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ABSTRACT 

Using the density-functional theory with the local density 

approximation for the field adsorption of transition metal atoms, 

titanium and niobium, we obtain the electric field distribution 

and, especially, the field enhancement above an adsorbed metal 

atom. From detailed analyses of electron distributions of the 

rare-gas atoms, helium and neon, field-adsorbed on metals, we dem­

onstrate that the increase in binding energies to several hundred 

meV with increasing field strengths can be attributed to a transi­

tion from physisorption in weak fields to field-induced chemisorp-

tion in strong fields. 

We construct diabatic states from adiabatic ones by using a 

unitary transformation for the thermal field-desorption of helium 

from tungsten and developing a perturbational method for the 

field-evaporation of tungsten, respectively. The diabatic states 

form the basis to compute the temperature-dependent ionization 

probabilities for singly-charged ions. Employing a master equa­

tion, we calculate the energy-dependent ion yield as a function of 

field strength and temperature, and extract the field dependence 

of the activation barrier and prefactor. 
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m electrostatic fields of the order of volts per angstrom, as 

they occur in the vicinity of field ion tips, the physics and chem­

istry of atoms, molecules and metal surfaces exhibit rich novel 

features the most striking of which are field-induced adsorption 

of rare gases, field-induced chemical reactions of adsorbed 

molecules, field desorption and field ionization, the latter being 

the mechanism of image formation in the field ion microscope. 

Some recent reviews are listed in Refs.1-4. In this thesis, we 

focus on field adsorption, field desorption and field evapora­

tion5-8. 



PART h FIELD ADSORPTION 

1. Introduction 

Electric fields of the order of volts per angstrom are compar­

able to those experienced by valence electrons in atoms and molec­

ules. Thus one expecns that, in external fields of that magnitude, 

a redistribution of the valence electrons in a coupled adsorbate-

solid system takes place which affects the orbitals of both sur­

face bonds and internal bonds in adsorbed molecules. Whether this 

redistribution leads to either enhanced or reduced binding depends 

on whether the bonding or antil̂ onding orbitals are more strongly 

affected. We will refer to this phenomenon as field-induced chem­

isorption. 

Surprisingly, field-induced chemisorption is important even 

for the most inert atom, namely helium. We recall that, in field-

free cases, chemisorption is rather unimportant for the lighter 

rare gases because for them physisorption, arising from mutually 

induced fluctuating dipole-dipole interactions of the van der 

Waals type, dominates. In fields of the order of 5V/A, polariza­

tion induces the occupation of excited states at the level of a 

few percent. Thus, in such fields, even helium cannot be regarded 

as a closed-shell atom, as it forms weak covalent bonds upon 

approach of a metal surface. 

2 
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The first quantum mechanical calculation of the self-consis­

tent charge density and electric field distribution at a metal 

surface was performed by Lang and Kohn9 for the case of a struc­

tureless jellium surface, using the local-density approximation 

to density-functional theory. Recently this problem was studied 

by Gies and Gerhardtr,'0 and also by Schreier and Rebentrost" . Inc­

luding the effect of the crystal structure, Inglesfield has per­

formed self-consistent field calculations of Al and Ag sur­

faces12*13. An early microscopic calculation of field-induced 

chemisorption by Kahn and Ying14 was also based on the local-den­

sity approximation of the density-functional formalism; they cal­

culated the potential energy curves, and thus the activation 

energy, fo*- alkali atoms on W, which they treated within the jel­

lium model. Kingham15 has presented some preliminary results for 

the field evaporation of Rh obtained within a tight-binding clus­

ter model with field effects and charge transfer treated in an ad 

hoc manner. Kreuzer et a/.16-18 have recently presented a micro­

scopic theory of field adsorption, in which the total energy of an 

adsorbing atom or molecule, in Interaction with a metal and sub­

jected to a self-consistently determined external electric field, 

is calculated by using a tight-binding approach based on the ASED-

MO19 method. 

Imaging of single atoms in the field ion microscope is believed 

to result from local field enhancement around kink sites and step 

edge sites on flat crystal planes. These local electric fields, of 

the order of V/A, arise, via Poisson's equation, from locally 
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enhanced surface charge density. To understand this phenomenon on 

a microscopic level, it is mandatory to calculate self-consis­

tently the electronic charge distribution and the resulting elec­

trostatic field at kink sites or around single atoms on densely 

packed planes of transition metals. As a model of the latter, we 

will present self-consistent calculations of the electric field 

around a metal atom adsorbed on a structureless jellium surface, 

using local-density-functional theory. As examples, we consider a 

light and a moderately heavy metal atom, Ti and Nb, respectively, 

on a jellium metal with a Wigner-Seitz radius rs= (3/4m)x/* = 

3.0bohr, where n is the bulk electron density. We will restrict 

our consideration to the polarity in which the field points away 

from the surface, appropriate for the field ion microscope. 

Although our model describes the chemisorption of metal atoms on 

a free electron metal in the presence of a field, we will see below 

that the results have quite general features that allow a discus­

sion of field effects in chemisorption on transition metals. With 

the numerical results of the adsorption of Ti and Nb atoms on jel­

lium metal surface In the presence of external electric fields, we 

will recover the field enhancement. We will also produce the 

adsorption potential well for these atoms and calculate the eva­

poration field strength, above which surface atoms are no longer 

bound to the surface. Despite the simplicity of the jellium model, 

we find very good agreement with both experimental values and 

earlier semi-empirical calculations, based on the ASED-MO 

method'*20. We will also discuss the dipole moment and polariza-

bility of the adsorbed atom to make a connection with some experi-



mental results. 
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Rare-gase atoms adsorb on metals with typical binding energies 

of 6meV for helium, 35meV for neon, 70meV for argon and 250meV for 

xenon. In static electric fields of the order of several V/A, the 

adsorption energy of helium and neon increase by at least an order 

of magnitude, leading to field adsorption of rare-gase atoms at 

elevated temperatures on top of edge and kink atoms, where the 

local field is greatly enhanced, as already deduced from early 

atom probe results21"23. Recent measurements yield values of the 

order of 200meV for helium and 300meV for neon in a field of 

4.5V/i418'24. The interaction between rare-gas atoms and metals in 

the presence of high external electric field, which is known as 

field-induced adsorption, plays an important role in the imaging 

process of the Field Ion Microscope. To explain this phenomenon, 

Tsong and Muller23*25 proposed a classical dipole-dipole interac­

tion model, in which a polarized He atom is attracted by the polar­

ized W atoms on the surface. However, Kreuzer et fl/.,6~,8»26 demon­

strated that fie Id-induced adsorption was not governed by the van 

der Waals and field-induced dipole-dipole interaction, but by 

field-induced weak chemisorption accompanied by a significant 

reduction of the binding distance. In this thesis, with a fully 

self-consistent calculation, we demonstrate how the field-induced 

adsorption of rare-gas atoms on metal surfaces transfers from 

physisorption to weak chemisorption with increasing strength of 

the external electric field. The essential point is that the 

external electric field raises the energy levels of the valence 
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electrons of the rare-gas atoms up to the energy band of the val­

ence electrons of the metal, and it leads to strengthen interac­

tions and, therefore, shorten binding distances. 

In the next section we collect the relevant equations and spec­

ify the boundary conditions. In subsequent sections, we discuss 

adsorption of metal atoms, Ti and Nb, and rare-gas atoms, He and 

Ne, respectively, on jellium metal surface in the presence of an 

external electric field. 

2. Theory 

21 Equations 

In the classical electromagnetic theory, the surface of a metal 

is represented as a mathematical plane with excess charges and a 

dipole layer, at which the normal component of the electric field 

drops discontinuously to zero, at least for a perfect conductor. 

On real surfaces, however, the electron distribution and electric 

fields vary smoothly over distances of a few angstroms. A simple 

model9'27, which exhibits these features, is the jellium model of a 

metal, in which it is assumed that the ionic lattice smears into a 

uniform positive-charge density, «+, that drops abruptly to zero 

half a lattice constant above the topmost layer of ion cores. In 

front of this jellium metal, we add a metal atom28, around which we 

will study the local electron and field distribution within the 

framework of density-functional theory. 
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The formalism of Kohn and Sham29 reduces the many-body problem 

of the ground-state density distribution, n (r), of an inhomogeneous 

system of N electrons in an electrostatic potential ves (r) to the 

self-consistent solution of the equations (we use Rydberg units, 

with | e\ =2m=8=l) 

(-V2 + veJf[njr]) *, (r) = Erf, (r), (1.1) 

with 

n(r)= X«,UCr) | 2 , (1.2) 
i 

where n, indicates the occupation of the /th orthonormal orb i ta l . 

The e f f e c t i v e potent ia l in Eq. ( l . l ) i s given by 

veff [n;r] = ves (r) + vxc [n;r]. (1.3) 

m Eq.(1.3) v„ (r) is the electrostatic potential seen by an elec­

tron, due here to the adatom nucleus, positive background ai.d 

electronic charge distribution. It is determined from Poisson's 

equation 

V*ves (r) = 2 x 4ra? [fl+0(-z) + Z5(r-/?) - n(r)], (1.4) 

where 2=0 is chosen as the jellium edge and the semi-infinite 

space, z<0, is occupied by the jellium, 0(x) is the Heaviside step 
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function, defined as l if JC^O and 0 if x<0, and R is the position of 

the adatom nucleus. The other term in Eq.(1.3), vxe[n;r], is the 

exchange-correlation potential, the local-density approximation29 

to which is 

n=n (r) 

•2\ln(r) 
1 / 3

 +
 dn*c (") 

dn 
(1.5) 

n=n (r) 

The factors of 2 appearing in Eqs.(1.4) and (1.5) result from the 

use of Rydberg unit system. In Eq.(1.5), exc (n) is the exchange-

correlation energy per particle of a uniform electron gas of den­

sity n and ec («) is its correlation part. The expression of ec («) 

used here is that given by Hedin and Lundqyist30. 

Let us denote the electron number density of the metal-adatom 

system by nMA (r) and the corresponding electron number density of 

the bare metal by nM (r). The wavefunction of the metal-adatom 

system, \jFA (r), and that of the bare metal, ̂ ( r ) , specified by a 

continuum energy eigenvalue E and other quantum numbers, Q, which 

being cnitted here for now, satisfy the differential equations 

(V2 + E - v^ [/i" ;r]) ̂  (r) = 0 (1.6a) 



and 
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(V2 + E - veJf [n
MA ;r]) $** (r) = 0, (1.6b) 

r e s p e c t i v e l y . The l a t t e r can be rewritten in the fol lowing form, 

(V2 + E - v^t/i" ;r]) ^ (r) - 5ve//(r) ^A (r), (1.7) 

where 

6vej!r (r) = v^ [«*" ;r] - ve/f [/i« ; r ] . (1.8) 

Eq.(1.7) i s equivalent t o th» Lippmann-Schwinger equation, 

VA (r) = ^ (r) + f G" (rf ) 5veff(r') ^A (r') dr', (1.9) 

where the outgoing-wave Green's function for the bare-metal sur­

face, C1 [r,r')f specified by the same continuum energy E and other 

quantum numbers Q as those for the wavefunction ^ (r), is defined 

by the equation 

(V2 + E - veXr[n" ;r]) G<" [r,r') = 6{r-r'). (1.10) 

Because hvejy{r) approaches zero rapidly outside the adatom, one can 

restrict the integral in (1.9) to a sphere centered at the adatom 

and bounded by a surface S, outside of which hvey is negligible. 



3.0 

The t o t a l energy of the system becomes 

E, =YsF'n< + £ "« 
i 

- \vtff in;r) n(r) 6r + Je,, {n(r)) n(r) dr , (1.11) 

where Ees is the total electrostatic energy of the system. As the 

metal-adatom system is an infinite system, the theory actually 

calculates the total energy difference between the metal-adatom 

system and bare metal as a function of the adatom's position, R, 

and the field strength, F0, 

Ead (R, F0) = E»A (R, F0) - E»(F0), (1.12) 

which is termed as the energy of the adatom. 

