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Abstract

Oceanic mixing occurs at molecular diffusion and viscous scales, called the Batchelor
and Kolmogorov scales, although it has signatures at larger scales. For example, the
rate of creation of temperature fluctuations by overturning against, a mean tempera-
ture gradient is balanced by the rate of dissipation at the Batchelor scale. In potential
energy terms, buoyancy flux accumulates into a standing crop of available potential
energy of the fluctuations (APEF), which in turn decrcases due to the potential en-
ergy dissipation term, raising the mean potential energy of the water column. If a
steady-state exists, then both the buoyancy flux and potential energy dissipation rate
are equal to the APEF divided by a suitable decay time.

This parameterisation of mixing is separated in two turbulence cases: growing
isotropic overturning scales and steady-statc overturning scales with balanced iner-
tial and buoyancy forces. The decay time is shown to be inversely proportional to
overturn-scale shear and proportional to overturning time; this becomes proportional
to the buoyancy period for turbulence in inertial-huoyancy balance, whether it be
isotropic or not. Buoyancy flux is estimated from overturning scale quantities, which
are much easier to measure than mixing at the smaller viscous and diffusive scales.
Predictions of buoyancy flux and mixing cfficiency compare favourably with labora-
tory turbulence data and to lake and oceanic data, provided that salinity-compensated
intrusions can be excluded from the analysis. Overturn scales are subsequently used
in the St. Lawrence estuary to estimate mixing rates; dala suggest that solitons create
more mixing at the head of the Laurentian channel than does the larger scale internal

tide.
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Chapter 1
Introduction

Interest in oceanic turbulence and mixing is maintained by the need to parametrize
eddy viscosity ~nd diffusivity. Applications come from many areas: for example,
ocean circulation models require a formulation of subgrid-scale diapycnal mixing in
terms of grid-scale variables. Buoyancy budgets and fluxes of passive tracers such as
nutrients are important issues on continental shelves and in estuaries.

Recent direct measurements of diapycnal buoyancy flux Jj, used a vertical sampling
pitot tube to measure w' (Moum, 1990) or a conventional air-foil probe sampling
horizontally (Yamazaki and Osborn, 1992). However, most J, measurements are
made indirectly, usually inferred from the rate of diffusive smoothing of temperature
fluctuations, ys, or from the rate of dissipation of turbulent kinetic energy, €. The idea
behind the inference of buoyancy flux from measurements of the rate of dissipation of
temperature variance is that buoyancy flux produces temperature fluctuations, and
that if therc is a steady-state then the dissipatior. of the potential energy associated
with that variance must equal the buoyancy flux. Measurements of x4 and € are made
at millimeter to centimeter scales, where molecular diffusion and viscous dissipation
occur. The measurements are technically difficult to execute, and have yet to become
routine; for example, microstructure measuring intruments are not installed on CTDs.

In this thesis, 1 shall discuss the use of ‘overturn-scale’ quantities to infer mixing

rates. Quantities such as Thorpe scales, Ly, describing the size of overturning eddies,
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and the Available Potential Energy of the density Fluctuations (APEF), describing
the potential encrgy of the overturns, have been related to mixing rates (Ozmidov,
1965; Thorpe, 1977; Dillon, 1982; Crawford, 1936; Dillon and Park, 1Y87). These
quantitics can be measured much more casily than dissipation scale quantities. They
are called Thorpe variables, because overturns are obtained by comparing a measured
profile to its re-ordered counterpart; a technique pioneered by Thorpe (1977).

Tradicional thought is that the turbulent energy cascade relates the energy-
containing Thorpe scales to the dissipative ones (Ozmidov, 1965); from this was
born the idea that Thorpe scales Ly should be related to the rate of dissipation of
turbulent kinetic energy e through the Ozmidov scale Lo = (¢/N*)"/2 (‘Thorpe, 1977).

This ‘traditional’ model is by no means the only point of view on the relation of
overturn scales to dissipative ones, but il is widespread. For example, lvey and Im-
berger (1991) interpreted the varying mixing cfficiency of grid turbulence in terms of
a turbulent Froude number (discussed in Appendix B), a new approach, yet interpret,
the results using the traditional model by assuming that oceanic mixing occurs at a
balance between inertial and buoyancy forces where turbulent kinetic energy is only
sufficient to overturn against stratification; this defines the inertial-buoyancy halance
(The turbulent Froude number F'r, = «'/N Ly is approximately equal to unity). This
view is also consistent with kinematical modcls of breaking internal waves; where the
size and frequency of breaking events determines the effective diffusivity of the water
column (Garrett, 1989), because it is typically assumed that these events (or pufls)
occur at inertial-buoyancy balance due to the K-H instability creating them. Ivey
and Imberger’s (1991) view is that this occurs with maximal mixing efficiency.

The kinematical model associated with the traditional link of Ly & Lo is that of
the occasional breaking of internal waves due to superposition nf waves such that the
gradient Richardson number is critical. If this occurs as isolated events (Gregg, 1987),
then each overturn evolves individually, as desciibed by Thorpe (1973) (discussed in
section 2.3.1). The energy balance leading to models such as the Oshorn-Cox model

(Osborn and Cox, 1972) is then unclear becausc of time evolution and unknown



redistribution terms; it is hoped that ensemble averaging of multiple profiles takes
care of thesc variations (Gregg, 1987).

A simple picture of mixing events is nevertheless as follows: overturning at large
scales of the inertial sub-range brings dense waters up and lighter waters down thL.rough
the water column. As overturned water is buoyantly forced back to its equilibrium po-
sition, it, is also entrained by the possibly stronger inertial forces (if F'r, > 1 such that
turbulent velocitics are greater than the buoyancy velocity) in an assumed cylindrical
motion at overturning scales. A turbulent cascade of energy ensues where turbulent
velocity strain brings larger scale kinetic energy to smaller scales, and so on to viscous
dissipation at the Kolmogorov scale (mentioning convective rolls and such features
(Thorpe, 1984) are included as turbulent flow in this simplistic description). The
smaller-scale turbulent velocities are less energetic than the outer scale overturning
velocities, such that they redistribute energy, possibly inducing some restratification.
This cascade drains energy at a rapid rate, within an overturning time proportional
to the turbulent velocity scale divided by the length scale of the overturn. The po-
lential energy gained from large scale overturning corresponds to positive buoyancy
flux. Since the final mixed state must have lower potential energy than the overturned
state, some restratification must occur by redistribution from the turbulent velocities.
During this time, dissipation at the Batchelor scale diffuses temperature fluctuations
(and salinity fluctuations at smaller scales) away, raising the potential energy of the

water column.

Identifying Overturns

Thorpe (1977) found overturns in vertical density profile by re-ordering the density
profile; the size of the overturn was characterized by the rms distance points were
moved in the re-ordering. This implies that the overturn is defined in the density pro-
file as extending as far as the density profile differs from the re-ordered profile. Dil-
wn (1982) found continuous depth spans containing re-ordering displacements much

shorther than the depth span. In this case he used the entire span as an averaging
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layer, instead of individual overturus, because it wasn't clear where one started and
finished. In this thesis, the extent of an overturn in a vertical density profile is detined
as the smallest group of consecutive points which may be re-ordered without moving,
any other point in the profile. This uniquely identifies overturns even if they are

found consecutively.

New Models

Two new models will be presented, with predictions similar to Ivey and hn-
berger (1991) and to Dillon and Park (1987), but with implicit interpretations (which
follow from model assumptions) different than those of thes¢ authors. These two
models do not assume random overturning, but rather continuous overturning in en-
ergetically mixed layers, with external forcing giving overturning its energy balance
(or lack of balance) between inertial and buoyancy forces and isotropy characteris-
tics, rather than internal instability leacing to inertial-buoyancy balance. In these
models, the Available Potential Energy of the Fluctuations (APEF) introduced hy
Dillon (1984) is related directly to buoyancy flux through a decay time proportional to
an eddy overturning time; this time scale is the sane as for the decay of the turbulent,
kinetic energy (TKE) by e.

The description of the overturning events for these two models is similar to the
above, except that initial instability leads to persistent overturning fed from Reynolds
stress acting on the mean shear. Two cases occur. The first, is that overturning may
occur at scales smaller than inertial-buoyancy balanced scale (for example, due to hot.-
tom roughness setting the initial overturning scale). Overturning is then unrestrained
by stratification and overturn scales grow as they do in unstratified grid turbulence
experiments. This is described by model two, for growing isotropic turbulence (model
one describes the traditional assumption that Ly = Lo).

Isotropy implies that properties of the turbulence do not depend on direction or
the choice of a coordinate system. Strictly speaking, isotropy implies that there are

no Reynolds stresses u/w'; in this thesis, isotropy describes only the characteristic
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of approximate equality of turbulent kinctic energy in all directions. Therefore, the
ratio of vertical to horizontal rms velocity fluctuaticns w'/u’ will quantify isotropy,
where w' and u' are rms turbulent velocities at the largest scales of the overturn.
"T'his is consistent with observations of Gargett et al. (1984) who observed that verti-
cal speciral components were disminished relative to horizontal ones for a turbulent
intensity, ¢/v N?, less than 200. Assuming that continuity in turbulent scales holds
as u'Ly =~ w'[,, where Ly and Ly, represent vertical and horizontal turbulent length-
scales, isotropy will also be simply described by the ratio of vertical to horizontal
turbulent lengthscales Ly/L, approximately equal to unity. Note, however, that
while L is obtained casily by re-ordered the vertical density profile, horizontal tur-
bulent lengthscales are not as easily measured because of the lack of a horizontal
mean gradient of a scalar property of the fluid; its use will be to provide a picture of
the state of the turbulence, but the velocity component ratio can be interchanged for
Ly/Ly.

In the second case for which persistent overturning occurs, external shear forces the
turbulence on a vertical extent smaller than the inertial-buoyancy balanced vertical
overturning scale (for example, shear from an internal tide mode may be strong on
a short vertical scale). Vertical overturning scales stop growing when they reach this
forcing limit, but nothing stops horiz ntal scales from growing further. A scaling
analysis in chapter 3 shows that horizontal scales should grow to the same scale as
the vertical inertial-buoyancy balance scale (the Ozmidov scale), which is greater than
the vertical overturning scale. Overturning remains in this steady-state, obtaining its
energy from the mean shear; mixing then erodes the stratification within the layer.
Mixing efficiency may then decrease as the potential energy available to overturning
is croded away with the stratification. limiting the potential energy that can appear
as buoyancy flux. Further entrainment leads to density fluctuations, measured as
available potential energy and related to buoyancy flux.

This last model applies to steadily mixing layers such as surface or bottom bound-

ary layers that tend to be well mixed. Buoyancy flux in these layers may then come
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from entrainment or erosion of the adjacent pycnocline. A parameterization in terms
of layer quantities describing the forcing could be used (or developed) instead of us-
ing the above approach. However this thesis is not about relating forcing directly to
mixing (e.g. Gregg’s (1989) model relating the rate of dissipation of TKLE to 10-m
internal wave shear), but rathe. aims at showing that mecasurcments of the act of
overturning can lead to adequate mixing estimates.

In these two new models, the persistence of the overturning is thought to lead
to a steadier energy distribution between overturning potential encrgy and turbulent
kinetic energy, as well as between kinetic and potential energy dissipation rates. The
turbulent redistribution terms are still present, leading to possible mis-estimates of
energy equation terms from vertical profiling through overturn events, because redis-
tribution is not measured. However, sampling variance should he reduced relatis» to
random overturning because of the greater degree of homogeneity of the turbulent
field.

The work presented here parameterizes the average buoyancy flux ol single over-
turns in terms of snapshot measurements of their available potential encrgy. ‘Lo relate
these results to basin-scale values of buoyancy flux or eddy diffusivity, a sufficient
number of such profiles would need to be averaged to take account of the spatial and
temporal distributions of the overturning events. These distributions, which must
vary between locations depending on the intensity of the forcing mechanism, are not

discussed in this thesis.

Dillon (1982) has probably accomplished thc most in showing the relation of

overturn-scale quantities to hoth the rate of dissipation of turbulent kinetic en-
ergy. and to buoyancy flux. He was first to validate (under limited conditions)
Thorpe’s (1977) idea that Thorpe scales should be related to Ozmidov scales Lo =
(¢/N®)'/2. His efforts have resulted in a more recent empirical model relating the
APEF to buoyancy flux (Dillon and Park, 1987). However, the views of the Ly Lo
relation (Dillon, 1982) and of the APEF-J, relation (Dillon and Park, 1987) are dif-

ferent as the first relates overturns to ¢ (through f.p) and the second relates them to

pevs

e A - e v W~



Jy. For example, Dillon et al. (1987) said “If is not our intention to suggest that the
APEFR is preferable to the Thorpe scale but rather to point out that Thorpe variables
other than Ly also have physical significance.” It was therefore unclear which model
should be used, We will build on Dillon’s results here with simple kinematical models
relating overturning to buoyancy flux, and relate these concepts to Dillon’s empirical
results.

A suggestion thal Thorpe variables can be used to infer buoyancy flux comes
from recent direct measurements of buoyancy flux. The dissipation of temperature
variance is a microscale quantity, but Moum (1990) measured buoyancy flux directly
in the equatorial undercurrent, and found that the largest values of w’p’ (mass flux)
were at overturn-scales, rather than at dissipative scales. This is an indication that
temperature vaciance is created at the energy-containing scales and dissipated at
smaller scales. Instead of focusing on difficult microscale measurements, the buoyancy
flux could be inferred from measurements of overturn-scale quantities where most of
Jy occurs.

This thesis will do just that: focus on the relation of the APEF to buoyancy flux,
parameterized over individual overturn measurements. Basin scale values of eddy
diffusivity or buoyancy flux are obtained by further averages which are not discussed

in this thesis. The outline of the thesis is as follows:

Chapter 2 reviews models used to infer mixing rates from microstructure measure-
nents. Terminology (e.g. mixing layers and overturns) is established. The
APEF is introduced, and approximations of it used throughout the thesis are

derived and tested.

Chapter 3 reviews the assumptions made in the traditional view of linking L to e.

Alternate derivations are made, leading to 3 mixing models to be tested:

Model one: The traditional view, links Ly to €. It will be emphasized that, as

Dillon (1982) suggested, this is not a general result in the ocean.

Modecl two: Relates J; to the dissipation of the APEF within an “overturning
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period” of approximately Ly/u', where v’ is the turbulent velocity associ-

ated with the overturn.

Model three: relates J, to the dissipation of the APEE within a buoyancy

period N7

Models two and three apply in different conditions. 1 will show that they are
preferable to model one in energetic cases.

A hypothesis is put forward that the overturning time scale Ly /u' is propor-
tional to the inverse of the large scale shcar (9U/d2)~" when this shear forces
the turbulence. The buoyancy flux of model two, and mixing efficiency of mod-
els two and three, could then be inferred without measurements of turbulent

velocities.

Chapter 4 verifies the assumptions made in the derivation of models two and three
using grid-turbulence data. The second model is also shown to work for a
wide range of overturning periods; predictions for buoyancy flux and mixing

efficiency are consitent with data within a factor of two. The hypothesis Ly /u’ o
(8U | 9z)7! is verified.

Chapter 5 uses Dillon’s (1982) oceanic data to show that model one holds, bui, only
in limited conditions, and that occanic mixing rates arc more consistent, with
model three. Another fresh-water data set is somewhal consistent with the
second model. The buoyancy flux is rclated to the decay of the APEF over a
decay time scale t, for both models two and three, but both models apply for
different physical circumstances. [t is not inconsistent that both do well for
different data sets. Model one is discarded in strongly forced mixing in favour
of models two and three because the assumption of constant mixing cfliciency

does not generally hold in strongly mixed areas of the ocean.

Chapter 6 discusses a test case of the application of models to new data taken in
Emerald basin (Van Haren, pers. communication; Oakey, 1990). It is shown

that the inferred buoyancy flux is mostly consistent with observations of . At



least, 40 to 60% of the waler column expected to be overturning is shown to be
overturning. Some of the high APEF data are inconsistent with simultanenous
low measurements of ¢; these anomalous APEF values are thought to be caused

by intrusions.

Chapter 7 uses the buoyancy flux models to study mixing layers observed in the
St. Lawrence estuary. It is shown that reliable use of any model requires first
that intrusions be detected using T-S relations and excluded from APEF cal-
culations. The head of the Laurentian channel is thought to be the generation
point of a large internal tide, which was thought to force high mixing rates.
Analysis of a few mixing layers using buoyancy flux models tested in this thesis
shows that solitons in fact create more mixing than is associated with internal

tide shear.

Chapler 8 provides a summary and suggestions for future work. Models two and
three arc appropriate for different conditions. Model two requires knowledge
of turbulent velocities to infer the turbulent Froude number in order to obtain
buoyancy flux; in cases where such data are not available, the buoyancy flux

from model threc serves as a lower bound.
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g This chapter serves three purposes

; ¢ To introduce the models used to infet buoyancy flux from microstructure mea-
. surements. Overturn-scale methods described in later chapters share soine of

the concepts used.
e To discuss the general notion of overturning structuies that lead to mixing,

e To introduce overturn-scale quantitics such as Thorpe scales and the Available

Potential Energy of the Fluctuations and ils approximations. These will he

used throughout the thesis.

The first two sections are all a review, mostly of Gregg's (1987) own review ol
mixing. The third section introduces the APEI and some new key results quantifying

the validity of several approximations.

10
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2.1 Microstructure Measurements

Ixcepl. for 1ecent direct measurements of diapycnal buoyancy flux! J, = (g/p)p'w’
(Moum, 1990; Yamazaki and Osborn, 1992), the majority of J, measurements are
made indirectly. The buoyancy flux is usually inferred using measurements of the rate
of diffusive smoothing of temperature fluctuations, xg, which occurs at the Batchelor
scale (vk2/c)Y* (for a Prandtl number v/kr greater than unity, as for water) or
using measurements of the rate of dissipation of turbulent kinetic energy, €, which

occurs ab the Kolmogorov scale Ly = (v3/€)'/4.

2.1.1 Shear Microstructure

The rate of dissipation of turlulent kinetic energy, €, is used, amongst other things, to
determine internal wave decay rates and, by comparison with laboratory experiments,
to determine whether turbulence is intense enough to produce a buoyancy flux (see
appendix A for a discussion) (Gregg, 1987). It is used indirectly to determine the
diapycnal flux of momentum and mass.

Both momentum and mass flux formulations start from the turbulent kinetic en-

ergy cquation for a shear flow, derived below.

Turbulent Kinetic Energy Equation

The turbulent kinetic energy (TKE) equation is obtained by multiplying the Navier-
Stokes equation i ) ) .
%+ﬁjgg—;=—%gf—t+u%—g'.3 (2.1)
by #,, where the superscript ~ represents a Reynolds decomposition into mean and
turbulent parts
a,=U, +u (2.2)
and the index 1 is for the three velocity components with summation over j = 1,2, 3.

The term g’ represents reduced gravity p'g/p associated with a density fluctuation p’

"The sign of J, was chosen to be the same as mass flux, instead of negative mass flux




R 80 PRI e T R e

S

it

ja
el AT

i

e TR
SNEA G

TR

e

SRR

gy

g o) u- =0
R PR

22

T, O, TR ST O

kot

P4
NP Vs g Ty S 1Y

S B Lo AT A E et BT A

v e it B

in a fluid of mean density p. Here, U may be interpreted as a time average, and o’
as a fluctuation away from this average duc to turbulence.

Let us assume that turbulence is confined within an ‘overturn’, where heavy water
has overturned over overlying lighter water and turbulent motions begin, straining
turbulent energy from the overturning scale to the smaller viscous scales.

The product of (2.1) with i@; leads to an energy cquation from which the kinetic
energy equation of the mean flow can be subtracted (See ‘lennckes & Lumley (1972)

for a discussion). This leaves the TKE equation

-Q[l ! ] [ uu] = ~d— lu ) + lu Qvuts;
ot 12w T Uig, |2 = 9z | p Pty sy
— 1, 0U; aU; _—
- um,;(-llj— L) — RE, — guiby (2.3)

dz; O
where the quantity s;; is the fluctuating rate of strain, defined by
00!
8ij = [g:y + %% (2.4)
If the turbulence is steady and homogeneous, the lefi-hand side terms of (2.3)
vanish. The first three terms on the right hand side (within the divergence term)
are transport terms by pressure-gradient work, by turbulent velocity fluctuations
and by viscous stress. If the flux into a closed control volume, enclosing the turbu-
lent overturn, is zero, these terms redistribute encrgy (Tennckes and Lumley, 1972).
The viscous term, 2v duls;,/Oz; is much smaller than the other two and is usually
neglected; Its ratio to either of the other divergence terms is Rej' (Tennekes and
Lumley, 1972) where Re; is a turbulent Renolds number 4'f/v and L is a turbulent
length scale. Since Re, is much greater than unity for turbulent flows, then that,
transport term is safely neglected. The first two redistribuiion term are neglected
assuming that sampling of the turbulent flow is sufficient to average them out.
The term u/u’;1(8U;/ 0z, +0U;/dz;) is the rate of production of TKE by Reynolds
stresses acting against the rate of strain of the mean flow. For a simple vertically
sheared flow, this term reduces to uww’dU/z. This is the orly turbulent energy

source for such a flow.
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The term 205,55 is olten written vu!V2u] or 2y %%]2, used because the integrated
shear spectra is directly measured with shear probes (OQakey and Elliott, 1982; Oakey,
1982) and is called the rate of dissipation of turbulent kinetic energy, . This expresses
the molecular dissipation due to small-scale shears created by turbulent strain.

For a stratified sheared flow with homogeneous steady-state turbulence, the TKE
equation reduces to .

W%—g =—-Jy—¢ (2.5)

where the buoyancy flux J, = (g/p) w'p’ is the energy sink for the TKE transfered to
potential energy. The relative contribution of the buoyancy flux as an energy sink is
often expressed as the flux Richardson number, defined by

_ Iy
Ry = —u'w (017 /8z)

(2.6)

Dissipation Method

The dissipation method expresses the momentum flux in terms of an eddy coefficient

K,
Q‘E'
0z

This eddy parameterisation assumes that the flux of the quantity «', or momentum,

v = —K,,

2.7)

is equal to an eddy coeflicient times the gradient o1 that same quantity. Since the

velocities fluctuations u' are transported—and even created—by overturning motions,

they can be defined as overturning scale fluctuations from the mean state.
Combining (2.5) with (2.6) and (2.7) yields K,, in terms of Ry together with

measurable quantities € and shear.

€

Kn = ——5
(1 - Ry)[ &

(2.8)

This parameterisation is not appropriate when internal-wave shear forces the tur-
bulence, because then the shear evolves on the same time scale as the turbulence,
N1, {Gregg, 1987) where N* = (—g/p)0p/0z is the stability of the water column,

and 2rN-! is the buoyancy period. The parameterisation is appropriate when a
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strong mean shear is greater than the fluctuating part due to internal waves, such as

for the equatorial undercurrent or for a tidal shear (Gregg, 1987).

Osborn Model

The mass flux formulation again uses an eddy coefficient formulation (Osborn, 1980),

defined by )
p

wp' = —l\'p;?—: (2.9)
equivalent to
By = LWy = K,N? (2.10)
p

Substituting (2.6) and (2.5) into (2.10) gives the famiiiar form for eddy diffusivity?

- Rf €
K, = — 2.11
4 1— Rf N2 ( )

2.1.2 Temperature Microstructure

The Osborn-Cox (1972) model for heat flux in a mixing fluid assumes that temper-
ature fluctuations 7" are created by turbulent overturning against a mean gradient
OT [0z (Gregg, 1987). Here T' is a fuctuation from a mean state T, and will be
assumed later to be a Thorpe fluctuation.

The formulation starts from the temperature equation

ar or 0T
6t + ’U,,Z)?L: = R _a’_l:?- (2]2)

where k7 is the molecular diffusivity of heat. Velocity and temperature  riations arc
divided into mean and turbulent fluctuation parts, similarly to the TKE derivation.
The equation for the turbulent part is

ar'  _ o1’ oT or’ 4T

—_— _l_ U'.___ 'l’:"—‘ u: = [Q'Iv——-—z— (2.13)

at dz; Jdz, oz; 0z

“From the definitions of eddy diffusivity (2.10) and eddy viscosity (2.7), the relationship
Km/K, = Rig/R; follows by using the definition of Ry from (2.6) and the definition of Iti, =
N2/(8U/8z)%. The often assumed equalily between eddy diffusivity and viscosity implics that, the
gradient and flux Richardson numbers are equal as well.
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Multiplying by 27" and averaging yields an cquation for temperature variance T"

or” +U or” +2 u:’f’é—]—‘ + u 17 _ 2Tk o

()
a Vs 9z, %o, 922 (2.14)

The terms on the left-hand side are rate of change of temperature variance, advection,
production by turbulent overturning against mecan gradients, and turbulent redistri-

bution. The right-hand side term can be rewritten by noting that

7 , d oT’ o1’ oT' o*T’
g2l 1 s) T ! U 2.15
ge g U T =25, [T az,] e e = (2.15)
The right-hand side of (2.14) becomes
S A aT' oT'
ZAFT a 2 = h,T—aTE?— —-2'('.1"6—%-—6—;{- (216)

The first term on the right-hand side is a redistribution term and the second is the
decay term: the rate of diffusive smoothing of temperature fluctuations.

If the turbulence is steady and homogeneous, if the redistribution terms are ne-
glected (o1 averaged out by adequate sampling) and if only vertical temperature
gradients exists, the production of fluctuations is then balanced by their rate of diffu-
sion, vy = GKTW (where the factor of 6 comes from assuming isotropy). The

temperature fluctuation equation (2.14) is then

(2.17)

T T’
oz

2w T — = —6k
T [ dz
Like many other ‘eddy’ parameterisations, the transported quantity w'T”, in this
case temperature flux, is assumed to equal to the product of an eddy coefficient
Kyear and of the mean gradient. This form is similar to the molecular heat transport
through diffusion k707/0z where rr is the molecular diffusivity of heat. The eddy

coefficient formulation for the production, w'T" = — Ky o, 0T/8z, yields (Osborn and

Cox, 1972):
Xo

Khear = T o] (2.18)
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The quantity (077/0z)2/(dT/9z)* is termed a one-dimensional Cox number, (', and
within a constant factor is the ratio of turbulent to molecular diffusivities for heat.

The eddy diffusity for heat can be simply written
Khear = 3 82C, (2.19)

where the factor of 3 assumes full isotropy, but is sometimes replaced by | (layered)
to 3 (isotropic).

The Osborn-Cox model is not appropriate where lateral motions, rather than
overturning, create the temperature fluctuations. In that case vertical production
does not balance the creation of temperature variance from overturning against a
vertical temperature gradient, which is a basic assumption of the model. Thus it will

fail in the presence of thermohaline intrusions (Gregg, 1987).

2.1.3 Mixing efficiency

The ratio Ry/(1 — Ry) in (2.11) corresponds to the ratio of Jy/c. It is referred to as
the mixing efficiency I' = J,/e. Osborn (1980) uscs an energetics argument to suggest
that Ry, and therefore I', must be less than unity. The argument reads as follows. If
shear Ju/0z is the source of turbulent production, «’ velocity fluctuations will first
be created. Pressure velocity correlations then re-distribute the energy to o' and o’
fluctuations. Viscous dissipation acts on all components of velocity fluctuations, but
buoyancy flux can only come from the vertical component. The mixing efliciency
must then be of the order of one third, because all thrce components of velocity
fluctuations are dissipated by viscosity while only one participates in buoyancy flux.

Oakey (1982; 1985), having simultaneous measurements of both x and ¢, equated
K, from (2.11) to K}e,¢ from (2.19) to yield

_ (2+1)krC,N?
€

r

(2.20)

This is equivalent to equating buoyancy flux .J, to the dissipation of potential energ in

I' = Ji/e: the assumption of the Osborn-Cox model. Oakey obtained I' = (14 3)0.24
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from 25 segments of 10 to 15 m of vertical microstructure profiles (Oakey, 1982) and
' = (1 £ 1)0.265 using 275 such segments (Oakey, 1985). The + factor is due to
the isotropy condition of (2.19), having assumed a factor of 2 which can vary from 1

(layercd) to 3 (isotropic).

2.2 Overturning Scale

The microstruclure methcas of inferring mixing rates described above assume a
Reynolds stress acting against a mean shear®. All used some form of eddy parameter-
isation. This view is compatible with steady 3-dimensional homogeneous turbulence
where energy is carried through eddies from the large scale inputs to small scale
where it is dissipated, consistent with the Kolmogorov TKE spectrum. Thus, there
is a basis for inferring microscale mixing rates from the measurement of larger scale

overturning,.

2.2.1 Ozmidov Scale, Lo

In this context of steady-state turbulence, Ozmidov (1965) related ¢ to the size of
the biggest isotropic eddy in a stratified fluid. The Kolmogorov energy spectrum,
E(k) oc €¥/3%k—%/3 (Tennekes and Lumley, 1972), gives the velocity fluctuations at an

overturning length scale [ as
u? ~ kE(k) = (1€)*® (2.21)

assuming isotropy and using | & k™! as a scaling?. If stratification is added then
overturning must also work against stratification. The potential energy increase tied

to the overturning motion is & N2{%. It increases faster with overturning size (o< I2)

3The concept of the mixing efficiency I' = J; /¢ is still useful to describe mixing forced by internal
waves rather than by production against a mean shear (as used in the definition of R;). In such
a case the gencralized form of the production term in (2.3) provides the forcing term, and the
redistribution terms may be more important because of the short time scale of the irtcrnal waves.

*Equation (2.21) will be shown to hold very well empirically in chapter 4, section 4.3.1, in the
presence in stable stratification.
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than the source of energy in the Kolmogorov spectrum {from (2.21), u”? o [}/,
Therefore, there is an energy balance between the two at a length scale known as the
Ozmidov scale

Lo = (¢/N*)V/* (2.22)

Lo corresponds to the length scale of the biggest isotropic eddy possible in the pres-
ence of stable stratification. The Ozmidov scale, depending on ¢, is a microscale
measurement of a large scale variable. It could be argued that the Ozmidov scale is
actually based on a wavenumber, and that a factor of 27 should be added to (2.22).

However (2.22) is widely used in the literature, and so it is left as i, is.

2.2.2 Thorpe Scale, Ly

Thorpe (1977) measured temperature inversions- where density decreases with
depth—which he thought to be associated with averturning turbulent eddies, called
“overturns”. Although these mixing events arc neither continuously created nor in a
steady-state, the overturning scale was thought to be correlated with the Ozmidov
scale. There is a tremendous utility in this correlation, if it exists, because then the
overturn size could be used to estimate microscale dissipation, and therefore overturn
scale measurements might be used to infer microstructure mixing rates. The required
temperature (or density) and depth resolution is discussed at the end of this chapter.

Thorpe devised an empirical method to estimate the size of overturns in a strat-
ified flow from the inversions that they create. 'The method consists of rearranging
the inversion-containing vertical density profile p(z) into a unique stable monotonic
profile po(z). Thus po(z1) < po(22) if 21 > 2, and z is the vertical coordinate increas-
ing upwards. The idea is that the re-ordered profile approximates the state before
instabilities occurred, or equivalently the profile obtained after the gravitational col-
lapse of all the overturns without irreversible mixing. The Thorpe displacements,
Th, are defined as the distance measured points arc moved during the re-ordering
computation to reach their stable location; thus p(z) = po(z + Th(z)). The Thorpe

scale Lt is the rms value of Th over all points of the overturn or any other averaging
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depth span.

The size and frequency distribution of overturns are most simply conceptually
linked to vertical diffusivity through K, = 57mxH?;" (derived in Chapter 3), where
I is the overturn size, (, is the time between overturning events and perfect homogeni-
sation leads to yuux = 1 or 4y, < 1 if the layer is not mixed completely (Garrett,
1989). If Th varies linearly between —H to +H within an overturn of size H, and
if the overturn persists for a time ¢,, the expected squared Thorpe scale (averaged
over the profile and over time) is (L) = 1H?(t,/t.). Garrett (1989) uses this and
K, = {;aH?1]' = [¢/N? to show that a Lo/(L7) ratio close to unity is not unex-
pected with I' &= 0.2, 4,,x = 1 (assuming the overturn mixes the layer completely),
and Nt, = 0(1) (assuming that the natural time scale is set by buoyancy forces).
Dillon (1982) was first to measure both dissipation and Thorpe scales and show the
Lo/ Ly ratio to be a constant near unity away from surface mixed layers. The Thorpe

scale is then a fine scale measurement of microscale diss*pation. This result will be

reviewed in this thesis.



2.3 Mixing Structures

The kind of mixing structure present in various parts of the ocean has a bearing on
the mixing intensity and efficiency and on the parameterisation of the mixing itself.
In his discussion of the characteristics of the turbulence, Gregg (1987) discusses 3
types of structures observed in the thermocline: puffs, wisps and persistent mixing
zones. The puffs and persistent mixing zones are outlined here because the kinematics
of mixing layers and mixing events is at the foundation of the microstructure mixing
models described earlier. The descriptions and discussion of the section arc mostly
from the reviews of Gregg (1987) and Thorpe (1973). 1t should be noted that many
of the ideas and laboratory observations about mixing are not tested in the ocean,

and we do not have a clear picture of all the mechanics of ocean mixing.

2.3.1 Puffs—K-H billows

Puffs, or isolated billows, resemble Kelvin-Helmholtz billows. In the occan, these
typically have thicknesses < 1 m and a horizontal extent < 200 m (Gregg, 1987).
Thorpe (1973) describes the evolution of K-H billows; a short account will be
given here. Instabilities were created in the laboratory by tilting a tank containing
a layer of fresh water overlying a layer of brine, with the interface thickuess set by
diffusion after a fixed time. After the tube is tilted, instability occurs when the
gradient Richardson number Ri, = N?/(9u/0z)* at the interface falls below a2 1.
The instability has the form of waves which steepen at alternating nodes, overturning
to form billows. The largest vertical velocities observed were one third of the velocity
difference across the interface. Turbulence begins near the centre when the hillow
height is about one third of its wavelength (twice the density interface thickness).
The turbuience quickly fills the billow, which then spreads vertically by entraining
fluid above and below. The edges of the turbulent region spread at a rate of AU/5,
where AU is the velocity difference between the top and bottom layers. Growth stops

at a non-dimensional time (starting at the onset of turbulence) » = ¢"t/AU = L.5
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when Ri, = 0.3740.12. The decaying turbulence appears isotropic until 7 = 3, after
which some re-stratification appears to occur.

Thorpe (1984) showed that the turbulence was due to the sidewalls of the tanks
in these experiments. It seems that there is an additional condition for turbulence
based on the turbulent Reynold’s number. Secondary structures in the billows such
as convective rolls are also thought to be important for turbulence. These highly
dissipative structures may be what leads to turbulence rather than billow collapse
(Thorpe, 1984), but since large scale overturning must still occur I plan to argue
that overturning scale quantities may possibly be used to infer mixing rates even if
these larger scales arc not directly responsible for the mixing. This is the goal of
{his thesis, a~? so will be showa through simple models that neglect the small scale
stiuctures within overturns in favour of the larger scales. These models will be tested
with various data sets.

Early estimates of the mixing efficiency by Thorpe (1973) from the increase in
polential energy are consistent with Oakey’s (1982) later oceanic result of 0.24 x
(1 + ). Bul becausr. Thorpe’s experiments were contaminated by mixing from the
sidewalls, Thorpe (19¢4) considered this mixing efficiency to be an upper limit for
the K-H instability.

The expected Lt signature of a K-H instability, sampled with a CTD probe, varies
according to the cvolution stage of the overturn according to Thorpe (1973): Lt is
greatest during initial overturning, and the Th profile looks like a single S-shape®.
This denotes a single structure where heavy water overlies lighter water. As the
overturn decays, the density profile is mostly stable with some density fluctuations
that re-order on the scale of the billow. This changes quickly with re-stratification.
At T = 3.75 the density profile has smaller amplitude fluctuations that would perhaps
resemble many new smaller-scale overturns, each with an S-shape Th profile. Based
on Thorpe’s description, I argue that the average of many profiles should be used to

infer mixing rates from overturn scale quantities.

5 An idealized overturn with a Z-shaped Th profile is shown in Figure 3.2
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2.3.2 Persistent Mixing Zones

The interaction of currents and bathymetry is a typical forcing found on the continen-
tal shelf and in estuaries. This may form persistent mixing layers. Large scale shears
such as internal tides may be expected to have similar energetics to near-inertial mix-
ing zones discussed by Gregg (1987) because the fotcing time is much longer than
N-1. Gregg (1987) describes these mixing layers as having typical thicknesses from
5~10 m and horizontal extent greater than | km. They are encrgetic, with Reynolds
number high enough to support buoyancy flux (¢ >15 to 25»N?) and marginally
high enough to assume isotropic turbulence (¢ > 200vN*). Overturning occurs over
a sufficiently long time (hours to days) to lead to mixed layers (Gregg, 1987).

For example, completely mixing a stratified layer raises its potential energy by
about N2H?/12, where N is measured using the gradient of the 1c-ordered overturn-
containing density profile, and approximates the stratification before instability oc-
curred. Assuming that the buoyancy flux is ['e with I' = %, the time required for
complete homogenization is t = N2H?/12I'c. For ecxample, a perhaps typical layer
in the thermocline with H = 5 m, N2 = 107* 572 and ¢ = 1.5 x 107®W kg~' needs
t = 15 hours to mix. If mixing persists for many hours, it thus lcads to significant
increase in potential energy. Osborn (1980) had this type of process in mind for his
model of TKE production balancing J, and ¢, the same for Osborn and Cox’s (1972)
model for heat flux (Gregg, 1987).

These forced mixing layers can be compared to laboratory experiments of grid-
generated turbulence in a shear flow (Gregg, 1987), where the shear provides the
forcing for the mixing subsequent to its iritial formation at the grid. After the initial
growth, an inertial-buoyancy balance follows with Ly &~ Lo (Rohr ¢f al., 1988).

The mixing layers under a steady forcing can also be compared 1o oscillating grid
experiments in stratified fluids. When the grid is oscillated faster than N, turbu-
lent intrusions are formed which spread into the interior (Thorpe, 1982; Browand
and Hopfinger, 1985). Strongly mixed layers can be expected to produce such intru-

sions, similar to a continuous collapse. The velocity scale of such a density current is

PRV T g S

g ¥

Lt RGN 8 ART kA Mg

¥

ARG wtre it e



23

(¢’ H)'/? where H is the intrusion thickness, ¢’ is gAp/p and Ap is the density differ-
ence between the intruding waters and their environment, about half of the density
difference across the originating mixed layer. The shear associated with the intruding
flow is = (g'/ H)'/?, leading to a Richardson number at the boundary of the intrusion
of N*H/¢' =~ 1. Thus, as the intrusions disturb the surrounding waters, they may

lead to further mixing and entrainment.

2.3.3 Application to Coastal Regions, Thermocline and
Abyss

In the abyssal ocean and in the thermocline, the internal wave field occasionally
has breaking waves when the Rirhardson number becomes critical. This occurs over
short time scales of order N=!, which is of the same order as the turbulence time
scale (say u'/Lr). In this case microstructure models of buoyancy flux may not be
applicable because the assumptions of steady homogenous turbulence do not hold. It
is hoped that averaging could compensate for this (Gregg, 1987). The observation
of overturning events with an instrument such as a CTD is also quite difficult in the
abyss because of the small overturning density fluctuation expected (shown later in
this chapter) and the difficulties of sampling at depth.

Estuaries and coastal regions are mostly mixed by shears with long time scale
compared to N™! (for example the tidal period is long compared to N~!). The
Osborn model for K, and the Osborn-Cox model for Kj,,; are consistent with these
shear structures. Measuring overturn scales is much easier than in the abyss or
oceanic thermocline because of the shallow sampling, larger overturning scales and
higher density gradients. CTD sampling through energetically forced layers should
thus lead to a gooi estimate of the mixing; this will be the focus of many chapters in
this thesis. Persistent mixing iayers are also found in the thermocline (Gregg et al.,
1986); in this case overturn measurements can possibly be used in cases of strong
mixing when instrument resolution is adequate (this is briefly discussed later in this

chapter).
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In summary, overturn scale measurements are more likely to lead to pratical es-
timates of mixing rates in energetic arcas than in the abyss. New models (two and
three) presented in the next chapter link buoyancy flux and mixing efficiency of per-
sistent overturning to overturn scale measurements, and are applicable to persistent,
mixing layers discussed here, with further restrictions to be imposed when laying

down the model assumptions.

