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Abstract

This thesis addresses the problem of globally-consistent localization and mapping
simultaneously for autonomous mobile robots in an unknown and unstructured 3D
environment by sensor fusion. It belongs to the research area of simultaneous local-
ization and mapping (SLAM) in a mobile robot community. The main contribution
presented in this thesis is thé development of a set of new algorithms for an au-
tonomous mobile robot with full 3D SLAM ability by multi-sensor fusion. It can be
classified in the following aspects: (1) A measurement system architecture designed
for mobile robot localization and mapping in a large and unknown environment. Based
on the general SLAM method, a simple structure is designed by using a stereo camera
and a set of range sensors to solve the 3D SLAM problem in an unknown environment.
(2) Registration uncertainty for robot self-localization in 3D. This is an approach to
estimate registration uncertainty where the feature correspondence-based method is
used during the process of robot pose estimation. (3) Algorithms for efficient map
building in large area. By using set theory, a set of new algorithms for efficient map-
ping building is designed during the SLAM solution processing. (4) An algorithm
design of a globally-consistent 3D SLAM by sensor fusion. One sensor such as stereo
camera will be used for local SLAM and another sensor such as buoys or GPS will
be used for global path estimation. The estimation results from both sensors will be
fused in a global coordinate system to form a globally-consistent map and path for the
mobile robot. (5) A mobile robot simulation system designed for full 3D SLAM appli-
cation. In this 3D animation system, a robot would navigate in a virtual space and
measure the features with all equipped sensors in its view field at every time. These
measurements are used to evaluate algorithms for mobile robot in any environment.

The strategies and methods provided in this dissertation can be used for any au-
tonomous mobile robot. There are a number of directions in which the work presented
here ébuld be extended to many other challenging areas and the same strategies could

be applied.
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Chapter 1

Introduction

1.1 Thesis Statement

3D SLAM is a very important research topic in the mobile robot community, especially
in the area of underwater application. A set of new algorithms is designed to solve
'~ this 3D SLAM problem by using multi-sensor fusion. These new algorithms have

been verified by simulations and experiments in indoor and outdoor environments.

1.2 Motivation

‘The earth consists of one-third land and two-thirds water. From the beginning of
human existence until recently, most of the human activities have taken place on
land. Although many brave pioneers have already explored the underwater world,
more equipment and tools are needed to expand man’s ability for underwater ac-
tivities such as underwater exploration, fish farming, underwater timber harvesting,

environmental assessment, and underwater disaster salvage.

To accomplish this, an autonomous aquatic walking Robot is being designed by
research groups from McGill University, York University, Dalhousie University and
will have the ability to swim, and walk on land or the ocean floor. Many challenges
~ have to be surmounted: basic vehicle design and function, motion control, modelling
and processing of sensor data, pose estimation, map building, scene reconstruction,
and exploration and autonomous navigation within 3D environments. Of them all,
Simultaneous Localization And Mapping (SLAM) for this underwater robot will be
the central topic of this thesis.

Simultaneous Localization and Mapping (SLAM) has been a difficult challenge

and an active research topic in the autonomous robot research community. It is

. .



2

based on a fusion process that includes fusing observations of features or landmarks
with dead-reckoning information to estimate the location of a robot in a unknown en-
vironment and to build a map which includes the landmark locations. This method
has many significant advantages, described in [19]: “(1) it does not need a priori
-topological map of the environment; (2) it does not need to set landmarks in the en-
vironment; and (3) it greatly enhances the robot’s ability”. The applications of the
SLAM technique have attracted great attention from underwater autonomous robotic
researchers, aquaculture businesses, autonomous planetary explorers, and developers
of autonomous air-borne vehicles, autonomous battle surveillance vehicles, and au-
tonomous all-terrain vehicles for tasks such as mining and construction. These are
the situations where absolute position or precise map information is inaccessible or

too expensive to obtain.

The conventional measurement system for SLAM used on land autonomous vehi-
cles is not suitable for the Autonomous Underwater Vehicle (AUV) since the environ-
ment in water is different from the environment in air. The main aspects which affect
the robot’s measurement system include the following: firstly, no GPS information
can be directly used in the water; secondly, odometry information measured by the
encoder installed on the robot is not reliable and is useless because of unpredictable
currents in the open ocean area; and thirdly, visibility in water is not as good as in
air, this will influence the camera’s function. In order to ensure the AUV’s SLAM
mission is successful, designing a new measurement system is the first step. We will
use off-the-shelf sensors, such as video camera, hydrophone, strap-down inertial mea-
surement unit (IMU), global positioning. system (GPS), and digital compass for this
observation measurement system, which will be efficient in terms of time and cost.
Hence, a sophisticated multi-sensor fusion algorithm will be designed for optimal

location estimation and map building.

1.3 The Problems

Simultaneous localization and mapping has been one of the challenging and critically
important problems in the mobile robot community. Most previous research addressed

the 2D context of navigation in a plane, which involves three degrees of freedom (two
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‘translational and one rotational). In the underwater environment, the problem is
inherently a 3D one, which involves six degrees of freedom (three translational and

three rotational). These challenges for underwater robots can be classified into the
three fields listed below.

1.3.1 Pose Estimation

Only in the last few years have methods been developed to allow reliable pose estima-
tion and navigation in natural terrestrial environments. Doing this in an underwater
environment remains a substantial challenge and yet this is a critical ability for a
large range of basic navigation tasks. For terrestrial and airborne applications this
can be accomplished using technologies including Global Positioning System (GPS),
artificial visual landmarks, or extraction of known structures in the environment such
as door frames or other environmental artifacts. The existence of many recently pub-
lished papers [40, 56] indicates that this is still an active research topic, while most
of the papers are still focused on the indoor environment and terrestrial outdoor
environment. On the other hand, in the underwater environment, GPS signals are
unavailable, artificial landmarks are often impractical or impossible to put into place,
and techniques for selecting or detecting naturally invariant landmarks have not been

examined, therefore, it is certainly a major research challenge.

1.3.2 Efficient Map Building

A precise map will enable a robot to navigate lits environment autonomously. Since the
last decade, several kinds of maps have been established, such as grid occupancy map,
topological map, and geometric map. Some approaches for consistent map building
have been used widely. Recently, hierarchical maps have been introduced for large
environment map establishments. Most of the previous map building was focused
on 2D maps; however, in an underwater situation, the environment is unstructured,
landmarks are sparse, and maps should be in 3D. Techniques to establish consistent

3D maps in these situation are still a big challenge.



1.3.3 Globally-Consistent 3D SLAM

The scenario of SLAM is briefly described as follows: a robot is placed in an unknown
location and environment, and the robot must estimate its whereabouts and establish
a map using only observations from dead-reckoning sensors, at the same time. The
map produced will be used by the robot for navigation. This was a problem posed
several years ago, and it remains a very active research topic in the mobile robot
community. In real application, especially for the underwater en{fironment, there are
many challenges. The first is that the SLAM is 3D, which means it has 6 degrees of
freedom (three translational and three rotational); this is much more difficult than
SLAM in 2D, which has only 3 degrees of freedom (two translational and one ro-
tational). The second is that the environment is not compatible with some sensors
or algorithms. This will cause the SLAM to not be able to process correctly in this
environment. For instance, if the sensor cannot observe any landmarks for several
steps, the path is only estimated based on unreliable odometry information; if the
sensor then observes some new landmarks in the following steps, these landmarks
will be added to the map, but their positions are dependent on the unreliable path.
In turn, these unreliable landmark positions will be used to estimate the subsequent
robot path based on the sensor’s observation. As a consequence, the path and 3D

map are not reliable and consistent. This is one of the biggest challenges in SLAM.

1.4 Objectives

This thesis solves the SLAM problem faced by the underwater mobile robot. When
applied in a real situation, SLAM can be divided into 2D path and 2D map estimation,
2D path and 3D map estimation, and 3D path and 3D map estimation. The first
estimation is called 2D SLAM, the second 3D SLAM, and the last full 3D SLAM.
In my thesis, I focus on the full 3D SLAM problem. In the proposed set of new
algorithms, a globally-consistent 3D localization and map is achieved with multi-

sensor fusion.



1.5 Contribution

~ The main contribution of this thesis is the development of a set of new algorithms for
an autonomous mobile robot with full 3D SLAM ability by multi-sensor fusion. The

interrelated problems the new algorithms solve are the following:

(1)A system architecture designed for underwater mobile robot local-
ization and mapping. Based on the general SLAM method, a simple measurement
system structure is developed by using a stereo camera and a set of range sensors to -
solve the 3D SLLAM problem in an unknown environment, such as underwater. A
complementary fusion algorithm takes advantages of two types of sensors: range sen-

sor for long range, and camera for short range and map building.

(2) Registration uncertainty for robot self-localization in 3D. An ap-
proach to obtain uncertainty of registration is proposed while the correspondence-

based method is used during the process of robot pose estimation.

(3) Efficient map building in large areas. By using set theory, a new al-
gorithm for eflicient map building is designed based on the overlap of measurements
and the numbers of landmarks required for ego-motion estimation. The algorithm for

the efficient map building is robust to withstand noise.

(4) Globally-consistent 3D SLAM by sensor fusion. In natural environ-
ments, it is difficult to establish a global map with the measurements from a stereo
camera since there may not be enough landmarks in certain areas. Measurements
from a camera will solve the SLAM problem based on a local coordinate system, and
the measurement from range sensor, such as buoys ! or GPS, will be used to estimate
a global path of the robot. A new algorithm integrates the global path and local
SLAM results and generates a globally-consistent map and path for the mobile robot.

(5) A mobile robot simulation system designed for full 3D SLAM ap-

plication. In a virtual 3D robot working space, landmarks in 3D space or on the

1Buoy is a small boat which is equipped with many sensors such as GPS and hydrophone array.
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floor can be preset, the robot speed and robot path are designed, sensor type (camera,
laser, sonar, and radar) can be selected, and working environment (underwater, space,
and land) can be defined, before a simulation starts. A robot would navigate in the
virtual space and sensors measure the landmarks in its view field at all times. These

measurements would be used to evaluate the algorithm for full 3D SLAM estimation.

1.6 Outline of the Thesis

This thesis consists of eight chapters. Besides the introduction in chapter 1, the other

chapters will be briefly presented in the sequence.
Chapter 2 is the summary of previous work on the SLAM problem.

Chapter 3 introduces the sensors which are used to solve the 3D SLAM problem in
this thesis. These sensors are stereo camera, GPS, and range finder (a set of buoys in
water). The measurements from these sensors are used to estimate the position of the
robot which is employed. Since these sensors are heterogenous, the algorithm used by
each sensor is different. An important aspect of this chapter, is that the method for
registration uncertainty for mobile robot self-localization in 3D is proposed based on

a stereo camera. Various results for each sensor type are also presented in this chapter.

Chapter 4 presents some general procedures and algorithms to solve the SLAM
problem. This includes the problem definition, models which will be applied for 3D
SLAM, data association mechanism, and the algorithm to solve general SLAM prob-
lems, such as particle filter and fast SLAM. A multi-sensor configuration is designed
and an associated algorithm is developed to solve the full 3D SLAM problem for

mobile robots, especially for underwater robots.

Chapter 5 presents the new algorithm designed for efficient map building. It starts
with the problem definition of a real map for mobile robot, then gives the requirements
for map establishment. Finally, three new algorithms designed for map building are

introduced. Each of the algorithms is verified by simulation results.
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Chapter 6 is the simulation of a mobile robot in 3D space in different environments
with the general algorithms for SLAM. Before the implementation of simulation, this
chapter briefly introduces the design and structure of a 3D mobile robot simulation

system which is developed for 3D SLAM and other operations.

Chapter 7 presents experiments results in a water environment, robot lab, and
outdoor environments. In the water environment, we focused on the sensor testing
such as camera and buoys. In the robot lab, we did the experiment with an arm
robot, and the data were applied to validate the SLAM algorithms in a controllable
environment. The outdoor experiment took place in an unknown environment; the
purpose of the.experiment was to check the suitability of our developed algorithms

in an unknown environment.

Chapter 8 discusses open issues which need to be addressed to make the system

complete and robust. Finally, it discusses the results of this thesis.



Chapter 2
Background

SLAM includes two main tasks: robot localization and map building. Both of them
are not new, but accurate solutions for both of them at the same time is a hot topic
in the autonomous mobile robot community. In this chapter, a survey in this area is
provided, which consists of four main topics: SLAM for autonomous mobile robot in
section 2.1, SLAM for underwater mobile robot in section 2.2, maps used for mobile
robot in section 2.3, and globally-consistent SLAM in section 2.4. The chapter is then

summarized.

2.1 SLAM for Autonomous Mobile Robot

SLAM was started when the concept of stochastic map [79] was presented about
twenty years ago. This map included not only the position of landmarks, but also the
spatial relationships and their uncertainties, and the inter-dependencies of landmarks
for mobile robots. A little later, a method to calculate the features’ uncertainty by ge-
ometric transformation between coordinate systems with efficient and consistent ways
was developed in the paper [24]. At the same time, another method was presented
in [4] [11], which was a Kalman filter-based algorithm for mobile robot with visual
sensor. Based on these contributions, the term Simultaneous Localization And Map-
ping (SLAM) was introduced [48]. Since then, this field has attracted a considerable

amount of attention in the last ten years.

2.1.1 Model—based Robot SLAM

Model-based robot SLAM is one of the most widely used methods. It has three basic
models: robot model, features model and sensor measurement model. During the
robot navigation in an unknown environment, the measurement of the features will
be integrated with the prediction of the position of the robot to estimate the optimal

robot position and features position. Since the state vector includes both the robot

8
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state vector and the features state vector, the robot pose and features position can

be estimated at the same time.

Based on previoﬁs work, the models which are used for SLAM have been explicitly
explained in [19]. The solution for the SLAM problem has been proved in this paper
such that the estimated map converges monotonically to a relative map with zero un-
certainty, and the absolute accuracy of the map and the vehicle location reach a lower
bound defined only by the initial vehicle uncertainty. It is also shown that a mobile
robot can incrementally establish a perfect map of the environment and compute a
bounded estimation of the robot location simultaneously, starting from an unknown

location in an unknown environment.

Given the robot model, landmark model, and measurement model, the Kalman
filter {70, 19, 79] can be used to construct an estimator of the robot and all the land-
marks at every process time. In real application, the robot model, landmark model,
and measurement model would not be linear equations. Therefore, the EKF [19, 79]
is a solution using a linear approximation of the system to maintain a state vector
containing the locations of the robot and landmarks, as well as an approximation
of correlated uncertainty in the form of a covariance matrix. But the EKF would
become prohibitive in large environments because of the growth of complexity due to
the update step requiring computation time proportional to the square of the number

of landmarks. In this case, the particle filter [32, 83] should be used.

Each of these feature-based methods has its advantages and disadvantages. How-
ever, the similarity among all is the increase in computational complexity with the
size of the environment and the number of landmarks. Several techniques have been
proposed to alleviate this problem, such as the unscented Kalman filter [43], fast-
SLAM {60, 78], and submaps [74, 6]. Among all the above listed methods, fastSLAM

is the most prominent and widely applied in the autonomous mobile robot community.
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2.1.2 Vision-based SLAM

Vision-based robot localization also belongs to the feature-based method, where fea-
tures extracted from an image are registered with a model by establishing correspon-
dence between the two models. An example of line segments as the features which
are extracted from images to register with the model was presented in [4]. It applied
probabilistic predictions of feature locations and their uncertainties. In order to im-
prove the estimate reliability, the features with small error covariance or features that
could be matched with unambiguous were registered first. The uncertainty in the po-
sition of the other features could be decreased as soon as the robot pose was updated
by the correctly matched features. Therefore, other features could be registered more
reliably. The line segments as features from image to register for the robot navigation

were also used in [29).

For the SLAM problem, the environment is unknown; therefore, there is no model
which can be employed to be registered with the features extracted from images. In
this case, if two consecutive images have enough overlap and corresponding matched
features extracted from both of the images, the ego-motion of the robot equipped

‘with a camera can be estimated by registering thiese corresponding image features.

Approaches for extracting motion information from image sequences can be classi-
fied as correspondence-based and flow-based. Correspondence-based methods [63, 59,
33, 72] track distinct features such as corners, lines, high curvature points, SIF'T, etc.,
through the image sequence, and compute 3D structure by triangulation. Flow-based
methods [14, 88, 55, 3] treat the image sequence as a function f(z,y,t), where (z,y)
are image pixel coordinates and t is time. It restricts the motion between frames
to be small, and computes shape and motion in terms of differential changes in the

function f.

In the correspondence-based method, the most important step is to register the
two sets of data according to the correspondence. Once we obtain the correct reg-

istration parameter, we face the question of how precise it is. The least-squares
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minimization procedure to obtain the robot pose as well as its covariance was pre-
sented in [51]. Based on this method, a method for mobile robot localization and
mapping with uncertainty by fusion of robot odometry information and visual esti-
mation information with Kalman filter was applied in [73]. A very similar approach
to solving the robot pose and its uncertainty problem with a single camera was in-
troduced in [17)].

Another way to estimate the robot pose uncertainty is the statistical analysis
method which is based on the implicit function theorem (28, 14]. This method was
used to derive a general strategy to analyze the propagation of measurement and
calibration errors in [42] and to estimate the registration parameters and to recon-
struct the model of the scene consisting of planar patches. The issues of sensitivity
and robustness in their motion recovery algorithm from the image velocities was ad-
dressed in [54]. An error characterization of the factorization method for 3-D shape
and motion recovery from image sequences using matrix perturbation theory was pro-
posed in [81]. All of the above methods are applied to the flow-based method. Using
the same idea, a sophisticated procedure to estimate robot’s pose uncertainty was
derived from a function of maximum likelihood in the paper [92], which is applied to

the correspondence-based method.

If the registration can be completed between two consecutive images by using the
previous methods, and assuming that the start position of the robot is the original
point of a global frame, the robot pose in the global frame can be obtained by the
ego-motion information incrementally [33, 90, 78]. With the robot’s global pose in-
formation and features extracted from images, a map can be built simultaneously.
For example, a volumetric 3D map of its workspace was established with the data
structure of octree in [33]. Since most of the features are located in some small area
while most of the other spaces lay empty, all the previous data structures cannot solve

the efficient search problem for the map with a large number of features.
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2.2 SLAM for Underwater Robot

Compared with the land and/or air-based mobile robot, the problems of autonomous
underwater robots are similar in theory, but much more difficult in reality, as they are
3D problem with no available GPS. They share common navigation principles such
as robot modelling, observation modelling, prediction and observation update. The
difference among them is that there are no accurate odometric sensors and the robot

models for the challenging water environment.

There are two approaches to the autonomous underwater vehicle (AUV) naviga-
tion. One of them is to use Doppler Velocity Logs (DVLs) to estimate vehicle position
by dead reckoning. In order to mitigate the dilution in accuracy with mission time,
integrated DVL with an inertial measurement unit (IMU) is adopted by most sys-
tems [46]. Another approach is to use acoustic ranging equipment to provide distance
measurements to transponders at known locations [86]. This approach relies on GPS-

aided calibration of pre-deployed acoustic transponders before the mission begins.

The Australian Centre for Field Robotics has developed a submersible vehicle that
can be used for navigation and SLAM operation. The results of the application of
a SLAM algorithm to estimate the motion of a submersible vehicle were presented
in [87]. Scans obtained from an on-board sonar are processed to extract stable point
features in the environment. These point features are then used to build a map of
the environment while simultaneously providing an estimation of the vehicle location.
Sonar and camera sensors for the SLAM problem are also used for this problem [57].
Blob-like patches were applied to separate feature information from background noise
and other errors. By using multilevel feature spaces with the probability theory, a
map built from many consecutive scenes is more reliable and the estimated path is

more accurate than the results obtained by using a single sensor.

2.3 Maps for Mobile Robot

Maps are a very general tool for navigation and exploration. In the early human

exploration, our ancestors had to build a map for their activities. Since this early time,
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maps played a very significant role, such as for airplane navigation, ship navigation,

and travelling.

