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Abstract

The Invariant Subspace Problem is one of the most intriguing problems in Hilber
Space Theory. Attempts to solve it have led to other interesting related problems
in Operator Theory. In the past few vears extensive research has been done to find
conditions under which a semigroup of operators (z.¢., a collection of operators clesed
under multiplication) can be shown to have a common nontrivial invariant subspace.
Such a semigroup is called reducible.

The present thesis focuses on semigroups of (functionally) nonnegative operators
and in particular, semig->ups of nonnegative idempotents called nonnegative bands
on a finite or infinite-dimensional Hilbert space and obtains necessary and sufficient
conditions for the existence of special kiud of invariant subspaces for these semigroups
which are termed standard subspaces. (An n X n matrix with nonnegative entries
is an example of a nonnegative operator on C™ and the span of a subset of the
standard basis {ey, €2, ...,e,} of C" is a standard subspace of C"). A semigroup with
a common nontrivial standard invariant subspace is said to be decomposable. It is
proved that a nonnegative band with each member having rank greater than one
and containing at least one finite-rank operator is decomposable. An example of an
indecomposable nonnegative band in B(I?) with constant infinite rank is given and it is
shown that finiteness of such a band makes it decomposable. Further, the structure of
constant finite-rank bands is studied. Under a special condition of fullress, maximal
nonnegative bands of constant rank r are shown to be the direct sum of 7 maximal
rank-one indecomposable nonnegative bands. Finally, a geometric characterization
of maximal, rank-one, indecomposable nonnegative bands is obtained, which in view
of the result stated above, gives a g -ometric characterization of maximal, finite-rank,

indecomposable, nonnegative bands.

vi
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Introduction

One of the most longstanding problems in Operator Theory is the Invariant Subspace
Problem: Does every bounded linear operator on an infinite-dimensional Hilbert
space have a nontrivial closed invariant subspace? This problem has been solved
for a few special classes of operators. One of the most significant results, due to
Lomonosov, is the existence of nontrivial hyperinvariant si:bspaces for any nonzero
compact operator [9, 13].

Although the solution to the problem of finding a nontrivial invariant subspace
for any bounded linear operator on a Hilbert space remains elusive, it has not de-
terred interested mathematicians from looking for common invariant subspaces for
collections of operators satisfying certain properties. One related problem is the
Transitive Algebra Problem: If A is a transitive operator algebra on a Hilbert space
‘H, must A be pointwise dense in B(H)? ( A subalgebra A of B(H) is called transitive
if the only closed invariant subspaces for A are {0} and H). An affirmative answer
to the transitive algebra problem would imply th. « every operator which is not a
multiple of the identity has a nontrivial hyperinvariant subspace (cf.[13], chap.8).

A multiplicative semigroup of operators in B(H) is a collection of operators which
is closed under multiplication. Note that any algebra in B(H) is a multiplicative semi-
group. By a semigroup of operators in 3(H), we shall always mean a multiplicative

semigroup. It is easily seen that the algebra generated by such a semigroup is just



its linear span. A semigroup S is said to be reducible if 1ts members Fave a common
nont ‘vial invariant subspace. Thus a semigroup is irreducible if and only if the al-
gebra it generates is transitive. It has been the endeavour of several mathematicians
in the past few years to find sufficient conditions under which a semigroup cau be
reduced. The next step would be to see if these conditions are strong enough to give
(simultaneous) triangularizability for the semigroup. This means the existence of a

chain C of closed subspaces of H such that
(a) C is maximal (as a chain of closed subspaces of H), and
(b) every member of C is invariant for S.

I.Kaplansky [5, 6] proved that a semigroup of n x n matrices over a field of char-
acteristic zero having constant trace is simultaneously triangularizable. This was a
unification of Kolchin’s Theorem [7] that a semigroup of unipotent matrices, 7.e. ma-
trices of the form I + N, with N nilpotent is simultaneously triangularizable and
Levitzki’s Theorem [8] that a semigroup of nilpotent matrices can be put in a si-
multaneous triangular form. H.Radjavi [11] proved an extension of these theorems
(in finite and infinite dimensions) stating that a necessary and sufficient condition
for a semigrcup of trace class operators to be triangularizable is that their trace be
permutable. We say that trace is permutable on a semigroup S if for every k, every

word A;A; ... Ag in S, and every permutation s of {1,2,...,k}, the equation
tr(Asq)Asz) - - Asry) = tr(Ar1Az. .. Ag)
holds. It is easy to see that this is the case if and only if
tr(ABC) =tr(CBA) forall A,B,C'in §.

As a corollary to this, it is obtained that a semigroup of compact idempotents on H



is triangularizable. In fact, this is true of a semigroup of idempotents containing at
least one member of finite rank. (Note that a compact idempotent has finite rank).
We use the term band to designate a semigroup consisting of idempotents. In this
thesis, we shall examine bands of nonnegative operators <.e., (operators which map
nonnegative vectors to nonnegative vectors) under conditions which would imply the
existence of special kinds of invariant subspaces for these bands called standard subspaces.
(The precise definition of nonnegative operators and nonnegative vectors is given in
the text. But to have an idea, nonnegative operators in finite dimensions are fi-
nite square matrices with nonnegative entries). A semigroup which has a nontrivial
standard invariant subspace will be called decomposable. A standard subspace of
a finite-dimensional vector space V with a fixed basis is a subspace spanned by a
subset of the basis vectors. Thus decomposability can be understood as permutation-
reducibility, 7.e., a matrix A is decomposable if there exists a permutation matrix P
such that P~'AP has the form (l: g) , where B, D are square matrices.
Semigroups of n X n matrices with nonnegative entries were studied in [12] and
conditions were obtained to give reducibility for them. Also it has been proved [12]
that submultiplicativity of the spectral radius on the members of a semigroup of
compact operators represerted by matrices with nonnegative entries results in the re-
ducibility of the semigroup, although it may not yield decomposability. Under certain
conditions, semig-oups of nonnegative quasinilpotent operators have been proved to
be not only decomposable but simultaneously triangularizable with a maximal sub-
space chain consisting of standard subspaces [1]. Even in finite dimensions, where we
know that a band is triangularizable, the structure of bands is still not at all well
understood. Some attempts have been made to study the structure of ¥ -.nds, e.g.
in [2] and [3]. Thus it is worthwhile to study semigroups for reducibility or decom-

posability under the extra condition of nonnegativity. In the present thesis, we focus



our attention on bands of nonnegative operators. By a nonnegative semigroup (or a
nonnegative band), we shall mean a semigroup (or a band) of nonnegative operators.

We start by considering nonnegative semigroups and in particular, nonnegative
bands on a finite-dimensional vector space in Chapters 1 and 2, and devote the rest of
the thesis to studying nonnegative bands on an infinite-dimensional Hilbert space. In
Chapter 1, necessary and sufficient conditions for a semigroup of nonnegative-entried
n X n matrices to be decomposable are given. It is shown among other results that a
nonnegative band in which every member has rank greater than one is decomposable.

In Chapter 2, starting with the general form of a nonnegative band of constant
rank one, it is proved that a maximal nonnegative band of constant rank r under
the special condition of fullness is a direct sum of r maximal rank-one nonnegative
mmdecomposable bands. In addition, the structure of any maximal nonnegative band
of constant rank r is exhibited.

Chapter 3 presents the infinite-dimensional analogues of the results obtained in
Chapters 1 and 2. In this case, the porsibility that operators in a band can have
infinite rank gives new perspective to the study of their decomposability. It is proved
that 2 nonnegative band with each member having rank greater than one and contain-
ing at least one finite-rank operator is decomposable. The question whether a band
of infinite-rank operators on an infinite-dimensicnal Hilbert space is reducible is still
unsolved. Here we present a nesative answer to this problem as regards decompos-
ability through an example of a nonnegative band in B({*) with constant infinite rank
which is not decomposable. Further, it is shown that under the additional hypothesis
of finiteness, an infinite-rank nonnegative band is decomposable.

Lastly, in Chapter 4, a geometric characterization of a maximal, nonnegative,
indecomposable rank-one bands is obtained. This result completely determines the

structure of maximal, nonnegative, indecomposable, finite-rank bands by what has



ong

been proved in the earlier chapters. It is shown that a maximal, nonnegative, inde-
composable, rank-one band in B(L%(X)) is of the form U ® V, U, V subsets of the
nonnegative cone of £2(X'); U is a translation by a positive vector of a space contain

ing only mixed vectors {i.e., vectors having both positive and negative parts) and ¥
is the orthogonal complement of this space consisting of vectors having inner product

1 with the positive vector.

]



Chapter 1

Decomposability in finite

dimensions

1.1 Preliminaries

The contents of this chapter deal with the existence of a special kind of invariant
subspace for a single operator or a collection of operators on a vector space ¥V with
dimension n > 1 over the complex field C. Thus we shall be considering V as C™ with
the standard basis {ey, es,...,€,}. The one-to-one correspondence between B()) and
M,,(C) allows us to identify linear operators on V with their matrix representations
w..h respect to the fixed basis. We would like to say at the outset that all the results
given in this tliesis hold true f the field of scalrs € is replaced with R. We begin

with some definitions .

Definition 1.1.1 An operator T € B(V) is called nonnegative (resp. positive)
if T(z) > 0 (resp. T(z) > 0) whenever z > 0 (resp. 0 # z > 0) in V. We write
z=(z;) >0 (resp. > 0) if z; > 0 (resp. z; > 0) for all i, in which case z is called

¢ nonnegative (resp. positive) vector.



Let A = (ai;) be an n X n matriz. It is called nonnegative (resp. positive) if
ai; 20 (resp. ai; > 0) for¢,j=1,2,...,n.
It is easily seen that an operator is nonnegative (resp. positive) if and only if its

matriz is nonnegative (resp. positive).

Throughout the chapter, we shall be dealing with nonnegative (or positive) linear

transfor.aations and matrices.

Definition 1.1.2 A4 subspace of V is called o standard subspace if it is the span
of a subset of {e1, ey, ...,e,}. It is nontrivial if it is different from {0} and V.

Definition 1.1.3 A linear transformation T on 'V is called decomposable if there is
a nontrivial standard subspace invariant under T, otherwise, it is indecomposable.
Equivalently, for an n x n matriz A, decomposability means the existence of a proper

subset {t1,7a,...,1} of {1,2,...,n} such that

\/{Aell,Aeiz,...,Ae,k} C \/{e,l,e,z,...,e1k}.

( For any set of vectors {v1,vs,...}, V{vi,vs,...} denotes the (closed) linear span of
the vectors {vy,vs,...}).
The composition of a permutation matriz and a diagonal matrix with positive

diagonal entries will be called a generalized permutation matrix.

In the following two simple propositions, we prove an equivalent condition for
decomposability of a nonnegative n x n matrix which will be used throughout the

sequel.

Proposition 1.1.4 An n x n matriz A = (a,,) is decomposable if and only if there
ezxists a permutation matriz P sucl that

L., (B C
PlAP = ,
0 D



where B and D are square matrices.

Proof. If A is decomposable, then

\/{Aeil ) Aei,a' (R} Aeik} g \/{eil ) eiza AR eik}
for some proper subset K = {#1,1%3,...,%} of {1,2,...,n}.
Let K denote the index set {41,%2,...,%k, 71,72, .-, 71} Where K= {j1,72,...,71}
and consider the new basis C = {e;},... Note that in C, the basis elements have been
rearranged only. Thus the transition matrix P is a permutation matrix such that

rar=(] 7).
0 D

Conversely, suppose there exists a permutation matrix such that

par=( C).
0 D

In other words, there exists an ordericg {iy,7s,...,%k, J1,72,---,J1} of {1,2,...,n}
such that

=0 (ea=1,2,...,k; =1,2,...,])

0 for all & and S.

aiaJﬁ

1.e., <A813’ela>
This shows that

n

\/{Aell,Aeh,...,AeJ-l} C Vies 60008}
Thus A is decomposable. O

Proposition 1.1.L An n x n matriz A = (a;;) 1s decomposable if and only if there
exists a generalized permutation matriz P such that

a4 (B C
P AP = ,
6 D

where B and D are square matrices.

Proof. The proof is the same as for the preceding proposition. O



1.2 Decomposability of nonnegative semigroups

By a semigroup in B(V) (or M,,(C)), we mean a collection of operators (or matrices)
which is closed under multiplication. In this section, we shall be exclusively concerned
with semigroups containing nonnegative matrices in M,(C). Such semigroups will
be called nonnegative semigroups. Whenever we consider semigroups in M,{(C), it
is with the tacit understanding that the matrices are operators with respect to the
given fixed basis.

The definition of decomposability of a single matrix can be extended to a semi-
group of matrices in the obvious manner. Thus a semigroup S € M,(C) is decom-
posab'= if LatS, the lattice of subspaces of C™ whicli are left invariant by all operators
in 8, contains a nontrivial standard subspace. Equivalently, § is decomposable if and

only if there exists a permutation matrix P such that

S 11 Sl 2

P1SP = ( ) for all 5 € S,

22

where Sy; and Sa9 are square and of fixed sizes r and n — r respectively.
A semigroup § in B(V) is said to be reducible if it has a common nontrivial in-
variant subspace. Observe that decomposability implies reducibility but the converse

may not be true. A simple example to illustrate this is the cyclic permutation matrix

0 01
A=|1 0 0
0 1 0

which is obviously reducible but is indecomposable as Ae; = e,, Ae; = e3, Aez = €.

Definition 1.2.1 A subset J of a semigroup S is called an ideal if JS and SJ belong
toJ forallJe J and forall S€ S.

It is a well known result that every nonzero ideal of an irreducible semigroup

of operators is irreducible [12]. In Proposition 1.2.3, we prove its counterpart for
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indecomposable semigroups of n X n matrices with nonnegative entries. In a later
chapter, this result will be proved in a more general setting.