2.4 Available Potential Energy of the Fluctua-

tions

The Available Potential Energy of the (density) Fluctuations of overturns, called the
APEF and denoted £, is also a large scale variable linked to buoyancy flux. Its use

will be extensive in the thesis, and so it is defined and explained here,

2.4.1 Definition and Alternative Formulation

Dillon (1984) defined the APEF, £, as the depth-averaged diflerence of potential
energy per unit mass between a measured density profile p and the corresponding

re-ordered profile p,. We can write this as

€= 711-% 0” plzdz (2.23)
where g is the acceleration of gravity, A is the integrated depth, 7 is the average water
density, and p'(z) = p(z) — po(z) is the “Thorpe fluctuation”, the amplitude of the
density instability. The re-ordered profile p, was introduced in Section 2.2.2 hecause
it is also used to calculate Thorpe displacements. 1t is the state of lowest potential

energy to which the measured profile can evolve adiabatically, and so is chosen as the

reference level against which density fluctuations are evaluated. For measurements



uniformly spaced at depths z(2), the APEF, in Jkg™!, is%:
=LY :0)40) (2.24)
np <
The definition of £ can be written in another form. First write (2.24) as - zp(z) —
Y. zpo(z). Then, the index of the second summation is changed such that the point
at z 4+ Th(z) is summed instead of that at z. This is valid as it only changes the order
in which the points are summed. The APEF becomes ) zp(z) — Y[z + Th(z)]po(z +
Th(z)). From the Thorpe displacement definition, this becomes: ¥ zp(z) — Y[z +
Th(z)]p(z) so that

= 1_29_; ; —Th(3) p(i) (2.25)
This form emphasizes that £ is ihe potential energy released in moving heavy water
down and light water up in the re-ordering of the measured profile.

Equations (2.24) and (2.25) both sum products of fluctuations Th or p’ aud profile
quantities p or z. These last quantities are not completely determined, in the sense
that any constant can be added to them, and (2.24) and (2.25) must still hold. The
summation must therefore be made over points such that 3~ Th or ) p' is zero; in
that way, an added constant cancels out. This is the only restriction to evaluate ¢
over depth intervals: that the Y- Th or equivalently ¥ p' must be zero over the points

for which £ is evaluated. This is true, although not exclusively, when the evaluation

interval encloses overturns completely.

2.4.2 Approximations

The calculation of £ over fixed depth bins is made difficult by the requirement that
fluctuation summation be done over spans that include all of a disturbance. For
this reason, approximations of ¢ were derived and will be shown here. Other uses
for these approximations include scaling arguments and estimation of ¢ from bin-
averaged archived data for which ¢ was not calculated. These are used in Chapters 4

and 5.

$Equation (2.24) 1s unudified from Dillon (1984) where temperature was used instead of density.
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Point-by-Point Two-Point Exchange Approximation

Assume two unstable points with density difference p’ separated by a distance Th can
both be moved to their stable re-ordered position by exchanging places. ‘The exchange
involves a potential energy change per unit mass of g p’ Th/p, one hall of which can
be attributed to each point involved. If all unstable points come in such pairs, then
the profile can be re-ordered by two-point exchanges where points are moved no more
than once. The potential energy change at each point, called the two-point exchange
APEF, is”

£(i) ~ ~ 50 /(i) ThL3) (2.26)
If a linear re-ordered density profile is assumed, then p'(:) = Th(i)(9po/Dz) in (2.26)
and ¢ is estimated as 2 N?Th(i)? (= ;N?Lj when suitably averaged) where N is the
buoyancy frequency of the re-ordered density profile.

This two-point exchange formulation (2.26) is an approximation. The sum of
(2.26) over the profile is different from (2.24) because inversions cannot always be
re-ordered using a single series of two-point exchanges. For example, the point at z(4)
may get exchanged with the point at z(j) to go to ils re-ordered location, but then
point j exchanged to depth z(z) may not be in a stable re-ordered location, so it, may
have exchanged with some other point. The energy change in secondary exchanges
is not taken into account in (2.26). Dillon and Park (1987) show that for their data

the method errs by less than 2% averaged over complete profiles, increasing to 141%

"Equation (2.26) is equivalent to Equation (2) in Dillon and Park (1987)
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error over individual overturns.®

Linear Profile Approximation

As stated after (2.26), the assumption of a linear re-ordered density profile reduces
(2.26) to X

Estimating Ly by 2 /(875/0z)

If Ly is not available, then it could be scaled from Thorpe fluctuations p' (e.g. in
grid-turbulence experiments in chapter 4) and the mean gradient as FV? /(0ps/0z)

and £ is approximated as

lg 7 _1[¢]" 7
R == =z = 2.20)
¢ 2p0ps/0z 2 [ﬁ Nz (

Local Density Gradient Approximation

Crawford (1986) finds that 7N?L3 over-estimates ¢ by a factor of 2.8 when N? is
calculated over a layer enclosing both overturning and non-overturning intervals. This
is assumed to be caused by locally smaller N within overturns than in the layer
surrounding them.

In an attempt to correct for this effect, if £ is not directly calculated, it is now

hypothesized that the mean local gradient within overturns of a layer can be estimated

81t is likely that the approximation (2.26) holds so well because it may sum to (2.24) over the
profile even if the profile cannot be re-ordered using a single series of two-point exchanges. This
occurs when the re-ordered density profile is linear over the span of each overturn and the sampling
interval is constant. Taking £ to be the average of (2.24) and (2.25), we get

1
E= 5% E(p’z ~ pTh) (2.21)

The Thorpe fluctuation p’ = p — p, is transformed using the definition of the Thorpe displacement,
p(2) = po(2 + Th(z)), to p'(z) = po(z + Th(z)) — po(z). The re-ordered profile is assumed to be
linear so this becomes p'(z) = Th(2)[ps(2) — po(0)]/z where po(0) is the density at the surface.
Substituting into (2.27) with summation over the complete overturn, p,(0) cancels out. This leaves
E=9/2p Y po Th— pTh = —(g/2p) _ p' Th which is equal to (2.26).




as Fllz/ Ly. In this case, £ is approximated by
lg —51/2
R - T 2.
4 37" Ly (2.30)
resembling the two-point exchange approximation (2.26), but using layer-averaged

properties.

2.4.3 A Test on CTD Data

The approximations of £ (2.26), (2.28), (2.29), (2.30) are tested using CTD profiles
sampled in the St. Lawrence estuary in July 1988. Nine consecutive CTD profiles
taken at 4 minute intervals sampled a mixing layer of order 10 in thick. The CTD
profiler was lowered at 50 cm s~! to obtain ‘oversampled’ data at 2 cm intervals (the
physical size of the temperature and conductivity sensors, as well as their separation,
are slightly greater than this 2 cm sampling interval, such that adjacent values are
expected to be correlated). The profiles are the first nine profiles of a layer discussed
in chapter 7; see the boxed area in Figures 7.7 and 7.8, and temperature profiles and
T-S relation in Figure 7.9.

To summarize, the approximations are based on these assumptions

o (226) ¢ = -3¢ [-2% p'(2) Th(i)} is half of the potential energy increasc in every
substitution of a point with the one located at the first’s re-ordered position.
Secondary exchanges are neglected. All data from the profiles are required to
calculated this, there is thus little advantage in using it rather than the definition

form of .

o (2.28) £ ~ ;N?L} assumes that N? is linear and represents the density gradient
of the re-ordered profile within the overturn. Bulk properties (layer averages)

can be used for Ly and N.

° (229) £ = 3 [%} %— assumes that the (possibly unmeasured) Thorpe scale is

well approximated by Ly = 'p—’—z-l/z/ (0ps/0z). Bulk properties can be used for
LT and N.
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e (2.30) ¢ » %%/—)751/ 2 Ly assumes that the density gradient within overturns is
well approximated by dps/0z = ,_0771/ 2/ Lr. The advantage is that N? does not
enter into (2.30) to bias toward the higher values of stratification found outside

of the overturns.

Figure 2.1 shows the approximations of £, plotted against the definition values of
¢ evaluated using (2.24). In panels on the left-hand side, each data point represents
a separate overturn. The rms quantities Ly, p’* and p'Th were calculated within
each of the 346 scparate overturns found® which consisted of more than 10 points.
The stratification N? was also calculated only within the span of each overturn.
Regressions in logarithmic space show that the slope of the approximated APEF
versus ¢ is never significantly different from one; therefore the regressions with forced
slope of one are used. All four approximations have (unquantified) little scatter and
a coefficient usually only a few percent away from one. All four approximations are
judged to do very well.

Looking at the above assumptions, the success of the methods means that when

evaluated and averaged over the span of a single overturn

e N? and therefore (9p/0z) within an overturn are both well approximated by a
linear regression on the re-ordered density profile because (2.28) and (2.29) hold

over overturns (assuming L7 would not be biased by re-ordering in any case).

o That the density gradient within an overturn is well approximated by ;ﬁl/z /L,
where these rms quantities are calculated over that overturn, because (2.30)

holds over separate overturns.

In the right-hand panels of Figure 2.1, the rms quantities Ly, o and p'Th were
calculated over the entire depth span of the mixing layer for each overturn. This

yielded only 9 averages. The stratification N? is also evaluated by linear regression

“Defined as the smallest group of consecutive points which may be re-ordered without moving
any other point in the profile.
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Figure 2.1: Four approximations of the APEF, £, arc evaluated using data from 9
CTD casts in the St. Lawrence estuary. The panels on the left are calculated using
statistics averaged over individual overturns; those on the right used one average per
profile over the entire layer.
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on the re-ordered density profile over the entire layer depth. This includes overturning
and non-overturning depth spans.

Crawford (1986) found that N? evaluated over a layer enclosing overturns is higher
than N? within only the overturns. This result is confirmed here. Both (2.28) and
(2.29) use the density gradient in their approximations, and both are biased because
of it. 1t is found that the density gradient within overturns is on the average 2 to 2.4
times smaller than over the entire mixing layer.

The fact that N? is lower within overturns than in surrounding waters could be
interpreted in different ways: i) overturns occur preferentially where N is low; ii) the
overturn has done some mixing and thus a lower stratification is found; iii) strain
is associated with Kelvin-Helmholtz billows such that a vertical transect through
the billow shows lower stratification than found after billow collapse (recall that in
section 2.3.1, turbulence was quoted as beginning when billow height was twice the
density interface thickness (Thorpe, 1973)). Since it is not easy to quantify these
effects, especially for oceanic data for which the driving force is not always known,
the difference in N is noted but not further explained.

Not surprisingly, the two-point exchange approximation (2.26) does almost per-
fectly. Recall that it is an average of products over all points of the overturns. This
approximation requires that all original data is available in order to use it because

p'Th is not usually a calculated quantity in archived data.

A New Approximation

The approximation ¢ ~ 1(g/p) _/)—'—"’_1/2 Ly is within 10% of £&. This implies that the
average density gradient within several overturns can be well estimated by ?51/2 /L.
This is a new and very useful result: for example, Dillon (1982) tables layer-averaged
overturning data for mixing layers; he does not table £, but he does table both Ly and
;’71/2 such that £ can be approximated much better than by using N2L2/2, which

would have previously been used.
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2.5 Requirements to Resolve Overturns

CTD profiles must have adequate density and depth resolution to measure overturns
of a given energy. The noise level for £ is estimated from (2.26) as (9/2p) plin Thum,
where p!. . and Thy,, are the minimum measurable Thorpe fluctuation and Thorpe
displacement.

Denoting depth resolution as 6z and density noise as §p, in most cases (¢/2n)6z ép
is a lower bound on the £ noise level. There are actually two separate cases to consider:
low stratification where ép is the limiting factor, and high stratification where 6z is

the limiting factor.

High Stratification

Assume that stratification is high enough that the density difference between two
consecutive points in the re-ordered densily profile is greater than the noise level
6p. This condition is expressed as 6p/éz < 0p,/0z. In this case, depth resolution
limits the minimum measurable Thorpe fluctuations and Thorpe displacements to
62(0p,/0z) and 6z respectively. The minimum APEI measurable is then

Ipo |
fnoise = 2({_ P (6 )2 (2-“)

Low Stratification

Assume now that stratification is low, such many consccutive density points of the re-
ordered profile are not significantly different. This condition is expressed as 6p/6z >
0p,/0z. In this case, density resolution limits the minimum measurable Thorpe
fluctuations and Thorpe displacements to §p and ép/(dp,/Dz) and respectively. The

minimum APEF measurable is then

4

dp,
fuoisc = ( P

5. (ép)’ (2.32)
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Minimum Measurable APEF

Listing (2.31) and (2.32) together, the minimum measurable APEF is

A . 9po
broive = 35 (%)™ (Bp)" i 32> B (2:33)
€nmse = -2% %% (62)2 lf %s < %%

If stratification (522), depth resolution (8z) and noise level (6p) are known, (2.33)

gives the minimum ¢ that can be detected. For example,

e At the base of the thermocline where N = 0.005 s~! a density probe capable
of measuring fluctuations of 103 kg m™2 at 1-cm intervals, will only measure
overturns bigger than 0.4 m (= 6p(89p,/0z)7"), of € > 2 x 107° J kg~! and
¢ > 1078 W kg™', using the approximate relation e = ¢éN.

e In an energetic estuary with a high stratification of N = 0.03 s~!, depth
resolution limits the smallest measurable overturn. The error levels are then

E=5x 107® J kg™ and e > 1.5 x 107% W kg1,

Note that both these examples used the relation ¢ & é N which is derived from
Lo =~ Lp; it will be shown in this thesis that this is not a general result, and is used
here mcrely as a scaling argument. Also, the kinematical model leading to Lo = Lt
assumes that sporadic occurrences of breaking internal waves leads to overturning.
The Thorpe scale is thus a time average. If overturning were to occur during only
10% of the time, then the overturning energy is ten times higher than average during
overturning; noise levels sct here should be compared with this latter value, if it can
be approximated.

These error levels for dissipations can be related to eddy diffusivities by K, =
T'eN~=? (Osborn, 1980) using a mixing efficiency of I = 0.265 (Oakey, 1985). For the
previous examples, the minimum detectable K, is 10 m? s! for the thermocline
and 4 x 1077 m? s~ for the estuary. The strong mixing in the estuary should be well
resolved, but the thermocline example may only have sufficient density resolution to

measure the likely weak mixing (estimated at K, = 107> m? s™! (Garrett, 1984))
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if overturning events occur less than 10% of the time (shorter overturning fraction

implying larger and easier to measure overturns).

2.6 Summary

This chapter started with a review of microstructure models parameterising mixing,
as well as a traditional view of the Thorpe scales being related to microstructure.
The APEF was also introduced.

In summary, it was noted that

e Puffs are consistent with the kinematical model of occasional breaking internal
waves, and less so with the mixing models used to interpret microstructure
mixing measurements because of the assumptions of homogeneity and steady-

state (averaging is typically assumed to overcome these requircments).

e Persistent mixing zones, and especially strong mixing found in surface and bot-
tom boundary mixing layers, are more likely to fit mixing model assumptions,
thus perhaps requiring less averaging. (Overturning scale models presented in

chapter 3 will apply to these persistent, mixing zones).

e Some initial scalings were presented to test whether overturning data should

resolve an expected level of mixing.
The main results are

o A new APEF approximation using layer-averaged quantitics was shown to hold

very well. It is ¢ = %%Wlﬂ Ly

o The commonly used approximation N?L%/2 only holds when N? is representa-

tive of the density gradient of the re-ordered profile within the overturn.

e This previous assumption was shown not to hold using mixing-layer averages

of data from the St. Lawrence estuary, in agreement with earlier findings of
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Crawford (1986). In the present case, straiification within overturns is 2 to 2.4

times smaller than the layer average.
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Chapter 3

Relating Buoyancy Flux And
Dissipation of Turbulent Kinetic

Energy To Overturn Scales

In this chapter, three models for buoyancy flux, Ji, and turbulent kinetic encrgy, ¢,
are derived; some derivations are old and some are new, and the new derivations
lead to existing empirical models. The term ‘model’ is used looscly here, perhaps as
Osborn’s (1980) useful derivations are also coined a model. They parameterize mixing
quantities in terms of simple physical mechanisms. This permits intcrpretation of the
conditions necessary to apply them to the occan. Figure 3.1 shows a diagram of
the three models. The assumptions required for each model are listed in summary
Table 3.1 (found at the end of the chapter) and will be tested in subsequent chapters,

The correspondence between the Ozmidov scale, Lo, and the Thorpe scale, Ly,
yields model one. This model is not new. In fact, it is perhaps the most commonly ac-
cepted view held by the mixing community (see Crawford (1986) for a review). Model
one relates overturning to the dissipation of turbulent kinetic energy. [t assumes both
a constant mixing efficiency, I'; and a balance between inertial and buoyancy forces.
This latter concept, called inertial-buoyancy balance, simply is discussed in this chap-

ter. In Figure 3.1, the measurement of overturn sizes Ly is translated laterally to an

36
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Model 1 —_

2 Ly =~ Lo 2

Ly Ly

3
Model 1
e~ 2N

£~ %NZL% @# €= N3L%
Models 2 and 3

Model 2: t, = ITK_& A -
— Jym 2NFr,

Model 3: ¢, = ZI—IE(E—’ R~

— Jy =~ §N
where I'ry = v'/N Ly Model 1
A s t——
and u' = (eL)'/3 Jy —— F
Models 2 and 3

and v'/Ly = 0.4(0U/0z)

Model 1: T' = constant
Models 2 and 3:
I 2 (L /Lo) (Li/ L)
~ (3 to 3) Ri,
where Ri; =~ 6.2Ri,

Figure 3.1: Diagram of the three models derived in this chapter. Model one: Tradi-
tional view linking Lz to Lo, and therefore £ to € via a decay time N~1. A constant
mixing efficiency is assumed; Model two: New model for growing isotropic turbu-
lence, linking £ to J, via a decay time o< Ly/u’ o< (0U/dz)~'; Model three: New
model for anisotropic inertial-buoyancy balanced turbulence, linking ¢ to J, via a
decay time N~!; Mixing efficiency for models two and three depend on Ri,, which
can be inferred from Ri; or ¢ and §éN. Boxes indicate measurable quantities, and
triangles are multipliers that relate those quantities to each other.
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Ozmidov scale, which is a measure of the rate of dissipation of TKE. By assuming a
constant mixing efficiency I'; the buoyancy flux is estimated from the estimate of .
It will be shown in subsequent chapters that typical contineatal shelf mixing is not
characterized by a constant mixing efficiency where this model should thus not be
used. It may however be relevant to breaking internal waves in the abyss, which are
thought to occur at inertial-buoyancy balance and thus at constant, mixing efficiency
(Ivey and Imberger, 1991).

Model two is new. It relates overturning directly to buoyancy flux for isotropic
growing turbulence. Both mixing efficiency and balance between incrtial and buoy-
ancy forces depend on the character of the turbulent flow, parameterized by the
turbulent Froude number, F'r,. The results are similar to Ivey and Imberger’s (1991)
empirical result based on laboratory experiments (reviewed in Appendix B); the inter-
pretation of the results differs substantially from Ivey and Imberger’s. In Figure 3.1,
the measurement of the potential energy of the overturns (APEF) is related directly
to buoyancy flux through a turbulent Froude number dependent decay tine, usually
smaller than N~' (where 2r N~ is the buoyancy peried). 1t will be shown that this
time scale can be related to the inverse of the shear if shear drives the turbulence.
Model two should apply to cases of strongly driven mixing, where overturning scales
are thought to be isotropic and growing; in chapter 7, we apply this model to an
apparently new mixing layer and another known to be ncw because it is forced by a
passing soliton.

Model three is an extension of model two for the case of steady-state mixing at
inertial-buoyancy balance. The inertial-buoyancy balance sets the decay time scale.
The turbulence is allowed to be anisotropic, which will affect the mixing efficiency.
This model makes a prediction for buoyancy flux similar to Dillon and Park’s (1987)
empirical result. In Figure 3.1, the multiplication of the APEF by the inverse of the
decay time still equals buoyancy flux, as for model {iwo, but the decay time is now
constant and approximately equal to N~} due to the inertial-buoyancy balance. The

rate of dissipation of TKE can be estimated from .J, from the mixing efficiency only

e

by e ada @ pn
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if the degree of isotropy is known (because it determines mixing efficiency in model
three). Model three is expected o hold for mixing layers forced for a long time, but
over a vertical scale smaller than the Ozmidov scale. This includes the surface layer,
perhaps the bottom boundary layer and others mixing zones forced by depth-specific
shears such as internal tides.

All three models will be compared to data in various mixing regimes in latter
chapters, where it will also be shown that the traditional view—the first model—is
a special case in the other two models. The latter two models apply in different
circumstances, but it is difficult to differentiate between them with the oceanic data
sets presented in this thesis.

T'hese models do not offer a complete view on mixing. For example, recent work
by Gregg (1989) attempts to quantify mixing directly as a function of the forcing
shear. In contrast, work presented here relates an overturn scale mixing signature
to small scale mixing; measurements of the these signatures (APEF) are required for
the parameterization. The methods presented here are still useful because provide
mixing rates and yet are simpler to execute than microscale measurements of mixing.

The mixir.g is parameterized over individual overturn measurements. The quest
for a basin value of eddy diffusivity or buoyancy flux is then an exercise in averaging
which is not discussed in this thesis. Work on the size and frequency of overturns in

various mixing regimes would complement the parameterisations presented here.

3.1 Model One; Overturning Related to Dissipa-
tion of Turbulent Kinetic Energy

Garrett’s (1989) derivation, showing the link between Ozmidov and Thorpe scales,
was overviewed in the previous chapter. It is presented again in detail because the
required assumptions lead into the second model in the next section. The first two
models will be contrasted using the following derivations.

If a ‘perfect’ overturn is created as in Figure 3.2A and mixes to completion as in
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Figure 3.2C, then the potential energy per unit mass of the water column within the
overturn is raised by N2H?/12. This is cqual to the time-integrated buoyancy flux
within the overturn. The buoyancy flux J, = Lw'p' is, related to the vertical eddy

diffusivity K, through the definition of K,
Jy = K,N* (3.1)

Garrett (1989) linked the size and frequency distribution of overturns to A, through

K,= T%eymixﬂzt;' (3.2)
where H is the overturn size or layer thickness, {; is the time between overturning
events and perfect homogenisation leads to Yy« = | or Yk < | if mixing is in-
complete (Note that the ‘mixing efficiency’ v s different from I' = Ji /¢ because no
assumption is made of the relative quantity of kinetic to potential energy dissipation).

Garrett’s use of (3.2) shifts from the mixing done by a single overturn to a time-
average, suitable to the entire thermocline. Garrett then relates the layer thickness
H to the Thorpe scale, a quantity measured in the field. The Thorpe displacement,
shown in Figure 3.2B, varies linearly between —H to +11 for a single overturn. The
squared Thorpe scale is the rms value of that, and is equal to L2 = H%/3. If the
water column is sampled many times between successive overturning events, the time-
averaged Thorpe scale becomes (L2) = (H?/3)t,/t, where {, is the decay time of
the overturn. The brackets on (L3) indicate timc-averaging. The subtle difference
between space and time averaging is briefly discussed in Section 3.2.1.

Combining the expression for (L) into (3.2), the time hetween events cancels out,,

leaving

1 -~ "
Kp = Z Yrx (L2r> t, l (""i)

This kinematical expression for K, can be equated to the Osborn model K, = I'c/N?,

after substituting ¢ = L3 N3, yielding

K,=TIiN = 27,,,,, L2y 1! (3.4)
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Figure 3.2: ldealized overturn creating a mixed layer. A- Density profiles before
(thin line) and during (thick line) the overturn. Potential energy difference between
profiles is H2N?/6; B- Thorpe displacement profile through the overturn. The rms
squared Thorpe displacement is H?/3; C- density profiles before overturn (thin line)
and after complete homogenisation of the layer by mixing (thick line). Potential
energy difference between profiles is H*N?/12.



If mixing efficiency is a constant, of approximately I' = %, as found by Oakey (1982;
1985)!, if the decay time of an overturn scales with buoyancy as ¢, =& N7', and if
mixing is complete (ymix & 1), then the averaged Thorpe scale should be equal to the

Ozmidov scale (L) ~ L%,

Formulation of Model One

The above argumecnts lead to model one, equating Ly to Lg. While assumptions
of turbulence homogeneity and steady-state (as well as no redistribution terms) are
typically made in microstructure models (inconsistently with the kinematic model of
sporadic K-H instabilities forced by random superposition of internal waves), Gar-
rett’s (1989) derivations show that time averaging suitable to the entire thermocline
leads to Lo =~ Ly even assuming that overturning is not homogencous nor in a steady-
state. The model implies a link between overturn size and dissipation of turbulent
kinetic energy as

e [AN (3.5)

Note that since the Available Potential Energy of the Fluctuation, &, is approxi-

mately equal to N2L% /2, the first model can also be written as ¢ & 2€N.

3.2 Background of Models Two and Three: Over-
turns Linked to Buoyancy Flux

Model one links overturn scales Ly or € to the rate of dissipation of kinetic energy.
The usual kinematical model for this model is of random superposition of internal
waves leading to breaking at critical Richardson number.

In this section the basis for new models is shown. 1 argue here that these overturn

scale quantities are related directly to buoyancy flux, rather than to ¢. The APEF

10akey (1982; 1985) did not assume full isotropy; doing sc increases his mixing efliciency by 50%.
He also assumed that unmeasured buoyancy flux was equal to measured potential energy dissipation,
which is the assumption of the Osborn-Cox model
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is shown to be related to J, via a suitable decay time. Models two and three are
end members of this new approach; they will be differentiated by the decay time and
isotropy conditions.

The physical concepts behind these two models will constrain their application
to a few types of turbulence: energetic, isotropic growing turbulence, and energetic
anisotropic steady-state turbulence. These can only apply to shear-forced mixing
layers where overturning is expected to be continuously extracting energy from the
mean shear. The view is not of random internal waves breaking at a balance between
inertial and buoyancy forces (inertial-buoyancy balance), but rather of the evolution
of a uniform mixing layer much more homogeneous and steady, where the balance be-
tween potential and kinetic energy associated with isotropic inertial-buoyancy balance
is not guaranteed.

In this section, the parent relation J, = £/t, to both models two and thret is
established by re-examining Garrett’s (1989) assumption of constant mixing efficiency,

and also by looking at the temperature variance equation.

3.2.1 First Line of Argument: Garrett’s Derivation Revis-
ited

Garrett’s argument relating Lt (and thus £) to € is easily modified to relate ¢ to
buoyancy flux instead of to e.
Garrett relates (3.3) to e through K, = T'e/N? using a constant mixing efficiency.

Instead, from (3.1) and (3.3) and by assuming vnix = 1, one could write

1 IS S
Jb=Z(L§v)N2tolz§(§)tol (3.6)

where (£) is a time-averaged quantity, approximately 3 N?(L%). This relates a time-
averaged buoyancy flux directly to £ through a decay time ¢,.

Alternatively, one may start at the beginning of Garrett’s derivations. The form
for K, as (3.2) assumes that the integrated buoyancy flux is responsible for the in-

crease in mean potential energy of the water column within the overturn. It is then
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simpler to relate the buoyancy flux directly to the change in mean potential energy
during the time between overturning events t.. The APEF of the overturn in Fig-
ure 3.2A is twice the potential energy change observed between the final mixed state
and initial state in Figure 3.2C. Thus the formulation in terms of i, can be skipped
and, using the half of the APEF to quantify the final increase in potential energy of
the water after complete mixing of the overturn, the following expression for buoyancy
flux can be written directly as

Jy = %ét;' (3.7)

The difference between (3.6) and (3.7) is the averaging method. The first divides

an average potential energy by the true decay time of an cvent. The second considers
only the energy of a single event and divides by the time separating cvents. Both yield
the same averaged buoyancy flux. I{ one uses J, = ,';E 71, using € {from one overturn,
then this becomes the buoyancy flux from that particular overturn. An enscinble
average of many such overturns, including profiles where none were observed, would

yield the same average as the other forms.

3.2.2 Second Line of Argument: Temperature Variance

Equation

Let us now consider the temperature variance equation to argue for (3.7) without

scaling arguments.

Suppose that density fluctuations are directly proportional to temperature fluc-
tuations, so that buoyancy flux can be written as J, = —agw’T". The temperature
variance equation is (Tennekes and Lumley, 1972; Oshorn and Cox, 1972; Dillon,

1982)

0 — — 9T
e i
atT 2w'l 5

where the divergence terms have been neglected (an ensemble average is required to

— X0 (3.8)

assume this); Further assumptions include isotropy and that no horizontal gradients

exist (Dillon, 1982). While the time-derivative term is also usually neglected, it is
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kept here to show the connection of the APEF to the dissipation of potential energy

in a later derivation.

Definition of Turbulent Fluctuations

The turbulent fluctuations T and w’ in (3.8) require a definition. Dillon (1982) used
the re-ordered profile as the base state for temperature fluctuations. In such a case, T'
(or p') in temperature variance equations or turbulent kinetic energy equations refer
to Thorpe fluctuations. The temperature variance T* is guaranteed to be zero for
this choice of a base state when there are no overturns to create fluctuations. Also,
profile averages through an overturn have T? = 0 using Thorpe fluctuations. The
notation used so far is thus appropriate, as it is consistent with Thorpe fluctuations
used in the rest of the thesis.

If temperature and density fluctuations are defined as overturn-scale variables,
then so too must turbulent velocities be, as their cross-correlation determines the
buoyancy flux. This is consistent with the Kolmogorov turbulent kinetic energy spec-
trum, where the energy-containing scale is the size of the overturn (Tennekes and
Lumley, 1972). In typical CTD sampling, turbulent velocities w’ are not measured;
therefore these will be infered from other measurements, but are assumed to be of

overturn scale.

Comparison of Terms

Dillon (1982) showed that the turbulence is active rather than ‘fossil’, a term used by
Gibson (for example, Gibson (1982)) to describe signatures of old turbulence no longer
mixing. To do so, Dillon compared the terms 9T/t and x4 in (3.8) to assess the
importance of gravitational collapse in the temperature variance equation, choosing
N~! as a re-stratifying time scale?. The comparison is then between ys and NT7?

and is shown in Figure 3.3. The data series in Figure 3.3 are explained in section C.1.

2Dillon calculated N2 on the re-ordered profile as an average over a layer which encloses several
overturns. This is discussed in depth in chapter 5, as it is likely to over-estimate N2 by a factor of
2 to 3 (e.g. Crawford’s (1986) factor and the factor of 2.4 to 2.8 introduced in chapter 2).
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Dillon interpre ved this figure for the combined series A B and (! as
\o = (3 to 10) NT"? (3.9)

indicating that the destruction of temperature variance from turbulent diffusion is
much faster than what is expected from gravitational re-stabilization®. Dillon’s as-
sumption is then that additional fluctuations must be continually produced from the
production term in (3.8) to balance their dissipation by )4 because the restratification
time scale (and therefore the rate of change of temperature variance) is most, certainly
greater N~!/3. Gibson’s argument that temperaturc fluctuations survive after the
turbulence is incompatible with Dillon’s result that temperature variance is created

and dissipated in a time much smaller than N™'.

Potential Energy Equation

Equation (3.8) can be easily transformed into a potential energy cquation. 'Thorpe
fluctuations were shown to be related to € in chapter 2, as € is the measure of the
potential energy contained within those fluctuations. In addition, yg is related to
the dissipation of potential energy. Multiplying (3.8) by ag/(201,/0z), where T, is
the re-ordered temperature profile used to obtain the gradient, a potential energy

equation is obtaincd as (Dillon, 1984)

d agl™ —i QgXe .
E[_QE] = —agw'l’— t)B_'I}L (';IO)
E] = Oz

The term on the left of (3.10) approximates the rate of change of € assuming
Lt = T'_z"z/(am,/az) (See section 2.4.3). The first term on the right is the rate
of production of potential energy (the buoyancy flux) and the second is the rate of

dissipation of potential energy, equal to 3N?k7C, (Dillon, 1984).

3Figure 3.3 also indicates data for which I have calculated that T’"l/z/ (0T,/0z) < 0.2Lp 'These

data are circled in Figure 3.3. The first term in (3.10) under-estimnates € by a factor of 5 or more for
these points. The proportionality relation must hold even better between € N and J; than Figure 3.3
shows.
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Figure 3.3: Comparison of NT*? vs xy. The long-dashed lines in the series A, B and
C panel are NT? = 3y4 and NT? = 10x,, quoted from Dillon as the range of the
scatter. Regressions are on data with ¢/¥N? > 200. Data are coded according to
turbulent intensity according to the legend; open symbols are well resolved data, filled
symbols are marginally resolved; circled data have (7’—’51/2 /L1)/(0T/3z) < 0.2. Data
are from tables in Dillon (1982); both axes are in °C? s™'. This figure corresponds
somewhat to Figure 7 in Dillon (1982).
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In a steady-state, the rate of change of £ is zero. This results in the famihar
Osborn-Cox formulation for the heat flux J, = —aguw'T" = ~3N*xpC,, where €, =

(0T"/0z)2/(8THz)? is the one-dimensional Cox number.

Relevance to Buoyancy Flux Model

Although (3.10) and (3.8) are linked through a constant, my interpretation of (3.10)
differs from Dillon’s interpretation of (3.8). Dillon wanted to show that the rate of
change of temperature variance (assuming a buoyancy time scale) must be slower
than the dissipation time scale; my following argument, aims to show that the rate of
change of potential energy—without yet specifying the timescale  is tied to buoyancy
flux and dissipation ol potential energy at both ends of the size spectrum, and that
the equilibrium implies a proportionality between the potential encrgy (APEF) and
the in and out fluxes.

Imagine an impossible case where no dissipation of potential energy occurs. Then,
the buoyancy flux, equivalent to throwing heavy particles of water up into the water
column, must accumulate into APEF. No mixing occurs which would permanently
raise the center of mass of the water column and reduce the APLEF; mixing can only
occur through the dissipation term. The rate of change of the APEF is thercfore Jy,.
Imagine now that buoyancy flux is cut off, and thal dissipation begins. The stock
of accumulated APEF feeds into dissipation of potential cnergy, raising the potential
energy of the water column, and the rate of change of the APEF is therefore the
dissipation of potential energy.

If both buoyancy flux and dissipation of potential energy occur, I arguc that
buoyancy flux is an overturn-scale quantity and does not feed into dissipation of
potential energy directly; the flow of censily fluctuations must go through a pool of
APEF. This is somewhat like a hose filling a punctured swimming pool. If the pool is
filled faster than it empties, the water level increases until the pressure is sufficient, to
make the outflow as big as the inflow. A steady-state ensues. If both buoyancy flux

and dissipation exist in a steady-state, the stock—the APEF-~must be proportional
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to the flows, in this case huoyancy flux and the rate of dissipation of potential energy,
rough a suitable decay time {,.

Since (3.8) and (3.10) are related by a constant, a proportionality relation also
exists between ¢ and J, with an assumed timescale apparently proportional to (but
much shorter than) N~!, but which is presumably the same time scale ¢, used in
(3.6)".

It is assumed that this is valid for single ‘overturns’ in a steady forced mixing
layer wherc energy comes from production against the mean shear, although it could
be argued that ensemble averaging is required to obtain an average of the APEF, as
this may vary throughout the evolution of the overturning. The application to puffs
(individual K-H instabilities that lead to overturning, mixing and decay) is unclear
because the APEF may onlv be high in the initial instants of overturning, before
dissipation starts. However, this should not matter to the parameterisation of mixing
becausc the APEF should nevertheless be representative of the increase in potential
energy of the water column after mixing has completed, regardless of the moment’s
lack of balance between terms. Ensemble averaging simply gives a more stable values

of the APEF.

“Dillon’s argument that the re-stratifying term is small in (3.8) is not necessarily consistent with
my interpretation. What if restratifying time were 3 to 10 faster than N~!? Considering that
Dillon did not find simply that xs were much greater than the 72N ~!, but that they were in fact
proportional, this indeed points to a physical relation between the two terms. However, this does not
prove that resiratification actually occurs. Restratification, if it did occur, could simply be measured
as negative buoyancy flux. The time-averaged buoyancy flux would then be reduced. My point is
that if buoyancy flux and dissipation of potential energy are physically related to the APEF via a
time scale of N~!, Dillon would have observed a coefficient of unity in (3.9) and might have wrongly
assumed that re-stratification is important. It will be argued in chapter 5 that Dillon’s values of xs
may in fact be a factor of 3 too high such that xo ~ T"2N 1, in which case Dillon’s argument is not
quite as convincing.
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3.2.3 Summary of Arguments Linking Overturns to Buoy-
ancy Flux

Both Garrett’s revised derivations leading to (3.6) and the potential energy equation

leading to J, = £/1, suggest that

J,,:B:tl] £ (3.11)

al t,

where ¢, is the time scale over which (hall of) the potential energy € decays into
the dissipation of potential encrgy, or equivalently the rate at which € is supplied by
the buoyancy flux. A definition for {, in terms of the TKE will follow shortly. The
range given in (3.11) comes from the fact that in one instance the buoyancy thux is
assumed to provide all the energy difference between the re-ordered and overturned
state (H2N?/6), and in the second instance the buoyancy flux is assumed to equal the
dissipation of potential energy, the sum total of which is the difference between the
overturned state and the well-mixed state (H?*N?/12). These two views differ by a
factor of 2, but it is usually assumed that buoyancy flux equals the rate of dissipation
of potential energy. Thus, uncertainty in the physical model itself leads to the factor
of two; the coefficient can be settled-on empirically.

In these models, the APEL represents the potential energy available to the buoy-
ancy flux and to the dissipation of potential energy. The buoyancy flux is thus limited
by the potential energy available for mixing: a completely mixed layer cannot support
a buoyancy flux.

To equate the buoyancy flux term and dissipation of potential energy term to
the decay of the APEF over a time {,, it is assumed that the turbulent encigy re-
distribution terms can be neglected through ensemble averaging. 14 is also assumed
that temperature fluctuations are created from overturning against, a mean vertical

gradient such that horizontal temperature gradients must be sinall.
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3.3 Model Two: Growing Isotropic Turbulence

Assuming that buoyancy flux is equal to the dissipation of £ over a decay time scale,
then what is the time scale? Dillon (1982; 1984) and Dillon and Park (1987) suggest
using /, &~ N~'. This might seem a natural time scale to choose because it is the
buoyancy time scale: the time it takes for water to bob up and down (within a factor
of 2x). It is argued next using the total energy equation that the overturning time
scale provides a better choice for the decay time scale. This results in model two,

linking £ Lo J,.

3.3.1 Derivation of the Decay Time

The APEF, TKE and buoyancy flux are linked by the total energy budget, obtained

by first considering the turbulent kinetic energy equation
——uu, =S —e—J (3.12)

where the overbar denotes volume averaging over overturns and S is the rate of
supply of kinetic energy due to shear production, turbulent and mean advection and
pressure-velocity correlations (Dillon, 1982). This equation can be added to (3.10) to
obtain a total energy equation for the turbulent flow (Dillon, 1984)

ga%lﬁ + %% =8 —e—3N*krC, (3.13)
where isotropy was assumed for the turbulent velocities.

Since the turbulent velocity fluctuations are determinant in both the buoyancy
flux g'w’ and the TKE, the decay time of both the APEF and TKE is assumed to
be the same. Recall the discussion in section 2.1.3 that mixing efficiency I' = J, /e
is expected to be of the order of one third or so. This implies that the TKE terms
in (3.13) are expected to be bigger than the potential energy terms because even

if the kinetic encrgy in the vertical axis equals the potential energy (APEF), there

is three times that amount of kinetic energy in total. The decay time of the TKE
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can therefore be used for the potential encrgy decay time, because the kinetic energy
may be bigger than the potential energy. It is also parameterizable in terms of the
turbulence. The decay time of £ is given by

TKE

€

1, =

(3.14)

by neglecting the smaller J, sink to the TKE. This equation is taken as the definition
of t,.

