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Abstract 

Various methods of generating electric fields in the vicinity of a metal surface are 

reviewed. In addition, the classical solution to Laplace's equation in parabolic coor­

dinates is derived and quantum mechanical results for charged clusters are presented. 

The Local Density Approximation jellium model and the Local Spin Density Ap­

proximation cluster model are used to calculate the adsorption of hydrogen on a 

jellium metal and on a Rh cluster in the presence of electric fields. Calculated bind­

ing energies and geometries are in good agreement with experimental data. 

An extension of the LSD A cluster model to field adsorption of NO on Rh dimer 

is implemented with results that compare well with the latest experiment. 
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1 Introduction 

High electric fields, as they occur in zeolite cavities, at electrolyte interfaces, and 

at the tips of field ion and field emission microscopes [1], are known to alter the 

physics and chemistry of atoms and solids drastically so that some new pathways 

may be established in chemical reactions and particularly in heterogeneous catalysis. 

It is thus necessary to make as thorough an investigation as possible into electric 

fields generated in the vicinity of a surface, and in particular around a metal tip. In 

Chapter 2, we will review the attempts that have been made to calculate the field, 

and give details for the solution to Laplace's equation in parabolic coordinates and 

for charged clusters. 

Hydrogen adsorbs on metal and semiconductor surfaces in either atomic or molec­

ular form in ontop, bridge and multicoordinated hollow sites. Adsorption energies 

for atomic hydrogen range from 2 to 4 eV; molecular hydrogen, on the other hand 

is weakly physisorbed with adsorption energies less than 0.15 eV [2]. The bonding 

of hydrogen to the surface of transition metals has received extensive attention in 

the last years. Nevertheless no definite answer on the nature of the bonding seems 

to be available at present. The motivation to investigate adsorption of hydrogen 

on transition metal surfaces arises from various sources: (1) heterogeneous cataly­

sis in which a great part of the reactions involve hydrogen as a reactant or product 

molecule. The synthesis of ammonia, of hydrocarbons or alcohols by means of the 

Fischer-Tropsch reaction, or solidification of unsaturated fatty acids are only some 

examples. This kind of catalytic reaction such as hydrogenation and dehydrogenation 

or hydrogenolysis is believed to gain even more interest in the future as increasingly 

amounts of fuel will be produced on the basis of coal or natural gas liquefication. (2) 

materials science and metallurgy where in particular hydrogen has long been known 

1 



2 

as a major source of embrittlement and fracture phenomena. (3) the use of hydrogen 

as a working fluid in energy conversion and storage devices made of certain alloys or 

intermetallic compounds [2]. 

Electric fields of the order of volts per angstrom, i.e. of the same order of magni­

tude as intra-atomic fields, dramatically effect the electronic properties of the surface 

layers of metals and semiconductors. For instance, on clean metals electric fields re­

duce the activation barrier of evaporation, eventually to zero at the evaporation field 

strength. Electric fields also change the binding characteristics of adsorbates. For 

instance, the binding energies of rare gases, weakly physisorbed in the field-free case, 

increase by at least an order of magnitude due to field- induced chemisorption [3,4]. 

Likewise, for adsorbed molecules dissociation may become enhanced or inhibited as 

the field is increased changing reaction pathways. Hydrogen is no exception to this 

scenario. Two effects in particular have so far defied a detailed theoretical explana­

tion: (1) the reduction of the evaporation field strength in the presence of hydrogen, 

and (2) the appearance of a #3" species in the field ion mass spectrum [5,6,7,8,9,10]. 

We will report theoretical studies of the adsorption characteristic of atomic and 

molecular hydrogen as a function of electric field strength. In Chapter 3 we describe 

,in detail, the theoretical tools we have been using, e.g. Local Density Approxima­

tion jellium model and the Local Spin Density Approximation cluster model. The 

inclusion of the electric field effects in our models, is simplified due to two facts: (1) 

electric fields are always enhanced at kink sites, terraces and in front of single atoms 

on closed packed planes. We can therefore restrict calculations to on top sites, and 

(2) molecules are usually aligned along the field direction. Thus only such geometries 

are taken into consideration. 

The major results are presented in Chapter 4. We will see that the binding 
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energy of atomic hydrogen, H, is reduced as the field is increased, whereas H2 is 

bound more strongly. As a result, dissociative adsorption and associative desorption 

are modified considerably. Within the present theoretical framework one will also 

be able to propose a reaction pathway for the formation of a linear H3 species at 

metal surfaces in high electric fields. We will also comment on the reduction of the 

metal evaporation field strength by 10 — 15% in the presence of hydrogen. Finally, 

the LSDA method will be extended to field adsorption of NO on a Rh dimer so as 

to explain the latest experimental data. 

Chapter 5 summarizes our main results and gives an outlook to future work. 



1 
I 

2 Electric Fields at Metal Surfaces 

In this chapter, we investigate the electrostatic field in front of a metal surface. 

We begin by reviewing results obtained with classical electromagnetic theory for an 

infinite planar metal, a parabolic tip and a hemispherical protrusion. We then review 

jellium model calculations discussing just a flat jellium surface. After that we look 

at the electric field distribution around a metal atom on a jellium surface. Next 

we illustrate jellium model calculation that includes the lattice structure. Lastly we 

present results for charged clusters. 

2.1 Infinite Metal Planes 

Consider two parallel infinite metal planes carrying uniform opposite surface charge. 

The electroscatic field may be generated by integrating Poisson's equation 

V - F = 4TT/> (1) 

resulting in 

Fz = 47T<T (2) 

where Fz is the z-component of the electric field which is constant between these two 

planes and drops to zero at the surfaces and a is the surface charge density. 

2.2 Various Tip Geometries 

The metal electrodes used in Scanning Tunnelling Microscopy, Field Emission Mi­

croscopy and Field Ion Microscopy are actually tips rather than an infinite plane. A 

number of studies have been reported with respect to the electric field strength and 
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the electric field distribution on metal tip surfaces. Eyring, Mackeown and Millikan 

[11] assumed that the tip is hyperboloidal in shape and the screen is an infinite plane, 

shown in Figure 1. The solution to Laplace's equation in hyperbolic coordinates yields 

for the electrostatic potential 

ft = * M ( i + « w f l / ( i - « » f l ] /-x 
°log[(l + cosd0)/(l - cosfa)] K > 

and thus the electric field at the apex of the tip is given by 

FBA = 2$o 1 ( 4 ) 
0,Apex alog[(l+cos80)/(l-cos30)] \-cos>80

 K) 

where 0 = do is the equation for the tip surface in hyperbolic coordinates and $ 0 is the 

potential difference between the tip and the screen which is kept at zero potential and 

has the surface equation d = 7r/2. a is a constant determined by the tip dimensions. 

The electron micrographs of field-ion tips show that a hyperboloid is not a good 

approximation. Although the shapes of these tips vary greatly, their general charac­

teristics are fitted quite well by a paraboloid. Becker [12] assumed that both the tip 

and the screen were paraboloidal and used parabolic equations for tip and screen in 

Cartesian coordinates instead of solving Laplace's equation in parabolic coordinates. 

The resulting field is given by 

p 2Vo /_v 
z p{l+2r/Py/*ln(\+2h/p) K) 

where Vo is the tip voltage, h is the tip to screen distance, r is the distance off the 

tip axis and p is the radius of curvature of the specimen tip. At the vertex of the tip, 

r = 0 and 
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B - const 

B-- IT B--Q_. 

Figure 1: A diagram of hypeibolic coordinates. 
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Fkvtx~ pln(l+2h/p) ( 6 ) 

Dyke and Dolan [13] suggested that a family of equipotential surfaces surrounding 

a charged isolated sphere on an orthogonal cone shown in Figure 2 be used to describe 

the tip surface and found that it could fit well to the typical cathode geometries. 

If it is assumed that the screen is another equipotential from the same family, the 

potential distribution may be written: 

ft = ^ [ r
n - a2n+1r-n-1]Pn(cosd) (7) 

where r and B are ordinary plane polar coordinates referred to the center of the 

sphere as origin and the pole of the sphere opposite its contact with the cone as zero 

direction; h is the distance between the tip and the screen, V0 the applied potential, 

a the radius of the sphere, and Pn the Legendre function with n chosen so that the 

function vanishes when 0 is equal to the exterior half angle a of the cone. The electric 

field at the tip apex is 

FApex = -^[n + (n + l)(^} (8) 
n rQ ro 

where the r0 is the value of r at 6 = 0 on the surface which approximates the tip and 

the Vo is the potential difference between core and anode. 

Based upon a combination of solving Laplace's equation for the region between 

the tip and the screen and finding a distribution of charges which gives a family of 

equipotentials of which one coincides with the tip surface and one with the screen, 

Birdseye and Smith [14] obtained their solution for the electric field by using the 

image method. They assume that the tip is smooth and axially symmetrical, and 

that it may be described by a curved surface r = R(z) in cylindrical coordinates. The 
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A. 

— CORE 

— PROFILE OF 

EMITTER N3I 

o EQUIPOTENTIAL 

PROFILE 

Y/A Section of a conducting sphere on 
orthogonal cone 

Sections of equipotential surfaces 

Figure 2: A comparison between (a) typical field emitter geometries from electron 
micrographs and (b) equipotential surfaces surrounding a charged, isolated sphere 
on orthogonal cone, (c) is an enlarged profile of a typical field emitter fitted with 
an equipotential surface from Equation ^7), using the values n = 0.10, a = 1.235 x 
10_5cm, and r0 = 4.00 x 10-5cm. From 13 
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tip, its electrostatic "image" and the screen are shown diagrammatically in Figure 3 

Under the condition r <g. z, they managed to derive the potential 

<h- Y± f21nr + - 1 (<i\ 
2\nR(z) + L/[(z + 2hy + R?y21 T [{z + 2h)* + r*]1/*1 K) 

where V0 is the potential applied to the tip and L is its length, and h is the distance 

between the tip and screen. The electric field F is given by 

_ V9[l + H«r ,2 LR 
Fn ~ -L + 2\nR(z + 2h)[R{z + 2h) ' (JTW1 (10) 

where R' = dR(z)/dz and n is the normal to the surface. 

The condition r < z, however, does not hold for the region far from the z axis 

or at the apex of the tip. In the latter region they determined the electric field by 

approximating the tip as an ellipsoid and solving the Laplace's equation in ellipsoidal 

coordinates with an assumption that the screen is at infinity. The solution is 

Fn = ~\P> + R{zyyinn\[p/c)w (11) 

where p is the radius of curvature of the specimen tip and c is the semi-major axis of 

the ellipsoid fitted to the tip, respectively. This also gives the field at the apex where 

R{z) = 0 as: 

FAvex = ~p\n[R(L)/L) ( 1 2 ) 

Apart from those works that have treated only analytical solutions for the electric 

field, some numerical studies have also been pursued. Gipson, Yannitell and Eaton 

[15], for example, have developed a numerical finite element method with which quite 

complex geometries and varying material properties can be handled. In accordance 
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with their approach, the tip is assumed to be spherical with the shank and varia­

tions in the basic geometry including changes in the shank angle and tip radius of 

the specimen can be implemented by subroutine modifications to the finite element 

program. The geometry used to perform the numerical analysis and some results are 

shown in Figure 4 and Figure 5. 