22 Electron Density 

Having the (normalized) wavefunction of the bare metal, $fG(r), 

belonging to the continuum energy E and other quantum numbers Q, 

the wavefunction of the metal-adatom system, \J%Q (r), is obtained 

by integrating the Lippmann-Schwinger equation (1.9). It belongs 

to the same continuum energy E and quantum numbers Q as those for 

\I^Q (r), and it will also have the same normalization as the ̂ fe (r), 

a fact which facilitates the calculation of the electron density 

distribution and the state density. Then, we can express the 

difference of the electron number density between the metal-
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adatom system and bare metal, 6n(r,E), as a function of the space 

coordinate r and energy E, as a summation (or integration) over Q, 

8n(r,E)=2 £>(£-£<>) [| JEQ fr)|2 - I $ e (r)| 2] 

G 

+ 2 £>(£-£,) ICficWl2 , (1.13) 

where Eo53^^00) ^s the value of v^ deep in the metal, i.e., the 

bottom of the metal band, and ̂ Gc(r) is the discrete state of the 

adsorbed atom with the energy eigenvalue Ec and additional quantum 

numbers Qc. The factor of 2 accounts for spin degeneracy as we 

use a spin-unpolarized formalism. The difference in electron den­

sity between the metal-adatom system and bare metal is 

8n(r) =nMA (r) - nM (r) = 
r EF 

6n(r,E) dE, (1-14) 
-00 

where EF=E0+kF
2 i s the Fermi energy with kF being defined in terms 

of the Wigner-Seitz radius rs, kFes(9ir/4)in/rs. The electron density 

in the metal-adatom system, nMA (r), i s calculated as the sum, 

nM(r)+8n(r), w t h nM (r) evaluated d i r ec t ly in the semi-infini te 

bare-metal case9 . The electron density, nMA (r), i s then used t o re­

evaluate vejj from Eq.(1.3); and a se l f -cons is tent e lect ron density 

i s obtained by i t e r a t ion . 
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Integrating the function 6n(r,E) over the space coordinate, we 

obtain the difference in the density of electron state defined as 

6n{E) - ldn(r,E) dr. (1.15) 

23 Imposition of External Electric Fields 

To include an external e l ec t r i c f ield into the model, one must 

add an excess surface charge to the metal. This i s done f i r s t in 

the bare metal problem by imposing the following condition, 

I oo 

(n+0(-z) - n" (z,F0)) dz = ^ , (1.16) 
— 00 

on the electron density of the bare metal, leading to wavefunc­

tions ^ (r,F0) and electron densities nM (r,F0), that depend expli­

citly on the asymptotic field strength, F0, far from the surface. 

In the presence of an adatom, one requires that outside the sphere 

S 

nm (r; F0) - nM (r; FQ), for \r\ -* oo. (1.17) 

This imposes a boundary condition on the solution of (1.9), thereby 

incorporating the effect of the eiternal electric field on the 

metal-adatom system. 
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While the external electric field does not change the structure 

of the one-electron equations, it does affect the numerical proce­

dure. In the absence of such external electric fields, the effec­

tive potential of a bare metal, ve^[nMjz], approaches a constant 

for z-»oo, which is usually taken as the energy reference. However, 

in the presence of an external electric field with asymptotic 

strength F0, vejy[«
M ;z] grows as eFQz for large z. It is then advan­

tageous to choose the value of the effective potential at the pos­

ition of the adatom nucleus, veJy[nMS ;Z], as the energy reference. 

With this choice the energies of all occupied levels are negative. 

A complication, arising in the presence of an electric field, is 

the fact that the potential-energy barrier of field adsorption 

varies from several eV, i.e., the cohesive energy in the absence of 

the field, down to zero at the evaporation field strength. Recal­

ling that the theory calculates the energy difference, 6E,, 

between the metal-adatom system and the bare metal or the total 

energy of the adatom of the order of 104 eV for Ti and Nb, we need a 

relative precision for the total energy difference as high as the 

order of about 10~°, a difficult task on numerics. 

3. Field Adsorption of Metal Atoms 

31 Binding Energies and Energy Barriers 

We now present numerical r e su l t s for two systems, titanium and 
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niobium, respectively, on a jellium metal surface with rs=3.0bohr. 

In Fig. 1.1, we show the adiabatic potential energy curves, the 

difference between the adatom's energy and the energy of an iso­

lated atom in the field free case, i.e., Ead (Z,F0)-Ead (<»,F0=0), for 

a niobium atom adsorbed on a jellium for several field strengths 

as a function of the distance, Z, from the surface, m free field 

case, the depth of the potential energy curve is 5.2eV, which is, 

not surprisingly, somewhat less than the cohesive energy of Nb, 

7.47eV, because the jellium lacks p- and (/-orbitals. This defi­

ciency is also the cause of the rather weak repulsion at short 

distances. As we apply a field, we note a shift of the potential 

minimum by about 0.2 A away from the surface, which can be traced 

to a transfer of electronic charge from outside the adatom to the 

region between the adatom and the surface. With an applied field, 

the ground-state energy curves will approach to their asymptotic 

form -eF0z for large z, appropriate to a singly charged positive 

ion. Ionization of the adatom can occur when its highest occupied 

level is lifted by the field energy term, eF0z, above the Fermi 

level of the jellium. If the ionization level were not shifted and 

broadened by the interaction with the metal, the transition to the 

asymptotic form would happen abruptly at the apex of the poten­

tial energy curve, i.e., at the point where the diabatic energy 

curves for the neutral and singly-charged ionic species cross. 

For the fields chosen for Fig. 1.1, the apex is so close to the 

metal surface that considerable interaction between the adatom 

and the metal is still in effect. This results in a considerable 
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broadening of the ionization level of the adatom, so that only 

partial charge-draining occurs in the apex region. 

We will call the energy difference between the minimum at the 

adsorption equilibrium distance of the surface potential and the 

local maximum at its apex the activation energy, Q(FQ), for ioniza­

tion. In the field free case, the activation energy is equal to the 

binding energy of the adatom. The field strength, at which the 

activation energy becomes zero, is called the evaporation field 

strength, F w. We estimate the evaporation field strength for Nb 

adsorbed on jellium to be 3.6V/A, which compares very favorably 

with the experimental value of the evaporation field strength for 

Nb, 3.5V//1. Similar results are obtained for Ti. Binding energies 

and activation energies are collected in Table 1.1. 

It has been suggested20 that, if one plots Q(F0)/Q(F0=O) as a 

function of f=F0/Fev, the field dependence of the activation energy 

for different metals obeys a universal scaling law. In a simple 

model, this scaling law is given by 

Q(FQ) . . 1-vTy 

Experimental data on tungsten32 and theoretical results, obtained 

by the ASED-MO method20, have confirmed this conjecture, as do the 

present results for Ti and Nb, shown in Fig. 1.2. 
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Table 1.1: Energy barriers Q(F0) 
i s the binding energy. 

adatom 

0.0 2.2 

Ti 4.30 0.57 

Nb 5.20 1.30 

Experimental results31: 

binding energy 4.85 

evaporation field 2.5 1 

(in eV). The free field value, Q(0), 

F(V/% 

2.6 3.0 3.4 

0.25 0.09 

0.64 0.20 0.05 

eV for Ti and 7.47 eV for Nb 

'/% for Ti and 3.5 V/A for Nb 
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Fig.1.2: The activation energy, Q(F), for field evaporation, nor­
malized with the cohesive energy, Q(0)=Eb, as a function of asymp­
totic field strenghth F, normalized with the evaporation field 
strength, Fev. Line are from Eq.(1.18) and crosses are experimental 
data for Wfrom Ref.32. Our calculation results: black squares for 
Nb and black circles for Ti. 
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32 Charge Density and Electrostatic Field 

m Fig. 1.3, we show the electronic density shirt, 

Sn(r,F0) = n"A (r,F0) - n" (r,F0) - nA (r,F0), (1.19) 

due to the applied field, demonstrating an overall charge transfer 

from the region outside the adsorbed atom into the region between 

the adatom and the bulk and further into the bulk. From Poisson's 

equation for the electronic charge density difference nMA (r,F0) -

HMA (r,JF0=0), we can calculate the total external electrostatic 

potential, which equals the sum of the applied external electros­

tatic potential and the electrostatic potential of the induced 

electron charge density, as the electrostatic potential differ­

ence in the presence and absence of an excess charge density, 

a0=F0/4ir, far from the adatom on the surface, 

y«, (r) = V„ (r,F0) - V„ (r,F0-0). (1.20) 

Equipotential contours are plotted in Fig. 1.4 for Ti and Nb. The 

expulsion of the external field from the region of the metallic 

adatom is beautifully demonstrated, the effect being larger for 

the heavier Nb atom than for the lighter Ti atom. 

Classical electrostatic theory predicts that the electrostatic 

potential around a hemispherical protrusion of radius R on an oth­

erwise flat and structureless metal surface is given by33 
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Fig.1.3: Electronic density shift in an electric field for the 
adatom at the minimum, d, of the notential energy. Left: Ti 
(r,=3.0bohr at d=2.5bohr) in FQ=2.6V/A. Right: Nb (r,=3.0bohr at 
rf=2.75bohr) inF0=3.0V/A. Contours on = 0, ±0.0001, ±0.002, ±0.005, 
±0.001, ±0.002, ±0.005 a.u. Solid (broken) lines non-negative 
(negative) values. Contours in the core region are omitted. 
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Fig.1.4: External electrostatic potential, upper panels for the 
same systems as Fig.1.3; lower panels: classical results. Contour 
lines -0.05, -0.02, -0.01, 0.0, 0.03, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 Ry. 
Solid (broken) lines non-negative (negative) values. 
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0= -4TO0Z (1 -fl
3/r>), (1.21) 

where a0 is the excess charge density far from the protrusion, z is 

the distance from the surface, and r is measured from the center of 

the protrusion. Locally, the excess charge redistributes itself 

into 

a = a0(l -F3/r>) (1.22) 

on the plane, and 

a = 3o0z/R (1.23) 

on the sphere. We note that, at the boss apex, the electric field 

is three times its value at infinity. 

To compare our quantum mechanical results with the classical 

theory, contained in (1.21)-(1.23), we approximate the adsorbed 

atom by a hemispherical boss with the radius chosen such that the 

zero equipotential lines coincide at the apex. One might be 

tempted to model an atom on a flat surface as a sphere r~ther than 

a hemispherical boss. Inspection of Fig.1.4, however, suggests 

that the latter is more appropriate. The result of the hemispher­

ical model is also shown in Fig. 1.4. Except on the sides of the 

adatoms, the agreement between the quantum mechanical result and 

classical one is quite good, at least at the semi-quantitative 

level. If we look at details, of course, there are some differ-



23 

ences, which we show in Fig.1.5, where we plot the total external 

field strength along a line through the apex of the adatom. Com­

paring the fields in the presence and absence of the adatom, we 

again observe the expulsion of the field from the adatom region, 

which results in an enhancement of the field just outside the 

adatom. We note, however, that this field enhancement at the apex 

is not as much as classical theory predicts, i.e., a factor 3. 

Rather, the partial field penetration into the adatom results in a 

smearing out of the field as a reflection of the adjustability of 

the electronic distribution at the surface, reducing the enhance­

ment effect. Note again, that for the heavier adatom, Nb, one is 

closer to the classical result. It is also noteworthy that, inside 

the bulk jellium, the Friedel oscillations are quite similar both 

with and without the adatom. 

33 Core States 

As we saw in Fig.1.5, there is a substantial expulsion of the 

electrostatic field from the region of the adatom. To understand 

the effect of an external electrostatic field on an adatom, we 

start from a bare metal in an external potential, V^xt {r;F0), due to 

the excess surface charge density aQ, producing an asymptotic 

field F0=47nr0. When we bring an atom into this field, it will be 

polarized, producing an induced field with a potential Vlnd(r), 

which largely cancels the original field in the vicinity of the 

atom. Because the adatom is in close contact with the metal sur­

face, there will, in addition, be a charge transfer from the atom 
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d (Bohr) 
0 25 50 75 100 

d (Bohr) 

Fig.1.5: Electrostatic field strength along line through the 
center of the adatom for the same systems as in Fig. 1.4. Curves A 
and B: without and with the adatom; curve C: classical result. 
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to the surface involving valence electrons of the adatom. This 

charge transfer also affects the core-level states, as demon­

strated in Fig.1.6, where we plot the energy eigenvalue of the Is 

level of an adsorbed Ti atom as a function of the adatom nuclear 

distance from the jellium edge, Z, for different field strengths. 

The energy eigenvalues, calculated within the framework of den­

sity-functional theory, do not directly give the energies required 

to remove an electron from the respective states. However, their 

distance dependence reflects the variation in the chemical shift. 

