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ABSTRACT 

A high-resolution, high-sensitivity, automated AC 

calorimeter capable of heat capacity measurements on very 

small samples (m < 10 mg) with a temperature resolution of a 

few mK in the AC mode is described. This calorimeter also 

can be operated in the relaxation mode to provide absolute 

heat capacity values with precision and accuracy of around 

2%. A microprocessor was employed to generate a stable 

oscillatory heating signal and to control the heater power, 

in order to improve the sensitivity of the measurement over 

other designs. A new very sensitive and miniature 

temperature probe (a film flake of a thermistor material), 

which increased measurement resolution and minimized the 

heat contribution of the addenda relative to other methods, 

was used. 

This calorimeter was tested by measuring the heat 

capacity of gadolinium (Gd) over its ferromagnetic phase 

transition for several single crystals of Gd. The results 

agree well with the literature data giving, however, better 

resolution of the heat capacity in the critical region. 

The critical behaviour of Gd was analyzed in terms of 

power laws with critical exponents and the logarithmic form 

expected for uniaxial dipolar systems. The results of the 

analysis are discussed and compared with other studies. 
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Chapter 1. INTRODUCTION 

Calorimetry is one of the oldest and most extensively 

used research methods. Heat capacity data have a wide range 

of utility; for example they can be used to determine 

various thermodynamic quantities and to reveal and 

characterize phase transitions.1 

The progress made in the physics of critical phenomena 

in the two decades since Wilson2 formulated the 

renormalization group (HG) approach to phase transitions in 

1971, has created a need for data giving the temperature 

dependence of the heat capacity, C(T), at temperatures 

extremely close to the critical value, Tc. The required heat 

capacity resolution can be of the order of a few mK, in 

order to give reduced temperatures, t=(T-Tc)/Tc, less than 

103. Such high-resolution heat capacity data can be used 

for testing and further development of existing RG models of 

phase transitions. 

Despite impressive theoretical advances there is still 

a quite limited amount of experimental, high-resolution data 

available on the critical behaviour of heat capacity for 

various systems (this is particularly true for phase 

transitions in magnetic systems).3 This situation appears to 

reflect experimental difficulties involved in high-

resolution measurements. The available data on critical 

1 



2 

behaviour of heat capacity and other physical quantities 

often are not suitable for RG analysis and testing of RG 

predictions because they lack sufficient resolution around 

rn 4.5 

The commonly used and well-known calorimetric methods 

are not very suited to high-resolution measurements. 

Adiabatic calorimetry, based on the heat-pulse method, is 

considered to be one of the most accurate calorimetric 

methods6, but its precision drops dramatically for very 

small temperature increments. This method, however, has been 

used successfully for high-resolution heat capacity studies 

at very low temperatures, when heat loss by radiation 

becomes negligible.7 The use of digital techniques of 

measurement also has led to the improvement of the precision 

of the heat-pulse method.8 

Differential scanning calorimetry can be quite 

sensitive but it also lacks resolution and because of 

relatively high scanning rates there are problems with 

sample equilibrium when the heat capacity changes 

rapidly.910 

There have been several ingenious methods of high-

resolution heat capacity measurement devised to remedy this 

situation. For example, in a continuous warming 

calorimeter, a thermally isolated sample is heated at a 

constant power and the heat capacity is derived from the 

rate of temperature increase.'1 The principal source of 



3 

error in this method is the uncertainty involved in 

determination of the temperature drift rate, which can be of 

the order of the actual drift rate for very slow temperature 

drift rates. 

Another method appropriate for high-resolution 

measurements is the relaxation time method.12 In this 

method, the sample temperature is increased by AT with 

respect to the heat sink temperature, and then the heat is 

turned off and the temperature relaxation curve is recorded. 

The heat capacity is determined from the temperature 

relaxation time constant and from the experimentally 

determined heat conduction between the sample and the 

surroundings. This method was used in this work to 

calibrate the measurements made in the AC mode and will be 

described in more detail in later sections. 

In 1968 Sullivan and Seidel13 introduced a new method 

of measuring heat capacity which has subsequently been 

called "AC calorimetry". A number oi publications have 

appeared since that time using this method in the study of 

phase transitions in solids1415, liquid crystals and 

fluids1S16 and biological materials.17 AC calorimetry 

offers very high (mK) resolution coupled with high 

sensitivity. This arises from the fact that this method 

measures amplitudes of periodic, millidegree temperature 

waves propagated through the sample. The changes in the 

temperature wave amplitude, which are caused by heat 
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capacity variations with temperature, can be very accurately 

measured with a lock-in amplifier. Advances of materials 

science and electronics have allowed the use of AC 

calorimetry in measurements on extremely small samples 

(m«25jug)18 and in noisy environments.19 

In this thesis the design and the construction of an AC 

calorimeter for the study of phase transitions in solids is 

reported. This calorimeter also can be operated in the 

relaxation mode giving absolute values of heat capacity. In 

the following sections the theories of AC calorimetry and 

relaxation time calorimetry are described. The design of 

the electronics, which is crucial for the resolution of the 

calorimeter and which also allows one to run the calorimeter 

in the relaxation time mode, is described in detail. The 

designs of the cryostat and the sample assembly also are 

described in detail. Emphasis is put on the design of the 

sample heater and on the choice of the temperature probe, 

which allowed high-resolution heat capacity measurements 

while minimizing the heat capacity contribution of the 

addenda. 

The physics of critical phenomena is reviewed in this 

thesis. The RG results for the systems whose critical 

behaviour is relevant to the critical behaviour of Gd is 

discussed. The discussion is concerned with ferromagnets 

with dipolar interactions and with phase transitions in 

disordered systems, including the phase transition in a 
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random dipolar Ising system. 

The procedures employed to analyze experimental heat 

capacity data in terms of the RG theory are described. 

The effect of an external magnetic field and a 

demagnetizing field on the heat capacity of a ferromagnet is 

discussed and mean field calculations of the contributions 

of demagnetization effects to the heat capacity of Gd are 

presented. 

The literature results of experimental and theoretical 

studies of the critical behaviour of Gd are described and 

discussed. 

The calorimeter presented here was used for high-

resolution heat capacity measurements on several single 

crystals of gadolinium (Gd) in the vicinity of the 

ferromagnetic phase transition. These measurements tested 

the performance of the calorimeter. The results obtained 

agreed well with the literature data giving, however, better 

resolution of the heat capacity in the critical region. 

The high-resoluticn heat capacity data around Tc were 

used to study the critical behaviour of Gd. The dependence 

of the heat capacity curve in the vicinity of Tc on sample 

preparation procedure, including sample annealing also was 

investigated. The results of this study are discussed and 

compared with results of other studies of the critical 

behaviour of Gd. 



Chapter 2. THEORY OF AC CALORIMETRY AND RELAXATION TIME 

CALORIMETRY 

2.1 Alternating current (AC) calorimetry 

The theory of AC calorimetry has been discussed 

extensively in a number of publications13,20,21 and 

theses22,23. Therefore only a brief review of the theory 

following the analyses given elsewhere20,22,23 and pertinent to 

the geometry of the apparatus used in this work will be 

given here. 

Consider the simplified model of an AC experiment shown 

in Fig. 1. The sample is a thin slice of material of 

uniform thickness, d. This sample, which has a resistance 

heater attached to one face and a temperature sensor on the 

other face, is loosely coupled thermally tc the reservoir at 

temperature T0 via an exchange gas and connection leads. 

The thermal conductance of this thermal link is K and the 

heat capacity of the sample assembly is C. If the sample 

has infinite thermal conductivity and the thermal link has 

zero heat capacity, then the difference in temperature of 

the sample and the reservoir is given by Newton's law of 

cooling, 

CAf(t)-P(t)-A-AT(t) , (2.1) 

6 



d 

Heater 

Helium gas i 

Sample 

Thermistor Reservoir 

•It l i 

Fig. l.l Idealized one-dimensional heat flow problem. 
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where AT(t) is the temperature difference between the sample 

and the reservoir and P(t) is the heater power. 

For a phase-sensitive detection at the second harmonic 

the oscillatory power used is P(t) = P0 cos
2 ut and the 

steady state solution to Eq.(2.1) is 

£T m _£o.+_£o 1 cos (2fa)t-(|>) 
2K 4o>C l t 1 sin<|> ' (2 .2 ) 

(2WT)2 

where T=C/K is the external time constant and 0 is the phase 

shift (tan0 = 2OT) . If (UT) 2 >>l the solution can be 

written in the form: 

P P 
AT « _i +—Lcos(2wt-0)sATDC+ATv<ccos(2«t-0) , (2.3) 

2K 4OJC 

where ATDC is the constant temperature difference between 

the sample and the heat sink and ATAC is the amplitude of 

the AC temperature oscillations (the phase shift is around 

7r/2) . A lock-in amplifier detects the second harmonic of 

the temperature oscillation which is inversely proportional 

to C. Detection at the second harmonic is useful because of 

a built-in advantage of discrimination against leakage from 

the heater voltage. 

In a real system two time constants serve to 

characterize the thermal dynamics of the system.22,23 One 

time constant, T,, characterizes the thermal coupling 

between the sample and its surroundings. The other time 
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constant, T2, characterizes the thermal relaxation within 

the sample and is determined by the thermal diffusivity, D, 

and thickness of the sample, d. 

The effect of these time constants on the AC 

temperature oscillations can be investigated by solving the 

one-dimensional heat flow problem for the model situation 

described in Fig.l. For this purpose the sample is assumed 

to have thermal conductivity KS, density ps, and heat 

capacity per unit mass cs. The sample is surrounded by gas 

of thermal conductivity KS , density pg, and heat capacity 

per unit mass cg and the reservoir walls are at distances 1, 

and 12 from the sample, and are kept at temperature T0. The 

heat flux per unit area is given by P(t)=P0 + P,e
,ul producing 

a one-dimensional heat flow along z-axis. One has to solve 

the heat conduction equation24: 

M't.f't) -D yr(»*t) , (2.4) 
at ' fa* 

where D.̂ /p.c, is the thermal diffusivity of the gas (i=g) 

or of the sample (i=s). The boundary conditions are that 

the heat flux and the temperature are continuous on the 

interfaces and that at the reservoir walls 

T(l,+d,t)=T(-l2,t)=T0. At the heater side of the sample the 

boundary conditions are: 

T(0,C) |0. - T(0, t) |0. (2.5) 
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-K 
dT 

*dt 
dT 

Q-
+ P • '^St 0' 

and those on the opposite side of the sample are: 

T(d. t) |d. - T(d, t) \d-

(2.6) 

(2.7) 

-K 
dT 
at 

-K 
dT 

d' 
(2.8) 

The steady-state time-dependent solution to this problem 

inside the sample is of the form24: 

T{z,t) - r0+Aroc(z)+Ar-4C(2)e- , 

where ATDC(z) can be written in the form: 

(2.9) 

ATDC - as+bsZ > 

and ATAC(z) is of the form: 

(2.10) 

AT,C(Z) - AfiV+Bfi-* , (2.11) 

where qs
2=io>/Ds and D3 is the thermal diffusivity of the 

sample. Next the boundary conditions can be written 

explicitly and solved for the coefficients of the ATDC and 

ATAC parts of the solution. After algebraic manipulations 

one obtains for the DC part of the solution: 

ATDC(z) - - % 
.z+ 

P012 dK +«,!, 

dKg + Ks(l^l2) Kg dK g+K ^l^lj) 
(2.12) 

If the thermal conductance of gas between the sample and the 

reservoir is much smaller than that of the sample, Eq. 

(2.12) for z=0 reduces to: 
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ATDC(0) ft ° , 
"eg 

(2.13) 

where Ksf^i/Ka is t n e effective thermal conductance of the 

gas per unit area and leR=l,l2/ (I1+I2) • 1" this case 

ATDC(d)«ATDC(0), i.e., the sample has a single DC 

temperature. 

The coefficients of Eq. (2.11) are: 

(2.14) 

and 

(2.15) 

where 

- [t££l 
1/2 

coth(g4i2) , (2.16) 

and 

72 - > W i 

/w. 

I « 

coth(g,l ,) (2.17) 

The AC temperature a t the back face of the sample i s : 

T, c(d)- -i-(sinh(g Jd)tl+(T ln2)coth(g sd)+7i72])"1- < 2 - "> K H$ 

In order to extract useful information from Eq. (2.18) one 

can define an external relaxation time, T,, by: 
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1 
1WT, 

s(7,+72)coth(gJd) . (2.19) 

The external relaxation time, r,, takes on a simple meaning 

if l,/lg«l and l2/lg«l, and also d/l,«l where lg=(Dg/u)"
2 and 

ls=(Ds/u)"
2 are the characteristic thermal diffusion lengths 

of the gas and the sample, respectively. In practice these 

conditions are satisfied by regulating the amount of thermal 

link between the sample and the surroundings, thinning the 

sample and adjusting the operating frequency of the AC power 

input. Making the approximations: coth(q,d) « l/(q„d), 

coth(qgl,) * l/(qgl,), and coth(qgl2) « l/qgl2, one obtains: 

o c dl * C 
* li_i_l£ - ZL , (2.20) 

Kg Ktf 

where Keff=Kg(S/leff) is the effective thermal conductance of 

the gas, S is the sample surface area, cs is the sample heat 

capacity per unit mass and C, is the total sample heat 

capacity. Thus T, can be identified with the relaxation 

time from Eq. (2.2). 

Eq. (2.18) can be simplified if one assumes that 

WT,»1. In this case UT,>>1 then 7,72<<7i+72 and the 7,72 term 

can be neglected in Eq. (2.18). 

At this point it is also convenient to introduce the 

internal relaxation time for the sample, r2: 

= £ - El 
D. K. ' 

r2 = 4- - ̂  , (2.21) 
s 
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where K„ is the thermal conductance of the sample. 

Under the conditions that (WT,)2 » 1 , and (OT 2)
2 « 1 and 

keeping two terms of the expansion of sinh(q,d) in the 

Taylor series one obtains from Eg. (2.18): 

rAC(d) * i(t>p sCsd [ 1WT, 6 

1-1 
10)T 2 + 

6T, 
( 2 . 2 2 ) 

The amplitude of the temperature oscillations on the heater 

face of the sample is thus: 

r,c(<*) up scsd 
1 + _J__ + -±.(CT 2)

2+-!J_ 
(WT.)2 36* 2> 36T,2 

(2.23) 

Eq. (2.23) can be written in more transparent form by 

expanding the square root in the Taylor series and keeping 

terms to the order of (T12)
2: 

TAAd) I -lAC <*Pscsd 
1--

2(wx1)
: 

(<OT2)
2 

72 
*\ 

72x 1/ 

(2.24) 

For a sufficiently thin sample the heating frequency can be 

chosen so that the correction terms in the bracket in Eq. 

(2.24) contribute less than 0.1% to ATAC. 

If the sample is not heated uniformly (for instance, if 

the resistance heater leaves bare strips of the sample 

surface along its edges) then one has to consider the 

lateral heat flow in the sample. For this purpose assume 

that a strip of the sample from x=0 to x=a in the direction 

of the x-axis is not heated. (The sample is assumed to be 
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infinite in the x-and y-directions with its surface 

perpendicular to the z-axis.) Then the amplituce of the AC 

oscillation at the back face in the heated part of the 

sample for x>a, T(x)AC, is
22: 

T(x) AC~ \TAC{d)\{l-sinh(a/la)exp(-x/la)) . <2'25) 

For typical experimental conditions the lateral 

dimensions of the sample are much larger than the thermal 

diffusion length and the ratio a/ls << 1, so the correction 

term for a temperature probe placed in the centre of the 

sample is very small (for samples described in this thesis 

it was of the order of 10"4) . The temperature probe senses 

the average AC temperature oscillations within the radius of 

the thermal diffusion length, the amplitude of which is 

determined by the local heating power and the heat capacity 

of the sample per unit of the sample surface area. Knowing 

the power density and the sample surface area one can 

calculate the total absolute heat capacity value from Eq. 

(2.3). However, because of the uncertainties involved in 

accurately determining the sample surface area and the 

heater surface area, and inhomogeneities in the heater 

coverage, this procedure can give only a rough estimate of 

the absolute heat capacity of the sample. 

A much better way to calibrate data from AC calorimetry 

is by using the relaxation time method, which is the subject 

of the next section. 
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2.2 Relaxation time method 

In the thermal relaxation method, the heat sink 

temperature is stabilized at some temperature T0. Current 

is then passed through the sample heater, dissipating power 

P and increasing the temperature of the thermometer-sample 

assembly to T0 + AT, where AT = P/K, and K is the thermal 

conductance between the sample and the heat sink. The 

current in the sample heater is then turned off, and the 

sample temperature, T, relaxes exponentially,25 

Tit) -r0+Are
<"7), (2.26) 

to T0 with the time constant 

t--|, (2.27) 

where C is the total (sample plus addenda) heat capacity. 

The above expression assumes that the thermal link K has 

zero heat capacity. Bachmann et al.25 showed that 

approximately 1/3 of the heat capacity of the thermal link 

should be included as addendum. 

This simple model gives good results in many cases, but 

if the thermal conductance of either the sample or the 

sample-substrate bond is comparable to that of the heat leak 

or if the heat capacity of the connection wires is 

appreciable, T(t) must be represented by a more complicated 
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sum of exponentials with different time constants.26 The 

cooling curves in that case are characterized by an 

abnormally high initial slope compared to the rest of the 

decay. For experimental purposes, if the ratio r2/r, of the 

time constants defined in the previous section is of the 

order of 10'2 or smaller then Eq. (2.26) is a reasonable 

approximation. 

Near a phase transition the simple exponential decay 

becomes more complicated and one has to consider the full 

equation, 

~f^T0'~~clfT ' < 2 , 2 8 ) 

from which Eq. (2.26) was derived, i.e., near transitions, 

not only must T be measured, but also its time derivative, 

T, must be known. This one of the principal sources of 

error in this method and the source of its basic limitation 

for studies of phase transitions. However, the relaxation 

time method can be used for accurate absolute heat capacity 

measurements (to ca. 2%) and if the total heat input to the 

sample can be known accurately it is a very convenient way 

to calibrate AC calorimetry data.27 



Chapter 3. REVIEW OF THE PHYSICS OF CRITICAL PHENOMENA 

3.1 Introduction 

Changes of phase - the boiling of water, the melting of 

iron - have long fascinated scientists. In many cases, by 

varying the temperature or other thermodynamic parameters, 

two distinct phases can be made more and more similar in 

their properties until, at a certain critical point, all 

differences vanish28. Beyond this point only one 

homogeneous equilibrium phase can exist. Familiar examples 

of such critical point are: the critical point which 

terminates the coexistence curve of a liquid and its vapour 

at a characteristic temperature, pressure and density; the 

critical point of phase separation in a binary fluid mixture 

(or a binary metallic alloy), which marks the temperature 

above which (or sometimes below which) the components mix 

homogeneously in all proportions; the Curie point or 

critical point of a ferromagnetic crystal at which the 

spontaneous magnetization, and hence the difference between 

two differently oriented magnetic domains, goes continuously 

to zero; the Neel point at which the alternating spin order 

of an antiferromagnet goes to zero; the critical point of a 

metallic superconductor below which the electrical 

resistance vanishes and a permanent current may flow. 

It was noticed long ago that near a critical point the 

17 
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behaviour of quite dissimilar systems exhibited many similar 

features. When Pierre Curie, in 1885, measured the magnetic 

equation of state of nickel, he was struck by the similarity 

between curves obtained by plotting magnetization as a 

function temperature, and density-temperature isobars of 

carbon dioxide near the critical point.29 Since that time, 

it has been found that the richness and variety of critical 

behaviour can be understood and classified from a common 

point of view. Books by H.E. Stanley30 and S.-K. Ma31 

contain a general review of physics of critical phenomena; 

the Domb-Green-Lebowitz series gives detailed reviews of the 

theoretical and experimental progress in that field.32 

The phase below the critical point is an ordered phase; 

it can be characterized by an order parameter that goes to 

zero at the critical point. In ferromagnets, the order 

parameter is the magnetization vector, M, and the magnetic 

susceptibility, x» (change in magnetization induced by a 

small applied field) is its response function which diverges 

at the critical point, indicating that the system has 

reached a limit of stability. When the response function 

diverges, large-scale fluctuations of the order parameter 

can occur at low cost in free energy. (In liquids, these 

manifest themselves in an anomalous scattering of light 

called "critical opalescence", which gives a fluid near its 

critical point typical milky appearance30) . A way of 

describing this divergence is by means of the correlation 
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function, G(r), which measures the extent to which local 

spin fluctuations a distance r apart are correlated. The 

correlation length, £, i.e. the range of G(r), diverges in 

the vicinity of the critical point, vhich means that large-

scale fluctuations extending over regions containing very 

many particles are present in the system. Because of those 

fluctuations the details of the particles' interactions are 

irrelevant and considerable similarity can be found in the 

critical behaviour of diverse systems. 

Critical phenomena can be classified into two 

categories, static and dynamic. Static phenomena concern 

equilibrium properties such as magnetization, susceptibility 

and specific heat. Dynamic phenomena concern time-dependent 

phenomena such as relaxation times, heat diffusion and spin 

wave propagaLion. At present, the static critical phenomena 

are better understood than dynamic critical phenomena. 
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3.2 Definition of static critical exponents 

A problem of central interest in physics of critical 

phenomena is the determination and explanation of the 

asymptotic laws describing the way in which various physical 

quantities (heat capacity, susceptibilities, etc.) diverge 

to infinity or converge to zero as the temperature or other 

variable approaches its critical value. Critical exponents 

are used to characterize the critical behaviour 

numerically.28 

The static critical exponents are conveniently 

discussed in the context of magnetic critical phenomena. 

The temperature dependence of the various magnetic 

quantities (such as magnetization) can be expressed by a 

series expansion about the critical temperature, Tc. For a 

quantity L(T) the expansion can be written as28,30: 

L(T)-L0|tHl+;Ta,|t|V (3.1) 
I 

for T>TC, where L0 and {a,} are constants, t=(T-T(.)/Tc and the 

same function with primed coefficients for T<TC. The 

critical exponent X, for that quantity is defined as 

t 

lim lnL_ (3.2) 
t -o ln|t| 
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so that sufficiently close to Tc, L ( T ) » L Q |t|x, t>0 and 

L(T)*L0'|t|
v, t<0. 

3.2.a Magnetization as a function of t: the exponent /? 

When the external magnetic field H vanishes, the 

magnetization M below Tc decreases with increasing T, 

and vanishes at Tc. Very close to Tc, the power 

law behaviour is a common feature31: 

M a |t|" O- 3) 

with j3 being the critical exponent associated with the 

magnetization. The observed value of /? for ferromagnets 

like Fe and Ni is around 0.37 and around 0.33 for 

anisotropic magnetic materials like MnFe2, Cr02 and 

fluids.5,28,33,3435 (For fluids the corresponding definition 

can be obtained by substitution of M by pL-pG, where pL is 

che density at the liquid side of the coexistence curve and 

p0 is the density at the gas side of the coexistence 

curve) .30 

3.2.b The magnetic susceptibility (order parameter 

susceptibility), \i for H = 0 as a function of t: the 

exponent 7 
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As T approaches Tc, x diverges and its divergence is 

characterized by the exponents 7' and 7: 

Y a t'y, T>T 
a t"* , T<TC. 

Data are usually consistent with 7' = 7 but the 

proportionality constants in the two cases are not the 

same.31 

Experimentally observed values of 7 are slightly larger 

than unity, e.g. 7 » 1.3 3 for ferromagnets like Fe and 

nickel and 7 « 1.23 for anisotropic magnetic materials 

such as CrBr3 and for fluids.
30,31,34,33 (For fluids 7 describes 

the divergence of the isothermal compressibility.30) 

3.2.c Critical isotherm (H as a function of M at T=TC) : the 

exponent S 

One observes, for very small magnetic fields31: 

H «M\ t-0. (3.5) 

The observed value of S falls in the range from 4 to 4.4.M 

(For fluids one replaces M with (pL-Pc) and H with (p-pc) 

where pL is the density at the liquid side of the 

coexistence curve and p0 is the density at the ga3 side of 

the coexistence curve and p and pc are the pressure and the 

critical pressure respectively.30) 
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3.2.d Heat capacity and the exponent a 

The heat capacity C at H = 0 is observed to have a 

singularity at Tc, characterized by exponents a' and a: 

CM - |(t-«-l), T>TC 

- * ((-t)-'-l), T<Tcl 
or 

where A and A' are different proportionality constants 

and a » 0.1 for uniaxial anisotropic magnets and for fluids, 

while a a 0 for the lambda transition in 4He, and a « -0.1 

for Ni, Fe and other isotropic magnets.30,31,3435 Note from Eq. 

(3.6) that a = 0 implies a logarithmic divergence as can be 

seen by taking the limit a -* 0 in this equation. It is 

usually observed that a'= a within experimental error. 

3.2.e. Microscopic correlations 

In addition to thermodynamic critical behaviour, the 

variations of microscopic correlations among magnetic 

moments with temperature are of particular interest in the 

critical region. These correlations are described by the 

spin-spin correlation function, G(r): 
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G(£)-<[s(r)-<s>]- [s(0)-<s>]> , (3.7) 

in which s(r) denotes a (localized) spin at site r. The 

angular brackets indicate statistical averaging over all 

possible spin configurations. The spin density function, 

a(x) is also used in place of s(r). The average <s> gives 

the magnetization, which is nonzero if T<TC. The thermal 

average in Eq. (3.7) is thus the correlation function of the 

deviation from the average spin, i.e, spin fluctuation. One 

also can introduce a Fourier transform, G(g), of the spin 

correlation function. There is an important identity, 

relating G(g) to the susceptibility x* 

Tx - G(g-O) . (3.8) 

Thus the susceptibility can be derived from neutron 

scattering experiments, which measure the correlation 

function.31 

At the critical point, the correlation function 

involves the exponent TJ: 

G(r) ocr-(d-2**\ t-0, tf-O, (3.9) 

where d is the lattice dimensionality and the exponent if, 

which is difficult to measure experimentally, is observed to 

lie in the range O.Ol-O.l.31,32 
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The correlation length, £, is a measure of the range 

over which spin fluctuations are correlated (the degree of 

correlation being given by the correlation function) or the 

average size of the region in which a sizeable fraction of 

spins point in one direction. The correlation length enters 

the expression for the correlation function for t -*• 0 (but 

t*0) : 

G(r) ar-'exp(-.E) . (3.10) 

The correlation length diverges at Tc and the divergence, 

asymptotically, can be described by a power law: 

5 « < - t r , T>Tr 

<xf" , T<TC , 

where v and v' are the associated exponents. The 

proportionality constants in the two cases generally are 

different. It is observed experimentally that v=v' and the 

value of v falls in the range from 0.6 to 0.7 for three 

dimensional magnets.34 
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3.3 Scaling theory, critical exponents equalities, critical 

point universality 

The first successful attempt to bring order into a 

variety of critical exponents and power laws was based on 

the static scaling hypothesis which asserts that the 

singular part of the free energy is a generalized 

homogeneous function of its two independent variables (t and 

H in the magnetic case) such that: 

Fsiag{\
pt,\"H) -\dFsing(t,H) , (3.12) 

where p and q are two critical exponents, d is the 

dimensionality and X is an arbitrary constant.30 

The alternative and original formulation of the scaling 

hypothesis was due to Widom36, Kadanoff37 and Griffiths38. 

In this formulation, which is often used in the literature, 

the homogeneity relation for the free energy, Fsin8(t,H) , is 

written as 

Fsing(t,H)-t^Fsing{t»*IH) , (3.13) 

where the exponents a,|8 and S are defined in the preceding 

section. 

The scaling form of the. magnetic equation of state is38 

H{M,T) -M|M|*-'h(t \M\-UI>) . (3.14) 

All critical exponents defined in the preceding section now 

may be expressed as combinations of p, q, and d. This can 
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be done by taking various partial derivatives of the free 

energy in the scaling form given in Eq. (3.12) in order to 

obtain corresponding thermodynamic quantities and then 

equate them to their power law counter-parts. In the next 

step, relations among various critical exponents are 

obtained.30 A list of scaling relations is shown in Table 

3.1. It should be noted that many scaling relations can be 

proven in the form of rigorous inequalities without making 

the scaling assumption.30 

The physical basis for the homogeneity property of the 

free energy was initially unknown. However, it became clear 

later that the homogeneity property follows from the role 

which the correlation length plays in critical phenomena.32 

In this context the scaling hypothesis asserts that the 

correlation length, £, is the longest and the only relevant 

length in explaining critical phenomena.31 Other lengths, 

such as the interatomic distances, are too short to play a 

role. In other words, physical quantities depend on t only 

through their dependence on the correlation length. Thus, 

the divergence of £ is responsible for the singular 

behaviour of physical quantities. 
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Table 3.1 Relations among the critical-point exponents 

predicted by the scaling hypothesis. 

