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B Abstraét

Preterm infants are susceptible to white matter damage (WMD), which is associated
with cerebral palsy (CP) and cognitive impairment. Ultrasound (US) is the preferred
imaging modality to detect WMD but suffers from poor sensitivity and specificity in the
carly postnatal period. To improve on existing diagnostic rates, quantitative measures
incorporating new information are needed. Ultrasound texture measures have been shown -
to reveal diagnostic information about human tissue. In this research, unique texture mea-
sures are extracted using adaptive preprocessing and high-resolution feature enhancement.
The clinical diagnosis of CP presently is made at 12 to 18 months. As it is desirable to-
detect the disease in its early stage, clinical B-mode images taken within days of birth are
used in this research. , , ‘ '

In this study, the images are not standardized but use the patient as his or her own
control. Speckle is not removed as speckle may contain information. To test the hypothesis
that ultrasonic texture in these early images are associated with patient outcome, a model
using only texture measures is created and evaluated. The “Random Forest” algorithm
is used to form the model. The design of the texture measures and the selection of the
variables are performed with a data set distinct from the set iised for design and evaluation
of the model. The resulting model has an accuracy of 72.5%. Random noise would provide
a model with 50% accuracy, and designating all patients as having CP would result in 54 %
accuracy. This result suggests that early quantitative texture measures contain diagnostic
information relevant to patient white matter health.

XV



Chapter 1

Introduction

1.1 Motivation

Very preterm infants are prone to brain damage, in particular white matter damage
(WMD). WMD is associated with cercbral palsy, cognitive impairment [1] and sudden
infant death syndrome [2].

Ultrasound (US) is commonly used to screen for WMD. It is the preferred imaging
modality, as it is the safest for very preterm infants. Magnetic resonance imaging (MRI)
detects WMD with greater sensitivity than US 3], but obtaining MRI images is non-
trivial. It requires that the infants to be moved from their incubators and to be sedated.
MRI images are not only difficult to obtain but can pose a health risk to the infant due
to these manipulations. US machines, on the other hand, are readily available and can be
taken to the infant in the neonatal intensive care unit.

Currently, diagnosis with US is qualitative. Radiologists depend on echolucencies and
echodensities as cues to the presence of WMD [4]. The diagnostic process is subject to
inter- and intra-observer variability. Current diagnosis of WMD using US catches only
the tip of the iceberg [5]. While the focal component of WMD can be diagnosed with US,
the diffuse component is considered invisible [1]. US intensity information alone is not
satisfactory for diagnosing WMD [3] [5]. Using US images, it is desirable to improve the
consistency of diagnosis of WMD and to increase the amount of diagnostic information

that is extracted.



1.2 Scope of the Research

The hypothesis explored in this work is that ultrasound texture measures, taken from
the first cranial ultrasound images, contain information that is associated with patient
outcome. To prove the hypothesis, it must be shown that there is signal in the texture
measures obtained. This will be accomplished by building a model and evaluating its error
rate. If it shows greater than 50 % accuracy, for the given available sample, this will be
evidence that the texture measures contain signal associated with patient outcome.

There are previous experiments that correlate acoustic properties with B-mode texture
properties [6]. A new combination of processing methods is proposed to extract these
properties. The measures were obtained from a single image from each patient and limited
to the white matter and choroid plexus regions of the brain. A large number of measures,
two-hundred and fifty-six, were initially investigated as candidate measures. Prior to
the construction of the model, variables were assessed based on enginecring principles and
observed relationships between the variables and the patient outcome. Standard statistical
practice was also used to reduce the number of correlated variables. Using this prior
knowledge, variable sclection was performed. This is a necessary step because excessive
noise is known to degrade model performance.

The model used to assess the association between the quantitative measures and patient
outcome was a multiple classification system known as random forests. The model is
created and its error evaluated with a data set separate from the one used for the design
and selection of the texture measures to determine if the measures contain diagnostic

information.

1.3 Organization of the Dissertation

The dissertation is organized in the following manner:

e Chapter 2 : A description of the physics of B-mode imaging and the disease process
of white matter damage are provided. Also discussed is previous work on the mea-
surement of image texture in medicine and other fields. This discussion is limited to
ultrasound and other coherent imaging modalities. Finally, the use of the random

forest algorithm in imaging problems is reviewed.



e Chapter 3 : The texture-measure extraction algorithm is presented. A complete
discussion of the texture measures extracted in this research, and how they were
derived and selected, is provided. A review of the various modeling techniques is
presented, as well as the rationale behind the choice of the random forest algorithm

for model creation. The issues around the selection of variables are provided.
e Chapter 4 : A description of how the experiments were performed is presented.

e Chapter 5 : The results of the experiments are presented. A discussion of the
significance of the results in terms of future signal analysis of B-mode images is

presented as well as the potential implications for clinical practice.

e Chapter 6 : Conclusions are drawn and suggestions for future research are provided.



Chapter 2

Background

Ultrasound tissue characterization is a field that requires knowledge of many topics. One
must have a familiarity with the imaging technology to understand what it measures and
what it has the potential to measure. One must also have an understanding of the disease
process to determine if the changes that it causes have properties that can be detected by
the imaging system. As with any topic, one must know the history to learn from successful
and less-than-successful research. And finally, it can be of enormous value to review the

work in related fields. These topics will be covered in the following sections.

2.1 B-mode Ultrasound Image Formation

An US image is constructed from ultrasonic pulses reflected by biological tissue. Most
references describe the speed of sound in biological tissues as 1540 m/s. However, there
are local variations in the speed of sound, the absorption, and the reflective properties of
tissue. These variations in acoustic properties provide the information within US images.
Some diseases alter the normal tissue structure and components, causing changes in the
tissues’ acoustic properties and thus the US image. In order to understand the limitations
of US images, the basics of ultrasound image formation are presented.

The ultrasound image is formed by emitting an ultra-high frequency sound-wave pulse,
obtaining the reflected signal and building the image based on the reflected-signal prop-
erties. A pulse specification determines the properties of the transmitted acoustic pulses.

The specification is defined by user input and system parameters. After transmission and
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Figure 2.1: Block diagram of a medical ultrasound system.

reflection through the body, the transducer array receives the returned pulses. The re-
turned signal is then processed and an image is formed. In B-mode images, the return
radio-frequency (RF) signal is envelope-detected so all phase information is lost. The
image-pixel intensity is based on the amplitude of the envelope. The pixel coordinates are
defined by the time that the signal takes to return and the direction in which the beam
was sent. After the image is formed, further processing takes place to enhance the image.
See figure 2.1 for a block diagram of a medical ultrasound system. The following details
of the system are provided with respect to the signal transmission, changes to the signal,

and processing.

2.1.1 Signal Transmitted
Pulse formation

The ultrasonic pulse is generated by piezoelectric transducers. These transducers convert
electrical pulses to mechanical vibrations and wvise versa on their return [7]. The center
frequency of the pulse is in the range of 7.0 MHz to 8.5 MHz for neonatal cranial images.
Typical ultrasound imaging frequencies range from 2 MHz to 10 MHz for medical appli-

cations, with some higher-frequency exceptions in ophthalmology and skin imaging [8].



The depth of penetration of the sound is inversely proportional to the center frequency
(f.). Conventional wisdom holds that image resolution is proportional to wavelength, A,
which is A = ¢/f., where ¢ is the speed of sound in the body [9]. Image resolution is also
determined by the time between the pulses. The time delay between pulses must be long
enough to detect the slowest returning pulse before transmitting an additional pulse. The
system cannot tell the difference between a pulse sent back from a very close object and
a pulse that has taken longer than the time delay between two pulses. It should be noted
however, that sub-wavelength sized particles (0.09)) have been identified using ultrasound
with the appropriate processing of the RF signal [10]. Clearly, there is some question
about the resolution limitations of US.

The ultrasound pulse is shaped to improve its propagation characteristics. Typically a
Gaussian shape is used, however, new shapes arc being investigated to improve the pulse
time-bandwidth product. The time-bandwidth product is a measure of the degree to which
the generated pulse approximates the theoretically ideal pulse, and improving this value
increases the signal-to-noise ratio (SNR). Shaping concentrates the encrgy of the pulse at
the focal point and removes the wasted energy in the side lobes generated by square pulses.

Pulse shaping is also used to improve imaging when contrast media are used [11].

Beam Steering

"To control the direction of the ultrasound signal and its focal point, the ultrasound trans-
ducer consists of a steerable array of piezoelectric transducers rather than a single trans-
ducer. In the same manner as radar transmission, the direction of the beam is electroni-
cally controlled by varying the relative phase of oscillation of the elements [12]. Figure 2.2

illustrates beam steering [13].

2.1.2 Signal Received
General

The return signal e(t, z) where ¢t = time and z = distance, can be described as the trans-
mitted signal modified by the transducer point-spread function and tissuc propertics such

as attenuation, beam diffraction and backscatter. Thijssen [6] presents this model in the
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frequency domain:
E(f,z) = P2(f,2)D*(f,2)T*(f,2)S(f) (2.1)

where

f is frequency

E(f,z) is the Fourier transform of e(t, z)

P(f,z) is the transducer transfer function,

D(f,z) is the beam diffraction transfer function,

T(f,z) is the tissue transfer function,

S(f) is the backscatter transfer function.
This is not the only model of the returned signal, but it is presented here as it provides a
logical breakdown of components. The return signal model illustrates the fact that while
tissue properties affect the return radio-frequency signal, the design of ultrasound-machine
components also has a significant effect.

As ultrasound pulses are applied to the body, they interact with many different-sized
structures. They encounter veins, capillaries, tissue boundaries, tissue substructures and

so forth. The traveling waves are absorbed, scattered and reflected by structures. The



returned signal can be considered to be composed of signal attenuation, diffuse signal
backscattering and non-diffuse reflected signal. Diffuse reflection occurs when there are
many small boundaries with respect to size of the wavefront. Specular reflection indicates
the location of a large boundary. As the size of the object increases, there is a gradual

transition from diffuse reflection to specular reflection.

Fully Developed Speckle Formation

Fully developed speckle (FDS) is present in both the ultrasound RF return signal and
the envelope-detected data [14]. In the literature, some authors use the term “speckle” to
describe only FDS, while others use the term for the grainy appearance of the US image
texture in general. In this thesis, “speckle” is used to describe the basic units of the
ultrasound image texture , or primitive, including FDS.

FDS is the diffuse backscattering of the signal within a uniform medium with a high
density (> 10 per resolution cell) of small sub-components of size << X\ where X is the
wavelength [15]. A simple description is that FDS is the interference pattern by the echoes
from structures that are not resolvable by the ultrasonic system. While this simple model is
easy to understand, it must be stressed that the reflected signal is actually a complicated
phenomenon that is affected by local acoustic impedance boundaries within a complex
medium.

To elaborate, acoustic media contain sub-particles with varying mechanical proper-
ties of density and compression. If the sound wave impinges upon a substructure in a
medium that has identical density and compressibility (acoustic impedance) to the sur-
rounding medium, then there is no resulting scattering. Faran proposed a complex but
accurate model to describe the scattering phenomenon in a medium which contains spher-
ical scatterers in a fluid [16]. This model has been verified experimentally by Faran and
other researchers [17]. This model provides interesting insight into the amplitude of the
backscattered sound [14]. For scatterers much smaller than the wavelength, the intensity
is proportional to f* The intensity of the back scattered signal can be observed as a
function of the diameter of the sphere, a, and the wavenumber of the incident sound wave
(k = 2m/X). The relationship between ka and the intensity of the backscatter is complex

with many peaks and nulls that are caused by the effects of sound penetrating the sphere



and reverberation within the sphere. While biological tissues are not comprised of spheres,
these experiments serve to remind researchers that any simple model will likely leave out
some effects contributing to the RF and B-mode image measurements.

The reflections from structures vary continuously from fully developed speckle to spec-
ular reflection. The question remains: Where does speckle noise stop and texture begin?
For B-mode images that are envelope-detected and without logarithmic compression, FDS
is considered to be present when SNR = 1.91 due to the Rayleigh-shaped intensity dis-
tribution of multiplicative noise [18]. FDS is considered to be particularly troublesome
when the processing goal is the extraction of edges [19],[20],[21]. However, computer-aided
detection systems have incorporated speckle with improved results [22]. Thus, the debate

over the information content of speckle continues.

2.1.3 Signal Processing

Both the return signal and the constructed image may be modified to improve the visibility
of desired features. The signal processing occurs on many different levels. The processing
can occur on the signal (pre- or post-sampling) that forms an image line, a group of lines,
or the entire image. It can occur prior to, during or after image construction [11]. Some
of this manipulation is within the operator’s control, while most is not. To the user of the

images, the US machine is frequently a black box.

Manufacturer-controlled

The signal may be processed through beam-forming, single-line RF processing and multi-
line RF processing. Beam forming is the process of delaying the output of the individual
piezoelectric transducers to combine the signal in such a way as to reduce noise [23]. Some
manufacturer-controlled single-line RF processing includes bandpass filtering and echo
line-signal averaging. Multi-line RF processing may be in the form of lateral gain and
interpolation between RF lines [11]. And finally, when the image is created, the dynamic
range of the signal is compressed through logarithmic compression and. in the case of a
phased-array transducer, the coordinate system of the signal is converted from a polar

coordinate system to a rectangular coordinate system.
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Operator Controlled

Operators have the ability to influence the processing of the signal by adjusting machine
parameters including gain and time-gain compensation (TGC). Gain addresses the dif-
ficulty obtaining good contact at the skin surface. and the depth and impedance of the
tissue of interest. The TGC compensates for the continual attenuation of the signal with
increasing depth. There are frequently several spots in the system where the gain may
influence the signal. These may be interspersed with non-linear processing blocks. The
single gain knob may affect any or all of these [24].

The operator can influence the image processing. Ultrasound machine manufacturers
offer components for processing images in an attempt to improve the image quality. Since
most ultrasound images are interpreted qualitatively by a human observer, the amount
of image improvement is a subjective assessment. As an example, signal processing tech-
niques in the Sequoia 512 platform include Tissue Equalization”™ Technology which is
an enhancement claiming to “automatically cqualize tissue gain and brightness in two
dimensions, providing consistent, reproducible image quality [25] . However, the algo-
rithms which comprise these processing components are proprietary so their specifics are
not available to the operators.

Since the operators are not usually experts in image processing, the use of image
processing settings is based on the operators’ judgment of image quality and manufacturer
recommendation. Fortunately, some processing techniques, such as persistence (frame
averaging), are common among manufacturers. To facilitate its use, post-processing is
often controlled by a selection of a number which represents the type of filtering performed.
Manufacturers often provide suggestions for image processing settings based on the type
of scan being performed. Unfortunately, the use of these settings may be inconsistent as

the final control is based on the operator’s judgment.

Properties of the Constructed Image

The constructed image is subject to restrictions in axial and angular resolution. Prior to
sampling the RF signal, these properties are limited by the center frequency, transducer
bandwidth, focus depth, and the time between transmitted pulses [12]. In modern digital

ultrasound images, additional resolution constraints may be caused by filtering and sub-
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Figure 2.3: The resolution is described in terms of its axial (r) and lateral (§) components.

sampling the signal before forming the image. The lateral and axial resolution restrictions,

before sub-sampling, are now discussed.

Axial Resolution

For simplicity, assume that the transmitted pulse is formed by a rectangular gate function
in time. Let B be the bandwidth of the transmitted pulse, T be the delay between the
pulses, ¢ be the speed of sound in the tissue, At be the duration of the pulse and Ar
be the axial resolution (figure 2.3). Generally, the maximum depth that can be imaged

by an ultrasound system has the limitations of 1) increasing r increases T, and 2) the
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pulse energy sets an outer limit to the distance that can be travelled due to attenuation.
The relationship between B, Ar, ¢, and At can be derived by the shape of the spectrum,
assuming a sinc function, and the location of its zeroes [12], leading to B = 2Af = 2At =
2¢/Ar. Thus, the axial resolution is dependent on the bandwidth of the pulse as well as

its center frequency.

Lateral Resolution

The lateral resolution is dependent on the center frequency and the aperture size A. Aper-
ture is the face of the transducer that is in contact with the body and determines the beam
size. In an ideal situation, the beam is highly concentrated at the focus, so that one can
be sure that the returning echoes come from the focal point. With a square aperture, side
lobes exist, causing the beam to be less focused. To reduce this problem, the energy of
the pulses sent from each transducer is tapered (apodized) to remove the square window
and thus the side lobes. Based on a square aperture and the assumption that the beam
is focused in the far field, the relationship A8 = 2sin™(¢c/A * [.) can be derived [12].

Apodization improves contrast but at the expense of lateral resolution [14].

2.2 Ultrasound and White Matter Damage

While understanding the physics of the imaging system is important, equally important is
the mechanism of the disease. It is only through understanding the disease process that

it can be suggested that there is information worth pursuing in US images.

2.2.1 The Disease Process

Cerebral palsy is a lifelong condition that results in weakness and spasticity. It is caused
by brain damage. It is the end result of periventricular leukomalacia (PVL), which is the
softening of the white matter tissue adjacent to the ventricles in the brain [26]. White
matter is particularly susceptible to damage caused by complications of premature birth.
Some of the complications include maternal infection, asphyxiation during birth, and res-
piratory distress after birth [27]. Healthy white matter is anisotropic, having a distinctive

orientation indicated by white matter tracts, (Figure 2.4). White matter consists of nerve
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fibers tracts which are covered by a fatty sheath of myelin that assists in the conduction
of electrochemical impulses. White matter gets its name from the appearance of the fatty
layer, as opposed to grey matter which consists only of nerve cell bodies.

White matter of the preterm infant differs from that of the term infant. Myelination
of the nerve fibers forming the white matter occurs throughout infancy, with the fibers
hecoming more compact as the brain develops. This has been evidenced in studies using
MRI to assess the amount of myelination in preterm infants, over the gestational ages of
28 weeks to term [28]. The white matter of the preterm infant’s brain contains a larger
percentage of water due to the lack of myelination.

WMD is caused by non-hemorrhagic infarct, which is a blockage or reduction in blood
supply leading to cell death. The myelin sheath is formed by cells called oligodendrocytes.
The precursor cells to the oligodendrocytes are very susceptible to injury from the lack of
blood supply. Injury to these cells cause a reduction in myelin sheath development of the
white matter.

The details of the changes immediately after the injury are as follows. After the
first 12 hours of non-hemorrhagic infarct, damage to the cells cause ischemic neuronal
change, cytotoxic edema, and vasogenic edema predominate [29]. Cytotoxic edema is
an increase in fluid within the cells. Vasogenic edema is caused by a breakdown of the
blood brain barrier [30]. From 48 hours to up to 3 weeks later, macrophages, as part of
the inflammatory response, become the predominant cell type consuming the products of
myelin breakdown and blood. Liquefaction and phagocytosis (ingestion of micro-organisms
or debris) continue. Astrocytes, cells that control the blood-brain barrier and form scar
tissue, enlarge and form a network at the lesion perimeter in a process called gliosis. The
astrocytes can be present at one week after the insult.

After the insult occurs, macrophages proliferate. While myelin and macrophages have
very similar chemical properties, their structures are very different. Myelin cells follow
the shape of the neuronal processes, in this case relatively long white matter tracts.
Macrophages are small single cells, their size being in the tens of micrometres.

Thus, due to cell death, edema, and an inflammatory cellular infiltration, the structure
of the white matter of a nconate having undergone an insult leading to brain injury will

differ from other preterm infants. The structure will also differ from normal term infants,
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who have more developed white matter and no inflammatory changes. The end result is
predicted to be a change in acoustic scatterer density and scatterer structure and a change
in the anisotropic structure of white matter. The anisotropic nature of white matter has
been shown to effect the acoustic wave velocity. This differs significantly in the longitudinal
and transverse directions in experiments with a 90 MHz pulse [31]. These changes in the
structure of the white matter fibers, may be detectable with appropriate B-mode image
measures. As well, based on the timeline of the changes, the change may be detectable
within days of the injury.

PVL consists of both diffuse and focal components [1]. Cystic PVL represents the focal
damage and the end-stage of the body’s response to it. This damage is typically detectable
in US images. The diffuse injury is a distributed injury to the oligodendrocytes. Typically,
diffuse disease is more difficult to detect in US evaluation. There is evidence that changes
in scatterer density, types and sizes may be detectable as changes in B-mode image texture.
This evidence, presented in the following sections, suggests that changes in the acoustic
properties of media result in changes in B-Mode texture. However, before discussing B-
mode texture experiments, some of the relevant texture and image processing terminology

is presented.
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Figure 2.4: The directionality of white matter tracts is evident in these pictures. All

regions labelled, except the Lenticular Nucleus, are regions of white matter. Reproduced

with permission from Lippincott Williams and Wilkins.
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2.3 Texture Description and

Other Image Processing Techniques

Texture is the inter-relationship of grey levels within a region of an image. By definition,
it is a spatially dependent quantity that cannot be measured at a point; rather it must be
measured over an area. Texture can be thought of as having stochastic and deterministic
components. The stochastic component is most frequently described in terms of proba-
bility distribution functions. The deterministic component, can be thought of in terms of
texture primitives which repeat. Examples of textures with primitives include brick walls
or tile floors. All non-artificially created patterns are a combination of the two compo-
nents. Figure 2.5 shows an example consisting of stochastic and deterministic components

and the final texture.

Figure 2.5: Left to right: Stochastic component, deterministic component, and final tex-

ture.

As texture is spatially dependent, the arca over which to evaluate texture must be
selected with care. A region over which an image measure is obtained is known as a region
of support. Investigating a window that is too small results in the minimum repeated
pattern (texel or primitive) not being identified. Evaluating a region of support that is
too large may mean that smaller details may be overlooked, or that excess time is spent
processing. In most real-world scenes, the evaluation of texture is a multi-resolution task
requiring investigation over more than one support size to capture the full information.

There are many ways to describe texture. First- and second-order statistics capture
some of the probabilistic and spatial relationships in texture. Texture can also be described
in terms of basis functions or the output response of a set of filters designed to span a

particular space. Measures are also available to capture the self-similar nature of texture
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over many levels of resolution. As yet there is no one group of measures that captures all
needed information for all computer vision problems. The relevance of a particular texture
measure is problem-specific and therefore it is in the researcher’s interest to extract relevant
features rather than to try to span the space of all texture. As texture descriptors and
image processing is a large and varied subject, the discussion is limited to the texture
measures and processing methods relevant to the review being presented and the methods

used in this work.

2.3.1 First-Order Statistics

First-order statistics are a description of the shape of the histogram of a population, in
this case the frequency of intensities within a window in an image. These statistics include
mean, median, mode, variance, standard deviation, maximum, minimum, percentile value,
skewness, and kurtosis. The mean is the geometric center of the distribution, the median
is the value which splits the population in half, and the mode is the value that occurs most
often. All three measures are indicators of central tendency. The variance and standard
deviation measure the spread of a population, with standard deviation being the square
root of the variance. Variance is the sum of the squares of the difference of each point

from the mean divided by the number of samples in the population:

o? = S(X — w?/N (2.2)

where p =mean and ¢ =standard deviation. Maximum and minimum arc simple point
measures that can provide spread information by their difference which represents the
range. A percentile value indicates where the tail of a given percentage of the population
occurs. For example, the tenth percentile is the intensity level below which the lowest 1/10
of the distribution lies. Kurtosis provides a measure of the size of the populations tails:

SX -t
Not

kurtosis =

3, (2.3)

while skewness provides a measure of the asymmetry in a population:

SX )

o3

skewness = (2.4)
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SNR is another common measure and is defined as £ . Glossaries of these and other
statistical measures are available online [32], [33]. With first-order statistics, all informa-
tion about the relative location of the intensities is lost. However, these measures can
be cascaded in a two-stage system where the first stage emphasizes spatial relationships.

Thus, first-order statistics can form part of an important texture measure.

2.3.2 Second-Order Statistics

Second-order statistics capture information about the occurrence of pairs of intensities.
A traditional texture measure that captures this information is the co-occurrence matrix
and its measures [34]. The co-occurence matrices contain counts of the number of times
that a pair of grey levels occur in an image with a given displacement vector. Typically
the row and column positions represent a grey level in the pair and the user of the texture
analysis system chooses the displacement vector of the matrix (say x,y=1,0 for side by side
along the x axis) and the number of matrices required. The resulting co-occurrence ma-
trices can then be described by fourteen textural features. These features include angular
sccond moment, contrast, correlation, variance, inverse difference moment, sum average,
sum variance, sum entropy, entropy, difference vériance, difference entropy, information
measures of correlation (2), and maximal correlation coefficient. From these 14 measures,
Haralick et al. proposc that 28 features can be obtained. For a given distance d, there are
4 angular matrices (0°,45° 90° 135°). The 14 textural features are obtained over the 4
matrices. From each of the 4 values of textural features, the mean and range are obtained
to provide 28 features.

A subset of the co-occurrence features is frequently used in textural analysis of images;
however, part of the difficulty in their use is the determination of which matrices to ob-
tain and which textural features to calculate. Over-describing the space results in excess
computation time and potential difficulty when designing a classifier. Under-describing
the space can lead to crucial analysis information being missed. Co-occurrence matrix
parameters are popular in the analysis of US images. This popularity may be warranted,
as there has been success in their use in ultrasound tissue characterization (UTC) and in
the classification of tissue mimicking objects with similar properties [35].

Another second-order measure is the autocovariance function (ACVF). The autoco-
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variance function is a measure of self-similarity.

ACVEF = / /(A(x’, 2y = A)A@@ + 2,2+ 2) — A)dx'd? (2.5)

where

A is the amplitude and

A is the mean amplitude over the integral region.

After obtaining the autocorrelation function, the resulting ACVF peaks can be de-
scribed. Some chose to describe them by full-width-at-half-maximum height (FWHM)
[36].

2.3.3 Change of Basis Functions

The most commonly known change of basis functions in computer vision, is the application
of the Fourier Transform. The 2-D array of grey-level intensities is transformed to its 2-D
sinusoidal components of varying magnitude and phase. This simple change in basis can
reveal that a texture has dominant frequency components in a particular band, possibly
helping to distinguish it from other textures. The Fourier Transform results in precision
in frequency, but a complete loss of location information. For example, an iimpulse within
an image has the same Fourier Transform regardless of its placement within the original
image.

Wavelet transforms are another way to change to a diffcrent basis [37]. The appeal
of wavelets is that they are localized in both the frequency and spatial domain. The
discrete wavelet transform (DW'T) successively decomposes the low frequency components,
separating the lower frequencies into successively smaller groups. On the other hand,
discrete wavelet packet analysis (DWPA) successively decomposes both the high and low
frequency components. The wavelet coeflicients at each decomposition can be evaluated

and used for texture discrimination.

2.3.4 Searching for Primitives

Often the primitives that form the deterministic portion of the texture are difficult to

isolate. However, isolating a sub-component and describing it may be a reasonable option.
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Sub-components may include gradients, low-intensity regions and high-intensity regions.
As well, in an attempt to isolate texture primitives, Voronoi tessellation algorithms may

be applied on a simplification of the primitives to extract simplified shape information.

2.3.5 Groups of Filters

By the selection of the appropriate filter, textures with subtle differences can appear
markedly different after filtering. This enhancement of texture differences can be used to
allow for texture segmentation with the appropriate measures and thresholds. Groups of
filters are often implemented. The groups may consist of linear filters, non-linear filters,
or a combination of the two types.

In the application of linear filters, the group of filters may consist of the same type
of filter applied at different spatial resolutions. With the addition of subsampling, multi-
resolution techniques arise. The linear filters may be identical in size but vary in the spatial
frequencies they target. This technique has been used to identify different textures with
the purpose of locating weak edges that are formed in US images by texture changes [38].
Frequency separation methods are referred to as split-spectrum analysis. However, often
the entire spectrum is not investigated, as the features of ihterest fall within a specific
bandwidth.

In a manner similar to linear filters, a group of non-linear filters may be applied that
performs the operation but at differing spatial scales. Some examples of non-linear filters
include histogram-based filters (median, mode) and morphological operators. As an ex-
ample, the effect of dilating a texture with identical kernels of varying size might be of
interest. Again, this can be considered to be a multi-resolution analysis technique. Alter-
natively, a single non-linear filter may be applied successively and the change analyzed.
The pectrum (pattern spectrum) is derived through the repeated application of “opening”
or “closing” operators with a single kernel [39]. The result can be a measure of the texture
at each repetition. A graph of the change may offer a texture measure of value.

When there is prior knowledge about the importance of various texture characteristics,
the filters that form the group can be selected to emphasize those characteristics. The filter
group can then comprise a reduced set of linear and non-lincar filters with the size and

features, shape, and sub-components refined for improved results. The same statement
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can be made about all of the groups of texture measures presented here. The key is in
understanding the features that are important and identifying the appropriate methods to

measure them.

2.3.6 Fractals

Fractals are patterns that are self-similar over a variety of scales. They may not have
identical components over all scales but the shapes are similar over all scales [40]. The
plot of a measured fractal quantity verses scale on a log-log graph is a straight line whose
slope is the fractal dimension. The fractal dimension of an image may be estimated through

box counting, fractal Brownian motion, and power spectrum techniques.

2.4 Image Processing

There are some image processing-related topics that are important in UTC that have not

been covered in the texture discussion.

2.4.1 Resolution Reduction and Multi-resolution

Techniques

Frequently, the image will contain detail or high-frequency components that are not rel-
evant to the classification or segmentation problem at hand, or they represent unwanted
noise. The most common method to deal with this issue is through resolution reduction,
which is the filtering of an image and then sub-sampling the result. Resolution reduction
is often preferred over filtering alone as it results in a smaller image and thus reduces com-
putation time in subsequent processing steps. Filtering is a vital component of resolution
reduction as without it aliasing may occur. Based on the Nyquist rate, aliasing will not
occur if a baseband-bandlimited signal is sampled at more than twice the frequency of
the highest frequency component of the signal. For a non-baseband signal, the signal can
be recovered if it is sampled at a frequency of at least twice the bandwidth of the signal
[41]. Therefore, filtering is applied before sub-sampling to reduce the bandwidth of the

signal to less than 1/2 the sampling rate. There are options available in the application
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of the low-pass anti-aliasing filter. The filter is chosen with the understanding that there
is always a trade-off between the filter properties in the spatial domain and its properties
in the frequency domain. Common filter choices for filtering prior to resolution reduction
include Gaussian, Laplacian and wavelets.

Repeated applications of filtering and resolution reduction lead to a multi-resolution
respresentation of the images. The Burt-Adelson [42] pyramid is a multi-resolution rep-
resentation using the Laplacian filter. Also popular is the application of wavelets, includ-
ing the Daubechies family of wavelets [43]. A resolution pyramid using the Daubechies
wavelets offers the advantage of allowing perfect reconstruction from the multi-resolution
components, a feature not shared by all multi-resolution pyramids. Sajada et al. [44]
provide a review of multiresolution and wavelet representations for the identification of
disease signatures. This group stresses the need for analyses that identify short-duration
unique signals that frequently identify the presence of disease. This is one of the desirable

features of wavelet-based pyramids.

2.4.2 Adaptive filtering

The term adaptive filtering refers to a local modification of a filter due to image parameters
within the filter window. The filter is frequently modified according to the local signal
strength (SNR value, presence of edge gradients, etc.) or a classification of the local texture
based on the problem at hand. Sometimes the modification of the filter is its complete
suppression or the selection of an alternative algorithm. Adaptive filters may also be
implemented such that the size or shape of the kernel or window under investigation is

modified.

2.5 Experiments: Relationships Between
Image Texture and Media Structures

Experiments have demonstrated that changes in scatterer density. size, and acoustic prop-
erties can change US B-mode image texture. While some of researchers have studied the

effects of changing these variables on image texture, others have restricted their studies
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to FDS [50]. The traditional division between FDS and texture occurs when the scatterer
density exceeds 10 per resolution volume [15] or when SNR = 1.91 [18]. First, a brief
discussion of the properties of FDS is presented. Then the experimental findings showing

the relation between US texture properties and the acoustic medium are discussed.

2.5.1 Fully Developed Speckle Characteristics

FDS is dependent upon media properties such as density and size. FDS characteristics
are also dependent on the machine and transducer properties including center frequency,
focus location, bandwidth of the transducer and distance from the transducer face.

In 1983, Wagner et al. [18] investigated FDS characteristics using two tissuc-mimicking
phantoms with high particle densities, randomly dispersed. The experiments on each
phantom used three frequencies. They reported that FDS is a function of machine char-
acteristics, as well as phantom characteristics, and that the intensity distribution follows
a Rayleigh probability distribution function (pdf). The value of SNR for the Rayleigh
distribution is 1.91. The Rayleigh distribution is a special case of the Rician distribution.
As opposed to media with completely random particles, media with a structural compo-
nent have image textures characterized by a Rician pdf and an SNR over 1.91. The first-
and second-order characteristics of the Rayleigh and Rician pdfs differ and may reveal
information about the media.

Speckle, including FDS statistics, have also been described as K-probability distribution
functions [46] and Nakagami distribution functions [47]. The K-distribution is suggested
when the number of scatterers is low or when the scattering cross-sections vary. The
Nakagami model is proposed as a less computationally expensive alternative to the K-
distribution.

Studies have been performed to observe the effect of an imaging system’s impulse
response on image speckle and texture statistics. The presence of FDS is dependent on
the number of scatterers per resolution cell. The volume of material under investigation
is dependent on the impulse response of the system and the location of the tissue with
respect to the beam focus. In experiments by Rao et al. [48], the effect of varying system
parameters on the outcome of image texture, whether it be FDS or texture, was examined.

The SNRs of 3 different tissue models were obtained for 7 different pulse parameters. The
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authors concluded that SNR is dependent on the effective volume of the system, which is
a measure of the system point-spread function. SNR values for some systems acted as a
measure for discrimination while others did not. The authors concluded that care must
be taken in extracting measures from different imaging systems.

FDS has also been observed to be dependent upon tissue properties. Wagner et al. [49]

“ _..either speckle contrast ... or speckle-cell size, would serve as a tissue signature

state
corresponding to the value of the specular-to-diffuse scattering ratio. This is only true
when there are many diffuse scatterers per resolution cell.” Conventional wisdom suggests
that FDS occurs when the density of scatterers is large with respect to the resolution cell
and scatterer size is small with respect to the wavelength [50]. However, the incorporation
of FDS measures in UTC should be done with caution. The relationship between FDS
and tissue structure is not unique in B-mode scans. Recently, in 2005, Dantas et al. [51]
published an article in which they showed that the speckle patterns from a large number of
randomly distributed scatterers can be replicated by a medium containing a much smaller
number of periodic scatterers. They reported that it is possible to reduce the number of
scatterers to 6.4% of the original phantom and maintain the original speckle pattern. This

conclusion is based on the error between the original envelope detected signal and those

created with the equivalent scatterers. The error level was found to be 0.5%.

2.5.2 Texture Properties as a Function of Media Structure

One of the most significant publications in this area is by Oosterveld et al. [36] in 1985
. This group demonstrated the variability of speckle statistics with transducer properties
and scatterer density through experiments incorporating simulations and phantoms. They
measured the first-order statistics of mean-intensity amplitude and SNR. The second-
order statistics include a measure of the speckle size in the lateral and axial directions.
The measure of speckle size is provided by generating the autocovariance function and
then obtaining the FWHM. For a single experiment with scatterer density of 1000 per cm?
and constant transducer characteristics, the mean amplitude, SNR, and lateral FWHM
are depth dependent. The axial FWHM is independent of distance to the transducer. In
experiments where the scatterer density varied from 100 to 19000 per cm? | the first- and

second-order statistics were found to be dependent on density.
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In 1986, Wagner et al. [52] presented experiments in which US texture was created
through simulations with varying amounts of structured components with a constant dif-
fuse component. They found that second-order measures, based on the autocorrelation
function and the Fourier power spectrum, provide a means to classify whether texture in
an image originated from the same medium as a reference image.

In 1987, Wagner et al. [53] continue researching the relationship between media struc-
ture and texture properties. They propose that the type of acoustic medium, whether it
contain few diffuse scatterers, many diffuse scatterers, unresolved coherent component or
resolved coherent component, can be determined from first- and second-order analysis of
B-mode images. They also note that this holds true only if trends and inhomogeneities
have been removed (such as blood vessels).

US texture as information is supported again by Thijssen et al. in 1990 [50]. The aim

“... enhance the transfer of scientific results to the medical field.”

of this work was to
While some of it is review and some tutorial, new results are presented. Of primary
significance to this rescarch is the demonstration that the relative scattering strength of
scatterers changes the B-mode texture. Thijssen et al. reinforce the concept that while
speckle is not an image of the histologic structure of tissue, characteristics of the tissue
under investigation affect image texture properties. They also make it clear that the
machine characteristics of frequency, TGC, gain, and the transducer characteristics such
as bandwidth all have an effect on B-mode texture.

Furthering the connection between B-mode texture and underlying structure is a pa-
per by Jacobs ef. al. in 1991 [54] . In this work, tissue was modeled as having a diffuse
scattering structure (7500/cm?®) and a structural component (1 mm spacing). Then, the
model was subsequently modified to observe the correlation between media properties and
B-mode texture measures. The first- and second-order statistics of mean amplitude, SNR
and FWHM in the axial direction were obtained as texture measures. The simulations em-
ployed medium with the above diffuse and structural components and then they modified
it by adding a degree of randomness to the structure portion. The randomness was added
by introducing positional uncertainty in the structural component. This uncertainty was
expressed as a percentage of the 1 mun spacing, and the experiments covered 0, 5, 10,

and 20 percent. Bevond the effect of regularity of spacing, the effect of relative scattering
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strengths was changed. In the experiments, the structural component’s relative scattering
strength was varied from 0.3 to 1.50 as compared to the background scattering strength.
The authors observed that these changes affect texture. They provided graphs illustrating
the amplitude of each measure for various combinations of positional noise and relative
scattering strength. The structural-component spacings are within the resolution of a sys-
tem that is operating at a 3.5 MHz center frequency. Jacobs et al. also discussed the
dependence of the orientation of the pulses with respect to the structure with the finding
that texture measures were dependent on orientation. This is highly relevant to studies
of organs such as liver and kidney, where the examination is made up of images with the
transducer located at several locations on the body’s surface.

Finally, there is a thorough review of texture properties as a function of media structure
by Thijssen in 2003 {6]. This provides an overview of the physics of B-mode imaging,
texture and its relation to media structure, processing in the formation of images and a
basic understanding of UTC. This work would be very helpful to anyone new to UTC.

The mechanism of the disease, the physics of the US image formation, and the evi-
dence provided by past experiments all suggest that there is diagnostic information to be
exploited within the texture of US images. Others have had some success in the applica-
tion of UTC to diseases in other areas of the body and in the brain. A review of this work

follows.
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2.6 Ultrasound Tissue Characterization in B-mode

images

2.6.1 Parenchyma, Other than Brain

B-mode US image texture has been investigated for disease detection in many soft tissues.
UTC is an area that includes analysis of the RF signal only, B-mode data only, or a
combination of RF and B-mode information. As this rescarch incorporates B-mode image
data only, discussions of UTC will be limited to those experiments that use B-Mode data
only.