When the adatom is near the surface, there is a net transfer of 

electrons from the metal to the adatom, which generates more rep­

ulsion among electrons and causes the Is level of the adatom to be 

higher than that of the isolated atom. As the adatom moves away 

from the surface, there is eventually some charge-draining to the 

surface, creating more attraction among electrons, so that the 

energy of the Is level decreases. However, even at 4.0bohr, the Is 

level of the adsorbed Ti atom is still above the Is level of the Ti+ 

ion. 

The above effect suggests a way to assign a partial charge, q, 

to the adatom without the inherent arbitrariness connected with 

the Mulliken population analysis. To the lowest order, we set 

q__ E(ls)-EQ(ls) 
e E+(ls) -E0(ls) ' * '* ' 

where E(ls), E0(ls) and £+(ls) are the energies of the 1$ level of 
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Fig.1.6: ly energy levels and estimated charge, q, for Ti as a 
function of the adatom position from the jellium edge for differ­
ent field strengths. 
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the adatom, isolated atom and isolated ion, respectively. This 

quantity is also plotted in Fig. 1.6 as a function of the adatom 

position. We note that, at 4.0bohr these partial charges agree 

with the slopes, -qF0, of the ground-state energy curves. 

34 Dipole Moment 

Experiments have been devised to extract the dipole moment and 

the polarisability of a metallic adatom from field emission work 

function changes34. The dipole moment is rigorously defined in our 

theory as 

M(F0) = -eJdrr[n™ (r,F0) - n¥ (r,FQ) -Zb(r-R)}, (1.25) 

where nMA and nM are the electron number densities with and with­

out the adatom, respectively, and Z is the nuclear charge of the 

adatom at position R. We note that the total charge in the two 

situations are identical, both producing an asymptotic field F0. 

This guarantees that the definition (1.25) of the dipole moment 

does not depend on the origin chosen. 

m the experimental literature, one parameterizes the dipole 

moment, 

Mfo) = MCFO=°> +<rfV d-26) 

in terms of the asymptotic field F0, defining the (field-dependent) 
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po l a r i s ab i l i t y of the surface atom a(F0), r a t he r than introducing 

hyper-polar i n a b i l i t i e s , gradient terms e t c . Values of fi(F0) and 

a(F0) a re given in Table 1.2. Measured po l a r i s ab i l i t i e s 3 4 a t f ie ld 

s t rengths F0< QAV/A decrease monotonically from 11.94/43 for Ta t o 
o, 2.74/13 for Pt . Our numbers for Ti and Nb a r e , indeed, c lose t o t h a t 

for Ta, an element with an atomic s t ruc tu re s imi lar t o Ti and Nb. 

Tsong and Mtiller25 have used the field-induced dipole moment of 

a metal atom a t a kink s i t e or on top of a close-packed plane t o 

est imate the local f ie ld enhancement 

3n(F0-n) - F0 F(r) =F 0 +«(F0) V 0
y 3

/ °~. (1.27) 

Here F0 is the constant electric field far from the surface and n 

is a unit vector in the direction of r. Along a line, perpendicular 

to the jellium surface and through the center of the adatom, the 

field from (1.27) is given by 

•£•*-¥[• Fz(z) =F 0 1 + —r-\, (1.28) 

whereas the c l a s s i c a l theory gives , from (1.21)-(1.23), 

T 2R*1 
F z (z )=F 0 1 + - 5 - . (1.29) 

35 Conclusions 
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Table 1.2: Dipole moment, /t (in Debye), and p o l a r i z a b i l i t y , a (in %), 
at the equilibrium dis tance , as a function of f i e l d s trength . 

F0(V/°A) 

adatom 

2.2 2.6 3.0 3.4 

Ti fi 7.3 10.3 12.5 

a 9.9 11.9 12.4 

Nb n 7.3 11.1 13.1 15.0 

a 10.1 12.8 13.1 13.3 
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We have presented self-consistent calculations of the elec­

tronic structure of Ti and Nb atoms adsorbed on a jellium metal in 

the presence of an external electric field. We have calculated 

ground-state energy curves, extracting activation energies for 

field evaporation and evaporation field strengths, and have found 

good agreement with the experimental data for the transition 

metals. Likewise, the calculated dipole moments and polarisabili-

ties of these metallic adatoms are consistent with experimental 

values for other metals. 

The field enhancement at kink sites, along steps, and above 

atoms in open surfaces, plays a crucial role in the image forma­

tion of the field ion microscope, as demonstrated by the fact that 

densely packed surfaces cannot be resolved. Our results show that 

o 
a field enhancement by a factor of 1.5 to 2 must be expected 1-2/4 

above an isolated metal atom. The implications of this effect for 

field adsorption of rare gases will be explored in the following 

section. 

4. Field Adsorption of Rare Gas 

41 Free Field Case 

I n i t i a l l y , the weak physisorption of r a re gas atoms on metal 

surfaces in the free e l e c t r i c f ie ld case was a t t r i bu ted t o van der 

Waals forces , see, e.g. , Ref.35. Using the jellium model of 

metals , which means t ha t ionic cores smear into a uniform posi t ive 
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background, and employing the method of Lang and Williams28 for 

solving the Kohn-Sham single-electron equations of the density-

functional formalism, Lang36'37 then demonstrated that one can 

also get good agreement with experimental binding energies, dipole 

moments and core-level shifts. The method of Lang and Williams 

contains an effective exchange-correlation potential which, in 

the local-density approximation29, depends at each point only on 

the electron density at that point. Apart from the fact that the 

local-density theory includes electrostatic and kinetic-energy 

terms (and hence repulsive forces), it and the van der Waals pic­

ture differ simply in the degree of attachment envisaged between 

an electron and its exchange-correlation hole. Lang argued that 

since, for equilibrium rare gas atom-metal distances, the crucial 

part of the valence-shell electron orbit (that nearest the metal) 

lies sufficiently within the surface electron gas, the electron is 

most correctly considered to be attached to the hole. 

42 Sharp Resonances 

In the presence of external electric fields, the equilibrium 

rare gas-metal distances shorten, so that the method of Lang and 

Williams should work better. However, when a valence-electron 

orbit of the rare-gas atom is raised into the energy region of the 

valence band of the metal, it becomes a narrow resonance in the 

metal band. Narrow resonances within the conduction band were 

encountered by Lang for the heaviest rare gas, xenon37. They cause 

self-consistent calculations to be rather tedious, as both reloca-
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tion of the resonance peak and numerical integration over the 

resonance region become difficult. 

The difficulties increase manifoldly for light rare gases in a 

field, e.g., the width of the resonance for He or Ne is about 10~4 

eV for F0= 3 V/A and increases to 10"2 eV for F0=5 V/A. One remedy 

is to replace such sharp resonances by 6-functions in the early 

stages of the iteration, the finite width being incorporated only 

in the final approach to self-consistency. 

Using a Green's function approach and the Anderson Hamilto­

nian38, Newns39 has derived the following expression for the den­

sity of states function, 

If the energy dependence of V is ignored this is just a simple Lor­

entzian function of half width r centered around the position ea. 

To replace the sharp resonance of the electron state density, 

bn(E), of, e.g., the Is orbital of a He adatom by a 6-function, the 

resonance peak of 8n(E) is first approximated with a Lorentzian 

function, centered at Efs
A with a half width r, and, then, substi­

tuted with a 6-function, 

6/1' (£) =&!(£)- 2fL (E-F*/ ,D + 2b{E-ElA). (1.31) 
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EfA and r are considered as parameters and optimized to smooth the 

function bn(E)-2fL (E-EfA ,T). The factors of 2 appearing in 

Eq.(1.31) account for spin degeneracy. The electron density dis­

tribution, bn(r,E), is then approximated by 

bn' (£) 
bn'(r,E) - -^ybn(r,E). (1.32) 

43 Binding Distance and Desorption Energy 

We now compare our calculations with the experimental results 

of field-induced adsorption of helium and neon on tungsten. The 

strengths of the external electric field, used in the calculation, 

are 0.0, 2.75, 3.30, 3.85, 4.40 and 4.95V/A, or, when scaled by the 

evaporation field strength of tungsten, Fev=5.6V/A, they become 

F/Fev=0.0, 0.5, 0.6, 0.7, 0.8 and 0.9, respectively. We have chosen 

rs=3.0bohr for the jellium metal, appropriate to tungsten. 

In Fig.1.7, we present the adsorption equilibrium distances 

calculated as functions of external electric field strengths and 

compare with the experimental data. Both the calculated and 

experimental adsorption equilibrium distances are measured from 

the image plane, z,m, which is half the separation distance between 

successive atom layers above the position of the first atom layer. 

The calculated desorption energies are compared with the corres­

ponding experimental data in Fig. 1.7 as well. 
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are the lower limit estimates, while the upper limit estimates are 
indicated as black triangles. Crosses are data using M-T formula 
(1.36). 
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Comparison of calculated desorption energies and distances 

with experimental data is not straightforward and so needs some 

clarifying comments. We point out that Ernst's measurements yield 

values of the binding distance measured from the image plane. 

They must be corrected by the distance from the image plane to the 

atomic nucleus. We note that, in the low gas pressure limit of 

laser-induced thermal desorption, the desorption energy measured 

is most likely Q, the activation energy from the bottom of the 

adsorption well of the neutral adsorbate to the apex of the 

Schottky hump, where the neutral adatom is ionized, but not the 

binding energy of the neutral adatom, Ed. However, we should men­

tion that in the present model, based on a variational principle, 

it is numerically very difficult to calculate the ground-state 

energy curve for the case, where the adsorbed atom is several ang­

stroms away from the adsorption equilibrium distance. We there­

fore use the calculated energies to estimate the lower and upper 

limits of the desorption energies, for comparison with experimen­

tal desorption energies. 

We first calculate the binding energy of a field adsorbed atom 

according to 

Eb(Z,F)=Ead(Z,F) -EA (F), (1.33) 

where Ead (Z,F) i s the energy of the adatom as defined in Eq.(1.12) 

and EA (F) i s the energy of an isolated atom, i . e . , far from the 

metal; a l l three are in a f ie ld of strength F. If the f ie ld 
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strength F is t̂ jten to be the asymptotic strength, F0, then the 

calculated binding distances are too large and the calculated 

binding energies are too low in comparison with the experimental 

data. One reason for this discrepancy is, no doubt, the lack of 

lattice structure in the jellium model. Our calculations are thus 

appropriate for field adsorption on a close-packed plane, whereas 

experiments clearly show that field adsorption of rare gases 

occurs preferentially above kink and edge atoms, where the field 

is significantly enhanced. The local field enhancement due to a 

single metal atom on an otherwise flat metal surface has been cal­

culated using functional density theoi-y in the local-density 

approximation, given in the preceding section. As revealed by 

Fig.1.5, a field enhancement of 20-50% occurs between 1.5 to 3.5 A 

above the metal atom. Alternatively, the enhancement can be esti­

mated by approximating the metal atom on a close-packed plane 

with a spherical boss, of radius R, on a flat metal surface. For 

this geometry, the local field along a line through the apex of the 

boss and perpendicular to the surface is given by (1.29). We note, 

parenthetically, that the details of the electron distribution 

around the metal atom on a jellium surface suggest that a boss is 

a much better classical approximation than a sphere. As indicated 

in Fig.1.5, this model overestimates the field enhancement. This 

is also true for the Tsong-Mtiller25 model, according to which the 

field above the polarized metal atom is given by (1.28). To 

account for the field enhancement, and thus make a meaningful 

direct comparison with experimental data, one should calculate 

the field adsorption of rare gases on top of a lone metal atom 
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adsorbed on a jellium surface. Unfortunately, such a calculation 

is not available at this time. We estimate the effect as follows: 

we assume that, around the minimum of the potential energy curve, 

the field is enhanced, from an asymptotic value F0 to F=|8F0. The 

results of taking F=j8F0 with 0=1.5 in (1.33) are shown as the black 

squares in Fig. 1.7. 

Whereas the calculated equilibrium binding distances agree 

well with experimental data, the calculated binding energies are 

still much lower than both the experimental desorption energies 

and earlier theoretical results18 obtained using the ASED-MO 

method. While the binding distance is a property at the minimum of 

the potential energy curve, the desorption energy is the energy 

difference between an adatom at the minimum, where the field 

strength is F=/3F0, and the adatom at the apex of the Schottky hump, 

where the field strength has some value between F0 and /3F0. Thus, 

we consider Eq.(1.33) as the lower-limit estimate of the desorp­

tion energy, while the following formula, 

Eb (Z,F0) = Ead (Z,/3F0) -EA (F0), (1.34) 

defines i t s upper-l imit es t imate , the r e s u l t s of which are given 

as black t r i ang les in Fig. 1.7. 