(1) a + 20 + 7 = 2 

(2) 7 = (2 - rt)p 

(3) a = 2 - vd 

(4) 05 = & + 7 

(5) S = (d + 2 - r,)/(d - 2 + r,) 

(6) a' = a 

(7) 7' = 7 

Under a scale change, the correlation length changes and 

since the correlation length is proportional to |t|"' this 

change corresponds to a change in temperature. Therefore, 

near Tc the temperature dependence of a physical quantity 

can be deduced from the way it behaves under a scale change. 

One of the implications of the scaling hypothesis formulated 

in this way is the scaling form of the free energy (Eq. 

(3.12)). A simple example applying this idea follows. The 

free energy per unit volume Famg(£) becomes ŝ F,,̂ )̂ when the 

volume of the system "5 shrunk by a factor of s; d is the 

dimension. Therefore one has Fsing(£/s) = s
dF8ing(£). Since s 

is arbitrary, one sets s = £. Thus: 

*•-,(€> - s - r f ^ ( | ) - r x g ( l ) « | t | " i • (3.i5) 

By taking the second derivative with respect to temperature 
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of this scaled free energy scaling relation (3) from Table 

3.1 can be obtained. 

The important feature of critical phenomena highlighted 

by current theories and experiments is the concept of 

universality introduced by Kadanoff.37 According to the 

universality principle, the variety of systems that show 

critical behaviour can be divided into equivalence classes 

called universality classes. At present, the following 

factors are thought to distinguish the various universality 

classes: d, the spatial dimensionality of the system; n, the 

number of components of the order parameter; the symmetries 

of the Hamiltonian of the system; the range of the 

microscopic interactions responsible for the phase 

transition; the presence of disorder. These features of 

critical phenomena has been emphasized by the 

renormalization group theory described in subsequent 

sections. 
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3.4 Classical theories of critical behaviour 

In an attempt to understand critical behaviour, there 

have been many theoretical models proposed that have 

critical-point phase transitions.28,30 The earliest models, 

i.e. the van der Waals theory and the Weiss molecular-field 

theory, are mean field theories. The classical predictions 

of the van der Waals theory and the Weiss molecular field 

theory are derived by an approximate theoretical treatment 

in which the crucial assumption is that the fluctuating 

forces acting on a single element of the system, i.e. spin, 

may be replaced by an effectively constant average field due 

to the rest of the system. Those models have a critical 

point for which critical exponents are integers or simple 

fractions independent of dimension. The mean-field 

exponents differ, however, from those found in real systems 

with short-range interactions.28,30 

Alternatively, the classical predictions follow from 

the phenomenological equation of state derived under two 

assumptions: (1) that the relevant thermodynamic potentials 

may be expanded in Taylor series about the critical point in 

powers of some order parameter, and (2) the expansion 

coefficients may be expanded in powers of (T-Tc0) , where Tc0 

is the mean field critical temperature (the coefficients may 

vanish at Tc0 to yield, e.g., an infinite susceptibility).
28 

The order parameter is a thermodynamic variable selected so 



31 

that its equilibrium value is zero above Tc0 and one of 

several non-zero values related by symmetry below Tc0. These 

assumptions were first introduced and discussed by Landau39 

and led to a subsequent development of the Landau theory of 

phase transitions.30,40 Some of the concepts of the Landau 

theory are present in the modern theories of phase 

transitions and because of that this theory will be 

illustrated here, using the example of a ferromagnetic phase 

transition. The order parameter in this case is the 

magnetization M and the free energy after expanding in 

powers of M will take the form:30,28 

F(T,H,M) - F0(T,H) +F2(LT,H)M2+FA(T,H)Mi+. . . . (3.16) 

Coefficients of odd powers must vanish because the free 

energy is an even function of the magnetization. The 

equilibrium value is found by minimizing F(T,H,M) with 

respect to M. Assuming now that F4(T,H) is positive, and 

F2(T,H) = A(T-TC) with A>0 (these assumptions ensure a single 

minimum above Tc and a double minimum below Tc) one obtains: 

%• hA(T -T) 1 , T<TC . (3.17) 

This relation gives the classical /3 = 1/2 result. The other 

classical values of critical exponents which can be obtained 

from the Landau theory are: 7=7'=!, £ = 3 and the heat 

capacity has a discontinuity at Tc corresponding to a=a'=0. 
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These values of the critical exponents do not agree with 

experimental observations (Sec. 3.2). The reason for the 

quantitative failure of mean-field theories is not hard to 

identify. In all these theories the state of any selected 

particle (spin) is determined by the average properties of 

the system as whole. In effect all spins in the systems 

contribute equally to the force exerted on each spin, which 

is equivalent to assuming that the interaction forces have 

infinite range. This is a serious approximation; the 

nearest neighbours are much more important than any other 

spins. The same objection can be expressed another way: the 

main approximation made in the classical theories is that 

they do not account for the local fluctuations and 

correlations. One may estimate within the mean field theory 

how important the fluctuations are by computing the 

relationship between the deviation of the spontaneous 

magnetization from its average at one point in the material, 

and similar deviations in the neighbouring region.34 This 

deviation can be described in terms of the correlation 

function given by Eq. (3.10).34 Thus the fluctuations turn 

out to be very large close to the critical point. This 

implies that the mean field theories should be accurate far 

enough from the critical point (outside some critical 

region). Fisher28 estimated the size of this critical region 

by: 
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where a is the radius of the sphere occupied by the 

interacting particle, b is the interaction range and d is 

the dimensionality. In the limit a/b -» 0 the critical 

region shrinks to zero, that is the mean-field theory 

becomes exact. Because the interaction potential also has 

to be scaled so that its mean-field value remains constant 

it follows that the mean-field theory should be valid for an 

infinitely weak and infinitely long-range potential. 

Eq.(3.15) also implies that the mean field predictions 

should become correct as d-*»o. Ginzburg41 proposed a 

criterion in which the Landau theory is used to predict its 

own range of validity. This criterion estimates the size 

(on the reduced temperature scale) of the critical region 

where the Landau theory fails, by comparing the size of the 

discontinuity in the heat capacity predicted by the Landau 

theory to the size of the divergent term as given by the 

power law for heat capacity. For instance, the width of the 

critical region for the magnetic transition for iron from 

the Ginzburg criterion is |t|<102. The Ginzburg criterion 

also indicates that as the range of interaction forces 

increases the size of the critical region decreases. 

In the early 1920's Wilhelm Lenz42 and Ernest Ising43 

constructed the first statistical model for a lattice system 
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with short-range forces. The Ising system, as that model is 

now called, is an array of up and down spins. The Ising, XY 

and Heisenberg models represent lattice systems with, 

respectively, one-, two-, and three-component magnetic 

spins. None of the models predicts a phase transition in 

one dimension but all do in three dimensions. For the two-

dimensional Ising system, which exhibits a phase transition 

in zero field, the critical exponents are known from 

Onsager's44 and Yang's45 exact calculation. The correct 

values are44,45: j8 = 1/8, 7 = 7/4 and v = 1. The heat 

capacity has a logarithmic singularity, C <xln|t|. lor the 

three-dimensional Ising and other models exact solutions are 

not available and approximate solutions have been obtained 

by a variety of methods, e.g. by series expansion (the 

Boltzmann factor exp(-H/kBT) is expanded in powers of 1/T 

and the trace is taken term by term28) and by renormalization 

group theory methods such as described in the next section. 
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3.5 Renormalization group theory 

An approach which can account for large length scale 

fluctuations is the renormalization group (RG) theory.46,47 

This approach to understanding phase transitions was 

developed by Kenneth Wilson and can be viewed as an 

extension and implementation of Kadanoff's ideas of scale 

transformation and of the block of spins Hamiltonian.34 The 

renormalization group theory studies the transformation 

under repeated change of scale of H/kBT, where H is the 

Hamiltonian of the system, kB is the Boltzmann constant and 

T is the temperature. This transformation has three basic 

steps which can best be illustrated with the Ising model.40,31 

Consider a spin system in which only nearest-neighbours 

interact and the coupling strength, J, is assumed to be 

proportional to l/T. The first idea in the RG theory is to 

remove from the problem a finite fraction of the degrees of 

freedom by averaging over them. This can be done by 

dividing the lattice into blocks of sd spins each, where d 

is the dimensionality. Next all the spins in the block are 

averaged in some way and the entire block is replaced by a 

single new spi;,n The result of these two operations is to 

create a new lattice whose fundamental spacing is s times as 

large as that of the old lattice. In the third step the 

original scale is restored by reducing all dimensions by s. 

The calculation ends by expressing the coupling strength, 
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J', between adjacent spins of the new lattice as a function 

of J in the hope that if that step is possible, a recursion 

relation, J' = RS(J) , can be developed. The renormalization 

group calculation then proceeds by starting all over again, 

and iterating with the new system of block spins as the 

starting lattice. Each new system created is distinguished 

by a different coupling Jj. Its behaviour is that of the 

original lattice but at a different temperature. The 

iterations may drive the system towards or away from the 

critical temperature. The transformation of the system from 

one state to the next can be represented by motion of J in 

its parameter space under application of the RG 

transformation Ji+, = Rs(Jj) . When the system reaches the 

point when J* = RS(J*), i.e. the RG transformation leaves all 

essential properties of the lattice unchanged, the system is 

said to be at a fixed point. 

There is an analogy between a fixed point and a 

critical point. At the critical point the correlation 

length is infinite so it does not change under the scale 

change, i.e. |* = R5($") . Therefore one of the fixed points 

in the parameter space of J (there can be, in general, many 

fixed points) may correspond to the critical point of the 

system. The information about the critical exponents of the 

system can be obtained from the shape of the parameter 

surface in the vicinity of the critical point. The slope 

near the fixed point determines the rate at which properties 
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of the system change as the temperature changes; thus a 

connection can be drawn between the slope and the critical 

exponents which also describe the change of the system with 

temperature. 

Practical RG calculations have been performed for a 

number of model systems.3,48,49 The calculations start by 

defining a probability distribution P for the system and the 

RG transformation for that system which takes the 

probability distribution P to another probability 

distribution P'. 

This procedure will be demonstrated here for the Ising 

model in the Gaussian approximation in which spin 

fluctuations around the most probable value are treated as 

independent modes with Gaussian probability distribution. 

The Hamiltonian for the system is derived from the Landau-

Ginzburg-Wilson Hamiltonian (LGW)31: 

_JL - |ddx[^!(a(x))2+|(Va(x))
2
+|(a(x))

4] , (3.19) 

where (r0, c, u)=/i is the set of parameters describing the 

initial probability distribution and a(x) is the spin 

density function. The Gaussian case is obtained by setting 

u=0. 

A discrete set of integration variables is introduced 

by Fourier transforming a(x) 
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A e' — a(S) - Y. —T f f* ' (3.20) 

where Ld is the integration volume and A is the short 

wavelength cut-off. The partition function is 

Z - J] [daexp(-4X (r0+c*
2)|at|

2) . (3.21) 
* <A J * k 

The RG operations are as follows: (1) integrate over k in 

the shell A/s < k < A where s > 1 (this step is elementary 

only for u=0), giving 

A 

Z - e ^ J ] fda<exp(-4j; (r0+c/c
2) |a,|2) , (3.22) 

*<i J Z * 
s 

where the factor exp(-ALd) comes from the integration over 

the shell A/s < k < A and da< are the remaining integration 

variables; (2) rescale k's to restore the A cut-off (k/ = 

sk); (3) rescale a's by defining a new integration variable 

(<7<k/s = zsffk) • T n e last two operations restore the initial 

form of the Hamiltonian and allow formulation of the 

recursion relation for the RG transformation (R,(M) = M')J 

Z * n [daexp(-i£ (r0Z
2.£^S!)|aJ2) . (3.23) 

where n' = (r'0,C) = (z
2r0, (Z/s)2c). 

There exist two fixed points for this transformation. 
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If Z is set to one then after n iterations rn0 = r0 and 

c°=c/(s2n) -• 0, i.e. R C ( M * ) = M* where n* = (r 0,0,0). This 

case corresponds to very disordered situation (the 

correlation function is proportional to (l/r0)5(x) where 

£(x) is the delta function), i.e. infinite temperature. The 

other critical point is obtained by setting Z = s2. Then p . ' 

= (s2r0, c) and if r0 = 0 (this a logical choice since T = Tc 

at the critical point and r0 « (T-Tc) = 0 at Tc) the fixed 

point is p.* = (0,c,0). This fixed point is called a 

Gaussian fixed point. 

As was mentioned in the beginning of this section, 

critical properties, in particular the critical exponents, 

are related to the properties of Rs near the critical point. 

If p, is near p . * , one can write 

/x - /i* +6p, , (3.24) 

where 6p transforms under R5 giving Sp' (RS(<SM) = Six'). R9 

becomes a linear operator when 0((Sp)2) terms are dropped in 

calculating Sp' from Sp. This linearized Rs should, in 

principle, show qualitative features of the full RG 

transformation, assuming that the system is very close to 

the critical point and 0((«S/x)2) terms are very small. The 

analysis proceeds by expressing Rs as an matrix, R,L, and 

determining the Eigenvalues, Xi; and Eigenvectors, e;, of 

this matrix. Since R,R,. = RM, the Eigenvalues, X u are of the 

form: 
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X, - s* , (3.25) 

where y{ are constants. Also writing Sp as a linear 

combination of the e/s, one obtains: 

Sp - Y. tfi, , (3.26) 
i 

where the coefficients t{ are called the scaling fields. The 

linearized R, can now be written as follows: 

Sp' - £t(s*e, . (3.27) 

If, for the purpose of discussion, one assumes that only 

y,>0 and all other y,'s are negative then after many 

iterations Eq. (3.27) becomes: 

5/i' - t1s
>'e,+0(sy',s3,'/. . .) . (3.28) 

As s increases the correction term goes to zero. In this 

context t, is called a relevant variable (relevant scaling 

field) and the other t/s are irrelevant variables 

(irrelevant scaling fields) for the critical behaviour of 

the system31. (If some of Hamiltonian flow exponents y/s are 

equal to zero the corresponding t/s are called marginal 

variables.) At a temperature T which is very close to Tc 

the distance from p(l') to p* is given by t,, which should 

then be approximately proportional to T-Tc. A near critical 

form of the free energy density can now be written as 
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Flins(p(T))-s-dFsing(p*+sytlel+sy>t2e2+sy>t3eJ+...) . (3.29) 

Since s is arbitrarily large it may be chosen to be equal to 

t,"yl , if T-Tc is very small. Eq. (3.29) will then read 

^(M(r))-tl
<"y'(/i*+e1+

 2 e2+
 3 e,+ ...) . (3.30) 

t,' t, * 

Comparison with the phenomenological scaling relation F « 

|T-Tc|
2a yields the identification of the exponent a: 

2-a - d/yx . (3.31) 

Further analysis in the same spirit of the form of the free 

energy and of the form of the correlation function near the 

critical point yields other scaling relations and exponent 

identifications.31 

If the magnetic field, H, is non-zero it becomes 

another relevant variable (besides t,« |T-TC|). 

Conventionally, a fixed point is called unstable if there 

are relevant parameter(s) other than the reduced temperature 

and the magnetic field. If d<4 the Gaussian critical point 

is unstable with respect to the u parameter in the LGW 

Hamiltonian31,3. The critical exponents in the Gaussian 

approximation are: a=l/2, (8=1/2, 7=1, i.e. the same as in 

the mean field theory. This implies that the mean field 

theories describe the critical behaviour correctly provided 

that the system's dimensionality is larger than four. 

Three conclusions follow from the above analysis: (l) 
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the linearization of the RG recursion relations about the 

fixed point implies the scaling of the near-critical free 

energy, i.e. free energy homogeneity; (2) the values of the 

critical exponents are given by the Eigenvalues of the 

linearized RG; (3) because only some scaling fields are 

relevant for critical behaviour a universality class can be 

formed which contains all Hamiltonians with the same 

relevant scaling fields and different sets of irrelevant 

scaling fields. 

For d<3 a non-trivial fixed point, i.e. for u^O, can be 

found if the quartic term (u-term) is included in the 

calculations. In this case performing step (1) of the RG 

group calculations becomes very difficult and approximate 

calculational methods have to be employed in order to obtain 

the recursion relation.4731 For this purpose the LGW 

Hamiltonian can be treated with the use of the perturbation 

theory methods. The Hamiltonian is divided into two parts: 

HLGW = H0 + H,, where H0 is the Gaussian term and H, is the 

quartic term (see Eq. (3.17)). The H, is treated as a 

perturbation and the partition function is expanded in 

powers of H,: 

-it . e-
H°e-"< - e-"y -Lil!v . (3.32) 

m-0 "»! 

The calculations proceed by taking the Gaussian trace over 

consecutive powers of H,. Working to first order only the 
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Gaussian critical point is retained; a non-trivial fixed 

point is obtained when the second-order terms in the 

perturbation expansion are kept. The perturbation approach 

will be practical if u (or other parameters in K,) are small 

enough to justify keeping only a few terms in the 

perturbation expansion. Such a small parameter can be a 

parameter e-4-d where the dimension d is assumed to be a 

non-integer number, very close to but smaller than four. 

The e-expansion was carried out to high order in e using 

field theoretical methods.50 The perturbation expansion 

calculations also can be carried out using 1/n where n is 

the number of the spin components as a perturbation 

parameter.50 Table 3.2 presents estimates of two- and three-

dimensional exponents from the e-expansion at order e5 after 

Le Guillou and J. Zinn-Justin.51 
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Table 3.2 Estimates of two- and three-dimensional exponents 

by the e-expansion of the 5* order.51 (Exact 

results for d=2 are also included for 

comparison.) 

d=2 

n=l 

Onsager 

7 

1.73 

+ 0.06 

7/4 

V 

0.99 

± 0.04 

1 

0 

0.120 

± 0.015 

1/8 

*? 

0.26 

± 0.05 

1/4 

0) 

1.6 

± 0.2 

-

d=3 

n«l 

n=2 

n=3 

1.239 

+ 0.004 

1.315 

± 0.007 

1.390 

+ 0.010 

0.6305 

± 0.0025 

0.671 

± 0.005 

0.710 

± 0.007 

0.3265 

± 0.0025 

0.3485 

+ 0.0035 

0.368 

± 0.004 

0.037 

+ 0.003 

0.040 

± 0.003 

0.040 

± 0.003 

0.81 

± 0.04 

0.80 

± 0.04 

0.79 

±0.04 
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3.6 The approach to criticality: corrections to scaling and 

crossover behaviour 

In the asymptotic critical region the effects of all 

irrelevant scaling fields associated with a fixed point 

become negligible, leaving only a homogenous dependence of 

observables on t. The range of |t| in which this true 

asymptotic behaviour will be displayed reflects the extent 

to which the irrelevant (or marginal) parameters of the 

system differ from their fixed point values.3 One may allow 

for the non-asymptotic behaviour observed when t approaches 

the asymptotic regime by taking into account the residual 

temperature dependence associated with the leading 

irrelevant scaling fields, i.e. with the scaling fields t2 

and t3 in Eq. (3.30). The leading singularity of a physical 

observable L thus has a correction to scaling factor 

L((T)) - L0t>(l+L,t
A+...) , (3.33) 

where y is the leading critical exponent and A is the 

correction to scaling exponent which can be identified 

using Eq. (3.30) as: A = -y2/y, = w. The exponent u=-y2 is 

listed in Table 3.2. The amplitudes of L0 and L, are non-

universal and depend on the details of the physical system. 

(They are also different below and above the phase 

transition.) However, the ratios of those amplitudes, 

L//Li', where (+) and (-) are the values of the amplitudes 
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above and below Tc respectively, are universal and have been 

calculated for the basic thermodynamic functions for most of 

the universality classes.52,53 

The diversity of the critical region is fully displayed 

in the context of the crossover behaviour3,48. A system which 

exhibits a crossover behaviour is characterized by an 

effective Hamiltonian of the form 

H0 - H™ * gAH0 , (3.34) 

where U0
m is the primary part, representative of a 

universality class, and AH0 is a perturbation, the strength 

of which depends on g. The symmetry of AH0 implies its 

universality classis which is different from the 

universality class of Ho™. For instance, the primary 

Hamiltonian may be the Landau-Ginzburg-Wilson (LGW) 

Hamiltonian and the perturbation term may represent the 

effects of long-range dipolar interactions. The scaling 

hypothesis for this system can be written (using the 

susceptibility of the order parameter as an example) :48 

X(T,g) - Ct-^(X) , (3.35) 

where X(z) is the crossover scaling function and * is the 

crossover exponent (* = yg/yt, where yg is the flow exponent 

of the scaling field introduced by the perturbation g). If 

the ratio g/t* is small compared to unity, the observed 

critical behaviour will be that of the universality class of 
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the leading part of the total Hamiltonian. When this ratio 

grows larger, i.e. t becomes smaller, the observed behaviour 

crosses over to the universality class of the perturbation 

Hamiltonian. The crossover temperature, tc, is defined as 

t e-y*.
 (3'36) 

In general, there can be several relevant variables present 

in the Hamiltonian of a system, which then will exhibit a 

sequence of crossovers characterized by the crossover 

exponents *, = yjYi and the critical behaviour observed will 

change on approaching the critical point. 

The Hamiltonian of any real system is made up of many 

terms describing interactions of different symmetry, spatial 

form and magnitude. From the above discussion of crossover 

scaling it follows that it may be difficult experimentally 

to see truly asymptotic critical exponents. In practice, 

with the restricted range of experimentally accessible 

reduced temperature, one may instead observe effective, or 

apparent critical exponents taking some intermediate values 

which vary with the reduced temperature and the coupling 

parameter between the values of the relevant universal 

exponents. 

The renormalization group approach is a powerful method 

to study the effects of different types of magnetic 

interactions on critical behaviour.48 The important types of 

magnetic interactions are48: (1) isotropic, short-range n-
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vector exchange; (2) single-ion anisotropy with reduced 

symmetry index m<n, i.e. m of n spin components interact 

with a different coupling strength and also anisotropic 

short range exchange; (3) isotropic dipolar n=d; (4) 

anisotropic dipolar - symmetry index m<n; (5) cubic short 

range; (6) long-range isotropic exchange. 

The short-range interactions are always present in the 

Hamiltonian, thus the Gaussian fixed point which is unstable 

below four dimensions crosses over for d=3 to the isotropic 

Heisenberg fixed point (n=3) or the anisotropic, XY (n=2), 

or Ising (n=l) fixed points. The Heisenberg fixed point is 

unstable with respect to the single-ion anisotropy or the 

anisotropic short-range exchange with the corresponding 

crossover exponent *„ « 1.25 for d=3.54,55 

The addition of dipolar forces results in other 

crossovers and new critical points. Magnetic systems with 

dipolar interactions will be discussed in more detail in the 

next section. 
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3.7 Ferromagnets with dipolar interactions 

A magnetic dipole-dipole coupling between spins exists 

in all real magnetic materials and it is essential to 

include this interaction for their correct 

description.56"585960 In most magnets with high Curie 

temperatures ordering is caused by exchange coupling which 

strongly dominates the dipolar coupling. The effects of the 

dipolar forces become apparent only very close to Tc.
59 

Normal isotropic Heisenberg behaviour48 is retained for 

t>>(g/zB)
2/Tad=g where (qpB)2 measures the strength of the 

dipole-dipole interactions in terms of the Bohr magneton 

(juB) and the spectroscopic splitting factor (Lande factor) 

(g), J is the exchange energy, a is the lattice spacing, and 

g denotes the dimensionless coupling parameter.56 The 

crossover exponent from the isotropic short-range behaviour 

to the isotropic dipolar behaviour is *=7H«1.365 (d=3), 

where 7H is the susceptibility exponent in the Heisenberg 

d=n=3 model.5658 When tD«g"*, crossover occurs to a 

characteristic dipolar behaviour described by a new fixed 

point. This new isotropic dipolar fixed point has critical 

exponents which are numerically very close to their 

isotropic counterparts, i.e. aD = -0.135, 7D = 1.372, 

according to the second-order e expansion calculations of 

Bruce and Aharony.58 

For ferromagnets like Ni, EuO and EuS, with Tc * 627, 
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69.3 and 16.3 K, respectively, and the crossover 

temperatures were estimated by Fisher and Aharony59 to be tD 

* 3 X 10", 4 X 102 and 9 X 102 respectively. Thus the 

dipolar behaviour dominates only very close to Tc, in the 

temperature range which is difficult to access 

experimentally. Furthermore, the isotropic dipolar 

exponents also may be difficult to observe because of very 

small differences between them and the isotropic short-range 

exponents. Some experimental evidence for the existence of 

a crossover to the asymptotic dipolar behaviour in EuO was 

provided by Kornblit et al.61 Their range-of-fit analysis 

of the heat capacity of EuO suggested a crossover from 

short-range to dipolar critical behaviour for t<0.03. 

Dunlap and Gottlieb62, based on their zero-field electron-

spin resonance measurements of the relaxation time in EuO, 

showed that the asymptotic behaviour of EuO for t<0.02 is 

consistent with theoretical predictions for the dipolar 

critical behaviour. The crossover to an asymptotic dipolar 

regime was observed experimentally in EuS by Kotzler et 

al.63 

Aharony and Bruce64 derived the scaling equation of 

state and the scaling relations to the first order in e for 

isotropic ferromagnets with both isotropic exchange and 

dipolar interactions in a very small external magnetic field 

in the temperature region below Tc. Their derivation was 

restricted to a single magnetic domain. They remarked64 that 
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the complete solution of a multi-domain case would be very 

difficult as it would involve simultaneous consideration of 

the equations governing the macroscopic variation of 

magnetization inside the sample together with the spin 

fluctuations. Their results are thus strictly applicable 

only to needle-shaped samples with a magnetic field directed 

along the long axis of the sample. For other sample 

geometries demagnetization effects have to be considered. 

These effects will be discussed in the next chapter. 

The uniaxial dipolar ferromagnet is an interesting 

special case. The RG analysis predicts that mean-field 

theory describes the correct critical behaviour for 

dimensionalities d>d', where d*=4 is the upper critical 

dimenr. i.oi /or the systems with short-range interactions 

(Cac. 3.5) and d*=3 is the upper critical dimension for 

uniaxial dipolar ferromagnets or ferroelectrics57,65 and for 

tricritical behaviour.66 At d=d*, the solution to RG 

equations yields logarithmic corrections to the mean-field 

behaviour.576566 In fact, the leading logarithmic corrections 

at d=3 are the same as those of the short-range Ising model 

at d=4.66 There are differences if the higher-order 

correction terms are included67, but numerically those 

differences are very small. In particular the 

susceptibility of the uniaxial dipolar ferromagnet behaves 

a s ; 65.68 
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x -r±|t|-'|m|t||' ,
 (3'37) 

where r+ and r. are for T>Te and T<TC respectively and 

r+/r.=2. The heat capacity, CH=0, has a similar form
3,52: 

Cw.0-At|ln|t|p , <3'3B> 

with the amplitude ratio A+/A.=l/4 (A+ and A. are for T>Tt and 

T<TC respectively). 

The spontaneous magnetization, Ms, is also modified 

with a fractional power68: 

l^-BJ-t)"2 | ln|t | I1 ,t-0,tf-0. (3.39) 

The normalized amplitudes A+, B0, r+ form the universal 

ratio given by52 

RC-A,B0-
2T.-1 . (3.40) 

The logarithmic corrections at d*=3 provide a direct 

check of RG theory. The best chance of observing the 

logarithmic corrections exists in heat capacity measurements 

because they are not masked by a stronger power law 

singularity at Tc. The measurements of the heat capacity of 

the dipolar Ising ferromagnet LiTbF4 confirmed the predicted 

asymptotic behaviour.7 It was also found that the 

logarithmic corrections very well described the spontaneous 

magnetization and magnetic susceptibility of LiTbF4.
69,70 

Beauvillain et al .70 tested the value of the universal ratio 
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R,. for LiTbF4 and found it to be close to the theoretical 

value 1/6. Kotzler and Eiselt71 measured the magnetic 

susceptibility of GdCl3 above Tc and found that the data 

close to Tc were v/ell described by Eq. (3.37). However the 

power law fit also gave a good representation of the data in 

the same temperature range. Using the available data on the 

heat capacity and the magnetization of GdCl3 Kotzler and 

Eiselt71 found that the ratio Rc is very close to 1/6. 
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3.8 Critical phenomena in disordered systems 

Any real system has impurities and defects such as 

dislocations and vacancies, and other types of disorder. 

For example, in a ferromagnetic crystal, a fraction of sites 

may be occupied randomly by non-magnetic atoms. If this 

fraction is larger than certain threshold value the 

ferromagnetism is suppressed. 

Experiments also show that phase transitions display 

rounding in the proximity of Tc, even though model systems 

have singularities, such as cusps, at Tc, Fig. 3.1. The 

purer a sample is, i.e. the fewer impurities, defects and 

strains it has, the sharper the phase transition becomes. 

