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Abstract

Although methods of accurately estimating the diet of predators are of great ecological
importance, prior to the work of Iverson et al (2004) the methods used were often
unsatisfactory. Iverson et al (2004) proposed estimating the diet by matching fatty
acid (FA) signatures of predators to those of their prey. Given the potential species
in a predator’s diet, they were able to use statistical methods to obtain estimates of
the proportion of each species in the diet. To date, only point estimates of the diets
of predators have been studied.

The primary focus of this thesis is interval estimation of the diet composition.
As both the FA data and the diet estimates are compositional, and often with zeros,
special techniques are required to handle this situation. Our proposed confidence
interval methods include both parametric and nonparametric approaches, and mostly
rely on bootstrapping techniques. We make use of mixture models as a device to
eliminate the zeros for some of the procedures. A simulation study is carried out to
evaluate and compare the coverage probabilities and interval lengths of our various
confidence interval methods. Our recommended method is then applied to captive
seabird data.

We also consider two related problems, namely the development of a measure
of species contribution to the variability in the seal FA signatures and methods for
testing for a difference in the diet. The motivation for this latter problem was real-life

seal data that we use to illustrate one of our testing procedures.
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Chapter 1

Introduction

In many areas of ecology, knowledge of the diet of predators is crucial. For some
predators, direct observation of feeding is possible while for many others, including
seals and seabirds, indirect methods are necessary. In the past, indirect methods
consisted of estimating the diet by identifying prey structures that are resistant to
digestion through the analysis of feces or stomach contents. Because, for example, not
all prey have digestion resistant parts (or because these parts may not be consumed
by the predator), estimates of diets based on these methods are known to be biased
(Iverson et al, 2004). Furthermore, any parts recovered may only be representative

of the latest meal and not the longer term diet.

More recently, fatty acid (FA) signatures have played a role in diet estimation
(Iverson, 1993). In simplified biological terms, FAs are the main constituent of most
lipids and are unique in that the FAs released from ingested lipid molecules are not
degraded during digestion. Some of these FAs are deposited in the tissue of the
predator with little modification. The outcome is that for some predators, the tissue
may be a mirror of diet (Iverson et al, 1995). The FA signature is then the distribution
of all the FAs measured in the predator or prey and the FA signature in the predator
reflects the FA signature composition of the prey consumed.

Prior to the work of Iverson et al (2004), the use of FA signatures in the diet
estimation of predators had been qualitative. In Iverson et al (2004), a statistical
model was developed to estimate the proportion of prey species in the diet of a
predator. Based on the results of a simulation study and some real-life examples
(to be discussed), quantitative FA signature analysis (QFASA) was found to be a
valuable diet estimation method with several advantages over previous methods.

In this thesis, QFASA is further explored and applications arising from QFASA

(such as confidence intervals for the true diet) are examined. In Section 1.2 these

1
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new applications are outlined and the layout of the thesis discussed. As much of this
thesis relies on the developments in Iverson et al (2004), we begin, however, with a

more detailed discussion of the essence of this paper.

1.1 QFASA

Given FA signatures from the species that could potentially be part of the predator’s
diet, the QFASA estimate of diet contains the estimated proportional contribution
of each species to the predator’s diet. To obtain the QFASA estimate, the poten-
tial prey species in the diet are first summarized by a single FA signature such as
the sample mean, as used in Iverson et al (2004). The QFASA estimate is then
given by the weights that minimize the “distance” between a weighted mixture of
these FA signatures and the predator’s FA signature. In Iverson et al (2004), var-
jous distance measures were considered with the Kulback-Liebler distance measure
being preferred. Their method is discussed in detail in Section 3.2. For the QFASA
method to be useful, a database of potential prey species must be carefully chosen
and a few biological issues need to be addressed. Further, to examine properties of
the estimates we require the ability to “generate” predators with a known diet. Since
much of the QFASA presented in Iverson et al (2004) involved seals as the predators,
they referred to these generated predators as pseudo-seals. These topics, discussed in

detail in Iverson et al (2004), are now summarized.

Prey Base

A data base containing 28 prey species (954 FA signatures in total), collected
along the Scotian Shelf off eastern Canada (see Budge et al, 2002), was used in Iverson
et al (2004). This prey base has since been updated and we were provided with a
current prey base in September, 2003 courtesy of Sara Iverson (Dalhousie University).
This prey base contains 68 species and 2816 FA signatures in total. From this prey
base, only prey from certain areas around the Scotian Shelf were selected for our
analyses. (See Appendix A for the specific areas chosen.) After removal of the other

FA signatures, a prey base containing 38 species and 1450 FA signatures remained.
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Because obtaining a QFASA diet estimate requires optimizing in the dimension
equal to the number of species and can be exceptionally time consuming in simulations
when carried out in S-PLUS, most of our simulation studies use a reduced prey base
containing 8 important species. The choice of the 8 species is discussed shortly under
the heading “Simulations”. Appendix A contains the 8 species and the sample size

of FA signatures associated with each of these species.

It should be noted that in practice the prey base must be chosen to include all
potential species that could be in the diet since the QFASA method will always find
a “best” estimate. Also essential is that the potential species be distinguishable from
their FA signatures. Various multivariate analysis methods can be used to examine
the extent to which the FA signatures can be distinguished. While techniques such as
hierarchical cluster analysis are useful in determining which species are similar, sim-
ulations can also be extremely helpful. Iverson et al (2004) suggested systematically
removing each species from the prey base, estimating the diet without this species,

and observing to which species the weight is re-assigned.

Tt should also be mentioned that for each FA signature in the prey base, a cor-
responding measurement of fat content is also recorded. Species with a high fat
content will contribute a larger proportion to the FA signature of the predator than
those with a low fat content. Consequently, given the average fat content for each
species, in practice, the QFASA diet estimate is divided by the fat content and then

re-normalized.

Biological Issues

In the development of QFASA, various biological issues arose. As discussed in
more detail in Iverson et al (2004), it is known that for some FAs, the values in the
predator may always be higher or lower than in the prey. For this reason, calibration
factors were used to adjust the FAs before applying QFASA. In Iverson et al (2004),
various sets of calibration factors were investigated, all of which were found by com-
paring the FAs of a predator with a known (experimentally fed) diet to the FAs of the
diet (prey). For example, the calibration coefficients that we will use in this thesis
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were found by comparing the FA signatures of 8 grey seals fed solely Herring for five
months to the FA signatures of 30 randomly selected Herring.

An additional issue, related to calibration, is the choice of FA subset. Not all of
the more than 70 FAs contribute equal information about the diet. Some FAs arise
only from biosynthesis, some only from diet ( “dietary FAs”) and some from both
(“extended-dietary FAs”). Based on the findings in Iverson et al (2004), we have
chosen to use the extended-dietary FA subset throughout.

Finally, there are some issues related to predator sampling (see Iverson et al (2004)
for more detail), but we will assume throughout that the samples of FA signatures
obtained are reliable. Note that in seals, the sampling involves a blubber biopsy and
is non-lethal. This is clearly an advantage of the QFASA method of estimating the
diet versus earlier methods. For example, being non-lethal, QFASA allows for the

diet of a predator to be analyzed over time.

Simulations

To investigate the effect of various factors (such as choice of FA subset, distance
measure, performance of calibration factors, etc...), Iverson et al (2004) carried out
a simulation study, using their full prey base containing 28 species, in which pseudo-
seals (with and without calibration) were generated using an algorithm similar to
that given in Appendix B. Essentially a pseudo-seal was created by choosing a true
diet and sampling proportionately with replacement from the species in the diet. To
account for the seal eating small amounts of prey not considered to be part of the
diet, noise was added to the pseudo-seal by sampling from species not in the specified
diet. Using 10% noise gave appropriate results and is the level we will use throughout
this thesis.

Based on a hierarchical cluster analysis of the prey FA signatures, Iverson et al
(2004) constructed four diets from which to generate pseudo seals. Their Diet 1 was
considered to be a difficult case (some species were similar) while Diet 4 was meant
to represent the diet of a free-ranging grey seal. Due to the computational intensity

of the simulations carried out in this thesis, we could not investigate all four diets but



5

chose to examine Diets 1 and 4. The union of the species in these diets constitute

the reduced prey base used in our simulation studies and consists of 8 species.

Ezxperimental Studies

To validate the QFASA diet estimation method, estimates of diet were obtained
for predators with a known diet. In one experiment, for example, the diet of captive
grey seals which were experimentally fed a diet consisting of three different species
was estimated using QFASA and the estimates were consistent with the true diet so
long as appropriate calibration factors were used.

QFASA was also applied to free-ranging harbor seals whose true diet had previ-
ously been video recorded. In this case, the prey base consisted of all 28 potential
species used in the prey base and the results using QFASA were similar to what was

observed.

1.2 Thesis Overview

To date point estimates only of the diet of predators based on QFASA have been
studied. Since the FA signatures of the prey (both within and between species) and of
the predator can be highly variable (leading to a large amount of variability in the diet
estimates), an important yet non-trivial problem is then interval estimation of the true
diet and much of this thesis is devoted to this issue. We will also introduce a statistic
analogous to “R?” in regression analysis that measures the species contribution to
the variability in the predator FA signatures as well as methods of testing for a
difference in diet, based on QFASA. These methods involve the use of compositional
analysis techniques since the FA signatures and QFASA diet estimates are vectors
of proportions that sum to one. We now present an overview of the content of this
thesis.

In Chapter 2, an introduction to compositional data analysis is presented. This
chapter includes a discussion on parametric modeling of compositional data as well
as interval estimation of certain measures of location for both finite and large sample

problems. Note that the parametric models that we have encountered in our research
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for dealing with compositional data have support which does not include zero and are
not adequate for our applications. Consider, for example, modeling the diet estimates
obtained using a prey base with only a few of the species actually contributing to the
diet. We therefore propose parametric mixture models for modeling compositional

data which may contain a significant number of zeros.

Chapter 3 begins with a detailed discussion of the QFASA diet estimation method
and possible modified versions of these estimates. We then examine the closeness
of various measures of location of these diet estimates to the true diet through a
simulation study. In this chapter we also apply the discussions in Chapter 2 to the
diet estimates and explore parametric modeling of the diet estimates. Given a sample
of predator FA signatures, finite and large sample properties of point estimators of the
diet are discussed as well. Finally, a maximum likelihood approach to quantitatively
estimating the diet of a predator is investigated, but we will show that this method

can be problematic for our application.

Confidence interval methods for the true diet of a predator or group of predators
are discussed in Chapter 4. For reasons addressed in this chapter, the confidence
intervals developed in Chapter 2 cannot be directly applied to the diet estimation
problem and bootstrap procedures are needed for most of the methods. A simulation
study is carried out in which the coverage probability and length of the confidence
intervals are compared and discussed. The recommended confidence interval method

is then applied to a real-life example consisting of FA signatures from captive seabirds.

A statistic that measures how well the variability in the predator FA signatures
can be explained by the prey FA signatures is proposed in Chapter 5. Simulation
results are presented to validate our our choice of statistic. A potential application
of this statistic is reducing the number of possible species in the diet. Results of
a simulation study in which our elimination procedure is applied to 27 species is

discussed as well.

In Chapter 6 methods for testing for a difference in the diet of two independent
or paired samples of predators are investigated. We consider the case where only FA
signatures of the predators are given as well as the case when a prey base is also

supplied so that, in this case, the test can be carried out using the diet estimates. In
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addition to the data being compositional, a critical difficulty is that the dimension
of our data may be much larger than the number of observations in our samples and
typical multivariate analysis techniques cannot be used. We propose using nonpara-
metric permutation tests and examine the probability of Type I errors and power
associated with our tests through simulations. A real-life example containing the
before and after FA signatures of two independent samples of seals is also presented.

Finally, in Chapter 7 we present a summary of our results and recommendations.

Future work in this area is also addressed.



Chapter 2
Compositional Data Analysis

As described in Chapter 1, the estimated diet of a predator will be a vector of pro-
portioﬁs determined from the FA signatures of the predator and its prey. These FA
signatures are themselves vectors of proportions. Aitchison (1986) called data of this
form compositional. In analyzing compositional data, he advised against applying
standard multivariate techniques directly to the data, due to the unit sum constraint,
and suggested using more appropriate modified methods. This chapter contains a gen-
eral discussion of compositional data analysis based mostly on Aitchison (1986) and

includes selected definitions and theorems applicable to the diet estimation problem.

2.1 Basic Definitions and Notation

Aitchison (1986) defined a composition and its components as follows:

Definition 2.1 A composition X of D parts is ¢ D x 1 vector with positive compo-

nents Xi,...,Xp whose sum is 1.

As in Aitchison (1986) let X© = (X3,...,X¢), X = (Xc+1,---,Xp) and X_; =
(X1,..+>Xiz1, Xit1,---,Xp). Note that a composition is completely specified by
(X1,...,Xg) whered=D —1,since Xp=1—-X; —---— Xq.

The sample space of a D-part composition, termed the simpler by Aitchison
(1986), is given in the following definition.

Definition 2.2 The d-dimensional simplex is the set defined by
Sd: {(X17"'7Xd) :Xl > 0)'-'1Xd> 0;X1+"'+Xd < 1}.

If R¢ and R‘i denote d-dimensional real space and d-dimensional positive real space

respectively then
St cR: CcRA

8
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Any vector with positive components on the same measurement scale may be
transformed into a composition by dividing by the sum of its components. This idea
was formalized by Aitchison through Definitions 2.3-2.5:

Definition 2.3 A basis W of D parts is a D x 1 vector of positive components

(Wi, ...,Wp) all recorded on the same measurement scale.
Definition 2.4 The size of a basis W s T =W; 4 -+ Wp.

Definition 2.5 The constraining operator C transforms each vector W of D positive

components into the unit-sum vector W /T.

Although every basis W € R? yields a unique composition X = C(W) = W/T,
the converse is not true. That is, there are actually many bases corresponding to
a given composition X. In fact, the set of bases {TX : T > 0} all have common
composition X.

An additional definition will be needed, namely that of a perturbation. Aitchison

(1986) defined the perturbation operation on compositions as follows:

Definition 2.6 Let X be a D-part composition and U ¢ D dimensional vector with

positive elements. Then the operation
V=UoX=C(Xily,...,XpUp)

is termed a perturbation with the original composition X being operated by the per-

turbing vector U to form a perturbed composition V.

Before leaving this section, a few remarks are needed concerning the positiveness of
the components of a composition. In many applications, including the diet estimation
problem, zeros may occur in data that would otherwise be considered compositional.
In a recent paper by Martin-Ferndndez et al (2003), the “zero problem”, as they
called this issue, was addressed. They defined two types of zeros in compositional
data, namely essential and rounded zeros. They defined essential zeros to be the

“absolute absence of the part in the observation” and rounded zeros as the “presence
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of a component, but below detection limit”. They recommend treating the two types
of zeros differently.

When essential zeros are present in a composition, they reasoned that for many
problems, either the composition belongs to a different population, or perhaps the
zero component is not useful for the study. In the former case, the sample of com-
positions may be divided into subsamples containing zeros in the same components.
The statistical analysis would then be carried out separately on the subsamples.

For rounded zeros their approach was to replace each zero with a small value.
They argued that the following multiplicative replacement strategy was an appropriate

method of replacing the rounded zeros.

Definition 2.7 Assume X has Z zeros. The multiplicative replacement strategy re-
places X with R € 8¢ without zeros using the expression

Ri=

1 if i =Y
{5 X;=0 2.1)

(1 = Zhyxe=006)X;, if Xi >0,

where §; is the imputed value on the component X;.

2.2 Difficulties

Aitchison (1986) provided a thorough discussion of the various difficulties encountered
in the analysis of compositional data. To aid in motivating the use of Aitchison’s
methods in the diet estimation problem, a few of these difficulties are outlined.

Typically compositional data occurs in high dimensions, as is the case in the diet
estimation problem. This may be problematic as the graphical investigation of a few
variables at a time may not be easily interpretable in the simplex. For example, the
interpretation of patterns exhibited in say, R?, may not have the same interpretation
in the simplex.

Perhaps a more crucial difficulty with compositional data is, as described by
Aitchison (1986), the absence of an interpretable covariance structure. Several exam-
ples of why the standard covariance and correlation matrices are poor descriptions of

the interdependence of the components of a composition are easily seen. For instance,
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note that

Va‘r[Xl] + COV[XI,X2] R COV[X]_, XD] = Cov(Xl’ Xl IR XD)
Cov(X1,1)
= 0,

or
COV[Xl,XQ] +---+ COV[Xl,XD] = —Va.I’[X]_]

Therefore at least of one of Cov[X1,X;], ¢ = 2,..., D must be negative. Aitchison
referred to this phenomena as the “negative bias difficulty”.

An additional example is the lack of a relationship between the covariance or
correlation matrix of a basis W and that of its composition X = C(W). While it
might be expected that Cor(X;, X;) be related to Cor(W;, W;), this is often not the
case.

Another challenge in the analysis of compositional data is that of parametric
modeling on the simplex. Aitchison (1986) argued that the Dirichlet distribution,
defined on 8¢, may not be suitable as compositions modeled by this distribution have
a strong independence structure. An interesting paper on the history of the Dirichlet
distribution is given by Gupta and Richards (2001).

Parametric modeling of compositional data is the topic of Section 2.3.

2.3 Parametric Models

Aitchison (1986) introduced various parametric models defined on S¢. Two of the
parametric models proposed by Aitchison are used in the diet estimation procedures,
namely the additive and multiplicative logistic normal distributions. Both of these
distributions are based on one-to-one transformations from R¢ to §%. The addi-
tive and multiplicative logistic transformations were defined as follows by Aitchison
(1986):

Definition 2.8 The additive logistic transformation is the one-to-one transforma-

tion from Y € R? to X € §¢ defined by

e¥i

y 1=
efi ... tefe+1

X = 1,...,d,
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1
eV teat 1

Xp = 1-X3—--—Xqg
with inverse the additive logratio transformation
}fi = log(Xi/XD), 1= 1,. . .,d

and Jacobian
jac(Y|X@) = (X;--- Xp) ™.

Definition 2.9 The multiplicative logistic transformation is the one-to-one trans-

formation from Y € R? to X € 8¢ defined by

X = r=1,...,d
Y Gy DRy G ) U
1

T+e)-(L+e%)

Xp =

with inverse the multiplicative logratio transformation,

Xi .
Yi_lOg(l—Xl—---—Xi)’ i=1,...,d,

and Jacobian
jac(YIX@) = (Xy---Xp) ™%

The additive and multiplicative logistic normal distributions are then derived by
letting Y € R% ~ N(u, ) and considering the distribution of X € §°.

Definition 2.10 A D-part composition X is said to have an additive logistic normal
distribution L(u, ) when Y; = log(X;/Xp), i=1,...,d has a N¥(u,X) distribu-

tion.

Definition 2.11 A D-part composition X is said to have ¢ multiplicative logis-
tic normal distribution M%(p,Z) when Y; = log (-1—_—)%*_—)(‘-) ,i=1,...,d has a
N, X) distribution.

The forms of the densities £¢(i, ) and M%(u, E) are easily derived using the
N4(u,X) density function

1 1 12-1
o) — V- ET Y-
V)= Gyl
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If X has density £%(u, ) then its density function is given by

1

= . Y- ET -
(2m)#/?| 2% (21 - - zp)

fx)

where y has ith component log(z;/zp). Similarly, if X has density M%(p, Z) then
its density function is given by

1
— @n)#2[Z|3(z: - - - zp)

F(x) Y- Iy

where y has ith component log (1—_;1—?—_;)

The connection between the £¢ and M¢ distributions with the A distribution
results in several useful properties that are relatively easy to prove using known
properties of the A distribution. Aitchison (1986) outlined many of these properties.
In particular, two of these which will be later referenced are given in Properties 2.1

and 2.2.

Property 2.1 Suppose that a D-part composition X is distributed as Mé(u,2) and
let the (¢, D — C) partition of u and X be

[ 251 ] l: Zn 2 jl

ty | | S Za

Then (X9, §p_cX (o) is distributed as M®(py,Zn1), where jp_¢ = [1, 1,...,1 of
length D — C.

Property 2.2 A D-part composition X, which is L3(u,X) distributed, is perturbed
by a vector U of D positive components, distributed independently of X. The distribu-
tion of the perturbed vector V.= UoX is as given below for two different distributional

assumptions about U.

Distribution of U ' Distribution of V
Constant Vector | £%(u + log (UU—":) 53)
£4(6,9) LA p+6,=+0)

In Mateu-Figueras et al (1998), the class of £¢ distributions was extended to

include a shape parameter to allow some skewness in the transformed data to be
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present. Essentially, the logratio transformed data were modeled with Azzalini and
Capitanio’s (1999) multivariate skew-normal distribution instead of the N? distri-
bution. Specifically, the multivariate skew-normal and additive logistic skew-normal
distributions were defined by Azzalini and Capitanio (1999) and Mateu-Figueras et
al (1998) respectively as follows:

Definition 2.12 A d-dimensional random vector Y is said to have a multivariate

skew-normal distribution SN d(/.z, 3, a) if it is continuous with density function
FY; 1,5, @) = 2N y; 1, )@ (d'w ™ (y — 1)),

where ®(-) denotes the N(0,1) distribution function, w the diagonal matriz with stan-

dard deviations of the ¥ diagonal and o a d-dimensional shape parameter.

In the univariate case, Y has a skew-normal distribution SN (x, o2 a) if

F(Y5,0%0) = 2N (y; 1,0)2 (a_(ya;u)) :

Definition 2.13 A D-part composition X is said to have an additive logistic skew-
normal distribution £S%(, =, ), when Y with ith component Y; = log(Xi/X D)
i=1,...,d has e SN%(u, =, e) distribution.

We could similarly define the multiplicative logistic skew-normal distribution as

follows:

Definition 2.14 A D-part composition X is said to have a multiplicative logistic
skew-normal distribution MS%(u, Z, c), when Y with ith component
Y; = log (=xfizx), i =1,---,d has a SN, 5, ) distribution.

Observe that when & = 0, Y ~ N%(u,X) in Definitions 2.13 and 2.14. Also,
in the univariate case, as the magnitude of ¢ increases, so does the skewness of the
distribution.

Tt should be remarked that various authors have examined extensions and gener-
alizations to the SN distribution. Consider, for example, the recent work of Marc
Genton and in particular, Ma and Genton (2004).
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In many applications, including the diet estimation problem, essential zeros may
be present and the parametric distributions defined thus far must be modified to ac-
commodate these problems. Our overall strategy for dealing with such zeros involves
dividing the compositions into populations according to where the zeros occur and
defining separate parametric models within each population. We now consider this
strategy in more detail and derive a mixture distribution for the general case of X
being a composition with possibly some essential zero components.

Let V denote the vector of indices indexing the non-zero components of X and
let Xv denote the vector containing the non-zero components of X. Suppose that
fv(xy) is the density of Xy. Then fv(xv) may be L% or M¢, for example. To
model X, it is assumed that there are separate populations for every possible value
of V. Let 6, = P[V = v], the marginal probability that an observation comes from
the population with non-zero components indexed by v, where 2,’,3___1 6y, =1and B
denotes the number of populations.

Consider the joint density of X and Vj

f X,Vy (X, vb) = f x|V (X[Vb) 9\’5
= f Vb (va)g"b .
Then
B
Fx (X) = Z Fxvs (X, Vb)

b=1

B
= vab (va)ovb- (2'2)
b=1

Observe that if the non-zero components of x are indexed by v, then fy,(xv,) =
0 Vb such that v, # v. The sum in Equation 2.2 then has only one non-zero term
since only one of the populations will correspond to the non-zero components of x.

It will be useful to also derive the marginal distributions of the components of X
when X has the density in Equation 2.2. The derivation will be carried out by first
integrating fx v, (X, Vs) to obtain the joint density of z; and v, fi(z:, vp), and then

by summing this distribution over all possible v,.



Integrating fx v, (X, V) over the x;, j # ¢ gives

GV,, if ZT; = O,i ¢ Vb,
filxi,ve) =19 by, [+ [ fu(Xy,) dx; f0<z:i <1,2E€ WV,
0 otherwise.

Note that [--- [ fv, (Xv,) dX—;, is the marginal distribution of the ith component
of xv,, if # € vp. By property 2.1, recall that if (z1,..-,Zp) ~ M(u,Z), then
(z1, T2, ;) ~ M(u1,011). That is, the marginal distribution of z; is M(p, on)- To
apply this property to Xy, , re-order the components of x as (Tiy 1y -« » Tic1, Titly - -+ D)
so that if i € vy, Xy, = (Zi,Xv,_,). Now assume that (z;,Xy,_;) ~ M(pve, E%). Let
pYe = pve[1] and EV¢[1,1] = 07"*. Then

(25,1 = 25) ~ M(>,07V*)

and
B
filzs) = Y filzi,ve) (2.3)
b=1
= Z fi(xiy Vb) + Z fi(.’lii,Vb)
{b:igvs} {bievp}
Z{b:i¢vb} ovb if ;= 0,
= Z{bzievb} ovbM(llayb, U?vb) fo<z; <1,
0 otherwise.

Realize that although the expression for the discrete probability at zero may appear
complicated, P[X; = 0] is simply the sum of the probabilities associated with those
populations having ¢th component zero.

We will make the simplifying assumption that o2t = g2 Vb =1,...,B. Then
for the ith component, a marginal mixture distribution that may be used to model

compositional data with some zero components is given by

E{b:‘i¢vb} evb if T;= 0}
fi(xi) = Z{b:iEvb} evbM(ﬂiVb’ 0'12) f0<z <1, (2'4)

0 otherwise.
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We will write X; ~ MizM(6by,, uy¢, 0?) (or say that X; is MizM distributed) if X;
has the density in Equation 2.4.
If it is further assumed that p)® = u; Vb= 1,..., B then the density in Equation

2.4 becomes the simpler density

Zbigvs} Ovs if 2; =0,
filz:) = ¢ M(pi, 03) (Z{b:ievb} 9vb) if0<z; <1, (2.5)
0 otherwise.

Let 6; = Z{bziévb} by, then since Z{b:igévb} Hvb + Z{bzieW,} Oy, =1, we have

9:‘ if T; = 0,
filz) =4 1 —-0)M(u,0?) 0<z:<], (2.6)
0 otherwise.

If X; has the density in Equation 2.6, we will use the notation, X; ~ SMizM(6;, wi, o?).

With the SMizM model, we are, in effect, simply assuming that X; = 0 with
probability 6; and that log (1%(?,) ~ N(ui,0?), X; > 0. While a disadvantage of
using Equation 2.6 is that we are not utilizing any information provided by the other
components, we will show that for the diet estimation problem, modeling with this
simpler density often provides results that are very similar to those obtained with
the more complicated density in Equation 2.4. As will also be shown, an improved
fit can be obtained by replacing M(u;,¢?) in Equation 2.6 with its skew extension,
SM(u;, 02). We define the SMizSM(8;, i, 07, ;) density function as

9i if ;= 0,
film)={ (1—0;)8M(mi,0%,04) f0<z: <1, (2.7)
0 otherwise.

Note that in our application, the £¢ and M¢ distributions (as well as their corre-
sponding skew extensions) may be used to model the seal and Jor prey FA signatures.
In this case, D is the number of FAs in the signature and the notation nr4 (in place
of D) will be adopted in Chapter 3. In addition to modeling the FA signatures them-
selves, we will also be interested in modeling the estimated diet, say P. It is in this
case that the mixture distributions will be needed since it will be possible for any of
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the components of P to be zero. Based on the discussions in Section 2.1, these zeros
correspond to essential zeros and represent the absence of the species in the diet.
Finally, observe that for all of the parametric densities discussed, P[X; = 1] =
0, i=1,...,D. Although we could modify the densities to allow for a non-zero
probability at one, in our applications either X; will represent the ¢th FA in a signature
or the diet estimate of the ith species. In both cases, we will likely have P[X; = 1] = 0.
If, however, it was thought that P[X; = 1] was non-zero and we were interested in,
say, interval estimation of the diet of the ith species, then we could apply one of our

nonparametric procedures to be discussed in Chapter 4.

2.4 Measures of Location

Before considering estimation procedures for compositional data modeled by one of
the parametric densities defined in Section 2.3, it will be helpful to first specify pa-
rameters for which inferences will eventually be required. For the diet estimation
application, the parameters of interest will be measures of location (MOLs) since it
will be shown in Section 3.3 that certain MOLs tend to be close to the true diet.
This is beneficial as it allows parametric inference procedures to be developed for an
otherwise nonparametric quantity, namely the true diet of a predator. In this section,
typical MOLs, such as the mean and median, are discussed, as well as some not so
typical MOLs that may be better suited for compositional data. Recall that when
the data represent diet estimates, J will replace D in the derivations below and will
correspond to the number of species in the diet.

Consider first the mean, E[X], a popular measure of location (MOL). Assume first
that X ~ £%(u, ). If Y has ith component Y; = log(X;/Xp), ¢=1,...,d, then

ElY] = p (2.8)
_ X ﬁ)”
- [E[log(XD)],...,E[log(XD . (2.9)
Let
MOLAL=|: e gorey o ’ . ]1
it ter 1l TeM e tertl e b tetetl

then by the Delta method,
EX] = MOLAL,
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It is interesting to note that MOLAL is essentially the population version of the
sample MOL recommended in Aitchison (1989). He argued that for a sample of
compositions, the appropriate sample MOL is simply MOLA® with p; replaced by Y;.
Based on Aitchison’s recommendation, when X ~ £4(g, =), MOLA% may be favoured
over E[X] though they should be similar by the Delta method.

If X ~ M%u, X) instead, and if Y now has ith component ¥; = log (T:)T)—("Tx—.) ,
i=1,...,d, then a similar argument would lead to

E[X] ~ MOLMZ,

where

ekt et 1

MOLME = , )
14em’ ’(1+eu1)+...+(1+eu¢) (14+e#1)---(1+ eva)

An appealing feature of MOL? is that the first component, MOLM*[1] = 155,
doesn’t depend on any other parameters. In contrast, each component of MOLAL
contains at least two parameters which will be unknown in practice. If the components
are ordered so that the component of interest is first, then inference procedures for
MOLMZ(1] should be less complex than for MOLA%[1].

For compositional data modeled by the density in Equation 2.4, (that is, X; ~
MizM(by,, u®,07*)) an analogous approach yields a MOL that is roughly a weighted

sum of MOLMZ[1] within each population. To see this note first that

1 if z; =0, ¢ vy,
filzilve) = M(u*,0?) f0<z;<1,iE€W, (2.10)
0 otherwise,

so that for the bth population a natural MOL would be

0 if 4 ¢ Vp
ni(ve) = { py ®

i ifi€v,
14eti

Since

B
E[X] = 3 0, E[X:[vs],
b=1



and E[X;|vs] = 7;(Vs) by the Delta method, the intuitive overall MOL is

B
m = 0u,m(Ve).

b=1

In a similar manner, it could be argued that if X; ~ SMizM (6;, pi, 07) then the
appropriate MOL would be

&={0 | if 9; =1

(1—91')%‘ if 6; < 1.

We have also defined an MOL based on the skew distribution in Equation 2.7.
From Azzalini and Dalla Valle (1996), if Y ~ SN/ (s, 0%, a),
2\ 2 o
o=o(2)
Yi=co(- ot TH

Denote this expected value by £(u, 02, a), then if X; ~ SMixSM(6;, pi, 02, 0;), an
appropriate MOL would be

0 ifg;=1
Af = E.‘(Piv"? i) -
(1—0,-)&;5,.(—%;@ ifg; <1.

Note that if X; is SMizSM distributed, then A; = A{.

