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ABSTRACT

Let P(x; 6) be the probability mass fun:tion or probabiiity density

function of a random variable X where 8¢ RP, p being finite. Using
the first k (k > p) raw or central moments of this distribution we
eliminate the p parameters in 6 and obtain a moment relation in k
moments. We derive the raw and the central moment relations for a
number of discrete and continuous distributions. These moment
relations are used as criteria to characterize a distribution. In
general the present method is effective. But there are some special
situations, where the moment relations of two or more distributions
are same or one particular moment function takes same value for
two or more distributions. In such a situation we propose two
moment ratios as extra criteria for deciding among them. These
ratios are also useful in approximating the Neyman type A and the
Generalized Poisson distribution by the Negative Binomial
distribution. We can identify a distribution by using the ratios of the
co-efficients of the recurrence relations obtained from its

generating function.

Subsequently, a special class of the Exponential family of
distributions named the family of Transformed Chi-square
distributions is defined. Explicit expressions for the MVUE with MV
of a function of the parameter of this family are given. The critical
region and the power function for various tests of hypotheses for
the parameter of this family are also obtained. An identification
procedure with probébility of correct identification is discussed in
detail.

viii
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Chapter 1

Introduction

At present a large inventory of discrete as well as continuous
probability distributions is available. Most of the probability
distributions and their properties can be found in the recent works
of Rothschild et al. (1985), Patel et al. (1976), Johnson et al.
(1969, 1270) and Patil et al. (1968). On account of the wide variety
of available probability distributions, researchers in applied fields
have begun to wonder which distribution will be the most
appropriate one in a particular case and how to choose it ? One
conventional method in this respect is t0 use Chi-square goodness
of fit test. But the Chi-square goodness of fit test may give
insignificant results for two or more suspected distributions for a
particular data set. In such a situation, it is a difficult task to
make a choice. We can oniy say that une distribution gives a better
fit than others, but statistically we can not reject the possibility
that the data set is from some other distribution(s). Thus, we need
some criteria for making a choice. One such criterion is the method
of moment reiations. Let us consider an arbitrary distribution with
p parameters. Since the moments of any distribution are functions
of its parameters, by using the first k (k>p) raw or central
moments of this distribution it is possible to eliminate its p

parameters and obtain a moment relation in k moments. This
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moment relation can be used to characterize that distribution.
Ferguson(1967) and Khan et al. (1986, 1987) have characterized
some probability distributions through the conditional moments of
order statistics with single or higher order gaps. Lin (1987, 1988,
198%) has used several recurrence relations and identities for
product moments of order statistics to characterize some
probability distributions. Other recent works on this iopic are
those of Govindarajulu (1966), Gupta (1984), Hwang (1975), Hwang
et al. (1984) and Kirmani (1984). But in this thesis we have used
ordinary moment relations to characterize probability
distributions. Our method is equivalent to the method developed by
Lukacs(1981) to characterize a distribution by zero regression of

certain statistics.

Characterization of distributions by means of zero regression has
been thoroughly discussed by Lukacs et ai. (1964) and Kagan et al.
(1973). Gther recent works on this topic are those of Bar-Lev et al.
(1986, 1987), Gordon (1973), Heller (1979, 1983, 1984), Jorgensen
(1987), Kushner et al. (1981), Kushner (1987), Lukacs (1963),
Richards (1984), Seshadri (1983) and Tweedie (1984). In Chapter 2,
moment relations for a number of discrete and continuous
distributions have been derived and their uses have been discussed
thoroughly with suitable examples.

In general the method of moment relations is effective in
characterizing a distribution. But there are some special
situations, where one particular moment function takes‘same. value
for two or more distributions or the moment relations for two or
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more distributions are same. In such situations we need another
criterion for making a choice. One such criterion is the method of
moment ratios. If the moment relations for two or more

distributions are same then we shall use the moment ratios d4=
W ug/ 1.122 and dp = (Kol g - u32)/u23 as extra criteria for deciding
among them. This is discussed in chapter 3. With the help of these
ratios Generalized Poisson {Borel-Tanner) and Neyman type A
distributions can be approximated by the Negative Binomial

distribution. Comparison of exact and approximate distributions
have been studied.

The Compound Poisson distribution was first considered by
Greenwood and Yule (1920). Let X be a Poisson random variable

having p.d.f. P(x;0) = 8Xe" ¥x! , x = 0,1,2, . . ., where the parameter 6
(> 0) gives the expected number of 'events'. If different individuals
of a population are associated with different values of 6, and if 6
is distributed as a random variable with distribution function F(8),

the probability of x events in the total population will be given by

X -9
p(X) =j9:j dF(6) (1.1)

0
Following Greenwood et al. (1920) we shall refer to (1.1) as a

femily of Compound Poisson distributions. Negative Binomial,
Hermite, Borel-Tanner, Neyman type-A etc. are distributions
belonging to this family. These types of distributions have been
successfully applied by many authors such as Neyman (1939), Palm
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(1937), Lundberg (1940), Greenwood et al. (1920) and Eggenberger
et al. (1923,1924) to problems of accident statistics, telephone
traffic, fire damage, sickness-insurance, life-insurance, risk
theory, and even in engineering. Following Feller (1965), the
probability generating function (p.g.f.) of a Compound Poisson
distribution can be written as
P(s)= Zp;si=exp[ag(s-1) + a1(s?-1)/2 + a(s3-1)3+...1 (1.2)
A recurrence relation to calculate successive pj's obtained by
differentiating (1.2) with respect to s and equating the
coefficients of sl is given by
pj+1(j+1) = appj +a4Pj. 1 +. .. +3Pg
=012, ..., pj=0if j<0.
The cumulants of the distribution can be obtained by taking the
logarithm of both sides of (1.2) and expanding them .
The i-th cumulant so obtained s
lci=a0+2i‘1 a1+3i'1 <':12+4i‘1 ag +...

=X (r+1) M A, ... (1.3)

i=1,2,3, ...

Thus the cumulants of any Compound Poisson distribution can be
computed from (1.3). Hinz et al. (1967) have suggested that the
plots of the sample values m; and % against j may be used in
discriminating among the Negative Binomial, Neyman type A,
Poisson Pascal and Poisson Binomial distributions. Here my(x) =
K1y Mjx) = Ki+1)y g (=123, . . . ), where K ) is the jth
factorial cumulant and vy = py, % = g.1(RGR) (=1,23, . . ),
where R; = p;/pg and pj is the probability of the random variable
having the value j, and the rj(R) are defined by

B R e )




'cj(R) 2!
j!

logG(z) = log P, * i
=1

In particular 1 =Ry, 1 =2R,- R{2, 13=6(R3-RyRy)+2R,3,

14 = 24(R4-RyRy +R2R;) -12R,2 -6R* , where for convenience

is written in place of 'cj(R). These can be obtained generally through

the recurrence relation
j-1

, | (i-1)!
=R Z G-i-1)1

=1
Earlier, Ottested (1939) used the ratio Hij+1) Hejy where Hi) is
the jth factorial moment against j, to discriminate among the
Binomial, Poisson and Negative Binomial distributions. One can use
the corresponding sample values in these criteria to find out the
possible form of the underlying distribution. Because of the
sampling fluctuations, a particular criterion may not provide
reliable information to draw sound conclusions. In fact whenever it
is possible, more than one criterion should be used and other
characteristics shouid be verified to ascertain a distribution. Here
we suggest use of the ratios of aj's rather than tha ratios of
moments for identifying certain Compound Poisson distributions,
especially those listed in Table 4.1. It may be noted that the
cumulants do not necessarily identify a distribution while within
the Compound Poisson family the a;'s do, hence the use of a;'s in
place of the cumulants has some merit. We have discussed these in
chapter 4. Characteristics and applications of some distributions
belonging to the Compound Poisson family are also discussed in

this chapter.
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Following Kotz and Johnson (1982) there are two main types of
parametric families of distributions in Statistics such as the
transformation (or group) families and the Exponential families.
The families of distributions generated from a single probability
measure by a group of transformations on the sample space are
called transformation families. For example, any location-scale
family B~ {(x-a) /B}, where f is a known p.d.f. of the random

variable X. Following Barndorff-Nielsen (1978), the Exponential
families are characterized by having p.m.f. or p.d.f. of the form
f(x;8) = exp[a(x)b(6)+c(6)+h(x)] (1.4)

A large number of commonly occurring families of distributions
belong to the exponential family. Examples of such families are the
Binomial, Poisson, Geometric, Normal, Gamma etc. Both
Exponential and the transformation families of distributions
possess particularly nice properties. Their general structures have
been studied by many authors. The Cramér-Rao inequality, the
Bhattacharrya inequality, the Lehmann-Scheffé theorem etc. play
important roles in minimum variance unbiased estimation. To
obtain the MVUE of any parameter or any function of the parameters
by conventional methods we need to apply the method separately
for each individual distribution. In testing any statistical
hypothesis we need to choose an appropriate test-statistic. To find
the critical region and the power of the test, we need to know the
distribution of the test statistic. The distribution of the test
statistic depends on the parent population. It varies from
population to population. We have developed some general results
for 'different types of estimators, the test statistic, the critical
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region and the power function of the test of hypothesis regarding
some parameter(s). These results are true for a special family of
distributions named the Transformed Chi-square family, which is a
sub-family of the large Exponential famiiy of distributions. By
observing the p.m.f. or p.d.f. of any probability distribution
belonging to the Transformed Chi-square family, one can easily
obtain without much derivation various estimators, critical
regions and power functions of the test concerning the
parameter(s). These are discussed in detail with suitable exampies
in chapter 5. To summarise here, let X=(X,,X,,... X,) be a
random sample of size n drawn from a distripution that belongs to
the family of Transformed Chi-squares having density of the form
(1.4), then
(i) the distribution of -2¥a(X,)b(8) is Central Chi-square with nk
degrees of freedom,
(i) Xa(X;) is a sufficient statistic for 8 or, any one to one function
of 6,

(i) Ta(X)/n is the MLE and UMVUE of [-k/{2b(8)}] with MV
[k/{2nb2(6)}],
(iv) Ta(X)/n is the MVBUE of [-k/{2b(8)}] with MV [k/{2nb2(6)}]

provided Cramér-Rao regularity conditions hold,

2 2
Xnk,o Xok(1-a) |
! 2. | is a100{1- (a

V) 2¥a(X) ' 25a(X)

o+ oaz)}% confidence

interval of {-b(8)},
(vi) an o level UMP test for testing the hypothesis



H, : 0 < 6, against
provided b(8) is strictly increasing in 6. Also the power function of

the test is Pg{ x2y 2 [D(6) X2k (1-0}/D(8p)]}-

Obviously this is a time saving device in estimation and tests of
hypotheses. In some practical situations to which conventional
tests of homogeneity are applied, such as the F-test for the
equality of p population means, the tests (whether or not they yield
statistically significant results) do not supply the information
that the experimenter seeks. For example, let the p populations be
the populations of p different cities or counties. Then, possibly the
hypothesis that the different cities or counties have the same
average income is an unrealistic one since it is likely that if the
cities or counties are different, the average incomes will also be
different, and a sufficiently large sample will establish this fact
at any preassigned level of significance. Moreover, the
experimenter's problems usually begin after obtaining a significant
result. After establishing that the average incomes are different,
the experimenter usually desires to select the one which is best.
The best city or county can be defined as the one having the highest
average income of the people. A general identification procedure
and the probability of correct identification of the best population
or subset of populations have been discussed in section 5.5.
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Chapter 2

Characterization by Moment Relations

2.1 Introduction

In this chapter a method for the construction of moment relations
is presented. We derive the raw and the central moment relations
for a number of discrete and continuous distributions. These
moment relations are wused as criteria to characterize a
distribution. The present method is equivalent to characterizing
the distribution by zero regression of certain statistics [Lukacs
(1981)]. We shall need the following definition.

Definition 2.1.1 Constant Regression and Zero Regression:

Let U and V be two random variables. Suppose that the expected
value of V i.e., E(V) exists. Then V is said to have constant
regression on U if the conditional expectation of V, given U, equals
the unconditional expectation of V, that is, if the relation E(V|U) =
E(V) holds almost everywhere. If E(V) = 0, then we say that V has
zero regression on U. Thus if V has zero regression on U, then E(V|U)
=0.
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Let us state the following lemma which is very important in
deriving some statistics to characterize probability distributions.

Lemma 2.1.1 The random variable V has constant regression on U,
iff the relation E(VelY) = E(v) E(etY) holds for all t. Thus if V has
zero regression on U, then E(VetU) = 0.

Proof : Let the random variable V have constant regression on U
i.e., E(VIU) = E(V).
Therefore, E(VetY) = E{etV E(vjU)} = EfetY E(V)} = E(V) E(etY).

Conversely, let the relation E(VetU) = E(V) E(etU) holds for all t.
Then
EetY (v - E(V))] = E(vetY) - Ev) EetY) = 0

or, E[etY E(V - E(V)}jU)] = 0

or, je'“ E[{V-E(V)}|U] dF, (u) = 0

- 00

Here, F,(u) is the marginal distribution of the random variable U.
We introduce the probability function P (A) of the random variable
U insteacd of the distribution function F,(u). This is a set function,
defined on all Borel sets of R,. The preceding equation then

becomes

Je‘“ E{V-E()}U] dp,, = 0

R,
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Let p(A) = J- E[{V-E(V)}iU] dp, .
A

This is a function of bounded variation which is defined on all
Borel sets A of R, and we see that

jetu dp = 0.

R,

This implies that p(A) = p(R,) = €. This is only possible if
E[{V - E(V)}jU] = 0

or, E(V|U) = E(V).

Therefore, V has constant regression on U.

Again, if V has zero regression on U, then E(V|U) = E(V) = 0.
Thus, E(vetY) = 0.

Hence the lemma is proved.

Let X be a r.v. having p.m.f or p.d.f. given by

P(x; 8) , 6¢ RF (2.1.1)
We are interested in characterizing the distribution of X. Our
approach is subject to the following assumptions :
(i) The distribution function to be characterized depends only on a
finite number of parameters.
(i) The existence of the moment generating function of the

distribution is necessary.

Let M = M(t) be the moment generating function of X about the

origin. Using the first k (k>p) raw or central moments of this
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distribution we can eliminate the p parameters in 6. In order to

eliminate the p parameters in 6 let us differentiate M successively
'r' times with respect to t. Let the jth derivative of M be written as
d M/dt =M(j)=gj (t; 9) (2.1.2)
where j=1,2,. . .,r and r can be chosen in such a way that we can
eliminate not only the p parameters but also all expressions which
contain the arbitrary variable t explicitly fiom the set of
equations (2.1.2). By this method we obtain an ordinary differential
equation which involves the moment generating function M and its

derivatives. Let this differential equation have the following form

(S)) (S (S

%.-.§b51,%,..,,§M M ..M

n
o

(2.1.3)

Let f=f(t)=E{exp(itX)} be the characteristic function. Now using f

and proceeding as before we get,

By (S)) Sy
ce . =0 2.1.4)
53 Tl ot 14
172 k
Let (X4 Xo,...X,) be a random sample of size n from a population

having p.m.f. or p.d.f. (2.1.1). Aiso let A = ZXj and S =S(X4 Xy, ..
X, be two sample statistics such that S has cero regression on A.
Then

ESed Y = ES)EE?Y =0 (2.1.5)
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Lukacs (1981) has pointed out that the statistic S characterizing
the function (2.1.1) by zero regression can be constructed by using
the differential equation (2.1.4). In section 2.2 we show that the
statistic S can also be constructed by using the relations of the
first k (k=p) moments. Raw and central moment relations for a
number of distributions are presented in Table 2.3.A and 2.3.B.
These moment relations will be used to characterize a particular
distribution.

2.2 Construction of 'S’ Statistics by Moment Relations

We have. M = M(t) = E(etx)

MDD = E(xTetX) (2.2.1)
EE@® Y = (M) (2.2.2)
M) = (E(XTed by myn-1 (2.2.3)

Let Sj (j= 1,2, .. .k) be integers such that r > 8]

and suppose that Xj # X[ for j# 1. Then

>0 (j=1,2, . . .%)
S, s nHk kSt
B2 . %56 ) < M) I'[1E(>§Je)i) .24
1=
It follows from (2.2.1) that

(8,) 6,) (S s, S S
M M2 ..M k> 'x 2 .)g(ketA).Therefore,
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b M(S1 )M(sg) hA(sk)(Mn-k

S¢ tA

8182
=§"';bss SE()g)(z...xke )
1’21'-':k
172 k

~ESedY) =0 [Using (2.1.5)],

SY...Sb XX
- LU X
where, S &£ £ s1,52,...,skx1 X2 k

172 k
Thus,

(8,) (S,) () Nk
22 xbs s M MMM =0
5132 sk 172 4
(Sq) (S,) (S,)
or, g...;bss M M2..M% =0
152 k I

Let u, “r' and p, be respectively the mean, rth raw and rth

central moments of the distribution of X having p.m.f. or p.d.f.
(2.1.1). Let

i, =EX" (2.2.5)
wp = E(X)f (2.2.6)
where, r = 1,2,3, . . . . We want to characterize the distribution of X.