2.3.1 Geometric Map: Occupancy Grid Map

A geometric map represents the distance between obstacles or landmarks. It is a very
accurate approach to describe the surrounding environment. In this case, a certain

area is modelled as some geometric primitives.

The most common geometric map is an occupancy grid map in which the working
space is divided into grid cells, and the value associated with each cell represents its
degree of occupancy. Various methods have been used to generate occupancy grid
maps, such as Bayesian [62, 12, 18] and fuzzy logic [26]. An advanced example of an
occupancy grid map is the map of the Smithsonian museum with a successful track
of over 2km [18]. While early occupancy grids are primarily two-dimensional, 3D

occupancy grids have also been used [61, 71, 20].

In order to obtain an map, the grid should be fine, which is inefficient in terms of

both storage and computation.

2.3.2 Geometric Map: Stochastic Feature Map

Another geometric map is a feature-based map. Leonard et al. [47] indicated that
robot navigation requires a precise and concise feature-based map which can generate
efficient prediction of what the robot should see from a given location. Many features,
such as points, lines, line segments, planes, semi-planes, and corners, have been used
in mobile robot navigation [10, 11, 15, 28]

The feature-based map is expressed by the stochastic map. A stochastic map con-
sists of uncertain spatial relationships which are tied together in a representation [79].
It includes the spatial relationships and their uncertainties, and the inter-dependencies

of landmarks. For instance, if there are two landmarks Iy = {z1, 31} and ly = {z2, ¥},
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their stochastic map is expressed by
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where the diagonal elements in the covariance matrix are the variances of the spatial
variables, and the off-diagonal elements are the covariances between the spatial vari-
ables, which indicate the interdependence of the landmarks. This expression for the
feature uncertainty has greatly improved the implementation of transformation from

one coordinate system to another among the sensors [24)].

The key to the stochastic map is that it solves the problem of uncertainty for
the map, especially for the autonomous mobile robot. The sensor installed on a
robot is used to measure relative information between the robot and landmarks. No
matter how accurate the sensor is, the measurement error always exists, therefore,
the estimated landmark belongs to a certain type of distribution. The first moment

of this distribution is the estimated location, and the second is its uncertainty.

2.3.3 Topological Map

A topological map is an abstraction of an area which omits details of the environment,
but captures distinctive places or landmarks. This map only keeps elements of the
area and their relative locations or paths to each other. It describes the area using
a graph that connects distinctive places or landmarks in the world [23]. The vertices
of the graph are the distinctive landmarks, and edges are the direct paths which are

accessible. A topological map is expressed by

G = (V,E) (2.3.3.1)
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where V is a set of vertices which is denoted by

: ) | T
V = vy v UN
and F is a set of edges which is denoted by
. .‘ T
E = ] € - EM

The key issue for topological map is to identify landmarks or distinctive places in
the area. In an indoor situation, the structured environment provides edges, corners,
and frames for natural landmarks. While in some cases a set of artificial landmarks
might be used, unfortunately, in the outdoor environment, there is no structure, and
it is hard to add in artificial landmarks. In this case, designing and selecting an

invariant landmark is a big challenge.

A topological SLAM approach in an indoor environment was presented in [13].
The researchers used sensors to scan the surroundings and located meet point as
distinct point to construct a generalized Voronoi graph (GVG) which includes some
metric information about the robot environment. The GVG is the best robot path
for navigation to avoid obstacles, and it was used as a high-level topological map for
navigation [49] because of its efficiency. This map was based on a set of low-level

feature based maps.

Topological maps are very efficient for storage and operation. However, they
require accurate obstacle sensing for navigation. Furthermore, robustly abstracting

places and connections from sensor data is a non-trivial problem.

2.3.4 Hierarchical Map

The stochastic map [79] has been used very widely in the autonomous mobile robot
community since its development in 1986. This map is built by estimation algorithms
(Kalman filter [85] and particle filter {69, 34, 19]) as soon as observation data is ob-
tained. If the number of landmarks in an environment is large, the map-building pro-
cess will take a long time even though a very capable computer is applied. Therefore,

hierarchical maps are introduced to solve this computational complexity problem.
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The Atlas system [7] is an approach in which current small-scale mapping al-
gorithms can be applied to obtain real-time performances in large-scale and cyclic
environments. In this approach, there is no single global coordinate system while a
set of interconnected local coordinate systems is maintained. Each of the local maps
has a limited size. This interconnected local coordinate system forms a graph in which
the vertices express the local map, and the edges express the transformation between
connected local maps. Similar approaches to build independent local stochastic maps

were also applied in [82] and [65]. These local maps are the vertices of a graph.

In order to build an efficient hierarchical map, three criteria to determine the
ending of a current local map and the beginning of a new local map were defined as
follows [25]:

e “The total number of features or landmarks in the current local map reaches a
threshold;

e The uncertainty of the estimated robot location with respect to the base reference

of the current local map reaches a limit;

e The number of matchings of landmarks between two consecutive measurements
found by data association is less than a model requirement for the last sensor

measurements.”

An important issue for hierarchical maps is how to decide or estimate the position
for a high-level map reliably. Loop-information in the robot path was used to optimize
the global map to make it consistent; however, in the event that there is no loop in

the robot path, the path error and map error would be unlimited.

2.4 Consistent SLAM

In the model-based SLAM approaches, the estimate locations and maps at step &
only used the estimation of locations and maps at step £ — 1 and the measurement
at step k. This estimation is a local optimal result. If a loop exists in the map, the

estimate result will not be consistent. Therefore, a SLAM algorithm with the ability
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to solve the revisiting problem is very important [83, 53, 35, 45].

Several groups have proposed algorithms that modify estimates backwards when
it is possible. Lu and Milios [53] studied consistent global estimation of a metric map
constructed using laser range data. Their method maintained a history of all the local
frames of sensor data used to construct the map and the network of spatial relations
between the frames. The spatial relations were obtained either by odometry or pair-
wise matching of the laser range data in adjacent consecutive overlapping frames. A
maximum likelihood algorithm was used to get a position estimate for each of the
frames by minimizing the Mahalanobis distance between the actual and estimated

‘relations over the entire network of frames. This method had been extended to build

maps on the site with large cycles in a more computationally efficient manner [35].

Another approach is based on the probabilistic framework with the Baum-Welch
algorithm for estimation of the revisiting problem [45]. A more generalized approach
for mapping in the absence of prior information was presented in [76] . This approach
uses local geometric information to disambiguate different locations. Both of the pre-
vious approaches built topological maps. A probabilistic approach to build large-scale
maps of indoor cyclic environments with mobile robots was developed in [83], where
an efficient algorithm was designed to estimate localization and mapping alternatively

with the probabilistic constraints from the robot motion and sensor perception.

Image-based SLAM can use overlapped information and path loop information to
solve the globally consistent mobile robot localization. A good example is the pa-
per [44] in which constraints were established at every intersection of a mobile path by
using large scale appearance image mosaics, and a global optimization processing was
implemented. Another example for this approach is based on the two steps optimiza-
tion [89]: multi-overlapped information for local optimization, and loop information
for globally consistent estimation. A little different approach presented in [77] is by
organizing a sequence of images acquired from Well—separated locations which has
limited prior odometric information. This approach employs a feature—based method

derived from a probabilistic pose estimation framework.
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“All the previous SLAM methods are used for 2D cases. An approach for 3D
SLAM from stereo vision in an indoor environment was introduced in [72] and (33].
The researchers used the loop information to establish a globally consistent map, but

this map is only in 2D plan because of its simplicity.

2.5 Summary

SLAM problem has been solved successfully in different situations at an indoor envi-
ronment by many researchers. In outdoor environments, there are also many positive
achievements in many cases. In order to make sure that the algorithms can be used
in real application, such as in an underwater environment, there are still a few things
that need to be done: (1) globally-consistent 3D SLAM; (2) efficient map building;
(3) best system architecture for underwater mobile robot. These issues will be dis-

cussed and solved later on in this thesis.



Chapter 3
Measurement from Sensors

During a robot navigation process, when the sensor installed on the robot observes its
environment and obtains some measurement, it should be able to estimate robot pose
and landmark position immediately based on the SLAM strategies and algorithms in
chapter 4. Different sensors will provide measurements that are different functions of
the robot pose. How to use these different sensors for SLAM is the main topic of this

chapter.

In this chapter, stereo camera, GPS, and range finder will be introduced, all of
which will be applied for a large area consistent robot SLAM. The content of this
chapter include the sensor structure, measurement property, feature extraction, and
related models. This chapter is arranged as follows: section 3.1 is the trinocular
camera, section 3.2 is the GPS, section 3.3 is the range measurement finder. Last, a

summary of this chapter is presented.

3.1 Camera

Stereo camera is a popular sensor which can be used by a robot for its navigation.
The advantage of using a camera is that it can obtain 3D information about the
environment. During the stereo image matching step between the left image features
and right image features, if the matching is incorrect, the 3D information will not
be correct for the 3D points corresponding to the mismatched features. In order to

increase the camera system’s reliability, a trinocular camera will be used in this thesis.

For a stereo or trinocular camera used for robot localization, there are three types
of correspondence which will be applied in the following section. First, correspondence
of features of the left, right and top image, at a particular time, giving a set of

3D points for that time; second, correspondence of 3D points from different times,

19
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Figure 3.1: The trinocular camera system developed by Point Grey Research.

assuming small movement of the robot, and therefore high overlap between 3D points

obtained at those times; third, features of images at different times can be matched.

3.1.1 Introduction of Trinocular Camera

A trinocular camera system consists of three standard cameras which are aligned so
as to have overlapping fields of view. A widely used trinocular system in robotic area
is the Triclops developed by Point Grey Research (Fig. 3.1). The Triclops has several
features that make it versatile and easy to use. The image transmission to the host
computer is completely digital via IEEE-1394, resulting in a no frame grabber jitter
or analog-to-digital conversion noise. All images are synchronized internally, remov-
ing sources of uncertainty in multiple camera systems. It is completely controllable
through a C/C++ API that allows quick prototyping and integration into computer

vision applications.

The relationship of the three lenses in a trinocular system is shown in Fig. 3.2.
In a well-calibrated trinocular system, it is possible to assume that the cameras have
parallel image planes, aligned with epipolar lines. The position of a point (z,y, z)
in a scene can be determined through triangulation based on corresponding points

in the images, pi(zt, yt), pr(zr, ) and pi(z;, y), obtained by the top, right, and left
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cameras.

z = bz /() — ) (3.1.1.1)
y = buy/ (21 — 2,) (3.1.1.2)
z="bnf/(x; — ) (3.1.1.3)

where by, and b, are horizontal and vertical baseline displacement between the camera

respectively. f is the focal length of the cameras.

Assume that the measured image coordinates in 2D and inferred 3D points by
triangulation from stereo images have normally distributed (Gaussian) errors. The
Gaussian distribution model to express the error of image coordinates is a common
and convenient approximation that will give an adequate performance [8]. The true
distribution of the 3D points is non-Gaussian because triangulation is a nonlinear op-
eration [59]. If the distance from the camera to the point is not extreme, a Gaussian

distribution for 3D is an acceptable approximation.

Due to the error in image coordinates, the covariance for the 3D point, P, (p =
f(pu,pr)), will be
P=J [ covlp) O } JT (3.1.1.4)
0 cov(p,)
where J is the Jacobian matrix of first partial derivatives of p respecting to the

random vectors p; and p,. It is expressed as

—bh.’rr/d2 0 bhzl/dz 0
J= —bhyl/dz b/d bhyl/dz 0 (3115)
—buf/? 0 buf/d®> 0O

where d = z; — z,. Usually cov(p;) = [0,,0;0,0,], o, is in the range from 0.01 to 0.5

and oy, is in the range from 0.01 to 0.5; and cov(p,) = cov(p,).

By using a trinocular camera system, three images (left, right, and top images)
can be obtained. The disparity among the images can be calculated by the correlation

between the top and right images and between the right and left images. The 3D
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Figure 3.2: The relationship of the three lenses in a trinocular system. where b, is the
base distance between top camera and right camera, by, is the base distance between right
camera and left camera; p;, pr, and p; are the image points of the real world point p3(z,y, 2)
in top, right, and left camera images, respectively.

information is called 3D cloud, which is a set of estimated 3D points corresponding
to matched features in the three images and it can be obtained using the disparity
and camera model. Therefore, three images and one 3D cloud file will be output from
the trinocular camera system for its real application. The correspondence of features

used here belongs to the first type.

3.1.2 Robot Pose Estimation with Stereo Camera

From the trinocular stereo camera system, three overlapping images can be obtained
every time. By using the relationship of the three lenses in Fig. 3.2, a set of 3D points
(or 3D cloud) can be calculated. If the images taken from two consecutive steps have
enough overlap, then corresponding points between the two consecutive images can
be established (this is the second type of the feature’s correspondence). Therefore,
3D points. of these images’ points can be extracted easily from their associated 3D
cloud. These two sets of associated 3D points can be used to estimate the robot’s

movement by data registration.

Assume a rectified image I, in which the distortion in the original image has been

corrected, also, a 3D cloud Cy, which is a set of 3D data of the environment in the
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camera view field, are obtained at time k, for all k. From the image I, a set of SIFT
features can be extracted. In a sequence of images, SIFT feature correspondence
can be established between any two consecutive images. RANSAC method [31] is
implemented to delete the outliers in the previous initial matching. For any matched
features, its 3D points could be obtained from its associated 3D cloud. Since the
SIFT feature gives a position in the image with sub-pixel accuracy, it is necessary to
use bilinear interpolation to obtain an accurate 3D position. Therefore, it is possible
to obtain, for a 3D point p;, in Ck, a corresponding 3D point pi,_, € R%,i=1,...,n,
in Cx_;. Since the two 3D point data sets are derived from different image frames,
their covariance will change with the depth. Hence, the corresponding points will
have different error covariances. We assume that the error for every point ¢ at time

k can be expressed as oy .

In order to obtain the robot movement information between time step k—1 and k&,
Gaussian based Maximum Likelihood (ML) method can be used in this problem [2,
59]. We can directly register the cloud Cx—_; to cloud Cy by using the corresponding
3D point data p_; and pi. Ideally, by some rotation Ry and translation T} for the
robot, the 3D point pi_; should be at the position of the 3D point pi. Due to the
errors from camera sensor and data processing, they will not be in the same position.

The difference of the position is expressed by
vi = p — Rapi_y — T (3.1.2.1)
where¢isin 1,--- ,n.

First, the 3D points pi and p} (3,5 = 1,---,n and i # j) are extracted from
image corresponding SIFT features in the image, which are assumed independent.
Therefore, the difference of the position v; and v; are mutually independent. Following
the standard assumption that the measured positions of SIFT image features in the
images are zero-mean Gaussian, the linearity of Eq. (3.1.2.1) justifies the assumption
that v; is zero-mean. Based on the Gaussian distribution and mutual independence

of v;, the approach of ML is equivalent to minimizing the following Mahalanobis
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distance. Therefore, we obtain the optimization formula:

in E(R,T.) = T'o-1y, 3.1.2.2
min  E(R, T) ;Vuv ( )

where S; = Rka],,;-c lR;‘f + 04 is its associated covariance.

Before the registration process, the centroid of the two sets of data can be acquired
aspf =y o, pPi/nand pi_, = > o, pi_;/n. By subtracting the centroid from each
point, two new data sets pi = pt — p¢ and pi_, = pi_| — p¢_, can be obtained.
Substituting these data sets pi and p¢_, into the innovation v;, the objective function,
Eq. (3.1.2.2), can be changed to

: _ si_posi \To-l(si _ p o
H}%cn E—Z(Pk Rypy-1)" Si (Bk — RiP—1) (3.1.2.3)

i=1
This is a non-linear function. Optimized solution can be calculated through lin-
earization and iteration, which was used by Olson et al. [66]. To simplify E, the ro-
tation Ry is expressed in the form of quaternion Ry = R(gx) and gx = (q&, ¢F, g%, ¢¥).
The objective function is linearized by taking first-order expansion with respect to
the rotation in the quaternion expression. Suppose ¢qq is the initial rotation estimate
and Ry is the corresponding rotation matrix, the first-order expansion of Eq. (3.1.2.3)

is:

E =Y (G} - Jig))"S7H(GL — Jigr) (3.1.2.4)
1=1
where J} = [%:%’fﬁ};_l, %%ﬁ};_l, %%ﬁ};_l, %ﬁ};_l] (see Appendix A), and G = P} —

RoPi_, — Jigk. Differentiating the objective function with respect to g and setting
the derivatives to zero yields a closed form solution for g:

n

@ =y (ST Y (UL STG) (3.1.2.5)
=1

=1

After acquiring the solution of Eq. (3.1.2.5), this estimated rotation is used as an
initial estimate of the next step, and the process is iterated until it converges. Then

the translation can be obtained by
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3.1.3 Uncertainty of Robot Movement Estimation

From the objective function Eq. (3.1.2.4), it is obvious that the rotation g; and
the measurement My (= [pL_;,pL]7), (i = 1,..., N) are related through an implicit
function.

(gr, M) =0 (3.1.3.1)

According to the implicit function theorem [28, 30}, we get
qu . ov -1 ov

o = () T 3.1.3.2
aMk 8qk 8Mk ( )
where the rotation is expressed as a function of the measurements
g = F(My) (3.13.3)
Expanding f as a Taylor series around E[Mj] yields
0
§(My) = [(E[M]) + (M, - BIM]) 527 ~+ O(My — B[My])* (3.1.3.4)
where O(.)? denotes terms of order 2 or higher in M and . Up to a first-order
approximation, then covariance of ¢ can be obtained as
9q g
O = aMk Mk(aMk )T (3.1.3.5)
If we define ¥ = %%—, then we will have
0¥ O’F ov 0’E
—_—= d = 3.1.3.6
a0 " My~ OMidg ( )
Substituting Eq. (3.1.3.6) into Eq. (3.1;3.5), the covariance o,, will be
O’E . _, PE ,0°E _;
From the definition of the objective function (Eq‘(3.1.2.4)), we have
OF . ORk i \1a-1/4 i
'5;1; = 2(__3;%_1) S (Pk — Ribi-1) (3.1.3.8)

n

82E aRi AZ Tty ni .
dqFogk ; [( dqkdgk Pr-1)" S; (P — Ribi—1)

ORk ., 7 a10Rk
oA : 4 3.1.3.9
+ ( 8(]§ pk:—l) Sz 8Qf Pr—1 ( )
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where s and r equal to 0,1, 2, 3.

————82E OR —1(at A7 OR i _
op._0qF (= 3q:)TS¢ Y(BL — Rubi_y) + (W:Pk-l)TSi 'R;, (3.1.3.10)
O’E ORy ., B
opiag (—#pk—l)TSi ' (3.1.3.11)
kY'4s A
0’°E o .
Bpfcaqf - ( dpi_,8¢5  Bp.oqk ) (31312)

wherei=1,.-- ,nand s =0, 1,2, 3. Substituting the Eq. (3.1.3.9) and Eq. (3.1.3.12)
into Eq. (3.1.3.7), the covariance of g, can be obtained. The covariance for the
translation can be calculated by

o, = 05, + Riope Ry (3.1.3.13)

where ope  and oy, are the covariance of the centre point of data set pr-; and py,

respectively.

Input: two adjacent images I_; and I, and their 3D cloud Cy_; and C, and Image
pixel error

Output: transformation g, Tj; variance oy, , or,

1: Extract SIFT feature from images I, Ii

Establish feature correspondences

Implement RANSAC to delete outliers

Estimate robot pose by Eq. (3.1.2.5) and Eq. (3.1.2.6)

Calculate rotation uncertainty by Eq. (3.1.3.7)

o

6: Calculate translation uncertainty by Eq. (3.1.3.13)
7: Output gk, Tk, and o4, and o,

Algorithm 1: Algorithm for 3D data registration and its uncertainty

The computational complexity of calculating the uncertainty of robot movement
estimation (step 5 and step 6) in this algorithm is O(n), where n is the number of cor-
responding points. The algorithm for the registration of 3D data and its uncertainty

estimation is shown in Alg. 1.
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Figure 3.3: The Bumblebee stereo camera from Point Grey Research mounted at the tip
of the PA10-7CE robot arm.