It is easy to see that any decomposable semigroup in M,(C) has a common
zero entry. The following lemma proves the converse of this result for nonnegative

semigroups in M, (C).

Lemma 1.2.2 If a nonnegative semigroup S € M,(C) has a common zero entry,
that is, if for some fized i and j, the (4,]) entry of every member of S is zero, then

S is decomposable.

Proof. We can distinguish two cases :

(i) The common zero is not on the diagonal of each matrix in S.

(i) The common zero lies on the diagonal of each matrix in §.

We first consider the case when the common zero does not lie on the diagonal
and then show that the other case reduces to this. By permuting the basis, we can
assume with no loss of generality, that this zero lies in the (2,1) slot of the matrix

A = (a;j) of every Ain S, t.e.,
ap =0 forall A€ .
Now, for every pair A, B in S, the (2,1) entry of AB is zero, t.e.,
Zr_jagkbi = 0.
Since the matrices are nonnegative, this implies that
agbiy =0 forall k=1,2,...,nand forall A,Be S.
Define a set

U={ke{l,...,n}:3 B = (8}¥)) € 5 such that b{¥) £ 0}.

N
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If ¢ = ¢, then by = 0 for all k and for all B € S, which implies that \/{e;} € Lat§
and so S is decomposable. Therefore, we can assume that ¢/ is nonempty. Also as
2¢ U, UF#{l...,n}. Consider M = \/{ex : k € U}; then M is a nontrivial
standard subspace of C". We claim that M € LatS. It suffices to prove that for any
AeS,

apr =0 forall kel and forall p & U.

Let p & U, then b,; = 0 for all B € S. Since S is a semigroup, the (p.1) entry of
AB iszero for all A,Bin 8, i.e., T} apcbry = 0. This implies that a,ibyy = 0 for all
k and for all A, B € S (the matrices being nonnegative). If k¥ € U, then there exists
B® ¢ S such that b,(ﬁ) #0. Thus app =0 forall Ac Sandforallk e, pgU
which proves our claim.

Next, if the common zero of S is a diagonal entry, then by permuting the basis,
we can bring it to the (1,1) slot. Now, if the first row is zero for every A in §, we
are done for then § is decomposable (V{eg, €3,...,¢,} being the nontrivial standard
invariant subspace). Otherwise, a;; # 0 for some 7y # 1 and for some A € §. Now

for any B € S,
0= (AB)11 = L% a1:b;
= ayb; =0 forallzand forall Be S
= b,y =0 forall Be S

i.e., a nondiagonal entry is permanently zero in § which reduces the problem to the

previous case. O

Proposition 1.2.3 If § is an indecomposable semigroup of n X n nonnegative ma-

trices, then so is every nonzero ideal of S.

Proof. Let J be a nonzero ideal of S and suppose that it is decomposable. Then
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after a permutation of basis, every member J of J assumes the form
‘A B )
( 0 C)’

Pick a nonzero J of this form and let

where A, C are square matrices.

(w z)
\w z
be an arbitrary element of S. Then
<XA XB+ YC)
SJ = .
WA WB+ ZC

J being an ideal, §J € J and therefore we must have WA = 0.

Now, if A # 0, then W and hence S will have a permanently zero slot (if a;; # 0
in A, then on multiplying the & th row (w1, wks, ..., W) of W by the 5 th column
[ a1\ .

a;; | of A, we get wi;a;; = 0 which implies that wy; = 0, in other words, the ¢ th

\anj)

column of W is zero; we pick a single entry from this zero column and observe that
it is zero in all the members of §). By Lemma 1.2.2, § is decomposable which is a

contradiction. Therefore, assume that A = 0 for all J € J. Again

5 =0 ¢)lw 2)

BW BZ
= ( ) eJ
CW CZ

Thus BW = 0 = CW. If either of B or C is nonzero, then by the same reasoning

as above, we shall find S to be decomposable. Therefore, we must have B =0 = C,
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in other words, J = 0, a contradiction. Hence every nonzero ideal of & must be

indecomposable. O

Definition 1.2.4 By a nonnegative (resp. positive) linear functional f on C", we
mean a linear transformation from C" into C satisfying f(z) > 0 (resp. f(z) > 0)
whenever £ > 0 (resp. 0 # z > 0) in C™.

We include the proof of the following fundamental result which will be required

in our next propositicn.

Lemma 1.2.5 Let f be a nonnegative linear functional on M,,(C). Then there exists

a nonnegative matriz B in M,(C) such that f(A) = tr(BA) for all A € M,(C).

Proof. We know that the collection {E;},2,7 = 1,2,,...,n where the (¢, j) entry in
E;, is 1 and the remaining entries are zero, forms a basis for M,(C). Thus for any

A = (ai;) € My(C), we can write
A=25,,a;E;,.

Then
F(A) = By a5 f(Ey).
Write f(E;) = aji and define B = (aj;).
Then it can be easily verified that f(A) = tr(BA). Further, if f is nonnegative,

then aj; > 0 for all 5,7 and thus B is nonnegative. O

Proposition 1.2.6 Let S be a semigroup in M,,(C) with nonnegative matrices and
[ a nonzero, nonnegative linear functional on M,(C) whose restriction to S is zero.

Then § is decomposable.
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Proof. By Lemma 1.2.5, there exists a nonnegative matrix B such that
f(A) = tr(BA) for all A € M,(C).

By our assumption, ir(BA) = 0forall A € S. Also f nonzero implies that B is
nonzero. Suppose b;; is 2 nonzero entry in B. Since the entries in BA are nonnegative
and tr(BA) = 0 for all A € 8, all the diagonal entries of BA are zero for each 4 € §,

in particular, the (3,17) entry is zero. Thus
binaii + bigagi + - + bigazi + - 4 binan; = 0.
Fach summand in the above sum being zero, we have
bijaz; =0=> a5 =0 as b; # 0.

This shows that if the (3, 7) entry of B is nonzero, then the (j,1) entry of each A

in § is zero. Hence by Lemma 1.2.2, § is decomposable. O

Remark 1.2.7 The analogue of the above result for reducible semigroups is as follows
[12]:

If § is a semigroup in M,(C) and f a nonzero functional on M,{(C) such that
the restriction of f to & is zero, then § is reducible. The proof of this result is an
easy consequence of Burnside’s Theorem.

Consider the algebra A generated by S. If § is irreducible, then so is A and
by Burnside’s Theorem, A = M, (C). But f|s = 0 implies fl|4 = 0 which is a
contradiction. Thus & must be reducible.

Furthermore, in case of reducibility, if f is a nonzero functional on B(V) which is
permutable on any collection § in B(V), then S is reducible. As a corollary to this,
we have that if a nonzero functional is multiplicative or constant on a semigroup in

B(V), then the semigroup is reducible, (cf. [12]).
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The same hypothesis does not give decomposability in case of nonnegative semi-

groups. For example, consider the one-element semigroup

ere I
RRL

S o

1
n
Then the trace functional is such thai it is constant on § and thus permutable

but S is obviously not decomposable.

We list a few equivalent conditions for decomposability of nonnegative semigroups

in M,(C).

Theorem 1.2.8 For a semigroup S in M,(C) with nonnegative matrices, the fol-

lowing are equivalent
(i) S is decomposable.

(ii) There exists a nonzero, nonnegative functional on M,(C) whose restriction to

§ is zero.
(iii) S has a common zero entry.
(iv) S has a common nondiagonal eniry which is zero.

(v) There exist A, B in My(C), both nonzero and nonnegative such that ASB =

{0}.

Proof. (i) = (4) If S is decomposable, then after a permutation of basis, every

11 Sl2

member S of S is of the form ) , where Sy, Sq3 are square matrices. Define

22
a linear functional f on M,,(C) by f(A) = a;; where a;; is the fixed (¢, j) entry in the
matrix representation of A with respect to the permuted basis from the block Aj;.

Clearly f is a nonzero, nonnegative functional on M,,(C) such that f|s = 0.
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(22) = (237) This has been proved in Proposition 1.2.6.

(¢27) = (i) Suppose the common zero entry in S lies on the diagonal of each
member of S. Then, as proved in the last part of the Lemma 1.2.2, we shall obtain
that a nondiagonal entry ic commonly zero in S.

(zv) = (v) Let s;x = 0 for all § € S for some j # k. Construct an n x n matrix
A such that a; ; > 0 for some 7, and the remaining entries are zero. Similarly, let
B € M,,(C) be such that by , > 0 for some [, and the remaning entries are zero. Then
A, B are nonzero, nonnegative matrices and it can be easily verified that ASB = {0}.

(v) = (z) We have ASB = {0} for some nonzero, nonnegative A, B in M,(C).
H ai; and by are nonzero entries in A and B respectively, then it is easy to see that
the (7, k) entry in each S € S is zero. This makes use of the fact that A, B and § are

nonnegative-entried matrices. By Lemma 1.2.2, § is decomposable. O

Remark 1.2.9 Clearly, if § is decomposable, it has a common nondiagonal zero
entry but decomposability may not give a common diagonal zero entry.

For example,

1 00
s=1lo 1 1
01 1

is a singleton semigroup which is decomposable but no permutation of the basis will

produce a zero on the diagonal.

1.3 Decomposability of nonnegative bands

Definition 1.3.1 A band in B(V) (resp. M,(C)) is o multiplicative semigroup of

idempotents i.e., operators (resp. matrices) E such that E = E*.

In this section, we confine our attention to bands in M, (C) with nonnegative-

entried matrices and prove their decomposability under certain conditions. We start

==w
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with a singleton nonnegative band.

Lemma 1.3.2 Let E be a nonnegative n x n idempotent with rank r > 1. Then E is

decomposable.

Proof. We first show that if » > 1, then the range of E contains a nonzero (column)
vector z with nonnegative entries and at least one zero entry. Pick any two nonneg-
ative linearly independent elements r and y in the range of £. Then Fz = z and

Fy = y. If either z or y has a zero entry, we are done. Otherwise, let

Ty hn

T2 Y2
z=| ., | andy=

mn yn

and let &2 = ma:z:{& :1=1,2,...n}. Then the vector z = y r — z y is nonzero,
T T
7 1
has nonnegative entries, and its j th entry is zero. Since Ez = z, it is the desired
vector. With no loss of generality, we can assume that z is the vector with a minimal

number of nonzero entries. After a permutation of the basis, we can assume that the

entries (z,) of z satisfy

Y,

2z vy, ==z,=0

Then the equation £z = z, together with the nonnegativity of entries in £ and
z, implies that the (¢, ) entry of E is zero whenever i > k£ + 1 and j < k. Thus the

span of the first k£ basis vectors is invariant under E, i.e., E is decomposable. O

Remark 1.3.3 The above result can also be obtained using the Perron-Frobenius
Theorem (Theorem 5.5.1(i) in [10], p.124) part of which says that an n X n nonnegative
indecomposable matrix has a real positive eigenvalue, say r, which is a simple root

of its characteristic equation. Thus if E is indecomposable, then since an idempotent
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has only 0 and | as eigenvalues, the eigenvalue 1 will occur only once in its spectrum
and so the trace of £ is 1. But for an idempotent, its rank equals its trace and

therefore, rank(F) = 1, which is a contradiction. Thus E must be decomposable.

We use the convention Lat'S to denote the lattice of all standard subspaces which
are invariant under every member of §, where S is a collection of operators on any
Hilbert space with finite or infinite dimension. It can be shown by simple induction
in the finite-dimensional case (and by Zorn’s Lemma in infinite dimensions) that for
any semigroup S, Lat’S has a maximal chain. This chain may be nontrivial or trivial
according as S has a nontrivial standard subspace or not. Each chain in Lat'S gives
rise to a block triangularization for S and since the members in the chain are standard
subspaces, we shall call it a standard block triangularization. Evidently, to say
that S has a standard block triangularization is equivalent to saying that there exists
a permutation matrix P such that for each S in ¢, P"1SP has the upper block
triangular form.

Suppose C is a chain in Lat'S and M, N are two successive elements in C such
that M C N, then N & M is called a gap in the chain. If P is the orthogonal
projection onto ' © M, then the restriction of PSP to the range of P is called the
compression of S to N'© M. Note that every compression corresponds to a diagonal

block in the block triangularization of S.

Theorem 1.3.4 Let E be an nxn idempotent of rankr > 1 with nonnegative entries.

Then
1. any mazimal standard block triangule -ation of E has the two properties

(a) each diagonal block is either zero or a positive idempotent of rank one.

(b) there are ezactly r nonzero diagonal blocks.
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2. there exists a standard block triangularization of E with properties (a) and (b)
such that no two consecutive diagonal blocks are zero (so that the total number

of diagonal blocks is < 2r +1).

Proof. By Lemma 1.3.2, F is decomposable. Let C be a maximal chain in Lat'E
resulting in a maximal standard block triangularization of E. If M and A are in C
such that /' © M is a gap, then if the compression of E to N’ & M is nonzero, it is
an indecomposable idempotent for otherwise, if it has an invariant subspace K of the
desired kind, then M@K is a standard subspace, invariant under £ which lies strictly
between M and N and is comparable with every member of C, thus contradicting
the maximality of C. Therefore, every nonzero compression (or diagonal block) is
indecomposable and of rank one by Lemma 1.3.2. Since the rank of an idempotent
equals 1ts trace, it is apparent that the numbe- of nonzero diagonal blocks is exactly r.
(Observe that in any block triangularization of an idempotent, the diagonal blocks
or the compressions are idempotents).

It is easy to see that an indecomposable rank-one matrix cannot have any Zeros
in it. A zero entry would lead to a zero row (or a zero column) which after a permu-
tation of basis can be brought to the position of the last row (or first column), thus
rendering the matrix decomposable. Therefore, a nonzero diagonal block is a positive
idempotent of rank one.

Lastly, the fact that a 2 x 2 block matrix whose (1,1), (2,1) and (2,2) blocks are
all zero is an idempotent if and only if it is zero proves part 2 of the theorem. O

We now study the decomposability of a nonnegative band with more than a single

member.