Similar comparisons for Ne a re shown in Fig. 1.8. 

44 Electron Density Distribution 
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To understand the change in the bonding character as the elec­

tric field is increased, we look at the change in the electron den­

sity distribution, 

8n(r,F0) = n"A (r,F0) - n¥ (r,F0) - nA (r,F0), (1.35) 

where nMA , nM and /r4 are the electron densities, in the presence 

of an electric field of asymptotic strength F0, of the coupled 

adatom-metal system at the equilibrium distance, the bare metal 

and the isolated atom, respectively. 

In Fig.1.9, we plot bn for helium adsorbed on a jellium metal. 

In the left upper panel, we start with the field-free case, for 

which the changes are mainly due to the polarization of the 1* 

charge distribution, as discussed by Lang. With an increased field 

of F0/Fev =0.6, as in the right upper panel, further polarization, 

due to the excess positive charge on the metal surface, results in 

an induced dipole-dipole type interaction. The figure also indi­

cates that, while some electron charge transfers from the outmost 

part of the adsorbed He atom, leading to a more attractive poten­

tial in the vicinity of the nucleus, there is a little increase of 

the electron density there. A further increase in the electric 

field, to FQ/Fev=0.1 in the left lower panel and F0/Fev=0.9 in the 

right lower one, results in a charge transfer from the helium to 

the region between the adatom and the metal. This establishes a 

typical covalent bond and completes the transition from physi­

sorption to field-induced chemisorption. 
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down, d=5.0, 4.5, 4.0 and 3.2bohr and field streghth F/Fev=0, 0.6, 
0.7 and 0.9, respectively. Contours bn = 0, +0.00003, +0.00005, + 
0.0001, + 0.0003, + O.OOla.u. Solid (broken) lines non-negative 
(negative) values. 
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Similar figures for neon adsorbed on a semi-infinite jellium 

metal surface, with Wigner-Seitz radius ry=3.0bohr, are given in 

Fig. 1.10. The left-up panel shows a polarized neon atom resulting 

from field-free adsorption. The right-up panel, for the case 

F0/Fev=0.6, shows that, while the 2px and 2py orbitals of the neon 

atom are contracted to the region near the nucleus, the outmost 

part of the electron density of the 2pz orbital transfers from the 

neon to the surface. It represents the interaction of a more 

strongly polarized neon atom with the charged metal surface. In 

the left-down panel, for the case FQ/Fev=0.7, there is some elec­

tron density accumulated in the region between the neon atom and 

the metal surface. The right-down panel, for the case F0/Fev=0.8, 

presents a typical weak chemisorption and completes the transi­

tion from physisorption to chemisorption. 

In summary, high electric fields induce two simultaneous 

processes involving the valence orbitals of an adsorbed rare-gas 

atom: partial transfer of electron density from the rare-gas atom 

to the positively charged surface and redistribution of the elec­

tron density; the latter determines the adsorption-bond property. 

45 Comments on Classical Models 

Mtiller and Tsong23*25 proposed a phenomenological model of 

field adsorption of rare gases on metal tips in which the metal is 

represented by the single edge or kink atom on which field adsorp­

tion occurs. The external electric field is assumed to be 
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Fig.1.10: Electronic density shift for neon at the minimum, d, of 
the potential energy. For left-up, right-up, left-down and right-
down, rf=4.5, 4.1, 3.7 and 3.4bohr and field streghth F/Fev=0, 0.6, 
0.7 and 0.8, respectively. Contours bn = 0, +0.00003, +0.00005, + 
0.0001, ± 0.0003, ± O.OOla.u. Solid (broken) lines non-negative 
(negative) values. 
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constant across the metal atom-rare gas atom dimer. The attrac­

tion then results from the interaction of the induced dipole 

moments of the two atoms, yielding a binding energy of 

Eb =-k<*aVa-W, (1-36) 

where 

_ (l+2g,/d3)2 
f°~ (l-^ajd*)*' (1,37) 

and where d is the distance between the metal atom and rare-gas 

atoms, cia is the polarizability of the rare gas atom and c^ that of 

the metal atom. To fit data, Mtiller and Tseng23*25 take the low-

field values for aa and adjust ĉ ,. There are also independent mea­

surements of the polarizability of adsorbed metal atoms, which 

yield values of the right magnitude34. The density functional cal­

culations of the field adsorption of metal atoms on a jellium sur­

face in the preceding section produce similar numbers and show, in 

addition, a strong dependence of ô , on the field strength. We 

should also point out that to get reasonable values for Eb from 

(1.36) one assumes that d is the sum of the van der Waals radii of 

the metal atom and rare gas, e.g., d-(1.36+1.22)4 for helium on 

tungsten. Although the Tsong-Mtiller model is very appealing in 

its simplicity, the assumption that only a dimer consisting of a 

metal atom and a rare gas atom in a constant external field is 

considered to be oversimplified. There is also a question whether 

at such short distances a far field dipole picture is adequate to 
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Kreuzer et al. have recently worked out a first principles theory 

of dispersion and polarization interactions betweeen an atom and a 

flat metal surface in high electric fields26. For the dispersion 

or van der Waals energy one gets 

C3 
VvdW (z^o) = ~[Z-Z(/(F0)]

3' (1*38) 

where 

C3 = T J 4ir 

r 00 

e(/w)-l 
a(iu)du, (1.39) 0 e(JW)+l
l 

with a being the dynamic polarizability of the adatom and e the 

dielectric function of the solid, both evaluated, using Kramers-

Kronig relations, at imaginary frequencies; and zd (F0) is the 

field-dependent position of the dynamic image plane. In addition, 

the polarization energy obtained is 

__1
 Fi 1 V Fo 2 

-Pol J050'0 " 32 [W„(O,F0)3
3' EPoi » - o ^ o 2 " TTr,-,/ m n u - d-40) 

where ô  is the static polarizability of the adatom and d„ is the 

position of the static image plane. Realistic estimates show that 

the binding energy of helium on a flat metal surface due to an in­

duced dipole-dipole interaction is less than about 20meV. Natur-
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ally, this theory does not account for the field enhancement above 

step and kink atoms, which, however, is not likely to amount to 

more than an order of magnitude. 

A few years ago, Kreuzer et al. suggested that the dramatically 

increased binding energies of rare gases in external fields res­

ults from a transition from field-free physisorption to field-in­

duced chemisorption1 »l6~18. To understand field-induced chemisorp­

tion qualitatively, we assume for simplicity that the electric 

field is constant outside the image plane of the metal. Its pres­

ence then adds a term eF0z to the potential energy of the system. 

To lowest order, this raises the adatom energy levels by an amount 

eFQzQ, where z0 is the position of the nucleus of the adatom (in 

addition to adding off-diagonal elements, i.e., multipole 

moments). Considering helium as an example, we note that, in the 

absence of a field, the He Is level (at -24.3eV) is well below the 

conduction band of the metal. As the electric field is increased, 

the Is level will eventually move into the conduction band and 

become a (narrow) resonance state. At this stage, the adatom will 

also move closer to the metal, enhancing the wavefunction overlap 

and hence the binding, resulting in a continuous transiton from 

physisorption to field-induced chemisorption with increased field 

strength. 

Having the self-consistent electron distributions for field-

adsorbed helium and neon, we can now calculate the electric 

moment of the adatom and the effective polarizability, according 
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to (1.25) and (1.26) respectively. We find, for relative field 

strengths up to FQ/Fev =1.0, that the polarizability of adsorbed 

helium changes from 0.185/13 to 0.21L43, i.e., comparable to the 

experimental low-field value of 0.205/13. A similar calculation 

for niobium on a jellium surface yields a polarizability of around 

12A3. Although these values are of the correct order of magni­

tude, this does not justify classical models. Note that strong 

fields radically alter the electronic orbitals of field-adsorbed 

metal atoms and rare gases, leading to the establishment of adatom 

bonding orbitals with the surface. The corresponding dipole 

moments, written as effective charges separated by a distance, 

i.e., iiz=qt, are larger than that of the undisturbed atom. Thus, a 

far-field approximation to the dipolar field is not justified at 

the equilibrium position of adsorption. Nevertheless, if we use 

experimental values of the polarizabilities and adsorption dis­

tances in the Tsong-Mtiller formula (1.36), we get values of the 

binding energies that are far too large, see Figs.1.7 and 1.8. For 

example, for a He atom adsorbed on the apex of W surface atoms in a 

field of 4.5V/A, or F0/Fev=0.8, with the polarizabilities aa=0.205i4
3 

and ĉ ,=4.6/l3 for He and W, respectively, and an adsorption dis­

tance of d=2.59A, Tsong31 obtained a binding energy of 0.202eV, 

which agrees well with the experimental result. By contrast, using 

the measured polarizability of the adsorbed W atom, ĉ ,=6.75i43 

(Ref.34), and the adsorption distance d=2.31A for He adsorbed on 

W(ili) surface (Ref .24), we calculate the binding energy, accord­

ing to Eq.(1.36), to be 0.538eV. 



PART II: THERMAL FIELD-DESORPTION 

1. Introduction 

Thermal field-desorption is the removal of field-adsorbed spe­

cies from the surface of a field ion tip which can be achieved by 

raising the temperature of the metal tip31'40'41. Field evapora­

tion, to be discussed in PART m , refers to the process of remov­

ing lattice atoms, as singly or multiply charged positive ions, 

from the surface of a field emitter tip in an electric field of the 

order of volts per angstroms42*43. Both field evaporation and 

field desorption, crucial in the cleaning and preparation of field 

emitter tips, are thermally activated processes; as such, their 

rate constants can be parametrized according to Frenkel-Arrhenius 

as 

rd = ca> exp(-Q(F)/kBT). (2.1) 

Here, Q(F) is the field dependent height of the activation barrier 

to be overcome by the desorbing particle, while v can be identified 

with the vibrational frequency around the minimum, although it 

generally involves additional, temperature-dependent factors44. 

In thermal field-desorption both neutral and ionic species are 

removed. For the neutrals, which predominate at low field 

strengths (and, except alkali atoms and ions, are the only 

47 
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desorbing species in free field), the additional factor in (2.1) is 

identified as the sticking coefficient, oe=S, which is a measure of 

the efficiency of energy transfer between the adsorbed particle 

and the solid. Although we have S=10""4 for helium in free field, 

some field dependence is to be expected in S. For desorbing ions, 

a=a; is a measure of the ionization probability for an adsorbed 

particle in its escape from the surface potential. This simplis­

tic approach outlined above, however, ignores a number of inter­

esting questions: whether the desorbing species emerge as ions or 

neutrals; whether post-ionization occurs; and what the energy dis­

tribution of the desorbing species is. To answer such questions 

Kreuzer et a/.45 proposed a kinetic theory which accounts for energy 

and charge transfers. They formulate the appropriate master 

equation for the problem and calculate all transition probabili­

ties from first principles. Here, we will present detailed calcu­

lations of the kinetics of the thermal field-desorption of helium. 

Field ionization results from the tunneling of electron from a 

gas particle in strong electric fields. If it occurs close to a 

metal tip, the emerging electron will tunnel directly into empty 

states above the Fermi level. This will happen predominantly in 

regions of locally enhanced electric fields, e.g., above kink 

sites, steps and single metal atoms on terraces, and can lead to 

image formation with atomic resolution. Of importance in formu­

lating a theory is the fact that the approaching neutral particle 

is not in its ground state, which would be ionic and localized far 

from the tip, but rather is on an excited energy curve, which, far 



49 

from the tip, describes a neutral species isolated from the metal. 

We start our discussion of field desorption by considering a 

helium atom adsorbed on a field ion tip. As the temperature is 

raised, the He atom will eventually get the chance to escape from 

its binding potential. If its escape from the surface is slow 

enough, it will get ionized at the hump of the ground-state energy 

curve and reach the detector as an ion. However, if ionization, 

i.e., the tunneling of an electron from the adatom to the metal, is 

too slow, the adatom will escape as a neutral atom with a kinetic 

energy unrelated to the ground-state energy curve. Indeed, a neu­

tral atom in a field past a critical distance no longer corres­

ponds to the ground state of the system, but rather to some 

excited state; the potential energy surface, describing such a 

neutral atom, is called diabatic. 

From the above preliminary discussion, it should be obvious 

that the adiabatic states are not the most intuitive basis to set 

up a kinetic theory of field desorption and field ionization. 