The observed smearing appears to be correlated with the 

amount of disorder in the sample.72 

Conventionally, impurities are classified according to 

the way they are distributed in the host system.7374 

Impurities which are in thermodynamic equilibrium with the 

host system within the relevant time scale, i.e. the 

relaxation time of impurity redistribution processes is 

short compared to the observation time, give rise to 

annealed disorder. In a magnetic system with nonmagnetic 

ions at random sites experiments will thus measure averages 

over all possible spin configurations and positions of the 

nonmagnetic ions, and the system behaves like a pure system 
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Fig. 3.1 The heat capacity of dipolar Ising ferromagnet 

LiTbF4 as a function of the reduced temperature 

(ref. 7). The transition exhibits rounding in the 

proximity of Tc. 
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with the random variables as an extra set of dynamic 

variables. 

In reality one mostly has to deal with quenched 

disorder in which the impurities are considered fixed, with 

the distribution prescribed by the mechanism by which they 

were introduced. The spins distribute themselves to fit the 

imposed distribution of impurity sites, which makes the 

analysis of quenched disorder much more complicated than the 

analysis of annealed disorder.317374 Within the quenched 

disorder one also distinguishes systems whose impurities are 

correlated or have clustered structure over long distances 

(inhomogeneous disorder) and systems with purely short-

range, or homogenous disorder.75 

McCoy and Wu76 carried out an early study of quenched 

disorder through exact analysis of the two-dimensional Ising 

model with rows of differing bonds. They found a smeared 

phase transition, which exhibited a continuous heat capacity 

throughout the transition region. 

A general argument due to Harris77, showed that one 

should expect a new type of critical behaviour for the 

random system, distinct from that of a pure one, if the heat 

capacity of the pure system diverges at the transition 

temperature. In terms of critical exponents, the Harris 

criterion can be expressed as 
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ap - 2-vd > 0 , (3.41) 

where op is the heat capacity critical exponent of the pure 

system. The Harris criterion has been confirmed by 

renormalization group calculations for quenched random 

systems.53,73 

The main difficulty in calculating thermodynamic 

properties of a quenched random system is that one has first 

to calculate the free energy of a given random configuration 

and then average over all possible configurations. If the 

random variables {/x,} have the probability distribution 

P({Mi})» then the average free energy is:73 

FAV - -kfl£PlH,)lnZ(n,) , (3.42) 

where Z is the partition function. Since the average over 

the logarithm of the partition function would be very 

difficult to calculate one can employ a replica procedure 

based on the identity: 

InZ - lim Illl . (3.43) 
n-*0 n 

The averaging over InZ is now replaced by averaging over Zn, 

which is written in terms of n replicas of the original 

Hamiltonian. The average free energy of the original system 

is obtained in the n-*0 limit of the replica Hamiltonian.74 

The presence of disorder introduces a new parameter into the 

replica Hamiltonian describing a coupling among n replicas. 
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The scaling fields which describe the critical properties of 

the system now include the scaling field of the new 

parameter which may turn out to be a relevant scaling field 

and lead to a new fixed point.55,73 This new parameter is the 

root mean square deviation of the local fluctuations in the 

critical temperature. 

The results obtained using the replica procedure show 

that the pure fixed point is stable only when the heat 

capacity exponent of the pure system, aP, is negative7578, 

i.e. a small amount of disorder does not alter the critical 

behaviour. 

When cip is positive the pure fixed point is unstable 

but a new random fixed point becomes stable instead, and the 

transition remains sharp and second-order. The exponents 

associated with the new fixed point differ from those of the 

pure system. In particular the new a is small and negative. 

At d=3, ap is negative only in the Ising case. For the 

Ising case, one thus has a crossover to a new random fixed 

point74 with a = -(6e/53)"2 + 0(e). 

The heat capacity of the pure dipolar Ising model at 

d=3 diverges when t->0 although it is not a simple power law 

(see Sec. 3.6). Following the general argument by Harris77 a 

new type of critical behaviour should be expected for a 

random dipolar Ising system. Aharony79 analyzed the random 

Ising model with weak, homogeneous disorder. He found a new 

random fixed point for this model with short range 
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interactions at d=4 and with dipolar interactions;-, at d=3. 

In both cases the leading singularity of the heat capacity 

was of the form: 

C oe -1 int 11/2el-2(°lto")Wj , T>TC (3.44) 

where D is a universal constant, equal to 6/53«0.11321 in 

the short-range case and to 9/(811n(4/3)+53)«0.11795 in the 

dipolar case. The numerical difference between the two 

forms is very small and for practical purposes the 

calculations for the short-range Ising model with d=4 are 

sufficient for obtaining very good estimates of the 

behaviour of the dipolar Ising system with d=3. A similar 

calculation was also reported by Schuster.80 

Shalaev81 extended the result of Aharony79 and suggested 

that the singular part of the heat capacity is: 

C ce - j 1/it | "2*2Wei-2(D|fa/1)«] f T>Te f (3.45) 

where w=(580.5+378f(3) )/(532)«0.368 and f(3)=1.202 is the 

Riemann zeta function. The exponent u also enters the 

expression Shalaev obtained for the susceptibility. Geldart 

and De'Bell82 showed that this identification was not 

correct and the correct exponent in Eq. (3.45) is l/2+2u,, 

with o),»0.373. 

The singularity given by Eq. (3.45) may be very 

difficult to see in practice, due to the crossover effects. 

First, there will be a crossover region from non-random to 

random behaviour which can be very wide owing to the weak 
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divergence of the non-random heat capacity.83 Another 

relevant crossover is the crossover between the asymptotic 

critical region and the mean field region. 

Aharony79 suggested that a dipolar Ising system such as 

LiTbF4 with controlled impurities of nonmagnetic ions might 

be a good candidate for experimental studies of the random 

critical point. 

The RG calculations carried out thus far indicate that 

the phase transition in a broad class of quenched disordered 

systems is sharp and second-order. This result does not 

account for the rounding which is observed in so many 

experiments in critical phenomena. 

One explanation is that even high quality crystals 

still have a certain amount of inhomogenous disorder such as 

macroscopic gradients of impurities and macroscopic strains 

and this inhomogenous disorder inhibits the growth of the 

correlation length and gives rise to rounding. If the 

crystal's imperfections limit the growth of the correlation 

length this may result in breaking up the crystal into an 

array of microcrystals with slightly different ordering 

temperatures. In this case the rounding in the heat 

capacity curve may be represented by a convolution of the 

distribution function of the critical temperature and the 

asymptotic heat capacity.8414 

It is unclear how to explicitly detect rounding of the 

transition using the RG methods. Weinrib and Halperin85 
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considered a model system with long-range-correlated 

quenched disorder with a correlation function for the 

spatially-variable transition temperature obeying a power 

law (-x"* for large separations x, where c is a parameter) . 

They found a new long-range random fixed point in addition 

to the short-range random fixed point. They also found a 

region in the parameter plane (e=4-d,<S=4-c) in which the 

long-range random fixed point becomes unstable without any 

other fixed point becoming stable. Weinrib and Halperin85 

suggested that this runaway region might be a crossover to a 

smeared transition (the parameter describing coupling among 

replicas flows to infinity, indicating a wide range of 

possible local transition temperatures) . However, Aharony74 

pointed out that there are several possible explanations for 

such a runaway, i.e. it may indicate that the transition is 

first-order as it is for some model systems without stable 

fixed points. 

It is also not clear that all the rounding can be 

accounted for only on the basis of inhomogeneous disorder. 

Kallback86 analyzed literature data on the heat capacity and 

resistivity of nickel around the Curie point and suggested 

that part of the observed rounding can be well described in 

terms of the critical slowing down (increasingly slow 

relaxation towards new equilibrium values of resistance and 

heat capacity as Tc is approached) . Kallback
86 estimated 

that the relaxation time for Ni was of the order of few 
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hours at a few tens of mK from T„ "C 

,T¥ 
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3.9 Analysis of the critical behaviour of heat capacity 

An analysis of the heat capacity near Tc can provide 

information about the critical exponents below and above a 

phase transition (a' and a respectively) and the magnitude 

of the leading singularity below and above Tc (A' and A 

respectively). The exponent a=a' has been calculated for a 

number of systems (Sec. 3.2) and the universal ratio A/A' is 

equal to 0.524, 1.029 and 1.521 for n=l,2 and 3 

respectively, for systems with short range interactions, by 

the e-expansion.53 The experimental values of the critical 

exponents and the A/A' ratio provide checks for various 

scaling relations and information about the universality 

class of a given system. 

A number of analytical expressions have been used in 

the literature to represent the critical heat capacity. 

They range from simple power law functions to more 

complicated fitting functions with several singular and 

regular terms. A general fitting function for the critical 

heat capacity for the systems with short range interactions 

can be written:878861 

Cp - -\t\-a(l+D\t\<) +B+Et , (3.46) 

for T>TC, and the same function vith primed coefficients for 

T<TC. The constant B contains a contribution associated 

with the phase transition and it may not have the same value 
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above and below Tc. The major contribution to B is from the 

lattice degrees of freedom for which the temperature 

dependence is taken into account by including the term Et 

into the fit. For D=D'=0 Eq.(3.46) reduces to a pure power 

law representation with regular background. The confluent 

singular term D|t|* represents the correction to the 

asymptotic scaling term (Sec. 3.6, Eq. (3.33)). The value 

of D is not given by the theory. However the ratio D/D' is 

universal and is estimated to be 0.96, 1.6 and 1.4 for n=l, 

2 and 3, respectively, by field theoretical methods and 1.17 

for n=2 by the e-expansion.53 The value of the exponent x is 

around 0.5 in 3d for short-range interactions (Table 3.2 and 

Eq. (3.33)). Equation (3.46) can be extended to account 

for the possibility of the logarithmic singularity at T̂ :*8 

Cp - i(|t|--l) (l+D|t|*)+B+£t , (3.47) 

for T>TC, with the same function with primed coefficients 

for T<TC. (The logarithmic singularity is obtained by taking 

the limit a-*0.) 

It is truly nontrivial to extract useful information 

and meaningful parameters from a fit of experimental data to 

such complicated functions as Eq. (3.46) and Eq. (3.47)89. 

Without any constraints each equation contains 14 adjustable 

parameters, and convergence of iterative nonlinear least-

squares fit may be very difficult to obtain. In many cases 

the statistical errors may be so large that the fitted 
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values of parameters will not provide useful information; 

also the improper choice of the initial values of the 

parameters may lead to spurious results.90 

In this situation one proceeds by imposing constraints 

on some of the fitted parameters (some of the constraints 

may be imposed or suggested by the theory) and by inquiring 

if imposition of these constraints leads to reasonable 

values for adjusted parameters and acceptable statistical 

errors. In subsequent steps the effect of relaxing some of 

the constraints on the quality of the fit can be 

investigated.88 

An analysis may start by initially assuming that 

D=D'=0, i.e., that singular higher-order corrections to the 

leading singularity are negligible. Another reasonable 

constraint is that TC=TC'. One also may require that E=E' so 

that the term Et will indeed be regular at Tc and B=B', i.e, 

there is no discontinuity in the heat capacity at Tc.
89 The 

data can then be fitted with the other parameters varying 

freely in order to test if a=a' within statistical error. 

The fit can be repeated for different temperature ranges. 

In the next stage a confluent singular term can be 

included in the analysis by letting D and D' be different 

from zero and assuming that x=x' (one also assumes initially 

that x=x'=0.5 in 3d). 

A dipolar uniaxial ferromagnet is a special case as its 

heat capacity near the Curie point is described by a 
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fractional power of ln|t| (Sec. 3.6). Ahlers et al.7 fitted 

the critical heat capacity of the dipolar Ising ferromagnet 

LiTbF4 (See Fig. 3.1) with the functions 

C - A[ (l+bln-pi-f-ll+B , T>TC (3.48) 

and 

C - -^[(l+b'ln-jfl-f-2]+B' , T<TC , (3.49) 

with the constraints a=a', b=b', z=z', and B=B' in the 

temperature range from t=10'3 to t=102. They found 

A/A'=0.244+0.009 and z=z'=0.336+0.024, in very good 

agreement with the theoretical values A/A'=l/4 and 

z«z'=l/3.65 



Chapter 4. HEAT CAPACITY OF MAGNETIC SYSTEMS WITH DIPOLAR 

INTERACTIONS 

4.1 Thermodynamic relations for the heat capacity of a 

magnetic system in an external magnetic field 

The free energy, F(T,V,Hex), of a magnetic sample in an 

external magnetic field, Hex, can be expressed as
30 

F(T,V,Hex) -U-TS t (4.1) 

where U is the internal energy, T is the temperature, V is 

the sample volume and S is the entropy. The dependence of 

the free energy on the magnetic field follows from the first 

law of thermodynamics91: 

dU- TdS-MdHex-pdV , (4.2) 

where M is the magnetization and p is the pressure. The 

differential expression for the free energy is: 

dF--SdT-MdHex-pdV . (4.3) 

The heat capacity at constant external field and 

constant volume, CVH can now be defined as
30 

C™«" r(-0) • (4'4) 

For an isotropic material, the isochoric heat capacity, Cv, 

67 
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is related to the isobar ic heat capacity, Cp, as follows
92: 

Cp-Cv-Vav
2T/KT , (4.5) 

where av is the volume thermal expansion coefficient and KT 

is the isothermal compressibility. For an anisotropic 

crystal the work per unit volume is determined from the more 

general expression 

SW"Y.aHd€v ' (4-6) 
v 

where a;j is the stress tensor and ê  is the strain tensor. 

The difference between the heat capacities at constant 

stress, C„, and constant strain, C, is93 

crc,-c,-c,-7r(c>,aH) , («.7) 

where C;Jkl is the isothermal elastic constant tensor and ay 

is the thermal expansion tensor. If the stress is due to 

isotropic pressure then Ĉ C,,. For cubic symmetry one also 

has Ct=Cv and Eq. (4.7) gives Eq. (4.5) as a special case. 

For either trigonal or hexagonal symmetry Eq. (4.7) 

becomes94 

Cp-CrVT[2(cu^cn)a2^Acx7)aacx^ciJa
2

c] , (4.8) 

where the Voigt notation is used. 

The heat capacity at constant magnetization is related 

to the heat capacity at constant external field by 

cv,//„- c™-^ ' <4'9) 



where XT=(dM/dH)T is the isothermal susceptibility and 

ctH=(dM/dT)H. One has to bear in mind that Eq. (4.9) is a 

macroscopic equation, i.e. it is given only after assuming 

that the magnetization and the magnetic field are 

essentially uniform over the sample volume and are well 

represented by their average values. For a ferromagnet 

below Tc in a vanishingly small external magnetic field the 

local magnetization is strong but the net magnetization is 

zero (or nearly zero) due to coexistence of oppositely 

magnetized domains.95 This point is further discussed in 

the next two sections. 

Finally the connection between the theory and 

experiment is given by the general quantum-statistical 

result for the heat capacity at constant volume96: 

dU\ _„ <E,?>Z <E)2 

82 ^SJ / '^ fe^ ' (4-10> 

where V is the sample volume, E, is the energy of the ith 

stationary state of the crystal and the brackets denote 

averages over the all states. 

Experiments usually measure the heat capacity at 

constant pressure but theory gives the heat capacity at 

constant volume. In a gas these differ substantially, but 

in solids they are more nearly identical. However the 

difference in solids may be quite large if the coefficients 

of thermal expansion become divergent, which may occur at 
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the critical point and then this difference should be taken 

into account in an analysis of the critical heat capacity. 
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4.2 Effect of an external magnetic field and the 

demagnetizing field on the heat capacity of a 

ferromagnet 

4.2.a Heat capacity of a ferromagnet in an external 

magnetic field 

Magnetostatic considerations show that the free energy 

and hence the heat capacity of a sample of magnetic material 

placed in an external magnetic field will depend on the 

sample's shape.97,98 The origin of this dependence lies in 

the long-range nature of dipolar forces present in all 

magnetic materials. The shape of the external boundary of a 

sample enters the thermodynamic properties of the sample in 

the dipolar sum in the dipolar contribution to the total 

Hamiltonian, Hdip, 

V ^ I 0 - ! ^ ' <4-11) 

where g is the Lande factor, pa is the Bohr magneton. The 

dipolar sum is: 

where s, and Sj are the spins at sites i and j, and r(j is 

the vector connecting the sites. 

The magnetic field on the spin i is the sum of the 

8j_ 3 ( 8 , T f ) (SjTij) 

,3 „5 
(4.12) 
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external applied magnetic field H„ and the field due to the 

other spins in the crystal which depends on D^fi). The 

standard method of summing the dipole fields of the other 

spins is to break up the dipolar sum, D^fi), into a sum, D0, 

over a moderate number of neighboring spins inside an 

imaginary sphere centred on the reference spin plus an 

integral over the rest of the sample.99 The contribution of 

the integral to the field at the reference spin is made up 

of the contribution from the surface integral over the 

spherical cavity (D,) which gives rise to the Lorentz field, 

and the contribution from the integral over the sample 

surface, which is the demagnetization factor D. The value 

of factor D lies between zero for a long circular cylinder 

parallel to the external field and one for a thin slab 

perpendicular to the external field. 

An example of a system for which shape dependent 

effects are important is dysprosium aluminum garnet (DAG) 

where the dipolar interactions account for ca. 70% of the 

energy.98 Levy and Landau98 measured the heat capacity for 

several ellipsoidal samples of DAG at constant external 

field. They found that the maximum in the heat capacity 

decreased by as much as 40% for the sample with a large 

demagnetization factor compared to the sample with D»0. 

Also the temperature of the maximum was shifted. Defining 

the internal, shape independent magnetic field, H;, as97 
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H -g -DM , (4.13) 

where (-DM) is the demagnetizing field, Levy and Landau98 

showed that the heat capacity at constant internal field is 

shape-independent. 

Griffiths100 argued that the demagnetizing effects 

should lead to a singularity (nonanalytic behaviour) in the 

heat capacity in an external field at the temperature T0<TC 

where the spontaneous magnetization Ms equals the external 

field divided by the demagnetization factor, that is, where 

the internal field equals zero. Below TG the internal field 

is zero and the heat capacity in the external field is 

identical to the heat capacity in zero applied field. Above 

TQ two limiting behaviours can occur. In low fields the 

heat capacity in the field will resemble the heat capacity 

at constant magnetization and in the high-field limit the 

heat capacity will look like the heat capacity at constant 

internal field. 

Simons and Sal.amon101 reported a kink in the heat 

capacity of Gd in the external magnetic fields between 165 

and 585 Oe a few K below Tc which they attributed to the 

Griffiths-type singularity. 
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4.2.b Magnetic domains and demagnetization heat capacity 

In the renormalization group theory of magnetic systems 

with dipolar interactions the contribution to the free 

energy of the system from the demagnetization effects is 

neglected by assuming that the sample consists of one 

magnetic domain and that the bulk magnetization is uniform.64 

This requirement is satisfied by needle-shaped samples. (If 

an external magnetic field is present it has to be parallel 

to the long axis of the sample). However for samples of 

other shapes the free energy and hence the heat capacity 

will have a contribution from the demagnetization effects. 

In such cases the experimental heat capacity data may need 

to be corrected for these effects. Knowledge of the 

magnitude of such a correction term is particularly 

important close to Tc because of the possible effect of this 

correction on the critical behaviour of the heat capacity. 

Calculation of the demagnetization free energy and the 

demagnetization heat capacity in the mean field 

approximation is the subject of this section. 

In a zero or vanishingly small external magnetic field 

the spontaneous magnetization of a ferromagnetic sample 

below Tc is not uniform; the sample is composed of a number 

of small regions called domains, and within each the local 

magnetization is uniform.95,102 The directions of 

magnetization of different domains need not be parallel. 
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The magnetic domains are a natural consequence of 

contributions to the total energy from the demagnetization 

field and from the exchange and the anisotropy energy. If a 

saturation configuration of a ferromagnetic single crystal 

consists of a single domain then this configuration has a 

high value of demagnetizing energy. Dividing the crystal 

into a number of oppositely magnetized domains reduces the 

demagnetization energy.95 This process results in a zero or 

nearly zero macroscopic magnetization. The division process 

continues until the energy required to establish the 

interface separating oppositely magnetized domains is 

greater than the reduction in the demagnetization energy. 

The final domain structure is the structure which minimizes 

the total energy of the structure. This total energy will 

generally consists of two parts: the energy of the walls 

separating the domains and the magnetic energy associated 

with the demagnetizing field or with the anisotropy energy.95 

The domain structure of most crystals falls into two 

classifications: a superficial domain structure which often 

assumes a very complicated pattern, and the underlying bulk 

domain structure running throughout the sample which is 

believed to be fairly simple in most cases.95103 

The magnetic energy, Fdom, for a ferromagnetic plate 

(magnetized along the normal) was calculated by Kittel95 for 

stripe domains with narrow walls, in a thick slab (Fig. 

4.1) : 
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F^-vEll^l , (4.14) 

where V is the slab volume, M, is the spontaneous 

magnetization, aw is the domain width, Lz is the slab 

thickness and C, is a numerical factor equal approximately 

0.85. 

It is possible to devise a domain arrangement for the 

rectangular slab from Fig. 4.1 which will have no 

demagnetizing field.95,102 In Fig. 4.2 the boundaries of the 

triangular prisms domains (termed "the domains of closure") 

make equal angles (45°) with the magnetization in the volume 

domains and with the domains of closure. The magnetic flux 

circuit is completed within the crystal and no magnetic 

"poles" are formed on the crystal surface. The magnetic 

energy associated with the demagnetization field is zero, 

but the anisotropy energy is not zero. 

In a uniaxial crystal the magnetization within the 

domains of closure is oriented in a direction of hard 

magnetization; this involves the anisotropy energy95,102 

, (4.15) 
F -V ! , 
<"•" 2 L . 

where V is the sample volume, K, are the anisotropy 

constants, aw is the domain width and L7 is the sample 

thickness. 
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Fig. 4.1 Model for calculation of the magnetic field energy 

of coplanar strip-domains of alternate sign. 
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M 

M 45' M 

Fig. 4.2 Details of flux closure with the domains of 

closure. 
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The ratio of the energy of a domain structure with the 

domains of closure to the energy of a slab-like structure is 

determined primarily by the ratio of the sum of the 

anisotropy constants to the square of the spontaneous 

magnetization, Ma
2. If the ratio 47r(2 KJ/pJft2 « l, where Mo 

is the permeability of free space then the flux closure 

configuration g.ives the lower energy but with the increasing 

value of the ratio the domains of closure will gradually 

open. 

In order to estimate the total energy associated with 

the domain structure one also has to estimate the domain 

walls' contribution to that energy. Usually, the walls are 

described by rotation of the magnetization vector, M, at 

constant magnitude, M, within the wall. This magnetization 

profile is known as a rotational solution.104 Another 

possible wall ST.E icture (linear solution) is given by a 

varying magnitude of M with the magnetization always either 

parallel or antiparallel to the easy axis of the 

magnetization.104105 The latter magnetization profile is 

expected to occur near Tc. 

Bulaevskii and Ginzburg104 analyzed a single wall 

structure near Tc using the free energy expansion in powers 

of magnetization under assumption that the domain width, aw, 

is much larger than the wall thickness. They showed that 

close to Tc the linear solution for the magnetization 

profile was given by M5(x)=M5tanh(x/X) where x is the 
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distance perpendicular to the wall and X is of the order of 

both the wall thickness and the correlation length. 

The solution of Bulaevskii and Ginzburg104 for one 

do.nain wall can be used to estimate the domain wall energy 

of N walls close to Tc in the mean field approximation. 

This is the subject of the remainder of this chapter. 

The free energy of the domain walls of the slab-like 

structure (Fig. 4.1) with N=Lx/aw can be obtained by 

integrating the free energy functional derived from the 

exchange Hamiltonian of the LGW form50: 

£ = _ - fd3x 
2Jr(0) 

I E^fE (a (x)) 2+-S (Va (x))2+u (a (x))
4 (4.16) 

where c and u are constants defined later, a(x) is the spin 

density function and the integration is over the sample 

volume. The zeroth term, JL(0), of a series expansion of 

the exchange energy, JL, in momentum space is related to the 

mean field critical temperature, Tc0, by 

kHTc0=2/3 SGd(SGd+l) JL(0) , where SGd=7/2 is the Gd spin number.
28 

The spin density can be related to the magnetization by 

i 

where JUB is the Bohr magneton, g is the Lande factor and n0 

is the volume factor of the order of the volume of the unit 

cell (n0=Vmol/NA, where Vmol is the molar volume of Gd and NA 

is the Avogadro's number). 
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The total free energy of a single wall, Flot, is 

,-r|d3x -4-4- (M(S) )2+-A- (vtt(x) )2+u'(M(x) ) 4 

2 *-2 2«3
2 

(4.18) 

where the new symbols are defined as follows: 

K=|1=|0
1(-t)'/2=K0(-t)'

/2 where v is the correlation length 

critical exponent equal to 1/2 in the mean field theory, and 

c=a/K0
2 (a is a dimensionless constant), and u'=unu/(gjuB)

2. 

The constant r is defined as 

r -
2JL(0) 

(grM,)Vn0 
(4.19) 

Assuming that for Gd, Tc»300 K and estimating J, (0) using 

the relation given in Eq. (4.16) with Tc0»1.5Tc one obtains 

T«12X10 2. 

The coefficient, a, was obtained using the data of 

Mackintosh and Moller on the exchange function JL(k) for Gd 

as a function of the reduced wave vector k/k,,^ in the c-axis 

direction.106 The coefficient, a, was identified using the 

relationship 

J(0) 

m 
J t ( 0 ) 

kc 

max 2«0
2 

kc 

k< 

(4.20) 

where the coefficient m«-12 meV was estimated from the fit 

to the data in Fig. 5.8 of Mackintosh and M0ller. Taking 

kcmax*27r/c where c«5.8 A and KQ=I-0~
1 «0.5 A'1 for an estimate of 
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the inverse of the correlation length at T = 0 K one obtains 

a«0.59. 

If the domain wall lies in the y-z plane and the origin 

of the coordinate system is in the centre of the wall then 

the Bulaevskii and Ginzburg104 solution M,(x)=Mstanh(x/X) 

minimizes the functional given by Eq. (4.18) with X=(2a)1/2£ 

under the constraint that Ms=l/(4u') (K2/K02) . 

F^ can be expressed as a sum of several integrals 

resulting from the integral given by Eq. (4.18), 

*,
u,--iT*TMX+F*,+Fp*

 + Fm > (4.21) 

where V, is the volume of the wall plus the domain, the 

first term is the homogeneous background magnetization 

energy and the contributions Fqdr, Fgrd and F,,,, are defined 

below. 

The quadratic term, Fqdr, is given by 

K2 M2 ra 12 . y 
F^-tL.L.l.-L dx(tanh2(*)-l) . (4.22) 

K 0
2 2 J-a./2 K 

where Ly is the width of domain wall, Lz is the domain wall 

height and aw is the domain width. Because tanh(x)-*l when 

x-«» and aw>>£ the integration limits in Eq. (4.22) may be 

extended to +a> to give 
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F^-V^TL^A. . (4.23) 

For the contribution of the gradient term, Fgnl, one 

obtains 

F "̂T 2? 7 L l L ,' ,' 2C« d l r (^ < t a n h (^ > ^ " <4*24) 

After changing the integration limits and evaluating the 

integral Fgrd becomes 

V-#^jg- . (4.25) 

The contribution from the quartic term, Fq„, is 

F^'-Tu'L/jJlfF^dx (tanh4(^) -1)) • (4.25) 

After changing the integration limits and evaluating the 

integral it becomes 

F - _ 2 V 2 a r L r
 Ms (4.27) 

3
 X ^ y ^ 

The contribution from N=L„/aw walls, Fw,„, is given by the 

product of N and the sum of Fqrd, Fgrd and Fqr: 

F ^^E^IIHL, (4.28, 

where V is the sample volume. 



84 

The total free energy associated with the 

demagnetization effects is obtained by adding tc FwaU either 

the magnetic energy of the N volume domains or the 

anisotropy energy of the N domains of closure, depending on 

the domain structure, i.e. the ratio 4ffK2(T) /MoM,
2 close to 

Te. 

For Gd the saturation magnetization at T=0 K is 

Ms0=gMn
SGdNodai!l96X104 A m'r where NGd is the number of Gd atoms 

per m3. 

The temperature dependence of the spontaneous 

magnetization is given for small t by the power law 

M8(t)=Ms0(-t)
(i where 0aO.39 for Gd.107 The anisotropy 

constants K2 and K4 were measured by Graham
108 as a function 

of temperature. The anisotropy constant K2 reaches a 

maximum at around 285 K (K2«2Xio
4J m3) and decreases to zero 

at around 350 K (K2*1.5Xio
4J m3 in the region of the Curie 

temperature). The anisotropy constants K4 and K6 vanish at 

around 240 K.108,109 Thus the ratio 47rK2(T) /pJA2(T) is much 

less than unity far below Tc and the flux closure 

configuration is favoured. However sufficiently close to 

Tc, Ma
2(T) is much less than K2(T) and the domain structure is 

approximated by that in Fig. 4.1 (/ioMs
2(T)=47rxi.5xio4J m3 

when Tc-T»5 K) . 