Assuming the Kolmogorov turbulent kinetic cnergy spectrum, B(k) oc #/3k5/,
the TKE at any scale k in the sub-range is approximately u/(k)* = k (k) & k=4,
Also, since the Kolmogorov spectrum assumes that dissipation is independent of the
length scale, dissipation must therefore scale like ¢ & ™/ L, from w'? = ¢*/3k=*/* where
u' = u/(k) varies with scale and L is the length scale associated with the turbulent,
velocities. Since the TKE of the Kolmogorov spectrum is greatest at the overtarning
scale, the largest turbulent velocities measured within an overturn must be associated
with the length scale of the overturn. Therefore, the energy-containing scales provide
a scaling for dissipation. In the case of isotropic turbulence, this becomes ¢ & ™/ Ly
where Lt is the largest overturning scale. This provides a scaling to relate usually
unmeasured turbulent velocities to the rate of dissipation of turbulent kinetic encrgy.
This scaling will be shown to hold very well in chapter 4 for grid turbulence.

Using € = v/ Lt in (3.14) yields

£ 93 b .
t, ~ [éu”] / i P £ ~ ﬁ/«'1—,7‘ N-! (3.15)
2 Ly 2 u! 2

where

u'

NLyp

Thus, the decay time scale is dependent on the character of the turbulence®, param-

l;,'l’t =

(3.16)

eterized by F'ry. This is in contrast to the assumption that I, =~ N~ in model one

SIf the turbulence is not isotropic, it is characterized by w' < u’ and Ly < Ly, where Ly, is the
horizontal length scale of the turbulence. Since the energy-containing scales provide the dissipation
scaling u'®/L, then

[ ula/ Ly

because the horizontal lengthscale Ly is associated with the energy containing horizontal velocities
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(Dillon, 1982; Dillon and Park, 1987; Garrett, 1989)Model 1 coincides with model 2

only for the special case of Fr, = | (the inertial-buoyancy balance, discussed shortly).

3.3.2 Formulation of Model Two: Buoyancy Flux for Grow-

ing Isotropic Turbulence

Combining the simple model for buoyancy flux (3.11) with the expression for the

decay time (3.15) yields the buoyancy flux for isotropic growing turbulence as
3 12
Jy [Z + Z] ZENFr, (3.17)

using (3.15) for ¢, and assuming isotropy.

The turbulent Froude number is important because it affects the buoyancy flux
in model two, but it is typically not measured in the ocean. However, F'r, will be
shown to depend on the ratio of {/TKE or {N/e, and later even on Ri,4, such that it
can be inferred from other measurements. After a brief discussion on the turbulent

Froude number, it will be made clear why this model applies to growing turbulence.

3.3.3 Interpretation of the Turbulent Froude Number:

Isotropic Case

In the isotropic case, the horizontal and vertical overturning scales are the same
(Ly = Ly, where [, is the horizontal length scale of the turbulence), so the turbulent
Froude number F'r, is the same as one based on horizontal scales (u'/NL). The
following discussion applies to the isotropic case only.

The turbulent Froude number is the ratio of the horizontal inertial velocity (u’)
to the vertical buovancy velocity (N Ly). Assuming isotropy, if this ratio is very high

then the effects of buoyancy on the turbulence can be assumed to be very low. If the

for the anisotropic case. This form conserves the Kolmogorov spectrum and the energy flux across
scales is equal to €. This is taken as the more general result. Although it does not apply to the
isotropic model two, it will apply to the anisotropic model three. This dissipation scaling will be
verified in a later chapter. The decay time t, would be witten using a turbulent Froude number
based on horizontal scales t, = 3 (v//NLy)~' N-1.
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turbulence has only enough kinetic energy to overcome stratification, then a balance
w' & NLt exists. where w' is the vertical turbulent velocity scale. In this case, the
turbulent Froude number is of order unity, assuming isotropy («' = w'). We call this
state “inertial-buovancy balance”.

At inertial-buoyancy balance, the decay time (3/2) L, /' is approximately equal to
the buoyancy time scale N7'. In this case (3.17) is simply written Jy, = [-} + —"-] EN.
Thus, (3.17) is only especially useful away from inertial-buoyancy balance, where
turbulence does not feel buoyancy effects and must therefore be growing as it does in
laboratory experiments. That is why (3.17) relates specifically to growing turbulence,
although it is valid for any isotropic turbulence (if the turbulence is still isotropic at,

inertial-buoyancy balance, then Fr, =~ L and {, = N7').

Turbulent Richardson Number—Mixing Efficiency

The turbulent Richardson number is also related to I7r,. It is defined as

Ry = T = pp? (3.18)

which could be written - ¢
N L3/2 N 3 1
fore = u?/2 ~ TKE (3.19)

using the approximation £ &~ N2L2/2, valid if N is evaluated over the re-ordeted den-

sity profile within an overturn. A test in chapter 2 and Crawford (1986) showed that
NZ?L2%/2 may over-estimate £ by a factor of 2 to 3 when N is over scales larger than
the overturns®. However, even in the worst case scenario of using layer averages for
N2, the approximation (3.19) holds within a factor of two. The turbulent Richardson
number can be interpreted as the ratio of the APEF to the TKIE in one dimension.

Using the ¢/ TKE ratio, buoyancy flux for model two can also be wiitten

@ no€e 3 I]Im -
J”_[afti] TKECNLiII 3 (3.20)

6If we wish to define Ry using N evaluated at a larger scale, then the factor of 3 1n (3.19) should
be replaced by a factor of 6 or possibly more
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using (3.19), assuming that the ¢ approximation is valid. This is useful because it

gives the mixing efficiency directly from I' = J, /e as

RZ( 9
I~ [4 4] 3 (3:21)

The turbulent Richardson number Ri, quantifies the relative contribution of the
energy equations (3.10) and (3.12) to the sum (3.13). This in turn affects the mixing

efficiency. This relation will be tested in chapter 4.

Relative Effects of ¢ and (N on J,

Since both £N and ¢ affect J) from (3.17) and (3.20), an expression for J; as function
of £N and € can be written to see which of €N or € is more determinant to J;.

Assuming that the scaling relation € & u”/L; holds, Ri; is written

Rit =

N2L%  N2L2 N Lp1*?
~ [26 ! ] (3.22)

u’? (cLh)z/S e Ly

if £ is well approximated by ;N2L%. Assuming isotropy (L7 ~ L such that ¢ ~
u™/Lr), this becomes

2/3
2EN ] (3.23)

€

(Rit)iso ~ [

Buoyancy flux can then be written

Jy & [Z:t Z] 3 T N] [4 ] 0.53 (€ N)*/3 /3 (3.24)

It is seen here that {N is more determinant to J, than is .

Relation of Ri; to a Ratio of Length Scales

Assuming that € = u®/L, holds and using Lo = (eN~3)'/2, the turbulent Richardson
number can be written

N"’L%’V NZL% N L%
w? (eLh)2/3 ~ Lé/st/a

Ri, = (3.25)
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which, in the isotropic case. reduces to
(3.26)

Thus Ri, (for isotropy) is determined by the ratio of the size ol the overturns to the
maximum vertical scale that overturns can evolve to in the presence of stratification
(the Ozmidov scale). The ratio Lyp/ Lo is often used to describe the degree of inertial-

buoyancy balance in isotropic turbulence (Stillinger ¢t al., 1983; Itsweire el al., 1986).

3.3.4 Description of Model Two

Let us now describe an imaginary experiment similar to rcal turbulent flow created
by advecting it through a grid and advected downstream. This imaginary experiment,
differs from reality in the assumption that the flow evolves with its turbulent kinetic
energy level (the Kolmogorov spectrum) remaining constant through time. Let us
assume that production of turbulence from Reynolds stresses acting against a mean
shear could provide the sustaining energy. This is simply to allow scaling of various
quantities without introducing the effect of variations of the TKIE and of «.

The idea of such real experiments is that downstrcam cvolution of the turbulence
may mimic time variation of turbulence created by strong shears in the field, if tur-
bulence is not created already at inertial-buoyancy balance (as it is thought to he
from K-H instability). Turbulence is crcated at small overturning scales behind the
grid and grows towards inertial-buoyancy balance as it is advecied downstream.

Turbulent length scale evolution and the cffect of that length scale on mixing effi-
ciency and buoyancy flux will be described below. This is useful because it illustrates
how buoyancy flux and mixing efficiency vary with the growth stage, quantified by
Fry, in model two.

In this case, the TKE equation is

S I —; |
U(T)(%r—gu’2 = —u'w' 0;{ —Jy = (3.27)

re
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with the added growth-advection of the TKE at a mean velocity” U, and the produc-
tion term.

Overturns are created as water passes through the grid; the initial overturn scale
will be related to the grid spacing or the thickness of the bars (the ratio of spacing to
thickness was kept constant in real experiments). This scale can be made very small.
With constant dissipation of the TKE through time and length scales, the scaling
¢ & u™/ L), suggests that turbulent velocities will be smallest at first. The turbulence
is isotropic and does not feel the effect of buoyancy because velocities are greater
than N L. This implies that Ly is much smaller than the Qzmidov scale, and that
Fry > 1. Density fluctuations are proportional to the overturn size and are small at
this stage. They cannot contribute much to buoyancy flux. The mixing efficiency is
thus low.?

Initially, Ly grows at the same rate regardless of the stratification, as i un-
stratified experiments®. As the overturn scale grows, so do density and velocity fluc-
tuations and buoyancy flux. The potential energy required for overturning increases
as L3 (e.g. £ & $N?L}), but the TKE only increases as L2 (e.g. kE(k) o L2®).
While overturning velocities are increasing, the overturning period (and decay time)
Ly /u' increases as L?r/ ®. Dissipation is constant despite the increasing TKE because
of the increasing decay time. This overturning time scale eventually reaches the buoy-
ancy time scale N~!, and the vertical component of the TKE equals the potential
energy. At that point, Ly has reached the maximum size allowed by the energy source

in the presence of stable stratification. It has reached the Ozmidov scale Lo = ¢/N3.

"The mean advection velocity is assumed to be much greater than turbulent velocities, simplifying
the advection term as turbulent-advection can safely be neglected

8From (3.21), the mixing efficiency (using the upper bound of the factor of 2) is approximately
Ri /3; the degree of the approximation depending only on the APEF approximation :_l,-N 2L%. At
low values of Ri; the potential energy is much less than the TKE. Mixing efficiency is low because
turbulent fluctuations carry much kinetic but little potential energy. The kinetic energy is dissipated
as usual but buoyancy flux is limited by the little amount of density fluctuations carried by the
turbulent flow.

*In this description of isotropic growing turbulence, the buoyancy flux can only be about equal
to the dissipation of temperature fluctuations (which occurs at the Batchelor microscale (vx3 /€)!/4,
which is of order 1 mm) if the rate of change of the potential energy ¢ is much less than J;. It is
unclear how the o t°% length scale growth observed in lab experiments affects this assumption.



Steady-state ensues.

It is expected that the ratio of Ly/Lo at the inertial-buoyancy balance steady-
state will be of order unity. Its exact value is important becanse it determines the
maximum mixing efficiency of the turbulence.'

While turbulence is growing, both velocity and density fluctuations increase In',-/ *
and o« L respectively. This leads to a cross-correlation for p'w’ (and therefore
buoyancy flux) increasing as o L;/ ®. Thus mixing cfficiency increases proportionately
with L3/ (e.g. combining (3.21) and (3.26)).

The previous description (summarized in Figure 4.1 in the next chapter) shows
how overturning grows from small scales, fast decay time and low mixing efliciency
to largest overturning scales & Lo, lowest decay times & N™' and maximum mixing,

efficiency.

3.4 Model Three: Inertial-Buoyancy Balance

Anisotropic Case

The model just described interpreted high turbulent Iroude numbers, I'r, > |, as
isotropic turbulence that does not feel the eflects of buoyancy. In this section, situa-
tions where turbulence is not growing, yet has I'r, > | are considered. This will lead
to the third model considered in this thesis, relating buoyancy flux to anisotropic, yet
energetic, steady-state turbulence.

The description of turbulence in model three affects assumptions made in the

formulation. For this reason, this description is discussed next.

10The determination of the value of Ly /Lo at iertial-buoyancy balance has been s goal for many
investigators studying grid turbulence (Stillinger ef al., 1983, Itsweire el al | 1986, Rohr et al | 1984)
and of others interested in oceanic values (Dillon. 1982, Crawford, 1986) because 1t determines the
constant between ¢ and £N in model one.

e
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3.4.1 Description of Model Three

Iinagine a mixing layer driven by a locally strong shear, say by an internal tide, but
only over a layer of thickness smaller than Lo, outside which the shear falls off. The
vertical overturning scale grows to the mixing layer thickness and remains there in a
steady state. Although in a steady state, the vertical scale of the overturns is smaller
than Lo and, like the growing overturns in the lab, the overturns do not feel the effects
of buoyancy. Another casc is a wind-forced layer for which the overturning scale has
out-grown the layer thickness. While mixing may slowly erode the pycnocline at the
bottom of the layer, the vertical turbulent scale is limited to the layer thickness.
In both these cases, nothing prevents the horizontal scale of the turbulent velocity
fluctuations from growing further.

It could be argued that if a layer is (close to) well-mixed, then we need only worry
about entrainment, and so an entrainment model as a function of forcing parameters
would be neccessary. The overturn scale method suggested in this chapter does not
attempt to quantify mixing from the observed forcing, but rather from the intermedi-
ate result of overturning which leads to mixing. If stratification is nearly gone, then
entrainment would presumably be observed in one particular profile as some APEF
(the re-ordered density gradient would then be non-zero). In this case, the well de-
veloped TKE field will transport the potential energy to small scales and dissipate it
as described in model three.

The Ozmidov scale Lo = (¢/N*)!/? is interpreted as the largest still isotropic eddy
size in the presence of stable stratification (Ozmidov, 1965). A new discussion is given
next, showing that it can also be interpreted as the horizontal turbulent length-scale
derived from Kolmogorov scaling from the minimum turbulent velocity fluctuation
against a stable stratification.

The vertical component of the TKE is limited by inertial-buoyancy balance and
can be no less than the potential energy gained by a parcel of water travelling upwards
a distance Lp. Assuming that this energy balance is characterized at isotropy by a

constant turbulent Froude number, (#'7),5,18, Which is expected to be of order unity,
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one can write (e.g. (3.16))

w' & (Fr))s018 N Ly (3.28)

for the vertical turbulent velocity at inertial-buoyancy balance, which is the minimum
vertical velocity allowed by buoyancy forces. The inertial-buoyancy value (#r)) o
can be written at isotropy because w' = u'; if the turbulence is not isotropic, we
cannot expect Fry = (Fry),5018, but we still expect (3.28) to hold for vertical turbulent,
velocities at inertial-buoyancy balance.

The horizontal and vertical turbulent velocities are assumed to be related by
oLy = w'ly, (3.29)

implying some sort of continuity on turbulence, where Ly and L, are vertical and hor-
izontal overturning scales respectively (The second horizontal component. is neglected
in this continuity scaling).

Combining (3.28) and (3.29), the horizontal velocity scale becomes
u = w'[/h/bp R~ ([7‘1'5),'..,(,13 NL, (3.30)

regardless of isotropy.

Since, by assumption of model 3, the horizontal overturning scales are much
greater than in the vertical (L, > Lg ), there is turbulent energy at those larger
scales. The Kolmogorov scaling of the turbulent energy cascade must scale with the

more energetic horizontal scales as
exu®/Ly (3.31)

such that ¢ is still conserved at all scales, if the Kolmogorov spectrum (k) oc /3 k=5/3
still holds.

Using (3.30), Kolmogorov scaling reduces to « & (Fr)? ,5(N1Ly)* /L, and the
horizontal length-scale becomes Ly, ~ (Fr)*% g(<N=)/ x L.

If (F'r¢)iso1B is close to unity, then, even if the turbulence is not isotropic, it can

be argued that in steady-state turbulence the horizontal length-scale L, should he of
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the order of the Ozmidov scale Lo. In model three, turbulence is at inertial-buoyancy
balance (L, = Lo and u' = N L) but is allowed to be anisotropic if the vertical scale

is limited by the layer to be smaller than the horizontal scale (L7 < Ly)

3.4.2 Derivation of the Decay Time

As in the second modcl, the buoyancy flux model cquates J, to the dissipation of the

APEF over the decay time of the TKE from e.

For Ly = Ly, the decay time was argued to be ¢, = i’% ~ %LT/u'. However,
inertial-buoyancy balance is now assumed, such that L, = Lo. The decay time
hecomes "

u L _
N — R (F"t)isolB N ! (3.32)

~ uB/L, o
using (3.30) and assuming that the TKE is 2 u = u" instead of 2 u? from neglecting
the smaller vertical component. This decay time can be safely approximated as
lo = Lo/u' = N~ for (Fry)isers close to unity.
The decay time is the overturning time. In the isotropic case, the turbulent length
scale determines this time scale. In the inertial-buoyancy balance case, the relevant
horizontal length scale is set by buoyancy forces such that the decay time is the

buoyancy period.

3.4.3 Formulation of Model Three; Buoyancy Flux for

Anisotropic Inertial-Buoyancy Balanced Turbulence
The buoyancy flux J, = [% + 11] f: is simply
3 1
Jy [Z + Z] ¢N (3.33)

This result is similar to Dillon et al’s (1987) empirical result (see chapter 5 and

Appendix B).



3.4.4 Interpretation of the Turbulent Froude Number:

Inertial-Buoyancy Case

In the context of energetic anisotropic turbulence at inertial buoyancy balance, a
turbulent Froude number based on horizontal scales will by definition be equal to
the inertial buoyancy value (Fry, = w'/(NLy) = (Fri)isorn). The turbulent Froude
number F'r; may still vary, and is therefore not interpreted as a measure of the ratio
of inertial to buoyancy forces. It will be shown that F'r, can be interpreted as a ratio
of vertical to horizontal overturning length scales: a mcasure of anisotropy. 'T'his will

also be related to mixing efficiency.

Turbulent Richardson Number—Mixing Efficiency

The turbulent Richardson number, defined as (3.18), can be written

N2LA/2  2¢

), = R —— 3.3
B u/2 TKE (3:34)
for the reduced TKE, using the approximation & ~ N?13./2.
Similarly to model two, buoyancy flux can be written
3 1 13 3 11 R
Jy = [-— —] ~ [-— + —] 3.5
latd et T (3-43)
such that the mixing efficiency is
3 17 Ri, o

from I' = J; /€, with the quality of the approximation depending only on the approx-
imation § = 1N2L. As it did for model two, &7, quantifics the relative amounts of

potential to kinetic energy, which affects mixing efliciency.

Relation of Ri, to a Ratio of Length Scales

Assuming that horizontal length and velocity scales provide the Kolmogorov scaling
€ ~ u”/ Ly, the turbulent Richardson number
L2
z
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becomes
: Lyy?

(Ri)is ~ [E] (3.38)
for L), = Lo, instead of (3.26) obtained for the isotropic case Ly = L;. Equivalently,
we can write IF'ry = Lo /L.

Since mixing efficiency is Ri;/2, the anisoiropy factor Ly/Lo = (Rit)}{; deter-
mines mixing efficiency. This is to be expected. An isotropic layer at inertial-buoyancy
balance has maximum mixing efficiency. If the layer gets thinner, it is still dissipating
its TKE on horizontal scales. However, at a given stratification the contribution to
buoyancy flux of the density fluctuations is limited by the vertical overturning scale.

This model is consistent with what is thought to occur in wind mixed layers. As
the mixing persists, stratification is lowered and can no longer support a buoyancy
flux when completely mixed. In this case, the mixing efficiency is very low. This

models predicts this from the low APEF in the mixing layer, limiting the energy that

can ever go to buoyancy flux.

3.5 Relating ihe turbulent parameters to the

large scale

The second and third models presented both have a mixing efficiency uniquely de-
termined by the turbulent Richardson number. This is subject to the condition that
the turbulence is sufficiently intense to produce a buoyancy flux (e¢/¥N? > 15; see
Appendix A). The turbulent parameters Ri, and e¢/vN? describe the turbulence, but
these are not easily measured. The models provide a useful framework, but yet seem
to require too much knowledge about the state of the turbulence to be very useful.

The hypothesis is put forward that the turbulent parameter Ri; can be related
to the larger scale forcing as described by the gradient Richardson number Ri, =
N?/(9U ) 8z)*.

Assuming that turbulent velocity fluctuations originate from overturning over a

scale Ly against the large scale shear 9U/dz, the turbulent velocity fluctuations
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should be (geometrically) proportional to both as

o
W = alp— (3.39)
Jz
where a is an as-yet undefined constant, then R, is related to Ri, by
N3 N2L3.

Ry, =

|
= ar o = 3 3440
Wt @LOUJOZ)E e (3.10)

The highest value of Ri, that can sustain turbulence is at inertial-buoyancy bal-
ance, and is of order unity. The maximum gradient Richardson number which can
create shear-instabilities is of order 1/4. The constant « is thus expected to be about
1/2, and must be less than unity (turbulent velocities cannot be larger than their
source).

The turbulent velocities in the Kolmogorov spectrum scale with overturn size as
x L}/s (see Section 3.3.4). If the shear provides a velocity proportional to Ly, it must,
be assumed that this is only valid for the largest energy-containing scales. Smaller
scales will have higher turbulent velocitics than the o Ly shear-scaling, and will
follow the Kolmogorov spectrum.

If turbulent velocities come from the shear as oc Lp(QU[/3z), then this must scale
the largest velocities between «' and w' if they are anisotropic. The choice of «' in
(3.39) is thus the appropriate choice. This relation should also hold for anisotropic
turbulence (Third model).

Equation (3.39) will be tested in a later chapter for isotropic turbulence. If it
is correct, a larger scale forcing parameter such as the gradient Richardson number
can be related to the turbulent parameter Rz, which is believed to quantify mixing
efficiency and buoyancy flux. Thus, relating Ri, to 2, measurements of Ri, and €

would be sufficient to determine ¢, .J, and T'.

3.6 Summary

This chapter introduced three models to the thesis, relating ovei turn-scale quantitics

to buoyancy flux or to the dissipation of turbulent kinetic encrgy. Some of the model

B e
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predictions, as well the assumptions made to derive them, will be tested in later
chapters. The models, assumptions and predictions are summarized in Table 3.1.
Some predictions are functions of Fr, or R, which depend on turbulent velocity
fluctuations u', which are not usually measured in the ocean. Table 3.2 summarizes

proposed methods to infer the turbulent velocities to obtain F'r, or Ri,.

First Model

The first model is the ‘traditional’ view of overturning and relates the dissipation of
TKE, ¢, to the overturning length scale Ly via the Ozmidov scale Lo = (¢/N3)'/2.

The main assumptions are
e The mixing efficiency I' is constant.

e The decay time of an overturn is approximately equal to N~1, implying a bal-

ance between inertial and buoyancy forces.

The prediction is thas dissipation is related to overturning by ¢ =~ L%N3, and

buoyancy flux is given by assuming a constant mixing efficiency (usually I' = 1) as

4
Jy, =Te.

Since this model converges with model two and three at isotropic inertial-buoyancy
balance, it is expected to hold for mixing created at inertial-buoyancy balance. This
presumably occurs when the gradient Richardson number is slowly lowered to a critical
value and instability occurs. Overturning then has only sufficient kinetic energy to
overcome stratification and an inertial-buoyancy balance insues. If mixing is not
driven more strongly by a shear, then all phases of mixing may be at inertial-buoyancy
balance such that a constant, and maximal, mixing efficiency should result. This

should be the case for breaking internal waves in the abyss and thermocline.

Second Model

By simplifying the arguments leading to the first model, a second model relating

buoyancy flux to the dissipation of the available potential energy of the overturn over
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Model | Result

Assumptions

Comments

J. GQ‘JJ%‘N:;

I'= % (or constant)
Inertial-buoyancy
balance

May apply to breaking
internal waves,

[ ]

Sy (3 1] 2EN P,

I [3£4] Riys

Isotropy (L = Ly)
~ uB/ Ly or

¢
cxu/Lyp

Q2

2

Ex INLE

Aun  approximation of

¢~ u«™/Ly is shown to
hold (see below).

May be overestimade by
factor 2-3 using layer-N
rather than overturn-N.

3 | hm[3xi]en

D~ [321] Ri/2

Inertial-buoyancy
balance

cxul )Ly,

Wit =w'ly,

Pl ‘

The combination ¢ =
[ (Lp! Jw') is shown
to hold in average sense
in ch. -1 for grid turbu-
lence.

May be overestimate by
factor 2-3 using layer-N
rather than overturn-N.,

e e

Table 3.1: Summary of models with predictions, assumptions and comments. Model
one describes traditional thought linking Ly to Lo; Model two describes growing
isotropic turbulence and should apply to strongly lorced mixing layers for which
overturning scale are thought to be still growing; Model three describes steady-state
anisotropic turbulence and should apply to strongly forced mixing layers thought to
have been mixing sufficiently long such that Ly approaches the layer thickess and
horizontal turbulent scale may be larger than L.
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Result, Assumptions Comments
u' = (cLyp)l/3 Isotropy (Ly = Ly) Allows estimation of u'
cxuB/ Ly in Model two to obtain

Fry, if ¢ is measured.

uw' = 0.4Ly (U /02) Allows estimation of '
(R, = 6.2 R1,) for both Models two and
three to obtain ¢’ from
large scale shear, and to
infer I’ from Ri; rela-
tions.

Ry = (L /Lo)' B (Ly/Ly)? | e = u®[ Ly General form for Ri; (re-
lated to I') for models
two and three as a func-
tion of length scales.

Table 3.2: Summary of methods to infer v’ and R:, from large scale shear or from
measurements of ¢ and L7 {for model two).

a suitable decay time was derived as
3 17 ¢
h=lit] t
Tl al,

The decay time ¢, was argued to be the same as for the turbulent kinetic energy. This
decay time is implicit to the Kolmogorov spectrum.

_ TKE

€

to

If shear is driving the turbulence and creating the turbulent velocity fluctuations,
then the turbulence decay time is proportional to (8U/0z)~?, if the hypothesis that
u' = aL/rdU 8z holds.

This model is expected to describe isotropic growing turbulence with sufficiently
intense turbulence to generate a buoyancy flux (¢/vN? > 15 to 25).

The assumptions are that

e That Kolmogorov scaling of the turbulent velocities holds* € = u”/L, where L
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is the turbulent length scale (isotropic). This permits obtaining a useable form

of the decay time as {, = (3/2)Fr;' N=" and the relation (Rip)ie = (Ly/ Lo)Y.

e That ¢ is well approximated by N2L3./2. This is used to obtain I’ =~
34+ L Ri/3. There is an extra factor of two of uncertainty, depending on
44 AR &

how N? is calculated. because the gradient, within overturns is smaller than

outside the overturns.
The predictions of the model arc:

e Buoyancy flux is given by: J, = [% + l'] %E N i'ry.

e Mixing efliciency is: I' = [% + l,] Rit /3 to within the extra lactor of two men-
tioned above if a layer-N is used, where Riy deseribes the ratio of potential to

. . —1/2 . . . . .
kinetic energy (F'ry = Ry, /* describes the ratio of inertial to buoyancy lorces)

or the degree of inertial-buoyancy balance. -

This model should apply to growing isotropic mixing, especially away from
inertial-buoyancy balance. This will obviously be the case in grid-generated tur-
bulence, but I argue that it should also apply to boundary layers (surface or bottomn)
at an early stage when turbulence is still growing. Periodic forcing shears such as
associated with tides could cause this. This model should also hold when it is clear
that turbulence has only recently started, away from inertial-buoyancy halance. ‘This
could be the case in internal tide flow or when a passing soliton is known to force a re-
cent mixing layer. It is not clear how mixing evolves in these cases. I the layer starts
through K-H instability, then we could argue that I'r) & 1 (inertial-buoyancy halance
holds) and that the mixing should all occur at maximum mixing efficiency. However,
strong shear can presumably drive mixing to higher turbulent Froude number, forcing
overturning scales to grow. Little is known about the length scale cvolution in the

ocean.
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Third Model

‘The third model describes energetic turbulence with vertical overturning scales limited
to a layer thinner than the buoyancy length scale Lo. The turbulence becomes
anisotropic as the scales grow horizontally.

The model is similar to the second, in that buoyancy flux is given by the decay of
the potential energy of the overturns. However the decay time is approximately N~
because of the balance of inertial and buoyancy forces.

The assumptions are that

e Kolmogorov scaling of the turbulent velocities holds using horizontal velocity
and length scales, even if anisotropic (Ly > L7): ¢ = u/L,. This permits
obtaining the decay time a. #, & N7', the relation (Ri;)is = (Lr/Lo)?, and

the primary prediction that Lo = Ly
e Continuity holds on turbulent scales: 'Ly ~ w'Ly,

o ¢ is well approximated by N?L2./2, with the same factor of two of possible error

described for the second model. This is used to obtain I' &~ [% + %] Riy /2.
The predictions of the model are:

e Buoyancy flux is given by J, = [% + ;',—] EN

e Mixing efficiency is I’ & [% + i] Ri /2, to within the extra factor of two, where
Fry = Ri; 1123 approximated by the ratio of the horizontal turbulent scale L,

to vertical turbulent scale Ly (Fr; = Lp/L7).

o The horizontal turbulent scale L, is approximately equal to the Ozmidov scale

LO — (G/Na)l/2

This model should apply in strongly forced shear layers thinner than the Ozmidov
scale, such as boundary layers. In a steady state, the horizental turbulent scale is
then argued to outgrow the vertical extent of the layer out to the Ozmidov scale Lo.
Thus this model should be most appropriate for layers with steady-state energetic

mixing, for which the vertical overturning scale nearly equals the layer thickness.
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Isotropy Effect on Mixing Efficiency

The second and third model are contrasted by their interpretation of the turbulent

Richardson number Ry, which is proportional to mixing efficiency.

o In the second model, it was stated that Ri; describes the ratio of potential to

kinetic energy or the degree of inertial-buoyancy balance.

e In the third model. R, describes the ratio of the horizontal turbulent scale Ly,

to vertical turbulent scale Ly, or the degree of isotropy.

In fact, both are telated. The general interpretation is that Ri; describes the
ratio of potential to kinetic energy. The potential energy is lmited by the buoyancy
flux, and the amount of kinetic encrgy present limits the dissipation «. This is what,
deterinines the mixing efficiency.

The second model assumed isotropy. If turbulence departs slightly from isotropy
(say by a factor of 2), the relation I' & Ri,/3 still holds if Kolmogorov scaling using
horizontal scales is valid (¢ &~ w"”/1L;). The effect is that the TKE stays about the
same, but £ & N2L2 /2 decreases proportionally to the square of the degree of isotropy
(x I3/13).

Both models are then consistent; mixing efficiency is determined by the ratio

of potential to kinetic energy in both. The (Ki)w, =~ (Lr/Lo)"? dependence of

the second model describes how variations in Lp/Lo aflect the energy ratio when
the turbulence is isotropic and follows the Kolmogorov spectrum; The (Ri)n =~
(Lr/Lo)? dependence of the third describes how departures from isotropy affect the
energy ratio. Both can be combined into a generalized model.

A prediction is then

e For slight departures from isotropy, the measured R, decreases o< L/ L3 such
that mixing efficiency is still given by approximatcly [} + -}] Ri /3. Mixing
efficiency is lower, but if R, = N2[2/u? is the measured quantify there is no

extra adjustment to make for isotropy.
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e The generalized form of R, in terms of length scales combines both the inertial-

buoyancy balance Ly/Lo and isotropy Ly/Ly factors as
Riy % (L Lo)*" (Lr/La)? (3.41)

(using ¢ & u™/Ly)

Relating Gradient Richardson Numbers to Turbulent Richardson Num-

bers

The turbulent parameter Ri;, which determines the mixing efficiency in both the
second and third models, is not presently a measured quantity in the ocean. A
hypothesis is put forward that the turbulent parameter Ri, can be related to the
larger scale gradient Richardson number Rig if turbulent velocities are produced from
the mean shear.
The hypothesis is _
W =a L']‘Qg

or equivalently
atli(0U]dz)* d?

where «a is expected to be less than unity, possibly around 1/2.

Ri, Ri,
This model would allow the turbulent character of the flow to be established from

simultaneous measurements of shear with an ADCP and density profile with a CTD

profiler.

Applicability to the Ocean

The first model is actually within the domain of the other two models. If indeed the
APEF is primarily linked to buoyancy flux, and mixing efficiency is about 1/4 at the
inertial-buoyancy balance, then it follows that there will also be a relation between
dissipation of the turbulent kinetic energy and tli. overturning scale through J, = Te.

Even if the second model is correct, it may not be an important distinction if the

mixing efficiency in the ocean is constant. The second model will differ significantly
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from the traditional view of a Ly Lo link if there is a wide range in mixing elliciency
in the ocean. This issue will be addressed in the next chapters.

Another issue to address is the value of (F1¢);0m, the value of the turbulem
Froude number ai the inertial-buovancy balance. The second model predicts a rise
in mixing efficiency with Re,. but does not predict the value of the maximum mixing
efficiency, which is found at the inertial-buoyancy balance.

Consideration will also be given to difficulties in makiug these overturn-scale mea-
surements in energetic ocean flows. Intrusions of water masses along isopycenals are
likely to occur at or near intense mixing regions. These are known to canse problems
with the measurement of density using a conventional C'FD profiler. The mismalceh
between temperature and conductivity sensors often causes what is referred to as
spiking. Intrusions make the CTD’s iask more difficult.

Another sampling problem is combining density profiles from CTD measarements
with shear profiles from an ADCP to obtain gradient Richardson numbers on a useful

scale. This will also be addressed.

A Recipe for the Use of the Models

Later chapters will show that mixing efficiency is nol. constant in the energetically
stirred parts of the ocean, such that we may do much better to estunate buoyancy
flux using model two or three than using model one. Model one may still apply
to the kinematical model of breaking internal waves upon superposition of waves;
this is thought to lead to sporadic K-l instability occurring at inertial-buoyancy
balance. Both models two and three should be used instead in more energetic arcas
where strong shears are thought to force persistent. mixing layers, not just random
instabilities. Each of these two models applies in different, circumstances, such that,
they do not invalidate each other. Model two should be used when the overturning
scales are thought to be growing and isotropic (unfortunately, this is difficult to
determine from standard CTD measurements alone). Such a casc is presented in

chapter 7 where a layer is observed to start mixing. Model three should be used for
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layers that have been mixing for a longer period, such that overturning scales have
grown to steady-state at inertial-buoyancy balance. This is typical of wind-mixed
layers, or layers that have been mixing for a long time relative to the buoyancy period.
The vertical overturning scale should perhaps approach the layer thickness (although
this would imply that the layer becomes quickly nearly well mixed). This would be
a good indicator that steady-statc has been reached and that horizontal turbulent
scales may be larger than in the vertical, causing anisotropy. If no indication of the
state of the turbulence is available, or if the turbulent Froude number cannot be
inferred, then one should use the buoyancy flux formulation of model three as a lower

hound.



Chapter 4

Grid-Generated Turbulence

In the last chapter. three turbulence models were explored. The first 1eflects the most
commonly held view, applicable to breaking internal waves. and the other two present,
a new outlook applicable to strongly mixed layers which is argued to be a more com-
plete description of turbulence. These latter two models are based on assumptions and
other models (e.g. the Kolmogorov spectrum and its scaling of turbulent velocities)
which must be tested in addition to model predictions. Such tests are very difficult,
to undertake under uncontrolled (and logistically challenging) oceanic conditions. So,
for more than a decade, laboratory experiments have been conducted to investigate
turbulence. Typically, a tank i< filled with salt-stratified or unstiatified water. A
flow is passed through a grid to create turbulence which decays downstream. The
parameters p’, (rms turbulent velocities) v', w', p'w’, N* and ¢ arc measured down-
stream. The experiments are especially useful hecause the buoyancy flux gp™u’[p is
measured directly. A close variant of the turbulent parameter I'r is also measured.
These measurements are rare in the occan.

These grid generated turbulence experiments are discussed here to give credence
to the assumptions made in the derivation of turbulence models two and three in
chapter 3; for example, the Kolmogorov scaling of turbulent velocities is verified
empirically in an ensemble sense. The buoyancy flux and mixing efficiency of the

grid-turbulence will only be compared to model two, because the turbulence is clearly
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growing and nearly-isotropic over two decades of variation in Lt /Lo.
The experiments will first, be briefly described. Their results will then be used to

ver'fy that (with ensemble averaging)

e The Kolmogorov scaling holds for turbuleni velocity fluctuations € &~ u"/Ly,

where Ly is a horizontal length scale, and to verify the conditions under which

it, holds (averaging).
o The (quasi) continuity equation w'Ly & w'Ly, holds on turbulent scales.

o ¢ is well approximated by N2L?/2, such that the mixing efficiency predicted
by the isotropic growing turbulence model can be compared to lab measure-
ments. (Here Ly is a new quantity defined in this chapter, which replaces Lt in

laboratory experiments for which Ly is rarely measured.)

o The prediction for mixing efficiency I' ~ |2 + 4 Ri,/3 of model two is correct.
g y aTa

o The prediction that I' o« Ri, = N2L2/2 includes the effect of anisotropy.
e [, is proportional to Ri,

e And finally to quantify the value of Fr; at the inertial-buoyancy balance
(Fri)isorn

4.1 Description of the Experiments

In grid-turbulence experiments, growing turbulence is created at small overturning
scales by passing a flow through a grid and advecting the growing turbulence down-
stream. The ideca of such experiments is that downstream evolution of the turbulence
will mimic time variation of turbulence in the field. Turbulence is created at small
overlurning scales behind the grid and grows towards inertial-buoyancy balance as it

is advected downsiream.



4.1.1 Idealized Description

Figure 4.1A summarizes the discussion of model two in section 3.3.4, describing the
length scale evolution of a turbulent flow with constant rate of turbulent kinetic
energy dissipation. The current case of decaying grid-turbulence is very similar; the
only difference is that there is no mean shear to sustain the TKE level. 'The production
term in (3.27) is removed; as there is no cnergy source, the TKE must decrease and
the advection term is now positive. It feeds TR dissipation and buoyancy flux until
turbulent motions are too weak to create any mixing. The evolution of a turbulent
flow in decaying grid-turbulence experiments is depicted by Figure 4.113

As the energy level is decaying, then from the Kolmogorov spectrum £(k) o
€2/3k=5/3 ¢ must decay also. Therefore, Figure 4.1B now shows a decreasing Ozmi-
dov scale Lo = (¢/N3)V/2, the maximum vertical scale that the TKE can overturn
against buoyancy forces. During this decay, there is an increase of the Kolmogorov
scale Ly = (v®/€)'/*—thc length scale at which viscous forces cqual inertial forces
and viscosity dissipates energy. This decreases the bandwidth of turbulent length
scales from both ends. This bandwidth, or non-dimensional dissipation, quantilies

the turbulence intensity. It is often written as Lo/ Ly or ¢/vN*, which arc related by

Lo 4/3 4
[E] g (*.1)

The turbulent bandwidth, shown as the Lo/Ly ratio, shrinks in time in Pig-

ure 4.1B. The initial overturning length scale still grows in this case. As long as
overturns are smaller than the Ozmidov scale Lo, they are not restrained by bhuoy-
ancy forces. As Ly increases towards Lo, this latter length scale decays towards L.
At some point, the overturning length scale and Ozmidov scales reaches the inertial-
buoyancy balance value of the ratio of Ly/Lg. At this point, Ly decays at the same
rate as Lo, such that the ratio Ly/Lo stays constant.

Gargett et al. (1984) have shown that turbulence departs from isotropy when the
turbulent bandwidth is smaller than approximately ¢/vN* = 200. This corresponds

to a ratio of Lo/Lg = 55. When Lo crosses the 55L line indicated in Figure 4.1B,
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Figure 4.1: Depiction of growing isotropic turbulence. A- Assuming a constant, cnergy

level; B- Assuming no sources of energy are present such that turbulence decays.
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turhulence departs from isotropy.

Laboratory experiments reviewed here have shown that when the turbulent Land-
width i very small (Lo /Ly fromn 8 to 10) turbulence can no longer sustain a buoyancy
flux. This threshold is indicated in Figure 4.1B by a line at 10Lg; Approximately
when Lo crosses the 10Ly line, buoyancy flux is thought to stop (Itsweire et al.,

1986).

4.1.2 Experiment Description

Figure 4.2 shows the evolution of L;, Lx and Lo for experiments by Stillinger et
al. (1983), denoted SHV, and three experiments by Itsweire et al. (1986), denoted
IHV!. Note that many experiments with various stratification are shown together in
each panel (the stratification is indicated by symbols in the legend).

The panels in Figure 4.2 are similar to Figure 4.1B, showing the relevant turbulent
length-scales as a function of non-dimensionalized distance from the grid. The mean

! much greater than the highest turbulent velocity. The

flow velocity is U = 25 cm s~
TKE equation describing the flow is (3.27), excluding the production term. All other
terms in (3.27) were measured in the experiments, and they balanced to within 5%
(Itsweire et al., 1986).