3.1.4 Lab Experiment

The lab experiment was performed with a BumbleBee camera system from Point
Grey Research mounted on a Mitsubishi PA10-7CE Robot arm. The robot arm has a
maximum speed of 3.33 meters per second and a payload of 10 kilograms (Fig. 3.3).
The camera connects via an IEEE 1394 link to a PC. The stereo camera captures
two 320 x 240 color images when the robot is stationary. The raw image which
was distorted by the camera was corrected by implementation of some algorithms
automatically provided by the company. The output is a set of rectified color images
and a list of 3D cloud points associated with its rectified pixels. Points farther than
four meters apart are discarded during the stereo processing in this experimental

environment.

Self-localization Estimation

During the lab experiment, no artificial landmarks were used. The features used in
this paper are SIFT features [52], which are extracted from the image in every step.
Two adjacent images are matched for robot self-localization. RANSAC method [31]
was used to delete the outliers. From the matched image points, their associated 3D
points could be obtained from the associated 3D cloud. After this processing, two sets
of 3D points which are matched correctly (with some error tolerance) were acquired,

then the data registration was implemented to get rotation R and translation T.
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Figure 3.4: Robot trajectory displayed in 3D. Ground truth is obtained by the internal
position sensors of the robot arm.

Suppose that the robot’s start position is pp, and the translation at time k is Ty, and

rotation i1s Ry, then the absolute position of the robot can be obtained by
Pr = pr—1 + Ry x Ty, (3.1.4.1)

where k = 1,--- , N, and N is the number of measurements in the circle. The robot’s
built-in high-precision positioning system provides ground truth of the robot motion
trajectory. The estimated trajectory in 3D is shown in Fig. 3.4 The image-based self-
localization estimation is a 6 DOF problem. In ouf experiment, we observe that even
though the robot moves in a plane, the estimated trajectory is not planar (Fig. 3.4)

due to the errors in the process of estimation.

3.1.5 Analysis of Uncertainty

The uncertainty of robot localization in every step can be obtained together with the
robot’s pose estimation by using Eq. (3.1.3.7) and Eq. (3.1.3.13). For the rotation,
the uncertainty is a 4 x 4 matrix since the rotation is expressed as quaternion during
the pose estimation. And the uncertainty of translation is a 3 x 3 matrix, which
can be expressed graphically with ellipsoid [16]. In our experiment, we only took
the x-y plane to show the estimation uncertainty with the associated ellipse in every
robot position. For example, the small ellipses are the estimated uncertainty in every

robot position in Fig. 3.5. We knew from the results that in every step, the location
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Figure 3.5: Estimated robot trajectory in x-y plane with associated uncertainty in test
case 1.

uncertainties are almost similar, but their directions change in different positions.

The robot trajectory calculation by Eq. (3.1.4.1) is an iterative process. The

uncertainty of absolute position can be calculated as
Opy = Op,_, + Rior R} (3.1.5.1)

where k =1,--- , N. We assumed that the o, equals to I3 and I5 is an identical ma-
trix with a dimension of 3. Therefore, the uncertainty of the robot position increases
with time. This is displayed as ellipses, as shown in Fig. 3.5. In order to control the
uncertainty growth with time, some advanced algorithms should be used. This will

be discussed in Chapter 6 and Chapter 7.

Another experiment result was shown in Fig. 3.6. In this case, we took more images
in the circular trajectory of the robot than in the previous case. The uncertainty in
every robot position (small ellipses in Fig. 3.6) are almost similar to that of Fig. 3.5,
since both of the experiments had the same environment set-up and used the same
camera with the same calibration parameters. But the uncertainty of the robot
position is larger than in Fig. 3.5. This resembles a random walk process whose
standard deviation grows with the square root of the number of measurements added.

As stated previously, this kind of error can be reduced by using advanced algorithms.
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Figure 3.6: Estimated robot trajectory in x-y plane with associated uncertainty, where the
density of sampling along the circular trajectory is higher than in test case in Fig. 3.5.

3.1.6 Discussion for Stereo Camera

From the experiment with the stereo camera system, we can see that it is possible to
estimate robot position from the measurement of the stereo camera only if enough cor-
responding matched features can be extracted from overlapping consecutive images.
In this estimation step, we did not use any artificial information, and we only used
the relative measurement information from two consecutive measurements. It must
be pointed out that the position estimation will fail if a sufficient number (usually at
least is 7) of matched features cannot be found for two consecutive images. In order

to solve this problem in this situation, a new algorithm will be discussed in Chapter 4.

Another issue is the uncertainty of the robot estimation. In the same working area,
we can slow down the movement of the robot so that we can obtain more images over
the same path. This will increase the overlap between any two adjacent images, and
more numbers of matched features may be extracted. As a result, the uncertainty of
the estimation should be improved (the value of the uncertainty should be small) for
each step. However, from the experiment results, the uncertainty of the estimation for
the robot path is increased with more images due to the accumulation of the errors.
To avoid excessive big errors during the estimation, the multi-map technique will be

used in Chapter 4 and Chapter 7, where a new estimation will be started as soon as
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the estimation error reaches certain threshold values.

3.2 GPS

The rapidly expanding use of the Global Positioning System (GPS) enables commer-
cial navigation devices to be more popular and attainable for non-military users. GPS
provides the absolute positioning information covering any part of the earth, in day
and night. However, the visibility from the recipient to the number of GPS satellites
is still critical in using GPS alone as a navigation device, such as under trees, inside
buildings, in tunnels, between tall buildings, and under water [67]. Therefore, for
a reliable navigation system, other types of sensors are needed as a complementary

measurement device.

3.2.1 GPS Principles

The NAVSTAR GPS (NAVigation System with Time and Ranging Global Position-
ing System) is a satellite-based radio navigation system designed and operated by
the U.S. DoD (Department of Defense). It provides three-dimensional position, nav-
igation, and time information to the users with proper equipment. It became fully
operational in 1994 with 21 satellites (plus 3 active spares) on 6 orbital planes within
approximately 20,200 km altitude above the earth’s surface with a 12-hour orbiting
period worldwide. GPS has been designed so that at least 4 satellites can be available

visibly above the horizon anywhere on the earth, 24 hours a day.

GPS is primarily a navigation system. The fundamental navigation principle is
based on the measurement of so-called pseudoranges between the user and at least the
four satellites. Starting from the known satellite coordinates in a suitable reference
frame (WGS 84), the coordinates of the user’s antenna can be determined. From
the geometrical point of view, three range measurements are sufficient. A fourth
observ@tion is necessary because GPS uses the one-way ranging technique, and the
receiver clock is not synchronized with the satellite clock. This synchronization error

is the reason for the term pseudoranges [67].
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Figure 3.7: Frames for robot navigation. Geodetic frame (A, p,h), where X is the angle of
longitude, ¢ is the angle of latitude, and h is the altitude (the height from the earth surface
to the interesting point in space in direction from the centre of earth to the interesting
point.); Earth frame (z,v, z); and navigation frame (z,, yn, zn ).

3.2.2 GPS Measurements

As mentioned previously, at least 4 satellite measurements are acquired to determine
the recipient position slaved to the coordinate frame of reference such as WGS 84.
Usually, a GPS Receiver receives positional data from satellites orbiting the Earth.
Using this data, the GPS Receiver can provide latitude, longitude, signal strength,
number of satellites observed, deviations, satellite information, and ground speed.
The GPS logger outputs this information in a variety of NMEA 0183 “sentences”

containing different types of information.

The “sentences” used by this GPS Receiver are: GGA (Global Positioning System
Fix Data), GSA (GPS DOP and Active Satellites), GSV (GPS SVs (Satellite Vehi-
cles) in View), RMC (Recommended Minimum Specific GPS/TRANSIT Data), and
VTG (Track Made Good and Groundspeed). Since the positioning information of an
object is concerned, GGA sentence is used to obtain all the necessary data, such as
longitude, latitude, and height in a geodetic coordinate system in earth-frame. These
coordinates should be transformed to a local fixed navigation-frame for the AUV nav-

igation application. The details of GGA are explained in Appendix B.
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Assume the GPS receiver obtains a point in geodetic coordinate systems, such
as (A, @, h). Its associated coordinates (z,y, z) in a rectangular coordinate system in

earth-frame can be obtained by

z =(N + h)cos(A)cos(yp)
y =(N + h)cos(N)sin(p)
z =[N(1 - €*) + h)]sin(\)

where e = /f(2-f), f = (a —b)/a), and N(A\) = a/+/1 — e2sin(\)?. Accord-
ing to the WGS-84 ellipsoid [1] definition, a is the length of semimajor axis(a =
6378137.0m), and b is the length of semiminor axis (b = 6356752.3142m). The defi-

nition for the frames which are used in this thesis is shown in Fig. 3.7 [27].

(3.2.2.1)

For ‘a batch of GPS data A\, ¢, hi or (zi,vi,2), 1 = 1,--+ ,n, if we take the
Z1,v1, 21 in earth-frame as the origin of a local navigation-frame, the coordinate of

(zn(1), ye(t), 24(?)) in navigation-frame can be obtained by

Zn (1) —sin(A)cos(p1) —sin(A)sin(p1) cos(A1) T; — T

ve(i) | = —sin(¢) cos(¢) 0 Yi —

24(1) —cos(Ay)cos(¢y) —cos(Ar)sin(¢) —sin(A;) Z— 2z
(3.2.2.2)

Here is an example of measurements at the Halifax Citadel with GPS. This is
a very high altitude area in Halifax. At every point, the GPS could receive signals
from seven satellites. The measurement in the geodetic coordinate systefn is shown
in Fig. 3.8. These data were transformed to a local navigation-frame, and the result

is displayed in Fig. 3.9.

3.3 Range Finder

There are several range finders which can be applied to different application areas. In
the underwater environment, acoustic sensors such as sonar and array of hydrophones
are the choice for range measurement. On land or in a space environment, radar and
laser range finders are suitable for range measurement. A range finder installed on

a robot is used to measure the distance from the robot to a set of landmarks. If
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Figure 3.10: Underwater robot localization by range finder. A, B, C, and D are buoys
which are equipped with a GPS receiver. The robot is equipped with sonar to measure the
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the positions of the landmarks in a world-centered coordinate system are known or
have been estimated, the problem is to estimate the robot pose and the estimate’s

reliability..

An instance of a robot position estimation in an underwater environment is shown
in Fig. 3.10. We have assumed that there are m buoys (features) L;(z;, ys, z) (i =
1,---,m) and the measurement from each buoy to the robot (p(z,y, z)) is Z;, then

the measurement model is

Zi=(zi— )+ (3 —y)? + (2 — 2)? - (3.3.0.3)

It is possible to obtain the position of the robot by solving a set of non-linear equa-
tions from the Eq. (3.3.0.3), if there are more than 3 measurements. Many methods

such as the Newton Method can be used for this solution, but the question remains

as to how reliable this solution is.

Probability based on sensor fusion mechanism can be used for this problem. In

this case, the process model is

X, (k+1) = X, (k) (3.3.0.4)
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Figure 3.11: Uncertainty of measurement and its related estimation by Extended Kalman
Filter.

and the measurement model is

Zi(k +1) = h(X,(k + 1), Li(k + 1)) = /(& — 2)2 + (v — 9)2 + (. — 2)* (3.3.0.5)

Since the measurement is a non-linear model, the Kalman filter can not be applied

directly; therefore, the Extended Kalman filter is required.

The Jacobian of the measurement function (Eq.(3.3.0.5)) is

oh
T =3%,
=( o o o ) (3.3.0.6)

— Ty Y=Y 2=z
[ r T

where r = /(z; — )2 + (y;i — ¥)? + (2 — 2)2. The Monte Carlo simulation result is
shown in Fig. 3.11 and Fig. 3.12. The ellipse is the estimation error in Fig. 3.11, and
its centre is the robot location estimated. During the simulation, the robot location
converges to a point with very small estimation error. From the upper left graph in
Fig. 3.12, it is easy to see that as soon as five measurements are obtained, a robust

robot position estimation is possible by EKF.

The GPS and range sensor used in this thesis can only be used to determine

the position of the robot, not its orientation. It is possible to estimate the robot’s
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orientation by using the components of Jacobian during the linear processing for the
non-linear measurement function, which is based on the assumption that the robot
model permits motions only in the direction in which the robot is pointing. For the
underwater mobile robot, the robot will move not only in the direction in which the
robot is pointing, but also in other directions because of environmental factors such

as water currents.

3.4 Summary

The three sensors that are used in this thesis are introduced in this chapter, includ-
ing their properties, measurements, and related algorithms for mobile robot estimate.
For every type of sensor which will be installed on a robot, its measurement can be

used to estimate the robot position; but each one has drawbacks.

A stereo camera cannot be applied for long range measurement, and it should
be possible to obtain at least 7 matched features in every pair of consecutive images
during navigation. This is a very strict requirement, which cannot be guaranteed in

a real application.

GPS cannot work in the underwater environment. For a mobile robot which will
be working in water, a buoy, which is a small boat equipped with GPS‘ and acoustic
sensors, will be used to measure the distance between the buoy and the robot. This
range measurement can locate the robot’s position. If GPS measurement can be used
at the same time for estimating the buoy’s position, then the absolute robot position

can be estimated.

The contribution in this chapter is a new method which was developed to estimate
registration uncertainty based on the implicit function theorem for correspondence-
based approach from stereo images. Lab experiments have investigated the reliability

and robustness of the algorithm.



Chapter 4

General Concept of 3D SLAM

Simultaneous localization and mapping is a process that fuses sensor observations
of features or landmarks with dead-reckoning information over time to estimate the
location of the robot in an unknown area and to build a map that includes feature
locations. In this chapter, a general model and its related solving algorithm for 3D
SLAM are established. The method can be used for all of the situations in the mobile

robot community. An underwater mobile robot is used as an example.

. This chapter is organized as follows: section 4.1 is the problem definition; Sec-
tion 4.2 establishes all the models for 3D SLAM, including the robot process model,
the landmark model, and the measurement model; section 4.3 is the method for data
association; section 4.4 presents the algorithms to solve the SLAM; section 4.5 de-
scribes the multi-sensor related issues based on the underwater mobile robot cases;
and section 4.6 is the globally-consistent 3D SLAM for mobile robot in real environ-

ment.

4.1 Problem Definition

Assuming a 3D environment with randomly distributed landmarks and an autonomous
mobile robot equipped with sensors (stereo camera, laser range finder, or sonar) which
will move in this environment, by providing some proper input (robot speed and ori-
entation), we need to determine the robot pose (position and orientation) and the

position of detected landmarks during the robot navigation.

Because of measurement noise and robot input noise, it is very difficult to com-
pute a deterministic value for the robot pose and landmark position. We can only
estimate their approximate value by using algorithms such as the Kalman filter, the

Particle filter, and the Unscented Kalman filter. By using these algorithms, it is also
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possible to calculate the confidence of the estimation.

In some areas of the robot’s working environmert, significant landmarks are sparse,
especially in the underwater environment. A robot equipped with only one type of
sensor may not obtain sufficient effective measurements, which would greatly affect
the accuracy of the robot pose; therefore, more than one sensor will be used for the

robot navigation in a real application.

In this thesis, the SLAM problem in the 3D environment will be solved with multi-
ple heterogenous sensors. A general strategy will be proposed and related algorithms

will be developed.

4.2 Models for 3D SLAM

4.2.1 Robot Process Model

Robot process model is a dynamic differential equation to describe the movement of
a robot in a given environment and system input. It is related to the robot pose. The
robot pose can be determined by its position and orientation. In a global coordinate
system OXY Z, a robot position (p,) is expressed by (z,y, z)T , and its orientation
can be expressed by Euler angles, rotation matrix, axis and angle, or quaternions.
From any one of the orientation representations, it is possible to compute the other
representations (Appendix A). For simplicity, euler angles, (6,,6,,6.) , are selected
as a robot orientation state vector. Therefore, the state vector of the robot X, can

be expressed as

(4.2.1.1)
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where T is the transpose of a matrix. Assuming that the robot moves relative to its

current pose with speed v and changes direction with Euler angles (86, 66,,66,), the
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input to the robot can be expressed by

v

56, -
U= (4.2.1.2)
56,

| 96: |

where v is the robot speed (a scalar value), and the direction of the motion is always
along the robot’s forward pointing. In order to simplify its implementation, the Euler

angles need to be expressed in the form of a rotation matrix M,
M, = R.(8,) - R,(8,) - R;(6) (4.2.1.3)

where R,, R,, and R, are the rotation matrices which are the rotation around the
z, y, z-axis, respectively, in right hand coordinate system with positive angle 8;, 6,,
and 8,. The positive angle is at counter-clockwise direction (Appendix A). Then, the

robot process model can be expressed as

0,(k + 1) F1(62(k), 865, 86,, 66,)
Ou(k+1)=1| 6,(k+1) | = | fo(8,(k),80,,66,,80,) (4.2.1.4)
0,(k+1) f3(0.(k), 60,, 86,,60.,)
and
z(k+1) z(k) cos(c)
polk+1)=| yk+1) | = | ylk) | + My(k) | cos(B) | vit (4.2.1.5)
z(k+1) z(k) cos()

where 4t is the sampling time. M, (k) is the rotation matrix, which corresponds to
the Euler angles (0,(k), 6,(k),0.(k)) at time k. In Eq.(4.2.1.4), the angle §,(k + 1)

corresponds to the matrix M, (k + 1), given by following equation
M,(k+1) = M,(66) - M,(k) (4.2.1.6)

where M,,(86) is a matrix which corresponds to the Euler angle 66. And in Eq.(4.2.1.5),
the o, 8, are direction angles corresponding to the Euler angles (6,(k), 8,(k), 8.(k)).
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Figure 4.1: Coordinate systems of an autonomous mobile robot.

By combining Eq.(4.2.1.4) and (4.2.1.5), the process model can be written as a

non-linear equation
Xo(k+1) = F(X,(k),U(k) + u(k)) + w(k) (4.2.1.7)

where p(k) is the input noise, and w(k) is the process noise, at the sample time k .
The noise is assumed to be independent for different k, white, and with zero mean

and covariance Q,(k).

4.2.2 Landmark Models

Landmarks can be classified into two types, artificial and natural. In a newly-visited
natural environment, there is no artificial landmark for mobile robot navigation, there-

fore the natural landmarks are the only choice.

A robot map consists of a set of landmarks. In order to provide enough informa-
tion for robot navigation, every landmark should include position information and
attribute information (Fig. 4.2). If the landmark position is known, a sensor’s mea-
surement of it can be used in the robot pose estimation with algorithms such as the
extended Kalman filter or the particle filter. If the landmark position is unknown, an
algorithm for SLAM will be applied to estimate the robot pose and landmark position
by the aid of measurements. The attribute information will provide knowledge about

the landmark which distinguishes it from other features, which is very useful for data
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Figure 4.2: General landmark expression.
association; therefore, landmark L; can be expressed as
Li = [ Li,posititm Li,attm‘bute :| (4'2‘2'1)
where
T;
Li,position =L;= Y; (4222)
2

During robot navigation, even though its environment is unknown, the landmarks for
a map establishment are always assumed to have a static position. It is also assumed
that attributes (or features) of a landmark will not change. In reality, features of a
landmark may change with lighting conditions and sensor view point, therefore, the

landmark ¢ has the following evolution equation
Li(k+1) = L(k). (4.2.2.3)

~ where ¢ =1,--- ,m, which means there are m landmarks which will be used; k is the

time which is used during the robot navigation.

4.2.3 Measurement Model

A mobile robot is always equipped with some type of sensors for its navigation. The
sensors can obtain measurements of the relative location of the observed landmarks

with respect to the robot. This observation can be expressed by a set of non-linear
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functions of the landmark’s position relative to the robot position, which is called
measurement model. Assuming the position of landmark ¢ in the global coordinate
system OXY Z is (z;, yi, ;). At time k, the robot has the pose X, (k). The measure-

ment of the landmark ¢ at this time can be computed by

Z,, (k) z; — z(k)
Zi=| 2,09 | = M) | 5 —9(p) (423.1)
Z,,(k) zi — z(k)

The observation model in the non-linear equation is
Z; = h(X,(k), zi, vi, 2:) + (k) = h(X,(k), Li(k)) + n(k) (4.2.3.2)

where 7(k) is the observation noise, which is assumed with zero mean and covariance

R;. h(-) is the non-linear measurement function.