Rather, a new basis must be constructed in which the charge state 

of the adsorbing species is identified and in which its motion is 

explicitly taken into account; they are called as diabatic states. 

Their construction from adiabatic states, including the identifi­

cation of the coupling terms between them, will be reviewed in the 

next section. The diabatic states then form the starting point 

for the calculation of transition probabilities for ionization, 

which in turn will enter a master equation from which observables 
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like energy-dependent ion yields, the probability for post-ioniza-

tion etc. can be computed. We should point out that , as any phy­

sical theory is inherently independent of the basis used, one 

could, of course, also formulate a kinetic theory of field desorp­

tion and field ionization starting from adiabatic states. How­

ever, a diabatic basis, in which neutral particles and ionic spe­

cies are explicitly identified, has more intuitive appeal. Again, 

in this basis it is quite straightforward to identify electroni­

cally excited neutrals and ions and, if the gas particles are 

molecules, their vibrationally excited states. Correspondingly, 

in most phenomenological discussions of field desorption and field 

ionization, diabatic states have been the starting point. 

2. Adiabatic and Diabatic States 

21 Hamiltonian 

We consider in front of a metal an atom at a distance R away 

from the topmost ion core. We will refer to this single atom as 

the adatom. For obtaining the adatom states, we fix, for the 

moment, the positions of the metal nuclei, i.e., we neglect the in­

teraction between the adatom and the phonons of the metal. The 

Hamiltonian of this system can be written as 

Hd =TN + He(r{ ,r2, • • • ;J?), (2.2) 

where 
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a2 a2 

TN~~2M 3K2 ( 2 , 3 ) 

is the kinetic energy of the adatom nucleus, and 

**2 a2 

^ = "2^ I â T + M', ,r2,-..;*) (2-4) 

is the Hamiltonian of the electrons at positions r, ,r2, • • •. Ve in­

cludes the Coulomb interactions between the electrons, between 

the electrons and the nuclei, and between all nuclei (metallic and 

adatom's). 

2 2 Adiabatic States 

Let us fix the position of the adatom nucleus and set its kin­

etic energy (2.3) equal to zero. Physically, this assumes that the 

electronic degrees of freedom follow the nuclear motion instan­

taneously. We can then diagonalize He (in practice, after 

approximating it, e.g., by a tight-binding Hamiltonian, or using 

density-functional theory) to obtain 

He(r;R) ft(r;fl) - Vt(R) f/(r;7?), (2.5) 

where the £ are adiabatic many-electron wavefunctions. Here and 

below, we use r to represent all the electronic coordinates 

ri'r2'""* T ^ lowest eigenvalue of (2.5), V0(R), represents the 



52 

ground state of the system and corresponds to the adiabatic bind­

ing energy curve. Lifting an electron, from the highest occupied 

level (in the ground state) to the lowest unoccupied one, gener­

ates the energy curve (or rather surface, because A is a three-

dimensional space coordinate) of the first excited state etc. 

To account for the nuclear motion of the adatom, we proceed now 

to construct diabatic states. We try to diagonalize the Hamilto­

nian (2.2) by solving Schrodinger's equation 

"d *a ~" *a V» (2.6) 

via the expansion 

*a(n*t) - Z &<r''*> ««<*>• (2.7) 

Inserting (2.7) into (2.6), multiplying by f* and integrating over 

the electronic degrees of freedom, r, we obtain a set of coupled 

equations 

[- a2 a2 

2M dR* + Vi{R) ~E<* ««<*) 

2M E ^ + 24"iJ5 K.JQI (2.8) 

where 
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4?)<*> - tti*(r;R) ^ tj(r;R) dr (2.9) 

and 

a2 

If (R) = Hi*(nR) gp Jjf (r;i?) dr (2.10) 

are the matrix elements of the first and second order differential 

operators. Setting the right hand side of Eq.(2.8) equal to zero 

results in the Born-Oppenheimer approximation, according to which 

the nucleus moves only in the jth adiabatic potential. 

Solving Eq.(2.8) amounts to obtaining an exact solution to the 

problem by diagonalizing an infinite matrix. To reduce the task to 

manageable proportions, one assumes that, in a given problem, only 

a limited number of adiabatic states contribute to the set of dia­

batic states involved in the process to be studied. For example, 

in field desorption and field evaporation, only the lowest dia­

batic states for a neutral atom and for ions appear important. 

They can thus be obtained from the corresponding adiabatic states 

by a unitary transformation. Since the latter are known expli­

citly from the tight-binding or density-functional calculations 

alluded to above, the problem is, in practice, solved. 

23 Diabatic States 

Let us introduce new states, ij, with a transformation from the 

adiabatic states x 
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X = An, (2.11) 

where x T = ( X n X 2 i " " ) is the transpose of the column vector x con­

taining the adiabatic (nuclear) states as its components and A is a 

unitary matrix which is an explicit function of R . To obtain a 

diabatic solution of (2.8), we choose the transformation A such 

that the first-order derivative term vanishes, i.e., w e impose the 

condition46 

5F + T<" A = 0. (2.12) 

We thus get from (2.8) 

n* a2 
9 = 0, (2.13) 

where % are diabatic s t a t e s . In (2.13), / i s a uni t matrix, £ i s 

diagonal and the non-diagonal diabatic interact ion matrix i s given 

by 

W=A*VA, (2.14) 

i.e., in terms of the adiabatic energy curves defined in (2.5). 

Dropping the coupling terms, WtJ, from (2.13) determines the uncou­

pled diabatic states, subject to 
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1?, " 0 . (2-15) 

Thus, iff, is the vth eigenstate, with energy £/r, of its diabatic 

potential Wn(R). For example, WQQ would be the potential for a 

neutral atom approaching a surface and W[, that of an ion. The 

off-diagonal terms, Jfy, couple these states together; in the above 

example, W01 is responsible for ionization or neutralization. 

Combining (2.7) and (2.11), we can rewrite the total wavefunc­

tion as 

%(r;R) = £j}(r;K) X/„(*) 

i 

= ££(r;/fMy(«) W * ) 
i 

= £Mr'/0 r,Ja(R), (2.16) 
; 

by introducing the diabatic many-electron wavefunctions, 

24 Two-State System 

Before continuing with the expl ic i t calculation of adiabatic 

and diabatic s t a t e s , we briefly discuss the i r meaning. To t h i s 

end, we assume tha t only two levels par t ic ipate in the process of 
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field desorption, while the other electronic levels remain 

unchanged, acting as spectators throughout the process. We denote 

by $a the highest occupied single-electron level with energy ea in 

the isolated adatom and by <ft„ the lowest unoccupied level of the 

same symmetry with energy em above the Fermi energy of the iso­

lated metal. In the interacting system of adatom plus metal, 

these two levels combine to form two molecular orbitals, 9g and 

9e, of lower and higher energy, respectively; see Fig.2.1. Assum­

ing that we can approximate the adiabatic many-electron wavefunc­

tions as Slater determinants, we find that the adiabatic ground 

wavefunction for N electrons, 

&<*•;*)-I *,**...**.,*,| r (2.17) 

is com:̂ "s> -1 of the spectator states, $, where i=l,...N-l, and 9g, 

while U*e adiabatic, excited many-electron wavefunction, 

f,(r;J?) = |*,*2...*„.,*,! , (2.18) 

has 9g replaced by 9e. If one assumes, with the adatom close to the 

metal, that ea is lower than e,„, then 9g and 9e are dominated by <f>a 

and 4i i respectively. Thus, f0 represents a many-electron wave-

function in which both adatom and metal are in their respective 

neutral ground states, whereas f, describes a situation with an 
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Fig.2.1: Adiabatic (V,) and diabatic (Wtl) potential energy curves 
and schematic drawing of noninteracting (<f>a and <̂ ,) and interact­
ing (9g and 9e) orbitals to illustrate the discussion around 
Eqs.(2.17) and (2.18). 
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electron transferred from the adatom to the lowest empty orbital 

of the metal. When the adatom moves far from the metal, ea is 

raised by the external electric field such that it is higher than 

€„,, and so 9g and % are dominated by ^ and <£,, respectively. In 

this case, the adiabatic ground wavefunction f0 describes a situa­

tion in which an electron is transferred from the adatom to the 

metal, whereas the adiabatic, excited wavefunction f, represents a 

many-electron state in which both adatom and metal are in their 

respective neutral ground states. 

m Ref.7, we have shown that, for two relevant states, the 

transformation A in (2.11) can be represented by a unitary 2x2 

matrix, which can be written, quite generally, as 

_ |~cos0(K) sin0(/f)T 
A |_-sin0(K) cos0(l?)j * (2,19) 

Noting that the matrix 7A'> is antisymmetric, we reduce the matrix 

equation (2.12) to a simple vector equation, 

£•<*>--<& _a_ 
dR 

a 
- - Ho InR) w A (r;R) dr , (2.20) 

which can be solved as a line integral, 
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0(1?)=-| < & 3]j &>•««' • (2.21) 

Setting B(R0)=0 implies that A(R0)=I, and thus that, at RQ, diabatic 

and adiabatic states coincide, as is the case far from the surface. 

The diabatic interaction matrix (2.14) is now given explicitly by 

its components: 

W00 (R) = cos20(J?) V0 {R) + sin20(R) V{(R); (2.22) 

Wu (R) = cos20(K) V, {R) + sin20(K) VQ(R); (2.23) 

and 

W0l(R) = ±siix2B(R) [V0(R) - VX(R)]. (2.24) 

To evaluate (2.21), we first observe that, in field desorption, 

adatoms will leave the surface along the steepest field gradient, 

i.e., perpendicular to the surface. Hance, we can neglect any lat­

eral interactions and assume that 0=0(Z) depends only on the dis­

tance Z from the metal, which yields 

fZ « 
0(Z) = - dZ idr9g (r;Z) 77 ** (r'>z)> (2-25) 

J 00 

provided that the adiabatic many-electron wavefunctions are given 

by Slater determinants. This completes the construction of dia-
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batic states for situations in which only two states are impor­

tant. We should note, however, that, even in the case of thermal 

field-desorption of helium, this is not strictly correct. Recall 

that field ionization of the adatom can take place when its high­

est occupied level rises above the lowest unoccupied level in the 

metal. For a given field strength, F, this happens if the adtom is 

at a distance Zc (F). If the desorbing atom is at distances Z 

larger than Zc, the electron can tunnel into higher unoccupied 

levels of the metal. Thus, for given F and Z, only two states par­

ticipate in the ionization process and hence in the construction 

of diabatic states, although a band of metal states is relevant in 

the overall field desorption process. Note, however, that because 

the tunneling probability decreases rapidly as a function of dis­

tance, this band of tunneling states is rather narrow. Mimicking 

the metal by a finite cluster of metal atoms obviously does not 

produce a band structure, but rather a set of discrete levels, 

which one has to broaden vrith a width corresponding to the width 

of the ionization zone. 

In Fig.2.2, we present adiabatic and diabatic potential energy 

curves for a He atom adsorbed on a W surface in a field of two dif­

ferent strengths. Such curves have been drawn qualitatively to 

serve as a basis for Muller's image-hump model42*43, Gomer's 

charge-exchange model47 »48, and discussions of charge-hopping and 

charge-draining mechanisms2*49. According to the discussion above, 

the difference between the adiabatic potential energy curves 

reaches a minimum at the apex and is of the order of the 
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interaction energy between the highest occupied and the lowest 

unoccupied orbitals. With increasing field, the apex will move 

towards the metal surface, resulting in an increase in the inter­

action energy and thus in an increase in the energy difference 

between the adiabatic energy curves. We note that 0 varies rapidly 

from 0° to 90° over a very short distance, i.e., less than 0.1 A 

around the apex of the adiabatic ground-state energy curve, which 

indicates the narrowness of the ionization zone. 

3. Kinetics 

31 Uncoupled States and Coupling Terms 

To calculate the kinetics of field desorption and field ioniza­

tion, the relevant kinetic equation must be formulated to properly 

account for the processes of energy- and charge-exchange. We sup­

plement the Hamiltonian, describing diabatic states, Hd, with both 

a Hamiltonian, Hs, describing the thermal degrees of freedom of 

the metal, and a coupling term, H', to write 

H = Hd + Hs + H' . (2.26) 

A transparent way to describe systems in which the number of the 

particles changes as a function of time is via creation and annihi­

lation operators. We first note that the field operator ¥(Jl,f)/ 

describing / diabatic states, can be represented as an /-dimen-
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sional vector with components %(R,t). We expand the %(R,t) in 

terms of the uncoupled diabatic eigenstates defined in (2.15), 

i.e., 

%(R,t) = £ aif{t) rft,{R). (2.27) 

v 

m the above equation, we have introduced the annihilat ion opera­

t o r s air, t h a t destroy a neutra l or ionized p a r t i c l e of the ith spe­

cies in the vth s t a t e of i t s diabat ic potent ia l Wit, with the i r Her-

mitian conjugates being the creation operators a£ . We thus have 

Hd=H°d+H'd 

= £ E^+a,, + £ <M tyl'» «£<%, * (2-28) 
»'" ijviL 

where the off-diagonal terms Wtj were introduced in (2.14). 