In Section 3.3, the median will also prove to be a useful MOL under certain
circumnstances. We will attempt to derive the median when X; is modeled by the
M, MizM and the SMizM distributions. Consider first the median, say M;, of a
component X; from a composition X if (X, (1 — X;)) ~ M (s, 0f). We must solve
P[X; < Mi} > 1 and P[X; > M;] > } for M;. Since, in this case, X; is continuous,
M; satisfies

[ Moty = [ M08 = 5.
0 M; i 2

We have

M; M; 1
. 2 ] - < loo : = —
Mo Pl¥i<log (I—M)] 2

where Y; ~ N(u;,02) and therefore,

- e‘ji
14ems’

M\
1°g<1—Mi>=““:>M"=




The median in this case is actually MOLM[1].
Now suppose that X; ~ MizM (by,, ui*, 0Z). Note that
Mi=0&PXi=0= 3 6, z%.
{bigve}
(If M; = 0 then P[X; < 0] = P[X; = 0] > }. Conversely, if P[X; = 0] > , then
M; = 0 satisfies the equations P[X; < M;] = P[X; =0]+ P[0 < X; < M;] > % and
P[X; > M;] > 1) When P[X; = 0] < § (and M; > 0), the case is not so trivial and

there is no closed form solution. M; must satisfy the following Equations
PX;< M) = P[X;=0]+P0<X; <M]

= 3 b+ D Obe ‘ (2, 11 ¢, 02)dz;
{bi¢vs} {b:ievs}

v Mi
2 Oy, + Z evbP[YibSIOg(l_M)]

{bii¢vp} {biievp}

and

PX;>M) = > 6 /1 M(zi, 1, 02)dz;
T Z 1 . Vb M: 1241 1V (]
{bievp} :

M.
= T 0P 2l )]
{b:ievs} ’ 1-M;

1

> ?
- 2

where Y;"* ~ N(u*,0?).
Finally, let X; be SMizM distributed. Then similarly,

M; =0 P[X;=0]=6; >%

When 6; < % (or M; > 0), we must solve for M; in the following Equations

P[X-,, < Mz] = P[X,=0]+P[0<X, < M,]
Y L

. +(1—9)P[Y<1°g(1 MM)]
1

> ?
- 2
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and
1
PXizM] = (1-6:) /M M(zs, i, 07 )dz;
M;
= (1—6; - >
(1-8)P [Y; 2 log (1 - Mi)]
1
> -
- 2
It is straightforward to show that M; = ;7 +e“‘ satisfies both equations. Overall, we
have
M, = 0 if 6; > 3
(1 )1+e“t 1f9,<%

Although M; appears similar to A;, recall that A; is zero for 6; =

While 2, E[X;] = 1, note that 2,7 # 1 (and similarly for A; and M;).
Although we could simply normalize these parameters (by using —2—3—— for example),
deriving a CI for the normalized parameters is often more comphcajt_e}d Jas they contain
several unknown parameters. As will be detailed in Chapter 4, we will adjust our Cls

for this potential bias.

2.5 Inference with Compositional Data

2.5.1 Point Estimation

Suppose the observations in a compositional data set, say X = [Xpi:r=1,...,N,;i=
1,...,d], are modeled by one of the parametric distributions from Section 2.3. There
are then several unknown parameters. For the £¢ and M? distributions, x and X
are unknown and must be estimated. In the mixture distribution in Equation 2.4 the
unknowns are the actual populations themselves and corresponding probabilities y,
as well as p® and 07, b=1,...,Band i =1,...,d. The unknown parameters in the
simpler mixture distribution (Equatlon 2.6) are 9,, p; and 02, i=1,...,d and for the
skew distribution (Equation 2.7) there is the additional parameter, &;, ¢ = 1,...,d.
Furthermore, the MOLs discussed in Section 2.4 must be estimated. These, however,
will be functions of the parameters just mentioned. It is important to realize that
when the arguments that follow are applied to the diet estimation problem, N will
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correspond to the number of seal (or predator) FA signatures in the sample and the
notation ns will be used (in place of N) in the chapters to follow.

In the analysis of compositional data modeled by the L4 or M¢ distributions, the
general strategy is to transform the data using the corresponding logratio transforma-
tions and to apply standard multivariate statistical tools. If Y (of dimension N X d)
contains the transformed data, then it is well-known that the maximum likelihood

estimators (MLEs) of p and X are given by f& and 3 with components

1 N
i = -ﬁZYri,zel,...d, and

r=1

R 1 Y . N

Oij = ]—V'Z(}fri—#i)(}/rj—'#j), i,j=1,...,d.
r=1

Note that in the estimation procedures discussed in the chapters to follow, N —1
is used in estimating o;; so that the estimate is unbiased. We will let S have i, jth
component Si; = Y24 and S7 = Si.

Now suppose that X, ..., Xn; are independent and identically distributed (iid)
MizM(by,, 17, 0%) random variables. We will obtain the MLEs using the joint dis-

tribution of X given in Equation 2.2, where

Mé(u¥e,o"), fvy=v
F(xv,) = , (2.11)
0 otherwise,
‘and v indexes the non-zero components of x. For a sample Xj,...,Xy that are

iid with joint density given by Equations 2.2 and 2.11, let N, denote the number of
observations in the sample from group b. The MLEs maximize the likelihood function,

L(9Vb1l-‘LVb7ZVb7b= 17"'7B) = H evlfvl(x’f'\’l)
{r:xr€ Group 1}

H 9"? f Vp (x"‘Vp)

{r:x-€ Group B}
= H ele (xrv1 ’ y'VI 3 EVI)

{r:x~€ Group 1}

H bvs M (Xrvgs 175, 3VE),

{r:x-€ Group B}

or equivalently the log likelihood function

log L(fy,, n**,Z¥,b=1,...,B) = Ny,logb, (2.12)
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+ Y logM(xpv,, w1, EV)
{r:x,€ Group 1}

+ "'+Nv310g0v3

+ > log M(Xpvg, nE, BY),
{rxr€ Group B}

subject to 2., 6,, =1 and 2, N,, = N.
With the populations essentially separated in Equation 2.12 as well as 6y, being
separated from p¥® and ¥, b=1,..., B, the MLEs are readily obtainable. Let Y"*

be the matrix containing the transformed, non-zero observations from group b. Then
the MLEs are
~ va

b, = (2.13)
N,
B = Z Yy, i=1,...d, and
Vb r=1
Ny,
o = Z(Y""—u, Vo _ v, i, k=1,...,d.
Vb r=1

Note that we are implicitly estimating the number of populations, B, since év,, =0if

population b does not occur in the sample.
For the marginal mixture density in Equation 2.3, the MLEs of u;® and o7 are

then respectively

1 T X2
aye = log | —2+ ). 2.14
K NVb'r; % (1—X1Yib) ( )
NV V| 2
1 XK X
52 = log | =2 | — a7
i > ot (25) -0
As before, we will actually estimate o’ by s WM’ET&?"”.

As in Equation 2.4, where 0} = 07 Vb we will estimate the common variance by

(NV1 _]-)‘S'izv1 +'”+(NV3 —1)5122"3
NV1+.‘.+NVB_B )

For an iid sample, Xa;, . . ., Xx; from SMizM(6;, pi, 0?), the log likelihood equa-

1
Si2poo —

tion is

log L(6;, pi, 02) = (N — N')log6; + N'log6; Y log M(zri, i, c?), (2.15)

{r:z,i>0}



25

where N’ = number of non-zero observations in the sample. The MLEs can be

observed directly and are given by

6; = N J“VN (2.16)
) 1 N’ XI
[.Li - gloc (1 X/)
1 ¥ [ X!, 2
&2 = log( ,)—ﬂi] , (217)
N = 1-X

where X/, denotes the rth non-zero sample observation. (We will prefer to use the
estimate S? = 367 of 67.)

It should be mentloned that ML estimation of &, 3 and « in the SM¢ distribution
requires numerical methods. The library sn, written by Adelchi Azzalini for S-PLUS,
contains functions to compute the ML estimates. The extension to the SMizSM
distribution in Equation 2.7 is straightforward. We will estimate 6; as in Equation
2.16 and then use the relevant sn S-PLUS functions to fit the SN distribution (by
ML estimation) to the non-zero transformed observations.

Having presented the MLEs for the parameters in the parametric models of Section
2.3, we may now specify point estimators for the MOLs discussed in Section 2.4.
Table 2.1 contains the MOLs of interest and corresponding choices of estimators. For
notational convenience, note that in 7, the sum is over all groups but év,, = 0 for
groups not occurring in the sample. Observe also that 7;, \; and 5\? , being functions
of MLEs, are the MLEs of 7;, ); and ) respectively when X, 7 = 1,...N are
assumed to be MizM, SMizM, or SMizSM distributed. Additionally, often when
N’ < 2, S-PLUS has difficulty computing the MLEs of y;, 03, and ¢; in the SMizSM
distribution. We will therefore let 5\2 = \r when N’ < 2. Finally, we will estimate
M; by the sample median, m;. While we could have alternatively chosen, say,

=4 " Lo
(1—-6)-L if 6 <

Tteli

IV
tol»—- =

m; might be considered to be more nonparametric than M; since M,- is the MLE of

the population median with observations from the SMizM distribution.
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| Parameters | Point Estimators |
X, = E[‘}(i1 N Er—l
= ZbB=1 Ovy i (Vb) Eb= Ov, i (Vb)
0 ifigwvy 0 if ¢ € vy
: = M N: = oy
where 7:(V2) _v_1j-“:‘ = ifiew, where 7;(vs) —v-le ‘v ifi€w
e’ i +eti
\ = 0 ifg;,=1 5= 0 i g=1
S Q-6 ife<l Tl -6)E ifhi<1
| 0 if ;=1 R 0 if §; =
$= Lilkiota) . = AT RN
(1 9)—?:‘—0“—02:—) if 9; < 1. t (1 9)_?:‘(,;‘_5233 if ; < 1.
M; = median[X; ] m; = median[X; ]
(Population Median) (Sample Median)

Table 2.1: MOLs and their point estimators

2.5.2 Interval Estimation

To assist with the discussions in Chapter 4, some insight into interval estimation for
the simplified case where certain nuisance parameters are known will be the topic of
the remainder of this section.

Before detailing the interval estimation methods, a few comments are needed.
Firstly, depending on the underlying assumed distribution, confidence intervals (CIs)
for certain MOLs will be more intuitive than for others. Accordingly, we will attempt
to derive CIs for these MOLs. Also, individual CIs for the components (versus a
confidence region (CR) ) will be of most use as the components will eventually corre-
spond to species and D (or I, in this case) will be large. For this reason a CR would
be difficult to interpret and impractical. For some CI methods, however, the exten-
sion to a CR is fairly straightforward. To obtain simultaneous Cls, we will simply
adjust & to a/D to yield Bonferroni type intervals. This correction is conservative
and the overall coverage probability will be at least 1 — a. Lastly, we have divided

the discussion on CIs into finite and large sample interval estimation.

Finite Sample Intervals
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If X ~ £y, ) or if X ~ M?(p, E) then CRs for MOLA* or MOLM? follow al-
most immediately from standard multivariate theory. For example, the 100(1 — )%

CR for p is given by the set

{u:na-uysa-mw < W Dra-a)f, @19

where Fyy_g denotes the F-distribution with d and N — d degrees of freedom (df).
Then if X ~ M%(u, =), say, a 100(1 — @)% CR. for MOLM? is the set

{MOLML : [log (1 —ior™ ,f\[dl(])fm[z]_ v OLML[i]>] € CR for p,} . (219)

(And similarly for the additive logistic transformation.) As remarked earlier, indi-
vidual CIs for the components of the MOLSs will be of more practical use. Although
CIs for y; are apparent (that is, since on the transformed scale Y; ~ N (pi,02)), it is
only with the multiplicative logistic transformation that a CI on the composition scale
may be easily obtained since, as previously mentioned, each component of MOLAE
contains at least two unknowns. A 100(1 — a)% CI for y; and for MOLM (1] = %5

are respectively

o Si
f; £ tv—-1),1-0/2] —\/;77 (2.20)
and o 5
eﬁi—t[(N-1),1-a/2] T eﬁi+t[uv-1),1_o./z] i
(2.21)

1+ fitiv-na-ara 7k | 4 ht-Da-0/a 7R ||

where ty_; denotes the ¢ distribution with N —1 df. Note that in this case, Equation
2.21 is also a CI for for the median M; since M; = MOLMZ%([1], as was shown in Section
2.4. |

When zeros are present in the data set, inference procedures may use the MizM,
SMizM or SMizSM distributions given in Equations 2.4, 2.6 and 2.7. Since Cls
based on the SMizM distribution are the simplest to derive, these intervals will be
considered first.

For observations modeled by the SMizM distribution, a CI for the MOL

L if 6; =1
Tl - fe<
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is most evident since a CI for ﬁ';%; is already given in Equation 2.21. Assuming that

the nuisance parameter, ;, is known, clearly a CI is needed only if 6; < 1. It follows
that if §; < 1, 2 100(1 — @)% CI for A; is

83

eﬂi+t[(N£_1),1—a/2] —.\7—::

8

A _t[(N‘f—l),l—a/Z] ﬁ

€
(1 — 9,-) — el (1 - 9,-) — = . (2.22)
14 e“‘_t[(Ng-nJ—a/z] \/Tv? 14 e“‘+t[(N;-1),1—a/2] \/,T;

Cls computed as above may be problematic when N is small and, in particular, when
6; is close to 1, as there may be no non-zero observations in the sample. For example,
suppose N = 10 and 6; = 0.9 then Plz;; =0, r = 1,...,N] = (0.9)° ~ 0.35. In
this case, in more than 1/3 of samples, a CI for J; is not possible. In Chapter 4, a
bootstrap approach is introduced that may be used when N is small. This approach
will also allow for the more realistic setting in which ; is unknown.

It should be noted that we will not attempt to derive an exact CI for observations
modeled by the SMizSM distribution. We have, however, implemented a bootstrap
algorithm (to be discussed in Chapter 4) that yields an approximate CI for A; based
on this distribution.

When Xir ~ MizMe(uY®,02), our MOL of interest will be 7 = g by, (V)
where recall that

0 if ¢ ¢ Vp
77£(Vb) = it

1-(:-—;‘?— if i € vp.
For group Vs, if ¢ € v, then Equation 2.21 essentially gives a CI for ni(ve). (If
i & v, then a CI is not needed as 7;(vs) = 0). The difficulty is then how to combine
the separate Cls for 7;(v;) from the various populations into a single CI for n;. A

conceivably easier task would be to obtain a P- value, say p(7:i0(Vs)), for the test of

Ho : 7i(Vb) = o
H : 7:(Vs) 7 7ios

and then to pool the P-values (preferably using as weights 0y,,b=1,..., B) to obtain

(2.23)

a single P-value, say p(mio), for the test of

Ho: mi=mo

(2.24)
Hi: 7 # mo-
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The 100(1 — @)% CI would then be the set

{ni0 : (o) = o}

We will now illustrate a method of computing the P-values under some idealized
assumptions. Assume that 6,,,b=1,..., B are known (and therefore the populations

are known as well). First observe that

7,=0 < Absuchthatiew,
& PX;=0=1

A P-value is therefore not needed for the test in Equation 2.24 when 7, = 0 since
P[X; = 0] = Tiviigv,} bvsr and the 0y,’s are assumed to be known.

When 7,0 > 0, a P-value for the test in Equation 2.23 may be obtained for each
population in a relatively straightforward manner. For population vy, if ¢ ¢ vy, then

7;(vy) = 0 and a P-value is not needed. Otherwise, if i € v, then since

e’
ﬂi(Vb) = 1 +e#;’b’

we have
(Vo) = Mo & ;* = log ( 7o ) ‘
1 =10
Our test statistic is then

S b = (2.25)

spool
—_

N
which is ¢-distributed with Zﬁ:iew,} Ny, — #{b:% € v;} df under the null, and

P(Tlio(Vb)) =2P [TVb > Tvb»ObS] .

An overall P-value for the test in Equation 2.24 is
p(mo) = D Bu,p(mio(Vs))- (2-26)
{b:ievp}
As with the intervals based on the simpler mixture density (Equation 2.6), there

are some problems when this method is applied in practice. The most evident is
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that there will likely not be observations from each of the populations. If, as is the
case in practice, y,,b=1,..., B were unknown and estimated by their MLEs, then
p(ni0(vp)) is only needed for b such that 8., > 0 and we would have observations in the
necessary groups. A problem still exists when NV is fairly small since év:, will often be
a very poor estimate of 6, (the populations themselves are also not well estimated
in this case) and its variability should be taken into account in order to generate
sensible intervals. An algorithm involving bootstrapping is discussed in Chapter 4 to
deal with these difficulties.

It is important to observe that the P-value in Equation 2.26 is not uniformly
distributed under the null hypothesis in Equation 2.24 as we would like. We have

therefore considered an alternative P-value computed as follows

P(Uio) =P [T > Tobs] )

where

T=-2 5 log[p(nio(vs))]

{bievy}
and T~x? distributed with 2 x #{b : i € v} df under the null hypotheses specified in
Equation 2.23. This approximation assumes that the #{b: ¢ € v;} tests are indepen-
dent and we assume this to be approximately the case. Note that this test statistic

does not make use of the weights and further work is needed to incorporate them.
Large Sample Intervals

Observe that the estimators presented in Table 2.1 are all asymptotically normal

by the following theorems (where —4 symbolizes “converges in distribution”):

Theorem 2.1 Let Xi, Xo, ... be a sequence of iid random variables with E[X;] =
and 0 < Var[X;] = 0% < 0. Then
Xy —p

o

5=

has a limiting standard normal distribution. (Casella and Berger, 1990)
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Theorem 2.2 Let X1, Xo,..., be #id f(z|0) and let 6 denote the MLE of 8. Under
the certain reqularity conditions on f(z|0),
VN (8-6) —a N (0,1(6)7),
where 1(@) is the Fisher information. (Welsh, 1996)
Theorem 2.3 Let X1,...,Xn be a sample from a population with pdf f (assumed to

be differentiable). Let my be the sampl}e median and M the population median. Then

VN(my — M) ;d N (0, [2_1’(134W> )

(Casella and Berger, 2002)

Slutsky’s Theorem ensures that the asymptotic normality in the above theorems

also holds for consistent estimators of the variances.

Theorem 2.4 (Slutsky’s Theorem) If X, —4 X and Y, —, a, a constant, then
1. Y, X, —q¢aX.
2- Xn+}/n’__)dX+a.

(Casella and Berger, 1990.)

For example, since S% is consistent for o2, it is straightforward to show that

Sp —p 0 and that £~ —p 1. Slutsky’s Theorem gives

Xy — Xy —
Nt = 'SG——NU—# —a N(0,1),
N N UF
since, by Theorem 2.1, Z%’;_:‘i —q¢ N(0,1).
N
Note that Slutsky’s Theorem may similarly be applied to Theorem 2.2 since 1(6)
is a consistent estimator of I(9). We have the following large sample 100(1 — )%

CIs for px, and n;,

_ Sy.
X+ Zl_a/zﬁ (2.27)
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~ I, é ) A:'b)&'?%
i + 21—af2 : ( < 7\[ ) (228)

and similarly for Az and Af.

Application of the asymptotic results to the diet estimation problem is discussed in
Section 3.5. Realize that in the diet estimation application, the large sample intervals
require both the number of predators (n,) and the number of prey (nx) to be large.
Additionally, although the asymptotic variance in Equation 2.28 could be derived
using the log likelihood functions in Equations 2.12 and 2.15 respectively, Equation
2.97 is much simpler and should adequately estimate the true diet of the predator
when ng and n; are large. Similarly, while there are various ways of estimating the
asymptotic variance of my in Theorem 2.3, including a kernel density estimate, we

will again prefer the simpler large sample result in Equation 2.27.



Chapter 3

Diet Point Estimation

Having examined general methods of compositional data analysis in Chapter 2, we
now consider our particular application of interest, namely the diet estimation prob-
lem. In this chapter we detail several methods of obtaining quantitative estimates of
the diet of a predator by matching its FA signature to its prey signatures. We also
consider estimating the diet of a group of predators. In the latter case, we require a
sample of predator FA signatures from the group of predators of interest and a suit-
able aggregate point estimator of diet. Appropriate point estimators are discussed as
well as some of their properties when the sample size of predator and prey FA signa-
tures is large. Additionally, sources of variability in the diet estimates, the bias in our
estimation procedure and possible methods of modeling the estimates are discussed.

Although the discussions in this chapter may be applied to various types of preda-

tors, we will assume that our predator of interest is seals to illustrate our procedures.

3.1 Notation

At the root of the diet estimation problem there are essentially two populations,
namely the set of all FA signatures from seals from a specified region, and the set of
all prey FA signatures from the I prey types known to be part of the seals’ diet. To
set the notation, let ¥;; denote the jth FA of the ith seal and Y the FA signature of
a single seal. When referring to the prey, let Xi;; denote the jth FA of the ith prey
from the kth prey type, X the lth FA signature from the kth prey type, and Xy the
nx X np4 matrix of FA signatures for prey type k. Usually prey type will correspond
to species but could more generally represent any appropriate grouping of the prey.
In practice, a sample of size n; of FA signatures of the seals, Y7,... Yo, ns 2 1,
and a sample of FA signatures from the various prey types, X;...X;, are provided.

We will usually assume that the ny FA signatures are independent as should be the

33
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case if they correspond to different seals.

Let fy denote the distribution of the seal FA signatures and let fx, be the dis-
tribution of the prey FA signatures from prey type k. Assuming that the prey FA
signatures between species are independent, fx,,..x;(X1,.--,Xr) = f(x1)---f (xr1)-
Let 79 denote the true diet of a seal where the kth component, g, gives the true
long-run proportion of the kth prey type in the seal’s diet. Let v denote the average
diet of the group of seals in the region of interest. In some situations, it may be rea-
sonable to assume that the seals in the region of interest have, at least approximately,
a common diet. In this case, we let 7w = g for all seals in the region. (This issue is
discussed in more detail in Section 3.3.)

As will be addressed in Section 3.2, some of the point estimation algorithms require
that the prey FA signatures be summarized. For prey type &, let Q. be a statistic
representing the FA signatures X and v, the population version. As a simple
example, Qr may be taken to be X, the sample mean vector for species &, so that
b, = E[Xy]. (Note that we will often drop the “I” and simply write E[Xy] as
E[X].) It will also be possible for Qi to represent a selected sample quantile of
X (and 1), the corresponding population quantile). Two methods for determining
appropriate sample quantiles of the X, k = 1,...,I are given in Section 3.2. Any
further notation will be defined as needed in the sections that follow.

3.2 Diet Estimation Method

In this section we present our primary diet estimation method which we have named
the distance minimization (DM) algorithm. While other methods of estimation are
discussed in Section 3.6, we have found these methods to be problematic and to yield
less accurate estimateé of the diet. We will consider a few variations of the DM
algorithm including the QFASA method developed in Iverson et al (2004). As will
be apparent, the DM algorithm requires a single seal FA signature only, so that a
different estimate of diet is possible for each seal signature in the sample. Overall
point estimators of diet are given in Section 3.4 and are based on the discussions in
Section 3.3.

In the distance minimization (DM) algorithm, the estimator of 7 is the set of
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weights, p1,...,pr, that minimize the distance between Y and Y, for some suitable
distance measure, where
I
= > peQr.
k=1

More specifically, define

p(Y,Q) =p(Y,Qi,...,Q;) =arg min, , dist(Y, Y),

to be the DM estimate of diet for seal with FA signature Y when the kth species is
represented by Q. and where Q denotes Qy,...,Qr.

Two distance measures will be considered, both of which take into account the
compositional nature of Y and Y. One will be the symmetric Kulback-Leibler (KL)
distance measure which was investigated in Iverson et al (2004), along with several
other distance measures, and found to be the preferred choice. The KL distance
between Y and Y is defined as

KL(Y, ¥) = 3. (% — %) log(¥;/%;). (3.1

Note that the KL distance, as defined in Equation 3.1, is actually an average of the for-
ward and backward KL distances (that is, 3727 ¥; log(Y; /Y;) and pIputy Y;log(¥;/Y3))
defined in DiCiccio and Romano (1990).

An alternative compositional distance measure not considered in Iverson et al
(2004), but recommended in Aitchison (1992) and discussed further in Aitchison
(2000), will also prove to be useful. Aitchison’s distance between Y and Y is defined

as
NFA

AIT(Y,Y) = Z:{log[y /9(Y)] - log[¥;/g(¥)]}, (3.2)
where g(Y) = (Y1---Yap A)"FA represents the geometric mean.

What follows is a discussion of various choices for Qg, k=1,...,1.

1. Current (MEAN) Method

In Iverson et al (2004), the diet of a seal with FA signature Y is estimated by
the set of py, that minimize KL(Y,Y) where

I
Y= Z pkxka (33)
k=1
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or, in terms of the above defined notation, by p(Y, X). This method will be
referred to as the MEAN method because Qi = Xk. (Note that we could also
use the AIT distance.)

The sample of prey signatures may vary substantially within a species, par-
ticularly if the sample contains prey from various regions. To capture this
variability, Iverson et al (2004) carried out a nonparametric bootstrap of the

prey, the details of which are given in Appendix C.

An estimate of the standard error of py is then

211_2= 1 2
se(pk) — \/ lRL_ - Dr )

where 5" = £ YR 1y and the p}" are the simulated estimates.

In an analogous manner, a parametric bootstrap procedure is possible if it is
assumed that the rows of X}, form a random sample from one of the parametric
distributions discussed in Chapter 2 such as the £(u;,X) distribution. The
algorithm is also given in Appendix C. (Note the assumed common covariance
matrix, X.) We will generally prefer the nonparametric bootstrap procedure
since np4 will be fairly large making it difficult to assess whether the £(, X)

distribution is an appropriate distributional assumption.

It is important to realize that these bootstrap procedures yield estimates of the
variability of the (MEAN method) diet estimates due to the variability in the
prey FA signatures only and are conditional on Y. When the variability due to
the seal FA signatures is taken into account, the situation is more complex and

requires a more detailed discussion. This discussion is given Section 3.3.

. Random Sampling Method

In addition to producing estimates of m, the random sampling (RS) method
provides an alternative to using bootstrap procedures to gain insight into the

variability due to the prey.

In the RS method, X, in Equation 3.3 is replaced by a randomly selected
FA signature from prey type k. (That is, Q is simply a randomly selected FA
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signature from prey type k.) If M (max) — . m, . - - 0y is the total possible number
of distinct random selections, then using the RS method, M (max) estimates could
be generated. For computational purposes, due to the large number of possible
combinations, usually a smaller number of estimates, say M estimates, are
computed. The RS method generates pE9 (Y, QM) m=1...M.

. Multivariate Quantile Method

Because in practice the number of distinct samples will be extremely large, it
seemed useful to first choose ngyan: representative prey FA signatures from each
prey type and then to sample from this smaller prey base. Note that in the
MEAN method, nquane = 1 and in the RS method, nguant = 7 for the kth

species.

In the Multivariate Quantile (MQ) method, the representative prey are chosen
to be specified multivariate quantiles of the prey data. Multivariate quantiles
are defined in Chaudhuri (1996) as an extension to one dimensional quantiles.
That is, for a sample z1, . . ., Z, in one dimension, the ath quantile ¢, 0 < a <1,
is given by .

argmin > {1z — gl + u(z: — )},

i=1
where u = 2a — 1. In d-dimensions, Chaudhuri indexes multivariate quantiles

by elements of the open unit ball {u|u € R%, ||u|| < 1}. He then defines the

geometric quantile q, indexed by u, for a multivariate sample, X3, . .., X, in R?
as
. 2 T
argggg,z{lix —q||+uf(x -} (3-4)
=1

If the I, norm (1 < p < 00) is used in (3.4), the geometric quantile will be
referred to as the [,-quantile and ||x; — qll, = (X7 |zs — g;[P)Y/P.

Chakraborty (2002) noted that the multivariate quantiles determined by Equa-
tion 3.4 are not affine equivariant and therefore proposed an affine equivariant
modification to the I,-quantile. Informally, his procedure consisted of forming
a data-driven coordinate system based on (d + 1) of the observations. Then

letting o contain the d+ 1 indices corresponding to the chosen observations and
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X(a) the transformation matrix to the new coordinate system, each data point
X, is transformed to Yj = [X(a)™X;. Let R be the v(a)th l,-quantile based

on the Y;’s, where

(@) —1ly
v(e) = II[;C{(a)l‘lulquu”q foruz#0

=0 foru=0.

Chakraborty then defined the multivariate transformation retransformation (TR)
l,-quantile for the original data by Q©?(u) = [X(a)]R.

To apply the above definitions and algorithm to the problem of finding nquant
multivariate quantiles of the prey, consider first the quantile contours described
by the sets {Q@P (u) : ||u||, = 7} where 0 < r < 1, 1/p+1/q = 1. Chakraborty
(2002) stated that for a certain optimal selection of X (), the population quan-
tile contours for p = 2 (¢ = 2) correspond to the probability density con-
tours if the underlying density is elliptically symmetric with density of the form
[det(Z)]~V2f((x — 8)T="}(x — 8)). Note that if the prey FA signatures were
assumed to be £¢ distributed, then transformed using the additive logratio
transformation, they are multivariate normally distributed and hence satisfy
the above criteria. It would then seem appropriate to consider indexing the
multivariate quantiles of the transformed data by vectors whose magnitudes
correspond to typical univariate quantiles of interest. Matlab code was pro-
vided by Chakraborty (personal communication) to compute TR l>-quantiles,
indexed by a vector u, of a multivariate data set. Some difficulties were encoun-
tered in computing the TR l-quantiles as the algorithm requires n; > (npa+1)
and this is not always the case in the prey data. Further, for the prey types for
which this inequality was satisfied, the computational time was significant. For
these reasons, the l,-quantiles (which were computable from the Matlab code)

were used instead.

In summary, the MQ method used to generate nquan multivariate quantiles for

each species is as follows:

(2) Transform X;...X; to Z;...Z; using the additive logratio transforma-

tion.
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(b) Choose a set of nquan: quantiles, say S = {51, - -, Snquant }- (For example,
S = {0.25,0.5,0.75}.)

(c) For each element, s;, in S compute u,, by choosing its components from a
U[0,1] distribution and then normalizing the vector so that ||us,|| = si.

i. fork=1,...,1
A. Compute the lo-quantiles of Zy, indexed by u;, 2 = 1,..., Nquant-
Note that if n, < 6, the l;-quantiles could not be computed and
the first niguant Observations are used instead.

B. Transform the nquant lo-quantiles using the additive logistic trans-

formation and let @ contain the transformed quantiles.

By randomly selecting from the rows of Qk, we may generate M MQ method
estimates, p™M(Y,QM), m=1... M.

. KL Quantile Method

The interpretation of a multivariate quantile in several dimensions is not straight-
forward and for this reason the KL Quantile (KLQ) method was developed.
Essentially the KLQ method first reduces each prey FA signature, Xy, to a
univariate quantity, Ry, computes the quantiles of the Ry and then relates

those quantiles back to the corresponding prey FA signatures.

The algorithm is as follows:

(2) Choose a set of nquan: quantiles, say S = {51, - -, Snquant }-
i fork=1,...,1
A. Calculate
Ry =KL(Y,Xu),l=1,...,n.
B. Compute the (univariate) quantiles specified in S of the Ry.

C. Determine the FA signature of the prey associated with each quan-
tile. Let Q) contain the matrix of these FA signatures.

The KLQ estimates, pZQ)(Y,Q™),m = 1,...,M are then generated by
randomly selecting FA signatures from the rows of Q.
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It should be noted that unlike the MEAN, RS and MQ methods, the representative
prey from each prey type chosen by the KLQ method depends on the FA signature
of the seal. For a sample of seals, one seal is selected at random to be used in Step
A. Realize also that we could have chosen to use the AIT distance measure in Step
A. When the AIT distance measure is used, we will refer to this method as the AITQ
method.

3.3 Parameterization of the Diet

Section 3.2 described various methods of estimating the diet of a single seal given its
FA signature and a representative prey (Q) from each species. For a seal with true
diet 7o, its FA signature, and therefore the distance minimization algorithm (DMA)
diet estimate, will vary over time. While we might expect that over time, the average
DMA estimate of diet would equal 7y, we show in this section using pseudo-seals
that this is not the case. If we generate many pseudo-seals with diet 7 and estimate
the diet of each pseudo-seal using the DMA, the average of the diet estimates is not
mo. We call this difference between the average of the diet estimates and o the
bias in our estimation procedure. Possible factors contributing to this bias include
the similarity between the signatures of certain species, the choice of FA subsets and
the unknown calibration factors. Additionally, nonlinear estimation techniques are
used. While in Chapter 4 we attempt to estimate this bias, in this section we are
interested in determining which DMA estimate we should use (that is, the choice of
2, the population version of Q) and how to average the diet estimates that would
arise over time so that the chosen measure of location (MOL) is close to the true
diet. It is then this parameter that we attempt to estimate. We call this process the
“parameterization of the diet”.

While we will initially discuss parameterization of the diet of a single seal we will
also consider parameterizing 7, the true average diet of a group of seals. We will
argue that the parameterization of 7 follows once we have found a MOL that is close
to mp.

Understanding the sources of variability in the seal FA signatures (which is related
to the variability in the prey signatures) is crucial in developing useful DMA based
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parameters. For a single seal, while the diet may be assumed to remain roughly
constant over time, the FA signature of the seal will vary with location and time. A
major source of this variability is due to the prey signatures also varying with location
and time. That is, in a large region of the ocean we can imagine there to be various
clusters of prey with similar FA signatures and the seal travelling from cluster to
cluster over time. Its FA signature at a given point in time (such as when the seal
FA signature is recorded), will reflect mostly the prey signatures in the cluster from
which it is eating. A second source of variability in the seal’s FA signature is due to
the prey signatures varying within a cluster so that even if the seal remained in a
given region of the ocean, over time its FA signature would change. For a group of
seals in an area of interest, there is also the variability due to the seals having slightly
different diets. In summary, the variability in the FA signatures of seals in a given

region of the ocean can be primarily explained by the following three elements:
1. The seals may not have identical diets.
2. The variability between clusters in the prey signatures.
3. The variability within clusters in the prey signatures.