Without loss of generality, it is assumed that the measurement from every sensor
is independent. If there are m features observed at time k, the measurement model

is obtained by simply stacking Eq. (4.2.3.2) as

BAGHE

Z(k) = Za(k) = H(X,(k), L(k)) + n(k) (4.2.3.3)

| Za(k)

An instance of a robot and five landmarks in 3D space is shown in Fig. 4.3. When
the robot moves in space, its sensor detects landmarks which are located in the view
field of the sensor, then the robot pose and landmark position estimation can be
performed. The estimated landmark position will be used to build a map which can

be used by the robot for future navigation.

4.3 Data Association

There are two types of data associations - measurement between sensors received from
multi-sensors, and measurement between adjacent times from a single sensor. In this

thesis, only the data association between adjacent times from a single sensor will be
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Figure 4.3: An instance of a robot and features in 3D experiment case.

addressed.

During robot navigation, if the sensor on the robot only observed oﬁe landmark,
there would be no need for data association. Most sensors, such as camera, radar,
laser, and sonar, will detect not only many real landmarks, but also many spurious
landmarks; therefore, data association is a necessary step for landmark-based robot

localization and object tracking.

A landmark defined in the previous section 4.2.2 includes position and attributes
(feature) components. If the attribute tuple is available, then data association can be
implemented with this information; otherwise, maximum likelihood of measurement

will be used.

4.3.1 Data Association by Feature Attribute

Data association by using the landmark’s attribute is simple. A very good example
is the image feature registration with SIFT (Scale Invariant Feature Transforms)
features [73]. SIFT features in an associated image are among the best representations
for the natural unstructured environment. The SIFT features are invariant to image

scaling, translation, and rotation, and partially invariant to illumination changes and
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SIFT feature delected

Figure 4.4: SIFT features in an image.

affine or 3D projection. The structure of the SIFT feature is as follows:
[u, v, gradient, orientation, descriptory, - - - , descriptor ]

where M is the number of the descriptor in SIFT feature. The position of landmark
and the position of its related SIFT features (in an image) of a landmark have a
non-linear relation. If a camera’s physical position and orientation are given, the
position of the landmark associated with the SIFT feature can be calculated by using

its associated camera model [80].

An example of SIFT features in an image is shown in Fig. 4.4. The data association
for SIFT features can be carried out by using their feature descriptor directly. SIFT
features correspondence between two adjacent images obtained from a moving camera
at different view points after the implementation of data association is displayed in
Fig. 4.5.

4.3.2 Data Association by Maximum Likelihood of Measurement

If the measurements only provide a landmark’s position information, but the land-
mark’s attribute information is empty, the method presented by Bar-Shalom et al. [5]
for the data association with innovation will be used here. Their method can be

briefly described as follows:
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Figure 4.5: Result of SIFT feature correspondence between two adjacent images obtained
from a moving camera at different view points after data association.
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Innovation is the value of difference between measurement Z(k) and predicted

-

measurement Z(k), and expressed by v(k)
v(k) = Z(k) — Z(k) (4.3.2.1)

In order to define a measurement validation region, the innovation needs to be nor-
malized as follows:
e, (k) = v(k)TS, (k) v (k) (4.3.2.2)

where S,(k) is the innovation covariance matrix, and it is defined as
S, (k) = H(k)P,(k)H (k)T + Ry(k) (4.3.2.3)

where P,(k) is the state vector’s estimated covariance matrix at step k. The €, (k)
has a x? distribution with n, degrees of freedom, where n, is the dimension of the
measurement Z. The validation technique is based on this innovation. If a measure-
ment is inside a fixed region of a x? distribution, then this observation is accepted;

otherwise the observation is rejected.

4.4 Estimation of Robot Pose and Landmark Positions

In the SLAM problem, a robot pose and landmark positions at time k+1 are unknown.
They need to be estimated by using input information U, measurement information
Z, and robot pose and feature position information, at time k. Stacking Eq. (4.2.1.4)

and Eq. (4.2.1.5), the system process model can be expressed as

r "\

X, (k+1)
Li(k+1)

Xo(k+1)= 1| Ly(k+1) =[X”(k+1)}

L(k+1)

Ln(k+1) |

_ [ FXk), U), 1(9)) + w(k) (£404)
Lo 40.

and the measurement model is

Z(k) = H(X,(k), L(k)) + (k) (4.4.0.5)
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Both process model (Eq.(4.4.0.4)) and measurement model (Eq.(4.4.0.5)) are non-
linear equations. A straightforward method to solve this problem is the Extended
Kalman Filter (EKF). Due to the high dimensions of the state vector and the need
for linearization of the non-linear models, the EKF is not computationally attractive.

The Particle filter-based fast SLAM approach will be applied to solve this problem.

4.4.1 Particle Filter

From the view point of probability, the estimation of a robot pose and landmark
positions involves computing their posterior probability density function (PDF),

p(X,(k), L(k)|Z(k), X,(k—1),U(k—1)), based on the prior probability density func-
tion p(Z (k)| X,(k)) and p(X,(k — )|Z(k — 1), X,,(k — 2),U(k — 2)), where X, (k) is
the robot state, L(k) is the landmark state, Z(k) is the measurement, U(k) is the

input to the system, at time k. This is the well-known Bayesian approach.

According to the definition of a robot model and landmark model in the previous
section 4.2, the PDF for a SLAM problem Bel(X,(k-+1)) at time k+1 can be defined
as [83]

Bel(X,(k + 1)) = p(X,(k + D) Z(k + 1), X, (), U (k) (4.4.1.1)

The solution for the SLAM problem is to estimate the maximum of the Bel( X, (k+1)).
Bayes’ formula can be used on Eq. (4.4.1.1) to simplify its implementation.
p(Z(k +1)|Xy(k + 1), Xo(k), U(k))p(Xo(k +1)| Xy (), U(K))
p(Z(k + 1)|X.(k), U(k))
= &Ep(Z(k + 1)|Xo(k + 1), Xo(k), U(k))p(Xo(k + 1)| Xu(K), U(K))
(4.4.1.2)

Bel(X,(k+1)) =

Where £ is the value of the inverse denominator, and is assumed to be a constant.
It is known that the measurement Z(k + 1) is only dependent on the current pose
X.(k+ 1) and is not influenced by previous pose X, (k) and robot movement U(k).
Therefore, Eq. (4.4.1.2) can be simplified into

Bel(Xy(k + 1)) = &p(Z(k + 1)| Xy (k + 1)p(Xo(k + DX, (k), U(k))  (4.4.1.3)

By applying the total probability theorem to the second item of the right part in
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Eq. (4.4.1.3), then

Bel(X,(k + 1)) = ep(Z (k + 1)| X, (k + 1))

| /p(Xv(k + DIXu(k), Uk))p(Xo (k)| Z(k), Xo(k — 1), Uk — 1))dX, (k) .
=§&p(Z(k+1)|Xu(k + 1))
/ p(X,(k + 1) X, (k), U(K))Bel(X,(k))dX, (k) (4.4.1.4)

where p(Z(k+1)|X,(k-+1)) is the sensor observation model, which can be calculated
from Eq. (4.4.0.5); p(X,(k + 1)|X,(k),U(k)) is the system evolution model, which
can be calculated from Eq. (4.4.0.4). The integration in the Eq. (4.4.1.4) is a difficult
challenge to solve the SLAM problem efficiently; therefore, a new algorithm must be
designed.

The Monte Carlo based particle filter can be used to overcome the implementa-
tion challenge in Eq. (4.4.1.4). In the particle filter, Bel(X,(k)) is expressed as a set
of particles, and every particle is propagated in time according to the state process
model such as Eq. (4.4.0.4). The weight of every particle is calculated based on the
observation model from the Eq. (4.4.0.5). The robot pose and landmark position
can be computed from the sum of the weighted samples. The particles should be
re-sampled for the next step’s estimation. Implementation of a particle filter is sum-

marized in Alg. 2.

Particle filtering can be used for any process and observation models. In the
Kalman filter and the extended Kalman filter, the basic requiremént is that the error
of process model and observation model should be Gaussian distribution. In most
cases, this requirement is too restrictive. The particle filter has been called bootstrap
filter [34], condensation [41], or Monte Carlo filter [18]. In recent years, this method
has been successfully used in problems of object tracking [39] and mobile robot local-
ization [18, 84].
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Input: Robot movement U(k), sensor measurement Z(k + 1), and sample number
N

Output: Robot pose and features position

1: initialize state with p(X,(0))
2: repeat
3:  for every particle ¢ do

assign distribution using p(X,(k + 1)| X, (k), U(k))

end for

4

5

6: for every particle 7 do
7 compute weight w; using p(Z(k + 1)| X, (k + 1))

8: end for

9:  calculate robot pose & landmark position from particles & associated weight
10:  re-sample the particles

11: until robot stop navigation

Algorithm 2: Particle filter implementation for robot pose and feature position

4.4.2 Fast SLAM

Fast SLAM is an approach to separate the SLAM problem into a robot pose and
landmark position estimation that is conditioned on the robot pose. The term was
first introduced in [60]. The implementation of FastSLAM is an example of the Rao-
Blackwellised particle filter [64, 21].

From the previous definition of a SLAM problem, the system state estimate could

be written as
Bel(X,(k+1)) = p(X,(k+ 1), L(k + )| Z(k + 1), X, (k), U(k)) (4.4.2.1)
This expression can be factored into two parts according to [60].
Bel(X,(k + 1)) = p(X,(k+ 1), L(k+ 1)|Z(k + 1), X,,(k), U(k))
= p(Xo(k + 1)|Z(k + 1), Xo(k), U(K))

ﬁp@i(k + DIXy(k +1), Z(k +1),U(k)) (44.2.2)

i=0-
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Figure 4.6: SLAM implementétion with features observed by a sensor.

The estimate expression is decomposed into m+ 1 estimations. One of them is for
the robot pose estimation, and m of them are for landmark estimation based on the
estimated robot pose. The implementation of FastSLAM is summarized in Alg. 3.
In this thesis, this algorithm is applied for the SLAM problem. The particle filter is

implemented to calculate the conditional densities for robot and landmarks.

The idea for FastSLAM can be obtained from Fig. 4.6. We assume that all the
observed landmarks by a sensor at robot position X, (k— 1) exist in a map. Then, the
observed landmarks at robot position X,(k) can be divided into two groups. Some
of them are already in the map and are labeled as small yellow squares in Fig. 4.6,
which are called old landmarks; some of them are new landmarks and do not yet
exist in the map and are expressed with small black dots in Fig. 4.6. The measure-
ments from the old landmarks are applied for the robot pose estimation at time k.
The measurements from the new landmarks are used to estimate the new landmark
positions in the global coordinate system based on the robot position. Then, all the

new landmarks are added into the map.

In the fast SLAM approach, the factorizing assumption step turned the high di-
mension 6 + 3 - m of the SLAM problem into the low dimension (6 and 3) problem’s
combination, which greatly improves the computation efficiency, but it is assumed

* that the estimated robot pose has an accurate value. This assumption is not true and
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Input: Robot movement U(k), sensor measurement Z(k + 1), and sample number

N

Output: Robot pose and detected features position

1: initialize state with p(X,(0)

2: repeat

3
4:

10:
11:
12:
13:
14:
15:
16:
17
18:
19:
20:
2L

22:
23:

for every particle ¢ do
proposal distribution using p(X,(k + 1)| X, (k), U(k))
end for
obtain observations Z(k + 1)
data association for the observation data
for every particle ¢ do
compute weight using p(Z(k + 1)| X, (k + 1))
end for
re-sample the particles
if current observed feature exists in the map then
for every particle ¢ do
for every observed feature do
update the state of the robot
end for
end for
end if

if current observed feature is not in the map (new detected features) then

for every particle 7 do

add the new detected features to the map based on the robot pose and

observation to the features
end for
end if

24: until robot stop navigation

Algorithm 3: FastSLAM implementation
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will cause errors in the step for the landmark position estimation in a global frame.

This is the trade-off between efficiency and accuracy.

Another assumption in the fast SLAM is that the measurement of every detected
landmark is independent of the other landmarks in the working area of the robot;
therefore, the covariance between two landmarks will be zero. In other methods,
such as the EKF or Particle filter, robot pose and all the detected features position
are estimated in one state vector, and this may cause the covariance between two
landmarks to be other than zero. In most of the cases, these values came from the

algorithm design.

4.5 Multi-sensor Fusion for 3D SLAM

A mobile robot is usually equipped with many sensors which will work together.
Fusing the measurements from more than one sensor will provide a more accurate
estimation than by using only one sensor’s measurement. An example of multi-sensor
fusion is shown in Fig. 4.7, where an underwater mobile robot is equipped with a

stereo camera and communicated with a set of buoys on the surface.

This kind of system structure has two advantages for the underwater robot. The
buoys can provide a long range of measurements, while the measurements can be
applied to estimate the robot position in a global frame. The stereo camera can
provide detailed information of the immediate environment, which will be used for
SLAM in a local frame. Integration of both can solve the SLAM problem in a large
area for the underwater robot. The buoy system has been proposed using acoustic

sensor by Liu and Milios [50].

4.5.1 Synchronization for Multi-sensor Fusion

All the sensors in a system cannot work at the same speed or frequency, such as
in Fig. 4.7. Synchronization for multi-sensor fusion is an important issue. Usually,
measurement frequency for each sensor is different, and their measurement time will

not coincide. An instance of the estimated robot position from stereo camera and
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Figure 4.7: A sensor fusion example for a stereo camera and a set of buoys.
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buoys with time stamp is shown in Fig. 4.8. The buoys will provide a long range
estimate in a global frame, which has less accumulated errors than that with a camera.
Therefore, when the estimate from buoys at time ¢, is obtained, the robot position

from buoys at t; should be estimated by interpolation as
Xb(tk) S §1Xb(tb,k—2) + ngb(tb7k—l) + €3Xb(tb,k) (4511)

where b means buoy and k means time stamp; Xy (¢y5-2), Xp(tok—1) and Xy (tyx) are
robot position estimated by buoys at time t x_2, 5 k-1 and , 4, respectively. And &;,

&, and &5 are coefficients related to the corresponding time stamps.

(te — top—1)(tx = to k)

= 4.5.1.2

& (tok—2 — tojo—1) (tok—2 — to,k) ( )
(tk — to—2)(tk — tok)

= : 2 4.5.1.3

< (tok—1 — tok—2) (Tok—1 — to k) ( )

£ = (tk — top—2)(te — toe—1) (4.5.1.4)

(tok — tok—2)(tok — tok—1)

The uncertainty Py(tx) of the position X,(tx) from buoys can be obtained from
Eq. (4.5.1.1) based on the fact that all the estimated robot positions are independent
variables since the robot position is estimated by using the measurement between the

current robot position and buoys, instead of previous robot position, as discussed in
Chapter 3. This is

Py(te) = &1 Py (tok—2) + & Po(tok—1) + & Polto) (4.5.1.5)

where Py(tyx—2), Py(tok—1) and Py(tyx) are uncertainties of robot position estimated

by buoys at time ¢ _2, tp k-1 and &y, respectively.

The estimated robot position from buoys at time t; (see Fig. 4.8) can be obtained
by using Eq. (4.5.1.1) and Eq. (4.5.1.5). At this time, fusing the robot estimation

from the stereo camera and buoys is possible.

It is very important to ensure that all the sensors installed in the same system are
synchronized. If there are more than two computers working for the same measure-

ment system, it is necessary to calibrate them.
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Figure 4.8: A stereo camera and buoys estimation with time stamps.

In the previous derivation, It must be pointed out that three points are used for
the interpolation in this section. If there are more than three robot positions, a subset
of three can be used, or higher order interpolation can be used. If only two robot

positions (points) are available, linear interpolation could be applied.

4.5.2 General Sensor Fusion Mechanism

All the sensors in the system are applied for one purpose: reliable and accurate robot
pose and map estimation. The sensors will not work properly all the time; therefore,
a complementary fusion mechanism is designed in this thesis. Fig. 4.9 is a sensor

fusion architecture for a stereo camera and a set of buoys.

Before sensor fusion is dpplied, each sensor in the system estimates the robot pose
and/or builds a map independently. When the synchronized estimate is obtained,
sensor fusion will be performed. Assuming that the error from each sensor follows
the Gaussian distribution with zero mean and known covariance, from [5), the fusion

is carried out by

X, (t) =EW—P;’L—$-@XC(tk) + P—b@})jc—f—’%(tk—)xb(tk) (4.5.2.1)
Py(ty) P(tx)

Pv(tk) =

T R (4.5.2.2)

where X, () and X, (tx) are the estimated robot pose at time ¢ by the stereo camera

and buoys, and Py(t;) and P.(t;) are their associated covariance, respectively.

It must be pointed out that the relative drift of the sensor estimate has a signif-

icant influence on the the sensor fusion result. Ideally, both of the sensor estimates
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Figure 4.9: Sensor fusion architecture for camera and buoys.

should overlap in their estimation uncertainty’s boundary. If the sensor estimates do
not overlap in their uncertainty boundary, the fusion result will not be reliable. To
avoid large relative drift of the sensor fusion, we used multi-map mechanism, which
means that a new estimation sequence will start as soon as the estimation uncertainty

reaches a threshold.

By using this sensor fusion mechanism and system designed for an underwater
mobile robot, it is possible to estimate a globally-consistent robot position over a

large work area. The following section discusses globally-consistent map building.

4.6 Globally-Consistent 3D SLAM for Mobile Robot in Application

The basic requirement for SLAM using stereo vision is that every two consecutive
images have to provide enough overlapping features. In real applications, this re-
quirement may be too strict. If this requirement can not be satisfied, the SLAM
process based on image information will be stopped. In this case, even though the
robot has another sensor installed (such as a GPS or buoys), it can not obtain a
globally-consistent 3D path and a globally-consistent 3D map; therefore, it is neces-
sary to design a new algorithm to solve the 3D SLAM problem in this more general

case.

We assume that two sensors (stereo camera and buoys or GPS) will be employed,
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operating independently, the buoys estimate a globally-consistent robot 3D path and
the stereo camera estimates a set of local maps and the robot’s 3D paths in a local
coordinate system. This means that when the two consecutive images provide enough
overlapping features, the SLAM algorithm begins to work based on the local frames.
The estimates also receive a global time stamp. The scenario of this processing is
shown in Fig. 4.10. There are four local robot path and associated maps (not shown)
based on local frame which is estimated by the stereo camera’s measurement with
the algorithm of SLAM in Fig. 4.10 (a). For simplicity, the maps are not drawn.
These estimated path fragments are time stamped, which will be applied for sensor
fusion. For the estimate by buoys measurement in Fig. 4.10 (b), the red dots are the
robot’s position at each time, and the blue squares are the time markers which are
corresponding to the time stamps in Fig. 4.10 (a). The final globally-consistent robot
path and map are expressed in Fig. 4.10 (c). There are several different steps required
to obtain these: (1) robot path parameterizing; (2) robot position association; (3)
transformation estimate from local coordinate system to global coordinate system;

(4) globally-consistent map integration, and; (5) globally-consistent robot position.