Thus, combining Eq. (4.14) and Eq. (4.28), the total 

free energy associated with the demagnetization effects, 

Fdero, becomes 
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Fjj,,, is a minimum with respect to the domain width, aw, when 

a * -
>\[2a~TL. 

3WC, 

1/2 

( - t ) 1 - a , ^ ( - t ) 1 , ( 4 . 3 0 ) 

where the reduced temperature dependence of aw was written 

explicitly and is given by the exponent v/2 (c is the 

critical exponent associated with the correlation length and 

is equal 1/2 in the mean field theory and around 0.7 from 

the renormalization group calculations - Table 3.2). 

The minimized demagnetization free energy Is given by 

F^-WMJ 
2\J2a C, 

3£.£QKO 

1/2 
20 

("t) ^ ^ ( - t ) (4 .31) 

The reduced temperature dependence of the minimized 

demagnetization energy, Fdcm, is given by ̂ =2j3+i>/2. 

The reduced temperature dependence of the domain width 

and of the demagnetization free energy is given by the 

exponents obtained within the mean field approximation. 

However there is agreement between the expressions obtained 

here for the reduced temperature dependence of thP domain 

width and cf the demagnetization free energy and the 
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exponents derived by Stauffer110 who analyzed a scaling form 

of the free energy of the domain wall. Stauffer obtained, 

for the domain width, the exponent J>(1-TJ)/2. which becomes 

j>/2 putting »;=0 as the mean field result; the calculated 

exponent for the free energy also reduces to the mean field 

exponent obtained here for TJ=0 . 

At this point a number of important estimates can be 

made. One of them is the range of the validity of the 

model. It was assumed in the above calculations that 

aw>>X«£- This is an important assumption because the sum of 

free energies of N non-interacting walls can give a 

reasonable approximation to the actual free energy of the 

domain walls only if the separation between the walls is 

sufficiently large. Otherwise, by not taking into account 

the interactions between the walls, the model developed here 

does not correctly address the entropy of the whole system. 

From Eq. (4.30) aw*6.7X10
4(-t)035 A for L«0.22 mm (this 

is the width of one of Gd samples investigated in this 

study) and for p=0.7. The domain width is of the order of 

the correlation length (6.7 Xi04(-t)035*2 (-t}07) when t*5Xi0"5 

so the model breaks down at T*TC-0.015 K. 

From Eq. (4.31) the free energy is: Fdcn»0.5(-t)
113 J/mol 

putting for V the molar volume of Gd. 

The contribution from the demagnetization processes to 

the total sample heat capacity can be estimated by 
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At t=5XlO"5 (Tc-T«0.015 K) this contribution is around 

1.4 J mol"1 K"1 which is around 2% of the total heat capacity. 

The demagnetization contribution becomes negligibly small 

further away from Tc (it is around 0.3% at t=5xi0'
4; T«Tc-0.15 

K). 

The results of the analysis presented here suggest that 

the contributions from demagnetization effects to the heat 

capacities presented in this thesis are negligible over 

almost the entire temperature range which can be 

experinentally accessed, even by a high-resolution heat 

capacity measurement. The analysis also indicates that for 

t<105 this contribution may become sufficiently large to 

need to be taken into account as one of the factors 

determining the shape of the heat capacity curve and hence 

the rounding which is observed very close to Tc. 

The range of validity of this model is for reduced 

temperatures larger than 5X10"5. When this model is used in 

the limit t=0 it predicts that aw=0 at Tc and also that the 

heat capacity associated with the demagnetization processes 

diverges at Tc. 

However when aw becomes smaller than £ then the domain 

wall assumes the role of the domain itself so the domain 

wall width should also be decreasing as a function of 
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temperature near Tc. It appears thus that very close to Tc a 

physically more appealing picture of the domain structure is 

a periodic structure with the period of the order of the 

correlation length (one may also say that very close to Tc 

there is no distinction between the domains and the domains 

walls). 

Barker and Gehring111 discusrred the domain structure 

below Tc and showed that for reduced temperatures for which 

the assumption of non-interacting walls is no longer valid 

the domain structure could be approximated by a sinusoidal 

magnetization profile with a non-zero period at Tc. For the 

free energy of their structure they obtained an expression 

which differs from Eq. (4.14) by a numerical factor of 

around 1.7. 

Thus the model presented here does not give a correct 

temperature dependence of the domain width and hence the 

demagnetization free energy in the proximity of Tc. This 

could be expected on general grounds since it is a mean 

field model and mean field theories do not give correct 

descriptions of the temperature dependence of thermodynamic 

parameters in the critical region. A correct treatment must 

take into account fluctuations and the associated entropy. 

On the other hand, it may be expected that the 

calculated demagnetization heat capacity contribution to the 

total heat capacity gives a correct estimate of the 

magnitude of the demagnetization heat capacity over a wide 
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reduced temperature range below Tc. 

In conclusion, the results of this section show that 

the demagnetization processes in Gd have a negligible effect 

on the critical heat capacity data in the temperature range 

whicL is typically accessed in heat capacity measurements 

and they can be neglected here in data analysis. 

However, it should be a?so noted that if there is a 

significant amount of data available below t=10** then the 

possibility that this data has the contribution from the 

demagnetization effects should be taken into account. 

For example it may not be possible to fit the data 

points in this temperature range with expressions pertinent 

to the critical behaviour of Gd. This case will be 

discussed again in the experimental chapter (Chapter 7) of 

this thesis. 



•*• 

Chapter 5. CRITICAL BEHAVIOUR OF GADOLINIUM 

5.1 Introduction 

Gadolinium (Gd) is one of the rare earth metals and it 

exhibits a ferromagnetic phase transition at around 

294 K.4,112,113 The crystalline structure of Gd is hexagonal 

close packed with a unit cell c/a ratio of 1.59 which is 

close to the ideal value of c/a=1.63. 

Gadolinium may be expected to exhibit only weak single-

ion anisotropy since its magnetism is produced almost wholly 

by spherically symmetric 8S7/2 ions (the electron 

configuiation of Gd is 4f7bd'6s2; the large magnetic moment 

of Gd is localized in the 4f shell and the effective Bohr 

magneton number in the paramagnetic region is around 8.':4) 

There is also a small conduction electron contribution to 

the total magnetism which can be treated as a polarisation 

of spins of conduction electrons induced by the 4f moments. 

Below Tc the easy direction of magnetization is 

temperature dependent. Magnetization measurements114115, 

neutron diffraction"6 and crystalline anisotropy117 show 

that the angle between the c-axis and the easy axis 

increases from around 30° at 10 K to around 65° at 183 K and 

drops abruptly to zero at T0 « 232 K. Quasielastic neutron 

scattering on a 160Gd-enriched single crystal118 indicates 

90 
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the presence of anisotropic short-range order above and 

below Tc. 
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5.2 Experimental measurements of critical exponents of Gd 

Critical behaviour of gadolinium is not yet fully 

understood."3119120 On the one hand, the S-state nature of 

the Gd moments coupled by isotropic Ruderman-Kittel-Kasuya-

Yosida interactions implies Heisenberg critical behaviour 

near Tc.
113 On the other hand, the unique easy (c-axis) 

direction of magnetization implies uniaxial anisotropy which 

suggests Ising critical behaviour.113 Static critical 

exponent measurements span predictions of both the models113 

(see Table 5.1 and Table 5.2). 

The literature values of the critical exponent a listed 

in Table 5.1 were obtained from heat capacity measurements 

by AC calorimetry121, continuous warming calorimetry122, and 

from thermal expansion measurements123122. The values of a 

suggest Heisenberg behaviour by their sign, but are 

generally much larger than the theoretical value. 

Under the constraint that a=a' Lanchester et al.m were 

able to obtain a good fit to their data only after allowing 

for a discontinuity at Tc (denoted as B^B' in the Table 

5.1). They suggested that in the observable temperature 

range Gd might have been in the process of crossing over to 

uniaxial dipolar behaviour. 

Jayasuriya124 remeasured the heat capacity of the Gd 

crystal used by Lanchester et ai.122 and obtained a good fit 

to the data with the constraint a=a' after including 
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Table 5.1. Selected literature experimental values of the 

critical exponents a for Gd. 

Exp. 

a 

a' 

a 

a' 

a 

a' 

a 

a' 

0! 

a' 

a 

a 

Tc/K 

291.05(2) 

293.60 

293.54 

293.60 

293.54 

293.46 

Range of t 

10-3 to 10-' 

10"3 to lO"1 

8x10^ to 

2X10"2 

8x10^ to 

2X10-2 

3xlO"5 to 

1.3xlO"3 

1.3X10"3 to 

6.6X10"2 

Value 

-0.09(5) 

-0.32(5) 

-0.30 

-0.30 

-0.09 

-0.42 

-0.32 

-0.32 

-0.12 

-0.39 

-1.71 

-0.121 

Ref. 

[121] 

[122] 

[122] 

[123] 

Comments 

significant 

rounding 

with 

constraint 

ar-a' and 

B*B' 

a ̂ a' and 

B=B' 

cx=a', B*B' 

derived 

from 

thermal 

expansion 

a*a, B=B' 

derived 

from 

thermal 

expansion 
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Exp. 

a 

a' 

a 

a' 

Tc/K 

293.68(11) 

293.70(13) 

Range of t 

1.6x10"* to 

2xl0"2 

T<TC 

103 to 

4X10"2 

T>TC 

1.6x10^ to 

2xl02 

T<TC 

10"3 to 

4X10"2 

T>TC 

Value 

-0.32(2) 

-0.32(2) 

-0.03 

-0.03 

Ref. 

[124] 

[124] 

Comments 

with 

constraint 

a=a' 

and B*B' 

correction 

to scaling 

fit with 

constraint 

a=a' 
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Table 5.2 Selected literature experimental critical 

exponents for Gd. 

Exp 

0 

y 

s 

0 

7 

S 

0 

7 

8 

0 

7 

7 

7 

Tc/K 

292.1(2) 

293.3(1) 

293.3(1) 

291.85(5) 

291.1(1) 

293.51(3) 

292.1(5) 

Range of 

t 

t>2XlO"3 

t>4xl03 

2X10"3 to 

3.7X102 

103 to 

0.1 

10"2 to 

3.7X102 

t>103 

t>103 

Value 

0.37(1) 

1.25(10) 

4.39(10) 

0.381(15) 

1.196(3) 

3.615(15) 

0.390(5) 

1.33(2) 

4.8(1) 

0.399(16) 

1.24(3) 

1.22(2) 

1.235(25) 

Ref. 

[126] 

[127] 

[107] 

[113] 

[128] 

[129] 

[130] 

[131] 

Comments 

scaling-

equation 

analysis 

scaling 

equation 

analysis 

magnetiz. 

and suscep. 

measurement 

PAC 

experiment 

AC suscep­

tibility 

AC suscep­

tibility 

AC suscep­

tibility 
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the confluent singular term into the fit. 

Dolejsi and Swenson123 made thermal expansion 

measurements on a single crystal of Gd over a several 

decades of reduced temperature (10'5<|TC|<10
1) and could not 

find a single power law representation for their data even 

after restricting the fits to temperatures only above or 

below Tc. They123 had to use four reduced temperature ranges 

to represent their data by power law fits. Above Tc the 

division point was selected at the reduced temperature t = 

1.3xlO'3. Above that temperature the critical exponent a was 

equal to -0.121 agreeing well with that predicted for three-

dimensional Heisenberg model (-0.115 + 0.009)125. For 

t<1.3xl03 the value of a was -1.71, a unrealistically large 

negative number suggesting that the data should be fit to 

another model very close to Tc. 

Values of the critical exponent 0 cluster around 0.38 

and also support the Heisenberg critical behaviour126,127113. 

The exponent for the magnetic susceptibility, 7, is 

typically found to be near the three-dimensional Ising 

value128129130,13', while values of S are generally too low 

for either prediction.126,127 

Inconsistency between the measurements leads to 

disagreement between theory and experiment, including the 

violation of scaling laws such as a+2/3+7=2. There can be 

several causes for the inconsistency. Non-asymptotic data 

can lead to widely different values of critical exponents, 
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depending on the temperature range of the fit . The quality 

of a crystal also affects results: the presence of 

impurities or defects may lead to an entirely new critical 

behaviour. Finally, the critical behaviour of a real system 

may not be simple, but it may change depending on the 

distance from Tc (in the reduced temperature scale), 

exhibiting a pattern of overlapping crossovers. In such a 

case, analysis of data in terms of power laws will generally 

yield effective exponents even though corrections to 

asymptotic scaling are included. 
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5.3. Investigations of the effect of dipolar interactions on 

the critical behaviour of Gd 

The suggestion that magnetic dipolar interactions may 

be important for understanding the critical behaviour of Gd 

was made in 1975 by Geldart and Richard.132 In 1987 Geldart 

et al.n9 reported measurements of the electrical resistivity 

of a c-axis single crystal of high-purity gadolinium metal 

in the vicinity of the Curie temperature (|t|<103). 

Numerical analysis showed that the data could not be well 

described by a power law of the type expected for short-

range interactions and tended to exhibit a change in 

effective slope at Tc. Good fits were obtained when the 

data were described in terms of logarithmic corrections to 

the regular term of the sort expected for a uniaxial dipolar 

system (Sec. 3.6). Geldart et al.119 suggested that the 

asymptotic critical behaviour of Gd is that of a uniaxial 

dipolar ferromagnet, described by Landau theory with 

logarithmic corrections. They pointed out that other 

experiiaents on Gd in the critical region were likely 

influenced by dipolar effects due to a crossover from 

Heisenberg to dipolar critical behaviour. 

Anisotropy in the critical properties of Gd was seen in 

the work of Collins et al .133 on perturbed 77 angular-

correlation (PAC) experiments on a single crystal of Gd 

above Tc. Models of critical dynamics based on isotropic 
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spin fluctuations did not give good results for t<10"3. 

However, their experimental results for t<lO"3 were well 

described by an anisotropic spin-fluctuation model. 

Further evidence for the uniaxial anisotropy in Gd was 

provided by Geldart et ai.120, who measured the magnetic 

susceptibility along the c-axis and in the basal plane on a 

single crystal of Gd in the reduced temperature range 

4xlO'4<t<1.3xlO'2. They observed that the basal plane (hard 

direction) susceptibility, Xb» remained finite at Tc and 

extrapolated to zero at a temperature which was below Tc by 

0.52 + 0.05 K (such a difference is the signature of 

uniaxial anisotropy). Another estimate of the anisotropy 

scale was obtained by defining a reduced-temperature scale 

for the anisotropy: Xb*l(Tc)=:Xc'l(Tc+^Tani8) » where xc is the c-

axis susceptibility. This procedure gave M,anis=0.57+0.09 K. 

Recently a general method for the evaluation of lattice 

sums determining the effective parameters in the Hamiltonian 

of a dipolar magnetic system has been introduced.l34135 

This method was used to examine the anisotropy of the 

Hamiltonian as a function of c/a for a variety of lattices 

and it was found that dipole-dipole interactions favour the 

c-axis as easy axis of magnetization for c/a=1.59, i.e. the 

c/a ratio for Gd at Tc. It was concluded that the dipole-

dipole interactions would themselves be sufficient, in the 

absence of any other interactions, to cause the observed 

uniaxial ordering at the Curie point. They found that 
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dipolar interactions in Gd raised the mean-field transition 

temperature above the corresponding isotropic short-range 

exchange value of T̂ , for any direction of ordering, but the 

shift ATc0 was larger for ordering along the c-axis (AT
c
c0 = 

1.713 K) than for ordering in the basal plane (ATbc0 = 1.633 

K). Thus, the mean field temperature range with respect to 

Tc over which the anisotropic effects of dipolar 

interactions are important, is AT0,,,,, a 0.08 K. Using 

appropriate crossover exponents to incorporate the effect of 

fluctuations beyond the mean field approximation, the 

temperature range for the uniaxial anisotropy was estimated 

to be ATMi!,«0.45 K. 

Fujiki et al.m and Fujiki135 discussed the implication 

of dipolar interactions and their anisotropy close to Tc on 

the critical behaviour of Gd and proposed a sequence of 

overlapping crossovers to explain the observed critical 

behaviour of Gd. According to their theory, relatively far 

away from Tc (t>io') Gd is in the Gaussian regime, i.e. in 

the regime described by Landau theory with weak 

perturbations. When the reduced temperature is decreased 

the Gaussian behaviour is replaced first by the isotropic 

Heisenberg behaviour and below t a 2.l5xl02 by the isotropic 

dipolar regime. Fujiki134135 and Geldart et al.120 estimated 

that a reduced temperature t a 1.52X10'3 (AT - T-Tc a 0.45 K) 

was a crossover temperature to the uniaxial anisotropic 

regime and the asymptotic critical regime was of uniaxial 
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(Ising) type with dipolar interactions playing an important 

role. 

It should be noted that the above estimate of the 

scale of anisotropy is in good agreement with the 

experimental values of 0.52+0.05 K and 0.57+0.09 K obtained 

by Geldart et al.120 from the magnetic susceptibility 

measurements and the experimental value of tai.3xlO"3 (AT = 

T-Tc » 0.38 K) suggested by Dolejsi and Swenson
123 as a 

crossover temperature to a new critical regime on the basis 

of their fit to thermal expansion data. It also should be 

emphasized that these crossover temperatures only set the 

scales of different crossover effects which may take a few 

decades to go to completion. 

The effect of the dipolar interactions on the critical 

behaviour of Gd was also considered by Aliev et al.lw in 

their analysis of experimental results of magnetization and 

susceptibility measurements on two single crystals of Gd. 

They analyzed their data in terms of power laws with 

correction to scaling and compared the numerically obtained 

values of the correction to scaling terms with theoretical 

estimates. Assuming that in the temperature range of the 

fits (I0"3<t<5xl02) the critical behaviour of Gd is 

essentially governed by the isotropic dipolar forces they 

obtained good agreement between the calculated and fitted 

values of the correction to scaling terms. 

Recent muon spin relaxation time measurements (pSR) on 
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a spherical single crystal of Gd showed136 a strong effect 

of a crossover from a non-conserved dynamics (dipolar) 

regime to a conserved (exchange dominated) regime ca. 10 K 

above Tc and anisotropy in the muon relaxation rate along 

the c-axis and in the basal plane for t<0.01. 

In summary, there is considerable experimental and 

numerical evidence that the critical behaviour of Gd can be 

understood in terms of magnetic dipole-dipole interactions. 

Dipolar effects are present throughout the range of 

virtually all experimental measurements of critical 

exponents of gadolinium. In earlier experiments on Gd in 

the critical regime data analyses were based on fitting data 

to appropriate power laws and although a fit to the data was 

generally possible there were difficulties with interpreting 

critical exponents obtained. Those exponents should be seen 

as effective exponents which depend on the temperature range 

of the fit. For instance, the experiment by Chowdhury et 

al.113 yielded 0=0.399 for |t|<10'' which is larger than the 

theoretical prediction of |8=0.365 for the Heisenberg modal. 

However, if in that temperature range Gd is in the process 

of crossing over to the uniaxial dipolar behaviour in which 

magnetization varies65, for t-0, as M(t) <x 1111/2 | ln| t| | "3 then 

it is reasonable to expect the effective value of 0 to lie 

between the Heisenberg value and the classical value, 

0=0.5. The same observation can be made about other 

measurements of 0 (see Table 5.2). 
I 
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Finally, it should be noted that logarithmic 

corrections characteristic of three-dimensional uniaxial 

dipolar magnets have not yet been conclusively observed 

experimentally in Gd. It is not trivial to detect 

multiplicative logarithmic corrections to the power laws 

even if the additional problems of crossover from Heisenberg 

behaviour are not present. For instance, the magnetic 

susceptibility in the uniaxial dipolar regime varies as 

xoc 11|_11 In11| 11/3and it is dominated by strong |t|'' dependence 

(measurements over a few decades of the reduced temperature 

may be needed to detect the slowly varying logarithmic 

term). However, heat capacity is found to have the leading 

singular dependence given by Eq. (3.38) and thus for heat 

capacity the logarithmic term is the leading singular term, 

and it is not masked by a power law. For that reason, high-

resolution heat capacity measurements on Gd, in the reduced 

temperature range |t|<10"3, could provide important 

experimental evidence needed to determine the asymptotic 

critical behaviour of Gd. 
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5.4. Prior experimental measurements of the beat capacity 

of Gd 

Gadolinium is also a good candidate for testing a high-

resolution calorimeter because there is ample high-

resolution and high-precision experimental data available on 

the heat capacity of gadolinium around its Curie point. The 

heat capacity of gadolinium was measured by adiabatic 

calorimetry by Grieffel et al .137 and A.V. Voronel et 

al.m. Robinson et al.ii9 investigated the heat capacity 

of gadolinium over the phase transition by differential 

scanning calorimetry. High-resolution heat capacity studies 

on gadolinium were performed by Lewis121, Simons et ai.101, and 

Wantenaar et al.140 by AC methods and by Lanchester et al.122 

and Jayasuriya84 by the continuous warming method. 



Chapter 6. EXPERIMENTAL METHODS 

6.1 The cryostat and the sample assembly 

The immersion cryostat, shown schematically in 

Fig. 6.1, was made up of two compartments (V, and V2 in Fig. 

6.1), which could be evacuated separately. This design 

allowed either of the compartments to be filled with 

exchange gas of regulated pressure. The sample assembly was 

made of copper and consisted of three parts: an adiabatic 

shield (AS - in Fig. 6.1), a sample holder (SH), and a heat 

sink (HS). 

The heat sink, constructed of a thick-walled copper 

cylinder, was silver-welded to the long thin-walled 

stainless-steel tube which also supported the inner vacuum 

can. The tube went outside the calorimeter and was 

connected to the vacuum pumps. All the electrical leads 

were carried out through the tube and sealed at two elec­

trical feedthroughs mounted on the top of the tube. The 

adiabatic shield and the sample holder were connected to the 

heat sink with threaded joints and could easily be 

disassembled. The adiabatic shield did not have a separate 

heater but it was thermally well-coupled to the heat sink,, 

and its function, together with the helium exchange gas, was 

to minimize temperature gradients around the sample. 

105 
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sample 

V, 

A3 

Fig. 6.1. Schematic of the cryostat and the sample assembly. 

AS: adiabatic shield; HS: heat sink; SH: sample 

holder; S: sample; V,, V2: vacuum chamber. 
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A platinum resistance thermometer (Lake Shore 

Cryotronics, Pt-103, 100 n at T = 273 K) was inserted into a 

hole in the sample holder. The space between the hole wall 

and the thermometer was filled with Apiezon T vacuum grease, 

which was selected over Apiezon M and N because it has the 

highest operating temperature; it melts at around 400 K, 

compared to 310 K for Apiezon M and N.141 There also was an 

extra hole drilled in the sample holder to accommodate the 

reference junction of a thermocouple if it is used as a 

temperature sensor (instead of the thinistor used for a 

present work). 

The sample was suspended from the sample holder with 

the sample heater and thinistor leads squeezed between two 

plastic rings screwed to the sample holder. Those leads 

were soldered to extension leads with thermal-free solder 

(Leeds and Northrup), all on a piece of a printed circuit 

board glued with 5-minute epoxy to the wall of the sample 

holder. All the extension leads were double-silk wound 38 

SWG copper wire. The heat sink heater was made of 

approximately 2 m of double-silk wound 38 SWG manganin wire 

(25 fl/m resistance) wound bifilarly around the heat sink and 

varnished into place with low-temperature varnish (GE 7031). 

Despite its relatively simple construction this cryostat 

allowed temperature stability at the heat sink to within +1 

mK. 
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The design of the sample heater was given particular 

attention. Sometimes chopped light is used to heat the 

sample in AC calorimetry. However this method was not used 

here because it would not allow determination of the total 

power dissipated in the sample and because it is easier to 

stabilize the frequency and power of an electrical signal. 

The resistance heater for the sample must satisfy a 

number of requirements. It should be electrically and 

mechanically stable on thermal cycling; it should be in 

good thermal contact with the sample; its heat capacity 

should be small compared with that of the sample. 

Several prototype heaters were tested and found to be 

inadequate. A heater was made of 0.003 mm Mylar foil coated 

on one side with a 0.1 /im thick layer of manganese 

(purchased from Goodfellow) but that heater did not adhere 

well to the sample and there were problems with the 

attachment of leads to it. Schwartz142 made a sample heater 

by painting a piece of a Mylar foil with DAG 154 (graphite 

suspension diluted with acetone), and attached the leads by 

painting them into place. However, it was found here that 

such a heater was too thick (around 0.04 mm), i.e. it would 

make the internal relaxation time of the sample assembly too 

long. 

The sample heater used in the present study was made by 

evaporating a layer of bismuth (Bi) on a sample surface 

painted for insulation with GE 7031 varnish diluted with a 
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50:50 toluene:ethanol solution. The contacts to the heater 

were made with two pieces of 20 pm diameter copper wire. 

The wires were glued across the sample close to its opposite 

edges with silver-loaded epoxy. The bismuth layer was 

evaporated on the sample after making the contacts and its 

thickness defined the resistance of the heater. Heaters of 

resistance of around 50 n were used; the resistance was 

determined by the heating power requirement and the design 

of the power supply. The total thickness of the heater was 

around 4 pm and its contribution to the total heat capacity 

was of the order of a few percent. Heaters made as 

described here were very reliable: they were in good thermal 

contact with the sample and did not significantly change 

their resistance over time or heat treatment. 
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6.2 Electronic instrumentation and data acquisition 

system 

Unwanted fluctuations in the power and frequency of the 

heating signal could be mistaken for changes in heat 

capacity, reducing the sensitivity of the calorimeter. This 

problem was solved here by building a programmable 

microprocessor-controlled power supply (PS-1 in Fig.6.2 and 

Fig.6.3). This unit was designed to provide constant 

heating power to a heater whose resistance could vary as the 

temperature changes. The heating power requirement was very 

small; less than 0.5 mW. 

An additional requirement was that this heating power 

could be applied as a low-frequency sine wave, with the 

frequency being both extremely stable and programmable. 

Because a lock-in amplifier was used to detect the 

temperature changes arising from the heating signal applied 

to the sample, and since the signal was very weak, the 

frequency stability of the heating signal was important. 

The Stanford-Research 530 lock-in amplifier used synthesizes 

a sine wave in its reference channel and uses a four-

quadrant multiplier as its phase-sensitive detector; 

therefore it was decided that a sine wave heating signal 

would provide for better signal capture than a simple 

square-wave heating signal. 
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Fig. 6.2. Block diagram of the automated AC calorimeter. 
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lock-in amplifier; CS: current source; 
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thinistor. 
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Since a microprocessor was employed in the design, the 

sine wave was software-generated and the frequency was 

derived from a quartz crystal clock. 

The basic algorithm used in this design was as follows. 

The operator would send the controller the following 

parameters, via an RS-232 serial data link from the host PC 

computer: (1) frequency (resolution to .01 Hz), (2) desired 

heater power, (3) approximate sample resistance (at that 

temperature). The controller then calculated the correct 

quartz clock divider ratio to produce a sine wave signal 

made up of 256 segments. 

Using the power and resistance values given by the 

operator, an approximate heating voltage was derived. A 

sine wave of this voltage was generated using a dual 12 bit 

DAC. One half of this DAC was used to provide a DC voltage 

with an amplitude equal to the peak value of the sine wave 

needed. This voltage was then used to provide the reference 

voltage for the second half of the DAC to which the 

microprocessor was sending sine wave data at the selected 

frequency. The output of the second DAC was a unipolar 

signal with a sine waveform. By mixing in the signal from 

the first DAC, at a ratio of 0.5, a true sine wave signal 

centred at 0 V was derived. 



•in- «fcje«'33»..,as3*i.a&î KXS-SK;>« tJ-w^-WVjI it&rjl • 
-"cr-sV^. £s£2S&6 

p -

0\ 

O 
0 
3 
(A 
1+ 
P> 
3 
r t 

TJ 
O 
C 

^ 
01 
P-
3 
fl> 

iQ 
(D 
3 
fl> 

0) 
r t 
O 
>1 

2 X 
4.9152 

22PF 
MHZ DUAL DAC 

. 2.9K ?rs + 5 . 2.9k -

10/16 H b - w H 
• 5 „ 

NMT 

ioo T 
2N3904 

R e s e t 

Relay 
Coil 
D/-iv« 

«3*W\r-
I0K 

\ S ft 

10 
c — 
1228 
mil 

Jtt. 