There are two differences between Figure 4.2 and Figure 4.1B. The fisst is that
Thorpe scales Ly obtained from re-ordering vertical density profiles were not mea-
sured in these experiments. The overturning length scale is instead inferred by density
mecasurements as .

L=, gf (4.2)

where p/ is the rms density difference from the mean value at a fixed point and 9p/d=

is the mean density gradient. Note that p, includes fluctuations from internal waves

'Data from Rohr, ltsweire & Van Atta (1984) are not included here because their large and small
grid experiment are nearly identical to IHV experiments R36 and R52 respectively (ltsweire et al.,
1986) Although the experiments pre-dates the IHV work, IHV extended the tank to allow sampling
the decay for longer periods.
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IHV86-R36 (M =381 cm) {HV86-R37 (M =381 cm)
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Figure 4.2: Evolution maps of turbulent length-scales for SHV and IHV experiments.

Position is downstream of grid, non-dimensionalized by the grid mesh size M equal
t0 1.905 cm for R23 and R52 and 3.81 cm for R36 arz R37. Group of lines are, from
top to bottom, Lo (thick), L; (thin) and 7.63 Ly for R36 and R37 and 9.86 Lk for
R23 and R52 (dashed). Symbols were plotted only for data meeting the criterion
q < 2.2(eL;)"/* explained in the text. Experiments evolve from left to right.
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as well as turbulent fluctuations associated with overturning, so that L, may not be
an accurate measure of overturning.

The ratio of Qzmidov to Kolmogorov scales where the measured buoyancy flux falls
to zero (as described for Figure 4.1B) has been estimated by IHV as 7.63 & 0.45 and
9.86 - 0.48 for small (1.905 cm) and large (3.81 cm) grid mesh size respectively. These
ratios correspond to normalized transition dissipation rates e/vN? where turbulence

cannot, maintain a buoyancy flux. Using (4.1), the Lo/Lk ratios are converted as

¢r = (151 L.2)yN? for M = 1.905 cm

(4.3)
¢ = (21 £1.4)yN? for M = 3.81 cm

Values of 7.63 Lg and 9.86 Lk are shown on Fig. 4.2 so that they may be related
to Lo to show the possible extinction of buoyancy flux. The second difference between
Figure 4.1B and Fig. 4.2 is that the Ly line is not shown, nor is the ¢/vN? = 200 line
for departure from isotropy (Gargett et al., 1984). Note how odd it is that different
grid sizes yield different transition dissipation rates; this is discussed in appendix A,
but the reader may wish to read a later section on internal wave. i the tank before

venturing into appendix A. °

4.2 The Turbulent Length Scale L;

The overturning scale is not measured using Thorpe scales in tl:ese experiments. This
raises two questions if L; is to be used to test our model predictions from chapter 3.
The first is how does L; compare to L7 in the absence of internal waves? The second
is how can it be confirmed that what are thought to be overturning scales are not, in
fact, internal waves? This is a recurring concern. Itsweire et al. (1986) argued that
internal wave motions observed during the late stages of decay were in fact present
near the grid and predominate further downstream when turbulent motions have been

dissipated.
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4.2.1 Relating the Turbulent Length Scaie L, to Thorpe

Scales

In a related experiment using the same facility, ltsweire (1984) showed L, to be about,
equal to Lt in the absence of internal waves. His figure is reproduced as Figure 4.3.
The points on the left-hand side for N = 0.98 s=' which bave Ly/Ly < | have
dissipation levels too low to maintain a buoyancy flux (¢ < €é,). The high values of
Ly are said to be caused by internal wave motion (Itsweire, 1984). Figure 4.3 shows
that /L, varies from less than 1 to more than 1.2, discounting internal waves anc
low dissipation levels. Itsweire el al. (1986) interpreted this figure as L/ Ly = 1.2
The highest values of Lr/L; could be caused by an under-estimation of L from
using a layer-averaged density gradient. In chapter 2, layer-averaged density gradients
were observed to over-estimate the re-ordered density gradient within the overturns.
Since L; is inversely proportional to dp/3z, using a layer-averaged density gradient,
would under-estimate L, if such were the case here. Density gradients in these ex-
periments are full-depth averages. Because the data arc not tabled and therefore
cannot be further analysed, and because *the range of variations is small, the simplest

interpretation of Figure 4.3 is to say that Ly/L, = I.

4.2.2 Internal Waves Contamination of L,

To ensure that density fluctuations due to internal wave motions in the tank do
not make L; an over-estimate of overturning scales, let us attempt to scparate the
turbulence from the internal wave motions. In doing so, the Kolmogorov scaling of
turbulent velocities will also be verified, at least for the isotropic case.

Itsweire et al. (1986) attempt to separate the internal wave component of the
motion by noting that a buoyancy length scale Lg = w'/N was rclated to Lo by
a power law of the form Lo = cL%, and that the slope b changed at a given point,
presumably because of the internal wave contributions to Lg. The failings of the

method are that it has no theoretical basis and that the power law changes from one
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Figure 4.3: Thorpe scale Ly versus L, for a grid turbulence experiment where both
were measured. N = 0.98 57! (o), 0.67 s7! (A). 0.45 s~1 (O0). Figure reproduced
from Itsweire'(1984) (Figure 3). Note that the horizontal scale is 2L, not L,. This
is due to a different definition of Ly used by Itsweire.
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data set to another. Also, it can be shown, assuming isotropy and v’ = (eL)'/*, that
—1/4 . . . . . .
Lo « Ri;"*Lg. Since there is a large change in Ri, during the growth, this may

cause the Lo = cLY power law to have a varying slope unrelated to internal waves.

A Method To Detect Internal-Waves In Grid-Turbulence

The internal wave and turbulence scparation scheme that 1 propose nses differences in
the expected behaviour of the ratio (3u)'/2/(cL()/* versus L, [ Lo for both turbulence
and internal waves.

For the nearly isotropic turbulence in the grid-gencrated turbulence, Kolmogorov
scaling of turbulent velocities gives ¢ = u”/L;. For now, let us assume isotropy
so that the TKE is ¢° = 3u’2. The relation ¢/(elL)'/* = 3% is then expected for
turbulent motions at all times in the turbulence evolution (assuming Ly = Ly, i.c. no
internal waves). Since the turbulence is decaying, the downstream evolution maps to

an evolving ratio of Lo/L;. The relation

q a2
WNJ/ (4.4)

is expected to hold for all values of Lo/ L, for turbulence without internal waves.

The small internal waves in the tank have a velocity scale ¢ & N1, when density
fluctuations p, are caused by internal waves, such that L, = p/,/(0p/0z) yiclds the
wave amplitude and N~! scales like the period. In this case, turbulent velocities
should be greater than the Kolmogorov spectrum can account for in terms of ¢. The
relation

L 2/3
g ~[ '] (4.5)

(L)'P = Lo

is expected to hold for internal wave motions.
Figure 4.4 shows g/(eL:)'/® versus L,/Lo for the SHV and IHV data scts. Data
with L,/ Lo <« 1follow (4.4), the Kolmogorov velocity scaling expected for turbulence.
Note that a ratio of L;/Lo ~ 1 and € ~ u/L, implies a low turbuient Richardson

number, Ri;, from (3.26). In turn, this means that the inertial velocity 4’ is much
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Figure 4.4: Internal waves detection criterion showing g/(eL:)'/® vs L;/Lo for all
data from SHV and THV experiments. The horizontal line is q/(eL;)*/* = 3'/2 which
is approximately expected for isotropic turbulence. The dashed line is ¢/(€L;)!/® vs
(Le/Lo)*', a relation expected for internal wave motions. Data with q/(eL)!/® > 2.2
(filled symbols) are identified as internal waves because they resemble the ¢/(eLy)'/® o
(Li/Lo)*® criterion expected for internal waves rather than q/(eL,)'/® ~ 3!/? ex-
pected for turbulence. Experiments evolve from left to right.
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greater than the buoyancy velocity N L, such that internal waves cannot exist; this
range of data in Figure 4.4 are unambiguously classificd as turbulence.

Around L,/Lo = 1, data diverge and follow the scaling (4.5), expected for internal
waves. These internal wave data follow a slope close to 2/3. Data with ¢/(cL)"* >
3'/2 have more TKE than the Kolmogor~v sprectrum can account for from the level
of dissipation of TKE. The energy cannot have cascaded from larger turbulent scales.

To establish our desired criterion for distinguishing internal waves from turbulence,
data with

q/(eL)'® > 2.2 (4.6)

are judged by eye to better fit the internal wave scaling (4.5) than the turbulence
scaling (4.4). Many points around L,;/Lo = | which could be classified as internal
waves (because u’ & N L, suitable for internal waves at Ly & Lo and because data at
L; = Lo fall along both classifying slopes) have been left as turbulence, because they
cannot be unambiguously eliminated using this criterion.

Using the above criterion, L, can be used interchangeably with Ly for the grid
turbulence data shown because internal waves can be detected and excluded from
analysis. For example, in Figure 4.2, only data not identified as internal waves are
plotted with symbols. For ncarly all experiments there are few turbulent data points
during the inertial-buoyancy balanced decay, wherce L, is expected to decay in constant
proportion to Lo. Thus, in the evolution of turbulence depicted in Figure 4.2, the
late decay stage contains significant internal wave energy such that L, > Ly, This is

why L, decays slower than L¢, contrary to expectat.ons shown in Figure 4.1B. *

4.3 Checking The Assumptions of the Models

The following : ssumptions were made to derive the second model, which describes

isotropic growing turbulence

e That Kolmogorov scaling of the turbulent velocitics holds: ¢ = v/ L, where L

is the turbulent length scale (isotropic). This permits obtaining a usable form
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of the decay time as &, & (3/2)Fr; ' N=! and the relation (R).s0 = (L1/Lo)"/3.
e That £ is well approximated by N2L2/2 (Used to obtain I ~ [% + ﬂ Ri,/3).

In addition, other assumptions were necessary to derive the third model, which

describes steady-state anisotropic turbulence at inertial-buoyancy balance

o That Kolmogorov scaling of the turbulent velocities holds using horizontal scale
specifically (anisotropic): € & u"/L,. This permits obtaining the decay time
as f, &~ N7', the relation (Ri;)in =~ (Lr/Lo)?. and the primary prediction that
Lo = Ly.

¢ That continuity holds on turbulent scales: u’'Lt = w'Lj.
e That ¢ is well approximated by N2L%/2 (Used to obtain I ~ [% + %] Ru,/2).

These will now be discussed in turn.

4.3.1 Kolmogorov Scaling and the Continuity Assumption

The verication of the assumption of Kolmogorov scaling of turbulent velocity fluc-
tuations, i.e. € & u®/L;, presents difficulties. The horizontal turbulent scale is not
measured in the experiments. The isotropy ratio, mexsured from the ratio of rms ve-
locity fluctuations w'/u’, varies from 0.7 to 1. This is much less variation than could
result from the third model of turbulence where L, ~ Lo. Therefore, the e ~ u3/L,
relation can only be verified empirically for “nearly isotropic” turbulence with the
current data. (Note that, contrary to my interpretation, Gargett (1988) interprets
these experiments as evolving anisotropically with L, ~ Lg. This is discussed in
appendix B where new evidence is shown to counter her claim.)

The scaling € ~ u®/L, was shown to hold in Figure 4.4 for data unaffected
by internal waves. Unfortunately, I cannot show that both the assumption that
e ~ u®/Ly and that 'Ly = w'L), hold independently because L, is not measured.

However, combinations of these two assumptions can be verified, in particular the
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L/ Lo-Ri; relation, which depends on the Kolmogorov scaling. 1t was shown that
Ri, = (L%»Lg %/ Lz/ % in (3.25). For the isotropic case of Ly = Ly, this reduces to
(Riy)iso & {L1/Lo)*3. This (Ri))iso velation would be a general result for Ri, if
Kolmogorov scaline is really ¢ & «/L, instead of ¢ = u"/L,. If the turbulence is
slightly anisotropic, the general result, Ri, =~ (L2L3")/ Lz/ * should hold better than
Ri, = (Lt/Lo) 43 31 Kolmogorov scaling should be done using Ly rather than L. Let

us combine (3.25) with the assumption v’ Ly = w’Ly, and verity if

R L L [’J']“ ’ [ﬂ. "l") W] " (4.7)
(eLy)?/® [,‘('7/3 Ly, Lo \ '
holds as well or better than Ri, = (Ly/Lo)"".

This scaling comparison is done in Figure 4.5. The reader is reminded that ex-
periments evolved {from low to high values of Ri,. Data identified as internal waves
contribute to most of the error in the scalings (by definition, since that is how internal
waves were detected). The identification of internal waves in the grid-turbulence data
is thus a significant contribution.

Regressions in this and other log-log figures are performed in logarithmic space.
The confidence interval on the mean is expressed as 109 = [0 %/ 107, Regres-
sions are performed minimizing variance in the ordinate for hoth the slope and the
multiplicative coefficient. Regressions are also shown with the slope set to that ex-
pected from scaling arguments, letting the multiplicative coefficient be determined
by minimizing variance.

Least-squares regressions in logarithmic space with the slope undetermined yield
the predicied 4/3 slope for both cases. If the isovropy-adjusted scaling (¢ = u"™/ L)
is wrong, the error should increase al the higher values of L,/Lo where anisotropy
is strongest (up to w'/u’ = 0.7) because of the decaying turbulence. It does not,
(visually, ignoring the internal wave data). Also, note that the coefficient for the
isotropy-adjusted scaling is closer to unity than the unadjusted scaling.

Both assumptions € & u/L, and u'Ly = w'L, are very consistent, with the data,

although it would be difficult to show that scaling turbulent velocities with Ly is
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Figure 4.5: Ratio of overturning to Ozmidov length scales L;/Lo versus turbulent
Richardson number Ri; A: L,;/Lo vs Ri;. Data are coded according to experiments,
open symbols for ¢/(eL,)'/® < 2.2 and solid symbols for q/(eL;)'/? > 2.2. The least-
squares regressions are shown for ¢/(eL)!/? < 2.2 data in log space; the first forces
the slope, the second has the slope determined by the fit. B: Same as (A), but
a correction for anisotropy is included which is expected to make the 4/3 scaling
better. Experiments evolve from left to righi.
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significantly different than using L, for this data because of the small departure from

isotropy (i.e. (0.7)*/2 = 0.8 is a small factor to detect).

4.3.2 APEF Approximation

In order to derive forms of the mixing efficiency for the models, the APEEF is ap-
proximated by N2L%/2. ™n chapter 2, this was shown to be an over-cstimate by a
factor of 2 to 3. The reason is that the average value of N* over a depth span larger
than an overturn tends to be higher than N? calculated on the re-ordered density
profile within the overturn. The laboratory estimate of € is not subject to this same
over-estimation. Since Ly is estimated from density fluctuations as I, = p, /(0p/0z),
the approximation of the APEF is

—g0p [ o 1" Lg ()
p 9p/0z| ~ 2 pdp/oz

N2
2

S|

1
(= s (4.8)

R

Thus N?L?/2 is inversely proportional to the density gradient. If the bulk density
gradient is hiher than within overturns, the APEF will be under-estimated. This was

also shown to be true for (2.29) in Figure 2.1 using bulk averages that over-cstimate
N2,

Is the Density Gradient Over-Estimated?

If the density gradient is over-estimated, then the growing turbulence model’s pre-
dicted mixing efficiency I' = Ri;/3 (within a factor of 2) could be under-estimated.
The only evidence available is the comparison of L, to Ly in Figure 4.3. As previ-
ously discussed, it shows L, &® Lr. In chapter 2 in a test of (2.29), it was shown
that the equality Ly = ;’71/2/ (0p/0z) holds if 9p/0z is equal to the gradient, within
overturns. Since there should be a one-to-one correspondence between ;’7[/2 and the
fixed-point measu-ement pl, then it appears that the density gradient quoted for the
lab experiments is indeed representative of the re-ordered densily profile within the
overturns, at least to within 20% or so (much batter than the factor of 2 to 3 for

oceanic data in chapter 2).
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The APEF should be well approximated by ¢, and Ri;/3 should correspond to
the predicted mixing cfficiency of the isotropic growing turbulence model, because
the density gradient quoted for lab experiments appears to be representative of that

within overturning (using the re-ordered density profile)?.

4.3.3 Summary of Assumptions

Excluding the internal wave energy-dominated data, the assumption of Kolmogorov
velocity scaling was shown to be valid (with time-averaging performed at sample
locations along the tank). The approximation of ¢ as N*L?/2 was also shown to be
valid, based on Itsweire’s (1984) experiment. Thus the scaling assumptions made to
derive the isotropic growing turbulence model in chapter 3 are verified to the best of
our ability using the grid turbulence data. The model can now be compared to the
grid-turbulence data.

It must be noted here that the assumptions and predictions are only tested here
using averaged data, such that redistribution terms of the TKE and temperature
variatce equations can also be neglected. These results cannot be readily generalized
to individual overturns. Likewise, the turbulence found past grids may not resemble
a K-H billow in its finer details, nor can we assume that a constant turbulent Froude
number can characterise the entire evolution of a K-H billow. However, the turbu-
lence found here is argued to resemble the steadily forced mixing layers in mind for
models two and three, such that these results should be relevant to shallow sea mix-
ing (continental shelfs, estuaries, straits), but not to abyssal mixing due to breaking

internal waves unless forced by a long-lasting (relative to overturn period) shear.

It is unclear how N2 evolves following the flow because the length of the tank is sampled
sequentially, not simultaneously.
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4.4 Mixing Efficiency as Function of Ry,
The model prediction for mixing efficiency is
3, 11 R )
Tr [4 + 4] : (4.9)

Figure 4.6 shows the flux Richardson number R; as a function of Ri, (or Fry
as both coordinates are shown). The flux Richardson number is closely related to
[' = Jy/e. Tt is defined as the ratio of buoyarcy flux to the production of TKE. In
the absence of production, it is determined as the ratio of buoyancy flux to all other

sink terms. It is written as

(4.10)

The flux Richardson number is sometimes referred to as the mixing efficiency. I have
referred to I' as the mixing efficiency instecad. Note thal Ry = I' at small values.

The upper limit of the prediction (4.9) is shown in Figure 4.6. The fit to data is
improved when internal wave data are removed in Figure 4.6B. 1t matches data at
low turbulent Richardson numbers well within a factor of 2.

The prediction of the second model for maximum mixing efficiency is only that
it must cccur at the balance between inertial and buoyancy forces. The value of the
mixing efficiency or of turbulent Richardson number at the inertial-buoyancy balance
was not predicted. At first glance, Figure 4.6 suggests Ri, = 0.7 (cquivalent to
Fry=1.2) and T = 0.23 (Ivey and Imberger, 1991) for maximum mixing cfficiency at
inertial-buoyancy balauce. I believe this suggestion to be incorrect, but its discussion

will wait until further evidence for the inertial-buoyancy value of Ri, is presented.

4.5 Slight Departures From lIsotropy

The following predictions were made about the effect of slight anisotropy on Hi, and

mixing efficiency:

4

B e ™ e e
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Figure 4.6: Flux Richardson number R; vs turbulent parameters F'r, or Ri; with only

. data with R; > 0 shown (not re-stratifying). Solid line on left is (4.9) extended to

K Fr, = 0.8. Other curves for F'ry < 1.2 are Ivey & Imberger’s (1991) predictions for
Re, = 50000, 100, 50 and 20 from top to bottom. Results of Ivey & Imberger (1991)
are discussed in appendix B. Experiments evolve from left to right; A: Data are coded
according to experiments, open symbols for q/(eL;)'/? < 2.2 and solid symbols for
q/(eL;)'/® > 2.2. B: Only data with q/(eL;)*/® < 2.2 are shown, a criterion which
eliminates most data with high internal wave energy. Data are coded by values of
6/ vIN?
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o The measured Ri, decreases o L3./L? such that mixing efficiency is still given
approximately by [‘—: + i] Ri /3. Theie is no extra adjustment to make on

'~ {% + H Ri; /% for isotropy.

¢ The generalized form of Ri, in terms of length scales combines both the inertial-
buoyancy balance and isotropy factors as Ri, = (Li/Lo)" S(Ln/Lr)? (using

€~ u/Ly)

This is an important question for ocean turbulence which can be of low intensity
(e/vN? < 200) such that turbulence may become anisotropic (Gargett et al., 1984).

The effect of turbulent intensity on isotropy is difficult to ascertain using the
laboratory experiments. This might be because of the internal waves which stand out
at low turbulent intensity, and cloud the evaluation of turbulent kinetic energy and
its dissipation®. However, the effect of isotropy on the prediction of mixing efficiency
as Ri;/3 can be examined.

Figure 4.7 shows the ratio of measured mixing efficiency T' to the upper bound of
the expected mixing efficiency Ri,/3—identical to the ratio of measured to expected
buoyancy flux—versus (A) the degree of isotropy w'/u’ and (B) versus turbulent
intensity ¢/vN%. As expected, isotropy variations of 0.7 to 1 do not affect the predic-
tion of buoyancy flux from Ri;. The buoyancy flux falls short of predictions only for
€/vN? < 45 where the Ri; model fails. It is pussible that internal wave contamination
is related to the observed cut-off value of ¢/vN? (sce discussion in appendix A), or
that viscosity effects do in fact reduce buoyancy flux below ¢/vN* 2 45 as suggested
by Figure 4.7B.

In other words, the degree of isotropy affects Ri, where departure from isotropy is
most noticeable for /v N? < 100 (see Figure A.1). However, the resulting Ri, seems to
predict the correct buoyancy flux. Figure 4.5 shows that, perhaps counter-intuitively,

anisotropy resilts in Ri; < (L;/Lo)*?. Tt is scen by comparing the isotropy-adjusted

3Figure A.1 described in appendix A shows that w'/u’ generally decrcases for ¢/vN?* less than a
few hundred, except for a rise due to internal waves unrelated to turbulence.
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Figure 4.7: Ratio of measured to predicted mixing efficiency versus isotropy w'/u’
and turbulent intensity ¢/vN?. Vertical line in (B) is at €/vN? = 45. Experiments
evolve from high to low values of ¢/v N2,
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Riy & (Ly/Lo)"3(Li/Ly)*® to the unadjusted (Rit)iso = (Lt/Lo)** which over-

estimates the former.

4.6 Relating the turbulent parameters to the

large scale

The applicability of the buoyancy flux model prediction (4.9) is limited. The turbulent
parameter Ris, while easily obtained in the lab, is not easily measured in the ocean.
The mixing efficiency parameterization in terms of Ri, provides a useful framework,
as well as my earlier discussion on the significance ol F'ry, but they may require too
much knowledge about ‘he state of the turbulence to be very useful.

In the previous chapter, it was hypothesized that Ri; is related to the larger scale
gradient Richardson number Ri, if turbulent velocities are produced fromn the mean
shear. The mixing efficiency could thus be inferred from measurements of Ri,. This
model is tested now. If Ri, is a useful substitute to Ri,, then the parameterization
of ' in terms of Ri; allows large scale measurements to be used to infer the state of
the turbulence and its mixing efficiency.

The hypothesis is that

u' = aLTaaU

or equivalently that
NELE 1
Rij=——2f — = _R
5 a?L%(0U]0z)?  a? t
Figure 4.8 shows data from Rohr et al. (1988)* and Stillinger (1981) conducted
in the same tank as the SHV and IHV experiments, but with the addition of a mean

shear flow.’

4Data from Rohr & Van Atta (1987) at three different values of Ri, fit on the same linc as the
Rohr et al. (1988) data.

5The data point from Tavoularis et al. (1981) should be disrcgarded First, it is from an ex-
periment in air (different Prandtl number) Second, they used Ri; = (g/7' T) (0T 102)/ (917 [ 0z)?
Substltutmg their tabled values for Ri,, 8T/8z and U /0z one gets T = 21 Unless these were very
cold air experiments (not noted in the paper) they wrongly used temperature in degrees Celcius
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Figure 4.8: Relation of turbulent parameter L:/Lo to gradient Richardson num-
ber Ri, for an grid turbulence experiment with a mean shear. Includes data from
Stillinger (1981) and Tavoularis & Corrsin (1981). Figure reproduced from Rohr et
al. (1988) (Their Figure 15). Note that (Ri:)is = (L¢/Lo)*? for isotropic turbulence.
The slope of the line is 3/4 such that R, o Ri,.
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The value of L,;/Lo is shown against the gradieat Richardson number R, =
N?/(8U[0z)* where U is the mean velocity, now a function of depth. Turbulence
grows downstream for Ri, < (Ri,)cr, where (Rig)e = 0.25. Recall that for isotropic
turbulence—as expected in the presence of a driving shear—the isotropic turbu-
lent Richardson number (Ri;),, is approximately equal to (L,/Lo)*3, assuming
€ = u/ Ly (this scaling was shown to hold to better than a factor of two in Fig-
ure 4.5). In Figure 4.8 it is shown that for Ri;, < (Ri,). in growing turbulence, the
gradient Richardson number is proportional to (L,/Lo)"?, which is equal to ()i,

The gradient Richardson number can therefore be related to the turbulent pa-
rameter Ri; or Fr,, which quantifies mixing efficiency in our model and in the grid
experiments discussed earlier. Thus, measurements of Rig, £ and N are sufficient to
determine values of ¢, J, and Ry.

If models two and three were proved to be wrong, the fact that Ri, is proportional
to (Li/Lo )*/3 and that L, ~ Lt means that measurements of Ri, and Ly in the occan
would yield indirect measurements of € (but no indication of mixing efficiency).

The proportionality coefficient @ will be discussed in the following scctions.

4.6.1 Link Between the Ri,—Ri, Relation and Inertial-

Buoyancy Balance

The interpretation of Figure 4.8 implies a connection between the Ri, - Ri, relation and
the value of the turbulent Froude number at the inertial-buoyancy balance, (F'r)),s018.

The Ri,~(Ri;).so proporiionality ends at (Riy).. because gradient Richardson
numbers greater than (Ri,)., do not lead to instabilitics and may not provide suffi-
cient shear to completely drive turbulence. Runs with Ri; > (Ri,)., result in decaying
turbulence not unlike unsheared experiments, and the correlation hetween Ri, and
Ri, disappears. The value of Ri, at Ri, > (Ri,)., is thus the inertial-buoyancy value:

the maximum value of Ri, allowed in a turbulent flow, wherc the vertical kinetic

rather than Kelvin to calculate Ri,. Third, the turbulence appears anisotropic. However, it should
be possible to check v’ = a Lt 60U /0z from the original data.
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energy can just overcome buoyancy force.

The value of Ri; at Ri, > 0.25 and the value Ri; = a™* (Ri;)c, should be identical,
and represent the inertial-buoyancy balance values. They are identical within the
error bounds of Figure 4.8. Thus the proportion, a, of the velocity available to the
overturn from the shear, Ly(07 /8z), that is converted to turbulent velocities, u’,
determines the inertial-buoyancy value of Ki, at Ri, = (Riy).,. An empirical value

for a then follows from the inertial-buoyancy value of Ri;, dicussed in the next section.

4.7 Inertial-Buoyancy Balance Value of R,

The values of Ri; and L,/ Lo at the inertial-buoyancy balance are of interest for three
reasons: i) To determine the proportionality constant between Ri, and Ri; such that
the more commoniy measured Ri, can determine the state of the turbulence; ii) To
determine the maximum mixing efficiency predicted by the proposed model two as
~ Ri,/3; iii) To compare oceanic measurements of L7/Lo to laboratory results in
relation to inertial-buoyancy balance values.

There is scatter in the Ri; o< (Ly/Lo)*? relation of Figure 4.8, ranging from
(Li/Lo)*® = 5.6 Riy to (L¢/Lo)"® = 10.4 Ri, (These values are taken by eye from
Figure 4.8 because the data were not tabulated). The corresponding ‘critical’ tur-
bulent Richardson numbers are (Ri;)er = 1.4 to 2.6. For the decaying turbulence
at inertial-buoyancy balance (Ri;, > 0.25) in Figure 4.8, we find L;/Lo ~ 1.45-1.7,
corresponding to Rz, & 1.65 to 2.03. The range of critical values of Ri, is rather large

due to observational errors, but these seem to agree that it is greater than unity.

Maximum Mixing Efficiency in Grid Experiments

Returning to Figure 4.6, the maximum mixing efliciency expected at inertial-buoyancy
balance occurs at Ri, = 0.7, much lower than anticipated from the experiments with
shear described above. There is thus an inconsistency to be resolved between these

data sets. The interpretation found in the original papers is described in appendix B.
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With this inconsistency, one might wonder if the description in section 4.1.1 of
the evolution of the experiment is correct about the inertial-buoyancy balance decay
with constant ratio of Ly/Lo. Figure 4.6 suggests that mixing efliciency reaches a
peak before the decay stage, instead of thereafter remaining constant.

Figure 4.9 shows the downstrcam evolution of Thorpe scales Ly and Ozmidov
scales Lo in a grid-turbulence experiment without a mean shear. The experiment,
evolves from right to left on the figure. Nearly a decade of inertial-buoyancy balance
decay was measured with constant Ly/Lo. There is again a lot of scatter, but | find
approximately Lr/Lo ~ 1.5 during the decay, corresponding to (K1) = 1.7.

Thus the initial discussion in section 4.1.1 is consistent with other data, but not
with Figure 4.2, where all data in the late decay stage are contaminated by internal
waves. This helps to resolve the inconsistency. While it is possible that wp’ correla-
tions are affected by internal waves, it is also possible that that my classification of
these data as internal waves and the mixing cfficiency decrease are both symptoms of
turbulent kinetic energy extinction. If the internal waves were generated at the grid,
they would only become apparent when the initially much stronger turbulent energy
has decayed. Figure 4.10 shows the parameter space L;/Lo versus ¢/vN*? covered
for the SHV and IHV data. The parameter space L;/Lo-¢/vN* is highly correlated;
high intensity turbulence has low Ri; and the reverse. 1t is difficult to separate the
effects of one parameter from the other on the turbulence, which could explain the
misinterpretation of decreasing mixing efficiency as related to L,/ Lo, while it could
be due to low ¢/v N? values.

Data not identified as internal waves (g/(eL,)'/* < 2.2) in Figure 4.10 have a wide
range of €/vN?, but when the turbulence hes evolved to an inertial-buoyancy balance
(Li/Lo = 1.4) it can barely sustain a buoyancy flux, with ¢/yN*% in the range 15 to

25.% As discussed in section 4.5, it is possible that viscosity effects reduce buoyancy

6The exact value of ¢/vN? needed to sustain a buoyancy flux 1s discussed in appendix A. Also,
data with 10 < ¢/vN? < 100 fall in both categories of turbulence and internal waves, suggesting
that €¢/uN? is not the critical parameter to classify data as internal waves. As an additional test,
the ratio q/(eL;)}/® was plotted against ¢/vN? and no value of ¢/yN? could consistently scparate
turbulence from internal waves for all experiments
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flux below ¢/vN? =5 45 as suggested by Figure 4.7B. This is a lower turbulent intensity
than Gargett et al. (1984) reported for departure from isotropy. Perhaps anisotropy
occurs first during the decay, followed later by a reduction in mixing efficiency also
due to the effects of viscosity.

Thus, in summary, data sets from SHV and IHV cannot provide information about
the mixing efficiency during the inertial-buoyancy balanced decay because of the very
low turbulent inlensity at that stage of the evolution (e.g. Figure 4.2). Other sketchy
data from Figure 4.8 from Rohr et al. (1988) and Stillinger (1981) and from Figure 4.9
reproduced from Itsweire (1984) indicate that the inertial buoyancy balance value of
Ri, is in the range of 1.4 to 1.7. Taking a middle ground value of 1.55, one obtains a
maximum mixing efficiency of [' ~ Ri;/3 ~ 0.52 using the upper bound of (4.9). In

terms of turbulent Froude number, this becomes
(Fro)uors ~ 0.8 (4.11)

The relation between velocity fluctuations and shear is thus given approximately
by
ovu
'~ 04 Ly (4.12)

4
where the factor of 0.4 comes from Ri; = % Ri, using critical values to determine a
from 5 & 1.55/0.25 ~ 6.2; This factor is only known approximately. Equivently, the

gradient and turbulent Richardson numbers are related approximately by

Ri, ~ 6.2 Ri, (4.13)

4.8 Summary and Discussion
The main results of this chapter are that

o The Kolmogorov scaling for turbulent velocity fluctuations € ~ (u/L;)(w' /u'),
where L, is p,/(9p/0z) and where L;(u'/w’) is used to approximate the hori-

zontal turbulent length scale, was shown to hold (to much better than a factor
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of two), at least for slight isotropy (w'/u’ varied from 0.7 to 1). Note that
turbulent velocities and length scales, buoyancy flux and TKE dissipation rates
are all time-averages at various locations behind the grid. 1t is not obvious how
these results can be extrapolated to individual overturns, or even to individual

profile measurements of a steadily forced mixing layer.
¢ is well approximated by N2L?/2 in the laboratory expe-iments.

Mixing efficiency was well within a foctor of two modelled by Rz, /3, the upper

limit of the expected result for modcl two.

Even though anisotropy reduces Ri;, possibly as a result of viscosity at ¢/vN? <
200 (Gargett et al., 1984), the resulting Ri, still modcls the mixing efficiency
well until about ¢/vN? < 45. This later value of mixing intensity is an upper
limit (The actual cutt-off value could be lower), as the lab data may contain
internal wave energy at this turbulent intensity. This implics that dividing the
measured APEF by a decay time would be a good estimate of buoyancy flux

for turbulent intensities as low as e¢/vN? = 45
¢ Large and turbulent scales are related in the following way:

- R =~ :—2Rig, from a model relating turbulent velocity fluctuations to
the mean shear and overturning scale as v’ & « Ly(9U/8z), where a is a

constant.

— The constant @ was shown to be related to the inertial-buoyancy halance
of Ri;, which in turn determines the maximum mixing efficicncy of the
model.

The relation is such that (Fr) 25 = (Rit)er & % (Riy)er, where (Riy)er

is the inertial-buoyancy value and (Ri,).. = 0.25

— The value of (Ri;). is uncertain with current data, but seems to be ap-
prox' nately 1.55 (at best within a factor of two).

The corresponding turbulent Froude number at isotropic inertial-buoyancy

S D SO S e

o
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balance is (F'ry)uors = 0.8 This corresponds to a ~ 0.4 using (Rig)e =
0.25.

This corresponds to Ri, = 6.2 Ry,

The above results tend to substantiate the major assumptions and predictions of
the sccond model of chapter 3 for isotropic growing turbulence, for which buoyancy
flux is given by ¢ divided by a timescale set by turbulent overturning. This is true
al lcast for averaged data, where redistribution of kinetic and potential energy can
also be neglected. The extrapolation to single sampling profiles of a mixing layer is
unclear.

Another implication is that model one, which assumes a constant mixing efficiency,
would over-estimate buoyancy flux by 2 orders of magnitude in the early stages of
growth in these laboratory experiments. Model one would have to be set aside if
mixing cfliciency (and Fr;) is found to vary likewise in the ocean (not always at
inertial-buoyancy balance), although it is likely to hold for breaking internal waves in
the ocean interior.

The determination of the inertial-buoyancy balance value of Ri; is problematic.
The lab experiments are not well designed for this purpose. The iniiial overturn
size, mostly determined from the grid mesh size, is too small relative to the Ozmidov
scale Lo = (c/N?)'/2, which is fairly close to the final overturn size at the end
of growth. Turbulent intensity falls ¢if before turbulence fully evolves to inertial-
buoyancy balance. A proper parameter range would show a knee in Figure 4.10: the
increasc ol Ly/ Lo would stop, while values of €/vN? would continue to decrease. The
flat L,/ Lo range would correspond to the inertial-buoyancy balanced decay.

Future experiments should focus on the inertial-buoyancy balance to better quan-
tify (Ri;)er. The parameter is important because it determines the maximum mixing
efliciency possible. Perhaps more importantly, (R:;)., also determines the proportion-
ality coefficient betwecn the gradient Richardson number and the turbulent Richard-

son number.
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However, these considerations assume that these results are relevant to the ocean.
Questions must be answered before this can be assumed. Does the ocean mix at a
wide range of turbulent Richardson numbers leading to a range in mixing efficiencies?
Or does the ocean mixing layers quickly evolve to steady-state isotropic turbulence at
inertial-buoyancy balance? If so, can my predicted inertial-buoyancy balance mixing,
efficiency (for isotropic turbulence) of 0.5 be reconciled with Oakey’s (1985) result?

of 0.40. These questions is will addressed in the next 2 chapters.

7Qakey(1985) obtains I' = 0.265 assuming a factor of 2 (partial) rather than 3 (full) for isotropy.
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Chapter 5

Comparison of the Mixing Models

in the Ocean

In this chapter, oceanic and fresh water turbulence data reported by Dillon (1982)
and used again by Dillon (1984) and Dillon et al. (1987) are used with the following

purposes in mind:
o To test the 3 models put forward in chapter 3 with oceanic data.

e To compare Dillon’s models to each other. Dillon et al. (1987) put forward an
empirical relation between buoyancy flux and ¢ N, but never compared it to
carlier relations between the buoyancy flux and L7 and between the dissipation

of turbulent kinetic energy and Ly (Dillon, 1982).

o To determine the value of the turbulent Froude number F'r, at isotropic inertial-
buoyancy-balance . This value is important because it determines the maximum

mixing efliciency and the constant relating Ri; to Ri,.

¢ To determine the range of F'r, and T values for oceanic turbulence to see if model

two and three are really any different from model one in oceanic conditions.

The Dillon data set is divided in cases called A, B and C in this chapter. The reader

is referred to appendix C for a description of the cases, and of Dillon’s results. The

106
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data were obtained at Ocean Station P during the MILE experiment (Series A and B)
and at Green Peter Reservoir (Series C). All of Dillon’s data are mostly temperature-
stratified such that temperature Thorpe fluctuations 7" will be used instead of using,
density fluctuations p’ (sec appendix C). The turbulent Froude number Fr, was not
measured by Dillon, but layer-averages for €, N, and Ly will make it possible to extract
Fr; and to calculate the buoyancy flux predicied by the models. Measurement of the
dissipation of temperature variance yy are also available for the layers. These can be
related easily to the potential energy dissipation. The approximation that this term
equals J, is made throughout this chapter. Buoyancy flux predictions can then be

compared to overturn-scale observations.

5.1 Calculation of N2

The APEF must be evaluated to compare model predictions for J,, from chapter 3 to
observations. Dillon first defined the APEF in his 1984 paper; it is not tabulated in
his 1982 paper along with other layer-averaged quantitics. An approximation must
therefore be made using the stratification against which work is done by overturning.
However, this stratification definition may differ from the large scale stratification
used, for example, in parameterizing mixing rates in terms of K,. Dillon’s layer
averages are examined here to determine if his tabled values of N? are large scale
parameterization or representative of the overturns.

In Chapter 2, it was shown that ¢ was well approximated by N2L34/2 when N2 =
(g9/p) Bp/0z is calculated by a least-squares fit on the re-ordered density profile of
an overturn. However, a larger-scale parameterization with N obtained over a span
containing non-overturning portions led to overestimating £ by a factor of 2 to 2.4
for the layer, since the stratification is lower within overturns'. Dillon calculated N?
over 50 cm segments of the re-ordered profiles, and averaged together the segments

associated with overturns, sometimes enclosing 25-50 ctn outside of the overturns,

1Crawford (1986) does a similar analysis and findg that £ 18 overestimated by a factor of 2.8 when
bulk stratification 1s used.
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When the span of an individual overturn was not obvious, parameters were averaged
over a depth span of similar statistical distributions. Thus the averaging spans of
data tabled by Dillon (1982) should be somewhere in between overturn spans and a
large-scale parameterization.

In chapter 2, it was shown that if Ly ~ T’21/2/ (0T,/0=) then 8T,/dz was repre-
sentative of overturns instead of larger scales (In chapter 2, density fluctuations were
used instead of temperature). Figure 5.1 tests this, using values of 0T,/dz, Lt and
T'. There is lictle scatter for the two oceanic cases A and B, with an average on the
mean of 8T,/0z = 1.85 T_’21/2/ Lr. (from T’—21/2/LT = 0.54 8T,/ 8z, since regressions
were performed minimizing variance in the ordinate) In Chapter 2 statistics on a mix-
ing patch in the St. Lawrence estuary yielded 0T,/0z = 0.93 TR/’ /Ly when 8T,/0z
was evaluated over distinct overturns, and 87T,/9z = 2.14 T/ /Ly when 0T,/ 0z was
evaluated over spans enclosing many overturns. Thus the data in Series A and B seem
to have been evaluated over spans which include sharper gradients than those found
within the overturns. Series C, the fresh water case, has many points with d7T,/0z
greatly exceeding T2 /L. This can lead to great errors in the models put forward
in this chapter, as well as in the estimated measured buoyancy flux agys/2(0T/0z).