4.6.1 Robot Path Parameterization

For 3D SLAM, connecting the robot position over time will form a curve in 3D space.
A widely-used method to construct a 3D curve to smoothly pass all the discrete
position points is the B-spline interpolation [68]. Assume that a sequence of robot 3D
positions, p,(k), and its related covariance Py,(k) (k =0, --- ,n), are obtained from
a local coordinate system, and its corresponding time is ¢ (Fig. 4.11). A parametric

B-spline of degree 3 to pass these points is defined as

n
S(u) = pu(i)Nis(u) ue0,1] (4.6.1.1)

i=0
where N;3(u) are the B-spline basis functions of degree 3, defined with respect to
the knot vectors u = {ug, U1, ... ,Unsa+1}, With g = u1 = up = uz = 0 and up4; =

Unpo = Upt3 = Upr3+1 = 1, and its parameter v at any time can be obtained by

t—1g

tn_tO

u= t € [to, tn] (4.6.1.2)
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Figure 4.10: 3D SLAM by fusion estimation from camera and buoys. (a) Local robot
position and map (for simplicity, map is not displayed in this figure) from camera with time
stamps. (b) Robot position estimated from buoys with time stamps. (c) Final results after
fusing the information from both camera and buoys.
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Figure 4.11: Robot path parameterizing with B-spline.
A B-spline base function N; ,(u) of degree p can be calculated by

1 ifuy,<u< Uit
0 any others
U — U Uitpr1 — U
N —————Ni41 - 4.6.14
Uiy — i P 1(u) + Uirprl — U i+1,p-1(w) ( )

0
d — =
eﬁne0 0

Nip(u) =

By using the B-spline function in Eq. (4.6.1.1), for any time ¢ between time ¢,
an t,, it is easy to obtain the position of the robot. Its related covariance can be
obtained by

Poo() = 3 (i) (Nig(w))? w€ 0,1) (46.L5)
1=0

- 4.6.2 Robot Position Association

From the buoys, the robot position is estimated during its navigation. The positions,
Xp(k) (k =0,---,m), are denoted by small black squares on the red curve in Fig. 4.12,
and their corresponding times are shown on the time axis with tby, (k =0,--- ,m).
The robot path estimated from the camera is expressed by the blue curve, which is
constructed in the previous subsection. With the time information, the corresponding
robot position, X'v(k), based on the local coordinate system(z'y’z"), can be calculated
from the Eq. (4.6.1.1) and Eq. (4.6.1.5).
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Figure 4.12: Robot position association. The top is in local coordinate system, and the
bottom is in global coordinate system.

4.6.3 Transformation Between Frames

So far, two sets of corresponding 3D points, X;(k) and X, (k) (k = 0,--- ,m), are
obtained (We only use X)(k) position information here since X,(k) only contain
position information). If the number of corresponding points, m, is greater than 3
and not all the points in each coordinate system are in a straight line, it is then
possible to estimate the transformation (rotation and translation) between these two
data sets according to the method described in Chapter 3. If all the estimated 3D
points in one of its local coordinate systems are located on a line or are very close
to a line, it is impossible to estimate the orientation of this transformation. In this
situation, other information such as a robot direction from a digital compass will be

needed.

4.6.4 .Globally-Consistent Map Integration

Assuming that the transformation for a local map k (k= 1,...,n) from a local coor-
dinate system to a global coordinate system is expressed by Ry and T} , for rotation

and translation, respectively, a map established in the local coordinate system can be
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then transformed to the global coordinate system by
Li(i) = R LL(3) + Ty, (4.6.4.1)

where Li() is the landmark 4’s position in the global coordinate system, and L, (i) is

the landmark 4’s position in the local coordinate system(i = 1,--- , M).

If there are several different local maps established on one working area, it will
be necessary to transform all of them from each local coordinate system to a global

.coordinate system, and then integrate all of them to form a globally-consistent map.

4.6.5 Globally-Consistent Robot Position

Due to the bandwidth limitation of the communication or the nature of the sensing,
the measurement frequency of the buoys is lower than the stereo camera’s frequency.
In order to obtain a continuously consistent 3D path, the robot path in a local co-
ordinate system should be transformed to the global coordinate system according to

the same method from the previous map transformation.

The algorithm to establish a globally-consistent 3D map is based on the sensor
fusion shown in Alg. 4. An overview of this algorithm is shown in Fig. 4.13. The
centre of this diagram belongs to Alg. 4, and the left part for local SLAM is obtained
by a camera with the previous FastSLAM, and the global robot position is obtained
with the EKF algorithms by buoys and GPS.

In the processing of local SLAM from a camera, there are two issues which need to
be considered: estimation error and efficient map. In order to control the estimation
error in the local SLAM result, we always check the estimation error for robot path.
If the estimated path error grows above a certain threshold, the current local SLAM
processing is also stopped, in which case a new local SLAM processing will be started.

For efficient map, we will discuss it in the next chapter.
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Input: a sequence of images Iy, k = 1,--- , N, measurements from buoys, and a file
of time stamps for each sensor

Output: a globally consistent map G and robot path p,

—

: k=2, numMap=0, flag=newMap_start, Segment=|]

2: repeat
3:  robot path estimated from the measurements of buoys
4:  extract SIFT features from image I, Ix—;
5. if matched features between image Ix_; and I are more than my or the esti-
mated position error is less than a certain threshold then
6: if flag=newMap_start then
T numMap=numMap+1;
8: end if
9: SLAM estimation based on stereo camera’s measurements
10: Segment(k)=numMap
11: flag=map_continue
12: else
1 13: flag=newM ap_start
14:  end if

15: until robot stop navigation

16: robot path 3D curve from buoys estimation by B-spline

17: for each Segment do _

18:  find corresponding point on 3D path curve

19:  estimate transformation parameters between local frame and global frame
20:  global map and path calculation

21:  integrate 3D map and path

22: end for

Algorithm 4: Globally Consistent 3D SLAM based on Sensor Fusion




65

Figure 4.13: Diagram for the globally-consistent 3D SLAM.

4.7 Summary

This chapter established an approach to solve the full 3D SLAM problem, applied
to an underwater environment. First, a general approach to the 3D SLAM problem
was presented, which included the models in 3D case, data association and estima-
tion algorithm. For an underwater mobile robot, a new measurement system was
designed for large area’s globally-consistent SLAM: buoys for long-range estimation,
and camera for short-range estimation and map building. Globally-consistent results

could be obtained by a complementary sensor fusion mechanism.

By carefully investigating all the algorithms used for SLAM, we designed a new
sensor fusion algorithm for large area SLAM. Two types of sensors are needed for
this algorithm: stereo camera (or laser scanner, radar) for local SLAM, and a sensor
for robot path in the global coordinate system. Both the local and global paths
were expressed by B-spline, and their corresponding 3D points of the associate robot
path could be extracted. Transformation (translation and rotation) values from local
coordinate system to global coordinate system could be estimated from these matched
points, and, the local maps could be integrated to the globally-coordinate system, and

a globally-consistent map and path could be obtained.



Chapter 5

Feature Selection for Map Building

It is well known that there are three basic maps in the mobile robot community
- the stochastic landmark map [79], the occupancy grid map [12, 18, 62], and the
topological map [23]. For a large area, a hierarchical map [25] is applied, which is a
combination of the previous basic maps. In this thesis, the stochastic landmark map

is used to build an efficient map for a mobile robot.

The organization of this chapter is as follows: the relation between landmarks
and features is discussed in section 5.1; the problems of map building are defined
in section 5.2; the requirements for selecting a subset of features to form a map are
presented in section 5.3; a mechanism to construct an efficient and effective map is

proposed in section 5.4; and the summary of the chapter is presented.

5.1 Landmark and Feature

Feature and landmark are two terms which are used frequently in the robot commu-

nity. For better clarity, the definitions for them are listed below.
Definition 5.1.0.1 A landmark is a a known vistble solid physical object.

Definition 5.1.0.2 A feature is a specific structure in the image, for example an

edge, corner or blob.

Generally, a landmark existed in a 3D space has position (z,y, z), colour, size,
shape, etc as its attributes. For a vision-based robot localization, the relation between
landmark and feature and their detail components are shown in Fig. 5.1. A landmark

contains position attributes in 3D and many image-based features.

A SIFT feature is a special feature of a landmark which is extracted from its as-

sociated image. For vision-based robot navigation, we extract SIFT feature from an

66
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Figure 5.1: Relation between landmark and feature for vision-based robot localization.

image, and then determine the 3D position of the SIFT feature by the camera model.

This determines the landmark for the robot’s navigation.

For the map building in this chapter, feature selection means to select a subset of
SIFT features from a set of SIFT features. Landmark selection and feature selection
have the same functionality for map building (to build a concise map), but the dif-
ference is that they came from different spaces. Landmark selection happens in 3D
physical space, and feature selection happens in image space (Fig. 5.1). Even though
there are many features for a landmark, the term feature in the following sections

means SIFT feature.

5.2 Problems of Map Building .

For landmark based maps, one of the problems is how to select the appropriate land-
marks from the observed landmarks to construct a map. For example, in a visual-
based robot navigation system, SIFT features are widely used. From each frame of
image, there are more than 1000 features for an image with 604 x 480 pixels in a
rich featured area. For a small image with 240 x 320 pixels, there are more then 100

features in a sparse featured area. -

Following is an example from our lab experiment in Chapter 3. An robot arm

navigates by following a circular path in space, and a stereo camera system installed
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Figure 5.2: Robot path and map with SLAM algorithm in 3D.

on the robot takes a sequence of images by viewing the ground surface of the working
area 3m x 3m x 1lm in length, width, and height. All the landmarks observed two
times in the robot working area are displayed in Fig. 7.5. In this case, the established
map has 2025 features in the image sequence with 36 images, and every frame of
image has about 56 features on average. The problem here is, do we really need so

many landmarks to construct a map for the robot navigation?

5.3 Requirement for Map Establishment

A map for a mobile robot consists of a set of landmarks that have distinguishable
feature attributes from other landmarks. The features of these landmarks should be
widely visible (invariant to position, orientation, and illumination). We denote a map

G with m landmarks L;, (i = 1,...,m) as:
G= (L, -+, L) (5.3.0.1)

The basic requirements for a map are defined as
(1) Having a relatively small number of landmarks;
(2) Landmark’s feature should be distinct;

(3) At any position on a path, at least my landmarks are visible.
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To meet the first requirement, it is necessary to keep a map as concise as possible.
There are many advantages to having a concise map - first, it will save computation
time; in a SLAM process, as soon as a landmark is observed, the map needs to be
updated based on the new observation, and during the data association step, the
smaller the map is, the faster the data association; second, it will save storage space.
Each image frame from every time step, generally will contain more features than
the algorithm requires. Only some of them will be needed to estimate the pose of a
robot. Different algorithms require different minimum number of matched features

for the robot’s ego-motion estimation. Following are some examples:

‘With two consecutive images Fj_; and F from a moving camera which has cal-
ibration matrix K, if a set of corresponding points u;, u, is determined, the relative
translation T} and rotation Ry from Fj_; to F;, can be computed by using the epipolar

geometry in Fig. 5.3 from the following equation
uT (KH)TS(T)R;* K/ =0 (5.3.0.2)

where matrix S(T}) is a skew symmetric matrix of the translation vector T} =

[tk, ¢k, t5]T, which is expressed as

0 -tk ¢
ST)=1{ t¢ 0 -t (5.3.0.3)
—th k0

The solution of Ry and Ty in Eq. (5.3.0.2) needs at least 8 corresponding image
points [80]. If there are more points, the estimation will be robust to noise and mis-

matched.

From a stereo camera system or a laser scan camera, it is possible to acquire a set
of corresponding points in 3D space. These points are the landmarks in a real work-
ing area. The translation T} and rotation Ry can be estimated by the registration
method as described in chapter 4. In this method, at least 4 3D points are needed

for a solution.
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Figure 5.3: Epipolar geometry for robot’s ego motion estimation.

Based on different algorithms employed, with at least m corresponding features
or landmarks between two frames, it is possible to determine the robot’s pose relative
to its previous position. Of course, the more points used, the more robust the results.
But, how many points will be enough for reliable results? A Monte Carlo simulation
of registering two sets of 3D points is implemented with different numbers of fea-
tures. The estimated distance error and angle error are shown in Fig. 5.4. From the
simulation results, if there are more than 10 corresponding 3D points, the estimation

accuracy will not change much with additional matched landmarks.

The simulation makes the assumption that the data association is perfect, i.e.
there are no mismatches. In reality, because of noise, mismatching occurs, even
though robust methods have been applied. In order to increase reliability of the
estimation, more features should be selected at each frame. If the minimum feature
number for ego-motion is my, the number of selected feature in 5 to 10 times of my
would be a safe selection. This means that the appropriate selected features can be

expressed by
m = (5 ~ 10) x my (5.3.0.4)
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Figure 5.4: Monte Carlo simulation by comparison of the number of selected features.

5.4 Efficient Map Building

A map can be constructed in many different ways. The simplest method is to use all
the observed features to form the map, as shown in Fig. 5.6. This is not an efficient
method from the point of computation and storage. Three new strategies have been
developed in this section. Before the algorithms are designed, we introduce some

definitions.

5.4.1 Example for the Map Building

In the following chapter, we take an example from my simulation system ®. A robot
navigates by following a circular space path, and a stereo camera system installed on
the robot takes a sequence of images by viewing the ground surface of the working
area 100m x 100m x 20m in length, width, and height. It is assumed that there are
3000 landmarks randomly distributed on the surface floor. All the landmarks and
observed landmarks in the robot working area are displayed in Fig 5.5, and all the

landmarks observed during the robot’s navigation are displayed at Fig. 5.6.

1Robot simulation system is introduced in Chapter 6.
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Figure 5.5: All the landmarks and observed landmarks in 3D. The red circles are the
landmarks on the floor surface, the blue circles are observed landmarks, and the large green
circle is the robot navigation path.
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Figure 5.6: Observed features projected to 2D plane. The small blue dots are observed
features, and large green circles are the robot navigation path.
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Figure 5.7: Overlapped features with the level of overlap 3. Different colour dots represent
the features observed at time stamp k — 2,k — 1 and k. Features at the red area are the
features included by the three frames Fy, Fx_1, and Fi_o.

5.4.2 Definitions

Definition 5.4.2.1 F; is a set of features which is observed by a sensor at time k. It
is called frame at k. The size of Fy, is expressed by |Fx|, which is equal to the number

of features.

Definition 5.4.2.2 Q}° is a set of features at k, which also appear at Fy, ..., Fy_p,,
where p, > 1. Q% s called features on overlap p, at k. It can be calculated by the set
operation as

Qio =FNF,_1N---N Fk—po (5.4.2.1)

For example, if the overlap level is 3, an instance of (2} can be displayed at Fig. 5.7,
where different colour dots represent the features observed at time k — 2,k — 1 and
k. Features at the red area are the features included by the three frames Fj, Fy_1,

and Fy_,, which is also expressed by (3.

Definition 5.4.2.3 G is a set of features which is stored in a database for mobile

robot navigation, which is also called a map. A map can be expressed as
G = {Ll, Lz, vt ,Lm} (5422)

where L; (i=1,--- ,m) are the features in R®.
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Figure 5.8: New features at time stamp k with the level of overlap 2. Features at the red
area, is Q%, and features in blue area is Q%_l.

Definition 5.4.2.4 G}*™ is a set of features in %°, and is also called as sub map

at k, where the size of the sub map is |GF>™| = m.

Definition 5.4.2.5 Q7" is a set of features in Q%° and not in Q5 ,, which ts called

new features on overlap p, at k. It can be obtained by set operation as
QY =\ Q8 (5.4.2.3)

This definition can be understood by Fig 5.8, where Q2 is represented by the
features in the red area, and Q?_, is represented by the features in the blue area;
And Qi’”m represents the features in the red area which does not include the features

overlapped by the blue area.

5.4.3 Feature Selected by Overlap

This is the simplest way to construct a map for a robot navigation. Suppose that the
overlap level is p,, then any features observed p, consecutive times will be added into

the map. Therefore the map G can be formed as

G=Q U U UQru-- (5.4.3.1)

or
G=Guqr (5.4.3.2)
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where k is the time stamp which is bigger than p,. In this cdse, if a feature is observed
more than p, times, then it is added to the map. The algorithm to construct a map

by this mechanism is shown in Alg. 5.

Input: A sequence of frames Fi, k= 1,---, N, and overlap level p,
Output: A map G

1: initialize map G=0

2: for each observation k from p, to N do _

3:  data association among features in (Fy, Fx_1, - -+, Fx_p,), a feature observed
by all p times is added to Q% by Eq. (5.4.2.2).

4:  perform set operation by Eq. (5.4.3.2) to get map G.

5. end for

Algorithm 5: Map building by selecting features observed p, consecutive times

Taking the observed data from Fig. 5.6 in the previous example, and implementing
Alg. 5 for different overlap leveis from 2 to 10, its statistic results are shown in Fig. 5.9
and Fig. 5.10. It is easy to see that the higher overlaps level p,, the fewer features
it will select each time to be added to map G. It must be pointed out that there
are many parameters that will affect the number of featﬁres which will be added to a
map; they include relative pose between two consecutive observations, and effective

range of sensor.

It should be easy to obtain an appropriate map size by selecting the proper overlap
level in a given situation from Fig. 5.9. Therefore, with a high level of overlap p,,
the features added to a map at each time should be small. There is another benefit
to using a high level of overlap in map building - it is possible to form a local cycle
during the robot pose and feature position estimation(Fig. 5.11), and this local cycle

can be used to align the map to ensure it is consistent [91].

The disadvantage of using a high level of overlap is that in some areas there may
not exist any features to add to a map, since in real applications, features in the

working areas are not always evenly distributed. Therefore, the selected features
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Figure 5.11: An instance of a local cycle from multi-frame, where the overlap level is 4.
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observed by 3 time will be more safe and reasonable [78], but we can see that with
overlap level 3 in Fig. 5.9, the average number features which will be added to a map
each time is about 65. This is still much more than the algorithm needs; however,

this problem will be solved by strategies in the following subsections.

- 5.4.4 Feature Selected with Fixed Number by Stratified Sampling

From the previous methods, we know that selecting a very high level of overlap is not
the best way to construct an effective map. However, a low level of overlap will gen-
erate a map that is larger than required. At this point, a new algorithm is designed

to construct an efficient and effective map.

The basic idea of this method is described as follows: with a low level of overlap
Do, & set of features (usually larger than we want, m) will be obtained each time.
Then we randomly select m features from these for the map building. This algorithm

can be implemented in four steps:

First, set a low level of overlap, p,, such as 3 or 4, which will ensure that more
than enough features will be obtained for most of the time. Second', compute the fea-
tures at any time stamp k with the level of overlap, p,, by Eq. (5.4.2.2), Q. Third,
randomly select m features in QF°, which is a sub map at k, G5™. Finally, the G?>™
is added into map G by Eq. (5.4.3.2).

We must be careful in the third step to select features in Q%°. When the time step
k is equal to p,, this is the first time to select features for a map. If m features are
needed from each frame F}, m features can be selected randomly without replacement
from QF°, then we can obtain a sub map, G¥>™. When the time stamp k is bigger
than p,, we cannot select m features from QF° (where k > p,) such as the case at

k = po.

For example, assume that m = 10 features are needed for a robot localization
computation. At time k — 1, 10 features have been selected in the blue area for the

map building, and these selected features are expressed with red dots at Fig. 5.12. If
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Figure 5.12: Features select on overlap level of 2 at time stamp k. Fk.o, Fx_1, and Fy
represent the set of features projected to a 2D plane at time k—2, k—1, and k, respectively.
The dots in the blue area represent the features on overlap 2 at k — 1, Qi_l. The dots and
squares in the yellow area represent the features on overlap 2 at k, Qi Red dots are
randomly selected features at time £ — 1 from Qi_l. Small blue squares are the features

randomly selected at time k from Qi’"ew.

another 10 features are selected at time stamp k with the same method, the selected
features in the area where the blue and yellow areas are overlapped (Fig. 5.12) may
be different from the features which are already in that area; we should avoid these
duplications. At this time, we need to count the selected features from the overlapped
area expressed by blue and yellow. This number is expressed by n; then, we only need
to select m — n features for the map from the yellow area which is not overlapped by

the area of blue. The algorithm to select features in this case is summarized in Alg. 6.

Taking the observed data from Fig. 5.6 in the previous example, and implementing
Alg. 6 by setting the overlap level to 3 and selecting 20 features from each frame, the
final map after a robot finishes a circle path is shown in Fig. 5.13. The size of this
map is 472. For the boverlap level 3, the size of the map by Alg. 5 is about 1000
in Fig. 5.10; therefore this algorithm (Alg. 6) generates a much more concise and

efficient map.
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Input: A sequence of frames Fy, k = 1, .-, N, number of feature m, and overlap

level p,.
Output: A map G.