Taking the first k equations from (2.2.5) or (2.2.6) and eliminating

the p parameters in 6 we obtain an equation of the form
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S, S, S S,
T2 L% sy W () ) ) =0 (227
§ S - 5
172 k
q Si Sy S Sk
ce . =0 228
a,% ?isvsz,---,sk‘”) () " 6y .- () (228)
where s: 2 0, j=1,2, . . . k. Evidently, an unbiased estimator of the

j
expression on the left side of (2.2.7) is

T=TXyXo, - - Xp)

2
=%%..0 XX . X)X X X )
% %81’52’ .. .,sk 1x2 S 514.1 s1+2 S, 45

1

K
+S.+....45 ,+
1 72 k-1 1+Sg+ . ‘+Sk_1+2 S1+52+. . .45

Let T have zero regression on A = XX: , so that E(Tet A) =0.

Therefore, using (2.2.9) we may write,

Sk Sic1 § i
2:;"';"81,52,.--,8‘({'“‘&} M MY M —o @210

172

where by = sy+So+ .. .+s,. Evidently, the expressions /2.2.4) and
(2.2.10) are the same under the assumption that T has zero
regression on A. This ¢i c¢rential equation (2.2.10) can be solved
for M(t) corresponding to (2.1.1). On the other hand differentiating
M(t) successively with respect to t and eliminating the parameters
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we can derive (2.2.10). Then using (2.2.1), (2.2.2) and (2.2.3) we get
E(TeA t) = 0 = E(T) which implies that (2.2.7) and (2.2.8) hald. Thus

(2.2.7) and (2.2.8) imply that T has zero regression on A. Hence we
can use (2.2.7) or, (2.2.8) to characterize a distribution. Now using
the value of T in (2.2.9) and the sample (X4,X5,...X,) We can easily
construct the sample statistic S characterizing the distribution

(2.1.1) by zero regression on A i.e., satisfying E(SeA t) = 0. This is

given by
=33 3% T, e %
i ZS8;S, § 17277k S (2.211)
n(n-1)(n-2) .. . (n-s,-S, . "Sj+1)
where the summations go over all subscripts i,j, . . ., which are all

different and vary from 1 to n. S statistics for a number of
distributions have been constructed and presented in Table 2.5.

2.3 Discussion

Consider the Poisson distribution having p.m.f.

P(8) =e ®0Xxl,x=012, ....

The moment generating function is M(t) = exp(-9+eet).
The first two raw moments are

hi'=0=pandp, =0°+6.

Now eliminating 6 from these two equations we get,

o' - 12 -pu=0. (2.3.1)

Here, pp =6. Thus the central moment relation is py - u =0 . Let

B

L o o =

e et 68 e et

EpRs——
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T=X{2-XoXq-Xy - (2.3.2)

We observe that T is an unbiased estimator of ' - uz - 1, where

{X1 ,X2, . . .} are any i.i.d. random variables whose 2nd moments

exist. If T has zero regression on A = Xq+Xo +...+Xp, then E(TeA t)

= 0 . That is,
E(Te® Y = E[( X 2-XoXg-X4 )exp{t( Xq+Xo +...+X)}]
MMM -1 (M2 M -2 -]

or, MM" - (M)2 -M'M=0 (2.3.3)
This is the differential equation in terms of the moment generating
function for zero regression. To solve (2.3.3) for M(t), we may
write

M'/M' = M'/M +1
Integrating both sides of this equation with respect to t we get
InM' = InM +t + ¢, where c is a constant of integration.

or, IN(M/M) =t+c. or, M/M = ¢, el cq=e%).

Integrating again with respect to t we get

t

InM =c1e' +Cy .

As M(0) = 1,cq+c5 =0 . Letcy=6, thus ¢, = -6. So,

M(t) = exp(-6+0el) (2.3.4)
Therefore, if T has zero regression on A, then X ,X2, .. .,Xn are from
the Poisson distribution. Now if we start from (2.3.4) and
eliminate 6 from M, M',M" we obtain (2.3.3), which can be written as
E[( X1 2-XoXg-Xg )exp{t( Xq+Xo +...+X )} = E(TeA Y = 0.

This implies that T has zero regression on A. Again substituting
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t=0 in (2.3.3) and remembering that M(0) = 1, M'(0) =p , M"(0) = po'
we get (2.3.2) and (2.3.1). Therefore, these moment relations
characterize the Poisson distribution. Using T and the sample
(X4 X4, .. ..X,) we can easily construct the statistic S (Table 2.5.A
and 2.5.B).

Now consider the Negative Binomial distribution having p.m.f

(N+x— 1 N

P(x; 0) ={ x )OX(1-6) , X=0,1,2,...,. N @g>0.

The moment generating function is M(t) = (1-(&))|\I (1-6e")'N . The
first three raw moments are

k= Ne/(1-8), po'= No(1+Ne)/(1-6)2 and

k3 = NO(N202+3NB+6+1)/(1-6)3.

Eliminating N and 6 we get,

ug'u-2(ug')2 +UHo' -3 +u2u2' =0 (2.3.5)

This is the raw moment relation.The second and third central
moments are po =N6/(1 -6)2 and pg =N6(6+1)/(1 -9)3
Thus the central moment relation is

Hgh -2u22 +ipe = 0 (2.3.6)

Let T= Xy %3 - 2(X %) 2 +X; %2 - XX X3 +X X X532 be an unbiased

)2 3 2

estimator of pg'n-2(us')" +ups" -u° + upo', where X4 ,Xo Xg are

i.i.d. random variables whose third moments are finite. If T has
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zero regression on A, then E(Tet A) = 0. That is,
MMM™ ZaMm M 2 MM P MR My MM o

2 3 2
or, MM"M 2(M' )M + MMM - (M) + M) M" =0 (2.3.7)
This is the differential equation in the moment generating function
for zero regression. This can be written as
M)’ D(MM" - (M)% - MM} - (MM" - (M')® - MM'}D(M)* = 0
or, D[M)Y MM - (M) - MM"}] =0
or, M)Y(MM" - M)2-MM'} = N, a constant.
or, (M/MYY[(MM" - M)’ }/M* - M/M] =N

2

or, (DinM)*/(D’InM - DInM) =N
where, D is the differential operator, i.e., D = d/dt.

This is the simplified form of the differential equation (2.3.7).
Let Z = DInM. Thus the above equation can be written as

DZ-Z=22/N . Let W= 1/Z. Then we may write,
DW+W4+1/N=0

Here the integrating factor is exp{/dt} = el. Now multiplying both

sides by the integrating factor we get,

etDW+Wet = -1/N et
or, D(W et) = -1/N &

or, wel =-1/N el +c
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or, Z = Neel/(1-0el) [ Where c=1/N8]

or, DINM = (-N){(-8et)/(1-0el)}.

-

or, InM = -Nin(1-6e!) + Incy .
As M(0) = 1, thus ¢4 = (1 -G)N. Hence,
M@ = (1-6)N(1-0et) N (2.3.8)

Thus if T has zero regression on A then X4, X5, ..., X, are from the
Negative Binomial distribution. Now if we start from (2.3.8) and
eliminate N and 6 from M, M', M" and M™ we obtain {2.3.7), which can

be written as

E(X1 %3 -2 X12%2 +X; %2 - X1 X, X532 )el 4} = E(Tel 4) = 0.
This implies that T has zero regression on A = X +Xo+ ... +Xy
Subpstituting t=0 in (2.3.7) and remembering that M(0) = 1, M'(0) = u,
M"(0) = uo' , M"(0) = ugy , we get (2.3.5) and (2.3.6). This implies
that these moment relations characterize the Negative Binomial
distribution.
Using T and the sample (X4,Xo,...X,) we can easily construct the
statistic S (Table 2.5).
The p.d.f. «f the Generalized Negative Binomial distribution (Jain
and Consul, 1971) is

NN +ox -1)! N+ox-x
PX(N’O) -—' (Tf+ax XW 0 (1-9) X=0, 1,2, .......

N>0 021,0<0<1,0<08<1.

The first four moments are u = N8/(1-a8), Ly =N6(1-6)/(1-a6)®,
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g =N6(1-8){1-20+a8(2-6)}/(1-a6)>
g = 3pp2 + [N6(1-8){1-60+602+206(4-96+462)
+(00)2(6-60+62)}]/(1-00)” .

The moment relations of this distribution can be obtained by using
the following equations

(2-0)2/(1-6) =b = (3% - g/ ppp3

and  (py - 3102 )/po® = 1505 / 12 +(b+2)/p-10(bpo/ p3)1/2.
The derivation of moment relations for other distributions is
straightforward. The p.m.f. or p.d.f.,, central or raw moments,
central and raw moment relations for some important discrete and
continuous distributions are given in Table 2.3A and Table 2.3B. To
derive the differential equation for Generalized Poisson (Consul

and Jain,1973) or the Borel Tanner distribution we use the
differential equation G{GG"-(G)2} = G'(G+G)2

or, {GG"(G)2)/GG' = (1+G/G)?
where G'=DG, G'=D2G and G=G(t) is its moment generating function.

Here GH)=M®}!'N, {GG"(G)2)/GG' = (M'M - (M)2})/MM', where M
= M(t) is the moment generating function for the Generalized

Poisson distribution.

Differentiating the equation (1+G'/G)2 = {M'M - (M')2}/MM' with
respect to t and simplifying we get

(MM - (M)2}4 +(M)2{M"M2-3MM'M"+2(M")3}2-6M{M"M - (M)2}2

{M"M2-3MMM"+2(M')3} - AMM{M"M - (M)2}3 = 0
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Differential equations for other distributions are straightforward.

Differential equations for zero regression that satisfies E(Set A) =

0 for some discrete and continuous distributions are given in Table
2.4 A and 2.4B. Differential equations in the moment generating
function to identify some distributions are aiso given in the fourth
column of Table 2.4.A. If we integrate these equations with respect
to t we get the moment generating function for the corresponding
distribution, while the differentiation gives further differential
equations as listed in the third column of Table 2.4.A. Hence these

diiferential equations also characterize a particular distribution.
2.4 Applications of the Moment Relations

The moment relations are used as criteria for discriminating one
distribution from another. In particular consider the four
distributions, *he Negative Binomial, the Neyman type A, the
Hermite and the Gerneralized Poisson. The Negative Binomial
distribistion results if the Poisson distribution is generalized by
the Logarithmic distribution. The Neyman type A distribution is
obtained if the Poisson distribution is generalized by another
Poisson distribution.  If X4 and X, be two independent Poisson
variables then the random variable X{ + 2X, has the Hermite
distribution. The Generalized Poisson distribution results if the
Poisson distribution is generalized by the Borel distribution. The

moments function Hig -2u22 +Ulo is zero for the Negative

Binomial distribution, negative for the Neyman type A and also for
the Hermite distribution and positive for the Generalized Poisson
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distribution. The function (upg - Ho® - ppp + P2 ) is zero for the

Neyman type A, negative for the Hermite distribution and positive
for the Generalized Poisson and Negative Binomial distributions.
The moment relation for the Generalized Poisson distribution is
(312 - pug/(2p?)P°

of the following kinds of distribution to use, if one of them is

= Wuo which can be used in deciding which

appropriate.
Let a = {3/2 - ppug/(2py2;}% and b = p/u, . Then for the Poisson
distribution a = b =1, for the Generalized Poisson 0 <a = b <1, for

the Neyman type A 49/64 < a > b < 1, for the Negative Binomial
1/4 <a > b <1 and for the Generalized Negative Binomial 0 < b < a .

In Table 2.1 we consider Bortkewitch's data on the "Number of
deaths caused by horsekicks in the Prussian Army Corps". Fisher
(1958) fitted the data with the Poisson disiribution, Jain and
Consul (1971) with the Generalized Negative Binomial (GNB) and
Consul and Jain (1973) with the Generalized Poisson distribution.
The calculated values of the Chi-square goodness of fit test
statistics are insignificant in all cases. From the data we get, m =
0.61, my = 0.6109548, mg = 0.590562, m, = 1.643373 and

() mo-m = 0.0009548 for Poisson,

(i) {3/2 - mgm/(2my2)}2 - m/m, = 0.03675632 for Generalized

Poisson and

(iii) 15m24 + 2mm23 + (mm3-3m22)2 - m2m2(m4-3m22) +
10(mmg-3m,y%)m,2 = -0.009132426 for GNB distribution.

Here (i) is very close to zero compared to (ii) and (iii).
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Here, 4 = {3/2 -mm3/(2m22)}2 ~tand b =mmo=1.
Thus a= b = 1.

Consider the moment ratios  dy = pug/ u22 and

do = {uoly - u32} /u23-
Then for the Poisson distribution dq =1 and d, = 3, for the GNB
dq <3 and d2 > 1, for the G. Poisson 1 < dy <3 and d2 > 3.

Here 81= 1 and 82 = 3.

Therefore, the distribution is more likely to be Poisson.

For assessing statistical accuracy we use the bootstrap method
discussed by Efron (1982 ). This is a computer based method.
Theoretically it is difficult to find the exact form of the
distribution of a function of the sample momenis. The bootstrap
can routinely give us approximate distribution. There are two types
of bootstrap: parametric and nonparametric. Here we used the
nonparametric bootstrap method for Bortkewitch's data given in
Table 2.1. First we drew a sample of size 200 from the given 200
observations with replacement and calculated the mean, the
variance, the third, and the fourth central moments. Then we
calculated the values of the moments functions for the Poisson,
Ceneralized Poisson, and Generalized Negative Binomial
distributions. We repeated this experiment first 1000 times, then
1500 times, and finally 2000 times in three stages and obtained
three sets of 1000, 1500, and 2000 values for the three moments
functions. Then we computed the mean and the standard deviation

e ek e
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for each set and are given in table 2.2A. To do this we used a
Fortran program given in Appendixi. Now we are interested in
testing the following hypotheses:
() HogiMo-p =0 against

Hagipp - #0
(i)  Hyp: {3/2- pgn/(2ps2))1% - pip, =0 against

Hip : {3/2- pgh/(21p%)1° - whip # 0
(i) Hyg: 151p%+ 20153 +10(1pg-31p2) o2 - n2uo(iy-3102) +

(hpg-3 u22)2 =0 against

Hys 151u2 + 2uu23 +10(pnpg- 3u22)u 2. uzug(u4-3u22) +

(Hg-81p?)2 # 0

To test the above hypotheses we consider a test statistic which is
of the following general form
Z=[H(m, my, mg,....)-0FS.E[H(m, my, mg,....J]

where H(m, my, mg, . . . .) is the mean of bootstrap sample.

Let us assume that in some neighbourhood of the point m = pu, m; =
M;, (i=1,2, . . . ) the function H is continuous and has continuous
derivatives of the first and second order with respect to the
arguments m and m;. According to the central limit theorem the
test statistic Z follows the N(0,1) distribution at least
approximately. The values of the test statistic, P-values, and the
corresponding conclusion are given in Table 2.2B. In all cases the
P-values are very large for the Poisson distribution and nearly

zero for the Generalized Negative Binomial and Generalized Poisson
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distributions. Thus there is no evidence against the hypothesis that

the data set is from a Poisson population.

For validation, we have considered a random sample of size 200
from a Poisson population having mean 0.61 and caiculated the
first four sample moments given by m = 0.68, m, = 0.680856, mg =
0.714, my = 2.223. We have used these values in the moment
functions for the Poisson, Generalized Poisson and Generalized
Negative Binomial distributions and obtained the following results,
(@) mo-m = 0.000856 for Poisson,

(b) {3/2 - m3m/(2m22)}2 - m/mo = -0.0455435 for Generalized

Poisson and

(c) 15m24 + 2mm23 + (mm3-3m22)2 - m2m2(m4-3m22) +

10(mmg-3my2)m,2 = 0.0135369 for GNB distribution.

Evidently, (a) is close to zero compared to (b) and (c).

Also, 81 = mmg/ m22 =1 and 82 = {momy - m32} / m23 ~ 3.

Subsequently, we have applied nonparametric bootstrap method
discussed earlier to the randomly chosen sample obtained from the
Poisson population with mean 0.61 for testing the hypotheses (i),
(i) and (iii). The results are given in Table 2.2C and 2.2D. Thus
there are similarities between the results obtained from a P~isson
population and those from Boiikewitch's data.
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Table 2.1 :  DEATHS DUE TO HORSE-KICKS IN THE PRUSSIAN ARMY,

BORTKEWITCH'S DATA.