In this section there is a review of the research in other tissues. While there are
non-trivial differences between the neonatal brain and these other organs, all are soft
tissues, and disease processes within them disrupt cell function and tissue architecture.
An overview of the work in these other areas provides insight into which techniques have
potential and those that may not.

Breast cancer is frequently a candidate disease for ultrasound tissue characterization.
Huber et al. [55] investigated texture measures and B-mode characteristics for their ability
to assist in the differential diagnosis of solid breast masses. The study included 77 patients,
27 of whom had malignant lesions. The authors concluded that the qualitative B-mode
characteristics outperform the UTC measures; however, the contribution of each measure
was evaluated through statistical tests, not classifier design. The study was performed at
2 centres and the results varied between the two centres. One point to note is that the
corrclation measure from the co-occurence matrix consistently contributed information to
diagnosis.

Kutay et al. [56] [57] used parameters from two models to describe ultrasound scat-
tering. The first model is the narrow-band, power-law, shot-noise model which treats the
tissue as a collection of point scatters embedded in a uniform medium. Attenuation of the
ultrasound signal in this model is a power-law decay 1/t”, that persists in the RF enve-
lope and allows parameters of this model to be extracted from the B-scan images. The
second model, the K distribution, is used to model tissue as if it contains scatterers with
variable concentration and non-uniform cross-section. Four measures are used to describe

the tissue, two from the shot noise model, one from the K distribution model, and SNR.
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SNR is measured to indicate whether the histogram of intensities over a region is better
described as a Rayleigh or K distribution.

For each of 100 clinical images, 20 ROIs were selected within the tumors and the 4
parameters were estimated. The value of these measures for discriminating between benign
and malignant tumors was assessed through the use of receiver operator characteristic
(ROC) curves. While this group includes the calculation of some power-law parameters
from the RF signal, the best measures, according to the ROC curves, were extracted from
the B-scan image only. The SNR and the power-law decay combine to give an area under
the ROC curve of 0.889. An ideal ROC curve has an area of one.

Chang el al. [22] proposed a system to discriminate breast tumours using texture
analysis through the use of support vector machines (SVM). The experiments utilized
250 ultrasonic images that included 140 benign breast tumor images and 110 carcinoma
images. The same US machine was used to acquire all images in this work. ROIs for
the tumors were extracted by a physician and then the texture measure extraction and
analysis was performed by the computer-aided diagnosis (CAD) system. All areas within
the tumor images were classified as speckle or not according to the ratio of mean intensity
to standard deviation. For each pixel that was considered speckle, the autocovariance

cocflicients were calculated according to:
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where

Sy is 0 if f(x,y) is not a speckle and 1 otherwise,

S is 0 if f(x + dm,y + dn) is not a speckle and 1 otherwise,

f is the mean value of f(z,y),

Ny is the total number of speckles.
For each ROI, a 5x5 speckle covariance matrix was created. A non-linear support vector
machine (SVM) with a Gaussian radial-basis kernel was used as the classification system.
The system was designed with the 250 images and then an error estimate was derived using
an N=5 cross-validation. This group reported a 93.2 % accuracy. They also reported that

their system, using texture measures with speckle emphasis, performs better than texture

measures of all pixels or texture measures with non-speckle emphasis. They argued that
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for CAD systems, speckle contributes information.

Alacam et al. [58] modeled the ultrasonic tissue response as a fractional differencing
process (FD). The FD model contains a correlation parameter, d, that is calculated from
the image data. The data set consisted of breast scans of 60 patients, 29 malignant and
31 benign. For each image, 30 scanlines were obtained from inside and outside the tumor,
and from each dpp is estimated. Using drp and the patient’s age, a quadratic classifier
was created for classification. The area under the ROC curve was calculated as 0.8334.

Chang et al. [59] proposed a method to classify breast lesions using fractal analysis of
texture. The algorithm consists of image pre-processing to reduce noise, standardization of
intensity levels, extraction of the fractal dimension based on fractal Brownian motion, and
classification using a k-means classifier. This group used 250 images: 140 benign and 110
malignant, one image obtained from cach patient, all obtained from the same US machine.
Using cross validation to measure the performance, the system provides a 88.8% accuracy.

As demonstrated by this review, there is significant research into the application of
UTC for breast cancer in journals. For the diagnosis of breast cancer, there is now a
commercial CAD system available using UTC [60]. The recent integration of CAD using
UTC for breast cancer diagnosis suggests that UTC has the potential to provide more
tools to assist medical practitioners.

Diseases of the liver have also received a significant amount of attention. Kadah et. al.
[61] investigate texture measures to classify liver images into either normal or displaying
cirrhotic or fatty liver diseases. The experiments were performed using images from 120
cases taken before needle biopsy. The texture parameter-set consisted of 8 measures from
each image ROI including 2 first-order measures (mean, first percentile of grey-level), 4
co-occurrence matrix measures (contrast, entropy, correlation, angular second moment),
an attenuation estimate, and a scatterer separation distance measure. The group then
investigated 8 different classification systems, applyving all 8 texture measures in each
case. The classificrs included: a minimum distance classifier, Bayes quadratic classifier,
a kNN classifier, single-layer perceptron network. a multi-layer perceptron network, a
single-layer perceptron network with functional link inputs. and a multilayer perceptron
trained with cluster centers only. They concluded that the single layer perceptron network

with functional link inputs and the kNN systems perform the best. While this group
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made reference to an improvement in classification being obtained by systems that can
create complex decision surfaces, no further comment on the classifier selection process
was provided.

Mojsilovic et al. [62] applied the quincunx nonseparable wavelet transform to US
images of the liver for the classification of diffuse diseases. The spectral decomposition
differences in this wavelet transform offer some advantages for UTC in B-Mode images.
The separable sampling with other wavelet transforms provides rectangular divisions with
increased sensitivity to horizontal and vertical edges (so they are rotationally sensitive).
Mojsilovic et al. claim that most natural textures have thcir cnergy concentrated in the
mid-frequencies, which the quincunx preserves better, and they claim that the diamond
shape of the low-pass filter removes more of the noise. This group used images from
one machine with 122 images for training and 122 images for testing. The 244 images
were obtained from 30 subjects, and thus the samples are not independent. Each data
set contained the members of the 3 classes equally. From each wavelet channel, a pdf is
calculated from which the variances are calculated and used to train the Bayes classifier.
An accuracy of 90% was obtained. To check the depehdenee of their measure on rotation,
the image samples were rotated at 5, 23, 45 and 90 degrees and an accuracy of 88, 88, 80,
90 was still obtained without re-training the classifier.

Gangeh el al. [63] presented a fuzzy-based texture analysis of diffuse liver diseases.
Diffuse disease is of special interest, as there is frequently no healthy reference tissue Wifhin
the same organ. This causes difficulty in establishing the absence or presence of disease.
Since texture in B-scan images is dependent upon the ultrasound machine properties,
Gangeh et al. maintain the machine settings for all images in their experiments. Their
algorithm begins by subdividing the image into smaller subimages, and then it assesses the
membership of every pixel with respect to its neighbor based on grey level and a triangular
fuzzy membership function. After filtering, each texture sub-image is reduced to a set of
descriptors that include maximum, entropy, and uniformity. After obtaining the texture
measures, fuzzy C-means clustering is used for classification. Unfortunately the authors
did not provide a quantitative analysis of their results and use only limited data, so an
evaluation of their system’s performance is not possible.

Akiyama et al. [64] investigated fractal dimension from Brownian Motion as a means
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to identify liver as normal, fatty or exhibiting cirrhotic. The authors reported favorable
results, however the data set is small (21 in total) and the evaluation was based on the
separation of the mean fractal measures of each group rather than the development and
evaluation of a model.

Lee et al. [65] used an estimation of fractal dimension to classify liver images as
normal, or displaying cirrhosis or hepatoma. They employ a modification to a differential
box-counting technique that reduces the effect of noise. This group designed and tested
a Bayes classifier using 216 images in each of the training and test sets. They report a
95.4% accuracy for their system.

Yoshida et al. [66] investigated wavelet packet-based texture analysis for differentiation
between benign and maligngﬁt liver tumors. The images consisted of 17 benign and 27
cancerous tumours, from which 50 benign and 145 cancerous ROIs were extracted. The
texture features were calculated to measure the homogeneity of the textural pattern with
multiscale analysis. For classification, artificial neural networks (ANNs) were applied.
Speckle was reduced from the ROIs and the image was “background-trend” corrected to
reduce dependencies on machine settings. From each wavelet decomposition, the texture
features that were extracted from the ROIs included Shannon entropy, the root-mean-
square (RMS) of intensity, and the first moment of the power spectrum. The number
of texture features were reduced via a backward elimination method, that successively
eliminates features as long as discrimination performance is not reduced. This group
reported an accuracy of 92%. The error measurc was calculated using the jackknife method.

There are many other organs analyzed through quantit’ative US techniques. Just a few
are included to demonstrate the variety of medical conditions where this field of study can
have an impact.

Smutuk et al. [67] investigated texture measures of the thyroid gland for the detection
of Hashimoto’s lymphocytic thyroiditis (HLT). Thirty sonograms were obtained for each of
the G0 patients and 39 controls, using the same machine and identical console parameters
for all, for a total of 2970 images. An interactive tool was used to extract the ROI
containing the gland from each image. Each ROI was sub-divided into windows sized 41 x
41, 31 x 31, and 21 x 21 pixcls and labelled according to patient diagnosis. They extracted

129 texture measures from each window, 21 spatial features and 108 co-occurrence matrix
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features. This group designed a Bayes classifier using a design set of 81 patients and a
test set of 18. As part of the design process, the group reduced the number of texture
features through a compactness and separability criterion, and a minimal classification
error criterion. The group identified three texture measures as optimal, a different texture
measure from each of the three window sizes. This group presented a result of 100%
classification success confirmed with both an independent test set and cross-validation.

Maeda et al. [68] investigated the ability to obtain quantitative measurements of
placenta from 3 different sonographic machines to detect maternal and fetal disorders.
This group used the grey-level histogram width (GLHW), which is the range of the grey-
levels within the ROI divided by the full grey-scale, expressed as a percentage. Before
investigating placental measures, the group investigated the effect on GLHW of the various
device gains, contrasts, and the depth from the transducer face to the ROI. The GLHW
remained constant over varying gain and distance of the ROI from the phantom surface,
while it had a linear relationship with the contrast setting which can be corrected. This
group obtainecd GLHW measures from historical data in the form of 222 normal sonograms.
They then went on to obtain GLHW measures from 44 new subjects (37 normal and 7
abnormal). The abnormal measures fell outside the normal measures from the historical
data, based on a mean +1.5x standard deviation criterion.

Christodoulou et al. [69] investigated the use of texture measures in cartoid artery
sonograms to identify the risk of stroke. Their work consists of obtaining and standardiz-
ing images of carotid plaques, segmenting areas of interest, extracting texture measures,
and building classification systems. The images were obtained with a single ultrasound
machine, but the operator-controlled machine settings were freely adjusted to obtain the
desired image quality. To compensate for the variation, the gray-levels of the manually
extracted areas of interest were adjusted so that the intensity of the blood was within
15-20 and the artery wall was within 180-200, out of the image range of 0-255. The
61 texturc measures obtained were grouped into 10 feature sets based on the methods
obtained to extract them. The methods included first-order statistics, co-occurrence ma-
trices, grey level differences, neighborhood gray tone matrix, statistical feature matrix,
Laws texture energy measure, fractal dimension, Fourier spectrum, and éhape parameters

of the segmented images. The authors selected the top-ranked 15 individual texture mea-
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sures, graded according to their ability to separate the two classes. They also attempted
to reduce the number of features through the sequential elimination of features that did
not contribute well to classifier performance. In the end, they found that these methods
performed sub-optimally compared to creating a single classifier for each of the 10 groups
and allowing the classifiers to vote. Two multiple classification schemes were investigated,
one using artificial neural networks and one using K-nearest neighbors. They reported that
the multiple classifier using artificial neural networks performs the best, with an accuracy
of 73.1 %. The accuracy was obtained with a separate test set and with 5 bootstrap sets

used confirm the results.

2.6.2 Non-PVL Brain Investigations

In relation to this research, the advances in UTC in the brain hold the most interest.
While the focus of these investigations may differ, infant brain studies are more closely
linked to this work due to the similarity in the types of images obtained and the tissue

under investigation.

Figure 2.6: Insonation paths for neonatal cranial US. Left: The sagittal planes. Right:

The coronal planes.

Barr et al. [70] investigated texture measures to determine if they are indicators of
term infants having had clinical hypoxic episodes. Their data set consists of sagittal and
coronal images from 25 patients, 9 of whom had an hypoxic episode. See Figure 2.6 for
an illustration of coronal and sagittal planes. A single sonographic machine was used for
all images, but the sonographer was free to modify the machine settings as he or she saw

fit. To obtain a measure of the effects of the settings for each patient, a tissue-mimicking
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phantom was imaged prior to obtaining the images from each patient. Forty-five candidate
texture measures were extracted which consisted of both first- and second-order grey-
level statistics. The first-order statistics included mean intensity, upper and lower 10th
percentile ranges, variance, and skewness. The second-order statistics included gradient
distribution analysis, co-occurrence matrix analysis, run-length histographic analysis, and
fractal features analysis. Run-length histographic analysis is a measure of the homogeneity
of an ROI based on the length of a grev-level run. In each patient, four to six ROIs, sized 40
x 40 pixels, were extracted. For each patient, the average textural value was obtained for a
given anatomical location. This group then continued to evaluate the texture measures and
brain ROI locations for discrimination ability through the use of logistic regression. Nine
of the 45 measures differed with patient population, with P < .04. Four of the texture
measurcs are first order: mean, skewness, and upper and lower 10th percentile. The
remaining five are from the co-occurence matrix: 1 entropy measure, 1 contrast measure
and 3 correlation measures. The average grey levels, or echogenicity, of certain anatomical
areas of the brain was found to provide the greatest difference between patient populations.

Mullaart et al. [71] investigated quantitative US measures related to maturity of the
neonatal brain. This study investigated properties of white matter and grey matter regions
taken from coronal views of 39 term and preterm infants. From these regions, four tex-
ture measures were investigated for their correlation with gestational age. The measures
included mean grey level, SNR, axial correlation, and lateral correlation. This group ob-
tained images of phantoms with the same machine settings to allow images to be re-scaled
for comparison. The Wilcoxon rank test and linear regression were the statistical methods
used to assess the correlation of the image measures with the maturity of the brain. The
group found that gestational age affects image parameters. They recommended mean in-
tensity, the left right brain mean-intensity ratio and the white grey matter intensity ratio
as measures suitable for clinical use.

In 2000 Valckx et al. [72] reported on a calibrated parametric imaging technique. Much
of the paper discusses the method rather than its application. The method standardizes
the images with respect to the transducer and beam-forming characteristics, then obtains
textures features within sliding windows and outputs cach feature to a separate parametric

image. This paper is included in this section because all of the clinical images used are of
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the neonatal brain and discussion is presented on how these parametric images could be
combined with classifiers to detect brain pathology. Searches for follow-up work by this

group that incorporates these ideas have been unsuccessful.

2.6.3 Detection of PVL

Stippel et al. have published a number of reports on their work in the area of improved
PVL detection through the automated extraction of flare outlines within cranial ultrasound
images. As the first three papers [73], [74], [75] are intermediate reports on their work as it
evolved, this discussion is limited to their methodology as presented in the final 2 papers
[76], [77].

The work published in 2002 [76] concentrated on an adaptive denoising technique.
Generally, their procedure consists of segmenting speckles separately, adaptively filtering
the speckle, and then seginenting the flares using an active contour technigue. Prior to
segmenting the speckle, this group standardizes the images to correct for scanner set-
tings. They use an algorithm proposed by Simaeys et al. [45] which uses an US model
incorporating the frequency, the power. the gain, the TGC, and the dynamic range of the
logarithmic compression scheme. From this model, an inverse model is created that allows
image standardization. Once Stippel et al. standardize the images and mean filter to sup-
press outliers, seed pixels for speckles are identified from the image. Individual speckles
are segmented through a region-growing technique. The region growing is guided by a
top-hat-transformed image using a speckle-shaped morphological operator. The top-hat
transform is an image which has been morphologically opened and subtracted from the
original image. After segmentation, each speckle is classified as noise or feature based on
the texture parameters of the image in the surrounding neighborhood. These parameters
include contrast and mean grey level. If the speckle is considered noise, it is replaced by
the mean of the surrounding area; if it is not, the speckle is left unchanged. This group
compared the performance of the filter and subsequent application of a snake algorithm for
flare extraction to the Lee and Frost filters. In this work, the comparison was performed
on only two images which does not allow for an assessment of its ability.

The work published in 2005 by Stippel et al. [77] proposed a tissue-specific adaptive-

texture filter (ATF) that can be used as a visual aid for diagnosis by clinicians, and
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as a preprocessing technique prior to the automatic extraction of flares. The goal of
the applied filter is to enhance the difference between the texture of healthy and PVL-
affected neonatal brain by adaptively modifying the image texture. As with previous
work, the images are first standardized using the algorithm by Simaevs et al. [45], and
then mean filtered to suppress outliers. Using the region growing technique outlined in [76],
segments (previously referred to as speckles) are identified. The segments are designated
as being within pathological, normal, or transition zones as determined by the mean and
contrast measures of local windows. Based on a pathological classification, the region
is “lightened” (intensity added). The classification of healthy or transitional leads to a
“darkening procedure” (intensity subtracted), with differing algorithms depending on the
classification. Each of these filtering methods contains a manually controlled parameter
to adjust the degree of intensity change.

After the filtering is complete, flares are segmented using two separate contour algo-
rithms. The contours are compared to both manual segmentation and contours grown
after pre-processing with other filters. The comparison is performed using measures of
match between contours ®,; and precision ®,. The authors measure precision by

¢f:@-(%?g)x1m% 2.7)
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where

®, is the precision ratio,

Ngis ¢ is the number of pixels Jocated between the expert contour and the automatically
created contour,

N 1s the total number of pixels enclosed by the expert contour.

The match rate is measured by
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where
®,, is the match rate
Oyy is the arca enclosed by the expert contour,

Ow is the area generated by the automatically generated contour.



37

After application of all techniques to 10 cranial ultrasound images, the authors con-
cluded that the preprocessing technique improves the extraction of white matter flares.
The average precision rate is 45% and the average match rate is 65%. These values are
increased from 9% and 24%, respectively, before filtering.

An evaluation of texture as a predictor of WMD has been published by Vansteenkiste
et al. [78], who is from the same laboratory as Stippel. This work investigates texture
measures from non-standardized images, using rectangular ROIs selected manually from
images containing flares. This group reports good results, however, feature selection,
classifier design and validation are all performed using a single data set. The concern with
using a single data set for all steps is that the results are over-fit and thus do not generalize

well.

2.7 Image Processing and Coherent Imaging
Techniques

This work investigates texture processing methods in coherent imaging. Many researchers
have considered FDS to be noise and thus significant effort has been made to isolate and
remove FDS and speckle. Many authors use the term speckle to refer to the grainy nature
of the image. In this review of image processing applications in coherent imaging, the term
speckle refers to the grainy nature of the image. This was chosen because in many cases
the image statistics have not been analyzed to determine if speckle as texture or speckle
as FDS is being isolated by the filters.

Much of the work presented in this section is for the purpose of speckle reduction with-
out removing other image features. In this research, the goal is to extract texture measures,
including some specific to speckle. Some methods that successfully remove speckle may

provide insights into the best processing methods to preserve speckle characteristics.

2.7.1 Review Papers

In 2000, Dong et. al. [79] reviewed speckle filters for svnthetic aperature radar (SAR)

images for the purpose of texture preservation. While SAR images the far field and medical
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ultrasound images the near field, filtering techniques can be useful for processing both types
of images. They discuss Lee, Kuan, Frost, mean, median and edge-sharpening filters. Lee
and Kuan filters are considered adaptive-mean filters since for both, the value of the central
pixel in the moving window is the mean plus an adaptive value times the difference between

the mean and the center pixel. The equation of the two filters can be expressed as

=2+ K —17) (2.9)

where

Z is the local mean of the moving window,

I is the value of the pixel in question,

K is a value between 0 and 1.

These filters vary in how they calculate the adaptive value but for both it approaches 0
for uniform windows and 1 in areas where there are edges. The Frost filter is an adaptive
weighted-mean filter in which the influence of the neighboring pixels decays exponentially
with distance, and with the parameters of the decay dependent upon the local statistics
in the window. The mean and median filters are self explanatory, with the center-pixel
value being replaced by the mean and median pixel intensity values respectively. The
edge-sharpening filter first locates edge crossings and then assigns to the center pixel the
value of the edge or the mean value of the moving window depending on whether the edge
is present or not. The authors found that all filters distort the texture at the expense of
removing the speckle from the SAR images. They determine that the median filter causes

the greatest distortion and is not suitable for SAR images.

2.7.2 Wavelets

In 2000, Duskunovic ef. al. [80] present two wavelet-based techniques to suppress speckle,
both of which are based on selective reduction of the detail coefficients after discrete
wavelet decomposition. Both methods make a judgment about the presence of “real” or
“false” edges and adjust the detail coeflicients based on the decision. The first method
incorporates prior probability information for the decision, while the second method uses

spatial filtering techniques. The methods are intended to suppress speckle noise for further
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analysis of neonatal cranial ultrasound images. Limited experimental data are provided
to support this algorithm, so it is difficult to assess its contribution.

In 2001, Fulin et. al. [81] propose a wavelet-based filtering technique to reduce speckle
noise in SAR images. This technique may be applicable to ultrasound images because the
authors perform a logarithmic transformation prior to manipulating the images to cause the
speckle noise to be converted from a multiplicative to additive form. (In clinical ultrasound
systems, the data are logarithmically compressed prior to presentation to the end user.)
In their paper, they propose an algorithm in which the logarithmically compressed images
are wavelet decomposed and the coefficients of the detail-images are attenuated if they do
not belong to edges. An initial threshold determines the attenuation coefficient used on
non-edge pixels. The authors determine if a detail image pixel belongs to an edge through
the use of directional masks that vary depending upon the subimage being investigated.
An interesting conclusion that they reach is that while seven different wavelets were used
in the algorithm, all produce very similar results in the application of speckle reduction.

Wavelet-based techniques, like all multiresolution techniques, are very useful for texture
evaluation. These groups use wavelets as part of adaptive filtering, using edge detection as
filter control. The methods described here were not pursued due to this reliance on edge

detection.

2.7.3 Adaptive Filters Based on Local Image Statistics

Kotropoulos et. al. [82] proposed nonlinear image processing of ultrasound images imple-
mented through the use of signal-adaptive filters applied to portions of images segmented
by neural networks. This group looks at the difference between speckle properties for
both raw B-mode data (Rayleigh random variable) and displayed US image data that has
undergone logarithmic compression (zero mean Gaussian random variable). The output

of the signal-adaptive filter is
s(k,1) = Sy Lk, 1) + Blz(k, 1) = $a Lk, )] (2.10)

where
§ is the original image without corruption,

§ is the output of the filter at k1,
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Sy L(k. 1) is the maximum likelihood estimate of s(k,!), which they consider to be the
low pass component of the image,

3 is a weighting factor approximating SNR in the window,

z(k,1) is the image intensity at &, 1.

Kotropoulos ef. al. conclude that for both types of ultrasound data, the maximum

likelihood estimate is the L, mean scaled by a factor of @ Explicitly, the filter is

N
sl = YT 1 Ls x2, (2.11)
=1

2N

B varies in magnitude and determines the size of the filter window. (Note: The definition
for the L, mean provided by the authors is identical to the RMS value of the region.)
The authors conclude that this adaptive filter outperforms some simple methods to detect
lesions such as preprocessing with mean or median filters and then thresholding, however
their best results indicate positive predictive values of only 61 %.

Evans et al. [83] present a truncated median filter. The output of this filter is skewed
toward the mode of the pixel intensity values, within the window of the image under
investigation. The authors chose the mode as a basis for their filter because of their
derivation that the maximum likelihood estimator of an image degraded by noise with
a Rayleigh distribution is the mode. They also argue that the mode filter reinforces
cdges. The output of the truncated median filter results from first truncating the window
histogram so that the median bisects the range of the remaining values and then a new
median is calculated. This routine may be applied as an iterative process but the authors
have chosen to apply it only once. Following the processing, Evans ef al. use a Canny
operator to identify edges as the basis for further comparison using both in wivo and
phantom test images. They compare the detected edges after processing with their filter
as well as the images pre-processed with median, adaptive weighted and unsharp-masking
filters. Unfortunately, there is no gold standard for the in vivo images so that analysis is
of limited use. Using the phantom with its known edge locations, the truncated median
filter outperforins the other filtering methods.

Kofidis et al. [84] continued along the same theme as Kotropoulis et al. [82] with neural
network segmentation and adaptive filters. They used the L, learning vector quantizer

(LVQ) neural network, which is a self-organizing network. They then applied L-filtering
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to the approximately uniform sub-regions. They used Bovik’s definition of the L-filter as
a linear combination of input order statistics. One of the reasons they choose this filter is
that it can cope with nonlinear models, which is appropriate since they model speckle noise
as multiplicative Rayleigh-distributed noise. The Ly LVQ ANN segments, based on a 7 x
7 window, and the filtering occurs in a 3 x 3 window over the entire image. This group
compares their work to a number of other speckle filters including the homomorphic filter,
Frost filter, sigma filter, variable-length median filter, and Taylor filter. The homomorphic
filter is presented as

Inz=Ins+1Inn (2.12)

where z is the image,

s is the original signal,

n is the multiplicative noise. The noise is then additive and averaging several images
reduces the effect of the noise.

The Sigma filter averages those pixels which are within 2x the standard deviation away
from the central pixel, rather than all pixels within a window. The variable-length median
filter has a window size of 2L x 2L, where L is dependent upon the standard deviation
and mecan intensity values within the window. The Taylor filter is § = z* where § is an
approximation to s, the original uncorrupted signal, and

_ E{slns} — E{lnx}
B E{ln%x} )

(2.13)

The method presented in this work outperforms all filters except the Frost filter when
assessed using ROC curves and the SNR after processing. The ROC curves are created
with respect to the ability of the system to correctly classify pixels as lesion or back-
ground. However, based on qualitative assessment of images, they conclude that their
filter outperforms the Frost filter since the Frost filter reduces lesion contrast and adds
blurring.

In 1996, Dutt et el. {85] investigated how log-compression affects the statistics of the
echo envelope. They are concerned about this as many adaptive filters rely on the model
of speckle statistics used to determine how to vary the amount of smoothing performed.

This group argues that, based on what is known about speckle formation, the Rayleigh
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distribution is appropriate when there are many scatterers per resolution cell. Conversely,
when the scatterer density is small, the K distribution more closely approximates the
statistics of the echo envelope. The problem with the K distribution is that there does not
exist a closed-form expression when the logarithmic compression of the image is considered.
They proceed to derive an approximation that can be solved and then use this to develop
a controlling parameter for an unsharp masking filter. They test their filter on a phantom
and on abdominal images and they conclude that the filter preserved the object boundaries.

Ghofrani et al. [47] proposed an adaptive unsharp masking filter using the local statis-
tics to control the filter parameter. In this case, the authors argue that the statistics of
the echo envelope follow a Nakagami distribution rather than a Rayleigh or K distribu-
tion. Based on their assumption of a Nakagami distribution, the authors determine that

an appropriate control parameter for their unsharp masking filter is
k=1-—fn (2.14)

where R
fu= 214 (2.15)

variance

and D is the estimated dynamic range of the imaging system’s logarithmic compression.

Suvichakorn et al. [86] proposed a new filter based on fitting a least-squares polynomial
to the underlying image intensities within a window. The authors compare the output of
this filter to the output of a median filter, both of which are then processed with the
Canny edge detector for the extraction of thyroid edge-boundaries in US images. The
results appear to be comparable. The significant difference between the two filters is that
the processing time required by the polynominal fitting filter increases linearly rather than
as a function of Nlogo V.

In 2000, Tsubai et.al. [87] proposed a filter that uses morphological operations with
adaptive structuring elements. They introduce an alternating sequential filter (ASF) that
applies opening and closing to the image iteratively k times using a round structuring
element with a radius that varies from 1 to k. The individual pixel weights within the
kernel are dependent on the range of image-pixel intensities in the kernel neighborhood.
As with most other suppression techniques, their goal is to remove noise while preserving
edges. It is difficult to comment on performance as the results on only a single lesion

phantom are provided.
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2.7.4 Adaptive Filters Guided by Detected Edges

Dong et al. [19] proposed a new filter for SAR speckle reduction and edge sharpening.
This filter smooths local variations, through the use of the mean. in areas where there
are no edges. It does not perform averaging across edge boundaries. The edges are
detected using wavelet-transform techniques with a sccond-order derivative of Gaussian
function. Due to the discontinuous nature of SAR images, edge detection is performed
by 1D convolutions in the horizontal, vertical, and both diagonal directions rather than
horizontal and vertical directions alone. The authors compare the performance of this
filter, using a 7 x 7 window for averaging operations, with the Lee, Lee-refined, Kuan,
Frost, Mean, and Median filters. They claim that edges are not only preserved but that
they arc enhanced with their algorithm.

Wang et al. [20] used an adaptive, diffusion-based filter. To identify edges in noise in
the US image, they used the difference of local averages rather than the gradient operator.
They use eight directions for controlling the diffusion and use statistics to determine when
to stop the process. The goal in this work is to preserve edges as part of their ongoing
research into preprocessing fetal ultrasound data for improved visual assessment of fetal
images.

Abd-Elmoniem et al. [21] proposed to suppress FDS based on an adapted, non-linear
diffusion model. This group believes that some speckle patterns (texture) are not simply
characteristic of the imaging system, and that deviations in speckle could be used to
classify local regions. The classification of the local region determines the bandwidth of
a smoothing filter so that FDS is replaced by a local mean and that regions that are
dissimilar to FDS are not smoothed. The goal is to enhance coherence to overcome the
ambiguity of using SNR alone for filter adaption and to enhance tissue texture and larger
structure edges.

Generally, researchers that are concentrating on edge preservation within coherent
imaging techniques tend not to over-filter texture, as this also tends to degrade edges.
However, these three groups control the amount of speckle suppression based on the de-
tection of edges, and thus it cannot be assumed that their methods do not remove relevant
details in areas without detected edges. For this reason, methods based on adaptive filters

controlled by edges were not pursued in this research.
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2.7.5 Adaptive Filtering Based on Frequency Components of

Noise

Uslu et al. [88] proposed algorithms for enhancing the detection of tumors that begins by
split-spectrum processing (SSP) of the noise. The input image is bandpass-filtered using
Gaussian windows and each band is scaled to unity. They believe that FDS is frequency
dependent. SSP is implemented in both 1-D (filtering cach A-scan line) and 2-D, and then
the images are filtered to enhance the contrast of the tumors. This group found that SSP
processing improves the supression of noise (speckle). Based on qualitative assessment of
tumour contrast, they determine that implementing the SSP using 1-D filters out-performs

the 2-D filter method.
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2.8 Random Forests and Imaging

The Random Forest algorithm, in which ensembles of decision trees are created, was in-
troduced in 2001 [89]. The Random Forest classifier (RFC) is non-parametric, handles
high-dimensional data, and tends not to overfit. A complete introduction to its features
and uses is discussed in the theory section. The advantage of RFC is that it provides an
accurate error estimate without a separate test set, and all references to accuracy or error
in this review are based on that error measure. Random Forests is an emerging technique
for classification problems in computer vision, and thus a review of its computer-vision

applications is short.

2.8.1 Land Cover

Random forests classifiers have been applied to the greatest extent in land-cover classifi-
cation problems. Some cases apply the technique to one type of image while others use
multisource data. In all cases, the problem is the classification of visually similar land
cover into one of several classes.

Pal [90] uses landsat data to classify 7 types of crops. The experimental data, consisting
of 4737 pixels, were selected from all seven classes with 2700 pixels used for training and
2037 pixels used for an additional test set. Like all land-cover problems presented here, the
classification is performed on pixel intensities. The author found that RFC outperformed
boosting and bagging, which are older, more established ensemble methods, even when 8%
of the class labels for the training data were changed. Using the same data set, Pal [91]
performed another study comparing the performance of RFC to support vector machines
(SVMs). Pal found that the two classifiers have similar performance. However, the RFC
has advantages over SVMs in that it requires little tuning by the designer, can handle
unbalanced data, and can handle missing data values. Pal also demonstrates that the
settings of the user-defined parameters in the RFC do not have a large effect on the final
classifier performance.

Ham et al. [92] used two separate hyperspectral data sets to compare the performance
of the RFC algorithm to a modified RFC algorithm (RF-BHC). Hyperspectral images

use many narrow sections of the electromagnetic spectrum in remote sensing [93]. Hy-
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perspectral data have the properties of being of high dimension (around 200), having a
limited amount and quality of ground truth, and the quantity of training data is small.
In RF-BHC, the classifier that forms the ensemble is a binary hierarchical classifier which
decomposes the C-class problem,-where C > 2, to a hierarchy of C-1 simpler 2 class prob-
lems. The RF-BHC error rates are somewhat lower than the RF algorithm for the data
presented, but the difference in one experiment is 3% (94.9% vs. 92 %) while the other is
5% (75% vs. 70%).

Joelsson et al. [94] also compared the performance of RFC and RF-BHC against
each other and against a Gaussian maximum likelihood classifier. The images were taken
in an urban area in northern Italy with 9 classes represented. Both RFC techniques
outperformed the traditional classifier. RF-BHC was reported to perform somewhat better,
but the difference was in the range of 1%.

Gislson et al. [95] presented work with multisource data for identifying 10 classes of
land cover, 9 of which are different forest types. They use 2019 samples where 1008 are
used for training and 1011 are provided as an additional test set. The RFC algorithm was
run with a variety of values for algorithm parameters and it was found that these changes
had little effect on the final accuracy of the classifier. The highest accuracy obtained was
82.7%. This group found the error estimate by RFC to be pessimistic as compared to the
test-set values. The RFC was compared to a number of other ensemble classifiers with

improved or very similar results.

2.8.2 Image Classification

Frequently, multimedia retrieval systems will incorporate learning algorithms to improve
the accuracy and speed of the images retrieved to the individual making the inquiry. Wu et
al. [96] use an iterative algorithm incorporating the RFC and user feedback to determine
the relevance’of the returned images. The image features for classification include colour
descriptors, texture features, edge information and shape descriptors. The performance of
their algorithm is compared to retrieval systems incorporating SVM and another ensemble
method, with an improvement of 24% using RFC. Later work [97] reports an improvement
through a reduction in the number of iterations by using RF to identify non-relevant

objects, rather than relevant ones in the initial searches.
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Calleja et al. [98] compare the performance of machine learning techniques to the prob-
lem of galaxy classification. The techniques include a naive Bayes classifier, a decision tree,
RFC, and another ensemble (bagging) method. The problem consists of image analysis,
data compression, and machine learning. In the image analysis portion, a binary threshold
is applied and the images are rotated, centered. and cropped to create images that are
invariant, to colour, position. orientation and size. The covariance matrix of the galaxy
is obtained and from this, the principal components are identified and three are selected
as descriptors. The data consists of 292 galaxy images and the classification problem is
set up three times with 3, 5 and 7 classes. RF provided the highest accuracy of the four
methods with values of 91.6%, 54.7% and 48.6%.

Luo et al. [99] identified plankton in images obtained with a shadow-image particle
profiling evaluation recorder which continuously sample plankton and suspended particles
in the ocean. The binary images in the group include a total of 7285, 1285 of which
are used for training. The gold standard is manual classification. The processing of the
images included noise suppression and the extraction of 29 features. The features include
shape and size descriptors. Six classifiers were compared for performance using the entire
feature set. In this case, they found that a SVM outperformed everything including RFC,
although the difference in the error estimate was 1.8% and in the test set was 0.6%. Feature
reduction was applied by successively reducing the dataset and preserving the best group
at each step, resulting in 15 features selected. Only the SVM and the neural network were
compared at this stage, with the SVM being proclaimed the best classifier.

Geng et al. [100] classify C. elegans (worms) based on 16 classes (1 wild, 15 mu-
tants) which are observed with a high magnification system that tracks an individual’s
movements. The image data consists of consecutive stills that are obtained at 5 minute
intervals, with 1596 video sequences analyzed and roughly equal numbers of clips per worm
type. This paper presents new automatic methods for feature extraction and phenotype
classification based on shape descriptors and tracking of head and tail movements. The
253 features are acquired from both binary and grey-scale images. Groups of measures
were expressed as average, maximum and minimum values, and 10th and 90th percentile
values of a population. The RFC algorithm classificd the worms with a 91% success rate.

The paper presents some discussion on the effect of RF algorithm parameters and finds
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the performance insensitive to their selection. Manual classification of the various types
ranged from 50% to 90%. The RFC provides a more consistent classification method over
manual classification.

While the use of RFC for image segmentation and classification is still limited, some
trends can be observed. Random forests have yielded good results in imaging problems
where the measured features have high dimensions. The work reported here indicates that
the random forest algorithm is robust to parameter settings. Where random forests have
been compared to other classifiers, based on the error estimates, the performance is better
or comparable to other classifiers in image analysis problems. The error estimate of the

RFC has been demonstrated to be credible if not a bit pessimistic.



Chapter 3

Theory

The design of this UTC system required addressing two main issues: extracting the relevant
texture measures and designing and evaluating the classification system. The texture
measures have been selected to exploit unique properties observed in past experiments but
not utilized for an UTC system to detect WMD. Once the measures were obtained from
the images, the classification system needed to be selected, designed, and tested, (Figure
3.1). The following section outlines the considerations for the UTC algorithm design for

detecting WMD and the final system as designed.

Extract new experiment-based
texture measures

Y

lDimensionality reduction |

IModel design and evaluationi

Figure 3.1: Design of the model to test the hypothesis.
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3.1 Preliminary Considerations

3.1.1 Experimental Limitations

When tasked with this problem, there were several limitations presented. The first is that
the images would come from a normal clinical setting and it would be expected that the
system would function with whatever images are clinically acceptable. This meant that
there was to be no alteration of clinical practice. The images would be of neonates and
taken within days of birth. However, the degree to which the infants are preterm would
vary. The inclusion criteria are that the infants must be less than 31 weeks gestational
age or have a mass less than 1500 g. Thus, the size of the cranial ultrasound images and
the gestational age have significant variability.

The white matter in the periventricular region is the most susceptible to WMD. In
the interest of managable data sets and computational time during design, one coronal
US image of the periventricular white matter per patient was used as input to the new
system. The image selected for each patient is of the same anatomical region, the region
most likely to contain WMD.

The data sets used in this research consisted of EXP0, EXP1, and EXP2. Every image
used in this research is film, scanned to digital with an Epson Perfection Photo 3200
DPI (hardwarc) scanncr. EXIP0 consists of 30 images that were used to assess texture
as a feature on which to segment tissue types. EXP1 has 17 images, a subset of EXPO0,
where the clinical outcomes are known. These were used to identify texture measures
as candidates for further evaluation:” EXP2 consists of 69 images, with known clinical
outcomes, that are used for the design and test of the model. The complete details of the

EXP1 and EXP2 data sets are provided in Chapter 4.