1: initialize map G=0

2: for each observation k from p, to N do

3: - data association among features in (Fy, Fy_1, -+, Fx_p,), & feature observed
by all p times is added to 2 by Eq. (5.4.2.2)

4: if k=p then

5: randomly select m features from (e, assigned to 1?

6: else

7: find new features on overlap p, at k, Q5™ by Eq. (5.4.3.1)

8: find the number of features in current map which is in }°, assigned to n
9: randomly select m — n features from Q;°"“, assigned to Gp*™"
10: end if
11:  do set operation by Eq. (5.4.3.2) to get map G
12: end for

Algorithm 6: Map building with Fixed Number by Stratified Sampling

Figure 5.13: A map constructed by randomly selecting 20 features from each frame on
overlap level 3. Total features in the map are 472.




80

5.4.5 TFeature Selection for Even Distribution

Another problem in the previous method is that the two selected features may be
too close. For this reason, a new algorithm is introduced to make sure that all the

selected features are evenly distributed in the view space of camera in the map.

Assume that there are N features in Q}°, and m features are needed to be selected
for a map. All the features in }° can be grouped into m clusters where Euclidean
distance is used as an evaluation parameter. The feature with the shortest distance

to the centre of its cluster is selected for the map.

Input: A set of features in Q° with size N.

Output: m selected features, S.

1: initialize S =0

2: m clusters generated with agglomerative hierarchical clustering method

3: for each cluster do

4:  calculate its centre

5. find a feature in the cluster which has the shortest distance to its centre
6: add the feature into the map

7. end for

Algorithm 7: Selecting features with even distribution in space.

In the feature selection processing, some isolated features which are far away from
other features should be selected with high priority, which will provide a more robust
estimation [37]. In this case, the agglomerative hierarchical clustering method [36]
will be used. An instance of clustering for this case is shown in Fig. 5.14, where
feature A and feature B should be selected with high priority if more than 3 features

need to be chosen in the set of features.

Integrating this algorithmAlg. 7 into Alg. 6, and implementing it with the ob-
served data from Fig. 5.6 in the previous example, the final map after a robot finishes

a circle path is shown in Fig. 5.15. The feature distribution in this map is much more
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Figure 5.14: An instance for clustering, where feature A and feature B should be selected
with high priority if more than 3 features need to be chosen in the set of features.

evenly distributed than in Fig. 5.13 with the algorithm of simply random selections.

It is hard to determine which of the maps in Fig. 5.13 and Fig. 5.15 is better.
The Monte Carlo simulation method was used to check the average smallest distance
Dyin in different features from 10 to 30 selected from each frame, and overlap level
Po = 3 for both algorithms in subsection 5.4.4 and subsectioﬁ 5.4.5. The Monte Carlo
simulation results and their related variance is shown in Fig. 5.16. The R,,;, by red
color represents the results from the method of feature selection randomly and the
Opin by green color répresents the results from the method of feature selection for
even distribution. In all test cases, the average minimum distance of 'the features in
the map by the algorithm in subsection 5.4.5 is larger than in subsection 5.4.4. By
using statistic hypothesis testing, we can say that the average smallest distances are
different for these two methods with 95% confidence.

5.5 Summary

Map building is a very important component of 3D SLAM. For a large work area in
an outdoor environment, organizing some features for an efficient and reliable map
is the issue we have discussed in this chapter. Based on the requirement for reliable
robot pose estimation, several algorithms to build an eflicient map were developed for

mobile robot navigation. These algorithms were tested by using the data from our
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Figure 5.15: A map constructed by selecting 20 features evenly distributed from each frame
on overlap level 3. Total features in the map are 472.
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Figure 5.16: Monte Carlo simulation from selected features minimum distance comparison
between random or even selection algorithm.
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mobile simulation system (which will be introduced in the next chapter). Of the two
optimized efficient maps, the map with evenly distributed features is much better for
expressing features in the robot’s working area, as it will provide a more robust pose

estimation than the map with randomly-selected features.



Chapter 6
Simulation

In order to provide a convenient tool for evaluating 3D SLAM algorithms, a 3D simu-
lation system (SLAM_3DSim) was developed, in which a robot equipped with sensors
such as stereo camera, radar, sonar, laser range finder, and/or IMU can navigate
in a pre-defined environment such as space, indoors, outdoors, and underwater by
input. The sensors will take measurements during the robot’s navigatioﬁ at various
intervals, and the measurements will be saved to a database or a file for the robot

and landmarks position estimation.

In this chapter, an introduction of the SLAM_3DSim is presented in section 6.1.
By using this simulation system, a robot pose estimation for different environments
is presented in section 6.2. SLAM simulation with only stereo camera is presented
in section 6.3. SLAM simulation with multi-sensor fusion is presented in section 6.5.

Summary is provided in section 6.6.

6.1 Introduction to a 3D Simulation System

SLAM_3DSim is a software system developed to simulate a robot, equipped with
multi-sensors, to measure its surroundings while navigating in an unknown environ-
ment. The measurement results are stored in a database and used to estimate the
robot’s pose and establish a mapk of the environment. This map can be used for robot
navigation in the future. Below is a brief introduction of the system. Further details

are provided in Appendix C.

6.1.1 Structure of the System

SLAM_3DSim was developed by strictly following the control-view-model design pat-

tern [9] to guide the system design. Control processes and responds to events, such

84
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Figure 6.1: The structure of SLAM_3DSim simulation system.

as animation or simulation performance, input and output selections. View renders
the model into a form or graph for interaction, such as robot animation displayed in
3D which projects to 2D in a predefined direction. Model represents the information
on which the application operates. In this simulation system, the model includes
the predefined robot path, environment setting (floor surface and landmarks), sensor

modelling, and sensor measurement. The structure of the system is shown at Fig. 6.1.

6.1.2 Interface of the System

The interface of SLAM_3DSim provides the control and environment settings for dif-
ferent simulation cases. The main interface of the system is shown in Fig. 6.2. There
are five groups for the input setting - general setting, working area, camera parameter,
view direction, and other selections; and five buttons to implement their correspond-

ing tasks.

An example of the simulation system application is displayed in Fig. 6.3, which is
a robot navigating in an underwater environment, with stereo camera on the robot
and buoys on the water surface. The small dots are the detected landmarks on the
floor surface. The view volume of the sensor, such as a camera, is expressed by the
blue cone, and there are five buoys on the water surface which send range information

and GPS information to the robot. The detected landmarks are located on the floor
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Figure 6.2: Main interface of SLAM_3DSim simulation system.

of the bottom (Fig. 6.4). The bottom surface (in Fig. 6.4) is expressed as a wire

frame, which is not displayed in Fig. 6.3 for simple and clear reason.

6.2 Simulation Case 1: 3D Robot Pose Estimation

Before implementing the complicated 3D SLAM problem, we start by a simple ex-
periment in which we only want to estimate the robot’s pose during its navigation.
In this case, the most basic assumption is that there is a complete and accurate map
of the environment. This implies that all the features’ positions in the working area
are known. This assumption is appropriate for real application in the following two
situations: (1) all landmarks are artificial landmarks, which have fixed positions; or
(2) a robot has navigated the area and implemented SLAM algorithm previously.
Based on this assumption, the map is available, and the robot pose will need to be

estimated during its navigation.

In this test case, it is assumed that it is an underwater environment with length,
width, height of 100m x 100m x 20m. There are 3000 landmarks on the floor surface
which are randomly distributed in 2D domain space, and five buoys are placed on the
surface of water in the experimental area. A robot navigates with speed 2m/s and

direction of (0, 3%,0) in euler angle relative to its current orientation. A stereo camera
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Figure 6.3: Robot navigates in an underwater environment with stereo camera and buoys
on surface. The small dots are the detected landmarks on floor surface, view volume is the
blue cone, and there are five buoys on the water surface which send range information and
GPS information to the robot.

S

Figure 6.4: The bottom surface which is corresponding to the simulation case in Fig. 6.3.
The surface is expressed by wire-frame model.




88

1
P
/

A

Figure 6.5: Measurement information of a robot after a circle navigation is completed. All
the detected landmarks are located on the floor surface. Five buoys on the water surface
transmitted range information to the robot every 5 seconds.

sensor installed on the robot views down to the bottom. Once per second, the stereo
camera takes a photo to measure the environment; every 5 seconds, the buoys send
distance information to the robot. The snapshot of the simulation results for this case
is shown in Fig. 6.5. where the detected landmarks located on the floor surface are
represented as small red dots. Five buoys on the water surface transmit range infor-

mation to the robot every 5 seconds, and the floor surface is represented as wire-frame.

During the simulation, it is assumed that the sensors and input error distribution
are Gaussian. It is also assumed that the stereo camera’s measurement error covari-
ance is expressed by a matrix with diagonal (0.1m,0.1m,0.1m)? and zeros for other
entities, the buoy’s range measurement error covariance is 0.01m?, and the robot in-

put error covariance is (0.1m,0.1%,0.1°,0.1%)2 for speed and three Euler angles.

With the stereo camera’s measurement and system input, the robot position is
estimated by implementing the particle filter with the process model and measurement
model described in chapter 4. With the measurement of buoys on the water surface,
the robot position is estimated by using the extended Kalman filter with the method
described in chapter 3. The robot position is also estimated by using sensor fusion
from both camera and buoy measurements. The estimated path with these three

different approaches is shown in Fig. 6.6.
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Figure 6.6: Robot path estimation in 3D with different methods in case 1.

It is very difficult to see the differences in these three paths in Fig. 6.6. Robot
pose includes position and orientation. The position has components (z,y, z), and
the orientation is expressed in Euler angle (6,,0,,0,) around z axis, y axis, and z
axis. In order to have an overview of the robot’s pose information, the errors for
each component for a camera estimation and for a fusion of the camera and buoys are
“displayed at Fig. 6.7. From this figure, we can see that there was not much difference in

the position components, but the orientation components showed obvious differences.

In order to determine whether the results from the three methods are different
or not, a position error was used to evaluate the different approaches. The position
error was computed between the actual robot position and the estimated position as
soon as each measurement was taken. These errors are shown in Fig. 6.8. We observe
that buoys provided the highest accuracy estimation among the three approaches.
For most times, the camera’s measurement is used for estimation of the robot pose
at regular intervals. When the buoy’s measurement has been determined, EKF is
used to estimate the robot position. Then, this position information is fused with the
position information from the camera. From the results in Table 6.1, the mean errors
for camera and sensor fusion are very close. We can use statistical hypothesis testing
of two populations [58] to check whether the mean error from sensor fusion is smaller

than the mean error from the camera. The sample size (steps of navigation) is 121,
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Figure 6.7: Robot position error with respect to actual position for each component in
simulation case 1. ‘

Table 6.1: Statistics of the position estimates obtained from different sensors.
l | Buoys | Camera | Sensor Fusion |

Mean(cm) | 1.2 5.1 4.5
Covariance | 0.25 0.23 0.17

and we assume the confidence level is 99%. The p —value is smaller than 0.001, which
is much smaller than 1%. Therefore, we can say that the mean error from the sensor

fusion is smaller than the mean error from the camera with a confidence level of 99%.

An explanation is needed for the data displayed in Table 6.1, where the the fusion
result from camera and buoys estimate is not better than the estimates based on
camera and buoys separately. Let us look at the sampling intervals for each sensor in
Fig. 6.8. The sampling interval for the camera is 1s, while for the buoys it is 5s. This
means that, the fusion estimates are generated only every 5s, compared to every ls

for the camera estimates, i.e. five times less often.
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Figure 6.8: Robot position error with respect to actual position in case 1.
6.3 Simulation Case 2: 3D Robot SLAM with Small Measurement Noise

SLAM works in a situation where there is no map of the environment, and the sensor’s
measurement must be used to estimate both the employed robot pose and landmarks
position. Fast SLAM algorithm in Chapter 4 is applied for this simulation. Before it

is implemented, several issues need to be determined:

First, how to organize a map for this case. Based on the knowledge from the
previous chapter, not all the observed landmarks will be used for the robot’s pose
estimation. We only select at most m; landmarks, which are observed over three con-
secutive time intervals. These landmarks are selected by stratified sampling(Alg. 6 in

Chapter 5).

Second, how to add the newly-observed landmarks to a map. we stated in sec-
tion 4.4 of Chapter 4 that all the observed landmarks at time k£ (k > 1) can be divided
into two group: old landmarks and new landmarks. The new landmarks need to be
added to the map. From the measurement model in section 4.2 of Chapter 4, the

position of landmark 7 in a global coordinate system can be obtained by
z; Zy, (k) z(k) ‘
yi | =Mk Z,(k) | + | y(k) (6.3.0.1)
z Z.(k) z(k)
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where z(k), y(k), z(k) are the position of the robot at time k. M, (k) is the rotation
matrix at time k, which is determined by its related euler angle. Z,,(k), Z,,(k), Z,,(k)
is the measurement of landmark 7 at time k by a sensor on the robot. The covariance

of the landmark position can be obtained by
P, = P, (k) + M, (k)R;M, (k)" (6.3.0.2)

where P,,(k) is the covariance of the position of the robot at time k, and R; is the
covariance of measurement error for landmark ¢ which is determined based on the

employed sensor.

Environment setting for 3D SLAM is almost the same as in case 1 of section 6.2
of this chapter. The only difference is that the environment for SLAM is unknown,

which means that only observation information and robot input can be applied.

The simulation result is displayed in Fig. 6.9, which includes the estimated path,
true path, all the landmarks in the map, and the errors for each landmark. The robot
started to move at the point (50m, 20m, 12m) in the working area in an anti-clockwise

direction.

The map established by SLAM will be used for the mobile robot’s navigation. If
the map is not accurate enough, it is too difficult to locate the robot’s true position;
therefore, building a high-accuracy map is one of the most important issues. The
path and landmarks errors in this simulation are shown in Fig. 6.10. The path error

and landmarks error increased with the processing of the robot navigation.

The newly-observed landmarks at time k, which will be added to a map, are
computed based on the robot pose and sensor measurement at that time. If the robot
pose has large errors, consequently the newly-added landmarks in the map will have
large errors. Furthermore, the inaccurate map built at time k will be used for the
robot pose estimation at time k + 1 and this will increase the error in the robot pose
estimation at time k + 1. Therefore, the most important issue for high-accuracy map

building is to have a mechanism or method to estimate a robot’s pose accurately.
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Figure 6.9: Simulation results for robot pose and landmarks position in 3D space in case
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Figure 6.11: Simulation results for robot pose and landmarks position in 3D space in case
3.

6.4 Simulation Case 3. 3D Robot SLAM with Large Measurement Noise

Case 3 has almost the same environment settings as in case 2, and the only difference
is that the sensor noise and input noise are bigger than in case 2. In case 2, the
error covariance for the sensor is assumed to be expressed by a square matrix with
(0.1m,0.1m,0.1m)? as diagonal and 0 for other entities, and the error covariance for
robot input is (0.1m,0.1°,0.1°,0.1%)? for speed and three Euler angles. In this case
(case 3), the error covariance for the sensor is (0.5m,0.5m,0.5m)? as diagonal for a
square matrix, and the error covariance for the robot’s input is (0.5m, 0.5%,0.5°, 0.52)?
for speed and three Euler angles. This will be used to investigate the influence of the

SLAM results by different sensor errors andAsystem input errors.

The estimated robot poses and landmarks positions in 3D for this case is shown
in Fig. 6.11. The robot pose and landmarks position projected in horizontal plane
is shown in Fig. 6.12. The robot’s position error and landmarks position error are

shown in Fig. 6.13.

To compare the simulation results in case 2 (Fig. 6.10) with case 3 (Fig. 6.13),

the largest robot pose error is about 0.5m in case 2, but about 4m in case 3. we have
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Figure 6.12: Simulation results for robot pose and landmarks position in 2D in case 3.

Figure 6.13:
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observed that the robot pose error will directly influence the landmarks position.
This claim can be inferred from the estimated landmark error: in case 2, the biggest
landmark error is about 0.8m, while in case 3, it is about 5m. From these results, we
know that it is very important to control the sensor’s error and system input’s error

for a reliable and accurate solution to the SLAM problem.

6.5 Simulation Case 4: 3D Robot SLAM by Sensor Fusion with Small

Measurement Noise

vFast SLAM is a very efficient algorithm for a mobile robot in computation, but a
robot using only one sensor(such as camera, laser scanner, radar, sonar) will cause
its built map to incur large errors when the employed robot navigates for a large
area, since the robot pose estimation and landmarks position estimation are based
on relative information. For relative information, cumulative errors will be increased
with navigation time. In the following case, another sensor, the sonar buoys, will be
fused with a camera during the process of Fast SLAM implementation.

In case 4, the simulation setting is the same as in case 2, but there are five buoys
placed on the surface of the water (see Fig. 6.3). The buoys send measurement of
GPS information and distance measurement to the robot every 5 seconds. This in-
formation can estimate the robot’s position with EKF. The camera will observe the
environment downward and take one photo per second. Fast SLAM algorithm is im-
plemented with the camera’s observation. Each time the robot’s position is estimated
by using the buoys measurements, the information will be fused with the robot’s po-
sition from fast SLAM. This will cause the fused robot position to be more reliable
than the position estimated from only one sensor. The fusion results in a 3D situation

are shown in Fig. 6.14.

To investigate the errors in this simulation, the path error and landmarks error
are shown in Fig. 6.15 . The largest path error is less than 15¢m, and the largest
landmarks error is less than 40cm. In case 3 where only a camera sensor is used
(Fig. 6.10), the largest path error is about 70cm, and the largest landmarks error is
about 80cm. Therefore, we can say that sensor fusion results in much fewer errors

than when only one sensor is used.
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Figure 6.14: Simulation results for robot pose and landmarks position in 3D space in case
4,

Even though the path error and landmarks error in case 4 are decreased greatly,
they are not very small. The results in Fig. 6.8 indicate that the largest path error
from buoys measurement is less than 2cm. Why does the buoys’ high accuracy esti-
mation not make the fusion results smaller than these results? In Chapter 4, the state
vector definition for a robot has six components, three in position and three in orien-
tation. The robot’s pose estimated from the camera’s measurement includes position
and orientation, but the estimation from the buoys measurements only provides the
position of the robot. During the fusion stage, only the robot’s position fused and
its orientation remains unchanged. As we know, the robot’s pose estimation and the
landmarks position estimation are related to the robot’s orientation. The large error
in orientation will definitely cause a large error in the landmarks position estimation.
The landmark’s large error will in turn cause a large error for the robot’s pose esti-

mation in its subsequent steps.

It must be pointed out that the cameras implement visual odometry with un-
bounded error growth, while the buoys implement triangulation with bounded error

growth. These may affect the final fusion results.
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Figure 6.15: A robot and landmarks position error of simulation results of SLAM with
sensor fusion in case 4.

6.6 Summary

A mobile robot simulation system developed for 3D SLAM is introduced at the be-
ginning of this chapter. It includes the system design, system structure, interface and
environment setting. By using this system, three types of robot navigation cases are
simulated: mobile robot pose estimation, SLAM simulation with only stereo camera,

and SLAM simulation with sensor fusion.

From the simulation results, we notice that measurement noise has a significant
influence on the robot pose and landmark position estimates. To limit sensor error
to a small value will greatly improve the estimation accuracy. If the sensor error
can be limited to 0.1m, the robot position and landmark position error will be in
the range of 1m. If the sensor error is in the range of 0.5m, the robot position and
landmarks position error will be in the range of 5m. This error is not acceptable in

an environment of the scale of a soccer field (e.g. 100m x 100m x 20m).

Sensor fusion is one of the potential approaches to improve the accuracy of robot
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pose and features position. By comparing the accuracy using both a camera and buoys
with using a camera only, at the same level of camera noise, the former performs much

better than the latter.