N Number of Observed Poisson GNB Generalized
\x deaths frequency Poisson
::;
i 0 109 108.67 109.12 108.72
¥ 1 65 66.29 65.27 66.22

2 22 20.22 20.74 20.22
) 3 3 4.11 4.27 4.12
3 4 or more 1 0.71 0.60 0.72
¥ Total 200 200 200 200

|
22 0.322 0.230 0.330

o R gt s W

e B e e e =t e v

Source : Fisher(1958)
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TABLE 2.2 A : SUMMARY OF THE OUTCOMES OBTAINED FROM THE

FORTRAN PROGRAM (BASED ON BORTKEWITCH'S DATA)

Moment relation Bootstrap Mean Standard
estimate for samples deviation
Poisson 1000 0.00044 0.06169
G. Poisson 1000 0.05570 0.09769
G\B 1000 -0.06606 0.31427
Poisson 1500 -0.00001 0.06132
G. Poisson 1500 0.05522 0.10093
G\B 1500 -0.00635 0.03033
Poisson 2000 -0.00066 0.06042
G. Poisson 2000 0.05614 0.10022
G\B 2000 -0.00682 0.02954

G. = Generalized

GNB = Generalized Negative Binomial
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TABLE 2.2 B : TEST RESULTS (BASED ON BORTKEWITCH'S DATA)

5 Hypotheses Bootstrap Values of the P-value Conclusion

. samples  test statistic

K Ho 1 1000 0.225547 0.8216 Do not reject
4 Hy o 1000 18.030389 0 Reject

i Hys 1000 -6.647153 0 Reject

‘! 1500 -0.006316 0.995 Do not reject
: 1 J

bl

|

! Hy o 1500 21.18955 0 Reject

§

§

f Hog 1500 -8.10862 0 Reject

N Hy 1 2000 -0.488515 0.6252 Do not reject
¥

d Hy o 2000 25.05145 0 Reject

: Ho3 2000 -10.32497 0 Reject
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TABLE 2.2 C : SUMMARY OF THE OUTCOMES OBTAINED FROM THE
FORTRAN PROGRAM (BASED ON POISSON SAMPLE).

S S e e e e, b, 2 et ) . st SIS

Moment relation Bootstrap Mean Standard
estimate for samples deviation
Poisson 1000 0.00079 0.05984
G. Poisson 1000 -0.72855 0.07686
GN\B 1000 0.00491 0.03250
Poisson 1500 -0.00125 0.05949
G. Poisson 1500 -0.72225 0.07507
G\B 1500 -0.00707 0.02893
Poisson 2000 -0.00087 0.05889
G. Poisson 2000 -0.72664 0.07472

G\B 2000 -0.00724 0.02885
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TABLE 2.2 D : TEST RESULTS (BASED ON POISSON SAMPLE).

Hypotheses Bootstrap Values of the P-value Conclusion
samples test statistic

Ho1 1000 0.41748 0.6764 Do not reject
Hpo 1000 -299.74986 0 Reject

Ho3 1000 4.77747 0 Reject

Ho 1 1500 -0.813789 0.4158 Do not reject
Hyo 1500 -372.620517 0 Reject

Hos 1500 -9.464913 0 Reject

Ho1 2000 -0.66068 0.5088 Do not reject
Hoo 2000 -434.908 0 Reject

Hy3 2000 -11.22297 0 Reject
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TABLE 2.3.A MOMENT RELATIONS CHARACTERIZING CERTAIN DISCRETE DISTRIBUTIONS.

Distribution with prob. Central or raw  Central moment Raw moment
mass function moments relations relations
Geometric pu=6/(1-8), Ho - pz -p=0 p.2'-2 |J.2 -p=0
(1-0)0% no=6/(1-6)2

: LSy —_ 0= oy = L2y =
Poisson e "6"/x ! B=8=iy Ho-u=0 Ho-US-pn=0
Negative Binomial u=Ne/(1-0), pp3-2y22+pp2 =0 p.p.3'-2(p2')2+ Hio'
P(N+x)e%(1-0)N/ (xIPN)  po=Ne/ (1-6)2, - w3+ p2py =0

1g=N8(1+6)/(1-6)3

Borel p= 0/ (1-0), Ho-p(1+ p)2=0 o p- 32 - B =0
X (14x)X 1em 814X}/ 1 o0/ (1-0)3,
Borel Tanner or u=Ne/ (1-6), (32 par/(2052)12  9(p)* - 1842 (py')?

Generalized Poisson

to=N6/ (1-8)3,

OXN(N+x)*Te ®N+X)/ 51 o oNe(14+20)/(1-6)5

- Wiy =0

- 20%ug" - 6 uiug' ) g’ - 4py

21p (ug')z w8 -6 8 Ho'

+ 12 (1) + 6 K2up" ny’

)3

+12p3(p2')2 -1 2p5p2' + 4p7 =0

Hermits H=0y+205 Hg -3y +214 = 0 Hg - 3ups' + 2p3 - 3py'
[¥2]) -2ij -8-6
o 2lgl 002 2
— p2=91+492 +3u“+2u=0
,,13 =91+862
x =012, .... for all cases.
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Distribution with Central or

mass function Raw moments

Central moment Raw moment

relations relations

HHg - P~2H2 -t Hug' + ppo' - 2(#2')2 =0

"2(}1.2)2 + }1:,12 + },1.3 =0

Logarithmic Series u= Cc8/(1-8),
co¥rx, x=1,2,3, ... Bo' = w(1-9),
c= [In(t-0)7" Hg' = p(1+0)/(1-0)

Neyman type A L=28,

expl -M1-€ 9], x=0 Ho = 1 6(1+8),

Hig - HHo -(u2)2 Hug' - u‘?ug' spda

+p2=0 “(1p' )2 - upp' + 92 = 0

| I
Ayo-je(je
E ™ (T') e _(_J!_), Hy= A0(1 +36+92)

=1

Generalized Geometric pu= 6/(1-00),

4 -
I (1+ox)eX(1-g) T2~ 3

2
e H,=u (1-8) /67,
XIT(aX-X+2) 2

X =0,1,2, . .. ng=r2po[3(1-6) -
(1-0)(2-6) ] /62
Generalized p=Ne/ (1 -00),

Hp=NO(1-6)/(1-a6)3,

N+ax -X
Hg=No(1-8){1-20+

Negative Binomial

N I'(N+ ax) 6%(1-6)
X T(N4ox -x+1)

x=012,...
1a=3Ho° +[N6(1-8){1-60
+60624+206(4-90+402) +

a20%(6-60+02)}]/(1-06)”

3

'.gp24

dpp, fno?  ap(y)? 1208(0y)2

2 2 2 5 . ar vV qau2ye yo

=0 At (pn')? 188y 48
+2(ng")? -4p8-8p3uy g4y’
-4n4u3‘ +6u(p2')2u3' =0

150t 2052 611 (1) W3 (102

2

+10(pu3-3;122)u2 +2[u6|»12'+l»l(ll2')3' P'7]

3u2)2 2,.3 4, .2 4.
+(uu3 3u2) 5[0, ) - ) ] T

+00(2-0)}/(1-00)° - p2poig-31p2)  +aluOngrilug Py lenpy

=0 10u3pp'g" - #Pug'hy' = 0
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TABLE 2.3.B MOMENT RELATIONS FOR SOME CONTINUOUS DISTRIBUTIONS.

Distribution with prob.
density function

Central or raw  Central moment Raw moment

moments relations relations

Gaussian or Normal

=0, lp = 2, g - 3»22 =0 Hy'- 4uu3'+12u2u2'~3(u2')2

oxp{-(x-8)2/ 26%} / (oV 2n), g = O, -ept-o0
- <X < oo My = 36%

. e _ Can 2 - S S 3
Inverse Gaussian i =6, HHg - Spo“ =0 Hpg'+3upo'-p7-3(no' )" = 0
v ( 2nx3)[exp{-A(x-6)2 p, =63/

/(2x62)}], x > 0. Ky = 3;122 /u
Gamma =0/6 -2p,2 =0 ) 2 - 2’2 = 0
& H=0/6, HHg -2Hp Hitg' + 1o (ro')" =

8% % 1g" 0%, g |

po' = afa +1 )/92,

x>0, Ha' = a(o+1) (0+2) /83
i - 2 _ v o2
Exponential =60, Ho- W =0 Ho' - 2p© =
(1/6)exp(-x/8) , x>0 .  py =62
Maxwell po= 2V@me), po- (B8 -1)u=0 no' - (3w/8) p2 =0

V(263 m) xPexp(-0x2/2), p, = (3-8/m) /0

Chi-square =V, pp=2v Po-2u=0 Bo' - ),12 -2u=0

o X/ 225V 2/ xp(vi2),

Laplace p=9 Bg - 6p22 =0 rg' - 4pp3'+18p.2p2'- 6p2'2

exp(-1x-0l/ o)/ 20

-0 X <o,

Ho = 2a2, Hg = 0, - 9p4=0

Mg = 2404
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TABLE 24 A DIFFERENTIAL EQUATIONS IN MOMENT GENERATING FUNCTIONS FOR ZERO
REGRESSION AND IDENTIFYING CERTAIN DISTRIBUTIONS.

Distribution

Moment generating

functions, M=M(t)

Differantial equations

satisfying E(SeA t) =0

Differential equations

identifying distributions.

Geometric  (1-6)/(1 -eet) MM"-?_(M')2 -MM' =0 M/(1+ DInM) = ¢, O< ¢ <1.
Poisson exp(-0+6e!) MM™- (M2 -MM' = 0 DinM-InM =¢, ¢ > O.
Negative  (1-0)N(1-0eh)N MMM+ M (M)2 -2M(M")2 (DInM)2/(D2InM-DInM} = c,
Binomial - (MY & MMM" = 0 c>0.
Borel exp{6(Me! -1)} MEM" -M(M')2 -M'(M'+M)2 = 0 DInM/(1+DInM)-InM= c,

0< c¢c<1

Borel Tanner exp{Né)M‘I /Ngt -Ne}

9(MM"-M2) 44 (M2M"* 4 2M3

G(GG" - G*) = GG + G2,

-3MM'M"){M2-6M'(MM"-M'2)2}  where G = M!/N.

- AMM(MM™-M2)3 - o

Hermite  exp{-6,(1-6)-8,  MZ(M"-3M"+2M")+2M"3 DPInM -3DInM+2InM = c,
(1-62Y)} SBMM(M™-M) = 0 c> 0.
Logarithmic In(1-6e!)/In(1-8)  M'M"'+M'M"-2(M")2 =0  (DM)?/(D®M -DM) =c, ¢ > 0.
2 ) l!'_ " ) 2 'l2 2 2 -
Neyman exp[-A{l-exp M=M'(M"'-M"+M'} -M*M {DInM)</(D<InM -DInM)

type A

-6(1-e")}]

-MM"M?2 + M4+ MM3 = 0

-InM=¢, ¢>0.
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TABLE 2.4 .B DIFFERENTIAL EQUATIONS IN MOMENT GENERATING FUNCTIONS FOR

ZEROREGRESSION .
Distribution Moment generating functions Ditferential equations satisfying E(SeA ‘):0
Normal exp(6t + t262/2) MM3-4M'M"' M2+ 12MM"M2-3 M2(M")2-6(M")4=0

Inverse Gaussian exp{A[1- V(1+202t A)]/6}  MEM'M™ + 3MM™M2 - (M)4 . 3M2(M")2 - o

Gamma (1 - vy MM'M™ + MY (M)2 -2M(M")2 = 0

Exponential (1 -te)! MM® - 2(M)2 = 0

Maxwell [1+212{1- o(-1/8)} /6lexp(-12/ 26) MM" - (3/8)(M")2 = 0
+ tV(8/om)

Chi-square (1-2tyv/ 2 MM" - M2 - 2MM' = 0

Laplace e (1. o212y 1 M2{MM""-4M'M"'-6(M")2})

+ OMZ(2MM"-M2) = 0
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TABLE 25.A SAMPLE STATISTICS S WITH ZEROREGRESSIONON A = Xy+Xp + ... +X

Distribution S Statistic
Geometric (n-1)ZX; (X; -1) - 2ZX; Xj
Poisson (n-1)le (X| -1) - le X]

Negative Binomial (n-2)IX; xja(xj -2X; +1) + IX; X% X (K- 1)

Bore! (n-1)(n-2)ZX| (Xl '1) - 3(n-2)Z)(| XJ - le X.l Xk

Borel Tanner (n-4)(n-5)(n-6)(n-7)ZXI XJ Xk2 .‘(|2 (9X|Xj -18kal -GXJ X| '4X]) + 6(”-5)

(n-6)(n-7)EX; X X X2 Xy Z(Xy#2) = (-6)(0-TVEX; X5 X Xy Xy Xp2(21 X+

Hermite (n-1)(n-2)TX; (X2 -3X; +2) - 3(n-2)EX; X, (X -1) + 25X X X

Logarithmic Series 2X; ij(Xj -2X; +1)

Generalized (n-4)(n-5)(n-6)(n-7)}:XinXk2X12(4Xj~9Xi+6XjX|-XkX|)-2(n-5)(n-6)(n-7)
Geometric ZXin XkX‘sz (86X -9X, +3X X ,+2X;,) -2(n-6)(n-7) ZXin xkx,xmxpuxmxp

-12xp+2-3xp2) “4(0-T)EXX XX X XpXo(2X#1)+42X; X X Xi X XpXoXq
Generalized (n-4)(n-5)n-BIEX; X X 2K 2 (2% -6X% X2 +X,X)) +(n-5)(n-6)ZX;X; XXy

Negative Binomial X 2(15XX| -8X) -10X| X+ 4% XX X+ X Z) +2EX1X XX Xy X X (X 1)

2
HN-B)ZX X XXX X2 (6 -15X 1, +4X)
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TABLE25.B SAMPLE STATISTICS S WITH ZERO REGRESSIONON A = X +Xy + ... +X

Distribution S statistic

Normal or Gaussian (n-2)(n-3)ZXi2 {(n-1)Xi2 - 4X Xj - SXJ' 2} + BZX; Xj X{2(n-3)X; - X}

Inverse Gaussian (n-2)(n-3)XX; X ( - 8Xj) + (n-3)ZX; X Xk - XX X Xk X

Gamma (n-2)EX; x2 (X -2X)) + £X; X; X2
Exponential (n-1)ZXi2 - 28X XJ

Maxwell (n-1)EX;2 - (3w8)TX; X;
Chi-square (n-NEX; (X; - 2) - ZX; Xj

Laplace (n-2)(n-3)2X;2 {(n-1)X;2 - 4X; X - sxj2} + 95X X X({2(n-3)%; - X))




Chapter 3

Identification by Moment Ratios

3.1. Introduction

In this chapter we have proposed two moment ratios. These ratios
are useful in identifying different members of a class of discrete
or continuous distributions. These ratios are also useful in
approximating the Neyman type A and the Generalized Poisson
distributions by the Negative Binomial distribution. The impact of
using approximate distributions instead of the exact distributions
is studied.

We know that the values of the pair ( B, , B, ) of moment ratios
B,=Hs?/ 1p® and By=p,/ py?, where  is the ith central moment of
the distribution, are (0,3) for the Normal distribution. Hence a
comparison of the point (Bl,Bz) of any given distribution with (0,3)

will give an idea about the departure from the shape of the Normal
distribution. For discrete distributions Jain and Gupta (1980) have

defined the moment ratios

by = (uugz - My?) /by
and

b, = (upg - 31p2)?/ 1y = pylby-2)2/,

39
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where p is the mean. The value of the point (b, b,) is (0,4) for the
Poisson distribution. Therefore, it provides useful information on
how similar a discrete distribution is to the Poisson distribution.
They have also given approximations of the Generalized Poisson
(Borel-Tanner) and Neyman type A distributions by the Negative
Binomial distribution by equating the p and by values of these
distributions. In this chapter we introduce moment ratios

d, = Mg/ 2 and

dp = (Hphy - Ha?) /150
based on the first four moments. The value of this pair (d;, d,) is
(1, 3) for the Poisson distribution. The p.m.f. of the Generalized
Poisson distribution is
P(Y=j) = M4+ 6j )i - Te- +81 )jji
It is shown in Section 3.2 that the use of (u, d,) provides better
approximations of Generalized Poisson and Neyman type A
distributions by the Negative Binomial distribution. Moreover, by
the use of (4, by) the approximations for the Generalized Poisson
distribution are valid only for 6 < 0.5, but the use of (u, d,) gives
quite satisfactory approximations even for 6 < 0.8, The
approximations are, however, not satisfactory for the following
cases :
(i) when 6 > 0.2, probability sums for r=0;

ii) when 6 > 0.4, probability sums for r<10;

(

(iii) wher 6 20.7 and A > 2;
(iv) when 6 =0.8and A > 1;
(

v) when 6 > 0.8.
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Taking random samples from Generalized Poisson, Neyman type A
and their approximate distributions [say, Modified Generalized
Poisson and Modified Neyman type A], it is shown in Section 3.3
that the estimator of the population mean remains unbiased in each
case. But the variance is overestimated in case of Generalized
Poisson and underestimated in case of Neyman type A if we use the
Modified distributions instead of the exact distributions. We know
from the discussion in chapter 2 that moment relations can also be
used to identify a distribution. But in some cases moment relations
of two or more distributions are same. In such a situation the
moment ratios (d;,d;) can be used to identify a distribution.
Because of the sampling fluctuations, a particular criterion may
not provide reliable information to draw sound conclusions. So, it
is better to use moment ratios with moment relations to identify a
distribution.