Quite recently, Tagawa, Takenobu, Ohmae and Umeno [16] have carried out com­

puter simulations of the electric field distribution by using a charge simulation method 

in which charges on the surface of the tip are replaced by charges arranged inside 

the tip and errors in the potentials caused by the arrangement of charges can be 

examined at the check points that are distributed over the tip surface. In addition, 

they set up two experimental methods, i.e., the field emitted electron method and the 

thermionic electron method for measuring the local field strength of the tip surface 

and obtained reasonable agreement with the computer simulation. 
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Axis of 
revolution 

Figure 4: A schematic of the geometry used in the numerical analysis. 
From [15] 
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Figure 5: Normalised equipotential contours plotted for a specimen modelled as a 
line(a), and as one with shape(b). 
From [15] 
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2.3 Paraboloidal Tip in Parabolic Coordinates 

To verify Becker's result in parabolic coordinates and to establish a model for the 

study of field adsorption on a paraboloidal jellium metal in the future, we assume 

that the tip and the screen have the shape of a paraboloid of revolution and solve 

the Laplace equation in parabolic coordinates which are related to the Cartesian 

coordinates by the relations: 

x — ad cos <f> 

y = ads\n(f> (13) 

* = l /2 (a 2 - / ? 2 ) 

where 0 < a < o o , 0 < / 9 < oo,— ir < <j> < TT. The parabolic coordinates and the 

intersections of coordinate surfaces with the XZ— and XY—planes are shown in 

Figure 6. 

In parabolic coordinates, the Laplace's equation reads 

and can be solved , subject to the given boundary conditions $ = $i(const.) when 

a = ai which is the metal tip surface, and $ = $ 2 when a = a2(const.), i.e. on the 

screen far from the tip. Note that for tip and screen of infinite size, the boundary 

conditions imply that the potential will be dependent on a only, to ensure that $ 

is constant at the boundaries. For tip and screen of finite size, a strict derivation, 

see Appendix A, shows that the solution to the Laplace's equation (14) is a two 

dimensional quantity, and a numerical test has been performed resulting in that both 

cases approach to each other when a2 is large enough. We take account of the infinite 

case only in the text. The Laplace's equation may thus be reduced to: 
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Figure 6: Parabolic Coordinates. -The vertices of all parabolas lie on the Z-axis at 
distances -0'2/2 and a2 /2, respectively, and all of them have a common focus at the ori­
gin of the Cartesian coordinate system. The coordinate surfaces are: (1) paraboloids 
of revolution extending in the direction of the positive Z-axis (8 = const.); (2) 
paraboloids of revolution extending toward the negative Z-direction (a = const.); 
(3) planes through the Z-axis ((f) — const.). 
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S-E»W-o (15) 

and the solution to this equation is given by 

$ = C!lna + c2 (16) 

where cx and c2 can be determined in terms of boundary conditions: $x = c\ In ai +c2 

and $ 2 = Ci In <*2 + c2. We thus obtain, by solving the nonhomogeneous algebraic 

equations for c\ and c2, 

^ = -(&i - $a) ( n ) 

lna 2 /a i 

and 

$ i l n a 2 - $ 2 i n a i . 
c2 = j T (18 

lna 2 /« i 

The electric field which has only an a component Fa and surface charge density are 

given by 

1 3$ 
Fa = a ^/a2 + 82 da 

$x _ ft2 i 

\na2/a\ y/a2 + 82 cx 
(19) 

and 

<T = - — V # 
47T la, 
ft1 _f t 2 

47rlna2/a1 yfn[+]p «i 
(20) 
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respectively. Combining the expressions of Fa and a gives rise to 

y/a2 + 02 a 

Before going further, we consider some geometry factors around the apex of the 

tip, (see Figure 7) ro is the curvature radius which can be determined by setting 

0 = 0 and a = ai in the expression (13), and is given by 

r0 = a\ (22) 

Note that setting 0 = 0 actually means the positive z axis. In a similar fashion, we 

have 

rQ + 2l = a2
2 (23) 

where / denotes the distance between the apex of the tip and the screen. Substitution 

of r0 and / into the expression of C\ leads to 

C l - l / 2 1 n ( l + 2 / / r 0 ) W 

Since the field along the z axis has the maximum value, attention would be paid to 

this z component of the field. Taking the z component of the field only into account 

requires that we set 8 = 0 in the expressions of Fa. In doing so the expression of Fa 

may be further reduced to 

ft, _ ft, i 

l na 2 / a ! a* 

Substituting r0 and / into the above gives 
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where 

$1 — $2 1 
*o = , } , • -^ (27) 

47rlna2/ai af v ' 

is the surface charge density at the apex of the tip and z' — z — r0/2 is the distance 

measured from the apex of the tip, respectively. The electric field FApes = AiraQ at 

z' = 0, the apex of the tip. 

If we take r0 approaching to infinity, i.e. r0 >• /, which implies that the tip turns 

to a flat plane, the field on the tip surface becomes approximately 

ft, — ft, 
F w * l

 2 (28) 

This result is in agreement with that between the two infinite charged metal sheets. 

More generally, the curvature radius of the tip, ro, is much less than the distance 

between tip and screen I. The typical values for r0, / and A$ = $i — $2 are r0 = 

102A,/ = 102cm and A$ = IQkV respectively. Thus the field at the apex of the tip 

is of order V/A. we note that it is now possible to make tips with a single atom at 

the apex, i.e. with a curvature of an angstrom! We present, in Figure 7, the profiles 

of electric field and potential along the z-axis in the parabolic co-ordinates and by 

comparison, their counterparts for infinite metal sheets. The electric field strength 

at the apex of a parabolic tip is equal to that in the infinite case but will decrease 

as z~l, and on the other hand, the electric field in the infinite system has a constant 

strength of 47ro\ 
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We define the surface charge quantity as the integral 

Q = J<rds (29) 

where 

ds = 2irax0 • \ja\ + 02 • d0 (30) 

is the area element of the tip surface in the parabolic co-ordinates. Completing the 

integration within the finite region leads to 

rfo A$ 01 
Q = / ads = . / t „ . • q- (31) 
^ Jo ln(l + l/r0) 2 v ' 
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ai $x(const.) 

a-i * t = 0 

Fplane= 4xae 

Figure 7: A sketch of the geometry of parabolic tip (upper part), and the profiles 
of electric field and potential in both parabolic (Fa, $ a) and planar (Fp/a„e, $Piane) 
geometries(lower part). 
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2.4 Hemispherical Protrusion 

It has been known that the surface of a solid is not mathematically flat. To see how 

much electric fields are modified by roughness and to compare the classical result with 

the quantum one in the future, we consider a hemispherical protrusion, or spherical 

boss, of radius R on top of an infinite plane, see Figure 8. The electric potential is, 

according to D.J. Rose [17], and Landau and Lifshitz [18] given by 

$ = -4ir<r0z(\ - R?/r3) (32) 

Differentiating this potential with respect to r along the z axis yields the electric field 

R3 

Fz = 47n70(l + 2—) (33) 

Locally the excess charge redistributes itself into 

<T = < T O ( 1 - # V ) (34) 

on the infinite plane, and 

a = Zooz/R (35) 

on the surface of the protrusion. We note that at the apex of the boss the electric 

potential is zero and the field is three times its value at infinity. For z — 2R above 

the apex, potential and field values agree to within 20 percent of their values laterally 

far from the boss. 
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Figure 8: Electric field (left scale) and potential (right scale) as a function of distance 
at a metal surface with a spherical boss of radius R (see insert) far from the boss 
(dashed lines) and along the apex of the boss (solid lines). From [3] 
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2.5 Jellium Model 

So far we have described electric fields by using classical electromagnetic theory which 

assumes that the surface of a metal is a mathematical plane or spheroid with excess 

surface charges where the normal component of the electric field drops discontinuously 

to zero at such planes, at l°?jt for a perfect conductor. On real surfaces, however, 

there is a dipole layer resulting from a relaxation of the lattice and a rearrangement of 

the electron distribution. As a consequence, the singular surface charge density will be 

smeared out and the electric field will vary smoothly over distances of a few angstroms. 

A simple model that bears out these features is the jellium model of a metal in which 

we assume that the ionic lattice is replaced by a uniform positive charge density n+ 

that drops to zero abruptly half a lattice constant above the topmost layer of ion 

cores. It is given in terms of the Wigner-Seitz radius as 

n+ = h^ao)3 (36) 

where r„ is given in units of the Bohr radius ao-

Lang and Kohn [19,20,21] performed the first self-consistent quantum mechanical 

calculation of charge density and electric field distribution at a metal surface for 

such a structureless jellium model using the local density approximation to density 

functional theory. A systematic study of this problem was recently performed by 

Gies and Gerhardts [22] and also by Schreier and Rebentrost [23]. We present the 

results of a density functional calculation for a jellium surface in Figure 9 [24]. 

In panel (a) we show the selfconsistent electron distribution in the absence of an 

external field with the local deviation from charge neutrality, i.e. the dipole layer, 

given in panel (b). In panel (c) we have added some excess charge, Sp, that gives rise 

to the external field in panel (d). We note that the field decays smoothly into the 
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metal with appreciable strength left at the position of the top most ion layer. This can 

be viewed as partial penetration of the field into the metal, or as incomplete expulsion 

of the field from the metal. To compare these quantum mechanical calculations with 

classical results from Maxwell's theory, we note that the plane at which boundary 

conditions are imposed on the classical fields, i.e. the discontinuous drop of the 

normal component of the electric field to zero, is given by the center of gravity of the 

excess charge 6p, i.e. roughly the point where the field has dropped to half its value 

at infinity. For future reference we note here that this plane does not remain constant 

but moves towards the ion cores as the asymptotic field strength increases, due to 

the fact that the electrons are pushed into the metal increasing the field penetration 

and the Friedel oscillations. 