Theorem 1.3.5 Suppose S is a band in M,,(C) with nonnegative matrices such that
rank (S) > 1 for all S € §. Then S is decomposable.
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Proof. Let m = min { rank (5); 5 € §}. Select a P in § of rank m. For an
arbitrary S € §, consider PSP. This is an idempotent whose range is contained in the
range of P and whose null space contains the null space of P. Since rank (PSP) =
rank (P) = m, we obtain PSP = P. Thus PSP = {P}.

Further, since rank (P) = m > 1, by Theorem 1.3.4, we can see that P has the
form ( ! ;1 ) with respect to some permutation of basis where both P, and P, are

2/

Sll Sl2

nonzero. Let < ) be the representation of an arbitrary S in S with respect

a1 S
to this permuted basis. Then PSP = P implies that P;Sy Py = 0. As in the proof
of Theorem 1.2.8 ((v) = (¢)), we can show the existence of a zero entry in Sy;. Since

S is arbitrary and P fixed, this zero will occur commonly in each Sy; and hence in

S. By Lemma 1.2.2, § is decomposable which proves the theorem. O

Remark 1.83.6 In the proof of the theorem above, if we consider 7 to be the collec-
tion of all rank m elements in &, then for any J € J and S € S,

rank (JS) € min { rank (J), rank (S) } = rank (J)=m.

By minimality of m, we get rank (JS) =m (JS # 0 as rank (S) > 1for all §in S);
therefore JS € J. Similarly, it can be shown that SJ € 7. Thus J is a nonzero ideal
of S. By Proposition 1.2.3, § is decomposable if and only if Jis decomposable. Thus,
with no loss of generality, we can assume that S is a nonnegative band of constant

rank m.

Theorem 1.3.7 Let S be a nonnegative band in M, (C) such that rank (§) > 1 for
al S in S. Then any mazimal standard block triangularization of S has the property
that each nonzero diagonal block is a nonnegative band with at least one element of

rank one i it.
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Proof. By Theorem 1.3.5, § is decomposable. Let, C be a maximal chain in Lat'S
resulting in a standard block triangularization of §. If M and N are inC, M C N
such that N'© M is a gap and if the compression of S to A& M is nonzero, it clearly
forms a nonnegative band. Further, it must be indecomposable, for otherwise, if it has
a standard invariant subspace K, then M@K is in Lat’S, lies strictly between M and
N and is comparable with every member of C, thus contradicting the maximality of C.
Thus, every nonzero compression (or diagonal block) constitutes an indecomposable

band and hence by Theorem 1.3.5 it must contain at least one element of rank one.

|



Chapter 2

Structure of constant-rank
nonnegative bands in finite

dimensions

In the previous chapter, we saw in (Remark 1.3.6) that the question of decompos-
ability for a nonnegative band reduces to the case of a constant-rank ideal in it. This
fact shows the significance of constant-rank nonnegative bands and motivates us to

study their structure. We are still dealing with nonnegative bands in M,,(C).

Lemma 2.1.1 Let S be a nonnegative band in M, (C) of constant rank one. Then
there exists a permutation matriz P such *hat for each S € 8, P~'SP has the block-

triangular form

0 XE XEY
0 E EY |,
0 0 0

where the diagonal block So = {E : 5§ € 8§} constitutes a rank-one indecomposable

band and X and Y are nonnegative matrices of suitable size.

22
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Proof. As usual, we view the members of S as matrices of operators relative to a
fixed basis B. Let By consist of the elements of B which are in ker S and B3 consist of
those elements of B which are in ker §* but not in ker S. Let By be the complement
of B, UB; in B. Then the arrangement B;UB,UB; of the basis B gives rise to the

permutation matrix P such that for each S in &, P~1SP has the matrix form

0 X Z
0 F Y[,
0 0 0

where X, Y, Z are matrices of suitable size.

The equations E2 = E, X = XE, Y = EY and Z = XEY are obtained
using the fact that each matrix in S is an idempotent. Lastly, the diagonal block
So = {E: § € 8} forms a rank-one band because § is a rank-one band. It is easily
checked that &y is indecomposable, for otherwise, a zero entry in Sp will lead to a
common zero row or a common zero column (using the fact that the rank of S is one),
which is not possible as all the zero rows and zero columns have already been taken

out. O

Lemma 2.1.2 [f § is a nonnegative band in M (C) with constant rank r, then 8
has o standard block triangular form with exactly r nonzero diagonal blocks, each
constituting an indecomposable band of rank one. Furthermore, this can be done so
that no two diagonal blocks are consecutively zero. Therefore, if k be the total number

of diagonal blocks, then k < 2r + 1.

Proof. We shall prove the lemma by induction on r. The case r = 1 is dealt with in
Lemma2.1.1. Suppose r > 1; then we know by Theorem 1.3.5 that S is decomposable.

Therefore, after a permutation of basis, every S € § is of the form

(0 &)
0 5/’

».
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where 51, 52 are square matices. Consider the two diagonal blocks, §; = {5;: 5 € S}
and S; = {5z : S € §}. Clearly, §; and S, form nonzero, nonnegative bands. We

now prove that §; and &, are constant-rank bands.

Let
(5'1 X) (Tl Y)
S = and T =
0 9 0 T,

be two elements in S such that rank (S;) =m, and rank (T}) = m,. Let us assume
that my < mg. Then since the rank of § and T is r, rank (S;) = r — m; and

rank (13) = r — my. Consider

ST'—(SI X)(Tl Y) (S1T1 51Y+XT2)
“\o S/\e 1) o STy )

Now
rank (S171) < min { rank (S1), rank (71) } = min {mi,mz} =m,
and
rank (S;73) < min { rank (5,), rank (23) } = min {r —mqy,r —ma} =r —my
But then,
rank (ST) = rank (S173) + rank (S3Ty) < my+7—my <,

which impllies that m; = mj,. Therefore S; has constant rank and by the same
argument so does S;. Also since §; and 8 are nonzero bands, their ranks are less
than r. Thus induction applies and we obtain the desired result.

Lastly, the fact that a 2 x 2 block matrix all of whose blocks except (1,2) are zero
is an idempotent if and only if it is zero justifies the assertion that no two diagonal

blocks are consecutively zero, O



Definition 2.1.3 A semigroup S in Myn(C) of nonnegative matrices will be called a

full semigroup if S has no common zero row and no common zero column.

Lemma 2.1.4 Let S be a full band of nonnegatwve matrices in M,(C) with constant

rank one. Then S is indecomposable.

Proof. Supnose § is decomposable. Then after a permutation of basis, each S € &

(Sll SIZ)
0 5 .
rank S = rank (Sy;) + rank (Sy;)

= either rank (S11) = 0 or rank (Ss2)
= either S;3 = 0 or Sy = 0.

can be ariumed to have the form

Now

i

1
0

With no loss of generality (1.e., by considering S* if necessary), we can assume that

S11 = 0. Therefore, this particular S has the form
S = (O S”).
0 So
T - (T 11 Tu)
0 Ty

be an arbitrary element in §. We claim that T7; = 0. Assume not; then T3, = 0, in

0 S T T 0 0
a0 ) )0
0 Sy 0 0 g 0

which is not possible as each member of § has rank one. Thus, we have T; = 0 which

Let
which case
implies that any operator S in § has the representation

5o (O 5'12)’
0 Sz

but this contradicts the fact that S is full. Hence & must be indecomposable. O
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Theorem 2.1.5 Let S be a nonnegative band in M, (C) with constant rank r.
() If S is full, then there exists a permutution matriz P such that for any S € S,
P~1SP has the block diagonal form
S1
Ss

S,
where each S; = { S;: 9 € 8} is an indecomposable band of rank-one matrices.
(i) In general, there is a permutation matriz () such that for each S € S, Q15Q

has the upper block triangular form

0 XE XEY
0 E EY |,
0 0 0

where matrices X,Y are of appropriate size and So = {E : S € §} is as in case (i).

Proof. (i) If the rank r of § is one, then the result is true by Lemma 2.1.4. We shall

prove the theorem by induction on r. Let r > 1, then by Lemma 2.1.2, each S in S

(0 s)
0 S/’

where the diagonal blocks & = {S;: 5 € §} and S; = {52 : § € §} form nonzero

can be assumed to have the form

bands of constant rank less than r. Also then, by the fullness of §, S; has no common

zero column and S; has no common zero row.

(El X
E =
' r)

Let

be arbitrary but fixed in S.
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Let
F] Y Gl Z
F= and G =
0 F2 0 G2
be arbitrary members in §. Then
Gw Z E, X R Y
GEF =
0 G, 0 E, 0 F
_ (G1E1F1 G1E1Y+G1XF2+ZE2F2)
B 0 G Ex Fy

The fact that GEF is an idempotent implies that

G1E\F\(GLEYY + GiXF + ZE ) + (GLE\Y + G\ XFy + ZE Fy)) G ER Fy =
GiE\Y + Gi XFy+ ZE Fs.

Premultiplying the above equation by Gy E,F; and postmultiplying by G2E2Fy, we

obtain

G]E]F](G]E]Y + GIXF2 + ZEQFz)GlEgFZ = O
= GhERGIEYGEF, + G E FIGIX G EFy + GiE\FI\ZE, FRGLEx Fy = 0.

Since all the matrices are nonnegative, this gives
G1E\FiGi X FGRE Fy, = 0. (1)
Now G, E1Fy € 81 and Fy, GoFy € S, both of which have constant rank. Therefore,
G1E\Fi\Gy = Gy and F,GLE Fy = F.

Thus (1) reduces to
GiXF, =0. (2).

Since Gy € 8y and F; € S; are arbitrary, (2) reduces to

51 XS, =0.
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But 8; has no common zero column, therefore XS; = 0 and the fact that S; has no

common zero implies that X = 0. Thus

E= .
0 E

This shows that any general element S in S is of the form

51 0
( 0 Sz) ’
where S; = {$1 : 5 € §} and §; = {5, : S € S} are nonnegative full bands with
constant rank less than r. Hence induction applies and § is of the desired form.
(i1) In the general case, we consider the following arrangement of the basis B
relative to which the matrices are expressed. Let B; be the vectors in B which are in
ker § and B be those basis elements which are in ker $* but not in ker § and let

the remaining vectors in B be denoted by B>. Then with respect to this permutation

of basis (viz., B = B;UByUB3), every element S of S assumes the form

Since S% = S, we have
E*=E, X=XE, Y =EY and Z = XEY.

These equations imply that S = {E£ : S € S} cannot have a common zero row or
a common zero column. Thus Sp is a full nonnegative band of constant rank r and

hence is of the form given in (i) above. O

Remark 2.1.6 1. It is easily verified that the product of any two block matrices

of the form exhibited in part (ii) of Theorem 2.1.5 is again of the same form.
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2. If in the statement of the theorem above, S is taken to be a maximal band,
then it is readily observed that the bands §; must be maximal. In part (i1), Sp

and the collection of all X,Y are maximal too.

3. In Theorem 2.1.9, we show that the converse of part (i) of Theorem 2.1.5 is also
true in case the bands §; are maximal. To prove this, we we shall need a couple

of lemmas, of which Lemma 2.1.8 may be of independent interest.

Lemma 2.1.7 Let & be an indecomposable, nonnegative semigroup in M,(C) and

e; be any basis vector. Then \/{Se,} contains a positive vector.

Proof. Since S is indecomposable, no entry in the members of § is permanently
zero. Therefore, for each k& = 1,2,...,n, there exists A%} € & such that its (k,2)
entry is nonzero. It is evident that then (AM + A® 4 ... + A®)e, is the desired
positive vector.

a

Lemma 2.1.8 Let S be a direct sum of r nonnegative, indecomposable semigroups
S1y..., 8y, so that each member of S has block diagonal representation

51
52

S,
where S, € 8,1 =1,2,...,r, with respect to a fired decomposition My & --- & M, of
V into standard subspaces. Then every M € Lat'S is of the form M = ®_,eiM,,

where each €; is either 0 or 1.

Proof. It is obvious that each M; belongs to Lat'S. Also, each &, being indecom-

posable, M; is a minimal standard subspace in Lat'S in the sense that S has no
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standard invariant subspace properly contained in it. Now let M € Lat'S. We define
e = 1 if M; N M contains a basis vector and ¢; = 0 otherwise. To prove the desired
result, it is enough to show that if e; € M; is such that e¢; € M, then M; C M.
We write e; with resgect to the given decomposition of the space and suppose the

resulting vector is | x; | where the column vector z; has 1 at the appropriate place

0
and zero elsewhere. Consider Se;. Then Se; = | S;z; | € M. Since S; is a nonneg-

0
ative, indecomposable semigroup, by Lenima 2.1.7, we obtain a positive vector y; in
0

M; which 15 a nonnegative linear combination of {S;z;}. Consider y = | y; |;yisa

0
positive linear combination of all the basis vectors which span M;. Also y € M and

M being a standard subspace, it is spanned by a subset of basis vectors. Expressing
y as a linear combination of the basis vectors that span M, we observe by the linear
independence of the basis vectors that there cannot be any basis vector which is in

M; but not in M. Hence we must have M; C M which proves the lemma. O

Theorem 2.1.9 A direct sum of r maximal, indecomposable, nonnegative rank-one

bands is a mazimal band of constant rank r.

Proof. For r = 1, the result is obvious. Therefore, let r > 1. Suppose §1,8s,--+, S,

are r maximal indecomposable, nonnegative rank-one bands and consider their direct
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sum. Every member § of § is of the form

Sy
52

5.