3.2 Moment Ratios and their Uses

Let the moment ratios based on the first four moments be defined
by d; = Hy/ My2 and d, = (i, - Hg2) /1,2 . The exact expressions
of the moment ratios d; and d, as a function of parameters for
some discrete and continuous distributions are given in Table 3.1
and Table 3.2 respectively. The ranges of d, and d, for all
distributions in Table 3.1 and Table 3.2 are given in Table 3.3. We
know that the Generalized Negative Binomial (GNB) distribution is
the generalization of the Binomial, Negative Binomial, Geometric

and the Generalized Geometric distributions. Let X be a GNB
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variable having probability mass function

NC (N + ax) 8%(1-8)NOX=X/(x I (N + ax-x+1)}.

If o = 0, the distribution of X is Binomial, if o = 1, the distribution
of X is Negative Binomial, if N = 1, the distribution of X is
Generalized Geometric and if N =1 and o = 1, the distribution of X is
Geometric. For the Binomial distribution d, <1 and 1<d, < 3, for
the Negative Binomial distribution 1 < d; <2and 3 <d, < 5, for the
Generalized Geometric  distribution d; < 3 and d, 2 5, for the
Geometric distribution 1 < d; < 2 and d, = 5 and for the GNB
distribution d, < 3 and d, > 1. The Gamma distribution is the
general form of Chi-square and Exponential distribution. Let X be a

Gamma variable having density 6PxP~1e €%/ (p) . If p=v/2 and @ =
1/2 , the distribution of X is Central Chi-square with v degrees of
freedom and if p = 1, the distribution of X is Exponential with mean
1 /0. For the Chi-square distribution d; =2 and 3 <d, < 7, for the

Exponential distribution d; = 2 and d, = § and for the Gamma
distribution dy=2 and d, > 3. Let X be a Weibull variable having

density epxp'lexp(-exp). If p =1, the distribution of X is

Exponential and if p =2, the distribution of X is Rayleigh. For the
Rayleigh distribution d; = 2.2074 and d, = 2.8468, for the
Exponential distribution d, = 2 and d, = 5 and for the Weibull
distribution d; >1andd, > 1.

The Generalized Hermite distribution is the generalization of the
Hermite and Poisson distributions. The p.m.f. of the Generalized
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Hermite distribution is e (¢+B) H ola B!, 1=0,1.2,....
(/o]
k jok . ,
where, H, (c,8) = ) B o™ jl k! (-0K) 1}
k=0

If & =2, it reduces to the Hermite distribution and if 6 =2 and B=0
it reduces to the Poisson distribution. For the Poisson distribution
d; =1and d, = 3; for the Hermite distribution 1 < d;y <2and3<d, <
4 ; for the Generalized Hermite distribution 1 < dy < and 3 <d, <
«. Therefore, the values of d, and d, could be used to identify a
distribution.

The Negative Binomial, Neyman type A and the Generalized Poisson
distributions are contagious. Tables are available for computing
c.d.f. of the Negative Binomial distribution only. One can also
compute the c.d.f. of the Negative Binomial distribution by using
the Binomial probability Tables and the incomplete Beta function
Tables.

In Table 3.4 we approximate the Neyman type A probabilities
2fnN(iA,6) by the Negative Binomial probabilities Xf\g(j;N,a) by
equating the means and the d, values of these distributions with

o =28/ (A6 + Nj, N = 20(1+0)3/(2+26 + 62)

and Xfn(i; A.0) = Lf\gli; Na).

In parentheses we consider the corresponding values taken from
Jain and Gupta (1980) based on the first three moments. The

probability values based on the first four moments seem to provide
better approximations.
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Similarly by equating the means and the d, values of the
Generalized Poisson and the Negative Binomial distributions in
Table 3.5 we have approximated the Generalized Poisson sums by

the Negative Binomial sums with a=9(9+2)/(1+292),
N=2(1-0)/{8(0+2)} and ¥fep(i; 1.6) = Zfnglis No).

We know from the discussion in chapter 2 that the moment
relations can be used to identify a distribution. The moments
function pug -2p,2 +up, is zero for the Binomial, Poisson and the
Negative Binomial distributions. But for the Binomial distribution
d, <1 and 1<d, < 2 ; for the Negative Binomial distribution 1 < d, <
2 and 3 <d, £ 5 and for the Poisson distribution d; = 1 and d, = 3.
The function py -3, +2u is zero for the Hermite and the Poisson
distributions. But for the Hermite distribution 1 < dy <2 and 3 <d,
< 4 ; for the Poisson distribution dy = 1 and d, = 3. The function pp,
-2 -y + 1? is zero for the Poisson and the Neyman type A
distributions. But for the Poisson distribution d, = 1 and d,=3; for
the Neyman type A distribution, 1 < d; <1.25and 3 < d, < eo.

3.3 Comparison between Exact and Approximate
Distributions

3.3.1. Generalized Poisson and its Approximate
Distributions

The p.m.f. of the Generalized Poisson distribution is

P(Y=]) = feplii A,0) = M(A+6) )i - Te- (A+61 )jj

and that of its approximate distribution is
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P(X=)) = figli; N,o) = C(N+j)ad (1-0)™/ (it T'N),

where N=A(1-8)/{8(8+2)}, o =6(6+2)/(1+26%) and j=0,1, .. ..

Let the name of this approximate distribution be Modified
Generalized Poisson. Let Y,,Y,, ...Y be a random sample from
Generalized Poisson distribution and Y=XY/n be the sample mean.

Then E( Y) =A/(1-8) = u (say), where u is the population mean and

V(Y )=a{n(1 9)3}. Let X{, X5, .. ., X, be a random sample from a
Modified Generalized Poisson and X = ZX;/n be the sample mean.
Then E( X)=A/(1-6) =p and V{ X)= A(1+202)/{n(1-6)3).

Here, V(Y) - V(X) = - 2 42/{n(1-8)3}, which is negative.

Thus V( Y) < V( X).

This implies that if we use Modified Generalized Poisson
distribution instead of Generalized Poisson distribution then the
estimator of the population mean (1) will remain unbiased but the

variance will be overestimated.
3.3.2. Neyman Type A and its Approximate Distributions

The p.m.f. of a Neyman type A distribution is

P(Y=)) = fuli; % 0)= Yo~ A+ KO) sKkg)l /1 k1) and that of its
approximate distribution is

P(X=)) = fuglii N.@)= [ (N+j) ol (1-0)™/ (it T'N),

where, N = 21(1+68)3/(2+20 +62), & =28/ (A0 +N) and j = 0,1,2, . . .
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Let the name of this approximate distribution be Modified Neyman
type A distribution. Let Y,,Y,, ...Y, be a random sample from a
Neyman type A distribution and V:ZYi/n be the sample mean. Then
E(Y) =20 =p,' (say), where p,' is the population mean and V( Y)=
AB(1+ 6)/n. Let X{, X,, .. ., X,be a random sample from a Modified
Neyman type A and X =2X/n be the sample mean.

Then E(X) =26 =’ and V( X) = 16%(2+20+62)/{2n(1+8)3} + 1o/ n.

Here, V( Y ) - V( X ) = 463(4 + 50 +202)/{2n(1+0)3}, which is
positive.

So V(Y)>V(X).

This implies that if we use Modified Neyman type-A distribution
instead of Neyman type-A distribution then the estimator of the
population mean will remain unbiased but the variance will be

underestimated.
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TABLE 3.1: dy ANDdo FUNCTIONS FOR SOME DISCRETE DISTRIBUTIONS.

Name of distribution with p.m.f.  d, d,

Binomial (1-20)/(1-98) 3 - 2/N
Nq(e)iu-e)N-i, 0<0<1

Negative Binomial 1+a 3 + 2/N
C(N+)) (@) i(1- o) V(! N)

Generalized Negative Binomial 1+6a+6(0—1) (1-6) 3+2{(2-20+ab) a-1}/{N(1-a0)}
NC(N +aj )6l (1 -0) N+ -ijl DC(N+oj-j+1)}

Geometric 1+0 5
(1- 0 8, j=0,1,2, .....

Generalized Geometric 1460+6(a—1)/ (1-6) 3+2{(2-20+00)a-1}/(1-00)
C(1+0j )0 1-0) T¥4-0gjl C(aj-j+2))}

Neyman type A 1+0/(1+ 0)°2 3+(2+2 6+ 62) A1+ 0)3
exp{-A(1-e %} for j=0

]
3 o Mkek ok L j = 1,23,....
k=0

Borel 1+ 26 1 + 6/(1- 6)
e 81+ 1 +jy-ei/j1 j=0,1,2,...

Poisson 1 3
e, 0<r<t

Generalized Poisson
aes W80 ) gy )i- 10, 1+ 20 3 +20(0+2)/M(1- 6))

Hermite 1+2 6, 92/ (91 +4 02)2 3 +4 0, 92/ (61+4 92)3
/2] 6.6

2911_2‘(9129 U2 ek L = 01,2,

k=0

Generalized Hermite 1+m(m-1)2ap/ (a+m2p)2 3 +mZ(m-1)20p/
e (ot+!3)HJ (o Byl (a+m2p) 3
' [y/m]

(o B = BRo” ™ Kit [{ki (j-mk)!}
where, Hj ! kgb i=0,1,2,....
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TABLE 3.2 : dy AND dp FUNCTIONS FOR SOME CONTINUOUS DISTRIBUTIONS.
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Name of distribution with p.d.f.  d, d

Normal 0 3
exp{-(x-8) 2/ 262} / (o 2r)

Student's t 0 3 + 6/(p-4)
1/{\p B(p/2,1/2)(1+12/p)P+1)/3

Gamma (8)PxP-1e X8/ p 2 3+ 2/p
Exponential 6 e X0 2 5

Chi-square 2 3 + 4N

2-\//2 e-X/2 xv/2 -1/1-'(\,/2)

Rayleigh 26x exp( -9x2)

21t(1t-3)/(4-1r)2

(128 - 50m +73)/ (4 -1)3

Weibuli
poxP-lexp(-6xP)
where, a, = C(1+r/p)

a;(az-33,8,+2a,2) {(a,-42a,85+6a,a,>-

(32'31)2

3314) 2(32" a4 ) - ( ag-
381 32+2a1 2)2/ (32' a1 ) 3

Gumbel 0.8881(a/8) 4.10265

u/eel, where u = e (X-a)® -0.4874

Logistic 0 4.2
e-(x-a)/b{1+e-(x-a)/b}-2/b

Uniform 1/(b-a) 0 1.8

Laplace 0 6
(1/2ab)exp{-Ix-alb}

Lognormal exp(c?) +2  exp(4c)+exp(3c?) + 1
exp{-(Inx-6) 2/ 262}/ ( xoV 2r)

Inverse Gaussian 3 66/ A

Aexp{-A( x -0) 2/ (2x62) } / ( 2rx3)
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TABLE 3.3 : RANGESOFd; ANDd, FOR SOME DISCRETE AND CONTINUOUS

DISTRIBUTIONS.

DISTRIBUTION

DISTRIBUTION

Binomial

.3

Normal

N. Binomial

5]

Student's t

G. N. Binomial

Gamma

Geometric

Exponential

G. Geometric

Chi-square

Neyman type A

Rayleigh

Borel

Weibull

Poisson

Logistic

G. Poisson

Uniform

Hermite

Gumbel

G. Hermite

Laplace

Log Normal

Inverse Gaussian

&

3
3.9
(3 4 o)
5
3.7
2.8468
(1, o)
4.2

1.8
4.10265
6

(0, =)

G.= Generalized and N. = Negative.



TABLE 3.4 : EXACT AND APPRCXIMATE VALUES FOR NEYMAN'S TYPE-A SUMS.
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A 0 o N r Exact Approx. by
2GS A 8) 3fglis Na)

1 0.1 0.0767 1.205 0 0.90922 0.90840(0.90869)
1 0.1 0.0767 1.205 1 0.99150 0.99228(0.99205)
1 0.1 0.0767 1.205 5 0.99999 0.99999(0.99242)
1 0.2 0.1237 1i.464 0 0.83421 0.82938(0.83076)
1 0.2 0.1237 1.464 1 0.97081 0.97473(0.97383)
1 0.2 0.1237 1.464 5 0.99999 0.99999(0.97614)
1 0.3 0.1552 1.633 0 0.77168 0.75925(0.76213)
1 0.3 0.1552 1.633 1 0.94319 0.95189(0.95019)
1 0.3 0.1552 1.633 5 0.99993 0.99995(0.95647)
1 0.5 0.1940 2.077 0 0.67471 0.63890(0.64417)
1 0.5 0.1940 2.077 1 0.87933 0.89636(0.89467)
1 0.5 0.1940 2.077 5 0.99917 0.99965(0.91519)
2 0.1 0.0767 2.409 0 0.82669 0.82520(0.82578)
2 0.1 0.0767 2.409 1 0.97629 0.97759(0.98485)
2 0.1 0.0767 2.409 5 0.99999 0.99999(0.98490)
2 0.2 0.1237 2.833 0 0.69591 0.68786(0.69016)
2 0.2 0.1237 2.833 1 0.92381 0.9286990.92787)
2 0.2 0.1237 2.833 5 0.99992 0.99993(0.95284)
8 0.1 0.0767 9.636 0 0.46706 0.46370(0.46487)
8 0.1 0.0767 9.636 1 0.80515 0.80622(0.80604)
8 0.1 0.0767 9.638 5 0.99949 0.99953(0.94094)
B 0.2 0.1237 11.337 0 0.23453 0.22388(0.22688)
8 0.2 0.1237 11.33%7 1 0.54177 0.54177(0.53946)
8 0.2 0.1237 11.331 5 0.98767 0.98938(0.82395)
8 0.3 0.1552 13.068 O 0.12575 0.11043(0.11382)
8 0.3 0.1552 13.068 1 0.34933 0.33435(0.33850)
8 0.3 0.1552 13.068 5 0.94310 0.95074(0.89839)
20 0.1 0.0767 24.091 O 0.14908 0.14642(0.14734)
20 0.1 0.0767 24.091 1 0.41887 0.41680(0.41768)
20 0.1 0.0767 24.091 5 0.97809 0.97892(0.85429)
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TABLE 3.5 : EXACT AND APPROXIMATE VALUES FOR G. P. (BOREL-TANNER) SUMS.

51

] A o N r Exact Approx. by
feplii 4,0 Xfpgliy Na)
0.05 1 0.102 9.26 0 0.36788 0.36897
0.65 1 0.102 9.26 5 0.99820 0.99816
0.05 1 0.102 9.26 10 0.99999 0.99999
0.05 2 0.102 18.34 o 0.13534 0.13614
0.05 2 0.102 18.34 5 0.97279 0.97248
0.05 2 0.102 18.34 10 0.99994 0.99994
0.05 5 0.102 46.34 0 0.00674 0.00684
0.05 5 0.102 46.34 5 0.57240 0.57245
0.05 5 0.102 46.34 10 .97482 0.97453
0.1 1 0.206 4.29 0 0.36788 0.37234
0.1 1 0.206 4.29 5 0.99584 0.99552
0.1 1 0.206 4.29 10 0.99999 0.99999
0.1 2 0.206 8.57 0 0.13534 0.13863
0.1 2 0.206 8.57 5 0.95875 0.95729
0.1 2 0.206 8.57 10 0.99972 0.99969
0.1 5 0.206 21.43 0 0.00674 0.00716
0.1 5 0.206 21.43 5 0.52977 0.53047
0.1 5 0.206 21.43 10 0.95778 0.95629
0.2 1 0.407 1.82 0 0.36788 0.38622
0.2 1 0.407 1.82 5 0.98605 0.98330
0.2 1 0.407 1.82 10 0.99980 0.99972
0.2 2 0.407 3.63 0 0.13534 0.14916
0.2 2 0.407 3.63 5 0.92048 0.91376
0.2 2 0.407 3.63 10 0.99756 0.99678
0.2 5 0.407 9.09 0 0.00674 0.00860
0.2 5 0.407 9.09 5 0.44885 0.45515
0.2 5 0.407 9.09 10 0.90412 0.89667
0.3 1 0.585 1.014 0 0.36788 0.40999
0.3 1 0.585 1.014 0.96780 0.95901
0.3 1 0.585 1.014 10 0.99833 0.99718
0.3 2 0.585 2.029 0 0.13534 0.16810
0.3 2 0.585 2.029 5 0.87005 0.85673
0.3 2 0.585 2.029 10 0.98916 0.98418
0.3 5 0.585 5.072 0 0.00674 0.01159
0.3 5 0.585 5.072 5 0.37552 0.39582
0.3 5 0.585 5.072 10 0.82408 0.80960
0.4 1 0.727 0.625 0 0.36788 0.44395
0.4 1 0.727 0.625 5 0.94063 0.92452
0.4 1 0.727 0.625 10 0.99280 0.98716
0.4 2 0.727 1.25 0 0.13533 0.19709
0.4 2 0.727 1.25 5 0.81056 0.79576
0.4 2 0.727 1.25 10 0.96835 0.95350



EXACT AND APPROXIMATE VALUES FOR G. P. (BOREL-TANNER) SUMS.