Figure 10 shows results for the self-consistent effective potential and electron 

density of a neutral and two oppositely charged surfaces. We can see electrons are 

pulled out of or pushed into the jellium in terms of the negatively and positively 

applied electric fields, respectively. Also plotted in Figure 11 are the normalized 

induced charge densities characterized by their center of mass zQ which determines 

the position of the image plane for an external point charge in front of the surface. 
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Figure 9: A schematic view of (a) the charge distribution at a metal surface without 
a fields (Fo = 0), the positive jellium background is indicated, Zj and dn are the 
dynamic and static image plane positions; (b) the surface dipole layer p3 = n3

+ — n'_ 
for F0 = 0, constructed from (a); (c) the field-induced surface charge 6p; and (d) the 
applied electric field at a metal surface. From [24] 
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and (c) a negatively charged surface. z0 and X are the center of mass and spread, 
respectively. From [22] 
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2.6 Metal Atom on Jellium Surface 

It is believed that imaging of single atoms in the field ion microscope occurs as a 

result of local field enhancement around kink sites and around single metal atoms on 

flat crystal planes. These local electric fields of the order of V/A arise, via Poisson's 

equation, from local enhancements of the surface electron density. The electric field 

distribution around isolated atoms on a flat jellium surface have recently been cal­

culated selfconsistently within the framework of the local density approximation of 

density functional theory by Kreuzer, Wang and Lang [25]. They find a field enhance­

ment by a factor 1.5 to 2 some 1-2A above an adsorbed metal atom instead of a factor 

3 at the apex of a boss on top of a flat metal plane. The detailed comparison between 

this quantum mechanical calculation and the corresponding classical theory is shown 

in Figure 12 and also in the contour plot of Figure 13. Calculated evaporation field 

strengths, i.e. 3.0V/A for Ti and 3.5V/A for Nb, agree very well with experimental 

data. 

2.7 Jellium Model with Crystal Structure 

It has been noted that the jellium model of metals does not account for the crystalline 

structure. To see how big the local variations in the electron and field distributions 

along the surface are, Inglesfield calculated the screening of an external electric field 

at .4/(001) and J4<7(001) surfaces by using an embedding technique and the linearized 

augmented plane wave method for including the substrate, i.e. the real atomic struc­

ture [26,27]. One can find, see Figure 14 and Figure 15, that the screening charge 

lies on top of the surface atoms and the lateral variation in the electric field is rather 

small and indeed, negligible a few angstroms above the topmost lattice sites [24]. 
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Figure 13: External electrostatic potential. Upper panels for Ti and Nb based on the 
quantum mechanical calculations; lower panels are classical results in terms of the 
semispherical projection model; from [25] 
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•5.5a.u.-

Figure 14: Screening charge at Ag(QOl) surface with electric field F = -f-O.Ola.t*. The 
solid lines are contours of decreased electron density, and the dashed lines increased 
density; from [27] 
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-5.5 a. u.-

Figure 15: Change in potential at Ag(00l) surface with field F = Q.Ola.u. 
From [27] 
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2.8 Charged Clusters 

Electric fields can also be generated by charging a cluster of metal atoms which we 

describe using a finite cluster model based on spin density functional theory. If we do 

this by adding charges to the cluster, in practice by taking electrons away from the 

neutral cluster, the net positive charges will distribute themselves over the surface 

of the cluster. To fulfill this task, The self-consistent calculations for the neutral 

cluster and the ionized one are performed, respectively by running the LSD program. 

Taking the difference of the electron densities between the neutral and the ionized 

systems gives rise to the induced electron density which will result in the local electric 

potentials and fields illustrated in this section. A Fortran program has been coded 

for this purpose and will be elaborated in section 3.3. By choosing an appropriate 

geometry, e.g. a pyramidal shape, we can ensure that most of the extra charge resides 

on the top atom of the cluster and a strong electric field is produced in its vicinity. 

We have investigated the maximum fields generated on various cluster configurations 

and their distances from the top atom of the cluster. We note that the highest field 

strength is found, shown in Figure 16, to be 2.7 V/A and 1.4 A away from the top 

atom in the doubly charged Rh4 tetrahedron modelling the Rh(lll) lattice structure. 

For a singly charged Rh$(H0) cluster, however, the maximum field is 1.35V/A and 

located at about 1.6 A the top atom. We know that the electric field on a semi-infinite 

flat plane is perpendicular to the plane and goes outwards uniformly. Figure 17 shows 

the field profile produced by a doubly charged Rh^lOO) cluster that models a small 

part of the flat plane. It is clear that the electric field generated by means of charging 

a cluster will fall off rapidly, with an exception of /2fe5(100), rather than approach 

a constant as it does in front of a single atom on top of an extended metal surface 

described in preceding sections. We next plot the charge distribution for a doubly 
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charged cluster of five Rhodium atoms which form one layer of a Rh(\Q0) plane and 

find very similar characteristics to the embedded Ag(00\) surface, i.e. the electron 

density is smoothed and the lateral variation in the electric field is rather small a 

few angstroms away from the top atoms (see Figure 18 and Figure 19. We have 

also obtained the electron density distributions (see Figure 20 and Figure 21) and 

potential contour plots (see Figure 22 and Figure 23) for both singly and doubly 

charged Rh6 clusters which have one more Rhodium atom on top of the /?/i5(100) 

cluster. In general, one can generate fields of about 1 — 2V/A one or two angstroms 

away from the top atom in the cluster, i.e. at the position where atomic hydrogen 

will adsorb. 
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Figure 16: Electric field strength profile generated by doubly charged Rh4 cluster 
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Figure 17: Electric field strength profile generated by doubly charged Rh5(l00) cluster 
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Figure IS: Electron density difference between the doubly charged and the neutral 
iZAs(lOO) cluster. 
Contour lines are -0.0005, -0.0001, -0.00005, 0.000001, 0.000005, 0.00001, 0.00005, 
0.0001, 0.0005, 0.001, 0.005, 0.01 per a.u. of volume. Crosses mark the nuclei of the 
atoms. 
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Figure 19: Electric potential contour of doubly charged Rh,(l00) cluster. 
Contour interval is 0.02 a.u. Crosses mark the nuclei of the atoms. 
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Figure 20: Electron density difference between the singly charged and the neutral 
Rh/Rh-a{100) cluster. 
Contour lines are ± 0.001, ± 0.00075, ± 0.0005, ± 0.00025, ± 0.0001, ± 0.000075, ± 
0.00005, ± 0.000025, ± 0.00001 per a.u. of volume. Crosses mark the nuclei of the 
atoms. 
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Figure 21: Electron density difference between the doubly charged and Rh/Rh5(lQ0) 
cluster. 
Contour lines are ± 0.001, ± 0.0005, ± 0.0001, ± 0.00005, ± 0.00001 per a.u. of 
volume. Crosses mark the nuclei of the atoms. 
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10 

Figure 22: Electric potential contour of singly charged Rh/Rh5(10Q) cluster. 
Contour interval is 0.005 a.u. Crosses mark the nuclei of the atoms. 
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Figure 23: Electric potential contour of doubly charged Rh/Rh5(lQQ) cluster. 
Contour iunterval is 0.01 a.u. Crosses mark the nuclei of the atoms. 



3 Theoretical Models of Field Adsorption 

As we discussed in the preceding chapter, the electric fields at metal surfaces are 

greatly enhanced around kink sites and around single metal atoms on flat crystal 

planes. We also mentioned that the quantum mechanical calculations of the self-

consistent charge density and electric field distribution have been done for both a 

flat jellium surface and a jellium surface with one metal atom adsorbed on it by 

employing the local density approximation to density functional theory. 

To understand field adsorption of molecules, one would like to calculate the elec­

tronic structure of an adsorbed molecule in the local field at kink sites or around 

single atoms on densely packed planes of transition metals. Unfortunately, such a 

complete calculation is not available at the present time. We will therefore resort to 

two approaches, both of which are based on density functional theory to determine 

the electronic structure and the local electric field selfconsistently. In the first place, 

we use the jellium model to describe field adsorption of atomic hydrogen. Next we use 

a cluster model for field adsorption of both atomic and molecular hydrogen species. 

Accordingly, this chapter is divided into two sections in order to account for these 

two models in detail. 

3.1 Field Adsorption on A Jellium Metal 

For the field adsorption of atomic hydrogen we will use the jellium model to represent 

a densely packed metal surface on which we will study the chemisorption of atomic 

hydrogen as a function of applied field using local density functional theory [19,20, 

21,28]. This model does not account for p and d electrons in the metal and obviously 

neglects all effects due to the lattice structure of the surface. In its present form the 

program is also restricted to single atom adsorption. In this model we assume that 

43 
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the ionic lattice can be smoothed into a uniform positive charge density n+, given by 

(36) that drops to zero abruptly half a lattice constant above the topmost layer of 

ion cores. We will study the local electron and field distribution first for a bare metal 

surface and then adding a hydrogen atom [29] in front of this jellium metal within 

the framework of density functional theory. The latter determines the exact ground 

state electron density as the selfconsistent solution of the equations 

»(*) = ^ B £ ^ - ^)©(£F - e„)|0„(z)|2 (37) 

+ 2 J 2 

{~2lh"d? + We//[n; *] " ev)Mz) = ° (38) 

where c„ and ip„ are, respectively, the energy eigenvalues and normalized eigenfunc-

tions of an electron in the one dimensional effective potential vefj which, in turn, is 

a functional of the electron density n(z). The present expression of one dimensional 

electron density, Equation 37, can be derived exactly in both Cartesian and cylindri­

cal coordinates, see Appendix B for details. In the local density approximation, the 

effective potential 

veJ}[n;z] = ^(z) + pxc{n{z)) (39) 

is the sum of the electrostatic potential as seen by an electron, determined from 

Poisson'j equation 

d2 

— $ ( * ) = 47re[n+ - n{z)\ (40) 

which can be integrated analytically, leading to the solution 
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$(z) = $(-oo) - 4TT r dz\z - z')(n(z') - n+(z')) (41) 
J— 00 

and the exchange and correlation contribution, pxc which, in the local density ap­

proximation with a Wigner form for the correlation, is given by 

. . . . e2 / 0.611 n , „„4r.(n) + 23.4\ ,in. 

where r,(n) is defined by (4vr/3)[ra(n)]3 = 1/n. 

A static electric field FQ applied perpendicular to the jellium surface is character­

ized by the surface charge density 

/

oo 

(n+Q(-z) - n(z))dz = F0/4TT (43) 
•oo 

where 0(—z) is a step function defined by Q(z) = 1 when z > 0 and 0(z) = 0 when 

z < 0. The profiles of the electron density, the induced charge density and electric 

field at the flat jellium surface are shown in Figure 10 and Figure 11. 

To study chemisorption of an atom on jellium, it is again required to solve the one 

electron equation (38) where, however, the effective potential needs to be written, for 

the metal-adatom system consisting of a semi-infinite uniform positive background, 

a nucleus of charge Z, and the gas of interacting electrons, as vej]\nMA\r\. Hereafter 

the superscripts M and MA refer, respectively, to the bare metal and the combined 

metal-adatom system. We note the fact that the metal screens out the effects of the 

adatom on the charge density and potential, except in the vicinity of the adatom 

such that this kind of locality of the disturbance in the potential can be conveniently 

treated, for the continuum states, by using a Lippmann-Schwinger integral equation 

xbMA{r) = </>M(r) + I dr'GM(r, r')6veff(r')ipMA{r') (44) 
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where ibM is the solution of Equation 38 in the absence of the adsorbed atom, GM 

is the Green's function of the bare metal and &>e// is the difference of the effective 

potential (39) with and without the adsorbed atom. Because Svejj approaches zero 

rapidly outside the adatom, we can restrict the integral in Equation 44 to a sphere 

centered at the adatom, bounded by a surface 5 outside of which Sve// is negligible. 