For the thermal degrees of freedom of the metal , we assume tha t 

harmonic phonons are a good approximation and wr i te 

Hs = £ ft ujbfbj, (2.29) 

J 

where bj annihilates a phonon of mode J with energy Huj. In princi­

ple, the phonon modes should be constructed for the tip geometry, 

including local modes specific to the particular surfaces at which 
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field desorption is being studied. This is a rather complicated 

task, but, fortunately, it has been shown in the theory of thermal 

desorption35 that such local surface modes do not introduce quali­

tatively new features into the desorption kinetics, since the 

thermal desorption rate constant is an integral over all partici­

pating phonon modes. Thus, one obtains the rate constant, within a 

factor of 2 or 3, by using bulk phonon modes, J = (a,k), where a den­

otes the polarization vector of the transverse and longitudinal 

phonon modes and k the wavevector. In any case, the coupling term 

for energy exchange between the adatom and the phonons of the 

solid reads 

//' = £ X, («>,/*; J) at, (ft* + bj) ailk, (2.30) 

ipiU 

where the matrix elements are given by 

Xt (P,H; J) = -

and Uj i s the normal phonon mode; further d e t a i l s can be found, 

e .g. , in Ref .35. 

32 Master Equation 

Starting from Hj" + Hs and using H' d + H' as a perturbation, Tsu-

kada and Gortel50 have recently derived a generalized master equa-

2p0u7 
\dRVf(R) Uj 

Wu (R) 
BR vim, (2.31) 
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tion that controls the kinetics of field adsorption and field 

desorption and takes into account non-Markovian effects. With the 

introducion of the occupation probabilities for an adatom of kind i 

to be in state v of its diabatic potential Wu, 

nh(t)=(a+aif), (2.32) 

the master equation in the Markovian l imit reads 

dnif v-« 
a = L tRt(p*ri % -Rib'") «/,] 

+ £ [7y (p,n) «,„ - Tj, (n,») nir ] . (2.33) 

The phonon t rans i t ion r a t e s , in the one-phonon approximation, are 

given by Ref ,35 as 

*i M = 7 l I X, (P,II; J)| 2 [«<*> (coy) 5 ( E „ - £ , -f tW y) 
7 

+ («<*•*> (Wy )+ l ) &(E„ -£,„ +fto>, ) ] / « , , (2.34) 

where B(P*> are the Bose-Einstein phonon occupation functions. 

For the tunneling rates, a straightforward generalization of 

the expression obtained by Tsukada and Gortel50 to systems with 

more than two relevant states gives 
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Ttj(».v) = J I JdK*P*,r(R) %(J?) *J,(K)|2 A^-E, , , ,^) , 

(2.35) 

with 

1 T/2 
tkM-Tt+V/A ' ( 2 , 3 6 ) 

In (2.35), I}M i s the hal f -width of l eve l /* in t h e / t h d i aba t i c 

p o t e n t i a l , W-,, due t o phonon t r a n s i t i o n s and i s given via (2.34) as 

I}„ = » £ RJ(9,PL). (2.37) 

p 

Because T,j (P,H) descr ibes t r a n s i t i o n s between d i s c r e t e s t a t e s of 

t he unperturbed Hamiltonian, ca re must be exercised t o include t h e 

width of t he i n i t i a l s t a t e . This i s done formally by rep lac ing t h e 

energy-conserving 8-function by the Lorentzian (2.36). 

4. Discussion 

41 Ion Yield 

The kinetics of a gas atom interacting with a metal under high-

field conditions is described by the master equation (2.33) for the 

time evolution of the occupation functions nif for a particle of 

kind i in the pth state of its diabatic potential Wu. Here i labels 
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ground-state neutral atoms, singly or multiply charged ions, as 

well as electronically excited neutrals or ions. 

To be more specific in our discussion we denote in the master 

equation (2.33) neutrals and singly and doubly charged ions by the 

subscripts 0, + and ++, respectively. We get for the neutral spe­

cies 

dn° 

-£ = X [*o("»M)»;-KoGM') n°t) 

+ £ [7-0+0;,M) nj-r+o &*,")«?] 

+ £ [T0i++{r,p) nt+-T++tQ(n,p) n°p). (2.38) 

Let us assume for the moment that v refers to a bound state of a 

neutral atom bound in W0Q to the surface of the metal. For n also 

referring to bound states, we note that the first sum contains 

phonon-assisted transitions between these bound states in W00; 

usually much faster than other transitions, they maintain a quasi-

equilibrium in the adsorbate as the system evolves in time. If in 

the first sum the n refer to continuum states in W0Q, the first 

(second) term gives the rate of thermal adsorption (desorption). 

If v refers to a continuum state, one then has continuum-continuum 

transitions corresponding to surface scattering of neutral spe­

cies without altering the electronic configuration. 
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The second sum in (2.38) contains reneutralization of singly 

charged ions (first term) and creation of singly charged species 

(second term). Again, these transitions can involve adsorbed par­

ticles (bound states of Wu) or gas-phase particles (continuum 

states of Wu). For example, terms involving 7+Q (/*=continuum 

states, p=bound state) describe the ionization of an absorbed par­

ticle leading to field desorption, whereas T+Q O*=continuum state, 

i>=continuum state) leads to the ionization of a neutral particle 

approaching the tip from the gas phase. The last sum in (2.38) 

then describes the equivalent processes involving doubly charged 

ions. 

Let us now implement conditions of thermal desorption in 

(2.38), considering helium as an example. Experimentally, one 

field-adsorbs helium at low temperature and with fields of around 

4V/A, resulting in helium atoms bound in the lowest state of W0Q. 

Fast heating of the tip, e.g., by a laser pulse, leads to rapid pop­

ulation of the higher states of WQQ followed by thermal desorption 

and ionization. Re-adsorption and reneutralization are negligible 

if the temperature rise is fast enough; Eq.(2.38) then simplifies 

to 

at 

YsRo&o.*) + £ 7+o<*+'"> + X r++,o<*++'"> 

*o *+ *++ 

n°,, 
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(2.39) 

where we imply that p and n refer only to bound states in W00, with 

continuum states of neutrals, and singly and doubly charged ions 

denoted by *0, k+ and k++, respectively. For neutral atoms in the 

continuum, we get 

dn°kQ 

-%-- Z*o(*o»") «?• (2.40) 

Similarly, for the ions, we obtain 

dn£ 
-— = £;r+0efc+,»o n°, - X T++i+(k++,k+)} 4+, (2.41) 

p k++ 

and 

dnt+ 

++ = £ 7++,0(*++,") n°p + Xr++#+(fc++,M] < • (2.42) 

The last sums in (2.41) and (2.42) correspond to post-ionization of 

singly charged species. 

To solve Eqs.(2.39)-(2.42), we recall that phonon-assisted 

transitions within the surface potential WQ0 of the neutral spe­

cies are typically much faster than any other process considered. 
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The first sum in (2.39), therefore, very nearly cancels, keeping 

the remaining adsorbed atoms in quasi-equilibrium throughout the 

desorption process. We can therefore solve (2.39) with an 

ansatz50, 

n°, (/) = A exp(-£0, /kBT) exp(-X/) (2.43) 

The rate constant is given by 

I 
x = 

*o *+ *++ 

exp(-EQf/kBT) 

£exp(-E0,/*,r) 

(2.44) 

where the first term corresponds to loss of atoms in the adsorbate 

due to thermal desorption, the second is due to formation of 

singly charged ions and the last is due to direct double-ioniza-

tion. With (2.43), Eqs.(2.4l) and (2.42) can be integrated without 

difficulty. 

To establish the connection with experimentally observable 

quantities, note that the particle flux observed in a detector is 

proportional to the rate of formation, determined by 

Eqs.(2.40)-(2.42). Thus, we find for the yield of singly charged 

ions, 
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X 7+o (*+,»<) exp(-E0,/*Br) 
p,k+ 

%on = , (2.45) 

£ exp(-£0r /kBT) 
p 

keeping in mind that the energy of the detected particle is given 

by £=ft2k2/2M in terms of the quantum label k (wavevector) of the 

continuum states. 

To determine the transition probability in (2.45) from (2.35), 

we must know the nuclear unperturbed diabatic states, i?°, and i;̂  , 

in the diabatic potentials, WQQ and W++. To simplify the numerics, 

we have fitted a Morse potential to W00: 

W00(Z) = AQ(F) {exp[-27(Z-Z0)] - 2 exp[-7(Z-Z0)]}, (2.46) 

adjusting i t s parameters, /40(F), 7(F) and ZQ(F), as functions of 

f ie ld s t rength . Likewise, we se t 

W++(Z) = Wc -eF(Z-Z0) (2.47) 

for the diabatic curve of the ion. For both potentials, the unper­

turbed diabatic states can be derived analytically. 

42 Thermal Desorption of Helium 
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In Fig.2.3, we show the ion yield as a function of flight time, 

adjusted in position and height to allow direct comparison with 

the experimental data by Tsong51. We note that the theoretical 

curve has an energy width of about 0.6eV as compared to about leV 

in the experiment. In view of the number of theoretical approxi­

mations, these two estimates compare rather favorably. 

Thermal field-desorption being an activated process, we have 

evaluated the yield (2.45) according to the Frenkel-Arrhenius par-

ametrization of (2.1). The results, together with the position of 

adsorption, are presented in Fig.2.4 as functions of field 

strength. We take the electric field from self-consistent calcu­

lations using density-functional theory performed at flat sur­

faces10'". Representing tungsten, a transition metal, by an in­

herently approximate rs value introduces some uncertainties into 

the theory. To estimate the reliability of this procedure, we pre­

sent the results in Fig.2.4 for two values of rs: 1.5 and 2.0. The 

theory is definitely not more accurate than the spread in data 

points; this is the best we can do with our present, rather crude, 

cluster programme based on the ASED-MO method. 

The lowest panel in Fig.2.4 reveales an interesting qualitative 

feature, that is, the dramatic, roughly exponential, increase in 

the prefactor as a function of field. We recall that in ordinary, 

or field-free thermal desorption, the effective prefactor is the 

product of a sticking coefficient and a desorb-attempt frequency. 

In thermal field-desorption, the role of the sticking coefficient 
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is replaced by the ionization probability at the apex of the adia­

batic ground-state energy curve. It varies from zero in F=0 to a 

saturation limit in high fields, as borne out by our calculations. 

For He, this strong field-dependence of the prefactor has an in­

teresting consequence. We note that, for He, the activation energy 

for field desorption is roughly equal to the depth of the diabatic 

curve for the neutral species. Thus, thermal field-desorption of 

neutral and ionic He have the same desorption energy, implying 

that the ratio of ions to neutrals is proportional to the ratio of 

the prefactors. Because the prefactor for the desorption of neu­

tral He is not strongly dependent on field strength, we predict 

that the ratio of ion to neutral yield is an exponential function 

of field strength. In particular, well below the best image volt­

age, thermal desorption will only yield neutral He. To test this 

idea, an experiment should start from a well-defined, constant 

coverage of He, which is then totally removed by a fast tempera­

ture rise so that the total number of desorbed species remains 

constant. If the detector registers only ions, one should see the 

exponential increase in ion yield directly. 

5. Conclusions 

Hopefully, we have demonstrated that the theory presented in 

this part contains the relevant ingredients for a complete des­

cription of the kinetics of field desorption, field evaporation 

and field ionization. It should also be obvious by now that a suc­

cessful theory cannot start by modeling the various rates in the 
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master equation (2.33). Rather, they must be calculated from 

first principles, as alluded to in the introduction. Only on the 

basis of such calculations will it be possible to answer such 

questions as to: whether post-ionization is important in a given 

system or not; how wide the ionization region is; and what temper­

ature and energy dependence the emerging ions will have. 