If S is not maximal, then let §' 2 § be a band with constant rank r. Now observe

that S is a full band. Therefore, §' is full too. By part (i) of Theorem 2.1.5, &’ is

where S; € &;, 1 =1,2,---,7:

a direct sum of r rank-one indecomposable, nonnegative bands, say, S;,8;,-+,8,.
Now Lat'S' C Lat'S. By the previous lemma, the cardinality of both Lat'S and
Lat'S' is the same which is 27. Therefore, we must have Lat'S = Lat'S’. Thus,
after permuting the basis if necessary, we obtain §; C §;. But since the bands S, are
maximal, we have S; = §]. Hence § is maximal. O

Theorem 2.1.9 and Remark 2.1.6 can be summed up to give the following charac-

terization of maximal nonnegative bands of constant rank.
Theorem 2.1.10 Let S be a nonnegative band in M, (C) of constant rank r.

(i) If S is full, then S is mazimal of and only if

51
Sy :
8__—_ . :Siest,zzlazs'.'ir ?
Sy

where S, is a mazimal rank-one indecomposable band for each .

(ii) In general, if S is mazimal, then
0 XF XEY

S§=410 E FEY |:E€8,XeX,Ye);,
0 0 0
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where So is a direct sum as in part (i) and X and Y are the entire sets of

nonnegative matrices of suttable size.

In chapter 4, we shall give a geometric characterization of maximal bands of

constant finite rank.



Chapter 3

Nonnegative bands on £2-spaces

3.1 Preliminary definitions and results

Let .Y be a separable, locally compact Hausdorff space and 4 a Borel measure on
X. We write L*(X) for the Hilbert space of (equivalence classes of) complex-valued
measurable functions on X which are square-integrable relative to 4. We also assume
for simplicity that u(¥') < oo. This is not a great restriction and almost all our con-
siderations will be valid for the case of a o-finite measure with obvious modifications.
We denote by B(L*(.Y')), the space of all bounded linear operators on £2(,Y).

In this chapter, we shall study the infinite-dimensional analogues of some of the
results which led to the decomposability of the nonnegative semigroups and in partic-
ular nonnegative bands in M, {C). 1t will also highlight the main difference between
the concept of decomposability for nonnegative bands in finite and infinite dimensions.

We start with some definitions.

Definition 3.1.1 A funclion f € L3(X) is said to be nonnegative (resp. positive),
written f > 0 (resp. f>0) if

p{z e X : f(z) <0} =0 (resp. p{r € X: f(z) <0} =0).

33
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Definition 8.1.2 Let X and X, be Bo, :l subsets of X. An operator A from L2(X))
to L2(Xy) is called nonnegative if

Af > 0 whenever f >0 in L2(X)).
Similarly, A is called positive if
Af > 0 whenever 05 f > 0 in L2(X)).

Definition 3.1.3 A subspace of L*(X) is a norm-closed linear manifold in L*(X).
A standard subspace of L%(X) is a subspace of the form

LXU)={f e L*X): f =0 a.e. on U}
for some Borel subset U of X. This space is nontrivial of u(U).u(U°) > 0.

Definition 3.1.4 An operator A € B(L*(X)) is said to be decomposable if there

erists a nontrivial standard subspace of L2(X) invariant under A.
Definition 3.1.5 For any function f, we define the support of f as

supp f={z € X : f(z) # 0}.

If f is @ member of LX), then supp f is defined up to a null set (i.e., a set of
measure zero).
When no confusion is likely to arise, we simply write supp f for any f € LYX) to
mean supp fo, where fo is a function representing f.

We shall be using the following propositions repeatedly throughout the chapter.
Proposition 8.1.6 For any two nonnegative functions f,g in L2(X)

?

(f,9) =0 if and only if u{supp f N supp g} = 0.
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Proof. Observe that

{(f,9)=0
& [ f@) gl2) ndz) =0
& f(z) g(z) =0 a.e. vu X ( because fg is nonnegative )
& p{z: f(z)#0 and g(z) #0} =0
& p{supp f 0 supp g} =0.

Hence the proposition. O
Proposition 3.1.7 For any f € L*(X),
[20@ (f,0) 20, forallg >0 in LX),

Proof. If f > 0 and g > 0, then {f,g) = /Y f(z) g(z) p(dz) > 0.
Suppose (f,g) > 0 for all ¢ > 0. To show that f > 0. Let E = {z: f(z) < 0}. I

1(E) > 0, then
(foxs) = [ J(@) xs(o) uldo)

= [ 5@ uaw) <o,
contrary to the hypothesis. Therefore p(E) = 0.0

Proposition 3.1.8 For any A in B(L*(X)), A>0& A* > 0.

Proof. We have

A>20 & Af >0 whenever f >0 in L%(X)
& (Af,g) > 0for all f >0 and for all g > 0 in L2(X)
& (f,A*g) >0forall f,g>0
& (A*g,f)>0forall f,g>0
& A*g>0forallg>0
(by Proposition 3.1.7) .

Hence the proposition. U
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Proposition 3.1.9 Let S be a nonnegative operator on L2(X) and U,V be any Borel
subsets of X. Then (Sx,,x,) =0 if and only if (Sf,g) =0 for all f € LUU) and
for all g € LX(V).

Proof. If (Sf,g) = 0 forall f € £2(U) and for all g € L£*(V), then in particular,

(Sxys¥v) =0
Conversely, suppose that (Sx,,x,) = 0. We first prove that

(Sf,g) =0 for all f>0in L2(U) and for all g > 0 in L2(V).

Now (Sxy,x,) = 0 implies that u{supp Sx, NV} = 0 (by Proposition 3.1.6). Thus
for any nonnegative g in L2(V), u{supp Sx, N supp ¢} = 0. Thus
{Sxyr9) =10

= (xgS*g) =0 for all ¢ >0 in L3(V)
= p{U Nsupp S*¢} =0 if g > 0( Proposition 3.1.6 ).

Thus for any f > 0in L3(U) and g > 0in L%(V), p{supp f N supp 5*¢g} = 0. Hence

(f,S*9) =0
= (Sf,g)=0forall f>0in L2(U) (3.1)
and for all ¢ > 0 in L2(V).
Further, any f € L£LX(U) can be written as f = (f;i — f7) + i(ff — f;) where

fi=Ref, fo= Imf, ff = 3041+ A) £ =300+ %) and f7 = LAl -
h) 7= %(lle — f2) denote the positive and negative parts of fi, f, respectively.

Since the positive and negative parts are all nonnegative, (3.1) gives that
(Sf,9) = 0for all f € £L3(U) and for all g € L2(V).

This concludes the proof. O
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Proposition 8.1.10 A nonnegative operator S on L2(X) is decomposable if and only
if there ezists a Borel subset U of X with p(U).u(U°) > 0 such that

(SXU’ XUC) =0.

Proof. If S is decomposable, then by definition there exists a Borel subset U of
X with p(U).u(U°) > 0 such that 5 (L2(U)) € LYU). Now x,, € L3(U). Therefore
Sxy € L2(U) which implies that u{supp Sx, N U} = 0. From Proposition 3.1.6, we
get (3%, Xye) = 0 (here note that Sy, > 0 and x,. > 0).

Conversely, suppose <S Xus x3> = 0 for some Borel subset U/ of X with
w(U).u(U°) > 0.

By Proposition 3.1.9, (Sf, x,.) = 0 for all f > 0 in £2(U). By Proposition 3.1.6, for
any f > 0in L2(U), p{supp SfNU°} = 0 which implies that Sf € £2(U). Decompose
f=Ut =) +idfsf = f;) where fi = Re f, fo = Im f. Then by what we have
proved above, we obtain Sff, ST, Sff,5f; € L*(U) and thus Sf € L%(U). Hence
S{LU)) C L%(U), which proves our claim. O

3.2 Decomposability of nonnegative semigroups

In this section, we shall study the decomposability of semigroups of nonnegative
operators in B(L*(X)). A semigroup S in B(L%(X)) is said to be decomposable if
there is a nontrivial standard subspace of £2(X) invariant under every member of S.
We note here that our assumptions on X' make £2(X') separable. Also, we would like
to remark that all the propositions proved above for a single nonnegative operator
hold true for semigroups of nonnegative opcrators on L3(X).

We saw in the finite-dimensional case how the existence of a common zero entry

in a semigroup of nonnegative matrices leads to its decomposability. Lemma 3.2.5
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below is the analogue of this fact for nonnegative semigroups in B(L*(X)).

We need a couple of simple propositions.

Proposition 3.2.1 Let B : L*(X) — L%Y) be a nonnegative operator such that
Bfy =0 for some fo > 0 in L*(X). Then B =0.

Proof.

Bfo=0 (Bfo,g) =0 for all ¢ >0 in L*())

=
= (fo,B*g) =0for all g >0 in L*(Y)
> [ (B9)(@)fala) plds) = 0

= (B*9)(z)fo(z) =0 a.e.on X.

But fo(z) > 0 a.e. Therefore,

(B*¢)(z) =0 a.e. forallg >0
= B*g=0forallg>0
= B"=0
= B=0.

This concludes the proof. O

Corollary 8.2.2 Let B be a nonnegative operator in B(L*(X)). If I is a nonzero,

nonnegative vector in L2(X) which belongs to the kernel of B, then B is decomposable.

Proof. Consider supp h. Clearly, h > 0 on its support. By the hypothesis, Bh =0
for b > 0 in L%(supp h). By proposition 3.2.1, B = 0 oa L*(supp ). Hence B is

decomposable. O

Proposition 3.2.3 Let S be a semigroup of nonnegative operators on L2(X). Then

8 is decomposable if and only if S* is decomposable.
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Proof. This is apparent from Proposition 3.1.10 and the fact that for any Borel
subset £ of X and for any S € §,

<S*XE°’XE) = <XE°7SXE) .

O

Lemma 3.2.4 Let A be a collection of nonnegative vectors in L2(X). Then there
exists a minimal Borel subset G in X' (defined up to a null set) such that all the

vectors in A vanish on G°.

Proof. Since £L%(X) is a separable metric space, so is A. Let M be a countable dense
subset of A. Suppose M = {f1, fa, '} where fi, f2,- - are chosen representatives of
the equivalence classes of functions in M. Consider

G = supp f.

Let f € A, then M = A implies that there exists a subsequence {f,, } in M such
that f,, — f pointwise a.e. (cf. [15], p.68, Theorem 3.12).
Let

gO = U SuPP fnk _C_ g

k
If z € G§, then f,, (z) = 0 for all k implies f(z) = 0. Thus

J € L(Go) C L2(G).

This shows that A C £L2(G). Also G has no subset of positive measure on which all
the vectors in A vanish, for then the vectors f; will all vanish on that subset which
is not possible by the construction of G. Thus G is the minimal subset of X, up to a

null set, un whose complement all the vectors in 4 vanish. O
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Lemma 3.2.5 Let S be a semigroup of nonnegative operators on L*(X) with the
proverty that (Ax,,xr) =0 for all A € S, where E, F arc Borel subsets of X with
p(E).u(F) > 0. Then S is decomposable.

Proof. We distinguish two cases
() W(ENF)=0
() w(ENF)>0
We prove case (i) and show that the second case can be reduced to the first. In

case (i), we can assume with no loss of geuerality that £N F = ¢. Thus, we can write
LX) = LY(E) @ L2(F) & L2(G),

where E, F, G can be assumed mutually disjoint with u(G) > 0 ( if z(G) = 0, then
LX) = L*F) @ L*(E°) and the hypothesis (Ax,,xz) = Oforall A € § gives
that £2(F) is a nontrivial standard invariant subspace for § ). Then, with respect

to some choice of bases for L2(E), L*(F) and £*(G), every A € § has the matrix

representation
An A A
Ay Axn Asn
Az Az Ass

where A;; = 0, by hypothesis and Proposition 3.1.9.
Let A € S be arbitrary and B € S be fixed, where

By By Bis
B=| 0 B Ba
B3y Bs; Bss

Then BA € S implies that (BA)y; = 0, and thus

Bz3A31 =0 for all A c S. (32)
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Consider the set
A={An(f): A€S, fe [I'Z(E), f =20}

If Agi(f) = 0 for all A and for all f > 0in L*(E), then Ag = 0 for all A, and so
L%(E) is a standard invariant subspace for S. Therefore, we can assume that there
exists at least one A € § and some f € L2(E), f > 0 such that Az (f) # 0.

Consider the closed linear span A of A. It is a proper subspace of £2(G) (for
otherwise from (3.2), Bes = 0 for all B € S and then £2(E) ® L*(G) is a « wndard
invariant subspace for §). By Lemma 3.2.4, we can find a minimal subset Gy of G,
up to a null set, on whose complement all the vectors in A and hence in A vanish, or
equivalently

(AXs) Xorgy) =0 for all A€ S.

Thus, with respect to the decomposition
LHX) = LHE)D LYF) @ L2(Go) @ L2(G\Go),

the matrix representation of any A € S is given by

Al 1 Al 2 A13 A14
0 Axn Ay Ay
Az Az Az Ay
0 Ap Ayg Ay

Consider the new matrix of B with respect to the decomposition above. Using

the facts that BA € S for all A € S and that (BA),; = 0, we get

ByszAs =0 for all A € S where Agy : L2(E) — L2(Gh)
= BQ3A31(£2(E)) = 0
Bzg(.A) = 0

s

= Bz3(A) =0,

(3.3)

i
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The minimality of G implies that every Borel subset of Gy of positive measure

is the support of some vector from /i, in particular, there exists f € A such that
1 f;
o0 J

supp f = Goj in other words, f > 0 on Go. (In fact, the vector f = £52, o ooy
J

in A is such that its support is G, t.e., f > 0 on Gy).

From (3.3), we get
Bas(f) = 0 where f > 0 in L*(Gy).

By Proposition 3.2.1, By; = 0. This is true for all B € S. Further, using the
fact that (BA)y = 0 for all A € S, we obtain ByAs = 0 for all A € S, and
by the same argument as above, we get By = 0 for all B € §. This shows that
L*(E) ® L*(Go) € LatS and hence S is decomposable.