A a N r Exact Approx. by
Xfeplis 2.6) fpglis Nio)

O D00 OO0 ODOO0O0O0DO0000O00OCCO000000 OO
NNNNNNNNNOOOOOD DD NN NN NN NN s S S

5 0.727 3.125 0 0.00674 0.01724
5 0.727 3.125 5 0.31094 0.35390
5 0.727 3.125 10 0.72335 0.71064
1 0.833 0.400 0 0.36788 0.48836
1 0.833 0.400 5 0.90562 0.88714
1 0.833 0.400 10 0.97934 0.96516
2 0.833 0.800 0 0.13533 0.23849
2 0.833 0.800 5 0.74578 0.74165
2 0.833 0.800 10 0.93026 0.90447
5 0.833 2.000 0 0.00674 0.02778
5 0.833 2.000 5 0.25536 0.33020
5 0.833 2.000 10 0.61200 0.61867
1 0.907 0.256 0 0.36788 0.54392
1 0.907 0.256 5 0.86485 0.85598
1 0.907 0.256 10 0.95485 0.93389
2 0.907 0.513 0 0.13534 0.29585
2 0.907 0.513 5 0.67934 0.70346
2 0.907 0.513 10 0.87390 0.84808
5 0.907 1.282 0 0.00674 0.04761
5 0.907 1.282 5 0.20846 0.32518
5 0.907 1.282 10 0.50073 0.54769
1 0.955 0.159 0 0.36788 0.61223
1 0.955 0.159 5 0.32064 0.83918
1 0.955 0.159 10 0.91857 0.90357
2 0.955 0.317 0 0.13533 0.37483
2 0.955 0.317 5 0.61425 0.68856
2 0.955 0.317 10 0.80261 0.80098
5 0.955 0.794 0 0.06738 0.08602
5 0.955 0.794 5 0.16948 0.34253
5 0.955 0.794 10 0.39805 0.50695
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Chapter 4

Family of Compound Pcisson
Distributions

A.1 Introduction

in this chapter we have used some ratios of the co-efficients of a
recurrence relation obtained from the generating function of a
Compound Poisson distribution to identify different members of
the Compound Poisson family. Moments of some distributions

belonging o the Compound Poisson family are also presented.

A Compound Poisson distribution can be defined as a family of
distributions having the following probability generating function
(p.g.f.) [Felier 1965, p. 271]

P(s)= Zp;si=explag(s-1) + a;(s? -1)/2 + ap(s3 -1)/3 + .. .] (4.1.1)
This represents the model for cumulative effects of singlets,
doublets etc., each with a Poisson law. The Poisson, Hermite,
Negative Binomial, Neyman type A etc. are distributions belonging
to this family and can be obtained by suitable choices of the
coefficients ag, aq, . . . Table 4.1 gives a few Compound Poisson

distributions , their p.g.f.s and a;-values.

53
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To obtain a recurrence relation for calculating successive p; 's let
us differentiate (4.1.1) with respect to s and get
P'(s) = Zjp;si! =[ag+a;s +aps? +..]explag(s-1)+a;(s2-1)2 + . . ]
= P(s) [ag+ ays + ays? +..]
= [Pg+ PyS + PoS2 +..][ag+ays +a,82 +..]
Now equating the coefficients of si we can write the recurrence
relation as follows
p,-+1(j+1) = agP; +ayPj_ 1 +...+3Pg (4.1.2)
j=0,12,... , pj=0if j<0.
The cumulants of (4.1.1) can be obtained by taking the logarithm of
both sides and expanding.
In P(s) = [ag(s-1) + a;(s? -1)/2 + ay(s3-1)/3 +...]

Thus the cumulant generating function is

x(t) = ag(el-1) + a,(e?!-1)/2 + a,(e31-1)/3 +.

The co-efficient of ti/i! is the i-th (i=1,2,3, . . .) cumulant

kg =ag+ 2 a;+ 31 a4 4l ag 4. =3 (r+1) &, (4.1.3)

Thus the cumulants of any Compound Poisson distribution can be
computed from (4.1.3) . Hinz and Guriand (1967) have suggested
that the plots of the sample values of the cumulant ratios
n; =K(J-+1)/ K(j) where (i) is the jth factorial cumulant, against j
may be used in discriminating among certain Compound Poisson

distributions. Earlier Ottested (1939) used the ratio u(j+1)/ i)
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where Hi) is the jth factorial moment against j, to discriminate
among the Binomial, Poisson and the Negative Binomial
distributions. One can use the corresponding sample values in these
criteria to find out the possibie form of the underlying
distribution. Because of the sampling fluctuations, a particular
criterion may not provide reliable information to draw sound
conclusions. In fact whenever it is possible, more than one
criterion should be used and other characteristics should be
verified to ascertain a distribution. Here we suggest a use of the
ratios of aj's, rather than the ratios of moments, identifying
certain Compound Poisson distribution especially those listed in
Table 4.1. it may be noted that the cumulants do not necessarily
identify a distribution while the a;'s do identify them, hence the
use of 8 's in place of the cumulants has some merit.

4.2, ldentification in the Compound Poisson Family

The coefficients agy, a;,a;,. . . , can be obtained systematically from

(4.1.2) and can be written in matrix notation as

p— — —— T p ]

% Pp 000 | ‘

a | P om0 0 2Py

a 3p .

2 | o Ppy O 3 |i=0t2... 420
| 3] | PPy PPy _(j+1)pj+1-
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Let

O

e | J

andp(j)=(p1,p2,---,Pj )'-

Then (4.2.1) can be written as

1

ay — 0 2p2
Py 3

% 3 | j=012,.. (422

= -1
At P ‘
. po
h—ai—- . — h(J+1)p]+1_
In particular using (4.2.2) for j=0,1,2, . . . we obtain agy, a4, a,, a3

etc. as follows

8y = Py/ Po

ay; = 2py/pg - (py/ D0)2

ap = 3p3/ P -3P1Pa/ Po2+ (P4/ Pg)®

ag = 4p4/ Pg -2(Po? +2p4P3 )/Pg? +4p42pa/ Py - (P4/ Pp)*
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a4 = 5p5/Pg - 5P1P4/ Po® -5PaP3 / Po? +5p42pa/ Po> +5p1Po?/ P
-5py3po/ pot + (p1/Pg)° . ete.

These coefficients can also be obtained by using the recurrence
relations

89 = P4/ Pg

8 =pj+1(j+1)/p0~ ag Pj/ Po - aiPj.1/Po-----&_4P1/ P, =12, ...

For discriminating among the compound distributions of table 4.1
we define the following ratios :

m=a,¢/8, =012, ...

and t = (1+i)a;, 4/8;, i=0,1,2, ...

Table 4.1 gives the values of n;'s. In table 4.2 we state the
behaviour of n;'s and t;'s for these distributions. The corresponding
sample values may, therefore, be useful in discriminating among
these distributions. Figures 4.1 and 4.2 give the plots of (1) n;

1
against i and (2) n; against t; for i=0,1,2, . . .

Because of the sampling fluctuations values of the estimates of n;
for i23 may not be reliable and conclusions may have to be based on
Ng, Ny and n, only. Furthermore if these ratios give some indication
of a particular form of an underlying distribution, it may be
advantageous to verify other criteria and characteristics of the
distribution. For example for the Binomial, Poisson or the Negative

Binomial distributions it is known that x,/k, is less than, equal to

or greater than one respectively. It is also known that the quantity,
a; =pj,1(i+1)/ip;- P1/ipg, j=1.23, . . ., should be -p/(1-p), 0 or p
for the Binomial, Poisson or the Negative Binomial distributions
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respectively. Hence the sample counterparts of a; should be
approximately a negative constant, zero or a positive constant for

these distributions.

As an example we consider the Bell Telephone Company data in
table 4.3 regarding the lost articles found in the Telephone and
Telegraph building, New York city. The sample values of n; are
given in the table 4.3 and indicate that the distribution may be the
Negative Binomial. For this data set m=1.03783, m,=1.27044, m,
=1.75591, m, = 7.90823, moment function for the Negative
Binomial distribution mm,-2(m,)2+mm, = 0, moment ratios 4, =
1.12373, d, = 3.38359 (for the Negative Binomial distribution 1 <
dy <2 and 3 <d, < §). Therefore, the distribution is more likely to

be the Negative Binomial.

4.3. Some Distributions belonging to the Compound
Poisson Family

In nature the individuals of many species (e.g. plants, insects) have
the tendency to cluster together. The variance of an cbservational
series in such a situation will exceed its mean. A few distributions
have been developed in recent years. One such distribution is the
Neyman type A distribution, which assumes that the clusters are
randomly dispersed over a given area according to the Poisson law,
while the number of individuals within a cluster are also
distributed randomly according to another Poisson law. Neyman
(1939) used this model to fit the observed distribution cf larvae in
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a randomly chosen area on a field. Thomas (1949) considered a
modified form of the Neyman type A distribution by including the
parent as well in the count for each cluster, and applied the
distribution to fit the observed distribution of plants (Armeria
martima and Plantago martima) per quadrant. There are situations
where the hypothesis of the Poisson distribution of clusters may
be reasonably justifiable, but the assumption of the Poisson
distribution of the counts of a cluster may not be justifiable. Jain
and Plunkett (1977) consider one such model by assuming that the
clusters are randomly distributed according to the Poisson law

with mean 6,, and that the cluster size '1+i' (i=0,1,2,...) has the

Borel distribution having probability mass function (p.m.f)

fioi=0o (1+i)-Texp{- 8,(1+)},i=0,12, ...., 0<06,<1 (4.3.1)
with the probability generating function (p.g.f.)

G(s) = X f,,; s'*! = sH(s), (4.3.2)
where H(s) is given by the functional relation

H(s) = exp[- 6,{1- sH(s)}] (4.3.3)

The distribution of the total count by mixing the Poisson and the
Borel distributions can be shown to have the Borel-Tanner
distribution or, the Generalized Poisson distribution given by the
p.m.f.

t; =64(8;+ 6y J-Texp{-( 0,+0,)}it , j=0,1,2,.... (4.3.4)
with the p.g.f.

T(s) = exp[- 6,{1-sH(s)}] (4.3.5)
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The mean and variance of the cluster size as obtained from the
Borel distribution (4.3.1) are respectively 1/(1- 6,) and 8,/(1- 6,)3.
The mean will, therefore, be smaller than, equal to or, greater than
the variance depending on wnether the value of 6, is greater than,
equal to or, smaller than (3-V5)/2= 0.38197. The Borel-Tanner
distribution (4.3.4) may, therefore, provide a good fit to many
situations in Entomology and Bacteriology where the mean and the
variance of the cluster count are not necessarily equal. All of these
distributions belong to the family of the Compound Poisson
distribution. A Compound Poisson distribution is one which is
formed by a mixture of any two or more distributions. The
computation of the moments of a Compound distribution in terms
of those of the mixtures are presented in section 4.4. In subsequent
sections the mixtures of Poisson and Borel-Tanner, Borel and

Poisson, and Borel and Borel distributions are discussed.
4.4. Moments of a Compound Distribution

Suppose that clusters are dispersed according to an arbitrary
distribution a; (i=0,1,2, . . .) with p.g.f. A(s) and that the cluster
sizes, including the parent, are distributed according to another

arbitrary distribution b1+j (j=0,1,2, . . .) with p.g.f. B(s) = sC(s),
where by +j =G (j=0,1,2, . . ) and C(s) = X S sl . Then the compound
distribution, say 9j (j=0,1,2, . . .), of the total counts is given by

j .
= Z a éjl-)i =12, ... g,=a, , with p.g.f. G(s) = A{sC(s)} (4.4.1)
i=1

e e 3 e g

L L
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and where Cj (i) is given by the expansion

()] =2 s (4.4.2)

The moments of the distribution 'gj' can easily be obtained by
differentiating or expanding (4.4.1). Let V(k) » ¢(k) and K(k) be the
kth factorial moments, v , ¢ and y, be the kth central moments

of the distributions a; , ¢; and 9j respectively. Then it can be

]

shown that
B(1) =¥(1) {1+ &)
H(2) = V(2)[1+ 01)% + w(4)(201) + 9z) )
H(3) = V(a) [+ 0(1)1° + B (1+ 0(4))(20(1) + 8(2)) +W(1)(30(2) + O(3)
H(a) = V(a) [+ 0(1)1* + Byg) [1+ 0(1)12(20(4) + (z))
*4Y(g) (1+ 01)) (30(2) + &(3)) +3¥(2)[28(1) + (2)] +w(1)(40(3)
+ ¢(4)) (4.4.3)
and

Ho =yo[1+ ¢(1)]2 + Y(q)92
M3 =w3[1+ ¢(1)]3 + 3(1+ 0(1))92 W2 + W(1) 03
Ma = Wall+ 0(1)]* + B0plwg+ w1y Wol [1+ 0(1)12

+yp (403 +3022 +4 01 03] + 3y 20,2 + yy (94 -3 ¢,2)

(4.4.4)

Thus choosing A(s)=exp{-6(1-s)} and C(s)=exp{-A(1-s)} gives the
p.g.f. of the Thomas distribution as G(s)= exp[-0(1-s exp{-A(1-s)}].
The mean and the other three central moments of the Thomas
distribution are

u(1) = 9(1+ 7»)
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Ho =0(1+30 + A2)

Ny = 6(1+7% +6 A2 +23)

g = 302(1430 +42)2 + 8(1+150 +2542 +10 A3 +A4)
as given in Johnson and Kotz [1969].

Remark :-

For the compound distribution having the p.g.f. of the form
G(s)=A[C(s)], the probability distribution of the total count is

gj=Zaicj (1), where Cj (1)is defined in (4.4.2).

The factorial and central moments can be shown to be as follows :-

M1y = ¥(1)91)

Hz) = V(2)%(1)" * ¥(1)%(2)

H(3) = V(3)9(1)° * 3¥(2)8(1)8(2)) +¥(1)%(3)

H(a) = V(a)81)* + BY(3)0(1)0(2) +4V(2)0(1)0(3) + 3¥(2)8(2)® + V(1)9(4)
Ho = V2 & 2 4 ‘V(1)¢2

)
H3 = VY3 ¢(1)3 +30(1))92 93 + W(1)¢3
Hg =Yy ¢(1)4 + 60, ¢(1)2 [wa+ Y(1) Vol +4yso 0103 +3y )2‘1>22
+V(1)(04 -3 7)

A choice of A(s)=exp{-6(1-s)} and C(s)=exp{-A(1-s)} gives the p.g.f.
of the Neyman type A distribution G(s)= exp[-6(1-exp{-A(1-s)}],
with the moments as

u(1)=9l, Ho =0A(1+1)

g = OA( 143 A + A2)

Hg = OA(1+7h +6 A2 +A3) +342 02(14+1)2

ot

vt et oamin [P
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4.5. Mixtures of the Borel Distribution

Among the various mixtures which can be obtained by compounding
a Bore!l distribution we consider mixtures of Poisson and Borel and
the double Borel distributions.

(i) The Poisson-Borel-Tanner Distribution

A somewhat generalized model, to describe situations where the
mean and the variance of the cluster counts are different, can be
obtained by assuming that cluster size 1+i, is distributed
according to the Borel-Tanner distribution,

A1, = 01( 04+ 8,0 ) -1 exp{-( 8,+0,i)}/i! , i=0,1,2,......

with the p.g.f. Q(s) = Xqy,; si+1 = sT(s), where T(s) is defined in
(4.3.5). A further assumption of the Poisson distribution of

clusters with mean 6 gives the distribution of the total count 'j' as
oW airn v RS o (i (Y (451

g = &%, 81(0,1(6,i +8,(i)] ~exp{{0,i +0,(i-1)} /il (-} (45.1)

= exp (-9), j=0

with the p.g.f.

G(s) = exp{-6[1-sT(s)]} = exp{-6[1-s exp{-6,(1-sH(s))}1},

where H(s) is given by (4.3.3). It is evident that the distribution

(4.5.1) reduces to that of the Borel-Tanner distribution if 6, = 6,

and to that of the Thomas distribution if 6, = 0.
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The mean and the second, third and fourth central moments are
found to be

H(1) =6(1+ 1)

Hp = B[(141,)2 +15)]

hy =0[(1+ A,)% +3 (144,) Ay + 25 ]

e =001+ A,)% + B(141,)2 &y + 4(144,") Ay + 4] +302[(1+ 4,2 + A ]2
where,

A =0,/(1- 8,)

Ao =0,/(1- 8,)3

hg =0,(1+20,)/(1- 6,)°

Ay = 30,2/(1- 6,)0 +0,(1+80,+60,2 )/(1- 6,)7

(4.5.2)

Therefore,

By = (1/B)[143 4,/ (141))2 + Ag/ (1413 T[T+ Ao/ (142,)2] 3

Ba = 3+ (1/0)[1+6hp/ (141,)2 +4hg/ (141,)3 + A/ (1414 ]
[1+ A/ (144,)2] 2.