IP 

68701 
Vss 
XTAL 
EXTAL 
-NHI 
-IRO 
-RES 
Vcc 
P20 
P21 
P22 
P23 
P24 
PI0 
P I ! 
PI2 
PIS 
PI 4 
PIS 
PI6 
PI7 

£ 
IDS 

R / - V 
P30 
P3I 
P32 
P33 
P34 
P3S 
P36 
P37 
P40 
P4I 
P42 
P43 
P44 
P4S 
P4& 
P«7 

LOCK-IN 
I61GCCK 
Out 

VCC Co 

> 4020 

* B 

J*. 
vrgote 
12 

Reset 

SIN»_ 

SOUT_ 

SC0M_ 

10/16 

10/16 

/16 y 10/16 

^ 
J7 

10/16 
3 3K 

ICL 
232 Hi 

- • • 5 

fe 
£ 

-15 «IS 

CURRENT 
SENSE 
AMPLIFIER 

RS-232 TRANCEIVER 

SAMPLE AND HOLD 

Note 7400 V c c p.n 14 
Gnd pin 7 

4011 - sane 



114 

This sine wave was buffered and applied to the sample in a 

feedback arrangement using two wires to apply heater power, 

and two wires to sense the actual voltage at the sample. 

This arrangement eliminated errors due to the resistance of 

connecting wires. 

A 50 n precision resistor was placed in series with the 

sample to sense the current. The voltage across this 

resistor was amplified and sent to a SAMPLE/HOLD circuit. 

Since the current through the sample and 50 H resistor arose 

from the sine wave signal produced by the microprocessor, 

the microprocessor also could place the SAMPLE/HOLD circuit 

in the HOLD mode at the peak of the heater signal. The DC 

voltage provided by the SAMPLE/HOLD was fed to a 

synchronized voltage-to-frequency converter. The output 

pulse-train frequency was measured by the microprocessor, 

giving it a value for the heater current. 

This circuit provided an accurate alternative to 

rectifying or phase-detecting the heater current AC signal 

since those methods require an output filter, which at the 

low excitation frequency used would result in a very slow 

response time. 

The period of time during which the microprocessor 

counted the pulses from this converter, and also the clock 

that drove this converter, were both derived for high 

accuracy from the crystal-controlled microprocessor clock 

through digital divider circuits. Therefore the 
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microprocessor produced a sine wave heater excitation signal 

of known amplitude, and also measured the heater current 

accurately. Since power is the product of these two values, 

the microprocessor was programmed to stay in a loop 

measuring heater current, forming the voltage-current 

product, and "fine-tuning" the heater excitation voltage 

until the requested power was reached. The loop was 

performed ca. every 3 s. 

At any time the host PC could interrogate the 

microprocessor, through the RS-232 link, to determine the 

heater voltage and current. Alternately, a new power level 

or excitation frequency could be specified. An additional 

relay control circuit was operated by the microprocessor in 

this unit (Relay in Fig. 6.2). The relay circuit was used 

for meter switching and was included with this circuit for 

convenience, as this controller had a serial link to the 

host PC, and was easily able to handle this additional task. 

The amplitude and the phase of the temperature 

oscillation of the sample were measured by the SR 53 0 lock-

in amplifier using a thinistor (thick film flake thermistor 

made by Victory Engineering Corporation, symbol 53K1A500, 

250 kn + 20% zero power resistance at 25°C, dimensions 

0.5x0.5x0.04 mm3) as a temperature sensor (TH in Fig.6.2). 

The current to the thinistor was supplied by a very 

stable current source (CS in Fig.6.2 and Fig.6.4) also built 

for the purposes of this project. A Hewlett Packard 3456A 
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digital voltmeter (Digital voltmeter in Fig.6.2) measured 

the resistance of the thinistor in the resistance ratio mode 

to give the absolute temperature of the sample. 

The reference high-precision resistor (two connected in 

series; VHA518-7 100 kn resistors made by Vishay Resistive 

Systems Group, tolerance 0.001% , temperature coefficient 

+1.5 ppm/K around room temperature) was embedded in a 

temperature-regulated aluminium block (REF in Fig. 6.2). 

The thinistor current was approximately 6.95 pk, which 

was in the lower limit of the range recommended by the 

manufacturer. With the thinistor and standard resistor 

used, the compliance (output voltage range available) 

required was about 3.5 V. 

The constant current source built provided at least 6 V 

compliance. The circuit centred around an oven-controlled 

reference IC (National Semiconductor LM399). This small IC, 

in an insulated can package, contained both a 6.95 V 

reference and a small temperature controlled heater, all on 

the same substrate. Soon after turning on, the LM399 oven 

stabilized its internal temperature above the ambient 

temperature. The temperature coefficient of the reference 

was typically 30 ppm/K. 

A constant current was generated by passing 18 V 

through a 1 Mil standard resistor (VHA518-10 made by Vishay, 

tolerance 0.001%, temperature coefficient 1.5 ppm/K), a pass 

element and then through the external thinistor-reference 
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resistor circuit to ground. The voltage drop across the 1 

MA. standard resistor, at 6.95 pA, was 6.95 V. This was the 

same value as that of the LM399 voltage reference. 

Therefore an operational amplifier was used to compare the 

above two voltages and its output was used to drive a 4N26N 

optocoupler's light emitting diode. The connection between 

the operational amp]ifier and optocoupler was such that if 

the output current was less than 6.95 ph, the output of the 

operational amplifier would tend to go negative, causing the 

current through the infrared light emitting diode (LED)(in 

the optocoupler) which is referenced to +15 V, to increase. 

The increased LED current would cause the 4N26N 

phototransistor to pass more current, and this would 

increase the current output until stability was reached at 

6.95 pk. 

More conventional circuits were tried earlier but were 

found to be prone to modulation by the low-frequency heater 

signal and/or noise. This could not be eliminated by RC 

filtering of the current source as this introduced amplitude 

and phase errors in the measurement of the temperature 

oscillation by the lock-in amplifier. Amplitude and phase 

errors in the signal measurement were minimized by isolating 

the highly sensitive operational amplifier input terminals 

from the thinistor/reference resistor. 

The 1 Mn resistor and the "Ratio" standard resistor 

were mounted in an isothermal block which was heated to a 
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relatively constant (+1 K) above-ambient temperature, by a 

simple transistor pass regulator driving two 100 n, 1 W 

resistors imbedded in the isothermal block (Fig.5). A 

solid-state temperature controller IC was used in an initial 

design, but was removed when it was found that its switching 

transients, which occurred around the setpoint temperature, 

were affecting the constant current source, even though the 

two circuits were individually powered from separate power 

supplies. Positive and negative 15 V supplies were provided 

by half-wave rectifiers and Zener diodes, from one secondary 

of the power transformer. A separate winding of the power 

transformer in conjunction with a bridge rectifier, was used 

to provide 16 V unregulated to both the isothermal block 

heater and the reference oven circuit. 

The power supplied to the heat sink heater was 

controlled by the DAC outputs of the Stanford Research 530 

lock-in amplifier. Because these are low current outputs, a 

buffer amplifier (741 operational amplifier with a 2N5195 

emitter-follower buffer output) was used (Fig. 6.5). The 

configuration of the circuit was inverting: i.e. the 0 to 

10.24 V output of the DAC's was converted to 0 to -10.24 V 

output to the heater. The gain of the buffer with respect 

to its DACX5 input was -l. The gain of the buffer with 

respect to its DACX6 input was -0.01, and the output signal 

was the algebraic sum of its inputs, weighted in the amounts 

indicated above. 
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This allowed for a coarse heat adjustment by setting DACX5, 

as well as a very fine adjustment by setting DACX6. Both 

the operational amplifier and the output buffer operated 

from a bipolar supply. The (negative) voltages used were not 

equal, but were chosen to match the output voltage 

requirement. 

The heat sink temperature was measured with the 

platinum resistance thermometer (Pt in Fig.6.2) by the 

Hewlett Packard 3456A DVM in the 4-wire n mode with thermal 

emf compensation. The relay switched the 3456A DVM between 

the resistance of the Pt thermometer and the ratio 

measurement of the thinistor. 

The DVM and the lock-in amplifier were interfaced with 

an IBM-compatible, 386 class computer by an IEEE-488 

parallel data link. All the operations associated with the 

control of the electronics, temperature control and data 

acquisition were performed by the computer. The menu-driven 

software for the calorimeter was written in QuickBasic and 

because the speed of the measurements was not crucial it was 

run under the QuickBasic Interpreter. The software also 

incorporated a part written in a machine code for 

controlling the microprocessor of the power supply. 
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6.3 Thermometry 

The temperature scale used in this experiment was based 

on the platinum resistance thermometer mounted inside the 

sample holder (Sec. 6.1). The measured resistance of the 

thermometer was converted to temperature using the chebyshev 

polynomial calibration equations provided by the 

manufacturer. In the temperature range of the experiment 

the RMS error of the fit was around 5 mK. 

The sample temperature and the AC temperature 

oscillation were measured with the thinistor mounted on the 

sample. The thinistor was calibrated against the Pt 

thermometer as follows. The thinistor resistance, R, was 

measured about every 0.5 K while the temperature, T, was 

increased linearly at a rate of a few hundreds of mK per 

hour with the inside of the calorimeter filled with He 

exchange gas. The simple polynomial, 

(6 1) 

T-A+BlnR+CUnR)2, 

was fit to the calibration data by a least-squares 

procedure, giving a random scatter of ca. 3 0 mK over the 

temperature interval of the measurements. The use of Eq. 

(6.1) was preferred over other procedures143 because of its 

simplicity. For the purpose of converting lock-in amplifier 

readings to temperature the inverse fit, i.e. InR = f(T) 

also had to be found, and AT for small values of AR was 
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calculated by differentiation of Eq. (6.1). 

The thinistor calibration was repeated periodically. 

When the thinistor was thermally cycled from 360 K down to 

liquid nitrogen temperature its calibration shifted towards 

lower temperature by about 200 mK. Over a few months, 

values tended to give higher temperatures for a given 

thinistor resistance when the thinistor was kept in vacuum 

or in helium atmosphere, which may indicate slow degradation 

of the thinistor, but results were within 150 mK. Most 

important, the sensitivity (resistance derivative of Eq. 

(6.1)) was constant for different calibrations in the 

temperature range from 220 to 330 K. The temperature 

coefficient of the resistance of the thinistor, a=£lnR/«ST 

decreased with temperature from a room-temperature value of 

around 4.6 % resistance change/K. 

Thermistors are among the most sensitive thermometers; 

they are much more sensitive than thermocouples commonly 

used in AC calorimeters. The value of a obtained for the 

thinistor used here is typical for high-sensitivity bead 

(glass-encapsulated) thermistors. However, the thinistor is 

a superior temperature detector in an AC calorimetric 

experiment because it combines a high sensitivity with a 

very low thermal mass and it can be placed in very good 

thermal contact with the sample. A thermistor similar to 

the one used here also can be used successfully around the 

liquid-nitrogen temperature7 provided that it is not 
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thermally cycled to room temperature. 

The temperature of the experiment was scanned linearly 

up or down by regulating the power to the heat sink. It was 

done by the computer which changed the voltage at the analog 

outputs of the lock-in amplifier (Sec. 6.2) so as to induce 

the preset temperature drift rate. 

The design of this calorimeter allows its operation in 

the temperature range up to the melting point of the indium 

seals. The lower range of temperature is limited by the 

sensitivity of the platinum resistance thermometer, which 

loses sensitivity below about 20 K. 
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6.5 Performance of tho calorimeter 

The sensitivity of an AC calorimeter is limited by the 

accuracy of the measurement electronics, the stability of 

the thermal regulation, and by various thermodynamic noises, 

e.g., the Johnson noise in the thermometer, the 1/f noise, 

noise in the lock-in amplifier, and pick-up noise. (See 

Kenny and Richards18 for a discussion of the performance of 

an ideal AC calorimeter.) The major source of noise in the 

present experiment is 1/f noise. The noise density was 

measured using the noise-measurement capability of the lock-

in amplifier, and it was found that it varied almost as 1/f 

in the frequency range from 1 Hz to 10 Hz. The noise 

contribution to the measured signal was around 0.5 pV 

(around 0.2 % of the total signal) for integration times 

typically used in the experiment (10 s) in good agreement 

with our calculated estimates of the 1/f noise in the 

thinistor, and with the observed scatter in the data. This 

set a lower limit on the resolvable change in ATAC as around 

5X10"^. 

Similar values for AC calorimeter sensitivity are given 

by Garland15 for a room-temperature experiment employing a 

microbead thermistor as a temperature oscillation detector. 

The sensitivity of the measurement could be improved 

significantly by further thinning the sample which would 

permit operation at higher frequency. 
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Chapter 7. Experimental results - Heat capacity of 

gadolinium 

7.1 sample preparation procedure 

The heat capacities of four gadolinium samples 

(designated A, B, C and D) were measured in this study. 

Three of the samples (samples A,B and C) were cut from an 

electrotransport-purified single crystal of Gd grown at the 

Ames Laboratory, Energy and Mineral Resources Institute. 

This crystal has been characterized by previous electrical 

resistance"9 [R(293 K)/R(4.2 K)*150] and magnetic 

susceptibility130 studies. 

Preliminary measurements were carried out on samples A 

and B. These samples and sample C were cut from the larger 

crystal with a diamond saw. After cutting, sample A was 

around 0.25 mm thick and it was subsequently ground to a 

thickness of 0.15 mm by rubbing against a silicon carbide 

600 grit grinding paper (thickness chosen to ensure that the 

heating signal frequency would be of the order of few Hz), 

and polished with diamond paste (final polishing was done 

with 1 pm diamond paste). The final sample dimensions were 

3.20X5.28X0.15 mm3 with the c-axis perpendicular to the 

sample surface. 

Sample B was prepared in the saute way and its final 

dimensions were 3.08X5.18X0.12 mm3. Afterwards sample B 
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was annealed at 850°C for 24 hours in a vacuum of 5X10°Torr 

in a tantalum foil wrap. 

The following two steps of the sample preparation 

procedure were the same for all the samples measured. A 

heater was evaporated on one side of the sample (as 

described in Sec. 6.2). A thinistor was glued in the centre 

of the opposite side of the sample with thinned GE 7031 

varnish. The thinistor extension leads, made of two pieces 

of platinum wire 17 pm in diameter, were soldered to the 

calorimeter extension wires on a piece of a printed board 

glued to the sample holder (Chapt. 6). 

The total mass of the thinistor and Pt extension wires 

was around 0.4 mg. The sample assembly mass for sample A 

(gadolinium plus varnish plus silver loaded epoxy and plus 

thinistor with the extension wires ) was: 0.0142 g; Gd mass: 

0.0131. The sample assembly mass for sample B was: 0.0123 

g; Gd mass: 0.0113 g. 



128 

7.2 Measurement in the AC mode, including heat treatments 

7.2.a Measurements on samples A and B 

The optimum range for the frequency of the heating 

signal was found by measuring the amplitude of the AC 

temperature oscillations, ATAC, as a function of the inverse 

of the heating frequency, GO"1. For heating frequencies in 

the range from 1 to 3.5 Hz ,ATAC was inversely proportional 

to w and the phase shift between the heating signal and the 

AC oscillations was of the order of few degrees. The 

heating frequency selected was the frequency for which the 

phase shift was almost zero close to Tc; this frequency also 

gave the maximum value of the product of the lock-in 

amplifier signal and the heating frequency. The heating 

frequency was 2.0 Hz for sample A and 1.9 Hz for sample B. 

In a typical measurement series, a sample was heated 

with a signal of predetermined frequency and rms power of a 

few hundreds of pVI (Prms=170 pW for most of the runs for the 

samples A and B). This heating signal induced temperature 

oscillations of the order of a few mK resulting in voltage 

oscillations over the thinistor of the amplitude of a few 

hundreds of pV. The voltage signal of this order was easily 

detected by the lock-in amplifier and was free of any 

visible noise. The SR-530 lock-in amplifier has a double-
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section low-pass filter after its demodulator stage. The 

first section has a time constant from 1 ms to 100 s; it 

precedes the second section in the output amplifier. The 

second section can be excluded from the circuit or set to 

0.1 s or 1 s. Each of the sections provide 6 dB/oct 

attenuation. The time constant used in the measurements 

were 10 s and 30 s on the first section, and l s on the 

second section. 

The temperature of the heat sink was increased or 

decreased at a rate of a few mK per minute and the voltage 

oscillation amplitude and the heat sink temperature were 

recorded as functions of time. The sample temperature was 

determined by adding to the heat sink temperature the 

constant temperature difference between the sample and the 

heat sink, ATDC, due to the sample heating. ATDC was 

measured with the thinistor at the beginning and the end of 

each series and it depended on the heating power, the 

pressure of He exchange gas and the rate of heating. This 

temperature difference changed by at most 100 mK during a 

single run lasting more than 24 hours, and for the purpose 

of data analysis it was assumed to be a linear function of 

temperature. The average T̂ . was usually used for 

calculations, which did not change the results in a 

noticeable way. 

During measurement the inside of the calorimeter was 

filled with helium gas at 2Xl0"3Torr. At this pressure the 
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thermal conductance of the leads contributed approximately 

30% to the total heat conductance. The experimentally 

measured external time constant for this pressure, T2, was 

around 3.5 s; the internal time constant, T,, was estimated 

to be of the order of 10"3 sec. Measurements made at 

different pressures of helium (2X10° Torr to atmospheric 

pressure) and also when the inside chamber was evacuated (to 

5XiO"°Torr) gave the same results. Increasing the 

temperature drift rate from 5 to 60 mK/min also did not 

affect the results. This indicates that the sample was in 

thermal equilibrium. 

The results for samples A and B are shown in Figure 

7.1. The data points were collected every 200 mK for sample 

A; for sample B they were collected every 100 mK away from 

the critical temperature and every 10 mK close to the 

critical temperature. The temperature was increased at a 

rate of around 6 mK per minute and ATAC was in the range 2.5 

to 3.5 mK. 

The heat capacity curve for sample A exhibits a 

cosiderable smearing of the phase transition (the rounding 

is of the order of 2 K) . Lewis121 and Simons23 reported a 

similar large smearing for their measurements on unannealed 

samples. Lewis annealed his sample for 8 h at 1100 K under 

vacuum (the pressure was not stated). After annealing the 

rounding of the phase transition decreased to around 0.4 K. 

Simons obtained his sample from the source used by Lewis. 



131 

t 

(J 

300 

I 

Fig. 7.1 The heat capacity of Gd near its ferromagnetic 

phase transition for sample A (curve A) and sample 

B (curve B). 
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The annealing procedure employed by Simons (the sample was 

annealed at 850°C for 24 hours in a vacuum of 5XiO"°Torr in 

a tantalum foil wrap) decreased the rounding in the heat 

capacity curve to a level stated to be around 0.1 K. The 

same annealing procedure was used here for sample B. 

After annealing the sharpness of the phase transition 

for sample B improved significantly compared to sample A. 

Sharpening was accompanied with an increase in the Curie 

temperature. This suggests that at least part of the 

smearing in sample A was due to strains in the sample which 

could have been induced by cutting and grinding. The 

rounding in the heat capacity curve for sample B was around 

0.5 K with a maximum heat capacity of around 58 J mol"1 K'1 

which still compares rather poorly with the rounding 

reported by Simons after annealing (his sample displayed 

rounding of the order of 4 K before annealing) and with a 

very sharp transition reported by Lanchester et al.m (the 

peak value of the heat capacity in their study was 66 J mol1 

K1). 

The residual resistance ratio, RRR, 

[RRR = R(293 K)/R(4.2 K)] of the crystal from which samples 

A, B and C were cut was measured in the basal plane using a 

four-wire method. The contacts to the crystal were made 

with four 20-/jm-diam gold wires spot-welded to the crystal 

surface. The RRR for this crystal was around 150 and this 

value agreed with the value reported previously119. The 
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sample measured by Lanchester et al.122 had RRR=163. Lewis's 

sample had RRR=19; Simons did not give the resistance ratio 

for his sample but the RRR of his sample before annealing 

was probably near the value given by Lewis. 

The RRR of sample A was measured after cutting 

(RRR»100) and after grinding (RRR«60) and also after 

annealing (RRR«30). (Sample A was annealed after measuring 

its heat capacity and the annealing procedure was the same 

as for sample B.) The RRR of sample B after annealing was 

also around 30. The decreasing values of RRR indicate that 

grinding and polishing degraded the quality of samples A and 

B. Moreover, the annealing procedure, which was reported to 

have worked well for an apparently less pure sample in 

Simons's case, did not sufficiently improve the quality of 

samples A and B. 

It was decided to carry out a systematic study of the 

effect of different annealing procedures on the sharpness of 

the phase transition in Gd using a sample for which the 

possible negative effects of cutting and grinding were 

minimized. The results are given in the next section. 
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7.2.b Measurements in the AC mode on sample C 

Sample C was not subjected to extensive grinding after 

it had been cut from the larger crystal. It was polished 

and ground but only to the extent needed to smooth out the 

rough edges left after cutting (final dimensions 

5. 34X3.02X0.3 2mm3; sample assembly mass: 0.03 30 g; Gd mass: 

0.0320 g). The heating frequency for sample C was 1.5 Hz 

and the heating power was Pm8=300 p\i. 

The heat capacity of sample C before annealing and 

after three consecutive heat treatments is shown in Fig. 7.2 

The data points were collected every 100 mK; the temperature 

drift rate was 12 mK/min. 

Wantenaar et al ,129 measured AC susceptibility of Gd on 

a variety of unannealed and annealed polycrystalline 

samples. Some of their samples were annealed at 850°C for 

24 hr in a low-pressure helium atmosphere and allowed to 

cool over 12 hr. This procedure was found to reduce the 

broadening of the transition. However, their best results 

were obtained for a sample annealed in a purified stream of 

argon. The annealing procedure of Wantenaar et al.129 was 

employed in the heat treatments of sample C. 
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Fig 7.2. The heat capacity of Gd near its ferromagnetic 

phase transition for sample C; curve C - heat 

capacity of unannealed sample; curves CI, C2 and 

C3 - heat capacity after consecutive heat 

treatments as described in the text. 
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During the first heat treatment, sample C was heated 

from room temperature to 850°C in a few minutes, annealed at 

850°C for 1 hr and then cooled to room temperature over a 

few minutes. All these procedures took place in a 

continuous flow of high-purity helium (purity 99.999%). The 

Gd sample was wrapped in tantalum foil which acted as an 

oxygen trap. 

This heat treatment resulted in a large smearing of the 

phase transition, considerable reduction of the peak value 

of the heat capacity, and in a decrease in the critical 

temperature as estimated by the peak temperature, by around 

2.5 K, in comparison with the unannealed sample (Fig. 7.2, 

curve CI). 

Because of the fast cooling, considerable strain was 

expected to be frozen-in, producing a large amount of 

disorder. Thus the results of the heat capacity measurement 

for this heat treatment suggest that strains may be one of 

the main reasons for observed smearing of the phase 

transition in Gd. 

During the second heat treatment the sample was heated 

at 300 K/hr from room temperature to 850°C, held at 850°C 

for 2 hr and then cooled to room temperature over 24 hr, all 

in flowing high-purity He. The heat capacity curve after 

this second annealing is given by curve C2 in Fig. 7.2. 

This heat treatment almost restored the peak temperature 

observed for the unannealed sample but the peak value of the 
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heat capacity remained depressed. 

In the third heat treatment the procedure from the 

second heat treatment was repeated but the sample was kept 

at 850°C for 8 hr. The heat capacity of the sample after 

the third annealing is given by curve C3 in Fig. 7.2. 

Curve C3 nearly overlaps with curve C2 and also with the 

heat capacity curve for sample A. However, curve C3 is 

steeper on the high-temperature side of the transition than 

curve C2 or the heat capacity curve for sample A. 

The negligible improvement of the sharpness of the 

phase transition after the third heat treatment suggests 

that all the strains which were induced in the first heat 

treatment were removed, and the remaining smearing is 

probably caused by other factors; one of them could be 

sample contamination during one of the treatments. 

It was realized that other variations of the annealing 

procedure were unlikely to further improve the sharpness of 

the phase transition. There may have been dissolved gases 

such as oxygen, nitrogen and hydrogen present in the initial 

crystal which could not be removed using the annealing 

procedures described here.1** (One of the techniques used 

to purify rare earth metals with respect to oxygen and 

nitrogen is electrotransport purification in ultra-high 

vacuum.144) 

Gadolinium is known to absorb oxygen and hydrogen 

easily and it also oxidizes slowly when exposed to air.144 
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The crystal from which samples A, B and C were cut had been 

exposed to air for long periods of time. This prolonged 

exposure to air may have a significant effect on the sample 

quality. For example Stetter et ai.131 measured the magnetic 

susceptibility of Gd films and found that exposing a Gd film 

to air reduced the peak in the susceptibility by a factor of 

4. Williams et al.l4i observed that exposure to air of a 

polycrystalline sample of Gd contributed to the broadening 

of the heat capacity curve at the critical temperature. 

In view of concerns about the quality of samples A, B 

and C it was decided to obtain a high quality freshly grown 

sample. 



139 

7.2.c Measurements in AC mode on sample D 

Sample D was grown at the Ames Laboratory, Energy and 

Mineral Resources Institute, by recrystallization (grain-

growth method) from a high-purity stock material produced by 

a metallothermic method.144 The sample D purity was 99.89 

at% (99.99 mass%). (Chemical analysis for sample D is given 

in Appendix B.) The crystal from which sample D was made 

was grown to specified lateral dimensions and thickness of 

the order of 1 mm. This crystal was cut with a diamond saw 

into two pieces, each of thickness of the order of a 

fraction of a mm. The piece which had been glued to the 

backing during the cutting was electropolished and used for 

the measurements reported here as sample D (dimensions 

7.4X4.2X0.22 mm3; Gd mass: 0.0503 g) . The sample residual 

resistance ratio was not measured in order to avoid any 

damage to the sample surface and also to avoid any effects 

due to thermal cycling of the sample. However, a Gd sample 

prepared in the same way and by the same laboratory was 

reported to have RR of the order of 200.123 

The measured heat capacity of sample D is shown in 

Figs. 7.3 and 7.4. The data points shown in Fig 7.3 and in 

Fig. 7.4 were collected every 50 mK and every 20 mK, 

respectively (temperature drift rate ca. 12 mK/min). 
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310 

Fig. 7.3. The heat capacity of Gd near its ferromagnetic 

phase transition for sample D; squares 

denote the heat capacity data of 

Lanchester et al. (Ref. 122). 



u 

141 

294 296 

T/K 

Fig. 7.4 The heat capacity of Gd in the proximity of the 

critical temperature (data for sample D). 
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In Fig. 7.5 the results for sample D are plotted 

together with the results for samples A, B and C. As it can 

be seen in Fig. 7.5 sample D exhibits the sharpest phase 

transition with the largest peak value of the heat capacity 

and the highest peak temperature of all the samples 

investigated in this work. The peak value of the heat 

capacity for sample D is around 64 J mol"1 K*1 in agreement 

with the peak value of around 65 J mol"1 K"1 reported by 

Lanchester et al.122 for a single crystal of Gd of comparable 

quality. The rounding of the phase transition is around 0.2 

K as estimated from Fig. 7.4, which also compares well with 

the rounding reported in other high-resolution heat capacity 

measurements on Gd (Sec. 7.2.a). 

In order to determine how the temperature drift rate 

affects the shape of the heat capacity curve near Tc a 

series of measurements was carried out with temperature 

drift rates in the range from 3 mK/min to 72 mK/min. The 

results were not affected by these drift rate changes (see 

Figs. 7.4 and 7.6). The data points in Fig. 7.6 were 

collected every 50 mK and the temperature was increased at a 

rate 72 mK/min. At this temperature drift rate it was more 

difficult to increase the temperature linearly as a function 

of time which probably explains a slightly larger scatter in 

the data. However the data from Figs. 7.4 and 7.6 are 

almost exactly superimposable, indicating that there is no 

long relaxation time effects (Sec. 3.8). 
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Fig. 7.5 The heat capacity of Gd near the critical 

temperature for samples A, B, C and D. 
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Fig. 7.6. The heat capacity of Gd sample D in the proximity 

of the critical temperature for a high 

temperature drift rate (72 mK/min). 
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The difference between the heat capacity at constant 

pressure and constant volume, ACp.v, for a hexagonal crystal 

is quadratic in the diagonal components of the thermal 

expansion tensor (Sec. 4.1) and can be quite large if these 

components become divergent close to Tc. In Gd the 

magnitudes of aa and ac change by 100% in the temperature 

range from 280 K to the critical temperature123. The elastic 

constant c33 has a small anomaly around Tc (small peak with 

height around 2% of the background value).146147 

Using the literature values of the elastic constants of 

Gd147146 and the power law representation of temperature 

dependence of aa and ac given by Dolejsi et al.m, ACp.v was 

calculated from Eq. (4.8) for Gd in the temperature range 

from 285 to 300 K; the results are shown in Fig. 7.7. The 

average values of the elastic constants were taken over the 

short temperature range of the calculations. The critical 

temperature was assumed to lie within the rounded portion of 

the heat capacity curve for sample D (Tc=294.5 K in Fig. 