(i) Next, consider the case when u(E N F) > 0. This gets subdivided into two
cases according as u(EAF) is zero or positive, where EAF = (E\F)U(F\E).

(a) If W(EAF) =0, then E = F with no loss of generality and we can write

LYX) = LYE) ® L2E°).
Since (Ax,,Xx,) =0for all A€ S, every A € S has a representation
()
An Az
with respect to the decomposition above. For a fixed B € S,
(BA)H = 0 = B12A21 = 0,

where Ay : L2(E) — L2(E°).
Again by Lemma 3.2.4, applied to the set

Ay ={An(f): A€ S, feLYE), f>0},
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we can find a minimal subset A of E° having positive measure such that
(AXprXgo) =0 forall Ac S

where A is the union of the supports of all vectors in a countable dense subset of the

closed linear span A; of A4;. Then with respect to the decomposition
LX) = LYE) @ L'(N) @ LA(E\W),

any A € S has the matrix representation

0 Ap Ap
A= | An Ax A
0 Az As

For a fixed B¢ S,
(BA)H ={ = BipA4,, =0 and (BA)gl = 0= BsAan =0,

where Aq : L2(E) — L3(N).

Now By;(A;) = 0 = By(A4;). Following the argument in case (i), by the min-
mality of A (or otherwise), we show the existence of a vector g in .4; such that g > 0
on N. Therefore, Biz(g) = 0 = Baa(g).

By Proposition 3.2.1, Bz = 0 = Bs,. This is true for all B € S. Thus L*(E) &
LYN) € LatS and hence § is decomposable.

(b) Next, suppose that u(EAF) > 0, in which case either E\F or F\E must
have positive measure. By considering §*, if necessary, we can assume with no loss

of generality that g(F\F) > 0. Then, we can write

L3(X) = LY(E) @ L(F\E)® LY(X\(E U F)),
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where we have <Ax 29 Xy E> = () for all A € S. With respect to this decomposition,

any A € § has a matrix representation

A A Ap
A= 0 Ay A
A31 A32 A33

This reduces to case (i) and hence § is decomposable.

Proposition 3.2.6 IfS is an indecomposable semigroup of nonnegative operators in

L2(X), then so is every nonzero ideal of S.

Proof. Let J be a nonzero ideal of S and suppose that it is decomposable. Then
there exists a Borel subset U of X with p(U).u(U®) > 0 such that

LCXU)={feL¥X): f=0a. on U}
is invariant under every member of 7. This is equivalent to saying that
(IXyrXpe) =0 forall J € J.
Thus with respect to the decomposition
LA (X) = L2U) @ LXU), (3.4)
every member J of J assumes the form
(0 o)
0 ¢/
Pick a nonzero J of this form and let
g (511 5'12)
Sn S

be an arbitrary element of S with respect to the decomposition (3.4). Then

o7 = (SnA SuB+ 5120>
SnA SuB+8uC)
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Since J is an ideal, SJ € J and thevefore, we must have

If A is nonzero, then A being a nonnegative operator on £2(U), there exists a nonzero,
nonnegative function in its range. Let us call this element f;. There must exist some
€ > 0 for which the set £ = {z € U : fo(z) > €} has positive measure. Then x, is a

nonzero characteristic function in £2(U) and is such that

fo(z) = exy(z) forallzc e U

. 1
ne, Xz <afo, a=2>0.

From equation (3.5), Saix; < aSnfo = 0 i.e.,5ux; = 0. Thus (Saxz, xz) = 0
for any Borel subset F' in U° of positive measure. Therefore, with respect to the
decomposition
LX) = LYE)® L(F)a LYG),

where G = (U\E) U (U°\F), any S € S has the following representation

S S Si

S=10 Sy 55

Sn Sz S
Thus (S xy) = 0forall S € &, which implies by Lemma 3.2.5 that S is decom-
posable which is a contradiction.

Thus assume that A =0 for all J € 7. Then
0 B\ /Su § BS;; BS
JS:( )( 11 12)=< 21 22) c7
0 CJ) \Sa OS2 CSn €Sy
We have BS, =0 = CS,. Since S is indecomposable, we can pick an element §

in § for which S3; # 0. Then 53, is also a nonzero, nonnegative operator from £?(U°)

into £L?(U) and we consider (BSy)* = 53, B*. As argued above for A, if B* is nonzero,
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would imply decomposability of $* and consequently of S. This contradiction leads
to B* and thus B being zero. By a similar reasoning C' = 0, in other words, J =0, a

contradiction. Hence every nonzero ideal of S must be indecomposable. O

Proposition 3.2.7 Let S be a collection of nonnegative operators from L*(X) into
L3(Y). Let A and B be nonzero, nonnegative operators in B(L*(Y)) and B(L* (X))
respectively, satisfying ASB = {0}. Then there ezist Borel subsets E C X and F C Y

with positive measures such that (Sx,,x,) =0, forall S € S.

Proof. The hypothesis ASB = {0} gives that

(ASBf,g) =0 for all f € L2(X) and for all g € L3())
= (SBf,A*¢) =0 forall f € L%(X) and for all g € L2(Y).

Now, since B is nonnegative and nonzero, its range must contain a nonzero,

(3.6)

nonnegative element, say fo. The same is true for A* since A* > 0 and A* #
0 ( because A > 0 and A # 0). Therefore, there exists a nonzero, nonnegative func-
tion go in the range of A*.

Further, fo nonnegative and nonzero implies that there exists some € > 0 such
that the set {z € X : fo(z) > €} has positive measure. Denote this set by E and
consider x,. Then x is a nonzero characteristic function in £2(X') and is such that
fo(z) 2 exy(z) forall z € X ie,x, < afp,a = % Similarly, we can find a Borel
subset F'in ) of positive measure such that x, < Bgo for some positive scalar .

For any S € §, since S is a nonnegative operator, we have Sy, < a5 fo. By the

property of monotonicity for integrals,

(SXzr Xr) < (@S fo, Bg0) = af (Sfo,g0) =0 forall S € S ( from (3.6))

which proves the proposition. O
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Corollary 3.2.8 A nonnegative semigroup of operators in B(L*(X)) is decompos-
able if and only if there exist nonzero, nonnegative operators A and B on L2(X), nol

necessarily in S such that ASB = {0}.
Proof. By the preceding proposition, the condition ASB = {0} implies
(SxpyXp)=0forall S €S

for Borel subsets E, F of X with p(E).u(F) > 0. This gives decomposability of & by
Lemma 3.2.5.
Conversely, suppose § is decomposable. Then there exists a Borel subset U of &’

with g(U).p(U°) > 0 such that with respect to the decomposition
LHX) = L2U) » LYU?), (3.7)
every S € § has the following matrix representation
. ( St 512) '
0 Sa
If with respect to the decomposition (3.7), we define two nonzero, nonnegative oper-

0 A B,y 0
A::( 12) andB:( H >,
D 0 0 0

then it is easily verified that ASB =0 for all S € S i.e., ASB = {0}. O

ators

3.3 When is a nonnegative band decomposable?

This section is devoted to studying the decomposability of nonnegative bands in
B(L%(X)). We shall first establish the decomposability of a single nonnegative idem-
potent which is already a proven result (cf. Zhong [16]). We are including the proof
here for the sake of completeness and also because it has a slightly different approach

from Zhong’s and works for a more general class of nonnegative idempotents.
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Lemma 3.3.1 Let A be a nonnegative idempotent on L2(X) and let | be a nonnega-
tive element in the range of A. Fiz a nonnegative representative of f (and still denote
it by f). If

U =supp f = {a: f(z) > 0},

then L2(U) € LatA.

Proof. It suffices to prove that (Ax,, x,.) = 0. By hypothesis,

(Af,Xpe) =0 (a5 Af = f and supp [ =U)
= <f)A*XUc) =0
= [ (4%, (&) §(a) ulda) =0
= (Aye) (=) f(z)=0a.e.onUas A* >0
But f(z) > 0 a.e. on U. Therefore,

(A*xy)(z) =0 for almost all z € U
=> <A*XU07 XU) = 0
= (Axys Xye) =0

which proves the lemma. O

Lemma 3.3.2 Let A be as in the preceding lemma. If an element [ in the range of
A is real, then there exists a nonnegative element h in L2(X) such that Ah =0 and

f* 4+ h,f~ + h are in the range of A.
Proof. For the proof, see [16]. O

Lemma 3.3.3 If an element f in L*(X) belongs to the range of a nonnegative ider-
potent A, then the real part Re f and the imaginary part Im f of f are also in the
range of A.
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Proof. Observe that Re f+iIm f = f = Af = A(Re f)+:A(Im f). Since A
is nonnegative, it sends real valued functions to real valued functions. Therefore,

comparing the real and imaginary parts in the equation above, we obtain A(Re f) =

Re fand A(Im f)=1Im f. O
Definition 38.3.4 By ker A, for any collection A of operators in B(L2(X)), we mean
{feLX):Sf=0foralS e A}.

Theorem 3.3.5 Let A be a nonnegative idempotent in B(L*(X)) of rank at least two.
Then A is decomposable.

Proof. If Ak = 0 for some nonzero, nonnegative h, then A is zero on L?(supp h)
and is thus decor.posable (by Corollary 3.2.2). Therefore assume that kerA contains
no nonzero, nonnegative element. By Lemma 3.3.3, if an element is in the range of
A, then so are its real and imaginary parts. Thus, we can obtain a basis of the range
of A consisting of real elements. Further, with our assumption together with Lemma
3.3.2, we can obtain a basis of the range of A containing nonnegative elements.
Since rank A > 2, A has at least two nonnegative, nonzero linearly independent
elements in its range, say f and g. If either of them is zero on a set of positive measure,
we are done by Lemma 3.3.1. Therefore, assume that both f and g are positive. We
shall prove that some linear combination of f and ¢ has to be mixed i.e., it has
positive and negative parts with supports of positive measure.
Consider the following subsets of reals
Si={r:f—-rg>0}
So={r:f—-rg <0}
Now S, is nonempty as zero belongs to it. Also S; cannot be empty for then f >

rg for all 7 € R which is not possible.
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Let rg = inf S; and sy = sup ;. Observe that if rp and sp are finite, then we
cannot have rq = sg, for then f and g would be linearly dependent which is not
true. Therefore, we have ro < so (note that since S is not empty, ry cannot be
equal to infinity if s is infinite). We can pick a number p such that ro < p < sq.
Since 8o < p,p ¢ S2 and therefore, f — pg # 0. Similarly, as p < ro,p ¢ S and thus
f—pg £ 0. Hence f — pg is a mixed vector :.e., it has nonzero positive and negative
parts and also it is clearly in the range of A. Existence of such a vector in the range
of A gives decomposability of A, for if u is such that Au = u,u = ut — v~ ut u-
nonzero, then by Lemma 3.3.2, we can find & > 0 in £3(X), Ak = 0 such that ut + A
and u~ 4 b are in the range of A. But by our assumption, & = 0. Therefore, ut,u"
are in the range of A. Consider the vector u*. Then by Lemma 3.3.1, £%(supp u') is
a nontrivial standard invariant subspace for A. Hence A is decomposable. O

Having established the decomposability of a single nonnegative idempotent with
rank at least two, we now prove that it has a very special standard block triangular-

ization. This will require a couple of lemmas and some definitions.

Lemma 3.3.6 An indecomposable, nonnegative rank-one operator on L*(X) is pos-

itive.

Proof. Let A be an indecomposable, nonnegative rank-one operator on £2(X’). Then
we know that A = u ® v, where u,v are nonzero, nonnegative vectors in £L*(X), so
that Af = (f,v)u for all f € L3(X).

Suppose A is not positive. Then there exists a nonzero, nonnegative vector f in
L%(X) for whick Af is not positive. In other words, the set £ = {z € X : (Af)(z) =
0} has positive measure. Also, if Af = 0, then A = 0 on L?(supp f) and is thus
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decomposable (Corollary 3.2.2) which is not possible. Therefore Af # 0. Now
E ={zeX:(f,v)u(z)=0}
={z € X :u(z) =0} ( because Af #0).

Since u(E) > 0, x is a nonzero, nonnegative vector and is such that

Axp = (W u)xy = (Xp )V

= (/E u(z) u(dm)) v

= 0.

This implies that A* = 0 on £L2(E) (by Proposition 3.2.1). Thus A* and consequently

A is decomposable which is a contradiction. Hence A must be positive. O

Definition 3.8.7 A nonnegative semigroup S in B(L2(X)) will be called a full semi-
group if neither ker S nor ker S* has a nonzero, nonnegative vector. A single non-

negative operator is called full if the semigroup generated by it is full.

Definition 3.3.8 A chain of subspaces of L*(X) is called maximal if it is not prop-

erly contained in any other chain of subspaces of L2(X).

If C is any chain of subspaces and M € C, then we define M_ to be the closed
linear span of all those members of C which are properly contained in M. It is not
difficult to see [14] that a subspace chain is maximal if and only if
(1) C is closed under arbitrary spans and intersections,

(i1) for each M in C, M 6 M_ is at most one-dimensional.
A maximal chain C is said to be continuous if M = M_ for each M in C, in

other words, C has no gaps in it.

Definition 3.3.9 A collection of operators S in B(L*(X)) is said to have a contin-

uvous standard triangularization if
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(i) LatS contains a continuous mazimal chain, say C,

(i) each member of C is a standard subspace.

Example 3.3.10 For ¢ € [0, 1], the multiplication operator M : £2[0,1] — L?[0,1]
defined by

(Mf)(t) =tf(t)
is a nonnegative operator. For any a € [0, 1], define

Mo ={f€L0,1]: ft) =0V t> a}.