3.1.2 Image Standardization

It has been established that operator-based machine settings alter the properties of B-mode
images [101]. In UTC problems, researchers have traditionally addressed this problem by
standardizing the images using one of two methods. Standardization can be performed by
requiring that all images for a given experiment are obtained with the same machine with

identical settings. Another method is to correct for the variations in the machine settings
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through the generation of a machine model and appropriate image processing methods to
normalize the images [45].

In this work, the images are not standardized, but rather the patient’s image is used
as its own control. This is accomplished by comparing the white matter to a reference
tissue, with the choroid plexus chosen as that reference. While this approach may not
be appropriate for all UTC problems, in this case there are conditions that make this a

reasonable choice.

1. During clinical evaluation, radiologists use the choroid plexus as the reference tissue

when looking for increased echogenicity in the white matter [102].

2. All images are obtained through the anterior fontanel. The anterior fontanel is
located at the midline, halfway between the forehead and the top of the head. The
normal size of the anterior fontanel is 20mm -+ 10mm [103]. The relative locations of
the choroid plexus and the white matter are always the same, with the white matter

closer to the transducer face.

3. The choroid plexus is located close to the white matter, and both are located roughly

at the center of the image at the focus of the acoustic energy. Thus, the variation of

texture properties due to distance from the focal point should be minimal.

The location of the tissues within the focal zone is important because the observations
by earlier researchers [36],[50], which are implemented in the algorithms, are based on the
location of the tissue within the focal zone.

The distance from the transducer face to the tissue affects texture properties [36], [104].
A variation in the depth of the white matter from the transducer will affect its texture
measurement. Because a reference tissue is used, the distance between the white matter
and the choroid plexus will also have an effect. For these reasons, measurements of the
distance between the transducer face and the ventricle and between the tip of the ventricle
and the bottom of choroid plexus were obtained. The tip of the ventricle was chosen as it is
the basis for selecting the white matter region to be investigated. The measurements were
obtained at a standard radiology station with distance measurement capability. These
measures were obtained from a number of patients, allowing the calculation of the mean

and the standard deviation of these distances. The distance from the ventricle to the
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Figure 3.2: Measured distances. A: Distance from the transducer face to the tip of ventri-

cle. B: Distance from the tip of the ventricle to the bottom of the choroid plexus.

transducer face was found to be 2.8£0.2 ecm. The distance between the tip of the ventricle
and the bottom of the choroid plexus was found to be 2.7 & 0.5. Figure 3.2 illustrates
the distances measured. The variation in the distances was considered in the algorithm.

Further details are provided in the discussion about the angle of insonation.

3.1.3 Resolution

The images are obtained at high spatial resolution. This was done to preserve as much
detail as possible, including speckle. The justification for using high resolution is that the
system is looking for diffuse tissue changes in patients without cystic echolucencies. At
this early stage, the disease causes subtle changes in the white matter in the form of edema
and an influx of immune-system components. These biological changes are expected to
cause small-scale changes in the images. If the high resolution features had been found to
be unnecessary, they could be removed later. However, the data could not be added if the
data were not collected.

For every processing method, the size of the spatial support must be selected keeping

in mind the size of the features of interest and the limitations of the imaging system.
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Table 3.1: Average biparietal head measurements of fetuses.

Age (weeks) | Head size (cm)

24 6.0
28 7.3
31 8.1

The discussion first proceeds assuming that resolution of the images is the limiting factor.
Based on standard growth charts, the biparictal diameter ranges from 6.0 cm to 8.1 cm
for the ages 24 to 31 weeks, see Table 3.1. The average number of pixels comprising the
biparietal measure for EXP2, is 5700 pixels. Choosing a mid-range value of 7.0 ¢m to
represent the head size, this results in about 12 microns of tissue being represented by
each pixel.

Ultrasound is not an ideal imaging system, however, and the frequency of the pulse
has a significant cffect on the resolution. The higher the carrier frequency of the pulse,
the smaller the detail that can be resolved. Conventional wisdom is that detail down to
half the wavelength can be resolved, although this is being challenged [10]. With a speed
of sound in the human body assumed to be 1540 m/s [105], the wavelength for a 7.0MHz
transducer is 220 microns. The frequencies range from 5 MHz to 8.5 MHz, and thus the
wavelength ranged from 181 microns to 308 microns. A wavelength would then range in
size from 15.1 to 25.7 pixels for a pixel size of 12 microns. All spatial supports and kernel
sizes were chosen so that they are greater than 26 pixels at full image resolution. The
regions are of a size containing both speckle and resolvable features. The spatial support

of the processing techniques will be described in terms of this scale.

3.1.4 Image Analysis Platform

All algorithms for this thesis were written in C. They are written as commands within
the image processing platform CVLab. written by Dr. P. Gregson. CVLab creates an
interactive image-processing environment with some basic image manipulation routines.
All user interface programs, image processing routines, and data extraction techniques

were implemented in C in this environment. Algorithms created for this work are included
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Figure 3.3: Left: A typical coronal image from our data sct. Right: The periventricular
white matter and choroid plexus ROIs chosen to be part of the image evaluation. The
round upper arcas are the white-matter ROIs, the longer shapes are the choroid plexus

ROIs.

in Appendix A. All program descriptions are followed by the name given to the code to
allow cross-referencing. Where the algorithm name is not provided, the necessary steps

were performed by running script files containing the appropriate sequence of commands.

3.1.5 White Matter and Choroid Plexus Masks

Prior to any design, the tissue of interest had to identified. As the automatic segmentation
of tissues from US images is a non-trivial task, a scmi-automated method was chosen. The
choroid plexi and ventricles in each patient image werc manually extracted using a point
and click tool (choroid.cmd). The white matter ROI was extracted through the manual
identification of landmarks by the radiologist with the automated system calculating the
remainder of the mask from these points. The complete details of the system are provided
in Chapter 4. Figure 3.3 illustrates the tissues of interest. It should be noted that the white
matter masks may contain germinal matrix as well as white matter within their boundaries.
This could not be avoided as the two tissues cannot be segmented by radiologists using

this imaging technique.
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3.1.6 Noise Reduction

Prior to any image analysis, the level of noise in the images was reduced. The film images
were scanned at 3200 DPI, resulting in images of about 50 MB (~ 7000 x 7000 pixels)
after conversion to pgm format for use in CVLab. By digitally scanning the images with
such high resolution, the speckle-texture features and the noisc at the resolution of the film
grain were preserved. Beyond the film grain noise, there exists unwanted signal associated
with writing of the hard-copy films. The development process consisted of sending the
signal from the ultrasound machine to a laser printer (Kodak 2180) and on to a developer
(Kodak M6AN). The models of the machines did not change during the study period, but
the laser printer was replaced in 1992. The pattern arising when writing the films differed
slightly over the years but generally had a squarcd-cosine cross section. See figure 3.4
for a sample profile of the unwanted signal. The unwanted signal consists of components
with spatial periodicities of both 18 pixels and 36 pixels for images from 1990-1991 and 10
pixels for the remainder. Median filtering the images with a window size of 37x37 pixels
effectively removed the noise, including unwanted signal, in both groups with minimal
signal degradation, as judged qualitatively. Figure 3.5 demonstrates the change in the

images with noise reduction.

3.2 Extraction of New Texture Measures

B-mode texture properties have been observed to vary with acoustic scatterer density, size,
periodicity, and scattering strength. The change in white matter due to the insult-causing-
injury alters the scatterer density. The purpose of obtaining these texture measures is to
capture the changes in image texture that are caused by the change in acoustic properties
associated with the tissue changes. To increase the signal-to-noise ratio of those unique
texture features, the images were first processed to enhance the speckle properties related
to the changes and/or to remove those texture components suspected to be irrelevant.
Following processing, the white matter and choroid plexus are compared, and the texture
mcasurcs arc extracted. The comparison results in an intermediate output image that is
related to the texture properties and the shape of the ROIs. These intermediate images

are referred to as “parametric maps”. Figure 3.6 shows an overview of the steps in this
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Figure 3.4: A sample noise profile obtained from the image background.

Figure 3.5: A small region of white matter. Left: original image. Right: median-filtered

image.
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Figure 3.6: Methodology of new, experiment-based texture measures.

section.

The processing that forms the method presented in this section, was developed through
a series of experiments performed on the EXP0 and EXP1 data set. Initially, small samples
of the choroid plexus and white matter were extracted by a radiologist. The images were
processed and measures were extracted from these sample areas. The data were then
assessed to determine if the measures separated the images into two groups, first based on
tissue type, using EXP0, and then based on health outcome, using EXP1. The experiments
assessing the measures’ ability to distinguish between health outcomes are in print [106]
[107] and are provided in Appendix B.

Once measures were found that separated the images by health outcome, a more-

complete method to compare the two tissues was explored. The output of this stage
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Figure 3.7: Initial asscssment of suitability of texture mecasures for diagnosis based on the

EXPO and EXP1 data sets.

is a group of paramctric maps that contain many comparisons between the two ROIs.
Descriptors of these maps were then assessed for their suitability to separate EXP1 data
into two groups based on health outcome. Figure 3.7 illustrates the steps in the design of

the texture measures.



59

3.2.1 Pre-processing
Angle Look-up Image

All coronal cranial US images in these experiments were obtained using a curved-array
transducer. The center frequency ranged from 7.0 MHz to 8.5 MHz. This transducer shape
results in the tissue being insonated in a fan pattern. As a result, the US machine collects
data in a polar coordinate system and later converts them to a rectangular coordinate
system to form the images. However, the texture information in the axial direction is less
dependent on distance to the transducer and on the transducer properties than the lateral
direction. Refer to Figure 2.3 in Chapter 2 for an illustration of these directions. It has
been suggested that texture information in the axial direction has the most value for UTC
[6].

The image processing and comparison methods contain cither kernels or windows.
Many of these are rectangular in shape and oriented with their long axis matching the axial
direction at each location within the image. To accommodate all processing techniques
that require the axial-direction mformation, the angle of insonation is calculated at each
image location and saved as a look-up image. Figure 3.8 contains an example angle look-up
image. The creation of this algorithm (ultgrid.cmd) was performed in collaboration with

Ms. Zhengyan Sun.

Figure 3.8: Left: Sample coronal image. Right: Angle look-up image created for the

image. The intensity variations have been exaggerated for illustrative purposes.
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Enhancement

First- and second-order statistics of B-mode images are a function of the density of acoustic
scatterers [36], [50]. Speckle can be regarded as the texture primitive of US, with a size and
orientation that varies throughout the image. The changes in US image texture may be
caused by a number of changes in speckle properties such as an increased density of speckles
or an increase in the individual intensity of each speckle. The processing techniques are an
attempt to capture the changes in speckle properties that may provide information about
tissue changes.

Twelve processing techniques were investigated, each with a variety of window sizes or
kernels types as appropriate. Of those investigated, four filtering methods were selected
based on simple separation of the two groups of EXP1 according to outcome. The four
filters are: morphology-based filtering (IDD30), edge enhancement (DM), orientation spe-
cific band-pass filtering (GABT19). and only noise-reduced filtering. These techniques are
explained in detail below. In this discussion, the terms enhancement and processing refer

to the four filtering methods.

Resolution Reduction To reduce the computation time in the successive steps of the
algorithm, the images are reduced twice using the Burt-Adelson pyramid method [42]. For
the GAB19 and DM methods, this was done before processing. Although these methods
were selected based on full-sized images, it was confirmed that the parameters for these
techniques still allowed for separation according to outcome using reduced images. For the
IDD30 technique, the images are reduced after processing.

The reduction was limited to twice, as there was evidence in early experiments (Figure
3.7) that a reduction beyond this level reduces information content. See Figure 3.9 for
a graph illustrating the change in ability to discriminate with resolution reduction. The
texture measure in this graph was obtained after processing with IDD30. The mean +(2x
standard error) for both the Control and CP outcome groups are plotted against each
other for one, two and three resolution-reduction steps. At three times resolution, the
measures overlap. Appendix C contains the data gathered at each level of resolution and
the calculations that lead to this graph.

While all images were reduced twice, this does not guarantee that the images are
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Figure 3.9: Mean +(2 x standard error) for the control and CP groups. From left to right:

One, two and three times resolution reduction.

resticted to the same resolution level. This is only true if the frequency content of the
original images is such that all have a bandwidth greater than the cumulative cut-off
frequency from low-pass filtering prior to sub-sampling. To confirm that this is the case,
samples were obtained from the white matter of all EXP1 images. The samples are 256 x 8
pixels and oriented along the axial direction. The frequency spectra were obtained for each
sample and the area under the spectrum curve up to the cut-off frequency was calculated.
The positive portions of the spectra are 128 points long, so the area under the curve up to
point 32 is of interest. This region is then compared to the entire area under the positive
portion of the curve. Figure 3.10 illustrates the positive spectrum from one image sample,
and the cut-off. The ratios of these two areas for all images ranged from 0.97 to 0.99,
suggesting that the amount of signal below the cut-off frequency is nearly equal for all.
The DC magnitude was not included in this calculation because it is typically significantly
larger than the magnitudes at the other frequencies and thus would reduce the ability of
this test to identify differences between the spectra. The frequency spectra for all samples

are provided in Appendix D.
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Figure 3.10: An example of a positive spectrum. The line and arrows indicate the cut-off

frequency and the area calculated.
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Figure 3.11: Effect of grey-level dilation and subsequent subtraction on a deterministic
pattern. Left to right: Pattern, pattern grey-level dilated with a disc having radius = 3

pixels dilated, final processed image.

Morphology-Based Filtering The disease process of WMD may decrease the density
of scatterers due to edema. Experiments indicate that the number of speckles varies with
the density of scatterers [36]. If the density of speckles change, then the spaces between
speckle may also vary. Enhancing the small spaces between the speckle “lumps™ may reveal
information about tissue properties. Grey-level dilation is a morphological operation that,
among other things, fills low-intensity areas that are smaller in size than the structuring
element used for the dilation. The structuring element may be flat or it may have an
intensity variation. Dilating an image with a structuring element having a flat or binary
intensity profile, and then subtracting the original from the dilated image causes small
intensity holes to be filled and emphasized. Figure 3.11 illustrates this effect.

Dilation and the subsequent subtraction of the original image was chosen as a means of
enhancing the spacing between the speckle primitives. It was chosen because it is simple
to implement and separated patient images by health outcome in earlier experiments [106].
The kernel selected was a flat disc having a radius of 30 pixels. A disc, rather than a square
or rectangular kernel, was chosen as it is orientation independent. Thus, it should work
equally well for the various insonation angles throughout the image. Other kernel shapes
and intensity profiles were investigated without improvement in results. The size of the
disc was selected empirically and the same disc was used for all images. Continuing with
the assumption of 12 microns per pixel. a disc sized 60 pixels in diameter is 720 microns

which is 3.3 wavelengths for a 7.0MHz transducer. Figure 3.12 shows an image containing
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Figure 3.12: White matter sample. Left to right: Original, grey-level dilated with a disc

radius = 30 pixels, resultant image created by subtraction of the previous two images.

only white matter processed by this technique (IDD30).

Edge Enhancement Speckle can be regarded as the texture primitive of US. Speckles
are high-intensity patches that are roughly oblong in shape and oriented with their long
axis perpendicular to the path of insonation. The size and orientation of speckle varies
throughout the image (Figure 3.13). The intensity of the US image changes with the
density of acoustic scatterers [36]. Intensity is also affected by structure of the acoustic
media [54]. The disease process of WMD causes a change from order to disorder of the
structure of white matter. Intensity changes in US images may be caused by increased
density of speckles or an increase in the individual intensity of each speckle.

Rather than detect the speckle primitive and look for changes in its properties, detec-
tion of edges was chosen as a substitute. Because speckles are high-intensity areas, the
detection of edges would include the boundaries of speckles. Once the locations of the
speckle boundaries are known, their location relative to each other can be determined.
This is relevant because in regions where there are more speckles it is expected that the
edges of the speckles will be closer together. In addition, in the areas where speckles have
an increased intensity profile, it follows that the gradient magnitude of those edges would
be greater. Therefore, to obtain the maximum information about speckle using an edge-

enhancing technique, it is important that an edge detection scheme includes information
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Figure 3.13: The variation of speckle primitives within a coronal US image.

Figure 3.14: Left to right: White matter sample, Sobel magnitude.

about the intensity of the edges.

The problem with using a gradient-based edge detector is that speckle edges are very
diffuse and traditional gradient-based edge detectors do not perform well. Traditional
gradient-based detectors are implemented with a 3 x 3 kernel which is a region of support
too small to include the spatial support of the speckle edges (Figure 3.14). The size of
the kernel can be increased, but as with all linear filters, increasing the support of the
Sobel kernel causes a decrease in localization of the edge. Figure 3.15 illustrates the effect.
This figure shows a diffuse edge within Gaussian noise. A Gaussian approximation to film
grain noise was chosen. This approximation was created from the histograms of samples
of cercbrospinal fluid, which has very few scatterers, and so film grain noisc predominates.

The “Difference of image and mode” filter (DM) is used to enhance the speckle edges.
First, the edge is converted to a step edge using a local-mode filter (mode5.cmd). This

image is then subtracted from the original image. The resulting image has zero crossings
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Sobel w=9

Median w=21 Sobel w=21

Figure‘ 3.15: As the size of the Sobel kernel increases from 9 x 9 to 21 x 21, its localization
decreases. The same effect is not observed in DM. Median filtering is performed for noise

reduction for each technique.
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Figure 3.16: Left to right: White matter sample, DM processed.

at the center of edges with positive and negative peaks on either side of the edge centers.
The size of the peaks depends on the gradient of the original edge and the distance to the
neighboring edge. For this work, a 9x9 window was selected based on the width of the edge
transition for speckle (Figure 3.16). The images are twice reduced prior to processing with
DM. This leads to a pixel representing 48 microns, rather than 12 as stated earlier. Thus,
the 9 pixel dimension of the DM support represents a 432 micron region or approximately
two wavelengths for a 7.0MHz transducer. Appendix E contains the paper [108] describing
the behavior of this technique.

DM and IDD30 are based on differences. Both methods remove the DC component, and
thus additive changes in the image intensity have no effect on the post-processed images.
The gains of US imagers are non-linear, with an additive component. These processing
techniques serve to remove the additive cffect of gain variations. Both techniques were
evaluated for their ability to separate EXP1 into two populations. The analyses consisted
of t-tests [106]. Later these measures were tested using Mann-Whitney U tests, once they
were incorporated into the full algorithm.

The Mann-Whitney test is a non-parametric test. It is most appropriate for data that
is non-Gaussian and that is of a small size so the central limit theorem does not apply.
The data obtained during the design is of a small-sized data set and cannot be assumed
to have a Gaussian distribution, therefore a non-parametric tests is more appropriate in

this case.

Band-Pass Filtering Work by others in split-spectrum processing of US images sug-

gests that speckle features are frequency dependent. Split-spectrum techniques have been
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Figure 3.17: Gabor kernel used for variably-oriented band-pass filtering.

applied to A-scan ultrasound data for image enhancement through the use of 1-D Gaussian
filters [109], [88]. This method ensures that the filter is always aligned in the direction of
the acoustic pulses. In this research, a variable-orientation Gabor filter (GABT19) was
applied to select specific frequency components along the axial direction. The Gabor filter
was chosen because it is compact in frequency and space, and allows tuning to a mid-band
frequency with a single convolution operation. The GABT19 filter is designed to have a
cosine period of 20 pixels, a kernel size of 41 x 1 pixels, and zero DC component. The
Gaussian and the cosine functions used each had maximum amplitudes of 10, however
the kernel was scaled down by 0.1 before convolution to remove the problem of numerical
overflow. Figure 3.17 illustrates the kernel intensities. The center frequency of the Gabor
filter was selected, after examination of EXP1 spectrum samples, to be the frequency at
which the populations separated according to outcome [107]. In the convolution process,
the kernel is rotated so that the long axis is aligned with the axis of insonation based
on the angle look-up image at the coordinates of the center of the kernel. The algorithm
(vconv2.cmd) is used to implement the convolution, with rotateker4.cmd used to rotate

the GABT19 kernel.
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Figure 3.18: Top left: unprocessed except for noise reduction and reduced 2x. Top right:
IDD30 and then 2x reduction. Bottom left: 2x reduction then DM processed. Bottom
right: 2x reduction followed by filtering with GABT19.

Noise-reduced The final “technique” (ORIG), consists of no enhancement beyond the
noise removal and 2x resolution reduction. The unprocessed images were included as
it is possible that the most significant disease markers are removed in the other image-

processing methods. The four types of processing are illustrated in Figure 3.18.

3.2.2 Comparison of Two Tissues

Because the images are not standardized, comparison must be made between the white
matter and the reference tissue, the choroid plexus. The comparison is made after the
images are processed. Even though processing is expected to enhance disease markers, it
is expected that the disease signatures will be outliers within the population of the white
matter ROIs. This is expected as the images are being analyzed during the injury period or
before injury, in which case the susceptibility is being observed. Therefore, the biological

changes will be slight.
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One can expect the markers of any disease to be short conspicuous signal segments
[44] which may not be observed within a very large image area. Therefore, comparison of
the entire white matter ROI to the entire choroid plexus ROI would likely not capture the
changes associated with the early disease process. Figure 3.3 illustrates some sample ROIs
To capture the small-scale variations in the US image, the white matter was examined over
small subregions and compared to the entire choroid plexus. The processes of comparing
these two tissues consisted of identifying the appropriate size of sample, and determining
what features to compare and how to compare them.

The earliest experiments within this rescarch form the basis for the selection of the size
of the white matter samples used in this work (EXPO, Figure 3.7). The first experiments
concentrated on texture measures for segmenting the choroid plexus and white matter. In
these experiments, four rectangular strips consisting of white matter and choroid plexus
on each side of the patient’s image were extracted from the full-size images. The strips
were oriented along the axial direction and sized to provide a good sample in the opinion
of the radiologist (Dr. Schmidt). Figure 3.19 shows an image and its tissuc samples.

Using these samples as masks, statistics were obtained from these regions after enhance-
ment. There was some suggestion that the tissues would segment but more importantly,
the tissue measurcs varied with patient outcome. It was observed that the measures for
white matter alone did not separate into two populations based on outcome, but the com-
parison of white matter to choroid plexus did. The graph in Figure 3.20 illustrates the
differences in the texture measures from EXP0, suggesting segmentation may be possible.
The graph in Figure 3.21 illustrates the change in the tissues measures based on outcome
for EXP1. Both graphs use STDV as the measure after processing with DM, the tissue
samples ave as illustrated in’l"Figurc 3.19. These observations demonstrated the usefulness
of a reference tissue. It also formed the basis for determining the appropriate resolution

for the search for disease markers.

Determination of the Size of the Examined Tissues

As the size of the images and the orientation of the coronal slice both varied, the sizes of the
rectangular tissue samples also varied. This led to the questions: “What is the minimum

size of sample required to identify the texture features unique to WMD?” and “Does the
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ing the tissue samples used in early experiments.
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Figure 3.21: Separation of texture measures according to health outcome.

shape of the sample really matter?” To answer these, an analysis was performed in which
the size of the rectangular white matter samples was reduced in three different ways. The
samples were reduced so as to keep the ratio of length to width constant down to 1/16
their original size, a 1/4 reduction in each dimension. The widths were also successively
reduced by 10 pixels at a time, to a maximum reduction of 30 pixels while keeping the
original length constant. Keeping the original width constant, the length was reduced by
100 pixels successively, up to a reduction of 800 pixels where the original size permitted
this much reduction. The standard deviation of all the white matter samples and the
choroid plexus samples were compared after processing with DM. Both the white matter
and the choroid plexus samples varied in size. The size of the white matter samples do
not appear to influence the measure’s ability to separate the patients by health outcome
at an a = 0.05 (probability of mis-classification) using the Mann-Whitney U test until
the length is reduced by 400 pixels or more (Appendix F). This observation is based on
all However, at this size the samples are still rectangular but the length-to-width ratio is
smaller. For this reason, square samples were excluded as an option in the comparison.

As well, work by others indicates the information is in the axial direction [104].
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Based on these observations, rectangular tissue samples are preserved in the comparison
of the two tissue types. Texture measures are dependent upon resolution but this analysis
did not identify the limits of the required sample size.

To reduce computation time, the white matter sample was chosen to be small compared
to the range of sample sizes in the above analyses. A reasonable value of 80x20 pixels was
selected in the full-size images, which results in 20 x 5 pixels in twice-reduced images. With
a 7.0MHz transducer, this is a support of 1040 microns x 260 microns or approximately 4.7

x 1.2 wavelengths. Regions of this size could contain both speckle and resolvable features.

Comparison Leading to Parametric Maps

The white matter is systematically examined within 20 x 5 pixel regions (80x20 reduced
2x) oriented along the axial direction within the white matter ROI (Figure 3.22). All of
the white matter is relevant so the entire white matter ROI is examined in small windows
by moving the rectangular region throughout it. The center of the examined region is
located at every point within the ROI providing the entire rectangular region fits within
the ROI. A comparison between the white matter and the choroid plexus is made at every
location and the result placed in an output image at the coordinates of the center of the
rectangular sample being examined. The values obtained from the choroid plexus and
the white matter are compared by taking the difference or the ratio of the two numbers.
The result is hundreds of comparisons per patient per white matter region. These output
images are referred to as parametric maps. Figure 3.23 illustrates some sample parametric

maps.

Texture Measures on the Enhanced Images

In order to compare the two tissues, a texture measure must be obtained for each of the
regions. There are many ways that the tissue texture propertics could be measured. There
are several criteria that guided the choice. With four processing techniques (IDD30, DM,
GABT19, ORIG) and two comparison methods (ratios, differences), there are eight maps
for every texture measure used in the comparison. Each additional texture measure added,
increases the number of maps by eight. It was desired to keep the number parametric maps

created as small as possible to reduce computation time and to keep the size of the data
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Figure 3.22: Left image: An example of an angle look-up image. Right image: White
matter and choroid plexus ROIs from the patient’s right side with a rectangular sample
illustrated within the white matter ROI. The rectangular sample is moved throughout the
ROI and a comparison is made between the rectangular sample and the choroid plexus
ROI at every location. The rectangular region is oriented according to the insonation angle

at the region’s center pixel.

set per patient from being excessive. The measures had to be sclected while keeping in
mind the output of each type of enhancement performed. Assuming that the processing
removed much of the irrelevant data, simple measures were expected to provide sufficient
information. It was also desired to keep the texture measures simple in concept to help
reduce processing time. Image enhancement and comparison of image tissue samples were
expected to take a significant amount of processing time, in the order of 8-12 hours per
output image. Because of the constant variation of the orientation of the small white
matter samples, it was necessary for the measures to be rotationally invariant. It would
be highly undesirable to build a detector biased to the location of the tissue rather than
its health.

The combination of these criteria made first-order measures a good choice. The pdf
parameters used to model acoustic media, such as Rayleigh or Nakagami, were not explored
because most enhancement would alter the image intensity properties. As well, these
models would not apply to the ORIG group as it was expected that the simple underlying
assumptions on which the models are based would not capture the subtle changes early in

the disease process.
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Figure 3.23: For each texture measure, there are four maps created for each patient for
each processing technique. The two on the left are white matter parametric maps. The
two on the right are choroid plexus maps. In this case the processing method is ORIG

and the texture measure is STDV.

The Selected Texture Measures The texture measures selected were the standard
deviation (STDV) and the normalized surface area (NSA). STDV was chosen as it is fast
and easy to compute and the experiments investigating texture for tissue segmentation
showed its value (EXPO experiments). NSA was chosen to complement STDV. If one were
to think of the intensities of an image as hills and valleys, the NSA is the surface area of
the “terrain” divided by its projection on the x,y plane. As an illustration, two sinewave
gratings may have the same amplitude but different frequencies so their STDVs would be
equal but their NSAs differ. Additional measures were not chosen as it was desired to keep
the number of measures to a minimum.

Parametric maps were created with small regions of white matter compared to the entire
choroid plexus region on the same side of the patient’s head. In those early experiments
[106], it was observed that some discriminating features came from changes in the choroid
plexus rather than from the white matter. In order to capture this information, texture
maps were also created in which small regions of choroid plexus are compared to the entire
white matter region. Sample parametric maps for one patient, using STDV as the measure
and using ORIG as the processing technique, are shown in figure 3.23.

To summarize the variety of maps obtained. Table 3.2 lists the 16 maps that are

created for each processing technique. With four processing techniques, there are thus
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Table 3.2: The parametric maps created for each patient for one processing technique.

Examined tissue | Reference Tissue | Measure | Comparison | Side
(samples) (entire region)

white matter choroid plexus STDV ratio right
white matter choroid plexus STDV ratio left
white matter choroid plexus STDV difference right,
white matter choroid plexus STDV difference left
white matter choroid plexus NSA ratio right
white matter choroid plexus NSA ratio left
white matter choroid plexus NSA difference right
white matter choroid plexus NSA difference left
choroid plexus white matter STDV ratio right
choroid plexus white matter STDV ratio left
choroid plexus white matter STDV difference right
choroid plexus white matter STDV difference left
choroid plexus white matter NSA ratio right
choroid plexus white matter NSA ratio left
choroid plexus white matter NSA difference right
choroid plexus white matter NSA difference left

64 maps generated per patient. The parametric maps were obtained with the algorithms

texmapsd2.cmd and texmapnsa2.cmd, with the algorithin rotatekerd.cimd used to rotate

the rectangular sample.

3.2.3 Measures Derived from Parametric Maps

These parametric maps are the outputs of a group of comparisons made at a relatively

fine scale. Based on the body’s inflammatory response, it can be expected that in the

early stage of WMD, the damage has a significant diffuse component. For this reason

and in the interest of reducing the data per patient to a reasonable level, the parametric

maps are summarized. The maps are described through the two texture measures used
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earlier, STDV and NSA, as well as the first-order statistics of median, mean, maximum,
minimum, skewness, and kurtosis. The normalized surface area is the same as described
above, but normalized to the map size rather than the ROlIs. Once these measures were
obtained, the left and right versions were averaged per patient. For example, the mean of
the NSA ratio map on the left was averaged with the mean of the NSA ratio map on the
right, both for white matter. Therefore, the parametric maps result in 256 measures (64
maps X 8 measures /2 halves = 256) for each patient.

To complete the design stage of the parametric map-based measures, the individual
measures obtained from the parametric maps {(created from the EXP1 data set) were
analyzed for their ability to separate the patients according to outcome. Mann-Whitney
tests were performed on every measure. Spreadsheets showing a sample of the Mann-
Whitney tests performed are included in Appendix G. However, this method assesses
only the individual measure and not its interaction with other measures. Therefore, this
assessment was not used for feature reduction but rather to confirm that there existed

some measures within the group that likely contained diagnostic information.
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3.3 Design and Evaluation of a System Model

Now that the texture measures are gathered, the hypothesis that there exists diagnostic
information within them must be tested. To do this, a model was created and tested to
evaluate its ability to identify the classes defined by the patients’ health outcomes of CP

or no CP. In general, the design of a model system consists of the following:

1. Define the properties of the data set and the classification problem under investiga-

tion.
2. Understand the different types of models and the problems that they are suited for.

3. Find the best fit between 1 and 2.

3.3.1 The Data Set

Before sclecting a method for building a model, there needs to be an understanding of the
data set.

The texture measures were extracted on the basis of prior knowledge of the physics of
the imaging system, an understanding of the disease process, and previous experimental
results (Figure 3.7). While this knowledge assists in the choice of texture measures, there is
still a strong degree of uncertainty about the diagnostic information in the measures. It is
expected that each measure will have a small amount of information. The data set consists
of a large number of measures which are highly correlated. These factors contribute to a
data set with low SNR. This low SNR is in addition to the imaging limitations due to the
subtle nature of the changes early in the disease process.

The number of images from which the texture information was obtained is small. Small
data sets are typical in biomedical research. Early research in a field, such as this investi-
gation, is rarely able to obtain input from several health centres, so a single health centre
is used. When one can obtain data from a large health centre, available numbers can still
be low. Typically, inclusion issues will reduce the number of images that can be used.
Inclusion issues can include problems obtaining consent, varying image quality, changing
clinical protocol, patient relocation, and changing technology. In this work, the patient

images are limited to those available from the IWK Health Centre from 1990 to 2000.
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The image data reflects biological properties so it cannot be assumed that it is normally
distributed. Also, the small number of samples that form the data sets, 69 patients from
EXP2, mean that the central limit theorem does not apply. The texture measures exploited
in this work are new and so we do not have prior information or likelihood approximations.
These factors impact the type of classifier chosen, particularly if the classifier model makes

assumptions about the underlying probability distribution of the data set.

3.3.2 The Available Classifiers

Classification systems are generally divided into two groups. There are those from classical
statistics and those from machine learning. At times the two views about classification
systems are at odds [110].

Classifiers based on classical statistics assume that the class populations have easy-
to-model relationships within and between the classes, making them casy to interpret.
Unfortunately, the creation of a mathematically tractable model can take precedence over
the classifier’s performance. Thus, the relationships described by the models are easy to
see but may be incomplete.

Classifiers from the machine learning world are more like black boxes. The relationships
within the classification system are complex and can be hidden from the user. Prediction
problems in complex systenis, such as biological systems, may be solved more effectively
by using machine learning techniques. Unfortunately, their structure can be impossible
to interpret and thus it may not be possible to obtain information about the real world
system from them.

No one type of classification system will perform optimally in all situations. The
strengths and limitations of various classification methodologies must be considered and
matched with the properties of the data and the classification goals. To elaborate, because
the purpose of designing the classifier is to test a hypothesis, care must be taken to ensure
that the classifier model can reveal the information content of the measures. Regardless
of the information within the measures, the performance of a classifier can be poor due
to incompatibility with the problem. As well, the performance measures may be overly
optimistic because the classifier is overfit to the data and thus is not gencralizable to

the entire population. First, the means by which the performance is measured will be
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presented. A review of various classifiers and their performance issues is presented, after

this the best fit to this problem is selected.

Measuring the Performance of a Classifier

Types of Error Measures Predictive error is often considered to be the most important
measure of performance. However, when discussing an error measure, one must also have
a measure of confidence in its value. The predictive error of classifiers can be described
in terms of their bias and variance. The accuracy of the predictive error depends on the
stability of the classifier.

Medical diagnosis is typically a two-class problem. Either the disease is present (true)
or the disease is absent (false). Diagnostic error is usually presented in terms of several
descriptive measures. When calculating these measures for a given test sample, one needs
to know the number of positives that are classified as positive correctly, TP, the number
of negatives that are classified as negative correctly, TN, the number falsely classified as
positive, FP, and the number falsely classified as negative, FN. Overall prediction error is
the number of mis-classifications divided by the total number of samples classified, given

by:
FP+ FN
error = (FP + ) (3.1)

(FP+FN+TP+TN)

Accuracy is described by 1—error, which is also referred to as efficiency. Sensitivity:

TP

Sensitivity = (—m, (32)
is a measure of how often a test detects a disease when it is truly present. Specificity:
TN
speczfzczty = m, (33)

is a measure of how often a disease is correctly indicated as absent. Each classification
error, FP and FN, has a different cost associated with it. The cost depends on the severity
of the disease and the potential for harm if treatment is withheld or applied unnecessarily.

Additionally, diagnostic tests are described in terms of positive predictive value, PPV,

TP
PPV = ——— 3.4
(TP + FP) (3:4)
and negative predictive value, NPV, [111]
TN
NPY = 2 (3.5)

(TN + FN)’



82

For the remaining discussion about classifier selection, statements about error are limited

to predictive error or accuracy.

Methods to Obtain Error Measures Like most statistical measures, predictive-error
measures arc estimates of the true error for the entire population. An estimate of predictive
error can be obtained several ways. They will be presented in order of the least to the
most representative of the classifier’s performance for a population.

The least valuable is to design and validate the model on all members of the same data
set. This is also known as the resubstitution error estimate. An alternative is to design and
validate the system on two separate data sets. While this approach offers improvement,
the selection of the two separate sets can be arbitrary and the samples included in the sets
can significantly influence the confidence in the error measure. Also, for small data sets
the creation of a separate test set requires reducing the size of the design set [112].

The remainder of the validation methods cousist of the usc of a single data set for both
design and test. The methods discussed are performed in a manner to achieve relatively
low-bias measures of performance and allow the learning stage to be performed on the
maximum nuiber of samples.

Cross-validation offers significant improvement over the resubstitution estimate. The
classifier is designed with the entire data set. To obtain a measure of the error, the sample
is divided into N equal subsets, the design is again performed with N-1 subsets, and is
validated with the left-out subset. Design and validation continues until all N subsets are
used for validation. The N measures of error are averaged to provide a measure of the
error for the system designed by the entire number of samples.

Additional improvement comes with bootstrapping, in which the samples are drawn
with replacement, from the original data set. The error measure is obtained by using those
samples not included in the design process. The bootstrap was introduced as a method for
estimating the standard error of any population statistic estimated from a random sample.
As the number of bootstrap samples approaches infinity, the estimated standard deviation
approaches the population standard deviation [113]. In error analysis, bootstrapping is
an extension of cross-validation with the addition of randomization of the included and

left-out samples.
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Once there is an estimate of the predictive error of the classifier, we need to consider
the cause of the error and the variability of the measure of predictive error. Assuming that
our samples provide an adequate representation of the population, the main source of error
in our designed classifier is its bias. Bias provides a measure of the match between the
classifier model and the real-world relationships between the variables. Bias is described
as the distance between these two entities. The bias of a model is dependent on underlying
assumptions about the data. If there are assumptions about the data that are largely in
error, the classifier may have a large bias. For example, classifiers that assume that the
meastred data has a Gaussian distribution have large bias and may not predict well when
the data do not have a Gaussian distribution.

Variance provides a measure of how much the classifier would change if the training
sample changes. Thercfore, it provides a measure of confidence in the error estimate. With
a low-variance classifier, the performance is consistent. A high-variance classifier will tend
to over-fit the sample data. Bias and variance measures are related in a non-linear fashion
and the tendency is a trade off between them [114].

Another related descriptor of classifier performance is stability. In the training process,
if the loss of a small percentage of the data points results in a markedly different classifier,
then the classifier is said to be unstable. Instability can be caused by the algorithm that
creates the classifier or by the use of a small data set to train the system. Either way,

unstable classifiers do not generalize well.

3.3.3 The Theoretically Best Classifier

A Bayesian decision system puts the classification problem into probabilistic terms. Let
there be K; = 1,..i classes and let £ be the input vector of predictor variables. The
probability that a sample belongs to class K; having measured T is given by:

p(Z/K;)p(K;)
)

Uiy = BEE

(3.6)

where:
p(Z/K;) = the probability of measuring (&) for class Kj,
p(K;) = the prior probability of class K .
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p(ZE) is the probability of the feature vector space.
These three probabilities are also known as the likelihood, the prior, and the evidence,
respectively. Assuming that the cost of misclassification is the same for all errors, the
Bayes classifier assigns the input to class K; when p(K,/Z) is the maximum of all p(K;/Z).
The Bayes error is the lowest that a classification system can achieve. The problem with
this classification method is that the conditional probabilities must be known but may
be impossible to obtain. The likelihoods can be estimated by obtaining samples and
assuming that the underlying population follows a known probability density function.
Some classifiers in classical statistics are based on Bayes theory and the assumption of a

normal distribution.