Hence the distribution is positively skewed.

I

Solving the moment equations for parameters also gives

9 (OHz- 1y )2)4 +(0 -hy) )2[02115- K4 )3- (1) (Ora- K4 )2)]2

-46(6u,- u(1)2)3(u(1 )= 8)-6(0ua- )2)[92u3-u(1 )3-3u(1 )©Ohz-
u(1)2)](u(1)-9) =0,

8, = (H(1)'9)3/2/ [9(9u2-u(1)2)]1 /2,

6, =1- {0(1(1)-8)/[Bua-p)?1}1/2,
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(ii) The Borel-Poisson Distribution

For a situation where the dispersion of the clusters is 'Non
Poisson', we consider here a particular one by assuming that the
clusters are dispersed according to the Borel distribution

b, =of (1+r) - Texp{-a(i+n}r!, r=0,12, ..., a<1. (4.5.3)

If the cluster size, including the parent, is assumed to be

distributed as Poisson with mean 6 , then the probability

distribution of the total count is given by

gj=Za‘(1+i)i'1exp{-a(1+i)-6i}(ei)i"/{i! (-0 . (4.5.4)
=1,23, ..., a<d, 0>0

= exp{-a} , j=0,

which we call the Borel-Poisson distribution.

The mean and the second, third and fourth central moments of

(4.5.4) can be obtained by using the moments of the Borel

distribution [as in (4.5.2) with 6,=6, = a ] and the moments of the

Poisson distribution [as in (4.5.2) with 6,= 6, 6, = 0] in (4.4.4).

Thus, the mean and the variance of (4.5.4) are

K1) =a(l+ 0)/(1- «)

Ho = o1+ 0)2/(1- «)3 +ab/(1- o),

from which the parameters 6 and o of (5.5.4) can be computed as
92u(1 )-O(uz- Su( 1y 211(1)2) + u(1)3 + 2u(1)2 +H(1) - Hp = 0 (4.5.5)
and

o= (2+20+ B 1 Y1+ 8+ )) (4.5.6)
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(iii) The Double Borel Distribution

if the clusters are assumed to be dispersed according to the Borel
distribution (4.5.3) with parameter o and the cluster size is also
assumed to be distributed according to the Borel distribution

(4.5.3) with parameter B, then the total count has the following

distribution,
gj =T ol(1+i) - Texp{-a(1+i)-j } iji -1 BI-Yit (-1,
=123, ..., o>0, B<1
= exp{-a} , j=0,

which we call the Double Borel distribution. The mean, the variance
and the parametric relations of the Double Borel distribution are
found to be

) =o/(1- o)(1- B),

Mp =a[1- ap(2-a))/(1- )3 (1- )3,

3o (11")3- (1 )2} + 02{3 (1 )3+2(11 )2 - 1o } -Ba(py)3 +(py)3 = 0

respectively and p=1- o/{ p,(1- o)}

By computing the probabilities for j = 0,1,2, . . . , and for different
values of the parameters the behaviour of these distributions can
be studied. In Table 4.4 and Figure 4.3 we exhibit the probabilities
corresponding to these distributions for specific values of their

parameters.
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: PGF, VALUES OF g; AND n; FOR SOME DISTRIBUTIONS.

Distribution

PGF

Values of a; and n;

Poisson

3,"{exp(-ag)}/i!

explag(s-1)]

8 >0,a8 =0, i=1,23, ..
n=0i=012,....

Binomial

nGplgh -

(g+ps)"

g =n(p/) * (- 1), q=1-p
n; = -q/p, i = 0,1,2,.

Poisson Binomial

k>j/n

expM{(q+ps)-1}]
j k

(nk) (Aq")
k1

a=A"Cy L i(p/q) * 1d(1+i),

i=0,1,2, . . .,n-1
i=0,1,2,..

nj = p(n-i-1)/{q(i+1)},

Negative Binomial

n+j-1c~1qun

{(1-p)/(1-ps)"

a =npi+1,i= 0,12, ...
ni=pi=012....

Poisson-Negative

Binomial
.e ;

Z i il

Generalized Poisson

a= n+ici n)\pi+1q",

exp[-M1-{q/(1-ps)}™

A (1-p)" {ni+j-1]p;

J

explh (T )~ e ddljt -1y

A Ag A H - Te (R FA )

n=p(n+i+1)/(i+1)
i=0,1,2, ...

aj =(1+i)gj, 1, 1=0,1,2,..
where, gj= (A )i ) “/il,

ni={1+1/(i+1)*1 aehi=12, . .

Hermite

k=0
Neyman Type A

explay(s-1)+ay (52-1)]

721 i

a, a¥ a
expl-(a,+3)] —
k12" (j-2K)!

j 2k

exp[-AM1-exp{-6(1-s5)}]

4,44 >0, g;=0, i=1,2,3,. . .

N N0, i=1.2,
31'=)\.e- 99|+1/“ , i=0,1’2’“
i+1 ’ |=O71’2’
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TABLE 4.2: IDENTIFICATION OF THE MEMBERS OF COMPOUND POISSON FAMILY.

Poisson

nj=0i=012 ..

ti=0,i=012 ...

Binomial

n; = a constant
i=012, ...

t; decreases with i such
that t;,.4 - t = n;, a constant,
i=0,12...

+1

Poisson Binomial

n; decreases to zero
and i = n-1

t decreases 10 zero
and i = n-1

Negative Binomial

n;=4a constant
i=201.2,...

t; increases with i such

that tiyqg - t; = n;, a constant

i=012...

Poisson Negative
Binomial

n; decreases with i

andtendsto a
constant

t; increases with i

Generalized Poisson
or, Borel-Tanner

n; increases slowly

with i and tends to
a constant

t increases with i

Hermite

ng = a constant

n=0i=123, ..

lo="g
t=0i=12...

Neyman type A

n; decreases slowly

to zero, i = 0,1,2, ..

t; = a constant
i=012, ...




TABLE 4.3: LOST ARTICLES FOUND IN THE TELEPHONE AND TELEGRAPH BUILDING,
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NEW YORK CITY.
No. of articles No. of days n; Expected Negative
lost Binomial
0 169 0.31 166.02
1 134 0.32 140.42
2 74 0.25 72.37
3 32 29.33
4 11 10.27
5 2 3.26
6 0 0.96
7 1 0.37
Total 423 423.00
Source : Thorndike (1926)
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TABLE 4.4 : PROBABILITIES OF POISSON-BOREL-TANNER, BOREL-TANNER AND DOUBLE
BOREL DISTRIBUTIONS FOR SPECIFIC VALUES OF THEIR PARAMETERS.

j PROBABILITIES gj

Poisson-Borel Borel-Poisson Double Borel
-Tanner
0 0.548812 0.740818 0.670320
1 0.551819 0.081760 0.133148
2 0.274488 0.050974 0.069263
3 0.141212 0.025996 0.041508
4 0.074103 0.013933 0.026511
5 0.039442 0.007818 0.017581
6 0.021227 0.004524 0.011960
7 0.011528 0.002682 0.008292
8 0.006308 0.001621 0.005834
9 0.003475 0.000996 0.004155
10 0.001925 0.000618 0.002990
11 0.001971 0.000389 0.602170
12 0.000599 0.000247 0.001587
13 0.000336 0.000158 0.001169
14 0.000189 0.000102 0.000865
15 0.000107 0.000066 0.000644
6=.6,0,=.4 0= .4, 0= o=4,8=.

0 = .3
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FIGURE 4.1 GRAPHS OBTAINED BY PLOTTING THE RATIOS n; AGAINST i FOR
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FIGURE 4.3 PROBABILITY CURVES FOR POISSON-BOREL-TANNER,

BOREL POISSON AND DOUBLE BOREL DISTRIBUTIONS.
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Chapter 5

Family of Transformed Chi-square

distributions

5.1 Introduction

Family of Transformed Chi-square distributions is a sub-family of
the Exponential family of distributions. Consider a random variable
X whose probability mass function (p.m.f.), or probability density
function (p.d.f.), f(x;0) depends on a scalar parameter of interest 6.
Let the distribution of X belong to the Exponential family
[Barndorff-Nielsen (1978)], i.e. f(x;8) given by,

f(x;0) = exp[a(x)b(6)+c(8)+h(x)] (5.1.1)

The Binomial, Poisson, Normal, Exponential, Gamma, Geometric,
Rayleigh, etc. are distributions that belong to this family and can
be obtained by suitable choices of a(x), b(8), ¢(8) and h(x). Here b(6)
is a non-trivial continuous function of 8 for 8¢ Q=(c,, ¢c,) [Patel,
Kapadia and Owen (1976)] where c, and c, are real numbers. The
likelihood function of a sample of size n from (5.1.1) can be

written as

74
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L(6:x) = exp[b(8)Za(x;)+nc(8)+Xh(x;)] (5.1.2)

where, X = (x4,%5, . . . ,x,). According to the Neyman-Fisher
Factorization theorem, Xa(X) is sufficient for 6 or, for any one to
one function of 6. It follows from theorem 1, page 142 of Lehmann
(1986) that Xa(X;) is also a complete statistic. Then according to
the Lehmann-Scheffé (1950,1955) theorem, Xa(X;) is the unique
uniformly minimum variance unbiased estimator [UMVUE] of its
expected value which is a function of 6. If the Cramér-Rao

regularity conditions hold then Xa(X,) is the minimum variance
bound unbiased estimator [MVBUE] of

E{Za(X;)} = w(6) (say) (5.1.3)
itf,
V{Za(X)} = {y'(6)}2/V(3InL/20) (5.1.4)

General expressions for the exact form of (5.1.3) and (5.1.4) are not

available. If b(e) is strictly increasing in 6 then Xa(X;) is an

optimal test statistic for testing H, : 6 <6, against H; : 6 > 6,
[Bickel & Doksum (1976)]. In order to calculate the critical region
and the power of the test we need to find the exact distribution of
2a(X;). This distribution is also needed to obtain a confidence
interval for 6. The general form of the distribution of Ya(X) is not
available.

We prove a theorem regarding some characteristics of a class of
distributions in section 5.2 and then define a sub-family of the
Exponential family of distributions called the Transformed Chi-
square family. The Gamma, Rayleigh, Normal, Lognormal, Pareto,
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Exponential, etc. belong to this family. Irrespective of the form of
the original distribution of a random variable X belonging to
this family, the distribution of -2a(X)b(0) follows a Central Chi-
square distribution with appropriate degrees of freedom. This sub-
family is thus named the Transformed Chi-square family. Without
much derivation one can easily obtain MVBUE or UMVUE, and also an
interval estimator, of 6 or any function of @; this is discussed in
section 5.3. In Section 5.4 the critical region and the power of the
tests concerning the parameter 0 are given. A general selection
procedure to identify the best population, or a subset of the best
populations in the Transformed Chi-square family with probability

of correct identification, has been discussed in section 5.5.

5.2 The Transformed Chi-square Family

The Transformed Chi-square family is a sub-family of the
Exponential family of distributions. Let X be a continuous type
random variable having p.d.f. of the form (5.1.1) then under certain
conditions -2a(X)b(6) will follow a Central Chi-square distribution
with appropriate degrees of freedom. We prove this result in the

following theorem.

Theorem 5.2.1. In a one parameter Exponential family of the form
(5.1.1) iff

2¢'(8)b(6)/b'(8) = k (5.2.1)
where k is positive and free from 0, then -22a(X)b(@) follows a

Gamma distribution with parameters k/2 and 1/2 . In case k is an

o pmpr— [,
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integer then -2a(X)b(8) follows a Central Chi-square distribution

with k degrees of freedom.

Proof:
Let 2¢'(6)b(6)/b'(0) =k .
Since expla(x)b(8)+¢c(8)+h(x)] is a p.d.f. we must have
Jexp[a(x)b(8)+c(8)+h(x)] dx =1,
or, Jexp[a(x)b(6)+h(x)] dx = exp[- c(8)] (5.2.2)
We have from (5.2.1),
c'(6) = (1/2)kb'(6)/b(6)
Integrating both sides of this equation with respect to 6 we get,
c(6) = (1/2)k In b(e) + k;
where k; is a constant of integration.
Thus (5.2.2) becomes

[ expla(x)b(®)+h(x)] dx = exp[-(1/2)kinb(8) - k,]
Let U = -2a(X)b(6). The characteristic function of U is
o (t) = E{exp(itU)} = E[exp{-2it a(X)b(6)}]
exp{c(8)}exp[a(x)b(8)(1-2it)+h(x)]dx i
exp{c(8)} exp[(-1/2)k In{b(e)(1-2it)} - k] = (1-2it) */2

which is the characteristic function of a Gamma distribution with

]

parameters k/2 and 1/2. As the characteristic function uniquely
determines the distribution function, -2a(X)b(8) follows a Gamma
distribution with parameters k/2 and 1/2.

Conversely, let -2a(X)b(6) = Y be a Gamma variate with parameters
k/2 and 1/2. Then the p.d.f. of Y is

{exp(-y/2)}y¥2 - 11{2%/2[(k/2)}.
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Thus, the p.d.f. of a(X) is

[exp{a(x)b(8)}1{-2b(6)}{-2a(x)b(6)}}2 - /{2*/2[" (k/2)}
[exp{a(x)b(6)}1{-b(8) }*/Ha(x)}¥2 - 1/ {[(k/2)}

exp[a(x)b(®) + (k/2)In{-b(8)} + (k/2 -1)In{a(x)} -In{["(k/2)}],

which is of the form (5.1.1). This implies that the distributicn of X

belongs to the Exponential family.
Here, ¢c(6) = (k/2)Iin{-b(8)}
or, 2¢'(6)b(8)/b'(8) =k .

It is also evident that if k is an integer then -2a(X)b(e) follows a
Central Chi-square distribution with k degrees of freedom.

Hence the theorem is proved.

Example 5.2.1. Let X be an Exponential variate with p.d.f.
f(x,0)= 6exp[-6x] .
Here, a(X)=X, b(6)= -0, c(6)= In6, 2¢'(6)b(6)/b'(8) = 2,
-2a(X)b(B) = 2X6 .
Thus 2X8 is distributed as a Central Chi-square with 2 d. f.

Table 5.1 gives the different expressions of the functions such as
the p.d.f.,, a(X), b(8), c(8), -2a(X)b(@) and the values of k=
2c'(8)b(0)/b'(@) for the Normal, Lognormal, Gamma, Exponential,
Rayleigh, Pareto, Weibull, Erlang, Maxwell and Inverse Gaussian

distributions.
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DEFINITION 5.2.1. A sub-family of the one parameter Exponential
family, having p.d.f. of the form (5.1.1) and satisfying (5.2.1), will
be cailed a family of Transformed Chi-square distributions,

provided that k is a positive integer.

The Normal, Lognormal, Gamma, Exponential, Rayleigh, Pareto,
Weibull, Erlang, Maxwell, Inverse Gaussian, etc. are distributions
that belong to the Transformed Chi-square family. However, all
continuous distributions belonging to the Exponential family are
not members of the Transformed Chi-square family. This may be

seen from the fellowing example.

Example 5.2.2. let X be a random variable having density

f(x,8) = k9 x0-1 , O<x<k, >0, kbeing known.

Clearly, the distribution of X belongs to the Exponential family
with a(X) = InX, b(8)=6-1 and c(8)= In6 - Bink.

Here, 2c'(6)b(06)/b'(6) = 2(6 —1)(1/6 - Ink), which is a function of 6.
Therefore, this distribution does not belong to the Transformed
Chi-square family.

5.2.1 Moments of the Distribution of a(X) in the Family of
Transformed Chi-square Distributivns

The characteristic function of U= -2a(X)b(6) is
o (t)=(1-2it) W2

Therefore, the moment generating function and the cumulant
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generating function are

M3 = (1- 2t) 2 and

k(t) = In M(t)= -(k/2)In(1-2t) respectively.

k(t) can be written as

x(t)= kt/1! +2kt?/2] +8kt3/3! +48kt4/4!+ ... .. ..
The rth cumulant k, is the co-efficient of t'/r! .
Thus k= k, x; = 2k, 13 = 8K, x, = 48k.

E{a(X)} = -k/{2b(6)},

V{a(X)} = k/{2b3(6)} =p, (5.2.3)
Hy= -k/b%(),

H,= {12k + 3k2}/{4b*(0)},

B, = 8k,

B, =3 +12/k .

Hence the distribution of a(X) is positively skewed and leptokurtic.

Example 5.2.3. Let a random variable X follow a Pareto
distribution with p.a.f. f(x,8) = ox (8+1)  y . 0.