7 7). As it can be seen in Fig. 7.7 the difference between 

the heat capacity at constant pressure and at constant 

volume, ACp.v, becomes important close to Tc, as this is the 

temperature range in which the thermal expansivities diverge 

rapidly. ACp_v accounts for around 5% of the total heat 

capacity in the proximity of Tc for T<TC. 
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7.7 The difference between the heat capacity of Gd at 

constant pressure and constant volume near the 

Curie temperature, calculated as described in the 

text. 



147 

Above Tc and a few K below Tc, ACp.v is less than l J mol'
1 K'1 

and can be neglected. The heat capacity of Gd at constant 

volume (calculated from measured Cp and calculated ACp.v) 

near Tc for sample D is shown in Fig. 7.8. 

The molar volume of Gd as a function of temperature 

near Tc also was calculated from the thermal expansion 

data.123 It decreases by around 0.02% in the temperature 

range from 285 K to 300 K so that in the temperature range 

of the critical point analysis, i.e., within a few K of Tc, 

the calculated heat capacity at constant and temperature-

dependent volume approximates well the heat capacity at 

constant and fixed volume required by the theory. 
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7.3 Measurement in the relaxation mode 

The heat capacity data obtained by AC calorimetry were 

normalized to the absolute heat capacity data collected in 

the relaxation mode. In this mode the heat capacity of the 

sample was measured below the phase transition in the 

temperature range from 284 to 287 K and at 277 K, above the 

phase transition at 298, 299 K and at 307 K, and then again 

below the phase transition for sample B to check for thermal 

hysteresis effects. 

The measurement procedure was as follows. The 

temperature of the heat sink was stabilized and the 

temperature difference between the sample and the heat sink, 

AT, was measured as a function of the sample heating power, 

P. The maximum temperature difference, AT̂ ,,, was around 300 

mK. The thermal conductance was calculated from the plot of 

P as a function of AT. In the next step the sample 

temperature was raised to ATtmK, then the heater was turned 

off, and the sample temperature was recorded as a function 

of time (at a rate of around 10 temperature readings per 

second). The last step was repeated several times. The 

thermal relaxation time was found by a least-squares fit to 

the temperature decay data with an exponential function (see 

Eq. (2.26)), and the sample heat capacity at (T + AT^/2) 
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was calculated from Eq. (2.27). The precision of the 

measurement, as estimated from the standard deviations of 

the fits, was around 2%. 

The heat capacity values used to calibrated the data 

obtained in the AC mode are listed in Table 7.1. The data 

in the table are corrected for the heat capacity of the 

addenda using the literature data for the heat capacity of 

silver-loaded epoxy148 and copper149. The correction terms 

contributed around 10% to the total heat capacity of the 

sample assembly for samples A and B and only a few percent 

for samples C and D. The data were not corrected for the 

heat capacities of the GE varnish, bismuth layer and the 

thinistor since their combined mass was less than 1% of the 

total sample assembly. 
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Table 7.1 The experimental heat capacities of Gd obtained 

by the relaxation method, in order of 

determination 

T / K Cp / (J Kl mol 1 ) 

Sample B 

2 8 4 . 1 

2 8 5 . 1 

2 8 6 . 1 

2 9 7 . 1 

2 9 8 . 1 

2 9 9 . 1 

2 8 5 . 2 

2 8 6 . 1 

2 8 6 . 2 

5 1 . 4 5 

5 1 . 5 9 

5 1 . 8 6 

3 9 . 9 5 

3 9 . 2 7 

3 9 . 1 3 

5 2 . 2 9 

5 2 . 0 0 

5 2 . 4 9 

Sample C 

2 8 5 . 0 

2 9 8 . 0 

5 2 . 1 4 

4 0 . 7 0 

continued ... 



Table 7 . 1 . continued . . . 
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T / K Cp / (J K"
1 mol1) 

Sample CI 

285.0 

298.0 

51.10 

41.71 

Sample C2 

285.0 

298.0 

51.43 

41.31 

Sample C3 

285.0 

298.0 

51.69 

41.09 

Sample D 

277.0 

307.0 

50.51 

35.68 
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The only published data for Gd for which tabulated 

values are available are those of Griff el et ai.137. However 

these data are for a single crystal of Gd of lower quality 

than the samples used in this study. The heat capacity data 

of Lanchester et al.122 (the heat capacity values were taken 

from Fig. 1 of their paper1) for a single crystal of Gd of 

quality comparable to the present samples are plotted in 

Fig. 7.3 for comparison with the present data. The scatter 

of the data points obtained in the present study, as 

estimated from the plot, is around 0.2%. 

Based on the literature data, the resolution of these 

data is one of the highest reported to date for AC 

calorimetry and other calorimetric methods. This also is 

the first report of high-resolution data on heat capacity of 

Gd, measured by the AC method and calibrated with absolute 

heat capacity measurements made on the same sample. Lewis121 

reported his results in relative units and Simons23 

calibrated his data using the data of Griff el et al .137 near 

0°C and shifting the temperature scales to account for the 

difference in the critical temperatures. Wantenaar et al.m 

made AC heat capacity measurements on relatively massive, 

a The data points were digitized from this figure, 
courtesy of Dr. Garland from Massachusetts Institute of 
Technology. 
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cylindrical samples of Gd (approximate mass 3 g) and they 

calibrated their data with the use of Eq.(2.3). However 

this procedure led to differences in heat capacity values 

for different samples as large as 20% far away from the 

phase transition (at temperatures of around 260 and 320 K). 

Wantenaar et al.m could not explain this scatter, which 

could be caused by a non-uniform heating of the samples. 

There is good overall agreement between the data of 

this work and the data of Lanchester et al.122. However, the 

temperature of the peak value of the heat capacity for the 

present data is around 0.6 K higher than the corresponding 

temperature for their data. Since in the data of Lanchester 

et al.122 there is a temperature step of around 0.5 K between 

the peak value of the heat capacity and the next data point 

at increased temperature it is possible that a higher 

resolution in their measurements would shift the maximum 

value of heat capacity to higher temperature. Higher 

resolution could also show rounding in their heat capacity 

curve. 

The differences between the present data and other data 

(see references in Sec. 5.4) are likely due to differences 

in sample quality. This view is supported by results of 

Robinson et al.li9 who investigated the influence of 

controlled amounts of carbon impurity on the shape of the 

heat capacity of Gd near the Curie point. Changing the 

amount of carbon added from 0 to 1% they found that the heat 
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capacity peak was decreased in magnitude and moved towards 

lower temperatures as the impurity concentration was 

increased. Wantenaar et al.m also obtained the highest 

critical temperature, as estimated from the susceptibility 

experiment, for the annealed sample of Gd in their studies 

of the magnetic susceptibility of Gd. The Gd sample that 

was annealed and then strained showed a slightly depressed 

critical temperature. 

Williams et ai.145 investigated the effects of strains 

on the heat capacity of polycrystalline samples of Gd near 

the Curie temperature. They measured the heat capacity of a 

finely grained gadolinum sample (si mm grains as observed by 

etching the surface), of a larger grained gadolinium sample 

obtained by zone melting recrystallization of the finely 

grained sample and of an annealed large-grained sample. The 

sharpest phase transition and the highest peak value of the 

heat capacity with the highest peak temperature was obtained 

for the large-grained and annealed sample. The transition 

was depressed for the large grained unannealed sample and 

significantly depressed and shifted to lower temperatures 

for the finely grained sample. Since all of the samples 

were of the same initial purity and zone melting does not 

result in significant purification of the sample 

(redistribution of impurities is the more usual result) 

Williams et al.l4i concluded that the broadening of the phase 

transition they observed is caused by different degrees of 
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strains in the samples. 

The conclusion of Williams et ai.14S is confirmed by the 

results of the heat capacity measurements presented in this 

work. The heat capacity measurements made on single-crystal 

samples of Gd which were variously strained due to different 

preparation procedures showed that the annealing led to a 

significant reduction in the broadening of the phase 

transition. While the strains cannot account for all the 

observed smearing they were responsible for gross large-

scale smearing and large shifts in the critical temperature. 

In conclusion the main features of heat capacity curves 

in the vicinity of the Curie point in Gd as reported by 

different authors and as observed in the present study are 

their differences in Curie temperatures, the degree of 

rounding at Tc, the relative differences in heat capacities 

for the ferromagnetic to paramagnetic regions, and the peak 

value of the heat capacity. Those features depend on sample 

quality, i.e. on the degree of impurities in the sample, 

including gases dissolved in the sample such as oxygen, 

nitrogen and hydrogen, the distribution of dislocations or 

other static defects and on its annealed or non-annealed 

state.122139145 
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Chapter 8. Analysis of the critical behaviour of the heat 

capacity of Gd 

8.1. introduct ion 

The theoretical predictions about critical phenomena 

pertain to the asymptotic behaviour of Cv approaching Tc. 

Because experimental results are obtained at some non-zero 

values of the reduced temperature, it is not trivial to 

extract from them estimates of parameters which can be 

compared with the theory. Only fits based on a large number 

of data points collected close to the critical temperature 

can give reliable estimates of these parameters. 

The analysis presented here focuses on the heat 

capacity measurement of sample D of Gd, as this sample 

exhibited the sharpest transition and gave the highest value 

of the peak heat capacity. 

The measured heat capacity at constant pressure, cp, 

and the calculated heat capacity at constant volume, Cv, for 

sample D were analyzed in terms of the fitting functions 

cpV - i|t|-
a+B+£t , (8.1a) 

and 

C „ - A | t | - a ( l + 0 | t | ' ) + B + £ t , ( 8 . 1 b ) 
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for T>TC and the same functions with primed coefficients for 

T<TC. The term (A/a) |t|"° represents the leading 

contribution to the singularity of Cp or Cv. If one assumes 

that x>0 (x=x'=0.5 in the present analysis - see Sec. 3.8) 

then the term D|t|* vanishes at Tc and represents a singular 

contribution to the heat capacity which is of higher order 

than the leading singularity. It is known both from 

experiments89 and theory150151 that such a term generally 

must be considered in the data analysis (see also Sec. 3.8). 

The data in the proximity of Tc also were fitted to the 

function 

Cw.o-A|ln|-i|p +B, (8.2) 

for T>TC and the same function with primed coefficients for 

T<Te. The values of the ratios A/A'=l/4 and t0/t0'=2 were 

constrained to those predicted by the theory.6570 

It is difficult to interpret data extremely near Tc in 

terms of Eqs. (8.1) and (8.2) because of rounding in the 

heat capacity curve in that region. Certainly, the data 

affected by rounding should not be fit to Eq. (8.1) or Eq. 

(8.2) without some modifications which depend on possible 

causes of rounding. These data were excluded from the 

analysis in terms of the fitting functions given in this 

section. The factors which may contribute to the rounding 

were discussed in Sees. 3.8 and 4.2.b and will be summarized 
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later in this chapter. 

Finally, fits to the heat capacity data were considered 

on the basis of Eq. (3.45) which describes a model system 

with random quenched impurities at its critical dimension in 

the proximity of the Curie temperature. However, the 

temperature range in which this random critical behaviour 

may be observed is not in the reduced temperature range 

accessible in the present experiment. In fact, the 

crossover from non-random to random behaviour is extremely 

slow and covers many decades in reduced temperature 

(Liebmann et al.i3 estimated that this crossover may take 

around ten decades in reduced temperature) so the random 

uniaxial critical behaviour may be unobservable in Gd. 

Moreover, the phase transition for the random uniaxial 

ferromagnet is sharp and second-order so Eq. (3.45) is not 

suitable to describe the heat capacity data which exhibit 

apparent smearing on a reduced temperature scale 10"*. 

Various methods have been employed to fit heat capacity 

data to non-linear functions like Eq. (8.1). For example, a 

popular method has been to subtract a regular lattice 

contribution to the total heat capacity and to do a linear 

fit to the "magnetic" part of the heat capacity (one may 

consider plotting the magnetic part as a function of ln|t|). 

While it is quite a plausible approach it may lead to 

difficulties because it is not clear that subtraction of an 

estimated regular background eliminates all regular 
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contributions to the heat capacity; some may be associated 

with the transition. Secondly, the uncertainty in the 

subtracted regular term may have a large effect on the 

fitted values of the remaining parameters. 

The method employed here allows simultaneous fitting of 

both linear and non-linear parts. The computer program used 

performs a non-linear least-squares fit to data. The 

program was initially developed by Malmstrom and Geldart152 

and subsequently extended. It has been used previously to 

analyze resistivity"9 and magnetic susceptibility data130 on 

Gd and heat capacity data on Ni.152 
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8.2 The fitting procedure 

It was assumed initially that D=D'=0. In this case Eq. 

(8.1) reduces to a pure power law. The seven parameters (A, 

A', B=B', TC=TC', a, a', and E=E') were least-square 

adjusted. (The condition E=E' was imposed to assure that 

the regular contribution to the total heat capacity is 

indeed regular at Tc.) The data were analyzed in the 

temperature range tmin< 111 <tm„ where tmin and t ^ are defined 

with respect to the initial choice for Tc. 

In the first step of the analysis A, A', B-B', and 

a=a', were fitted for some fixed value of Tc. The Tc 

selected was in the temperature range in which data affected 

by rounding were excluded. If the fitting routine 

converged, the next step was to fit the critical 

temperature. If the critical temperature could be fitted, 

the statistical parameters of the fit (the estimated 

standard deviation of the fit, the estimated 95% confidence 

intervals in the fitted parameters, the plot of residues 

[the difference between the measured C and the fit to the 

data] and the histogram of the residues) were printed out 

and analyzed. At the beginning almost all the data were 

kept in the fitted data set, and the p'.ot of residues showed 

the presence of systematic structures near Tc in the region 

of the heat capacity curve affected by rounding. This 

indicated the poor quality of the fit and unreliable 
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representation of the data. Removing the data points 

affected by rounding resulted in a significant improvement 

of the fit quality. 

Alternatively, the best fit could be located by least-

squares fitting A, A', B=B', E=E' for Tc and a stepped over 

a range of values; this best fit was then compared with the 

fit obtained by least-squares fitting of all the parameters 

in order to select the fit giving the smallest standard 

deviations and the best plot of residues. In practice these 

two procedures gave the same result, serving as a 

consistency check. 

In the next step a range of fit analysis was performed 

for different values of t,^ and tmin. In this analysis the 

data were fitted for decreasing values of tmM. This was 

done in order to find the temperature range in which a was 

not sensitive to further decrease in t,,,,,,. In a similar way 

tmin was increased to see if this was going to bring about a 

further improvement in the fit quality. While the reason 

for varying t,̂ , is to find the beginning of the asymptotic 

critical region, one generally insists that tmin be kept as 

close to Tc as possible. However, in the case of Gd the 

presence of crossovers justifies seeking also the 

temperature range in which a given fitting function best 

represents the data. 

After finding the best tmin and t,^ two predictions of 

the renormalization group theory were tested. Firstly, a 
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was permitted to be different from a'. In each case, the 

standard errors for a and a' overlapped and thus permitted 

a=a', consistent with the scaling prediction. Secondly the 

constraint B=B' which is predicted by the RG theory90 was 

tested. It was found that B=B' within experimental error, 

i.e. the transition is continuous. 

The data for all the samples also were analyzed by 

fitting to Eq. (8.1) with D and D' least-squares adjusted. 

The constraints a=a', E=E', B=B' were retained and x=x' was 

fixed at 0.5, consistent with the theoretical predictions 

and other experiments.153 

Finally, the data for sample D very close to Tc were 

fitted to Eq. (8.2). The parameters in Eq. (8.2) were 

fitted for different fixed values of Tc. The constraint on 

each parameter were systematically relaxed to test whether 

this was going to improve the fit. This fitting was 

performed for the combined data from the both sides of the 

transition, and also for the high-temperature side of the 

transition separately. 
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8.3 Results for the fitted parameters 

The parameters obtained by fitting the heat capacity 

data for sample D to Eq. (8.1) are given in Table 8.1. 

The critical point analysis for sample D started by 

finding the best pure power law fit and the correction to 

scaling fit to the Cp data. It was found that generally a 

reasonable power law fit was possible over a rather wide 

temperature range (the range overlapped with the temperature 

range of the correction to scaling fit given in Table 8.1). 

However a subsequent range-of-fit analysis showed that the 

quality of the fit could be improved considerably by 

decreasing t̂ ,,. It was also found that the fit could be 

further improved by dropping a number of points close to Tc, 

i.e. by increasing tmin, although these points did not appear 

affected by rounding. Thus, the best power law fit was 

obtained over a rather restricted reduced temperature range 

which however lay in the critical region. Both Tc and a 

were least-squares fitted in this analysis. 

Inclusion of the confluent correction to scaling term 

in the fit brought about a decrease in the standard 

deviation of the fit and also permitted a good fit in a 

wider temperature range (over one decade in the reduced 

temperature). 
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Table 8.1 Results of fitting for the data for sample D. 

The estimated errors are 95% confidence intervals 

obtained from the fits assuming independent and 

random errors in the heat capacity measured. 

T 

a 

A' 

A 

A/A' 

D' 

D 

D/D' 

E 

B 

aFIT 

PL - c; 

2 9 4 . 2 5 
± 0 . 0 5 

- 0 . 2 0 8 
+ 0 . 0 1 4 

1 . 5 7 
+ 0 . 3 4 

1 6 . 1 
± 2 . 1 

1 0 . 3 
± 2 . 6 

-

mm 

.m 

508 
± 54 

6 5 . 8 
± ° ' 7 

0 . 0 6 0 4 
+ 0 . 0 0 9 1 

CRSC - Cp
b 

2 9 4 . 5 
± 0 . 0 5 

- 0 . 0 2 6 
+ 0 . 0 0 2 

- 4 3 . 7 4 
+ 7 . 7 6 

- 6 7 . 0 5 
± 7 . 7 2 

1 .52 
+ 0 . 3 2 

1 .15 
+ 0 . 3 6 

0 . 5 8 
+ 0 . 1 5 

0 . 5 1 
± 0 . 2 1 

63 
+ 30 

102 
± 6 
0 . 0 5 4 5 
+ 0 . 0 0 6 0 

PL - Cv
c 

2 9 4 . 2 
+ 0 . 1 

- 0 . 1 8 7 
+ 0 . 0 2 3 

2 . 0 7 
+ 0 . 2 8 

1 1 . 7 
+ 4 . 8 

5 . 6 5 
+ 2 . 4 4 

-

-

-

295 
± 50 

6 4 . 3 
± 2 . 7 

0 . 0 6 4 1 
+ 0 . 0 0 8 9 

CRSCI-Cv11 

2 9 4 . 5 
± 0 . 1 

- 0 . 0 2 0 
± 0 . 0 0 2 

3 0 . 2 
± 2 0 . 5 

4 8 . 8 
± 2 0 . 1 

1 . 6 2 
+ 1 . 2 8 

1 .17 
± 0 . 4 9 

1 . 3 6 
+ 0 . 6 8 

1 .17 
± 0 . 7 7 

148 
± 85 

89 
± 17 

0 . 0 5 8 0 
± 0 . 0 0 8 1 

CRSCII-Cv
e 

2 9 4 . 5 
± 0 . 1 

- 0 . 0 2 0 
± 0 . 0 0 2 

- 3 7 . 3 9 
± 9 . 9 5 

- 5 6 . 4 0 
± 9 . 8 9 

1 . 5 1 
± 0 . 4 8 

1 . 0 0 
+ 0 . 3 6 

0 . 9 8 
± 0 . 2 7 

0 . 9 8 
± 0 . 4 6 

105 
± 35 

95 
± 9 

0 . 0 5 7 4 
+ 0 . 0 0 6 7 

8 PL - Cp: power law fit to Cp data. 

Range of the fit: t=5.9XiO"3to 0.5X10"3, T<TC 

t=3X10"3to 6.9X10"3, T>TC. 

75 data points in the fit. 
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Table 8.1 continued ... 

b CRSC - Cp: fit with the correction to scaling term to Cp 

data. Range of the fit: t=15.3XiO"3 to 2.6X103, T<TC 

t=2.0X10"3tO 11.9X10"3, T>TC. 

130 data points in the fit. 

1 PL - Cv: power law fit to Cp data. 

Range of the fit: t=9Xio3to 0.7X103, T<TC 

t=3X10"3 to 8X10"3, T>TC. 

79 data points in the fit. 

d CRSCI - Cv: correction to scaling fit to Cv data over the 

temperature range of the pownr law fit. 

e CRSCII - Cv: fit with the correction to scaling term to Cv 

data. Range of the fit: t=12XlO"3to 1.7XlO"3, T<TC 

t=1.7X10'3to 13 XlO"3, T>TC. 

116 data points in the fit. 
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The exponent a was least-squares fitted but the critical 

temperature could not be least-squares fitted and was 

determined by fitting a for a range of Tc values. 

It was reported in Sec. (7.2) that the difference 

between Cp and Cv for Gd is significant on the low-

temperature side of the transition close to Tc. Therefore 

the Cv data for sample D were fitted separately to Eq. 

(8.1); the results are given in Table 8.1. 

Finally the Cv data for sample D in the proximity of TL 

(t<10Jl) were fitted to Eq. (8.2). Both sides of the 

transition were used ir. the fit and the constraints A/A'=1/4 

and t0/t0'=2 were initially imposed. When a good fit could 

not be obtained these constraints were either relaxed or the 

ratios changed to other values. However a satisfactory fit 

was not obtained. 

Taking into account the fact that the low-temperature 

side of the transition could be affected by an unknown 

temperature dependence of the demagnetization term which may 

be important close and below Tc, it was decided to fit the 

high-temperature side of the transition separately to Eq. 

(8.1) and Eq. (8.2) . 

A good logarithmic fit was obtained over the 10^ decade 

in the reduced temperature (3.2X10"'< t < 1.7X103) for 

Tc=294.6 K (the estimeted standard deviation of the fit 

cm=0.0B55). The fit was based on twenty data points and 

the other parameters of the fit were: B=-11.5 + 1.6, A=29.8 



168 

±0.8 and t0=l was kept constant. (Other values of t0 were 

tested and am was minimized for t0=l) . 

The power law fit in the same range gave the least-

squares adjusted ct=0.98 + 0.07, which is not physically 

realistic. This is considered in more detail in Sec. 8.4. 

Fitting the high temperature data to the power law over 

wider temperature ranges resulted in good fits but they were 

extremely dependent on the range of temperature. On 

excluding data points which were around 10'2 on the reduced 

temperature scale the exponent a changed its value from 

a=-0.288 in the reduced temperature range 2X10"3< t <1.8X10"2 

to a=0.774 in the range 1.3X10"3< t < 8. 8 XlO"3 (Tc=294.5 K 

for these fits). The fitting routine failed to least-

squares adjust the exponent a when the correction to scaling 

term was included into the fit. When different fixed values 

of the exponent a were tried in this fit the fitting routine 

also failed to converge. In some cases the values of the 

fitted parameters oscillated around some average values 

under iteration of the fitting routine. 

In order to obtain a good power law fit to the heat 

capacity data for the remaining samples a large number of 

points affected by rounding had to be excluded in each case 

from the fit. This resulted in removing almost all data 

points below t=5xi0"3 from the analysis. The number of data 

points left in the fits was around 100 for samples A, C, CI, 

C2, C3 and around 300 for sample B. The power law 
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parameters for samples A, B, C, CI, C2, C3, are given in 

Table 8.2. 

When a correction to scaling term was included into the 

fit a satisfactory fit could not be obtained. The fitting 

procedure always failed to converge on at and/or Tc. It was 

possible to least-squares adjust linear parameters for fixed 

values of a <»nd Tc but the errors in D and D' were of the 

order or larger than D and D' themselves. In most cases the 

fitted values of either A or A'' were almost zero with the 

very large value of the corresponding parameter D or D'. 
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Table 8.2. Power law parameters of the fits to the data 

for samples A, B, c, Cl, C2, C3. 

am is in the range from 0.03 to 0.06. 

Sam­

p l e 

A 

B 

C 

Cl 

C2 

C3 

Tc (K) 

2 9 4 . 3 

+ 0 . 3 

2 9 3 . 8 6 

+ 0 . 0 2 

2 9 3 . 8 

± 0 . 1 

2 9 3 . 0 6 

± 0 . 0 5 

2 9 4 . 4 7 

+ 0 . 0 6 

2 9 3 . 7 

± 0 . 1 

Range o f f i t 

t M S t o tmin, T<TC 

tmin t o t,„„, T>TC 

3 . 2 X lO 2 t o 10"2 

5 . 1 XlO"3 t o 1 .5 X10"2 

2 . 5 X10"2 t o 5 . 8 X10"3 

1 .4 XlO"3 t o 6 . 6 XlO"3 

3 . 2 XlO"2 t o 7 . 7 X10"3 

5 XlO"3 t o 1 .7 XlO"2 

3 . 4 XlO"2 t o 1 . 1 XlO"2 

3 XlO"3 t o 1 . 6 XlO"2 

2 . 8 XlO"2 t o 9 . 7 XlO"3 

2 . 7 XlO"3 t o 1 .7 XlO"2 

2 . 8 XlO"2 t o 7 XlO"3 

5 XlO"3 t o 2 XlO"2 

a 

- 0 . 0 6 8 

± 0 . 0 4 1 

- 0 . 1 5 6 

+ 0 . 0 0 7 

- 0 . 1 0 0 

± 0 . 0 1 6 

- 0 . 0 9 8 

+ 0 . 0 1 5 

- 0 . 0 6 5 

± 0 . 0 2 0 

- 0 . 1 4 4 

± 0 . 0 1 6 

B 

79 

± 18 

62 

+ 1 

83 

± 6 

73 

± 4 

84 

± 11 

67 

± 2 

A/A' 

1 . 6 6 

± 0 . 5 3 

6 . 9 7 

± 1 . 4 4 

1 . 7 9 

± 0 . 2 2 

1 . 9 7 

± 0 . 2 7 

1 . 5 7 

+ 0 . 2 5 

2 . 5 4 

± 0 . 3 6 
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The best representation of both Cp and Cv data was 

obtained in terms of the correction to scaling fit. This 

fit gave the smallest standard deviation and represented the 

data over the widest temperature range (Fig. 8.1). The pure 

power law fit to Cp and Cv data gave a standard deviation 

similar to that for the fits with the correction to scaling 

term but it represented the data over narrower temperature 

range and it also gave unphysically large values of the 

ratio A/A' and of the regular term E. 

The values of the fitted parameters for the fits with 

the correction to scaling term are in good agreement with 

the corresponding results obtained by Jayasuriya124 also from 

a fit with a correction to scaling term. He obtained 

a=-0.03 +0.02 and the universal ratios A/A'=1.42 +0.75 and 

D/D'=0.71 + 0.56, and also B=108 + 12. Jayasuriya124 and 

Lanchester et al.m reported that a good pure power law fit 

to their data also was obtained when a discontinuity in the 

heat capacity at Tc was allowed (B^B'). The assumption that 

B can be different from B' corresponds to introducing one 

more free parameter into the fit. It appears that if such 

extra free parameters are needed to fit the data one should 

rather introduce the confluent singular correction term 

predicted by the renormalization group theory. 
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Fig. 8.1 Fit of Eq. (8.1) with the correction to scaling 

term (solid line) to the Cp data (open circles) 

for sample D. 
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The correction to scaling fit to the Cv data for sample 

D gave values of the parameters of the fit that were 

different from those for the same fit to the Cp data. The 

ratio A/A' did not change within the statistical error but 

the magnitude of the exponent a became smaller and the ratio 

D/D' increased. This suggests that the reduction of the 

experimental data collected at constant pressure to the heat 

capacity data at constant volume is an important 

consideration for Gd, and it may also be relevant in other 

materials. 

The RG calculations5364 give (A/A')H=1.52 +0.02 in 3d 

for the Heisenberg universality class in the second-order e-

expansion. The ratio (A/A')Jip for a system with both 

isotropic short range and dipolar interactions is known only 

to the zeroth order in e: the ratio is 1.2 + 0(e). A/A'=l 

to the zeroth order for the Heisenberg (short-range) 3d 

system suggests that (A/A')dip>(A/A')H although the 

difference is not expected to be large.64 

The ratio D/D'=1.4 for the Heisenberg system in 3d, as 

given by the field theoretical methods.53 

The ratios A/A'=1.51 + 0.48 and D/D'=0.98 + 0.46 

obtained for the Cv data here are in reasonable agreement 

with the ratios lor the Heisenberg system; if, in the 

temperature range of the fit, Gd is in the process of 

crossing over to dipolar isotropic behaviour from the 

Heisenberg behaviour (as suggested by other evidence -
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Sec. 5.3) then these ratios are certainly plausible. 

However this agresment may be only accidental because the a 

value does not match and there exists a coupling between A 

values and a values. 