3.3.4 Classification Techniques from Classical

Statistics

Some classical statistical techniques include linear discriminant function, quadratic dis-
criminant function, and logistic regression.

Linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) are
derived from Bayes theorem and the assumption of a normal population. LDA assumes
identical covariance matrices of the classes and that the difference between the classes
can be defined by hyperplanes. QDA assumes differing covariance matrices and that the
classes can be separated by a hyperquadratic [115].

Logistic regression is similar to linear regression except that the data are modeled by a
a sigmoid rather than a line. The dependent variable represents the predicted class. The

formula for logistic regression is in the form

1

C= 1+ e—(a+bz)

(3.7)

where

C is the predicted class,

a and b are the parameters derived during training [116].

Figure 3.24 shows a classifier for a single variable, this can be extended into a multi-
dimensional space. Logistic regression does not require that the predictor variables be

multivariate normal but there must be at least as many cases as features.
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Figure 3.24: A sample logistic regression curve used as a classificr. The x axis is the

measured variable, the vy axis is the predicted class.

The “curse of dimensionality” is a term first introduced by Bellman [117]. As the
number of dimensions increases, the number of cascs required to span the space grows
exponentially. Besides the limitation in predictive ability caused by the underlying model,
classifiers from classical statistics suffer from the curse of dimensionality. The mathemat-
ical formulas used to create the statistical models require that the number of measured
features be much less than the number of samples. For systems that are inherently high-
dimension spaces, methods are required to reduce the number of features prior to the
design of the model.

The techniques from classical statistics tend to have high bias and low variance. The
classifiers tend to be stable but the models fit poorly due to the bias. With these negatives,
why would one choose classifier methods from statistics? There are many positive aspects
to these classifiers. They are easy to understand and have standard, well-understood
performance measures. In situations where the model assumptions are not violated and
even in some cases where they are, they have performed well. Problems with large data

sets and few variables tend to lend themselves to these methods.
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3.3.5 Classification Techniques from Machine

Learning

Machine learning classifiers (MLC) include genetic algorithms, k necarest neighbors (kNN),
ANNSs, and decision trees. These models tend to be low bias; however, they require
many training cases, sometimes numbering in the thousands, and may not converge to the
best model. After the creation of the classifier, the underlying relationships between the
feature variables can be difficult if not impossible to extract. MLCs can be sensitive to
user-specified components and the design process tends to be ad hoc. Initial conditions
of the variables can have a significant effect and are frequently set by random number

generators. These models tend to be unstable and have low bias and high variance.

Genetic Algorithms and kINNs

Genetic Algorithms are iterative processes where a trial classifier is evaluated and subse-
quent changes made to it through mutation, addition, deletion, and preservation of the
sub-rules of the classifier. The stopping point of the process is determined by goodness-
of-fit measures.

kNN is a system wh(;ro.a new sample is classified based on the relative location of the
training set within the feature space. The majority class, within the neighborhood of the

new sample determines the class that is predicted.

ANNs

An ANN is a non-linear classifier based on an idealized model of neural networks. A single-
layer ANN is illustrated in Figure 3.25. In the single-node ANN, the inputs are combined
via an equation for a hyper-plane and then the output is passed through a non-linear
function that performs a thresholding operation. A multi-layer ANN is formed by using
the basic structure as a building block and forming a much larger network with them.
The outputs of one single-layer network, or node in a large ANN, are used as inputs to
the next stage. All nodes at the same depth from the input data form a layer as shown
in Figure 3.26. The neural network must be trained to determine the weights and bias

values. Typically, thousands of samples are required to train the network. There are
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Figure 3.25: Single layer ANN  classifier. Image obtained from

www.commons.wikimedia.org under GFDL.

several algorithm options for training the network including gradient descent and back
propagation. A common problem in neural networks is that the training algorithms are
not stable and may not converge to the optimal model. As well, the addition of many
non-linear components makes the extraction of the relationships between the predictor

variables impossible for large, complex ANNs.

Decision tree

In this classification system, a series of decisions is made by thresholding a feature or a
combination of fecaturcs until the sample is classified. The structure consists of nodes,
branches, and leaves with a shape not unlike a tree (Figure 3.27). The nodes within the
tree represent the locations of decisions causing splits in the logic path. The branches
indicate the order of the nodes and the leaves represent a class designation. In the tree-
creation process, nodcs arc added until all members of the training set are classified. The
feature for decision making and the choice of threshold at the node is based on information
gain. Two common methods of measuring information gain are entropy and homogencity
of the group after split. Entropy, H, is used by the algorithm C4.5 and calculated by [118]
- 1
H = ZPil‘)g?E (3.8)

i=1
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Figure 3.26: A multi-layer ANN classifier.

where
P, is the probability of event 4.
Homogeneity is implemented by CART using the GINI index [119]. The GINI index,
I, is
=73 pi/t)p(j/1) (3.9)

i
where

t is the node being created,

i, j are the classes. For a two class problem, this reduces to

1= 2p(1/0)p(2/1). | (3.10)

Some algorithms incorporate tree pruning to reduce the complexity of the resulting clas-

sifier.

3.3.6 Ensembles of Classifiers

An ideal classifier has low bias and low variance. Towards this goal, ensembles of classifiers

have been investigated. By aggregating many classifiers in an appropriate way, the variance
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Figure 3.27: Decision tree classifier.

can be reduced so that the model’s error reflects the error that would be obtained by
applying the model to the true population. By using a low-bias model as the basc unit of
the ensemble, it is possible to create a system closer to the ideal. Decision trees are ideal for
forming ensemble classifiers as they have low bias and the methodology for creating them
is well understood. There are many ways to form ensemble classifiers but generally they
are formed by perturbing and combining. Perturbing and combining (P&C) is a method to
create multiple versions of a predictor by perturbing the training data or the construction
method and then combining the group into a single predictor through voting. There
are two P&C methods, adaptive re-sampling and combining (arcing), and randomization

algorithms.

Arcing

In the creation of the trees forming the ensemble, extra weight is added to those difficult-to-
classify points. Also known as adaptive boosting, this type of algorithm has been shown to
perform better than some randomization algorithms. The trees of the ensemble are grown
sequentially. The more frequently a sample is misclassified, the larger its subsequent
weighting becomes so as to favor the eventual correct classification of the sample. There
are questions as to when to stop the training process. It has been shown that if the learning

algorithm continues past the point of zero training-set crvor, the designed classifier will
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perform better than if the algorithm stops at zero [120], as tested on separate data sets.

Randomization Algorithms

Randomization algorithms are ensemble classifiers that are based on the injection of ran-
domness. This reduces the over-fitting associated with many classifiers. The randomness
may be injected in several ways including bootstrapping and the random selection of a
subset, of features for decision at each node.

Bootstrapping is the term used to describe the process for generating a sample of
data by sampling with replacement from the original data set. It has been shown that
the tendency is for bootstrapped samples to consist of approximately 2/3 of the cases
from the original data set with 1/3 of the cases from the original data set left out [121].
Bootstrapping is performed many times to create an ensemble of classifiers, one classifier
from each of the bootstrapped samples. This process is referred to as bagging. Bagging
has been shown to perform well when there is classification noise [122]. Typically, decision
trees, created using the binary recursive partitioning algorithm, form the components of
the ensembles.

Generally speaking, there are outliers in any data set which are more difficult to clas-
sify. With a boosting algorithm, the difficult-to-classify samples are additionally weighted
during the iterative learning algorithm. In this way, the unique relationships between the
outliers and the feature variables are ensured inclusion into the ensemble. The algorithm
still incorporates bootstrapping for creating the ensemble but the re-weighting improves
the classification accuracy. Adaboost is a well known boosting algorithm which performs
well compared to other randomization algorithms [123].

The random forest method of Breiman and Cutler [89], [124] adds an extra level of
randomness. While bootstrapping is used to form a group of trees with low-correlation,
node creation is based on a random subset of the available features that form the data
set. At each split, a random subset of the features is selected from the entire set and is
polled to determine the best for the node split based on the CART algorithm. Where no
individual measure performs best, a feature is picked at random. The number of features
making up the subset can be determined by the user but the number chosen does not have

a large effect on the ensemble performance [125]. The Random Forest algorithm compares
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very favorably to other ensemble methods [126] and the algorithm is readily available as a
package, randomForest, in R system for statistical computing and graphics (R) [127], [128].
Beyond the model’s performance, the algorithm has the advantage of providing measures

of importance for all of the input variables and handles a large number of variables well.

3.3.7 The Choice: Random Forest Algorithm

The texture data, with 69 patients and 256 measures per patient, consists of a high-
dimensional, small sample set. We have little prior information about the measures except
the expectation that they have non-Gaussian distributions. The random forest algorithm
was chosen because it is a non-parametric model and it has proven performance compared
to other classifiers. In a study that benchmarks SVMs with 16 classification methods using
21 data sets, random forest performed comparably and outperformed all others in several
instances based on test set errors [126]. The random forest algorithm has also exhibited
good performance on high dimensional data sets. Li et al. and lzmirlian study the use
of classifiers and gene expression profile data for cancer markers [129] [125]. While Li et
al. are investigating a novel method of gene selection and classifier creation, their report
indicates that the RFC often performs comparably in this high dimensional problem.
For these reasons, the choice was to implement a decision-tree ensemble classifier created
through the random forest algorithm. The algorithm is implemented in R, which is a freely
available statistics and graphics language and environment. The random forest algorithm
was originally written in Fortran77 by Breiman and Cutler [124] and was ported to R, as
the randomForest package, by Liaw and Weiner [127].

As discussed previously, a forest of decision trees is created. Each individual tree is
created through the CART algorithm. A summary of the algorithm is as follows:

Let N be the number of samples available from the population. Let F be the number
of measured features for each sample. Let B; be the bootstrap samples created from the
original data set, ntree be the number of bootstrap samples, so & = 1,...,nfree. A tree
is created for each bootstrap. Each bootstrap sample is made up of “in-bag” cases while
those cases not selected to be included in the bootstrap sample are called “out-of-bag”
(OOB) cases. The growth of cach trec in the forest consists of finding optimal binary

splits at each node based on a randomly selected subset of all candidate features. mtry.
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During the creation of each node, the feature that provides the best split is selected as the
decision criterion in the logic path. The CART algorithm uses the GINI index as the basis
for selecting the best feature. When there is no best feature, a feature is chosen from the
candidates at random. Unrestricted splitting continues until there is exactly one case per
leaf of the tree, or all cases in each of the leaves are identical. These conditions indicate
that further splitting is not possible. Once the random forest classifier is created, new
samples are classified via voting by the ensemble.

An advantage of the random forest methodology is that a separate data set is not
required for validation. For each tree, an estimate of predictive error is calculated using
those samples not used in the growth of the tree and the classification is compared to the
ground truth. This error estimate is known as the OOB error. The final error estimate for
the entire forest is the average of the OOB errors over all of the trees in the forest. In this
way, blind testing is incorporated in the algorithm. The forest OOB error estimate has
been found to provide the upper bound to the error obtained with a separate test set [130],
[89]. Specifically, in a 1996 publication Breiman [130] provided theoretical justification for
its accuracy and provides results of experiments comparing separate test-set error measures
to OOB error measures. In all cases the OOB was equal to the separate test-set error or
was slightly pessimistic.

When using the randomForest package, the user has the option to modify a number of
" model parameters. These include the number of trees in the forest, the number of features
selected as candidates at cach node, and the cutoff which specifies the voting scheme by
the trees. The default number of trees is 500, and the user needs to consider increasing this
in order to ensure convergence if the sample size is small or if the signal in the measures is
weak. There are no strict rules for the size of ntree, but some guidelines have been noted.
The number of trees grows with the number of predictors [128], and the number of trees
should be large enough that the ensemble statistic of interest has stabilized [131]. The user
should not be concerned about negative effects caused by setting ntree too large. While
increasing the size of ntree will increase computation time, it will not cause the forest to
over-fit [89]. The variation in the classification error with ntree has been demonstrated to
converge by Pal [91].

When the randomForest algorithm is being used for classification (rather than regres-
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sion or clustering), the default for mtry is v/F . It has been suggested that the algorithm is
relatively robust to the setting of mtry [124]. However, others suggest that the algorithm
is robust to a variety of mtry values as long as it is not set at 1 or F (the maximum or
minimum values) [131]. This is because because setting miry = 1 creates an ensemble
of random trees, removing the ability of the algorithm to pick the best feature from a
random group. Setting miry = I’ reduces the algorithm to bagging, removing the random
component out of the node creation. Svetnik et al. suggest that the optimal choice of
mtry depends on the proportion of irrelevant variables in the training data [131]. There is
a function within the randomForest library, called tuneRF, which selects the optimal mtry
value for the data in question. The cutoff allows the user to determine the voting scheme
of the forest. The default value of the cutoff is a majority voting scheme where 50% + 1
votes determine the predicted class. In a two class problem, this default is represented as
a vector with values (0.5,0.5).

The manual pages, from randomforest.pdf, showing the call to the randomForest algo-

rithm within R is provided in Appendix H, complete with the parameter default values.

3.4 Feature Dimension Reduction

When using classical statistical techniques to create a model, feature dimension is essential
if the sample is over-parametrized (the number of measured features is larger than the
number of cases). While it may not be essential for machine learning techniques, they
can benefit by improved performance if the noisy features are removed prior to classifier
design.

Feature dimension reduction can be accomplished through feature selection (FS) or fea-
ture extraction (FE). Feature extraction transforms the data to a new coordinate system,
resulting in features which are combinations of the original features. Principal component
analysis (PCA) is one commonly used method for feature extraction. This method pro-
poses a linear combination of the input variables based on the eigenvectors of the data.
However, it is designed to preserve those combinations that span the variance of the sample
set and does not necessarily preserve the features which discriminate between the classes

[132},[133]. Other FE methods include singular-value decomposition and independent com-
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ponent analysis.

Feature extraction is generally considered to be more effective than feature selection
[134]. However, FE methods have the disadvantage of losing the meaning of the variables
that were measured. This can be a problem when it is desirable to relate the features to
a physical or biological phenomenon.

Feature selection identifies a subset of the original features based on some performance
criteria. Feature selection is particularly valuable when the original measures have a
meaning that needs to be retained for interpretability. Filtering is a F'S technique in which
the performance criteria is separate and independent from the classifier methodology. The
features may be graded independently or in subgroups of the original set. For example,
individual features may be assessed by their between-class distances. The distance between
classes for cach feature is measured, used to rank features, and the lowest ranked features
are dropped. Often the number of features retained is based on some threshold.

Unfortunately, FS methods can lead to sub-optimal solutions. Assessing features in
groups can be prohibitively computationally expensive. This leads to evaluating features
individually. Grading features individually can lead to sub-optimal solutions by over-
looking combinations that perform well but whose constituents are all weak individually.
Additionally, groups of strong individual features may not perform better together because
they may be correlated.

Feature selection can also be performed using wrappers or embedded methods. These
methods apply the classifier algorithm to a subset of the measured features and then
grade the subset according to the classifier’s performance. The subset that results in
the best-performing classifier is selected as the feature set. Wrapper methods learn the
solution through an exhaustive analysis of all feature combinations. Embedded methods
use a subset based on a ranking criteria that is part of the learning algorithm [135]. For
example, the classifier may be designed with all features and then the lower-ranked features
successively removed and the classifier performance re-evaluated. This is a backward
elimination method. The reverse, keeping only the best ranked variable and adding to
it, is known as forward elimination. It should be noted that in the literature, the term
wrapper can refer to both wrapper methods and embedded methods as described here.

Feature selection techniques are popular because they are always less computationally
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complex than feature extraction techniques. Unfortunately, FS techniques do not always
find the optimal solution. Another issue to consider when applying FS algorithms is mul-
tiplicity. Multiplicity refers to the phenomenon in which there may exist several optimal
solutions to the FS problem. This situation will confound the extraction of meaning from
the selected feature variables.

Because randomForest includes measures of variable importance, wrapper algorithms
incorporating variable-importance measures are a natural extension of the modeling pro-
ceedure. There are two measures of variable importance provided with the randomForest
package. The first type is the mean decrease in accuracy. This is measured as follows.
Bach predictor variable is permuted and the difference in each tree’s OOB error caused by
the permutation is calculated. The difference measures are averaged over all of the trees
and normalized by the standard error. The second measure of variable importance is the
decrease in node impurity caused by splitting on the variable. For classification, the mea-
sure of node impurity is the Gini index. Recent work in FS incorporating randomForest
variable importance is presented.

Jiang et al. proposed a gene selection method incorporating variable importance as
calculated by the mean decrease in accuracy [136]. Nested subsets were identified by
repeatedly calculating the variable importance and dropping the lowest ranked 10% of the
features. This was done until there is only one variable left. The best subset was chosen
based on the OOB error estimate, which was calculated for each subset. The prediction
error for the classifier, created with the selected genes, was calculated with an independent
test set.

Svetnik et al. also propose a gene selection method based on the mean decrease in
accuracy in a backward elimination method [131]. They do not use the OOB error estimate
as the measure of performance with each variable subset. They argue that if variables have
been selected based on the OOB error rate, the selected variables are over-tuned to the data
set and thus the OOB error does not generalize to the true population. They demonstrate
the over-fitting problem using a data set containing only noise. The model error with the
noise-only data set is erroneously measured as 35% when using the OOB error estimate to
assess the model performance and for variable selection. To address the issue of obtaining

a generalizable error estimate, they use 5-fold cross validation to obtain the error of the
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predictor model.

Diaz-Uriarte et al. [137] propose a method in which they calculate the variable impor-
tance once and iteratively drop the lowest-ranked variables. The OOB is used to determine
the best subset, but a bootstrap method is used to assess the prediction error of the final
classifier. They argue that their procedure does not lead to overfitting and aggressively
reduces the number of variables. To confirm that their algorithm does not overfit, they
test thelr procedure on a data set without signal and obtain a larger number of variables
with an error equal to betting on the most probable class.

The problem common to the use of wrapper algorithms is the need to create an unbiased
estimate of the model’s performance. This can be particularly difficult when an additional
test set is not available or the sample size is small. As well, algorithms provide tests
but they do not contain domain knowledge. Studies have been performed to assess the
performance of variable-selection algorithms [138], [139], [140]. It is reported that forward-
and backward-elimination techniques can provide sub-optimal solutions, with at least one
study determining that noise is included in 20% to 74% of the sclected variables and less
than half of the actual predictors were selected [140]. For these reasons, a filtering method,
unrelated to RFC, was applied to the EXP1 data using engineering knowledge and simple
statistical tests. This allowed the use of EXP2 to design and test a model, with the OOB

error able to be used as a low-bias estimate of the model’s performance.



Chapter 4

Experiments

4.1 Extraction of the Texture measures

4.1.1 Preliminary

The experiments consisted of the extraction of texture measures and the design and testing
of the classifier. Previous experiments, Figure 3.7, and knowledge of the disease process
of WMD suggests that the texture measures will contribute to diagnostic capability. The
RFC using the randomForest package in R was selected to design and test the model to
verify this. The following sections will describe the computation of the measures, the

extraction of the data, and the design of the RFC.

Experimental Data

The images were obtained from the library of images at the IWK, spanning the years 1990
to 2000. The use of digital ultrasound machines at the IWK Health Centre began in 1992.
For this reason, the images are separated into 2 groups. Those created from 1990 and
1991 were identified as group EXP1 and the remainder as group EXP2. All images were
scanned with the same Epson Perfection 3200 Photo scanner with 3200 DPT (hardware) at
216 grey levels to maintain the original high resolution of the images. The scanner saved
the images in tagged image file format which were than converted to portable grey map
format, which has 256 grey levels.

If the quality of the image was deemed sufficient for clinical use, it was included in this

97
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study. To obtain a clinically suitable image. the operator had the ability to adjust various
settings including gain, time gain compensation (TGC), and post-processing. While there
are no quantitative measures used to assess clinical image quality, a qualitative assessment
of quality does exist. The operator attempts to create an image which is side to side
symmetrical, an image as large as possible, and the soft tissue should appear similar in
brightness throughout the depth of the head. All patient images consist of a single coronal
image through the atria of the lateral ventricles. None of the images contained cystic
echoluecencies or flares.

The EXP1 data set consists of images produced with analog machines and recorded on
film. This data set consists of seventeen patients, five of whom subsequently developed CP.
The sample size is small for several reasons. The EXP1 data set is restricted to those pa-
tients born over a two year period, due to changes in imaging technology occurring in 1992.
The population from which the images could be drawn is small, as cerebral palsy has a lo-
cal incidence of 11% within the preterm population of about 50 children per year. As well,
some eligible patients from this period had follow-up carc elsewhere, making their records
inaccessible. Three ultrasound machines were used to obtain these images. The machines
include model XP128 made by Acuson, a Diasonics manufactured machine (model un-
known), and model HDI 5000 made by Advanced Technology Laboratories {ATL). The
center frequency of the acoustic pulses ranged from 5 to 7.5 MHz. This data set was used
for the design of the appropriate image-processing and texture-measurement techniques.

The EXTP2 data set consists of digital images stored on film. The EXP2 group originally
consisted of 74 patients, case matched and selected by an independent third party, M.J.
Vincer, Director of the Perinatal Centre at the IWK Health Centre. The case-matching
criterion included gestational age and gender, and no patient was matched to his or her
twin. However, this study included restrictions on the age of the first scan, and therefore
the numbers were reduced from the original group. The result is that EXP2 consisted of
37 patients with normal outcomes and 32 paticnts with CP. The final diagnosis of CP is
a result of multi-disciplinary follow-up, as is the normal clinical practice at the Perinatal
Centre within the IWK Health Centre. The images in the EXP2 data set were obtained
from two ultrasound machines. The images were obtained with two ultrasound machines.

One was manufactured by ATL, now part of Philips, model number HDI 5000, at a center
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frequency of 8.5MHz. The other is an Acuson ultrasound machine, model number 128XP,
at 7.0 MHz. The ATL machine was used for 30 cases: 16 CP, 14 no CP. The Acuson

machine was used to obtain the images for 39 cases: 18 CP, 21 no CP.

Extraction of White Matter and Choroid Plexus ROIs

The extraction of the white matter and choroid plexus ROIs was performed with a semi-
automated system. This was chosen as segmentation of tissue types and the selection of
landmarks within cranial US images are non-trivial tasks. The methods used to extract
the ROIs were selected with the goal of standardizing the method through automated
methods in the future. Landmarks, intensity levels, and standard geometric shapes were
used within the algorithms where possible.

The choroid plexus was identified by a radiologist using an interactive program
(choroid.cmd) and a mouse to identify points within the choroid plexus boundary. The
program joined the points with straight lines to form a closed boundary that was filled
to form the final mask. The choroid plexus is relatively casy to locate by its increased
echogenicity and with the radiologist’s anatomical knowledge. Care was taken to ensure
that no other tissue types were included in the sample. There are two choroid plexus ROIs
identified per patient, also identified as masks, one on each side of the brain. Figure 3.3
illustrates the choroid plexus and white matter masks.

The periventricular white matter was identified by first locating the upper-most and
peripheral tip of the ventricle within the image. Once this point was located, the radi-
ologist located the inter-hemispheric fissure and identified a point on it, having the same
vertical coordinate as the ventricle tip. Once these two points were identified, a circle
was constructed with its center at the ventricle tip and its radius cqual to the distance
between ventricle tip and the point on the inter-hemispheric fissure (whm.cmd). This
circle contains a sample of white matter and ventricle. The boundary of the ventricle was
then identified with the same methodology as the choroid plexus. The traced ventricle
included cerebral spinal fluid and choroid plexus completely within its boundaries. The
ventricle region was then subtracted from the white matter circle leaving a white matter
mask containing only white matter and germinal matrix. Two white matter masks were

identified per patient, one on each side of the brain. See Figure 4.1 for an illustration of



100

Figure 4.1: Top, left to right: Two points extracted by the radiologist, resulting circle.
Bottom, left to right: Traced ventricle, final white matter ROL

the process that leads to the white matter ROlIs.

Creation of Angle Look-up Image

The angle look-up image was created for each patient image. To reduce computation time,
it was obtained from the image after two-reduction steps of the Burt-Adelson method of
reduction. There are two main steps to the calculation of the angle look-up image; the
identification of the signal region of the image and the calculation of the theoretical point-
source of the pulses.

An approximation to the signal portion of the image is obtained by the application of
a threshold. The threshold is based upon the statistics of the image, with the threshold as

a percentage of the mean and standard deviation. The thresholds were chosen manually
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to suit the individual, with the goal of extracting the signal-only region of the image,
(Figure 4.2). Due to varying image quality and generally decreased echogenicity of the
white matter, this resulted in some gaps in the side boundary. These gaps were filled by
manually inserting a line to complete the side boundary and then filling in the resulting
hole. Automated methods to obtain the signal portion of the image were not pursued as
the signal portion is more clearly defined in modern, digital US equipment.

Once the signal portion of the image was identified, the angles at every point were
located with the algorithm ultgrid.cmd. As a simplifying assumption, the transducer is
treated as a point source. The algorithm for creating the angle look-up has three options
available for the calculation of the point source and they are presented in order of use by

the algorithm:

1. If the bottom of the signal area in the image has a distinct boundary from the rest
of the image, it is considered to be an arc of a circle. The center of arc curvature is

assumed to be the insonation point.

2. If this is unavailable and the top of the image is a circular arc, then this is used to

calculate the insonation poeint.

3. If neither arc is available, then the two sides are extended until they meet at a point,

and this is considered to be the insonation point.

See Figure 4.3 for an illustration of these options. Each method resulted in a slightly
different set of coordinates, however the effect of this on the look-up image is a variation
of only a few degrees for each point in the image. While the goal is precise identification of
the direction of isonation, this slight variation is not expected to have a significant effect.

After calculation of the theoretical point of insonation, all points in the image with the
same z coordinate as the insonation point were designated as having an angle of 180° and
the angles were incremented in the clock-wise direction with respect to the viewer. This

image was stored for later use by a number of processing techniques.

Noise Reduction

The median filtering (37 x 37 window) for noise reduction was performed on three separate

personal computers. Each of the computers is equipped with 2G RAM and a 1.6GHz
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Figure 4.2: Top: Original image and after thresholding. Bottom: Image after manually

connecting the outer boundary and the final mask of the signal region within the US image.

processor as a minimum. By using these computers, each image could be entered and
median filtered in its entirety. The quantity of RAM is the limiting factor in this operation
as filtering is performed using the full-size images. The median filtering required several
hours per image, depending on the size of the image and which of the three machines were

used.

4.1.2 Parametric Maps

The image processing required to obtain each of the parametric maps required significant
processor time, on the order of several days per map per patient. To be able to complete

this project in a reasonable amount of time, additional resources were required. The



103

Figure 4.3: Three sets of coordinates that may be located as the theoretical insonation
point. A: Based on bottom arc. B: Based on top arc. C: Based on sides of the signal area.

The variations in the three points have been exaggerated for the illustration.

Department of Astronomy at Saint Mary’s University has a cluster, Pluto, of 24 computers
each with parallel processors. The Department had some processing time available on the
machines and kindly allowed their use in this project. Some modifications to CVLab had
to be made before the algorithms could be run on Pluto. As the algorithms would be
initiated remotely using the command prompt, all functions that incorporated the window
display features had to be removed from CVLab before loading onto Pluto.

On Pluto, each process is limited to 33M RAM. As each process had at least one
input image, and created one output image and typically several intermediate images, the
complete image could not be processed as a whole. The patient images were cropped
by identifying the minimum region required to contain the 2 white matter ROIs and the
two choroid plexus ROIs. With these medifications, the preprocessing and subsequent
map creation were performed on Pluto, requiring approximately 4 months of continuous
processing time, with a range of 8 to 20 batches running at any given time. See Appendix [
for sample script files for processing and map creation, and the batch files used for control.
The DM and GABT19 processing, and the creation of all STDV and NSA parametric
maps were performed on Pluto. IDD30 and ORIG processing were performed on three
PCs. These techniques were performed on the full-size images which required more RAM
than the 33M RANMI available on Pluto.

The statistical measures and the NSA were obtained for each parametric map. The
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parametric maps are smaller than the original ROls extracted by the radiologist due to the
edge effects of the moving window within the ROI boundary. Through binary thresholding,
using the value of 1 as the threshold, the ratio maps were used to create a new mask. This
threshold is possible, as the maps were scaled by a factor of 100, to maintain two positions
pat the decimal point when storing the output images in the integer format. The ratio
maps always have non-negative values, unlike the difference maps. Using this new mask,
the algorithm mapinfoavg.cmd extracted summary statistics and the NSA within the map
regions, found the average of each value from the two sides, and wrote this information to
a text file with the appropriate formatting for later use in R. See Appendix J for a sample

script file extracting the data from the parametric maps.

4.2 Variable Selection

To start with, there are 256 variables obtained from the EXP1 data set. This number
of candidate variables needs to be reduced as model performance is affected by noise. If
there are many non-contributing measures, the RFC can form decisions at nodes or entire
decision trees based on noise only. As well, the presence of highly correlated variables
will cause the effect of a single true information-containing measure to be split between
many variables. It is therefore desirable to remove the noise and reduce the number of
correlated measures. The selection of the variables was performed in several steps. The
first step was to restrict the measures according to some simple engineering observations.
The images undergo logarithmic compression. Therefore, any relationship between the
texture measures of the white matter and the choroid plexus that could be expressed by a
ratio, prior to logarithmic compression, should now be apparent as a difference. For that
reason, all measures from the ratio-based comparison were discarded for this analysis,
reducing the number of measures per patient to 128.

Originally, 8 measures were extracted per patient. The measures consist of the NSA,
standard deviation, mean, median, maximum, minimum, skewness and kurtosis. The
maximum and minimum were discarded because they are not stable measures. As well,
error is introduced by rotating a kernel or area under investigation within a discrete space,

causing the maximum and minimum values to be functions of location within the discrete
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image. This provides additional motivation for their removal from further consideration.
Skewness and kurtosis were observed to have highly fluctuating values, not related to
the outcome of the members of EXP1. Therefore, these measures were considered to be
unsuitable. These observations reduced the summary measures from 8 to 4. At this point,
the variable set consists of 64 measures per patient, coming from 16 parametric maps
described by the four measures NSA, STDV, mean and median. Figure 4.4 illustrates the
64 measures.

Although the processing techniques were chosen to highlight a particular aspect of the
texture, it is cxpected that they are highly correlated. It is desirable to create a subset of
the 64 measures that have low correlation between them. This will increase the likelihood
that a separate characteristic is being measured by each variable. To assist in the creation
of a low-correlation set of variables, the Pearson correlation cocfficient was calculated for

all pairs of the 64 measures. The pairs of measures with a correlation coefficient < |.02|
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were identified. This cut-off was chosen as it was desired to capture all measures at or very
close to zero correlation. Figure 4.5 contains a histogram of the very weakly correlated
variables (0-0.19) with the initial 0.02 threshold shown. All correlation descriptors refer
to a strength of correlation scale [141]. This initial search criteria identified 28 pairs
of measures (Group A). Only three pairs consisted of 2 measures that came from maps
created with the choroid plexus as the tissue under investigation and the white matter as
the reference. It was observed in early experiments, on EXPO and EXP1 in Figure 3.7,
that the choroid plexus measures differed according to patient outcome. Therefore, one
low-correlation pair that contained two choroid plexus-based measurcs were chosen as the
starting point. The process for forming groups of variables based on a single low-correlation
pair of choroid plexus measures was repeated for all three pairs initially identified.

Returning to the entire group of 64 measures, those measures which had a correlation
coefficient < |.39| with the pair from Group A were identified as potential candidates for
inclusion, as this designates the cut-off between low-correlation and moderate correlation.
This identified 10 variables (Group B). The one variable with the lowest correlation to both
in the pair, from Group A, was selected. Finally, the correlations of these three measures
were compared to the remainder from Group B. Those with correlation coefficients | < .59|
with all three were included, as this is the cut-off from modecrate to strong correlation. See
Figure 4.6 for a flowchart demonstrating this search method. The details of this search are
also presented in Appendix K. This method resulted in a group of 5 variables to proceed
to the modecl design and test phase. At the completion of the variable sclection process,
the use of EXP1 data ceased and EXP2 data was used for the design and validation of the
model. The selected variables are listed in table 4.1.

When this statistical- and engineering-knowledge-based procedure was repeated with
the other 2 pair of very-weak correlation choroid plexus pairs of variables, no additional
measures met the statistical-based search criteria. Therefore, the other 2 pairs were not
expanded into larger groups with this method. These two pair were separately uscd to
create RFC with the EXP2 data set, the OOB error rate was nearly 50 % for both pairs.
This OOB error estimate indicates that the performance of these pairs was equal to random

chance.
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[
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Figure 4.6: Flowchart of the variable selection method.

4.3 Creation of the Random Forest Classifier

The hypothesis is tested by creating a model/classifier and testing its performance. If
the performance is found to be better than chance, then the measures from which the
model is created are deemed to contain information for the data set under investigation.
The randomForest algorithm was run on the EXP2 data with the 5 previously selected
variables based on EXP1.

The randomForest algorithm has several parameters that can be modified. Two param-
eters were adjusted from their default values in the creation of the classifier. The values
of ntree and mtry were modified, while the cut-off vector was left at the default setting.
The value of ntree determines the number of decision trees that are contained within the

forest. The number of trees in the forest was increased from the default value of 500 to
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Table 4.1: The 5 variables chosen based on engineering knowledge and statistical measures.

Processing | Examined tissue | Comparison | Measure | Summary
DM choroid plexus difference NSA standard
deviation
ORIG choroid plexus difference STDV mean
DM choroid plexus difference STDV standard
deviation
ORIG white matter difference STDV median
GABT19 | choroid plexus difference STDV NSA

ensure the convergence of the randomForest algorithm {131}. With the default value of
500, the OOB error rate varied widely and showed a greater dependence on the random
nuinber used by the algorithm than when the valuce of ntree was increased. The value of
ntree= 20000 was chosen to provide a stable OOB error rate.

The value of mtry was investigated for its effect on the creation of the model. Increasing
the value of mtry above its default level increases the number of candidate variables from
which the algorithm can select during the creation of the nodes. Increasing the number of
variables reduces the benefits of injecting randomness, but can be beneficial if the number
of variables containing signal is relativeley small compared to the number of variables in the
feature set. The randomForest package contains an algorithm, tuneRF, which identifies
the optimal value of mtry for the data set used to create and validate the RFC. The
algorithm tuncRF selected mtry= 4.

Setting ntree= 20, 000 and mtry= 4 results in an OOB error rate of 27.5 % for the
model. The random number generator seed was set manually. The data from EXP2 and
the calls to randomForest are within Appendix L. A sample tree from the forest is provided
in Figure 4.7 using get'Iree function within randomForest. The node numbers correspond
to the getTree output, provided in L. The texture measures are provided adjacent to the

nodes which use them for spiltting in the decision tree.
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Table 4.2: Radiologists assessment of the same patients.

Evaluator Accuracy | Sensitivity | Specificity
Radiologist 1 | 63 % 42 % 81 %
Radiologist 2 | 64 % 58 % 70 %
Radiologist 3 | 60 % 45 % 73 %
Majority vote | 64 % 48 % 78 %

4.4 Supporting Experiments

Coinciding with this work, a separate study was undertaken by an undergraduate student,
Jeanette Evans [142]. The purpose of this study was to determine the ability of radiologists
to diagnose the same patients (EXP2) using the earliest clinical US scans. A series of coro-
nal and sagittal cranial US images are obtained at regular intervals in the neonatal period
for assessment as part of normal clinical practice for very preterm infants. Blinded to the
outcome and to all patient identification, three radiologists assessed each patient’s earliest
group of cranial US images and provided a diagnosis of normal or abnormal periventricular
white matter. The location of the brain evaluated by the radiologists was not limited to
the white matter and choroid plexus ROIs used in this research. Rather, the entire series
of images and within the images, the entire brain was available for use during their assess-
ment. The radiologists were not expected to provide a diagnosis of the type of abnormality.
Resulting from the study are the accuracy, sensitivity and specificity of each radiologist
and the same measures from a majority voting scheme, using CP as the positive outcome.
The outcomes of this study are provided in Table 4.2. The high specificity values indicate
that when radiologists diagnose the patient as having an abnormal brain, they are usually
correct. The low sensitivity values indicate that when a patient is diagnosed as normal,

there is a good chance that the radiologists have missed an abnormality.



Chapter 5

Results and Discussion

5.1 Performance

5.1.1 Model Performance

The designed RFC has an accuracy of 72.5%. which is 50 of 69 patients correctly classified.
The reported accuracy is a result of the OOB error estimate of 27.5 % which is 19 of
69 patients incorrectly classified. The EXP2 data sct contains 32 CP positive patients
and 37 CP negative patients based on clinical diagnosis. The RFC predicted that 34
patients are negative and 35 are positive for CP. The confusion matrix for the classifier is
provided in Table 5.1. The column labelled “Class Error” indicates the portion of those
cases incorrectly classified. For example, 11 of 37 are incorrectly classified as having CP
and therefore 0.297 or 29.7% of normal patients are identified as having CP. Calculating
specificity and sensitivity, from the confusion matrix, provides values of 70.3% and 75%

respectively. However, these values are provided for convenience only as the RFC is not a

diagnostic test.

Table 5.1: Confusion Matrix for the designed RFC.

Predicted No

Predicted Yes

Class Error

Diagnosis No

26

11

0.297

Diagnosis Yes

8

24

0.250

112
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Figure 5.1: The range of gain settings versus the patient outcome.

The images in the EXP2 data set were obtained from two ultrasound machines. The
images were obtained with-an HDI 5000, at a center frequency of 8. 5MHz and with an
Acuson 128XP, at 7.0 MHz. The ATL machine was used for 32 cases: 16 CP, 14 no CP.
"The Acuson machine was used to obtain the images for 39 cases: 18 CP, 21 no CP. The
gain setting for the Acuson was printed directly on the image, whereas this was not so for
the ATL HDI 5000.

For the known gain values, the range of gain settings over the two outcomes was
evaluated and the range is nearly identical (Figure 5.1). This suggests that the gain
setting is not associated with the performance of the model. Of the 19 cases misclassified
by the RFC, 11 were obtained with the Acuson machine and 8 were obtained with the
ATL. This corresponds to a 72% accuracy rate for the images obtained with the Acuson
machine, and 75% for the ATL manufactured machine. Figure 5.2 shows a comparison of
the gain setting to the RFC performance. The texture measures appear to be associated
with the outcome of CP or no CP independent of the machine used to obtain the images.

The gain vs. RFC performance data are found in Appendix M.
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Figure 5.2: The range of gain settings versus the ability of the RFC.

5.2 Discussion

The objective of this work is to test the hypothesis that quantitative early texture mea-
sures are associated with patient outcome, not to build a classifier. The study design
does not lend itself to comparison with radiologists for several reasons: the incidence of
CP in EXP2 is much greater than the general population at 46% vs. 11%, the sample
size in the study is small at 69 patients, and the investigation is limited to texture mea-
sures without incorporating all available clinical data, and the image analysis experience
of the radiologists is not built into the RFC. These factors put the designed RFC at a
disadvantage.