To include an external electric field, we must add an excess surface charge to the 

metal. This is done first in the bare metal problem by imposing the condition 

<r = e [°° ( n + 0( - z ) - nM(z, F0))dz = F0/4TT (45) 
J—oo 

on the charge density of the bare metal. Note that this equation is similar to Equa­

tion 43, but we this time write the electron density as nM(z, F0) that is constructed by 

wavefunctions tpM(z, Fo) through Equation 37 and depends upon the field strength, 

F0, far from the surface. In the presence of the adatom one then requires that outside 

the sphere S 

nMA(r,F0)-^nM{r,F0) for \r\ — oo (46) 

which acts as a boundary condition on the solution of (44). Thus, the effect of the 

external electric field is imposed in the metal-adatom system through the condition 

(46). 

While the external electric field does not change the structure of the one electron 

equations, it does affect the numerical procedure. In the absence of external electric 

fields, the effective potential of a bare metal, ve/f[nM, z\, will approach a constant for 

z —* oo , usually taken as the zero of energy. However, in the presence of an external 

electric field of asymptotic strength F0> veff[nM, z] will grow as eF0z for large z. It is 

then advantageous to choose the Fermi energy as the energy reference, cf = 0. With 
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this choice the energies of all occupied levels are negative. 

The one electron differential equation corresponding to the Lippmann-Schwinger 

integral equation can be solved exactly by direct numerical integration outward from 

the adatom nucleus. These solutions ij>Emi(r) are represented as an r-dependent linear 

combination of free-particle solutions 

+Bmi(r) = £ [CBma.(r)jP{pr) + 5BmH,(r)/l/t(pr)]^ro(ft) (47) 
l'=\m\ 

where p = \/~E, and ji> and hf, are the spherical Bessel functions. These solutions 

are characterized by their angular behavior near the nucleus and do not satisfy the 

boundary conditions embodied in the Lippmann-Schwinger equation. Within the 

sphere 5, however, the desired solution ipEmk(r) may be expanded in terms of these 

fundamental solutions 

oo 

i>Emk{r) = J ] OtEmkl'll>Eml'(r) (48) 
/'=|m| 

where the coefficients aEmkV a r e obtained by substituting this equation into the 

Lippmann-Schwinger integral equation (44). 

3.2 Spin Density Functional Theory of Clusters 

To account for the local lattice effects for adsorption around isolated atoms on densely 

packed surfaces or at kink sites, we will use a finite cluster model based on spin den­

sity functional theory. Because the number of metal atoms is rather small in such 

calculations for practical reasons, long range metallic effects such as image forces are 

not included in this model. The current model which employs the local spin den­

sity approximation to the exchange and correlation potential was first established by 

Sambe and Felton [30,31], later on modified by Dunlap [32,33] and then by Salahub 
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[34,35,36,37,38]. In their original version of this model, Sambe and Felton used the 

Xa potential as the local density functional approximation and expanded the Xa 

potential as well as the electron density appearing in the Coulomb potential in terms 

of some auxiliary Gaussian functions so as to circumvent those cumbersome inte­

grals caused by the Xa potential and to reduce the number of two-electron integrals 

arising from Coulomb interaction. Upon calculating matrix elements analytically, a 

group of self-consistent- field equations can be solved iteratively and the chemically 

interesting quantities such as total energy, ionization energy and equilibrium geom­

etry, can be obtained. Consequently, the muffin-tin approximation for the potential 

that is inherent to the multiple scattering method and therefore unreliable in studies 

of molecular geometry has been removed. Furthermore, the large number of sample 

points per atom necessary in the DV — Xa method will no longer be demanded. 

The one electron equation and molecular orbitals, in the electric field caused by 

nuclei of charges Zp at positions Rp, are determined by variational minimization of 

the Local Density Functional total energy expression, 

E = £>,- Jdr3^-1-*2 -^—^Hr) 

+UC + Uxc + E W^1T\ (49) 

where n,- is the occupation number of the ith orbital fa. The electron-electron inter­

action energy is 

^/f^W (50) 
where 
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p(r) = En^(r)fa(r) (51) 

is the charge density when the ith molecular orbital is occupied by n,- electrons (at 

this point, we only take into account the case where there is no net spin polarization 

of the electrons for simplicity) and the exchange-correlation energy is, for example in 

the Xa approximation , given by 

Uxc = -a\^Yl3fp{rfl3dr3 (52) 

For open shell systems , the wave functions and total electron density, p, can be 

divided into spin-up and spin-down components, and the exchange-correlation energy 

will be spin dependent. 

We now display the one-electron equation, in atomic units, 

(-\v2 + ve„[p;r]-eu)Mr) = 0 (53) 

where the effective potential comprises electron-nuclear attraction, electron- electron 

repulsion and exchange-correlation potentials, and can be written explicitly, 

VeffW); r] = E J ^ = % | + ̂ W + V-Mr)) 

.13 

Vxc(p(r)) = -3a[W*)p(r))1/3 (54) 

where we have used the SCF — Xa approximation and will be doing this throughout 

all our derivations. We next will expand the electron density and the exchange-

correlation potential by a least-squares fit to Gaussian functions centered at the 

nuclei, respectively. 
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p(r)«J>/i(r) (55) 
i 

V«(/Kr))*i:iift(r) (56) 
i 

Hence the effective potential becomes 

• W z - S - ^ + fc + fc. 

i 

where a tilde indicates a fitted quantity. In order to solve the one-electron equation 

1 
2 

We employ the Rayleigh-Ritz variational method with linear variational functions 

(~2V2 + vefJ - e„)4„(r) = (H - e„)^(r) = 0 (58) 

<k=£xA, (59) 

where xi a r e Hermite-Gaussion functions centered at the nuclei. This leads to the 

secular equation: 

£ ( # « - tvSkl)Ckv = 0 (60) 

where the Hki is the fitted Hamiltonian matrix elements, 

Hkl = jxkHxidr3 (61) 
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and the Ski is normally called an overlap integral, 

SM = JxkXidr3 (62) 

since its value is, in certain cases, an indication of the extent to which the two 

functions Xfc and xi occupy the same space. The electron density is given by, in 

terms of the solutions of Equation (60), 

P ~ £ £ n»Ck»CivXkXi (63) 
kl v 

To solve the equations (57) to (63), we start from the expansion coefficients a,-

and bj which determine the fitted Hamiltonian H. Upon solving the secular equation, 

a new electron density and a new exchange-correlation potential are obtained. The 

expansion coefficients a,- and bj are recalculated by least-squares fitting to these new 

quantities and thus an iteration is performed. 

Our electron density fitting equations follow from taking account of the second 

order effect in the calculation of the coulomb energy Uc. Consequently, the most 

accurate approximation to Ue results from minimizing a positive definite quantity Sc: 

s l , [ W-*r)) ( , (r - ) - , -M W 
2 J J |r — r I 

subject to the normalization constraint: 

/ P(r)dr3 = E «< / Mr)dr3 = Ne (65) 

where the Ne is the total number of electrons. Introducing a Lagrange multiplier A 

to this restrictive minimization, we can obtain p with a fit 
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a = F _ 1 • (t + An) 

A = (Ne - n • F'1 • <)/« • F " 1 • n (66) 

where 

F tmmdr>dr* 
J \r — r | 

j |r — r'| 

ni = Jfi(r)dr3 (67) 

The exchange-correlation potential has been fitted on the three-dimensional grid 

of points around each nucleus of the atom with a radial distribution consisting of 

every tenth point of the Herman-Skillman mesh [39]. The angular mesh consists of 

the twelve vertices of a regular icosahedron [40]. In the present program, we chose 

the local exchange-correlation potential fitted by Vosko, Wilk and Nusair [41] to the 

Ceperley-Alder [42] Monte Carlo treatment of the electron gas. This local potential 

has been tested and compared with various other exchange-correlation potentials 

within the same computational scheme by Baykara, McMaster and Salahub [35], and 

believed to be close to the limit attainable in a local method. In addition to the local 

density approximation, a nonlocal correction that involves the gradient of the density 

as well as the density itself proposed by Perdew [43,44] to the exchange-correlation 

functional has been added to the latest version of the computing program [45] during 

the course of preparation of this thesis. 

To apply the model described to the treatment of large clusters containing transi­

tion metal atoms, which is a necessary step in understanding complex chemisorption 
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and catalytic phenomena, there is a need for simplification of the LSD calculations. 

One of the obvious ways is to take into account only the valence electrons of the 

cluster, assuming they move in an unchanging potential due to the atomic core elec­

trons. The model core potential that has been originally proposed by Huzinaga and 

Bonifacic [46], and then developed for the spin-polarized local-spin-density method 

by Andzelm, Radzio and Salahub [34] is employed in our calculations so that we 

represent the valence orbitals using truncated basis sets and replace operators of the 

core-valence interaction by simple, preferably one-electron, analytical potentials. 
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3.3 Electric Field in Cluster Model 

In earlier cluster calculations based on the semi-empirical ASED-MO method [47,48] 

the electric field as calculated for a flat jellium surface was imposed on the cluster. 

This method successfully explained field-induced chemisorption of rare gases [49] and 

field evaporation of metals [50]. In the same way, we can also include an electric field in 

the LSDA cluster calculations. In fact, some subroutines have been written and added 

to the LSD program. Unfortunately, this is no longer a self-consistent calculation. 

For the cluster calculations carried out in this work, we employ a different and simpler 

scheme to include field effects. Because we are interested in field adsorption around 

single metal atoms on top of closed packed surfaces or around kink sites, we take a 

cluster consisting of a single metal atom and the adsorbing atom or molecule. This 

cluster is then put into a constant external field which is supposed to arise from the 

flat metal surface beneath it. The induced field will lead to a net field expulsion over 

the volume of the metal atom and to a field enhancement in front of it where field 

adsorption of the additional atoms or molecules takes place. 

To incorporate the uniform electric field in the cluster model, we add 

VF(z) = F0z (68) 

to the effective potential (54) in the one-electron equation and 

UF = -Y,ZpFozp (69) 
v 

to the total energy expression (49). We note that the fitted Hamiltonian H, and 

correspondingly the fitted Hamiltonian matrix elements Hki, will now depend on the 

field. A modified LSD program containing such a uniform electric field still guarantees 
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self-consistency and the resulting electron density reflects the field effect. 

To evaluate the local electric potential and field, we must solve Poisson's equation 

V • F = - V 2 $ = -47rp(r) + £ Zp • 4irS(r - RJ (70) 
p 

Thus the electric potential and the field are given by 

-?Ar/2£f-»+*. ( 71> 
Zv f p(r')dr' 

P v — Rp 

and 

* = E ^ ! ^ + TO. = Ar + A (72) 

where $# and Fjv are the potential and the field due to the positive charges of the 

ion cores, and $ e and Fe are the potential and the field arising from the electrons. 