For each 7y, we assume that there is a corresponding population of FA signatures.
Note that if two seals each have true diet 7, then we are assuming that the population
of possible FA signatures are the same for both seals. For a seal with true diet 7o,
depending on the order in which the summarizing in the prey signatures is carried

out, there are esséntially two reasonable ways of parameterizing its diet:

1. MOLy[p(Y, MOLx[X])] = MOLy[p(Y,MOLx, [Xi],. . ., MOLx, [Xi])}, or

2. MOLy x,....x,[P(Y,X)] = MOLy x,,...x;[P(Y, X1, ..., X1)],

where MOL[-] is an appropriate MOL computed using the distribution of the FA
signatures that arise when the true diet is .

The argument for which of these two parameters is better is slightly arbitrary. The
first parameter, however, will be preferred for the reason that the seal would eat many

fish from each species so that an estimate based on average prey FA signatures should
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conceptually be more accurate than the average of many estimates based on individual
prey FA signatures. For simplicity, we will choose MOL[Xy] = E[X;] = px,. Then

our preferred DMA based estimate of diet for a single seal is

p(Y, ux) =p(Y, x,, - Bx,)-

Accordingly, 7o will be parameterized by

MOLy[p(Y, #x)];

where the expectations are taken over all possible prey signatures and the MOL over
the distribution of FA signatures corresponding to mp. Note that if we knew the

actual clusters of prey signatures then we could instead use
p(Y, MOLxdmm [X], MOLxdm(z) [X], .o )

to estimate the diet.

It should be mentioned that an alternative approach which we have not considered
would have been to parameterize the diet as p(@y, px) Where py is the average over
all FA signatures associated with mo. We prefer our approach as the biologists may
want to examine the diet estimates of the individual seals as well as an aggregate of
the diet estimates. Furthermore, in comparing the diet of two or more groups of seals
(as is the case in Chapter 6) we are able to obtain a better sense of the variability
in the diet estimates across seal FA signatures if we estimate the diet of each seal, in
each group, rather than obtain one average diet estimate for each group.

For a group of seals with possibly different diets, 7o will vary from seal to seal and
we can consider 7o to be a random variable with a corresponding distribution. We
would then be interested 7 = MOL[m], the average diet of the seals, and therefore 7
will be parameterized by MOLx, [MOLy [p(Y, ttx)]|7o]. We will, however, make the
assumption that all of the seals in the region of interest have, at least approximately,
the same diet so that m ~ o and our parameter of interest is MOLy[p(Y, px)];
where the MOL is taken over all FA signatures that may arise when the true diet is
. In practice we must estimate MOLy[p(Y, px)]. Point estimation is discussed in

Section 3.4 while interval estimation is'discussed in Chapter 4.
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To assess the above parameterization of 7 or 7 and to determine an appropriate
choice of a MOL, we will use the pseudo-seals described in Chapter 1 and in Ap-
pendix B. We will generate many pseudo-seals with a given diet and examine our
parameterization for various choices of MOLs. While this will give us insight into the
distribution of FA signatures that arise from a specified diet, pseudo-seals generated
in this manner will be less variable than seals in the wild if our assumption of a
common diet is not valid. In attempting to parameterize 7rg, this issue is irrelevant
but could matter in Chapter 4 where Cls for  will be constructed if it is believed
that the diets of seals in the wild, in a given region, differ considerably. This issue is
further discussed in Section 4.5.

Another difference in the variability, also discussed in Section 4.5, occurs because
the pseudo-seals are essentially generated as if the seals are random sampling from
the prey signatures instead of cluster sampling, as previously discussed. Since the diet
estimates, p(Y, tx), depend on the overall mean, px (and not the cluster means),
the estimates based on the pseudo-seals might be less variable than the estimates
computed using seals that were cluster sampling, as in the wild. In Chapter 4 this
difference in variability may be important but in determining a parameterization of
the diet, the distinction is less crucial. Note that it is in dealing with this difference
in variability that the other DM methods (that is, the RS, MQ and KLQ methods)
will be useful.

Recall from Section 2.4 the various MOLs that were reasoned to be appropriate
for compositional data (with or without zeros). Since the diet estimates, p(Y, px),
are compositions (with some zeros likely to be present), the MOLs of Section 2.4 are
possible parameters of interest. Using the pseudo-seals, the extent to which one or
more of these MOL:s are close to the true diet will now be investigated more concretely.

These MOLs, applied to the diet estimates, are as follows

® fp = Ev[pe(Y, p#x)]

B 0 ifk é Vp
o M= 34y Ov,Mi(Vs) Where mi(ve) = G ——
1+e“kb

Vb P (¥ )
and u;® = Ey [log (T:;Z"(Tﬁ;)]
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o )\ = { ?1 _ek)ﬁ;—k igi:i where u; = Ey [log (%)] and pj
denotes the non-zero diet estimates.
.»={o =1
| et He<t
where & (ux, 07, k) = Ok (%)% (1—:1“5; + py and
log (1—3*;(—:{#,5‘33) ~ SN (ux, 0%, k)

o M,, = mediany[px(Y, px)]

We have also considered the parameter Ey x[px(Y, X)], though we do not expect this
parameter to be an adequate parameterization as previously discussed. Note that all
of the parameters will be normalized so that their components sum to one.

An obvious difficulty in comparing and evaluating these parameters is that we
have only a sample of prey signatures. We will therefore examine the closeness of the
parameters to the true diet by defining our population of the prey signatures to be
the sample, Xy, ..., X7.

To compute the MOLs given above the following algorithm was carried out:

1. for r=1:1000
(a) Generate a pseudo-seal, Y", with diet 7, and without splitting Xi,..., Xre
(See Appendix B.)
(b) Compute px, =X, k=1,...,1.

(c) Compute the diet estimate for the rth pseudo-seal: p™(Y", px)-

2. Compute the MOLs using p" (Y7, px), 7 = 1,...,1000.

Note that we applied the ML estimation functions in the sn library to e (Y™, px)
to compute Af. To compute By x[pr(Y,X)], 1x, in the above algorithm is replaced
by a randomly selected prey signature from Xj. Also, we have chosen 7 in (2) to
be Diet 1 and Diet 4 from Iverson et al (2004). Recall from Section 1.1 that Diet
1 is considered to be a difficult diet to estimate while Diet 4 should be similar to
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the true diet of seals in the region of interest. Realize that because we are using
10% noise, we actually expect the “zero species” in the diet to contribute (together)
10% of the diet. In Diet 1, for example, while we specify that the true proportion
of Plaice, Sandlance, WinterFlounder and YellowTail in the diet is zero, in actuality,
it is roughly 0.10/4 = 0.025 for each of these species. We therefore expect a slight
positive bias for these species. For Diet 4, there are only two zero species, Haddock
and Plaice, and we thus expect a bias of about 0.05 as we have specified their true
contribution to be zero. If the prey base is large, as is the usual case in practice, this
source of bias for zero species should be negligible for pseudo-seals generated with
10% noise.

The results are presented in Tables 3.1 and 3.2 and in Figures 3.1 and 3.2. The
tables give the actual difference between the MOL and 7r: MOL - 7v. We will call this
difference the “bias” in the MOL though it is only for u,, and for Eyx[px(Y,X)]
that this difference truly represents the statistical definition of bias. The figures also
illustrate the bias in the parameters and may be used to more easily compare the
performance of the various MOLs and the distance measures. Note that missing
data on the figures (for example in Figure 3.2 there are no MOLs based on AIT
distance) correspond to bias results that are larger than 0.10 in magnitude. Since
\/lsg’% x 1.96 = 0.01 for all species we expect p,, for example, to be within +0.01
(with 95% confidence) of the results shown.

As was surmised earlier, the results show that, in general, Ey x[p(Y,X)] is not a
good parameterization. The performance of the remaining MOLs appears to depend
on 7T and on the distance measure used. Surprisingly the distance measures often
give very different results and even prociuce opposite signs in the bias for some species.
The effect of the distance measures is most obvious when the true diet is fairly large,
with Sandlance in Diet 1 and Haddock and Pollock in Diet 4 being exceptions. Pollock
in Diet 4 appears to be particularly troublesome and is overestimated by all of the
MOLs. Even if we considered its true contribution to be approximately 0.05 (due to
the 10% noise that was used), there would still be a large bias. Note that Sandlance
(Diet 4) is almost always underestimated suggesting that the algorithm is having
trouble distinguishing between the FA signatures of Sandlance and of Pollock. To
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Species | COD | HAD | PLC | POL [SAND | SH| WF| YT

p 03 03 0] 0.15 0 0.5 0 0
By x AT 1.0.100 | -0.134 | 0.080 | 0.054 | 0.082 | -0.001 | 0.057 | 0.062
(Y, X)] | KL 20.105 | -0.115 | 0.087 | 0.004 | 0.087 | 0.014 | 0.058 | 0.069
Ey ATT | 0017 | -0.055 | 0.023 | 0.074 | 0.045 | -0.016 | 0.017 | 0.029
k(Y ux)] | KL 20082 | 0.051|0.010 | -0.014 | 0.085 | -0.009 | 0.020 | 0.040
—pk—z - ATT | -0.003 | -0.053 | 0.018 | 0.078 | 0.043 | -0.023 | 0.013 | 0.026
= KL -0.088 | 0.069 | 0.008 | -0.009 | 0.078 | -0.010 | 0.018 | 0.034
fék—kf AIT 0.007 1 -0.039 | 0.018 | 0.078 | 0.029 | -0.029 | 0.014 | 0.022
= KL 0075 | 0.089 | 0.008 | -0.024 | 0.070 | -0.018 | 0.018 | 0.033
Z” — AIT 0.001 | -0.037 | 0.018 | 0.082 | 0.032 | -0.031 | 0.014 | 0.022
= KL 20.077 | 0093 | 0.008 | -0.033 | 0.072 | -0.012 | 0.018 | 0.032
‘f%ii AIT 0.054 | -0.022 0| 0.087 0 | -0.025 | 0.006 0
= KL 20.022 | 0.127 0| 0.013 0 | -0.022 | 0.005 0

Table 3.1: Diet 1: Bias results where Bias = MOL - «r. (Based on 1000 pseudo-seals
with € = 10%, n? = 30 and calibration coefficients.)

Species | COD |HAD | PLC | POL |SAND| SH| WF| YT
= 0.09 0] 0.9 0] 045| 009 009 0.9

By x AIT 0.072 ] 0.099 | 0.022 | 0.157 | -0.242 | 0.013 | 0.003 [ -0.025
(Y, X)] | KL 0.051 | 0.098 | 0.036 | 0.122 | -0.194 | 0.015 | -0.006 | -0.023
Ey AIT 0.014 | 0.043 | -0.021 | 0.155 | -0.081 | 0.027 | -0.016 | -0.021
(Y, 2x)] | KL -0.004 | 0.098 | -0.009 | 0.105 | -0.049 | -0.013 | -0.012 | -0.016
f,’lk-; AIT 0.005 | 0.036 | -0.030 | 0.151 | -0.048 | 0.024 | -0.014 | -0.024
= KL -0.012 | 0.093 | -0.018 | 0.102 | -0.019 | -0.018 | -0.010 | -0.019
TALA_- AIT 0.005 | 0.037 | -0.028 | 0.145 | -0.033 | 0.016 | -0.011 | -0.031
= KL -0.012 | 0.085 | -0.017 | 0.103 | -0.003 | -0.019 | -0.010 | -0.028
"Z—’AL—’ AIT | 0.004 | 0.037 | -0.029 | 0.152 | -0.040 | 0.017 | -0.011 | -0.030
= KL -0.012 | 0.087 | -0.017 | 0.098 | 0.004 | -0.019 | -0.014 | -0.027
ZM — AIT 0.020 0 | -0.031 | 0.133 | 0.027 | -0.017 0 | -0.031
= KL 0.009 | 0.030 | -0.023 | 0.054 | 0.126 | -0.088 | 0.030 | -0.040

Table 3.2: Diet 4: Bias results where Bias = MOL - w. (Based on 1000 pseudo-seals
with € = 10%, n? = 30 and calibration coefficients.)
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investigate this and similar occurrences further, a hierarchical cluster analysis was
performed on X, and the resulting tree is given in Figure 3.3. For both the AIT and
KL distances, the tree does show Sandlance to be somewhat similar to Pollock. The
tree also helps to explain the opposite bias effect occurring in Haddock and Plaice for
both diets, since these species appear to be very similar.

With the exception of Pollock (Diet 4), the bias in the median, —Z—fm, is zero
or near zero when the AIT distance measure is used and m; = 0. (For Diet 1, the
distance measures are almost equivalent for this case.) Observe also the zero bias
in fﬂrﬁ_ﬁ in Winter Flounder (Diet 4) whose true diet is 0.09. Consequently when
T = 0, we expect z—}‘fﬁl—' to be a very good parameterization of the diet.

Recall from Section 2.4 that by the Delta Method, gp,, Mk, Ak, and Af should be
similar and furthermore, if pr(Y, pix) ~ SMizSM (ux, 0F, i) then A = X;. (The
distribution of the DMA estimates is discussed in Section 3.4.) For a given distance
measure, this appears to be the case and g, =7* M and —pk - behave

21 ’ Dz 2;1 A

roughly similarly and adequately.

Overall, there does not appear to be one best parameterization though f{%
may be the preferred choice when 7 &~ 0. Apart from Ey x[p(Y, X)], the MOLs are
all usually reasonably close to 7. As in Subsection 2.5.2, the CI method will usually
determine the choice of MOL.

3.4 Distribution of the DM Algorithm Estimates

While the DMA estimates are not based on any distributional assumptions (as are the
diet estimation methods discussed in Section 3.6),.having a parametric model is useful
in interval estimation. (Note however that some nonparametric CI methods have been
developed as well. These, along with the parametric CIs, are discussed in Chapter
4). In this section, we first consider parametric modeling of the DMA estimates and
subsequently modeling estimates obtained by aggregating over the sample of seals.
We have chosen to attempt to model the DMA estimates directly. That is, while
it may be possible to model the seal and prey FA signatures and then to derive,
at least approximately, the distribution of the DMA estimates, we will show that
our simpler approach appears to work sufficiently well. Recall from Section 3.3 that
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the recommended DMA based estimate of diet for a seal with FA signature Y is
p(Y, ptx). The population of diet estimates would then be all possible diet estimates
that could be obtained from all possible seal FA signatures when the true diet is .
A subtleness in modeling these estimates in practice occurs because px is unknown,
in which case the population of estimates can be defined in different ways. If we
ignore for the moment the issue of px being unknown in practice, we may consider
modeling the estimates with one of the mixture distributions discussed in Section 2.3.
In our current notation, the MizM, SMizxM and SMizSM distributions are

Skgve} Ovs if pr. =0,
fe@e) = { Tirkeve) M ui?07) £0<p: <1, (3.5)
0 otherwise,
7 if p. =0,
filpr) = § (1 —0)M(pr,0%) H0<pe <1, (3.6)
0 otherwise,
and
Ok if pr =0,
frlor) = ¢ (1= 0u)SM(pr, 0%, 00) 0 <pe <1, (3.7)
0 otherwise.

To assess the fit of the continuous part of these distributions, we have fit these
distributions to the (non-zero) diet estimates that were used to obtain Figures 3.1-3.2.
The parameters in densities 3.5, 3.6 and 3.7 were estimated by their MLEs (as derived
in Subsection 2.5.1). The estimated densities along with a histogram of the (non-zero)

diet estimates are given in Figures 3.4-3.7. For comparison purposes, we have included

1000

the fit of the normal distribution with mean f,, = 15 >i21 Pr,i( Yi, x) and variance

Spr. = 5%9‘ 10 (s (Y ) — l&?k)2’

The figures show the overall shape and appropriateness of the fits to be roughly
the same for both distance measures. One noticeable difference is the larger spread
in the distribution for Haddock with the KL distance (both diets) than with the AIT
distance. Conversely, the diet estimates of Pollock are more variable with the AIT
distance, in both diets, than with the KL distance.
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Perhaps what is most obvious from the figures is the poor fits by the normal distri-
bution, particular when 7, is small. Also apparent is the similarity between the fits of
the MizM and SMizM distributions with the exception being Sandlance in Diet 4.
In this case, the MizM distribution attempts to capture the seemingly multimodal
nature of the distribution. The closeness of the MizM and SMizM distributions
for the other species suggest that the more complicated MizM distribution is not
always needed. Particularly when m is not large, both mixture distributions appear

to provide moderate fits.

The SMizSM distribution quite often provides a considerable improvement in
the fit over the MizM and SMizM distributions and appears to fit the data quite

well.

In practice px is unknown and the definition of the population of the diet esti-
mates must be altered slightly. One option is to consider the population of the diet
estimates conditional on X. Another allows the population of diet estimates to con-
tain all possible estimates when the both the seal and sample of prey FA signatures
vary. As will be discussed in Chapter 4, parametric CIs will tend to be more easily
derived when we consider the distribution of the estimates conditional on X, mainly
because our sample estimates will be independent (if the seal FA signatures are in-
dependent). Our approach will be to assume that our diet estimates conditional on
X may be modeled by one of the mixture distributions and to derive any parametric
CIs accordingly. To incorporate the variability of the prey into the intervals we will
either use a bootstrapping procedure or one of the other DMAs (that is, apart from
the MEAN method DMA).

Given a sample of n, seal and prey FA signatures, we now consider aggregate
point estimators of the DMA based parameters discussed in Section 3.3, and examine

their distributions.

For a sample Y7,..., Yn, and X;,..., X/, Table 3.3 contains point estimators of
the MOLs discussed in Section 3.3. (These point estimators are analogous to those
given in Table 2.1.) We will adopt the notation, fx(-) (and similarly for the other

point estimators), to allow for the specification of X or px.

Observe that these estimators are not unbiased for their corresponding parameters
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Figure 3.4: Diet 1, AIT distance: Histograms of (non-zero) diet estimates and various
estimated distributions. (Based on 1000 pseudo-seals with ¢ = 10%, n? = 30 and
calibration coefficients.)
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calibration coefficients.)
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essentially because
By x[px(Y, X)] # Ev[pe(Y, ux)]-
Also with X in place of py, pi(Y:,X), ¢ = 1,...,ns are not independent and,
consequently, we do not have simple variance expressions for the point estimators.

Conditional on X, however, we have, for example,

Ev[pe(X)|X] = Ev[p(Y,X)IX] = tpx
VARy[p(Y, X)[X] _ Tpux

VARy[P:(X)|X] = o .
| Parameters Point Estimators |
Hp = EY[Pk(Y, I»Lx)] ﬁk(}_() 1--1 Pk, z(Yu X)
M = Sty O, (V) Me(X) = 21,:1 Oy ik (Ver X)
0 if k ¢ Vp _ 0 if k ¢ Vi
= Lo 5 — PRb
where M|Ve = ¢ & ,; _ ifkev, where 7;x(X)|vp ,; (::;) i ke
1+e & _ 1+e &
Ap = M(X) = )
0 ifO,=1 0 fo=1
(1— )1 if 6 < L. (1-0); 2% i 6 < 1.
k= ;\k(X) = R
0 flr=1 0 if0,=1
oEklukrFion) JRENEORJe SR e S S
(1 - 8) Lty B <1 || (-8 ";k(jk(x) s if Ok < 1.
M,, = mediany (Y, px)) My, = medlanl [px.s (Y, X)]
(Population Median) (Sample Median)

Table 3.3: MOLs and their point estimators

We will not attempt to derive the conditional expectations and variances of the
other point estimators nor will we derive the distribution of these point estimators for
finite samples. These are nontrivial tasks and for interval estimation, other methods
can be used. Instead we have examined the finite sample distribution of the point
estimators through plots of simulated estimates as in Section 3.4. The estimates were

simulated as follows:
1. for r=1:1000

(a) Generate n, pseudo-seals, Y7y, ..., Yy, with diet 7, using Xj,...,X.
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(b) Compute py, =Xi, k=1,...,1.

(c) Compute pf(Yi, px),i=1,...,7s.

(d) Compute each of the point estimators in Table 3.3. For example, compute
Pr(px)-

Note that as before, we are treating the sample of prey FA signatures as the popula-
tion.

Histograms of the point estimators in Table 3.3 along with the fit of the normal
distribution are given in Figures 3.8-3.11. As some skewness in the distributions
was expected to be present when n, is small, the fit of the univariate skew-normal
(SN distribution (as defined in Chapter 2) is also included for comparison with
the normal distribution. We have chosen to illustrate only the distributions of the
point estimators at ng = 5, for Diet 4, and with the AIT distance measure. The
distribution of the point estimators are similar for Diet 1 and the KL distance measure.
Furthermore, by ns = 10, all of the point estimators appeared to be roughly normally
distributed (particularly for 7 > 0). Note that we have not shown the distribution
of A\ since usually X8 is very similar to Ak

From the Figures, even at ng = 5, the distributions of p, 7 and A appear to be
approximately normally distributed when 7, > 0.15. For m; < 0.15, the estimates are
well fit by the SN distribution. Note the similarity in the plots in Figures 3.8-3.10
and in particular the closeness between the distributions of px and 7. Recall from
Section 2.4 that by the Delta method, p, =~ 7 and p, =~ A so that the point
estimators P, 7 and S\k should be similar. Also, for each population V, (where V,
gives the non-zero components of p(Y, px)), if there is only one observation, then
fr = Tir. Consequently for ns small, pr and 7 are often the same. The median, m,,,
appears to require a larger ns for the normal approximation to suffice.

The tendency of the finite sample distributions of the point estimators in Table
3.3 towards normality is in agreement with Section 3.5 where it will be shown that
the point estimators are all asymptotically normally distributed. Based on our inves-
tigation, a normal approximation to the finite sample distributions generally appears
to be valid for n, > 5 when 7. > 0.15, for ny > 10 when 7, > 0 (for the median, my,,
a larger n, may be required), and for n, > 25 for all mx. The implication is that Cls
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based on a normal approximation should roughly be appropriate in these cases.

3.5 Asymptotic Properties of the Point Estimators

We now consider the behaviour of the point estimators in Table 3.3 when 7, and/or
n are large. Based on the plots and discussions of the distributions of the finite
sample estimators presented in Section 3.4, we expect the large sample distributions
to be approximately normal. In this section we prove this to be the case when both
ns and n; are large.

We begin with the simplified case of px being known and examine properties of
the estimators as ng — o0o. In this ideal case, if Y3,..., Y, is a random sample of
the seal FA signatures, then pg1(Y1, #x);- - - Pkn.(Yns, Ux) are independent iden-
tically distributed (iid) random variables with common mean p,, = Ey[p(Y, 1x)]
and variance 02, = VARy[pi(Y, ptx)]. Then Theorems 2.1-2.3 are applicable and the
asymptotic distributions of the estimators are evident. For example, we have, by the
Central Limit Theorem,

Dk;na (ﬁgi)_ — Ko g N(O, 1). (3.8)

Vas
If pp % and ngp’c are defined as in Section 3.4 then we have also that

pk’mm(;(z)ﬁ ~HadX _ ar(0, 1), (3.9)
Vs
since px (Y, X), i=1,...,n, areiid. Conditional on X, the asympotic distribution
of the other point estimators may be similarly derived.
When py is unknown, as is the case in practice, the asymptotic distributions of
the estimators (for both ns and ny large) are also relatively straightforward to derive,
provided it can be shown that py.(Y,Xy) converges in probability to (Y, px)

(prn (Y, Xr) —p Pe(Y, 1)), or equivalently that for every € > 0,
lim P|pea(Y, Xn) — (Y, 1x)| 2 €] =0. (3.10)

To prove this, first note that by the weak law of large numbers (WLLN), we have
that
Xnk _)P ”‘Xk Vk'
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By the following theorem, it then suffices to show that p,(Y, X.,) is continuous from
SnpA(I+1) — SI.

Theorem 3.1 Let X, be a sequence of random vectors of length D. If X, —p, X and
g s continuous from RP to RM, then g(X,) —p 9(X). (Bickel and Doksum, 2001)

Consequently, to show that p,(Y,X,) —, p(Y, px) we will attempt the simpler task
of proving that p,(Y,X,) is a continuous function of X, or equivalently that

Jim (Y, Xn) = p(Y, ax) V(Y pix) € S™740D. (3.11)
First observe the following two statements

1. Since pa(Y,X,) lies in a compact set (that is, since 0 < po(Y,X,) < 1),
pn(Y,X,) has a convergent subsequence. Without loss of generality, assume

that the sequence p,(Y,X,) is the convergent subsequence. Then let

Jim pa(Y, %) = a. (3.12)
2.
p(Y,X,) = arg min_ dist(Y, Y(q,X,)) (3.13)

& dist(Y, Y (pn, Xn)) < dist(Y, ¥(q, X.)) Va,n,

where dist(-) represents either the KL or AIT distance functions in Equations
3.1 and 3.2 respectively.

It is straightforward to show that the KL and AIT distance functions are contin-

uous in X,, and q so that

lim dist(Y,¥(q,X,)) = dist(Y,¥(q px)) Yq and
lim dist(Y, V(pn,Xa)) = dist(Y,¥(a px))-

Now since Equation 3.13 is satisfied for all n, we may take the limit of both sides of
the inequality to obtain that

dist(Y, ¥(a, x)) < dist(Y, ¥(q, #x)) Va.
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Therefore,
a = arg ming dist(Y, ¥(q, px))
= p(Y,px)-

Then Equation 3.11 is satisfied by replacing a with p(Y, ux) in Equation 3.12. We
may conclude that p,(Y,Xn) —p P(Y, tx)-

To now show that the point estimators in Table 3.3 are asymptotically normal,
given that prA(Y, X5) —p px(Y, tix) Vk, we will apply Slutsky’s Theorem (Theorem
2.4).

Consider, for example, deriving the asymptotic distribution of Drnen(Y, X,). Let
ﬁk,na,n(xn) — Hox

Iy,
VTs

Dk, \x) — W
Do (1) = Dimllix) = i

Vs

Zk,n_,,n(}—(n) = ) and

We may write
Zman(Zn) = Zisma (1) + (Zimam(Xn) = Zion, (1)) - (3.14)
By Equation 3.8,
Zin, (%) =4 N(0,1).
Also, for n, fixed,

Zk,ns,n(xn) —p Zk,n,(l‘x) or
Zinm(Xn) = Zipa(Hx) —p 0,

by Theorem 3.1 since it was shown that pgn(Y,Xn) —p Pe(Y, px) Vk and Z(-) is a
continuous function of pg. (Y, Xy). Now take n, — 0o and apply Slutsky’s Theorem
to the right hand side of Equation 3.14. We have

Zinon(Xn) = 2 k’"”"(é’;) ~ e 4 N(0,10).

Jns

It is straightforward to show that

Ns

1 S =\ 2
1 Z (pk,n(Yiy X) - ﬁk,ns,n(X)) ——)p 0‘12)’:.

s T L i=1

(%) = =



66

Then from the arguments in Subsection 2.5.2,

ﬁk,na,n(x) — Hp
ey N(O,1). (3.15)
Ve

Using the asymptotic normality of i, (x), M, (), M, (i) 20 Mg, m, (ki)
(by Theorems 2.2-2.3) as well as their continuity in X (that is, when p is replaced
by X), we can derive similar results for these point estimators as functions of X. As
discussed in Subsection 2.5.2, when n, and n, are large we will prefer the simpler

result in Equation 3.15.

3.6 Another Diet Estimation Method: Maximum Likelihood Estimation

We have considered a maximum likelihood estimation (MLE) approach to the diet
estimation problem but have not it to be useful. In this section we outline the
algorithm and the various problems that we encountered.

Aitchison and Bacon-Shone (1999) offer a general method of estimating mixtures
of compositions. Since the seal FA signature may be regarded as a mixture of the prey
signatures, their method can, in theory, be applied to the diet estimation problem.
We will refer to their method as the MLE algorithm.

In Aitchison and Bacon-Shone, the problem of interest is described as determining

the distribution of the D-part composition, Y, formed as a convex linear combination
Y=cwx(X,7) =mXy +... + Xy,

where X = [Xj,...,X/] is a set of I independent D-part compositions with known
distributions and where 7 = [r1, . .., 7] is a vector of nonnegative mixing proportions.

In our case Y is the seal FA signature, X is the FA signature of the kth species
and D corresponds to the number of FAs, nr4. The mixing proportions represent the
true common diet of the seals in a given region, from which the sample of n; seals
was drawn. In accordance with Aitchison and Bacon-Shone’s terminology, the seal
FA signatures are the target compositions while the prey FA signatures are the source
compositions.

Before presenting various models for Y, a few comments concerning the notation
to be used in this section is needed. Recall from Chapter 2 that if X ~ £% (1, X)
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for some D-part composition X, then log (Zix—_;) ~ N4 (p,X). Aitchison and Bacon-
Shone (1999) have chosen to re-parameterize through a one-to-one transformation.

They use instead the notation X ~ LP (¢, T) where the components of § and T are

given by
ek .
gi = e#1+...+eﬂd+172—1"“’d’
£ = 1
D™ e qemat
T = a?-}—a]g—Za,-j, ,7=1,...D,

and where op; = 0ip = opp = 0. For the remainder of this Section, we have adopted
their notation with D = ng4.

Aitchison and Bacon-Shone suggest using one of the following three approximate
distributions to model Y:

Fized-Mizture Model

The distribution of Y = cvx(X, 7) = m Xy +. ..+ 77Xy, where X, ..., Xy are in-
dependently distributed as £*F4(&;, T1),...,L"F4(&, T1), is approximately L4 (n,®),
e= [9,-,-] and

1 I npanfFA

I
n="> m&, b;= -3 >3 GripGrisiwats
k=1

where
Tk
Grijp = pri(Bib — Ekb) — Pri (856 — Eb): Pki = ,;7& ’
and
1 ifb= '7
Oip = )
0 ifb#1.

The Fixed-Mixture model has I —1 unknown parameters since €, and Ty, k= 1,...,I

are assumed to be known.

Convolution Model
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This model is similar to the Fixed-Mixture model but now it is assumed that =
is distributed as £4(a, Q). Then Y is approximately L"F4(k, A) where

I 1 NEFANFA 1 I I
k=Y oxb, Nij= -3 S>3 HugpHiimin — 3 > BaijBiijwaks
k=1 k=1b=1 I=1 a=1 k=1
and
o
Hiijo = xxi(Gib — &) — Xri (Gjp — &xb)s Xbi = —L&, Biij = Xki — Xkj-

The Fixed-Mixture model is the special case where 2 = 0 and a = 7. This model

contains J — 1+ 3I(I — 1) unknown parameters.
Perturbation Model

In the perturbation model, the distribution of Y = cvx(X, 7)o U is approximated.
If U~ L"rA(e, ¥), where e = [5,..., 5] is the identity of the perturbation group,
then the distribution of Y is approximately £(n, ©+¥) distributed (by Property 2.2)
where 17 and © are given in the Fixed-Mixture model. Note that the Fixed-Mixture
model is the special case where ¥ = 0. There are I — 1 + %TLFA(TLFA —1) unknown
parameters in the Perturbation model.

Aitchison and Bacon-Shone explain that the more complicated Convolution and
Perturbation models arise because often the target samples have total measures of
variation similar to or greater than the source measures. Their simulation studies have
shown, however, that the measure of total variation for the convex linear combination
Y tends to be less.

As a first step to using Aitchison and Bacon-Shone’s method to estimate the
diet, 7, a model must be chosen. While it is possible to carry out an approximate
likelihood ratio test (LRT) as suggested in Aitchison and Bacon-Shone (1999), for the
diet estimation problem, n, will often be small (and much less than nr4) and the test
may not be valid. In the real-life example used in Aitchison and Bacon-Shone (1999),
three separate target samples were analyzed and the LRT yielded a different model
for all three. Since time will be a factor in our simulation studies, we will choose

the Fixed-Mixture model as there will be considerably fewer parameters to estimate.



69

For example, if we use I = 8 (I will actually be much larger in practice but is the
number of species used in our simulations) and nps = 40, the number of parameters

that require estimating for each of the models are given in Table 3.4.

Model No. Parameters
Fixed-Mixture | 7

Convolution 35

Perturbation | 787

Table 3.4: For each model, the number of unknown parameters for J =8 and nps =
40.

Point estimation of & is by ML estimation. For the Fixed-Mixture model, the
likelihood function is

Ns 1
L(w) = T
() g (2'”)_‘1/2[2(77)1—5(?/1:' .- 'ynpAi) 8

ot [log (’y-;""ﬁ) -u(vr)] 'S ) [log (%‘ff) —;L(n-)]

where p(7) = log (%ﬁA) and 03 = 3(Binpa +Oinpa — i), 4,5 =1,...,nFa. Recall
that 17 and © are functions of 7. Also, when calibration coefficients are needed, we
assume that the sample of seals, Yi,...,Yn,, have been calibrated before L(7r) is
evaluated.