Because N? is representative of larger scales than overturns, the APEF approxima-
tion N2L% /2 is expected to over-estimate by a factor of 2 (from the above comparison

Tml/l

this approximation would result in extra scatter. The only APEF approximation using

/Ly = 0.54T,/dz). Verifying the buoyuncy flux models from chapter 3 using

larger scale averages that was shown to work in chapter 2 is ¢ ~ (1/2)(g/p)p" ke L.
We will show in the next section that this relation does in fact lead to less scatter

compatred to buoyancy flux.

2The regressions shown in Figure 5.1, as well as in all log-log figures in this chapter, are performed
in logarithmic space. The confidence interval on the mean is expressed as 109%¢ = { @ x/. 10¢,
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Figure 5.1: Comparison of estimated temperature gradient within overiurns 7'/ /Ly
to measured gradient 8T,/0z for two oceanic cases (Series A and B) and a fresh water
reservoir (Series C). The gradient T /0z is evaluated on the re-ordered profile over

overturn-containing spans; 7’771/2/ Lt is an estimate of the local gradient within the
overturns and is found to be lower than OT,/dz. Data arc classified by turbulent
intensity ¢/v/N2. Open symbols are well resolved; filled symbols are marginally re-
solved. Regression are on points with ¢/v/N? > 200. Data are from tables in Dillon.

(1982).
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5.2 Dilion’s Relations

In this section, the models inferred from Dillon’s relations Ly-Lo and Lr-Lg (ex-
plained in appendix B) are examined more closely and discussed. Dillon compared
the Lr~Lo and Ly-Lpg relations, but did not compare his later J, = 4.8 N model
to the first two. His first two models are related to the APEF and its commonly used
approximation N?L3./2.

The results of chapter 2 will be confirmed, showing that the density gradient within
overturns is well approximated by bulk properties as 1721/2 /Lr, such that the APEF
approximation N?L2./2 works well by substituting that gradient into the expression
for N2. Also confirmed will be that N2L2/2 over-estimates ¢ by a factor of two if a
bulk N? is used.

Of Dillon’s relations, the one that best matches his data will be determined, such

that it can be related to and compared to the models from chapter 3.

5.2.1 Relationship Between ¢ and Ly

The relation Ly/Lo = 1.17 was found to hold for oceanic series B (see appendix B,
Figure C.1) Substituting the definition of Lo = (¢/N3)!/2 leads to

e~ 0.7TL3N® (5.1)

using N? calculated over a larger scale than that of the overturns.
This is identical to the first model from chapter 3 (apart from the coefficient): the

traditional view relating overturns to mixing.

5.2.2 Buoyancy Flux Relation to Thorpe Scale

Dillon’s relation Ly/Lp = 1.23, where L = (J,/N3)'/? leads to

Jy ~ 0.65L3N? (5.2)
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Comparing (5.1) to (5.2), the combined data sets have an average mixing efficiency
I' = J;/e of order unity. This high value compared to other oceanic observations of
I' (e.g. Oakey (1985)) will be discussed in section 5.5.

Both relations inferred from Dillon are compared in the top two panels of Fig-
ure 5.2, Comparing top and middle panels suggests that the Thorpe scale is a better
predictor of buoyancy flux than of dissipation, especially for Series A and C where the
mixing efficiency is much lower. The Lo~Lq relation seems to depend on a constant

mixing efficiency, as Dillon suggested (See appendix C).

5.2.3 Test of the Models

The term LZN3 in (5.2) could be interpreted as 2£ N since £ is often approximated
as LZN?/2. We would now like to test which of J, oc LAN3 cor J, oc € N results in
a better description of the data, as J, o { N corresponds to our model threc and
Dillon et al’s (1987) empirical result. Dillon did not table values of £, so that an
approximation must first be chosen. The actual cocllicients in the models will be
discussed later.

Bulk stratification N2 greatly over-estimates overturn stratification for points with
(Wl""/LT)/(aT/az) < 0.2 ir he middle panels of Figure 5.2.* For thesc points,
L% N3 consistently over-estimates J; (middle panels) because N appears to a higher
power then in the lower panels. This implies that the stratification local to the
overturns is a more relevant factor. The approximation of ¢ in the lowest panels
of Figure 5.2 uses { = N2L%/2 with a local stratification N? estimated as N% =
agT_’f]/ 2/LT. The approximation is £ = (ag/2)771/2L7v, shown in chapter 2 to be
best for layer averaged Thorpe quantities.

Consistent with the results of chapter 2, the estimated APEF from L4N?/2 is
1.9 times higher than from (ag/2)T_'71/2LTN by comparing the middle and lower

panels of Figure 5.2. To see which of the two approximations is accurate, at

3The ratio (T’El/z/LT)/(a'T/az) is not affected by a reduction in Ly by averaging overturns

. . =—1/2
along with non-overturning regions, because 772 "~ is reduced 1n exactly the same manner,
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least in an average sense, we compare it to Dillon et al’s (1987) calculation of a
mean (agxe/20T/0z)/(€ N) ratio, using the definition form of the APEF. Here 1
am assuming that buoyancy flux equals the dissipation of potential energy J, =
(ag/2)xe/(0T/0z) (e.g. Equation (3.10) assuming that the time-detrivative is zcro);
Dillon et al. (1987) did not require this assumption, comparing £N to the dissipa-
tion of potential energy without assumptions about J,. Dillon et al. (1987) found
Jo/(E N) = 4.8 (replacing the dissipation of potential energy by simply J, in the
notation, whereas a similar calculation in linear space yields J,/ (ag/2)7f'7|/2b'pN
= 4.38. This indicates that (ag/?)T—'ilﬁLT is a good approximation of £, and that
N%L%/2 is an over-estimate by a factor of two, as predicted from Figure 5.1.
Comparing the middle and lower panels of Figure 5.2 tests which of J, o< LN or
Jp o € N results in the better fit. Note that even in the £ N panel, there is a slight bias
toward over-estimating J; for data with ¢/v N? < 200, although this is mostly true in
Series C, the fresh water case. Those data have been removed from the least squares
fit regression in the right-hand panels. Since data with (7751/2/ L)/ (8T [8z) < 0.2
yield a better fit in the lower panels of Figure 5.2 than in the middle panels, and that
the fit for all data appears (judged by eye only, as the statistics only yield confidence
errors on the mean, not information on the variance explained by the regression) to be
generally bette: in the lower panels, we conclude that using a better approximation
of £ appears to result in a better fit to J; using a decay time of N™! for the APEF.
Dillon et al.’s (1987) last relation for buoyancy flux from the APEF, as J, = 4.8 N
is then his best fitting for buoyancy flux. The Ly—Lo relation is incidental. It requires
that the mixing efficiency is constant, which is not a general result (see Appendix C

and Figure 5.4 for details).
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5.3 Comparison of Models Two and Three to Dil-
lon’s Data

Dillon’s best-fitting relation to his data is J, = 4.8¢ N (assuming that the buoy-
ancy flux equals the potential energy dissipation). Except for the coefficient, this
is my third model, describing turbulence at inertial-buoyancy where the horizontal
turbulent length scale has evolved to the Ozmidov (inertial-buoyancy) length scale
Lo.

Let us now compare Dillon’s data to both my second and third models. The aim
is to sce if one is preferable to the other for Dillon’s data.

As just discussed, the third model is written as
Bl _[3 .17 agzm12
J,,—[4:t4]§N_[4:I:Z] 9T Ly N (53)

The discrepancy between the model’s coefficient and that of Dillon et al.’s (1987)
result of J, = 4.8¢ N will be discussed later.

5.3.1 Model Two Re-derived

To compare data with model two, it must be written in a form which minimizes

approximations. Recall that the second model describes growing isotropic turbulence.
It is written as

3 1

h=[5+g

G V!

Unfortunately, the turbulent Froude number is not (usually) a measured quantity

] %fNFrt (5.4)

in the ocean, nor was it in Dillon’s data. Since ¢ was measured and ¢ can be ap-
proximated, a form such as (3.23) could be used to infer Fry and yield (3.24) as the
second model’s buoyancy flux. However, the derivation of (3.23) assumed that ¢ was
well approximated by N?L2/2 which has be shown not to be true for this data set.
A buoyancy flux prediction for the second model is now derived using approxi-

mations that best employ the data available. Using the scaling ¢ &~ w3/Lr which
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has been shown to hold quite well for grid-turbulence (this model assumes isotropy,
Lt = L}), the tubulen! Froude number can be written
o' 6|/3

Fr, = -

(5.5)

such that the APEF approximation N?[2/2 usually used is avoided. Combining (5.4)
and (5.5), and using the better APEF approximation £ = (ag/ 2)7’751/2 Ly, we obtain
an expression for the buoyancy flux of the second model as*

_[3 .1 AG 751 /2 1173 13 86
Jb = [4 + 4] 3 1 IJT (% (n)-())

5.3.2 Comparisons of the Models

The grid-turbulence experiments agrced with the upper bound of the second model
in chapter 4. In that case, the turbulence was obviously growing because it is created
at small scales by a grid. In the ocean, the state of the turbulence is unknown and
either the isotropic growing turbulence model, or the stcady-state inertial-buoyancy
balance model could hold.

The upper bound of the buoyancy flux predictions (5.3) and (5.6) are compared
to the measured potential energy dissipation in Figure 5.3. Differences are subtle,
especially if only high turbulent intensity data are considered (see right hand pancls).
It would be difficult to convince anyone to use onc model rather than the other with
the slight gains that would be afforded. It is possible that the dynamics of the mi;ing
layers is sometimes appropriate to the second model (growing turbulence) and some
other times appropriate to the third (steady-state). Data from case C appear to have
less scatter in the the second model (J, o< £ N F'r,). The next section investigates

model differences further.

“The N cancels out by combining (5.4) and (5.5) to obtain (5.6), but in fact it never enters
the equation when it is considered using the decay time. Starting with J, = [;:- + %] £t7', where
t, = (3u'2/2)/e, the same substitution used in (5.5) gives t;' = (2/3)L%/%c~1/3. Buoyancy flux
is then given by (5.6) without ever using N. This means that (5.6) is not sensitive to large scale

parameterisation of N? = ag(dT/8z) # Ozg(T'El/2 /Lr).
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Figure 5.3: Comparison of two derivations of the bucy:ncy flux models from Chap-
ter 3. The top two panels compare (é N) to J, approximating ¢ as (ag/2)T—'51/2LT
(and J, is approximated by the dissipation of potential energy in all panels). The bot-

tom panels compare ((2/3){NF'r;) to Jy, where (2/3){ N F'r; is best approximated by
(ag/B)Tﬁl/ 2LY?¢'/3 for Dillon’s tabled data. Data are coded by the data set, by tur-
bulent intensity (open symbols have ¢/vN? < 200; solid symbols have ¢/¥N? > 200)
and circled data have (T’il/z/ L;)/(0T/8z) < 0.2. The left-hand side panels include

all data and the right-hand side ones include only data with ¢/vN? > 200.
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5.4 Comparison of Mixing Efficiencies

The main difference in the predictions between the isotropic growing turbulence model
(5.4) and the anisotropic fully developed turbulence model (5.3) is that the fiest is
dependent on Fr; and the other is not; this translates to one being dependent on ¢
in (5.6) and the other not in (5.3). The models predict similar buoyancy fluxes only
where physics converges: at inertial-buoyancy balance and at isotropy. Both of these
parameters determine the ratio L%/ (L‘g 3Li/ %} which quantifics the mixing efliciency
for both models. Comparison of the mixing efficiencies predicted by the two models

with the measured mixing efficiency should highlight any differences between models.”

Model 2; Isotropic Case

For the isotropic model, the predicted mixing efficiency is written as

3 1 s 3 9/
0= [7ag] T (57)

using I' = Jy/€ and (5.6).

Model 3; Steady-State Case

For the steady-state inertial-buoyancy balance model, the predicted mixing cfficiency
is

_[3 L 1] 2972 - N
I‘_[4j:4] 9T Ly N ¢ (5.8)

using (5.3).

5If the Lo = (¢/N3)Y/? parameterisation were done using N local to overturns, two relations
for mixing efficiency could easily be compared: T = (Lr/Lo)"?/3 for the isotropic case and [' =
(Lr/Lo)?/2 for the non-isotropic case. Unfortunately, a correction must be made because 9T'/02 £

1 2 . . . . . . .
T'2""" [ Ly. The analysis becomes complicated and, as it turns ou, is not. conclusive It is therefore
not included here.
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5.4.1 Predicted Mixing Efficiency Comparison

In Figure 5.4, the model predictions are compared to the measured mixing efficiency.
The regressions have large confidence intervals on the slopes, and so were also per-
formed by least squares on the abscissae as well as on the usual ordinates. The
geometric mean of the two slopes yields the ‘geometric mean of the function regres-
sion of the ordinate on the abscissa’, also called the GM regression (Ricker, 1973). It
1epresents a belier estimate of the slope if errors exist in both the abscise and the
ordinate.

The predicted and measured mixing efficiency have a GM regression power law
very close to unity for the combined series A and B using the third model (Figure 5.4D,
highlighted). Using this criterion, the steady-state model three is a better predictor

for those data. Forcing a power law of unity, the best fit is

I‘model 3= (0'28x/+1-21) Fmeasured (5°9)

However, series C is not well fitted by either model. The model coming closest to
a one-to-onc power law is the isotropic model (Figure 5.4A, highlighted). The GM
regression is a power law of 1.2. Forcing a power law of unity, the best fit for series C
18
I'inodel 2 = (0-31%/:1.27) T peasured (5.10)
In conclusion, Series A and B are quite different from Series C. Oceanic series
A and B are found to marginally match predictions for the buoyancy flux model
derived from the APEF dissipated in a time scale N~1, af least within a multiplicative
constant. Fresh wator series C data have more scatter, and could be marginally
associated with the isotropic turbulence model of growing turbulence.
In both cases, the predicted mixing efficiency is 3 times lower than the measured

mixing efliciency. This is discussed next.
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Figure 5.4: Mixing Efficiency compared to Models. A- Second model mixing efficiency
prediction versus measure mixing efficiency for series C. GM regression has I'y,q0
I''2; B- Second model for series A and B. GM regression has 1',04. o< '*7; C- "Third
model for series C. GM regression has I',,,4 o< [''7; D= Third model for series A and
B. GM regression has Crmoger o T%%7; All regression are on data with ¢/uN* > 200.
Thick lines are z regressed on y; thin lines are y regressed on z, solid lines have forced
slope and dashed lines have best fitting slopes. Highlighted panels A and D indicate

best fitting model.
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5.5 Possible Bias in the Dillon Data Set

If both the buoyancy flux and mixing efficiency of Dillon’s data are much higher than
predicled by either the second or third model, then either the models are wrong or
the data set is biased. While the mean mixing efficiency of the data set is close to
unity, many individual values are above 1. In fact, 24 of the 56 data points of Series
A and B heve T' > 1.

QOakey (1985) obtains ' from simultaneous measurements of both xs and € in
275 10-15 m blocks. He finds values ranging from 0.01 to 1, with a mean of 0.265
(assuming a log-normal distribution) and one standard deviation confidence interval
as 0.066 < T' < 0.436.¢ Thus, Dillon’s mixing efficiency seems high in comparison.

Possible bias could come from errors in 8T/8z, € or xy. These will be considered
in turn, althought it must be emphasized that there is no proof that any of Dillon’s
data are biased; they simply do not match models shown here, and have unusually

high mixing efficiencies.

5.5.1 Possible Bias in T/9z

The stratification N? = ag(0T/z), averaged over a layer containing many overturns,
has been shown to over-estimate the re-ordered density gradient within overturns,
such that 772"/ /Ly > 0T/8z. An APEF approximation insensitive to this error was
used, but a multiplication by an uncorrectea N remains in the third model expression
for mixing efficiency (5.8).

A rationale for the better APEF approximation used is as follows: if overturning
statistics are averaged within a bin, but the APEF comes from one overturn within

that bin, then using T/? /L7 to approximate the overturn’s density gradient makes

8Q0akey uses a lower isotropy coefficient, namely Jy = (ag/3)xs/(0T/0z) such that bis values
should be multiplied by 1.5 to be compared with Dillon’s. Alternatively, Dillon’s values could be
adjusted to Qakey’s. We choose here to assume full isotropy for consistency with earlier derivations
which assumed it also.
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more sense than using d7/dz. The same argument could be used for the the dissi-
pation of potential energy. If all the temperature fluctuation variance is dissipated
within that overturn as well, then the dissipation of potential encrgy o< (9T/9z)~"
should be better approximated substituting 77l /Ly for OT 0z,

Unfortunately, if TEU?/LT is used in place of 0T/z in the calculation of the
dissipation of potential energy and the buoyancy flux expression of the third model
(5.3), then the discrepancy increases further between (5.3) and the dissipation of
potential energy. This correction could not bring Dillon’s data in line with models

two and three.

5.5.2 Possible Bias in ¢

Let us consider the possibility that dissipation of turbulent kinctic cnergy is under-
estimated. The buoyancy flux prediction from the third model (5.3) is not a function
of €. Therefore, € adjustments have no effect on fits with observations, either in terins
of buoyancy flux or mixing efficiency.

On the other hand, the buoyancy flux of the sccond model (5.6) is proportional
to €/3. The model’s buoyancy flux must be increased by a factor of three to fit the
observations. This requires an increase of € by a factor 27, and would make mixing
efficiencies 27 times lower. This is such a large factor that it is unlikely that Dillon’s
observed mixing efficiency can be brought into line with the models by presuming

that a bias in € exists,

5.5.3 Possible Bias in yy

Changes in x4 have no bearing on predictions of buoyancy flux or mixing efficiency for
either model. Therefore, all observations of buoyancy flux and mixing efficiency would
be consistent with the models, and with Oakey’s observations of mixing efficiency, by
reducing xy by a factor of 3.

Dillon (1982) approximates his error level in x4 as 30%. This is of course not com-

patible with my suggestion that x, is over-estimated by a factor of 3. Nevertheless,
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for Dillon to be correct aboul both x4 and € implies that he has measured a mean
mixing efficiency cf order unity and measured maximum values of ~ 4. These num-
bers are unusually high (e.g. Oakey (1985) obtains I' from 0.01 to 1, with a mean of
0.265). Note that Marmorino (1991) plotted observations of Ly versus (krCy/N)Y/?,
equivalent to showing 1L4N? versus N2k7C;, and obtained values of N?k7C; from
half to a tenth of the values of Dillon. These arguments taken together suggest that
Dillon’s measurements of xg are over-estimated by a factor of 3. If this were the case,

series A and B would then be consistent with my third model, and series C would be

marginally consistent with my second model.

5.6 Summary

In this chapter, the buoyancy flux models of chapter 3 were tested on Dillon’s data
sets consisting of two oceanic cases (Series A and B) and one fresh water reservoir

(Series C). The results are summarized as follows:

o Dillon’s (1982) verification of the Ozmidov scale Lo relation to the Thorpe scale
Lt holds only for series B. In that case the turbulent Froude number Fr;, and
therefore the mixing efficiency, does not vary much. This is equivalent to model
one discussed in chapter 3, relating the rate of dissipation of turbulent kinetic
energy to EN. It is not a general result because it fails in series A and C, with
surface mixed layer data. This is not a new result as Dillon (1982) noted this,

but it 1s included here to contrast model one with models two and three.

e Dillon’s layer averages were shown to include non-overturning parts of the water
column. The stratification listed by Dillon over-estimates stratification local to
overturns. The APEF approximation N2L%/2 is an over-estimate by a factor
of 2 to 3 for this data.
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— As a corollary. the ratio of Ly /Lo is ambiguous even when used to quantify
the inertial-buoyancy balance value; this usage was discussed for grid-
turbulence. The reason is that the value of Lo = (¢/N®)'/? obtained
depends on how N? is evaluated. In this case, N? is a layer-average (see
section 5.1). For the lab experiments, it measured the stratification that

overturns worked against. This makes comparisons diflicult.

o Dillon et al’s (1987) empirical relation J, = 4.8 N better fits his data than
earlier models € o« L% N3 and J, o« LZN®. In the second case, it is because
N?L% /2 only approximates £. Dillon et al.’s (1987) empirical relation is consis-
tent with the third model, except for a much higher coefficient used by Dillon
et al. (1987).

Dillon’s series A and B are consistent with the third model, which assumes
inertial-buoyancy balance. The Ozmidov scale Lo 1s the horizontal turbulent
length scale Ly, generally greater than the Thorpe scale Ly representing the

vertical turbulent length scale. The buoyancy flux is related to the decay of the
APEF over a time scale N71,

Dillon’s fresh water series C is somewhat consistent with the second model.
It describes growing isotropic turbulence. The buoyancy flux is related to the
decay of the APEF over a time scale (3/2)L;/*c\/3,

While both models are consistent with different parts of the data, the predicted
buoyancy flux for both models is a factor of 3 smaller than the observations. The
mean mixing efficiency is of order unity, much higher than is normally observed.
It is suggested here that his values of xy are too high by a factor of 3. It is
suggested that Dillon et al.’s (1987) relation not be used until this possibility
is clarified because it is based on this likely over-estimate. The decay time of
models two and three cannot be increased by a factor of three to accommodate

Dillon’s data because it is set equal to the decay time of the turbulent kinetic
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energy, and there is no physical basis for such an increase. Also, the decay time

used in model two matches grid-turbulence results.

e Figure 5.4 shows that measured mixing efficiency (even if 3 times too high)
varies by 2 orders of magnitude over the 3 series. This suggests that the first
model Lt & Lo should generally not be used for oceanic turbulence in strongly

forced cases

The great range of mixing efficiencies found from Dillon’s data can be mostly
explained not by a lognormal distri“ution and some form of intermittency, but
rather by the effect of F'r, on the turbulence. It would be very interesting to

see if Qakey’s (1985) observed variations could also be explained by this model.

— With over 2 decades of variations of mixing efficiency observed in Fig-
ure 5.4, the turbulent Froude number varies by one decade. The difference
hetween the buoyancy fluxes of the second and third models is then a factor

of 10 (see Figure 5.3, series C for models two and three).

o The maximum turbulent Froude number (at isotropic inertial-buoyancy bal-
ance) cannot be easily extracted from Dillor’s data. Buoyancy flux estimates
are possibly too high by a factor of 3, and model predictions have a lot of
scatter versus observations. The maximum mixing efficiency could be greater
than 1, indeed greater than expected in chapter 4 (= 0.50). It is clear that
most data are not at inertial-buoyancy balance, making it more difficult to de-
termine its value, and a better proportionality coeflicient between Ri, and Ri,

(see chapter 4).

The data presented here show that model one is not a general result and should
be discarded in strongly mixed ocearic regimes. It may still apply to internal wave
breaking through K-H instability, although no such example is clearly shown in this
thesis. Without an indication of the state of the turbulence, it is difficult to determine

which of model two or three should be used. Using the wrong one introduces errors
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in the estimation of buoyancy flux, but none as greal, as assuming a constant mixing

efficiency of one quarter since it varies by two orders of magnitude.
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Chapter 6

Emerald Basin: A Test Case

An oceanic test case for the buoyancy flux model was shown in chapter 5 using Dillon’s
tabled results (Dillon, 1982). A few unanswered questions are briefly tackled in this
chapter using data from Emerald basin made available by Hans Van Haren from the
Dawson 90014 Boundary Layer Study (Oakey, 1990).

Dillon’s data were averaged within mixing layers where both overturning scales
and dissipation were well resolved. Interpretation of the results is limited in a few

ways:

e Dillon’s averaging depth spans included non-overturning spans where stratifica-
tion is greater than within the overturns. Thus, the amount of data averaging
is uncertain. Docs averaging over single overturns compare well with 10-m

averages (similar to what Dillon tabulated)?

o Finestructure and microstructure parameters were only compared by Dillon in
layers where both were resolved (for obvious reasons). Yet if measurements
of overturning are to replace microstructure measurements (in energetic cases)
it must be known how successfully thev can be interpreted without a-priori
knowledge of the dissipation. Two questions address this issue:

How much of the rate of dissipation of TKE is accounted for by overturning?

How much of the overturning is accounted for by the rate of dissipation of TKE?

126



This kind of ‘negative’ information, telling us how well the inethods fair globally,

is very useful because it quantifies how well one quantity maps to the other.

e Are there any difficulties in identifying overturns? Dillon’s tabulated data were
already layer-averages; I have not yet shown an application where 1 have iden-

tified overturns and discussed difficulties.

The last point about difficulties in identifying overturns concerns mainly sampling
problems. Indeed, temperature is often used instead of density to measure overturn-
ing events. This is because measuring temperature requires only one sensor, while
the calculation of density requires the combination of temperature and conductivity
data. To get an accurate density reading, the temperature and conductivity must be
measured as close together in space and time as possible, so that the temperature
of the water in the conductivity cell is as close as possible to that measured by the
temperature sensor. Also, the frequency response of the sensors must also be closcly
matched. For these reasons, density is more difficult to measure within overturn-
ing events where spatial gradients of temperature and density arc enhanced. Thus
temperature is often used instead, presuming a tight 7-5 relation exists. But if the
T-S relation is not tight, stable temperature inversions can be falscly interpreted as
overturns. These concerns will be addressed briefly in this chapter, and in greater

details in chapter 7.

6.1 Emerald Basin Microstructure Data

The Emerald Basin experiment was conducted October 9th to 16th 1990 to study
boundary layer mixing processes on the western edge of Emerald Basin. The site was
chosen for its bottom slope of between 1 and 2% and little along-isobath variability
(Oakey, 1990). It is shown in Figure 6.1.

The rate of dissipation of turbulent kinetic energy and the temperature were
measured using the vertical profiler EPSONDE in series of consecutive profiles from

the drifting ship. An uninterrupted series of EPSONDE drops taken while drifting
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Figure 6.1: Samplin
duced from Qakey (

g Site shown as the circle on the
1990)

edge of Emerald basin. Repro-
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will be is called a sequence in this chapter. The 190 profile locations are shown in
Figure 6.2.

The dissipation data were obtaincd using direct measurements of vertical shear
to dissipation scales averaged over vertical bins of approximately 3.4 m using the
EPSONDE profiler. Temperature was also recorded by EPSONDLE at approximately
2 cm intervals, although a version of the data with 40 ¢m intervals is used here.

The advantage of this data is that dissipation and temperature are measured from
the same instrument. If the instrument falls through a dissipative overturning event,
then both the dissipation and the APEF should be high. 1f the sensors were not on the
same vehicle, many profiles would have to be averaged together to allow comparisons
between dissipation and finestructure because different profilers would not likely pass
through exactly the same mixing and finestructure conditions. Another advantage
is that dissipation is measured directly; in Dillon’s data, dissipation was obtained
indirectly from the temperature spectra using the Batchelor method.

It is unfortunate that the best data set available was not used for this chapter
as data with 2 cm resolution exists (versus 40 ¢m used here). Data were obtained
second-hand and this resulted in my misunderstanding of the full data set. Sooner
presentation of my results to the principal investigator, Neil Qakey, would have re-
sulted in an earlier detection of this. Data analyses were completed with the alternate
data set before I learned that a better data set existed. In particular, dissipation of
temperature variance (xg) data are available, taken simultaneously with ¢ data used
here. I was not aware of this. Future analyses of that data could be done to infer the
dissipation of potential energy and compare it directly with the overturning models
two and three for buoyancy flux. This would yield a much hetter comparison than
the one presented here against € only, where the two models cannot he differentiated.

The interpretation of the data set is thus not without problems. The temperature
sampling interval of 40 cm is large to sample overturns; however, the largest overturns
found are many meters in size such that they are still well resolved. Qverturn detection

is theoretically limited to those bigger than the sampling interval, but in practice it
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Figure 6.2: EPSONDE Sampling Stations. In all, 190 profiles of good quality were
made. Line are bathymetry at 10 m interval, starting with 100 m at the upper left
corner to 210 m at the lower right.
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is preferable to resolve an overturn with many points. This is both to assure that the
overturn is real, and to reduce the error in evaluating APEF. Also, the temperature
least count is 0.001°C (the instrument resolution is 0.0015°C; data were saved with
0.001°C least count), which is not over-sampled, such that there are few noise-related
inversions (although the temperature gradient data from EPSONDE has mucb ecater
resolution than this). This may sound good, but it prevents the use of a statistical
method, briefly described in appendix D, to determine the temperature sensor noise
level. These two factors, instrument least count and especially sampling interval,
combine to make the noise level of the finestructure-estimated buoyancy flux very

high, especially in high stratification (this will be quantified later).

6.2 T-S Characteristics

When temperature is re-ordered to find overturns, it is assumed that temperature
inversions are not salinity-compensated. The 1-S relation of the water column be-
comes a very important tool to determine the presence of salinity-stabilized inversions
and intrusions.

The water column in Emerald basin (as everywhere else on the shelf, the Gulf
of St. Lawrence and up into the estuary) is characterised by salinity monotonically
increasing with depth, and by a mid-depth temperature minimum. CTD casts made
during the cruise have a temperature minimum of 4.5°C between 30 to 50 m depth
(not shown). EPSONDE profiles are recorded from about 8 m below the surface to
the bottom, but will only be shown here below 60 m to compare with temperature
data below the temperature minimum.

The temperature at 60 m is always below the temperature minimum such that
temperature usually increases with depth and the salinity gradient, controls the den-
sity gradient. Thus, instead of worrying about unstable temperature inversions being
compensated-for by salinity, a harder assumption must be made. Since the temper-

ature gradient is by itself statically unstable, it must be assumed that an overturn
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appears as a stable temperature gradient, yet statically unstable because of an un-
measured salinity gradient.

To make tbis assumption, a one-to-one relation is required between temperature
and density. The relation does not need to be linear, but it must be tight, so that
temperature diflerences can be interpreted as density differences.

The T-S characteristics were not available from the EPSONDE profiler! but CTD
casts were made before and after each sequence of profiles for the first half of the cruise
(until winch problems prevented CTD sampling). Figure 6.3 shows the TS diagram
obtained from all the CTD data available from the cruise (taken over 4 days, with 2
days of overlap with the EPSONDE data). At first inspection, the T-S is straight
although it is wide. This presents a problem in the interpretation because the slope
of the main 7-S line is close to isopycnal: an isopycnal line intersects with a range
of &~ 0.15 °C in temperature due to the scatter of the T-S line. This means that
temperature inversions up to 0.15 °C observed within the scatter may be isopycnal
changes instead of diapycnal. There is thus danger that intrusions will be mistaken
as overturns. Still uo obvious deformations of the T-S line are observed, so we will

proceed, using temperature as a surrogate for density in our overturn detection.

6.3 Temperature Noise Level

The APEF is calculated by re-ordering the temperature profile obtained from EP-
SONDE (density was not measured). However, some of the temnperature inversions
may be created by noise. In order to discard these overturns from the comparison,
and also to determine the noise level of the estimated buoyancy flux, the noise level
of the temperature sensor must be estimated.

A new technique for doing so is described in appendix D. Unfortunately, the

technique relies on having over-resolved temperature measurements such that noise

'"Temperature and conductivity were both measured from EPSONDE, but an apparent calibration
problem gave a T-S curve in disagreement with the CTD. T-S gradients have not been explored
(Oakey, Pers. Communication).
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creates inversions, which are then separated from overturning signatures using run-
length statistics. The technique cannot be used with the current 40 cm sampling and
0.001°C least count data.

Whiie the same CTD used here but with a lower least count and finer vertical
sampling would probably yield a lower noise level, a conservative stance is taken and
the noise level is estimated as 6T = 0.003°C (3 times the least count). Overturns with
rms Thorpe fluctuations less than that are rejected. Further, overturns consisting of

3 points or less are also rejected.

6.4 Results

In chapter 3, buoyancy flux models were derived relating the decay of the APEF, ¢,
over a time scale of N™! on one hand, and a decay time function of the turbulent
Froude number, F'r;, on the other. The Fri-dependent decay time is shorter than
N~ when there is much more turbulent kinetic energy than potential energy in the
turbulence (TKE > 3¢).

Since I have compared overturning measurements to € instead of directly to g, it
is not possible to verify the buoyancy flux estimates. Therefore J, will be estimated as
éN, the upper bound of model three prediction (3.33), but the the lower J, estimate
between model two and three at high Turbulent Froude number. Diagrams of (N
versus ¢ will be shown, on which the ratio of ¢ N/e is inferred as representing both
the mixing efficiency of model three and an indicator of F'r; for model two. From
Fry= Ri; Y2 and (3.22), the turbulent Froude number is

(6.1)

1/3
F’l‘t = [ ¢ Lh]

26N Ly
Note that this assumes £ = N2L2/2 (e.g. (2.28)). This approximation did not hold
for Dillon’s tabulated data (in chapter 5) because his layer averages were shown to
overestimate N? within overturns, but it is expected to hold here because the density

gradient is evaluated separately over the depth interval of each overturn.
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A given {N/e ratio implies two different. values of F'ry (or Ri;) depending on the
assumption made for the unknown value of L in (6.1). In model two, isotropy sets

Ly = Lt such that the L, /Ly ratio cancels out, leaving

¢ 1/3
(Frt)iso == [‘26—1\,“] (().2)

In model three, inertial-buoyancy balance sets Ly = Lo. 'The Ly / Ly ratio becomes
Lo /Lt which can be written (¢/26N)'/? (again using £ = N2L3./2). Thus, il inertial-
buoyancy balance conditions of model three hold, the relation between Fry and EN/e

becomes

c 1/2
(Fr)is = [2£ N] (6.3)

Valuss of £ N/e correspond directly to the mixing cfficiency of the third model,
I3 = éN/e (from J, = E N and T = J,/¢). From (6.2) and (6.3), a given value of {N/c
(or I'3) corresponds to different, values of Fr, at isotropy and inertial-buoyancy balance
such that (Fry)i, = (F rt)%;’ 2, Since efficiencies in both models are proportional to
Ri; (or Fri?), the mixing efficiency of model two can be obtained from EN/¢ (or 1I'y)

as

2 . 2/3 2/3
r, = N Ui 12NN o0 1EN (6.4)
€ 31 e ¢

by noting that J, = (2/3)¢ N Fry in model two.
The mixing efficiency of the second model can thus be obtained directly from the
mixing efficiency of the third model for given values of £ N/¢ on plots of €N versus e.

Mixing efficiencies for both models will be presented on a single €N versus ¢ diagram.

6.4.1 Expected Outcome

The expected outcome is a good correlation between EN and ¢ if al isotropic inertial-
buoyancy balance (where Fr, ~ 1), and (N < ¢ in well mixed layers or growing

turbulence (where Fr, > 1). Since the measurements were taken to the bottom

This discussion is identical to the general form of Riy = ( L4/ qu/”lli/ %) in terms of length scales
being written as either (Ri;)is, = (Lr/Lo)? or (Ri))1s = (Lr/Lo)%
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where mixing is expected to be more intense, it is likely that some well-mixed layers
will be sampled and that a mix of conditions will be found. The £ N versus € diagram

should then resemble the L2 N? versus ¢ panel in Figure 5.2.

6.4.2 Data Sub-set—Sequence 10

The fincstructure data is first compared to microstructure for the sequence of EP-
SONDE drops numbers 10018 to 10026. Ship drift was slow during this sequence.
The temperature field and a qualitative comparison between TKE dissipation and ¢ N
for overturns are shown in Figure 6.4 where the gray scale represents € and the boxes
represent overturns; the depth span of the boxes coincides with the overturn sizes,
and the half-widths are values of £éN evaluated over distinct overturns. The depth
span of an overturn is defined as the smallest group of consecutive points which may
be re-ordered without moving any other point in the profile.

While qualitative agreement is found between high levels of € and (N, there are
very few overturns in regions of high temperature gradients, especially in the 60-90 m
range. The noise level for éN (not shown) affects how much finestructure should
be found, and will be shown to be responsible for these quiet areas (where € is low
anyway). Note that 1 do not have temperature profiles down to the bottom coinciding
with the lower-right region of high dissipation, so that the absence of overturns is not

a fatlure of the models.

6.4.3 Finestructure Noise Level

The noise level for .J, = {N is determined by the minimum resolvable £ and the value
of N. Recall that the APEF noise level was discussed in chapter 2; it is the higher of
the two values from (2.33). In this case, temperature is translated to density using
§p = 0.126t. so 0p,/0z = 0.12 8T,/0z, where the gradient of the re-ordered profile is
calculated by centered first-difference over an interval of + 4 data points.
Temperature, dissipation, (N and the noise level of {éN profiles are shown in

Figure 6.5 for sequence 10018-10026. Dissipation should only be compared with the




EN(Wka") 137

10® 10 .
Jo 10000 series
18 19 20 21 23 24 25 2
60
] R
1 R
4 e memw\mm\\ SRR ‘(;m\ \‘.f\\\\
3 R Tk 0 ““"\‘:‘““ﬁ‘v&
4 A AR g SRR SRR
80 ] RN RN g&@‘““‘t“
100 -
120
4
4
1
140
160 -

Lt St M Ee S S w S s SR e S B S St e B R S S S | T T T AMSRE et fntet M et et et

40 45 50 55 60 65 70 75 80 85
time (min) starting day 286 at 08:39
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estimated buoyancy flux éN in depth intervals where dissipation is greater than the
buoyancy flux noise level. This is the least severe criterion that can be applied because
the mixing efficiency is expected to be less than unity. In a mixed layer of high Fr,,
the mixing efficiency is expected to be much lower, say 0.1. In this case the buoyancy
flux would be 10 times lower and dissipation should only be compared to é N where
the noise level is 10 times lower than e. ’

The determination of the temperature noise level is therefore important because it
determines the fraction of the water column in which buoyancy flux should be resolved
by the finestructure. Note that since the £V noise level increases with stratification
(See Figure 6.5) finestructure cannot resolve overturning in the thermocline above

90 m or so, where no overturns are observed in Figure 6.4.

6.4.4 Averaging in 10-m Bins

The finestructure and microstructure for sequence 10018-10026 are averaged in 10 m
bins in Figure 6.6. Values of £ N are plotted only for bins in which {N is higher than
the noise level. Note that the averages are of (N, using N and £ within each overturn;
values of N are not 10-m averages in this case.

By comparing Figures 6.5 and 6.6, it is seen that most energetic overturns have
thickness scales of the order of the bin size (10 m), such that the bin-averaging ¢ N
does not affect their values. The averaging affects € much more, removing many high
wavenumber variations.

There are 49 10-m bins for which € is greater than the £ N noise level. The average
mixing efficiency I's for these 49 bins, calculated as the average ratio of £ N/e, is 0.69
(corresponding to 'z = 0.51). There are 43 bins for which € times 0.69 (representing
an average buoyancy flux) is greater than the noise level of £ N, the buoyancy flux for
model three; perhaps this better represents the number of bins (43) in which values
of £N greater than noise level are expected to be measured. However, there are only
17 10-m bins for which £N is greater than its noise level, compared to the expected

number of 43. Thus the distribution of resolved buoyancy flux by overturning is
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lower than expected from TKE dissipation rate measurements; overturning (and its
modelled buoyancy flux) is found only in about 40% of the 10 m bins in which it
should be resolved.

In Figure 6.7, £ N is plotted against ¢ for both overturn values of Figure 6.5 and
averages of Figure 6.6. For Figure 6.7, overturn values for dissipation are simply
the average ¢ measured within the span of the overturn. Ouly overturns consisting
of more than 3 points and with rms Thorpe fluctuations greater than 0.003°C are
shown. If the overturn does not vertically overlap with any dissipation sample point,
it is compared to the closest dissipation measurement (so it is only an average for
large overturns, greater than about 3.4 m).

While the £N versus ¢ distributions in Figure 6.7 are slightly different for the
averaged and non-averaged cases, it is difficult to say if 10-m averaging is necessarily
better than taking overturn values, having no other estimates of buoyancy flux to
compare with (from xg, for example). It is clear that the overturn-averages do not,
yield results dramatically different from 10-m averages; this is probably duc to the
fact that most energetic overturns have length scales similar to 10 m. This large size

would not be true of Dillon’s observations discussed in chapter 5.