To evaluate $ e , we express the electron density in terms of the Hermite-Gaussian 

basis functions, Xh a s 

P(r) = E E »ACxi(r)xra(r) (73) 
l,m v 

where n„ = 1 or 0 and the Ci„'s are determined self-consistently in the LSD program. 

The integrals in <&e can then be done explicitly. To evaluate, for instance, the z-

component of Fe, we have to take a derivative with respect to z yeilding 

FM = EE«A^(-ir^iEEE(T=r# 
».m » a + hXXX va + b 

h(h,ml,k1,--)h(l2,m2,k2,--)h(l3,m3,k3,--) 
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^ + r o 3 - f c a ( / ^ « y ) ^ a + m 3 - f e 3 ( ^ ~ ^ ) • e " * * (74) 

where ///,+„,,_*, are Hermite polynomials, a and 6 are exponents of basis functions 

centered at A and B, respectively, and R = B — A is a vector pointing from A to B. 

The other symbols are defined as follows: 

/ = /, + /2 + /3 

m = m\ "1" m2 "T- m 3 

jb = &, + fc2 + fc3, (75) 

the summation over fcj, k2 and k3 limits the range from zero to l\ + mi, l2 + m2 and 

fo + r«3, respectively, and 

K = v^Rr - ^ ± ^ ) (76) 

The auxiliary functions A(/i,mi, Art, — | ) are given by 

min{li,ki) mtn{li,ki} / I \ / \ _ 

M'„m 1 , , 1 , -^ ,= £ ( ) »_. (-?)< (T7) 
moa{0,fci—mi} \ / \ * / 

Source codes to include field effect, and plotting routines for electron densities 

and field distributions, have been written and are available upon request. 



4 Theoretical Results 

4.1 H, H2, Hz and Their Ions 

To assess the reliability of the local spin density approximation (LSDA) as outlined in 

the preceding chapter, we have compiled, in Table 4.1, bond length, total electronic 

energies, binding energies, and ionization energies for the various hydrogen species 

and their ions. For atomic hydrogen LSDA is not too reliable yielding an ionization 

energy of 13.026^ instead of the exact value of 13.59eV; a similar discrepancy exists 

for the ionization energy of H2 with half an electron volt difference. For the molecular 

species, bond lengths calculated in LSDA are typically too long by as much as 0.1 A 

and binding energies are overestimated about 0.1 eV. Although binding energies for 

linear and triangular H3 are 0.5eV higher, ionization energies for linear and triangular 

//3 and b:iic,.j<-r energies for linear and triangular H3 are in good agreement with CI 

calculations C.vP [52] and SL [53]. The latter, being specifically designed for #3, 

employ much larger basis sets and ought to be more reliable. We also note that CI 

calculations based on the Gauss'90 package [54] give rather poor results as does an 

approach based on a basis of floating spherical Gaussian orbitals [55]. Our calculations 

confirm that H3 is unstable in nature and easily dissociates into H2 plus H, but that 

H3i especially in its triangular form, is quite stable as also seen in field ionization 

experiments [5]. Lastly we notice that nonlocal calculations have improved all local 

results. 

As a first step towards the understanding of field effects on hydrogen we calculate 

the electronic properties of H2, Hf and H£ in a constant electric field using LSDA. In 

the basis set for hydrogen we included Is, 2s, 2p type gaussian orbitals. In Figure 24 

we show the potential energy, i.e. the energy difference, AE = E(H2, F)—2E(H, F = 

0) as a function of the H — H distance for various field strengths. We note a steady 

57 
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decrease in the minimum, with the bond length increasing slightly. The Schottky 

barrier of dissociation disappears at 5.14 V/A. The early FSGO [55] calculation put 

the dissociation field strength between 5.6 and 6.0 V/A. If we assume that field-

induced dissociation is a thermally activated process with a rate constant given by 

k = uexp{-Q(F)/kBT) (78) 

with the prefactor of standard magnitude, i.e. v = 1013s_l, we estimate dissociation 

setting in at field strengths of the order of 4.5V/A at room temperature. We also 

calculated the polarisability of H2 to be a(F = 0)=7.6 a.u. to be compared with the 

exact value of 5.61 a.u. The polarisability increases to 19 a.u. at F = 5.14V/A. 

We next look ct the H2 ion. Figure 25 shows the potential energy similarly defined 

for H2. We also see a steady decrease in the minimum of the total energy with a small 

increase in bond length. The Schottky barrier of dissociation disappears at 1.5 V/A. 

Hiskes' exact calculation [56] reported that the required field for the dissociation 

range from 10~3V/A for the uppermost vibrational state to 2V/A for the ground 

state. Hanson [57] obtained a similar result , 1.8 — 2.0V/A for the disappearance of 

the activation barrier. 

Taking account of the fact that H2 and H3 have the same binding energy, we 

expect that they would be dissociated at about the same electric field strength. The 

LSDA calculation has verified this prediction, see Figure 26. H£ will decay, at a field 

somewhat larger than 1.5V/A, into H2 and a proton. 

The contour plot of Figure 27, based on electron density difference 

Ap = P(H2,F)-p(H2,F = 0), (79) 

displays the field-induced charge transfer in the direction opposite to the electric field 
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strength. In similar fashion, Figure 28 and Figure 29 show the field-induced charge 

transfer for H2 and H3, respectively. 
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Table 1: Binding characteristics of H2, linear and triangular H3 and their ions. 

Bond length (A) 
exact 
CI(SL) 
CI(CKP) 
FSGO 
CI(Gauss'90) 
LSDA 
Non-local 
Etotai (eV) 
exact 
CI(SL) 
CI(CKP) 
FSGO 
CI(Gauss'90) 
LSDA 
Non-local 
Ebinding (eV) 

exact 
CI(SL) 
CI(CKP) 
FSGO 
CI(Gauss'90) 
LSDA 
Non-local 
"ionization \GV ) 

exact 
CI 
CI(Gauss'90) 
LSDA 
Non-local 

H2 

0.74 

0.70 
0.75 
0.78 
0.77 

-31.94 
-31.92 
-31.88 
-27.84 
-31.32 
-30.85 
-32.00 

4.75 
4.74 
4.70 
4.75 
4.13 
4.82 
4.72 

15.43 

14.96 
15.40 

Hi 

1.06 

1.00 

1.16 
1.15 

-16.38 

-13.73 

-15.89 
-16.60 

2.79 

2.19 

2.88 
2.95 

H3(L) 

0.93 

0.94 
0.95 
0.95 

-45.08 

-44.23 
-44.00 
-45.61 

-0.44 

-0.67 
0.14 
-0.03 

10.36 
10.12 
10.29 
10.73 

H£(L) 

0.81 

0.81 
0.87 
0.86 

-34.72 

-34.11 
-33.70 
-34.88 

2.84 

2.79 
2.85 
2.87 

H*{T) 

1.11 

1.10 
1.10 

-42.78 

-41.87 
-43.36 

-2.74 

-1.99 
-2.28 

6.34 

6.59 
6.91 

HUT) 

0.88 
0.83 

0.94 
0.94 

-36.44 
-31.64 

-35.28 
-36.45 

4.56 
3.80 

4.43 
4.45 
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Figure 24: Potential energy of H2 in a uniform electric field, F0 

, as a function of the H - H distance. Solid line: F0 = OV/A, long-dashed line: 
FQ = 3.0V/A, short-dashed line: F0 = 4.5V/A, dot line: F0 = 5.14V/A. 
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Figure 25: Potential energy of H$ in a uniform electric field, F0 

, as a function of the internuclei distance. Solid line: F0 = 0V/A, long-dashed line: 
F0 = 1.0V/A, short-dashed line: F0 = 1.5V/A, dot Une: F0 = 2.0V/A. 
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Figure 26: Potential energy of H3 in a uniform electric field, F0 = 1.5V/A 
, as a function of the internuclei distance between the two hydrogen atoms further 
away along the field. 
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Figure 27: Contour plot of field-induced charge transfer for H2. 
Applied electric field strength is 5.14V/A and points to right. Contour lines are 
±0.01,±0.005 ± 0.001, ± 0.0005, ± 0.0001 per a.u. of volume. Crosses mark the 
nuclei of the atoms. 
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Figure 28: Contour plot of field-induced charge transfer for Hf. 
Applied electric field strength is 1.5V/A and points to right. Contour lines are ± 
0.01, ± 0.005, ± 0.001, ± 0.0005, ± 0.0001 per a.u. of volume. Crosses mark the 
nuclei of the atoms. 
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Figure 29: Contour plot of field-induced charge transfer for / # . 
Applied electric field strength is 1.5V/A and points to right. Contour lines are ± 
0.01, ± 0.005, ± 0.001, ± 0.0005, ± 0.0001 per a.u. of volume. Crosses mark the 
nuclei of the atoms. 
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4.2 Field Adsorption of H on Rh(lll) 

For the field adsorption of atomic hydrogen we present results modeling the metal 

by (1) a jellium and (2) a small cluster of metal atoms. In Figure 30 we show the 

potential energy curves of H on jellium with ra = 2.0 for various field strengths. 

Similarly to the earlier calculations [58,59] in the absence of external electric fields 

we find that the asymptotic energy for H far from the jellium surface is only — 12eV 

instead of — 13.59eV. This is due to the fact that the theory does not account for the 

change in spin polarisation as a function of distance from the jellium. It describes 

chemisorption at distances less than 2-3 angstroms properly, i.e. in particular at the 

minimum of the potential energy and at distances where the hydrogen atom is no 

longer polarised. However, the change to the polarized state at large distances is not 

allowed for. To correct for this obvious shortcoming of the calculation, one therefore 

restricts the jellium calculations to distances around the minimum of the potential 

energy curve and adjusts its asymptotic value to the correct one. This can also be 

done in the presence of an external electric field. However, in this situation we are 

less interested in the binding energy than in the activation energy as defined by (78). 

We see from Figure 30 that for fields larger than about 3V/A the Schottky barrier is 

well within the range where the calculations are trustworthy. 

We note in Figure 30 that as the field is increased, the position of the binding 

minimum remains essentially unchanged at 0.5A above the jellium edge, i.e. about 

1 — 1.5A above the topmost ion cores. The activation energy for field desorption is, 

however, decreasing continuously, suggesting that atomic hydrogen can no longer be 

field adsorbed at field strengths beyond 6V/A. Slight changes occur when one takes 

ra = 3.0, confirming earlier results in the field free case which found that the total 

energy has a flat plateau for ra between 2 and 4. Figure 31 shows the change of the 
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state density of Is below the Fermi level of the jellium metal. As the field strength 

increases, the peak of the Is state shifts up getting closer to the Fermi level. 