It should be mentioned that Aitchison and Bacon-Shone (1999) actually recom-
mend an initial investigation into whether an additive logistic skew-normal distribu-
tion (L£S) approximation is worthwhile. In their examples, however, they found that
LS modeling did not yield significantly better fits than the £ models.

When the MLE algorithm (with Fixed-Mixture model) was applied to the diet
estimation problem, a few problems arose. Firstly, even for ns small, the MLEs took
several hours to calculate with S-PLUS’s nlminb function. This was due mainly to
the slowness in computing © with np4 = 40. A second problem, also related to the
dimension of the FA signatures, was that nlminb did not always find the maximum of
log L(7r) when calibration factors were used. This phenomenon is illustrated in Tables
3.5 and 3.6 where different starting values yield different estimates of the diet when
the algorithm is applied to 1000 pseudo-seals. Note that we have used the notation
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# to denote nlminb’s estimate of &, but with ny = 1000, 7 may be considered to be
a parameter. If # is actually the MLE and the underlying model appropriate, then
with ng = 1000, it should be the case that # = =, the true diet. With n, = 1000, we
may therefore compare # to any of the parameters discussed in Section 3.3 such as
o = Ev[p(Y, px)l-

For Diet 1 (Table 3.5), although log L(#) is the largest when equal proportions
are used as the starting values, the results are not sensible. For Diet 4 (Table 3.6),
the starting values u, and Diet 4 give the same # and log L(#) is largest for these
starting values. With these starting values and except for Sandlance (m; = 0.45), &
is a poor parameterization of the diet. To verify that this difficulty in finding the
maximum of log L(7) was actually related to the dimension of the FA signatures, the
optimization was carried out for three randomly selected FAs using the three sets of
starting values. For np4 = 3, all three sets of starting values gave the same results
suggesting that the maximum was found in this simplified case.

Without calibration factors (see Tables 3.7 and 3.8) the only problem was the
slowness of the algorithm as # was the same for all three sets of starting values
and appears to be a reasonable parameterization of the diet. Note that while the
components of p, (computed without calibration) are usually slightly closer to =
than are the components of #, the Convolution or Perturbation models, or the use of
the SL distribution may have given improved results.

Although without calibration factors the MLE algorithm gave adequate results,
calibration effects will be present in the diet estimation problem. The poor results
obtained with the calibration factors combined with the challenge of the high dimen-
sion of the FA signatures have led us to conclude that the MLE algorithm is not
particularly useful for our application.
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COD [ HAD | PLC | POL | SAND | SH WF | YT

0.3 0.3 0 015 |0 015 |0 0
Start log L(#) | pp | 0.283 [ 0.245 | 0.023 | 0.224 | 0.045 | 0.134 0.017 | 0.029
Diet 1 93472 7 |0 1 0 0 0 0 0 0
4,.--,7) | 105447 | & | 0481 |0 0.333 |0 0 0 0 0.186
Ly 95888 « |0.122 | 0.878 | 0 0 0 0 0 0

Table 3.5: Diet 1, Calibration: MLE algorithm estimates () and log L(#) for various
starting values in niminb. (Based on 1000 pseudo-seals with € = 10% and n? = 30.)

COD |HAD | PLC | POL |SAND [SH | WF [ YT
009 |0 009 |0 045 |009 |0.09 |0.09

Start | log L(7) | & | 0.104 | 0.043 | 0.069 | 0.155 | 0.369 | 0.117 | 0.074 | 0.069
Dicc4 | 104315 |# |0363]0 |0 |0 |0489 [0 [0 [0.47
111952 |# [0329]0 (03390 0146 [0 [0 0.186
TR 104315 | # |0363|0 |0 |0 |048 [0 |0 |0.147

Table 3.6: Diet 4, Calibration: MLE algorithm estimates (%) and log L(#) for various
starting values in nlminb. (Based on 1000 pseudo-seals with € = 10% and n? = 30).

Species | COD [ HAD [ PLC | POL |SAND |SH | WF | YT
Diet1 | 0.3 0.3 0 015 |0 015 |0 0

75 0.277 [ 0.307 | 0.025 | 0.153 | 0.045 | 0.151 | 0.018 | 0.024
T 0.279 | 0.194 | 0.026 | 0.196 | 0.079 .| 0.151 | 0.065 | 0.011

Table 3.7: Diet 1, No calibration: MLE algorithm estimates (7). (Based on 1000
pseudo-seals with € = 10% and n? = 30.)

Species | COD | HAD | PLC | POL | SAND | SH WF | YT
Diet4 [0.09 |0 009 |0 0.45 0.09 |0.09 |{0.09
Ko 0.081 [ 0.058 [ 0.061 | 0.073 | 0.442 | 0.117 | 0.086 | 0.083
7 0.127 [ 0.095 | 0.047 | 0.127 | 0.354 | 0.077 | 0.101 | 0.071

Table 3.8: Diet 4, No calibration: MLE algorithm estimates (7). (Based on 1000
pseudo-seals with € = 10% and n? = 30.)




Chapter 4

Diet Interval Estimation

In Chapter 3 the DMA (Distance Minimization Algorithm) for estimating the diet of
a single seal was introduced. It was then determined that certain MOLs (Measures
of Location) of the diet estimates were sufficiently close to the true diet making it
possible to parameterize the diet estimation problem. In this chapter, we consider
interval estimation for the true diet of a seal (or common diet of a group of seals). A
useful approach is to derive an interval for one of the MOLs and then to adjust the
interval by the (estimated) difference between the MOL and the true diet.

The core of this chapter consists of the CI methods and a simulation study de-
signed to compare the coverage probabilities and interval lengths of the various meth-

ods. Our recommended CI method is then applied to some real-life data.

4.1 Resampling Techniques

Most of our CIs methods rely on bootstrap methods in which we resample from
our original data (the seal and prey FA signatures) to generate replicate samples.
Appendix C describes a few resampling techniques including Davison and Hinkley’s
(1997) nonparametric and parametric bootstrap procedures, applied to the seal and
prey FA signatures. Note that the ability to generate pseudo-seals allows for the
seal FA signatures to be resampled in a nontraditional manner. For example, in
the “pseudo-seal method” (detailed in Appendix C), we generate ns pseudo-seals by
letting the ith pseudo-seal have diet p;(Y;, X).

In the CI bootstrap algorithms outlined in the following subsections, we allow for
the use of any of the resampling procedures given in Appendix C by simply indicating
to “generate” a sample of seals or prey. In our simulation study (discussed in Section
4.4), we chose to use a nonparametric bootstrap of the prey and to generate pseudo-
seals by the “pseudo-seal method”.
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4.2 Bias Adjustment

All of the CI methods to be presented require an adjustment to account for the
difference between the parameter being estimated and the true diet, 7, the parameter
ultimately of interest. Recall from the discussions in Section 3.3 that there are various
parameters that are close to the true diet. The difference between these parameters
and the true diet was termed the bias even though it is only for the parameter
ko = Ey[p(Y, )] that the traditional definition of bias applies. Clearly CIs for
these parameters are not necessarily CIs for w. Most of our CI methods rely on
bootstrapping and a consequence is that even our nonparametric intervals (which are
bootstrap based) require an adjustment. The reason is that bootstrap techniques
(both parametric and nonparametric) generally assume that the point estimator can
be expressed as t(F'), where F is the empirical distribution function (edf), and that
the parameter of interest is ¢(F'), where F is the cumulative distribution function

(cdf). Consider our simplest point estimator, p(X). We may write

5(X) = nisgp(Yi,}_() = / [p (Y, [XudFxy), ., / xmﬁx,)] dfy.

Then the actual parameter that is being estimated is p, = Ev[p(Y, px)] and not
, the true diet. An algorithm is therefore needed to estimate the difference between
t(F) and . The ClIs are then shifted by the estimated bias.

Our algorithm for estimating this bias involves generating pseudo-seals from each
of the n, estimates of diet, computing (for each pseudo-seal) the parameter that our
interval method is estimating (t(F)), and examining (for each pseudo-seal) the dif-
ference between our estimate and the parameter. The n, estimates of bias are then

summarized. The algorithm, in detail, is as follows:

Bias Estimation Algorithm

1. Choose the parameter for which a bias adjustment is required, for example,

o = Ex[p(Y, px)]-

2. Compute n, diet estimates: p;(Y1,X),-..,Pne(Yn., X)-
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3. Compute a point estimate, say p(X), using diet estimates in 2.

4. Generate R, pseudo-seals from each of the diet estimates in 2.: Y. .. ,Y}fps,

t=1,...,ns.
5. For the ith seal, compute the R, diet estimates: p}(Y},X),...,px,,(YE,., , X).
6. For the ith seal compute pi. = RL e pr (Y, X).
7. For the ith seal, compute

5:' = lif,- - Pi(Yiy X)-
8. The bias estimate is then an average of 5,-, i=1,...,n,.

Note that in Step 8 we chose to use the median of the b; as our measure of
the average bias. Also, it should be mentioned that we examined variations of this
algorithm such as generating R,s pseudo-seals from a point estimator of diet instead
of from the individual diet estimates. While the performance of the bias algorithms
varied with the parameter being estimated and the CI method, the above algorithm
(using the median of the 51) was chosen as it appeared to perform adequately across
the various parameters and CI methods.

Finally, it should be mentioned that except for the parameter, Ey[p(Y, 1x)], the
sum of the parameter components over the species is not necessarily one. (This was
discussed in Section 2.4.) Our CIs will be for the non-normalized parameter. In
our bias adjustment algorithm, we do not normalize our point estimates and so this
source of bias is essentially incorporated into our bias estimate. To assess our bias
adjustment algorithm, in Section 4.4 we present our results with and without the bias
adjustment. The results without the bias adjustment, however, have actually been
adjusted to account for this normalization related bias. That is, for intervals that
are not bias corrected, we divided the confidence limits by Z£=1 7., where 7 may

represent any of our estimates.
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4.3 CI Methods

4.3.1 Overview

We have divided our CI methods into four subsections: Large Sample Intervals, Para-
metric Intervals, Semi-Parametric Intervals and Nonparametric Intervals. The intent
of this subsection is to motivate the CI methods and to provide some insight into

their potential advantages and disadvantages.

The large sample intervals include a variety of intervals, and, as the name suggests,
are expected to perform well when n; (sample size of seals) and/or the n (sample
size of prey from species k) are large. They include intervals that use the asymptotic
normality of the point estimators, P, 7k, M and my derived in Section 3.5 when both
ns and n; are large as well as others that may be appropriate when n, only is large.
Of the latter proposed methods, one method assumes that the point estimators are
approximately normally distributed, as in the asymptotic intervals, but attempts to
incorporate the variability due to the prey using bootstrap methods. Because the
large sample intervals are perhaps the simplest to implement and some do not require
bootstrapping, we are interested in comparing their performance with some of the
more complex methods and determining whether, for larger values of n;, these simple

intervals may suffice.

The parametric and semi-parametric methods were developed for the case when
both n, and the n; are small or of moderate size. They are essentially modified
versions of the finite sample intervals derived in Subsection 2.5.2 for compositional
data modeled by one of the discussed parametric distributions. For the diet estimation
application, the need for adjustments to the intervals in Subsection 2.5.2 is two-fold.
Firstly, recall that these intervals involved certain nuisance parameters. For ng small,
simply substituting the MLEs in for these parameters is not a satisfactory approach.
A second issue, specific to the diet estimation application, is the lack of independence
in the diet estimates. Consequently, the intervals in Subsection 2.5.2 may only be
applied to the diet estimates conditional on X and, for n;, small, should be altered to
reflect the variability in the prey. We have used bootstrap methods to manage these

issues.
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An obvious drawback of the parametric intervals is that their success depends on
how well the diet estimates are modeled by the specific parametric distributions. If
the parametric model is appropriate then the Cls should be most efficient. Although
the semi-parametric CI method is more complex than the parametric methods, it
does not rely on an underlying parametric density for the diet estimates. A further
advantage of the semi-parametric intervals is that they make use of the populations,
V;,j =1,...,B (recall that V; contains the indices of the non-zero components of
the estimate) and therefore use some information from all of the components of the
diet estimates into the univariate intervals. A disadvantage, is that unlike some of the
large sample bootstrap and parametric intervals, when ns = 1, the semi-parametric
intervals are not computable.

Some nonparametric methods were implemented as well, including percentile
based methods. In addition to the obvious advantage of not requiring an assumed
underlying parametric model, these intervals are plausible for ny > 1 and are less

complex than the semi-parametric and parametric intervals.

4.3.2 Large Sample Intervals

Our discussion on large sample intervals is split into two cases based on whether ny is
considered to be small or large. In both cases, however, n is assumed to be “large”,

where “large” will be determined by our simulation study in Section 4.4.

Case 1: ns and ng, k= 1,...,1, are large

When both ns and the n; are assumed to be large, ClIs for the MOLs given in
Table 3.3 follow almost immediately from the asymptotic results given in Section 3.5.
We have the following asymptotic intervals for pp,, 7k, Ak, and Af respectively:

Spk (X)

(X)) £ T Nl (4.1)
m)iz%d B 0 5570, (42



7

M(X) £ z%\l bl 2 kf_()’ 7)) ) (4.3)
— J Iy G ﬂk(m;:k(x;, (%) s

where I, I5,, and Iy, denote the corresponding Fisher information. Since all four of
the above intervals are valid for ns and ny, large, we will prefer to use the simplest in-
tervals, namely those given by Equation 4.1, provided we can accurately estimate the
difference between u,, and m. We have therefore not derived the Fisher information
for the other estimators.

Note that for ns only moderately large using quantiles of the ¢ distribution or
the finite sample intervals presented in Subsection 2.5.2 (derived from our parametric
models for compositional data), may yield improved results over a normal approx-
imation. (Application of the finite sample interval methods of Subsection 2.5.2 to
the diet estimates is discussed in detail in Subsections 4.3.3 and 4.3.4.) We have
therefore computed these intervals as well and consider them to be alternative large
sample (Case 1) interval methods.

Observe also that not all of the sample sizes of prey in the prey base used in our
simulation study would likely be considered large relative to the dimension of the prey
FA signatures (see Appendix A for the sample sizes). We will still, however, compute
the above intervals to compare their coverage probability and length with the more

computationally intensive methods described in the remainder of this chapter.
Case 2: n, is large

As mentioned above, often the chosen prey base will not be considered large
enough to assume that gy ~ X. When n, only is large, Equations 4.1-4.4 give
approximate Cls for p,x, Myx, and Ayx respectively. To obtain CIs for the un-
conditional parameters, our approach involves adjusting the variability of the point

estimators using the following bootstrap procedure:

Large Sample Bootstrap Algorithm
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1. Compute ns diet estimates: pl(Yl,}_(),. .+ sPn, (Yn,,f{).
2. Compute a point estimate, say p(X), using diet estimates in 1.
3. forr=1,..,R

(a) Generate n, seals: Yi7,..., Y. (See Appendix C.)

(b) Generate sample of prey: XJ,...,XJ". (See Appendix C.)

(c) Compute n, diet estimates: p{(Y3",X*),...,ps, (Yo, X*).

(d) Compute the point estimate, p*"(X*"), using diet estimates in (c).

4. Compute
R

1 KT (NT*T 7 (X
0_123:001: = EZ (pk (X ) —p"‘k(x ))

r=1

2
where 77(X™") = & TR A7 (X).

Observe that if n; = 1, the above bootstrap algorithm yields an estimate of the
variance in the diet estimates themselves, VARy x[p(Y, X)]. Although similar to the
bootstrap estimate of variance discussed in Iverson et al (2004) (and in Subsection
3.2), our proposed estimate includes the variability due to the seal FAs and not just
the prey. Incorporating the variability due to the seals when n; = 1 is only possible
because we can generate pseudo seals (see Method 1 in Appendix C) and do not have
to rely on traditional parametric or nonparametric bootstrap methods.
An approximate 100(1 — a)% CI for iy is then

7(X) £ 2305, (45)
and similarly for 7k, Ax and M. We have also examined the effect of modifying
the intervals slightly by the use of a variance stabilizing transformation, namely the

binomial distribution variance stabilizing transformation:

2
h(p) = ;arcsin(ﬂ?).

To compute these intervals, the above transformation is applied to 7(X) in Step 2
and to 7*7(X) in Step (d). An approximate 100(1 — a)% CI for 2arcsin(,/%,), is
then given by

P(R) + 250585, (46)
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where % (X) = %arcsin(m ). An approximate CI for y,, then follows by applying
the inverse of the transformation to the confidence limits.

Realize that although the ;" are themselves compositions, we have not attempted
transformations involving logarithms (such as those proposed by Aitchison (1986) and
discussed in Chapter 2) due to the zeros that will often be present. CI methods that

make use of the discussions in Chapter 2 are given in Subsections 4.3.3 and 4.3.4.

4.3.3 Parametric Intervals

In Section 3.4 it was shown that the diet estimates, pi(Y, tx), could be modeled
reasonably well by the MizM, SMizM and SMizSM distributions. In Subsection
2.5.2 finite sample intervals for compositional data having these distributions were
discussed. Recall from the Overview (Subsection 4.3.1) however, that these intervals
are potentially problematic for the diet estimation application when 7, and ny, are
small. We have accordingly developed more suitable, modified finite sample intervals
for diet estimates modeled by each of these mixture distributions.

Before presenting the parametric interval methods, a comment concerning the ab-
sence of independence in the diet estimates is needed. We will actually model the
estimates conditional on X so that the marginals of pyx(Y1,X), .-, Pa,x(Yn,, X)
may be considered a random sample from one of the above mentioned mixture dis-
tributions. Unless n; is large, a bootstrap of the prey will be incorporated into the
interval methods to yield unconditional Cls, as in Case 2 of the previous subsection.

Suppose first that px1(Y1, x), - - - » Pne (Yngs Bx) ~ MizgM(By;, 17, 0%). Then
Subsection 2.5.2 described a method of obtaining a CI for 7, if the 6, are known. (If
ng is small, then X is used in place of ux and the CI is actually for 7%.) Recall that
this method involved pooling P-values computed for each of the populations into a
single, overall P-value. One way uses the 6, as weights. In practice, particularly for
ns small, our method must allow for the uncertainty in the 6y, since the populations
may be poorly estimated by ML estimation. While we may use bootstrapping meth-
ods to obtain an improved estimate of the populations, the issue in doing so is that we
will likely estimate populations for which we do not have any observations, making

the test statistic in Equation 2.25 impractical. We have developed a semi-parametric
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CI method, to be presented in Subsection 4.3.4, that utilizes the bootstrap estimate
of the populations and a modified test statistic.

Now suppose that pr1 (Y1, Kx)s- - - » Prne(Ynes ix) ~ SMizM (B, px, 7). Then
from the discussions in Subsection 2.5.2, if 6, is known and 6, < 1, a 100(1 — )% CI

for A (or for A%, if the ny are small) is given by

eﬂk—t[(n; k—l),l—a/2] \/a,fl; eﬁk+t[(“f,k-1)v1‘°" 2] ‘\;";k
(1 — 6x) — 7 (1 —6k) . ——|, (47
L+ emc t[(,,l‘k_],),l—zx/z] \/:/;: 1+ e”k+t[(".,gk-1)'1—°‘/2] vV ek

where n;, denotes the number of non-zero estimates from species & in the sample.
(If 6 = 1, a CI is unnecessary as Ay = 0.) Recall that a problem with this CI
is that when @y is large and n, small, often all diet estimates for species £ will be
zero and we will not have an estimate of fi; and sy to use in Equation 4.7. If 6 is
estimated by 6 = "—n_—:l-’-k, then when all estimates are zero, ék = 1 which implies that
M\ = 0. Again for n, small, presumably this method would not be effective. We have
therefore developed an alternative method of obtaining CIs for estimates modeled by
the SMizM distribution. This method uses a bootstrap estimate of 6, which we
surmise will be more useful than the MLE when ng is small, and incorporates the
variability of the bootstrap estimate into the intervals. We will refer to this method
as the PAR interval method.
The PAR intervals will be determined by inverting the hypothesis test

Ho: Ak = >‘k0

(4.8)
Hy: A # Aro,

using, as our test statistic, T = |Ax(X) — Arol- As the finite sample distribution of
T, is unknown, we will compute a bootstrap P-value, say p°°° (Aro) for the test in
Equation 4.8. The 100(1 — a)% CI is then given by the set

{Xro : P2 (Mro) = a}-

The bootstrap P-value algorithm consists of an initial nonparametric bootstrap in
which 6 and o7 are estimated, followed by a parametric bootstrap in which estimates
are generated from the null distribution. We now examine this bootstrap algorithm

in more detail, beginning with the parametric bootstrap.



81

To simplify the discussion, consider first carrying out the hypothesis test in Equa-
tion 4.8 with both nuisance parameters, 8y and o, known. Realize that in a few cases,

Aro will be such that a P-value is not needed. In particular, suppose that 6; = 1 then

=1 Ar=0. (4.9)
Further, note that
ot et
/\k_(l—ek)l-i-e“" and0<l+euk<1 (410)

= A< (1—9;;).

As a result of Equations 4.9 and 4.10, a P-value is not needed if 8y = 1 or if
Aro > (1 —6;). It will be convenient, however, for pP°(Aro) to be defined for all
Aro- If, for example, Ay # 0 but 8 = 1 (or if Ao = 0 but 6 < 1), then we would like
our algorithm to reject Hy and we will accordingly set p®°*(Axo) = 0. If Ayp = 0 and
6r = 1 then pP°°*(0) will be generated from U[0,1] . Similarly, if Axo > (1 — ;) then
our algorithm will set p®°*(\zo) = 0. For all other cases, p®°**(Ao) can be computed
using a typical parametric bootstrap. That is, we will generate estimates under the
null distribution, namely SMizM (uxo, 02, 0x) where

ko
pio = log (————1"9" ) :

A
1-1%-
since Ao = (1 — Ok)l—i%. We then compare our observed test statistic to the test

statistics computed with the bootstrap estimates.

In addition to the obvious issue of 8y and o2 being unknown in practice, when
the ny are small, there is also an issue concerning the implied independence in the
estimates generated under the null. To validate the independence, we will actually
compute a P-value conditional on X. Through a nonparametric bootstrap of the
prey we will compute various conditional P-values and use the average as p*°® (o).
Regarding ;. and oy being unknown in practice, we will simply estimate these pa-
rameters by generating many pseudo-seals, estimating their diets, and computing éklx
and syx for this bootstrap sample. We will repeat the entire procedure a number
of times by generating various samples of seals to account for the variability in the

nuisance parameters due to the seals.
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For species k, the following algorithm will be used to compute pP°%(Ao) for the
hypothesis test in Equation 4.8:

PAR Algorithm

1. Compute n; diet estimates: pg1(¥1,X),- - - s Pne(Ynes X).
2. Compute ) and Ty = |5\k ~ Arol-
3. forrs = 1:R;

(a) Generate n, seals: Y;™,..., Y. (See Appendix C.)

i. for rp, = 1:R,
ii. Generate sample of prey: X3 7,...,X; 7. (See Appendix C.)

Initial Bootstrap
iii. Compute n, diet estimates: p,,(Y1™,X"™),..., Pfq, (Yo, X7)-

iv. Generate % pseudo-seals from each of the diet estimates in iii:
YI*(T,,rp)’ ., Yn(r_,,‘rp) )

v. Compute Rp, diet estimates:
pkl (Y**(T,,Tp) X*rp) ’pxRP’ (Y**(Ts,"'p) X*rp)-

vi. Compute

er,,boot _ R’PS — R,
le.rp bt Rps

s _ LB (o ((BEOGEDXT)
WX Rt L= gyt (Yn0™ X)) 9T )

- *»(5,7p) e
where p 2oy = Z og | 2= rps(Yrps  © X7P)
i = B T 08 | Gy
notation corresponds to non-zero estimates.

) and the prime

Parametric Bootstrap

Vil if Aeo =0
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A if 9;75{’?,": = 1, generate p2°°(Agoix-r») from U[0, 1]. Go to Step i.
B. else set p2° (Aggixer») = 0. Go to Step i.
vill. f Ao = (1 — 63 ), set 2% (M%) = 0. Go to Step 1.
ix. forr=1LR
A. Generate n; estimates from the null distribution,

- boot Ts,boot =9 % e
SMiz M (07 %oy s k0, Spikars ), WheTe pxo = log — A
KjXre 2 Oy Spix=me /> -

k|X*Tp

A .

B. Compute A;" from the estimates in A.
C. Compute T3™ = |A\f" — Axol-
x. Compute conditional bootstrap P-value

0o #{TE > Ty
pE, t;(’\kOIJ'("Tp) = { LR k}'

(b) Compute unconditional bootstrap P-value

-1— % Pb°°t (’\kOIX"P)‘
‘RP Tp=1 "

Pre®t (Meo) =
4. Compute overall P-value

R,
P (Meo) = 3}:52;11)?: **(Mo)-

Note that the size of Ry, R,, Rps, and R is discussed further in Section 4.4, and
was chosen based on time constraints. This will similarly be the case for the bootstrap
parameters in the CI methods to be discussed.

As with all of the CI methods, to then solve { )y : pP°°*(Mio) = a} for the 100(1 —
a)% CI, we will use the bisection root-finding technique.

Recall from Section 3.4 that the SMizSM distribution appeared to best fit the
diet estimates. We now indicate the modifications to the PAR procedure needed to
obtain CIs based on this distribution. In Section 2.4, we defined the natural MOL
for observations modeled by the SMizSM 6k, px, 0k, o) distribution to be

X 0 if =1
k= Eelbpiotion)
(1—9k)m if 6, < 1,
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where & (pk, 07, k) = O (%)% oy e
The extension of the PAR (i;:ggvals to CIs for )j is straightforward. The test
statistic in Step 2. is now T = |A{ — AJ,| and in Step vi. of the initial bootstrap,
simply let s:_‘is-?f’f,f , be the MLE of oyx computed using the Rps estimates in Step
v. From these estimates, compute also the MLE of o and call this O‘Z-B!c)?f:- To
carry out the parametric bootstrap, modify Step A. to generate observations from

the SMizSM distribution using the function rsn in the sn library with location

parameter,
Ao 1
tro = log i . Ol (2> P__GHX
0 = 5y —Okx\ = 2 ~1?
1- =525 T/ (1+apx)?

and nuisance parameters, 0%, Oxx, and oyx, determined by the initial bootstrap.
We will refer to this interval method as the Skew-Parametric (SKEW-PAR) method.

4.3.4 Semi-Parametric Intervals

Recall that the main disadvantage of the intervals derived for estimates modeled
by the MizM distribution is the poor estimate of the populations that would no
doubt result when n, is small. We have therefore developed a modified, bootstrap CI
method. While we will still proceed by computing, for each population, a P-value for
the test of
Ho : me(vj) = Mo (4.11)
Hy = ni(vy) # Mo,
(and consider 7 to be our parameter of interest), we will not assume that the diet
estimates are modeled by a specific parametric density. We have accordingly termed
the intervals of this subsection “semi-parametric”.

As with the PAR inter%rals, the semi-parametric (SEMI-PAR) intervals involve an
initial bootstrap to estimate the populations. A major difficulty in the development
of the SEMI-PAR intervals was the potential for there to be no observations in our
sample from one or more of the populations determined from our bootstrap sample.
As a result, for a given population, any test statistic that requires observations from
this population (such as the test statistic in Equation 2.25) is unusable. We will
instead use a test statistic based on the estimates q**(Y,X), where q**(Y,X) is the
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estimate of diet obtained when the optimization is restricted to the species in group
vy. We now consider the details of the SEMI-PAR interval method.
As discussed in Subsection 2.5.2, if the 6,, were known and 7 = 0, a P-value for
the overall test .
Ho: . =1ko (4.12)
Hy @ mx % Tkos
would be unnecessary since

m=0 & Bbsuchthat k€ v,
& Y b,=L
{vo:kgvs}
Furthermore, within any population, say v, if k ¢ vy, then n:(v;) = 0 and a P-value
need not be computed for the test in Equation 4.11. For these special cases, we will
simply assign zero or a generated U[0,1] random variable to the P-value (as in the
PAR interval method) depending on whether or not Ho should be rejected.
Now suppose that & € v,. Since

Vo

eHx

Vp) = ——r,
% (Vb) P

we have

Mk(Vs) = Mo € pixg = log (1 ko ) .
—Tko

Consider estimating ;zzl"x by

g _ 1 gt (Y, X) )
= 10( kA b . 4.13
Hi ns ; E\1- g (Y3, X) (4.13)

Although we do not know the exact distribution of ﬁg"”, we will assume that

g% — T #Zf’x 7
X VARy [ 1X]

(4.14)

2,qVb
is approximately pivotal, not depending on any unknown parameters. Let 5“%— be

our estimate of VARy [ﬁzl‘;-b{], where

2.q¥b 1 2 QZ"( Y;, )-() ~q'
! = 1 = -_ ‘} .
Sk ng— 1 Z (og (l — (YL X) My

i=1
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For 4.14 pivotal, we may carry out a studentized bootstrap as described in Davison
and Hinkley (1997). More specifically, our observed studentized test statistic is
~qVb
A" —log (s255)

sa'b !

vn,
and to approximate the distribution of this test statistic we will compute

Vb __
Zig =

- Vb,if'

Vb
Vi, * Ky — Mg _
Zkb r=—TE"r_—’ Tr= ].,--.,R.
Vn,
For an unconditional studentized bootstrap P-value, we will bootstrap the prey in
addition to the seals.

In summary, the SEMI-PAR interval method consists of an initial bootstrap to

estimate the 6,,, followed by a studentized bootstrap that yields a P-value, say
PP (nro(Vs)), for each population. The overall P-value is then either

Pb°°t(7}ko) = Z 9b°°t bOOt(nLO(Vb))
{b:kevb}

or
pboot (77}:.0) =P [Tboot > Tc?k?sm] ,
where

Toot = _2 3 log [pbw‘(nko(vb))] A X fbrkevs)-
{b:kevs}

The CI is determined by
{mo : P*°* (o) = }-

It should be mentioned that the initial bootstrap is carried out in such a way that 6?"°°t
is not conditional on X. That is, for each generated pseudo-seal the corresponding
diet estimate will use resampled prey. Also, the entire algorithm will be repeated
several times (by generating multiple samples of seals and prey) to incorporate the
variability in 9"°°t Finally, although the SEMI-PAR intervals do not require n; to
be large, ng # 1 due to the variance estimate used in the Z test statistic.

The SEMI-PAR algorithm for computing p®®(ni) for the hypothesis test in

Equation 4.12 is as follows:

SEMI-PAR Algorithm
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1. forro=1:R,
(a) Generate n, seals: Yi,..., Y. (See Appendix C.)

(b) Generate sample of prey: Xi™,...,X7™. (See Appendix C.
I

¢) Compute n; diet estimates: pf (Y17, X*™),..., Dk, (Yo, X>*To).
k,1 kg

Instial Bootstrap

(d) Generate %"— pseudo-seals from each of the diet estimates in (c) :
Y., YRS
(e) Generate R,, samples of prey using prey in (b): X7, .. X e =
. Rps.
(f) Compute R, diet estimates: pgy (Y1 , Xxrel) L n (YT, R#7orRes)

(g) Compute

Vb

boot,ro
ev:Ot Rps
where RY: denotes the number of estimates in (f) belonging to population
Vp.
Studentized Bootstrap
(h) f mo=0
Lo Civykeve} ghootre = 1, generate p°°° (o) from U[0,1]. Go to Step
1.

ii. else set pP°°(mio) = 0. Go to Step 1.
(i) forb=1:np
i. if k ¢ v, set pP°"e(mio(vp)) = 0. Go to Step (i).
ii. Compute ng “restricted” diet estimates: ar*(Y1,X),..., a5 (Y., X).
(Note that if for some species, say s, s € v but becomes zero in the

restricted optimization, we modify the estimate to be a small quantity

and re-normalize.)
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iii. Compute

Aq¥b _ ( k0 )
TV = K log 1-7k0
k0O — sqvb ¢
: ns

iv. forr=1:R
A. Generate sample of seals (using original seals): Y{7,..., Y0
B. Generate sample of prey (using original prey): X7,..., X}

C. Compute “restricted” diet estimates:
e (Y, X", - g (Y, X).

D. Compute
* #g T — /"lk"b
ZI‘:b, T __ ——SZW._"'_-
“Vm,
v. Compute
(va’*r) > (Z3)
pboot,ro (77k0 (Vb)) — { B }

() Compute

ng

PPN (1) = S BE0OHTepPOOuTe (o (V).
. b=1
pboot,ro () = [Tboot To s Tboot ‘I'o] ,
where
Thootre = —2 3 log [pb°°“’r°(77ko(vb))] A X {brkeve}
{b:kevs}
2. Compute

Ro

1 "
pboot(nko) = F Z pboot, °(77ko)-
0

4.3.5 Nonparametric Intervals

In this subsection we consider two nonparametric methods of obtaining confidence
intervals through bootstrapping. We first consider methods that use percentiles of the
bootstrap distribution of the point estimators of diet. Our final CI method involves

generating diet estimates (nonparametrically) under a null hypothesis and inverting
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the hypothesis test as we have done in previous methods.
Percentile Methods

In Subsection 4.3.2, Cls based on the point estimators of diet (px(X), for ex-
ample) being approximately normally distributed were presented. Recall that we
also considered applying the normal approximation to these estimates after an arcsin
transformation. The percentile methods discussed in DiCiccio and Efron (1996) and
in Davison and Hinkley (1997) assume that a transformation to normality is possible
but do not require that the transformation be found. It is important to note that
although the percentile methods allow for a bias correction factor, this bias essen-
tially adjusts for the difference between Ey x [13(5()] and p, = Ev[p(Y, px)], and
similarly for the other point estimators. The bias between p, and 7 must still be
estimated using our bias adjustment method given in Section 4.2

For the remainder of this section we will use §(X) as our example point estimator
and describe the percentile method approach of obtaining a CI for p,. To simplify
the notation, let pr = 5 (X). Recall, however, that for n, and ng, k=1,...,I large,
P is approximately normally distributed and a CI interval for y;, is given in Equation
4.1.