In this part, we have calculated the yield of singly charged 

ions in a thermal field-desorption experiment. It appears to us 

that, using the master equation approach, one could eventually 

also tackle the much more complicated problem of image formation 

in the field ion microscope. 



PART III: FIELD EVAPORATION OF METALS 

1. Introduction 

Induced by electric fields of order of volts per angstroms, 

field evaporation is a thermally activated process, involving the 

removal of lattice atoms, as singly or multiply charged positive 

ions, from the surface of a field emitter tip. In the Frenkel-

Arrhenius or Polanyi-Wigner parametrization of its rate constant 

(Eq.(2.1)) 

rd = car exp (-Q (F)/kBT), (3.1) 

where Q(F) is again the field-dependent desorption activation-

barrier height and the prefactor is split into an attempt fre­

quency, p, and an accommodation coefficient, a, both being field-

and also weakly temperature-dependent. The evaporation field 

strength, or minimum field strength beyond which the activation 

barrier vanishes and field evaporation at low temperatures 

occurs, varies from 2.5V/A for Ti to 6.IV/A for W, with typical 

experimental errors margin of 10-20%3I. Ernst53 has measured Q(F) 

and v(F) for Rh, and Kellogg32 has presented data for W in the field 

range 4.7-5.9V/A. 

Two phenomenological models have been proposed to calculate 

the activation energy Q (F): the "image-force" model and "charge-

77 
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exchange" model. In the "image-force" model42 »43 field evaporation 

is envisaged as the activation of an ion of charge ne over an acti­

vation barrier that results from the superposition of the field 

potential, -neFZ, (assuming a constant electric field), and the 

image potential of the ion, -ne/4Z. One gets 

Q(F) = A + £/„ - ni -VnWF + - K-o^F 2, (3.2) 
n 

where A is the field-free sublimation (cohesive) energy of the 

metal, /„ is the wth ionization potential of the desorbing ion, 9 is 

the work function of the surface, F is the applied electric field 

strength, and aa and a; are the polarizabilities of the surface and '? 

the desorbing atoms, respectively. In the "charge-exchange" 

model47, one assumes that ionization and desorption occur at the 

crossover point Zc between the atomic and ionic (diabatic) poten­

tial energy curves. One finds 

G(F)=A+ £/„ - n* --^r1 - neFZc -T+ \ (aa -a, )P-, (3.3) 
n 

where T is the half-width of the ionic level broadened by its in­

teraction with the atomic curve. A confrontation of these models 

with experimental data has been presented by Kellogg32, while 

Forbrs2'49 has presented several critical assessments. 
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An early microscopic calculation of Q(F) by Kahn and Ying14, 

based on the local density approximation of density-functional 

theory, treated the metal as a jellium. Kingham15 has presented 

some preliminary results, obtained within a tight-binding cluster 

model, for the field evaporation of Rh. The microscopic theory of 

field evaporation presented by Kreuzer and Nath20 calculates the 

electronic properties of the metal within a tight-binding cluster 

approach based on the ASED-MO method19, while local electric 

fields are taken from self-consistent jellium calculations10 #u. 

They extract the activation energy Q(F) from adiabatic ground-

state energy curves, and find a scaling law, which predicts evapo­

ration field strengths within 10-20% of experimental values. 

To extend such ground-state energy calculations to a kinetic 

theory of field desorption and evaporation, we have employed a 

master equation to calculate the energy-dependent ion yield in the 

thermal field-desorption of helium as a function of field strength 

and temperature, as presented in Part II. In this part, we will use 

it to study the field evaporation of metals and present numerical 

data for field evaporation of W. To summarize our results, we 

find, as Kreuzer and Nath found in their earlier study20, that: the 

activation barrier against field strength decreases 

(monotonically for most metals, such as tungsten, for which we 

obtain good agreement with Kellogg's data32), whereas the prefac­

tor initially increases with increasing field strength (up to 

4.5V/A for tungsten) due to an enhanced ionization probability, 

and then decreases due to changes in the surface potential of the 
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2. Method 

21 Adiabatic and Diabatic States 

Field evaporation occurs predominantly at kink and step sites, 

where the electric fields are enhanced. In our theory, we consider 

a situation, in which a single metal atom sits a distance R away 

from the topmost ion core on top of an otherwise perfect crystal 

plane. In Part II, we presented a detailed description of the 

theory of diabatic and adiabatic states, a brief result of which is 

cited as following. The total wavefunction of the Hamiltonian of 

the adatom-metal surface system, 

Hd = T(R)+He(r;R), (3.4) 

can be expressed as 

i 

= ^ M ) ^ ( R ) vja(R) 
i 

= £$,(r;fl) vja(R), (3.5) 

J 

where the adiabatic many-electron wavefunction £ i s the eigen-
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s t a t e of the Hamiltonian of the e lectron, He, with the eigenvalue 

He(r;R) SUnW-ViiR) fi(r;/f), (3.6) 

and, if the unitary transition matrix A is subjected to the condi­

tion, 

3 
A =0, (3.7) 

where the operator 7A') i s defined as 

4-}(K) = ItfinR) w tjinR) dr, (3.8) 

then the diabatic states of the adatom, ij, subject to the equation, 

»2 a2 

- I — + W(R)-E 
r, = 0, (3.9) 

with the (coupled) interaction matrix W defined as 

W=AWA. (3.10) 

In the case of field adsorption of a helium atom on a tungsten 

surface, the interaction between the adatom and surface is very 

weak, so that, if the metal surface is approximated with a cluster 
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model, usually only two levels, one from the adatom and another 

from the metal, significantly participate in combining orbitals of 

the adatom-metal system. Therefore, it is possible to only con­

sider two levels (see Fig.2.1), <f>a, the highest occupied level in 

the isolated adatom with the energy ea, and <ft,,, the lowest unoccup­

ied level above the Fermi energy of the isolated metal of the same 

symmetry as 4>„ with the energy em; while all other electron levels 

remain unchanged as spectators. These two levels combine into two 

orbitals, 9g and 9e, and one can assign the adiabatic many electron 

wavefunctions thus that the adiabatic ground-state wavefunction 

for N electrons, 

Jb(r-;*) = |*,*2..-*AM*,I » (3-11) 

is composed of the spectator states.. $, for i=l,,*.N-l, and 9g, 

whereas the lowest-excited many-electron wavefunction, 

$x(nR) =\9x91...9N_{9e\ , (3.12) 

has 9g replaced by %. 

22 Perturbative Approach 

In the thermal field-evaporation of metal ions, since the 

adatom and metal surface atoms are ident ica l , the interact ion 

between them i s correspondingly very s trong. Hence, many levels 

pa r t i c ipa te t o form molecular o rb i t a l s for the adatom-metal 
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system; this contrasts with the weakly interacting He adatom-W 

surface field-desorption case considered in Part H, where it was 

assumed that only two states participated in molecular orbital 

formation. As a consequence, many states become important, cor­

responding to different ionization stages and, more fundamen­

tally, outgoing momentum. In principle, we can use the formalism 

of adiabatic and diabatic states derived in Part II, but this would 

require the construction of a large unitary transformation mat­

rices A. In practice, these adiabatic many-electron wavefunctions 

are very difficult to obtain, as most of them are excited states. 

Instead, we will advance a perturbative approach to the construc­

tion of the diabatic many-electron wavefunctions, {, introduced in 

Eg.(3.5). We observe that an electron is transferred from the 

adatom to the metal when the highest occupied level on the adatom 

rises above the Fermi level of the metal. We can linearize the 

energy of the highest occupied level of the adatom as 

ea(Z) =£w + Ae(Z), (3.13) 

with Ae(Zc) =0, where Zc denotes the adatom position when the elec­

tron is transferred. Further more, if we restrict ourselves to 

two levels for the moment, we then write for the orbitals 

% =Cgm<bn + cga<l>« (3.14) 

and 
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** -Cemk, +CeaVa- (3.15) 

Hence we get t o second order 

cgm 

Cga 

^ern 

l i-V-g)S 
V2V1+fl-fg ' 

1 f-8 
V$V1+f2-fg ' 

1 l-(f+g)S 

(3.16a) 

(3.16b) 

(3.16c) 

and 

1 f+g 

where 

Ac(Z) 

"z< - i o ^ 5 ) ' (3*17) 

g=Vl+72 , (3.18) 

V - < * , l * k ) » (3.19) 

5 = < i k > , (3.20) 

with A being the single electron Hamiltonian. Thus, the adiabatic 

many e lec t ron wavefunctions, f0 and f,, are obtained according t o 
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(3.11) and (3.12). The transformation angle, (Eq.(2.25)) 

»(Z) = dZ Jdr *s(r;Z) ;=#,(r;Z), (3.21) 
1 00 

is then, with Eqs.(3.11), (3.12), (3.13)-(3.16), given by 

6(Z) = |ir'/(Z) " J- (3-22) 

Having 0(Z), we obtain 

sin0(Z) = -^1-f/g (3.23) 

and 

cos0(Z) = ^1+f/g . (3.24) 

We next calculate the diabatic potentials, Wi},, from (2.22)-(2.24). 

First, we note that the total energy V, of the iaany-electron wave-

function £ (Eq.(2.5)) is represented in the ASED-MO method as sum 

of a repulsive term, Er, and a remainder, Enpf: Er accounts for the 

Coulomb interaction between isolated atoms and, thus, is deter­

mined by the geometry, while EnpJ- entails the (non-perfectly 

following) electron rearrangement, induced by the presence of the 

other atoms, and is equal to the sum of the single-electron ener­

gies. The difference, V0-V,, is related to the difference, eg-ee, 
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between the terms, Enpj, of the many-electron wavefunctions, f0 and 

ft. From Eqs.(3.14)-(3.16), we have 

V0-V, --giV-^S). (3.25) 

With Eqs . (3 .23)-(3 .25) , we de r ive for t h e i n t e r a c t i o n term, W0l, of 

Eq.(2.24) in a t w o - s t a t e system 

W01(Z) = V(Z) -e,„S(Z). (3.26) 

The d i a b a t i c many-e lec t ron wavefunctions a r e then given by 

| 0 (r;R) - cos0 f0 - sin0 ft 

= (cgwl cos0 - cem sin0) | #, $ 2 . . .*N., <ft„ | 

+ (c^ cos0 - cea sin0) | 9{ 92.. .*„., <f>a | (3.27) 

and 

£, (/•;]?) = sin0 f0 + cos0 ft 

= (c«m sin0 + cem cos0) | <i>, 92.. .9N., <ft„ | 

+ (c^sin0 + c,flcos0) | * ,* 2 - -*w- i^ l • ( 3 - 2 8 ) 

With (3.23) and (3.24), (3.27) and (3.28) reduce when p rope r ly n o r ­

mal ized t o 

$o(nR)= (1-S 2 ) - ' / 2 ( l * , ^ . . . * ^ , ^ ! - 5 | * , * 2 . . . V i ^ l ) 

(3.29) 
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|,<f;*)»|*i*2—*AM4U , (3.30) 

where S is the overlap of the levels 4>a and <̂ ,, as given in (3.20). 

To assess this perturbative approach, we have recalculated a 

few numbers relevant in the field desorption of helium from tung­

sten. E.g., in a field of 5.5V/A, WQl (Zc)=1.96meV using the exact 

transformation, and 1.78meV employing the approximate formula 

(3.26). In the relevant interval of Z around Zc, the error is never 

larger than 30% . 

We now want to generalize the perturbative approach to situa­

tions where several, or many, levels on the adatom and in the 

metal participate in the ionization process. With Eq.(3.6), we 

first rewrite (3.10), the interaction matrix of the Hamiltonian, as 

W(R) = ldrAH(r;R) He?(r;R)A. (3.31) 

Using (3.5), we eventually write the interaction matrix in the dia­

batic basis as 

W(R) = Jdr *(r;/?) He {r;R) ? (r;R). (3.32) 

Assume again that the many-electron wavefunctions can be approx-
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imated by single Slater determinants. We denote by 4>a cne wave-

function of the highest occupied level on the isolated atom and by 

<^>t, with £=1,2,..., single-electron wavefunctions of energy e„ k 

above the Fermi level of the isolated metal. To ensure orthogo­

nality, we define 

W> = NttPm\<>a>. (3.33) 

where the projection operator is given by 

Pm = 1 - ZK.*>«ft„.*L (3.34) 
k 

such that the normalization constant becomes 

Na-
2 = 1 - £«ft,a|4,>

2. <3'35> 
k 

The lowest energy diabatic many-electron wavefunction with both 

adatom and metal neutral, then, is given by 

|0(r;fl) = |$,*2...$„.!<&, • (3.36) 

The excited wavefunctions, 

^(r;i?) = |*1#2...*A,.1<t,J , (3.37) 
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describe the situstuion in which one electron has been transferred 

from the adatom to the *th level above the Fermi energy of the 

metal. Writing the electronic Hamiltonian as a sum of single-

electron contributions, 

N 
He(r;R) = ^A(r,;i?), (3.38) 

/=1 

and insert ing (3.36) and (3.37) into (3.32), we get for the off-

diagonal terms 

%kiR)=Na(Vk -e„ , ,AS*) , (3.39) 

where 

V* =<<feN </>,,,*> (3.40) 

is the interaction between levels <t>a and <̂, * , and 

^ = < ^ K . * > (3.41) 

is the overlap between them. This completes the perturbative 

approach to the calculation of the diabatic interaction matrix 

(3.32). 