Then {M, : a € [0,1]} is a maximal subspace chain which is continuous and con-
sists of standard invariant subspaces for M. Thus M has a continuous standard

triangularization and since M = M*, so does M™*.
Example 3.3.11 Let H = £2[0,1] @ £%[0,1] and define E : H — H by

( § 5 )
E-= ,
I-M I-M

where M is the multiplication operator in the preceding example and I — M :

L£%[0,1] — £2[0,1] is the multiplication operator by 1 —¢. Then E is a nonnega-

(M I—M)
F* = .
M I-M

Let NV, = M, & M, for o € [0,1]. Then using the fact that {M, : @ € [0,1]} is

tive idempotent and

maximal, it is not hard to prove that {V, : & € [0,1]} is a maximal subspace chain
in H which is continuous. Also it consists of standard invariant subspaces for £ and

E*. Thus E and E* have a simultaneous continuous standard triangularization.

Lemma 3.3.12 Let A in B(L*(X)) and B in B(L*(Y)) be nonzero, nonnegative
operators such that neither ker A nor ker B* has a nonzero, nonnegative vector. If

S : L3Y) — L*(X) is a nonnegative operator such that ASB =0, then § = 0.
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Proof. Suppose SB is nonzero. Then SB : £3()) — L*(X) is a nonzero, nonnegative
operator. Therefore, there exists a nonzero, nonnegative vector f in £3()) such that
SBf is nonzero, nonnegative. Write g = SBf. Then Ag = 0 which implies that ker A
has a nonzero, nonnegative vector, a contradiction. Therefore, we must have SB = 0
which gives that B*S* = 0. If S is nonzero, then S* is a nonzero, nonnegative operator
and thus its range contains a nonzero, nonnegative vector, say h but that would imply
B*(S*h) = 0, contrary to the fact that ker B* has no nonzero, nonnegative vector.

Hence, we have § = 0. O

Theorem 3.3.13 (a) Let A be a nonnegative idempotent on L*(X) with rank r which
is full.

(i) If r is finite, then there exists a decomposition
LX) =LY () e - e LX)

with respect to which
Ay

A

A,
where each A; : L2(X;) — L2(X;) is a positive idempotent of rank one.

(i) If r = oo, then with respect to some direct sum decomposition

LHX) = LX) @ L2(0),

( o )

A= ,

0 F

where E and F have the following descriptions: If E # 0, then L2()) = &N, L%(Z;)

for some N < oo, where L*(Z;) are standard subspaces of L(X) which are reducing
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under A, and E : L2 (D) — L*(Q1) has the block diagonal form

B
E,

E;

with each E; : L2(Z;) — L%(Z;) being a positive idempotent of rank one.
If F #£0, then F and F* have a simultaneous continuous standard triangulariza-
tion.

(b) In general, if A is not full, then there exists a decomposition of L2(X), say
LX) = L) & L2(W,) @ L2(Ws),

where L2(W;) (2 = 1,2,3) are standard invariant subspaces of L%(X) such that with

respect to this decomposition

0 XE XEY
A=|0 E EY [,
0 0 0

where E : L2(W;) — L2(W;) is an idempotent of the form in (i) or (ii) according as

rank of A is finite or infinite.

Proof. (a) (i) When 7 is finite, we prove the result by induction on r. lf r = 1, we
know by Lemma 3.3.6, that A is a positive idempotent of rank one. Let r > 1, then
we know that A is decomposable and therefore, there exists a Borel subset / C X

with u(U).u(U¢) > 0 such that with respect to

LX) = L2(U) & LU,

A= ,
0 A
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where with no loss of generality, we can assume that A; and A, are nonzero. Now
A? = A implies that A; X + XA; = X. Premultiplying by A; and postmultiplying
by Az, we obtain A; XA = 0. Since A is full, ker A; and ker A} have no nonzero,
nonnegative vector. Therefore, by Lemma 3.3.12, X = 0. Thus
A (Al 0 )
0 A

Since A; and A; are nonzero, their ranks are less than r and both are full because A
is full. Hence induction applies and we obtain the desired result.

(ii) If r is infinite, A is certainly decomposable. Let C be a maximal chain in
Lat'A. Our first claim is that each gap in the chain is reducing for A. Let A' & M
be a gap where M C N in C. We wish to show that A" & M is invariant under both
A and A*. Consider the block triangularization of A with respect to the following

decomposition of £L2(X),

LX) =MBNoM)a (LYY)aN),

and
A Ap A
A= 0 Ay An
0 0 A33

If we first regard A as the 2 x 2 block matrix
(v )
0 B/’

An Ar A
A0= < 01 12) 1 )(0: (AI:})a BO=A337

Az 23
then as shown in part (i), the fullness of A gives Xo =0, 7.e., A1z = 0 = Aja.

where

Similarly, considering A as the 2 x 2 block matrix

(Aoo Xoo\
0 Bw/’
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where

Ay A
Aoo = (All), Xoo = (AIZ AIB): By = ( . 23) )

0 As
we shall obtain Xoo = 0, t.e., A1z = 0 = A3, Therefore

Ay O 0
A = 0 A22 0
0 0  Ass

This shows that A & M is reducing which proves our claim.

Also the maximality of C implies that the compression of A to each gap, if nonzero,
must be an indecomposable (and thus positive) idempotent of rank one. Further,
because of separability of £2(.X'), there can only be countably many reducing gaps.

Thus, after a permutation of basis, we can obtain a decomposition

LX) = LAY D L2(Dn)

(o #)

A= ,

0 F

where L2(V1) = &N, LU Z;), {L2(Z:)}Y,, N < oo being a collection of reducing sub-
spaces of A and F : L2(};) — L£%()1) has the block diagonal form as mentioned in the

with respect to which

statement of the theorem. The fullness of A makes both £2());) and £2()%) reducing
standard subspaces. Further, since all the gaps have been absorbed in £3())), the
operators F' and F™* are continuously triangularizable and since this triangularization
results from a maximal chain of standard subspaces, we can say that F' and F™* have
a simultaneous continuous standard triangularization.

(b) Here, we consider the general case when A is not full.

Suppose A is the collection of all nonzero, nonnegative vectors in kerAd. By
Lemma 3.2.4, we can find a minimal subset G in X, defined upto a null set, on whose

complement all the vectors in A vanish. This gives the existence of a vector f in A
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such that G = supp f. But this means that Af = 0 for some f > 0 in £L%(G) which
implies that A = 0 on £*(G).
Similarly, we can find a set G* of positive measure such that A* = 0 on £L3(G").

Then, with respect to the decomposition
LAHX) = L3G) & LEXYN(GUG)) B LHG),
A has the representation
X Z
E Y
0 0 O
where E? = E, X = XE,Y = EY and Z = XEY.

Renaming £2(R) = L2(W)), LA X\(G U G*)) = LE(W,) and LH(G*) = L2(W,),
we obtain the representation of A as described in part (b) of the theorem. Also, these
equations show that F is full and hence it is of the form described in part (a) of the
theorem. U

From a single nonnegative idempotent, we now move on to analyze a nonnegative
band in B(L2(X')) with more than one element in it. As in the discrete case, we shall

find that if a nonnegative band in B(L*(.Y')) with rank of each member being > 1 has

even a single member of finite rank, it is decomposable.

Theorem 3.3.14 Let S be a nonnegative band in B(L(.X)) having at least one ele-
ment of finite rank and with rank (S) > 1 for all S in S. Then S is decomposable.

Proof. Let m = min { rank (5): 5 € S }; then m > 1. Let J be the set of all
elements of rank m in S. For any S € § and J € 7,

rank (SJ) < min { rank (5), rank (J) } = rank (J) =m
= SJ =0orrank (SJ) =m.
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But §J # 0 as all members of S have rank greater than one. Therefore, rank (SJ) =
m which implies that SJ € J. Similarly, it can be shown that JS € J for all J €
J and for all S € §. Thus J is a nonzero ideal of S.

Now § is decomposable if and only if J is decomposable. Therefore, we can
assume with no loss of generality that S = J so that S has constant rank m.

Select a P € S. Let S be an arbitrary element of S and consider PSP. This is an
idempotent whose range is contained in the range of P and whose null space contains
the null space of P and since rank (PSP) = m = rank (P), we have PSP = P.
Thus PSP = {P}.

Since m > 1, by Theorem 3.3.13, we can find a Borel subset U of X with positive

measure such that with respect to the decomposition

LX) = L2U) © LAU°), (3.8)

(0 )
0 B)’

where both P, and P, are nonzero.

P has the matrix representaion

Pick an arbitrary S in § and let its matrix representation with respect to (3.8) be

S S
( 1 12) . Then PSP = P implies that P,Sy; P, = 0. By Proposition 3.2.7, there

Sn S
exist Borel subsets E, F in U and U° respectively having positive measures such that

(921X, Xz) = 0.
Finally, with respect to the decomposition

L2(X) = LYE)® LY(F) e LY(G),
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where G = (U\E) U (U°\F), every S € S has the following matrix representation
St Stz Sis
S=| 0 S5 S5
Sy Sip i3
This shows that (Sx,x,) =0 for all S € §. Hence, by Lemma 3.2.5, S is decom-
posable. [

Theoremn: 3.3.15 Let S be a nonnegative band in B(L%(X)) such that rank (S) > 1
for all 5 in S and S has at least one element of finite rank. Then any mazimal
standard block triangularization of & has the property that the compression of S to
each nonzero gap constitutes a nonnegative band with at least one element of rank one

wn it

Proof. Same as in the finite-dimensional case (refer Theorem 1.3.7). O

In the Theorem3.3.14, we saw that the decomposability of a band in which every
member has rank > 1 and which has at least one finite-rank member reduced to the
decomposability of a constant-rank band. The most pertinent question to be asked

after this is:
Question 3.3.16 [s every constant-rank nonnegative band decomposable?

Let us answer this question systematically. We start by considering such bands
in M,(C). The answer to the question above is in the negative if the rank is one. A
simple example to substantiate this is the band { (; (1)) , ((1] ?) } . If the constant
rank is greater than one, then we know that the band is decomposable (see the proof
of Theorem 1.3.5). This completes our analysis of the problem in finite dimensions.

For a nonnegative band in B(L?(X)), we have seen in the proof of Theoremn 3.3.14

that with constant finite rank greater than one, the band is decomposable. Now, the
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natural question which occurs is whether a constant infinite-rank nonnegative band
is decomposable? The answer is a resounding no as we illustrate through a counter

example in B(I?).

Example 3.3.17 There exists an indecomposable nonnegative band in B(I?) in which

every member has infinite rank.

Proof. For each integral ¢, define an operator 5; as follows

T;

. . 1
where T; is a 2' x 2' block with each entry equal to 7 Let § = {50, 51, 52,-++}. It is
easily verified that

for ¢ <j, 5;S; = S; and S5;5; = §;.

Thus & is a nonnegative band where each S; is of infinite rank. We claim that S is
indecomposable. It suffices to prove that & has no common zero entry. Suppose on

the contrary, that S has a common zero entry, say
(Si)ap =0 for all S; € 8.

Now, we can find 7 and j such that o < 2° and § < 27. With no loss of generality,
we can assume that ¢ < j. But then S; will have the entry (S;)sp in its first diagonal
block T; which is positive. Thus § cannot have a common zero entry and hence is

indecomposable. O
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3.4 The structure of nonnegative, constant finite-

rank bands

We saw in the previous section that constant-rank bands play a significant role in
ascertaining the decomposability of nonnegative bands. It would be therefore inter-
esting to study their structure completely which will be our task in this section. It is
a generalization of the same in the finite-dimensional case. We already know that an
infinite-rank nonnegative band may not be decomposable; therefore we shall restrict

ourselves to nonnegative bands with constant finite rank.

Lemma 3.4.1 If S is a band in B(L%(X)) of nonnegative operators with constant
finite rank r, then S has a standard block triangularization with r nonzero diagonal
blocks, each block constituting an indecomposable band of rank-one operators. Fur-
thermore, no two consecutive diagonal blocks are zero. Therefore, if k is the total

number of diagonal blocks, then k < 2r + 1.

Proof. The proof runs exactly on the same lines as for the finite-dimensional case

(see Lemma 2.1.2). O

Lemma 3.4.2 Let S be a nonnegative full band of rank-one operators. Then S is

indecomposable.
Proof. Same as that of Lemma 2.1.4 in the finite-dimensional case. O

Theorem 3.4.3 Let S be a band of nonnegative operators in B(L*(X)) with constant
finite rank r.

(i) If S is full, then there ezists a decomposition

LX) = LY(X) @ LYA) @ - @ L2(X,),
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with respect to which every member S of S is of the form
51
lgz

5.
where each §; = {S; € LY(X;) : § € S} is an indecomposable band of rank-one

operators.

(i) In general, there exists a decomposition
LX) = LX) @ L2(Ay) © LX),

with respect to which every member S of S is of the form

0 XE XEY

0 E EY |,

0 0 0
where X,Y are nonnegative operators on suitable spaces. Furthermore, the diayonal r
blocks in Sy = {E : § € 8} constitute a band of the form in case (7). LA

Proof. (i) The proof is exactly as in the finite-dimensional case (refer Theorem 2.1.5
(1))-

(ii) Now, let us consider the general case. Suppose A is the collection of all the
nonzero, nonnegative vectors in kerS. Just as in the proof of Theorem 3.3.13 (b), we
can find a set G of positive measure such that § = 0 on £%(G) and also, we can find
a set (7* of positive measure such that §* =0 on L£3(G™).

Then, with respect to the decomposition
LEHX) = LYG) @ LAANGUG)) D LYGY),

every member S in S has the form

0 X Z
0 E Y|,
0 0 0
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where E°=F, X = XE,Y =EY,and Z = XEY.
These equations show that the set Sp = {£ : S € S} of the middle diagonal blocks
is such that neither Sy nor S have any nonzero, nonnegative vectors in their null

spaces and thus Sy is of the form in part (i) of the theorem. O

Remark 3.4.4 If in the statement of the theorem above, & is taken to be a maximal
band, then it is readily observed that the bands &; must be maximal. In part (ii}, Sp
and the collection of all X,Y are maximal too.