Underlying DiCiccio and Efron’s (1996) CI method is the assumption of a mono-
tone increasing transformation, say ¢r = t(up,), such that ér = t(Py) is normally
distributed for all p, with a possible bias and nonconstant variance. That is, DiCi-
ccio and Efron (1996) assume that,

Ok ~ N (P — 200,,03,)s (4.15)

where o, = 1+a¢;. They then derive confidence limits for ¢y and ultimately for u,,
by transforming these limits back to the original scale using the bootstrap distribution
of px. (The parameters zp and a need to be estimated and are discussed shortly.)
More specifically, consider carrying out Steps (a)-(d) in the large sample bootstrap
algorithm (Subsection 4.3.2) to obtain 57, 7 =1,..., R. Approximate the cdf of pi

by =T
é(c) — #{p R< C}.
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If 29 and a were known, an o confidence limit for y,,, based on Equation 4.15, is
Dr|(R+1)a)»

< A-l 20 + 24
a=G [(I) (Zo+ _a(20+2a)>],

® is the standard normal cdf and Py p.1)s is the (R + 1)& largest 5} (See Davison

and Hinkley (1997) for details.) If we let & and & correspond to 5 and 1 —

where

respectively then a (1 — &)100% CI for p,, is given by

[177:[(3-;-1)&117172[(34-1)&21] . (4.16)
(If R is not such that (R + 1)@ and (R + 1)&» are integers, then we may use
Aoor((R+ 1)&;) and ceiling((R + 1)&s) or interpolation.) DiCiccio and Efron (1996)
call a the acceleration and accordingly have termed the intervals given by Equation
4.16 the “bias-corrected and accelerated” (BC,) intervals. If zg and a are assumed to
be zero, we obtain Davison and Hinkley’s (1997) basic percentile CIs. The (1—a)100%
basic percentile (PERC) interval for p,, is given by

Fitwens) Pimne-a)) (417)

Otherwise, z, and a must be estimated.
Davison and Hinkley (1997) derived the following estimate for zo
T < D

30 =3"1 (ﬁ{%r:f—’“}) . (4.18)
The estimate of a may be parametric, if the p}™ were generated through a parametric
bootstrap, or nonparametric as will be the case in our simulations. fYy,...,Y,,
and Xj, ..., X are treated as ] +1 independent samples, then Davison and Hinkley’s
(1997) recommended estimate of a is
ZI+—11 'n—3 zz-—1
T M T2 l?m') d
where L, i = 1,...,0m, m = 1,...,(I +1) are the empirical influence values. To

a=

5

approximate the empirical influence values the jackknife method given in Davison
and Hinkley (1997) may be used. The jackknife estimate of /n; is given by

l_;ack im — (nm - 1) (pk - pk —mz)
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where P, —m; is the point estimator computed without the ith observation in the mth
sample.

DiCiccio and Efron (1996) recommend that approximately B = 2000 bootstrap
replications be used to compute the BC, intervals. Since for each r (r =1,...,2000),
ns optimizations are required, this procedure is extremely computationally intensive.
An alternative approach is to use the ABC method (discussed also in DiCiccio and
Efron (1996) and in Davison and Hinkley (1997)) in which the BC, endpoints are
approximated analytically. Essentially the ABC intervals require estimating the pa-
rameters a and zp, as well as an additional parameter, and this can be accomplished
without bootstrapping. The S-PLUS function abc.ci in the boot library may be used
to compute approximate nonparametric Cls. Note that the function requires that the

statistic be in weighted form. If our statistic is p then we may write it as

_ Ns 1 Y n1 1X nr 1
P—gap( i,;n—l 1,---,1_%;;;)(1)-

For our problem n = ng+Y%_, n;, will be large (with the reduced prey base, n = 500)
and the number of optimizations will still be extensive.

We have, consequently, not found the BC, and ABC methods, applied in this
manner, to be practical for our problem. That is, computing BC, and/or ABC inter-
vals by re-sampling the data and then computing the diet estimates is a computational
burden. If, instead, the BC, and/or ABC Cls were computed using a nonparametric
bootstrap of the diet estimates themselves, Cls could be obtained relatively quickly,
specifically for the ABC intervals. In this case the estimate of 2 is still given by
Equation 4.18 though the ;" are computed from the resampled diet estimates and
not the large sample bootstrap algorithm specified in Subsection 4.3.2. Also, for the
estimator Py, the estimate of a simplifies as follows

ns 73
@ %( ':= lll;)%
i=14

1 T [Pk(Y7 X) - ﬁk]s

P NS SRR

3
2

For the other point estimators, a jackknife approximation to the empirical influence
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values may be used. Note that if we simply let a = 0 and 2z, = 0 we obtain alterna-
tive basic percentile method intervals that are based on the re-sampling of the diet
estimates. To distinguish these percentile intervals from those given in Equation 4.17
(which require the seal and prey FA signatures to be re-sampled) we will denote the
intervals in Equation 4.17 by PERC (Correct), since they incorporate the variability

due to the prey and are more correct in this sense.

Nonparametric Bootstrap Intervals

We now discuss a second nonparametric approach to obtaining a CI for 7 which
we will refer to as the NONPAR interval method.

As in both the PAR and SEMI-PAR methods, the nonparametric (NONPAR)
CIs of this subsection are found by inverting a hypothesis test for which bootstrap
P-values are computed. Our NONPAR test of interest is

Ho : 7 = ko (4.19)

H; : 7% # Tro,
and we obtain a bootstrap P-value, say p®°°(mxo), by generating pseudo-seals under
the null in Equation 4.19. A difficulty is that mj, j # k, are essentially nuisance
parameters. Let p~*(Y,X) denote the diet estimate without species k (that is, the
optimization is restricted to species 7, § # k), then we will estimate the nuisance
parameter 7;, j # k by (1 — mko)p; (Y, X), where p;*(Y,X) is the component of
p~*(Y,X) corresponding to the jth species. Our test statistic will be T’ = | — o/,
where #;, could be any of the point estimators in Table 3.3. The complete algorithm

for computing p®°° (7o) is as follows:

NONPAR Algorithm

1. Compute n, diet estimates: py1(Y1,X), .-, Pi;n,(Ynar X).
2. Compute ‘ffk and Tk = l'frk - 7rk0l-

3. Compute p;*(Y;,X), i=1,...,7,.
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4. forr=1:R

(a) Generate n, seals, Y{7,..., YT, where the ith seal has null diet

[(1 - ﬂ-ko)pi-,f(Yiv X)? ! (1 - 71'ko)pagk—l),i(Y'i7 X)’
Tk0, p&ﬁ-l),i(Y‘b X)7 s 7p-I-,f(Yi, X)] .

(b) Generate sample of prey: Xi7,...,XJ".
(c) Compute n, diet estimates: p1(Y5, X5, - ., Pn, (Yir, Xi7)-

(d) Compute Tp" = |75 — ol

5. Compute

#HT" > Tk}.

boot —
(ﬂ-ko) - R

p

4.4 Simulation Study

To assess the CI methods of the previous section, a simulation study was carried out in
which coverage probabilities and CI lengths were computed for the various methods.
Before presenting our results, we first address issues relating to the implementation

of the study.

4.4.1 Implementation

In our simulation study, M (to be discﬁssed) samples of pseudo-seals were generated
with a specified true diet and, for each sample, a CI was computed using the methods
of Section 4.3. The coverage probability for the kth species, calculated as

# of CI containing 7y
M b

and the average length of the M ClIs were used to compare the various methods. We
chose to compute Bonferroni style simultaneous CIs and used a = %1—0 so that our
overall target coverage probability was 0.90.

In carrying out a thorough simulation study, we were fairly limited by the com-
putational intensiveness and slowness of the CI methods. Consequently, we could not

examine all of the combinations of sample size, distance measure and diet of interest.
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Furthermore, we were compelled to use a smaller number of bootstrap samples than
would have been preferred. For many methods, computing a single CI could take sev-
eral hours even when a small number of bootstrap samples was used. We therefore
opted to first carry out a small preliminary study through which it was anticipated
that we would be able to eliminate some of the methods. Further simulations were

then carried out in accordance with the results of this preliminary study.

In our preliminary study, we chose to examine the CI methods at one sample size
(ns = 10), with one distance measure (AIT distance) and one diet (Diet 4). The
M samples of n, pseudo-seals were generated as in Appendix B. In this preliminary
study we used only M = 20 but M was later increased to 100 for our chosen methods.
Table 4.1 contains the re-sampling related parameters that were used throughout the
simulations. The size of the parameters was chosen to be such that the simulations
could be carried out in a reasonable amount of time. In practice, where only a few
CIs might be needed, it is recommended that the size of the parameters be set as

large as possible.

Even with the smaller than desired parameter sizes specified in Table 4.1, the
SEMI-PAR, SKEW-PAR and NONPAR methods were found to be exceptionally
slow. To assist in speeding up the SEMI-PAR method, groups containing only one
observation were assigned a P-value that was the weighted average of the P-values
from groups containing more than one observation. To speed up the SKEW-PAR
method, we replaced 5\7; (obtained using functions in the sn library) by A since Ay
was much faster to obtain and the difference between the two estimates is usually
minimal. Due to the extreme slowness of the NONPAR method, it was found to
be an impractical method when run in S-PLUS as it could take a couple of days to
obtain one CI at n, = 10, with R = 50. In addition to using a reduced size of R
of only 50, we attempted to speed up the method by using improved starting values
in the optimization required to obtain the diet estimates. That is, instead of using
equal proportions as the starting diet vector in our bootstrap samples, we made use
of the diet estimates computed from our original sample. Still the method took a
couple of days to obtain one interval. We therefore had Wade Blanchard (Dalhousie
University) convert the S-PLUS code to Fortran and it ran much faster. Although
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| Method | Parameters |

Large Sample

Case 1 —

Case 2 R =300

PAR R;=10
R,=10
R,s =50
R =50

SKEW PAR R, =10
R, =10
Rys =50
R =50

SEMI-PAR R,=5
R,s =50
R =150

Nonparametric

Percentile

PERC (Correct) | R =300

PERC, BCA R = 2000

NONPAR R =100

Bias R,; =100

Table 4.1: Re-sampling parameters used in the various CI methods and in the bias
estimation algorithm.

not formally timed, with n, = 10 and R = 100, obtaining one CI took roughly a few

hours to run in Fortran versus a few days in S-PLUS.

4.4.2 Preliminary Results

Our preliminary results are based on a sample size of 10, the AIT distance measure
and true diet, Diet 4. We used M = 20 and would therefore expect our true cover-
age probability to be within 11.96\/@%‘59 = 0.13 (with 95% confidence) of our
computed coverage probability. The results are given in Tables 4.2-4.6. A graphical
summary of the results is given in Figure 4.1.

Tables 4.2 and 4.3 contain the large sample interval results discussed in Subsection

4.3.2. The intervals in Table 4.2 correspond to Case 1 and were computed without the
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use of re-sampling techniques (except to obtain the bias estimate). Type “Normal”
refers to Cls computed using Equation 4.1 while the type “t” intervals are similar but
quantiles of the ¢ distribution were used instead. Intervals labeled type “SMizM”
were computed using Equation 4.7. Although intervals based on the MizM distri-
bution were also computed (see the P-value method discussed Subsections 2.5.2 and
4.3.3), they were found to be problematic at ns = 10 because often all groups con-
tained only one observation and the test statistic relies on an estimate of variance
from at least one group. Recall Figures 3.4 - 3.7 where histograms displaying the
distribution of the diet estimates are given. Often there did not appear to be a large
difference between the fits of the MizM and SMizM distributions and we have
chosen to simply present the results of Cls based on the SMizM distribution.

From Table 4.2 and Figure 4.1 it appears from our preliminary results that a
sample size of 10 might be too small to guarantee a coverage probability of 0.90 for
all species using a normal approximation. The coverage probabilities presented for
the t and SMizM intervals are better and generally good when a bias adjustment
(denoted by BA) is used. The average lengths of the intervals are relatively long
however, specifically for Sandlance, compared to the other methods to be discussed.
The longer intervals are perhaps reflective of less accurate estimates of the variance of
the diet estimates compared to the bootstrapped based methods. Note that in terms
of bringing the coverage probability closer to 0.90, the bias correction generally yields
equivalent coverage probabilities (for example 1.00 to 0.80) or an improved coverage
probability. An exception is with SilverHake where the coverage probability using
the ¢ intervals decreased from 1.00 to 0.75.

For Case 2 of the large sample intervals (Table 4.3), the lengths of the intervals,
for Sandlance in particular, are shorter but the coverage probabilities are a little low.
The latter is especially true when the mean, Py, is our estimate. For the sample
median, mg, the coverage probabilities are more reasonable except for SilverHake.

Using an arcsin transformation does not appear to be helpful for either estimator.

Overall, the Case 1 large sample intervals are simple to compute and appear to
have some potential for ng > 10. Consequently, we will examine these intervals further
in Subsection 4.4.3. The Case 2 intervals, however, will not be investigated further
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as the nonparametric methods, to be discussed, tend to give better results.

Type | Species | COD | HAD | PLC | POL | SAND | SH WF | YT
Diet4 | 009 |O 009 |0 0.45 0.09 |0.09 |0.09

Normal | No BA | 095 |1.00 |1.00 |045 080 |1.00 [0.70 [0.90
(Br) (0.18) | (0.09) | (0.16) | (0.25) | (0.30) | (0.17) | (0.07) | (0.13)
BA 085 | 100 |070 |080 |090 |0.60 |0.85 |0.90
(0.17) | (0.06) | (0.16) | (0.17) | (0.30) | (0.13) | (0.07) | (0.13)
¢ NoBA | 1.00 |1.00 |1.00 |0.80 |095 |1.00 |085 [0095
(Be) (0.22) | (0.10) | (0.19) | (0.29) | (0.37) | (0.20) | (0.09) | (0.16)
BA 095 |1.00 |1.00 |090 |090 |0.75 |0.90 [0.90
(0.20) | (0.07) | (0.19) | (0.21) | (0.37) | (0.16) | (0.09) | (0.15)
SMizM | NoBA | 095 |080 |1.00 |0.30 |090 |1.00 |[090 [1.00
() (0.21) | (0.20) | (0.21) | (0.29) | (0.39) | (0.28) | (0.10) | (0.18)
BA 085 | 090 |080 |00 |090 |095 |0.90 |0.90
(0.20) | (0.19) | (0.21) | (0.25) | (0.39) | (0.26) | (0.10) | (0.18)

Table 4.2: Diet 4, AIT, n, = 10: Coverage probabilities (average lengths) of Cls
computed using large sample methods (Case 1). (Based on 20 samples of pseudo-
seals with € = 10%, n? = 30 and calibration coefficients).

In Table 4.4, results from the percentile methods discussed in Subsection 4.3.5
are presented. Recall that we can obtain percentile intervals by re-sampling the seals
and the prey or by re-sampling the diet estimates. The former are considered to be
more correct as they incorporate the variability due to the prey. These intervals are
denoted by PERC (Correct) in the table. When the diet estimates are re-sampled,
we can also obtain the BC, intervals and these are given in addition to the basic
percentile intervals.

The coverage probabilities for the percentile intervals obtained using the median,
mg, are decent when the bias adjustment is used, and are usually larger than the
coverage probabilities based on the mean. A comparison of the performance of the
PERC (Correct) method based on the mean versus the median is more easily seen
in Figure 4.1. While the lengths of the median based intervals are noticeably wider
than those obtained using the mean, the lengths are still reasonable and we will
prefer the median based intervals. Except for SilverHake with the BCa method, all
three median percentile intervals give similar coverage probabilities when the bias
adjustment is applied. The bias adjustment does not appear to be dramatically

changing the coverage probabilities though it does improve the coverage obtained
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Type | Species | COD | HAD | PLC | POL | SAND | SH WF YT

Diet 4 | 0.09 0 0.09 0 0.45 0.09 0.09 0.09
Normal | No BA | 0.95 1.00 1.00 0.15 0.50 1.00 0.75 0.90
(Be) (0.18) | (0.12) | (0.16) | (0.18) | (0.18) | (0.12) | (0.072) | (0.10)

BA 090 |1.00 |090 |080 |075 [0.35 |080 [080
(0.17) | (0.08) | (0.16) | (0.12) | (0.18) | (0.09) | (0.07) | (0.10)
Arcsin | NoBA | 090 | 080 |100 |005 |055 |1.00 |085 |0.95
(Br) (0.18) | (0.11) | (0.16) | (0.17) | (0.18) | (0.12) | (0.08) | (0.10)
BA 090 | 090 |080 |070 |075 |050 |085 |0380
(0.18) | (0.08) | (0.16) | (0.13) | (0.18) | (0.10) | (0.08) | (0.10)

Normal | No BA | 100 | 100 |100 [0.80 [095 |0.70 [090 [0.90
(ma) (0.30) | (0.13) | (0-23) | (0.25) | (0.33) | (0.13) | (0.12) | (0.15)
BA | 095 [ 100 |090 |08 |080 |050 |085 . |080
(0.24) | (0.12) | (0.19) | (0.18) | (0.26) | (0.11) | (0.09) | (0.13)
Arcsn | NoBA | 1.00 | 1.00 |095 |0.70 |095 |0.65 |095 |0.90
(mg) (0.37) | (0.14) | (0.26) | (0.25) | (0.34) | (0.16) | (0.14) | (0.18)
BA 0905 [080 |080 |075 |080 |055 |085 [085
0.29) | (0.11) | (0.21) | (0.19) | (0.27) | (0.13) | (0.11) | (0.14)

Table 4.3: Diet 4, AIT, n, = 10: Coverage probabilities (average lengths) of Cls
computed using large sample methods (Case 2). (Based on 20 samples of pseudo-
seals with € = 10%, nP = 30 and calibration coefficients).

with Pollock and the PERC (Correct) method. The lengths of the intervals are
generally largest for the PERC method. With the exception of Sandlance, the lengths
of the PERC (Correct) and BCa intervals are similar. We again surmise that the
shorter intervals with the PERC (Correct) intervals are due to a better estimate of
the variability in the diet estimates. Based on our results, we have chosen to further
investigate the PERC (Correct) method with the median.

The Cls given in Table 4.5 were discussed in Subsections 4.3.3 and 4.3.4. These in-
tervals were developed from the parametric models proposed in Chapter 2 for dealing
with compositional data with zeros allowed. Note that two versions of the SEMI-PAR
method are shown since we computed our overall P-value in two different ways as
discussed in Subsection 4.3.4. The intervals denoted by “x? approx” use the x* ap-
proximation while the other SEMI-PAR intervals use the weighted P-Value. Perhaps
what is most noticeable from the table is the high coverage probabilities associated
with the SEMI-PAR (weighted P-Value) method but the accompanying extremely
large interval widths. Although for larger sample sizes the lengths of the SEMI-PAR
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Type | Species | COD | HAD |PLC |POL |SAND [SH [WF [ YT
Diet4 | 0.09 |0 0.09 |0 045 [0.09 |0.09 |0.09
PERC | No BA | 095 |020 |100 |0.05 [0.10 |1.00 |0.65 [0.95
(Corr) (0.18) | (0.14) | (0.16) | (0.18) | (0.17) | (0.12) | (0.07) | (0.09)
() [BA |095 [090 [095 [065 |060 |040 |[090 |085
(0.18) | (0.12) | (0.15) | (0.14) | (0.17) | (0.10) | (0.07) | (0.09)

PERC | No BA | 090 | 075 |1.00 |0.40 |0.85 |1.00 |0.70 [0.90
() (0.17) | (0.09) | (0.15) | (0.24) | (0.28) | (0.17) | (0.07) | (0.12)
BA | 085 |095 |00 |080 |08 |0.70 |080 |0.90

(0.16) | (0.06) | (0.15) | (0.17) | (0.28) | (0.13) | (0.07) | (0.12)

BC, |NoBA |090 |065 |1.00 |0.15 |0.80 |[1.00 |0.70 |0.90
(Be) (0.17) | (0.11) | (0.16) | (0.26) | (0.29) | (0.20) | (0.07) | (0.13)
BA  |000 |000 |065 |080 |0.85 |0.85 |0.85 |0.90

(0.17) | (0.08) | (0.16) | (0.20) | (0.29) | (0.17) | (0.07) | (0.13)

PERC | No BA | 1.00 |1.00 |1.00 |075 [0.85 |1.00 |0.90 [0.95
(Corr) (0.30) | (0.20) | (0.24) | (0.31) | (0.32) | (0.17) | (0.12) | (0.17)
(my) |BA 1.00 |0.80 |1.00 |085 |000 |1.00 |090 |0.95
(0.23) | (0.16) | (0.19) | (0.23) | (0.25) | (0.13) | (0.09) | (0.13)

PERC | No BA | 1.00 |1.00 |095 [090 |[095 |090 |0.90 |0.90
(m) (0.29) | (0.12) | (0.25) | (0.41) | (0.50) | (0.26) | (0.12) | (0.20)
BA 095 [080 [085 |005 |090 |085 |0.90 |0.90

(0.22) | (0.09) | (0.20) | (0.31) | (0.40) | (0.21) | (0.10) | (0.16)

BC, | NoBA |1.00 |1.00 [090 |090 [095 |0.65 |090 |[0.850
(M) (0.27) | (0.05) | (0.23) | (0.28) | (0.48) | (0.17) | (0.12) | (0.18)
BA | 095 (080 |08 |005 |090 |065 |[0.90 |0385

(0.21) | (0.04) | (0.18) | (0.21) | (0.38) | (0.14) | (0.10) | (0.14)

Table 4.4: Diet 4, AIT, n, = 10: Coverage probabilities (average lengths) of Cls
computed using percentile methods. (Based on 20 samples of pseudo-seals with ¢ =

10%, n? = 30 and calibration coefficients ).
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intervals should decrease, for n, < 10 these intervals do not appear to be useful and
we have not carried out additional simulations for this method. Note, however, that
for this method the individual CIs (not shown) were much shorter and of reason-
able lengths compared to the simultaneous Bonferroni intervals that are shown. As
previously mentioned the Bonferroni Cls are conservative and perhaps alternative

simultaneous Cls could be investigated for this method.

For the SEMI-PAR (x? approximation) method, the interval widths are excep-
tionally small and the coverage probabilities are fairly low. There is, in particular,
a problem with the coverage probability for SilverHake. An addditional difficulty
that we encountered with this method was that sometimes our root-finding technique
timed out while searching for starting values to use in the bisection algorithm. This
occurred once for Haddock, once for Plaice and twice for YellowTail and CIs could
not be found in these cases. Because of these problems we did not carry out further

simulations with this method.

The PAR and SKEW-PAR methods yield very similar coverage probabilities but
the SKEW-PAR intervals are, on the average, shorter and are consequently preferred.
Observe, however, that the SKEW-PAR intervals are generally similar to or longer
than the PERC (Correct) intervals. (See Figure 4.1.) Also, although the bias adjust-
ment greatly improved the coverage probability for Haddock and Pollock (whose true
contributions are zero), for Pollock the coverage probability is still low (0.50). Be-
cause 10% noise was used, the true proportion of Pollock in the diet may be closer to
0.05 and a coverage probability based on 0.05 rather than 0 might be higher. Recall,
however, from Figures 3.1 and 3.2 that the bias associated with Pollock was large
when the AIT distance measure was used, even after taking the noise into account .

We are likely underestimating the large bias for Pollock.

It should be noted that a problem with the SKEW-PAR method arose when 20
CIs were attempted to be constructed with Diet 1. For one of the samples, a CI
for WinterFlounder (m; = 0) could not be found as the bisection algorithm had
difficulty finding the desired root. When the P-values were plotted for this sample,
they appeared to be very unstable compared to the plots for the other species. The
bootstrap parameters were increased to Rs = 15 (from 10) , R, = 15 (from 10),
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R, = 75 (from 50), and R = 100 (from 50) but this did not help. Note that in
practice we could use the plot to at least obtain rough CI limits but that this is

impractical when attempting to carry out a simulation study.

Type Species | COD | HAD | PLC | POL | SAND | SH WF YT
Diet4 10.09 |O 009 |0 0.45 0.09 |0.09 |0.09
PAR NoBA (095 {025 |[100 |O 0.95 1.00 | 1.00 |1.00

(0.36) | (0.31) | (0.35) | (0.38) | (0.46) | (0.35) | (0-27) | (0-29)

BA 000 [0980 075 1055 |08 095 [095 |0.90
(0.30) | (0.25) | (0.29) | (0.29) | (0.38) | (0.28) | (0-22) | (0.29)

SKEW- NoBA | 085 |020 [095 [0 095 |095 |1.00 |100
PAR 0.27) | (0.22) | (0.25) | (0.28) | (0.37) | (0.26) | (0.17) | (0.19)

BA 085 (090 |075 |050 [085 |095 |0.90 |0.80
(0.22) | (0.17) | (0.21) | (0.21) | (0.30) | (0-20) | (0.14) | (0.15)

SEMI- NoBA | 1.00 | 1.00 |1.00 |090 |1.00 |1.00 |1.00 |1.00
PAR (0.80) | (0.89) | (0.71) | (0.92) | (0.44) | (0.78) | (0.22) | (0.84)

BA 100 | 095 |1.00 |100 |095 |1.00 |1.00 |1.00
0.77) | (0.85) | (0.69) | (0.84) | (0.44) | (0.73) | (0.22) | (0.83)

SEMI- NoBA | 1.00 | 095 |084° |055 |055 |0.10 |0.60 |O067
PAR (0.15) | (0.05) | (0.11) | (0.13) | (0.21) | (0.06) | (0.07) | (0.12)

(x2 approx) | BA 090 | 095 |074 |085 |080 |005 |0.70 |0.72°
(0.14) | (0.03) | (0.10) | (0.07) | (0.20) | (0.03) | (0.06) | (0.12)

Table 4.5: Diet 4, AIT, n, = 10: Coverage probabilities (average lengths) of Cls
computed with PAR, SKEW-PAR and SEMI-PAR methods. * Denotes that one or
more CIs could not be found. (Based on 20 samples of pseudo-seals with € = 10%,
nP = 30 and calibration coefficients).

Because of the longer interval lengths and the issue of not always being able to
find the CI, we prefer the less complex PERC (Correct) method intervals and have
not carried out further simulations with the SKEW-PAR method.

Finally, the results of the NONPAR method are given in Table 4.6. Although the
coverage probabilities are exceptionally high when our point estimator is the median,
the interval lengths appear to be too long. When the mean is used, the coverage
probabilities are sometimes a little low but overall they are satisfactory, and the
lengths are comparable with the PERC (Correct) method when the median is used.
(See Figure 4.1.) While our bias correction generally improves or has little effect on
the coverage probabilities, SilverHake is the exception and its coverage probability,
after correction, is fairly low. From the preliminary results, the NONPAR method
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(using the mean) appears to be a potentially useful method but further results are
needed. These results, along with the results for the PERC (Correct) and Large

Sample (Case 1) methods, are given in Subsection 4.4.3.

PE | Species | COD [HAD |[PLC |POL |SAND | SH WF | YT
Diet4 |0.09 |0 009 |0 0.45 0.09 |0.09 |0.09

7 | NoBA [ 090 [1.00 [1.00 [0.65 [070 [1.00 [0.90 [1.00
(0.22) | (0.13) | (0.19) | (0.20) | (0-22) | (0.15) | (0.08) | (0.13)
BA 000 | 100 |080 |0.80 |080 |[0.70 |0.85 |0.85
(0.20) | (0.10) | (0.19) | (0.13) | (0.22) | (0.13) | (0.08) | (0.13)
mr | NoBA | 1.00 | 1.00 |1.00 |1.00 |1.00 [1.00 [1.00 [1.00
(0.52) | (0.44) | (0.51) | (0.42) | (0.60) | (0.35) | (0.24) | (0.28)
BA 1.00 1080 [100 [1.00 |1.00 |100 |1.00 |1.00
(0.40) | (0.35) | (0.41) | (0.32) | (0.48) | (0.28) | (0.19) | (0.23)

Table 4.6: Diet 4, AIT, ny = 10: Coverage probabilities (average lengths) of Cls
computed using NONPAR method. PE denotes “Point Estimator”. (Based on 20
samples of pseudo-seals with € = 10%, n? = 30 and calibration coefficients).

4.4.3 Results

We now present additional results for our selected CI methods. We begin with results
from the PERC (Correct) method, followed by the the NONPAR method and finally
the large sample (Case 1) methods. For all of the results to be presented, the coverage
probabilities and average lengths are based on M = 100 samples of pseudo-seals
(generated as in the previous subsection and in Appendix B). The true coverage
probability should be within £1.96+/ 50‘—9%3‘—101 ~ 0.06 ) (with 95% confidence) of our
computed coverage probability.

Tables 4.7-4.10 and Figures 4.2 -4.3 contain the coverage probabilities and average
lengths of CIs computed using the PERC (Correct) method. (For the remainder of
the chapter we will usually drop “Correct” when denoting these intervals.) Results
are shown for both diets (Diet 1 and Diet 4), both distance measures (AIT and KL)
and sample sizes n, = 1,5, 10, and 25. While we would have liked to have examined
sample sizes larger than 25 as well, the slowness of the method is related to the size
of the sample and even at ns = 25 the program ran fairly slowly.

Notice that two bias adjustment results are given namely BA 1 and BA 2. The
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Figure 4.1: Diet 4, AIT, n, = 10: Plots of coverage probabilities versus average
lengths for selected (bias adjusted) preliminary results. 1 = Cod, 2 = Haddock,
3 = Plaice, 4 = Pollock, 5 = Sandlance, 6 = SilverHake, 7 = WinterFlounder,
8 = YellowTail.
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bias adjustment labeled BA 1 is simply the bias correction that we have discussed and
used thus far. It was noticed, however, that often when 7, = 0, this bias correction
worsened the coverage probability. The reason is that with the median as our point
estimator, when m; = 0, the CIs (without the bias correction) often (correctly) have
zero as the lower limit. If the estimate of bias is even slightly in the wrong direction,
the shifted interval no longer includes the true diet of zero. This issue appears to be
more crucial for the smaller sample sizes (roughly n, < 10) though even at ng = 25,
Plaice (Diet 1) is problematic with BA 1. (The problem with Plaice could be that
its true contribution is more than zero due to the 10% noise that was used.) When
7, # 0, either the bias correction estimate is more often in the correct direction or
shifting in the wrong direction does not usually cause the resulting interval to no
longer include 7. To help with this vbias correction problem, we decided to only
shift the lower limit of an interval if the lower limit was not zero. The results using
this bias adjustment are denoted by BA 2. Note that the upper limits were shifted
as before and there is consequently the potential for the interval lengths to become
wider. From our results, when the average interval length did increase, the increase

was only slight.

Consider first Tables 4.7 and 4.8 where the results are based on the AIT distance
measure. (See also the graphical display in Figure 4.2.) At n, = 1 the coverage prob-
abilities are fairly good (with BA 2) though the coverage probability for Sandlance
in Diet 4 is slightly low. Note that except for Sandlance (Diet 4) a bias correction
does not appear to be needed when ny = 1. This is no doubt due to the relatively
long lengths of the Cls at n, = 1. Observe that the intervals for Haddock in Diet 1
(m = 0.30) are the widest but the intervals are also wide for Cod in Diet 1 (7}, = 0.30)
and Sandlance in Diet 4 (7, = 0.45). In general, it appears to be the case that longer

CIs are associated with larger true diet proportions.