Here, a(X) = InX, b(68) = -0, ¢(6) = In6, k = 2¢'(6)b(8)/b'(8) = 2.
Therefore, E{a(X)} = -k/2b(e) = 1/6

V{a(X)} = k/{2b2(6)} =1/02
ng= -k/b3(8) = 2/63
Ra={12k + 3k2}/{4b%(0)} = 9/0%

B-’= 8/k = 4
B,=3 +12/k = 9
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Corollary 5.2.1. If X; is distributed with p.d.f.

f(xj,ej) = exp[aj(xj)bj(ej)+cj(ej)+hj(xj)] and satisfies the conrditions
2c'j(91)b1(91)/bj'(9]-) = k; k; being a positive integer, where j=1,2,. .
.rand X,.X,, .. X, are independent, then -ZZaj(Xj)bj(ej) follows a
Central Chi-square distribution with ):kj d.f.

Proot: Let U; = -2a;(X;)b; (6;).

it follows from theorem 5.2.1 that Uj is a Central Chi-square
variate with kj df. (j= 1,2, . .,r) and the characteristic function of
Uis (1-2it) K/ 2.

Since X X,, ... X, are independent, -22aj (Xj)bj(ej) = ZUJ- is the sum
of r independent Chi-square variates. Hence by the additive
property of Chi-square variates, ZU]- = -ZZaj(Xj)bj(eJ-) follows a

Central Chi-square distribution with 2k; degrees of freedom.

Example 5.2.4. Let X, and X, be independently distributed with
p.df. 8,exp(-x,6,) and {exp[-({x2}2)/(2{92}2)]/{62\/(2n)}
respectively.

Here, a;(X;) = X; by(8;) = -8;,c,(6,) = In6y, ay(X;) = {X,}?,

by(6,) = -1/(2{8,}2), C5(8,) = -Ind,, .

Thus -2Xa;(X)b;(6,) = 2X,0, +(X,/6,)? follows a Central Chi-square
distribution with 3 d.f.

Corollary 5.2.2. Let X be a random variable having density
f(x,0)=x"1 [exp{-x"/(r8")}]/6" , x>0, 60, (5.2.3.1)

r being a positive integer. Then, for any value of r, 2X"/{r8"}
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follows a Central Chi-square distribution with 2 d.f.

Proof : The characteristic function of 2X'/(r0") is
o(t) = E[exp(2itX"/{ro"})]

= (1-2it)-2/2,
which is the characteristic function of a  Central Chi-square

distribution with 2 d.f. Hence, for any value of r, 2X"/{r8"} follows

a Central Chi-square distribution with 2 d.f.

Example 5.2.5. Let a random variable X follow a Rayleigh
distribution with p.d.f. f(x,8) = x[exp{- x2/(262)}]/82 , x > 0.

Here, r=2 and 2X'/(r8') = X2/82 follows a Ceniral Chi-square
distribution with 2 d.f.

5.2.2 Moments of the Distribution of X' in (5.2.3.1)

Let W=2X"/(ro"). The moment generating function of W is (1-2t)"'
and the cumulant generating function is

k(t) = -In(1-2t) = 2t/1! +4t2/2] +1613/3! +96t4/4!1 + . . . ..

Thus E(X") = r8"= p'y, V(X")=(r6")2 = p, ,

Ha=2r303" n,=9r%0% | B,=4, B,=9.

Hence the distribution of X" is always positively skewed and

leptokurtic.
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Example 5.2.6. Let a random variable X follow a Rayleigh
distribution with p.d.f. f(x,0) = x[exp{- x2/(262)}1/62 , x > 0.

Here, r=2 and E(X2)=202 , V(X?)=404, p,=160%, p,=14408
B,=4, B,=9.

Corollary 5.2.4. If X is a random variable having p.d.f. of the form

(5.2.3.1), then for any value of r, X" is distributed as an Exponential

Variate.

Proof: The characteristic function of X' is
o(t) = E[exp(itX")]
= Jexp(itx") x™1 [exp{-x"/(ro")}]/6" dx
Lety = x"/(ro")
Therefore, (x"-'/0")dx = dy and
oft) = Jexp(-y +ityrer) dy
= [exp{-y(1 - itr")} dy
= (1 - itrer)” 1
Which is the characteristic function of an Exponential distribution
with mean re’. Hence, X' is distributed as an Exponential Variate

with mean ro'.

Example 5.2.7 Let a random variable X follow a Rayleigh
distribution with p.d.f. f(x,8) = x[exp{- x2/(262)}]/62 , x > 0.

Here, r=2 . Let us make the transformation, w=x2 .
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The Jacobian of the transformation is J = (1/2)w"1/2,

Therefore, the p.d.f. of w is g(w,0) = (1/262)exp(w/262).

=> w = x2 follows Exponential distribution with mean 262,

5.3 Estimation of Parameters in the Transformed

Chi-square Family

In general there are two types of estimation, Point estimation and

Interval estimation. These are discussed below.
5.3.1 Point Estimation

There are various methods of point estimation. Most commonly
used point estimators are MLE, MVUE and MVBUE.
Let X,.X5, .. .,.X, be a random sample of size n from a population
having p.d.f. (5.1.1) and satisfying (5.2.1). Then the likelihood
function of the sample observations is given by

L = exp{b(8)Za(x;) +nc(8) +Zh(x;)}.
or, InL = b(8)Za(x;) +nc(8) +Xh(x;).
Differentiating partially with respect to 6 and setting this partial
derivative to zero we get,
b'(6)Xa(x;) + nc'(6) = 0.
or, -k/{2b(0)} = Xa(x;)/n.
Therefore, Xa(X;)/n is the MLE of -k/{2b(6)}.

The MVBUE of a function of 8 is given in the following theorem.
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Theorem 5.3.1. Let X, X,, .. . X, be a random sample of size n
from (5.1.1) satisfying (5.2.1). Then under the Cramér-Rao
regularity conditions Xa(X)/n is the MVBUE of [-k/{2b(6)}] with MV

[k/{2nb2(6))] .

Proof : The log-likelihood function of the sample observations is
given by InL=b(8)Xa(x;) +nc(6) +Xh(x;). Differentiating partially with
respect to 6 and 62, we get,

dlnL/d6 = b'(8)Xa(x,) + nc'(9) and

92InL/962 = b"(8)Za(x;)+nc"(8) (5.3.1)
Using (5.2.3),

E{Sa(X)/n}= -k/{2b(8)}=y(6) (say) and V{Za(X)/n} = K/{2nb2(0)}.
Taking expectations on both sides of (5.3.1) and simplifying we get,
-E(2?InL/962) = n{b"(6)c'(®) - c"(8)b'(6)}/b'(8)

Hence, the Cramér-Rao lower bound (CRLB) for an unbiased

estimator of w(8) is {y'(8)}2/-E(32InL/082) .

As V{a(X)} = {b"(8)c'(8) - c"(6)b'(8)}/{b'(6)}°

k/{2b2(6)} [Dobson(1983)],

thus, -E(9%InL/062) = nk{b'(8)}2/{2b?(8)} and the CRLB is
{kb'(8)/[2b2(8)]}2 . 2{b(8) }2/[nk{b'(8)12] = k/{2nb2(8)} = V{Za(X,)/n}.

Hence the theorem is proved.

The UMVUE of a function of 6 is given in the following theorem.

Theorem 5.3.2. Let X, X,, .. . X, be a random sample of size n
from (5.1.1) and satisfying (5.2.1). Then Xa(X)/n is the UMVUE of [-
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k/{2b(8)}] with MV [k/{2nb2(6)]] .

Proof : The likelihocd function of the sample observations is given
by L =exp{b{6)Za(x) +nc(6) +Zh(x;)}.

According to the Neyman-Fisher Factorization theorem, Ya(X,) is a
sufficient statistic. It is evident from theorem 1, page 142 of
Leiimann (1986) that Xa(X;) is also a complete statistic. Then
according to the Lehmann-Scheffé (1950,1955) theorem, Xa(X) is
the unique uniformly minimum variance unbiased estimator
[UMVUE] of its expected value.

Since E{Ta(X))/n}= -k/{2b(8)} and V{Za(X))/n} = k/{2nb2(6)}.
Therefore, Xa(Xj)/n is the unique UMVUE of [-k/{2b(8)}] with MV
[k/{2nb?(8)}] .

Example 5.3.1. For a random sample X,, X,, .. .,X, of size n from a
Rayleigh density, the likelihood function is

L{0,x) = exp[-Xx,%/(262) -2ning +XInx].
Here, a(X,) = X;2, b(6) = -1/(262),
k = 2, -k/{2b(8)} = 262 and  Kk/{2nb2(8)} = 464/n.
Thus, £X/2n is the MLE, MVBUE and UMVUE of 62 with MV 64/n.

5.3.2 Interval Estimation
A general method of constructing an ordinary confidence interval

and the shortest confidence set is given below.
(a) Confidence interval by pivotal method :
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For a random sample X, X5, ... ,X, of size n from (5.1.1) satisfying
(5.2.1), we consider -2b(8)Xa(X;) as a pivot, the distribution of

which is independent of 6 . Let k be an integer. Choose two values

x§1 and xlz_az such that

P, < 2) aX)b®) <2 }=1-(o,+ o)
i=1 2

or, P{ t,(X) <0 < t,(X) } = 1- a, where a,+o,=a.
Hence { t(X) , t,(X) } is a 100(1-a)% confidence interval for 6 .

Example 5.3.2. let X,,X,,..., X, be a random sample from an
Exponential distribution with mean 1/6 . Then the likelihood
function is given by L(6,x) = exp[-Xx,/6 - nIng] and

-2¥a(X;)b(e) = 2¥XX/ 6 is a Central Chi-square variate with 2n d.f.
Thus,

2 2F“Xi 2
P{XZn,a1 <5 < xzn’(l_az) }=1-a, where o+ 0, = 0.
2§LXi 22Xi
or, P _xz_—<e<x2 =1-q
2n,(1-a2) 2n,ot1
ZZXi 2):Xi
Hence, 2 ' 2
X2n,(1-a2) x2n,a1

is a 100(1-a)% confidence interval for 6 .



="

3

o G ey e e g

88

(b) Shortest confidence set :

Let X, X,, . . ., X, be a random sample of size n from (5.1.1) and
satisfying (5.2.1). Let b(6) be strictly increasing in 6 and let k be
an integer. Then an o level UMP test for testing H, :6 = 6, against

H, : 3 >6, exists with the critical region

Wo, = % 1 ZalX)) 2 [ X2 1./ {2081 }-

Let Wocc be the region complementary to Wa.
Then by the result 7b.2.1 of Rao (1973) the 100(1- o)% shortest

confidence set for 8 is 1(x?) = {8, : x%¢ WaC}

or, 1x2) = {8, :2a(X;) < By (1.0 {206 11}.

Similarly, an « level UMP test for testing H,: 8 = 6, against H, : 0

< 0, exists and the 100(1-a)% shortest confidence set for 6 is of

the form  J(x2) = {8, : Ja(X;) = [ o {-2b (Bp)}1 ).

According to lemma 1 of Lehmann (1986, page-135), there also
exits an o level UMP unbiased test for testing Hy : 8 = 6, against
H, :6 =6, given by

o(x) = 1, if Xa(x,) <cq and Xa(x;) > ¢, ,

o(x) = 0, otherwise,

where the constants ¢, and ¢, are determined by
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Here, the critical region is W, = {x*: Xa(X) < ¢y, a(X;) > co}.
Let WmC be the region complementary to W .

Then by the result 7b.2.1 of Rao (1973) the 100(1- )% shortest

confidence set for 0 is 1;(x?) = {8, : x2& W,°}.

5.4 Tests of Hypotheses in the Transformed Chi-square

Family

Let X,, X, , ... X, be a random sample from (5.1.1) satisfying
(5.2.1). Let b(6) be strictly increasing in 6 and let k be an integer.
Then by theorem 6.2.1 of Bickei & Doksum(1976), Xa(X;) is an
optimal test statistic for testing

H, :6 <6, against

H, :6>8,

and an o level test is

o(x) = 1, if Xa(x) =c and

o(X) = 0, otherwise,

where ¢ is determined by

E{oX} = a,
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or, P{-2b(8y)>a(X;) = -2b(8,)c } = a

or, P{ ¥ = -2b(8y)c } = .

Let -2b(90)c = xzﬂk,(1-(1) .

Thus ¢ = [xan,“_ a)]/{-2b(90)} and the power function is

Bl 0(X)} = Pe{ Za(X;) 2 ¢ } = Pe{ x% 2 b(8) X% (1.0)}/P(B)]}-

Here, the word optimal is used in the sense of UMP. Other UMP tests
are given in section 5.3.

Example 5.4.1. Let X, X, ,..., X, be a random sample from G(p,0).

Then the likelihood function is

L(8,X) = [(X; XX )P exp{-Zx/ 6}]/[6" {(p-1)1}"] ,
where 6>0, x;>0 and p is known. We want to test,
H, : 6 <6, against
H,:6>6,.
Here b(6) = -1/0 is strictly increasing in 6. Hence an o level
optimal test is
o(x) =1, if 2x, 2c and
o(x) = 0 , otherwise.
Here, k = 2p, b(8) = -1/8, ¢ = (1/2)8, xzznp'“_a) , b(8)/b(8;) = 6,/ 6
and 2¥XX,/ 6 is distributed as a Central Chi-square with 2np d.f.
Therefore, the power function is P{ xzznp > (0,/6) x22np'(m) }.
If 6=8, then power is a and
if 6>0,, then power > o .

This implies that the test is also unbiased.
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5.5 Identification of iie Best Population in the
Transformed Chi-square Family

Bechhofer (1954) and Bechhofer et al. (1955) introduced a single
sample multipie decision prccedure for ranking means and
variances of normal populations respectively. Similar procedures
are discussed by many authors for other populations. A general
identification procedure and the probability of correct
identification of the best population or subset of populations in

Transformed Chi-square family are given below.

Let Xij (i=1,2, . . ,p; j=12, . . ,N;; EN;=N) be independently
distributed with p.d.f. f(x; j,ei)=exp[a(xi J5)b(6i)+c(9i)+h(xi j)] and
satisfying the conditions 2c'(8;)b(8;)/b'(6;) = k; , where 6, are
unknown. Let 9[1] < 9[2] SG[S] <...% e[p] be the ranked 6; ; it is
assumed that we do not know which population is associated with
em, i=1,2,. . ,p. Let us assume that a population is characterized by
the value of the parameter €, with the 'best' population being the
one having the largest 6 , the 'second best' being the one having the
second largest 6, and so on. On the other hand, we may define the
'‘best’ population as being the one having the smallest 6, the 'second

best' being the one having the second smallest 6, and so on.

However, the mathematical theory is the same for both cases. The
p populations may be the populations of p different cities or

counties and v; (6) may be the average income of the people of the
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ith city or county, where v;(6) is a one to one function of 6. For
example, if the income follows a Pareto distribution, then the
average income will be of the taorm y(6) = 6/(1+ 6). We are
interested in identifying a populaticn having the largest average
income, which is equivalent to identifying a population with the
largest 6. The p populations may be p different telephone exchangss
and y; (6) may be the average time interval between two successive
calls at the ith exchange. The time interval between two
successive calls follows the Exponential distribution with mean 0.
The teleprone company may be interested in identifying the
telephone exchange earning the maximum profit or the minimum
profit. We would like, on the basis of a sample of N=ZNi
independent observations, to make some inferences about the true
ranking of the populations. Our inferences will be based on the
sample estimates of some function of 6. The MVBUE of -k;/2b (6;) is
2a(x; j)/Ni = q; (say) for the ith population. Let the sample estimate
and sample size associated with the population having population
parameter e[i] be dencted by a(i) and N(i) respectively, i=1,2, . . .

p; that is the expected value of a;yis w(8yj).

The ranked a; are denoted by

a[1]<a[2]<....<a[p] (551)

The event a; = 8 (i#)) has probability zero and can be ignored in
probability calculations. However, in practical situations this
event can occur frequently because of the limitations of the

measuring instrument of any experiment. If two or more a; are
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equal, they should be ranked by using a randomized procedure which

assigns equal probability to each ordering. Let us assume that
ajj = b(e[i])/b(e[”), (ij=12,...p).

Goals : Different coals are appropriate for different practical
situations. In each situation it is the experimenter's responsibility
to decide what the goal is before taking a sampie.

For example, the goal may be to find any of the following :-

(i) The best population

(i) The best two populations with regard to order

(iii) The best two populations without regard to order

(iv) The best three populaiions with regard to order

(v) The best three populations without regard to order, and so on.

The choice of a goal may depend on economic and other
considerations outside the control of the statistician. These goals
are the special cases of the following two representative goals.
Goal 1: To divide the p populations into iwo groups, the t
best(unordered) and p-t worst(unordered) populations, where
1<t<(p-1).

Goal 2: To divide the p populations into t+1 groups, the t
best(ordered) and the p-t worst(unordered) populations, where
1<t<(p-1).