The critical exponent a=-0.020 + 0.002 as determined 

from the correction to scaling fit to the Cv data does not 

correspond within the statistical error to any of the model 

values of exponents calculated for various universality 

classes (see Table 3.2;. Instead, in light of the 

theoretical and experimental evidence about the presence of 

a series of crossovers in the critical behaviour of Gd (Sec. 

5.3) this exponent should be regarded as an effective 

exponent. 

This view can be supported by noting that the scaling 

laws for effective exponents are correct to the zeroth order 

in the e expansion154 so that, for example, aef( s 2-20c(f-yclt. 

This relation and the experimentally determined values of 

7«1.22 + 0.02 and j3«0.399 + 0.016 from Table 5.2 give 

aeff»-0.02 +0.03, in good agreement with the experimental 

value obtained here. This value for aeff is also consistent 

with experimental results for the temperature dependence of 

the susceptibility of Gd in the hard direction, Xb> reported 

by Geldart et al.120 Xb"1 is expected to vary with t as A+Bty, 

y=l-aeff and their fit to Xb'
1 (T) data yielded y=1.01+0.03. 

It was concluded in Sec 4.2 that the sample 

demagnetization field may have an effect on the measured 



175 

heat capacity below and very close to Tc. In order to take 

that possibility into account the data on the high-

temperature side of the transition were fitted separately to 

Eq. (8.1) and Eq. (8.2). As reported in the preceding 

section no conclusive fit of the high-temperature data to 

the power law or to the power law with the correction to 

scaling term could be obtained. The power law fit depended 

strongly on the temperature range of the fit; the fit with 

the correction to scaling term even failed to converge on 

the values of the linear parameters for a range of fixed 

values of a and Tc. 

However it was possible to fit the high-temperature 

data to Eq. (8.2). A good fit was obtained in the 

temperature range from tmin=3 .2X10"
4 to ^,=1.7 XlO"3 (T>TC) . 

The range-of-fit analysis for the temperature intervals 

starting between tmin and t,,̂  and extending abc/e t,^ showed 

that Eq. (8.2) gave a good representation of the data only 

very close to Tc. A power law fit performed in the 

temperature range of the logarithmic fit converged on awl 

thus indicating that the power law is not a good 

representation of the data in this temperature region. 

Geldart et al. I2° estimated that the crossover reduced 

temperature to the asymptotic uniaxial critical regime in Gd 

is 1.52XlO3 (T-Tcw0.45 K) which is in excellent agreement 

with the t,̂,, found for the logarithmic fit in the present 

work. These results give evidence that the critical 
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behaviour of Gd very close to Tc is that of the uniaxial 

system with dipolar interactions. Since it was not possible 

to describe the data very near Tc on both sides of the 

transition, the crucial theoretical amplitude ratio A/A'=1/4 

could not be tested. 

Certainly one of the reasons for the failure of the 

logarithmic fit to both sides of the phase transition is the 

rounding in the heat capacity curve over much of the 

temperature range where uniaxial dipolar behaviour is 

expected. AT^j, is very small relative to Tc for Gd and this 

limits the reduced temperature range for an analysis with 

the logarithmic formula. In contrast, for LiTbF4 where 

Tc«2 K, essentially all data in the critical region are in 

the uniaxial regime. Therefore, after removing the data in 

the smeared region, there is still sufficient data in the 

asymptotic critical range for full analysis.7 

It is known from experiments on Gd129139145 and other 

magnetic systems1472 that sample imperfections (impurities 

and dislocations) can lead to a large broadening of the 

phase transition and a decrease in the critical temperature. 

Sample D was a very pure sample and it compared very well 

with the other Gd samples measured. It is difficult tc say, 

however, how important are the dislocations (and hence 

strains) still present in the sample. The results of this 

work (Sec. 7.4) showed how sensitive the phase transition in 

Gd is to the presence of strains. It is possible that in 
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spite of its high purity and the care in preparatior the 

rounding observed for sample D is caused by dislocations 

still present in the sample. Dislocations as a factor 

disturbing the ideal crystalline lattice and limiting the 

growth of correlation length may be an underestimated cause 

of the rounding in the heat capacity curve observed in so 

many experiments. 

Another factor limiting the sharpness of the phase 

transition in Gd and changing the shape of the heat capacity 

curve below Tc may be the demagnetization effects and 

formation of magnetic domains. As noticed by Kadanoff34 the 

domain walls may serve to break up the long-range 

correlations so essential to critical behaviour. He 

suggested that if idealized theories (like the Heisenberg or 

Ising models) are to be compared with experiment it might be 

essential that the domains be larger than the theoretical 

coherence length. This may be true for long needle-shaped 

samples. However, magnetic domains; will be formed for 

rectangular slab or flattened ellipsoid sample geometries. 

Dislocations and other static defects can serve ar the 

domain nucleation centers and pinning sites. The domain 

formation and the presence of an essentially random 

distribution of domain nucleation centers and pinning sites 

may lead to smearing. 

The shape of the heat capacity curve near Tc also may 

be affected by the earth's magnetic field. However, the 
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Fig. 8.2 Power law fit (solid line) to the Cp data (open 

circles) for sample C3. 
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reduced temperature scale for such effects is likely well 

below the reduced temperatures accessed in the present 

experiment. For instance it may be estimated that in the 

earth's magnetic field the Griffiths' singularity (see Sec. 

4.2.a) will occur for t»109. 

Table 8.2 presents results of the best power law fits 

for samples A, B and C. Figure 8.2 shows the plot of the 

power law fit for sample C3 (sample C after the third heat 

treatment). The data in Table 8.2 show that the fits are 

based on half of a decade or less in reduced temperature on 

each side of the transition. The temperature ranges of the 

fits are also very asymmetric; they cover part of the I03 

decade in the reduced temperature scale on the high-

temperature side and part of the 10"2 decade on the low-

temperature side of the transition. Because of the strong 

sample dependence of the fits, their asymmetry and the large 

gaps around Tc, these fits for samples A, B and C do not 

give meaningful information about critical behaviour of Gd. 

The results of power law analysis for samples A, B, C are 

similar to the results of the power law fits for sample D, 

i.e. satisfactory fits were possible only over restricted 

temperature ranges. This appears to indicate that because 

of the complex critical behaviour cf C-d the correction to 

scaling term is necessary to obtain a correct representation 

of the critical behaviour of Gd in the temperature range 

from t»10"2 to t«10"3. 



chapter 9. SUMMARY 

Despite its relatively simple mechanical and electronic 

construction the calorimeter described in this thesis 

compares well with other high-resolution AC 

calorimeters151819155. This calorimeter makes it possible to 

highly resolve a useful temperature signal without the 

expensive addition of a good quality AC bridge. This was 

achieved by using a very stable current source and a 

miniature and very sensitive temperature detector. The 

simple temperature control system was based on vwo D/A 

outputs of the lock-in amplifier which better utilized the 

capabilities of this instrument and made computer control of 

the temperature drift rate relatively easy. The 

microprocessor-controlled sample heater appears to be the 

first attempt to provide a constant and known oscillatory 

heat input to a sample in an AC experiment by accounting for 

the temperature dependence of the heater resistance. This 

heater made it possible not only to highly resolve the heat 

capacity of the sample but also to measure its absolute heat 

capacity. This is especially important in light of the fact 

that heat capacity changes near a phase transition depend 

very much on a sample quality and many other ill-defined 

factors, so that reference to the literature for data 

calibration often seems unwarranted. 

180 
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The calorimeter was used to measure the heat capacities 

of several single crystals of Gd in the vicinity of tha 

Curie point in Gd. These measurements showed that the 

calorimeter permits the measurement of very small samples 

(<20 mg) with temperature resolution of a few mK and 

sensitivity of around 0.2 %. 

The systematic investigation of the heat capacity of Gd 

near Tc for a number of single crystals of Gd subjected to 

different heat treatments and preparation procedures showed 

that the presence of strains and associated dislocations in 

Gd leads to a broadening of the phase transition. It was 

suggested that since dislocations are always present in real 

crystals this may be an important reason for rounding of the 

phase transition observed even in crystals of very high 

purity. 

It was also shown that the formation of magnetic 

domains may affect the measured heat capacity very close to 

Tc and may also contribute to the observed rounding of the 

heat capacity near the peak temperature. The effect may be 

particularly pronounced in the presence of a random 

distribution of domain nucleation and pinning sites. 

It also was found that the difference between the heat 

capacity at constant pressure and at constant volume for Gd 

is significant near Tc and should be taken into account in 

data analyses. 

Analyses of the critical behaviour of Gd were carried 
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out in terms of power laws, power laws with the correction 

to scaling term, and the logarithmic expression 

characteristic of the critical behaviour of uniaxial systems 

with dipolar interactions in 3d, i.e. at their critical 

dimension. The results of these analyses showed that the 

best representation of the data in the reduced temperature 

range from t=102 to t=10"3 was obtained in terms of the power 

law with the correction to scaling term. 

The differences between the fitted parameters for Cp 

and Cv data indicated that reduction of the experimental 

data collected at constant pressure to the heat capacity at 

constant volume was an important step in the analysis; this 

has not been done in other analyses of the critical heat 

capacity of Gd. 

The critical exponent, a, obtained from a correction to 

scaling fit to the Cv data was interpreted as an effective 

exponent; it was shown using the literature data for the 

critical exponents 0 and 7 that the exponent a obtained from 

this experiment satisfied scaling relations for the 

effective exponents. The values of the ratios A/A' and D/D' 

of the critical amplitudes and correction to the critical 

amplitudes respectively were found to be consistent with 

crossover from the Heisenberg critical regime to the 

isotropic dipolar regime in the temperature range of the 

fit 

Finally, since the data close to Tc on the low-
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temperature side of the transition may be affected by 

formation of domains which are not yet accounted for by the 

renormalization group theory, the data on the high-

temperature side of the transition were analyzed separately. 

A good fit to these data was obtained with the logarithmic 

law in the reduced temperature determined by e range-of-fit 

analysis. A meaningful fit to the data in the same 

temperature range could not be obtained on the basis of a 

simple power law. The retnge of fit determined for the 

logarithmic behaviour is in agreement with estimates of the 

temperature scale of the uniaxial anisotropy obtained from 

other experiments and numerical calculations. 
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Appendix A Experimental heat capacities of gadolinium 

from measurements in the AC mode. 

Table Al 

The experimental heat capacities of gadolinium samples 

A and B. 

T / K Cp / J mol"
1 K"1 T / K 

Sample A 

Cp / J mol"
1 K-1 

285.767 
285.997 
286.251 
286.485 
286.728 
286.964 
287.207 
287.453 
287.713 
287.948 
288.193 
288.428 
288.671 
^ss.gos 
289.145 
289.384 
289.618 
289.865 
290.109 
290.340 
290.575 
290.311 
291.045 
291.282 
291.548 
291.796 
292.019 
292.259 
292.508 
292.766 
293.003 
293.241 

52.419 
52.509 
52.650 
52.795 
52.820 
52.919 
53.044 
53.267 
53.305 
53.507 
53.633 
53.707 
53.823 
53.999 
54.113 
54.306 
54.475 
54.622 
54.722 
54.960 
55.144 
55.249 
55.327 
55.553 
55.629 
55.827 
55.841 
55.876 
55.910 
55.809 
55.491 
55.307 

293.463 
293.815 
294.061 
294.303 
294.540 
294.786 
295.038 
295.269 
295.518 
295.772 
296.023 
296.264 
296.502 
296.764 
297.009 
297.269 
297.507 
297.755 
297.984 
298.249 
298.500 
298.733 
298.965 
299.211 
299.455 
299.701 

continued . 

54.918 
53.961 
53.132 
52.080 
50.849 
49.220 
47.379 
45.723 
44.277 
43.265 
42.694 
42.315 
41.990 
41.709 
41.450 
41.270 
41.067 
40.870 
40.763 
40.599 
40.405 
40.301 
40.184 
40.070 
39.913 
39.834 
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Table Al continued ... 

T / K Cp / J mol"1 K"1 T / K Cp / J mol"1 K"1 

Sample B 

283.565 
283.666 
283.759 
283.858 
283.953 
284.048 
284.149 
284.250 
284.34(3 
284.477 
284.576 
284.668 
284.764 
284.856 
284.945 
285.049 
285.145 
285.249 
285.335 
285.429 
285.520 
285.607 
285.703 
285.793 
285.892 
285.991 
286.087 
286.181 
286.276 
286.374 
286.472 
286.568 
286.661 
286.753 
286.846 
286.936 
287.034 
287.126 
287.225 
287.323 

51.073 
51.119 
51.201 
51.258 
51.329 
51.369 
51.399 
51.482 
51.598 
51.668 
51.721 
51.765 
51.813 
51.o75 
51.949 
51.989 
52.041 
52.046 
52.203 
52.194 
52.284 
52.336 
52.366 
52.421 
52.522 
52.576 
52.621 
52.724 
52.726 
52.790 
52.888 
52.930 
52.977 
53.063 
53.128 
53.160 
53.278 
53.307 
53.404 
53.514 

287.422 
287.511 
287.617 
287.725 
287.827 
287.922 
288.030 
288.135 
288.203 
288.299 
288.394 
288.485 
288.585 
288.682 
288.773 
288.865 
288.964 
289.061 
289.157 
289.250 
289.345 
289.444 
289.540 
289.635 
289.747 
289.848 
289.950 
290.053 
290.153 
290.256 
290.356 
290.453 
290.550 
290.647 
290.737 
290.832 
290.925 
291.020 

continued ., 

53.524 
53.597 
5,3.709 
53.779 
53.852 
53.950 
54.086 
54.098 
54.193 
54.259 
54.377 
54.464 
54.591 
54. f-">, 
54.7 31 
54.773 
54.819 
54.955 
55.032 
55.129 
55.167 
55.348 
55.432 
55.437 
55.482 
55.557 
55.786 
55.855 
55.941 
56.002 
56.057 
56.255 
56.323 
56.402 
56.457 
56.536 
56.641 
56.692 
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Table Al continued ... 

T / K Cp / J mol"
1 K"1 T / K Cp / J mol"

1 IC' 

291.117 
291.210 
291.304 
291.402 
291.500 
291.584 
291.595 
291.605 
291.615 
291.636 
291.655 
291.676 
291.697 
291.718 
291.738 
291.757 
291.781 
291.801 
291.822 
291.843 
291.865 
291.888 
291.911 
291.929 
291.948 
291.969 
291.991 
292.014 
292.036 
292.058 
292.080 
292.102 
292.121 
292.140 
292.159 
292.179 
292.200 
292.221 
292.242 
292.262 
292.284 
292.324 
292.348 

56.839 
56.937 
56.936 
57.114 
57.197 
57.26C 
57.215 
57.222 
57.281 
57.312 
57.323 
57.390 
57.361 
57.354 
57.359 
57.425 
57.358 
57.433 
57.503 
57.512 
57.513 
57.554 
57.552 
57.570 
57.524 
57.583 
57.591 
57.648 
57.584 
57.628 
57.728 
57.734 
57.766 
57.744 
57.744 
57.704 
57.709 
57.807 
57.751 
57.803 
57.739 
57.785 
57.774 

292.381 
292.402 
292.427 
292.449 
292.472 
292.495 
292.504 
292.524 
292.539 
292.556 
292.576 
292.596 
292.617 
292.637 
292.663 
292.691 
292.71.4 
292.736 
292.757 
292.778 
292.800 
292.822 
292.843 
292.866 
292.887 
292.908 
292.930 
292.950 
292.968 
292.988 
293.006 
293.022 
293.043 
293.065 
293.082 
293.101 
293.120 
293.140 
293.159 
293.183 
293.203 

continued . 

57.792 
57.812 
57.741 
57.804 
57.751 
57.756 
57.740 
57.738 
57.641 
57.648 
57.591 
57.554 
57.610 
57.49G 
57.506 
57.447 
57.332 
57.219 
57.236 
57.182 
57.087 
56.970 
56.910 
56.844 
56.742 
56,694 
56.610 
56.451 
56.346 
56.223 
56.125 
56.000 
55.839 
55.80" 
55.646 
55.473 
55.363 
55.225 
55.040 
54.872 
54.766 

• « 



Table Al cont inued . . . 

187 

T / K Cp / J mol"1 K"1 T / K Cp / J mol"1 K"1 

293.224 
293.246 
293.267 
293.288 
293.309 
293.332 
293.354 
293.373 
293.393 
293.411 
293.430 
293.449 
293. 66 
293.495 
293.518 
293.539 
293.558 
293.577 
293.600 
293.619 
293.640 
293.^67 
293.687 
293.708 
293.725 
293.742 
293.760 
2S»3.781 
293.805 
293.823 
293.841 
293.855 
293.877 
293.895 
293.912 
293.928 
293.946 
293.966 
293.986 
294.008 
294.030 
294.052 
294.076 

54.529 
54.371 
54.157 
54.004 
53.792 
53.606 
53.399 
53.228 
53.053 
52.846 
52.675 
52.443 
52.336 
52.126 
51.887 
51.688 
51.452 
51.283 
51.069 
50.907 
50.763 
50.473 
50.284 
50.117 
49.901 
49.767 
49.597 
49.500 
49.270 
49.109 
48.946 
48.836 
48.669 
48.596 
48.478 
48.294 
48.189 
48.036 
47.862 
47.720 
47.656 
47.470 
47.328 

294.099 
294.124 
294.152 
294.180 
294.205 
294.227 
294.253 
294.281 
294.310 
294.336 
294.362 
294.384 
294.408 
294.432 
294.453 
294.474 
294.496 
294.518 
294.538 
294.558 
294.575 
294.593 
294.612 
294.629 
294.651 
294.671 
294.686 
294.707 
294.725 
294.742 
294.759 
294.776 
294.798 
294.821 
294.846 
294.874 
294.899 
294.924 
294.939 
294.965 
294.989 

continued . 

47.115 
46.964 
46.809 
46.630 
46.490 
4-:. 399 
46.250 
46.105 
46.002 
45.878 
45.730 
45.623 
45.515 
45.462 
45.366 
45.282 
45.221 
45.153 
45.081 
45.009 
44.962 
44.874 
44.889 
44.817 
44.768 
44.687 
44.625 
44.582 
44.576 
44.491 
44.443 
44.397 
44.345 
44.318 
44.227 
44.184 
44.131 
44.075 
44.062 
43.987 
43.954 



Table Al cont inued . . . 

188 

T / K Cp / J mol"1 K"1 T / K Cp / J mol"1 K"1 

295.019 
295.041 
295.065 
295.085 
295.108 
295.132 
295.156 
295.178 
295.203 
295.222 
295.245 
295.269 
295.286 
295.300 
295.332 
295.357 
295.382 
295.407 
295.435 
295.463 
295.487 
295.511 
295.534 
295.559 
295.583 
295.606 
295.630 
295.651 
295.671 
295.693 
295.706 
295.722 
295.741 
295.773 
295.787 
295.807 
295.824 
295.839 
295.852 
295.875 
295.888 
295.909 
295.923 

43.889 
43.837 
43.844 
43.786 
43.752 
43.701 
43.681 
43.619 
43.610 
43.597 
43.563 
43.522 
43.497 
43.466 
43.398 
43.399 
43.389 
43.330 
43.309 
43.268 
43.249 
43.201 
43.226 
43.166 
43.119 
43.087 
43.092 
43.047 
43.040 
42.995 
43.015 
42.944 
42.958 
42.916 
42.933 
42.884 
42.864 
42.855 
42.837 
42.789 
42.811 
42.793 
42.764 

296.066 
296.273 
296.462 
296.629 
296.829 
297.066 
297.250 
297.436 
297.618 
297.793 
297.998 
298.197 
298.390 
298.582 
298.739 
298.936 
299.141 
299.237 
299.330 
299.439 
299.527 
299.618 

42.647 
42.415 
42.258 
42.133 
41.996 
41.858 
41.770 
41.656 
41.568 
41.477 
41.360 
41.262 
41.146 
41.086 
40.946 
40.829 
40.756 
40.760 
40.759 
40.704 
40.642 
40.647 



189 

Table A2 

The experimental heat capacities of gadolinium samples C, 
Cl, C2 and C3. 

T / K Cp / J mol"
1 K'1 T / K Cp / J mol"' K"

1 

Sample C 

284.168 
284.253 
284.286 
284.331 
224.395 
284.480 
284.562 
284.655 
284.749 
284.844 
284.941 
285.040 
285.154 
285.259 
285.358 
285.456 
285.537 
285.636 
285.746 
285.832 
285.932 
286.035 
286.146 
286.244 
286.331 
286.415 
286.515 
286.619 
286.716 
286.805 
286.891 
286.987 
287.095 
287.151 
287.257 
237.354 
287.443 

52.760 
52.781 
52.779 
52.805 
52.737 
52.811 
52.840 
52.847 
52.963 
52.932 
52.997 
53.056 
53.141 
53.198 
53.268 
53.372 
53.306 
53.470 
53.503 
53.607 
53.646 
53.605 
53.784 
53.888 
53.855 
53.954 
53.985 
54.211 
54.191 
54.255 
54.481 
54.393 
54.484 
54.577 
54.508 
54.591 
54.827 

287.553 
287.656 
287.742 
287.890 
287.988 
288.081 
288.220 
288.335 
288.438 
288.549 
288.646 
288.749 
288.811 
288.917 
289.015 
289.114 
289.211 
289.257 
289.353 
289.459 
289.557 
289.658 
289.759 
289.902 
290.047 
290.139 
290.249 
290.352 
290.456 
290.556 
290.663 
290.756 
290.851 
290.937 
291.020 

continued ., 

54.799 
54.940 
54.917 
54.949 
55.151 
55.262 
55.358 
55.482 
55.484 
55.587 
55.771 
55.807 
55.947 
56.002 
55.998 
56.064 
56.293 
56.361 
56.349 
56.520 
56.596 
56.626 
56.833 
56.982 
57.038 
57.217 
57.149 
57.375 
57.463 
57.439 
57.690 
57.856 
57.817 
58.049 
58.150 



Table A2 continued ... 

T / K Cp / J mol"
1 K"1 

291.110 
291.203 
291.349 
291.456 
291.539 
291.642 
291.746 
291.826 
291.929 
292.026 
292.115 
292.206 
292.303 
292.411 
292.510 
292.618 
292.698 
292.862 
292.915 
293.002 
293.111 
293.230 
293.317 
293.422 
293.517 
293.6iy 
293.724 
293.808 
293.897 
293.993 
294.074 
294.172 
294.277 
294.366 
294.461 
294.553 
294.646 
294.747 
294.839 
294.926 
295.031 
295.123 
295.219 

58.260 
58.336 
58.432 
58.621 
58.665 
58.759 
59.058 
59.022 
59.054 
59.186 
59.479 
59.529 
59.572 
59.661 
59.757 
59.805 
59.968 
59.925 
60.076 
60.062 
60.075 
60.144 
60.027 
59.923 
59.840 
59.755 
59.287 
58.973 
58.502 
57.742 
57.000 
56,020 
54.865 
53.695 
52.353 
50.774 
49.521 
48.271 
46.987 
46.130 
45.209 
44.461 
43.966 

190 

T / K Cp / J mol"
1 K"1 

295.329 
295.434 
295.532 
295.624 
295.715 
295.805 
295.913 
296.014 
296.114 
296.218 
296.317 
296.419 
296.520 
296.625 
296.733 
296.822 
296.916 
297.019 
297.124 
297.217 
297.320 
297.412 
297.526 
297.618 
297.721 
297.822 
297.927 
298.042 
298.133 
298.242 
298.337 
298.440 
298.552 
298.643 
298.747 

43.439 
43.163 
42.936 
42.747 
42.569 
42.421 
42.232 
42.054 
41.930 
41.778 
41.634 
41.431 
41.401 
41.134 
41.012 
40.851 
40.989 
40.851 
40.762 
40.648 
40.538 
40.545 
40.433 
40.310 
40.324 
40.202 
40.119 
40.032 
40.046 
39.878 
39.790 
39.727 
39.726 
39.665 
39.538 

continued ... 
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Table A2 continued ... 

T / K Cp / J mol"
1 K"1 T / K Cp / J mol"

1 K"1 

Sample Cl 

282.435 
282.544 
282.633 
282.732 
282.819 
282.916 
283.008 
283.111 
283.207 
283.303 
283,397 
283.487 
283.578 
283.686 
283.786 
283.881 
283.985 
284.084 
284.183 
284.281 
284.381 
284.480 
284.580 
284.680 
284.776 
284.876 
284.977 
285.084 
285.184 
285.285 
285.383 
285.479 
285.573 
285.681 
285.780 
285.876 
285.975 
286.068 
286.159 
286.250 

50.224 
50.251 
50.246 
50.273 
50.337 
50.384 
50.425 
50.416 
50.492 
50.539 
50.600 
50.653 
50.709 
50.750 
50.825 
50.850 
50.947 
51.018 
51.113 
51.117 
51.166 
51.276 
51.343 
51.370 
51.460 
51.498 
51.533 
51.645 
51.668 
51.765 
51.782 
51.911 
51.974 
51.971 
52.101 
52.132 
52.207 
52.239 
52.298 
52.432 

286.345 
286.43S 
286.531 
286.633 
286.732 
286.830 
286.930 
287.027 
287.119 
287.211 
287.306 
287.402 
287.495 
287.587 
287.680 
287.770 
287.863 
287.961 
288.059 
288.155 
288.248 
288.337 
288.434 
288.528 
288.627 
288.727 
288.823 
288.920 
289.017 
289.115 
289.211 
289.310 
289.421 
289.525 
289.633 
289.729 
289.827 
289.926 

continued . 

52.431 
52.492 
52.584 
52.664 
52.739 
52.820 
52.883 
52.951 
53.020 
53.058 
53.109 
53.238 
53.283 
53.356 
53.432 
53.509 
53.553 
53.692 
53.727 
53.806 
53.846 
53.948 
54.047 
54.101 
54.191 
54.267 
54.383 
54.424 
54.548 
54.551 
54.623 
54.691 
54.743 
54.871 
54.952 
55.063 
55.110 
55.107 

• • 



Table A2 cont inued . . . 

192 

T / K Cp / J mol"1 K"1 T / K Cp / J mol"1 K"1 

290.024 
290.123 
290.231 
290.335 
290.433 
290.531 
290.629 
290.727 
290.823 
290.918 
291.018 
291.115 
291.216 
291.316 
291.414 
291.516 
291.613 
291.711 
291.811 
291.911 
292.005 
292.105 
292.198 
292.295 
292.387 
292.493 
292.594 
292.688 
292.788 
292.890 
292.994 
293.094 
293.191 
293.282 
293.376 
293.471 
293.566 
293.662 
293.760 
293.858 
293.954 
294.048 
294.145 

55.208 
55.238 
55.358 
55.315 
55.357 
55.420 
55.379 
55.412 
55.394 
55.347 
55.351 
55.314 
55.170 
55.118 
54.967 
54.816 
54.639 
54.432 
54.127 
53.872 
53.569 
53.142 
52.840 
52.387 
51.978 
51.450 
50.942 
50.452 
49.916 
49.374 
48.789 
48.328 
47.777 
47.283 
46.869 
46.474 
46.063 
45.668 
45.371 
45.039 
44.755 
44.482 
44.263 

294.243 
294.340 
294.433 
294.535 
294.634 
294.732 
294.831 
294.930 
295.028 
295.132 
295.230 
295.327 
295.423 
295.519 
295.617 
295.721 
295.823 
295.915 
296.009 
296.101 
296.199 
296.299 
296.396 
296.493 
296.596 
296.695 
296.794 
296.893 
296.991 
297.089 
297.187 
297.279 
297.368 
297.466 
297.563 
297.662 
297.760 
297.857 
297.958 
298.055 
298.151 

continued . 

44.050 
43.844 
43.663 
43.534 
43.372 
43.242 
43.130 
42.998 
42.849 
42.735 
42.694 
42.583 
42.542 
42.445 
42.332 
42.263 
42.214 
42.190 
42.064 
42.037 
41.985 
41.926 
41.841 
41.784 
41.733 
41.686 
41.622 
41.644 
41.537 
41.520 
41.444 
41.441 
41.414 
41.387 
41.342 
41.287 
41.219 
41.267 
41.176 
41.156 
41.134 

* • 



Table A2 continued ... 

193 

T / K Cp / J mol"
1 K-1 T / K Cp / J mol"

1 K"1 

298.247 
298.343 
298.439 
298.590 
298.687 ' 
298.785 
298.883 
298.982 
299.084 
299.184 
299.278 
299.369 

41.090 
41.081 
41.055 
41.013 
40.926 
40.934 
40.940 
40.852 
40.861 
40.851 
40.829 
40.819 

Sample C2 

284.307 
284.398 
284.500 
284.603 
284.702 
284.801 
284.904 
285.007 
2S5.104 
285.194 
285.288 
285.384 
285.478 
285.572 
285.681 
285.778 
285.870 
285.966 
286.075 
286.174 
286.271 
286.379 
286.484 
286.587 
286.687 

51.383 
51.436 
51.469 
51.513 
51.591 
51.622 
51.705 
51.800 
51.822 
51.866 
51.927 
51.932 
51.978 
52.065 
52.152 
52.177 
52.250 
52.282 
52.351 
52.443 
52.456 
52.480 
52.540 
52.531 
52.589 

286.784 
286.887 
286.986 
287.086 
287.194 
287.285 
287.385 
287.485 
287.584 
287.678 
287.771 
287.867 
287.961 
288.055 
288.150 
283.257 
288.354 
288.448 
288.548 
288.644 
288.743 
288.843 
288.938 

continued . 