At ny = 5 the lengths of the CIs are noticeably shorter than at n; = 1 and
the coverage probabilities (with BA 2) are at least as high. Note that the coverage
probability for Sandlance (Diet 4) increased from 0.72 to 0.91. By n, = 10 the lengths
of the intervals are more reasonable and the coverage probabilities are at least 0.85 for
all species. At n, = 25, except for SilverHake and Pollock (both diets), the coverage
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probabilities generally stayed the same or increased and are all roughly 0.90 or higher.
Observe that without a bias correction, as n, increased the coverage probability for
Pollock decreased. This is not surprising since, as previously mentioned, the bias
for Pollock (with the AIT distance) was found to be large compared to the other
species. (See Figures 3.1 and 3.2.) As n, increased, we obtained tighter intervals for
the median rather than for the true contribution of Pollock and these are apparently
very different. For both diets, the bias correction greatly improved the coverage
probabilities for Pollock but, for Diet 4, appeared to underestimate the true bias.
Again, the problem could be related to the 10% noise that was used. For SilverHake,
the reason for the decrease in the coverage probability as ns increases (with a bias
adjustment) is not clear. Note that in Diet 4 in particular, the bias estimate appears
to be the problem since, at n, = 25, the coverage probability without adjustment is
0.99 and 0.79 afterwards. As will be seen, Pollock and SilverHake are problematic in
all of our methods.

When the KL distance was used instead (see Tables 4.9-4.10 and Figure 4.3),
the major differences were the very low coverage probabilities for Sandlance in Diet
1 (with and without a bias correction) and for SilverHake in Diet 4 (with a bias
adjustment). The reason for the coverage problem with Sandlance is not at all obvious
since the bias was found to be zero for the median and KL distance in Section 3.3
(see Figure 3.1). While from Figure 3.2, for SilverHake (with the median and KL
distance), there appears to be a large bias, the coverage before the bias adjustment

is surprisingly greater than 0.90 for all n,.

Due to time constraints we have not carried out further simulations with the KL
distance measure. For the PERC method used with the median and our reduced prey
base of eight species, the AIT distance appears to be the more favourable distance
measure but this may not always be the case. In Chapter 5 where a goodness of
fit statistic is investigated, a larger prey base is used and the KL distance measure

performed much better than the AIT distance measure.

The NONPAR method results are given in Tables 4.11 and 4.12 and in Figure 4.4.
We chose to only carry out simulations for ns = 1 and n, = 10 because this method

was slow to run (even in Fortran) and at these sample sizes the results were generally
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Species | COD | HAD |PLC |POL [SAND [SH [WF [ YT
n, | Diet 1 |0.30 |0.30 |0 015 |0 0.156 |0 0
T |NoBA |09 008 |100 |0.86 [095 [0.99 |1.00 [0.99
(0.47) | (0.53) | (0.25) | (0.46) | (0.22) | (0.33) | (0.11) | (0.15)
BA1 [087 |093 |06 |087 |068 |0.97 [0.62 |0.63
(0.46) | (0.53) | (0.24) | (0.43) | (0.22) | (0.32) | (0.11) | (0.15)
BA2 087 |093 |L100 [087 |094 |099 [1.00 |0.99
(0.48) | (0.60) | (0.26) | (0.43) | (0.24) | (0:38) | (0.12) | (0.17)
5 [NoBA |1.00 | 095 |100 [094 [099 |095 |1.00 [1.00
(0.43) | (0.44) | (0.18) | (0.40) | (0.18) | (0.26) | (0.08) | (0.12)
BA1 099 [095 |063 |007 |065 |094 |085 |O0.72
(0.36) | (0.38) | (0.15) | (0.32) | (0.16) | (0.22) | (0.07) | (0.10)
BA2 1000 |095 [1.00 |097 |099 |094 |1.00 |1.00
(0.37) | (0.44) | (0.16) | (0.32) | (0.17) | (0-27) | (0.07) | (0.11)
10 | NoBA [ 099 |098 |1.00 |083 |1.00 [092 |1.00 |1.00
(0.32) | (0.37) | (0.14) | (0.31) | (0.14) | (0-20) | (0.06) | (0.092)
BA1 |008 |1.00 |062 |003 |068 |086 |0.84 |0.73
(0.27) | (0.32) | (0.12) | (0.26) | (0.12) | (0.17) | (0.05) | (0.08)
BAS 008 |1.00 |L00 |093 |L00 |08 |1.00 |1.00
(0.27) | (0.34) | (0.12) | (0.26) | (0.13) | (0-21) | (0.05) | (0.08)
55 | No BA | 099 | 098 |100 |0.62 |[099 |083 [1.00 |1.00
(0.26) | (0.31) | (0.12) | (0.25) | (0.12) | (0.17) | (0.05) | 0.075
BA1 | L00 |1.00 |067 |089 |092 |0.8¢ |094 |0.94
(0.21) | (0.26) | (0.10) | (0.20) | (0.10) | (0.14) | (0.04) | 0.061
BA2 ] 100 |1.00 |L00 |0.89 |100 |084 |1.00 |1.00
(0.21) | (0.26) | (0.10) | (0.20) | (0.10) | (0.18) | (0.04) | 0.062

Table 4.7: Diet 1, AIT: Coverage probabilities (average lengths) of Cls computed
using PERC method and my. (Based on 100 samples of pseudo-seals with € = 10%,
n? = 30 and calibration coefficients).



Species | COD | HAD | PLC |POL |SAND |SH | WF [ YT
n, | Diet 4 | 0.09 |0 0.09 |0 045 |009 |009 |0.09
1 | NoBA |0.98 |1.00 [099 |080 [064 [1.00 ]0.98 [0.97
(0.41) | (0.35) | (0.34) | (0.43) | (0.42) | (0.28) | (0.16) | (0.22)

BA1 096 |072 |094 |068 |072 |09 |0.98 |O0.86
(0.38) | (0.34) | (0.33) | (0.40) | (0.42) | (0.27) | (0.16) | (0.22)

BA2 096 |L00 |095 |08 |072 |1.00 |0.98 |091
(0.39) | (0.37) | (0.36) | (0.40) | (0.45) | (0.32) | (0.18) | (0.25)

5 |NoBA | 1.00 |1.00 |100 |094 |086 |0.96 |0.99 |1.00
(0.37) | (0.26) | (0.27) | (0.39) | (0.43) | (0.22) | (0.15) | (0.20)

BA1 |1.00 |0.83 |097 |090 |09L [089 |098 |097
(0.28) | (0.21) | (0.21) | (0.29) | (0.34) | (0.18) | (0.12) | (0.16)

BA2 |1.00 |L00 [097 |095 |00l 095 |0.98 |097
(0.29) | (0.22) | (0.23) | (0.29) | (0.35) | (0.20) | (0.13) | (0.19)

10 |No BA | 0.99 |1.00 [1.00 |0.77 |084 |097 |0.94 [0.99
(0.31) | (0.20) | (0.23) | (0.32) | (0.32) | (0.17) | (0.12) | (0.17)

BA1 009 082 [099 [085 |085 |0.86 [092 |0.96
(0.23) | (0.16) | (0.18) | (0.23) | (0.25) | (0.13) | (0.09) | (0.13)

BA2 |099 | 100 [099 |085 |085 |087 |092 |0.96
(0.24) | (0.16) | (0.19) | (0.23) | (0.25) | (0.15) | (0.09) | (0.14)

% | No BA | 1.00 | 100 |1.00 |066 |089 |0.99 [1.00 |1.00
(0.28) | (0.17) | (0.19) | (0.28) | (0.26) | (0.15) | (0.09) | (0.14)

BA1 | 100 |099 |L100 |082 |0.89 |079 |0.94 |0.94
(0.20) | (0.13) | (0.14) | (0.19) | (0.19) | (0.11) | (0.07) | (0.10)

BA2 |1.00 |1.00 |100 |082 |089 |0.79 [0.94 |0.94
(0.20) | (0.13) | (0.15) | (0.19) | (0.19) | (0.12) | (0.07) | (0.11)
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Table 4.8: Diet 4, AIT: Coverage probabilities (average lengths) of CIs computed
using PERC method and m;. (Based on 100 samples of pseudo-seals with € = 10%,
nP = 30 and calibration coefficients).
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Species | COD | HAD | PLC |POL [SAND|[SH [WF |[YT
ns | Diet 1L |0.30 |0.30 |0 015 [0 015 |0 [0

1 | NoBA [0.84 095 |1.00 ]099 |08 096 |1.00 [0.97

(0.42) | (0.58) | (0.25) | (0.32) | (0.22) | (0.28) | (0.11) | (0.18)

BA1l |088 |08 |0.82 |0.87 |059 |084 [0.77 [0.56

(0.42) | (0.58) | (0.25) | (0.31) | (0.21) | (0.28) | (0.10) | (0.17)

BA2 |08 |08 |1.00 |0.87 |0.80 |0.87 [1.00 [0.95

(0.461) | (0.60) | (0.26) | (0.34) | (0.22) | (0.31) | (0.11) | (0.19

5 | No BA | 097 |098 |100 |099 |084 [0.97 [1.00 |1.00

(0.40) | (0.54) | (0.19) | (0.29) | (0.22) | (0.28) | (0.09) | (0.14)

BA1L1 |093 1097 |096 |091 |047 |08 [0.79 [0.70

(0.33) | (0.45) | (0.15) | (0.24) | (0.18) | (0.23) | (0.07) | (0.11)

BA2 |0093 097 1100 |091 |083 |0.82 |1.00 |1.00

(0.36) | (0.46) | (0.15) | (0.26) | (0.20) | (0.26) | (0.07) | (0.12)

10 | No BA | 0.94 1.00 |1.00 |098 |062 [097 [1.00 |0.99

(0.32) | (0.42) | (0.14) | (0.23) | (0.16) | (0.22) | (0.07) | (0.11)

BA1 |094 |097 |098 |085 |0.35 |08 [0.95 |0.61

(0.26) | (0.34) | (0.12) | (0.19) | (0.13) | (0.18) | (0.05) | (0.09)

BA2 |004 |097 |100 |0.85 |054 |0.84 [1.00 [0.99

(0.26) | (0.34) | (0.12) | (0.19) | (0.14) | (0.20) | (0.05) | (0.10)

25 | No BA | 093 |0.99 |1.00 |1.00 |0.27 |[1.00 [1.00 [1.00

(0.26) | (0.34) | (0.12) | (0.20) | (0.13) | (0.19) | (0.06) | (0.10)

BA1 |004 |098 |1.00 |094 [024 |08 |1.00 [0.79

(0.20) | (0.26) | (0.09) | (0.15) | (0.10) | (0.15) | (0.04) | (0.07)

BA2 |0904 |098 |100 |094 |028 |085 [1.00 |[1.00

(0.20) | (0.26) | (0.09) | (0.15) | (0.10) | (0.16) | (0.04) | (0.08)

Table 4.9: Diet 1, KL: Coverage probabilities (average lengths) of CIs computed using
PERC method and my. (Based on 100 samples of pseudo-seals with € = 10%, n? = 30
and calibration coefficients).



Species | COD | HAD |PLC |POL |SAND |SH |[WF | YT

7, | Diet 4 009 |0 0.09 |0 0.45 |0.09 |0.09 |0.09
1 | NoBA | 1.00 |094 |00 |0.88 [053 [0.93 |0.98 |0.99
(0.33) | (0.42) | (0.40) | (0.30) | (0.34) | (0.22) | (0.17) | (0.24)

BAL 002 |054 |079 |040 |056 |[0.75 |0.96 |0.85
(0.32) | (0.41) | (0.40) | (0.29) | (0.34) | (0.22) | (0.17) | (0.23)

BA? 005 |094 |098 |08 |056 |091 |096 |06
(0.34) | (0.44) | (0.45) | (0.32) | (0.34) | (0.25) | (0.19) | (0-27)

5 |NoBA |1.00 |00 |1.00 [098 |0.86 |095 |0.99 |1.00
(0.29) | (0.37) | (0.36) | (0.26) | (0.40) | (0.18) | (0.16) | (0.21)

BA1 000 |064 [000 |063 |084 |081 |0.97 |O008
(0.23) | (0.28) | (0.28) | (0.20) | (0.31) | (0.14) | (0.12) | (0.17)

BA2 099 |100 |[005 |098 |084 [0.88 |0.97 |0.99
(0.24) | (0.30) | (0.31) | (0.22) | (0.31) | (0.16) | (0.14) | (0.19)

10 | No BA | 1.00 |1.00 |1.00 |092 [0.78 [0.92 |0.96 |1.00
(0.25) | (0.31) | (0.32) | (0.21) | (0.29) | (0.14) | (0.13) | (0.19)

BA1 |098 |0.70 |002 |057 |0.79 |0.6L [090 |0.99
(0.18) | (0.23) | (0.24) | (0.15) | (0.21) | (0.10) | (0.10) | (0.14)

BA2 008 |L100 |003 |002 |0.79 |062 |090 |0.99
(0.20) | (0.24) | (0.27) | (0.16) | (0.21) | (0.12) | (0.10) | (0.15)

% [ No BA | 1.00 | 100 |1.00 [089 |[0.77 |0.91 |099 [1.00
(0.23) | (0.28) | (0.29) | (0.21) | (0.26) | (0.13) | (0.11) | (0.17)

BA1 | 100 |082 [007 |0.73 |085 |035 |0.90 |097
(0.16) | (0.19) | (0.20) | (0.14) | (0.17) | (0.09) | (0.08) | (0.12)

BA2 | 100 |L100 |007 |0.88 |085 |035 |0.90 |0.97
(0.17) | (0.19) | (0.22) | (0.14) | (0.17) | (0.09) | (0.08) | (0.12)
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Table 4.10: Diet 4, KL: Coverage probabilities (average lengths) of CIs computed
using PERC method and m;. (Based on 100 samples of pseudo-seals with € = 10%,
nP = 30 and calibration coefficients).
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Figure 4.2: PERC (Correct), Median, AIT: Plots of coverage probabilities versus
average lengths for (BA 2) results. 1 = Cod, 2 = Haddock, 3 = Plaice, 4 = Pollock,
5 = Sandlance, 6 = SilverHake, 7 = WinterFlounder, 8 = YellowTail.
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Figure 4.3: PERC (Correct), Median, KL: Plots of coverage probabilities versus av-
erage lengths for (BA 2) results. 1 = Cod, 2 = Haddock, 3 = Plaice, 4 = Pollock,
5 = Sandlance, 6 = SilverHake, 7 = WinterFlounder, 8 = YellowTail.
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not as good as with the PERC method, particularly in terms of coverage. While for
Diet 1 the results are satisfactory with either bias adjustment, for Diet 4 the coverage
probabilities are low for Pollock, Sandlance, SilverHake and YellowTail when the bias

correction is used.

Species | COD | HAD | PLC | POL [ SAND | SH WF | YT
ns | Diet1 {030 [030 |0 015 |0 015 |0 0

1 |NoBA |083 |08 |099 |08 [089 [0.89 [098 |0.97
(0.48) | (0.48) | (0.31) | (0.42) | (0.25) | (0.49) | (0.13) | (0.20)
BAI |073 | 070 |083 |062 |076 |[0.74 [0.82 |O0.71
(0.46) | (0.47) | (0.29) | (0.36) | (0.22) | (0.47) | (0.12) | (0.18)
BA2 073 |0.70 |098 [062 |089 |0.74 [098 |0.97
(0.47) | (0.50) | (0.29) | (0.36) | (0.22) | (0.48) | (0.12) | (0.18)
10 |NoBA |0.99 | 099 |1.00 |069 |089 |0.94 |099 |0.96
(0.24) | (0.30) | (0.11) | (0.21) | (0.11) | (0.20) | (0.05) | (0.08)
BA1 |091 |092 099 |079 |090 |0.79 |1.00 |0.94
(0.24) | (0.30) | (0.08) | (0.20) | (0.08) | (0.19) | (0.04) | (0.06)
BA2 |00L |092 |1.00 |079 |090 |0.79 |1.00 |0.96
(0.24) | (0.31) | (0.08) | (0.20) | (0.08) | (0.19) | (0.04) | (0.06)

Table 4.11: Diet 1, AIT: Coverage probabilities (average lengths) of CIs computed
using NONPAR method and py.. (Based on 100 samples of pseudo-seals with € = 10%,
nP = 30 and calibration coefficients).

Finally, Tables 4.13 and 4.14 contain the large sample (Case 1) results which use
the sample mean as the point estimator. These results are also displayed in Figure 4.5.
Recall that these intervals require no bootstrapping and are very simple to compute.
They do not, however, take into account the variability due to the prey and cannot
be used when n, = 1. We are primarily interested in determining whether using
the more computationally intensive PERC method is worthwhile for ng > 10. Note
that we have only showed the BA 1 adjusted results as the BA 2 results were almost
identical.

At n, = 10, the ¢ intervals, without a bias correction, are giving good coverage
probabilities and generally performing better than the Normal intervals. When the
bias correction is used, there is an improvement in the coverage probability for Pollock
(Diet 4) but a decrease in the coverage probability for SilverHake. The lengths are
comparable to the PERC method intervals but are longer for Sandlance (Diet 4). The
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Species | COD | HAD | PLC |POL |SAND [SH |[WF [ YT
n, | Diet4 | 0.09 |0 0.09 |0 0.45 | 009 |0.09 |0.09
1 | NoBA [004 ]097 |095 [079 |0.71 |0.84 [095 |O0.92

(0.41) | (0.38) | (0.39) | (0.38) | (0.39) | (0.33) | (0.18) | (0.23)

BAL1 089 |077 |090 [0.76 |0.65 |0.79 |0.75 |0.77

(0.36) | (0.34) | (0.37) | (0.31) | (0.39) | (0.30) | (0.18) | (0.21)

BA2 089 |097 |090 |079 [065 |0.79 |0.75 |0.77
(0.37) | (0.36) | (0.38) | (0.31) | (0.39) | (0.30) | (0.18) | (0.23)

10 | NoBA |092 |100 1097 |063 |075 [093 |0.90 [0.94
(0.22) | (0.14) | (0.18) | (0.20) | (0.23) | (0.15) | (0.08) | (0.13)

BA1 092 |097 |087 |0.77 [0.78 |062 |0.90 |0.76
(0.19) | (0.12) | (0.18) | (0.13) | (0.23) | (0.12) | (0.08) | (0.12)

BAD 002 |00 |087 |077 |0.78 [0.62 |0.90 |0.76
(0.19) | (0.12) | (0.18) | (0.13) | (0.23) | (0.12) | (0.08) | (0.13)

Table 4.12: Diet 4, AIT: Coverage probabilities (average lengths) of CIs computed
using NONPAR method and pi. (Based on 100 samples of pseudo-seals with ¢ = 10%,
n? = 30 and calibration coefficients).
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SMizM intervals appear to give somewhat decent coverage probabilities (at ns = 10)
provided the bias adjustment is used. For Plaice in Diet 1 and for Pollock in Diet 4,
the coverage probability with the SMizM method is still a little low, however, even
after the adjustment.

As n, increases, none of the large sample methods yield coverage probabilities
that are consistently good for all species. The trouble appears to be with Pollock and
SilverHake (both Diets) and with YellowTail in Diet 4. With the SMizM method,
Plaice (Diet 1) is also problematic. Note that with the Normal and ¢ intervals (which
are similar for larger n,), the problem with Pollock is only evident at ng = 50. As
before, for Pollock, the bias correction often greatly improves the coverage probability
but not enough. For SilverHake, the bias correction tends to worsen the coverage
probability.

4.4.4 Recommendations

Overall the recommended method is the PERC method in which both the seals and
prey are re-sampled and the median is the point estimator. This method is simple
to implement but can be time consuming to run when 7, is large. For this method
we recommend using the BA 2 adjustment. With the AIT distance, for ny = 1,
the coverage probabilities were generally good with or without the adjustment but
the intervals could be a bit long particularly when m; > 0.15. For 5 < ns < 10
and with the AIT distance, the method worked very well with the BA 2 adjustment.
Although for n, = 25 the coverage probabilities and lengths were fairly good (with
the AIT distance), there is some concern that the coverage probabilities for Pollock
and SilverHake (with either BA correction) may worsen as n, increases. Although
for Pollock the problem could be a poor estimate of the bias, in Diet 4 it could also
be due to the 10% noise that was used. For SilverHake, the problem appeared to be
related to the bias estimate. ‘

Except for Pollock and SilverHake (and YellowTail with Diet 4), a normal approx-
imation without bootstrapping the prey worked fairly well for n, > 25. If time is an
issue, for ny > 25, these intervals may be adequate.

Tt should be mentioned that the parametric CIs may have some potential if they
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Species | COD | HAD |PLC | POL |SAND [SH |WF | YT
Type |Diet1 |0.30 [0.30 |0 0.15 |0 0.15 |0 0
Normal | No BA | 0.95 |0.73 |0.89 091 [095 [0.83 [0.96 |093
ng = 10 (0.26) | (0.25) | (0.07) | (0.29) | (0.12) | (0.19) | (0.03) | (0.06)

BA1 |089 |087 |097 (093 |097 |0.76 |097 |09

(0.26) | (0.25) | (0.049) | (0.28) | (0.09) | (0.17) | (0.02) | (0.05)

Normal | NoBA | 0.99 |060 |0.33 062 |062 |08 |08 |0.77
ne = 25 (0.17) | (0.16) | (0.06) | (0.19) | (0.09) | (0.12) | (0.02) | (0.05)
BA1 | 092 |08 |08 |083 |098 |065 |097 |0.99

(0.17) | (0.16) | (0.04) | (0.19) | (0.06) | (0.12) | (0.01) | (0.03)

Normal | No BA | 0.97 | 0.26 | O 0.12 |013 |0.76 |0.28 |O0.21
ne =50 (0.12) | (0.12) | (0.04) | (0.13) | (0.08) | (0.09) | (0.02) | (0.03)
BA1 |090 |00L |095 |01 |1.00 |0.67 |1.00 |0.97

(0.12) | (0.12) | (0.03) | (0.13) | (0.04) | (0.09) | (0.01) | (0.03)

t No BA | 098 |088 |099 [096 [099 [0.93 |[1.00 |1.00
ns =10 (0.32) | (0.31) | (0.08) | (0.36) | (0.14) | (0-22) | (0.04) | (0.07)
BA1 | 005 |093 |099 |[095 |009 |082 |1.00 |0.96

(0.32) | (0.31) | (0.06) | (0.33) | (0.11) | (0-21) | (0.03) | (0.06)

: No BA | 1.00 |0.62 |037 |067 |0.75 |0.8% |086 |0.85
ne =25 (0.18) | (0.18) | (0.06) | (0.20) | (0.09) | (0.14) | (0.03) | (0.05)
BA1 |005 |092 |089 |087 |098 |069 [0.99 |O099

(0.18) | (0.18) | (0.04) | (0.20) | (0.06) | (0.13) | (0.02) | (0.03)

n No BA | 098 |0.30 |0 018 |016 |0.78 [0.33 |0.28
ne = 50 (0.12) | (0.12) | (0.04) | (0.14) | (0.06) | (0.09) | (0.02) | (0.04)
BA1 |091 |0OT [096 [073 |100 |068 |100 |098

(0.12) | (0.12) | (0.03) | (0.14) | (0.04) | (0.09) | (0.01) | (0.03)

SMizM | NoBA | 099 | 085 |057 ]093 |075 [099 [0.86 |[O0.79
ns = 10 (0.34) | (0.30) | (0:14) | (0.33) | (0.23) | (0-25) | (0-10) | (0.16)
BA1 |093 |094 |075 |092 |08 [094 |090 |O0.83

(0.34) | (0.30) | (0.13) | (0.32) | (0.22) | (0-24) | (0.10) | (0.15)

SMiz M | NoBA | 097 | 049 |014 |085 |028 |0.78 |067 |0.359
ne =25 (0.20) | (0.18) | (0.05) | (0.20) | (0.08) | (0.12) | (0.02) | (0.05)
BA1 |090 |092 |07l |08 [001 |071 [092 |091

(0.20) | (0.18) | (0.04) | (0.20) | (0.07) | (0.12) | (0.02) | (0.04)

SMizM | NoBA |092 |009 |003 |06 |013 [0.32 [043 |0.23
ns = 50 (0.14) | (0.12) | (0.03) | (0.14) | (0.05) | (0.08) | (0.01) | (0.03)
BA1 |090 |092 |072 |0.72 |097 |069 |098 |0.91

(0.14) | (0.12) | (0.02) | (0.14) | (0.04) | (0.08) | (0.01) | (0.02)

Table 4.13: Diet 1, AIT: Coverage probabilities (average lengths) of ClIs computed
using large sample methods (Case 1). (Based on 100 samples of pseudo-seals with
€ = 10%, n? = 30 and calibration coefficients).
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Species | COD | HAD | PLC | POL | SAND | SH WF YT
Type |Dietl {009 |0 009 |0 0.45 0.09 |0.09 |0.09
Normal | NoBA 096 |0.97 |095 |0.63 |03l 092 {070 |0.88
ns =10 (0.19) | (0.10) | (0.15) | (0.25) | (0.30) | (0.16) (0.07) | (0.13)
BA1 091 |09 |0.83 |0.83 |0.86 062 [085 |0.80
(0.18) | (0.07) | (0.15) | (0.17) | (0.30) | (0.13) | (0.07) (0.13)
Normal | NoBA {087 [065 |096 |0 0.55 096 |0.51 |0.83
ns =25 (0.13) | (0.08) | (0.09) | (0.18) | (0.20) | (0.12) | (0.05) (0.08)
BA1 090 |1.00 |082 |0.80 |0.96 0.53 086 |0.71
(0.13) | (0.05) | (0.09) | (0.13) | (0.20) | (0.10) (0.05) | (0.08)
Normal | NoBA [0.72 |[008 (097 |O 0.27 094 {018 |0.73
ng = 50 (0.09) | (0.06) | (0.07) | (0.13) | (0.14) | (0.08) | (0.03) (0.06)
BA1l 091 |097 |[087 |0.66 |0.96 035 [0.92 |0.58
(0.09) | (0.04) | (0.07) | (0.11) | (0.14) | (0.08) (0.03) | (0.06)
t NoBA {100 [099 |0.95 |0.80 0.94 094 |0.85 |0.93
ns =10 (0.23) | (0.11) | (0.18) | (0.29) | (0.37) | (0.19) (0.09) | (0.16)
BA1l 099 |098 [093 ]096 |0.94 0.75 |093 |0.85
(0.21) | (0.08) | (0.18) | (0.21) | (0.37) | (0.15) (0.09) | (0.15)
t NoBA [093 |075 [0.96 |0.02 |O0.61 096 |056 |0.88
ng =25 (0.14) | (0.08) | (0.10) | (0.19) | (0.21) | (0.13) | (0.05) (0.09)
BA1 093 |1.00 |08 |08 |0.98 0.57 |[0.89 |0.74
(0.14) | (0.06) | (0.10) | (0.14) | (0.21) | (0-10) (0.05) | (0.09)
t NoBA {076 |0.08 |098 |0 0.30 096 |0.25 |0.79
ns = 50 (0.09) | (0.06) | (0.07) | (0.13) | (0.14) | (0-09) (0.03) | (0.06)
BA1l (093 |098 |087 |0.66 |0.97 038 [093 |0.59
(0.09) | (0.05) | (0.07) | (0.11) | (0.14) | (0.08) (0.03) | (0.06)
SMizM [ NoBA {099 [0.78 [|099 {0.23 |0.93 0.98 (086 |0.95
ng =10 (0.24) | (0.21) | (0.19) | (0.31) | (0-38) | (0-25) (0.10) | (0.18)
BA1l 089 [091 |08 |0.78 |0.89 0.88 |094 |0.86
(0.23) | (0.19) | (0.19) | (0.27) | (0.38) | (0.23) | (0.10) (0.18)
SMizM | NoBA [ 094 |027 |091 |O 0.57 0.93 (034 |0.70
ns =25 (0.13) | (0.08) | (0.09) | (0.16) | (0.23) | (0.11) | (0.05) (0.08)
BA1l 085 [0.85 |08 067 {091 0.6 092 |0.75
(0.13) | (0.07) | (0.09) | (0.14) | (0.23) | (0.10) | (0.05) (0.08)
SMizM | NoBA [ 098 |[0.06 |077 |O 0.09 0.73 |0 0.21
ng = 50 (0.08) | (0.05) | (0.06) | (0.11) | (0.16) | (0.07) | (0.04) (0.05)
BAl1 |087 |0.84 |0.79 |0.49 |0.94 0.30 {090 |0.54
(0.08) | (0.04) | (0.06) | (0.10) | (0.16) | (0.07) | (0.04) (0.05)

Table 4.14: Diet 4,

AIT: Coverage probabilities (average lengths) of Cls computed
using large sample methods (Case 1). (Based on 100 samples of pseudo-seals with
¢ = 10%, n? = 30 and calibration coefficients).
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were faster to compute. Since we used S-PLUS we were forced to use small bootstrap
parameters and this may have affected the results.

As a final comment, realize that we used a fairly small number (M = 100) of sam-
ples of pseudo-seals and this would have to be increased if more clear-cut conclusions
about the coverage probabilities and average lengths of the intervals from the various

methods are desired.

4.5 Other Issues Relating to Interval Estimation

In this section, two issues specific to the diet estimation problem and which affect
interval estimation are discussed. We first address the issue of a potential difference
between real seals (that is, seals in the wild) and our pseudo-seals, and subsequently

the issue of incorporating the fat content of the prey into our estimates.

4.5.1 Real Seals Versus Pseudo-Seals

As briefly discussed in Section 3.3, the diet estimates obtained using real seals may
be more variable than those obtained using pseudo-seals. Recall that one reason for
this difference is that seals sampled in the wild may not have identical diets. In our
simulations we generated samples of pseudo-seals from a common diet and attempted
to estimate this diet, thus eliminating this additional source of variability. If it is
reasonable to assume that seals in a specific region of interest have long run diets
that are approximately the same then this source of variability should not be a major
concern. Otherwise, to obtain approximate coverage probabilities when our methods
are used to estimate the true average diet of the seals, we could generate samples of
pseudo-seals in such a way that each seal in the sample has a slightly different diet,
where the magnitude of this difference would be determined in consultation with a
biologist.

Another previously discussed but less straightforward reason for a potentially
greater variability in the diet estimates in practice arises because our pseudo-seals
simulate the situation where seals are random sampling from the prey. In reality,
however, seals tend to cluster sample, as discussed in Section 3.3. A sample of seal FA

signatures from the wild and corresponding diet estimates might then be more variable
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than those of pseudo-seals and their estimates. While one way to manage this issue
is to modify how the pseudo-seals are being generated, a somewhat simpler approach
is to adjust the variability in the diet estimates in a sensible manner. One way
of carrying out the latter approach is to make use of the various alternative ways of
summarizing the prey (that is, other than by the sample means, X, k=1,...,I)that
were discussed in Section 3.2. For example, for our sample of pseudo-seals, we could
use the “Random Sampling Method” (RS method) and estimate the diet of the ith
seal using a randomly selected prey FA signature from each prey species. Presumably
this would generate diet estimates that are more variable than those based on the
sample means of the prey. We would expect the “Multivariate Quantile” (MQ) and
the “AIT/KL Quantile” (KLQ or AITQ) methods to yield estimates slightly less
variable than the RS method but more variable than the MEAN method.

We carried out a small simulation study to examine the effect on the confidence
intervals (particularly on their lengths) when these alternative methods of summariz-
ing the prey were used to estimate the diet. We used the percentile (PERC) method
with the median aggregate point estimator (our recommended CI method) but now
estimated individual diets using a quantile instead of the mean. The algorithm used
is similar to the large sample bootstrap algorithm (Subsection 4.3.2) and is given

below in detail.

Large Sample Adjusted Bootstrap Algorithm

1. Choose a set of Nguan; quantiles, say S = {s1,.. ., Snqun }- (For example, S =
{0.25,0.50,0.75}.)

2. For the ith seal and kth species randomly select one of the elements of S and
compute the corresponding quantile. Let Q. denote this quantile. Repeat for
each species and let Q; = (Qu1,..., Qi) i=1,...,7ns.

3. Compute the n, estimates of diet: P1(¥1, Q1)s-- - Pno( ¥, Qn,)s ¢ =1,..., 7.

4. Compute the median of the n, diet estimates for each species and let m =

(mq,...,mr).
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5 forr=1,...,R

(a) Generate n, seals: Y37,..., Y. (See Appendix C.)

(b) Generate sample of prey: Xi",...,X}". (See Appendix C.)

(c) Carry out Step 2. (using prey in Step (b)) to obtain Q;", ¢ =1,...,7,.
(d) Compute n, diet estimates: p(Y3", Q5 );-- -, Pn, (Yr: Qn)-

(e) Compute the median of the diet estimates in Step (d): m™".
6. Compute PERC confidence intervals.