3. Results 
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In Part H of this thesis, we outlined the derivation of the kin­

etic equations that control field ionization, field desorption and 

field evaporation, and, in particular, we derived an expression 

for the yield of singly charged ions 

£ r+o (k+,p) exp(-£0(,/*BT) 
p,k+ 

%on = , (3.42) 

^expf-fo./^r) 

where 

2ir 
T(j (P,H) = — | JrfR W (R) WtJ (R) r,\ (R)\ 2 A (£„ -£,„ ,TJfl) 

(3 .43) 

with 

1 T/2 
A (C'r) = I ?+lV4" ' <3*44> 

Here Tj is the half-width of the level ft in the diabatic potential 

WJJ due to phonon transitions. Because TtJ (p,n) describes transi­

tions between discrete states of the unperturbed Hamiltonian, 

care must be exercized to include the width cf the initial state. 

This is done formally by replacing the energy conserving 6-func-

tion by the Lorentzian (3.44). 
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We will now report numerical results for the thermal field-

evaporation of tungsten ions from a tungsten tip. We model th'i 

tungaten tip by a finite-sized cluster of tungsten atoms, which, 

to mimick an isolated atom on a (111) surface, is chosen as three 

atoms in a plane, with an additional atom below the midpoint of 

the triangle, and a fifth one in the symmetrical position above 

the plane. Our calculations are based on the send-empirical ASED-

MO method, described in R«f .20; parameters used for Ware those of 

Ref .20, except that we have raised, in an ad hoc manner, the ioni­

zation energies for the adatom by 1.5eV so that we can describe by 

one set of parameters both the neutral and ionic states of this 

atom. In this approach, we unfortunately cannot incorporate the 

electric field ir. a self-consistent manner. However, because the 

local variation of the electric field is important, we take the 

electric field from self-consistent density-functional calcula­

tions10 »•' for a plane jellium metal and assign a Wigner-Seitz 

radius ^=2.07 to tungsten. We then impose this field onto the 

cluster, assuming that the jellium edge is half a lattice spacing 

above the plane of atoms in our cluster. 

To determine the transition probabilities (3.43), we must know 

the nuclear wavefunctions, 17°, and ij" , in the diabatic potentials, 

Wo0 and VV++. To simplify the numerics, as done in Part n, we have 

fitted a Morse potential to W00, i.e., 

W00(Z) =A0(F) [exp[-2T (Z-Z0)] - 2exp[-7(Z-Z0)] ], (3.45) 
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adjusting its parameters, A0(F), 7(F) and z0(F), a s a function of 

field strength, and, likewise, we set 

W++(Z) = WC -eF{Z-Zc) (3.46) 

for W++, the diabatic potential energy curve of the ion. For both 

potentials, the wavefunctions can be given analytically. 

Field evaporation being an activated process, it is instructive 

to parametrize the ion yield rate constant according to the Pola-

nyi-Wigner equation (3.1). In Table 3.1, we present the relevant 

data. We note first that the activation energies for field evapo­

ration, Q(F), agree well with experiment. To put this into per­

spective, we point out that this agreement depends on our choice 

for rs, as discussed in Ref .20, e.g., if we take r,=1.5, the calcu­

lated evaporation field strength increases to 8V/A from its value 

of 6V/A at rv=2.07. 

Turning next to the prefactor oa>, we first note its dependence 

on field strength. In the early days of field ion spectroscopy, it 

had been assumed that the prefactor was independent of field 

strength54. However, Kellogg32 has found a substantial field dep­

endence in the field evaporation of tungsten. For the thermal 

field-desorption of helium, such a field dependence results from 

changes in the shape of the surface potential in which helium is 

adsorbed, as explained in Part n. For field evaporation, this 

effect is also present, albeit of lesser significance. To obtain a 



Table 3.1: Field dependence of the activation barrier, Q, and the 
prefactor, av, experimental data from Ref.32 and also the ground 
state frequency v0 and the excited frequency •, for hv,=Q (for 
details see text) 

Field 
(V/A) 

3.0 
3.50 
4.0 
4.5 
4.70 
4.93 
5.10 
5.30 
5.47 
5.72 
5.92 

Q (eV) 

Kxp. 

_ 
_ 
_ 
_ 
0.90 
0.60 
0.52 
0.35 
0.31 
0.20 
0.12 

Cnlc. 

1.85 
1.72 
1.42 
1.22 . 
1.17 
0.85 
0.58 
0 41 
0.31 
0.20 
0.12 

*n<s-'> 
Exp. 

_ 
— 
— 
— 
3 X 1 0 " 
1 X 10'3 

8 X 10" 
7 X 1 0 " 
7 X 1 0 " 
3 X 1 0 " 
A X 10" 

Cnlc. 

1.01 X 10H 

1.83 X 1014 

2.33 X 10'" 
2.93 X 1014 

2.76 X 10H 

2.60 X 1 0 M 

2.21 X 1 0 u 

2.25 X 1014 

2.06 X 1014 

1.66 X101 4 

5.46X1013 

"o ( s _ 1 ) 

2.-J2 x in12 

4.93 X 10" 
4.55 X 10" 
4.62 X 10" 
4.52 X 10" 
4.00 X 10" 
3.51 X 10" 

• 3 .17X10" 
2.83 X 10" 
2.68 X 10" 
2.64 X 10" 

"* 

99 
55 
49 
41 
37 
30 
24 
18 
15 
10 
7 

vt = (2«, » 1)J>„ 
* — 1 *. 
(s ') 

4.58 X 1014 

5.47 X I014 

4.54 X )014 

"•..78 X 10M 

2.86 X I014 

2.11 X 1014 

1.58 X I0'4 

1.10 X 10'4 

8.30X10" 
5.37 X 10" 
3.82 X 10" 
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better understanding, we recall that in field-free thermal 

desorption, the desorption rate constant at low coverage can be 

written, for desorption from a mobile, nonlocalized adsorbate, as 

rd = Svz exp(-£d /kBT) (3.47) 

when hvz «kBT, and as 

kBT 
rd = S -y- exp {-Ed /kBT) (3.48) 

when hvz»kBT. For desorption from a localized adsorbate, we get 

2^Mas 
rd=S -j^jr Pxpxvzexp(-Ed/kBT), (3.43) 

where vx , py and PZ are the vibrational frequencies of the adsorbed 

particle at the bottom of the surface potential well in the x, y , 

and z directions. Note that to ensure detailed balance, the 

desorption rate also contains the sticking coefficient 5, which is 

a measure of the efficiency of energy transfer between the solid 

and the adatom. 

In field desorption and field evaporation, the adatom must be 

thermally excited up to the energy of the potential barrier; this 

is a process akin to thermal desorption. Subsequently, it must 

get ionized. Thus the prefactor consists of two factors, namely 

an ionization probability a(F) and an attempt frequency v{F). 
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Their field dependences are opposing each other in that a(F) incre­

ases from zero in zero field to one at "high " fields, whereas p(F) 

decreases. We can view this process as a particle localized in the 

excited level, 6,=<?(F), at the energy of the potential barrier 

attempting with a frequency ?,=£,//» of that level to ionize with a 

probability a(F). Because Q{F) decreases with F, so does e, and 

thus p{. In addition, the hump of the activation barrier and thus 

the region for ionization moves towards the metal for increasing 

field, resulting in an increasing ionization probability a(F). In 

Table 3.1, we have estimated the critical energy level in W00, 

assumed to be a rlorse potential, and find that, e.g., for F=4.7 

V/A, the adatom is in the 37th excited state when it attempts to 

ionize. ThJs level has a frequency j>37=2.86xlO
I4s-1 as opposed to 

the ground state frequency j/0=4.5xi0
12s_1. This compares rather 

well with the prefactor of 2.76xi014s-1 obtained from the Polanyi--

Wigner parametrization of the ion yield. This argument should, 

however, not be taken too literally as other factors contribute to 

the prefactor, as one already knows from the simpler situation of 

thermal desorption, cf. equations (3.47)-(3.49). We can guess that, 

for fields less than 4.5V/A, the field dependence of a(F) domi­

nates, and most likely a(F)=l for larger fields, and, for fields 

stronger than 4.5V/A, the decrease in p(F) becomes dominant. 

Although our theory produces the right trend in the prefactor, 

namely decreasing with increasing field for fields larger than 

4.5V/A, as observed by Kellogg, there are discrepancies in the 

absolute values in that the experimental data are substantially 
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lower except at F=4.1V/A. However, Kellogg warns that his prefac­

tors have an uncertainty of at least one order of magnitude. On 

the other hand, our theoretical values may also be out by an order 

of magnitude due to several of our approximations, in particular, 

neglecting lateral variations in the electric field, which might 

effect the localization of the adatom. Also, recall that the 

master equation, that, underlies (3.42) as derived in Refs.7,45, is 

restricted in its applicability to the Markovian limit. With pre-

factors of the same order (1014s~') as thermal phonon-assisted 

transitions in W00, one should account for non-Markovian effects 

by, e.g., using the Tsukada-Gortel equations50, which will result 

in lower pref actors, but most likely not more than one order of 

magnitude. 

We would like to comment further on the difference in prefac-

tors for the field evaporation of tungsten and the thermal field-

desorption of helium. For the latter case, we found prefactors 

increasing more or less exponentially from a low of 106s""' at 

F=4V/A to a high of l012s~' at 6V/A, as shown in Fig.2.4. This has 

been interpreted as due to an increase in the ionization probabil­

ity a(F) due to rapidly increasing overlap of wave functions on the 

helium and in the metal. At similar field strengths, the activa­

tion barrier for helium increases substantially, whereas, for 

metal field-evaporation, the activation barrier decreases mono-

tonically. For helium the field enhances adsorption, at least up 

to 6V//418'24, although this enhancement ceases, most likely around 

IV/A, due to the same effects as that causes a monotonic weakening 
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of the surface bond for metals on metals, namely a draining of the 

electron charge on bonding orbitals into the metal. 

We have thus far presented results on thermal field-evapora­

tion of singly charged tungsten ions, while experiment only det­

ects W°+ and W + ions. The fact that our calculated pref actors 

are rather large, i.e., of the order of 1014s-1, we take as evidence 

to suggest that the first ionization stage from W to W*" must be 

the slowest, i.e., rate determining step. Because the tunneling 

rate into the metal decreases rapidly with increasing distance, 

the higher ionization states cannot be produced by tunneling into 

the metal, as their abundance would in that case be decreased over 

singly charged ions roughly by the ratio of the ionization rates. 

Thus post-ionization53'55 occurs at least several angstroms away 

from the surface, but still in the high-field region, with the 

excess electrons tunneling into vacuum states rather than empty 

metal states. Simple-minded estimates confirm this scenario, 

although detailed calculations, e.g., for tungsten, are not avail­

able at this stage. 

4. Conclusions 

m this part of the thesis, we have applied the recent theory of 

the kinetics of field ionization, field desorption and field eva­

poration to study the field evaporation of tungsten. We have dev­

eloped a perturbative method to calculate diabatic states from 

adiabatic ones. We find good agreement of the field dependence of 
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the calculated activation barrier with experimental data. We also 

find that the prefactor in the ion yield increases initially, up to 

the fiels strength of about 4.5V/A for tungsten, due to an rapid 

increase in the ionization probability and then decreases with in­

creasing field strength due to changes in the surface potential. 

There is some discrepancy in the absolute value, which must be 

resolved by better experiments and by a better theory, for exam­

ple, for the latter, a theory based on the spin density functional 

theory to more properly account for charged species by a better 

treatment of Coulomb effects. 
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*The former name of the author was Liang-Chen Wang (L.C. Wang). 
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