In spite of these weaknesses, it is interesting to note the differences in the type of
error committed by the RFC as opposed to the radiologists. Unlike the radiologists, the
errors made by the RFC are nearly identical in proportion to the number of cases within
each class (Table 5.1). The majority voting classification error is calculated from the
sensitivity and specificitv values and number of cases per class as provided in section

4.4. The information in Table 5.2 shows that radiologists are more often correct when
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Table 5.2: Classification errors. The radiologists’ errors are derived from the report

described in Section 4.4.

Evaluator Overall Error | Classification error | Classification error
of CP cases of No CP cases

Majority vote | .36 .52 .22

RFC 275 .250 297

they indicate that the patient has an abnormal brain but frequently incorrect when they
indicate that the patient’s brain appears normal. Comparing the RFC results, Table 5.1,
suggests that the texture measures are obtaining information that is not currently part
of the radiologists’ assessment. The difference in the classification error of CP cases is

particularly noteworthy, Table 5.2.

5.3 Discussion on the Measures

The measures obtained from the parametric texture maps are designed to capture previ-
ously unexploited information that has been suggested as important by earlier experiments.
It is expected that only a subset of the measures contain diagnostic information. Not all
measures were tested for their value, so there is room for future investigation. Only one
set of variables was obtained and evaluated. However, some general comments about the
final texture measures can be made.

Of the enhancement techniques applied to form the parametric maps, ORIG. DM, and
GABTI19 survived the variable selection process but IDD30 did not. There are several
possible reasons for this. The texture measures were designed from EXP1, which is a
small data set and has some technical differences compared to EXP2. Either of these
reasons could cause IDD30 to be over-tuned to EXP1 data. The processing techniques
and texturc measures were sclected prior to the removal of the noise. The noise pattern
existed in the image different frequencies for the two data sets. The processing technique
IDD30 may have been sensitive to the noise differences.

The measures STDV and NSA were chosen to be complementary measures. However,
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this is not a guarantee that both contain diagnostically relevant information. The first
and third measures in Table 4.1 are identical except that one uses STDV and the other
uses NSA in the comparison that creates the parametric maps. This suggests that each
measure provides an unique feature for classification for this data set.

Four of the five measures come from choroid plexus parametric maps. The fact that
the model performed well with these measures suggests that the choroid plexus may pro-
vide more cues to the eventual health of white matter than previously suspected. The
importance of the choroid plexus measures may be related to the biological mechanism
that causes WMD, may be related to risk factor, or may be a function of the way the
operators are trained to obtain the US images.

Finally, all discussion about the importance of these particular measures should made
with carc. Feature selection techniques often select sub-optimal groups and are not unique.
That is, there are possibly other subsets of the original measures which may also provide

diagnostic information.

5.3.1 Potential Clinical Impact

There are many potential benefits to the addition of computer-based quantitative measures
to the use of US images in the diagnosis of white matter damage. As ultrasound is
the preferred imaging modality, it is desirable to maximize the information extracted
from it. In this research, texture is studied as a new source of diagnostic information
within US images. Texture is not well perceived by the human observer. The ability
of a human observer to distinguish between two textures is often dependent upon which
texture is presented as the foreground and which as the background [143]. Also, some
texture combinations are easier to segment than others [144]. Computerized approaches
to texture discrimination are not dependent upon location of texture within an image. As
well, computers have the ability to obtain mathematical measures of texture subtleties
that may be missed by the human visual system. Second, the model presented in this
thesis generates quantitative texture measures. Quantitative measures allow for robust
comparisons between textures. Thus, in this work, new information is being extracted in
a non-subjective manner.

Even with the qualitative information from diagnostic imaging, preterm children do
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not obtain clinical diagnosis of CP or no CP until after assessment by a team of medical
practitioners. The diagnosis may not occur until the child is over 2 years of age. Diag-
nosis at the Perinatal Follow-up Clinic from 1993 to 2000: 13.8 months on average, 5.3
months standard deviation, and an overall range of 9 to 41 months. (M. Vincer, personal
communication.) At present, confident radiological diagnosis of WMD with US does not
occur until it has lead to cystic periventricular echolucencies [4]. The model designed in
this research, suggests that a system may be created to detect WMD in images not con-
taining cystic periventricular echolucencies with improved accuracy. Improved accuracy
of diagnostic imaging and its contribution to the patient’s assessment may reduce the age
of diagnosis of at-risk children.

This study is the first step in the research to determine if a computer-aided-detection
system can be designed to identify those children at high risk. If this work holds for larger
studies, there is the potential to improve the diagnosis of CP by identifving children at risk
from images obtained at one week of age rather than at 12 to 18 months. Earlier diagnosis

of CP with improved accuracy has the potential for a number of clinical benefits:

e Studies have shown that early diagnosis of disease may be beneficial, even when no
effective remedy for the disease exists [145]. The benefit may be as simple as reduced

parental stress.

o There are continual advancements in the knowledge of prevention and treatment
of CP [146]. Improved and earlier diagnosis of CP would allow inclusion of those

paticnts who would benefit the most from new treatments.

o Barly diagnosis allows for prompt provision of treatments used in current clinical

practice, such as physiotherapy.

e Early and accurate diagnosis may provide insight into the causes and evolution of
WMD. This information could lead to modifications in care and treatment of very

preterm neonates.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

An association between early quantitative ultrasonic texture measures and the image data
used in this research was demonstrated. The input to the system was solely texture
measures obtained from a single coronal US scan from each patient. The US image was
obtained within days of birth and none contained cystic periventricular leukomalacia. The
images were not standardized and as long as the patient met the inclusion criteria and
the image quality was sufficient for clinical use, it was considered to be acceptable for this
research.

The texture measures are based on measures found to contain information about acous-
tic media from previous experiments, both in this work and by others. The measures in-
corporated processing, extraction of texture measures and comparison to a reference, and
data reduction. The comparison of the texture measures led to the formation of paramet-
ric maps, containing hundreds of comparisons in a format preserving spatial information.
The data reduction of these maps was in the form of summary values.

All texture measures were evaluated and the high-dimensional data set of 256 measures
was reduced to 5. The resulting RFC had an accuracy of 72.5% as indicated by its OOB
error estimate.

Several conclusions result from this research:

e Diagnostic infomation is contained within texture measures of the choroid plexus

and white matter. The model was created with measures from both choroid plexus
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and white matter.

e Not all diagnostically relevant information within coronal US images is used by
radiologists. The model created from the texture measures demonstrated different
classification errors than the radiologists. This suggests that the texture measures
contribute information that differed from the information that the radiologists use

in their qualitative assessment.

¢ Quantitative texture measures can contribute to the diagnosis of white matter dam-

age when cystic periventricular leukomalacia is not present.

e It is possible to obtain quantitative texture measures that have low sensitivity to the
machine type and settings used to obtain the images. By using the patient as his
or her own control, it is possible to obtain diagnostically relevant texture measures
from B-mode images without correcting for operator-dependent settings. Other ex-
periments require either standard operator settings or software standardization of
images. In this work. the ability of the model to correctly classify patients appears

to be independent of the gain setting and the machine used to obtain the images.

6.2 Future Work

While this research is a good start in the application of UTC to the early detection of
cerebral palsy, there is still much more that can be done. The following arc identified as

topics for future research:

e Further experiments with larger data sets need to be performed. The results must
be replicated on other images to verify that the results obtained in this research are

suitable for a clinical setting.

e Clinical practice uses the entire brain, whereas this work is restricted to one image
and four regions within that image. Improved performance may be obtained if other
imaged areas of the brain are assessed and incorporated in the classifier. Future work

includes the incorporation of other image measures as well as other clinical data.



120

e The choroid plexus should be investigated in greater detail to determine if it can
provide more diagnostic information. Four of the five measures used in the model
are obtained by examining the choroid plexus in detail. The choroid plexus may

provide indicators of conditions other than WMD.

o The measures obtained may not be the only, or the best, for this diagnostic task. In-
vestigation of additional measures is required. Further investigation of the measures

discarded during the variable selection process is recommended.

¢ The measures obtained to summarize the maps are combined by averaging. This was
done as the left and right side of the patients’ brains are not independent. However,
if the damage has occurred to one side of the brain only, this method of combining
the measures on the two sides will reduce the effect. The measures extracted from
the parametric maps and the data reduction methods for each individual patient,

needs to be investigated further.

e The selection of the white matter and choroid plexus ROIs needs to be automated
to remove the inter- and intra- observer variability caused by the semi-automated

approach.

e The sample size of the tissue under investigation, used during the comparison that

creates the parametric maps, requires further assessment.

o The effect of gestational age and corrected gestational age on texture should be

evaluated for normal white matter and choroid plexus.
o Investigate the earliest age at which texture can identify WMD in CP patients.

e The images used in this research are obtained at very high resolution and then re-
duced two times. Two of the five texture measures will not allow further resolution
reduction due to the window size used in their calculation. Modern digital ma-
chines display images at much lower resolution than those used in this work. If the
resolution-sensitive measures are proven to be diagnostically critical for an UTC sys-
tem, the images will need to be obtained from radio frequency data prior to resolution
reduction for use on today’s display systems. The necessity of the high resolution

texture measures needs to be evaluated.
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* ultgrid draw lines on ultrasound images, outputs angle image */

/*  prompt: source image, result image, min angle, increment angle,
binary image, output angle image, output distance image

format: %d %d %d %d %d %d %d
helpfile:
menu:
prototype: int ultgrid(int src, int rslt,int sang,int iang, int bi, int opang,
int distim) ;
*/

#include "cvemd.h"
#include <stdlib.h>
#include <stdio.h>

/* use the drawline function from CVLAB, use stats command to mean value as the
threshold of binary image, after used binary command then can use this command,
finally use combine command

curve=1 : upper curve,

curve=2 : bottom curve;

curve=3 : side edge */

float pnt(int bi,int a, int b, int arr[]);
void _ultgrid (void) {
int src, rslt,sang, iang,bi, opang, distim;

src = *((int *) arglist[0]);

rslt = *((int *) arglist[1]);

sang = *((int *) arglist[2]); /* starting angle */

iang = *((int *) arglist[3]); /* angle increment */

bi = *((int *) arglist{4]); /* input mask image */

opang = *((int *) arglist[5]); /* output image -angles of insonation */
distim = *((int *) arglist[6]); /* output image -distance from point source */
ultgrid(sre, rslt,sang,iang,bi, opang, distim);

}
int  ultgrid(int src, int rslt,int sang,int iang,int b, int opang, int distim) {
int a, b,type,xur,yur,x1Lyll,ij,t,dx,dy,x,y,Q1,center,tt,cx,cy, c;

float rad, m,tm;
int arr{2], t1;



}

rad=3.1415926/180.0;

a=0;
b=0;

getsize (src, &a, &b, &type);

pnt(bi,a,b,arr);
cx=arr[0];
cy=arr[1];

printf("center %d %d\n",cx,cy);

form(rslt,0,a,b,1);
t1=gettempimage();
angles(bi,arr[0], arr[ 1], opang, 10, distim);

stats(opang,0);

c=max(sang,120);
for(t=c; t<imtab[opang].maxpix/10; t=t+iang){
for(i=0; i<a; i++){

for(j=0; j<b; j++){

if (getpix(opang, 1,j)==t*10) putpix(-50, rslt,i,j);
if ((getpix(opang, 1,j)+1==t*10)&&(5>2*b/3)) putpix(-50, rslt,i,j);
if ((getpix(opang, 1,j))+2==t*10)&&(j>3*b/4)) putpix(-50, rslt,i,j);
if ((getpix(opang, 1,j)+1==t*10)&&(i>2*b/5)&&(1<3*b/5))

- putpix(-50, rslt,i,j);
if ((getpix(opang, i,j)+2==t¥10)&&(i>2*b/5)&&(1<3*b/5))

putpix(-50, rslt,i,j);

} /* end for j */

} /* end fori */

} /* end for t */

add(src,rslt,t1);

display(t1,1,"s");

return (TRUE);

float pnt(int bi, int a, int b, int arr[])

{

int
int
int
float

1,J,k=0,m,x3,y3,x1,y1,x2,y2,x4,y4, t1,t2,t3, t4, t5,t6,t7,t8;
c,d,bl,b2;

curve=2,n=0,kk=0,count=0,stop=0;
sql,sq2,sq3,da,dd,D,E de,center,dummy;



double m2, ml;

x1=0;
x2=0;
x3=0;
y1=0;
y2=0;
y3=0;
t1=gettempimage();
t2=gettempimage();
t3=gettempimage();
t4=gettempimage();
tS=gettempimage();
t6=gettempimage();
t7=gettempimage();
t8=gettempimage();

/* first choice is to calculate the insonation point from the bottom curve*/
/* second choice is the top curve, third is the sides extended */

setroi(0,a,0,(int) (b/5),2);
crop(bi,tl,2);
sobel(t1,t4,t3);
thin(t4,t2);

stats(t2,0);

c=0;

while((curve==2)&&(c==0)){
printf("while 2 \n");
for(i=a/10;i<5*a/6;i++){
count=0;
for(j=10; j<b/5; j++){
if (getpix(12,i,j)==1) count++;

}
if (count>1) curve=1;
}
c=1; /* checked all the way across the image */
} /* end while */

sobel(bi,t1,t2);
if (curve ==2){ /* bottom curve */
crop(t1,t2,2);



for (j=0; j<b/5; j++){
if (getpix(t2,a/6,))==1){
x1=a/6;
y1=j;
}
if(getpix(t2, 5*a/6, j)==1){
x2=5%a/6;
y2=j;
}
if(getpix(t2, 4*a/s, j)==1){
x3=4%*a/5; .
y3=j;
}
} /* end for j */
} /* end if curve==2 */

if ((abs(y1-y2)<3)|l(abs(y2-y3)<3)|l(abs(y3-y1)<3)){
/* the bottom is a straight line */
y1=0;
y2=0;
y3=0;
curve=l;
} /* end if checking if bottom is straight line */

setroi(0.3*a,0.6*a, 4*b/5, b,1);
crop(bi,tl,1);

sobel(t1,t2,t3);

c=0;

if (curve == 1){ /* top curve */
form(t3,0,a,b,1);
mount(t2,t3,0.3*a,4*b/5);
for (j=4*b/5; j<b; j++){
if (getpix(t3,a/2,j)==1){
x1=a/2;
y1=j;
}
if(getpix(t3, 0.48%*a, j)==1){
x2=0.48*a;
y2=j;
}
if(getpix(t3, 0.52*a, j)==1){
x3=0.52%*a;
y3=j;
}



} /* end for j */

if ((abs(y1-y2)<3)ll(abs(y2-y3)<3)|/(abs(y3-y1)<3)){
/* the top is a straight line */
y1=0;
y2=0;
y3=0;
curve=3;
}

if (y3<y2) curve=3;

} /* end if curve==1 */

printf("curve %d \n", curve); /* identify curve used to calc. insonation pt.*/

sobel(bi,t1,t2);
if (curve==3){
form(t3,0,a,b*2,1);
setroi(0.10*a,0.3*a,0.6*b, 0.97*D, 3);
setroi(0.5*a, 0.95*a, 0.6*b, 0.97*b, 4);
crop(t1,t4,3); /* the sobel image left side */
mount(t4,t3,0.1%a,0.6*b);
display(t3,1,"s");
hough(t3,t5,t6);
form(t2,0,a,b*2,1);
crop(tl,t4,4); /* the sobel image right side */
mount(t4,t2,0.5*%a,0.6*b);
display(t2,2,"s");
hough(t2,t7,t8);
add(t6,t8,t5);
display(t5,0,"s");
for(i=0; i<a; i++){
for(j=0; j<b*2; j++){
if (getpix(t5,i,j)==2){
arr[0]=1;
art[1]=j;
} /¥t */
} /* for */
} /* fori*/

}

if(curve!=3){
sql=x1*x1+yl*yl;



$q2=x2*x2+y2*y2;

sq3=x3*x3+y3*y3;
da=x1*¥y2-x1*y3-y1*x2+y1*x3+x2*y3-x3*y2;
dd=sq1*(y2-y3)+sq2*(y3-y1)+sq3*(y1-y2);
de=sq2*(x1-x3)+sq3*(x2-x1)+sql *(x3-x2);
D=-dd/da;

E=-de/da;

arr[0]=(int)(-D/2),

arr[1]=(int)(-E/2);

}

release(tl);
release(t2);
release(t3);
release(t4);
release(tS);
release(t6);
release(t7);
release(t8);
return;

}

/*  whm.cmd With user interface, extracts a circular arc of white matter

prompt: window, res, side

format: %d %d %d

helpfile:

menu:

prototype: int whm (int w, int res, int side) ; */

#include "cvemd.h"

#include <math.h>

#include <stdlib.h>
#include <stdio.h>

static void curpoint(int arr{]);

static int xs, ys, itype, xrl, xru, yrl, yru;
static int im, w;

void _whm (void) {

int res, wndw, side;



wndw = *((int *) arglist[0]);
res = *((int *) arglist[1]);
side = *((int *) arglist[2]);
whm (wndw, res,side);

}

int whm (int wndw, int res, int side) {

int  xc,yc,x1,ylxfiyf,tl t2;
int  3,t4,t5,t6,t7, j k, rad;

int xfp, yip, x1p,ylp,arr{2],c;
float m,b,radf;

assignedwindow (wndw);

w = wndw;

im = swindow[w].image;

if (im == res) {
response (""Profile image cannot be the same as the displayed image");
longjmp (jumpbuf, 1);
}

if((side = 1)&&(side != 2)){
printf("You need to specify the side of the image the sample is from.");
longjmp (jumpbuf, 1);
}

getsize (im, &xs, &ys, &itype);
t1=gettempimage();
t2=gettempimage();
t3=gettempimage();
t4=gettempimage();
t5=gettempimage();
t6=gettempimage();
t7=gettempimage();
form(t1,0,xs,ys,itype);
form(t5,0,xs,ys,itype);
form(t7,0,xs,ys,itype);
form(t6,0,xs,ys,itype);

arr[0]=0;
arr{1]=0;

curpoint(arr); /* locate the center of the circle */



/*

/*
/*

xc=arr[0];

yc=arr[1];

printf("xc yc %d %d \n",xc,yc);

for(j=0; j<xs; j++) putpix(50,t1,j,yc);

/* draws an x-axis through the center of the circle*/

add(t1,im,t2);

display(t2,w,"s");

*/

curpoint(arr); /* locate the boundary */

x1=arr{0];

yl=arr[1];

printf("x1 y1 %d %d \n",x1,y1);
form(t3,0,xs,ys,itype);

rad=abs(xc-x1);
disc(t3,xs,ys,(float)(xc-xs/2),(float)(yc-ys/2),rad,40);

add(t3,im,t4);
copy(t3,res,0);

display(t4,w,"s");

locate the end of the circular section

curpoint(arr);
xf=arr[0];
yf=arr[1];

form(t5,1,xs,ys,itype);

if(xc!=xf){
m=(float)(yf-yc)/(float)(xf-xc);
b=(float)(yc-m*xc);
printf("m b %5.2f %5.2f \n", m,b);

for(j=0; j<xs; j++){
for(k=0; k<yc; k++){
if(k<(int}(m*;+b)) putpix(0,t5,j,k);
if(k==(int)(m*}+b)) putpix(1,t6,j,k);

}

*/



mask(t3,t5,res);
}

if(xc==xf){
if (side==1){
for(k=0; k<yc; k++){
for(j=xc+1; j<xs; j++) putpix(0,t5,j,k);

}
}
if (side==2){

for(k=0; k<yc; k++){
for(j=0; j<xc ; j++) putpix(0,t5,j,k);

}

mask(t3,t5,res);
}

*/
release(tl);
release(t2);
release(t3);
release(t4);
release(tS);
release(t6);
release(t7);
return (TRUE);

}

static void curpoint(int arr{]){

int x,y;
int  xpel, ypel, xpell, ypell, xpelu, ypelu;
int flag;

printf("enter cursor point \n");
X = (xs-1)/2;
y=(ys-1)/2;



/* Initialize the cursor */

flag = cursorposn (w, &x, &y, 0);

/* move cursor to position of first point */

do {

pixeltopel (w, x, y, &xpel, &ypel);
showxhair (w, xpel, ypel);
flag = cursorposn (w, &x, &y, 1);

erasexhair (w);

} while (flag == 0);

arr[0] =x;
arr[1] =y;

pixeltopel (w, arr[0], arr[1], &xpell, &ypell);

xpelu = xpell;
ypelu = ypell;

/¥ wait for end of button press */

while ((flag = cursorposn(w, &x, &y, 1)) >=1) {}

/¥ choroid.cmd

prompt:
format:
helpfile:
menu:
prototype: int

#include "cvemd.h"
#include <math.h>
#include <stdlib.h>
#include <stdio.h>

tool for tracing the choroid plexus

window, res
%d %d

choroid (int w, int res) ; */



void _choroid (void) {
int res, windw;

windw = *((int *) arglist[0]);
res = *((int *) arglist[1]);
choroid (windw, res);

}

int choroid (int windw, int res) {

int  w,im,t1,t2, t3,t4 j,k,count,i,n xs,ys,type,x,y;
int  xarr[30], yarr[30], flag,xpel,ypel xpell,ypell;
int x1,yl,x2,y2,c,d,g;

float m,b;

assignedwindow (windw);

w = windw;
im = swindow[w].image;
if (im == res) {

response ("Result image cannot be the same as the displayed image");
longjmp (jumpbuf, 1);
!

getsize (im, &xs, &ys, &type);
t1=gettempimage();
t2=gettempimage();
t3=gettempimage();

form(t1,0,xs,ys,type);
form(t2,0,xs,ys,type);
form(13,0,xs,ys,type);

/* initialize the array */
for(j=0; j<=29; j++){
xarr[j]=0;
yarr([j]=0;
}

count=0; /* count the number of points input */

x1=0;



/*

y1=0;
x2=0;
y2=0;
m=0.0;
b=0.0;

X = (xs-1)/2;
y = (ys-1)/2;

Initialize the cursor */

flag = cursorposn (w, &x, &y, 0);

/* move cursor to position of point */
do {

do {
pixeltopel (w, x, y, &xpel, &ypel);
showxhair (w, xpel, ypel);
flag = cursorposn (w, &x, &y, 1);
erasexhair (w);
} while (flag == 0);

if(flag == 1){
xarr[{count] = x;
yarr[count] =y;
printf(" x y %d %d \n",x,y);
count-++;

}

m=0.0;
b=0.0;
if(count>=2){
x1=xarr[count-2];
yl=yarr{count-2];
x2=xarr[count-1];
y2=yarr[count-1];
if(x1==x2){
if(yl<y2){
i=yl;
n=y2;
}



else{
1=y2;
n=yl;
}
for(k=i; k<=n; k++)
putpix(1,t1,x1,k);

} /% end if x1==x2 */

else{

m=(float)(y1-y2)/(float)(x1-x2);
b=yl-m*x1; .
if(yl<y2){
i=yl;
n=y2,;
H
else{
1=y2;
n=yl;
}
for(k=i; k<=n; k++)
if{((int)((float)(k-b)/m)>0)& &((int)((float)(k-b)/m)<xs))
putpix(1,t1,(int)((float)(k-b)/m)+.5,k);
if(x1<x2){
c=x1;
d=x2;
}
else{
c=Xx2;
d=x1;
}
for(g=c; g<=d; g++)
if(((int)}(m*g+b+.5)>0)&&((int)(m*g+b+.5)<ys))
putpix(1,t1,g,(int)(m*g+b+.5));

}

scale(t1,t2,80,0);
add(t2,im,t3);
display(t3,w,"s");
} /* end if count */

} while(flag >=0);

/* connect all of the points obtained */



/* connect the first and last points */

xI=xarr[0];
yl=yarr[0];
x2=xarr[count-1];
y2=yarr[count-1];
if(x1==x2){
if(lyl<y2){
i=yl;
n=y2;
}
else{
i=y2;
n=yl;
}
for(k=i; k<=n; k++)
putpix(1,t1,x1,k);
} /* end if x1==x2 */

else{
m=(float)(y1-y2)/(float)(x1-x2),
b=yl-m*x1;
if(y1<y2){
i=yl;
n=y2;
}
else{
i=y2;
n=yl;

for(k=i; k<=n, k++t)
if(((int) ((float)(k-b)/m)+.5>0)&&
((int)((float)(k-b)/m)+.5<xs))
Putpix(1,t1,(int)((float)(k-b)/m)+.5,k);

if(x1<x2){
c=x1;
d=x2;
}
else{
c=x2;
d=x1;
}
for(g=c; g<=d; g++)
if(((int}(m*g+b+.5)>0)&&((int)(m*g+b+.5)<ys))



putpix(1,t1,g,(int)(m*g+b+.5));
display(t1,0,"s");
}

copy(tl,res,0);
release(tl);
release(t2);
release(t3);
return (TRUE);

}

/* rotateker4.cmd Change orientation of any kernal, counterclockwise is

negative

prompt: source kernal,kernal origin wrt rotation
X,y,ang,result kernal
format: %d %d %d %d %d
menu:
helpfile:
prototype: int rotateker4(int src, int xo, int yo,int ang, int res);
*/

#include "cvemd.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void _rotatekerd (void) {

int

SIC,X0,y0,ang,res;

src = *((int *) arglist[0]);

xo = *((int *) arglist[1]);

yo = *((int *) arglist[2]);

ang = *((int *) arglist{3]);

res = *((int *) arglist[4]);
rotateker4 (src, xo,yo,ang,res);

}

int rotateker4 (int src, int xo, int yo, int ang, int res) {

int
int
int
int

X, Y, XS, ys,x1,yl, type,tl, t2, t3, t4, t5, t6, t7;
xf2,yf2,x12,y12, xf1,yf1,x11,yl1;

c,d, j.k, x2,y2,xp,yp,deg,a, xu, yu,xf,yf,x1,yl,xm,ym;
Xp2,yp2,pix,pixn,pixs,pixe,pixw;



double theta,dist,dist2,eta,phi,zeta, alpha,beta;
float xc,yc;
int minx,miny,maxx,maxy,t8,t9;

t1=gettempimage();
t2=gettempimage();
t3=gettempimage();
t4=gettempimage();
tS=gettempimage();
t6=gettempimage();
t7=gettempimage();
t8=gettempimage();
t9=gettempimage();

printf("t1,t2,t3,t4,t5,t6,t7 %d %d %d %d %d %d %d \n",t1,t2,t3,t4,t5,t6,t7);

getsize(src,&xs,&ys,&type);
c=max(xs,ys);
form(res,0,3*c,3*c,type);
form(t1,0,xs,ys,type);
form(t5,0,3*c,3*c,type);
form(t7, 0, 3*c,3*c,type);

theta=(float)ang*pi/180;
deg=ang;

/* locate the origin of the scaled kernal in the result */
x2=(int)(1.5*c);
y2=(int)(1.5*c);

/* now rotate the kernal so the orientation matches that defined by the target */
x1=0;
yI=0;

ym=9999;
xm=9999;

[* o wEERERkRkkRkRR% nerforming vector addition - see notes for notation *** ¥/



if(deg!=0){
if(deg<0){ /* then rotate counterclockwise*/
for(x=0; x<xs; x++){
for(y=0; y<ys; y++){
dist=sqrt((x-x0)*(x-x0)H(y-yo)*(y-yo));
/* dist. from center of rot. and a kernal point*/
zeta=atan2((double)(y-yo),(double)(x-x0));
alpha=zeta-theta;
xp=x2+dist*cos(alpha)+.5;
yp=y2-+dist*sin(alpha)+.5;
if((xp>0)&&(xp<3*c)&&(yp>0)&&(yp<3*c))
{
if(ym>yp) ym=yp;
if(xm>xp) xm=xp;
if(yl<yp) yl=yp;
if(xI<xp) xl=xp;
putpix(getpix(src,x,y),t5,xp,yp);
putpix(1,t7,xp,yp);

} /*end if xp yp */

} /*fory */
} /* for x ¥/
fillholes(t7,t8);
loadascii("5x5",t6);
dilate(t8,t6,t4);
/* the rotated kernal has holes, correct that */
for(x=0; x<3*c; x++){
for(y=0; y<3*c; y++){
if((getpix(t4,x,y)>0) & &(getpix(t7,x,y)==0)){
dist=sqrt((x-x2)*(x-x2)(y-y2)*(y-y2));
zeta=atan2((double)(y-y2),(double)(x-x2));
alpha=zeta+ttheta;
xp=(int)((dist*cos(alpha)+.5)+xo0);
yp=(int)((dist*sin(alpha)+.5)+yo);

if((xp>=0)&&(xp<x5)&&(yp>=0)&&(yp<ys)){
putpix(getpix(src,xp,yp),t5,X,y);
putpix(2,t4,x,y);

}
if(((xp<0)[|(xp>x9)l|(yp<0)|[(yp>ys)) & &(getpix(t8,x,y)>0)) {

pixn=getpix(t5,x,y+1);
pixs=getpix(t5,x,y-1);



pixe=getpix(t5,x+1,y);
pixw=getpix(t5,x-1,y);
putpix((pixe+pixn+pixw+pixs)/4,t5,x,y);
}
} /* end if getpix */
} /* end fory */
}/* end for x */

} /* endif deg<0 */

if(deg>0){ /* rotate clockwise */
for(x=0; x<xs; x++){
for(y=0;y<ys; y++){
dist=sqrt((x-x0)*(x-x0)+(y-y0)*(y-yo0));
/* dist. from center of rot. and a kernal point*/
zeta=atan2(y-yo0,X-Xo0);
alpha=zeta-theta;
xp=x2+dist*cos(alpha)+.5;
yp=y2+dist*sin(alpha)+.5;

if{((xp>0)&&(xp<3*c)&&(yp>0)&&(yp<3*c)) {

if(yl<yp) yl=yp;

if(xl<xp) xl=xp;

if(ym>yp) ym=yp;

if(xm>xp) xm=xp;
putpix(getpix(src.x,y),t5,xp,yp);
putpix(1,t7,xp,yp);

} /¥ end if xp yp */

} /* end fory */
}/* end for x */
fillholes(t7,t8);
loadascii("5x5",t6);
dilate(t8,t6,t4);
/* the rotated kernal has holes, correct that */
for(x=0; x<3*c; x++){
for(y=0; y<3*c; y++){
if((getpix(t4,x,y)>0)&&(getpix(t7,x,y)==0)){

dist=sqrt((x-x2)*(x-x2)H(y-y2)*(y-y2));
zeta=atan2((double)(y-y2),(double)(x-x2));
alpha=zeta+theta;



xp=(int)(dist*cos(alpha)+xo+.5);
yp=(int)(dist*sin(alpha)+yo+.5);
if{((xp>=0)&&(xp<xs)&&(yp>=0)&&(yp<ys)){

putpix(getpix(src,xp,yp),t5,x,y);
putpix(4,t4,x,y);
}

if(((xp<0)|[(xp>xs)|I(yp<0)ll(yp>ys))&&(getpix(t8,x,y)>0)){

pixn=getpix(t5,x,y+1);
pixs=getpix(t5,x,y-1);
pixe=getpix(t5,x+1,y);
pixw=getpix(t5,x-1,y);
putpix((pixe+pixn+pixw+pixs)/4,t5,x,y);

}

} /* end if getpix */
} /¥ end fory */
}/* end for x */
}/* end if deg>0 */

} /* end if deg!=0 */

else{ /* if deg==0 (m1==0) then no rotation is necessary */
mount(sre,t5,x2,y2);
form(t6,1,xs,ys,type);
mount(t6,t7,x2,y2);
yl=ys-1;
xl=xs-1;
ym=0;
xm=0;

}

/* remove the excess around the rotated image */
if (xm>=1) xm =xm-1;
if (ym>=2) ym=ym-2;
setroi(xm,x1+1,ym,yl+2.9);
crop(t5,res,9);



release(tl);
release(t2);
release(t3);
release(t4);
release(tS);
release(t6);
release(t7);
release(t8);
release(t9);

return(TRUE);
} /¥ end rotateker4.cmd */

/* vconv2.cmd Vary kernel for US based on location in image and perform
convolution

prompt: source image, source angx 10 image,new kernal
length (odd #), source kernal, output
format: %d %d %d %d %d
menu:
helpfile:
prototype: int vconv2(int image,int ang10,int leng, int ker,
int res); */

#include "cvemd.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void _vconv2 (void) {
int image,angl0,leng, ker,res;

image = *((int *) arglist[0]);
ang10 = *((int *) arglist[1]);
leng = *((int *) arglist[2]);
ker = *((int *) arglist[3]);



res = *((int *) arglist[4]);
veconv2 (image, angl0, leng, ker,res);

}

int veonv2 (int image, int ang10, int leng,int ker, int res) {

/*

int X,y,Xs,ys, type, t1, t2, t3, t4, t5, t6, t7;

int  xcoord[101],ycoord[101],xc,yc,j,xker,yker, kertype;
int xtemp,ytemp,temptype, theta,dLk, plength,dx,dy;
int alpha, upsam;

float ml,bl,b2,weights[101],test[101],factor,step,sum;
float suml,sum2,value;

float avgold, avgnew;

t1=gettempimage();
t2=gettempimage();
t3=gettempimage();
t4=gettempimage();
t5=gettempimage();
t7=gettempimage();

getsize (image, &xs, &ys, &type);
form(res,0,xs,ys,1);
form(t1,0,xs,ys,1);

variable convolution portion

for(x=0-+leng/2; x<xs-leng/2; x++){
for(y=0+leng/2; y<ys-leng/2; y++){
if(getpix(ang10,x,y)>0){
theta=(int)((float)getpix(ang10,x,y)/10);
if (theta!=180){
m1=-tan((theta-90)*pi/180);

}

if (theta==180){
ml=0;
}

b1=(float)(y-m1*x);

*/



if(y%300==0)
printf(" x y theta m1 bl %d %d %d %5.2f %5.2f \n ",x,y,theta, ml, bl);
plength=0;

R find the footprint of the rotated kernal */
form(t1,0,xs,ys,1);
if((m1<-0.001)||(m1>0.001)){
alpha=abs(180-theta);
dx=(int)(abs(leng*cos((90-alpha)*pi/180))/2);
dy=(int)(abs(leng*sin((90-alpha)*pi/180))/2);

if ((dx!=0)&&(dy!=0)){
for(k=y-dy; k<=y+dy; k++){
for(j=x-dx; j<=x+dx; j++){
if (j==(int)(((float)(k-b1)/m1)+.5)){
putpix(1,tl,),k);
}
} /* end for j */
} /*end for k */

/* t1 is a mask of the footprint image for the source */

[¥ e get final size and coords of the footprint of the new kernel ------ */
plength=0;
for(k=y-dy; k<=y+dy; k++){
for(j=x-dx; j<=x-+dx; j++){
if (getpix(tl,j,k)>0){
xcoord[plength]=j;
ycoord[plength]=k;
plength++;
} /* end if ¥/
} /* end for j */
} /* end for k */
} /* end if dx, dy */

/* plength is the pixel length of the new kernal, xcoord, ycoord are the
coordinates of the mask */

if (dx==0){ /* then the mask is nearly vertical */
for(k=y-leng/2; k<=y+leng/2; k++){
xcoord[plength]=x;
ycoord[plength]=k;



/*

putpix(1,t1,xcoord[plength],ycoord[plength]);

plength++;
}

}

if (dy==0){ /* then the mask is horizontal */

for(k=x-leng/2; k<=x+leng/2; k-++){
xcoord[plength}=k;
ycoord[plength]=y;

putpix(1,t1,xcoord[plength],ycoord[plength]);
plength++;
}

}
} /* end if m1<0.001 ... */

if((m1<0.001)&&(m1>-0.001)){
for(j=-leng/2; j<=leng/2; j++){
xcoord[j+Heng/2]=x;
ycoord[j+leng/2J=y+j;
plength-+;
putpix(1,t1,xcoord[j+leng/2],ycoord[j+leng/2});

}
} /* end if m1==0 */

/* end finding the footprint */

dI=0;
step=0.0;
avgold=0.0;
avgnew=0.0;
upsam=0;

determine the weights of the new kernel -------=-u-ne--- */
if (plength!=0){

getsize(ker,&xker,&yker,&kertype);
form(t2,0,xker,yker*plength,3);
form(t3,0,xker,plength,3);

form(t4,0,xker,plength,3);

form(t5,0,xker,plength,1);



/¥

upsam=(int)(yker*(float)((plength-1))/(float)((yker-1)));

for (j=0; j<yker-1; j++){
dI=getpix(ker,0,j+1)-getpix(ker,0,j);
step=(float)dl/(float)((upsam+1));
value=(float)(getpix(ker,0,j));
putfpix((float)(value),t2,0,j*(upsam+1));
avgold=value+avgold;
for(k=1; k<=upsam+1; k++){

putfpix((ﬂoat)(value+step*k),t2,0,j*(ubsam+1)+k);
}

}

putfpix((float)getpix(ker,0,yker-1), t2,0,yker*plength-1);

for (j=0; j<plength; j++){
putfpix(getfpix(t2,0,)*yker),t3,0,));
avgnew=getfpix(t2,0,j*yker)+avgnew;
}

/* normalize the weights - to have the same dc value*/

for (j=0; j<plength; j++){
weights[j]=getfpix(t3,0,j)*avgold/avgnew;
putpix((int)(weights[j]),t5,0,);
}

/* end finding the weights */

perform the convolution */

sum=0.0;

for(j=0; j<plength; j++){
sum=getpix(image,xcoord[j],ycoord[j])*weights[j]+sum;

}

putpix((int)sum, res,x,y);



} /* end if plength =0 */
} /* end if getpix angl0 */

} /*endfory*/
} /* end for x */

release(ts);
release(tl);

return (TRUE);
} /* end of main */

/*

/*

maskinfoavg get statistics of an image mask and output to a file
prompt: src Ift, region Ift, src rt, region rt, output
filename, image name, mask name
format: %d %d %d %d Y%s %s %s
helpfile:
menu:

prototype: int maskinfoavg (int srcl,int mal,int src2,

int ma2, char *finame, char *imna, char *mna) ;

*/

#include "cvemd.h"
#include <stdlib.h>
#include <stdio.h>

#include <string.h>

void _maskinfoavg (void) {

int srcl,mal,src2, ma2;
char *finame, *imna, *mna;

srcl = *((int *) arglist[0]);
mal = *((int *) arglist[1]);
src2= *((int *) arglist[2]);
ma2=*((int *) arglist{3]);
finame = ((char *) arglist[4]);
imna = ((char *) arglist[5]);

*/



mna = ((char *) arglist[6]);

maskinfoavg (srcl, mal,src2, ma2,finame, imna, mna);

}

int maskinfoavg (int srcl,int mal,int src2, int ma2, char *finame, char *imna, char
*mna) {

int  xs, ys, type,exist=0, max=0, min=0,med 1=0,med2=0,med=0;

float sd=0.0, ave=0.0,sa1=0.0,sk1,kur],sk2 kur2, sa2=0.0, sa=0.0,kur,sk;
FILE *out, *in;

char fname[80],imn[80], mn[80],num|3];

stats2 (srcl, -mal,&sk1,&kurl);

stats2 (src2, -ma2,&sk2,&kur2);
kur=0.5*(kur1+kur2);

sk=0.5*(sk1+sk2);

getsize (srcl, &xs, &ys, &type);

sd= 0.5*(imtab[src1].stddev-+imtab[src2].stddev);
ave=0.5*(imtab[src1].avgpix+imtab[src2].avgpix);
max=0.5*(imtab[src1].maxpix+imtab[src2].maxpix);
min=0.5*(imtab[src1].minpix-+imtab[src2].minpix);

normsurfarea2(srcl,mal,&sal);
normsurfarea2(src2,ma2,&sa2);
sa=0.5*(sal+sa2);
maskmed(srcl,mal,&medl);

maskmed(src2,ma2,&med2);
printf("1 /n");
med=0.5*(med1+med2);
printf("2 /n"),

strepy(fname,finame); /* output file */
printf("3 /n");

strcpy(imn,imna); /* image name */
printf("4 /n");

strepy(mn,mna); /* mask name */
printf("5 /n");

strncpy(num,imna,S);

printf("6 /n");

in=fopen(finame,"r");
printf("7 /n");



if(in==NULL) exist=1;
printf("8 /n");
out=fopen(finame, "a");
printf("9 /n");
if(exist==1){

fprintf(out,"proc.im pat. mask avg NSA avgstdev avgmean avgmax
avgmin");

fprintf(out,"  avgskavgkurt  avgmed\n");

}
printf("10 /n");
fseek(out,0,2); ,
fprintflout, "%s %s %s %f %f %f %dn
%d",imn,num,mn,sa,sd,ave,max,min);

fprintf(out, " %f %f %d \n", sk, kur,med);

fclose(out);
return (TRUE);
}
/* mode5 modeS5 filter an image */
/* prompt: source image, result image, window size (<= 65)
format: %d %d %d
helpfile:
menu:
prototype: int modeS5 (int src, int rslt, int w) ; */

#include "cvemd.h"”
#include <stdlib.h>
#include <stdio.h>

static int compare (const void *el, const void *e2) ;

void _modeS5 (void) {

int  src, rslt, w;

src = *((int *) arglist[0]);



rslt = *((int *) arglist[1]);
w = *((int *) arglist[2]);
modeS5 (src, rslt, w);

}

int modeS5 (int src, int rslt, int w) {

int p,i,j, X, y,9,1,m,v, xsize, ysize, type,value;
int  1ist[4225], count[4225], list2[4225], maxcount,nomode,
int  k, check[4225], med,c,d, £h;

getsize (src, &xsize, &ysize, &type);
form (rslt, 0, xsize, ysize, type);

/* if a mode5 does not exist in the region of interest, insert the median in the output
instead */

w = min(w, 65);
for(v=0; v<4225; v++){
count[v]=0;
list[v]=0;

}

for (y = w/2; y < ysize-w/2; y++) {
for (x = w/2; x < xsize-w/2; x++) {
q=0;
for(v=0; v<4225; v++) count[v]=0;

/* find the mode5 */
for (j = -w/2; j <=w/2; j++) {
for (i =-w/2; i <= w/2; i++) {
list{q]=getpix(src,x+1,y+j);
qtt;
}
}
for(1=0; I<q;l1++){
value=list[1];
for( m=0;m<q;m++){
if{value==list[m]) count[m]=count[m]+1;
i
}

for(1=0; I<q;l++){
list2[1]=list[1];
}



maxcount=0;
p=0;
for(1=0; 1<q; I++){
if (maxcount<count[1]){

maxcount=count[l};

p=l;

}

}
/* check to see if all values occur equally but greater than 1 or if multimodal */

k=0,
c=0;
d=1;
=0;

for(v=0; v<4225; v++){
check{v]=-99999;
}

for(1=0; 1<g; I++){
if (maxcount==count[l]) k++;
}

nomode=0;

if(k== w*w) nomode=1;

/* if multimodal put the mode which is closest to the med pixel value in the result */
if(( k>maxcount)&&(nomode==0)){
gsort (&list2, w*w, sizeof(int), compare);
med=list2[(w*w)/2];
for(1=0; 1<q; I++){
if (count[l}]==maxcount){
check[1]=list[l];

if( list[1]==med) c=1,
}
}
if(c==1) putpix(med,rslt,x,y);
else{
while (f==0){
for(1=0; 1<q; 1++){
if ((check[l]==med+d)&&(f==0)){
putpix(med-+d,rslt,x,y);
f=1;

}
if ((check[l]==med-d)&&(f==0)){



putpix(med-d,rslt,x,y);
f=1;
}
} /* end for 1 */
d++;

} /* end while */
} /* end else */
d=1;
} /* end if k */

if (((maxcount>1)&&(nomode==0))& & (k<=maxcount))
putpix(list[p],rslt,x,y);

/* if mode5 does not exist, insert median */
if(( maxcount<=1)||(nomode==1)){
gsort (&list, w*w, sizeof(int), compare);
putpix( list[(w*w)/2], rslt,x,y);
} /* end if getpix */

} /* end for x */
} /* end fory */

return (TRUE);
}

static int compare (const void *el, const void *e2) {

return (max(-1, min(1, *(int *)el - *(int *)e2)));

}
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Texture-based Tissue Characterization: A Novel Predictor for Brain Injury?
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Abstract

Premature infants are prone to white matter damage
(WMD), which is associated with cerebral palsy (CP) and
cognitive impairment. Ultrasound (US) is the preferred
imaging modality to detect WMD. To improve on existing
diagnostic rates, quantitative measures incorporating new
information are needed. We are investigating US texture
measures as new indicators of white matter health. We are
developing techniques which enhance image texture differ-
ences that may reflect pathological changes.