To get an idea of the importance of the p— and d—electrons of transition atoms 

and of the lattice structure we now report the results of LSDA cluster calculations 

for Rhodium. In a first calculation we have mimicked the (111) surface of Rh by a 

tetrahedral cluster of 4 Rh atoms with a H atom on its apex, see 35. It is known 

that atomic hydrogen adsorbes preferentially at multi-coordinated sites in the field-

free case. Nevertheless we have used the on top geometry because in the presence 

of a field, adsorption is preferrable at on top sites, i.e. at kinks and steps. In the 

absence of a field we find the binding energy for H on Rh4 to be 2.36eV (compared to 

1.6eV on jellium with ra = 3 bohr and 2.0eV for ra = 2 bohr) with H located 1.67A 

from the top Rh atom (compared with 1.6A on jellium if we assume that the first 

lattice plane is half a lattice constant, i.e. 1.35A below the jellium edge). In a third 

calculation, also based on LSDA, we look at the Rh — H dimer. We find a binding 

energy of 3.3eV at a distance of 1.59A, i.e. somewhat stronger binding at shorter 

distances for the dimer than for the cluster because the single Rh in the dimer has 

more electrons available for binding to hydrogen. The further reduction in binding as 

one goes to jellium is largely due to the lack of p— and d— electrons which form the 

bonding orbital with the s—electron of hydrogen in the dimer. We list, in Table 4.2, 

binding lengths and energies for various atomic hydrogen adsorption on transition 

metals based on either experiments or cluster calculations. We note that the binding 

distances range from 1.6A to 2A and binding energies from 2 to 4 eV. The LSDA 

result is in good agreement with these listed values. 

Within the dimer model we next include field effects by placing the dimer in 

a uniform external field. This overestimates the field effect on Rh, because of the 
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absence of the field expulsion by conduction electrons in an extended metal cluster. 

Nevertheless, the calculation has its merits as an estimate. In Figure 32 we plot 

the potential energy curves for the Rh — H dimer as a function of the separation 

for various field strengths. It suggests that for Fo somewhat larger than 3.5V/A the 

dimer no longer exists. This is indeed the range above which field adsorption of 

hydrogen on metals can no longer be observed. The fact that a dimer model yields 

good answers confirms a long held belief [60,61] that the local fields and thus the 

local electronic structure around adsorption sites (kink sites, steps etc.) are more 

important than long range metallic effects for the understanding of field adsorption. 

It is at first sight surprising that the jellium model predicts too large a maximum 

field strength for hydrogen field adsorption, i.e. of the order of 5 — 6V/A instead 

of 3 — 3.5V/A, considering the fact that similar calculations for field evaporation 

of metal atoms yielded good agreement with experiment [25]. However, we should 

bear in mind that hydrogen adsorption takes place at very short distances from the 

topmost ion core of the metal, i.e. in the region of the classical image plane where 

the local field varies rapidly. The local structure must therefore be known rather 

accurately, a task that the jellium model of a metal cannot provide. 

The changes in the bonding characteristics as one increases the field from 0.0 to 

3.0V/A are clearly depicted in Figure 33 and 34 where we have plotted the change 

in density upon adsorption 

Ap = p{Rh-H)-p(Rh)-p(H) (80) 

As the field is applied the bonding orbitals spread out with a significant charge 

transfer from the region between Rh and H to the outer side of the Rh nucleus, thus 

weakening the binding. 
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The geometries and energies of field-free adsorption are summarized in Figure 35 

with field effects displayed in Figure 36 and Figure 37. 

The contour plots of Figure 34 also give an indication why the presence of a field 

adsorbed hydrogen reduces the evaporation field strength of most metals. We recall 

that for field evaporation the metal surface is charged positively, i.e. the surface 

electron density is depleted resulting in a steepening of the electron profile and a 

shift of the image plane towards the interior of the metal [22,23]. As a result, the 

electron density behind the top most metal atom is enhanced, in particular if it sits in 

a kink site or on a smooth surface. Returning to the effect of adsorbed hydrogen we 

note from Figure 34 that a similar charge transfer occurs from the adsorbed hydrogen 

into the region behind the metal atom. Thus, in general a smaller field is necessary 

to cause the field evaporation of metals in the presence of adsorbed hydrogen. One 

might speculate that for metals or semiconductors where the charge transfer from 

the adsorbed hydrogen occurs into a bonding orbital between the top most atom and 

the next layer down, a stabilisation of the metal or semiconductor surface against 

field evaporation might ensue as a result of hydrogen adsorption. We hope to give a 

comprehensive discussion of this point elsewhere later on. 
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Figure 30: Field adsorption of atomic hydrogen on a jellium metal with ra = 2.0. 
Solid line: F0 = 0V/A, long-dashed line: F0 = 3.0V/A, short-dashed line: F0 = 
5.0V/A, dot line: F0 = 6.0V/A. 



72 

8.00 

CD 
CD 
C 
Q 

JZ 

O •0.40 -0.30 -0.20 -0.10 0.00 
Energy (Ry) 

Figure 31: Change in state density of atomic hydrogen on a jellium metal with 
r, = 3.0. 
Sofid line: F0 = OV/A, dashed line: F0 = 3.0V/A, dot line: F0 = 4.5V/A. 
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Table 2: Atomic hydrogen adsorption on transition metals 

Pd4H
a> 

PdAH^ 
Pd4H

c) 
PdHiexpt.y) 
Ag4H* 
Ni4H

c> 
NinHe) 
NiH(expt.y> 
H/Ni(l\l)rt 
H/Ni(lU)h) 
H/Rh(llO)^ 
H/Rh(00l)» 
H/Rh(U\)(expt.)Q 
H/Rh(llO){expt.)V 
H/Rh4(lll)(Atop) 
H — Rh dimer 

R(A) 
1.65 
1.77 
1,75 
2.0 
1.96 
1.65 
1.61 

1.76-1.84 
1.61 

1.81-1.87 
1.86 
2.00 

1.67 
1.59 

Ebinding{eV) 
3.51 
3.67 
4.71 
2.7 
3.59 
4.62 
2.86 
2.74 
1.94 

2.50-2.66 

2.57 
2.65 
2.65 
2.36 
3.32 

a) H is at the pseudo-three fold sites on PJ(llO), Ref. [62]. 6) Short bridge sites 
on P<f(110, Ref. [62]. c> Threefold sites on Frf(lll), Ref. [63]. d> Ref. [64,65]. e> 
Ref. [66]. J) Ref. [67]. *> CI calculation on top sites, Ref. [68]. ^ CI calculation on 
three fold and bridge sites Ref. [68]. '* Pseudo-three fold sites, Ref. [69]. ^ Four fold 
hollow sites, Ref. [70]. fe> Ref. [71]. '> Ref. [72]. 
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Figure 32: Potential energy of the Rh - H dimer in a constant electric field, F0. 
Solid fine: F0 = OV/A, long-dashed line: F0 = 2.0V/A, short-dashed line: F0

 : 

3.0V/A, dot line: F0 = 3.5V/A 
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Figure 33: Electron density difference contour plot for the Rh — H dimer without a 
field. 
Contour lines are ± 0.01, ± 0.005, ± 0.001, ± 0.0005, ± 0.0001 per a.u. of volume. 
Crosses mark the nuclei of the atoms. 
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Figure 34: Electron density difference contour plot for the Rh - H dimer in F0 = 
3.0V/A. 
Contour lines are ± 0.01, ± 0.005, ± 0.001, ± 0.0005, ± 0.0001 per a.u. of volume. 
Crosses mark the nuclei of the atoms. 
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Figure 36: Geometries of field adsorption of linear hydrogen species on a Rh atom 
resulting from the LSDA calculations. 
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Figure 37: Geometries of field adsorption of linear hydrogen species on a Rh atom 
resulting from the non-local calculations. 
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4.3 Field Adsorption of H2 on Rh{Ul) 

We have used the LSDA method to calculate the binding energy of a linear Rh—H—H 

species and of H2 linearly adsorbed on top of a tetrahedron of Rh. Such a geometry 

is of course very unlikely in the absence of a field. However, as soon as a field is 

applied, it will align the molecular dipole moment, i.e. the molecular axis along it. 

We will therefore only study field effects for this geometry. 

In the absence of a field we find from LSDA a binding energy of 0.66 and 0.54 eV 

on a single Rh atom and on a Rh4 tetrahedron respectively, with the first hydrogen 

a distance of 1.88 (1.90) A from the top Rh atom and the second H a further 0.79A 

away, roughly the bonding distance in the free H2 molecule, see Figure 35. These 

numbers indicate physisorption for molecular hydrogen. We note that our non-local 

calculation improves the result a great deal giving such a value as 0.06eV which is in 

very good agreement with experiment and other calculations [73]. The (negligible) 

weakening of the Rh — H bond as one goes from a single Rh to a Rh4 cluster is again 

the result of a charge transfer into the internal Rh bonds. 

We next look at the effect of a uniform electric field on the binding characteristics 

of a linear Rh — H — H species, see Figure 38. As the field is increased, the distance 

between the Rh and the inner H shrinks and the H — H separation increases en­

hancing the binding between the Rh and the H2 but diminishing the H — H binding 

energy. For fields of the order of 3V/A the activation barrier for H2 dissociation dis-

sappears. Some relevant numbers can be found in Figure 36 and Figure 37. We note 

that a surprising transition for H2 from physisorption in zero field to chemisorption in 

a strong electric field 3V/A can be seen, particularly from the non-local calculations. 

This phenomenon is refered to as field-induced chemisorption that is important even 

for the most inert atom, namely helium [3,49]. The changes in the bonding charac-
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teristics are demonstrated in the contour plots, Figures 39 and 40, of the density 

differences 

Ap = p(Rh-H-H)-[p(Rh) + 2p(H)). (81) 

We should stress that this is a new, field-induced dissociation channel for an upright 

Hi species leading to only one H atom adsorbed rather than two as a result of the 

stretching of an H2 molecule physisorbed parallel to the surface. 
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Figure 38: Potential energy the linear RhH - H trimer as a function of the II - H 
distance with the Rh - H distance at 1.5A. Solid line: F0 = OV/A, dashed line-
F0 = 2.0V/A, dot lire: F0 = 3.0V/A. 
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Figure 39: Electron density difference contour plot for linear Rh - H - H trimer 
without a field. 
Contour lines are ± 0.05,± 0.01,± 0.005, ± 0.001,± 0.0005, ± 0.0001 per a.u. of 
volume. Crosses mark the nuclei of the atoms. 



Figure 40: Electron density difference contour plot for linear Rh — H — H trimer in 
Fo = 3.0V/A. 
Contour lines are ± 0.05,± 0.01,± 0.005,± 0.001, ± 0.0005,± 0.0001 per a.u. of 
volume. Crosses mark the nuclei of the atoms. 
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4.4 Field Adsorption of Hz on Rh(lll) 

The bond lengths and binding energies for field-free adsorption of a linear H3 molecule 

on either a Rh4 cluster or on a single Rh atom are given in Figure 35. This suggests 

interpreting H3 adsorption as chemisorption of an H atom on Rh with a H2 molecule 

physisorbed on top of it. Dissociation energies support this, i.e. O.leV for Rh — H 

plus H2 and 3.28eV for Rh plus H3. It is also evident in the contour plot, Figure 43, 

which bears an astounding similarity to that of the Rh — H species in Figure 33. 