Chapter 7

3D SLAM in Real Application

Mobile robot experiment in an underwater environment is very difficult and expen-
sive. In order to validate the algorithms developed in this thesis, we designed several
experiments in different environments which are focused on different objectives, as

follows:

First, we experimented in an indoor swimming pool and an open ocean of Bar-
bados where we focused on the vision visibility test and buoy operation test. The

experiment results will guide the whole measurement system design.

The second experiment was the indoor test with arm robot and stereo camera,
the objective of which was to validate the SLAM algorithm with sensor fusion. The
benefit of this test was that we knew the real position of the robot, and we could

control the landmarks in the working environment.

The third experiment was the outdoor test with multi-sensor to check whether
the SLAM algorithms for sensor fusion could work in a real and unknown working
environment - at a parking lot with on a clear day in summer. We installed several
sensors, such as the trinocular camera, GPS, inertial measurement unit, and digital

compass, on a garden cart, which we pushed while moving through the parking lot.

This chapter is organized as follows: the water environment experiment is intro-
duced in section 7.1; the indoor experiments of 3D SLAM with an arm robot are
presented in section 7.2; and the outdoor experiment of 3D SLAM is presented in

section 7.3, ending with the summary.

100
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Figure 7.1: Camera visibility experiment in swimming pool with LED. The distance from

a to f are 4.65m, 7.10m, 9.55m, 12.07m, 14.52m, and 16.34m. The view direction is parallel
to the surface of water, and center of camera is at 0.6m deep in water.

7.1 Water Environment Experiment

7.1.1 Visibility Test with Camera in Water

The visibility of a camera in water is a very important issue for camera-based robot
localization. In open ocean, many things will affect the visibility, such as weather,
depth of water, or rough level of ocean. Some measurements were done for the cam-
era visibility in the swimming pool of Dalhousie University. A LED was placed in a
transparent plastic box, which was affixed to a wall in the pool. The pictures were
taken from various distances in front of the box. The results are shown in Fig. 7.1.
From this experiment, it is easy to see that in good light conditions and clear water,

a camera can measure the environment in the distances of up to 10 meters.

Some experiments for camera visibility were done in the Atlantic Ocean off western
Barbados. An image of the ocean floor, as shown in Fig. 7.2, was taken in clear
weather at a depth of approximately 3 metres from a distance of approximately 4
 metres. From this image, the landmarks on the ocean floor in that coral reef area are

clear and distinct. This means it is possible to select enough landmarks in this area
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Figure 7.2: Camera visibility in ocean.

to which image-based robot localization can be applied. However, not all areas of the
ocean floor have distinct features, and not all the images are clear enough to extract

distinct features.

7.1.2 Configuration of an Underwater Robot System for SLAM

An autonomous mobile robot is usually equipped with many different sensors. To-
date, the most popular sensors which are used in the mobile robot community are
stereo cameras, laser range finders, sonar detector sets, strap down inertial naviga-
tion sensors, and digital compasses. The underwater robot system, in addition to the
previously mentioned sensors, should be equipped with an acoustic system which can
measure the distance from the robot to the buoys on the surface of the water. The
buoys are equipped with GPS, compass, and inertial navigation sensor so that their
position and orientation can be measured in a global coordinate frame. Therefore,
integrating all the sensors equipped on a robot is a key issue for a reliable and robust
SLAM solution.

A typical system configuration of SLAM for an underwater autonomous robot is
shown in Fig. 7.3. All the sensors used by this system are divided into two groups
according to their employed subjects: robot and buoy. The list of sensors and their

associated purposes are explained in Table 7.1.

From our experiment in water, we know it is possible to solve the SLAM problem in

an underwater environment with information fusion from multi-sensor measurement
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Table 7.1: Sensor for SLAM of an underwater robot

[ Name | Name of Sensors | Purpose [

Trinocular stereo camera Local SLAM

Robot | Inertial measurement unit (IMU) | robot pose estimation
Digital compass IMU’s calibration
Projector - Communicating with hydrophone
Hydrophone Receiving the signal from projector

Buoy | GPS receiver buoy’s absolute position
Inertial measurement unit (IMU) | buoy’s orientation
Digital compass IMU’s calibration

Rabist-fn watler

Gowan ooy

Figure 7.3: System configuration for underwater robot 3D SLAM. Four sensors installed
on a raft list on the right of the raft, which are a GPS receiver, a hydrophone set, an inertial
measurement unit and a digital compass. Four sensors installed on the robot list on the
right of the robot, which are low frequency projector, an inertial measurement unit, a digital
compass and a trinocular stereo camera.
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Figure 7.4: PA10-7CE Arm robot and environment set-up.

if the vision sensor can obtain sufficient features in its working environment. The
sensors used in this Cé,se are the stereo camera system installed on the robot, and
the buoys on the surface of water. During the robot navigation, the buoys will
measure the robot’s position each time, according to the buoys’ working frequency.
The measurements from the stereo camera will estimate the robot’s position and
establish a map, using the SLAM algorithm, in a local frame when the environment
provides enough matched landmarks. The globally-consistent robot localization and

map can be estimated by the algorithm presented in Chapter 4.

7.2 Indoor Experiment with Arm Robot

Some experiments were done in the robot lab at Dalhousie University, using an arm

robot, equipped with sensors as for the underwater robot.

7.2.1 Environment Setting

The lab experiment was performed with a BumbleBee camera system mounted on a
Mitsubishi PA10-7CE Robot. The set-up for this experiment is shown in Fig. 7.4. In
the indoor environment, we could control the light appropriately for a vision test. For
the robot’s position and map estimate, the working environment would have enough
landmarks. As shown in the Fig. 7.4, we placed many objects on the lab floor such

as tools, boxes, and books as the landmarks for the experiment.
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Figure 7.5: Robot path and map with SLAM algorithm in 3D.

7.2.2 SLAM with Stereo Camera

In this case, the robot rotated in a circle within a radius of 0.678m, every 10 degrees

for the camera to take a pair of images.

By using the method to solve the SLAM problem introduced in the Chapter 4,
the estimated robot 3D position and 3D map are displayed in Fig. 7.5. The results
projected to 2D plane are displayed in Fig. 7.6. In this implementation, we used all
the features which had been observed twice in the image sequence. In this case, the

established map has 2025 features in the image sequence with 36 images.

The error of estimated robot path can be obtained by comparison of the values
between the true path and the estimated path, which is shown in Fig. 7.7. From the
results, it can be observed that the path error between the beginning point and step
9 or step 26 is very large, while the path error between the beginning point and the
* ending point from 3D SLAM is very small. We note that from the robot’s beginning
point to ending point the robot path forms a loop as shown in Fig. 7.5. Because of
the error in orientation, the error at the points where the path of the loop is achieved
is much less than at some other point in the loop. From this viewpoint, if we only use

the closed loop information to optimize the path and map estimation by the method
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Figure 7.6: Robot path and map with SLAM algorithm in 2D.
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Figure 7.7: Error of the estimated robot path.

of Lu & Milios [53], it will not achieve the desired results with few errors. This will

be discussed in the summary of this section.

7.2.3 SLAM with Sensor Fusion

Besides the stereo camera, another sensor is used to measure the position of the head
of the arm robot every five seconds. This is similar to the underwater robot which

has buoys to measure its position with low frequency.

The environment set-up for sensor fusion is somewhat different from that of SLAM
with only the stereo camera, where in all the working areas of the mobile robot, the

environment set-up ensured that in every position of the robot, the images taken by
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Figure 7.8: Globally-consistent 3D robot path and map with sensor fusion.

the camera would have enough SIFT features. With sensor fusion, it is not necessary

that every image have enough SIFT features.

In this case, the measurements from the stereo camera cannot continuously esti-
mate the pose of the mobile robot because in some areas there are not enough SIFT
features in the images. Therefore, the stereo camera can only be applied effectively
to estimate its local pose and to build a local map. The measurement from the range
sensors can be used to estimate the robot’s position in the global coordinate system.
From the algorithm 4, by fusing the results from the stereo camera and range sensors,
it is possible to build a globally-consistent map. The SLAM result from fusing the
measurements from a stereo camera and range sensor is shown in Fig. 7.8. From the
results, we can see that a global map is integrated from three local maps. Projecting

all the paths and map information on the ground plane, we obtained Fig. 7.9.

The estimated path error with sensor fusion is much less than with using only
the camera. The greatest path error is approximately 0.24m in Fig. 7.10, while in
Fig. 7.7, the greatest path error is approximately 1.3m. Therefore, sensor fusion can

provide much more reliable estimation than with using only one sensor.
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7.2.4 Summary and Discussion for SLAM from Lab Experiment

The algorithm for globally-consistent SLAM is appropriate in a lab en-
vironment. In the lab environment, we can set the working space according to our
design. For instance, we could not obtain enough matched SIFT features in two con-
secutive images if we did not place objects in some areas. In this case, the SLAM
algorithm 4 developed in Chapter 4 needs to be applied. The results (Fig. 7.8) from
the lab experiment data set indicate that the new algorithm can be used in a lab

environment.

Sensor fusion can obtain accurate SLAM result. By comparing the results
" from single stereo camera and from sensor fusion, the error for estimated position

from sensor fusion is much smaller than the error from single sensor.

Sensor fusion can avoid the limitation of graph-based optimization method
for globally-consistent SLAM . For the robot trajectory which forms a loop in
the navigation, from the sensor’s measurement, estimated results will not form a loop
because of the measurement error, model error, and computational error. Usually,
a graph-based optimization is applied to build a globally-consistent robot path and
map [53] [75] [91]. This is a constrained optimization problem, where the objective
function to be minimized is the likelihood function between the estimated robot pose
and the consistent robot pose with the constraints that the first and last positions of
the robot should be the same, and the first and last orientations of the robot should
be in the same direction. The solution of this optimization is the globally-consistent
robot path and map. The requirement in this method is that the robot path should
form a loop or an approximate loop, but the initial estimated result that does not
involve loop closure may have a large error. Then, this method will distribute the

final error of the initial estimation into each step of the path.

In the case where the estimated robot path forms a loop or an approximate loop
(which means the estimated robot path error between the first and last positions is
very small), but the estimated robot path error in the other positions is very large,

the previous optimization method cannot decrease this error. An example of the
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case is shown in Fig. 7.7. By using the sensor fusion approached developed in this
thesis, the limitation of the graph-based optimization method can be avoided, such
as in Fig. 7.10,where the robot’s path error is very small in every position. Another
example is where the consistent 2D map is built by using a compass to measure ori-
entation [22].

Environment set-up is very impo'rtcmt for SLAM in the lab. There are
many issues which will affect the quality of the robot SLAM in the lab via environment
set-up. First, we should place enough landmarks in the working space to make sure
that more than enough SIFT features can be extracted from the associated images.
Second, we should control the moving speed of the robot to make sure that any two
consecutive images will have enough overlap, making it possible to extract 'enough
matched features. Third, we should maintain the environment light at an appropriate
level. Strong lights will increase the reflection of certain objects, which will decrease
the accuracy of feature position. If the lighting is too weak, the intensity of the image
will be very low, making it difficult to extract enough features. For these reasons, we

did not use directly exposed lamps, but kept the environment bright enough.

7.3 Outdoor Large Area SLAM

For the indoor experiment in the previous section, even though natural features were
used, we had set-up the working area with randomly-placed objects and provided
adequate illumination. In this section, we present experiments that validate the

Alg. 4 in an outdoor environment for 3D SLAM.

7.3.1 System Configuration

A trinocular camera, DIGI-COL-60 Color Digiclops System with 6mm lenses and
10cm baselines in both directions, a GPS receiver, and a digital compass are used
for this experiment. The sensors are fixed on a rigid frame which is installed on
a garden cart (Fig. 7.11). The garden cart is pushed at unknown speeds, and the

sensors installed in the cart take measurements continuously.
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Figure 7.11: System setting for field test.

7.3.2 3D SLAM in Real Application

We did the experiment at a parking lot at Dalhousie University. The working area is
20 meters in length and 15 meters in width. During the robot navigation, 190 images
for each camera are taken one second apart, and half of these images are displayed in
Fig. 7.12. These images represent many different terrains, such as rocks, grass, paved
ground, and curb. Different terrains will generate different numbers of SIF'T features.
We can see that in the rock area, the number of features from the related image are

more than in other areas (Fig. 7.13), such as in the paved area.

The trinocular camera provides not only three images (right,left and top) at each
- time, but also a data file which includes the 3D points of the view field based on
the camera coordinate system (3D cloud). Generally, if an image has more SIFT
features, the trinocular system will provide more 3D points (Fig. 7.13). The number
of SIF'T features and the number of 3D points will influence the robot pose estimation
directly. If there are not enough 3D points, the related algorithm may not be able to

find enough matched features and 3D points for the robot pose estimation.

The number of matched features between two consecutive images in the image

sequence of the experiment is displayed in Fig. 7.14. We knew that there are many



Figure 7.12: Images from field test (in order of 1,3,...,189), from right to left, and top to
bottom.
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Figure 7.14: Number of matched SIFT features in each image with its previous consecutive
image.

issues which will influence the number of matched features. In the outdoor environ-
ment, overlap is the most important issue for the number of matched features. There
are eight peak points in Fig. 7.14 which correspond to images number 4, 45, 67, 92,
111, 138, 173, 188. Except for the peak point at image number 4, all the peak points
correspond with the turning points on the robot path, since the robot moved very
slowly at the turning points and this caused the consecutive images to have more

overlaps than that of other places.

If there is only a camera sensor, it is impossible to estimate a robot path and
establish a map continuously for the whole navigation period, since, in some places,
there are not enough matched features for the estimation, such as at steps 60, 80, 105,
145, and 165 in Fig. 7.14. Therefore, we have to solve the local SLAM problem first
for the case where there is a sequence of images which has enough matched features
in two consecutive images. In our experiment, there were 190 images which generated
24 local >maps and robot path segments in Fig. 7.15, Fig. 7.16, Fig. 7.17, and Fig. 7.18.
In these figures, the line with circle is the path estimated by camera, and the dots are
the detected features for map; x axis in the direction from lower left to upper right

represents length in the unit of meter, and y axis in the direction from lower left to
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upper left represents width, and z axis in vertical line represents the height, all of the

axises have unit in meter.

It must be pointed out that, even though there are enough matched features in
two consecutive images at certain points, we did not continuously generate that local
map since the error of estimate path exceeds a certain value. There are two ways
to trigger the algorithm to stop the local SLAM in this case: the uncertainty of the
estimated robot position is larger than a certain threshold; or the number of steps
in a local map building is more than a certain number. In this implementation,
we used the second, where the threshold is such that when the number of steps in

a local SLAM reaches 10, the local map is terminated, and a new local map is started.

The GPS, like the buoys for the underwater mobile robot, is used to estimate
the robot’s position in the global coordinate system. We fused the estimate from
the GPS, local maps and robot paths from the stereo camera by using Alg. 4. A
globally-consistent 3D map and robot path are obtained, as shown in Fig. 7.19, and
the result projected in 2D is shown in Fig. 7.20.

7.3.3 Efficient Map Building in Real Application

In the previous result, we used all the matched features to solve the local SLAM
problem, and the final map has 26,831 features. We know that there is no need to
have so many features in the map. An efficient map building algorithm (Alg. 7) was
used in the Alg. 4, and the final globally-consistent 3D map and robot path with
efficient map are displayed in Fig. 7.21. In this case, we selected at most 50 matched
features from two consecutive images to solve the local SLAM problem, and the final
map has 2281 features. The size of the efficient map is less than 10% of the size of
the normal map. This saves much storage space and also speeds up the computation

for the related map operation.

An interesting question here is whether the efficient map will affect the estimation

results. We used statistical hypothesis testing to check the estimated path position
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Figure 7.19: Global map and robot path in 3D from field test.
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Figure 7.21: Global map and robot path with efficient map from field test in 3D.

and features position of the map for both cases: normal map and efficient map. We
assumed that there is no significant difference between them, with a confidence level
of 95%. The test results indicated that the hypothesis is true and accepted. That
means there is no accuracy deterioration for SLAM solution by using the efficient

map.

7.3.4 Discussion for SLAM from Outdoor Experiment

The globally-consistent SLAM results from the outdoor experiment showed the suc-
cess of the algorithms and the measurement system. In order to have a better un-

derstanding of the implementation of the related algorithms, some issues need to be

clarified.

During the fusion step that integrates both results from local SLAM and the esti-
mate from the buoys in Alg. 4, extra measurements from another sensor are needed if

the robot path in the local SLAM is a straight line or an approximate straight line. In
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Figure 7.22: Global map and robot path with efficient map from field test in 2D.
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our experiment, half of the 24 local SLAM results have a straight line or an approx-
imate straight line in their associated robot paths. In these cases, the measurement
from a digital compass (which obtains the heading, pitch, and roll of the attached

robot) will be used to determine the map orientation during the fusion step.

In all the 24 local SLAM results from our experiment, there are 6 which did not
have 4 position points in their associate paths. If the position points in a robot path
are fewer than 4, it is impossible to form a B-spline curve in Alg. 4. If this occurs,
we simply ignore the local results. Of course, some important landmarks may be lost

in the final map, this can be avoided by using the following method.

If there is only one position point in the associate robot path from a local SLAM
result, we can simply ignore it. If there are two or three, we can use a linear interpo-
lation method to construct the robot path curve, and then use this curve to replace |
the B-spline curve in Alg. 4, which will decrease the likelihood of losing landmarks in

the final map.

Another issue is the efficient map building. In the algorithm (Alg. 7) used to
build an efficient map, we consider that every landmark has the same opportunity
to be selected for the final map. Therefore, we only apply the position information
of a landmark, and we do not appiy its attribute information such as colour, shape,
volume, and dimension. In real application, some landmarks are more important than
others. For example, a large tree is more important than a small tree as a landmark in
a map. The future task should consider this issue and the efficient algorithm should
be modified.

7.4 Summary

A stereo camera is a very important sensor for SLAM applied by a mobile robot.
From the experiment in a water environment, we know that it is possible to use a
stereo camera to solve a SLAM problem if the environment provides enough matched

features in every two consecutive images.
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During the processing for local SLAM, in order to avoid too large estimation error
(which is accumulated from sensor noise, measurement noise, computational noise,
and model noise), we set a threshold such that when the estimatioh error or steps
in the estimation reach certain values, the local SLAM will be stopped, and a new
local SLAM will be started. Therefore, there are two reasons for having local SLAM:

unsuitable environment and estimation error.

For large area SLAM with SIF'T features, another problem is that the established
map is bigger than actually needed, which will cause storage and computational bur-
dens. By using the agglomerative hierarchical clustering method, we can select the
most appropriate features from a large set of features, then an efficient map can
be built. In the results from our field experiment, the size of the efficient map is
less than 10% the size of the original map. Statistic testing results indicated that the

estimation value for path and map has no difference when using the two kinds of maps.

This strategy and the algorithm have been tested in two ways: indoor lab and out-
door field. The results show the potential of the algorithm in establishing a globally-
consistent 3D map and robot path in the environment which only has some features

for vision sensor in part of the working area.



Chapter 8

Conclusion

8.1 Conclusion

In this thesis, we have presented a new strategy and algorithm to solve the full 3D
SLAM problem based on the sensor fusion mechanism, which can be used on land, in

space and in an underwater environment.

The main contribution in this thesis is the development of a set of algorithms
for globally-consistent localization and mapping for a mobile robot with multi-sensor
fusion. To implement these algorithms, two types of sensors are needed: one which
can be used to measure the position of the landmarks in the environment, such as
stereo camera, radar, laser range finder and sonar; and another which can be used
to measure the absolute position of the mobile robot, such as GPS and buoys. The
first sensor can be used to establish local map and robot pose, the second can be
used to estimate global robot pose. A sensor fusion algorithm is designed to build a
consistent 3D map and estimate consistent 3D robot pose. The contribution of this

thesis can be classified into five categories.

(1) A system architecture designed for underwater mobile robot local-
ization and mapping. The SLAM algorithm based on stereo camera developed in
an indoor environment is not suitable in an outdoor environment since it is impossi-
ble to continuously obtain enough matched features in the image seduence, and the
odometry information is not reliable. How to design a system for a mobile robot to

obtain globally consistent 3D map and robot path is a significant challenge.