6.4.5 Analysis on Entire Data Set

Here, the above comparison is repeated on the entire data set. In Figurc 6.8, (N
is compared to € for each overturn in the data set resolved by more than 3 data
points and for which T2 5 0.003°C. A plot showing the same result in terms of
£/2N-1 vs Lo is also shown (where multiplying £1/2N~" by 2'/2 approximates L)
because Ly—Lo diagrams are often seen in the literature to compare finestructure to
dissipation.

Obviously, the comparison is not very good when all data are considered in the plot,
of éN versus €. The expected result is similar to Figure 6.7, where points of maximum
EN for all e values falls along a line of constant mixing cfficiency I' = éN/¢. The cloud

of data below this line is expected for well mixed layers or intense, growing turbulence
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with ¢ N greater than noise level are shown. The oblique lines are mixing efficiencies
with the indicated values for the second and third models.
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where high F'r, turbulence has low mixing efficiency. The data with high value of (¢ NV
and low values of ¢ are ‘anomalous’ in the models. We will use this qualifier for now
to designate them because the models cannot account for mixing efliciencies much
greater than unity.

It is found that most of these ‘anomalous’ data are selected using two criteria. The
first group are between 60 and 75 m, but have no special temperature other than they
usually fall within 4 to 7°C. The second group are in the temperature range of 8.6 to
9°C. These data are removed in Figure 6.8B and D. The result is much better, more
like Figure 6.7 with a triangle of values with € 3> ¢ N allowed (low mixing efficiency)
but not the reverse. This ‘filter’ is to say the least Ad Hoc; it is only used now as a
signature to help determine what is different about these selected data. This will be

examined later in this chapter.

6.5 Discussion

Let us now review what this data analysis has revealed about the unanswered ques-

tions enumerated at the beginning of the chapter.

6.5.1 Does Averaging Over Single Overturns Compare Well
With 10-m Averages?

The comparison of éN and e yield slightly different results in Figures 6.7. The biggest
difference observed is an apparent decrease in dissipation variance with depth (seen
mostly by comparing Figure 6.5 to Figure 6.6).

Here, we would ideally wish to compare estimates of the buoyancy flux obtained
from overturning to the true buoyancy flux within the overturn, in order to estimate
the importance of the redistribution terms of kinetic and potential energy in the
governing turbulent equations. But we do not know the true buoyancy flux, nor
even an estimate (although further work could use xy measurements). We have a

measurement of the rate of dissipation of TKE from single profiles, for which the
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same redistribution terms usually force us to ensemble average many profiles. The
best that can thus be done is to see if estimates of buoyancy flux from single overturns
are as consistent with the dissipation of TKE averaged over those overturns, as they
are using larger scale 10-m averaging.

The averaging on 10-m bin is typical of what is usually done. For instance,
Dillon’s (1982) data are for mixing layers which may hold many overturns. A major
difference remains: the finestructure buoyancy flux models were not evaluated here
by using a layer-averaged N, but rather with an N evaluated over each overturn and
then averaged. The bias introduced in Dillon’s analysis is not present here. llere,
N is calculated by regression on the re-ordered temperature profile over the span of
each individual overturn.

It is encouraging that the results are not dramatically different than those using 10-
m bin averaging, however it must be noted that most of the more energetic overturns
are of this size anyway, such that 10-m averaging should not be expected to be
dramatically different.

Note that it is not known if the overturns are evolving K-1I billows (puffs). over-
turning may be occurring in more persistent mixing layers such that initial overturning
with high £ but little e (which could be observed in K-H billows) is not expected. This
is because the shear forcing is likely to be steady in the boundary layer, as evidenced

by many subsequent profiles with overturning near the bottom.

6.5.2 How Much of the Rate of Dissipation of TKE is Ac-

counted for by Overturning?

If the mean mixing efficiency (for sequence 10018-10026) of I'; = 0.69 is used, then
it could be assumed that bins with e greater than 0.69 times the buoyancy flux noise
level should contain resolved overturns. Only 40 percent of them do. In particular,
station 10023 has a high dissipation relative to buoyancy flux noise level for 10-m
averages, and yet has very little overturning. If the expected mean mixing cfficiency

is reduced by half to 0.35, then 60 percent of the bins where overturns are expected
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to he resolved do contain overtuins.

Note that the average mixing efficiency is biased because not all bins have over-
turns, and those without overturns were not included in the calculation of mixing
efficiency. Therefore, that number should not be used outside of the loose context in
which it was introduced.

It is unclear why overturns arc not observed in many of the bins for which overturn-
ing is expected. An hypothesis is that mixing efficiency is very low where overturns
were not, observed, such that overturning is below the noise level. This cannot be
tested without cstimates of Fry or measurements of y;. However, Figure 6.7 shows
that the highest ¢N/c ratio, occurring consistently at all values of €, has a value
grcater than unity, corresponding to a high maximum mixing efficiency in models
two and three (the higher still values of £ N/e which occur only at low values of € will
be discussed separately). This perplexing result could be an averaging problem, or
partly due to a changing T-S water mass line changing the conversion from temper-
ature difference to density difference. Note that such high mixing efficiencies were
also observed in Dillon’s data set, but that I have argued that they might be due
to errors in yg. Therefore, it seems unlikely that very low mixing efficiency occurs
adjacent to very high values.

Thus, no clear answer to this question may be given here.

6.5.3 How Murh of the Overturning is Accounted for by
the Rate of Dissipation of TKE?

If overturning is observed (and models consequently predict high buoyancy flux) when
the rate of dissipation of TKE is low and cannot account for any buoyancy flux,
this would not be seen in comparisons done using only data where both € was well
resolved and overturning occurred (e.g. Dillon’s analysis). The present data have

such occurrences. In the next section, I will try to convince the reader that these are

9Because the T-S lime s fairly close to 1sopycnal, small differences could account for large changes.
Up to a 30% reduction in the temperature to density conversion results i changing from the main
T8 line to a secondary hne shown in upcoming Figure 6.10
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intrusions and not overturning cvents; they should therefore be discounted from the
comparison with the rate of dissipation of TKE. The presence of intrusions is in fact,
the major difficulty with the interpretation of this data, and possibly many data sets

with energetic mixing.

6.6 Intrusions and Water Masses

The main problem with the interpretation of the data are those ‘overturns’ with very
high €N and very low rates of dissipation of TKIE. Most of these anomalous data were
found to be either between the depths of 60 and 75 m or between the temperature of
8.6 and 9.0°C.

The two groups of anomalously high éN data are not spread about equally in
all the data set. Figure 6.9 shows the overturn-averaged €N versus ¢ for cach time
sequence of EPSONDE drops from the drifting ship. Note that not all sequences
suffer from these points, and those that do often have many such points (which are
spread over many profiles).

The T-S properties of the CTD data are re-cxamined in Figure 6.3 to identify
what is different about the data between 60 and 75 m and also aboul those hetween
8.6 and 9.0°C. Upon close inspection, one can discern different water masses in
Figure 6.3. In Figure 6.10, two water mass families are shown which appear to be
the extremes found in the CTD data. It is possible, and likely, that these two water
masses may interleave and also mix together since both these masses were sampled
in close proximity.

CTD casts were taken hetween EPSONDE sequences for the first, part, of the
cruise (until they experienced winch problems). There are two sequences for which
CTD data is available which have anomalous € data characterised by 8.6 9.0°C water.
These are stations 13 and 14, and the T'-S diagrams are shown in Figure 6.11. It is
seen that sampling in stations 13 and 14 started in one water mass and finished in

the other. The temperature at the intersection of these two water masses is in the
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Figure 6.9: Overturn-averages of {N vs ¢ for individual EPSONDE sequences. (4)
shallower than 65 m; (o) between 8.6 and 9°C; (O) all other data. Sequence number
indicated in upper left corner of each panel. Oblique line is mixing efficiency T'y = 0.53
or [y =1.
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water masses found on the T—S5 relation in Figure 6.3
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range of the observed high ¢EN (8.6-9.0°C). Possibly, an intrusion was occurring close
to the intersection temperature of the two water masses.

The EPSONDE data characterised by depths between 60 and 75 m (‘plus’ symbols
on Figure 6.9) cannot be found on all T-S diagrams of Figure 6.11 made from CTD
casts. For example, T- S diagrams for sequences 6 and 9 are not shallow enough to
observe characteristics found in this depth range (although this is merely due to a
cut-off depth chosen for the CTD files given to me because the region of interest was
the bottom boundary layer (Van Haren, Pers. Communication)). For this reason,
we will again look to EPSONDE station 14 to explain the high £ N found in depths
between 60 and 75 m (Different points within the profiles than those found between
8.6 and 9.0°C).

In scquence 14, there is a possibility that a mixture of both water masses in
Figure 6.10 is intruding along an isopycnal into the sampling drift track. This stable
intrusion has a diflerent temperature for its density than would otherwise be seen.
When EPSONDE enters or leaves the intrusion, the the temperature gradient would
reversc and create an apparent overturn.

Figure 6.12 shows the drift track of sequence 14, as well as the positions of the pre-
ceeding and following CTD casts. The time evolution is also shown, with time against
the latitude position. The drift and sampling were fairly regular. Supported by this,
the temperature al a chosen isopycnal is plotted linearly between the preceeding and
following CT'D cast position in the third panel of Figure 6.12. The temperature was
observed to decrease by 0.5°C at that isopycnal during the time span of the séquence,
from 7.1 to 6.6°C (in less than 6 hours). The ‘overturns’ with high é N centered
between 60 and 65 m (for this sequence, generally these points are between 60 and
75 m) ate only found during the first five stations of sequence 14. They are shown as
black dots in Figure 6.12. The minimum and maximum temperatures for each of the
‘overturns’ are connected and shown in the third panel. They show that the decrease
in temperature of that ‘overturn’ throughout the sequence of profiles is consistent

with the observed temperature decrease at an isopycnal going through the ‘overturn’.
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should be believed. In certains sequences, two end water masses arc found at, the start,
and end, such that intrusions could be present during the sequence. These int1usions,
not observed in any way in this figure, could be seen as overturns by EPSONDE using
only temperature profiles.
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"I'his suggests that the ‘overturns’ are in fact temperature signatures of an intrusion
of both end water masses.

The origin of the mixed intrusion is unclear. It occurs at the same depth, yet
different temperatures, in many profiles. In particular sequence 6 has an apparent
intrusion at the same dzpth, but this time between 4 and 5°C instead of around 7°C.
Through 6 consecutive profiles, the intrusion temperature decreases by 0.6°C. There
arc no sills at a depth of 60 to 70 m close by. The closest is Emerald bank, 70 to

80 m in depth, at over 20 km away from these stations.

6.7 Summary

In this chapter, microstructure data from Emerald Basin were used as a test case of the
finestructure models for estimating buoyancy flux from overturns. The temperature
data used have low vertical resolution for overturn detection (40 cm resolution was
used here, but 2 cm resolution data exist) and so areas of high stratification were not
resolved by the method. However, overturning was often on such large vertical scales
(= 10 m) that even the 40 cm vertical sampling resolves them easily.

The main results were

e The buoyancy fluxes obtained from the overturn finestructure were consistent
with the dissipation measurements even if data are averaged over the vertical
extent of separate overturns (See Figure 6.5 and Figure 6.7). To my knowledge,
this is the first time that these quantities have been compared on such small
averaging spans. However, the large overturning size limits the applicability of

this result to less energetic mixing layers.

o About 40 to 0% of 10-m bins in which overturning was expected were observed

to contain overturns.

® The maximum mixing efliciency observed is fairly high (T's ~ 2). Low mixing

efficiencies were I's < 0.1 using the third model (or I'; < 0.04 using the second
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model). Note that these mixing efficiencies come from buoyancy flux models
using the upper bound of the factor of two of their coefficient ([% + :-]) Re-
gardless of this factor, there is a range of about 2 decades in observed mixing
efficiency (not counting bins where no overturns were observed), but the instru-
ment resolution limits this range. This implies that the data are incompatible
with model one, which assuming a constant mixing efficiency. The same was

said of Dillon’s data sets A and C.

Temperature was used as a density tracer to identify and compute the potential
energy of the overturning cvents. A tight 7-S relation is required for this to
work properly. In regions where é N was much higher than ¢, it was shown
that the sequence started in one water mass and finished in another. Persistent
apparcnt overturns warmed from profile to profile consistently with isopycnal
changes between the two end water masses. This strongly suggests that the

high ¢ N anomalies were in fact intrusions.

This is perhaps the most important point: If dissipation data had not been
available, and only finestructure were used to estimate mixing, all data where
the T'-S varied greatly would not be used because of the possibility of misin-
terpreting intrusions as overturns. It is therefore recommended that salinity
always be measured if it can affect density in a significant amount. Even if den-
sity measurements cannot resolve overturning events sufficiently to reorder the
profiles to find overturns, it is probably good enough to help identify inversions

caused by intrusions. These often have uncommonly high values of ¢N.
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Chapter 7

Application to the St. Lawrence
Estuary

Microstructure measurements have yet to be taken in the St. Lawrence estuary, yet
many authors have discussed the strong mixing that occurs at the head of the Lau-
rentian channel (Steven, 1974; Forrester, 1974; Ingran, 1975; Therriault and Lacroix,
1976; El-Sabh, 1979; Gagnon and El-Sabh, 1980; Ingram, 1983). It is thought that
mixing occurs predominantly at the head of the channel (Steven, 1974), and that
large shears associated with an internal tide provide the forcing (Forrester, 1974).
This internal tide appears to be gencrated at the slope where bathymetry shallows
from 350 m to 50 m in less than 15 km (Forrester, 1974), but the exact mechanism
is not confirmed'

In this chapter, CTD and ADCP data sampled at the head of the channel are
used in conjunction with the buoyancy flux models discussed in this thesis to estimate

mixing rates.

!While it can be argued that a critical slope at the head can reflect some tidal energy and create
the internal wave, at least one author has proposed otherwise. Blackford (1978) constructed a 2-
layer generation model without rotation whereby continuity dictates that the flow over the sill must,
be greater than seaward. A Bernoulli depression over the sill accelerates the flow by generating a
pressure gradient in the surface layer. Since there is no flow in the bottom layer seaward of the sill,
the interface must tilt to compensate the pressure gradient in the top layer. The periodic tidal flow
over the sill thus creates a wave at the interface which propagates seawards.
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This chapter serves three purposes. First, it illustrates what is known about the
hydrodynamic conditions in the area, hopefully adding to that knowledge and iden-
tifying some weak points. This includes discussions of the internal tides, intrusions
and solitons. Second, an attempt is made to quantify mixing, to show what forces
it, and to determine its range of turbulent Froude number Fry. The Froude number
will be estimated from the larger scale gradient Richardson number Ri;. No further
comparison can be made between mixing models presented in earlier chapters because
microstructure quantities (€, xg) were not measured here. Third, the overturning will
be related to the shear forcing by comparison with Gregg’s (1989) model which links

shear to dissipation levels.

7.1 CTD and ADCP Data Set

During a preliminary cruise on the Petrel V in the fall of 1987, density inversions
thought to be overturning events were measured using a conventional GuildLine CTD.
A longer, second cruise took place in late June of 1988 on the C.S.S. L.-M. Lauzier.
During the last three days of the cruise, an R&D Instruments 1200-KHz ADCP was
graciously lent to us for demonstration purposes by David Stewart of Dasco Equip-
ment Inc. The ADCP sampled velocity vectors in 1-m bins and 2-minute averages
from 3 to 32 m. The velocities are measured relative to the surface bin because the

sea loor was beyond the bottom-tracking range of the ADCP.

7.1.1 Gradient Richardson Numbers

The gradient Richardson number, Ri,, is an indicator of the dynamic stability of the
water column. It has been shown to be related to the turbulent Froude number, Fr,,
in a previous chapter, by

Fri? = Ri, ~6.2Ri, (7.1)

However, gradient Richardson numbers can be evaluated at different vertical scales.

A brief outline of the methodology used for this data set follows.
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Relative horizontal velocitics are measured from an ADCP using l-m bins. Us
acoustic sampling results in the convolution of a sound train with cach I-m bin of
water column. The end effect is a 2-m thick triangular filter imposed on velocitly
observations. The velocities are externally further smoothed with a ($,3,1) vertical
moving average, and then first-differenced to obtain shecar. The horizontal compo-
nents of shear are squared and added to yield the total shear squared.

Stratification was estimated using CTD profiles sampled about 10 or 15 i away
from the ADCP. These are the same profiles used to find overturning events. Density
was averaged in 1-m bins using a 2-m thick triangular moving average, designed to
mimic the implicit filtering in the acquisition of velocity data with the ADCP. These
data are further filtered with the same three point moving-average used on the ADCP
bins, and are first-differenced to yield dp/dz and therealter N?.

Richardson numbers are then obtained from the ratio of N?% to shcar squared.

Both shear and stratification are averaged vertically on a similar scale, but shear is

also a volume average of acoustic return signals.

7.2 T-S Properties, Intrusions and Circulation

Before any CTD measurements of overturning events are discussed, it is important to
describe the T-S properties of the area. A tight 7'-S relation is preferred to rule out
the possibility of intrusions, since it is intended to use temperature instcad of density
to find overturns (as in chapter 6).

Figure 7.1 shows T-S properties sampled at four stations located near the head
of the Laurentian channel. Station locations arc shown on Figure 7.2. Each station
was sampled for many hours, often over a semidiurnal tidal cycle.

There are dramatic gradients in 7S properties along isopycnals which appcar
related to the circulation. Ingram (1979) showed that tidal-residual circulation during
the Spring season is approximately 17 ¢cm s™' up-channel at station 21 in the top

125 m. The residual circulation is down-channel on the South side, at stations 14 and
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24 26 23 30 32 34 34 26 28 30 32 34 36

Figure 7.1: Temperature-Salinity Properties at the head of the Laurentian channel.
Stations indicated in upper-right corner of each panel. Station locations are shown in
Figure 7.2. Station 21 was sampled to 200 m every hour starting June 27 1988 15:01
EDT to June 28 04:58 EDT. Station 24 was also sampled to 200 i every hour, on
June 29 from 14:01 to 22:59 EDT; Winds increased from very low to 25 knots at the
end of the day. Station 14 was sampled to 50 m on July 4 from 04:50 to 14:04 EDT
in 15 knot winds. Station 11 to 50 m was sampled from July 4 14:57 to July 5 02:45
in light winds. The last 3 profiles were taken to 235 m. See text for explanation of
water mass lines.
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2.

The V-shaped solid lines added to Figure 7.1 indicate the main water masses
found, cxcept, for some surface cooling at stations 21 and 24, and surface warming
al station 11 and, to a lesser extend, station 14. The deepest waters have a uniform
T S distribution for all stations. The TS relation above the temperature minimum
is Lightest for Station 11 and 21, consistent with advection of undisturbed water into
what is assumed to be a stronger mixing region.

Ingram (1979) found that the temperature minimum increased by less than 1°C
between May 1973 at Gaspé and July 1973 near station 21. This 3-month inter-
va! corresponds to the advection time between the two locations. He used a sim-
ple advection-diffusion model of the temperature minimum to estimate mixing along
the Laurentian channel. He could explain half of the temperature change by using
K,0*1'[92* = 1077°C 57" and K, =2 x 107° m* s™'. Ingram obtained these mixing
rales from internal tide modes (Forrester, 1974) and an eddy diffusivity parameteri-
zation in term of the gradient Richardson number (Jones, 1973).

Since the minimum temperature at station 24 varies by more than 1°C, it is
noteworthy that 3 months of diffusion along the Laurentian channel is overwhelmed
within a time which could be presumed to be a few tidal cycles at most. This is
presumed to occur here because of the larger internal tides combined with the poorly
understood circulation at the slope of the head of the channel, or between the channel
and the South bank of the lower estuary. Water masses which do not usually come into
contact probably meet, and theit mixing results in the various water masses forming
the temperature minimum at station 24. Several profiles at station 24 contained
intrusions between the two end water masses between o; = 24 and oy = 26.

All profiles at station 14 have an anomalous water mass corresponding to the
dashed line shown on Figure 7.1. The water mass ends on its dense side with an
isopycnal intrusion around oy = 25. If the water mass is exteuded to oy = 26, it
corresponds more or less to the upper temperature minimum of station 24. Thus the

end points of this water mass could be at o, = 22 and o, = 26 on the main 7-S lines
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described by the ‘V".

The water mass on the dashed line is usually found on the South side of the
channel, where circulation is down-chan-icl. However, it appears at, lower densities at
station 11 some of the time.

The intrusions might result from ‘horizontal’ spreading of mixed layers formed
by mixing light waters with dense water heaved over the sill by the large isopyenal
displacement of the internal tide. T'he intrusions provide clues to the circulation and
mixing at the head of the channel; they also complicate the zampling of overturning
events. 1t would be preferable to use temperature alone from the CTD to identity
overturns because temperature is easier to measure accuralely within overturns than
density (e.g. one sensor instcad of combining both temperature and conductivity
within the enhanced gradients of overturns). It is possible to use temperature alone
for most of the profiles of station 11 where the 7'-S relation is very tight. Yet in
many cases intrusions can be falsely interpreted as overturns. The combined use of
conductivity and temperature in the demanding environment of overturns must then
be used if overturns are to be identified. In known intrusions, no attempt will he

made to identify any overturns.

7.3 Internal Tide Description

If the mixing at the head of the channel is thought to be forced mostly by the shear
associated with the internal tide, then analytic expressions of the internal tide could
potentially be used to compare expected Rz, to observed Ii, and overturning events,
and to fill the gaps where and when no data were taken.

In this section, I will briefly discuss how my observations differ {rom the literature
on the internal tide, and why using previous results and analytical expressions of the
internal tide have very limited application in predicting mixing. Work presented here

is by no means the final word, but should serve as a useful guiac for future work.
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Forrester (1974) provided a description of the internal tide in the Laurentian chan-
nel from current-meter measurements from nine moorings, located from the head of
the channel to over 100 km toward the mouth of the estuary. He fitted the observa-
tions to modes associated with internal Kelvin and Poincaré modes of various tidal
frequencies, obtaining the vertical modal structure from a mean density profile. Data
were consistent with an internal Poincaré wave in the second vertical mode (one zero-
crossing of isopycnal displacements at 72 m; the first vertical mode is evanescent in
a 25 km channel width using Forrester’s density profile) and first lateral mode, at
frequency M and wavelength of 60 km, propagating toward the Gulf in a channel of
320 m depth and 25 km width. Forrester also found some evidence for the presence of
a Kelvin wave al diurnal frequency, also propagating out of the estuary. Since most
of the cnergy is found at semidiurnal frequency in the lower estuary, the Poincaré
mode is addressed specifically here.

This section will address the {ollowing points:

o [Effect of the mean density profile on modal shapes, showing that small changes
in the profile lead to different modal shapes (mostly in the depth of the node

for the second vertical mode).

¢ Comparison of two possible modal shapes with du.a, showing that an alternate
choice than Forrester’s leads to a more representative node depth for the second

vertical mode.

¢ Restrictions on vertical modes from channel width, due to the dispersion rela-
tion, showing that the channel may be too narrow at the head to support the

second vertical mode, even though it is observed.

o Comparison of observed shears to second vertical mode, showing that the vari-
ability of the shears could not be adequately modelled as simple internal tides
to obtain analytical forms for Ri, to compare against observed mixing. The

observed shear will thus be compared to mixing, bui no attempt will be made
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to use analytical forms of Ri, to predict where mixing should oceur, and how

much it should mix.

7.3.1 Mean Density Profile in Present Data Set—Effect on
Modal Shape

In Forrester (1974), the mean density profile was approximated by the wholly empir-

ical formula
plz) = poe™/H) (7.2)

where p, was set to 1028 kg m™, @ = 0.2016 m and b = 29.29 m.

This density profile yiclded the vertical modes of the wave, y(z), as the eigenfune-

tious of ATt

ez + [T] n1=>0 (7.3)
where 7 is isopycnal displacement, subscript z indicates differentiation with respect
to z, N? is the stability—a function of p(z)—and w is the wave lrequency (M, tidal).

Application of the surface and bottom boundary conditions 5(0) = n(H) = 0 to
the solution of (7.3), neglecting w? with respect to N?, sets the cigenvalues ¢, for the
n vertical modes of oscillation.

Figure 7.3A compares the density profile chosen by Forrester to profiles of the
present data set at stations 21 and 24, covering about a tidal cycle at cach stalion.
The stations are located on either side of the channel (see Figure 7.2). Water on
the North side is saltier then on the South side because of the sideways estuarine
circulation. Flow on the North side is mostly up the estuary, and barely reverses on
ebb flow. The fresher outflow is mostly restricted to the South side.

Figure 7.3B shows the rms difference in density between obscrvations and the
best fitting profiles for various values of ¢ and b (choosing p, al cach a-b pair to
minimize the difference). Forrester’s choice is shown with a dot, as well as an alternate
choice at @ = 0.03 m, b = 2 m. While Forrester’s choice results in slightly less

error, and arguably a much better fit at depth (See panel A), the alternate choice
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Figure 7.3: Mean density profile and its effect on node depth. A- Observed density
profiles over nearly a tidal cycle at station 21 (solid) and 24 (dash) compared to
Forrester’s fit and an alternate fit; B- rms difference between observations and best
fitting density profiles of a—b pairs. Dots shows a-b values for profiles in A; C-
Depth of node of the second vertical mode for a channel of depth 320 m (thick) and
250 m (thin) as function of b; D- Eigenfunction for isopycnal displacements, 5, of the
second vertical mode for Forrester’s fit (thick) and & = 2 m (thin); E- Eigenfunction
for velocity, dn/dz. of the second vertical mode for Forrester’s fit (thick) and =2 m

(thin).
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perhaps approximates the steppiness of shallow observations betier, although only
very crudely with a sharper pycnocline. Forrester’s choice may be a smoothed best,
fit to an average that is never observed?. In any case, the selection of a mean profile
is not very sensitive to the parameter b.

In panel C, the depth of the node of the second vertical mode is shown. It depends
only on the parameter b and the depth of the channel. Forrester used a depth of 320 m,
suitable for the channel as a whole; A curve for Il = 250 m is also shown because
it is more representative of the depth at our stations near ihe head of the channel.
Note that Forrester’s density profile results in a node at 72 m in a channel of 320 m
depth. The node is much shallower (20 ) for b = 2, with not much dependence on
the depth of the channel.

In panels D and E, the vertical modes for isopycnal displacements (D) and ve-
locity (E) are shown for both b = 29.29 m (thick line) and b = 2 m (thin line). In
conclusion to Figure 7.3, very different vertical modes are obtained with two mcan
density profiles of slightly different errors with respect to observations. Forrester’s
mean profile may thus lead to wrong modes. The alternate cheice for b will be shown
shortly to qualitatively better match obscrvations. Perhaps future work should select

modes by {tting to isopycnal displacements rather than to density profiles.

7.3.2 Comparison of Modal Shapes With Present Data Set

Figure 7.4A shows isopycnal displacements for station 21 and 24 versus tidal phase
(same data as in Figure 7.3A). Sampling at station 24 started 47 hours after sampling
commenced at station 21, but the data are plotted versus barotropic tidal phase such
that they can be compared, with Station 24 repeated. In pancl B, the isopycnal
displacements predicted from b = 2 m in Figure 7.3D are shown for comparison.
There appears to be a phase lag with depth of the observed isopycnal motions,

with deeper isopycnals moving later. More importantly, there is no node at 72 m as

2The time-average at every depth is influenced by the heaving due to the internal tide, because
this motion was not removed before the mean density profile before it was fitted
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tidal elevations indicated are surface elevation differences between high and low tides.
High tide is indicated by H, low tide by L; B- Theoretical isopycnal oscillations for
the second vertical mode with density profile described by (7.2) with & = 2 m. The
phase with respect to the barotropic tide is not determined, and can be offset in panel
A. The inversions on both series at high tide is due to overturning in both cases.
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Forrester’s fit predicted. On the data shown here, there is only a hint of isopycnal
motion near the surface to indicate whether the second mode exists at all. If it does,
its node is much shallower that predicted by Forrester (See also Figure 7.7B for a
more evident node at 20 m at station L1). It appears that the modes obtained using

a = 0.03 m and b = 2 m represent our data better than those chosen by Forrester.

7.3.3 Restrictions on Vertical Modes And Along-Channel

Structure of the Internal tide

The non-uniformity of the channel brings about a problem when the possibility of

existence of various vertical modes is considered. The dispersion relation for Poincaré
waves in the nth vertical mode and mth lateral mode is
W — f?

2
Ca

2
knm -

- A;zn (7‘4)

where k., is the along-channel wavenumber, [ is the Coriolis parameter and A, =
mn /W is the cross-channel wavenumber in a channel of width W.

Forrester used an average channel width of W = 25 kin. Substituting this value
into (7.4), the first vertical mode is not possible because kyy is imaginary. 'Thus
Forrester looked for a fit against the second and higher modes. However, sctting
W to the channel width at the head of the channel, approximately 7.5 kin, makes A,
increase over 3-fold. In this case, only the sixth and higher vertical modes arc possible
in this linear theory. Obviously, the observed isopycnal mwotions in Figure 7.4A arc
not in such a high mode.

An imaginary wavenumber translates to a non-propagating wave with an along-
channel decay length-scale of k~!: an evanescent mode. The wavenumber, describing
a propagating or evanescent wave, can bc explored for various values of a and b.
Substituting the density profile (7.2) into the governing equation (7.3), and using the

boundary conditions 7(0) = n(H) = 0, the following expression for ¢, is obtained

¢t = bk (7.5)
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Location Geometry a =003 a = 0.2019
b=2 b =29.29
Far-field W =25km |2n/ky =35 km | 27/ksy = 60 km
(Forrester) | H =320 m (wave) (wave)
St.21-24 | W =135km | k; =10 km k3 =6 km
H =320 m (decay) (decay)
St. 11-14 W=175km | k;; =28km k7 = 2.6 km
| H =250 m (decay) (decay)

Table 7.1: Summary of wavenumber k,,, for the two sets of ¢ and b values considered,
at three locations along the channel.

Substituting this into the dispersion relation (7.4) yields

. _ 8065 x 107%~% (1 nw A\ (mmy?
B = pr (4 + [m((ﬂ n b)/b)] ) (W) (7.6)

at tidal frequency and 48° Latitude North®. This form of the dispersion relationship

is used to construct Figure 7.5, describing ky versus parameters a and b for 3 cases
of channel sizes H and W. The wavenumber is very dependent on the parameter a.
Figure 7.5 is summarized in Table 7.1 for the two sets of a and b parameters chosen
thus far.

It is unclear from conflicting isopycnal data (not shown) whether the amplitude
of the internal tide is reduced from stations 11-14 to 21-24. However, as shown in
Table 7.1, the channel widens quickly such that the decay length-scale for the second
vertical mode grows quickly from 3 km to 10 km at the head of the channel. It is thus
possible that the observed second mode at the head of the channel is evanescent, but

that some or even most of the energy leaks out as the channel widens.

3Neglecting the small contribution from the ;11- term, an nth vertical mode is possible if

H sn W

where a, b, H and W cre in meters Using Forrester’s @ and b values but local values of H = 250 m
and W = 7.5 km, the first possible mode is the sixth. Using a = 0.03 m, b =2 m, # = 250 m and
W = T km, the first possible mode becomes the fourth.
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Unfortunately, to confuse the issue, it is possible that the approximation of a
rectangular channel shape is erroneous, and that accommodating a proper (wider)
shape would yield better results. The width of the deep part of the channel varies
from 7 km at the head, to 25 km further down-channel. But the channel opens out
to the South bank at approximately 60 m at the head' and at 30 m further Northeast.
The extended width of the head of the channel, taken at the 50 m isobath, is 16 km
(compared to 7 km in the deep channel). The second vertical mode would be free to
propagate in a channel of that width.

Also, a propagating Poincaré wave is not symmetric in the cross-channel direction
(I have not worked out the cross-channel modulation of the evanescent modes of a
Poincaré wave). In the first cross-channel mode, isopycnal displacements should have
a node usually closer to (in this case) the South side of the channel. The isopycnal
displacements should be observed to change sign from side-to-side of the channel.
This is not observed in Figure 7.4, nor are displacements at least reduced on the
South side. It is possible that the cross-channel structure of the evanescent modes
would predict this. It is also possible that the full estuary width should be used, in
which case Staiion 24 would be close to the channel center rather than close to the
edge. In that case the observed cross-channel phase of isopycnal displacements would

be consistent with theory.

7.3.4 Observed Shears

Figure 7.6 shows observed isopycnal displacements and shears at Station 14. Data
were sampled while the ship drifted in proximity of the station. Sampling was inter-
rupted and the ship was repositioned after a drift of 0.5 nautical miles along-shore or
0.25 nautical miles across-shore from the station. The empty bands in Figure 7.6C
are re-positioning intervals. All finestructure data presented here have these gaps.
Strongest shears were expected near the surface (from Figure 7.6B). Although this
pattern is somewhat observed in panel C, there is a lot more structure than expected,

including some unexpected rotation of the shear vectors. Shear structure appears



et

SR A

LR

K

o T BRI s 0 S

T i g B
TG R,

St

SR

i

32

SRR = 52 M M R R L R R S

vt Roedt Bz, 5 e Fenns o n ST

layered along isopycnals (panel D). The average of the surface density slice is taken
in panel E (0; < 21) and a shear vector rotating clockwise at tidal frequency provides
an adequate fit, as seen by low residnals of unorganized patterns in panel F. Note that
along and cross-channel components of shear were independently fitted for phase and
amplitude; both were fitted best with the same phase, such that the shear ellipse is
aligned along the axis of the channel. The fitted near-surface clockwise-rotating shear
vector is consistent with a Poincaré wave. lts phase is along-channel simultancously
with maximumisopycnal displacements (ncar high tide, indicated with an ‘HI* between
panels A and C). This is also consistent with a Poincaré internal tide anywhere across
the channel, with the possibility of a sign change of the shear.

While some of the observed shear secms consistent, with a Poincaré internal tide,
the cross-channel modulation was nol compared to theory, nor were amnplitudes (be-
cause of the evanescent mode). Some of the shear variability does not compare well
with predictions in panel B. There is no reason to believe that observed gradient
Richardson numbers should compare well to those predicted from theoretical shears
and the idealized density profile. Even if the onset of mixing could be predicted,

theory would then have to account for the density profile evolving into layers.

7.3.5 Summary of the Internal Tide

In this section, it was observed that

¢ Forrester’s mean density profile does not match the large gradients near the

surface.

e A wide range of analytical density profiles with various paramecters ¢ and b in

(7.2) can fit observations with similar errors.

e The depth of the node of the second vertical mode depends greatly on b, It iy
at 72 m for Forrester’s profile (b = 29.29), and at 20 m for b = 2.

e Isopycnal displacements at Stations 21 and 24 are consistent with b = 2, rather

than with b = 29.29.
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o The observed second mode may he evanescent at the head of the channel due
to the narrow width of the deep chanuel. The e-folding distance varies quickly
from 3 km to 10 km between stations 14 and 11, less than 10 km apart. Thus
large shears measured at the head may only be typical at the head due to a
non-propagating wave. Alternatively, the second mode is free to propagate if

the full width of the estuary is used instead of the deeper Laurentian channel.

e Surface shears are consistent with a Poincaré internal tide at tidal frequency
(M2), but there are some inconsistent deeper large shears that seein homoge-

neous in isopycnal layers.

These observations add to the body of knowledge of the internal tide at the head
of the Laurentian channel. They also raise questions that future investigators should
consider. Modal fits are not a viable solution to predicting mixing because of the
variability of the shear and of stratification so that Ri, cannot be modelled well
by a simple analytical form, and because of the effect of mixing itself on the shear
and density profile. The internal tide must be considered as a. measured but mostly
unpredicted forcing, and go on from there to compate it with observed overturning.
It is unclear if mixing rates measured here will be applicable to arcas further down-
channel because it is uncertain if measured shears are representative of down-channel
forcing (evanescent or propagating wave?). The mixing area could be limited to only

a few kilometers from the head, or it could extend further down-channel.
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7.4 A Mixing Layer with a Tight T-S relation

Density stratification above the ‘emperature minimum of the Laurentian channel is
controlled by the salinity gradient. The effect of the salinity gradient is close to 6
times greater than that of the temperature gradient. I spite of this, temperature
fluctuations can be used directly as tr.cers of density fluctuations on the North side
of the channeli in the tightest parts of the T'-S relation (Sce station 11 on Figure 7.1).

An excmple is shown on Figures 7.7 and 7.8 showing 5.5 hours of data collected
at station 11 (a shorter and different series than thosc presented on Pigure 7.15.
Figure 7.7A shows the temperature difference between observed temperature and
the temperature at the observed density on the main surface T- .5 watler mass in
Figure 7.1; this shows how far off the main T'-S characteristics the water is. Data
gaps are from snip repositioning. All CTD profiles were taken from the surface to
50 m, at approximately 4 minute intervals. The sea state was usually calim, with very
little ship pitch and roll to influence CTD drop velocity (typically 50 cm 5™, with
25 Hz sampling yielding over-resolved samples at 2 cm vertical intervals). Figure 7.7B
shows isopycnal displacements. Figure 7.8A shows gradicnts Richardson numbers,
calculated as desciibed in section 7.1.1, Figure 7.8B and C shows gray scales of (N
values calculated over individual overturrs by re-ordering density and temperature
profiles respectively, using the unfiltered raw CTD data.

Even on a broad scale, it is difficult to establish a clear relation between I,
and éN in Figure 7.8. Some areas where Ri;, < 1/4 have little mixing activity
(e.g. between hours 4.5 and 5 and at about 10 m depth). Many reasons could
account for this, such as the volume averaging of the ADCP or the difference in
sampling location. However some higher intensity mixing layers do appear related to
low gradient Richardson numbers. This section will focus on one layer where there
appears to be a relationship between these quantities. It is an example of a best-case
scenario where temperature measurements are used to observe overturning events.

The boxes in Figures 7.7 and 7.8 encompass what appears to be the beginning

of a mixing layer in an environment of tight TS relation. Figure 7.9A shows the
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Figure 7.7: Isopycnal displacements and temperature anomaly at station 11. A-
Temperature anomaly versus depth, where temperature anomaly is defined as T =
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B- lIsopycnal displacements; The box indicates a mixing layer discussed in the text.
The gaps in A are due to ship repositioning; contours are constructed from vertical
profiles typically separated by 4 minutes in time.
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10 temperature profiles in this patch. Notice the richness in finestructure ia the first
few profiles compared to the last. This could suggest the evolution of a mixed layer,

! and is

but the difference in velocity between 3 m and 12 m is of order 15 cm s~
up to 45 cm 57! between 3 m and 22 m (velocities are not showr:). These velocities
translatc to an advection distance of & 400 m and ~ 1250 m between the ship and the
top and bottom of the layer during the 46 minute time span of the sampling. Thus
an cnergy budget would require assumptions about the horizontal structure and will
not be pursued here.

Only temperature profiles are shown in Figure 7.9A but density profiles would be
fairly close to mirror images. The tight T—-S relation in Figure 7.9B shows this. As
a further example, Figure 7.9C shows the T-S relation for a part of the first profile
shown in Figure 7.9A. There are several overturns with temperature excursions of 0.1
°CC which are difficult to see because their deviations from the main 7-5 line are small
(more about this below). As a consequence, temperature inversions can be related to
density inversions by a proportionality constant, which includes both temperature and
salinity eflects in density. Figure 7.8 shows both (N calculated using temperature
and density fluctuations.

The T-S characteristics of Figure 7.9C can be related to thc measurements of
an overturn with a ‘perfect’ CTD. Assuming that the T-S relation is linear in the
water column, then a CTD sampling overturned water will record T and S on the
same T-S line as would were the water not overturning. If only points are plotted,
a TS diagram from a perfect CTD would show nothing out of the ordinary. If the
measurements are connected by a line, then that line should oscillate betv een denser
and lighter waters found within the overturn on the T-S diagram. This resembles
what is seen in Figure 7.9C, with very little deviation off of the main T-S line.
When deviations are found, they can be due to enhanced temperature and salinity
gradients within the overturn highlighting any sensor mismaich between temperature
and conductivity sensors. If the deviations are isopycnal, rather than on the main

TS line, then it is likely that an isopycnal water intrusion was measured rather than
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Figure 7.9: A- Temperature profiles for the 10 profiles of the mixing layer at station 11
discussed in the text and shown in the box in Figure 7.7. Only down fraces of the
CTD profiles are used. The profiles are shown alternatively with thin and thick line
to beiter identify them; B- TS diagram for the same 10 profiles; C- T'- S diagram
for part of the first profile. Note the tight relation even within overturning events.
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an overturn.