Earlier experiments using data from 30 patients indicate
that tissue types may be segmented based on texture mea-
sures. Present experiments using images from 18 patients
{12 with normal outcome, 6 who developed CP) reveal that
the measures from CP patients form separate populations
from healthy patients. Texture measures were obtained
without compensating for operator-dependent machine set-
tings and without suppressing speckle. Digitized analogue
ultrasound films are used as the input data since modern
digital ultrasound machines have bandwidth restrictions.
The effect of nnage resolution reduction on the texture-
based methods is part of an on-going investigation.

Key Words

ultrasound tissue characterization, white matter damage,
ultrasound image texture

Introduction

The purpose of our work is to detect white matter dam-
age (WMD) in the cranial ultrasound (US) images of pre-
mature infants more reliably and earlier than is currently
possible. Premature infants are prone to white matter dam-
age (WMD) which is associated with subsequent cerebral
palsy (CP) and cognitive impairment [1]. Ultrasound is
commonly used to screen for WMD. Although MRI de-
tects WMD with greater sensitivity [2], ultrasound remains
the imaging modality of choice because it is portable, it
requires no sedation and it is more readily available. Cur-
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rently, diagnosis with ultrasound is qualitative. Radiolo-
gists depend on echolucencies and echodensities as cues to
the presence of WMD [3]. Since US intensity information
alone 1s not satisfactory for diagnosing WMD [2] [4], other
measures are required.

Texture mnformation is an additional measure that is ex-
plored in this work. A previous study indicates that texture
may be useful for the detection of cerebral hypoxic insuit
in term infants [5]. We are investigating texture as a predic-
tor of periventricular leukomalacia in preterm infants. In an
earlier set of experiments, we found that tissue segmenta-
tion was possible by preprocessing to enhance texture and
then obtaining a measure of the intensity over a single tis-
sue sample. We are now assessing the ability of this method
to discriminate between images of healthy patients and pa-
tients who went on to develop CP.

The outcome of this study is that preprocessing image
data to enhance texture differences and then obtaining mea-
sures of that difference results in two populations corre-
sponding to the patient outcome. This inference is sup-
ported by a two sample t-test on the experimental data. The
existence of two populations within the experimental data
is significant because the algorithms use images which are
not corrected for operator-dependent settings. As well, the
input images were not selected dependent upon the pres-
ence of visually obvious flares for the indication of the
presence of periventricular leukomalacia by a radiologist.
The encouraging results in this preliminary study suggests
that additional diagnostic information may be present in ul-
trasound tissue and that further study on the correlation of
US image texture and brain injury is warranted.

Experimental Methods

e The images used in this study are of premature infants
who had cranial ultrasound scans between 1990 and
1991 at the IWK Health Centre in Halifax, Canada.
The patients were identified through the Perinatal
Follow-up Database. To be included in this study,
the patients had to be less than 31 weeks gestational
age, and the final outcome of the patient had to be
known. Eighteen patients were included in this re-



search. None of the images had unequivocal evidence
of periventricular leukomalacia (i.e. cystic periven-
tricular echolucencies). The group contamed six pa-
tients who subsequently developed CP.

The sample size is small due to a number of factors.
We require the images in this preliminary study to be
analogue data stored on film. To obtain this type of
mmage, we are restricted to US films from 1990 and
1991. The population from which the images could
be drawn is small, and some eligible patients from
this period had follow-up care elsewhere, making their
records inaccessible. The images were scanned with a
3200 dpi scanner to maintain the high resolution of the
images. The effect of the reduced spatial resolution on
the information content of texture measures has yet to
be determined.

For each patient, a single semi-coronal image at the
tevel of the atria of the lateral ventricles was chosen.
The data set contained images obtained with a variety
of machines and various operator-dependent settings.

Due to the large size of the cranial US images, they
were first divided into halves, representing the left
and right hemispheres. Therefore, each patient in this
study is associated with two half US images. Samples
(masks) of two tissue types, choroid plexus and white
matter, were selected from each patient’s half image
by a radiologist, where it was possible to select the
white matter with a high degree of certainty. For all
but one patient, images for both sides of the patient’s
brain were used. The masks are rectangular in shape
with their major axis oriented approximately along the
path of insonation (Figure 1). The choroid plexus was
chosen as the second tissue type as it is the traditional
standard used to compare white matter echogenicity.

The selected regions were processed to enhance the
differences in texture between the two tissue types.
The results presented in this paper include prepro-
cessing with two non-linear techniques. These tech-
niques are based upon intensity distribution based fil-
ters (DMM) and grey-level morphology (GM). No
preprocessing was performed to compensate for the
operator-dependent machine settings. Speckle was
not suppressed as we are exploring speckle as a com-
ponent of texture (Figure 2).

The standard deviation (STDV) of the intensity was
calculated within the choroid plexus and white matter
masks for each patient after processing. For a typical
patient, four STDV values were calculated after be-
ing processed with DMM. Two values were obtained
from the white matter, one from the left side and one
from the right side. Likewise, the left and right STDV
values were calculated for the choroid plexus regions.
The same values were obtained for each patient after
processing with GM.

136

o The STDV values obtained for each tissue after pro-
cessing were analyzed to determine if two populations
exist corresponding to the two patient outcomes.

Figure 1: Left side of a patient’s cranial sonogram. Right
image demonstrates the location of the choroid plexus and
white matter masks.

.

R

Figure 2: Portion of choroid plexus taken from the previ-
ous figure. It is shown unprocessed (left), after processing
with DMM (middle), atter GM (right). The intensity of the
images have been scaled for display.

Theoretical Basis

We use cranial ultrasound images without preprocessing
to remove speckle. When ultrasonic pulses are applied
to biological tissues, they encounter many different-sized
obstacles. Structures much larger than a wavelength re-
sult in specular reflection, while those much smaller than
the ultrasonic wavelength result in fully developed speckle.
Reflections due to microstructures may be correlated with
pathology [6] and so we have included speckle in the tex-
ture analysis.

Ultrasound image texture has been investigated for dis-
ease detection in many soft tissues. Diseases of the liver
have received a significant amount of attention [7],[8],[9],
[10]. While there are non-trivial differences between the



neonatal brain and liver, both are soft tissues. In both cases,
disease processes disrupt cell function, then tissue archi-
tecture. Advances in the use of texture for the detection of
liver disease suggest that texture should be explored as a
predictor of brain injury. More importantly, previous work
by others [5] indicates that US texture may be useful to in-
dicate the occurence of hypoxic insult in term infants. Al-
though premature and term infant brains differ at the histo-
logical level, this work suggests that further investigation of
the application of US texture and brain injury in premature
infants is warranted.

Stippel et. al. [11] have investigated speckle classifi-
cation and suppression techniques as part of an algorithm
to help radiologists assess white matter damage using flare
(areas of increased echogenicity) symmetry. They adap-
tively filter speckle to assist a region-growing technique
that outlines white matter. Symmetry of white matter flares
is a useful feature for assessing the extent of white matter
damage. We are developing a classification scheme inde-
pendent of flare symmetry that incorporates speckle. Our
texture measures are independent of the presence of visu-
ally obvious flares and thus may allow carlier diagnosis
than is presently available.

We preprocess the images using two techniques. In the
first technique, we enhance the edge information in the ul-
trasound images by obtaining the difference in response
between two intensity distribution based filters (DMM).
The technique is applied as a method to enhance the dif-
fuse edges that are found within ultrasound images. Me-
dian and mode filters are dependent upon the local inten-
sity histogram properties. These filters have been shown
to respond differently to non-step edges [12]. The differ-
ence between the mode and the median filter (DMM) can
be exploited as an edge detector. At step edge locations and
constant intensity regions, the responses of the median and
mode filters are the same, and so their difference is zero.
For other types of edge profiles, such as sigmoid and lin-
ear profiles, the responses of the two filters differ. DMM
produces an output which varies with edge profile. For a
noise-free, linear edge profile, the output image has an odd
profile containing a zero crossing at the input edge location.

To implement this technique, the mode algorithm was
designed to compensate for the fact that the mode of the
local histogram may not be uniquie or may be undefined.
Three algorithms were investigated for a non-unique mode.
These included selecting the first mode detected, the mode
closest to the center value, and the mode closest to the me-
dian. For our purposes, all algorithms worked equalty well,
and the first mode detected was chosen to realize DMM for
the data presented here. In the case where the histogram
was flat, and thus the mode did not exist, the median value
was calculated and thus the output of DMM is zero at these
locations.

In the second technique, we further investigate the spa-
tial relationships between local grey levels through the use
of grey level morphology (GM). We dilate the image us-
ing a flat binary disc. This dilated image is then subtracted

137

from the unprocessed image to reveal local intensity varia-
tions that are related to the size of the disc. We use a disc
with a radius of 30 pixels based upon the results of our ear-
lier experiments to segment tissue types.

Results and Discussion

In searching for a new method to describe white matter
health, we had expectated that the values for the white
matter for the Control and CP groups would be differ-
ent, whereas the values for the choroid plexus would re-
main constant. We found the opposite to be true (Table 1).
Shown are the descriptive statistics of the white matter tex-
ture measure and the choroid plexus texture measure after
processing with DMM. Similar results were obtained for
the morphology technique. Present qualitative assessment
techniques compare the appearance of the white matter to
the choroid plexus. This comparison may be relevant for
texture measures as well as for intensity. It is for these rea-
sons that we evaluate comparative measures between the
white matter and the choroid plexus. We calculate the ratio
and the difference between the white matter STDV and the
choroid plexus STDV for each patient. We then average
each of these values for the two sides of the brain to obtain
a single ratio and a single difference for each patient. See
figure 3 for an illustration of the data obtained during the
experiments.
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Figure 3: Results using the morphology technique. The
average ratio for the two hemispheres of white matter vs.
choroid plexus is plotted for each patient.

The values for the control and CP groups were assessed
to determine how much, if any, difference existed between
them. Table 2 provides statistics describing the experimen-
tal data. As a measure of the confidence of the sample
means, the means + twice the standard error was examined
(Figure 5). In three of the texture measures these regions
did not overlap. As a measure of the separation of the pop-
ulations, for all texture measures the mean + one standard
deviation are plotted (Figure 6). The difference between
the white matter and choroid plexus after processing with



Statistic | White Matter Control | Choroid Plexus Control | White Matter CP | Choroid Plexus CP
Mean 2.904 1.978 2.633 2.775
Median 2.7 1.9 275 2.65

Table 1: Statistics describing the measures of white matter and choroid plexus for both the control and CP groups. THe

measures are obtained after DMM processing and calculated over areas containing a single tissue type.

Experiment | Processing Group | Measure Mean | Standard error | Standard Deviation | Low | High
1 Morphology | Control | Ratio 1.462 0.088 0.305 1.157 | 1.767
1 Morphology | CP Ratio 1.019 0.107 0.262 0.757 | 1.281
2 Morphology | Control | Difference | 3.746 0.758 2627 1.119 | 6.373
2 Morphology | CP Difference | -0.0917 1.404 3439 -3.531 | 3.347
3 DMM Control | Ratio 1.524 0.094 0326 1.198 | 1.850
3 DMM Cp Ratio 0.948 0.095 0.233 0.715 | 1.181
4 DMM Control | Difference | 0.942 0.167 0.580 0362 | 1.522
4 DMM CP Difference | -0.142 0.223 0.545 -0.687 | 0.403

Table 2: Statistics describing the measures from the confrol and CP groups. The “Low™ value indicates the mean minus the
standard deviation. The “High” value is the mean plus the standard deviation.

DMM results in two groups where the means =+ one stan-
dard deviation do not overlap. See figure 6 for a sample
histogram of the measures obtained in these experiments.

The two sample t-test was performed for the results of
each of the four experiments to determine if two popu-
lations exist, these separating into the texture measures
for the control group and the texture measures for the CP
group. For the t-test, it is assumed that the unknown vari-
ances are not equal. A cutoff of & = 0.05 was used. The
null hypothesis (Hp) is that the means of the two groups
are equal. In all cases the test statistic was greater than t
and thus Hy was rejected. The P value is provided as an
additional measure of the significance of the experimental
results. See table 3 for details.

Figure 6: Histograms of the average of the difference be-
tween the white matter and the choroid plexus after mor-
phology based processing. Refer to table 2 for statistics
describing the populations.

Conclusions

Texture measures have been obtained without prior com-
pensation for operator-based machine settings and without
using speckle-reduction techniques. Statistical analysis of
these texture measures indicate that two populations exist
coresponding to the patient outcome. Since these results
were obtained using uncompensated image data, this sug-
gests that the texture components we are measuring are ro-
bust to the machine settings. It also suggests that it is not
necessary to remove speckle prior to assessing ultrasound
texture.

Our measures indicate a change in choroid plexus rather
than white matter. This observation may be related to ma-
chine settings or may be related to pathology. The mecha-
nism underlying this observation requires further attention.

The Control Group and CP Group separate into two
populations using two different texture measurement tech-
niques. While the studies performed to date are on a small
population, the results suggest that additional studies with
a larger population are warranted. The successful discov-
ery of additional diagnostic measures may provide a tool
for earlier medical intervention.
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Figure 4: Graph indicating the mean + twice the standard error. In three of four cases, the Control and CP Groups do not

overlap. The pair numbering corresponds to the numbers in Table 2.

Processing method, texture measure | Calculated test statistic | Degrees of freedom t P

GM,ratio 3.20 12 2.179 | .0076
GM, difference 2.405 8 2.306 | 0.0428
DMM,ratio 4305 13 2.160 | 0.0008
DMM,difference 3.144 10 2.280 | 0.0104

Table 3: Results of the t-test for each experiment. In all cases the null hypothesis, which would be that the population means

are equal, was rejected.
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Abstract—Premature infants are prone to white matter dam-
age (WMD), which is associated with cerebral palsy (CP) and
cognitive impairment. Ultrasonnd (US) is the preferred imaging
modality to detect WMD. To improve on existing diagnestic rates,
quantitative measures incorporating new information are needed.
We are investigating US texture measures as new indicators of
white matter health.

We have developed algorithms to enhance texture featares and
then obtain a measure of the tissue texture. Using our texture
measures, data from 18 patients (12 with normal outcome, 6
who developed CP) form separate populations based on patient
outcome. Our algorithms are applied to B-mode cranial US
images without compensating for operator-dependent machine
settings and witheut suppressing speckle. The results of the
preliminary study will form the basis for the design of a computer
aided diagnosis system for the early detection of white matter
damage.

I. INTRODUCTION

The purpose of our work is to detect WMD in the cranial
US images of premature infants more reliably and earlier
than is currently possible. Premature infants are prone to
WMD which is associated with subsequent CP and cognitive
impairment [1]. Ultrasound is commonly used to screen for
WMD. Although MRI detects WMD with greater sensitivity
[2], US remains the imaging modality of choice because it
is portable, it requires no sedation, and it is more readily
available. Currently, diagnosis with US is qualitative. Radi-
ologists depend on echolucencies and echodensities as cues
to the presence of WMD [3]. Since US intensity information
alone is not satisfactory for diagnosing WMD [2] [4], other
measures are required.

Texture information is an additional measure that is explored
in this work. A previous study indicates that texture may be
useful for the detection of cerebral hypoxic insult in term
infants [5]. We are investigating texture as a predictor of
periventricular leukomalacia in preterm infants. In an earlier
set of experiments, we found that tissue characterization of
white matter within cranial US images is possible by enhanc-
ing texture characteristics and then obtaining a quantitative
measure over a single tissue sample {6]. We are continuing
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from our previously reported work by expanding upon the pre-
processing techniques and adding an additional guantitative
texture descriptor.

1I. BACKGROUND

We use cranial US images without preprocessing to remove
speckle. Structures much larger than the US wavelength result
in specular reflection, while those much smaller result in fully
developed speckle. Reflections due to microstructures may be
correlated with pathology [7] and so speckle has been included
in the analysis.

Ultrasound image texture has been investigated for disease
detection in many soft tissues. Diseases of the liver have
received a significant amount of attention [8],[9],110]. While
there are non-trivial differences between the neonatal brain
and liver, both are soft tissues, and in both organs the disease
process disrupts cell function and tissue architecture. More
importantly, previous work by others [5] indicates that US
texture may indicate the occurrence of hypoxic insult in term
infants. Although premature and term infant brains differ at the
histological level, this work suggests that further investigation
of the application of US texture and brain injury in premature
infants is warranted.

Stippel et. al. [11] have investigated speckle classification
and suppression techniques as part of an algorithm to help
radiologists assess white matter damage using flare (areas of
increased echogenicity) symmetry. Symmetry of white matter
flares 1s a useful feature for assessing the extent of white
matter damage. We are developing a classification scheme
independent of flare symmetry that incorporates speckle. Our
texture measures are independent of the presence of visually
obvious flares and thus may allow earlier diagnosis than is
presently available.

11I. THEORETICAL BASIS

Our goal is to describe texture characteristics, including
speckle. Speckle is not bandlimited but it is not white [12]
suggesting that band-specific processing schemes are appro-
priate. We chose the Gabor filter due to its desirable band-pass
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properties of compact support in both the frequency and spatial
domains. We truncate the filter for implementation. The Gabor
filter has some intuitive template matching qualities with US
image texture which adds to its appeal in this application.

We chose to apply the Gabor filter oriented along the theo-
rectical path of insonation. Speckle characteristics in the lateral
orientation are dependent on the distance to the transducer [7]
so the information about speckle properties can be detected in
the axial direction (direction of the pulses). In our application
the transducers are curvilinear. We select the orientation of the
Gabor kernel by locating a hypothetical insonation point and
then orienting the Gabor filter so that the medial axis follows
the line of insonation, identical to the mask orientation as
shown in Figure 1. While the pulses do not come from a point
source, the error caused by this approximation was not found
to be significant. Similar filtering was performed by Murthy
et al. but they applied Gaussian band-pass filters to A-mode
data and then concatenated the result to form the final image,
rather than applying it to B-mode image data [13].

To realize the Gabor kernel, we created a 2-D Gaussian
and multiplied it with an image of a cosine. The Gaussian
image was created to be 200x21 pixels, with the Gaussian
radii of 100 and 10 pixels and having a maximum intensity
at the center of 10 (out of a possible 256 grey levels). The
cosine image was chosen to have a peak value of 10 with the
first zero crossing located at 0,0 in the image. The period
(T) of the cosine determines the center frequency of the
bandpass filter. We examined some samples of white matter
and choroid plexus in the frequency domain to identify the
frequencies that appear to be the most characteristic of each
tissue texture. Four frequencies were noted, however only two
were pursued further. The two discarded frequencies are the
same frequencies as the dominant noise frequencies in the US
film images, which caused numerical overflow. In the end,
cosine images having T=3 and T=7 were used to realize the
Gabor filters and applied to the cranial US images.

An additional texture measure reported here is the normal-
ized surface area (NSA). We obtained the surface area of the
tissue samples (with the intensity of the image considered to be
hills and valleys) and then normalized it to the pixel area of the
tissue mask to account for the varying tissue mask sizes. Image
intensity roughness, as a texture measure, has been applied to
B-mode US images in the past for the detection of liver disease
[14]. We obtained the texture measures from the Gabor filtered
images and the images after processing with two non-linear
techniques. One non-linear technique is based upon histogram
characteristics (DMM) and the other is based on grey-level
morphology (GM) (Figure 2). The non-linear techniques are
explained in [6].

1V. EXPERIMENTAL METHODS

+ The images used in this study are of premature infants
who had cranial US scans between 1990 and 1991 at the
IWK Health Centre in Halifax, Canada. The patients were
identified through the Perinatal Follow-up Database. To
be included in this study, the patients had to be less than

0-7803-8412-1/04/$20.00 (c)2004 IEEE.
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Fig. 1. Left side of a patient’s cranial sonogram. Right image demonstrates
the Jocation of the choroid plexus and white matter masks.

31 weeks gestational age, and the final outcome of the
patient had to be known. Eighteen patients were included
in this research. None of the images had unequivo-
cal evidence of periventricular leukomalacia (i.e. cystic
periventricular echolucencies). The group contained six
patients who subsequently developed CP.

The sample size is small due to a2 number of factors. The
input data are digitized analogue US films since modern
digital US machines have greater bandwidth restrictions
than the analogue film images. This limits our data to
US films from 1990 and 1991. The population from
which the images could be drawn is small, and some
eligible patients from this period had follow-up care
elsewhere, making their records inaccessible. The images
were scanned with a 3200 dpi scanner (Epson Perfection
3200) to maintain the high resolution of the images. The
effect of reducing spatial resolution on the information
content of texture measures has yet to be determined.
For each patient, a single semi-coronal image at the level
of the atria of the lateral ventricles was chosen. The data
set contained images obtained with a variety of machines
and various operator-dependent settings. '

e Due to the large size of the cranial US images, they
were first divided into halves, representing the left and
right hemispheres. Therefore, each patient in this study
is associated with two half US images. Samples (masks)
of two tissue types, choroid plexus and white matter, were
selected from each patient’s half image by a radiologist,
where it was possible to select the white matter with a
high degree of certainty. For all but one patient, images
for both sides of the patient’s brain were used. The masks
are rectangular in shape with their major axis oriented
approximately along the path of insonation (Figure 1).
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The choroid plexus was chosen as the reference tissue
type as it is the traditional standard used to compare white
matter echogenicity.

o The images were processed to enhance the differences
in texture between the two tissue types. The technique
presented here in detail is a variably-oriented Gabor filter
(vGa). No preprocessing was performed to compensate
for the operator-dependent machine settings. Speckle
was not suppressed as we are exploring speckle as a
component of texture.

« After processing, a measure of the image intensity rough-
ness {(NSA) and the standard deviation of the intensity
(STAT) were calculated within the choroid plexus and
white matter masks for each patient. For a typical patient,
four NSA values were calculated after being processed
with vGa. Two values were obtained from the white
matter, one from the left side and one from the right
side. Likewise, the left and right NSA values were
calculated for the choroid plexus regions. Ratios and
differences of white matter and choroid plexus were
obtained and the left and right halves were averaged.
For example, each patient would have one average NSA
ratio, NSArauo = 1/2% (NSAu,. ;. /NSAchoroidiese +
NSAu, g0 /NSAchoroid,gn, )- Similarly, the NSA dif-
ference was calculated, as well as the STAT ratio and
difference for each patient image.

o Two tailed Student t-tests were performed on the ratio
and difference measures to determine if two populations
exist corresponding to the two patient outcomes.

Fig. 2. Portion of white matter. Clockwise from top left: original, after
variable gabor filtering, after applying DMM, after applying GM.
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V. RESULTS AND DISCUSSION

The texture measures for the control and CP groups were
assessed to determine if a difference existed between them. In
this work, we are reporting on 12 different experiments applied
to 18 patient images. The experiments include: vGa T=7
NSAratio VGa T=T NSAgir4,vGa T=T ST AT, ot50,vGa T=T7
ST AT 355, vGa T=3 NS 4,40, vGa T=3 NS Az;¢7,vGa T=3
ST AT atiovGa T=3 STATgrr, DMM NSApatio. DMM
NSAgyss. GM NSA 450, and GM NSAg;¢¢. For 7 of the
12 experiments, descriptive statistics indicate that the means
of the texture measures differ based upon the patient outcome.
Table I provides the mean =+ twice the standard error for these
seven experiments.

The two sample t-test was performed on the texture mea-
sures for each of the experiments to determine if two popula-
tions exist based on patient outcome (Table II). For the t-test, it
is assumed that the unknown variances are not equal. A cutoff
of a = 0.05 was used. The null hypothesis (Hg) is that the
means of the two groups are equal. In 9 of 12 cases, the test
statistic was greater than t and thus Hy was rejected. The P
value is provided as an additional measure of the significance
of the experimental results. While the student t-test is not the
most robust test for this data, since biological data typically do
not follow normal distributions, it provided a simple measure
to determine which if any of our texture measures shuld be
investigated further for this problem. The results of these
experiments indicate that although individual texture measures
do not always separate well into two populations, more than
one measure may yield better results (Figure 3).

In these experiments, the images are used without compen-
sating for operator dependent settings and without removing
speckle. The favorable results suggest that using the patient
image as its own control and including speckle in the data does
not prevent the image data from revealing patient outcome.
This means less image processing is required.

VI. CONCLUSIONS

Texture measures have been obtained without prior compen-
sation for operator-based machine settings and without using
speckle-reduction techniques. Statistical analysis of these tex-
ture measures indicate that two populations exist correspond-
ing to the patient outcome. The encouraging results in this
preliminary study suggest that that additional studies with a
larger population are warranted. The successful discovery of
additional diagnostic measures may provide a tool for earlier
medical intervention.
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STDEV as measure for the rectangular samples

Data taken from book 3

It it t Ift t ift rt Ift

amt bbe be be bgv001  bgv001 dev dev
mMw 14.37 15.59 15.1 14.79 8.78 9.84 16.82 11.48 11.82 12.28
Mc 5.68 12.14 9.18 8.29 8.56 6.6 17.81 13.35 11.44 9.56
2w 12.61 14.2 13.35 13.19 7.99 8.91 14.54 10.53 10.86 114
r2c 4,95 10.98 8.46 75 7.88 6.04 16.33 124 10.14 8.89
3w 11.38 14.44 12.56 1242 7.89 8.75 14.57 10.38 10.5 10.85
r3 ¢ 4.83 10.53 7.97 7.04 7.65 5.75 16.15 12.34 9.36 8.69
% r1 8.69 3.45 5.92 6.5 0.22 3.24 -1.99 -1.87 0.38 272
diff r2 7.66 3.22 4.89 5.69 0.11 2.87 -1.79 -1.87 0.72 2.21
diff r3 6.55 3.91 4,59 5.38 0.24 3 -1.58 -1.96 1.14 2.16
ratio r1 2.529929577 1.284184514 1.644880174 1.784077201 1.025700935 1.490909 0.888265 0.8599250094 1.033217 1.284519
ratio r2 2.547474747 1.293260474 1.578014184 1758666667 1.013959391 1.475166 0.890386 0.849193548 1.071006 1.248594
ratio r3 2.35610766 1.371320038 1.575909661 1764204545 1.031372549 1.521739 0.902167 0.841166937 1.121795 1.248562
average diff r1 6.07 6.21 1.73 -1.93 1.55
ave diff r2 5.44 5.29 1.49 -1.83 1.465
ave diff r3 5.23 4,985 1.62 -1.77 1.65
ave ratio r1 1.907057046 1.714478688 1.258305 0.874095057 1.158868
ave ratio r2 1.920367611 1.668340426 1.244562 0.869789671 1.1598
ave ratio r3 1.863713849 1.670057103 1.276556 0.87166706 1.185178
r1 differences r1 differences R2 diff r2 diff r3 diff 13 diff
Control CP Normal CP Normal
Mean 3.633333333}Mean 1.212]Mean 3.182083333 Mean 0.945{Mean 3.107917 Mean
Standard Error 0.741272537{Standard Error 0.443890752|Standard Error 0.664643177 Standard E 0.322106{Standard Error  0.67013 Standard E
Median 4.025}Median 1.315]Median 3.5775 Median 1.14{Median 3.54 Median
Mode #N/A Mode 1.315{Mode #N/A Mode #N/A  [Mode #N/A Mode
Standard Deviation 2.567843394|Standard Deviation 0.992569897|Standard Deviation  2.302391502 Standard [ 0.720252|Standard Devial 2.321399 Standard [
Sample Variance 6.593819697|Sample Variance 0.985195|Sample Variance 5.301006629 Sample Va 0.518763|Sample Varianc 5.388893 Sample Va
Kurtosis 0.291472465|Kurtosis 3.046122239|Kurtosis 0.385893395 Kurtosis  3.568266|Kurtosis 0.090512 Kurtosis
Skewness -0.892708821{Skewness -1.645782145|Skewness -0.879186757 Skewness -1.77833|Skewness -0.79785 Skewness
Range 8.31Range 2.525|Range 7.725 Range 1.855|Range 7.695 Range
Minimum -1.93}Minimum -0.465Minimum -1.83 Minimum -0.29]Minimum -1.77 Minimum
Maximum 6.37|Maximum 2.06]Maximum 5.895 Maximum 1.565}Maximum 5.925 Maximum
Sum 43.6|Sum 6.06]Sum 38.185 Sum 4.725)Sum 37.295 Sum
Count 12]Count S5fCount 12 Count 5§Count 12 Count
mean + 2 std err 5.115878408 2.099781505 4.511369687 1.589213 4.448177
mean -2 std err 2.150788258 0.324218495 1.85279698 0.300787 1.767656
overlap (lowest normal - highest of CP) -0.051006754 -0.26358 0.28705
mean + 2 stdev 8.769020122 3.197139794 7.786866337 2.385503 7.750715
mean - 2 stdev -1.502353455 -0.773139794 -1.422699671 -0.4955 -1.53488

4.699493249 3.808203

4.6473



rt Ift
epat epat mec mec m rm sad sad sdc sdc sm2 sm2 tap tap

14.2 12.21 11.07 10.76 13.11 13.34 12.88 11.92 16.55 11.91 14.63 14.54 13.89

14.34 9.85 7.27 7.28 8.96 8.76 6.82 8.08 10.7 10.67 8.5 9.1 6.59

12.33 11.08 10.19 9.83 11.82 12 11.76 10.71 14.9 10.77 12.81 13.49 12.7

12.61 8.97 6.68 6.58 8.28 7.99 6.26 7.39 9.88 9.85 7.86 8.35 6.05

11.1 10.33 10.04 9.74 11.49 11.72 11.48 10.24 14.79 10.49 11.47 13.17 12.2

12.15 8.61 6.49 6.59 7.96 7.79 5.88 7.18 9.4 9.39 7.53 7.83 5.69

-0.14 2.36 3.8 3.48 4.15 4.58 6.06 3.84 5.85 1.24 6.13 544 7.3

-0.28 2.1 3.51 3.25 3.54 4.01 5.5 3.32 5.02 0.92 4.95 5.14 6.65

-1.05 1.72 3.55 3.15 3.53 3.93 5.6 3.06 5.39 1.1 3.94 5.34 6.51

0.990237099 1.239594 1.522696 1.478022 1.46317 1.522831 1.888563 1475247525 1.546729 1.116213683 1.721176 1.597802198 2.107739

0.9777954 1.235229 1.525449 1.493921 1.427536 1.501877 1.878594 1.449255751 1.508097 1.093401015 1.629771 1.615568862 2.099174

0.913580247 1.199768 1.546995 1.477997 1.443467 1.504493 1.952381 1.426183844 1.573404 11171459  1.52324 1.681992337 2.144112

1.41 3.64 4.365 4.95 5.85 3.685 6.37

0.915 3.38 3.775 4.41 5.02 2.935 5.895

0.335 3.35 3.73 4.33 5.39 2.52 5.925

1.114916 1.500359 1.493 1.681905287 1.546729 1.418695 1.852771

1.106512 1.509685 1.464707 1.663925 1.508097 1.361586 1.857371

1.056674 1.512496 1.47398 1.689282398 1.573404 1.320193 1.913052

jr1 ratios 1 ratios r2 ratios 12 ratios 13 ratios 3 ratios
cp Normal cp normal CcP Normal CP
1.199{Mean 1.460098 Mean 1.117951|Mean 1.444562 Mean 1.10054]Mean 1.450521213 Mean 1.132853981
0.427853363}Standard £ 0.090194 Standard E 0.039443|Standard E 0.090298 Standard Error 0.031302]Standard E 0.091998092 Standard E 0.043324891
1.49]Median 1.49668 Median 1.13894|Median 1.486402 Median 1.129266|Median 1.493238155 Median 1.163853987
#N/A Mode #N/A  Mode #N/A  |Mode #N/A Mode #N/A  |Mode #N/A Mode #N/A
0.956709203|Standard L  0.31244 Standard L 0.088197|Standard L 0.312802 Standard Deviation 0.069994{Standard L 0.31869074 Standard L 0.096877401
0.9152925|Sample Va 0.097619 Sample Va 0.007779{Sample Va 0.097845 Sample Variance 0.004899§Sample Va 0.101563788 Sample Va 0.009385231
4.342778396]Kurtosis -0.52169 Kurtosis  2.497187]Kurtosis -0.48517 Kurtosis 3.64127}Kurtosis -0.62329018 Kurtosis 3.721075427
-2.016276997Skewness  -0.35776 Skewness -1.54772|Skewness -0.21318 Skewness -1.85631]Skewness -0.28788769 Skewness -1.77954569
2.415fRange 1.032962 Range 0.219883]Range 1.050578 Range 0.175893}Range 1.041385348 Range 0.253231169
-0.48[Minimum  0.874095 Minimum  0.971036|Minimum 0.86979 Minimum 0.979838|Minimum  0.87166706 Minimum  0.966442598
1.935[Maximum  1.907057 Maximum  1.190919]Maximum 1.920368 Maximum 1.165732fMaximum  1.913052408 Maximum 1.219673767
5.995[Sum 17.52118 Sum 5.589755{Sum 17.33474 Sum 5.502698}Sum 17.40625456 Sum 5.664269905
5}Count 12 Count 5]{Count 12 Count 5§Count 12 Count 5
2.054706725 1.640485 1.196837 1.625158 1.163144 1.634517398 1.219503762
0.343293275 1.279711 1.039065 1.263965 1.037935 1.266525028 1.0462042
-0.08287 -0.10082147 -0.04702
3.112418407 2.084978 1.294345 2.070167 1.240527 2.087902694 1.326608782
-0.714418407 0.835219 0.941557 0.818957 0.960552 0.813139732 0.93909918
0.459127 0.421570037 0.513469



bev001  bev001  dmo0O1 dm001 kis001 kls001 tw001 tw001 vam002 vam002

15.54 15.64 14.93 16.66 12.97 13.42 15.99 15.32 14.09 131
16.01 16.1 10.14 18.82 10.25 12.02 12.94 14.7 11.83 12.73
13.99 14.1 134 15.15 11.76 11.4 14.56 14.11 12.93 11.9

14.43 14.24 9.39 17.13 9.47 11.1 11.88 13.66 10.94 11.61
13.76 13.84 13.67 14.68 11.71 10.53 14.38 13.98 12.88 11.64

14.37 14.19 8.8 16.57 8.87 10.4 11.46 13.03 10.48 10.91
-0.47 -0.46 4.79 -2.16 272 1.4 3.05 0.62 2.26 0.37
-0.44 -0.14 4.01 -1.98 2.29 0.3 2.68 0.45 1.99 0.29
-0.61 -0.35 4.87 -1.89 2.84 0.13 2,92 0.95 24 0.73

0.970843 0.971429 1.472387 0.885228 1.265366 1.116473 1.235703 1.042177 1.19104 1.029065
0.969508 0.990169 1.42705 0.884413 1.241816 1.027027 1.225689 1.032943 1.181901 1.024978
0.95756 0.975335 1.553409 0.885938 1.32018  1.0125 1.254799 1.072909 1.229008 1.066911

-0.465 1.315 2.06 1.835 1.315
-0.29 1.015 1.295 1.565 1.14
-0.48 1.49 1.485 1.935 1.565

0.971036 1.178808 1.190919 1.13894 : 1.110052
0.979838 1.165732 1.134422 1.129266 1.10344

0.966443 1.219674 1.16634 1.163854 1.147959
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Using the Local Mode for Edge Detection in Ultrasound

Images

Tyna Hope
Department of FElectrical and
Computer Engineering,
Dalhousie University, Halifax
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Abstract

We are investigating quantitative ultrasound texture measures as an
additional source of diagnosiic information for the deteciion of white
matter damage in very preterm infants. White matier damage is
a form of brain damage which leads to cerebral palsy. Ultrasound
speckle properties have been shown to correlate to scatterer proper-
ties tn phantoms. The disease process alters the scatterer type and
density in white matter. We are enhancing speckle edges in cranial
ultrasound images to determine if local speckle gradients and speckle
edge densities correlate to patient outcome. Speckle edges are very
diffuse and iraditional edge enhancing schemes, such as Sobel, do
not perform well. To capture the speckle edge detail, we use film im-
ages scanned at a very high resolution. The digitization introduces
a significant noise component and dees not suppress the ultrasound
Film grain. We present a non-linear filter to enhance the speckle edge
information. The filker (DM) exploits the changes to speckle edges
that result from applying local mode filtering. This technigue has the
advantages of maintaining edge center localization with large window
sizes and performing better than Sobel for diffuse edges. In this work,
we discuss the filter, its parameters, and their selection for a given
application.