In Theorem 3.4.7, we prove the converse of part (i) of the preceding Theorem to
obtain a characterization of maximal, nonnegative, constant-rank bands which are

full. This will require a couple of lemmas, which may also be of independent interest.

Lemma 3.4.5 Let S be a nonnegative, indecomposabie semigroup in B(L* (X)) and
[ be a nonzero, nonnegative vector in L2(X). Let A be the set of all nonnegative
linear combinations of the members of {Sf : S € S}. Then A contains a positive

vector in L2(X).

Proof. Since £L2(X') is separable, so is the set Sf. Therefore, let M = {S,f,5,f,...}
be a countable dense subset of S f, where S;f,S,f,... are the chosen representatives
of the equivalence classes of functions in M. Write

U =] supp S:f.

1

Then the function g defined by

_SSf 1 &1 S
I= T T as TS T

is a nonegative vector in A with support U/; in other words, g > 0 in £3(U). We shall

prove that g is the desired positive vector in £2(.X'), for which we need to show that

U =X (up to a null set).

\
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Now, by the construction of g, ¢ = 0 a.e. on U®. This implies that S;f = 0 a.e. on
Ue for every 1, since each S;f is nonnegative. By the density of M in S, we further
obtain that Sf = 0 a.e. on U* for every S € S, and thus

S5 f  18S:f 1 SSf
Sqg = _ il
$ T TS 2 T 2 s (39)

= 0 a.e.on U° forevery S € S.

Our claim is that £2(U) is invariant under S. Since S is indecomposable, this
will prove that £2(U) = L*(X'). We prove this considering two possibilities: (i) g is
bounded below on U, and (ii) g is not bounded below on U.

In case (i), there exists a nonnegative, nonzero scalar « such that g(z) > «a a.e.

onU. Let E={z €U : g¢g(z) > a}, then uy(E°NU) = 0. Also we have

g(z) > axg(z)forallzelU
1

e Xy < ag.

1
For any § € S, Sx,; < ;Sg. Using (3.9), we obtain Sx, = 0 a.e. on U° for all
S eS8, te (Sxy,xy) =0forall S€8, ie, L2(U) is invariant under S.
If ¢ is not bounded below on U, we can write U as a disjoint union of the sets U,

Where

Now g is bounded below on each U,. Just as in case (i), we shall obtain <SXU"1 Xz;c> =

0 for all S € 8. But x, = Xy, . This will give (Sx,,xy.) = 0 and we are in case

(i). O
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Lemma 3.4.6 Suppose S is a direct sum of r nonnegative, indecomposable semi-

groups S1,82,...,8, so that each member of S has a block diagonal representation

Si
Sa

s,

where §; € 8, i = 1,...,r with respect to some decomposition of L2(X), say
LYHX) = LX) @D L2X,).

Then every M € Lat'S is of the form M = &7_,e,L2(X' ) where each ¢; is either 0 or
L.

Proof. Obviously, £L2(X,) € Lat'S for every i = [,...,r. Further, each S; being
indecomposable, £2(X;) is a minimalstandard subspace in Lat'S in the sense that
S has no nonzero standard invariant subspace properly contained in it. Now let
M € Lat'S. We first show that if a nonzero, nonnegative f is in M such that
supp f = X, for some 1, then L*(X,) C M. Suppose M = L2?(U) for some Borel
subset U of X" of positive measute. It is enough to prove that X, C U upto a null set,
or equivalently, p(U° N X,) = 0. Suppose not, in which case p(U'° N X;) > 0. Now
f € M implies that f = 0 a.e. on U¢, and in particular, f = 0 a.e. on U N X, which
is contained in X; t.e., f is zero a.e on a subset of X, of positive measure which is
not possible as supp f = &X,. Therefore, we must have g(U°N.A;) = 0 and this proves
the desired result.

Next, observe that we can write

M= LYU)® - @ LU,
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0
where U; = U N A;. Let fi = x,,, then the vector f = | fi | € M and by our

0
assumption Sf € M where

Sf=1{sf|: ses:t.

Define
e; =0 if f, is zero

e; =1 if f; is nonzero .
To complete the proof, we must show that whenever ¢, = 1, we have L(.Y,} C
M. Now &; is a band acting on £L3(X;) and f; € L*(U;). By Lemma 3.3.14, we
obtain a positive vector, say g,, in L3(X') which is also a limit of r(l)onnegative linear

combinations of the members of {S; f;}. Consider the vector g = | ¢, |. Then g € M

0
and supp g = X;. Therefore, by what we have proved above, we obtain £2(.t,) C M.

a

Theorem 3.4.7 A direct sum of r mazimal, indecomposable, nonnegative rank-one

bands is a mazimal band of constant rank r.

Proof. For r =1, the result is obvious. Therefore let r > 1. Suppose Si,S3,---, S,

are r maximal, indecomposable, nonnegative rank-one bands and consider their direct
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sum. Every mewber 5 of § is of the form

51
52

Sy
where S5; € S;, 1 =1,2.-+-,r. Also suppose that this representation oi the members

of § is with respect to the decomposition
L’o?((?t') = EB(X‘I) fJ_L:J ;C.z(rYQ) M @ ,C?((Yr),

where Xy, -+, X, are Borel subsets of X of positive measure.

If S is not maximal, then let &’ be a band properly containing & and having
constant rank r. Now observe that S is a full band. Therefore, S’ is full too. By part
(i) of Theorem 3.4.3, &’ is a direct sum of r rank-one, indecomposable, nonnegative
bands, say, 8,85, -+,8.. Now Lat'S" C Lat'S. By the previous lemma, the cardi-
nality of both Lat'S and Lat'S’ is the same which is 2". Therefore, we must have
Lat'S = Lat'S’. Thus we can rearrange the spaces £2(X;) in the direct sum above
to obtain a new decomposition of £2(X) so that S; C S!. But since the bands S; are
maximal, we have §! = §; for each i. Hence § is maximal. O

Theorem 3.4.3 and the Remark 3.4.4 can be combined to give the following char-

acterization of maximal nonnegative bands of constant finite rank.

Theorem 3.4.8 Let S be a nonnegative band in B(L*( X)) of constant finite rank r.
(i) If S is full, then S is marximal if and only if
51

1

S = _ S eSi=1,2,...,r
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where S; is ¢ mazimal rank-one indecomposable band for each i.
(it) In general, if S is mazimal, then

({0 XE XEY
s:i(o E EY |:EeS,Xecx,vyey!,

0 0 0
where Sg is a direct sum as in part (i) end X, are the entire sets of nonnegative

operators on appropriate spaces.

We shall see in Theorem 3.5.6 in the next section that in special cases, a nonneg-

ative band with constant infinite rank is decomposable.

3.5 Some conditions leading to decomposability

of infinite-rank, nonnegative bands

Definition 3.5.1 Suppose {M;}ier and {N;};ecs are rollections of mutually orthog-
onal subspaces of L2(X) whose direct sum equals L2(X). Then {M,}; is said to be
a refinement of {N;}, if each N; can be expressed as a direct sum of a (finite or
infinite) subcollection of {M;},.

In the definition above, {N;}; is called a coarsening of { M.},

Definition 3.5.2 A nonnegative operator A in B(L*(X)) will be called nondegen-

erate if A is full and there is no continuous part in any mazimal chain in Cat’A.

Lemma 8.5.3 Let A be a full nonnegative idempotent in B(L%(X)), and C any maxi-
mel chain wn Lat’A. Then there cannot be any nontrivial gaps in C with corresponding
compressions of A equal to zero. If A is nondegenerate, then it can be expressed as a

direct sum of countably many positive idempotents of rank one.
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Proof. Let A and C be as described in the statement. It was shown in the proof of
Theorem 3.3.13 that each nontrivial gap in C is a reducing subspace for A and thus
the compression to any such gap cannot be zero for this will contradict the fullness
of A. In fact each nonzero compression to a gap is a positive idempotent of rank one.
Again by Theorem 3.3.13, if A is nondegenerate, then it is a direct sum of positive

idempotents of rank one which are countable because of the separability of £L2(X). O

Lemma 3.5.4 If A, B are positwe operators on L*(X) and S is a nonzero, nonneg-

ative operator on L(.X), then ASB is positive.

Proof. Let f be a nonzero, nonnegative vector in L2(X). Since B is positive,
Bf > 0. Also, S being nonzero and nornegative, SBf # 0 (by Proposition 3.2.1).
Thus 0 # SBf > 0 because S > 0. But A is positive. Therefore, A(SBf) > 0 which
implies that ASB is positive. O

Lemma 8.5.5 Let A be a nondegenerate idempotent on L2(X') such that with respect

to some decomposition

LHX) = L20) © LX) & LX) @,

Au A A
A=|An An Aun - |,

where each A;j is either zero or positive. Then A has a block diagonalization with

positive diagonal blocks with respect to some decomposition
LHY) =LV LW @ - -,

where the collection {L2(W))}: 15 a coarsening of the collection {L%(X:)},.
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Proof. If rank(A)=1, then the fullness of A implies that A is positive and therefore
{L2(X;)}; itself is the required coarsening. Therefore, assume that rank (A) > 1 in
which case A is decomposable. Thus it has a nontrivial invariant standard subspace,
say L£*()), where V is a Borel subset of X" such that u(Y).u(Y°) > 0. We can assume,
with no loss of generality, that the sets X; are disjoint so that X = U;X;. Now we
can write
Y=XUNWUu...

where Y; = YN A, Let J = {5 € N: p(),) > 0}. Then J is nonempty, for otherwise
L2(Y) = {0}. We rearrange {X,} to obtain

X = (Uyesdy) U (G i)

E F
(o )
G H

LX) = LHUyes,) © LA(Uyga ;). (3.10)

Suppose
with respect to

We shall prove that G = 0. Clearly, any vector in £*())) is of the form (g) , for
some f € L%(U,csX,) with respect tc (3.10). Since for each i € J, u(Y.) > 0, we

can select a nonzero, nonnegative function f, in L2(X,) with supp f, = Y, such that

h h
f2 | is a vector in L3(U,es ;) = @,esLHX,). Write f = | f, |. Now

E F E
)= 20 () e
0 G H;,\0 Gf
by the invariance of £*(}). The form of vectors in £%(}) gives that Gf = 0. Let

Gu Gn
G21 G22
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be the block matrix form of G : ;e L%(X;) — B;gsL2(X;). Now Gf = 0 implies
that
Gafi+Gafa+---=0 foreachi=1,2,...,

which by nonnegativity of Gj; further implies that
Giif; =0 foreach 1,7 =1,2,...

If G; is nonzero for some (2, j), then it is positive and f; being nonzero, nonnegative,

we shall obtain G; f; > 0 which is not true. Therefore
G,; =0 for everyi,j

E F
and hence G = 0. Thus A = (0 H) . This shows that &,e;L%(.Y)) is invariant
under A. Since A is full, we have F' = 0. We now claim that £3(}) = ®,c1L2(X)).
Worl 'ng with the same f as above, we have
)= ) l0)-(5)
(0 0 H/\O 0 ¢

Suppose E : @;esL(X,) — ,esL*(X;) has the block matrix form

Ey By
Eyn Ep
Then
Ey Eyy oo f Evnfi+ Eufo+--

Ef=1Ey Ey» - L= Eahi+Enfo+ -

Since A is full, each of its rows contains at least one positive block. This coupled with
the fact that each f; is a nonzero, nonnegative function in £?(X;), implies that each
component of Ef is a positive function in £2(X;); in other words, supp Ef = U;es X;.

But Ef € £L*()). Therefore, we must have

L) = L2(UjesX;) = DiesL?(X5).
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As L2()) is nontrivial, @;¢sL2(X;) is nontrivial i.e., J is a proper subset of IN.
Since A is nondegenerate, by Lemma 3.5.3, there exists a decomposition of £3(X),
say

,CQ((Y) = ;CZ(W1) & Cz(Wz) -y

with respect to which A has a block diagonal form
A
A2 »

where each A, : L2(W;) — L%(W)) is a positive idempotent of rank one. Clearly, each
L3(W,) is a standard subspace invariant under A. Therefore, by what we have proved
above, each L2(W;) is a direct sum of a subcollection of {£*(X,)},. Hence {L%(W,)},

is a coarsening of {£%(X,)}; such that with respect to
LX) = L20V) @ LML) @ -,

A has a block diagonalization with positive diagonal blocks. O

Theorem 3.5.9 below answers Question 3.3.16 affirmatively under the additional
hypothesis of finiteness; Example 3.3.17 shows the necessity of this hypothesis. But
we first consider a finite, nonnegative infinite-rank band whose members are nonde-
generate and prove that under this special condition of nondegeneracy, the band has

a block diagonalization.

Theorem 3.5.6 A nonnnegative finite band in which every member is nondegenerate
and has infinite rank is decomposable. Furthermore, it has infinitely many mutually
orthogonal standard invariant subspaces whose direct sum is L2(X); equivalently, the

band is block diagonalizable.

Proof. Let S be a band with & elements, say Si,Ss,: +,S; such that each S; is

nondegenerate and is of infinite rank. Consider 5;. By Lemma 3.5.3, there is a
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collection {M{"}12, of standard subspaces of L2(.X') such that with respect to

=1

LX) = o, MY,
i

S8

S(l)

21

where each 5'1(,-1) : M,“) — ME‘) is a positive idempotent of rank one.
Next, consider 57.52.9; where
S
So=| S 5%

with respect to the decomposition £2(¥) = B2, Mfl). Then
Dol o) oll) ol ol
(SSst ssEs
5155, = Lsgys;?s;;) SWs@s. .