7.4.1 WMixing Rates

Forty-three percent of the length of the profiles in Figure 7.9A is overturning. The
average value of J, = EN for the layer is 3.4 x 1077 W kg=!. Difficulties arise
when evaluating a value of the turbulent Froude number to yield an estimate of
buoyancy flux from the isotropic growing turbulence model using J, = (2/3) (N Fry.
Since the eye picks up some correspondence bhetween (N and Ri, in Figure 7.8,
some sort of patch averaging seems inost appropriate for that layer, if somewhat
arbitrary. Values of éN and Ri, were time-averaged for the 46-niinute time span
in each 1-m bin, and averages of N were further filtered with a (3,1,1) vertical
moving average as Ri, was in the processing of N? and shear-squared. The layer-
average value of Jy = (2/3)ENFr, ~ (2/3)EN (0.4 Ri;*/2) is 1.2 x 1077 W kg™!, using
(7.1) to relate Fr, to Ri,. However, if the minimum Ri; in each 1-m 45-minute
bin is used to estimate the Froide number, then the buoyancy flux is estimated as
1.8x 10=7 W kg™!, 50% greater than by using a mean value of Ri,. It could be argued
that the minimum Ri, observed is dynamically more important than more average
because the overturning can be caused by the lowest R, measured. This factor can
perhaps be used as a rough csiimate of the error in F'ry.

The average stratification in the layer is N2 = 102 s72, Combined with the
buoyancy fluxes from buth models two and three, this yields an eddy diffusivity of
K,=JN?=11t03x10™* m?s~! (Which model should be most suitable will be
discussed in section 7.7). Some averaging is required to compare this value to Ingram’s
mean value along the channel (K, = 2 x 1073 m? s7!). If only one such layer occurs
cevery tidal cycle, mixing for 40 minutes, then the time-averaged K, would be 5.3% of
the layer K,. This is very similar to Ingram’s result of 2 x 10~® m? s~!. Considering
that Ingram calculated the mixing of a layer (not the entire water column) due to
the mixing forcing of the internal tide, it seems reasonable to compare these time-

averaged values of K,. Since sampling was only for half a tidal cycle, and that a few
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other mixing layers arc observed in Figure 7.8, mixing is slightly more intense during
this 6-hour observation period at the head of the channel than the average mixing
further down the channel (assuming N? is comparable in both cases such that K, is
an appropriate meacure of mixing).

Of course, this is only the mixing from one of the patches on Figure 7.8, which
shows only one 6-liour observation. It cannot be assumed that this observation is

typical; a few more observations follow.

7.5 A Mixing Layer in a Loose T-S relation

In the previous section, a mixing layer with tight 7' S was shown where temperature
inversions always correspond to overturning. In this scction, a time-series from the
South side of the Laurentian channel is presented. It is used to demonstrate how
intrusive water masses are the main difficulty in identifying overturns with a C'T'D,
even when one uses density to find inversions.

Figures 7.10 and 7.11 show isopycnals, temperature anomaly, Richardson numbers
and the mixing parameter {¢N for station 14, as Figures 7.7 and 7.8 did for station 11,
The data shown from station 14 is simultaneous with shear mecasurements shown
on Figure 7.6 and with the T-S diagram of station 14 on Figure 7.1. The warm
intrusion at oy & 25 described in Section 7.2 and observed on Figure 7.1 is evident on
the temperature anomaly plot, rising to 30 m at 31 hours. The use of cither density
or temperature from CTD measurements to identify overturns will not be attempted
within this feature. It will be shown here that more subtle 7- .5 features, which aie
not as evident, also cause problems.

The deep data gap in Figure 7.10A is caused by the processing cut-off of the

profiles at 0 °C, above the temperature minimum of the water column.
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7.10: Isopycnal displacements and temperature anomaly at station 14. A-
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Figure
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Figure 7.11: A- Gradient Richardson numbers at station 14. Black on whife contour
line is for R?, = 10, shaded areas for 2, < | and white on black contour is for
Riy = 1/4; B- Quantity (N calculated for each overturn measured using density.
Only overturns with rms p’ > 0.005 kg m™~2 are shown. Gray scale is log-linear fro.n
1078 W kg~! (white) to 10~* W kg~ (black); C- ¢N calculated for cach overturn

measured using temperature as density tracer. Gray scale same as B. The boxes on
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7.5.1 Intrusive Layers

The first, striking feature on Figures 7.10 and 7.11 is the mixing layer shown boxed
between 31.7 and 33.7 hours, consisting of 31 CTD casts. Stratification is very low
for that depth range, gradient Richardson numbers are mostly below % and the layer
appears to be overturning throughout. Overturning energy, as measured by (N, seems
rather low. Most of the overturns that occur near the end of the layer are not seen
by re-ordering on density because of the high density fluctuation threshold selected®

The density range within the first half of the layer is fairly constant, but the
layer gets denser during the second half (see Figure 7.10). The T-S relation of the
profile of the first half are shown in Figure 7.12A; ihe T-S relation of the second
half is denser and is tiiercfore not in the same T-S parameter space. The water gets
progressively warmer with successive CTD casts in Figure 7.12A. It appear that a
family of water masses are present, each on a T-S line going from warm-fresh to
cold-salty. Within each casts, these water masses are seen intruding into each other.
However, the warm-salty to cold-fresh lines joining up these water masses do not lie
on isopycnais; the isopycnal for g, = 21.6 is shown on Figure 7.12B.

Figure 7.12A shows what appear to be intruding stratified water masses, with
the top water mass denser than the one undernea*! Figure 7.12B illustrates this;
only parts of the T-S lines which are unstable in density are shown. Instabilities
correspond to overturns when they lie on a unique 7-S water mass; in this case, it it

difficult to determine if these are sampling artifacts or real structure.

Temperature and Conductivity Sensor Mismatch

A possible explanation for the density inversions of Figure 7.12B is time-response

mismatch between the CTD conductivity and temperal ire sensors. This is known

1Only overturns with an rms density fluctuation of 0.005 kg m~2 or greater are shown. Perhaps
this limit could be lessened if density were calculated to a forth significant decimal place. With
the current density values calculated to three significant decimals, it is difficult to establish a good
estiniate of the noise level. I opted to err on the side of caution by select only overturns having an
rms density fluctuation of 0 005 kg m~3 or greater.
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Figure 7.12: A- T-S diagram for first 15 profiles of mixing layer described in text; B-
T-S diagram showing only depth-spans where the density profile is statically unstable.
Solil line is isopycnal for oy = 21.6; C- TS diagram for right-most profile in A (dots).
T-S lines offset to the left are obtained by using conductivity measurements offset.
in depth with respect to temperature as explained in the text; D- Conductivity ratio
versus temperature for profile in C (thick line) and its preceeding profile (thin line).
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to result in what is commonly referred to as ‘spiking’. Such mismaich *s discussed
in Perkin et al. (1982) and is summarized here. The 14 cm long conductivity cell
has approximately instantaneous response to new water when it has penetrated the
cell 7 mm past mid-point (although the response is to an average property of the
water found hetween the two electrode pairs, separated by 4 cm). The thermometer
is quoted as haviig a 50 ms response; its time response is said to be adequately rep-
resented by a simple exponential decay (Perkin and Lewis, 1982) if the drop speed is
held constant. At the descent. rate of 50 cm s~}, this corresponds to a length-scale
of 2.5 ¢m. Since saip pitch and roll were minimal on our cruise, this representation
is thought to be adequate. Thus time response mismatches could be reduced by cal-
culating salinity and density by combining conductivity with temperature measured
2 cm later, by which time the sensor has caught up with most of the temperature
changes as it can.

Figure 7.12C shows the right-most piofile in Figure 7.12A and B with dots. Most
of the density inversions consist of many points and so cannot be dismissed as random
error. The profiles offset to the left are T-S czlculated by offsetting temperature and
conductivity by 1 sample (= 2 cm), and then 2, and so on to 8 samples of offset.
This is much more than could be accounted for from the known sensor mismatch,
and none of these offsets resulted in eliminating—or even significantly reducing—the
density inversions.

Therefore, t.me-response mismatch of CTD sensors cannot account for the unusual
T-S structure observed in Figure 7.12A, at least using single-pole transfer functions
for the temperature sensor and instantaneous but delayed response of the conductivity

cell as suggested by Perkin et al. (1982).

Conductivity Cell Flushing

Another explanation for the density inversions of Figure 7.12B involves flushing of
the CTD conductivity cell. This is a narrow tube 14 cm long within which 2 electrod:

pairs measuring conductivity are separated by 4 or 5 cm. It is conceivable that the
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overturning circulaticn would be sirong cnough at low gradicut Richardson numbers
(which is the case here) to prevent proper circulation through the conductivity cell.
However, 1 will show here that this is unlikely.

While is it true vhat turbulent velocities increase with decreasing values of Riy,
a brief look at Figures 7.10B and 7.6C indicales that low values of Re, must be
mostly due to low NZ. Turbulent velocities are in fact proportional to the inverse of

1

the shear. From (7.1), the originating relation v’ = 04N Ly Ri7'? is back-tracked.
Using Ri, ~ 0.15 and N? in the range of 107 to 107" 572, the turbulent velocity
is ' & (0.02s7! 4 0.01)Lz. Overturning scales would have to be about 10 m for
turbulent velocity s to become comparable to the descent rate of the CTD ingtrument
of 50 cm s™!. Overturning scales are typically less than 1 m.

It is a'so not obvious that the turbulent velocity ficld preventing proper flushing
of the conductivity cell would result in the T-S characteristics of Figure 7 12A. The
conductivity ratio hetween in-situ watcr and standard sea-water is plotted versus
wemperature in Figure 7.12D. The figure includes the profile shown in Figure 7.12C
and the preceeding profile. The curves have a stair-case shape, as might he expected
from interrupting the flushing of the conductivity cell. However, simultancously with
conductivity remaining constant, temperature would he expected to quickly decrease
and then increase again if the sensor were going through an overturn. This expected
signature is not observed.

In summary, then, it remains a puzzle as to whether the density inversions oh-
served in Figure 7.12A are artifacts. A simple scheme of turbulent velocities associ-
ated with overturns inhibiting proper flushing of the conductivity cell cannot cause

mis-sampling similar to observations.

7.5.2 Mixing Rates

Density inversions found in this intrusive layer do not all occur bhetween different
water masses. Most of the inversions found on the left-hand side of Figure 7.12B stay

mostly along a single waler mass. Also, while mixing intensity appears to wane in
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the sccond half of the layer, the overturns are mostly along a single water mass 7-S
line (not, intrusive). An example is shown in Figure 7.13 where the second last profile
is plotted in a T-S diagram. Note how inversions in temperature and salinity stay on
the 7'-S line of the water mass, representative of overturning of the same T-S water
mass. Temperaturc is a good density proxy in this case.

The mixing rates are computed using the last 11 CTD profiles of the layer in
1-m bins in a manner described in Section 7.4.1. The layer-average value of J, =
(2/3)ENFr, ~ 0.2TENRi;"/* is 1 x 107 W kg™, Using the minimum Ri, observed
in each 1-m time-averaged bin to estimate Fr, leads to J, & 1.7 = x107® W kg™,
70% higher than with the average Ri,.

The turbulent Froude number averaged eqnally over all bins is 0.85. The average
of the maximum turbuleat Froude number found in each bin is 1.51.%

The averaged N? was 1071 s, The layer-averaged K, = J;N™2 = 1 to 1.7 x
10~*m? s7'. These mixing rates will be compared to those of the previous layer in

section 7.7, after a last mixing layer (forced by solitons) is presented

7.6 Solitons

In this section, the . .servations of what are thought to be solitons are discussed. The

raixing they induce is estimated and translated to a decay time.

7.6.1 Observations

Most of the isopycnal displacements at station 14 show fairly low frequeucy oscilla-
tions (see Figure 7.10B). However, there is a deep and fast depression of the surface

isopycnals before sampling was interrupted at 35.25 hours, and again at 36.25 hours.

SWe can defiue an overturn-averaged turbulent Froude number weighted by overturning intensity
as Y (ENFr;L)/ Y ENL, where L is the size of each overturn, and the sums are over all overturns.
‘This would yield the average F'r; in energetic areas. Surprisingly, the result is 0.83 using the average
value of F'ry in each 1-m time-averaged bin, and 1.45 using the minimum Fr; in each bin; These are
very similar to the bulk averages.
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Figure 7.13: T-S relation at the second from last profile of the first mixing layer af,
station 14. The mixing layer is discussed in the text. Note here how inversions stay

on the T-S water mass line.
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'This is also seen in Figure 7.10A where anromalously warm water plunges to 25 m
deep. These isopycnal excursions are thought be solitons passing by.

Two facts support the interpretation of the isopycnal depressions as solitons. First,
similar C'T'D data were collected the following summer, in July of 1989, and the same
pattern was observed and is shown in Figure 7.14A. In a series of three CTD casts
the isopycnals were depressed and restored. Simultaneous 200 kHz acoustic echo-
sounding reveals a very smocth motion resembling the observations of a “sech?” shape
by Sandstrom and Elliott (1984) on the Scotian shelf. The second reason why these
observations are consistent with solitons is that they are always observed within 1
hour of low tide. Such motions were observed on all five occasions when that phase
of the tide was sampled, on both sides of the channel. This is consistent with tidally
generated solitons.

There arc some variations. Sometimes the depression extends to isopycnals deeper
than 50 m, sometimes to only 15 m deep. Usually two or three solitons consecutive

are observed, somctimes only one.

7.6.2 Generation Point

Ingram (1978) observed solitons in the shallower South channel, 15 km up the chan-
nel and to the South of station 14. The solitons Ingram observed were travelling
down-channel 3.5 hours after high tide. To travel the 15 km separating station 14
{from Ingram’s observation point in 1.5 hours, solitons would have to propagate at
2.8 m 571, /footnoteLow tide at Station 14 in Figure 7.10 occurs at 36:50 hours, such
that the first soliton appears approximately 1.5 hours before low tide.. Since Ingram
observed them to be travelling at ~ 0.8 m s~!, they are unlikely to be the same
solitons originating from a tidally-timed event.

Shear was measured at station 14 simultaneously with the passage of the soliton
using the ADCP (See Figure 7.6C). One of the periods where shear is poorly fitted
by the rotating-vector of the internal tide in Figure 7.6E and F corresponds to the

passage of the soliton. It is argued now that the shear measured during that time
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should not be associated with the internal tide, but rather with the soliton. In the
presence of additional strain, 1 argue that that internal tide shear should not be a
conserved, but that rather the transport (volume flux) between isopycnals should be
conserved; the vertical derivative of transport velocities leads to shear. If isopycnals
are strained by a soliton by a factor «, the velocities associated with internal tide
transport arc reduced by 5. Furthermore, shear—already reduced because velocities
are smaller—should be reduced by another factor v from spreading of the isopycnals.
Since isopycnals around 5 m in depth plunge to more than 20 m with the soliton, the
shear signature of the internal tide should be reduced to noise level, and the shear
should be due to the soliton itself.

Shear during the passage of the soliton is such that it was was travelling down-
channel (toward the moutn of the estuary). The generation point is thus probably the
sill. This, and the soliton’s passing at low tide, is consistent with models of soliton
genetation as lee-waves. Tidal flood could create a lee-wave on the other side of the
sill. As ebb flew starts, the lee-waves are free to propagate off the sill and evolve
into solitons. A delay of 5 hours before their observation at station 14 would put the
generation point at 18 km up-channel using an approximate propagation velocity of
1 ms™!. This is an approximately correct distance to the other side of the sill. While
this generation process of the solitons remains only a guess, the timing of their arrival
provides an important clue for future investigators. These solitons appear unrelated

to those observed by Ingram (1978).

7.6.3 Mixing Rates

Overturning events and overturning potential energy are maximum at the onset of
isopycnal deepening (see Figure 7.10). Deep isopycnals plunge before ones close to the
surface. Mixing seems to tollow this pattern as well, starting at depth and progressing
toward the surface. A very energetic overturn is also observed at the leading edge

of another soliton in Figure 7.14, but the overturn is close to the surface this time.



Mixing at the leading edge of solitons is consistent with Bogucki’s (1991) simple 2-
layer model, separated by a pycnocline, for the propagation of a soliton. In Bogucki's
model, the interface is thickened by the soliton’s shear until the layer Richardson
number reaches an upper limit when mixing stops.

Figure 7.15A shows a temperature profile with two of the most energetic overturns
observed associated with the soliton. The profile was taken at 36.18 hours. The
vertical lines in Figure 7.15A delimit the extent of the 2 overturns. The T S relations
for each of these are shown in Figure 7.155 and C. The top overturn is 5 m in size,
and has big temperature fluctuations (= 0.8°C). The second is 19 m in size, but has
lower rms temperature fluctuations of 0.025°C, which is still an order of magnitude
above roise level. Both overturns have good tight T'-S relations and there is no doubt
that they are real. Upon close examination of the temperature profile, it could be
argued that the top overturn is actuaily made up of two. If that is the case, there is a
temperature overlap of 0.15°C between the two features which is due to mis-sampling.
This is much greater than noise level (a few millidegrees). In any case, the potential
energy of the overturns, ¢, would not be significantly different for a ‘corrected’ case
if one choose to ‘corcect’ the temperature profile to eliminate the overlap.

Using either density or temperature fluctuations to cvaluate ¢ results in a 20%
difference in Figure 7.15B, mostly because the overturn extends 1 m deeper evaluated
on density. The difference is only 6% for Figure 7.15C. Density fluctuations will he
used for this series, but either would do.

The mixing rates are computed for all 13 CTD profiles in the same manner as de-
scribed in Section 7.4.1. The layer-average value of J; = (2/3)é N F'r, = 0.27EN Ri !/
is 1.6 x 107® W kg~!. Using the minimum R:, observed in each I-m time-averaged
bin to estimate Fr, leads to J, =~ 3.7 x 107 W kg~', 125% higher than with the
average Ri,.

The averaged N2 was 4 x 107* s72. The layer-averaged K, = JN™? = 6 x
10~3m? 51,

Assuming that the total energy of the scliton scales like N?A?%, where A is the
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New layer Well mixed Soliton

Nt [s=2) 103 -1 4 x 10
Jy = EN Wkg™'] | 3.4x107° 1.7 x 1078 2.4 % 1078
Jy 2 (2/3)EN(0A R wke) | L2x 1077 I x 1078 1.6 x 10
Jy = (2/3)EN(0.4 Ri;,,‘,!f) Wke'] | 1.8x 1077 1L7x 1078 3.7 x 1078
Fr, 0.47 0.85 0.59
Frimx 0.73 1.5 1.46
K, m2s=' [ Lto3 X107 | 1 to 1.7 X107 | 4 to 9 x 1079
Calculation Depth 121022 m variable Hto25 m

! Duration 45 minutes 2 hours 53 minutes

Table 7.2: Summary of mixing layers
amplitude, the energy is ~ 0.8 m? s™' using N2 = 4 x 107" 572 and A = 45 m.

Considering that the turbulent Froude number inferred from Ki, is approximately
equal to 1, an inertial-buoyancy balance may hold. In this case, let us assume con-
servatively that there is an equal amount of dissipation of turbulent kinetic energy
as there is buoyancy flux (I' = 1). This is a lower bound on the rate of dissipation
of turbulent kinetic energy. The total dissipation rate (‘TKE plus potential) is then
> 5x 107 W kg~!. It would take 44 hours to dissipate all the soliton’s encrgy at this

rate. The soliton would travel 160 km at a typical propagation velocity of 1 m s~!,

7.7 Comparison of the Mixing Layers

e mixing rates obtained for the three mixing layers are summarized in Table 7.2.
Th tes obt | for the thre ing layer : 1in Table 7.2

A brief discussion follows.

New Mixing Layer

The first mixing layer was observed in the beginning stages of mixing: The first
temperature profiles had very high stratification and much overturning finestructure
(see Figure 7.9). As the mixing progressed, stratification decreased while overturning

length scale increased such that the APEF remained about, constant.
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The average F'r, over all bins and the average of the maximum F'ry in each 1-m
thick layer were both the lowest of the three mixing layers. The average maximum
Fry is evaluated using the minimum gradient Richardson number in each 1-m thick
layer. Perhaps this value is more indicative of the dynamics; the minimum i,
rcached should be more relevant than some mean value. The averaged-maximum F'r,
is 0.73, which is very close to the maximum value of (F'ry)isorp == 0.8 estimated in
chapter 4 for growing isotropic turbulence reaching inertial-buoyancy balance. This
value of Fr, seems to indicate that overturns created at the onset of mixing are in an
inertial-buoyancy bhalance. Note, however, that this is an average value of Fr;. Many
lower values are found and ‘t is possible that the turbulent Froude number is under-
estimated by a factor of 2 because the critical Richardson number where overturning
starts is = | instead of 1/4 (see Figure 7.16A).

The buoyancy flux obtained using model two’s J, o m or model three’s
Jp = EN are both relevant at isotropic inertial buoyancy balance. They give a sim-
ilar buoyancy flux within a factor of 2 (although the coefficient for model three is
adapted to higher values of F'r, for which anisotropy is greater; its buoyancy flux
formulation overestimates slightly for isotropy because the TKE is under-estimated).
Thus while model two or three should apply to this layer, because it appears to be at
critical Richardson number (isotropic inertial-buoyancy balance where both models
converge), model two would be applied were it not at critical Richardson number (as
it may be if Ri, is under-estimated) because there is evidence that the layer is newly
mixing, and thus that turbulence may be growing; if Ri, is not under-estimated,
the overturning appears to be created already at inertial-buoyancy balance, perhaps

threugn K-H instability.

Well Mixed Layer

The second layer observed had K, about the same as the first layer, but the buoyancy
flux estimates are one order of magnitude smaller because of the smaller stratification.

The turbulent Froude number is estimated to be twice the value of the previous case,
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meaning that this layer has a lower mixing efficiency.

Since the layer has unusually low stratification, it has probably been mixing for a
long time. To illustate this, note that using K, = 1.5x 107" m?s™" and a thickness of
H ~ 10 m, the time to mix to completion is H*/(12 K,) = 15 hours. The layer may
have been mixing for a few hours, unless its low density gradient is caused by strain
from the internal tide. It seems reasonable to assume that the third model should
apply, describing anisotropic steady-state turbulence at inertial-buoyancy balance. In
this case the buoyancy flux is 1.7 x 107® W kg™' (the same result is obtained with

the second model) and the isotropy is estimated as Ly /Ly = Fry = 1.51.

Soliton

The mixing associated with the soliton occurs mostly at its lcading edge. The eddy
diffusivity K, is nearly 2 orders of magnitude higher than for the other two layers
described. The buoyancy flux is 20 times higher than the average of the first layer.
The averages listed in Table 7.2 are for one or two solitons (the trailing cdge of one
is sampled before the leading edge of the main one sampled), but over ncarly an
hour. This leads to the unexpected result that solitons are a very important source of
mixing at the head of the Laurentian channel. Solitons are probably more important
than the internal tide, which is thought to be generated therc. This is a new 1esult.

For this layer, the turbulent Froude number based on minimmumn I, is 1.46, which
is as high as for the well mixed layer previously discussed. In this case the mixing is
known to be new because of the sudden appearance of the soliton. Since there is no
reason for the overturning to be created at inertial-buoyancy balance in this case, it is
assumed that the turbulence is growing. In this case, the second model is appropriate

and the buoyancy flux is estimated as J, ~ 3.7 x 1075 W kg~'.
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7.7.1 Comparison to Wind Mixing

Oakey et al (1982) measured approximately 1% of the work done by wind stress below

10 m, £,0, as dissipation of turbulent kinetic energy, where Eyg is
Eio = paCroUsp (1.7)

and p, is the density of air (= 1.2 kg m=3), Cy¢ is a drag coefficient (1.3 x10~2) and
Ui is the wind speed measured at a height of 10 m. Most of Ejo is dissipated in the
atmosphere above the water.

If buoyancy flux is approximately equal to a quarter of the rate of dissipation
within the water (assuming that mixing efliciency in this possibly high Fr, flow is

! wind corre-

below the maximum inertial-buoyancy balance value), then a 10 m s~
sponds to a depth-integrated buoyancy flux of 4 x10™* W m~2. If this mixing occurs
in the top 20 m of the water column, the buoyancy flux is 2 x 10~ W kg~!. This
is an order of magnitude lower than instantaneous buoyancy flux from solitons. In
addition, sheas layers mix water (and nutrients) up without unduly disturbing the
surface waters like wind mixing does. Thus nutrients may be mixed up into surface

waters with little mixing of plankton down below the photic zone.

7.8 Relating Mixing to Shear

Recent work by Gregg (1989) has shown promising results in relating the shear forcing
the mixing directly to the dissipation of turbulent kinetic energy, e. This effort is very
worthwhile because mixing could be inferred by simple measurements of shear rather
than the more technical difficult task of measuring microstructure, or even finestruc-
ture. All three models of finestructure which have been compared in this thesis will
be tied to Gregg’s shear-dissipation relation. This will gives three predictions for (¢ N

as a function of shear which can tested tested with our data.
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7.8.1 Background of the Gregg Model

In order to understand and quantify fluxes of heat and mass in the ocean, and to
provide numerical modellers a basis on which to set. eddy diffusivities, theories for
the scaling of turbulent kinetic energy dissipation rate as a function of stratification
and energy level have been derived. These include scalings like ¢ o¢ N1 (Gargetd
and Holloway, 1984), € f%N%EC%;Me“"/”G’” (Munk, 1981) where Fgayp is the energy
level associated with the Garrett-Munk model, ¢ o N* (McComas and Muller, 1981)
and more recently € oc E%, N2cosh™ (N/f) (Henyey et al., 1986) based on the rate
of energy transfer from low to high wavenumber by wave-wave interactions.

These theoretical formulations typically use a constant energy level of internal
waves, but over periods of days to weeks the Lrue energy level 5w can vary by factors
of 2-3 relative to Egy. Gregg (1989) therefore assumed ¢ o< £}y N* (dropping the
small cosh™!(N/f) variation in Henyey et al. (1986)) and used the integrated shear
variance of the Garrett-Munk spectrum to obtain Fga o Sam?. Assuming that the
variable energy level still follows the Garrett-Munk spectral shape; an estimate of

Erw can be obtained by measuring the in situ shear. The estimated dissipation is

=35 x 10-10 N Siv
Nom Stm

(7.8)
in units of W kg~!, where Sjo is the shear measured on a scale of 10 .,
The dissipation relation can be further simplified. The Garrett-Munk shear is
related to a reference stratification of Ngy = 0.0052 s as (Gregg, 1989)
2

n N
St =191 x 107" —— (7.9)
Ném

Defining a 10 m Richardson number Riyo as N2/ 5%, dissipation hecomes
€=2.6x 107" Ri;y 5%, (7.10)
in W kg~?! using Sjo in s7".
This relation for dissipation in the main thermocline (which assumes a Garrett-

Munk spectral shape), has surprisingly been shown to hold to within a factor of 2 in
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four different sites. In fact Gregg (1989) adds the factor of 2 which better collapses
the data. The relation becomes 5.2 » 107° Ri7y S%) in W kg~! (Gregg, 1989).

7.8.2 Relating Gregg’s Model to ¢

Gregg’s model can be written in terms of mixing intensity ¢/vN? as

€ _ 52
vN? — Ri?,

(7.11)

using (7.10), » = 1078 m? s™! and incorporating the factor of 2.

This relation (7.11) cannot be compared directly to the finestructure measured
from the St. Lawrence, except for the first model. However, the two other models
from chapter 3 relate € to (N for known values of Riyg. The Gregg model will be
linked to each model via e~ N conversions such that measured values of ¢ N/vN?
can be compared to Gregg’s predictions coupled to the models. It most be noted
that Gregg’s model yields an average predicted value of €, which will be compared to

instantaneous measurements of overturning.

Model One

In the first model, the relation L, = Lt leads to a direct estimate of dissipation from

measurements of ¢ N. Combined with (7.11), e =~ 26 N simply becomes

Vo2 (7.12)

vN? R-i%—(;
Model Two

In the second model, the ratio £N/e is related to Ri; ~ 6.2 Ri, using (3.23) Linked

with (7.11), this becomes becomes

EN e &N 521
vN? uN? ¢ ~ Ri%, 2

(6.2 Riyo)*/? ~ 400 Riz/? (7.13)
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Model Three

In the third model, the ratio of £N/e is simply the mixing efficiency I' = Ri,/2 =
3.1 Rijo. Combined with Gregg’s model, this gives

N
"uéfv? = 1607, (7.14)

The Comparison

Values of ¢ N/yvN? are shown in Figure 7.16 for the threc mixing layers discussed in
this chapter. The values are 1-m thick time-averages and are shown versus both the
time-average gradient Richardson number of each 1-m layer (calculated in logarithmic
space) and versus the minimum v.lue of Ri, found in each 1-m. Gregg’s pr 'iction
for €/ N? is shown in relation to each of the three model by the three lines.

The use of the minimum Richardson number leads to slightly hetter fits. The
soliton data have approximately the proper slope for model two of growing turbulence,
but have values of ¢N/vN? an order of magnitude higher than expected. 'This should
not really come as a surprise because there is no reason why mixing should follow
internal wave transfer rates. This was also the most intense case of mixing encountered
in this data set.

Well-mixed layer data are scattered in Figure 7.16A and have values of éN/vN?
too low to fit the third model. The new mixing layer data could he argued to fit any
of the three models.

The data from the three mixing layers do not collapse under Gregg’s turbulence
scaling. It would be difficult to determine if the (¢ N to ¢ conversion models are
not correct, or if Gregg’s model does not apply to these circumstances. The latter
seems the most reasonable. Gregg’s dissipation dependence on shear is a function
of internal wave energy transfer rates. The only mixing layer described here which
could be argued to be forced by internal waves (although not the typical Garrett-
Munk spectrum) is the newly-created mixing layer, which appears to have overturns

created at inertial-buoyancy balance. Perhaps this is a factor affecting the success
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Figure 7.16: Comparison of Gregg's model with observed finestructure. A- éN versus
minimum Ri; in each I-m thick time-average layer; B- €NV versus log-averaged Ri,
in each 1-m thick layer; Data are from (e) new mixing layer, (o) well-mixed layer and
(D) soliton. The lines are, from the steepest, combination of Gregg’s model with the
first model (¢ = €N), with the chird model (J, = {N) and with the second model
(Jo = (2/3)ENF'ry).
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of the Gregg model in that case. Perhaps a comparison with more averaging would

yield closer results.

7.9 Summary

In this chapter, CTD and ADCP data were combined to study mixing layers at the

head of the Laurentian channel. Tke main results are as follows

e The T-S characteristics at the head of the channel were observed to change
quickly in space. Two diflerent water masses are found above the temperature
minimum at station 24. The warmer water masses may be formed by deep
water—usually below the temperature minimum—put into contact with shal-
lower water from above the temperature minimum. Large internal tive isopycnal
displacements could do this by ‘upwelling’ water over the bank or the sitl. The
water mass formed by the mixture of the two end members is seen mostly on

the South side of the channel, but it also intrudes into the Notth side.

¢ The internal tide was studied following Forrester (1974). 1t is unclear if the
internal tide, thought to originate from the head of channel, is evanescent. If
so, then the large shears observed at the head arc only typical of the first,
few kilometers away from the generation point, and mixing rates described here

cannot be applied further downstream. Results arc summarized in scction 7.3.5.

o The gradient Richardson number was used to infer the turbulent Froude number
as suggested in chapter 3, and verified in chapter 4. Figure 7.16 shows that the
minimum observed Rz, in l-m layers varies by a factor of 10 in cach of the 3
mixing layers observed. The highest value of Riym,n which still produces mixing
is about 1, instead of 1/4. This means that the turbulent Froude numbers may
be under-estimated by a factor of 2. Buoyancy fluxes quoted using F'r, ate thus

lower bounds.

e Three mixing layers were examined, summarized in Table 7.2.
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~ The first appears to be starting to overturn. The lowest average values of

F'r, were observed in this layer, for which overturning is thought to occur
at inertial-buoyancy balance. Stratification is very high. The T-S relation
is very tight, even within overturns. Temperature can be used as a density
proxy without worry about intrusions. Model two for growing turbulence is
a good choice for this layer, since it appears to be new, growing turbulence.
Buoyancy flux from model three is only two times higher, because of the

proximity to inertial-buoyancy balance.

The second layer has very low stratification and low R:,. The correspond-
ing high Froude numbers and the low N? indicate that model three is
appropriate to describe this layer as steady-state turbulence at inertial-
buoyancy balance, but slightly anisotropic because the layer is thought to
have been mixing for some time. The first half of the layer has a loose T-
S relation in which unusual density-unstable features are found. Different
water masses, betweer. which the measured density profile is unstable, are

layered. I do not think that they are overturns but cannot explain them.

Although these structures cannot be explained, they have been detected
and can be disregarded in mixing quantification. This shows that a con-
ventional CTD. used in low wave conditions trom a stable platform and
in shallow depth with strong gradients of temperature and salinity, can
sample T' and S adequately to measure overturns and uifferentiate them

f...n even slight intrusions in most cases.

The third layer is associated with the passing of solitons. Mixing is max-
imum at the leading edge of the soliton. The eddy diffusivity and buoy-
ancy flux are respectively 100 and 20 times higher than the first layer
described. Since overturning is new, model two is appropriate. If Fr, is
under-estimated by a factor by two, model two predicts buoyancy fluxes
three times higher than model three for this layer. This is the largest

difference between models observed between the three layers.
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e Although mixing was never measured at the head of the channel, many authors

have anticipated that the larger shears associated with this generation area of
the internal tide is responsible for high mixing rates. | have shown here that
solitons may in fact be more important. Buoyancy flux averaged over an hou
was 20 times higher than the second highest buoyancy flux (the new layer),
which was a 45-minute average. Since solitons pass by at each low tide, this is

also a ‘steady’ source of mixing, like the internal tide.

More solitons and internal tide-forced mixing layers need to be quantified before
solitons are positively demonstrated to be more important for mixing, but this

research clearly points in that direction.

Further mixing studies should focus on the possibility of deep waters overflowing
onto the shallower South channel or the sill, where it can mix with the shallower
waters. This mechanism may be responsible for the intrusions we have observed.
This internal tide effect may also be more important, than mixing forced hy the

large scale shears of the internal tide.

The data from the three mixing layers were compared to chapter 3’s three
models linked to Gregg’s (1989) relation of ¢ to shcar. Only the new mixing

layer was consistent with Gregg’s model.



Chapter 8
Discussion and Conclusions

In one sentence, the conclusion to this thesis is that “Buoyancy flux can be inferred
in a shear-stratified flow by the measurements of the APEF, of the density gradient
and of the shear”. Let us now use a few more words to qualify and quantify this

sentence.

8.1 New Ideas In Mixing Models

Microscale measurements of the rate of turbulent kinetic energy dissipation ¢ and
of the rate of dissipation of temperature variance ys are most often used to infer
buoyancy flux.

The assumptions of i) constant mixing efficiency and of ii) a duration time of
order N~! for the mixing associated with an overturn, lead to what I have termed
“the traditional model” relating overturning length scales Ly to the dissipation of
turbulent kinetic energy e. It is the first model used in the thesis, as a comparison
to new ideas.

The first model is perhaps misleading, relating a length scale constructed from
dissipation € and stratification N?, i.e. the Ozmidov scale Lo = (¢/N3)'/2, to over-
turning scales. Albeit Lo has a physical interpretation as the largest still isotropic

overturn size in the presence of stable stratification, it is obtained from microscale
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measurements. The inference is that Thorpe scales are related directly to the rate
of dissipation of turbulent kinetic energy, and then only to buoyancy flux through
a constant mixing efficiency. This implies a balance between inertial and buoyancy
forces.

Buoyancy flux should be thought of as an overturn-scale quantity; Moumn (1990)
has shown that the largest contributions to the the corrclation w'p’ are at overturning
scale. I have argued in chapter 3 that the buoyancy flux and potential energy dissi-
pation are both related directly to the APEF, . The presumplion is that buoyancy
flux accumulates into a stock-pile of £, which in turn is usually dissipated as fast as
it is being produced (i.e. Buoyancy flux adds potential energy to the APEL; that
energy is then dissipated and raises the center of mass of the water column). If the
fluxes in and out of the APEF increase, the APEF must also increase. The buoyancy
flux can be inferred from ¢ if the decay time of an overturn, and thercfore of &, is
known. In this view, Thorpe scales—related to the APEF—are linked to buoyancy
flux directly beacuse the APEF is potential energy created by buoyancy flux. The
APEF is then related to ¢ through a mixing efficiency, which can be predicted fiom
the ratio of kinetic to potential energy of the overturn. This is in contrast to the first
model. In this new view, the potential energy of the overturn (APLF) is argued to
be proportional to potential energy flows J, and dissipation of potential energy; thiy
holds for any ratio of inertial to buoyancy forces, and is argued to be a more general
assumption than model one.

The assumption that the dissipation of potential energy at microscales, 3N*x,C,,
is equal to the buoyancy flux J, which may occur at larger scales is used for models
two and three described in chapter 2. Dillon et al. (1987) assumec that 3N%krC, is
an upper bound to buoyancy flux. Perhaps if turbulence is growing (e.g. model two)
then this is a better assumption; however it is assumed that the rate of change of
the APEF during growth is smaller than either buoyancy flux or the dissipation of
potential energy.

Some of the pertinent questions addressed in this thesis are then
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o What is the decay time of an overturn, and therefore the decay time of { from

dissipation of potential energy, or equivalently the growth time of £ through J,?

¢ Do the mixing efficiency and decay time vary sufficiently that the distinction

between overturning scales being related to J, rather than to € matters?

e Can this method be used with conventional CTD instruments? What are the

difficulties?

8.2 Decay Time

Rather than picking a decay time of N7! as in the first model, the decay time for
the APEF is taken to be the decay time of the turbulent kinetic energy by e. The
turbulent kinetic energy decay time scale is implicit to the Kolmogorov spectrum.
If € is constant at all scales of a cascading energy spectrum, then it must scale like
¢ ~ u3/ L. If the turbulence is not isotropic and the Kolmogorov spectrum still holds,
then L is the energy containing scale: the horizontal turbulent scale. The assumption
that ¢ ~ 43/ L was shown to hold very well in slightly anisotropic grid-turbulence data
in chapier 4. The decay time of the turbulent kinetic energy 3u2/2 by dissipation
u®/L is then (2/3)L /v’

8.2.1 Second Model

If the overturns are isotropic, the ratio of the decay time scale (without the coefficient)
L/u' to the buoyancy time scale of N~! yields a turbulent Froude number Fr, =
w'/NLy. This is often written as a turbuleni Richardson number Ri; = N2L2 /u",
describing the ratio of ¢ to one horizontal 'component of turbulent kinetic energy.

In grid-turbulence, the decay time can be very short such that v’ > NL (Fr, > 1).
In this case, buoyancy forces are much smaller than inertial forces. Furthermore, the
mixing efficiency is low because, in spite of the high kinetic energy, the buoyancy flux

and APEF are limited by the small overturning scales, because density fluctuations
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associated with the turbulence are proportional to the vertical overturning scale.
Turbulent scales then grow without feeling the effects of buoyancy, until o’ =~ NL
(F'ry = 1). At this stage, mixing efficiency is maximum, and the decay time scale is
~ N~!, determined by the balance of inertial and buoyancy forces.

The above description is of the second model for growing isotropic turbulence.
Using F'r; and Ri, to parameterize the decay time, its buoyancy flux is written J, =~
[% + 41] ¢ N Fry, and its mixing efficiency is I' & [% + %] Rii/3. This model was shown
to hold within a factor of two for F'r; > 0.8, using grid turbulence data in chapter 4.
Unfortunately the inertial-buoyancy balance stage of maximum mixing efficiency was
not sampled because turbulence dies-out bzfore reaching it.