52.737 
52.742 
52.879 
52.944 
52.913 
53.039 
53.055 
53.162 
53.223 
53.239 
53.334 
53.398 
53.504 
53.529 
53.575 
53.655 
53.746 
53.855 
53.896 
54.034 
54.010 
54.161 
54.241 
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Table A2 cont inued . . . 

T / K Cp / J mol"1 K"1 T / K Cp / J mol"1 k"1 

289.034 
289.134 
289.233 
289.323 
289.420 
289.519 
289.616 
289.717 
289.814 
289.911 
290.009 
290.110 
290.208 
290.303 
290.398 
290.490 
290.586 
290.679 
290.772 
290.866 
290.962 
291.060 
291.157 
291.258 
291.356 
291.450 
291.561 
291.660 
291.758 
291.859 
291.958 
292.062 
292.164 
292.269 
292.366 
292.468 
292.566 
292.664 
292.766 
292.864 
292.960 
293.058 
293.159 

54.200 
54.322 
54.365 
54.497 
54.532 
54.609 
54.722 
54.786 
54.756 
54.922 
54.936 
55.016 
55.101 
55.172 
55.305 
55.411 
55.440 
55.558 
55.669 
55.658 
55.709 
55.835 
55.940 
56.000 
56.072 
56.200 
56.217 
56.276 
56.213 
56.378 
56.482 
56.445 
56.503 
56.561 
56.654 
56.605 
56.614 
56.610 
56.615 
56.604 
56.484 
56.431 
56.267 

293.252 
293.348 
293.451 
293.548 
293,647 
293.745 
293.847 
293.940 
294.036 
294.138 
294.237 
294.329 
294.426 
294.523 
294.625 
294.724 
294.821 
294.919 
295.015 
295.115 
295.214 
295.316 
295.411 
295.507 
295.606 
295.707 
295.804 
295.905 
296.011 
296.113 
296.221 
296.322 
296.413 
296.507 
296.605 
296.701 
296.799 
296.898 
296.998 
297.099 
297.200 

continued . 

56.087 
55.767 
55.481 
55.066 
54.576 
54.053 
53.273 
52.606 
51.814 
50.929 
49.991 
49.143 
48.306 
47.485 
46.743 
46.020 
45.473 
45.002 
44.583 
44.202 
43.952 
43.662 
43.441 
43.267 
43.076 
42.924 
42.748 
42.622 
42.547 
42.384 
42.289 
42.190 
42.056 
42.002 
41.958 
41.840 
41.762 
41.702 
41.607 
41.491 
41.472 

. . 



Table A2 continued ... 

195 

T / K Cp / J mol"1 K"1 T / K Cp / J mol"1 K 

297.293 
297.390 
297.488 
297.585 
297.681 
297.779 
297.878 
297.974 
298.070 
298.165 
298.264 
298.363 
298.457 
298.556 
298.658 
298.760 
298.864 
298.964 
299.061 
299.178 
299.277 
299.375 
299.474 
299.565 
299.754 
299.848 
299.939 
300.046 
300.143 
300.240 
300.336 
300.428 
300.524 
300.618 
300.712 

41.370 
41.276 
41.262 
41.198 
41.129 
41.099 
41.012 
41.006 
40.911 
40.824 
40.789 
40.744 
40.676 
40.603 
40.577 
40.535 
40.521 
40.467 
40.420 
40.352 
40.295 
40.290 
40.233 
40.186 
40.111 
40.047 
40.052 
40.034 
39.963 
39.978 
39.898 
39.851 
39.808 
39.801 
39.754 

Sample C3 

2 8 4 . 3 0 7 5 1 . 3 8 3 2 8 4 . 7 0 2 5 1 . 5 9 1 
2 8 4 . 3 9 8 5 1 . 4 3 6 2 8 4 . 8 0 1 5 1 . 6 2 2 
2 8 4 . 5 0 0 5 1 . 4 6 9 
2 8 4 . 6 0 3 5 1 . 5 1 3 c o n t i n u e d . . . 
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Table A2 continued ... 

T / K Cp / J mol'
1 K'1 T / K Cp / J mol'

1 K"1 

284.904 
285.007 
285.104 
285.194 
285.288 
285.384 
285.478 
285.572 
285.681 
285.778 
285.870 
285.966 
286.075 
286.174 
286.271 
286.379 
286.484 
286.587 
286.687 
286.784 
286.887 
286.986 
287.086 
287.194 
287.285 
287.385 
287.485 
287.584 
287.678 
287.771 
287.867 
287.961 
288.055 
288.150 
288.257 
288.354 
288.448 
288.548 
288.644 
288.743 
288.843 
288.938 
289.034 

51.705 
51.800 
51.822 
51.866 
51.927 
51.932 
51.978 
52.065 
52.152 
52.177 
52.250 
52.282 
52.351 
52.443 
52.456 
52.480 
52.540 
52.531 
52.589 
52.737 
52.742 
52.879 
52.944 
52.913 
53.039 
53.055 
53.162 
53.223 
53.239 
53.334 
53.398 
53.504 
53.529 
53.575 
53.655 
53.746 
53.855 
53.896 
54.034 
54.010 
54.161 
54.241 
54.200 

289.134 
289.233 
289.323 
289.420 
289.519 
289.616 
289.717 
289.814 
289.911 
290.009 
290.110 
290.208 
290.303 
290.398 
290.490 
290.586 
290.679 
290.772 
290.866 
290.962 
291.060 
291.157 
291.258 
291.356 
291.450 
291.561 
291.660 
291.758 
291.859 
291.958 
292.062 
292.164 
292.269 
292.366 
292.468 
292.566 
292.664 
292.766 
292.864 
292.960 
293.058 

continued . 

54.322 
54.365 
54.497 
54.532 
54.609 
54.722 
54.786 
54.756 
54.922 
54.936 
55.016 
55.101 
55.172 
55.305 
55.411 
55.440 
55.558 
55.669 
55.658 
55.709 
55.835 
55.940 
56.000 
56.072 
56.200 
56.217 
56.276 
56.213 
56.378 
56.482 
56.445 
56.503 
56.561 
56.654 
56.605 
56.614 
56.610 
56.615 
56.604 
56.484 
56.431 

• • 



Table A2 continued . . . 

197 

T / K Cp / J mol"1 K-' T / K Cp / J mol"1 K-1 

293.159 
293.252 
293.348 
293.451 
293.548 
293.647 
293.745 
293.847 
293.940 
294.036 
294.138 
294.237 
294.329 
294.426 
294.523 
294.625 
294.724 
294.821 
294.919 
295.015 
295.115 
295.214 
295.316 
295.411 
295.507 
295.606 
295.707 
295.804 
295.905 
296.011 
296.113 
296.221 
296.322 
296.413 
296.507 
296.605 
296.701 
296.799 
296.898 
296.998 
297.099 
297.200 
297.293 

56.267 
56.087 
55.767 
55.481 
55.066 
54.576 
54.053 
53.273 
52.606 
51.814 
50.929 
49.991 
49.143 
48.306 
47.485 
46.743 
46.020 
45.473 
45.002 
44.583 
44.202 
43.952 
43.662 
43.441 
43.267 
43.076 
42.924 
42.748 
42.622 
42.547 
42.384 
42.289 
42.190 
42.056 
42.002 
41.958 
41.840 
41.762 
41.702 
41.607 
41.491 
41.472 
41.370 

297.390 
297.488 
297.585 
297.681 
297.779 
297.878 
297.974 
298.070 
298.165 
298.264 
298.363 
298.457 
298.556 
298.658 
298.760 
298.864 
298.964 
299.061 
299.178 
299.277 
299.375 
299.474 
299.565 
299.658 
299.754 
299.848 
299.939 
300.046 
300.143 
300.240 
300.336 
300.428 
300.524 
300.618 
300.712 

41.276 
41.262 
41.198 
41.129 
41.099 
41.012 
41.006 
40.911 
40.824 
40.789 
40.744 
40.676 
40.603 
40.577 
40.535 
40.521 
40.467 
40.420 
40.352 
40.295 
40.290 
40.233 
40.186 
40.121 
40.111 
40.047 
40.052 
40.034 
39.963 
39.978 
39.898 
39.851 
39.808 
39.801 
39.754 



198 

Table A3 

The experimental heat capacities of gadolinium 
sample D. 

T / K Cp / J mol"
1 K"1 T / K Cp / J mol"

1 K' 

274.872 
274.917 
274.957 
275.006 
275.048 
275.090 
275.132 
275.178 
275.228 
275.272 
275.316 
275.361 
275.408 
275.451 
275.502 
275.552 
275.601 
275.650 
275.701 
275.750 
275.798 
275.848 
275.894 
275.941 
275.988 
276.034 
276.083 
276.132 
276.180 
276.234 
276.284 
276.334 
276.384 
276.436 
276.487 
276.536 
276.585 
276.636 
276.689 

48.922 
48.918 
48.978 
48.977 
49.016 
48.946 
49.039 
48.997 
48.974 
49.007 
49.023 
49.027 
49.076 
49.037 
49.043 
49.057 
49.101 
49.075 
49.130 
49.154 
49.183 
49.201 
49.172 
49.237 
49.185 
49.169 
49.205 
49.227 
49.269 
49.304 
49.281 
49.365 
49.329 
49.381 
49.373 
49.409 
49.406 
49.473 
49.440 

276.738 
276.790 
276.841 
276.890 
276.937 
276.986 
277.036 
27'/ .085 
277.130 
277.178 
277.227 
277.276 
277.325 
277.373 
277.421 
277.469 
277.519 
277.566 
277.613 
277.660 
277.708 
277.758 
277.806 
277.857 
277.907 
277.955 
278.003 
278.053 
278.102 
278.152 
278.203 
278.254 
278.304 
278.353 
278.406 
278.458 
278.509 

continued . 

49.488 
49.495 
49.461 
49.462 
49.558 
49.530 
49.574 
49.532 
49.586 
49.603 
49.675 
49.637 
49.669 
49.684 
49.fi48 
49.679 
49.686 
49.805 
49.739 
49.755 
49.761 
49.808 
49.819 
49.823 
49.862 
49.890 
49.872 
49.948 
49.927 
50.001 
49.944 
49.981 
49.995 
50.012 
49.999 
50.080 
49.981 

• • 



Table A3 continued . . . 

199 

T / K Cp / J mol"1 K"1 T / K Cp / J mol"1 K'1 

278.560 
278.612 
278.663 
278.714 
278.764 
278.815 
278.865 
278.918 
278.969 
279.019 
279.066 
279.111 
279.163 
279.215 
279.266 
279.327 
279.380 
279.428 
279.476 
279.523 
279.574 
279.628 
279.681 
279.731 
279.781 
279.832 
279.883 
279.944 
279.991 
280.043 
280.100 
280.146 
280.193 
280.239 
280.288 
280.336 
280.386 
280.437 
280.487 
280.537 
280.588 
280.639 
280.690 

50.080 
50.157 
50.135 
50.153 
50.269 
50.183 
50.200 
50.286 
50.252 
50.296 
50.328 
50.401 
50.315 
50.404 
50.425 
50.433 
50.410 
50.435 
50.499 
50.507 
50.517 
50.457 
50.577 
50.620 
50.566 
50.596 
50.630 
50.700 
50.667 
50.689 
50.723 
50.747 
50.822 
50.778 
50.822 
50.351 
50.881 
50.841 
50.953 
50.873 
50.907 
50.967 
51.052 

280.740 
280.792 
280.843 
280.892 
280.945 
280.996 
281.047 
281.098 
281.147 
281.195 
281.246 
281.297 
281.348 
281.398 
281.447 
281.497 
281.545 
281.593 
281.641 
281.691 
281.742 
281.792 
281.841 
281.892 
281.942 
281.992 
282.043 
282.093 
282.145 
282.197 
282.248 
282.299 
282.350 
282.401 
282.450 
282.501 
282.552 
282.602 
282.652 
282.703 
282.754 

continued ., 

51.014 
51.097 
51.109 
51.073 
51.065 
51.156 
51.184 
51.148 
51.251 
51.198 
51.350 
51.292 
51.319 
51.377 
51.350 
51.349 
51.388 
51.375 
51.416 
51.474 
51.432 
51.544 
51.480 
51.547 
5.1 .516 
51.639 
51.625 
51.641 
51.666 
51.707 
51.776 
51.779 
51.740 
51.793 
51.879 
51.851 
51.933 
51.927 
51.971 
51.896 
51.978 



Table A3 cont inued . . . 

200 

T / K Cp / J mol"1 K'1 T / K Cp / J mol"1 K"1 

282.804 
282.852 
282.903 
282.954 
283.003 
283.054 
283.104 
283.153 
283.202 
283.252 
283.303 
283.350 
283.398 
283.478 
283.525 
283.574 
283.625 
283.675 
283.726 
283.775 
283.825 
283.873 
283.921 
283.967 
284.015 
234.064 
284.112 
284.161 
284.207 
284.255 
284.305 
284.356 
284.406 
284.456 
284.504 
284.555 
284.603 
284.652 
284.699 
284.747 
284.798 
284.849 
284.899 

52.119 
51.965 
52.096 
52.117 
52.146 
52.139 
52.192 
52.239 
52.261 
52.171 
52.289 
52.280 
52.339 
52.216 
52.296 
52.391 
52.308 
52.313 
52.416 
52.449 
52.483 
52.462 
52.709 
52.605 
52.571 
52.560 
52.752 
52.742 
52.622 
52.677 
52.720 
52.823 
52.822 
52.863 
52.891 
52.865 
52.995 
53.031 
52.952 
53.012 
52.975 
53.069 
53.117 

284.949 
284.998 
285.050 
285.100 
285.153 
285.201 
285.248 
285.297 
285.348 
285.397 
285.444 
285.491 
285.539 
285.586 
285.635 
285.684 
285.734 
285.780 
285.827 
285.875 
285.927 
285.978 
286.027 
286.079 
286.132 
286.183 
286.234 
286.286 
286.337 
286.387 
286.436 
286.485 
286.543 
286.598 
286.649 
286.699 
286.749 
286.799 
286.848 
286.895 
286.948 

continued . 

53.137 
53,106 
52.961 
53.239 
53.305 
53.240 
53.232 
53.382 
53.399 
53.365 
53.31 .' 
53.444 
53.478 
53.540 
53.601 
53.592 
53.493 
53.561 
53.686 
53.734 
53.783 
53.721 
53.895 
53.841 
53.837 
53.846 
53.944 
53.979 
53.965 
54.057 
54.111 
54.051 
54.102 
54.100 
54.196 
54.203 
54.220 
54.287 
54.346 
54.393 
54.403 

• • 



Table A3 continued . . . 

201 

T / K Cp / J mol"1 K-1 T / K Cp / J mol"1 K"1 

287.002 
287.059 
287.110 
287.161 
287.214 
287.264 
287.314 
287.364 
287.415 
287.466 
287.524 
287.580 
287.630 
287.680 
287.730 
287.779 
287.829 
287.881 
287.931 
287.979 
288.026 
288.075 
288.125 
288.177 
288.227 
288.280 
288.339 
288.391 
288.442 
288.494 
288.547 
288.598 
288.648 
288.697 
288.748 
288.800 
288.849 
288.898 
288.957 
289.007 
289.057 
289.107 
289.155 

54.426 
54.370 
54.546 
54.540 
54.588 
54.604 
54.718 
54.736 
54". 754 
54.801 
54.853 
54.837 
54.857 
54.979 
55.001 
55.094 
55.119 
55.106 
55.143 
55.162 
55.210 
55.232 
55.287 
55.310 
55.476 
55.450 
55.519 
55.494 
55.559 
55.621 
55.622 
55.718 
55.709 
55.711 
55.801 
55.890 
55.960 
55.834 
55.941 
55.936 
56.131 
56.156 
56.182 

289.204 
289.255 
289.303 
289.350 
289.397 
289.443 
289.491 
289.540 
289.588 
289.638 
289.688 
289.735 
289.791 
289.834 
289.889 
289.933 
289.983 
290.031 
290.081 
290.129 
290.177 
290.229 
290.280 
290.333 
290.384 
290.442 
290.494 
290.542 
290.592 
290.642 
290.693 
290.792 
290.838 
190.889 
290.941 
290.992 
291.043 
291.092 
291.145 
291.198 
291.246 

continued .. 

56.226 
56.161 
56.234 
56.367 
56.377 
56.503 
56.532 
56.582 
56.557 
56.707 
56.618 
56.746 
56.779 
56.899 
56.906 
56.897 
57.013 
57.088 
57.056 
57.119 
57.180 
57.152 
57.289 
57.372 
57.437 
57.434 
57.490 
57.710 
57.732 
57.721 
57.749 
58.024 
57.990 
58.005 
58.138 
58.197 
58.269 
58.325 
58.266 
58.350 
58.522 

» • 



202 

Table A3 continued ... 

T / K Cp / J mol"
1 K'1 T / K Cp / J mol"

1 K-1 

291.292 
291.347 
291.395 
291.448 
291.498 
291.548 
291.600 
291.651 
291.703 
291.754 
291.804 
291.854 
291.902 
291.952 
292.002 
292.049 
292.096 
292.146 
292.194 
292.248 
292.307 
292.359 
292.411 
292.461 
292.514 
292.563 
292.612 
292.661 
292.717 
292.771 
292.822 
292.871 
292.920 
292.969 
293.021 
293.072 
293.123 
293.171 
293.219 
293.267 
293.317 
293.367 
293.417 

58.610 
58.491 
58.711 
58.782 
58.900 
58.945 
59.022 
58.999 
59.040 
59.123 
59.209 
59.298 
59.391 
59.366 
59.458 
59.566 
59.679 
59.703 
59.727 
59.851 
60.030 
60.111 
60.066 
60.307 
60.259 
60.314 
60.420 
60.582 
60.556 
60.692 
60.936 
60.933 
61.007 
61.111 
61.146 
61.389 
61.372 
61.617 
61.703 
61.829 
61.921 
62.079 
62.150 

293.467 
293.518 
293.568 
293.619 
293.672 
293.722 
293.773 
293.822 
293.870 
293.921 
293.980 
294.038 
294.091 
294.142 
294.190 
294.239 
294.292 
294.342 
294.390 
294.438 
294.489 
294.540 
294.587 
294.636 
294.686 
294.741 
294.794 
294.845 
294.895 
294.948 
294.997 
295.046 
295.096 
295.147 
295.200 
295.252 
295.303 
295.353 
295.408 
295.461 
295.511 

continued . 

62.164 
62.313 
62.558 
62.678 
62.675 
62.809 
63.073 
63.266 
63.209 
63.312 
63.658 
63.746 
63.884 
63.784 
63.964 
64.085 
63.916 
63.857 
63.679 
63.438 
62.664 
60.891 
57.420 
53.447 
50.593 
48.591 
47.298 
46.487 
45.837 
45.322 
45.012 
44.616 
44.354 
44.218 
43.996 
43.827 
43.716 
43.585 
43.339 
43.224 
43.117 

. , 



Table A3 continued ... 

T / K Cp / J mol"
1 K"1 

295.561 
295.611 
295.664 
295.716 
295.767 
295.818 
295.866 
295.913 
295.961 
296.011 
296.063 
296.114 
296.162 
296.211 
296.263 
296.313 
296.363 
296.412 
296.464 
296.514 
296.565 
296.623 
296.675 
296.724 
296.775 
296.826 
296.875 
296.930 
296.980 
297.033 
297.082 
297.140 
297.194 
297.244 
297.293 
297.342 
297.388 
297.446 
297.497 
297.547 
297.594 
297.645 
297.702 

42.964 
42.900 
42.866 
42.774 
42.666 
42.470 
42.457 
42.390 
42.295 
42.304 
42.148 
41.990 
41.979 
41.930 
41.842 
41.734 
41.666 
41.636 
41.506 
41.452 
41.425 
41.329 
41.236 
41.224 
41.209 
41.107 
41.032 
41.015 
40.967 
40.814 
40.798 
40.683 
40.692 
40.621 
40.582 
40.543 
40.569 
40.484 
40.389 
40.327 
40.305 
40,228 
40.221 

203 

T / K Cp / J mol"
1 K"1 

297 
297 
297 
297 
297 
298 
298 
298 
298 
298, 
298, 
298, 
298. 
298. 
298, 
298, 
298. 
298. 
298. 
298. 
298. 
298. 
298. 
298. 
298. 
298. 
299. 
299. 
299. 
299. 
299. 
299. 
299. 
299. 
299. 
299. 
299. 
299. 
299. 
299. 
299. 

.753 

.804 

.853 

.902 

.953 

.004 

.055 

.107 

.158 

.207 

.258 

.306 

.355 

.405 

.455 

.502 

.550 

.599 

.646 
,694 
,744 
,795 
,847 
,895 
,944 
,990 
,039 
,089 
141 
194 
242 
290 
342 
393 
444 
495 
545 
595 
645 
694 
745 

40.202 
40.103 
40.141 
40.057 
40.093 
40.000 
39.919 
39.883 
39.796 
39.819 
39.809 
39.726 
39.726 
39.719 
39.658 
39.603 
39.599 
39.517 
39.563 
39.477 
39.411 
39.439 
39.340 
39.385 
39.328 
39.264 
39.259 
39.206 
39.216 
39.199 
39.126 
39.082 
39.074 
39.081 
39.152 
38.996 
38.962 
38.870 
38.896 
38.852 
38.902 

continued ... 



204 

Table A3 continued ... 

T / K Cp / J mol"
1 K1 T / K Cp / J mol"

1 K"1 

299.793 
299.843 
299.893 
299.942 
300.002 
300.053 
300.103 
300.154 
300.206 
300.257 
300.309 
300.362 
300.410 
300.463 
300.512 
300.563 
300.613 
300.663 
300.713 
300.761 
300.810 
300.861 
300.910 
300.959 
301.009 
301.059 
301.110 
301.160 
301.209 
301.258 
301.306 
301.358 
301.407 
301.456 
301.513 
301.564 
301.615 
301.666 
301.716 
301.767 
301.816 
301.865 
301.908 

38.854 
38.833 
38.763 
38.764 
38.718 
38.618 
38.617 
38.601 
38.576 
38.544 
38.478 
38.495 
38.480 
38.469 
38.379 
38.414 
38.345 
38.347 
38.266 
38.369 
38.230 
38.242 
38.245 
38.175 
38.177 
38.147 
38.072 
38.118 
38.153 
38.084 
38.089 
38.007 
38.076 
37.987 
37.958 
38.011 
37.895 
37.922 
37.876 
37.898 
37.872 
37.868 
37.834 

301.959 
302.009 
302.059 
302.109 
302.157 
302.205 
302.259 
302.309 
302.361 
302.411 
302.458 
302.504 
302.553 
302.601 
302.648 
302.698 
302.747 
302.793 
302.836 
302.891 
302.942 
302.991 
303.040 
303.086 
303.133 
303.182 
303.232 
303.283 
303.330 
303.379 
303.426 
303.476 
303.525 
303.584 
303.635 
303.685 
303.735 
303.786 
303.836 
303.883 
303.930 

continued . 

37.793 
37.779 
37.691 
37.697 
37.694 
37.755 
37.665 
37.653 
37.650 
37.580 
37.619 
37.608 
37.676 
37.558 
37.540 
37.516 
37.501 
37.517 
37.472 
37.409 
37.468 
37.400 
37.438 
37.384 
37.320 
37.378 
37.390 
37.400 
37.276 
37.297 
37.280 
37.292 
37.260 
37.270 
37.246 
37.159 
37.173 
37.177 
37.111 
37.150 
37.101 

• * 



Table A3 cont inued . . . 

205 

T / K Cp / J mol"1 K"1 T / K Cp / J mol'1 K"1 

306.145 
306.192 
306.242 
306.293 
306.343 
306.395 
306.445 
306.492 
306.543 
306.592 
306.642 
306.694 
306.744 
306.794 
306.844 
306.894 
306.944 
306.997 
307.047 
307.099 
307.149 
307.197 
307.246 
307.294 
307.343 
307.389 
307.433 
307.480 
307.531 
307.579 
307.626 
307.676 
307.728 
307.778 
307.829 
307.881 
307.931 
307.989 
308.040 
308.092 
308.143 

continued ., 

36.437 
36.501 
36.481 
36.505 
36.435 
36.435 
36.445 
36.468 
36.485 
36.374 
36.355 
36.386 
36.317 
36.403 
36.460 
36.383 
36.300 
36.360 
36.343 
36.376 
36.293 
36.279 
36.318 
36.284 
36.344 
36.321 
36.263 
36.275 
36.266 
36.254 
36.253 
36.170 
36.191 
36.162 
36.207 
36.121 
36.177 
36.151 
36.065 
36.058 
36.136 

303.977 
304.026 
304.075 
304.125 
304.174 
304.223 
304.275 
304.326 
304.375 
304.424 
304.470 
304.523 
304.572 
304.621 
304.671 
304.721 
304.769 
304.817 
304.868 
304.918 
304.963 
305.022 
305.072 
305.125 
305.173 
305.228 
305.280 
305.330 
305.381 
305.432 
305.483 
305.534 
305.586 
305.637 
305.689 
305.741 
305.789 
305.849 
305.900 
305.948 
305.996 
306.046 
306.095 

37.121 
37.061 
37.092 
37.079 
37.149 
37.065 
37.002 
37.058 
37.005 
37.059 
36.978 
36.998 
36.905 
36.891 
36.906 
36.883 
36.911 
36.815 
36.809 
36.828 
36.847 
36.824 
36.814 
36.745 
36.774 
36.715 
36.780 
36.717 
36.735 
36.684 
36.696 
36.693 
36.711 
36.653 
36.657 
36.562 
36.593 
36.557 
36.563 
36.553 
36.580 
36.568 
36.520 
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Table A3 continued . . . 

T / K Cp / J mol"1 K"1 

308.193 
308.242 
308.293 
308.342 
308.392 
308.440 
308.486 
308.537 
308.588 
308.638 
308.687 
308.736 
308.788 
308.839 
308.891 
308.943 
309.003 
309.059 
309.116 
309.167 
309.222 
309.274 
309.325 
309.377 
309.426 
309.476 
309.527 

36.124 
36.081 
36.129 
36.079 
35.983 
36.106 
36.109 
35.986 
36.021 
36.017 
36.040 
35.943 
35.929 
35.926 
36.039 
35.946 
35.984 
35.892 
35.920 
35.940 
35.979 
36.008 
35.893 
35.929 
35.849 
35.850 
35.889 
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Appendix B Chemical analysis for sample D*. 

Table Bl Spark surface mass spectrometric analysis in 
atomic ppm 

Li < 0 . 1 Be < 0 . 0 1 B < 0 . 0 9 Na < 0 . 2 Mg < 0 . 2 

Al < 2 S i < 1 P < 0 . 1 S < 0 . 3 Cl < 2 

K < 1 C a < l T i < 0 . 6 V < 2 C r < 4 

Mn < 0 . 0 6 Co < 0 . 1 Ni < 5 Cu < 6 Zn < 0 . 1 8 

Ga < 0 . 2 As < 1 Se < 0 . 4 Br < 0 . 5 Rb < 0 . 0 6 

S r < 0 . 2 Z r < 0 . 6 N b < l M o < l R u < 0 . 6 

Rh < 0 . 1 Pd < 0 . 3 Ag < 0 . 0 5 Cd < 0 . 1 In < 0 . 0 6 

Sn < 0 . 0 7 Te < 0 . 1 I < 0 . 0 6 C? < 0 . 0 0 6 Ba < 0 . 1 

Hf < 2 Ta < 12 Re < 0 . 8 Os < 1 I r < 0 . 5 

P t < 0 . 7 Au < 0 . 1 Hg < 0 . 1 T l < 0 . 0 9 Pb < 0 . 3 

B i < 0 . 0 7 T h < 0 . 9 U < 0 . 4 

Rare earth impurities 

SC < 0.05 Y < 0.63 La < 0.5 Ce < 1 Pr < 0.5 

Nd < 2 Sm < 2 EU < 0.2 Tb < 3 Dy < 1 

Ho < 0.4 Er < 1 Tm < 0.4 Yb < 4 Lu < 2 

Table B2 Vacuum fusion results in atomic ppm 

0 » 344 N a 45 H a 622 C a 131 F < 25 

Fe < 18.5 W < 0.86 

The analyses were provided by the sample producer. 
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