Before presenting our results, a few comments are needed. Realize that the above
algorithm was carried out to gain insight into the coverage probabilities and the
lengths of the Cls that we may obtain in practice when the PERC method is used.
While at this point we recommend using X to estimate the diet in real-life applica-
tions, the above algorithm may be an appropriate way of incorporating a potential
source of variability arising from the fact that seals do not consume the mean prey
signature but rather a sample of the prey signatures.

We chose to examine the RS and AITQ methods at ns = 10. (The more complex
MQ method runs much more slowly than the RS and AITQ methods and we would
expect it to yield CIs with lengths similar those produced by the AITQ method.)
For the AITQ method, we used the 5th, 25th, 50th, 75th and 95th quantiles. Note
that we simply used the previously computed estimates of bias to shift the intervals.
(It would be straightforward but computationally time consuming to apply the bias
adjustment algorithm in Section 4.2 to the diet estimates based on the RS and AITQ
methods.) The results are given in Tables 4.15-4.16.

Using the AITQ and RS methods to summarize the prey produced, as expected,
longer intervals on average. The result of the longer intervals was an increase in
the coverage probabilities to one almost everywhere. (The only exception was the
coverage probability of 0.93 for Sandlance in Diet 4.) The average lengths of the
AITQ and RS method intervals were very similar and, surprisingly, most often the
RS intervals were slightly shorter. Perhaps using a smaller number of quantiles (say
25th, 50th and 75th) in the AITQ method would have yielded shorter intervals.
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The results imply that in practice the lengths of the CIs obtained may be consid-
erably longer than the those obtained using pseudo-seals. The extent of the difference
in the lengths will depend on the similarity in the within species FA signatures. More
insight into the lengths of Cls obtained in practice is presented in Section 4.6, where
the PERC method is applied to some real-life data on captive seabirds. As will be
seen, for this application, the PERC method performed very well and yielded Cls of

informative lengths.

Species | COD | HAD | PLC | POL | SAND | SH WF | YT
Method | Diet1 [ 0.30 [0.30 |0 015 |0 015 |0 0

MEAN | NoBA | 099 |098 |1.00 |083 |[1.00 [092 [1.00 [1.00
(0.32) | (0.37) | (0.14) | (0.31) | (0.14) | (0.20) | (0.06) | (0.09)
BA2 | 098 |100 |100 |093 |1.00 |086 |1.00 |1.00
(0.27) | (0.34) | (0.12) | (0.26) | (0.13) | (0.21) | (0.05) | (0.08)
AITQ | NoBA | 1.00 |1.00 |1.00 |1.00 |1.00 |1.00 |1.00 |1.00
(0.57) | (0.62) | (0.48) | (0.62) | (0.48) | (0.58) | (0.27) | (0.32)
BA2 | 100 |100 |100 |1.00 [1.00 |1.00 |1.00 |1.00
(0.48) | (0.58) | (0.38) | (0.46) | (0.38) | (0.51) | (0.22) | (0.26)
RS NoBA | 1.00 | 100 |1.00 |1..00 |1.00 |1.00 |100 |1.00
(0.53) | (0.59) | (0.46) | (0.56) | (0.44) | (0.54) | (0.27) | (0.30)
BA2 | 100 |100 |100 |1.00 |1.00 |1.00 |1.00 [1.00
(0.46) | (0.57) | (0.38) | (0.42) | (0.36) | (0.49) | (0-22) | (0.25)

Table 4.15: Diet 1, AIT: Coverage probabilities (average lengths) of CIs computed
using PERC method and m; with the MEAN, RS and AITQ methods of summa-
rizing the prey. (Based on 100 samples of pseudo-seals with e = 10%, n? = 30 and
calibration coefficients).

4.5.2 Fat Content

Another issue that emerged in the diet estimation problem and that was briefly men-
tioned in Chapter 1 relates to the fat content of the species. Associated with each prey
is a fat content and species with higher fat contents contribute proportionately more
to the seal’s signature. In practice, the diet estimates should be adjusted to account
for the fat content. Iverson et al (2004) recommend using the following adjusted
estimate of diet for the kth species

Pk
i

I ?

ar =
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Species | COD | HAD | PLC | POL | SAND | SH WF | YT
Method | Diet 4 {0.09 |0 009 |0 0.45 0.09 {0.09 |0.09

MEAN | NoBA | 0.99 | 100 |100 [0.77 |0.84 [097 [094 [0.99
(0.31) | (0.20) | (0.23) | (0.32) | (0.32) | (0.17) | (0.12) | (0.17)
BA2 009 |1.00 |099 |08 |08 |087 |092 |0.96
(0.24) | (0.16) | (0.19) | (0.23) | (0.25) | (0.15) | (0.09) | (0.14)
ATTQ |NoBA | 100 |1.00 |1.00 |1.00 [091 [1.00 |[1.00 |[1.00
(0.58) | (0.60) | (0.53) | (0.57) | (0.55) | (0.54) | (0.31) | (0.33)
BA2 | 100 | 100 |100 |100 |098 |1.00 |1.00 |1.00
(0.45) | (0.48) | (0.44) | (0.42) | (0.54) | (0.44) | (0-27) | (0-29)
RS NoBA | 1.00 | 100 |1.00 |1.00 |0.79 |1.00 |1.00 |1.00
(0.56) | (0.58) | (0.52) | (0.53) | (0.51) | (0.52) | (0.32) | (0.32)
BA2 | 100 | 100 |1.00 |1.00 |093 |1.00 |1.00 |1.00
(0.43) | (0.46) | (0.43) | (0.39) | (0.51) | (0.43) | (0-28) | (0.29)

Table 4.16: Diet 4, AIT: Coverage probabilities (average lengths) of Cls computed
using PERC method and my, with the MEAN, RS and AITQ methods of summa-
rizing the prey. (Based on 100 samples of pseudo-seals with € = 10%, n? = 30 and
calibration coefficients).

where p, is the diet estimate for the kth species and f; is the average fat content for
each species.

Note that it would be straightforward to incorporate the variability due to fat
content into our CI methods. We could simply re-sample the fat content each time
the seal and prey FA signatures are re-sampled. As the fat content is one-dimensional,
for a large prey base, this source of variability would not be expected to significantly
change the length of the ClIs. To verify the effect of fat content, simulations would
have to be carried out using the pseudo-seals. Since currently our pseudo-seals do
not reflect the fat content, we would have to alter how the pseudo-seals are being
generated. While we have not carried out such simulations, for our real-life example

in Section 4.6, the diet estimates will be adjusted by the fat content.

4.6 Real-life Example: Captive Seabird Data

The QFASA method of diet estimation has recently been applied by S.J. Iverson,
A. M. Springer and A. Kitaysky to seabird data (unpublished) that they obtained
from islands in the southeastern Bering Sea (Alaska region). They were interested in

opposing trends in various populations of seabirds and seals in the Pribilof Islands
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and Bogoslof Island (in the southeastern Bering Sea). While in the Pribilof Islands
the populations have declined since the mid-1970s, at Bogoslof Island, the popula-
tions have increased. As food limitation is related to changes in many populations,
knowledge of the predators’ diet is considered to be fundamental in understanding
the trends. Recall from Chapter 1 the various advantages of the QFASA method
over traditional methods in estimating predators’ diet. Using data collected on cap-
tive seabirds fed a known diet, Iverson, Springer and Kitaysky determined that the
QFASA method was a useful way of estimating the diet of seabirds. (Prior to this
research the focus of the QFASA method had been on various types of mammals such
as seals.) We applied our percentile (PERC) CI method to the captive seabird data in
order to assess its performance on real-life data. We now describe the captive seabird
experiment and subsequently present our results.

The predator data consisted of 20 Red-legged Kittiwake FA signatures and 26
Common Murre FA signatures while the prey base contained 10 Herring, 15 Silverside
and 15 Smelt FA signatures. The Kittiwake chicks were fed a mixture of Herring and
Silverside from hatching until day 15. From days 16-42, half of the Kittiwake chicks
were switched to Silverside only and the other half to Smelt only. The tissue from
which the FA signatures are determined was collected on day 42. The Murre chicks
were all fed only Silverside from hatching until day 10. From days 11-45, half of the
Murre chicks were continued to be fed only Silverside and the other half fed only
Smelt. The tissue was sampled on day 45. Note that one group of Murre chicks was
only ever fed Silverside so that calibration factors could obtained and used in our
analysis. The fat content of the prey was also recorded and the diet estimates were
adjusted for this as well. The CIs for the true diets are given in Tables 4.17 and 4.18.

Diet Species
Day 0-15 | Day 16-42 | n, Herring Silverside Smelt
Herring/ | Silverside | 10 | Median | 0.035 0.964 0.000
Silverside CI [0.008,0.070] | [0.868,0.963] | [0.000,0.044]
Herring/ | Smelt 10 | Median | 0.000 0.000 1.000
Silverside CI [0.000,0.003] | [0.000,0.009] | [0.990,1.000]

Table 4.17: Red-legged Kittiwake Seabirds: Median diet estimate and PERC Cls
(bias corrected).
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Diet Species
Day 0-10 | Day 11-45 | ng Herring Silverside Smelt
Silverside | Silverside | 13 | Median | 0.000 1.000 0.000
Cl [0.000,0.025] | [0.961,1.000] [0.000,0.043]
Silverside | Smelt 13 | Median | 0.000 0.000 1.000
CI [0.000,0.003] | [0.000,0.008] [0.991,1.000]

Table 4.18: Common Murre Seabirds: Median diet estimate and PERC CIs (bias
corrected).

Shown in the tables are the median of the diet estimates and the PERC method
CIs for the four groups. Note that in Table 4.17, the first interval for Silverside does
not contain the sample median 0.964 and we surmise that this is due to the bias
adjustment. More specifically, before the bias adjustment was applied to the interval,
the upper bound was actually 0.932. Thus the bias correction appeared to help, but
perhaps not quite enough.

The results are consistent with the findings of Iverson, Springer and Kitaysky and
show that the QFASA diet estimation method is an accurate method of estimating
the diet of seabirds. Furthermore, for this application, the PERC Cls provide useful

interval estimates as they reflect the true diets and are of reasonable lengths.



Chapter 5
A Measure of Species Contribution to Seal Variability

Tt would be useful to have a statistic similar to the coefficient of determination, R, in
regression analysis, that measures how well the variability in the seal FA signatures
can be explained by a convex linear combination of the prey FA signatures. In Section
5.1 we define such a statistic and establish that it is a sensible measure of explained
variability for the diet estimation problem. In Section 5.2, we consider using this

statistic to reduce the number of potential species in the diet.

5.1 Definition

For the linear regression model
Yi=Bo+ i Xa+ .-+ BpXip + e,

R2 is defined as follows
SSE

R=1- ST
where SST = ¥, (Y; — ¥)2, SSE = £, (¥; — ¥)?, and Y; denotes the fitted values.
To formulate an analogous statistic for the diet estimation problem given a sample of
seal FA signatures, Y7,...,Yy,, and prey FA signatures, Xy, ..., Xy, we attempted
to deduce an appropriate “SST” and “SSE” in terms of Y; and ¥; = Tl piXs,
where p = pi.(Y:, X), the DMA (distance minimization algorithm) estimate of diet
for species k. A natural choice for our “SSE” is 3_72 dist(Y5, Y;), where dist denotes
either the KL or AIT distance measure. For “SST”, or the uncertainty in predicting
Y when X;..., X are not taken into account, there are various possibilities. Three

choices are

1. E?él diSt(Yz, Y')

125



126

2. X dist(Y;, ¥7) where Y! = i oi Xk, 2k = pri(Yi, X7), and X" denotes
that the prey FA signatures were randomly assigned a species label.

3. Y0, dist(Y;, Y¢) where Ye =151 Xy (Thatis, p = } for all .)

If we define our “R?" or the proportion of variability explained (PVE) as

SSE
PVE=1- ==,

where SSE = %, dist(Y;, Y¥:) and SST is one of the above statistics, then since
SST,SSE > 0, PVEX 1. Furthermore, by the definition of pi(Yi, X), dist(Y;, Yi) <
dis‘c(Y,-,Y,r ) for all ¢, and similarly for dist(Y,-,Ye). Then, for choices 2. and 3.,
SSE < SST and 0 < PVE < 1, an appealing property. However, if the true diet is
roughly the same for all species (that is . ~ % for all k), then choice 3. would not
be effective. We will consequently prefer choice 2.

When the measure of PVE defined thus far was applied to the diet estimation
problem, two modifications were found to be needed. Firstly, it was noticed that
frequently the sample of seals contained a FA signature, Y;, with some of its FAs
near zero. For this FA signature, dist(Y;, ¥;) and dist(Y;, Y7) were much larger
than the distances computed from the other FA signatures in the sample and this one
seal had a substantial effect on the PVE statistic. The following more robust SSE
and SST statistics appeared to yield a more sensible PVE statistic

SSE = median; (dist(Yi,?,-)) , and (5.1)
SST = median; (dist(Y,-,Y{)) . (5.2)

It was also observed that the PVE statistic varied a fair amount as X" varied.
We accordingly modified our PVE statistic to use an average SST over B different
random assignments of the prey.

In summary, our PVE statistic for the diet estimation problem is defined as

SSE

PVEB)=1—- ———
®)=1- 157 sz

(5.3)

where SSE is computed as in Equation 5.1 and SST;, b = 1,...,B is given by
Equation 5.2.
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In addition to being an overall measure of how well the prey FA signatures explain
the seal FA signatures, the PVE statistic in Equation 5.3 provides some insight into
which species are significantly contributing to the seal’s diet. This is achieved by
adding or removing species and observing the change in the PVE statistic. If species
k is removed, we calculate

SSE_j
+ T, SSTy’
where SSE_j, = X2, dist(Y;, ¥;7%), ¥7* = £,y 05°X, and p3* is the sth com-
ponent of p~*(Y, X), the diet estimate computed without species & as in Subsection
4.3.5. (We may similarly define PVE_ ;) to be the PVE statistic without species
k and j.) Observe that we consider 2., SST; to be fixed (as in regression analy-

PVE_«(B)=1-

sis) and it is always computed using all of the species that could possibly be part of
the seal’s diet. Notice also that in our notation, p~*(Y, X) is of dimension I — 1.
If instead we consider it to be of dimension I with the kth component zero, then
it is easy to see that dist(Y; ¥;) < dist(Y:, Y1) (or that SSE < SSE_;) so that
PVE(B) > PVE_(B). If species k is a significant part of the diet, then we would
expect a notable drop in the PVE statistic when it is removed from the prey base.
We will see, however, that if two species are similar in their FA signatures, dropping
one may not greatly change the PVE statistic. Note finally that unlike PVE(B), it is
possible for PVE_g(B) < 0 though this generally only occurs (and not always) when
all but one or two species have been dropped.

To assess the usefulness of the PVE statistic in Equation 5.3, we computed
PVE(B) and PVE_x(B), k = 1,...,I for 100 samples of pseudo-seals having Di-
ets 1 and 4 and using the AIT distance measure. (The samples of pseudo-seals were
generated as in Section 3.4 and the sample of prey FA signatures was treated as
the population.) The average PVE(B) and PVE_,(B) are given in Tables 5.1 and
5.2. Note that in a preliminary investigation, we found that to two decimal places
PVE(50) ~ PVE(500). Since time will be a factor (that is, since each calculation of
PVE(B) requires n,(B + 1) optimizations in I dimensions), we will use B = 50. For
the remainder of the chapter, we will let PVE = PVE(50) and PVE_; = PVE_,(50).

Based on Tables 5.1 and 5.2, PVE and PVE_; appear to be sensible measures
of species contribution to the variability in the seal FA signatures. Notice that the
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Species | COD HAD PLC POL SAND | SH WF YT
Diet 1 | 0.30 0.30 0 0.15 0 0.15 0 0

Ky 0.283 0.245 0.023 0.224 0.045 0.134 0.017 0.029
[ Ng PVE l PVE_l | PVE..Q | PVE_3 l PVE_4 I PVE_5 | PVE_e P\fE_7 | PVE_S !
1 |0.702 0.656 0.679 0.699 0.678 0.685 0.679 0.698 0.697
5 | 0.782 0.726 0.756 0.779 0.752 0.769 0.761 0.777 0.778
10 | 0.801 0.739 0.773 0.798 0.769 0.795 0.781 0.797 0.799

Table 5.1: Diet 1, AIT distance, B = 50: Average PVE statistics for three sample
sizes. (Based on 100 samples of pseudo-seals with € = 10%, n? = 30 and calibration
coefficients.)

Species | COD HAD PLC POL SAND | SH WF YT

Diet 4 | 0.09 0 0.09 0 0.45 0.09 0.09 0.09
oy 0.104 0.043 0.069 0.155 0.369 0.117 0.074 0.069
rns | PVE PVE..]_ | PVE...Q | PVE_3 | PVE_4 l PVE_s l PVE-G PVE_7 l PVE_S I
1 |0.701 0.694 0.697 0.694 0.687 0.506 0.689 0.681 0.695
5 |0.782 0.774 0.780 0.774 0.772 0.569 0.772 0.762 0.775
10 | 0.786 0.777 0.784 0.777 0.773 0.579 0.774 0.765 0.780

Table 5.2: Diet 4, AIT distance, B = 50: Average PVE statistics for three sample
sizes. (Based on 100 samples of pseudo-seals with € = 10%, n? = 30 and calibration
coefficients.)
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PVE increases with n, and is similar for both diets. The latter implies that perhaps
the PVE is somewhat independent of the underlying true diet, a property that may
have practical usefulness. For example, biologists may want to compute the PVE for
several subsets of FAs to determine the subset for which the prey FA signatures best
explain the variability in the seal FA signatures. In this case, it may be beneficial for
the PVE statistic not to depend on the true diet of the sample of seals so that the
results can be extended to seals with a different diet.

When species k is removed, PVE_, also behaves in a desirable manner and tends
to decrease if m; > 0 and generally by an amount related to the size of m;. As
an example, observe the decrease in PVE when Sandlance (m; = 0.45) is removed
from Diet 4 (Table 5.2). For some species, however, the decrease in PVE_; may not
be completely representative of the size of m;. In Table 5.1 for example, although
7 = 0.30 for Haddock and 7 = 0.15 for Pollock, when n; = 10, the decrease in
PVE is roughly the same. Two potential explanations for these types of occurrences
are as follows: 1) As previously mentioned, some of the species have similar FA
signatures (see hierarchical cluster analysis in Figure 3.3) and, consequently, removing
one of these species may not greatly affect PVE, and 2) we have difficulty accurately
estimating the diet of some species. As discussed in Section 3.3, the diet estimates,
p(Y, ux), are actually biased and the decrease in PVE for species & often reflects
the size of i, = Ey[px(Y, px)] rather than 7. As an example consider Pollock in
Diet 1. Although 7 = 0.15, i, = 0.224 and this may help to explain the larger than
expected decrease in PVE for this species.

5.2 Application

A potential application of the PVE statistic is the reduction of the number of possible
species in the diet, not unlike the selection of predictor variables in regression analysis.
In this section we discuss a procedure that attempts to conservatively reduce the
number of potential species in the diet. When the number of potential species is
large but only a few are contributing to the diet, applying this procedure before
one of the interval estimation methods of Chapter 4 could significantly decrease the

computational time and yield shorter intervals.
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To determine which species, if any, can be removed from the prey base, we Im-
plemented a backward elimination type procedure. The procedure begins with all
potential species being included and determines which species’ removal causes the
smallest change in PVE. If species s corresponds to the smallest change in PVE, the

algorithm tests
Hp : Species s has no effect (5.4)
H; : Species s has an effect.
If Hy is not rejected then species s is removed from the prey base and we then examine
the change in PVE_; when the remaining species are removed. This process contin-
ues until either the species in question cannot be dropped or until only one species
remains. (Note that unlike backward elimination in regression, only I — 1 species can
be dropped and our final prey base must always contain at least one species.) The

overall backward elimination algorithm is as follows:

Backward Elimination Algorithm

1. Let 81 = 0.
2. for k=1:(I-1)

(a) Compute PVE_(s;,..5x) 20d PVE_(5;,. 5050 § € {Li---s I} = {s1,-- -, 5}
where PVE_q = PVE and PVE_(o; = PVE_;.

(b) Compute Sx41 = arg min; (PVE_(SI,,__,sk) - PVE—(SI,..-,Sk,j))’
jed{l,...,I} —{s1,..., sk}

(c) Test whether species s;4+1 may be dropped. If not, exit for loop.

To carry out Step (c) in the backward elimination algorithm, an effective testing
procedure based on the PVE statistic is required. We examined a variety of ways of
obtaining a P-value for the hypothesis test in Equation 5.4. Our preferred method
is a nonparametric approach in which samples of pseudo-seals are generated under
the null and the observed value of T = PVE — PVE_; is compared to the bootstrap
distribution of T under the null. Note that the procedure is similar to the NONPAR
method of obtaining a P-value (Subsection 4.3.5) with the null hypothesis, in this

case, being 7, = 0. The procedure, in detail, is as follows:
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1. Compute T = PVE — PVE_,.
2. For each seal, compute the null diet: p;*(Y;,X), i=1,...,ns
3. forr=1:R

(a) Generate n, seals, Yi7,..., Y, where the ith seal has null diet p; *(Y5, X).
(b) Using Y}7,..., Y, compute T*" = PVE*"™ — PVEZ,.

4. Compute
oo L #TT2T}
R

Note that in the backward elimination algorithm, to test whether species si+1 may
be dropped, our test statistic is actually T = PVE_(s;,...50) = PVE_(s),...50,8641)- Ad-
ditionally, realize that the above procedure does not account for the variability due
to the prey but this could easily be incorporated by re-sampling the prey signatures
in Step 3.

Before presenting some results, it should be mentioned that due to the number of
optimizations involved in the backward elimination procedure with the above testing
procedure, the algorithm is extremely computationally intensive. We therefore also
investigated the possibility of using some less time consuming testing procedures.
A simple approach is to simply assume that T = PVE — PVE_, is approximately
normally distributed and to estimate the variance of T using Davison and Hinkley’s
(1997) jackknife approximation to the variance, which does not require further opti-

mizations. The jackknife variance is given by

Vjack = ( =1 |;_1 jacki — ("_s;ljackz)z} ’

where lj,q; are the jackknife empirical influence values defined in Subsection 4.3.5.
Essentially L« ; is computed by removing dist(Y7, Y;) and dist(Y;, Y7) in the calcu-
lation of SSE and SST respectively. We then assume that ﬁ&aj\f (0,1) under Hy
and reject Ho if T > 21_4.

To assess the validity of the changes in PVE being approximately normally dis-

tributed, histograms of PVE—PVE_y, k = 1,..., I for the 100 samples of size n, = 10
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Figure 5.1: Diet 1, ny, = 10, AIT distance, B = 50: Distribution of PVE — PVE_;.
~ (Based on 100 samples of pseudo-seals with ¢ = 10%, nP = 30 and calibration coefli-

cients.)
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cients.)
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used to produce Tables 5.1 and 5.2 are given in Figures 5.1 and 5.2. From the Figures,
the normal approximation appears to be somewhat reasonable when m > 0.30 but
the data is often very skewed to the right, particularly when 7; < 0.15. As aresult, in
these cases our probability of Type I error may actually be larger than « and we may
not drop some species when we should. If the purpose of the elimination procedure is
-viewed as a first step to interval estimation, then not removing a species that should
be removed may not be considered a crucial error. While a variety of transformations
were applied to the data, none appeared to greatly improve the fit of the normal
distribution. The univariate skew-normal (SN (u, ok, o)) distribution (defined in
Chapter 2) was also fit to the differences and the fit is shown in Figures 5.1 and 5.2
as well. The plots show the data to generally be well fit by the SN distribution. If
time was not an issue, the nuisance parameters oy and oy could be estimated using
a bootstrap approach and then a parametric bootstrap P-value computed by gener-
ating differences under the null skew distribution. This parametric method would be
comparable in computational intensity to the nonparametric method and, due to time
constraints, we could not obtain results from both methods. Furthermore, although
the normal approximation method is much faster than the other methods, it is still
a fairly time consuming algorithm to run. We therefore chose only to examine the
performance of the backward elimination algorithm with the nonparametric testing
procedure. We used a prey base similar to that used in Iverson et al (2004) that
contained 27 species (see Figure 5.3 and Appendix A for the species that were used)
and from this prey base generated 20 samples of pseudo-seals from each diet (Diet 1
and Diet 4) and both distance measures (AIT and KL). (The samples were generated

as in the previous section.) The results are given in Tables 5.3-5.6.

The Tables essentially contain the power associated with our nonparametric test-
ing procedure as they give the proportion of time the species with non-zero diets
are not dropped. Note that the power calculations are based only on 20 samples of
pseudo-seals, B = 5 and R = 50 due to the slowness of the algorithm and are there-
fore only approximate. For this reason and because not dropping a species when we
should (and therefore committing a Type I error) isn't considered crucial, we have
used a = 0.2 instead of the usual values of a such as 0.01, 0.05 or 0.1. We have also
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I | Average Average | Species Diet 1| p, Power
No.Species Dropped | PVE
27 17.95 0.900 | Cod 0.30 | 0.221} 1.00

Haddock | 0.30 0.040 | 0.35
Pollock 0.15 0.246 | 1.00
SilverHake | 0.15 0.038 | 0.60

Table 5.3: Diet 1, n, = 10, AIT distance, B = 5, R = 50, o = 0.2: Results
of backward elimination procedure applied to 27 species. (Based on 20 samples of
pseudo-seals with ¢ = 10%, n? = 30 and calibration coefficients.)

I | Average Average | Species Diet 1| pp Power
No.Species Dropped | PVE
27 | 19.70 | 0.966 [ Cod 0.30 | 0.149 | 1.00

Haddock | 0.30 0.183 | 0.90
Pollock 0.15 0.186 { 0.90
SilverHake | 0.15 0.095 | 0.90

Table 5.4: Diet 1, n, = 10, KL distance, B = 5, R = 50, & = 0.2: Results of backward
elimination procedure applied to 27 species. (Based on 20 samples of pseudo-seals
with € = 10%, n® = 30 and calibration coefficients.)

I | Average Average | Species Diet 4 | p, Power
No.Species Dropped | PVE
27 | 19.45 | 0905 [ Cod 0.09 0.046 | 0.35
Plaice 0.09 0.029 | 0.60
Sandlance 0.45 0.326 | 1.00
SilverHake 0.09 0.037 | 0.55
WinterFlounder | 0.09 0.063 | 0.90
YellowTail 0.09 0.038 | 0.20

Table 5.5: Diet 4, n, = 10, AIT distance, B = 5, R = 50, a = 0.2 Results
of backward elimination procedure applied to 27 species. (Based on 20 samples of
pseudo-seals with € = 10%, n? = 30 and calibration coefficients.)
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I | Average Average | Species Diet 4 | pp Power
No.Species Dropped | PVE
27 | 18.25 | 0.959 | Cod 0.09 0.020 | 0.20
Plaice 0.09 0.005 | 0.10
Sandlance 0.45 0.361 | 1.00
SilverHake 0.09 0.047 | 0.75
WinterFlounder | 0.09 0.076 | 1.00
YellowTail 0.09 0.047 | 0.30

Table 5.6: Diet 4, ng = 8, KL distance, B = 5, R = 50, & = 0.2: Results of backward
elimination procedure applied to 27 species. (Based on 20 samples of pseudo-seals
with € = 10%, nP = 30 and calibration coefficients.)

included p, = Ev[p(Y, ux)] in the tables which was computed as in Chapter 3 and
is the average estimated diet of 1000 pseudo-seals generated with Diet 1 or Diet 4.
Also shown is the average PVE statistic of the 20 samples of pseudo-seals as well as

the average number of species dropped.

The backward elimination algorithm was first applied with the AIT distance mea-
sure (see Tables 5.3 and 5.5). Although it appears that the algorithm is performing
poorly for all but a few species, u, shows that the AIT distance is not yielding ac-
curate estimates of the diet (see Haddock in Diet 1, for example) implying that some
species are not being distinguished from others. A hierarchical cluster analysis is given
in Figure 5.3 and helps to explain the large bias in the diet estimates computed with
the AIT distance measure, specifically in Diet 1. As an example, consider Haddock
in Figure 5.3 which appears to be similar to SeaRaven, RedHake and WhiteHake.
While p,, = 0.040 for Haddock instead of 0.30, the sum of the components of pu,,
corresponding to SeaRaven, RedHake and WhiteHake (not shown) is approximately
0.15 instead of 0. This suggests that the FA signatures from these three species are
perhaps not being distinguished from the FA signatures of Haddock. Also, note the
similarity between Pollock and SilverHake in Figure 5.3. This is in accordance with
Table 5.3 where Pollock is over-estimated and SilverHake underestimated. For Diet
4, the results are perhaps not as unreasonable but it appears to be the case that if
7 is small (7 < 0.10), species &k will often be dropped.

The backward elimination algorithm was also applied with the KL distance as the
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bias in the estimates, when all 27 species were used, was found to be much less than
with the AIT distance measure, particularly for Diet 1. Note the larger average PVE
statistic that is obtained when the KL distance is used, suggesting that a better fit
occurs with this distance measure. Also with the KL distance, the performance of the
backward elimination algorithm is similar to the AIT distance results for Diet 4 but
much better with Diet 1. From Figure 5.3, with the KL distance Haddock appears
to be more dissimilar to RedHake and WhiteHake then with the AIT distance.

Although a larger number of samples of pseudo-seals, B and R would be required
to fully assess the procedure, our results show that overall the backward elimination
algorithm tends to drop a species from the diet if u,, < 0.06. Consequently, if it
is believed that our estimates are fairly accurate (such as with the KL distance in
the above simulations) and if, roughly, 7 > 0.15, the elimination algorithm can be
useful in significantly reducing the number of potential species in the diet. In Table
5.4 where the algorithm generally did not drop the non-zero species, on average, it
reduced the number of species from 27 to about 7.

In summary, the backwards elimination procedure presented appears to be a po-
tentially useful way of greatly reducing the number of possible species in the diet.
From the results of our small simulation study, the procedure must be used with
some caution, however, since its usefulness is related to the accuracy of the diet

estimates.
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Chapter 6

Testing for a Difference in Diet

In this chapter we explore methods of determining whether 1) two independent pop-
ulations of seals have different diets and 2) the diet for a single population of seals
has changed. For both problems we develop testing procedures for the case when the
data consists only of samples of seal FA signatures (either independent or paired),
and when, in addition to the seal FA signatures, corresponding prey bases (or a com-
mon prey base) are also available. In the latter case, we will use the prey bases to
estimate the diets (using the methods of Chapter 3) and will base the hypothesis test
on the diet estimates rather than on the FA signatures. As the data will therefore
either be FA signatures or diet estimates, appropriate tests for differences in compo-
sitional data are needed. Although Aitchison (1986) and (2003) discuss such tests,
their methods are not always directly applicable to our problems as they require the
number of observations in the samples to be larger than their dimension, and often
we will have, for example, the number of seals being much smaller than the number of
FAs. This is the case for our real-life example presented in Section 6.4. Additionally,
when the sample sizes are small, Aitchison’s methods require parametric assumptions

while we will attempt to use nonparametric permutation tests.

6.1 Preliminary Issues

In addition to the challenges of the number of seals in our sample potentially being
small and the data being compositional, a few issues arose during our analysis. To
simplify the discussions, we will consider the issues involved in comparing the diet
of two independent populations of seals as they are essentially the same for paired
comparisons.

Although our primary interest is usually whether the two populations of seals have

the same diet, given samples of seal FA signatures only, a crucial issue is that we are

139
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limited to testing for a difference in the FA signatures. If no difference is found in the
FA signatures, then we will assume that there is also no difference in the diets. The
difficulty is when the FA signatures are found to be significantly different since this
may or may not imply a difference in the diets. Consider two populations of seals
eating only one species, say Cod, from two different regions. If the FA signatures of
Cod from the two regions are different then so will be the seal FA signatures and we
may correctly reject the null hypothesis that the seal FA signatures are the same even
though the seals have the same diet. As will be seen in our simulation study, seemingly
small differences in the prey populations are sufficient to result in the conclusion that

the seals have different FA signatures even when their diets are the same.