Based on the general SLAM method, we developed a simple structure by using a
stereo camera and a set of buoys to solve the 3D SLAM problem in the underwater

environment. A complementary fusion algorithm uses the advantages of both the

126
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sensors: buoys for long range, and camera for short range.

(2) Registration uncertainty for robot self-localization in 3D. A stereo
camera is a very basic sensor used by a mobile robot. It has been successfully applied
to indoor environments to solve the SLAM problem. There are two approaches to
solve it: flow-based and correspondence-based. The correspondence-based approach
extracts distinct features such as corners, lines, high curvature points, SIFT, etc.,
through an image sequence, and computes shape and motion by registering these
features. The flow-based approach treats the image sequence as a function f(z,y, ),
where (z,y) are image pixel coordinates and ¢ is time; this approach computes shape
and motion in terms of differential changes in the function f, but restricts the motion
between two consecutive frames to be small. In the outdoor and underwater environ-
ments, it is very difficult to guarantee that this requirement will be met. Therefore,

the correspondence-based approach is selected for this thesis.

Based on the correspondence-based approach, we designed a new method for esti-
mating the uncertainty of the registration parameter. This method uses the implicit
function theorem to derive the pose uncertainty from a maximum likelihood formu-
lation. This result can be used to estimate the robot pose and map position’s uncer-

tainty. Results from the lab experiment have provided strong support for this method.

(3) Efficient map building in a large area. When a stereo camera is used for
the SLAM problem in an unknown natural environment for a large area, a challenge
is the size of the established map. In some areas that have rich features, there are too
many features which are needed for the robot pose estimation and which will cause
the size of the map to be too big for efficient operation. By using a set theory, a set
of new algorithms for an efficient map building is designed, which are based on the
level of overlapping, stratified sampling, and select centre points from a set of clusters

by the agglomerative hierarchical clustering method.

(4) Globally-consistent 3D SLAM by sensor fusion. In a natural envi-

ronment, it is impossible to establish a global map with the measurements from a
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stereo camera only, because there may not be enough features in some areas and the
odometry information is very poor. Therefore, the measurements from the stereo
camera can only be used to solve the SLAM problem based on a local coordinate
system where enough matched features can be obtained from two consecutive images
in an image sequence, while the measurement from buoys or GPS will be used to
estimate a global path of the robot. The difficult challenge here is how to establish a

globally-consistent 3D map and estimate a globally-consistent 3D robot pose.

By using time information for each measurement, it is possible to establish corre-
spondence from the local robot path (by camera) to the global robot path (by buoys)
which is expressed by a 3D B-spline function. The corresponding information can be
applied to estimate the 3D transformation from each local frame to a global frame.
Finally, the globally-consistent 3D mép will be constructed. Results from indoor and
outdoor experiments demonstrated that the new fusing algorithm is convenient and

successful.

(5) A mobile robot simulation system designed for full 3D SLAM ap-
plication. For an unknown area, it is impossible to accomplish experiments with a
real mobile robot. We developed a mobile robot simulation system with two types of
sensors installed on it: the relative measurement sensor (stereo camera, laser canner,
radar, and sonar) and the absolute position measurement sensor (GPS and buoys).
The robot can navigate according to a given path in a working environment which
is filled with designed landmarks, and the environment can be in space, water, or on
land. The system is developed with a friendly interface and real time 3D animation
ability. The measurements by the sensors will be saved to a series of files that shall

be applied to validate the globally-consistent 3D SLAM algorithms.

8.2 Future Work

The strategy and algorithms developed in this thesis have successfully solved the
globally-consistent 3D SLAM problem for the mobile robot, especially for the un-
derwater mobile robot; however, there are still many tasks needed to be done for a

complete system.
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(1) Real-time local SLAM with stereo camera. The SLAM algorithm based
on the stereo camera is unable to be performed in real time; the bottleneck is the data
association. For two consecutive images, the matched SIFT features are obtained by
the shortest distance among all the pair features, but many spurious matched fea-
tures will also be generated. The RANSAC method was applied to delete the outliers
in the matched features. This step is very time consuming in some cases. We need

to use epipolar geometry information and odometry information to detect the outliers.

(2) Underwater experiment to validate the algorithms. We did some ex-
periments in water and designed equipment for the project, but we stiil could not
do the experiment for the 3D SLAM. There are many challenges for this task: First,
-experiments in an open ocean area require the equipment to be reliable and suit-
able. Our equipment can only be used in a swimming pool, but there are no natural
landmarks in the swimming pool. Setting landmarks in the pool at Dalhousie is not
allowed. Second, experiments in water are very expensive: requiring a lot of equip-
ment, much manpower, and a lot of time. The best way to complete this task is to

cooperate with potential users in the future.

(3) New feature development for underwater environment. In this the-
sis, we used SIFT features for the SLAM. Even though this feature is widely used
successfully and is reliable in most cases, it is also difficult to find a corresponding
point by human means, which means that the features can only be understood by

robot.

(4) Enhancement for simulation system. The models in our 3D mobile robot
system are wire-frame, and satisfactory for all the functions in this system. If good
visualization is required, advanced tools, such as OpenGL, are necessary to render
the robot and the 3D environment. Another type of enhancement is to integrate
SLAM algorithms with this system. This software can be commercialized when these

enhancements are completed. -
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Appendix A

Euler Angle

A.1 Euler Angle and Rigid Body Transformation

We wish to define a rotation matrix by using euler angles 1, 6, and ¢ that correspond
to rotations of the principal axes z, y, and z respectively. Each principal axis rotation
forms a 3x3 matrix where the direction of rotation for a positive angle is defined by

the right-hand rule of the axis of rotation, as follows

1 0 0
R.W)=| 0 cos(y) —sin(y) . (A.1.0.1)
0 sin(y) cos(v)

cos(f) 0 sin(9)
R,(6) = 0o 1 0 (A.1.0.2)
—sin(f) 0 cos(6)

cos(¢) —sin(¢p) O
R.(¢) = | sin(¢) cos(¢) O (A.1.0.3)
0 0 1

Therefore a positive ¢, 8, and ¢ correspond to rotations of the principal axes from
Y-to-Z, Z-to-X, and X-to-Y respectively, corresponding to the right-hand rule. We
form the composite rotation matrix R by applying the rotation in order of z, y, and

then z (using post-multiplication/column vectors):

R=R,*R,*R, (A.1.0.4)
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where

To0 = cos(@) * cos(6)
To1 = —sin(@) * cos(¢) + cos(¢) * sin(#) * sin(1))
ro2 = stn(¢) * sin(y) + cos(@) * sin(8) * cos()

10 = stn(¢@) * cos(6)

r11 = cos(@) * cos()) + sin(P) * sin(f) * sin(y)) (A.1.0.5)
12 = —cos(¢) * sin(y) + sin(@) * sin(f) * cos()
roo = —sin(6)

21 = cos(6) x sin(wj
ro2 = cos(8) * cos(1))

Therefore a point P; defined in a cartesian coordinate system rotates 1 around x-
axis, f-axis, and z-axis, respectively, in that order. The new point P, in the same
coordinate system is

P, = RP, (A.1.0.6)

Another definition of rotation is the case where point P will not rotate, but its
coordinate system will rotate from zyzo to z'y’z’0’. The problem is calculating the

position of P in the new coordinate system.

1 0 0
R.(¥) =1 0 cos(¥) sin(y) , (A.1.0.7)
0 —sin(y) cos(y)

cos(f) 0 —sin()
R@&=] 0o 1 0 (A.1.0.8)
sin(6) 0 cos(f)

cos(¢) sin(¢) 0O
R.(¢)=| —sin(¢) cos(¢) 0 (A.1.0.9)
0 0o 1
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To0 = cos(¢) * cos(f)
ro1 = stn(¢) * cos(y) + cos(¢@) * sin(f) * sin(y)
Toe = s1n(@) * sin() — cos(¢p) * sin(8) * cos()
10 = —sin(¢) * cos(f)
11 = cos(P) * cos(th) — sin(¢@) * sin(6) * sin(¢)) (A.1.0.10)
19 = cos(@) * sin(¢) + sin(@) * sin(f) * cos(yh)
o0 = sin(6)
ro1 = —cos(f) * sin(v)
)

To2 = cos(0) * cos(¢)

Therefor a point P at coordinate system zyzo will have a coordinate P’ at coordinate

system z'y'2'o" after the rotation matrix R

P =RP (A.1.0.11)

It is very important to distinguish the difference between the two rotation defini-

tions; otherwise, the operations in 3D will be confusing.

A.2 Euler Angles from Matrix

Extracting the euler angles from a given matrix is neither unique nor easy. In our
simulation, a basic assumption is that there is no roll during the robot’s navigation.
In this case, ¥ = 0 is always correct as an input parameter. Because of errors in
input, a small value for v is possible. The expected euler angles in our simulation

system are

(] :(—5a +5)
0 =[0, 360) (A.2.0.12)
¢ =(—45, +45)
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From the previous rotation definition, if a matrix is known, its corresponding euler

angle can be obtained by

asin{—rop) ifrgg >0

f = (A.2.0.13)

T — asin(—ry) if 700 <0

and if |cos(#)| > Tol, then

¢ =atan(rs1 /r2) (A.2.0.14)
¢ =atan(rio/roo) (A.2.0.15)

and if |cos(0)| < T'ol, this is the gimbal lock case

P =0 (A.2.0.16)
¢ =atan(riz/r) (A.2.0.17)

where Tol is a small value which is used to avoid machine error and computation

error; usually it is 1 x 1078,

A.3 Relationship between Rotation Matrix and Quaternion

Quaternion g consists of four components (g, g1, g2, g3). It has the following relation-

ship with the rotation matrix [38]

Too To1 702
R = ’l"lO rll 7‘12 (A3018)

T20 T21 T22
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rTo=q+¢ — g —a
To1 = 2(q1g2 — 9o43)
To2 = 2(q1gs + Gog2)

T10 = 2(q1¢2 + qog3)

m=q-¢+q—d (A.3.0.19)

The derivative of matrix R

_8_@
Oqo

JOR
oq

OR
O0go

OR
Jgs

@293 — qod1)
)

2(
r20 = 2(¢3q1 — Q0%
2(g3¢2 + qoq1)
rm=q-q -8 +a

with respect to each quaternion’s components are as

20 ~2¢5 20

2¢ 2q1  2qo

21 2¢2  2g3
2¢0 —2¢1 —2q (A.3.0.21)

( 23 20 —2q
—2¢2 21 2¢o
—2q90 2g5 —2q2

—2g5 —2q0 2qu
2q0 —2q3 QQ2 (A3023)
21 292 2g3




Appendix B

GPS Measurement Decoding

The GPS receiver outputs information in a variety of NMEA 0183 sentences contain-
ing different types of information. The “sentences” used by this GPS Receiver are:
GGA (Global Positioning System Fix Data), GSA (GPS DOP and Active Satellites),
GSV (GPS SVs (Satellite Vehicles) in View), RMC (Recommended Minimum Spe-
cific GPS/TRANSIT Data), and VT'G (Track Made Good and Groundspeed). Since
we are concerned with the positioning information of an object, we can use the GGA
sentence to obtain all the necessary data, such as longitude, latitude, and height, in
geodetic coordinate system. Following is an example of a GGA “sentence” received
by the GPS receiver:

GPGGA,171935.214, 4438.0472, N, 06335.5476, W, 1, 08, 1.0, 8.2, M, —23.0, M, 0.0,

0000 = 49

The explanation of this “sentence” is listed in the following table.
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Table B.1: Explanation of the GGA Sentence from the GPS

Name Data Description

Identifier GPGGA Global Positioning System Fix Data

Time 171935.214 | UTC time of 17:19:35.214

Latitude 4438.0472 | 43938.0472/

Direction N N{north or S(south)

Longitude 06335.5476 | 63Y35.5476'

Direction W W(west) or E(east)

Fix Quality 1 0 — Invalid,1 — GPS fix,2 — DGP fiz
Number of Satellites 08 8 satellites are observed

HDOP 1.0 Horizontal dilution of precision

Altitude 8.2 8.2 meters above mean sea level

Mean M mean sea level

Meters -23.0 Height of geoid on WGS84 ellipsoid

Mean M mean value

Time update 0.0 time since last DGPS update, 0.0 — no update
DGPS Ref. Station ID | 0000 No DGPS stations

Checksum 49 Used by program to check for transmission errors




Appendix C
Simulation System Design

C.1 Enmvironment Design for Simulation

Environment settings are a very important initial step. On the interface of Fig. 6.2,
all the required input parameters have default values. For different simulation cases,
the user can adjust the default value according to his/her requirements. On the file
menu, three files needs to be opened before the simulation starts. Among all settings,

the following are some of the most important.

C.1.1 Selection Group

There are five choices in the selection group on the interface of Fig. 6.2. The first
three only have true or false selections. If only for animation purposes, there is no
need to save the sensor observation to a database or files; therefore, the selection in

this case should be false.

For sensor directions, there are three choices: front, bottom, and upper, for cam-
era, laser range finder, sonar, and radar. For different applications, appropriate sensor
directions need to be selected. In Fig. 6.4, an underwater environment the equipped

camers views the bottom and measures the detected landmarks.

C.1.2 Landmark Generation

Landmarks are 3D points which can be generated for different cases, such as in space,
on a surface, or on a wall. In space, given the number of landmarks, the system will

randomly generate all the landmarks in the working volume with defined distribution.

If the landmarks need to be generated on the floor surface, a corresponding surface

needs to be loaded first (the surface is expressed by B-spline model). The number
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of landmarks should be given initially, then they will be generated randomly on the
parameter domain of the surface with defined distribution and mapped to the 3D
surface. If the generated landmarks are satisfactory, they can be saved to a database

or file.

C.1.3 Bottom Surface Generation

Floors generally are of standard shape and size, the simplest being a flat plane, as
is the case for most of the indoor environments. In outdoor environments, however,
floors vary, for example, the floor of a lake or an ocean. To express any floor shape or
size, the B-spline (bi-cubic spline) surface is applied to construct a floor for the robot

simulation system.

The B-spline surface is constructed from a set of control points and a knot vector,
which decide the shape and continuity of the surface. The advantages of B-spline are
that they are: (1) easy to construct on composite surfaces; (2) easy for shape control;

(3) efficient at computation.

A parametric tensor product B-spline surface S of degree p in u direction and

degrees ¢ in v direction is defined as

m n

S(u,v) =D > dijNip(u)Njg(v) (u,v) € [0,1] x [0,1] (C.1.3.1)

i=0 =0

where d; ; are 3D control points, N;,(u) and N;4(v) are B-spline basis functions of
degrees p and g, respectively. N;,(u) and N, 4(v) are defined with respect to the knot
vectors 7 = {70, 71, - , Tm+p+1}, and o = {09,01, ... ,0niqs1}, respectively, with

T=..=Tp=0g=..=0g=0and Tmy1 = ... = Typ41 = Ong1 = ... = Opyqs1 = L.
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Figure C.1: A floor surface generated by using B-spline function

A B-spline base function N, ,(u) of degree p can be calculated by

1 ifuy;, <ux Uir1
0 any others

U~ U U —u
Nip(u) = ——N;p1(u) + lH“—NiH,p_l(u) (C.1.3.3)

Uitp — Ui Uitp+1 — U

0
define — =
efine 0 0

Given 10 x 10 control points in 3D, with evenly distributed knot, except the end
knots as defined in Eq. (C.1.3.1), and both directions u and v having degree 3. A
surface generated by the B-spline function is shown in Fig. C.1. By changing the

control points and knots, it is possible to generate any shape floor.

In this system, the user needs to input the number of control points in two direc-
tions, and the largest value of the height of the surface; then a random surface will
be generated and be saved to the database or file. If the user wants to have special

landmarks on the surface, he/she needs to change the control point to achieve the

desired results.

C.2 Camera View Field Design

The robot in any place of the working area is expressed by position (z,y, z) and the
speed (v, vy, v,). At this point, the view field of the sensor should be decided in 3D
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Figure C.2: The Augmented Camera View Field in Working Area

Figure C.3: Camera View Field in Detail

space. This is a difficult task. The camera view field in a real simulation system is

displayed in Fig. C.2.

Assume a sensor, such as a camera, has the following parameters: view angle
(o), minimum range (Rmin), and maximum range (Rpq.). The structure of the view

volume is displayed in Fig. C.3.

There are eight points which define the camera view field, and the constructor of
the view field must obtain the coordinates of the points, which are actually formed
by two squares, front determined by maximum range, and back by minimum range.

When one square is determined, another can be calculated by a simple change in the
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range data of the sensor. We display the details for the front square as follows: The
steps to calculate the view volume is as shown in Alg. 8. The basic assumption for
this algorithm is that the robot will not rotate around z — axis. That means there is

no roll during the robot navigation.

Input: Robot position P and direction V (vg,v,,v,), maximum range of the sensor
R, view angle of the sensor a (See Fig. C.3).
Output: Four Points which decide the front square of view field.

1: Determine P, on the line which pass P with direction V (vg, vy, v,) and the distance
between P and P, is R.

2: Determine P; on the front plane, where the distance between P, and P; is L.
There are two P; points

3: Determine P, on the from plane, there PP, = V2L and P;P; = L. There are

four such points, which consist of the front plane of the the view field

Algorithm 8: Compute the front square of view volume.

C.3 Landrﬂark Detected Information Check

Sensor view field or view volume is a convex space with six faces, and can be simplified
to a polyhedron (Fig. C.4). The algorithm to decide whether a landmark will be

located in the view volume or not is shown in Alg. 9.

C.4 Rotation Matrix Interpolation

In this simulation system, a robot navigates along a given path at a given speed. At
a turning point, the robot only rotates from one direction to another direction. How

to decide the pose of the robot during the turn process is a big challenge.

At any time, a robot’s orientation can be decided by a rotation matrix or a direc-
tion vector related to the original orientation. Assuming that a robot has a direction
vy at position P. At this point, the robot will only rotate from direction v, to vy,

where v; and vy are space vectors. The problem is deciding the robot’s direction
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Figure C.4: Approach to determine a landmark detected information given by a sensor
view field. Where v; is the vertex, f; is the face (i =1, ,6)

Input: A landmark L, and view volume of a sensor V (See Fig. C.4).

Output: The landmark is in view volume or not

1: for i=1to 6 do
calculate the centre point pf of face f;
compute the outward face direction d;

construct a vector dy, from landmark L to centre point pf

2
3
4
5. calculate the angle a between vector d; and d;,
6: if @ > 90 then

7 Return false

8 Stop checking

9: end if

10: end for

11: return true

12: stop checking

Algorithm 9: Check whether a landmark is located at view volume or not.
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Figure C.5: A robot rotates at a turning point P. Where v; is the start direction of the
robot, and vy is end direction of the robot at position P

at any time between v; and v, (Fig. C.5). From the robot’s direction vector, it is
possible to obtain its corresponding rotation matrix relative to its original direction,
supposing they are M; and Ms. The problem is finding a rotation matrix M; between

matrix M; and M,. The solution can be obtained by matrix interpolation.

By applying interpolation techniques, the rotation matrix M; can be generated
using a blending function with the parameter ¢, t € [0,1]. At ¢t = 0, the matrix M, is
equal to the matrix M;. At t = 1, the matrix M, is equal to the matrix M,. Then

the rotation matrix (M;) is specified as:
Mt = f(Ml,Mz,t) (C404)

where f is a blending function. The algorithm to compute an interpolated matrix is

shown in Alg. 10.



152

Input: matrix M; and M,, parameter ¢

Output: a matrix M,

1: compute a rotation matrix My that will transform M; to M, by Mr = MM !
transfer matrix Mt to its corresponding quaternion Qr

transfer quaternion Qr to its corresponding rotation axis V' and angle 6

compute a new angle #; by blending function f, then 6; = f(¢, 0)
5: transfer the rotation axis V and angle 6; into a quaternion @,

6: transfer the quaternion @); into rotation a matrix M,
7 Mt = MSM]_

Algorithm 10: Compute an interpolated matrix between two matrixes