It is obvious that, for Goal 1, the problem of choosing the t best is
equivalent to choosing the p-t worst. On the other hand, for Goal 2,
if t=p-1, then we need a complete ranking. The two goals coincide
for t=1.
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Assumptions: For goal 1 it is assumed that the experimenter can

specify a smallest value of 04,1 ¢ Say O‘*t+1 t» that he desires to

detect. He also must specify the smallest acceptable probability of
achieving Goa' 1 when a_ ,tza*tn ¢
For Goal 2 it is assumed that the experimenter can specify a

smallest valLe of each o, say o

i+1,i (i = pt+1, pt+2, . ., p)

i+1,i
that he desires to detect. The experimenter also must specify the

smallest acceptable probability of achieving Goal 2 when o; ¢ ; 2

@’ q i (=pt+1, pt+2, . ., p).
5.5.1 Identification Procedure

Having chosen a goal, the statistical procedure is elementary. We
take a random sample of N; observations from the ith population
(i=1,2, . . ,p). Then we compute the p-statistics a4, ao, . . ., a, and
arrange them in ascending order of magnitude like (5.5.1). We then
take the decision as follows :

If our goal is (i), the population associated with arp] is the best
population. If our goal is (ii), the populations associated with a[pj
and app-qj are the best and second best populations respectively. If
our goal is to find (iii), (iv), etc., we can make similar statements.
In general, for Goal 1 the populations that give rise to the t
largest a;, are the t best populations and the p-t remaining
populations are the worst populations. For Goal 2, the populations

that give rise to the largest, second largest, . . ., t-th largest a; are
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the best, second best, , . ., t-th best populations respectively, and

the remaining p-t populations are the worst populaiions.
5.5.2 Prohability of Correct identiticaticn

To calculate the probability of correct identification, we must
first state our goal. A general goal can be expressed as follows :-
To find the pg best popuiations, the pg 4 second best populations,
the pg_o, third best populations, etc., and finally the py worst
populations. Here py , po, .., pg (S<p) are positive integers such
that 2 p; =p . The probability of a correct ranking associated with
this can be written as :
P[max{araz. . .,apl} <Mmi n{ap,+1'ap,+2 y "aP#Pz} ,
max{ap”, ap‘+2 , ..,ap‘+p2) < m|n{ap1+p2+1,ap‘+pz+2 , "'ap‘+p2+p3} ey

1
max{a - <min{a ,a y e @]
{ P-ps-p, +1 aF*Ps} { P-pst1 " p-pst2 P]

If we assign particular values to s and p; we obtain severai special
cases of interest. For example, for s = 2; py= p-t, pp = t, we have

P[max{ 8(1 )’ 8(2),...,a(p_t)} < min{a(p_tn ), a(p_t+2),...,a(p)}] (5.5.2)

For s = t+1; py= p-t and py =Pg=....=Pptq =1 we have
P[max{a(1 ),8(2),...,a(p_t)}< a(p_t+1 )< a(p_t+2) <<a(p)}] (5.5.3)
and fors = p ; Py=Pp =....=p; =1, we have

P{a(1 ) <a(2) < ....< a(p)}

Thus (5.5.2) is the probability that the best population will yield
the largest sample statistic aj, then (5.5.2) for t=1, 2, 3 is the
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prcbability of a coarrect ranking associated with (i), (iii), (v)
respectively. Also (5.5.3) for t = 2, 3 is the probability of a correct
ranking associated with (ii), (iv) respectively. Evideniy (5.5.2) «nd
(5.5.3) represent the probabilities of correct ranking for Goals 1

and 2 respectively. The expression (5.5.2) can be written as

max! , , .8 i ) ey
;P[ @) Ay B gy Byt <3y <INy B
p(
= pi=1.2, 00 -1,j+1, ., p- t
2 P{ag <3y <3, J o1+t ety
=1 l=p-t+1,p-t+2,...,p
1.2 -1 41 Dot
Y pplo© ' bot . p (5.5.4)
=1 a(|)>a yi=p-tH p-ta2,.. ., p

By theorem 5.2.1, -22a(Xi J) b(e[l]) = -QN(i) a(i) b(em) = U(I) (say)
is distributed as a Gamma variate with parameters k(i)/2 and 1/2.
Therefore, (5.5.4) can he written as

N,
Up<rlla U ii=1.2, 0 -1j+1,. . pt
(i)

O
«
-
—
-~

._
L]
b
o~
=
C

) vl =p-t+1p-t+2, ..., p

If for each j the above probability is evaluated for U(j) fixed (say
at u), and the expectation is taken over u, then (5.5.4) can be
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written as
-1, oo ’p't N IE'{ N(I) }]
F(2 g ] [| R o, uH lud 659
j=1d“‘i{:1[' Ny [=p-141 ENgy
i #

where fj (u) and FJ- (u) are the probability density function and

cumulative distribution function, respectively, of the Gamma
variable U with parameters k(-)/z and 1/2. The probability (5.5.2)

J
can be evaluated for arbitrary values of N; and 0 | (i,j=1,2, . ., p)
using (5.5.U). If Ny =No =.. .= Np = n (say) then (5.5.5) will be of
the following form
t o p-t P }.' f "
§ i Henl o e
j=1 0 i=1 |=p-t+1

The expression (5.5.3) can be written as

p-t
a ..
; Pmax{a . . .3, 48, - ~34t< ) Biptany<- - <8

4
= a a pi=1,2,..,i-1,j+1,. ., p-t
;2 Pl 0 <20 <a(p_t+1)<. . <a(p) -4+ p-t]

Bn Gk Y it vt s pd | fratn s By M S A K A oo el ey €1
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- a =12, . 1+, . .pt T
[a, <3, Pl -t
Pt | Bpter) ~
= P .
=t :
@ > Jp-1)
_u Do U ci=12..5-1j+ t_—l
(i)<W(J_—)aij iy =20 i e
N
(pt+1)
p-t U >s—0—a .U
N T N et (55.6)
j=1
No)
Ua > %pt Yory
{p-1) —
If Ny =No =...= Np = n (say) then (5.5.6) can be written as
U(i> <ay U(j) ;i=1,2, . j-1,j+1, . .p-t
R (p-t+1) g ap"”vj U(j)
- A .
j=1
| Y > % Yo A

On the other hand, if we define the 'hest' population as being the

one having the smallest 0, the 'second best' being the one having
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the second smallest 8 and so on, then the probability of correct
ranking for Goal 1 will be of the following form

P[max{ a1y, a(z),...,a(t)} < min{a(t+1), a(t+2),...,a(p)}] (5.5.7)
Here s = 2, p;y =tand ps = p-t.

Fors = t+1; py =pp =...=p; =1and p;, 4 = p-t we have

P[a(1) <@(p)<...<ary) < min{a(t+1), At42) s - a(p)}] (5.5.8)

Thus (5.5.7) is the probability that the best population will yield
the smallest sample statistic a;, then (5.5.7) for t =1, 2, 3 is the
probability of a correct ranking associated with (i), (iii), (v)
respectively. Also (5.5.8) for t = 2, 3 is the probability of a correct
ranking associated with (ii), (iv) respectively. Evidently (5.5.7) and
(5.5.8) represent the probabilities of correct ranking for Goals 1
and 2 respectively. The probability expression (5.5.7) can be

written as

{
P[max{a ,.,a ..,a . .., i i -
.}; [max{a . 8y )3,y -3yt <8y <min@ g, 3l

1
=ZP[max[a(1), ..,a(j_1),a(j+1), ..,am} <a < min{a y @ ]

(i (t+1) (p)

L
Z P < a < a(l) ; i=1 12! . '71-11j+1) . ey t}
j=1 =t+1, 442, ...,p

=2 P{a(')<a() ; I=1,2,..,j-1,]+1,..,t} 5.5.9)

a(|)>a“) ; |=t+1,t+2,'-~»p
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By theorem 5.2.1, -2Za(Xi J) b(e[i]) = -2N(i) a(l) b(e[i]) = U(I) (say)

is distributed as a Gamma variate with parameters kjy/2 and 1/2.

Therefore, (5.5.9) can be writien as

N
0
t U(|)<N(p “.;U(,) yi=1,2, -1, 0+1,. .,
2P
1=t U>£\l(—|)—aU = e, te2
(l) N(l) I] (” ] - + i) + 1""p

If for each j the above probability is evaluated for U(j) (fixed say
at u), and the expectation is taken over u, then (5.5.9) can be

written as

t o t N|

Y J TR G o wnl To-F & oum 1) v (55.10)
0

where fj (u) and Fj(u) are the probability density function and

cumulative distribution function, respectively, of the Gamma
variable U with parameters k(j)/2 and 1/2.

If Ny =Ny =. .. =Np= n (say) then (5.5.9) will be of the following
form
00 t p
_[[ HF(au u)][H{1 F(oy, u)}] fj(u) du
EE A =t +1
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Example 5.5.1. Let Xij be iid random variables distributed as

N(y.;2), (i=1,2, . ., p; j=1,2, . .N;). We assume that the w's are
known and that the ciz’s are unknown. Let 0'[1]2 SG[2]2 <.. ._<.0[p12

be the ranked °i2' Suppose that it is not known which population is

associated with °[i]2' We further assume that for the ith
population, the only parameter of interest is the population
variance °i2- The 'best' population being the one having the
smallest variance, the 'second best' being the one having the second
smallest variance, etc. The p populations may be p different
measuring instruments and "i2 may be the population variance of
measurement of the ith instrument. This variance, which
characterises the reproducibility of repeated measurements of the
same quantity, can be used as an index of the precision of the
measuring instrument. We would like, on the basis of a sample of
2N; = N independent observations, to make some inferences about

the true ranking of the populations.
The p.d.f. of X; jis  exp{-(x; j- k) 2/(2 6,%) - In o; -Inv (2n)}.

Therefore, a(x; j) = (x i 1) 2
b(s;) = -1/(2 6,%) ; c(o;) =-no ; 6 =g
a; = alx; )/Nj = 20 ;- ) 2/N;
ki =2 c'( 6;) b(oj)/ b'(c;) =1

Evidently g, is the MLE of ciz. Let the ranked a; be denoted by

a[1]<a[2]<....<a[p].
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Thus the popuiation associated with ar) is the best population and
the population associated with aro] is the second best population,
and so on. The probability of correct identification can be obtained
by using the expression {5.5.10) and remembering that k(i) =1 and
jj are the ordered variance ratios (i, j =1,2, . ., p).

Example 5.5.2. Let Xij be iid random variables distributed as

Exponential distributions having density of the form
f(Xi j) = (1/9i)exp(-xi j/ Gi), X ke 0,
i=12,..,0p; j=1,2,..,Ni.

Here, 6; are unknown parameters. Let 9[1] < 9[2] 36[3] <...% 9[ ]be

Y
the ranked 6;. It is nst known which population is associated with
G[i], i=1,2,. ., p. The p populations may be p telephone exchanges and
Xij may be the time interval between jth and (j+1)th calls of the
ith telephone exchange. We are interested in identifying the
telephone exchange which earns the minimum profit, so that we
can take preventive measures or increase the facility to improve
the situation.

A telephone exchange with the highest average time interval will
produce the lowest profit. The average time interval of the ith
telephone exchange is ;. Thus, to identify a telephone exchange
with the highest average time interval is equivalent to identifying
a population with the largest 6;. That is, e[p] is associated with the
telephone exchange earning the lowest profit.

Let ajj = em/ 9[1] be the ratios of the ordered average time

intervals. We have for Exponential distribution,
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a(xj ) = x;j » b(6;) = -1/8;, c(6;) = -In 8;.
Therefore, a; = Xa(x j)/Ni = Zx; J./ N, = x
ki = 2 c'(8;) b(e;)/ b'(8;) =2
-ki/2b(8;) = 6,
By theorem 5.3.1, a; = x; is the MVBUE of ;. Let the ranked a; be

denoted by
A1) <8[2) <o <p-

Thus the telephone exchange associated with a[p] is the one earning
the lowest profit and the telephone exchange associated with arp.-
1] is the one earning the second lowest profit, and so on. The

probability of correct identification can be obtained by using the

*

expression 5.5.5 for given values of o; jsay &
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TABLE 5.1: CHARACTERISTICS OF SOME DISTRIBUTIONS BELONGING TO THE
TRANSFORMED CHI-SCUARE FAMILY.

Name of Distribution a(X), b (6) , c(9), -2a(X)b(®), k

with p. d. f.
Normal X2 -1/26%, -1ne, X2/ e 1

{exp(-x2/ 202) }/ {6V (2x)}

—

Lognormal (InX)2, -1/262, -1ne, (InX)2/ 62,

{exp[-(Inx)2/ 2621}/ {ex~ (27)},

Exponential X, -1/6 , -1no, 2X/0 2
{exp(-x/0)} /6,
Gamma X, -11/9, -p Ing, 2X/9, 2p

xP- {exp(-x/0) }/{P(p-1)1}
Rayleigh X2 -1/202, -2 Ine, X2/, 2

x{exp(-x2/ 292) } /62 ,

Pareto inX , -0, ing, 26inX , 2
ox” (6+1)
Weibull X, -9, Ing, 20XP, 2

opxP - Texp{-6xP} ,

Erlang X, -6p, pine, 20pX, 2p
(6p)PxP - 1{exp(-pex)}/(p-1)!
Maxwell X2 - 0/2, (3/2)In8,  OX2, 3

v(2/n) 63/2x2exp(-(0/2) x4},
Inverse Gaussian (X-p)2/p2X, -6/2,  (Ing)/2,  6(X-p)2/p2X, 1
v {0/2nx3}exp{-6(x-p)2/2p°x},




Appendix 1

Fortran Program

INTEGER s1,52,53
REAL u
COMMON /DAT/ s1,s2,s3,u
REAL Y(200),YSTAR(200),BSTRAPV(2000,200)
CPEN (unit=5,file='horse.dat',form="formatted',status="'old’")
OPEN (unit=6,file="horseout.dat',form="formatted’,status="new")
N=200
NBOOT=2000
DO 10 I=1,N
READ(5,") Y()
10 CONTINUE
C Enter the three seeds
s1 = 297+]
s2 = 1907
s3 = 859+2*
WRITE(6,104)
104 FORMAT( SAMPLE# ''POISSON ''G.POISSON !,
$' G.N.BINOMIAL ")

105



n

30

40

50

60

106

WRITE(5,*) ' '

DO 20 I=1,NBOOT

DO 30 J=1,N

call random

H=INT(u*N) + 1
YSTAR(J)=Y(Il)

BSTRAPV(l,J) = YSTAR(J)
CONTINUE

THBAR=0

DO 40 J=1,N
THBAR=THBAR+BSTRAPV(l,J)
CONTINUE

THBAR = THBAR/N

THVAR=0

DO 50 J=1,N
THVAR=THVAR+(BSTRAPV(l,J)-THBAR)**2
CONTINUE '
THVAR = THVAR/(N-1)
THTAR=0

DO60J=1,N

THTAR = THTAR + (BSTRAPV(l,J) - THBAR)**3
CONTINUE

THTAR = THTAR/N

THFAR =0

DO70J=1N
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102

20

107

THFAR = THFAR + (BSTRAPV(l,J) - THBAR)**4
CONTINUE
THFAR = THFARN
THPO = THVAR - THBAR
THGP = (3/2 - (THTAR)*(THBAR)/(2*(THVAR)**2))**2
-THBAR/(THVAR)
THGN1 = 15*(THVAR)*4 +2*(THBAR)*((THVAR)**3)
THGN2 = THGN1+ (THBAR*THTAR-3*((THVAR)**2))**2
THGN3 = THGN2

$ - ((THBAR)**2)*(THVAR)*(THFAR-3*((THVAR)**2))
THGNB = THGN3 + 10*(THBAR*THTAR

$ - 3*((THVAR)**2))*((THVAR)**2)

WRITE(6,102) I, THPO, THGP, THGNB
FORMAT(110,4F13.5)
WRITE(®,*) ' '
CONTINUE

STOP
END

SUBROUTINE RANDOM

This random number generator appeared in the
March, 1987 issue of Byte magazine.

The algorithm uses three 2 byte integer seeds

s1, s2 and s3 to produce a real between 0 and 1.
The cycle length is around 7 E+12. That is, if
1000 numbers are generated every second then the
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numbers will not repeat for 220 years.

INTEGER s1,52,s3

REAL x,temp

COMMON /DAT/ s1,82,83,x

First generator

s1 = 171*MOD(s1,177) - 2*(s1/177)
IF(s1.LT.0) s1 = s1 + 30269

Second generator

s2 = 172*MOD(s2,176) - 35*(s2/176)
[F(s2.LT.0) s2 = s2 + 30307

Third generator

s3 = 170*MOD(s3,178) - 63*(s3/178)
IF(s3.LT.0) s3 = s3 + 30323

Combine to give random number

temp = s1/30269.0 + s2/30307.0 + s3/30323.0

x = temp - INT(temp)
RETURN
END

108
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