Keywords— Image processing; Biomedical Engineering;
Digital Signal Processing.

1 Introduction

White matter damage (WMD) is an important precursor
to cerebral palsy in preterm infants. We are investigating
ultrasound (US) texture as a means to detect WMD. We
obtain texture descriptors in US images with speckle, as
we hypothesize that there is information within the speckle
properties. Ultrasound speckle properties have been shown
to correlate to scatterer properties in phantoms [1]. The
early stages of nonhemorrhagic infarct are characterized by
edema of the tissue, which reduces the ultrasonic scatterer
density {2]. It is believed that the cause of WMD leading
to CP occurs during the neonatal period and therefore, we
use the earliest available clinical images, obtained within
days of birth.

‘We use analog film images digitized at 3200 dpi, as mod-
ern US equipment has bandwidth restrictions. Our goal
is to measure speckle characteristics within the noisy film
environment. US speckle edge profiles are diffuse and tra-
ditional edge detection schemes do not work well.

0-7803-8886-0/05/$20.00 ©2005 IEEE
CCECE/CCGE], Saskatoon, May 2005
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Figure 1. Components forming the DM output. Top
row: linear profile, bottom row: sigmoidal edge pro-
file. Left to right: Pre-mode filter edge profile, mode
filtered edge profile, and the difference.

2 New Edge Enhancement Technique

We developed and applied a non-linear filter (DM) that
exploits the changes due to local mode filtering. An ideal
mode filter outputs the most commonly occurring value
within a neighborhood, causing non-step edges to become
step edges. We apply our mode filter to an image and then
subtract the pre-filtered image. The output has an odd in-
tensity profile and the zero crossing is located at the edge
center (figure 1).

2.1 Local Mode Filter

To simplify the discussion about the mode filter, edges
are assumed to be 1-D (figure 2). Let w be the sliding
window of the mode filter centered at j. x; and zo designate
the endpoints of the edge profile and 4,io the intensities
at these points. X is the width of the edge profile (X =
22 — x1). Let . be the center of the edge and M; be the
output of the mode filter at point j.

Linear edge profiles, (Figure 2a): If w > X, a step edge
is created centered at x, (Figure 2b):

M, =
= ’i2 V] > T,

V) < ze

If w < X, (Figure 2¢):

M; = i1Vj<zi+w/2
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Figure 2. Mode filtering for a linear edge profile. a)

Original b) Output when w > X/2 ¢) Output when
w <= X/2. Crosshatching indicates where the mode
is undefined.

io V) > xg — w/2

= wunde fined otherwise.

The mode filter has been considered difficult to imple-
ment because frequently the mode is not unique or does
not exist. To ensure that the output of the filter is always
defined, our modified mode filter outputs the median value
for either of these cases. The median filter is a well-known
rank-order filter {4].

2.2 DM Implementation

The original image I,,.;4 is processed with our modified
mode filter and then I,y is subtracted resulting in Jyip.
ie. Ifzn = mode([m,-g) — Iorz'g-

3 Application Considerations

The output of DM depends upon the length of the edge
profile, the distance to the neighboring edge, the gradient
of the edge, the noise within the image and the size of the
window (neighbourhood). The magnitude of the response
on either side of the zero crossing depends on the gradient
of the edge and w.

To determine an appropriate window size, we first dis-
cuss an ideal image situation. Consider a single non-step
edge within an infinite image of constant intensity without
noise. Unlike linear filters, DM retains localization accu-
racy with increasing neighborhood size. In this paper, the
window sizes are square and described as NxN. With in-
creasing window size, the output reaches a limit since both
the mode and median filter outputs approach stable values.
However, as the window size reduces, the width of the zero
crossing increases and there is a smaller response magni-
tude. This is caused by the area at the center of the edge
profile (around z, in Figure 2) becoming large compared to
the window size.

TABLE 1
PERFORMANCE OF DM VS.WINDOW {(NOISY STEP EDGE).

NxN | % Match | NxN | % Match

5 13 15 70

9 58 21 88

11 66 29 91
TABLE 11

THE DETECTED CENTERS OF TWO ADJACENT LINEAR PROFILE EDGES
AS A FUNCTION OF WINDOW SIZE.

NxN | Zero Crossings | NxN | Zero Crossings
21 34.5, 49.5 27 36.5, 475
23 34.5, 49.5 29 375,465
25 35.5, 48.5 31 42.5

Realistically, the maximum size of the window wy,q, de-
pends upon edge density, and the minimum size of the win-
dow Wy, depends upon noise levels. Artificially created
edges with additive white Gaussian noise were used to ob-
tain a measure of the performance of DM. A disc image
with step edges is used for the first experiment. The image
is 301x301, the disc center is the center of the image, and
it has a radius of 50 pixels and an intensity of 50 on a zero
background. Gaussian noise with zero mean and an inten-
sity standard deviation of 50 is added. The detected edge
is identified by thresholding the Sobel operator magnitude
of the DM output. This edge is compared to the Sobel
magnitude of the non-noisy step edge image, thresholded
(at the mean + 2 standard deviations) and dilated with a
3x3 kernal. The standard is dilated because the DM output
zero-crossing is greater than 1 pixel wide. Table 1 indicates
the performance as a function of window size. The magni-
tude of Sobel operator produced a noise pattern only. Note
that the computation time of DM increases with increasing
window size.

Next, we investigate the detection of linear profile edges
in a noisy environment. Figure 3 illustrates the linear edge
and the performance of DM. Starting from the previously
described disc image, linear edges were created by mean
filtering the image and then Gaussian noise was added. The
graph ((Figure 4) indicates that the window size providing
good DM performance is dependent upon the SNR of the
image. The Sobel operator could not detect the edge profile
for any SNR.

In the final experiment, we investigated DM’s ability to
identify the center of two neighboring linear edge profiles
as a function of window size. Theoretically, wpa, is 2 *
(d + X/2) where d is the distance between the two edges.
This is confirmed with experimental results (Table 2) for
which the edge centers are located at 34.5 and 49.5. The
half pixel coordinates result from calculating the mid point
between the peaks on either side of the edge center. In this
experiment d =7 and X =0,

375



Figure 3. Typical experimental images. Left: Disc image, linear edge profiles, SNR = 1. Middle: DM output, w=21.
Right: The detected edge and the true edge (found from the non-noisy step edge disc) added to indicate match.
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Figure 4. Percentage match vs window size over a range
of SNR. Edges located from the noisy,linear-profile
disc image was compared with the true edge of the
step-edge disc.

Frequently there exists edge detail at many different reso-
lutions simultaneously. Larger window sizes treat the small
detail as noise. Smaller window sizes may cause edges to be
missed. For images with many levels of detail, the ontput of
the mode filter can be regarded as a step-wise approxima-
tion to the original image (Figure 5). DM is the difference
between the approxmimation and the original.

We are investigating US speckle properties in the pres-
ence of film grain noise. The images are obtained with a
frequency setting of 8.5 Mhz. Assuming a speed of sound
in human soft tissue at 1540 m/s, the wavelength is in the
order of 181 microns. It is generally accepted that US re-
solves structures in the order of a wavelength. The average
biparietal head diameter of the gestational age under inves-
tigation is between 7 and 8 cm and our ultrasound images
varied from 5000 to 6000 pixels. These numbers suggest
that our image pixels correspond to a value in the order of
15 microns. To obtain a measure of the film grain noise,
image samples were obtained from the ventricles of the cra-

nial US images. The ventricles are fluid filled with a low
density of scatters and provide a good approximation to the
noise characteristics of the image. The histograms of the
ventricle images are bell-shaped suggesting that a Gaussian
noise model is reasonable. The median standard deviation
of the noise intensity is 12. We sampled several speckle
edge profiles to provide a measure of the intensity differ-
ence across speckles. Based on edges having a change in
intensity of 50, the SNR is 4.1667. Based on the noise level
of the image and the past experiments (figure 4), w =9isa
reasonable choice. This choice is a compromise between ac-
curacy and computation time. Using the equation for the
maximum window size, the closest resolvable neighboring
edges would have properties of d + X/2 = 4.5 pixels. Since
in our US experiments w/2 corresponds to 67.5 microns,
the filter highlights edge properties within the resolution of
speckle edges.

4 Results

Figure 6 provides a typical sample of white matter tis-
sue processed with DM, w = 9. We applied the technique
to images from 17 patients (12 normal outcomes, 5 CP).
DM was implemented as a processing technique prior to
obtaining texture measures from white matter and a refer-
ence tissue for each patient. The final outcome is a texture
measure from each of the 17 patients. The texture mea-
sures separate into two populations based on patient out-
come as indicated by Mann-Whitney tests. This technique
is a modified version of the method described in previously
published experimental results [5].

5 Conclusions

DM can be used to identify edge centers and to enhance
non-step edges in a noisy environment. Its output is de-
pendent upon edge gradient, distance between edges, and
image SNR.
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From maskoutfitesthesis.xis

original

ratlo=0.25

ratio=0.5
ratio=0.76
ratio=0.85
shrinkwid=10times
shrinkwid=20times
shrinkwid=30times
shrinklen=100times
shrinklen=200times
shrinklen=300times
shrinklen=400times
shrinklen=500times
shrinklen=600imes
shrinklen=700times
shrinklen=800times

Ave diff

aloo1
-0.5
-0.92748
-0.6835495
-0.751532
-0.7866905
-0.9969735
-0.9756785
-0.9386505
-0.9750005
-0.763537
-0.616692
-0.695002

original size ranking
ratio=0.25, ranking
shrink 400, ranking
shrink 200, ranking
shrink width 30, ranking

originat size

ratio=0.256

shrink 400

shrink 200

shrink width 30

expected origé ratio

difference between actual and expected
difference between actual and expected
difference between actual and expected
difference between actual and expected

expected - shrink length 400
differenice between actual and expected

Note: The difference between the actual and expected value in a Mann-Whitney test

doesn't vary unti] shrinkiength =< 400

Ave diff

bov001
-0.235
-0.385383
-0.38547
-0.482781
-0.680085
-0.238371
-0.246265
-0.2612665
-0.2709265
-0.347675
-0.4287655
-0.3832955
-0.342228
0.1274615

16
16
14

18

Ave diff

dm001
0.145
0.224767
0.4111935
0.6108265
0.528793
0.1346145
0.126433
0.1292475
0.087023
0.1689085
0.0785145
0.266387
0.254876
0.5869875
0.5226025

12
10

12
12

Sum of ranks,CP group  Sum of ranks Ctrl group

66
65
54
66
66
425
23.5
225
23.5
235

375
16.5

70
7
51
70
70
93.5
-23.5
-22.5
-235
-23.5

675
-16.5

Ave diff

4

kis002
0.005
-0.056836
-0.0499095
0.001462
-0.011436
0.0040665
0.0144915
0.018469
-0.0052945
-0.033017
-0.044731
-0.0417515
-0.106087
-0.153626
0.1434265

14
14
13

14

originat
ratio=0.25

shrink length 200
shyink width 30

shrink length 400

Ave diff
5

w001
0.09
0.055466
-0.01867
-0.23726
-0.51777
0.092978
0.10287
0.107745
0.075733
0.05273
-0.00366
0.008374
-0.04858
-0.24629
-0.40537
-0.43712



Ave diff

]

vam002
0.22
0.1976365
0.154987
-0.0767055
-0.554193
0.222661
0.2286065
0.2222695
0.2035875
0.179825
. 0.1841595
0.230182
0.084353
-0.12916
-0.0992055

"

1
11

Ave diff

7

amt
1.045
0.948246
0.8299855
0.601884
0.5918865
1.0188045
0.9765635
0.9663635
1.0185385
0.9497645
0.980791
0.8306345
0.772347
0.741965
0.5183715

L2 I 2 S

Ave diff

8

bbc
1.415
12974215
1.306649
1.017577
1.185377
1.3995685
1.371692
1.347912
1.3643365
1332391
1.187475
0.9682475
1.7049315
0.5560425
0.490523
0.648158

NN NN

Ave diff

9

be
0.32
0.346021
0.2785455
0.494565
0.6427425
0.311642
0312313
0.3161045
0.322368
0.320671
0.2838445
0.2044565
0.228417

Ave diff

10

bgv
-0.065
-0.0780985
0.1300685
0.207071
0.028003
-0.0596925
-0.0505955
-0.051517
-0.0595605
-0.0799335
-0.0455385
0.1792695
0.0954765
02273525
-0.028435

15
15
1)
15
15

Ave diff

11

dev
0.28
0.2223785
0.270003
-0.006551
-0.2224225
0.271956
0.262474
0.2434
0.237543
0.198554
0.1845085
0.2071435
0.0719145
-0.049504
-0.132522

10
11

10
10

Ave diff

12

epat
0.675
0.713075
0.6161085
0.482736
0.4385035
0.672615
0.691952
0.698455
0.67181985
0.7008875
0.671536
0.686743
0.670851
0.6714575
0.623028
0.61107

WD~

Ave diff

13

mec
071
0.5658306
0.599866
0.754111
0.7651525
0.708329
0.7116185
0.702313
0.670717
0.66778
0.6161025
0.585463
0.5714265
0.808093
0.719796
0.7729435

NN N,

Ave diff

14

m
0.635
0.5506825
0.837766
1.1613485
1.2836885
1.006252
1.006232
1.001936
0.6179955
0.562163
0.562028
0.71686535
0.872051
0.9707395
1.1122815
1.356846

EN-- IR -]

Ave diff Avediff Avediff

17
tap

1.185
1.206454
1.235334
1.089036
0.751655
1.182453
1175329
1.174927
1.17906
1133593
1.166363
1127118
1002234
0.650251
0.615926
0.671868

W W - W W

15
sad

0.715
0.736302
0.722373
0.531324
1.187542
0.720906
0.724057
0.718921
0.732606
0.716104
0.863715

16

sm2
1.57
1.570465
1.636277
1.666531
1.813995
1.6004
1.61649
1.624546
1.5757T01
1.515039
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proc.im pat. mask avg NSA avgstdev

amtcdifnsa amtcd chf 71.337837 153.089752
bbcedifnsa bbced  chf 81.856071 194.146729
beedifnsa beedi chf 72.682129 160.105988
bgv001icdifnsa bgv00 chf 143.355972 298.960876
devcdifnsa deved chf 83.379234 175.829819

epatcdifnsa epatc chf 111.481491 227.964569
meccdifnsa meccd chf 73.618774 127.678375

rmedifnsa rmedi chf 94.08046 205.370743
sadcdifnsa sadcd chf 74.839417 149.986267
sdccdifnsa sdced  chf 107.653305 213.259659
sm2cdifnsa sm2cd chf 117.447891 186.025055
tapcdifnsa tapcd chf 103.807388 208.049622

bcv001cdifnsa  bcv00  chf 138.589493 293.661041
dm002cdifnsa  dm002 chf 116.13546 267.183075
kisOO2cdifnsa  kisO0  chf 105.065201 193.791138
tw001cdifnsa tw00t  chf 147.206421 231.990738
vam002cdifnsa vam00 chf 111.623764 211.211761

rank rank
avg NSA avgstdev

17 15

13 10

16 14

2 1

12 13

7 5

15 17

11 9

14 16

8 6

4 12

10 8

3 2

5 3

9 1"

1 4

6 7

sum of ranks - normal 129 126

sum of ranks - cp 24 27
expected sum - nor 108
expected sum - cp 45

difference normal -21 -18

difference cp 21 18

The critical value of U is 11 for N1=5 and N2=12

avgmean

-352.003967
-425.24823
-202.775604
40.166729
-412.151917
-150.296844
-319.580872
-243.146042
-424.609894
-304.740967
-99.268875
-615.01355
-102.412254
-322.311005
-155.190201
-185.478882
-103.318443

rank

avgmean
13
16
14

11

15
10

17

12

121
32

-13
13

So all measures but minimum, skewness and kurtosis make these two

outcome groups separate into two populations.

avgmax avgmin avgsk

314
467
1035
141
672
288
620
232

746

rank
avgmax
13
14
11
1
17
6
15
8
16
12
10
7

OO WON

130
23

22

-666
754
-619
-601
-748
-592
-632
-659
-724
-774
-466
-860
=724
-841
-589
-704
-524

rank
avgmin
9
14
2
[
13
5
7
8
1
15
1
17
1
16
4
10
3

108
44

0.8062
0.6927

0.754
0.4409
0.3334
0.6777
0.8229
0.9214
0.7044
0.3742
0.4558
1.4616
0.6957
0.8345
0.5603
0.5547
0.5759

rank
avgsk

106
47

-2

avgkurt
1.194
0.0569
0.4835
-0.056
-0.451
0.28
1.2106
1.2152
0.4931
-0.266
-0.278
4.7504
0.3993
0.7746
-0.001
0.603
0.2003

rank
avgkurt
4
12
8
14
17
10
3
2
7
15
16
1
9
5
13
6
11

109
44

avgmed
-378
-456
-227
13
-426
-179
-337
-272
-448
-325
-114
-651
-145
-358
-176
-206
-118

rank
avgmed
13
16
8
1
14
6
11
9
15
10
2
17
4
12
5
7
3

122
31

-14
14
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The randomForest Package
January 24, 2006

Title Breiman and Cutler’s random forests for classification and regression

Version 4.5-16

Date 2006-01-23

Depends R (>=1.8.1)

Author Fortran original by Leo Breiman and Adele Cutler, R port by Andy Liaw and Matthew Wiener.

Description Classification and regression based on a forest of trees using random inputs.

Maintainer Andy Liaw <andy liaw@merck.com>

License GPL version 2 or later

URL http://stat-www.berkeley.edu/users/breiman/RandomForests
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16 randomForest

randomForest Classification and Regression with Random Forest

Description

randomForest implements Breiman’s random forest algorithm (based on Breiman and Cutler’s
original Fortran code) for classification and regression. It can also be used in unsupervised mode
for assessing proximities among data points.

Usage

## S3 method for class 'formula’':

randomForest (formula, data=NULL, ..., subset, na.action=na.fail)

## Default S3 method:

randomForest (x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,
mtry=if (!is.null(y) && !is.factor(y))
max (floor (ncol (x)/3), 1) else floor(sgrt(ncol(x))),
replace=TRUE, classwt=NULL, cutoff, strata,
sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x}),
nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
importance=FALSE, locallmp=FALSE, nPerm=1,
proximity=FALSE, oob.prox=proximity,
norm.votes=TRUE, do.trace=FALSE,
keep.forest=!is.null{y) && is.null (xtest), corr.bias=FALSE,

keep.inbag=FALSE, ...)
## S3 method for class 'randomForest':
print(x, ...)
Arguments
data an optional data frame containing the variables in the model. By default the vari-
ables are taken from the environment which randomForest is called from.
subset an index vector indicating which rows should be used. (NOTE: If given, this

argument must be named.)

na.action A function to specify the action to be taken if NAs are found. (NOTE: If given,
this argument must be named.)

x, formula adata frame or a matrix of predictors, or a formula describing the model to be
fitted (for the print method, an randomForest object).

v A response vector. If a factor, classification is assumed, otherwise regression is
assumed. If omitted, randomForest will run in unsupervised mode.

xtest a data frame or matrix (like x) containing predictors for the test set.

ytest response for the test set.

ntree Number of trees to grow. This should not be set to too smalil a number, to ensure

that every input row gets predicted at least a few times.

mtry Number of variables randomly sampled as candidates at each split. Note that
the default values are different for classification (sqrt(p) where p is number of
variables in x) and regression (p/3)

replace Should sampling of cases be done with or without replacement?



randomForest

classwt
cutoff

strata

sampsize

nodesize

importance

localImp

nPerm

proximity

oob.prox

norm.votes

do.trace

keep.forest

corr.bias

keep. inbag

Value

17

Priors of the classes. Need not add up to one. Ignored for regression.

(Classification only) A vector of length equal to number of classes. The ‘win-
ning’ class for an observation is the one with the maximum ratio of proportion
of votes to cutoff. Default is 1/k where k is the number of classes (i.e., majority
vote wins).

A (factor) variable that is used for stratified sampling.

Size(s) of sample to draw. For classification, if sampsize is a vector of the length
the number of strata, then sampling is stratified by strata, and the elements of
sampsize indicate the numbers to be drawn from the strata.

Minimum size of terminal nodes. Setting this number larger causes smaller trees
to be grown (and thus take less time). Note that the default values are different
for classification (1) and regression (5).

Should importance of predictors be assessed?

Should casewise importance measure be computed? (Setting this to TRUE will
override importance.)

Number of times the OOB data are permuted per tree for assessing variable
importance. Number larger than 1 gives slightly more stable estimate, but not
very effective. Currently only implemented for regression.

Should proximity measure among the rows be calculated?
Should proximity be calculated only on “out-of-bag” data?

If TRUE (default), the final result of votes are expressed as fractions. If FALSE,
raw vote counts are returned (useful for combining results from different runs).
Ignored for regression.

If set to TRUE, give a more verbose output as randomForest is run. If set to
some integer, then running output is printed for every do . trace trees.

If set to FALSE, the forest will not be retained in the output object. If xtest is
given, defaults to FALSE.

perform bias correction for regression? Note: Experimental. Use at your own
risk.

Should an n by nt ree matrix be returned that keeps track of which samples are
“in-bag” in which trees (but not how many times, if sampling with replacement)

optional parameters to be passed to the low level function randomForest . default.

An object of class randomForest, which is a list with the following components:

call
type
predicted

importance

the original cali to randomForest
one of regression, classification, or unsupervised.
the predicted values of the input data based on out-of-bag samples.

a matrix with nclass + 2 (for classification) or two (for regression) columns.
For classification, the first nclass columns are the class-specific measures
computed as mean descrease in accuracy. The nclass + Ist column is the
mean descrease in accuracy over all classes. The last column is the mean de-
crease in Gini index. For Regression, the first column is the mean decrease in
accuracy and the second the mean decrease in MSE. If importance=FALSE,
the last measure is still returned as a vector.
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importanceSD The “standard errors” of the permutation-based importance measure. For classi-
fication, a p by nclass + 1 matrix corresponding to the first nclass + 1
columns of the importance matrix. For regression, 2 length p vector.

localImp a p by n matrix containing the casewise importance measures, the [ij] ele-
ment of which is the importance of i-th variable on the j-th case. NULL if
localImp=FALSE.

ntree number of trees grown.

mtry number of predictors sampled for spliting at each node.

forest (a list that contains the entire forest; NULL if randomForest is run in unsu-
pervised mode or if keep . forest=FALSE.

err.rate (classification only) vector error rates of the prediction on the input data, the i-th
element being the error rate for all trees up to the i-th.

confusion (classification only) the confusion matrix of the prediction.

votes (classification only) a matrix with one row for each input data point and one
column for each class, giving the fraction or number of ‘votes’ from the random
forest.

oob.times number of times cases are ‘out-of-bag’ (and thus used in computing QOB error
estimate)

proximity if proximity=TRUE when randomForest is called, a matrix of proximity
measures among the input (based on the frequency that pairs of data points are
in the same terminal nodes).

mae (regression only) vector of mean square errors: sum of squared residuals divided
by n.

rsq (regression only) “pseudo R-squared”: 1 - mse / Var(y).

test if test set is given (through the xtest or additionally ytest arguments), this
component is a list which contains the corresponding predicted, err.rate,
confusion, votes (for classification) or predicted, mse and rsq (for
regression) for the test set. If proximity=TRUE, there is also a component,
proximity, which contains the proximity among the test set as well as prox-
imity between test and training data.

Neote

The forest structure is slightly different between classification and regression. For details on
how the trees are stored, see the help page for getTree.

If xtest is given, prediction of the test set is done “in place” as the trees are grown. If ytest
is also given, and do. trace is set to some positive integer, then for every do . trace trees, the
test set error is printed. Results for the test set is returned in the test component of the resulting
randomForest object. For classification, the votes component (for training or test set data)
contain the votes the cases received for the classes. If norm. votes=TRUE, the fraction is given,
which can be taken as predicted probabilities for the classes.

For large data sets, especially those with large number of variables, calling randomForest via
the formula interface is not advised: There may be too much overhead in handling the formula.

The “local” (or casewise) variable importance is computed as follows: For classification, it is the
increase in percent of times a case is OOB and misclassified when the variable is permuted. For
regression, it is the average increase in squared OOB residuals when the variable is permuted.
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Auther(s)

Andy Liaw (andy_liaw@merck.com) and Matthew Wiener (matthew_wiener@merck.comy), based
on original Fortran code by Leo Breiman and Adele Cutler.

References

Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32.

Breiman, L (2002), “Manual On Setting Up, Using, And Understanding Random Forests V3.17,
http://oz.berkeley.edu/users/breiman/Using_ random forests_V3.1l.pdf.

See Also

predict .randomForest, varImpPlot

Examples

## Classification:

##data(iris)

set.seed(71)

iris.rf <- randomForest (Species ~ ., data=iris, importance=TRUE,

proximity=TRUE)

print (iris.rf)

## Look at variable importance:

round {importance (iris.rf), 2)

## Do MDS on 1 - proximity:

iris.mds <- cmdscale(l - iris.rf$proximity, eig=TRUE)

op <- par(pty="s")

pairs (cbind(iris{,1:4], iris.mds$points), cex=0.6, gap=0,
col=c ("red*, *green', "blue") [as.numeric(iris$Species)],
main="Iris Data: Predictors and MDS of Proximity Based on RandomForest")

par (op)

print (iris.mds$GOF)

## The “unsupervised' case:

set.seed (17)

iris.urf <- randomForest (iris{, -51)
MDSplot (iris.urf, iris$Species)

## Regression:

## data(airquality)

set.seed(131)

ozone.rf <- randomForest(Ozone ~ ., data=airquality, mtry=3,
importance=TRUE, na.action=na.omit)

print {(ozone.rf)

## Show "importance" of variables: higher value mean more important:

round (importance (ozone.rf), 2)

rfImpute Missing Value Imputations by randomForest

Description

Impute missing values in predictor data using proximity from randomForest.
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dm9m37r2001
/* script file to process with the DM method */

Toad /home/thope/exp2/m37r2/001-1m37r2.img 1

setroi 400 1400 500 1500 1 /* only process minimum area to contain all ROIs */
crop 1 10 1

form1 0111

mode5 10 11 9  /* the last input to mode5 is N in the NxN window */

subtract 11 10 12

save /discl5/tmp/thope/m37r2/001m37r2dm9.img 12

quit



gatl9m37r2001
/* script file to variab1l convolve the noise and resolution reduced */
/% image with the gabtl9 kernel. */
Toad /home/thope/exp2/m37r2/001-1m37r2.img 1
load /home/thope/exp2/001-1r2ang.img 2

load /home/thope/exp2/gabtl9.img 3

scale 2 4 10 0 /* scale the angle image by 10 as vconv2 was designed */
/* for anglex10 images */
scale 36 .10 /% scale the gabt19 kernel to prevent numerical overflow*/
setroi 400 1400 500 1500 1 /* crop the image to the minimum size required */
/* to contain all ROIs */
cropl1 101
crop451

form1 0111
form4 0111

vconvZ 10 5 41 6 12
/% the number 41 js the length of the Gabor kernel, the width is assumed to be 1 */

save /discl5/tmp/thope/m37r2/001Im37r2gabt19.img 12

quit



idd30
disc 10 61 61 0 0 30 2
addconstant 10 31 -1 0
Toad 005-1med37.img 1
gdilate 1 31 32
subtract 1 32 33
reduce 33 34
reduce 34 35
save 005-1m37idd30r2.img 35



&

gl9cvl7a
#1/usr/bin/tcsh

zS -S /bin/tcsh
#$ -cwd
#

#Mail options

#$ -M tahope@dal.ca
#$ -m ea

#

#where to place output and errors
#$ -0 /home/thope/gl9cvi7aout.log
§$ -e /home/thope/gl9cvi7aerr.log

#Set the jobname in queue listings
ﬁ$ -N g19cvl7a

cp /home/thope/exp2/gatl9m37r2001.scr /home/thope/cviabl7/testimagel?.scr
cd /home/thope/cviabl?

/home/thope/cviabi7/cv .

cp /home/thope/exp2/gatl9m37r2002.scr /home/thope/cvlabl7/testimagel7.scr
cd /home/thope/cviabl?

/home/thope/cviabl7/cv .

cp /home/thope/exp2/gatl9m37r2003.scr /home/thope/cvlabl7/testimagel?.scr
cd /home/thope/cvlabl?7

/home/thope/cviabl7/cv .

cp /home/thope/exp2/gatl9m37r2004.scr /home/thope/cviabl7/testimagel7.scr
cd /home/thope/cviabl?

/home/thope/cviabl?/cv : .

cp /home/thope/exp2/gat19m37r2005.scr /home/thope/cvlabl?/testimagel?.scr
cd /home/thope/cviabl?

/home/thope/cvlabl?/cv

/* The first step is to place the script file of choice within the script

/* file associated with the cvlab directory, as each call to cv on Pluto

/* automatically starts the script file. y
*



ctexmap071m37n
load /home/thope/exp2/m37r2/071-1m37r2.img 1

load /home/thope/exp2/071-1r2ang.img 24

setroi 595 995 545 1365 1 L L
/* The images were cropped to the minimum area containing all ROIs */

crop 24 34 1

form24 0111

cropl21

form10111

Toad /home/thope/exp2/071-1rtr2chf.img 15

crop 15 25 1

form 15 0 1 1 1

Toad /home/thope/exp2/071-1rtr2w.img 23

crop 23 22 1

form23 0111

texmapnsa2 2 1 34 25 22 7 8 20 5 100 100

save /disc15/tmp/thope/m37r2/071-1rtm37r2cratnsa.1mg 7
save /disc15/tmp/thope/m37r2/071—1rtm37r2cdifnsa.1mg 8
form 7 0 10 10 1

form 8 0 10 10 1

form 2 0 10 10 1

form 34 0 10 10 1 /* The function "release" caused some difficulty on Pluto.
form 22 0 10 10 1 /* So, form was used as an alternative to release

form 21 0 10 10 1

form 25 0 10 10 1

form350111

form 36 0 111

form 37 0111

form38 0111

form 390111

form 30 0 1 11
Toad /home/thope/exp2/m37r2/071-1m37r2.img 1
load /home/thope/exp2/071-1r2ang.img 24

*/



ctexmap071m37n

setroi 955 1315 475 1315 1
crop 24 34 1
form24 0111

cropl21

form1 0111

Toad /home/thope/exp2/071-11ftr2chf.img 15

crop 15 25 1

form15 0111

Toad /home/thope/exp2/071-11ftr2w.img 23

crop 23 22 1

form23 0111

texmapnsa2 2 2 34 25 22 7 8 20 5 100 100

save /discl5/tmp/thope/m37r2/071-11ftm37r2cratnsa.img 7
save /discl5/tmp/thope/m37r2/071-11ftm37r2cdifnsa.img 8

quit

/* The function texmapnsa2 created the ratio and difference maps using NSA as
/* the measure.

/* The parts of the call to texmapnsa2:

/% first number: input image

/* second number: side of Eatient image, with 1=right and 2=left

/* third number: angle look-up image, as the small sample under investigation
/* was rotated

/* fourth number: image with mask of tissue under investigation

/% fifth number: image with mask of the reference tissue

sixth and seventh numbers: the output images

eighth and nineth numbers: the size of the samples under investigation in
the primar¥ tissue

tenth and eleventh numbers: the multiplier of the values obtained in the
comparison
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Script file exp2m37gl9c.scr

form 0 1 13 13 1

load 001-11ftm37r2gabtl9cratsd.img 1

/* load the left side Gabor filtered choroid plexus ratio map, STDV compare*/
load 001-11ftm37r2gabtl9cratsd.img 2

load 001-1r2d.img 9
/* mask of the signal area of the patient's image */

binary 9 10 1

binary 2 21 1
/* image 2 forms the left choroid plexus mask after thresholding*/

setroi 400 1400 500 1500 1
/* image crop used for the Gabor t=19 convolution */

setroi 505 895 215 915 2
/* image region which includes choroid and white mater ROIs */

crop 10 12 1
crop 12 11 2

erode 11 0 16
/* shrink the size of the signal mask slightly */

mask 21 16 22

/* make sure the choroid mask is completely within the signal area,
this step is more relevant for the white matter masks,

as some exceed the signal boundaries */

load 00l~1rtm37r2gabtl9cratsd.img 3
/* load the right side, Gabor filtered choroid plexus ratio map, STDV compare*/

load 001-1rtm37r2gabtl9cratsd.img 4
binary 4 25 1

setroi 135 455 215 825 2
/* image region which includes choroid and white mater ROIs */

crop 10 12 1

crop 12 11 2

erode 11 0 16

mask 25 16 24

maskinfoavg 1 22 3 24 exp2m37r2gabtl9c.txt 001-1m37r2gabtl9cratsd chf

/* maskinfoavg calculates the stats and NSA on each side, averages the values,
and then places the output into file exp2m37r2gabtl9c.txt.

The input consists of the 4 input images, the output text file name, map name,
and a designation for the region name under investigation. */
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After the pair of measures were selected from Group A, measures
with low correlation to either were identified from the 64.