In the presence of shear, a third time scale is possible in addition to N~' and
L/u': the inverse of the shear (AU /8z)~'. Tt was postulated in chapter 3 that tur-
bulent velocity fluctuations derived from the shear must be proportional to it as
u' = a Lt 8U/8=. In chapter 4, this was tested using published grid-turbulence re-
sults in the presence of shear; we find @ = 0.4. The decay time scale (2/3)L/u’ is
then also parameterised by the large scale flow as (5/3) (U /8z)~'. The turbulent
Richardson number—and hence mixing efficiency—is then proportional to Ri,. We
obtain Ri; = 6.2 Ri,. The coefficient is important. The maximum value of Rz, which
still promotes instability and overturning corresponds to the inertial-buoyancy bal-
ance values of Ri; and F'r,. This critical value determines the maximum £/ TKE ratio
for overturning, setting the maximum value of mixing efficiency. The current esti-
mate, from chapter 4, is Ri; = 1.55 at Ri, = 1/4; this corresponds a maximum mixing
efficiency of I' & 0.52. Thir -alue is tentative. None of the decaying grid-turbulence
experiments have sampled the inertial-buoyancy balance stage. Future experiments
should focus on it.

The inference of F'r, from Ri, was attempted in chapter 7 using acoustic Doppler
current profiler data sampled at 1 m intervals. The main difficulties were i) to av-
erage N? to match the implicit filtering of shear from the ADCP sampling and ii)

to bin-average Ri, and £ on time and depth scales such that the two quantities arc
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correlated. The first difficulty is rather straightforward, the second is less. The choice
of the bin-averaging of £ and Ri, was arbitrary. A much better scheme would look
al. evolution of the cross-correlation of ¢ with Ri; with increasing averaging. How-
ever, best results could come from future instruments measuring both the density
and meter-scale shear profile from the same vehicle. Present data showed that a
dependence between ¢ and Ri, could not always be found, but encouraging corre-
spondence was found for the most active mixing layers. The correspondence was
better when using the minimum Ri, observed in each bin rather than a logarithmic
average. The critical gradient Richardson number was approximately 1, higher than
in grid-turbulence in the presence of shear. The buoyancy fluxes derived from the
second model using F'r; are possibly under-estimated by a factor of 2 because of this.
New technology broad-band ADCPs should do much better in resolving the small
scale shear with lower errors, and yield better gradient Richardson numbers. It was
found in chapter 7 that Gregg’s (1987) model relating e to shear did not collapse all
(é/vN?*)—Ri, data from three different mixing layers. While the slope of the depen-
dence resembles Gregg’s model, the intensity varied by an order of magnitude either

way.

8.2.2 Third Model

A third model is derived in chapter 3, describing steady-state mixing layers for
which overturning scales have out-grown the layer thickness, e.g. a surface mixed
layer. If vertical overturning scales reach the layer thickness before inertial-buoyancy
balance, horizontal scales are still free to grow, leading to anisotropy. Horizontal
scales are still linked to vertical scales through continuity. It was argued in chapter 3
that horizontal growth stops when the vertical kinetic energy is balanced by buoyancy
forces. The steady-state horizontal length scale is the Ozmidov scale Lo for steady-
state turbulence at inertial-buoyancy balance; the ratio Lt/Lo describes the level
of isotropy. The decay time is & N, but the mixing efficiency is affected by the
isotropy described by I' ~ (Lr/Lo)®. The ratio Ly/Lo also describes the energy

Iy
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separation between kinetic and potential, which affects the mixing cfliciency. The

buoyancy flux is J, & [49 + }] EN and the mixing efficiency is I' = {—: + ~"] Ri, /2.

8.3 Mixing Efficiency

The second and third models make very similar predictions about mixing efficiency;
only the coefficient changes. But the models describe quite different turbulence for
low mixing efficiencies. In the second model, low mixing-efficiency is characterized
by isotropic turbulence with small overturning scales relative the inertial-buoyancy
scale & Lg, turbulence does not feel the effect of buoyancy. In the third model, low
mixing-efficiency is characterized by anisotropy and turbulent velocities limited by
buoyancy forces. In both models, the turbulent Richardson number Ri, quantifies
mixing efficiency because it describes the ratio of potential to kinetic encrgy. The
generalized form of Ri; in terms of length scales combining both the inertial-buoyancy
balance and isotropy factors is Ri; ~ L3/ (Lg 3Li/ 3) (using € = u®/Ly).

Both the second and third models predict a wide range of mixing cfficiency for
various turbulent conditions possible. This is in contrast to the first model which uses
a constant mixing efficiency. The only oceanic data set reviewed in this thesis, with
sufficient information about mixing (e.g. € and .J, estimates) to distinguish between
the models, was Dillon’s (1982) oceanic and freshwater data. The mixing efficiency
varies by an order of magnitude within each of Dillon’s three data sets, and by two
orders of magnitude within all three data sets. This is incompatible with the first
model. The variation of the mixing efficiency is consistent with both models two and
three (because of error bounds). Models two and three arc thus preferable to model
one in energetic mixing regions.

The new APEF approximation £ ~ (g/Zﬁ)LT})—’?/2 found in chapter 2 was used
with Dillon’s data because the APEF was not tabled. This improved our ability
to test the models because the usual approximation N2L3/2 was shown to over-

estimate by a factor of more than 2 for Dillon’s data. The layer-averaged N? include
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non-overturning parts of the water column where stratification is higher than within
overturns. | also used a buoyancy flux formulation for the second model using a decay
time parameterisation not sensitive to the N? over-estimation. Dillon’s oceanic data
were consistent with the third model describing steady-state anisotropic turbulence
at incrtial-buoyancy balance. His freshwater data set was marginally consistent with
the second model, describing growing isotropic turbulence. The consistency between
models and data stops with the coefficient. Dillon’s data has values of x4 a factor of 3
higher than models two and three account for, leading to an average mixing efficiency
greater than 1. Apart from this difference, Dillon et al.’s (1987) empirical relation
for buoyancy flux as J, = 4.8£ N is the same as model three (assuming J, is equal
to the dissipation of potential energy, measured by Dilon et al.). Caution is adviced
using Dillon et al.’s (1987) relation which is possibly an over-estimate by a factor of

3, as well as not being a general result.

8.4 Difficulties

If only layer-averaged Thorpe quantities are available to calculate J, = ¢éN or
Jy = (2/3)ENFr,, then one needs to worry about APEF approximations as dis-
cussed in chapter 2. This difficulty disappears when all original data are available, as
in chapters 6 and 7. The APEF and the density gradient can be calculated over each
separate overturn. This leads to non-approximated values of ¢ N. If t, .pulent kinetic
energy dissipation rate measurements are not available, then Fr, must be evaluated
from Ri, as discussed above. The other problem is that salt-compensated inversions
must not be mis-interpreted as overturns if temperature is used to find overturns.
This mostly occurs from intrusions of different water masses.

In chapter 6, finestructure data from Emerald basin were compared to € data.
Most of the data were again consistent with a relation of the APEF to buoyancy
flux (testing of individual models was not done berzuse measurements of x4 from

which buoyancy flux could also be estimated were not used). Most of the dissipation
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rates were consistent with buoyancy flux models if the mixing efliciency varies by
an order of magnitude, up to about 1. This is slightly high, but would be lower
with some time-averaging. The data that were not consistent with the models had
high (N values and low ¢ values. C'TD casts taken before and after the sequence of
EPSONDE drops show that the ship had moved between two water masses during the
EPSONDE sampling. It is likely that intrusions between these water masses caused
the mis-interpretation of temperature inversions as overturns.

The main difficulty with the use of this technique in areas where salinity controls
the density gradient is the possibility of salt-stabilized inversions being mis-interpreted
as overturns. Obviously, temperature measurements alone cannot be trusted in such
circumstances. In chapter 7, data from the St. Lawrence estuary showed that even
slight T-S differences in water masses could cause mis-interpretation. This is very
problematic because the apparent APEF of these intrusions is very high. However, it
was also shown in chapter 7 that a conventional CTD used in the absence of surface
waves (heaving the winched instrument up and down) produced T' S relations suffi-
ciently reliable to determine if temperature inversions were overturns. In the presence
of waves, overturning within the surface mixed layer could escape the sensitivity of
the instrument. Overturning below the mixed layer could be sampled if ship motion
can be de-coupled from the instrument. There are at least three ways of doing this: i)
using a motion-compensating winch, ii) using a free-falling instrument and iii) using
a parachuted instrument. In these ideal measuring conditions, an ordinary C'T') can
be used to record energetic overturns, and these measurements can be used to infer

buoyancy flux.



Appendix A

Validity of the Determination of

the Transition Dissipation Rate

Grid-turbulence exjperiments by Stillinger et al. (1983) and Itsweire et al. (1986)
were used to determine the transition dissipation rate, €;,,. This quantity defines the
minimum bandwidth available to overturning scales needed to produce a buoyancy
flux.

The bandwidth is defined as the ratio of the Ozmidov scale Lo = (¢/N?)'/? to the
Kolmogorov scale Ly = (v*/€)/*. The Ozmidov scale is the maximum overturning
scale in the presence of stratification and the Kolmogorov scale is the length scale at
which viscous forces equal inertial forces and viscosity dissipates energy. Raised to

the 4/3 power, the ratio becomes

[ﬁo_]“"" ; (A1)

Lyl T uN?
where ¢/vN* is ofien referred to as the turbulent intensity. The transition dissipation
rate is defined as the minimum multiple of ¥N? required to sustain a buoyancy flux.

Itsweire et al. (1986) estimate the transition dissipation rate as

ér = (152 1.2)yN? for M = 1.905 cm

(A.2)
¢r = (21 £ 1.4)»N? for M = 3.81 cm
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It is reasonable to assume that some minimum inertial force may be required to
overcome viscous force to create overturning. The ratio ¢/vN? can be interpreted as a
Reynolds number because it describes the ratio of inertial to viscous forces (although
it is different than a Reynolds number based on turbulent scales as Re, = u’'Lp/v).
Thus Itsweire et al.’s (1986) interpretation appears teasonable.

I believe these numbers to be suspect. Consider Figure 4.10 showing the parameter
space for L;/Lo versus ¢/vN%. Many data points that were used by Itswcire et
al. (1986) are shown to contain significant amounts of intcrnal wave energy by a new
scaling analysis done in chapter 4 (see Figure 4.4). Some data with turbulent intensity
as high as ¢/vN? = 100 are mostly internal waves.

Further, consider Figure A.1 showing the isotropy of turbulent velocities w'/u’
against turbulent intensity ¢/v N2. The solid symbols indicate the presence of internal
wave energy from the criterion derived in chapter 4. The top two panels have a grid
spacing of M = 3.81 cm, the bottom ones have M = 1.905 cm. The transition
dissipation rate was calculated by ltsweire et al. (1986) as 21 ¥ N? for the top pancls.
Note most of the data at that energy level contain internal waves. The transition
dissipation rate was calculated as 15 vN? for the bottom pancls. In both these cases
anisotropy increases with decreasing energy, as expected (Gargett et al., 1984), until
at ¢/uN? ~ 25 where w'/u’ increases. The increase is most certainly due 1o internal
wave energy. The increase begins before my criterion classifics data as infcrnal waves,
suggesting the criterion could be tighter.

Itsweire et al. (1986) argue that the internal wave encrgy is created by the grid
at a low level, and oaly becomes perceptible when the turbulent kinetic energy has
sufficiently decayed. Considering that Itsweire et al. {1986) calculated different, tran-
sition dissipation rates for the two grid size, and because it is more reasonable to
assume that such a value should be universal, it then seems likely that the internal
wave energy interfered with their calculation of the cross-correlation pw’. Values of
w' are probably internal wave energy for ¢/vN* < 25. The correlation pu’ from the

much less energetic turbulent fluctuations may then be drowned out hy the mostly
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Figure A.1: Isotropy of rms turbulent velocities w'/u’ versus turbulence intensity
¢/vN*. Values in the legend are for N in s™!. Open symbols are for ¢/(eL:)'/? < 2.2
(turbulence) and solid symbols for q/(eL;)*/® > 2.2 (internal waves). The vertical
lines are for ¢/vN? = 15 (small grid mesh size) and ¢/vN? = 21 (large grid mesh
size). They are the values quoted by Itsweire et al. (1986) at which buoyancy flux

ceased.
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uncorrelated product of p'w’ associated with the internal waves.

Until further experiments are done without internal waves, or until the technique
Itsweire et al. (1986) used is shown to be sensitive enough to pick up weak cross-
correlation amongst stronger internal wave energy, [ would suggest that ¢, = 15vN*
be viewed as an upper bound on the transition dissipation rate. Perhaps future exper-
iments without internal waves but with a range of F'r, will shiow that the important

non-dimensional number is Rc; rather than ¢/vN?.



Appendix B

Interpretations of the

Grid-Turbulence Experiments

This appendix reviews the interpretions of Ivey & Imberger (1991) and Gargett (1988)
of the grid-turbulence experiment results used in chapter 4. Ivey & Imberger obtain
an empirical result similar to my isotropic model. It is then important for me to
illustrate where their contribution and mine differ. Gargett (1988), on the hand, has
a completely different interpretation of the experiments as evolving from anisotropy
towards isotropy as sluggish low-Reynolds-number turbulence. Since her interpreta-
tion could invalidate my results, I will contribute new evidence to support my point

of view.

B.1 Ivey and Imberger’s Empirical Relations

Ivey & Imberger (Ivey and Imberger, 1991; Imberger and Ivey, 1991) use the SHV,
IHV and other lab results to derive an empirical prediction to the flux Richardson
number as function as turbulent parameters, assuming full isotropy. The resulting
form is similar to my second model. Their work is first summarized. A discussion
about our differing view points follows.

Ivey & Imberger (1991) describe the experiments in the F'r,—~Re, parameter space
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where the turbulent Froude number is written in various forms as
Fr, = B.1
"= IVLt ( . )
r ¢ 1/3
.LO 2/3
= |=Z B3
=] (B.3)
- 1/2
€
= ggw'} (B.4)

using w' = u' = (eL;)'/3, and defining g’ = gp'/p = N*L,. The turbulent (overturn-

ing) Reynolds number is

Re, = w'L, _ 61/3L;1/3 _ [ L, ]4/:3

QK
” - » (B.5)
Additionally, the small-scale Froude number was defined as
[ Lor/-" .
Fro=—=|—| =|—F .
"EN [uz\ﬂ] In (B-6)

where v is the rate of strain of the small-scale fluctuations or high wavenumber

components of the turbulence defined by:

€= vy’ (B.7)

The small-scale Froude number is interpreted as the ratio of the rate of strain of the

small-scale fluctuations, v, to the rate of adjustment by buoyancy of overturn scale

fluctuations, N.
The three parameters F'ry, Re, and Fry are related by

— = Frl = F'r} Re, (B.8)

written here in terms of the more commonly used turbulent intensity parameter

¢/vN?. Only two of the three parameters are thus needed to describe the turbu-

lence.
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Ivey & Imberger suggest that viscosity suppresses the turbulence when Re; < 15
and the combined effects of buoyancy and viscosity suppress overturning for Fr, <

152 = 3.9 (from lIvey & Imberger’s average of data from SHV, IHV and other data

sets.)

B.1.1 Flux Richardson number, R;

Ivey & Imberger define a generalized flux Richardson number as the buoyancy flux
divided by the net mechanical energy required (or available) to sustain the turbulent
motions. For the decaying grid-turbulence, this is

o 1
T dhte 14(¢/d)

Ry (B.9)

Taking advantage of the direct measurements of buoyancy flux, they introduce
the correlation coefficient (following Luketina et al. (1989))

Ry = (B.10)

o

for which the dependence on turbulent parameters can be obtained. It allows them

to write the flux Richardson number as

1 € -1 Fr2]™!
Rt=—-ouv =14 —7 = {1 --—ﬁ-] B.11
g L+e/dy [ (g/ﬁ)/’éwiRPw] { * R ( )

from Jy = (g/p)p.w' Ry, and using (B.4).

Ivey & Imberger then proceed to test (B.11) by first finding the dependence of
R, as a function of F'ry, shown in Figure B.1A. They find that R,, tends to an
asymptotic value between 0.2 and 0.5 for Frr; > 1.2 such that

Ry =1/(143Fr?) for Fr, > 1.2 (B.12)

without dependence on Re; so long as Re, > 30. For Fr, < 1.2, they find a
quick decrease of R, towards lower F'r;, reaching zero when motion is made up

predominantly of internal waves. They find this behaviour entirely consistent with
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the result of SHV and IHV! who found that effects of buoyancy are first felt at
Fry = (Lo/L)*® =~ 1.1. Ivey & Imberger then procced to find a functional form for
Ry which satisfies three constraints: Ry = 0 when Fr, = (Re,/15)""/? from (B.8)
and that the solution patches with (B.12) smoothly, which sets the second and third
constraints as Ry = 0.19 and R;/0Fr, = -0.25 at Fr, = 1.2. The resulting depen-
dence of Ry on Fr; is shown in Figure 4.6A compared to data without internal wave

contributions (Note that Ivey & Imberger included these internal waves data).

B.1.2 Discussion of Ivey and Imberger’s Interpretation

There are several problems with the empirical fit that Ivey and Imberger have chosen
and with the way in which they have done it. On physical grounds, they argue that
for Fr; > 1 the velocity is greater than the buoyancy adjustment velocity N L, such
that turbulence is possible. By contrast, for F'r; < 1 velocities cannot break the
hold of gravity and only internal wave motion is possible. Therefore, they cxpect
a decrease in Ry for Fr; < 1 because of the expected internal wave motions in
that Froude number range. However, when (3.26) is verified in Figure 4.5A, it is
seen that although L;/Lo continues to increase after the transition to internal wave
motion (using my new classification scheme), the measured F'r, increases instead of
decreases, and is still greater than unity for internal wave dominated data. Therefore,
since Ivey and Imberger chose to show both R; and R,, variations as functions of
Fry, rather than as a function of L;/ Lo, their transition to internal wave occurs at a
higher F'ry, and considerable scatter is added in their plots. Removing internal wave

data takes out much of the scatter, as shown in Figurc 4.6B.

In the experiments, L. initially grows at the same rate for all stratifications, matching the growth
rate in un-stratified experiments. The overturning scale L; deviates from the un-stratified case when
the effects of buoyancy are first felt. The ratio L;/ Lo at this transition was debated by SHV and IHV
because they felt it represented the inertial-buoyancy balance, so that the ratio should be directly
comparable with Dillon’s (1982) oceanic result of Ly/Lo = 1.25. SHV obtained L;/Lo = 0.7, but
IHV obtained L;/Lo = 0.85 which they thought to be more accurate. Intercstingly, IHV noted
that their result of L;/Lo = 0.85 (equal to Lr/Lo = 0.7 using Ly /L, ~ 1.2 from ltsweire (1984),
Figure 4.9 here) was well correlated with Dillon’s (1982) result of 0.8. In fact, Dillon’s result was
Lo/Lr =0.8,0t Ly/Lo = 0.8.
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Figure B.1: Correlation coefficient R,,, versus turbulent parameters (A) Fr,, Ris;
and versus (B) €/vN? for data with R; > 0 (not re-stratifying). Note that most data
with Ry < 0 are also classified as internal waves (g/(eL:)!/® < 2.2). A: The vertical
line is F'r, = 1.2, to the right of which R,, decreases (data with q/(eL;)/® > 2.2,
classified as internal waves, decreases at a higher value of Fr;). This was interpreted
by lvey & Imberger (1991) as being due to the onset of buoyancy effects. The data
are shown coded for various values of ¢/vN%. The solid symbols are classified as
internal waves (q/(eL)!/® > 2.2); B: The same R; data are shown versus /v N2,
coded for the presense of internal waves. The vertical line is ¢/v N? = 45. Note that
the decrease of R, for ¢/vN? < 45 or so is much tighter when only internal wave
free data are considered (¢/(eL;)/® < 2.2). Data from Stillinger et al. (1983) and
Itsweire et al. (1986).
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Second, their scaling suggests I' = R,./Fr} so they verified the behaviour of
R, as function of Fry, shown in Figure B.1A, finding a dramatic decrease at the
onset of buoyancy effects. Further arguments in their paper point to a maximum
mixing efficiency corresponding to By = 0.19 at the inertial-buoyancy balance. They
compare this value to oceanic results, thus assuming that occan mixing occurs at
inertial-buoyancy balance.

I have argued in chapter 4 that the inertial buoyancy-balance is not at Ri, = 0.7
(Fry = 1.2), but rather at Ri; = 1.55. I have shown in chapter 4 that the dramatic
decrease in mixing efficiency in these experiments is due to low turbulent intensity
(¢/vN? < 45) toward the end of the experiments. I believe that the turbulence never
reaches inertial-buoyancy balance. Figure B.1B shows the variation of R,, versus
€/vNZ. It is consistent with my interpretation.

Lastly, a minor point. Their empirical fit for small #'r, uses the condition that Ry
only goes to zero only when Fr; = 3.9 Re[l/ ? from the combined cffects of buoyancy
and viscosity. Their graph did not include predictions for oceanic values of Re,. As
an extreme example, Gargett (1988) reports values of ¢/vN? of up to 50000 in the
ocean. Assuming Fr; = 1, this value of ¢/vN? yields Re, = 50000 for which their
prediction is included on Figure 4.6. How useful is this Ad Hoc parameterization? [t
predicts high Ry for very low F'r, for which no data are shown to produce overturning
either in the lab or in the ocean. Oceanographers mcasure e rather than Re, and so
an empirical result based on €¢/v/N? would have been more useful.

In summary, Ivey & Imberger’s empirical fit of R, as function of R4, is in agreement,
with my second model, but only for F'ry > 1.2. lvey & Imberger associate the observed
flux Richardson number of Ry =~ 0.20 at F'r, = 1.2 to expected values for Kelvin-
Helholtz billows which presumably occur at inertial-buoyancy balance. This implies
that ocean mixing occurs at this inertial-buoyancy balance.

I believe that (1) turbulence at the inertial-buoyancy balance was never sampled

in the laboratory experiments described because of the presence of internal waves.
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Therefore the maximum mixing efficiency quoted is an under-estimate. Ivey & Im-
berger misinterpreted the decrease of mixing efficiency, which I attritute to low tur-
bulent, intensity (¢/vN? < 45) (2) Comparing only the maximum mixing efficiency to
occanic values implies that all oceanic mixing occurs at near-inertial balance. This
assumplion may not be correct. I believe that average oceanic mixing efficiency is
lower than the inertial-buoyancy value, but that the oceanic average represents a mix
of conditions. (3) The extrapolation that they have made for R; at F'r, > 1 are not
useful. Why even defines a mixing efficiency for a turbulent Froude number for which

overturning cannot occur (as shown by Figure 4.8)?

B.2 Gargett’s Alternative Interpretation

Gargett (1988) provides an alternative interpretation of the SHV and IHV experi-
ments as low Re, = w'L,/v flows with Fr, = 1 throughout their evolution. The
overturning would be initially anisotropic, evolving towards isotropy during decay.
This interpretion led to a debate between Van Atta (1990) and Gargett (1990). Since
her interpretation could invalidate my use of the data to verify my model, I will add

new evidence to the discussion.

B.2.1 Review

Gargett presents a scaling of the TKE equations for F'r), = u'/NLy = 1 where L, is a
horizontal overturning scale which differs from the overturn height when aniostropic.
Assuming F'r, = |, she equates L; to the Ozmidov scale Lo, which is reasonable
when an inertial-buoyancy balance holds. The isotropy is then described by the ratio
L/ Ly = L;/Lo. She defines a vertical fluctuations Reynolds number Re,, = w'L;/v

and uses continuity, u'/Lo & w'/Ls, and u' = (eLy)"/® to write a relation similar to
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Ivey and Imberger’s (B.8)? as

€ w3/ Ly u'? Ly 5 u L3 [ Lo L L
yN?~ yN? "[L;{MH y | =l =\ g | | = Be
(B.13)

The turbulent Freude number F'r, was said to be related to the mixing efliciency

via 1' = R, Fr;? by Ivey & Imberger®. Gargett writes a similar relation (dropping

the correlation coefficient R,,,) which is independent of Re,, and isotropy” as

I'=

Iy N L' [N""E‘fl [lv’bh

hi AP =
€ u3/Ly u’? u'l,

] = I (B.14)

Gargett argues from scaling the TKE equations for Re,, > | that the turbulent
velocity field must be nearly isotropic. In this case (B.13) collapses to (B.8).

In the case where Re,, =~ 1, the velocities may be anisotropic and (B.13) reduces
to

9

;j—fﬁ = Fr? (B.15)

where turbulence is characterized by the same horizontal scales as for e, > 1, but

vertical scales should scale with » and N as

w' ~ (vN)/? (B.16)
L, = (v/N)'/? (B.17)

Combining (B.15) and (B.14), the turbulence intensity is rclated to the mixing
efficiency; additionally using F'ry = Fry(Ly/L:) and Fry ~ 1 (by assumption) we get,

-——:F—']z

€ [/h]z
vN? L,

(B.18)

2although there was no relation between the paper. I point out the similanty to help the reader,

3Note that this relation was derived using Fr, = (¢/¢'w’)'/*, which can be shown to not require
isotropy, as long it can be assumed that the relation v’ = (¢L5)'/? holds, where Ly, is the horizontal
turbulent length-scale. Even for the anisotropic inertial-buoyancy balance case of the third model,
it can easily be shown that Fr, = (¢/g.w')!/? still holds for Fr, = Lo/Lp. Using ¢ = L4HN%,
¢' = N2Ly and w’ = N Ly, we obtain Fry = (LYN3/N2Lp NLp)Y% = Lo/Ly.

4This also confirms my result in chapter 4 that isotropy does not matter for this formulation of
the mixing efficiency
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The main point is that while the two regimes, Re,, ~ 1 and Re,, > 1. describe
quite different types of turbulence, they may both be characterized by e¢/vN? > 1
from (B.18) and (B.15). The turbulence intensity cannot be used to distinguish the
two types of turbulence.

If the turbulence is isotropic, ¢/vN? 3> 1 is interpreted as Re, = Re; > 1 from
(B.13) since F'ry, is of order 1. If the turbulence is not isotropic, Gargett assumes

Re,, = 1 such that ¢/vN? >> 1 must be interpreted as I' < 1. from (B.18).

B.2.2 Discussion of Gargett’s Interpretation

Gargett interprets the SHV and IHV experiments as the Re, = 1 case because
Re,, is relatively low compared to ocean values (from 160 near the grid to 20-30
at the transition to internal waves) and assumes Fry is close to unity throughout
the experiment. Indeed, I have found support for this point of view comes from
Figure 4.10 if Lo is interpreted as Ly; the prediction from (B.18) is very good. Gargett
argues that the evolution in Figure 4.2 must be interpreted as always feeling the
effects of buoyancy, with sluggish vertical turbulence. The Ozmidov scale Lo must
be interpreted as the horizontal scale of the turbulence, initially much greater than
the vertical scale L,. The turbulence thus starts out being very anisotropic, evolving
towards isotropy as thc vertical scale remains more or less constantly proportional to
(B.17) and Lo decreases with the decay. If this were the case, our results concerning
the mixing efficiency, which are also predicted by Gargett independently of Re,,
would only validate the prediction for cases which do not apply to the ocean and
where the decreased efficiency is interpreted as caused by anisotropy. Of course,
Van Atta holds the opposite view that the turbulence is created at isotropy without

buoyancy effects, and evolves towards inertial-buoyancy balance.

Estimating the Horizontal Length Scale; An Inconsistency

Gargett assumes that Lo represents the unmeasured horizontal turbulent length scale

Ly, and, at the same time, that the continuity relation for turbulence uw'/L), ~ w'/L,
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holds. However, Lo /L, varies from 10 to 100 near the grid to less than 1 ai the end
of the experiments (see Figure 4.2). At the same time w'/u’ is shown in Figure A.l
start close to unity, decreasing as the turbulence decays. 'This is consistent with
Van Atta’s interpretation; indeed Gargett (1988) points out the inconsistency with
her interpretation. If the continuity relation does not hold, then neither does her
' = Fr;? scaling which was shown to hold very well for the lab data.

I will exploit this inconsistency herc with a new test to verify if Gargett’s or Van
Atta’s interpretation is correct. Since the assumption that Ly = [, is incompatible
with L, = Ly(u'/uw’), let us test which best fits Kolmogorov scaling ¢ = u®/L.

Gargett’s assumption leads to

' c11/2
o = (cLy)'® = [—] = LoN (B.19)
N
while Van Atta’s leads to
o' 1P
u = (e[,h)1/3 — [“IJ‘J] (13.20)

Figure B.2 provides a new test of Gargett’s and Van Atta’s interpretations. The
predictions (B.19) and (B.20) are compared versus [,/Lo. Gargett’s assumption
that Lo is the appropriate horizontal turbulent length scale would imply horizontal
velocities near the grid three times larger than those measured (u'/N Lo = L/3 in Fig-
ure B.2A at lowest values of L;/Lo which occur at the beginning of the experiments).
The length scales from turbulent continuity (and Van Atta’s interpretation of near-
isotropy near the grid) are consistent with turbulent scaling for most of the early part,
of the evolution, where Gargett predicted they would not be. Turbulent scaling fails
far from the grid where velocities are smallest and internal wave are thought to he
important. Thus the SHV and IHV experiments cannot be interpreted as Gargett’s

low vertical Reynolds number flow at inertial-buoyancy balance.
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Figure B.2: T'wo models of turbulent scaling u'/(eL;)'/® = 1 are tested vs L;/Lo. A:
For Gargett’s low Re,, turbulence, assuming the horizontal eddy scale Ly, is equal to
Lo makes u'/(eL,;)'/® scales like u'/N Lo. B: The horizontal eddy scale Ly, is inferred
from continuity as L(u'/w’).



Appendix C

Review of Dillon’s Relations of

Finestructure to Mixing

Dillon (1982) was first to verify Thorpe’s (1977) proposal that the Thorpe scale Ly
is related to the Ozmidiv scale Lo. In this appendix, we review Dillon’s (1982; 1984)
and Dillon et al’s (1987) work relating overturn-related quantities such as Thorpe
scales L and the Available Potential Energy of the density Fluctions € to dissipation

and buoyancy flux. The data sets used in chapter 5 are briefly described.

C.1 Data Sets

Dillon (1982) tabled data obtained at Ocean Station P during the MILE experiment,
(Series A and B) and at Green Peter Reservoir (Series C). For all cases, temperature
mainly determines density such that p'/p = —aT” and J, = —agw'T". The oceanic
data were taken in two periods; series A was sampled during winds of 5 ms™', but,
winds were greater than 15 ms™! five hours before then. Serics B were sampled in
strong winds (>15 ms™'). These two oceanic series (A and B) were deep in the
interior of wind-forced layers and in the seasonal thermocline. The reservoir data

|

(Series C) were taken in winds of 8.5 ms™' and a portion were taken in the ncar-

surface zone. In all, 102 mixing layers of order 1-5 m thick were used. Only layers

228



where all quantitics are well resolved are used.

C.1.1 Relation of Thorpe Scale to Ozmidov

Dillon (1982) expected Ly to be highly correlated with Lo = (¢/N3)'/? when the
gradient, Richardson R:, was constant in time. To demonstrate this he started with
the steaty-state Ti{E balance equation (with the advective terms neglected)
___oU
—uw' — =€+ J (C.1)
0z

and assumed the Thorpe scale to be proportional to the size of an eddy, defined as
(" (@U[dz)~". Then using Ri, = N%(0U/dz) %, N* = —gp~'(0p/0z) and
R; = Jy/(Jy + €) and some manipulation, (C.1) reduces to

e+ Jy

1/2
S| =R - R (C:2)

Lr o R
Thus the Ly-Lo relation was expected to hold for nearly constant gradient and flux
Richardson numbers!.

Dillon’s comparison between Thorpe Scale and Ozmidov Scale is reproduced in
[Figure C.1. Dillon obtained his much-quoted ratio of Ly/Lo = 1.25 by first perform-
ing a regression of the form Ly = aL} on series B (the high wind case) where (C.2) is
cxpected to hold better for the more strongly driven turbulence; Dillon thought that
turbulence could be decaying in the other cases. Dillon obtained n = 0.98, close to
unity, and thus evaluated a from the mean ratio m = 0.8. The value of Lo /Lt
can be evaluated many different ways, a sample of which is provided in Table C.1 for
comparison with Dillon’s calculation. I obtain Lo/Lr = 0.885 rather than 0.8 using
all points of series B; this could be due to transcription errors in the table.

The data probably have a log-normal distribution suggesting that a regression in

logarithmic space is appropriate. In this case, the Ly /Lo ratiois 1.17 %/, 1.14 from the

'In Chapter 3, it was noted that Ly o w'(8U/8z)! led to Riy o< Ri,. Here we note that

Lp o (—u'w’) /(8T /82)~1 leads to Ly /Lo « Riil 4 consistent with Ly /Lo o Ri3/* for 1sotropic
turbulence from Chapter 3
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Figure C.1: Comparison of Thorpe scales Lt versus Ozmidov scales Lg for two oceanic
cases (Series A and B) and a fresh water reservoir (Series C). Data arc classified
by turbulent intensity ¢/vN?. Open symbols are well resolved; filled symbols are
marginally resolved. Data are from tables in Dillon (1982). This figure corresponds
to Figures 8, 9 and 10 in Dillon (1982).
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Series A Series B Series A and B |
All pts  ¢/vN?>200| All pts ¢/uN?>200| All pts ¢/vN?% > 200
Lincar
Lr/Lo 1.04 1.04 1.23 1.23 1.15 1.15
Ly/Lo 1.03 1.00 1.23 1.21 1.11 1.09
(Lo/Lr)~' | 0.81 0.76 1.13 1.14 0.92 0.89
Log
Ly =aly 0.91 0.87 1.17 1.17 0.99 1.02
X/.1.19 *[.1.27 *[.1.14 */.1.13 X/.1.15 */.1.12

Table C.1: Calculation of the Ly/Lo ratio for oceanic data series A and B. In the
logarithmic regression, Ly = alLo is used because Ly = aL} was tried and n was
never statistically different than 1.

more strongly forced mixing of series B. This ratio remains unchanged whether all data
are used, or only those for which /v N? > 200 associated with isotropic turbulence
(Gargett et al., 1984). While the ratio is numerically different from Dillon’s result of

.25, the two are not statistically differert.

C.1.2 Thorpe Scale Relation to Buoyancy Flux

The reservoir data (series C) has more scatter; Dillon attributed this to the smaller
scgments, averaging 1.6 m instead of 3.5 m. Nevertheless, the Ly/Lo ratio was
consistent with the oceanic cases at the base of the mixing layer, but was much larger
near the surface where Richardson numbers can be much lower.

Dillon expected both a gradient and flux Richardson number on the Lo/Lr re-
lation from (C.2), and so attributed the disparity near the surface to decreasi-g
Richardson numbers. A new length scale Lp = (J,N~3)'/? was introduced, estimat-
ing the buoyancy flux J, from agyxs/2(0T/dz). A weaker dependence on R; was
predicted for the ratio Lp/Ly assuming Ry = Ri, by rewriting (C.2) as

Ly « Ril/* [%”—”} Ly (C.3)
i)



The correlation between Ly and Lg is better than between Ly and Lo for all mix-
ing regimes (See figure C.2). This includes the near-surface zone where the Lo /Ly
ratio failed to hold, although Ly/Lg still decreases there. This is Dillon’s first indi-
cation that the Thorpe scale may be in fact more closely related to the buoyancy flux

than to dissipation.?

C.1.3 The APEF linked to buoyancy flux

As discussed in section 3.2.2, Dillon (1982) used the temperature variance equation
(3.8) to look at the decay time of temperature fluctuations by yg, using Thorpe
fluctuations as the stock of temperature variance to dissipate. Dillon (1984) multiplied
the temperature variance equation (3.8) by ag/(201,/0%) to obtain a potential energy
equation (3.10). He defined the Available Potential Energy of the density Fluctuations
£ as the potential energy difference between the measured and re-ordered profile. The
re-ordered profile represents the base state from which an overturn has evolved from.
As I have argued in chapter 3, Dillon (1984) noted that (3.10) suggests an intimate
relation between the APEF and the potential encrgy dissipation rate 3N?xkC,..
Dillon et al. (1987) end with an empirical relation between the APEE and the

dissipation of potential energy as
3N?kyCy = 4.8EN (G.4)
They suggest that this is the prime relation, but that Ly ~ Lg follows from this if

3N?kpCy/(e + 3N krC,) is fairly constant?.

C.1.4 Discussion

There are many similarities between Dillon’s (C.4) and my own models. Indeed

Dillon’s work was a great inspiration to me. The differences are mostly in the decay

2 Although Dillon obtains Lg/Lr = 0.93, I prefer Ly/Ly = 1.2 from a log-space regression.
31f 3N2kpC, = Jp and there is a steaty-state, then this is the flux Richardson number Ity related
to the mixing efficiency.
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Figure C.2: Comparison of Ly vs Lp for two oceanic cases (Series A and B) and
a fresh water reservoir (Series C). Data are classified by turbulent intensity /v N2.
Open symbols are well resolved; filled symbols are marginally resolved. Data are from
tables in Dillon (1982). This figure corresponds to Figure 11 in Dillon (1982).
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time and mixing efficiency. Dillon (1984) compared terms in the total energy equation
(3.13) by approximating the total kinetic energy as 3 times {, and assumed a decay
time proportional to N~'. These assumptions are only cousistent with my isotropic
model at inertial-buoyancy balance (see chapter 3).

Dillon et al.’s (1987) empirical result relates & to 3N2kpC, again using a decay
time proportional to N~!. Their decay time is 4.8 times faster than my predictions;
This is discussed in chapter 4. Their only prediction regarding the relation of ¢ to
£ N is through Lr ~ Lo. Squaring this latter relation gives L3 = ¢/N® and thus
e x £ N. They predict the relation Ly = Lo to hold for a constant mixing efficiency
(see above), but make no prediction as to what the mixing efficiency should he, or how
it should vary. My main contribution is to relate the APEL to buoyancy flux through
a simple kinematical model, and explain why and how mixing efficiency should vary

through anisotropy.
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Appendix D

The Run-Length Method To
Determine Temperature Noise

Level

In this appendix, I briefly describe a new technique to estimate the temperature no.se
level. No example is shown; only a brief description is given.

The aim is to determine the noise level of the temperature sensor. The tech-
nique assumes that the real temperature profile is generally monotonic such that any
mcasured inversions are either intrusions, overturns or noise. It is also assumed that
temperature is recorded with enough digits such that noise actually produces inver-
sions. The technique is then simply to identify which of the inversions are caused by
noise; the noise level is then the rms Thorpe fluctuation 7" of the noise-related inver-
sions, where T" is the temperature difference between the measured and re-ordered
profiles.

Let us denote the temperature sensor noise level as §T'. Noise will create inversions
unrelated to physical features in low stratification: where noise 67T is greater than the
temperature difference between successive points of the re-ordered profile 6z (97,/9z),
where 8z is the sampling interval and T, is the re-ordered profile.

These inversions have differences with those created by overturns: their Thorpe
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fluctuations 7" are approximately equal to the noise level §T', and the overturns are
not ‘very’ top-heavy. This second point is explained by contrasting it to the case of
an overturn. The top half or so of an overturn is heavy water that originates from the
bottom half. Thus it is top heavy, in the sense that most Thorpe fluctuations in the
top half are positive and most of those in the bottom hall are negative (for a stable
profile with increasing temperature with pressure). When noise creates inversions
this pattern does not occur. Noise might add to a point and subtract from the next,
Re-ordering the points moves them randomly upwards and downwards, and a series
of Thorpe fluctuations of random sign follows.

The temperature noise level 6T is estimated by the amplitude of Thorpe fluctu-
ations which have a random sign distribution. These are identified by a run-length
analysis. The run-length is the number of consecutive points of the same sign. For
a random population of numbers, equally divided between positive and negative, the
fraction of run lengths of length n is (1/2)". If the distribution is random, half of the
run lengths should have a length of 1, a quarter should have a length of 2, and so on.
Noise can statistically produce very few run lengths of long length (say n > 5). This
is where the overturns come into play: since overturns are top-heavy they will have
long run-lengths, uncharacteristic of noise-related inversions. Thus, the run lengths
distribution calculated on a temperature profile containing both noise inversions and
energetic overturns has a decreasing number of run lengths with increasing size, until
the run length size where overturns starts to be observed. A run-length size cut-off
can then be chosen to separate noise from overturn, and the amplitude of Thorpe fluc-
tuations of noisy inversions can be calculated as an cstimate of 67". An application
of this method is shown in Galbraith and Kelley (1992).

This method succeeds best with a short sampling interval and small instrument,
least count. This increases both the occurrence of noise inversions and the difference
between the high run lengths of overturns and the low run length of noise. When

very few noise-related inversions occur it is impossible to apply the technique.
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