Clearly this is not the lowest energy state for the adsorption of 3 hydrogen atoms on 

a metal surface. 

What we want to show next is that the linear H3 configuration in an on top 

position will be stabilized in the presence of an electric field. We therefore put the 

Rh — H — H — H cluster into a uniform electric field of 2V/A and calculate the 

binding energy as a function of the Rh — H3 distance keeping the distance between 

the second and the third H atoms at its field-free value. The minimum remains at the 

same j . osition but the activation barrier against thermal field desorption is reduced 

to less than leV, see Figure 41. If we vary next the distance between the first and 

the second H atoms we find that a substantial contraction occurs with a significant 

increase in the corresponding H — H bond strength implying a field stabilisation of 

the linear H3 molecule, see Figure 42. This is also clearly seen in the contour plot 

of Figure 44 resembling again Figure 34. The relevant bond lengths and binding 

energies are summarized in Figure 35 and 36. The corresponding non-local results 

can be found in Figure 37. 
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Figure 43: Electron density difference contour plot for Rh — H — H — H quadrumer 
without a field. 
Contour lines are ± 0.05,± 0.01,± 0.005,± 0.001, ± 0.0005,± 0.0001 per a.u. of 
volume. Crosses mark the nuclei of atoms. 
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Figure 44: Electron density difference contour plot for Rh — H - H — H quadrumer 
in Fo = 2.0V/A. 
Contour lines are ± 0.01,± 0.005,± 0.001,± 0.00O5, ± 0.0001 per a.u. of volume. 
Crosses mark the nuclei of the atoms. 
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4.5 Field Adsorption of NO on Rh Dimer 

As a further application of the LSDA cluster model for field adsorption of molecules 

on metal, we extend our calcul?tion to the Rh — NO system. Lately, Madenach 

[74] has done an experiment using Atom Probe Desorption Mass Spectrometry. He 

found that for NO adsorbed on a Rh tip, a positive electric field with the strength 

of 0.3V/A weakens the surface binding energy by about O.leV and a similar negative 

electric field otherwise strengthens the binding energy by about O.leV; see Figure 45. 

In our calculation, the two Rh atoms are put at their equilibrium position, 2.1 A apart 

from each other and the Nitrogen-Oxygen dimer are aligned on top of one Rh atom 

with Oxygen in the far end. The calculated equilibrium geometry for such a system 

shows that the distance between Nitrogen and the top Rh is 1.8A and Oxygen is 

1.16A farther away from Nitrogen, basically remaining at their bonding distance in 

the isolated case. The field-free binding energy between Rh dimer and NO dimer 

is 2.90eV instead of the experimentally measured value 1.1 eV. This discrepancy 

essentially results from the fact that the LSDA model overestimates binding energy 

and also due to the small size of the Rh cluster. A constant electric field of ±0.3 V/A 

across this linear Rh — NO system does not cause an appreciable change of the 

geometry. However, the positive field decreases the binding energy to 2.83eV and 

the negative field increases the binding energy to 3.02eV. Consequently, the LSDA 

calculation reproduces the experimental trend very well. 

In order to understand the variations of the binding energy and the electric field 

effect, we recall that in the field-free circumstances the bonding of NO to Rh dimer is 

accompanied by a transfer of 5s and Ad electrons of Rh to the 2ir anti-bonding orbital 

of NO. With a positive field the transfer is partially reversed due to the fact that 

the 2ir level of NO is raised relative to the metal band by the field energy, leading 
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to the weakening of the binding. In contrast a negative field will enhance such a 

transfer of electrons, as a result, strengthening the binding. Contour plots Figure 46 

and Figure 47 defined by 

Ap = p{Rh2 -NO,F = ±0.3V/A) - p(Rh2 -NO,F = 0) (82) 

show the field-induced charge transfer, respectively. A positive field pushes the elec­

trons towards Rh and a negative field pulls them out of Rh leaving more electrons 

in the NO area. We have also plotted the difference of electron density 

Ap = p{Rh2 - NO) - p{Rh2) - p(NO) (83) 

in the absence and the presence of the electric field. Figure 48 shows that in the 

field-free case electrons pile into the bonding region of the top Rh and NO. In 

Figure 49 and Figure 50 we see a tiny redistribution of electrons in the opposite 

direction responding to these positive and negative external electric fields. The effect 

of a positive field may be seen more clearly from Figure 51 taken in terms of the 

difference of Figure 49 and Figure 48. There is an accumulation of electrons on 

JVO's 5<r orbital and a little drain of electrons out of the NOs 2w orbital indicating 

an increase of bonding for NO dimer and therefore a less surface binding. Quite 

the contrary can be observed if a negative field is applied, see Figure 52 that is the 

difference of Figure 50 and Figure 48. 
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Figure 45: Binding energy between NO and Rh surface in the presence of an electric 
field. 
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Figure 46: Field-induced charge transfer, Fo = 0.3V/A 
Contour lines are ± 0.01,± 0.005,± 0.001,± 0.0005,± 0.0001 per a.u. of volume. 
Crosses mark the nuclei of the atoms in order of Rh, N and 0 from bottom to tcp. 
The electric field points up. 
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Figure 47: Field-induced charge transfer, F0 = -0.3V/A 
Contour lines are ± 0.01,± 0.005,± 0.001,± 0.0005,± 0.0001 per a.u. of volume. 
Crosses mark the nuclei of the atoms in order of Rh, N and 0 from bottom to top. 
The electric field points down. 
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Figure 48: Electron density difference contour plot for linear Rh2-N0 without field. 
Contour lines are ± 0.1,± 0.05,± 0.01,± 0.005,± 0.001 per a.u. of volume. Crosses 
mark the nuclei of the atoms in order of Rh, N and 0 from bottom to top. 
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Figure 49: Electron density difference contour plot for linear Rh2 - NO in F0 = 
0.3 V/A. 
Contour lines are the same as in Fig. 48. Crosses mark the nuclei of the atoms in 
order of Rh, N and 0 from bottom to top. The electric field points up. 
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Figure 50: Electron density difference contour plot for linear Rh2 — NO in F0 = 
-0.3V/A. 
Contour lines are the same as in Fig. 48. Crosses mark the nuclei of the atoms in 
order of Rh, N and 0 from bottom to top. The electric field points down. 
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Figure 51: Contour plot for the difference of Rh2 — NO with and without a positive 
field. 
Contour lines are ± 0.01,± 0.005,± 0.001, ± 0.0005,± 0.0001 per a.u. of volume. 
Crosses mark the nuclei of the atoms in order of Rh, N and 0 from bottom to top. 
The electric field points up. 
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Figure 52: Contour plot for the difference of Rh2 - NO with and without a negative 
field. 
Contour lines are the same as in Fig. 51. Crosses mark the nuclei of the atoms in 
order of Rh, N and 0 from bottom to top. The electric field points down. 



5 Summary 

The main conclusions of this study are as follows: (1) Adsorption of atomic hy­

drogen on metal surfaces is weakened in the presence of electric fields. The maximum 

field strength of the order of 3V/A is reproduced by a simple dimer model whereas 

field effects on adsorbed hydrogen are underestimated on a jellium surface. (2) The 

binding energy between molecular H2 and Rh is strongly increased in the presence 

of an electric field, leading to field-induced chemisorption. H2 linearly adsorbed in 

an on top position will be dissociated in fields of the order of 3V/A. (3) H3 linearly 

adsorbed will be stabilized in fields of the order of 2V/A. 

In fields of less than 3 V/A we therefore have present on the surface (i) chemisorbed, 

i.e. immobile atomic hydrogen, and (ii) we My, field-stabilized chemisorbed H2, most 

likely mobile even at temperatures of the order of 50K. The H2 molecule will then 

migrate up the gradient along the metal tip. If it encounters a chemisorbed H atom, 

it might hop on top forming a field-stabilized linear H3 species. Once ionized by 

electron impact from the gas phase, it will remain stabie as #3" after leaving the 

surface as is well known from gas phase spectroscopy. 

The local density approximation to density functional theory, having been imple­

mented for a jellium surface and a cluster of transition metal atoms, turns out to be a 

good method resulting in the reliable geometry and the variation of binding energy in 

the presence of the electric field. This method constantly overestimates the binding 

energy due to its local property. As far as the ionization energy of molecular species 

is concerned, the calculated results are in very good agreement with CI calculation 

and experiments [80]. The addition of non-local approximation to the local exchange-

correlation functional is expected to yield further improvements in some cases. This 

is particularly true as used in calculations for binding energy of physisorbed systems. 
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We now understand field adsorption as field-induced chemisorption. In this field, 

however, a lot of work still remains to be done to understand effects such as local 

field enhancements and, ultimately, image formation in the field ion microscope, and 

new reaction pathways in heterogeneous catalysis. 
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A An Exact Solution of Laplace's Equation with 
Boundary Conditions at A Finite Tip Surface 
and Screen in Parabolic Coordinates 

A typical solution to Laplace equation in parabolic coordinates [75] V2$(a,/?) = 0 is 

$(a,/?) = cos(m<j>)Jm(Ka)[am(K)Im(K0) + &m(/c)A'm(/c/*)] (84) 

where Jm is Bessel function of the mth order, and Im(Z) and Km(Z) are definded, 

in terms of Jm and Hankel function Hm, by 

Im(Z) = (-i)mJm(iZ) 

Km(Z) = (v/2)im+lHm(iZ) (85) 

We choose m = 0 componants of (84), since we are interested in only ground 

state solution in the rotationally symmetric tip. We thus have a simplified form of 

solution that is given by 

$(a, 0) = Jo(Ka)[a0(K)I0{Kd) + M*) KQ{K0)) (86) 

In terms of superposition of these special solutions (86), we are in a position to con­

struct a general solution which satisfies our specific boundary conditions: 4>(a, 0\) = 

0, grounded and $(a,02) = $2 , bias potential within the region U < a < a2. Each 

special solution can be written as 

$M(a, 0) = J0(Kna)[anI0(KnP) + bnKo(Kn0)} (87) 

On the tip surface, 0 = 0\, we impose a condition $[„] = 0 on Equation (87) and 

obtain a relation 
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aJo{Kn0x) + bnKo{Kn0i) = 0 (88) 

or 

A _ ^o(*nA) /aQx 

Substitution of this expression into Equation (87) leads to 

* * W ) = Jo(Kna)an[Io(Kn0) - Pp^±LKo(Kn0)] (90) 

A general solution of Laplace's equation can be obtained in terms of superposition of 