The value of .3 was chosen as the cut-off

Group B,1
Group B,2
Group B,3
Group B,4
Group B,5
Group B,6
Group B,7
Group B,8
Group B,9

Group B,10
Group B, 11
Group B,12

Group A, 1

0.295
-0.19
-0.16

0.141

0.098

0.182

0.151

-0.027
0.172
-0.095
-0.144
0.05

Group A, 2

0.699
0.834
-0.16
0.141
0.098
0.182
0.151
-0.027
0.172
0.095
0.144
0.05

lowest correlation

Group B,1 and Group B,2 discarded due to their high correlation with Group A,2

Group B,3
Group B,4
Group B,5
Group B,6
Group B,7
Group B,9

Group B,10
Group B,11
Group B,12

Group A,1

-0.16
0.141
0.098
0.182
0.151
0.172

-0.095
-0.144
0.05

Group A, 2

-0.16
0.141
0.098
0.182
0.151
0.172
0.095
0.144

0.05

Group B,8

-0.42 less than .5
0.779
0.916
0.89
0.743
Q0.765
0.347 less than .5
0.596
0.895

Result: Group A,1; Group A,2; Group B,8; Group B,3; Group B,10

Designations in spreadsheet containing Pearson correlations

Group A,1
Group A2
Group B,1
Group B,2
Group B,3
Group B,4
Group B,5
Group B,6
Group B,7

C138
Cc19
C96

'C24

C48
Cc81
Cc82
C90
C137



&

Group B,8
Group B,9
Group B,10
Group B,11
Group B,12

C146
C202
C209
Cc210



C90

Co1

Cco6

c121
C122
c123
C128
C137
C138
C139
C144
C145
C146
C147
C152
c177
Cc178
C179
C184
C185
C186
c187
C192
C201
C202
C203
€208
C209
c210
c211
C216
C225
C226
C227
C232
C249
C250
C251
C256

C1
0.865
0.597

0.58
0.948
0.832

0.16
0.474

-0.172
-0.244
-0.401

0.15
0.357
0.519

-0.549
-0.569
0468
0.606
-0.755
-0.765
0.507
0.552
-0.69
-0.694
0.958
0.777
0.505
0.475
0.961
0.781
0477
0.437
0.455
0.578
-0.758
0771
0.938
0.816
0.5
0.455
0.904
0.676
0.513
0.442
0.477
0.545
-0.671
-0.665

0.46

0.433
-0.652
-0.548
0.909
0.816
0.631
0.614
0.666

0.62
0.621
0.607
0.532

0.66

-0.683
-0.712
0.511
0.648
-0.746
-0.766

Cc2

0.483
0.451

0.95
0.05
0.514
-0.316
-0.101
-0.322
-0.073
0.474
0.627
-0.522
-0.543
0.471
0.711
-0.627
-0.64
0.538
0.662
-0.601
-0.609
0.91
0.948
0.443
0.392
0.89
0.934
0.407
0.333
0.492
0.672
-0.735
-0.75
0.819
0.929
0.373
0.363
0.897
0.895
0.389
0.18
0.474
0.653
-0.532
-0.589
0.555
0.603
-0.554
-0.652
0.805
0.839
0.554
0.536
0.467
0.606
0.545
0.531
0.483
0.692
-0.616
-0.652
0.473
0.702
0.64
-0.666

0.495
0.352
0.945
0.858
-0.362
-0.135
-0.956
-0.941
-0.308
-0.064
-0.949
-0.766
0.632
0.658
0.954
0.945
0.417
0.516
0.929
0.504
-0.31
-0.047
-0.953
-0.942
-0.312
-0.033
-0.933
-0.924

C17
c18
Cc19
C24
Cat

C43
C438
C49
cso
C51
C56
C65
Cce6
ce7
Cc72
C81
Cc82
cs3
cses
Cc89
Ccso
Co1
Co6
c121
C122
c123
c128
C137
€138
C139
C144
C145
C146
C147
C152
c177
C178
c17¢
C184
C185
c186
c187
C192
C201
Cc202
C203
C208
C209
C210
c211
C216
C225
C226
c227
C232
C249
C250
C251
C256

Pearson Correlation Coefficient

Cc8

0.743
0.65
0.631
0.567
-0.5
-0.118
-0.692
-0.687
-0.404
-0.097
-0.97
-0.965
-0.35
-0.079
-0.975
-0.971
0.64
0.55
0.981
0.981
0.716
0.632
0.967

-0.416
-0.085
-0.914
-0.907

0.397

C201
C202
C203
C208
C209
C210
C211
C216
C225
C226
ca27
C232
C249
C250
C251
C256

c17

0.905
0.309
0.169
0.404
-0.577
-0.592
0.217
0.47
-0.88
-0.888
0.273
0.431
-0.846
-0.849
0.946
0.826
0.702
0.673
0.991
0.862

0.641
0.218
0442
-0.901
-0.909
0.882
0.791
0.675
0637
0.855
0.69
0.685
0.561
0.239
0.406
-0.81
-0.821
0.266

-0.81
0.71
0.881
0.84
0.763
0.75
0.589
0.618
0.748
0.733
0.295
0.51
-0.819
-0.841
0.271
0.509
-0.854
-0.871

c18

0.119
0.242
0.452
-0.612
-0.625
0.243
0.551
-0.778
-0.788
0.312
0.524
0.775
-0.783
0.906
0.965
0.659
0.611
0.915
0.982
0.629
0.557

0.526
-0.861
-0.874

0.786

0.872

0.58

0.568

0.855

0.864

0.593

0.393

0.262

0.488
-0.699
-0.751

0.355

0477
-0.723
-0.792

0.805

0.872

0.728

0.712

0.413

0.599

0.725

0.71

0.273

0.542
-0.774
-0.802

0.271

0.568
-0.782
-0.802

C24

-0.587
-0.553
-0.013
0.001
-0.5664
-0.451
-0.503
-0.502
-0.537
-0.361
-0.5
-0.502
0.075
-0.078
0.529
0.551
0.236
0.014
0.551
0.581
-0.857
-0.375
-0.402
-0.393
0.06
-0.19
0.573
0.57
-0.049
-0.218
0.574
0.598
-0.548
-0.499
-0.5619
-0.463
-0.576
-0.486
-0.513
-0.283
0.12
-0.004
0.424
0.451
0.048
-0.127
0.43
0.456
-0.457
-0.421
-0.398
-0.369
-0.486
-0.441
-0.409
-0.392



cse

C90

co1

Coe

C121
Cc122
C123
C128
C137
C138
C139
C144
C145
C146
C147
C152
c17?
C178
c179
C184
c185
Cc186
c187
c192
C201
C202
C203
C208
C209
C210
ca211
C216
C225
€226
Cc227
C232
C249
C250
C251
C256

C41
0.769
0.178
0.151
0.925
0.788

0.29
0.275
0.907

0.69
0.338

0.33
0.298

0.943
0.741
0.2
0.178
0.391
0.511
-0.515
-0.523
0.468
0.507
-0.48
-0.499
0.92
0.804
0.341
0.311
0.889
0.645
0.338
0.171
0.23
0.178
-0.385
-0.405
0.261
0.21
-0.356
-0.364
0.876
0.736
0.315
0.272
0.865
0.744
0.262
0.23

Caz

-0.16
-0.201
0.704
0.871
-0.063
-0.084
0.757
0.829
-0.007
-0.025
0.544
0.528
-0.155
-0.189
0.484
0.462
-0.232
-0.274
0.757
0.813
-0.149
-0.477
0514
0.65
-0.196
-0.225
0.573
0.588
-0.185
-0.249
0.711
0.859
0.036
-0.005
0.762
0778
0.031
-0.02
0.423
0.404
-0.038
-0.072
0.481
0.528
-0.074
-0.118
0.674
0.786
-0.01
-0.056
0.645
0.805
-0.068
-0.099

c43

0.999
0.054
-0.126
0.717
0.713
0.008
-0.122
0.701
0.695
-0.629
-0.626
-0.66
-0.64
-0.605
-0.661
-0.661
-0.636
0.084
-0.088
0.725
0.718
-0.475
-0.466
-0.594
~-0.585
-0.483
-0.406
-0.591
-0.564
0.081
-0.045
063
0.603
0.05
-0.067
0.633
0.504
-0.704
-0.789
-0.782
-0.741
-0.383
-0.572
-0.77
-0.729
0.025
-0.237
0.785
0.787
0.026
-0.238
0.785
078

Pearson Correlation Coefficient

C49
C50
C51
Cs6
Cces
ces
ce7
C72
C81
c82
c83
cas
C89
C90
Cco1
Co6
C1zt
C122
C123
Ciz8
C137
C138
C139
C144
C145
C146
Cc147
C152
C177
C178
C179
C184
Cc185
C186
Cc187
C192
C201
C202
C203
c2o8
C209
Cc210
ca11
C216
C225
C226
Cc227
C232
C249
C250
C261
C256

C48
0.032
-0.156
0.719
0.716
-0.017
-0.153
0.699
0.695
-0.647
-0.639
-0.663
-0.632
0624
-0.672
-0.65
-0.624
0.059
0117
0.73
0.725
-0.494
-0.487
-0.587
-0.576
0.5
-0.42
-0.583
-0.553
0.059
-0.074
0.628
0.602
0.027
-0.092
0.631
0.502
-0.719
-0.798
-0.779
-0.738
-0.403
-0.586
-0.764
-0.722
0.002
-0.264
0.781
0.785
0.006
-0.264
0.786
0.782

C49

0.819
0.194
0.179
0.976
0.715
0.273
0.267
0.387
0.313
-0.462
-0.504
0.28
0.223
-0.482

-0.538'

0.987
0.765
0.15
0.127
0.509
0.541
-0.433

-0.275
-0.293
0329
0.231
-0.26
-0.25
0.969
0.814
0.221
0.178
0.973
0.811
0.156
0.126

Cs0

-0.102
-0.126
0.882
0.955
-0.044
-0.065
0.641
0.645
-0.136
-0.188
0.538
0.56
0.2
-0.261
0.861
g.95
-0.202
-0.236
0.61
0.741
-0.169
-0.209
0723
0.737
-0.171
0231
0.836
0.991
-0.013
-0.09
0.933
0.923
-0.03
-0.145
0.47
0.461
-0.011
-0.041
0.37
0439
-0.017
-0.041
0.796
0.906
-0.065
-0.115
0.809
0.938
-0.107
-0.143

C51

0.999
0.138
-0.097
0.986
0.983
-0.79
-0.678
-0.936
-0.925
-0.86
-0.75
-0.919
-0.902
0.205
~0.096
0.965
0.962
-0.696
-0.561
-0.915
-0.889
-0.639
-0.465
-0.807
-0.817
0.174
-0.034
0.959
0.946
0.136
~0.055
0.952
0.768
-0.762
-0.757
-0.947
-0.936
-0.509
-0.678
-0.921
-0.899
0.112
-0.147
0.963
0.963
0.124
-0.153
0.964
0.963

C56
C65

ce7

Cr2

C81

cs2

Cc83

css

ca9

Cso

Cot

Cs6

C120
C121
C122
C123
c128
C137
C138
C139
C144
C145
C146
C147
C152
c177
C178
C179
C184
c185
C186
c187
C192
C201
C202
Cc203
C208
C209
C210
c211
C216
c225
C226
ca27
C232
C249
C250
C251
C256



C121
C122
c123
c128
C137
C138
C138
C144
C145
C146
C147
C152
c177
C178
C179
C184
C185
Cc186
c187
C192
C201
C202
C203
C208
C209
C210
C211
Cc216
C225
C226
c227
Cc232
C249
C250
Cca251
C256
Ce6

ce7

C72

C81

Ccs82

c83

Ccss

C8g

[03:04]

C91

C96

Cé5

0.99
0.847
0.074
0.045
0.539
0.595
-0.391
-0.422
0.607
0.544
-0.376
-0.367
0.971
0.887
0.199
0.162
0.959
0.742
0.21
0.075
0.376
0.279
-0.24
-0.257
0.283
0.207
-0.196
-0.195
0.954
0.858
0.182
0.137
0.967
0.862
0.117
0.086
0.825
0.218
0.204
0.464
0.394
0414
-0.456
0.344
0.298
-0.441
-0.493

C66
0.785
0.966

-0.192
-0.235
0.526
0.656
-0.167
-0.2
0.647
0.656
-0.185
-0.242
0.723
0.932
0.006
-0.078
0.881
0.919
-0.005
-0.145
0.431
0.403
-0.02
-0.043
0.248
0.303
-0.002
-0.016
0.703
0.85
-0.028
-0.075
0724
0.885
-0.087
-0.122

-0.048
-0.082
0618
0.613
-0.124
-0.167
0.505
0.52
-0.202
-0.246

c67

0.281
-0.058
0.961
0.959
-0.625
-0.519
-0.924
-0.905
-0.587
«0.454
-0.911
-0.794
0.251
0.021
0.946
0.947
0.188
-0.039
0.943
0.809
~0.707
-0.746
-0.949
-0.937
-0.432
-0.56
-0.924
-0.902
0.2
-0.078
0.963
0.961
0.201
-0.095
0.955
0.955

0.998
-0.753
-0.683
-0.971

-0.96
-0.816
-0.757

-0.95
-0.932

c72

-0.763
-0.693
-0.967
-0.956
-0.822
-0.763
-0.941
-0.923

Pearson Comalation Coefficient

Cci21
C122
Cc123
Cc128
C137
C138
C139
C144
C145
C146
C147
C152
C177
C178
C1i79
C184
Cc185
C186
c187
C192
Cc201
C202
C203
C208
C209
C210
c211
C216
Cc225
C226
c227
C232
C249
C250
C251
C256
ca2

cs83

Css

(02:1:]

C90

Cg1

Cc96

c81
0.397
0.631
-0.822
-0.84
0.909
0.871
0.559
0.523
0.929
0.779
0.556
0.445

0.578
-0.708
-0.741

0.466

0.547
-0.702
-0.665

0.898

0.88

0.692

0.665

0.575

0.651

0.696

0.673

0.43
0.65
-0.745
-0.775

0.437

0.667
-0.785
-0.806

0.894

0.593

0.557

0.968

0.888

0.554

0.511

C121
c122
Cc123
Cc128
C137
C138
C139
C144
C145
C1486
C147
C152
C177
C178
C179
C184
C185
c186
c187
C192
C201
C202
C203
C208
C209
c210
cz211
C216
C225
C226
c227
C232
C249
C250
C251
C256
cs3

cas

Cc89

C90

o2:]]

Cg6

ce2
0.332
0.602
-0.796
-0.812
0.745
0.898
0.478
0.461
0.859
0.916
0.483
0.269
0.322
0.587
-0.599
-0.682
0.462
0.603
-0.6368
0.762
0.765
0.886
0.653
0.627
0.349
0613
0.651
0629
0318
0618
-0.713
-0.746
0.337
0.654
-0.708
-0.732
0.569
0.517
0.849
0.988
0.537
0.468

cs83

-0.471
-0.113
-0.901
-0.894
0.461
0.375
0.953
0.945
0.426
0.337
0.934
0.815
-0.438
-0.192
-0.923
-0.925
-0.363
~0.086
-0.923
-0.803
0.548
0.626
0.938
0.929
0.324
0.48
0.908
0.885
-0.401
-0.123
-0.934
-0.923
-0.393
-0.099
0.9
-0.893

0.997
0.665
0.654
0.981

0.97

[02:1]
-0.515
-0.161
-0.881
-0.874

0.431
0.326
0.956
0.946
0.38
0.273
0.936
0.822
-0.48
-0.242
-0.918
-0.914
-0.415
-0.136
-0.914
0.779
0.522
0.587
0.93
0.926
0.306
0.443
0.899
0.879
-0.434
-0.163
-0.918
-0.905
-0.43
-0.145
-0.888
-0.878

0.634
0.604
0.979
0978

Cc89
0.288
0.513

-0.88
-0.891
0.905
0.832
0.644
0.611
0.89
0.728
0.651
0.54
0.297
0.472
-0.784
-0.794
0.331
0414
-0.782
-0.681
0.887
0.851
0.744
0.725
0.628
0.661
0.735
0.713
0.345
0.554
-0.786
-0.819
0.325
0.561
-0.833
-0.849

0.874
0.635
0.592

C90

0.24
0.513
-0.858
-0.869
0.748
0.87%
0.566
0.552
0.841
0.89
0.574
0.364
0.237
0.501
-0.677
-0.747
0.365
0.517
-0.713
-0.804
0.777
0.894
0.719
0.695
0.37
0.625
0.715
0.692
0.243
0.546
-0.781
-0.808
0.253
0.579
-0.769
-0.789

0.631
0.559



c121
Cc122
c123
c128
Cc137
C138
C139
C144
C145
C146
C147
c162
c177
Cc178
C179
ci184
c185
c1i86
c187
Cc192
C200
C201
C202
C203
C208
C209
c210
c211
C2186
C225
C226
ca27
C232
C249
€250
€251
C256
C98

co1
-0.502
-0.211
-0.892
-0.879
0.457
0.366
0.962
0.951
0.414
0.33
0.957
0.845
-0.457
-0.253
-0.935
-0.93
-0.406
-0.18
-0.942
-0.799
0.837
0.56
0.634
0.94
0.937
0.258
0.415
0.934
0.918
-0.403
-0.141

-0.928
-0.4
-0.125
-0.802
-0.892
0.992

C96
-0.559
-0.268
-0.863
-0.849

0.413
0.295
0.959
0.943
0.352
0.242
0.95
0.851
-0.514
-0.314
-0.922
-0.912
-0.471
-0.238
-0.925
-0.757
0.807
0.53
0.589
0.924
0.925
0.227
0.365
0.919
0.807
-0.45
-0.186
-0.92
-0.902
-0.448
-0.176
-0.885
-0.872

Cc122
Cc123
C128
C137
C138
€139
C144
C145
C146
C147
C152

C178
C179
C184
c185
C186
c187
C192
Cc201
C202
C203
Cc208
C209
c210
c211
G217
C226
c227
C232
C249
C250
C251
C256

Pearson Correlation Coefficient

c121

0.827
0.148
0.121
0.491
0.552
-0.449
-0.474
0.556
0.51
-0.429
-0.4
0.983
0.873
0.262
0.233
0.957
0718
0.275
0.143
0.31
0.215
-0.309
-0.328
0.304
0.213
-0.274
-0.121
0819
0.26
0.206
0.958
0.826
0.187
0.155

c122

-0.168
-0.213
0.552
0.656
-0.164
-0.184
0.671
0.659
-0.187
-0.238
0.774
0.935
0.006
-0.071
0.901
0.938
0.009
-0.152
0.409
0.383
-0.038
-0.069
0.347
0.374
-0.031
0.093
0.802
-0.018
-0.063
0.757
0.847
-0.072
-0.108

c123

0.998
-0.693
-0.652
-0.862
-0.628
-0.683
-0.592
-0.849
-0.685

0.126
-0.132

0.914
-0.936

0.051
-0.161

0.932

0.835
-0.774

-0.82
-0.92
-0.91
-0.422
-0.568
-0.892
-0.891
-0.246

0.958

0.965

0.083
-0.249

0.948

0.952

C137
C138
C139
C144
C145
C146
C147
Ccis2
c177
C178
C179
C184
C185
C186
C187
Cc192
c201
C202
C203
C208
C209
Cc210
c211
C216
C225

c227
C232
C249
Cc250
C251
€256

c128

-0.708
-0.669
-0.846
-0.821
-0.703
-0.61
-0.841
-0.676
0.102
-0.167
0.911
0.937
0.019
-0.202
0.928
0.841
-0.781
-0.825
-0.914
-0.905
-0.427
-0.672
-0.888
-0.871
0.048
-0.269
0.95
0.958
0.058
-0.276

085



Pearson Correlation Coefficient

C137 C138 C139 C144 C145 C146 C147 Ci52
C138 0.892 C148 0.884
C139 0.537 0.396 C147 0.484 0.34
C144 0491 0374 0988 C152 0376 0.152 0915
C145 0961 0958 0465 0434 C177 058 0504 -0.371 -0.338
C146 0743 0947 0.318 0313 C178 0685 0708 -0216 -0.269
C147 0562 0422 0.993 0979 C179 -0.628 -0451 0976 -0.89
C152 0.494 025 0916 0.887 Cc184 -0.657 -0.535 0939 -0.816
c177 0537 0.561 -0.398 -0.438 Cc185 0614 0629 -0.367 -0.382
c178 0575 0707 -0.214 -0.257 C186 0598 08677 -0.1%4 -0.273
c179 -0.701 -0.554 -0.974 -0.948 Cc187 -063 -0497 097 -0.863
C184 -0.688 -0602 -0.947 -0.916 Cc192 0617 -0631 -0.757 -0.546
c185 05 0618 -0.371 -0.399 C201 0848 0656 0594 0.504
C186 0439 0621 -0.155 -0.174 Cc202 0822 0765 0606 0454
c187 -0.68 -0.572 -0.965 -0.939 C203 0568 0443 0934 0811
c192 -0.569 -0624 076 -0.741 C208 0547 0413 0937 0801
C201 0.884 0.793 0.566 0.536 C209 0578 0.347 0391 0434
C202 0786 0.819 0582 0557 Cc210 0645 0596 0468 0.41
Cc203 0.617 053 0927 0908 c21 0.597 0472 093 0833
Cc208 0608 0.513 0.927 0.905 C216 0579 0446 0317 0806
C209 0665 0.502 0.382 0377 C225 0.587 0457 -0.318 -0.281
C210 0628 0647 0463 0465 C226 0693 0645 -0.14 -0.18
c211 0632 0546 0923 0.91 c227 063 -0523 -092 -0.795
Cc216 0622 0.527 0805 0888 c232 -0659 -0.556 -0.802 -0.771
C225 0.576 055 -0.353 -0404 C249 0.598 0482 -0326 -0.282
C226 0638 0703 -0.159 -0.228 C250 0716 0697 -0.129 -0.168
c227 -0.658 -0.587 -0.915 -0.894 C251 0652 -0498 -0.892 -0.774
C232 0682 -0619 -0.897 -0.871 C256 -0671 -0.522 -0.878 -0.757

C249 0.563 0551 -0.352 -0.4
Cc260 0636 0726 -0.141 -0.207
€251 -0.703 -0.596 -0.884 -0.856
C256 0718 -0618 -0.87 -0838



c178
C179
C184
c188
c186
c187
Cc192
Cc201
C202
C203
C208
C209
ca210
c211
C216
€225
C226
Cc227
Cc232
C249
€250
C251
€256

c177
0.859
0.208
0.187
0.945
0.678
0.223
0.115
0.331
0.237
-0.265
-0.28
0.335
0.238
-0.244
-0.244
0.973
0.824
0.203
0.15¢
0.979
0.824
0.144
0.113

Cc178

0.036
-0.046
0.951
0.931
0.022
-0.112
0.397
0.388
-0.079
-0.104
0.332
0.395
-0.085
-0.106
0.809
0.894
0.001
-0.049
0.827
0.927
-0.034
-0.071

C179

0.977
0.194
0.028
0.992
0.787
0.711
-0.699
-0.941
-0.94
-0.474
-0.532
-0.937
-0.922
0.153
-0.047
0.948
0.94
0.16
-0.056
0.935
0.928

Pearson Comeiation Coefficient

C185
Cc186
Cc187
c192
C201
C202
C203
C208
C209
c210
c211
C216
C225

c227
Cc232
C249
€250
C251
C266

c184 C188
0.122
-0.091 0.865
0.983 0.19
0.876 0.01
-0.67 0311
-0.706 0.287
-0.913 -0.237
-0.913 -0.263
-0.378  0.249
-0.502 0.266
-0.815 -0.211
-0.901 -0.222
0.152 0.886
-0.097 0.852
094 0.159
0937 0.111
0.139 0.92
-0.121  0.883
0.908 0.121
0908 0.084

C186

0.01
-0.193
0.279
0.334
-0.062
-0.098
0.227
0.37
-0.064
-0.098
0.594
0.743
-0.017
-0.061
0.647
0.807
-0.023
-0.058

c187

0.814
-0.699
-0.717
-0.938
-0.935
-0.437
-0.538
-0.932
-0.915

0.174
-0.056

0.956

0.951

0.182
~0.068

0.932

0.927

c201
C202
C203
Cc208
C209
C210
c21
Cc216
Cc225
C226
c227
C232
C24s
C250
C251
C256

c192

-0.498
-0.626
-0.761
-0.775
-0.107
-0.327
-0.782
-0.789
0.107
-0.118
0.787
0.794
0.067
-0.157
0.73
0.739



C202
C203
Cc208
C209
C210
c211
Cc216
C225
C226
c227
C232
C249
C250
Cc251
C256

cz201

0.929
0.742
0.723
0.59
0.614
0.761
0.741
0.421
0.602
-0.766
-0.786
0.385
0.576
-0.837
-0.846

C202

0.787
0.754
0.483
0.686
0.78
0.756
0.282
0.559
-0.828
-0.851
0.272
0.56
-0.857
-0.668

Cc203

0.994
0422
0.563
0.969
0.954
-0.199
0.07
-0.98
-0.975
-0.211
0.069
-0.979
-0.971

Pearson Correlation Coefficient

C209
C210
c211
C216
C225
C226
Cc227
C232
C249
€250
C251
C256

Cc208
0.372
0.493
0.964
0.962

-0.2
0.058
-0.964
-0.958
-0.217
0.048
~0.967
-0.958

C209 C210
0.867
0.323 0.461
026 0.369
0305 0.167
0275 0314
0446 -0.61
0454 -0622
0.256 0.149
0.269 0.346
-0.491 -0.602
0493 -0.609

ca2

0.992
-0.166
0.069
-0.953
-0.945
-0.162
0.081
-0.946
-0.936

C216

-0.15
0.074
~0.929
-0.921
-0.148
0.076
-0.93
-0.92

C226
c227
C232
G249
C250
C251
C266

c225

0.86
0.152
0.109
0.987
0.837

0.07
0.042



C227
Cc232
C249
C250
C251
C256

C226
-0.134
-0.187

0.847
0.988
-0.208
-0.245

ca27

0.998
0.158
-0.139
0.982
0.979

c232

0.116
-0.193
0.985
0.984

Pearson Correlation Coefficient

C249 C250 C251

C250 0.841
C251 0.09 -0.2
C256 0082 -0.237 0.998



Designation Parametric map Summary measure
CA1 cdifnsa avg NSA
c2 cdifnsa avgstdev
C3 cdifnsa avgmean
C4 cdifnsa avgmax
C5 cdifnsa avgmin
C6 cdifnsa avgsk
c7 cdifnsa avgkurt
C8 cdifnsa avgmed
Cc9 cratnsa avg NSA
C 10 cratnsa avgstdev
C 11 cratnsa avgmean
c 12 crainsa avgmax
Cc 13 cratnsa avgmin
C 14 cratnsa avgsk
C 15 cratnsa avgkurt
C 16 cratnsa avgmed
C 17 cdifsd avg NSA
C 18 cdifsd avgstdev
c 19 cdifsd avgmean
C 20 cdifsd avgmax
c21 cdifsd avgmin
C 22 cdifsd avgsk
Cc 23 cdifsd avgkurt
C24 cdifsd avgmed
C25 cratsd avg NSA
C 26 cratsd avgstdev
Cc 27 cratsd avgmean
C 28 cratsd avgmax
C 29 cratsd avgmin
C 30 cratsd avgsk
C 31 cratsd avgkurt
C 32 cratsd avgmed
C 33 ratsd avg NSA
C 34 ratsd avgstdev
C 35 ratsd avgmean
C 36 ratsd avgmax
C 37 ratsd avgmin
C 38 ratsd avgsk
C 39 ratsd avgkurt
C 40 ratsd avgmed
C 41 difsd avg NSA
C 42 difsd avgstdev
C 43 difsd avgmean
C 44 difsd avgmax
C 45 difsd avgmin
C 46 difsd avgsk
C 47 difsd avgkurt
C 48 difsd avgmed
C 49 difnsa avg NSA
C 50 difnsa avgstdev
C 51 difnsa avgmean
C 52 difnsa avgmax
C 53 difnsa avgmin
C 54 difnsa avgsk
C 55 difnsa avgkurt
C 56 difnsa avgmed
C 57 ratnsa avg NSA
C 58 ratnsa avgstdev
C 59 ratnsa avgmean
C 60 ratnsa avgmax
C 61 ratnsa avgmin
C 62 ratnsa avgsk
C 63 ratnsa avgkurt
C 64 ratnsa avamed




C 66 idd30difnsa avgstdev
C 67 idd30difnsa avgmean
C 68 idd30difnsa avgmax
C 69 idd30difnsa avgmin
c70 idd30difnsa avgsk
c71 idd30difnsa avgkurt
c72 idd30difnsa avgmed
C73 idd30cratsd avg NSA
C74 idd30cratsd avgstdev
C 75 idd30cratsd avgmean
C76 idd30cratsd avgmax_ -
c77 idd30cratsd avgmin
C78 idd30cratsd avgsk
C79 idd30cratsd avgkurt
C 80 idd30cratsd avgmed
C 81 idd30cdifnsa avg NSA
C 82 idd30cdifnsa avgstdev
C 83 idd30cdifnsa avgmean
C 84 idd30cdifnsa avgmax
C 85 idd30cdifnsa avgmin
C 86 idd30cdifnsa avgsk

C 87 idd30cdifnsa avgkurt
C 88 idd30cdifnsa avgmed
C 89 idd30cdifsd avg NSA
C 90 idd30cdifsd avgstdev
C 91 idd30cdifsd avgmean
C 92 idd30cdifsd avgmax
C 93 idd30cdifsd avgmin
C 94 idd30cdifsd avgsk

C 95 idd30cdifsd avgkurt
C 96 idd30cdifsd avgmed
Cc 97 idd30cratnsa avg NSA
C 98 idd30cratnsa avgstdev
C 99 idd30cratnsa avgmean
C 100 idd30cratnsa avgmax
C 101 idd30cratnsa avgmin
C 102 idd30cratnsa avgsk

C 103 idd30cratnsa avgkurt
C 104 idd30cratnsa avgmed
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C 106 idd30ratsd avgstdev
C 107 idd30ratsd avgmean
C 108 idd30ratsd avgmax
C 109 idd30ratsd avgmin
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C 112 idd30ratsd avgmed
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C 123 idd30difsd avgmean
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C 127 idd30difsd avgkurt
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C 132 dm9ratsd avgmax
C 133 dm9ratsd avgmin
C 134 dm9ratsd avgsk
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C 136 dm9ratsd avgmed
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C 138 dm9cdifnsa avgstdev
C 139 dm9cdifnsa avgmean
C 140 dm9cdifnsa avgmax
C 141 dm9cdifnsa avgmin
C 142 dm9cdifnsa avgsk

C 143 dm9cdifnsa avgkurt
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Appendix L

Calls to randomForest and the EXP2
Data Set
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Id

©COONOO A WN-

-1506.128662
-1638.783447
-1473.279541
-16569.692139
-1142.889893
-1146.958496
-1371.343506
-1759.997314

-982.943848
-1835.611328

-994.506104
-1707.345947
-1647.885986
-2297.991211
-1222.086914
-1227.549316
-1261.142334
-1001.200378
-1533.385498
-1047.294922
-1742.322021
-1261.724609
-1591.834106
-1118.041992
-1361.311279
-1266.759521
-1314.871826
-1147.156616
-1459.019043
-1172.120117
-2085.207275
-1654.790283
-1172.381592
-1034.872437
-1394.214111
-1954.264893
-1046.379028

-940.495972
-1885.580078
-1331.295776
-1764.869385
-1455.008057

-991.483887
-1536.418335
-1173.501831
-1674.406738
-1206.430176
-1495.001465
-2659.919922
-1724.177734

-1044
-509
-970
-549
-346
-535
-596
-757
-537
-614
-355
-665
-421

-1098
-763
-751
-549
-863
-574
-554

-1088
-767
-620
-829
-646
-222
-590
-723

-1201
-376
-850
-757
-400
-407
-402
-729
-464
-307
-508
-372
-337
-494
-312
-137
-713
-775
-462
-677

-1007
-749

2.110604
1.442073
2.116361
1.444225
1.139563

1.50332
1.753635
2.493272
1.628055
2.116736

1.34396
1.646893
1.679309
2.894506

2.08546
1.872331
1.330224
1.979923
1.635515
1.172557
2.008103
1.776805
1.865009
2.207051
2.069677
1.427723
1.429831
1.848984
1.623105
1.336858
2.093622
1.942472
1.402386

1.50551
1.751501
2.210483
1.237144

1.11331
2.712895
1.516364
1.559643
1.952307
1.494628
2.271782
1.678449

2.29959
1.499628
1.659625
1.778932
1.434435

0.88217
0.614567
0.879258
0.711589

0.55073
0.577883
0.832026
1.029326
0.636941
0.993954
0.563583
0.725142
0.735915
1.217765
0.942853
0.745132

0.60167
0.828044

0.70721
0.496547
0.795238
0.745297

0.77031
0.865998
0.819761
0.632918
0.576181
0.792648
0.691892
0.644733
0.909746
0.882474
0.578857
0.637341
0.752228

0.86981
0.588007

0.48033
1.181125
0.652321
0.788998
0.846054
0.648839

0.9758
0.743745
0.940526
0.690442
0.756781
0.838271
0.608173

cdifsd avgmean difsd avgmed dm9cdifnsa avgstdev dm9cdifsd avgstdev g19cdifsd avg NSA

110.869194
77.849075
109.097992
87.305214
75.02829
67.582108
111.226578
142.936752
87.569855
122.701736
92.557549
91.25058
92.752716
126.077507
98.368423
88.468658
76.301331
99.204124
90.588783
69.119011
121.346794
98.78186
107.562271
112.801552
108.77182
82.623367
84.091927
119.885406
113.19603
71.683418
126.852791
105.123001
72.335373
96.518311
95.136551
111.88356
82.542244
74.56662
137.493317
87.759979
90.457207
99.875046
77.91304
119.48053
87.923126
122.614487
98.130951
88.427261
93.632362
85.689705



51
52
53
54
55
56
57
58
59
60
61
62
65
66
67
68
69
70
71

-1732.682373
-1425.107666
-1388.341553

-1692.88623
-1859.151367
-1982.948853

-1643.14209

-1072.79126
-1526.696045
-1273.188599
-1043.307983
-1322.907471
-1098.013306
-2055.791748
-1337.285278

-1336.89502
-1217.283447
-2464.615723
-1757.619385

-833
-537
-689
-891
-675
-385
-769
-765
-1101
-607
-1006
-402
-506
-397
-372
-1067
-386
-835
-882

1.635921
2.12202
1.339033
2.133099
2.066749
1.798364
2.355124
1.982152
2.443818
1.407683
1.718987
1.34909
1.4979
1.922874
1.38082
2.148232
1.429737
2.27918
2.488728

0.743045
0.928024
0.589895
0.97476
0.899295
0.837046
1.010187
0.841016
1.094525
0.61628
0.687699
0.612353
0.602236
0.822325
0.601793
0.91543
0.6218
0.985707
1.049408

105.542694
112.843094
87.631447
106.895523
123.11438
103.254234
137.5632578
111.588287
140.157227
75.21875
103.192245
60.875015
93.985481
97.499161
80.104309
119.104355
109.811523
137.77066
143.581604



ID Cerebral Palsy
1 Yes
2 Yes
3 No
4 No
5 No
6 Yes
7 No
8 No
9 Yes

10 No
11 No
12 No
13 Yes
14 Yes
15 No
16 No
17 No
18 No
19 No
20 Yes
21 Yes
22 Yes
23 No
24 Yes
25 Yes
26 No
27 No
28 Yes
29 Yes
30 No
31 No
32 No
33 Yes
34 Yes
35 No
36 No
37 No
38 No
39 Yes
40 No
41 Yes
42 Yes
43 Yes
44 No
45 No
46 No
47 Yes
48 No
49 No
50 Yes



51 No
52 Yes
53 No
54 No
55 No
56 Yes
57 No
58 Yes
59 No
60 Yes
61 Yes
62 No
65 Yes
66 Yes
67 Yes
68 Yes
69 Yes
70 Yes
71 No



library(randomForest)
# variables selected based on coorelations See pages 173 and 174 in
book 7 of PhD notes

#Use these variables for experiment 2 data set

basechvd4 <~

read.table ("/home/abdo/rules/TAHrf/basecvdfin.csv", sep=",",header=TRUE)
base.coll<~
read.table ("/home/abdo/rules/TAHrf/Outcomesfin.csv", sep=",", header=TRUE)

basechv4B<-basechv4 [, -1]

basechv4 <-cbind(base.coll,basechv4)
basechv4 <- basechv4([,-1]

basechv4 <- basechv4[,-2]

base.coll<-base.coll[,-1]

# use tuneRF to determine the best value of mtry
tuneRF (basechv4B,base.coll,ntreeTry=50000, increase=0)
mtry = 2 OOB error = 28.99%

Searching left

mtry = 1 OOB error = 34.78%
-0.2 0.05

Searching right

mtry = 4 OOB error = 27.54%
0.05 0.05

mtry = 5 OOB error = 28.99%

-0.05263158 0.05
mtry OOBError
1 0.3478261
2 0.2898551
4 0.2753623
5 0.2898551

(G2l SN SR

set.seed(156)
rf.basecv4d <- randomForest (Cerebral.Palsy ~ ., data=basechv4, mtry=4,
importance=TRUE, ntree=20000)

> set.seed(156)

> rf.basecvd <- randomForest (Cerebral.Palsy ~ ., data=basechv4, mtry=4,
importance=TRUE, ntree=20000)

> rf.basecv4d



Call:
randomForest (formula = Cerebral.Palsy ~ ., data = basechv4, mtry
importance = TRUE, ntree = 20000)
Type of random forest: classification
Number of trees: 20000
No. of variables tried at each split: 4

OOB estimate of error rate: 27.54%
Confusion matrix:
No Yes class.error
No 26 11 0.2972973
Yes 8 24 0.2500000

basecvd.pred<-predict (rf.basecv4,predict.all=TRUE)

> basecvd.pred

[1] No Yes Yes No No Yes Yes No Yes No No No Yes Yes Yes
Yes No

[20] No Yes No No Yes No Yes Yes Yes Yes No No No Yes Yes
No No

[39] Yes Yes Yes Yes No No No No Yes No Yes No No Yes No
Yes No

[58] Yes Yes Yes Yes Yes Yes Yes No Yes Yes No No

Levels: No Yes

sink ("sampletreesfin.txt")
getTree (rf.basecvd, 1, labelVar=TRUE)
sink ()

= 4,
No No
Yes No
No No



O oy WN -

OO Joy U WN -

NCIE I SR U N U N QS S R g
AN BEWNFRFOW®O-ITAU S WN RO

left daughter right daughter

prediction
<NA>
<NA>
<NA>
<NA>
No
<NA>
<NA>
Yes
No
<NA>
<NA>
No
Yes
No
<NA>
<NA>
<NA>
<NA>
Yes
<NA>
Yes
No
<NA>
No
Yes
No

OO OO OO w

3
5
7
9
0
1
3

1
1

23
25

27

OO O OO0 WwOo

split var
dm9cdifnsa.avgstdev
gl9cdifsd.avg.NSA
cdifsd.avgmean
dm9cdifnsa.avgstdev
<NA>

cdifsd.avgmean
difsd.avgmed

<NA>

<NA>

cdifsd.avgmean
dm9cdifsd.avgstdev
<NA>

<NA>

<NA>

difsd.avgmed
difsd.avgmed
dm9cdifnsa.avgstdev
dm9cdifnsa.avgstdev
<NA>
gl9cdifsd.avg.NSA
<NA>

<NA>

cdifsd.avgmean

<NA>

<NA>

<NA>

<NA>

<NA>

<NA>

split point status

1.

70.
-1172.
.260823
.000000
.433350
.000000
.000000
.000000
.267822
.627359
.000000
.000000
.000000
.500000
.500000
.764153
.244832
.000000
.890816
.000000
.000000
-1464.
.000000
.000000
.000000
.000000
.000000
.000000

OO O oo

375738
401215
941712

143799



27
28
29

Yes
No
Yes



Appendix M

Gain Settings
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Patient # Outcome
1 Yes
2 Yes
3 No
4 No
5 No
6 Yes
7 No
8 No
9 Yes

10 No
11 No
12 No
13 Yes
14 Yes
15 No
16 No
17 No
18 No
19 No
20 Yes
21 Yes
22 Yes
23 No
24 Yes
25 Yes
26 No
27 No
28 Yes
29 Yes
30 No
31 No
32 No
33 Yes
34 Yes
35 No
36 No
37 No
38 No
39 Yes
40 No
41 Yes
42 Yes
43 Yes
44 No
45 No
46 No
47 Yes
48 No

O 0002202000001 a0QO002 2002w 000002 w0000 w000

Gain (db) RFC class

-17 No
-1 Yes
-6 Yes
5 No
5 No
6 Yes
Yes

7 No
12 Yes
-15 No
4 No
3 No
2 Yes
-8 Yes
Yes

4 No
-11 No
Yes
No

6 No
-5 Yes
No
No
Yes
No

0 Yes
-5 Yes
Yes
Yes

-6 No
No
No

4 Yes
-2 Yes
Yes
No

1 No
11 No
Yes

-4 Yes
4 Yes
Yes
No

7 No
No
No

1 Yes
1 No

mis-classified by RFC
TRUE
FALSE
TRUE
FALSE
FALSE
FALSE
TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
FALSE
FALSE
TRUE
FALSE
TRUE
FALSE
TRUE
FALSE
FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
FALSE
FALSE
FALSE
FALSE
TRUE
FALSE
FALSE
TRUE
FALSE
FALSE
FALSE
FALSE
FALSE

Machine
Acuson
Acuson
Acuson
Acuson
Acuson
Acuson

Acuson
Acuson
Acuson
Acuson
Acuson
Acuson
Acuson

Acuson

Acuson

Acuson
Acuson

Acuson

Acuson

Acuson

Acuson
Acuson

Acuson
Acuson
Acuson
Acuson

Acuson

Acuson
Acuson

- O



49 No
50 Yes
51 No
52 Yes
53 No
54 No
55 No
56 Yes
57 No
58 Yes
59 No
60 Yes
61 Yes
62 No
65 Yes
66 Yes
67 Yes
68 Yes
69 Yes
70 Yes
71 No

[ i IR N A o R QNN = T W o RPN N o I o S G o S

Yes
2 No
1 No
Yes
-2 No
No
No
Yes
No
Yes
Yes
-4 Yes
Yes
9 Yes
Yes
-3 Yes
-4 No
Yes
-1 Yes
3 No
-1 No

Number correctly classified, Acuson
Total Acuson

TRUE

TRUE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE

FALSE
FALSE
TRUE

FALSE
FALSE
TRUE

FALSE
FALSE
TRUE

FALSE

Acuson
Acuson

Acuson

Acuson

Acuson

Acuson
Acuson

Acuson
Acuson
Acuson

1
1
28

39
0.71795