By Lemma 3.5.4, since each S“” is positive, an arbitrary block S'J(J”S'J(i)S,(c}c) n

.. - . «(2
S1538) is zero or positive according as ‘L',(k)

is zero or nonzero. Now, by hypothesis
81528, is nondegenerate. Therefore, by Lemma 3.5.5, there exists a coarsening of
{MM}2 which we denote by {M*}2%, such that with respect to the decomposition
LAHX) = EB?&MS”, 515257 is a direct sum of positive rank-one idempotents. Since
{MP}, is a coarsening of {MM},, S, is a direct sum of idempotents which are

full (because each is a direct sum of positive idempotents) with respect to £2(X) =

@,Mfg). Suppose
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and " " 4
Sll S]Z 13

— " 1 (7
S2 = ‘521 522 523

with respect to L3(X) = &M so that

Qi roQn Qe
SIISIISII 511512‘922

— toQi e roqn
515251 - SZ2 21511 S22S22 22

Then we know that the nondiagonal blocks are zero and the diagonal blocks are
positive idempotents. But any nondiagonal block is of the form S5,,5;)5], for 2 # j.

Since 5}, and S}; are full, therefore S, 575", = 0 implies that S} = 0. Thus both 5
and S, are diagonal with respect to the decomposition £L*(X) = @;M,m.

Next, consider (.51.5257)55(51.5251). Asreasoned above, there shall exist a coarsen-
ing {M,(S’}, of {M?)}, such that with respect to the decomposition £L3(X) = & MP)
Sy, Sg, and S3 are diagonal. Proceeding like this, after k steps, we shall arrive at
a direct sum decomposition @2, M*) of L%(X) with respect to which each S; has
zero nondiagonal blocks . This proves that S is decomporable, in fact it is block
diagonalizable with respect to £2(X) = a:mM®. O

Next, we prove the result that a nonnegative finite band with constant infinite

rank is decomposable. For this, we need a couple of lemmas.

Lemma 3.5.7 If a band S has more than one member, then there exists P € S such

that PSP is a proper subset of S.

Proof. Suppose there does not exist any P in S satisfying the required condition.
Then PSP =S Y P € §. We claim that this implies PSP = S for all P and S in
S. If S8, then S = PSP for some S; € S, i.e., PSP = PSP = This furthei
gives that PSPS = S and SPSP = S, i.e., PS =5 =SP forall Pand 5'in §. Thus
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S = Piorall P, $in 8. Hence § is a singleton which contradicts the hypothesis.

Therefore, there exists some P € § such that PSP is properly contained in §. U

Lemma 3.5.8 If a collection § C B(L*(X)) contains a member P which ts a full

idempotent such that PSP is decomposable, then so is S.
Proof. Since PSP is decomposable, there exists a decomposition of £L2(X), say
£2(r¥) = CQ((Yl) P;B £2(1¥2)
with respect to which every member T of PSP has the block matrix form
(Tu T 12)
0 Tw/
As P is a member of PSP, it also has a block matrix form with respect to the above
( P X)
\0 P/
But since P is a full idempotent, by Lemma 3.3.12, we get X = 0. Now for any
S lq
S’eS,let( neoon
21 S22
decomposition. Then
/P 0 S S P 0
pip kl )(11 12><1 \
0 Pz 521 Szz O PZ)
B (P1511P1 P1512Pz>
PySu P PySaPy)

decomposition, say

) be the block matrix form of S with respect to the given

By decomposability of PSP, we have P,S51 P =0V S € S. But P, and P, are full
because P is full and therefore, by Lemma 3.3.12 we get S3; =0V § € S. Hence S

is decomposable. [J

Theorem 3.5.9 A nonnegative finite band in which every member has infinite rank

s decomposable.
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Proof. Let & be a nonncgative finite banud with constant infinite rank. We shall prove
the theorem by induction on |§|, the cardinality of S. Suppose |S| = n. Assume that
every nonnegative band with constant infinite rank which has cardinality less than n
is decoruposable.

Consider &. If § is a singleton, ther by Theorem 3.3.5, it is decomposable.
Therefore, assume that |S| > 1 By Lemma 3.5.7, there exists P € & such that PSP

is a proper subset of S. By Theorem 3.3.13 (b), P has a block matrix form

0 XE XEY
0 EF FEY
0 0 0

with respect to some decomposition
L3Y) = L2(%) & L2(%) & L2(%a),

where E : L2(X;) — L3(X,) is full. For any 5 € S, let

Su Sz Sz

S S S

Ss1 a2 O
be its block matrix representation with respect to the above-mentioned decomposition
of the space. Then

0 XE XEY Sui S12 Sz 0 XE XEY
PSP = 0 FE EY St Sa2 So3 0 FE EY =
0 0 0 531 332 533 0 0 0

0 XE(SuX+YSuX+5n+YSn)E XE(SnX+YSuX+ S+ YSw)EY
0 E(SuX+YSuX+Swn+YSn)E E(SuX +YSuX + 52, + YS3)EY
0 0 0

Let

T = {E(SﬂX + Y550 X + 59 + Yng)E : PSP e PSP}
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Observe that 7 is a nonnegative band such that |7| < |PSP| < |S|. Then by the
inductive hypothesis, 7 is decomposable. Therefore, there exist Borel subseis £, F

of X with u(E).u(F) > 0 such that (T'x,,x.) = 0VT eT.

Su Sz S
= (B(SuX +YSuX + S0+ YS0)ExpXs) = 0V S=]51 S»n Sn|€S
Sa1 Sz Sz

= <E521XEXE’ XF) + (EYSSIXEXEa XF> + (ESQZEXEa Xp) +
(EYS32EXE,XF) =0V Ses.

Since all the operators are nonnegative, this gives that
<ES22EXEa XF> = Ov

in other words, the collection {ESyF : S € S} is decomposable. Also this collection

contains E which is a full idempotent. Therefore, by Lemma, 3.5.8, the collection

S Sz Sis
Sy S =180 Sn S |{ES
Ss1 Sap Sas

is decomposable. Just as in the proof of Theorem 3.3.14, we conciude that S is

decomposable. O

Corollary 3.5.10 A finitely generated nonnegative band in which every member has

infinite rank is decomposable.

Proof. This is a consequence of the interesting result on abstract bands due to Green

and Rees [4]: every finitely generated band is finite. O

Coroliary 3.5.11 Ewvery finitely generated nonnegative infinite-rank band S has the
property that any mazimal standard block triangularization of S is such that the com-
pression of S to each nonzero gap constitutes o nonnegative finite band with at least

one element of rank one in it.

Proof. Same as in the finite-dimensional case /<. Theorem 1.3.7). O




Chapter 4

A geometric characterization of
maximal, nonnegative,
indecomposable bands of constant

finite rank

We shall borrow the notation and the terminology from the preceding chapter to
define our Hilbert space £L%(X), the space B(L?(X)) and all other terms used in this
chapter.

We have proved in Theorem 3.4.8 that every maximal, indecomposable, nonnega-
tive band with constant finite rank r, say which is full is the direct sum of maximal,
indecomposable, nonnegative rank-one bands. Thus the structure of such bands is
completely determined if the structure of maximal, constant rank-one bands is known.
In this chapter, we shall obtain a geometric characterization of maximal, indecom-
posable, nonnegative constant rank-one bands.

Before we embark on this task, we would like to mention for reaso.1s which will

be apparent later that our field of scalars € will be replaced with R.

78
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We know that a nonzero, nonnegative rank-one operator in B(L*(X)) is of the form
u ®v, where u, v are nonzero, nonnegative functions in L2(X) and (v ®v)f = (f,v)u
for all f € L2(X). Further, for u ® v to be an idempotent, u,v must satisfy the
equation (u,v) = 1.

Thus, if S is a nonnegative band of rank-one operators in B(L?(X)), then we can

find sets &,V in the nonnegative cone of L%(X), viz. K, so that S CU ® V, where
URV={uRv:uel, veV}

and

(u,v) =1forall u €Y and for all v € V.

(By the nonnegative cone of £L2(X), we mean the set K = {f € L3(X): f > 0}).

Further, if § is maximal, then we must have S = ¢ @ V for some U,V of the
kind mentioned above. We wish to find the general form of ¢ and V for a maximal,
nonnegative, indecomposable band S of rank-one operators in B(£2(X)).

We observe that if uj,us € U, then (fu; + (1 —t)ug,v) =1 for 0 <t <1 and for
all v € V. Thus for a maximal &f ® V, U must contain all the convex combinations of
its members too. Furthermore, it is clear that Z{ is closed (in norm). Also, we cannot
have every member of U equal to zero a.e. on any Borel subset of X’ with positive
measure, for if, there were such a set, say W C X such that u = 0 a.e. in W for every

u €U, then for any u € and v € V,
(W o)fixw) = [ (u®v)(x) ulds)
= [ (f0hule) w(do)
= (f,0) /W u(z) p(dz) = 0 for all f € L2(X)

which by Lemma 3.2.5 implies that ¢ ® V is decomposable. This together with the

fact that U is closed and convex allows us to assume with n» loss of generality that
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U has a positive element. Let us pick one such element in U, say ug, 2.e. up > 0 a.e.
on X.
Now, any u € U satisfies {u,v) =1 for all v € V. In particular, {ug,v) = 1 for all

v € V. Thus, for any u € U,

(u,v) = {(up,v) forallveV

4

(u—wug,v) =0forallveV
U —up € Pt
wEug+Vtforallueld
U C up+ V-

4 44

Also, if v' € V*, then for any v € V,
{uo + V', v) = (ug,v) = 1.
Thus, by the maximality of S, we obtain
U= {u+V*+InK. (4.1)
By the same reasoning, we can find a positive vector vp in V and obtain
V={uwn+U}nK. (4.2)

Next, we show that if &/ and V are given as in (4.1) and (4.2) respectively, for

some positive ug, vo and subspaces W, Z, i.e.,

U= {ug+W}nk (4.3)
V={vw+Z}nK (4.4)

where (ug,vo) = 1, W = {vo + Z}- and Z = {uo + W}, then S = U RV is a

maxima' band of nonnegative rank-one operators in B{L(X)). It is easy to see that
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& forms a nonnegative band of rank-one operators. Suppose § is contained in a band

Sy of rank-one operators, where
ScUV ={{Qv: v el v eV,

for some sets U, V' C K and (v/,v) =1 for all v’ € &’ and v’ € V.
Let S =p®q € Sy Since S is a semigroup, u@v-p&H g€ Soforall u@v € S.
Therefore, for any f € L*(X),

(u@v)(p®a)f = (u®v)(fiq)p

(f:q) ((u Q@ v)p)
= (f,q) (p,v)u

(p,v} ({f,q)u)

(p,v) (u®q)f

({pv)urq)f
ie. (U@V)(p®q)=(p.v)u® q Thus (v ®v)(p q) is an idempotent if and only if
{{p,v)u,q) =1, i.e.,if and only if {p,v) (u,¢) = 1. With no loss of generality, we can
assume that (p,v) =1 and (u,q) =1 (for if, (p,v) = a(# 1), then (u,q) = ;1-[-, so that

I 1
we can write s = —p®aq = p'®q’ wherep’ = =P ¢ =agqand (p',v) =1, (u,¢') =1).
o

Now
(uyq) =1foralluecl
= (up,q) =1and (wptw.q)=1YweW
= (ug,q)=1and (w,q) =0Vwew
= (wtwqg—v)=0YVweWw
= g—vg € {yp+ W}t =
= g€ +Z=YVY

Similarly, we can show that p € Y. Thus p® ¢ € U ©@V = S which implies that
Sy C 8. Hence S is maximal.
Next, we would like to see which subspaces W and Z give rise to maximal in-

decomposable bands as in (4.3) and (4.4). Suppose there is sume w € W such that
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w =0 or w < 0. Consider the case when w > 0 and the support of w is a Borel

subset of positive measure. Then

wv)—OVv(—EV
= / pdr)=0Vvey
= w(:c)()::()a.e.on)( YveV (asw,v2>0)

Let N = supp w, then » = 0 a.e. on N Y v € V. By the same argument given once
before, this will yield decomposability of S which is not true. Similarly, if w < 0 with
positive-measured support, we shall find S to be decomposable. This shows that
every vector of W must necessarily be a “mixed” vector i.c., a vector having positive
and negative parts with supports of positive measure. In other words, the space W
intersects K trivially. Following the same argument, we conclude that Z N K = {0}.
(We shall call such a space a mixad space).

We summarize the discussion above in the following theorem.

Theorem 4.1.1 Let § be a mazimal, nonnegative, indecomposable band of rank-one
operators in B(L2(X)). Denote the positive cone of L*(X) by K. Then there exist
positive vectors ug, vo in K with (ug,vg) = 1 and there exist mized subspaces W, Z

of L2(X) with W = {vo + 2}, Z = {ug + W} such that S=U® V, where

U = {ut+W}nk
V = {uw+Z}nk.

Since we would like to conclude with an example in finite dimensions, let us
see what form a nonnegative, maximal, indecomposable rank-one band assumes in
M (R).

A nonzero rank-one operator in R" is of the form: zy* for some nonzero zr,y € R".
It will be an idempotent if and only if its trace equals 1 i.e., if and only if y*zr = 1. If

we denote the nonnegative cone of R* by R, then by what we have obtained above,
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a maximal, nonnegative, indecomposable band of rank-one matrices in M, (R} is of

the form X'Y*, where
r‘t’ = ‘{(l+ W} ﬂ R:‘_
Y = {b+2Z} n R}

for some positive vectors a, b in R™ and mixed subspaces W, Z.

a
Further, we observe that the positive vector ¢ = | : | can be replaced with the
@y
1
vector € = | : | if the whole band is transformed by an appropriate similarity L,
1
where [, is given by
ay
a;
1
a'ﬂ

Then instead of working with YY", we work with LYY*L~! which is again of the
form X’)’" where A’ = LY and V' = ((L~1)*))".
A special case is when Z = {0}, i.e., when .V is a singleton. In this case, Y)* is

similar (upto a diagonal similarity with positive diagonal entries) to

Ly Iy ot Iy
ottt e, =1,0,20

ST . SRR J
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