Equation (90), 

*(a,0 = £*W( t t.fl (91) 
n = l 

On the screen, 0 - 02 (> B\), we impose another condition 

00 

Ma, 02) = Y, $ N ( a , As) = $2 = constant (92) 
n = l 

If we write 

« 2 

C„ = o . [ / , ( a ) - ^ " ^ U o K f t ) ] (93) 

and substitute them into the boundary condition (92), we then have 

00 a 
^2 = E C ' n /o(xo n —), (0<a<a2) (94) 

n=l a 2 
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where Fourier-Bessel expansion [76] has been used and Xons are the positive roots of 

the equation J0(x) — 0 [77]. The coefficients Cn are defined by 

2 $ 7 fa* a 
C* = ~TiTi \ / ««Jo(*on—)da (95) 

<xlJi{x0n)Jo a2 

Combination of Equation (93) and Equation (95) gives an expression for an and 

substitution of which into Equation (91) will lead to the general solution 

Ma 0) = 2*2 f U*n«) /o(«.fl#To(«.ft) ~ IQMMKJI) f> , , , , 
1 «! S •*?(«*«*) Io(Kn02)Ko(Kn0l)-IoM)Ko(Kn02) h "****>" 

(96) 

Having derived electric potential $(a,/?), let us now turn to the derivation of the 

electric field which results from the gradient of $ 

F = -V$(a,0) (97) 

where 

_ ad $ d 1 , . d p. d . .„„. 
v" ME + T,W = v^+F("^ + V (98) 

With a help of the recurrence relations of modified Bessel functions [76] 

•^MZ) = -MZ) 

•^Io(Z) = IX{Z) (99) 

-^Ko(Z) = -KX(Z) 

we obtain the expression for electric field, 
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x{./,(Kna)[/o(K„a)tfo(KnA) - Io(Kn0i)KQ(Kn0)](-a) 

+Jo(Kna)[Il(Kn0)Ko(Kn0l) + /o(K„/?,)tfiK W ) } (100) 

The integral part of Equation (100) can be carried out analytically 

/ KnrJ0{Knr)dr = a2 • Ji(xon) (101) 
Jo 

and substitution of this result back into the electric field (100) will lead to 

F{ai0) = Faa + F00 (102) 

in which the two components of electric field end up with 

F = 2$2 1 yMxpna) 

"2 y/&2 + "02 n=l MX0n) 

/o(x0n^)Aro(a:on^i) - /o(sonfti)/fo(gonft) ..^. 

/o(xon&)A'0(zo„&) - Io{xonPi)Ko(xonfi2) 

and 

F =
 2^2 1 y,Jo(Xo„Q) 

rt2 ^/a2 + ^2 n = 1 Ji(a:o„) 

w I^X^KQJXQJ,) + IoixoMKijxonP) 
/o(a:On/32)̂ o(a;OnA) - Io(xOnnp\)Ko(Xo»fa) 

where 

and 

(104) 

a = a/a2, 0 < a < 1 

P = /V<*2, fil<$<h (105) 

A = P/<*2, "Pi = &/0L2 (106) 
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At this point, it turns out that both the electrostatic potential and the electric 

field are two dimensional quantities due essentially to the finite stae of the metal tip 

and the screen. For an infinite system, however, the electrostatic potential is only 

/^-dependent as we see in the text. 

In order to pursue numerical solution of Equations ( 103) and ( 104), one has to 

determine the parameters Bx, 02, a2 and $ 2 which should satisfy the experimental 

conditions. Such a test has been performed and the result showed that electric field 

approached to its counterpart in the infinite case as long as the a2 is large enough. 



B Derivation of One Dimensional Electron Den­
sity 

B.l Derivation of One Dimensional Electron Density in 
Cartesian Coordinates 

Consider a box which has a square cross section and is infinitely stretched along the 

z direction. For electrons confined in such a box, the wave function and the electron 

density are given by 

/

2 1TX 12 TTV 

- sin(—n) • y - sin(-^m) • xb^z) (107) 
and 

occ i m n Li L LI LI 

respectively, where L denotes the size of the box cross section with 0 < x < L and 

0 < y < L and the sum is over all occupied energy states which possess the energy 

n2ir2 

Einm = t{ + 2"-£2 («2 + m2) (109) 

For the ground state, all energy levels below the Fermi energy EF would be occupied. 

Thus we have a restriction for the eigenstate energy, 

Einm<EF (110) 

or 
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»2 2 

^ ( n 2 + m2) < EF - e, (111) 

We now put on the right hand side those constant factors and use K2 to represent 

them, e.g., 

K'^^iEr-e;) (112) 

Thus we have 

n2 + m2<K2 (113) 

In order to work out the sum for n(x,y, z), we turn to an integral over m and n 

instead of doing the summation. As a result, the electron density may be written as, 

n(x,y,z) = Y\ipi(z)\2 J J — sin2(— n)<fn • sin2(— m)dm (114) 

where A = nmax = \JK2 — m2 and B = mmax = K. The integral over n can be 

evaluated at first and the double integration can be reduced to 

4 f^ 7TW rs/K^—m? JJ-JJ 

-rr- / sin2(—mWm / sin2(—nWn = 
L* Jo L Jo L 

4 tK , . o/TTM - ,VK2 ~ "l2 L . .2ZX /TT; -.. /,,„v 

F 1 fa-'(i-)«i- 4^sm(-rv^r^)1 (U5) 

The substitutions u = m/Zf and a = Kny/L will be put into the above integral and 

the integration of the first term of it follows 
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= —rr- I y/\ — u2 • -(1 — cos 2au)du 
Ll Jo 2 

K2 fl , fl , 
= — [ / v 1 — u2du — / cos2au • v l — u2du] 

Ll Jo Jo 

-&\-\\U** (1I6) 

The second term of the integral (115) turns out to be 

1 f t • ii^V \ . ,2irx r—^ T-. 
- — / amsin (—m)sin(—r-\AfvJ — m^) 
Lirx Jo L L 

= -— / du sin2 au • sin bvl—u2 

Lirx Jo 

= ——[ / sin by/l — u2du — I cos 2au • sin b\/\ — u2du] (117) 

where u = m/K, a = Kiry/L and 6 = 2irxK/L respectively and replacement of the 

integrand by 

1 
sin2 au • sin by/l — u2 = - (1 — cos 2au) sin b\/l — u2 

= - sin 6\/l — u2 — — cos 2au • sin by/l — u2 (H8) 

has been made use of. The second integral of Equation (117) can be evaluated 

immediately by looking up the Tables of Integrals [78] 

C cos 2au • sin b\/\ - u2dv = . "" Jx(y/b2 + 4a2) (119) 
./o 2y/b2 + 4a2 

The first integral of Equation (117), however, needs to be carried through, using 

the variable transform 
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i 2 2 
1 — U = V 

du = ds/\ - v2, (120) 

in which case we obtain 

/ sin b\/\ — u2 = J sin bv • d\/\ — v2 

rO 

= (y/\ — v2 sin 6u)|J — / y/\ — v2dsin bv 

= — / 0\/l — v2b cos bvdv 

= pbVT^v* 
Jo 

)2 cos bvdv 

TC 
= 2 Mb) (121) 

Combination of Equation (119) and Equation (121) yields 

:— / dusin2au • sin by/l — u2 = 
jirx JO Lirx 

K \lm-l * t My/V+4a-2)] (122) 
2LTTX12 V ' 2 y/b2 + 4a2 

Putting Equation (116) and Equation (122) together will lead to 

_ [ _ _ _ J l ( 2 a ) ] _ _ _ [ _ J l ( 6 ) _ . ^ ^ ^ ^ ( ^ + 4?), 

TTA-2 .AT r,2nK . K T ,2irK ., 
= 4i2-Wl{~T-y)+^M~rx)] 

4Z, v^x^+F 
Trtf2 

= T — I - o o (123) 

file:///lm-l
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where we have made use of the expansion of the Bessel function 

^ ) = F E C T , (
r ( „ + , + i ) <m» 

We have now worked out the original double integral. Next we substitute the 

expression of K2 (112) into (123) and insert them into Equation ( 114) so that the 

resulting electron density ends up with 

<x,y,z) = ^ 2 D ^ - e,)|0.(*)|2 (125) 

It is clear that the density is no longer x and y dependent. This result agrees com­

pletely with that obtained by means of a plane wave expansion. 

B.2 Derivation of One Dimensional Electron Density in 
Cylindrical Coordinates 

We write the Schrodinger Equation for the planar jellium model in cylindrical coor­

dinates 

where the Veff is the effective potential and E is the molecular orbital energy, re­

spectively. The variable separation can be accomplished by substituting 

*(p, z, <f>) = Ae^MkpWiiz) (127) 

into Schrodinger Equation ( 126). Thus we have 

{ ~ 2 7 [ " f c 2 + &] + Ve"[n>Z] ~ E)U^)Ukpy^ = 0 (128) 
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where we have used the Bessel equation 

1 d d m2 

~PTppTpJm{kp) + (fc2" -pT^W = ° 029) 
and Equation 

1 d2 2 

Dividing through Equation (128) by Jm(kp)eim<1' yields 

h2 (P h2h2 

- Tud7^z)+y*"[n; z]Hz) = {E~ -ir^i{z) (13l) 

that is eigenvalue equation in which ipi(z) is the eigenfunction and (E — k2h2/2p) is 

the corresponding eigenvalue, respectively. For ground state, the molecular orbital 

energy should satisfy 

E < EF (132) 

where the EF is defined as Fermi energy. It is further put into the form 

k2 < T2 (133) 

by substitutions 

k2t>2 

«-*-£ ox) 
and 

_ 2p 

The electron density is given by 

r 2 = %{Er - F.) (135) 
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n(*,*rf) = £|»(*,P,*) | : 

occ 

= ZZE\Mz)\2J2Jkp)\e™*\2A2 (136) 

where A is a normalization factor which may be obtained by integrating \P*(r)\P(f) 

over the whole space. Having assumed ipi(z) is normalized, we can prove that A2 = 

k/2n provided that the Bessel functions and plane wave functions be normalized to 

8 function [79], e.g., 

/ / A2Jm{k'p)Jm{kp)e<m-m*pdpd<t> = A2^6(k-k')6mm, (137) 
JO Jo K 

We now rewrite the electron density in terms of the normalized wave functions 

«(*.M = EEEI^) I 2 ^(M^ 
i m k ** 

r_fc 
2it 

r 1 

r2 

Ait 

Y{EF-Et)\Uz)\2 (138) 

= EM*)? f £:dk E JIM 
i " m=—oo 

= E I ^ W I 2 / ; - ^ 

2TT^2 

where we have made use of the summation theorem of Bessel function [78] which is 

given by 

J20O + 2 E •£(*) = ! (139) 
ro=l 

and 

J-m(z) = (-I)"1 Jm(z) (140) 
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Note that we have not taken the spin into account and the resulting electron 

density (138) is z dependent only as it is in Cartisian coordinates and takes the same 

form as that obtained by Gies and Gerhardts [22]. 
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