by an effectively constant average field due
to the rest of the system. Those models have a critical
point for which critical exponents are integers or simple
fractions independent of dimension. The mean-field
exponents differ, however, from those found in real systems
with short-range interactions.?¥

Alternatively, the classical predictions follow from
the phenomenological equation of state derived under two
assumptions: (1) that the relevant thermodynamic potentials
may be expanded in Taylor series about the critical point in
powers of some order parameter, and (2) the expansion
coefficients may be expanded in powers of (T-T, ), where T,
is the mean field critical temperature (the coefficients may
vanish at T, to yield, e.g., an infinite susceptibility).?®

The order parameter is a thermodynamic variable selected so
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that its equilibrium value is zero above T, and cne of
several non-zero values related by symmetry below T,. These
assumptions were first introduced and discussed by Landau®
and led to a subsequent development of the Landau theo;y of
phase transitions.’®¥ some of the concepts of the Landau
theory are present in the modern theories of phase
transitions and because of that this theory will be
illustrated here, using the example of a ferromagnetic phase
transition. The order parameter in this case is the
magnetization M and the free energy after expanding in

powers of M will take the form:30%

F(T,H,M) = Fo(T,H) +F,(T ,H)M*+F, (T H)M*+... . (3.16)
Coefficients of odd powers must vanish because the free
energy is an even function of the magnetization. The
equilibrium value is found by minimizing F(T,H,M) with
respect to M. Assuming now that F,(T,H) is positive, and
F,(T,H) = A(T-T,) with A>0 (these assumptions ensure a single

minimum above T, and a double minimum below T.,) one obtains:

- J1 A _ ]
M, [Eﬁ(Tc T)] , <D, . (3.17)

This relation gives the classical 8 = 1/2 result. The other
classical values of critical exponents which can be obtained
from the Landau theory are: y = y’=1, ¢ = 3 and the heat

capacity has a discontinuity at T, corresponding to a=a’=0.
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These values of the critical exponents do not agree with
experimental cbservations (Sec. 3.2). The reason for the
quantitative failure of mean-field theories is not hard to
identify. 1In all these theories the state of any selected
particle (spin) is determined by the average properties of
the system as whole. 1In effect all spins in the systems
contribute equally to the force exerted on each spin, which
is equivalent to assuming that the interaction forces have
infinite range. This is a serious approximation; the
nearest neighbours are much more important than any other
spins. The same objection can be expressed another way: the
main approximation made in the classical theories is that
they do