Another issue that arose was the “zero problem” since it is possible for the seal
FA signatures and the diet estimates to contain zeros. This is problematic as our
preferred test statistics involve logarithms. Recall that two types of zeros, namely
essential and rounded zeros, were defined in Section 2.1 based on Martin-Fernéndez
et al (2003). We will assume that if only a few zeros are present in the seal FA
signatures, that they are rounded zeros and simply fall below detection limit. In
this case we will apply the previously discussed multiplicative replacement strategy
(Martfn—Fernaindez et al, 2003) to a seal FA Y with n, zeros. That is , we will replace
the jth component Y; by

(6.1)

, | if ; =0,
’ (1 -n.8)Y;, if ¥;>0,

smallest non—zero FA in sample
10 .

where we let § =

The zeros in the diet estimates are considered to be essential zeros since they
indicate a true absence of the species from the diet. This issue will influence our
choice of test statistic and will be discussed further when testing procedures are

considered in detail.
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6.2 Comparison of Two Independent Populations

6.2.1 Analysis Based on Seal FA Signatures Only

Suppose we have two independent samples of seal FA signatures, say Y, ¢ =
1,...,mq and Yo, i = 1,.. ., ns, of dimension nr4 with true diets and 7, respec-
tively. Let Y;;; denote the jth component of the ith observation from the bth sample,
j=1,...,nr4,i=1,...,n4 and b= 1,2. To simplify the notation that follows, let
Np4 = nga — 1. In this subsection we assume that prey bases, say Xj and X (or a
common prey base, X), representative of the prey populations from which the seals
are eating, are unknown. Consider first testing for a difference in the FA signatures
from the two populations. The usefulness of the test when we are actually interested
in testing for a difference in the underlying diets is discussed subsequently.
In accordance with Aitchison (1986), suppose that

Yl ~ ‘CNFA(”'DEI),
Yo ~ LNFA(py, B),

or that,

7, = log (YL—) ~ NGy ), (6.2)

lfln [-‘,‘:

Z; = log (YTZ:%—M) ~ NVFA(py, 3o).
NFA

If we are interested in whether a difference in the two populations of FA signatures
exists, we may test
Ho: py = o
Hy @ py # pgs

using standard multivariate techniques, provided both ns and nse are sufficiently

(6.3)

large. Let f1, = Zp = %2?;1 Zyi, b = 1,2. Then, for example, if we assume that
¥, = %,, we would reject Hy if

N . 1 1 -t R
T = (=) [(o=+ o) S| (B i)
sl Ts2
(nsl + nge — 2)NFA

Ng1 -+ Ns2 —Npa—1

FNFA,ns1+n32—NI-'A—1(1 - a)7
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where

Mgl — 1 Ng2 — 1
s g+ —2 -
Ns1 + N2 — 2 Ng1 + Nga — 2

and Sy = —2—= T2 (Zei — 1) (Zvi — f1p)', b= 1,2.

n,;,—l

If ng; — Npa and ng — Npy are large, then the normality assumptions are less

Spool = So

critical and we would reject Hy if
2 __ (~ ~ N 1 - - 2
T° = (fo, — f22) (‘n—sl + ;—'S2> (o = f2) > Xipa 1-o).

For ng and ng less than N4, we have chosen to use an approach similar to Davi-
son and Hinkley’s (1997) univariate nonparametric permutation test for the compar-
ison of two means. They argue that in the univariate case, for certain forms of the
underlying densities (in which the null hypothesis implies a common density for the
two populations), the null hypothesis sufficient statistic is the order statistics for the
pooled sample. In these cases, a P-value can be computed by pooling the ns; and ng
observations and considering permutations of the concatenation of the two random
samples. For each permutation, the first ns; components of the concatenation vec-
tor give the first sample and the remaining n,e observations the second sample. An
appropriate test statistic is calculated for R permutations and the P-value is com-
puted in a manner similar to the bootstrap P-value. Realize that if we assume that
the normality assumption in Equation 6.2 is valid, then, in the univariate case, the
permutation test is justified if o7 = o2. Note also that Davison and Hinkley’s (1997)
nonparametric bootstrap test for the comparison of means problem is similar to the
permutation test but the sampling is done with replacement.

It is straightforward to extend the algorithm to the multivariate case since all
that is required is a suitable test statistic. In our simulations (to be discussed) we
examined the performance of various test statistics. To simplify the notation, for

vectors X; and X, of dimension D, we define the following distance measures

D
ABS(X1,X2) = _|Xy — Xal,

=1
D 0 if X1 = Xo;
REL(X;,X2) = Y1y, wherer={ | .
j=1 (s X23) otherwise,



143

D
SQ(X1,Xg) = Z(le—ij)z-

=1
Our chosen test statistics may be expressed as functions of the above defined distance

measures and are as follows

1L =Y 5 REL(Y1i,, Yai,)

1=
2. T, = median;, ;, (REL(Y1i1, Y2i2))

3. Tz = 02, Tr2 ABS(Zyi,, Zog,)

11=1

4. T4 = medianim-z (ABS(ZHI, Zgiz))

5. Ts = vV SQ(ﬂlv ﬂ'2)

The test statistics given in 1. and 2. are useful when there are essential zeros in
the data and are perhaps the simplest to interpret. (Note that our relative dis-
tance definition, REL, allows for the possibility of essential zero components by
dividing by the maximum of the two components. If both components are zero,
then the relative difference is set to zero.) While we could have chosen say, T =

Tl Y2 ABS(Yiy, Yai,) as a possible test statistic, test statistics based on rela-
tive differences such as those given in 1.-5. above are more appropriate for composi-
tional data. Furthermore, the biologists with whom we have been collaborating have
indicated that, in fact, relative differences in the FA signatures or the diet estimates
are of most interest.

The multivariate permutation test algorithm, in detail, is as follows:

Multivariate Permutation Test

1. Compute the test statistic, T'.

2. forr=1,...,R
(a) Permute the ns + nge observations to obtain: Y;7, i =1,...,ns + Ns2.
() Let YT =Y i=1,...,nqand Y3} = YT i=ng +1,...,n5 + N2
(¢) If required, compute Z;" = log (%m) .

inpg
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(d) Compute the test statistic, T*", using the generated samples in (b) or (c).

3. Compute
#{T'" 2T}

R

As previously discussed, we may be more concerned with whether or not the diets

perm __

of the two populations of seals differ rather than whether the FA signatures differ.
Recall from Section 6.1 that the performance of say, the multivariate permutation

test, in testing
Hy:m =m (6.4)
H; : w1 # mo,
would depend on the extent of the differences in the two prey populations. If the prey
populations are different, we may reject Ho : gy = po when, in fact, Ho : 1 = w2 is
true, consequently committing a Type I Error if we are really interested in the latter.
A simulation study was carried out in which we computed the P[Type I Error| when
two samples of pseudo-seals were generated with the same diet from 1) separate prey
bases and 2) the same (full) prey base. To create separate prey bases we simply
randomly (and evenly) divided our full prey base in two. We used the following
simulation algorithm to compute the P[Type I Error] associated with the multivariate

permutation test when the hypotheses of interest are given by Equation 6.4.
1. form=1,.... M

(a) Choose a diet, say 7.
(b) Either
i. Randomly and evenly split prey base into X; and Xo.
ii. Generate a sample of ns and ng pseudo-seals with diets = from X;

and X, respectively.
or

i. Generate a sample of ng and ng pseudo-seals with diets 7 from the

full prey base.
(c) With the generated samples, say, Y11,..., Y1n,, and Yo, ... , Yop_,, com-

pute the multivariate permutation test P-value: pPe™™.
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2. Compute

P[Type I Error] = #{ppm;}n s}

We chose @ = 0.01, 0.05 and 0.1, M = 100 and ng = ng = 10 (since standard
multivariate techniques can be applied when ng and ns; are large). Further, to assess
the magnitude of the difference in samples of seals generated from two separate prey
bases versus one common prey base, two samples of 1000 pseudo-seals were generated
with and without splitting and REL(E[Y,], E[Y?])) and \/-S_Q(—u;p.—g) computed in
both cases. (With ng = ng = 1000, we assume that E[Y,] = ¥, and that g, = f,
b=1,2). Note that these distances are only for one particular split. The results are
given in Table 6.1.

P|[Type I Error]

T T2 Prey | REL VSQ(pe, o) | T | @ a a
Base | (E[Y1],E[Y2]) 0.01 [ 0.05 | 0.1

Diet 1 | Diet 1 | Split | 1.626 0.398 T; | 0.88 ] 0.96 | 0.97

T> | 0.67] 0.92 | 0.95
T3 | 0.66 | 0.86 | 0.93
T, | 0.55 | 0.77 | 0.85
T5 | 0.69 | 0.88 | 0.90
Full | 0.100 0.0224 T; | 0.01 | 0.05 | 0.09
T> | 0.02 | 0.04 | 0.08
T3 | 0.01 | 0.04 | 0.08
T, | 0.01 | 0.01 } 0.07
I5 | 0 0.04 | 0.07
Diet 4 | Diet 4 | Split | 1.856 0.569 Ty | 0.99 | 1.00 | 1.00
T> | 0.99 | 1.00 | 1.00
T3 | 0.82 | 0.98 | 1.00
Ty | 0.73 | 0.93 | 0.98
Ts | 0.80 | 0.96 | 0.99
Full | 0.048 0.0162 Ty | 0.02 0.05 | 0.08
T | 0.02 | 0.06 | 0.10
T3 | 0.02 | 0.06 | 0.09
T, | 0.02 | 0.04 | 0.07
Ts { 0.02 | 0.07 | 0.12

Table 6.1: P[Type I Error] associated with the multivariate permutation test at ng =
neo = 10. 71 = Z_’;l 2?;;1 REL(YHI, Y2i2), T = median,-l,,-z (R.EL(YHI, Y2i2)):
T; = Z?;;I ?;il ABS(ZHI, Z2i2)1 T, = median,-m-z (A.BS(ZHU Z2i2))1 Ts =
+/SQ(fty, f1o). (Based on M = 100 samples of pseudo-seals with ¢ = 10% and n” = 30,
and R = 300.)
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Observe that when the prey base is split, 1/SQ(#1, o) is large (and similarly for
REL(E[Y4], E[Y3])) compared to the distance when the full prey base is used, even
though 7 = 7, = 75. The P[Type I Error] is accordingly significantly affected by the
prey base from which the pseudo-seals are generated. When the prey base is split, the
P[Type I Error] is large and we almost always conclude that 7r; # 7r2. When the full
prey base is used, the permutation test works well for all of the test statistics as the
P[Type I Error] is similar to . Recall however that these samples of pseudo-seals
constructed with the full prey base may have some prey signatures in common and
are not entirely independent. Consequently, if in practice it is known that the two
samples of seals are eating from the same prey populations, the P[Type I Error] may
be slightly larger than what is shown in Table 6.1.

Note that, based on the distances (1/SQ(t1, #to) and REL(E[Y1], E[Y?])) which
measure the difference between two populations of FA signatures, the permutation

test appears to work well as a test of Hp : sy = pto. For example, when the prey base
is split, we apparently generate two different populations of FA signatures and this
is usually detected by our test. If we are actually interested in testing Hy:m =,
then we must interpret a small P-value cautiously. If the seals are eating two different
populations of prey, then even if they are eating the prey in the same proportions, we
will likely obtain a small P-value. If the seals are eating from the same populations
of prey, then it may be appropriate to interpret a small P-value as evidence against
Hy: = mo.

The power of the permutation test was also investigated by generating pseudo-seals
under the alternative hypothesis in Equation 6.4. We essentially used the simulation
algorithm that was used to compute the P[Type I Error], but generated ns and ngo
pseudo-seals with diets 7r; and 7r, respectively, for various choices of 7, and 7rs. Note
that we considered only the case where both samples of pseudo-seals are generated
from the full prey base. (When the prey base is split, the power will be high based
on our previous results where we found that even if 7r; = 2, Hp is usually rejected.)
For samples of pseudo-seals generated with diets #r; and w2 the power is computed

as follows:

# {pperm,m > a}
i .

Power = (71, 72) =1 —
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Tables 6.2 and 6.3 and Figure 6.1 contain the results.

In our simulations, 7r; was fixed to be either Diet 1 or Diet 4 and mo was modified
in two different ways. We examined the effect of interchanging a non-zero species
(m > 0) with a zero species (mx = 0), as well as the effect of increasing or decreasing
T in the non-zero species. (Note that we actually modified the original diet while
the tables contain the modified diet adjusted for the noise factor.) Let r2(1) denote
the modified diet corresponding to 1 in the tables, and similarly for the other five
diets. In both Tables 6.2 and 6.3 diets m2(1) and wo(2) correspond to diets where
non-zero and zero species have been interchanged whereas 72 (3) — 72(6) contain the
same non-zero species as Diet 1 or Diet 4 but with the non-zero components increased
or decreased. We have also computed ABS(7r;,we) and REL(7r, 7r2) for the various

combinations of 7r; and 7> as measures of the effect size.

Consider first the effect of interchanging a zero species with a non-zero species.
We presume that the power will depend on the similarity between the two species
being interchanged as well as the magnitude of their contribution. When 7; = Diet 1
we first interchanged Haddock (m; = 0.30) and Plaice (7, = 0) and then Pollock
(m = 0.15) and Sandlance (m; = 0). Even though these pairs of species are similar
(recall Figure 3.3), the power is very high for all test statistics when o > 0.05 and for
some test statistics (all but 7 and T; which are based on the median) when o = 0.01.
When 7; = Diet 4, Sandlance (7 = 0.45) and Pollock (7 = 0) are interchanged as
well as Haddock (m, = 0) and Plaice (m; = 0.09). In the former case the power is
1 for all test statistics and all levels of o while in the latter case the power is very
Jow. (Realize that because of the 10% noise used in generating the pseudo-seals, the
true proportion of Haddock is likely closer to 0.05 so that the change to 0.09 is fairly
small.) Our results suggest that when a zero species is interchanged with a non-zero
species, the magnitude of the non-zero species has a larger effect on the power than
the similarity between the species. It appears to be the case that when a non-zero
species with 7 > 0.15 is interchanged with a zero species, the change should be
detected by the permutation test with o > 0.05 and any of the test statistics. Note
that the ABS distance measure is a more informative measure of effect size when

non-zero and zero species are interchanged.
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When non-zero species are increased or decreased (72(3) —2(6)), where the power
is large, it is generally large for all test statistics. There are, however, some exceptions.
In Table 6.2, at a = 0.10 and mwa(4), T3 = 52 2, ABS(Zy;,, Z2i,) gives a more
reasonable power than the other test statistics. In Table 6.3, at a = 0.10 for m2(4)
and m5(6), T1 = 0%, Y2 REL(Y1y,, Yai,) and Tp = median;, i, (REL(Y 13, Yai,))
perform better than the other test statistics. To help assess the magnitude of change
in the non-zero species that can be detected by this test, a plot of power versus effect
size is given in Figure 6.1 at & = 0.1 using Ty = 572 ¥2) REL(Y14;, Yai,). (Note
that we have not plotted the effect size corresponding to 7r;(1) and 7(2) where non-
zero and zero diets are interchanged.) Overall, it appears that when non-zero species
are changed by an absolute difference of roughly 0.20 or more, or a relative difference
of one or more, the test will usually conclude that there is a difference in the FA
signatures when Tj is used. A notable exception is in Table 6.2 with 72(6). In this
case the absolute difference is 0.252 and the relative difference is 1.10 but the power
is only 0.43 (for T1). This is most probably because the species being increased and

decreased are very similar.

6.2.2 Analysis Based on Seal and Prey FA Signatures

In this subsection it is assumed that prey bases containing samples of prey from which
the two independent populations of seals are consuming are known and that we are
interested in testing

Hy:m=m

6.5
H; : m # mo. (69)

Let X, be the prey base corresponding to seals Y5, b = 1,2, or let X denote a common
prey base if the seals are eating from the same population of prey. With the prey
bases known, we may estimate the diet of each seal using the methods of Chapter 3.
Let py be the diet estimate for the ith seal from the bth population and let I denote
the dimension of py;. (Note that I corresponds to the number of species in the prey
bases and we assume that, if two prey bases are given, that they contain the same
number of species.) Apart from the possible zero estimates, the diet estimates are

essentially compositions and the methods of Subsection 6.2.1 can be applied to the
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Species ™ TTo

Dietl1}1 | 2 |3 | 4 |5 | 6 |
Cod 0.30 0.30 [0.30 | 0.318{ 0.345 | 0.390 | 0.363
Haddock 0.30 0 0.30 | 0.318 | 0.345 | 0.390 | 0.237
Plaice 0 030 |0 0 0 0 0
Pollock 0.15 0.15 |0 0.132 | 0.105 | 0.060 | 0.213
Sandlance 0 0 0.15 |0 0 0 0
SilverHake 0.15 0.15 |0.15 {0.132 | 0.105 | 0.060 | 0.087
WinterFlounder | 0 0 0 0 0 0 0
YellowTail 0 0 0 0 0 0 0 |
ABS(7ry, 2) 0.600 | 0.300 | 0.072 | 0.180 | 0.360 | 0.252
REL(7r;, 72) 2.00 |[2.00 |0.353]|0.861|1.66 | 1.10
a=0.01 T 1.00 | 087 |0.05 |0.28 {0.81 |0.11

15 1.00 |0.67 [0.02 |0.20 |0.60 | 0.09
13 1.00 {0.89 [0.09 [0.51 [0.90 |0.05
Ty 1.00 {0.73 [0.07 {044 |0.79 | 0.06
Ty 1.00 | 090 {0.05 |0.39 |0.84 |0.03
a =0.05 Ty 1.00 [0.98 |0.14 {056 |0.95 |0.31
15 1.00 |0.89 |0.08 |0.37 |0.84 |0.21
T3 1.00 099 |0.23 [0.74 |1.00 |0.18
T, 1.00 |0.88 |0.20 |0.60 |0.93 |0.16
T5 1.00 [0.99 |[0.19 |0.67 |0.96 |0.22
a=0.10 T 1.00 [0.99 |0.24 |0.73 |0.99 |0.43
T3 1.00 [0.92 [0.15 [0.53 |0.93 |0.34
T3 1.00 [0.99 {0.35 0.8 |1.00 }0.33
Ty 1.00 {0.93 [0.29 |0.70 |0.98 |0.25
T5 1.00 1099 |0.27 |0.76 |0.99 | 0.32

Table 6.2: Power, B(m1,m2), of the multivariate permutation test for w; = Diet 1

and various choices of 7, at ng = ng = 10. Ty = Y7, 2 REL(Y1,, Yai,),

T, = median; ;, (REL(Y1y,Yes,)), T3 = Sot Y02 ABS(Zysy, Zoiy), Tu =

11=1 Luip=

media-nil.iz (ABS(Zliu Z2i2))1 TS =y SQ(ﬁla ﬂz) (Ba‘sed on M = 100 Sa'mPleS of
pseudo-seals with € = 10% and n? = 30, and R = 300.)
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Species ™ T

Diet4]1 |2 [3 [4 |5 |6
Cod 0.09 [0.09 [0.09 [0.099]0.108 | 0.117 | 0.072
Haddock 0 0 0.09 |0 0 0 0
Plaice 009 [0.09 |0 0.099 | 0.108 | 0.117 | 0.072
Pollock 0 045 |0 0 0 0 0
Sandlance 045 |0 0.45 | 0.405 | 0.360 | 0.315 | 0.540
SilverHake 0.09 |0.09 |0.09 |0.099]0.108 | 0.117 | 0.072
WinterFlounder | 0.09 | 0.09 [0.09 |0.099 | 0.108 | 0.117 | 0.072
YellowTail 0.09 |0.09 |0.09 [0.099 0.108 | 0.117 | 0.072
ABS(71, 72) 0.900 | 0.180 [ 0.009 | 0.180 | 0.270 | 0.180
REL(7, 72) 2.00 | 2.00 |0.555 | 1.033 | 1.454 | 1.167
o =0.01 T 1.00 | 0.03 [0.03 [0.56 ]0.97 [0.77

T 1.00 [0.02 |0.04 |0.48 |0.83 |0.60
T3 1.00 [0.02 |0.04 |[0.14 [0.34 |O0.11
T4 1.00 |0.00 {0.02 |{0.12 |0.32 |0.07
Ts 1.00 {003 |0.01 |0.14 ]0.32 [0.13
a=0.05 Ty 1.00 |0.12 [0.08 |0.78 |1.00 |0.95
T 1.00 {0.10 |[0.13 [0.70 |0.98 | 0.79
T3 1.00 |0.11 [0.08 |0.36 |0.75 | 0.54
Ty 1.00 {0.05 |0.06 [0.34 |0.63 |0.37
Ty 1.00 |0.12 |0.07 |0.31 |0.66 |0.47
a=20.10 T 1.00 {0.19 [0.13 [0.96 |1.00 |1.00
T 1.00 [0.15 |0.17 {0.77 |1.00 |0.94
T3 1.00 {0.18 [0.12 [0.55 |0.90 |0.75
Ty 1.00 [0.11 |0.09 |[0.51 |0.81 |0.59
Ts 1.00 |[0.18 [0.13 |0.47 |0.87 |0.68

Table 6.3: Power, B(m1, 72), of the multivariate permutation test for ;1 = Diet 4
and various choices of 7, at ng = ne = 10. T3 = Y34, 202 REL(Y1:,, Ya2i,),
T, = median;;, (REL(Y1,Y2)), To = Y02 U521 ABS(Zui, Z2i), Ta =
median;, ;, (ABS(Z1iy, Z2i,)), Ts = 1/SQ(iy, frz). (Based on M = 100 samples of
pseudo-seals with € = 10% and n? = 30, and R = 300.)



151

e 4 4 2 - 4 4
- pt 1 - R 1
@ o |
o (=]
1 1
5 8 - g S
o [=]
Q. o
< | 1 < 1
o o
o 1 o
o o
4 4
11 ¥ T t ] ) 1 ¥ ] 1] T
0.0 0.1 0.2 03 0.4 06 08 1.0 1.2 1.4 1.6
Effect Size (ABS), Sample Size = 10 Effect Size (REL), Sample Size = 10
Figure 6.1: Plots of power versus effect size at @ = 0.1, using T7y =

S 2 REL(Yy,, Yoi,) With ng = nee = 10. Effect size is measured as

ABS(7ry, 75) or REL(7ry, 7). 7 =Diet 1 is denoted by 1 and w2 =Diet 4 is de-
noted by 4.
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diet estimates, as they were to the FA signatures, with adjustments to manage the
ZEros.

Because of the essential zeros in the diet estimates, it is not clear how to even
extend the large sample procedure discussed in Subsection 6.2.1. A P-value can
easily be computed, however, with the multivariate permutation test if a suitable test
statistic is used and if ng and ng are greater than one. Based on the satisfactory
results obtained in the previous subsection using test statistics involving relative
distances (even without a log transformation), we will use the following two test

statistics

1. Ty = 322, Y2, REL(Pyi;, P2is)

11=1 Lovia=
2. T2 = media‘nilyiz (REL(pliu p2i2))'
To examine the performance of the multivariate permutation test in testing Equa-
tion 6.5 using samples of diet estimates, we again carried out simulations using pseudo-

seals. The following algorithm was used to generate samples of pseudo-seals with diets

71 and 7> and to estimate their diets:

1. fori=1,...,n4

(a) Randomly and evenly split prey base into X, and Xo.
(b) Generate a pseudo-seal, Yy;, from X; with diet ;.

(c) Estimate the diet of the pseudo-seal using X to obtain p1;(Y1i, X2)-
2. fori=1,...,ns

(2) Randomly and evenly split prey base into X; and X,.
(b) Generate a pseudo-seal, Y, from X; with diet 7.

(c) Estimate the diet of the pseudo-seal using X3 to obtain pa;i(¥Yai, X,)

We first carried out simulations to compute the P[Type I Error] by setting 7, =
7, in the above algorithm. To date we have only carried out simulations with the

AIT distance measure. Table 6.4 contains the results.
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P[Type I Exror]
™ o T [a=00l]|a=0.05]|a=0.10 |
Diet 1 | Diet 1 | 73 | 0.00 0.06 0.12
T, { 0.01 0.06 0.13
Diet 4 | Diet 4 | 71 | 0.00 0.05 0.16
T, | 0.01 0.06 0.16

Table 6.4: P[Type I Error] associated with the multivariate permutation test at
ng = nge = 10. Ty = Y2 Y2, REL(p1;, , P2ir), To = median;, i, (REL(P1i s P2io)-
(Based on M = 100 samples of pseudo-seals with € = 10%, n? = 30 and calibration
coefficients, and R = 300.)

At @ = 0.01 and a = 0.05, the P[Type I Error] is close to o but at o = 0.10,
is slightly large, particularly for Diet 4. Both test statistics appear to yield roughly
equivalent results. Note that our samples of diet estimates are not completely inde-
pendent (since there may be some overlap in the prey used to generate the seals) and,

in practice, the P[Type I Error] may be larger than that given in Table 6.4.

Although not shown, we also carried out simulations using modifications of our
algorithm for generating the seals and diet estimates. One such modification involved
splitting the prey base into X; and X, and generating n, seals from X; with diet
w1, and ngy seals from X, with diet . We then used X to estimate the diet of
the ng; seals and X, to estimate the diet of the ng seals. The P[Type I Error] was
surprisingly quite high when the simulations were carried out in this manner with
m, = mo. This was likely due to using the same split to generate all seals since
the P[Type I Error] was much more reasonable when a different split was used to

generate each seal as we have done.

Power calculations were also carried out and the results are given in Tables 6.5-6.6
and Figure 6.2. We again examined the effect of interchanging a zero and non-zero
species and also the effect of increasing or decreasing the non-zero species. Diets m2(1)
and 75(2) have a non-zero and zero species interchanged while diets m2(3) — 72(8)
contain modifications of the non-zero species in diet 7r;. Observe that while (1)
and 7ro(2) are as before, the various modifications 72(3) — m2(8) are much “farther”
from 7r; than in the previous subsection as we found that the power was not as good

with the diet estimates. We surmise that this is due to the diet estimates being
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more variable than the FA signatures. For this reason we examined two sample sizes
(ne = 10 and ng = 30, b = 1, 2) to determine whether a decent power is obtained at
the larger sample size. Note that ng = ns = 30 might still be considered relatively
small since the dimension of the diet estimates, I, will usually be large. (In our case
I=8.)

At ng = ng = 10, when the non-zero and zero species are interchanged, it now
appears to be the case that a difference will usually only be detected when a non-zero
species with 7 > 0.30 is interchanged with a zero species. When Haddock (0.30)
and Plaice (0) are interchanged in Table 6.5 (and similarly for Pollock, m; = 0, and
Sandlance, 7 = 0.45, in Table 6.6) the power is lower than before but still adequate
at a = 0.1 when 77 = 0%, 02 REL(p1,, P2i,) is used. At ng = ng = 30, the
power is much higher. In particular, when Pollock (7 = 0.15) and Sandlance (m; = 0)
are interchanged, the power increases from 0.29 to 0.70 at ng = nse = 30. We might
therefore conclude that at sample sizes of 30, if a non-zero species with 7 > 0.15 is
interchanged with a zero species, we will usually detect the change.

The effect on the power when the non-zero species are increased or decreased is
shown in Figure 6.2 at a = 0.1 and using 77 = Y12, 52 REL(P1iy, P2i,)- (Note
that T} usually yields a higher power than 75.) It appears that a relative distance of
at least three is needed to ensure a power of roughly 0.8 or more at ns; = ng = 10.
In terms of the absolute difference, when 7r; = Diet 4, an absolute difference of about
0.6 is needed while for 7r; = Diet 1, a difference of over 1 is needed. Recall that Diet
1 was originally chosen to be a difficult case since the non-zero species are similar
in their FA signatures and this is likely affecting the power. By ng = ng = 30,
an absolute difference of about 0.54 is usually detected as is a relative difference of
approximately 2.2. (This is not the case when m; = Diet 4 and m, = 7(6) since the
relative difference is 2.833 but the power is only 0.68.)

6.2.3 Conclusions

The results of our simulation studies suggest that the multivariate permutation test is
a very useful test for testing for a difference in the FA signatures of seals at relatively

small sample sizes of 10. If the prey from which the samples of seals are eating are
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Species ™ 7o

Diet1]1 |2 13 J4 15 6 7 |8
Cod 0.30 0.30 | 0.30 |0.345|0.435 | 0.435 | 0.45 | 0.12 | 0.03
Haddock 0.30 0 0.30 | 0.345 | 0.435 | 0.165 | 0.09 | 0.12 | 0.03
Plaice 0 030 |0 0 0 0 0 0 0
Pollock 0.15 015 | O 0.105 | 0.015 | 0.285 | 0.36 | 0.33 | 0.42
Sandlance 0 0 0.15 {0 0 0 0 0 0
SilverHake 0.15 0.15 | 0.15 |0.105 | 0.015 | 0.015 | O 0.33 | 0.42
WinterFlounder | 0 0 0 0 0 0 0 0 0
YellowTail 0 0 0 0 0 0 0 0 0
ABS(71,72) 0.600 | 0.300 | 0.180 | 0.540 | 0.540 | 0.720 | 0.720 | 1.080
RELdist(7,72) 2.000 | 2.000 | 0.861 | 2.421 | 2.134 | 2.617 | 2.291 | 3.086
a=0.01 Ty 046 [0.10 [0.01 [0.12 |[0.10 |0.24 |0.10 | 0.63

1.00 {038 [0.03 [051 |[0.42 |0.87 |0.80 | 1.00
I 0.32 [0.08 [0.01 |0.08 |0.07 |0.18 |0.08 |0.47
098 [0.28 [0.03 [0.33 |0.26 |0.76 |0.63 |0.99
a=0.05 Ty 0.73 021 |0.10 |O0.3 025 |0.46 |0.34 |0.87
1.00 {0.61 |0.14 [083 |0.72 |[0.99 |0.96 [1.00
i) 0.59 |0.19 |[0.08 |[0.15 [0.19 [0.32 |0.29 |0.75
1.00 [041 [0.15 |[060 |0.63 |0.89 |0.85 [1.00
a=0.10 Ty 085 | 029 018 |046 |036 |0.61 {045 |0.92
1.00 [0.70 |0.26 |[093 |[0.85 |0.99 |1.00 [ 1.00
gL 070 [026 [0.19 |[0.29 |0.36 |0.49 |042 |0.84
1.00 {054 [0.22 (074 [0.73 [0.96 |0.89 | 1.00

Table 6.5: Power, 8(ry,72), of the multivariate permutation test for w1 = Diet 1

and various choices of 7, and at two samples sizes: ng = ngp = 10 (first
row) and ng = 7nee = 30 (second row). Ty = X%, w2 REL(P1iy, P2iz)> 12 =

median;, ;, (REL(P1i;, P2i;))- (Based on M = 100 samples of pseudo-seals with
¢ = 10%, n? = 30 and calibration coefficients, and R = 300.)
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Species ™ ™2
Diet4 | 1 | 2 | 3 | 4 | 5 [ 6 | 7 | 8
Cod 0.09 0.09 [0.09 |0.153 | 0.162 | 0.171 | 0.045 | 0.036 | 0.027
Haddock 0 0 009 |0 0 0 0 0 0
Plaice 0.09 009 |0 0.153 | 0.162 | 0.171 | 0.045 | 0.036 | 0.027
Pollock 0 045 |0 0 0 0 0 0 0
Sandlance 0.45 0 0.45 | 0.135 | 0.09 | 0.045 | 0.675 | 0.72 | 0.765
SilverHake 0.09 0.09 ]0.09 |0.153 | 0.162 | 0.171 | 0.045 | 0.036 | 0.027
WinterFlounder | 0.09 0.09 [0.09 [0.153 | 0.162 | 0.171 | 0.045 | 0.036 | 0.027
YellowTail 0.09 0.09 |0.09 |0.153 | 0.162 | 0.171 | 0.045 | 0.036 | 0.027
ABS(my,m2) 0.900 | 0.180 [ 0.630 | 0.720 | 0.810 | 0.450 | 0.540 | 0.630
RELdist(7r;, 72) 2.000 | 2.000 | 2.759 | 3.022 | 3.268 | 2.833 | 3.375 | 3.912
a=0.01 1 051 |0 027 [0.29 |049 |0.06 |0.32 | 0.32
100 |00l |0.98 [1.00 |[100 |0.22 |0.99 |0.99
T 040 |0 0.16 |[0.15 | 038 |0.04 |0.16 |0.19
0.99 [0.02 [090 |0.97 {099 |0.19 |0.93 |0.98
a=0.05 Th 0.72 |0.07 [0.55 [0.62 |0.79 |[0.18 |0.66 | 0.6
100 [0.03 [1.00 |[1.00 [1.00 {049 |1.00 | 1.00
T 062 005 [040 [0.47 |0.67 |0.10 |0.43 | 0.40
1.00 [0.05 [095 |1.00 |1.00 [0.39 [0.98 | 0.99
a=0.1 Ty 0.83 |[0.12 [0.70 |0.77 {0.88 |0.28 |0.81 |O0.77
100 [0.13 [1.00 {100 |1.00 |0.68 |1.00 | 1.00
T 0.7 0.13 |0.54 |0.67 |0.79 [0.18 | 0.64 | 0.51
1.00 (008 [098 [100 {1.00 |0.53 |1.00 |1.00

Table 6.6: Power, (w1, 72), of the multivariate permutation test for wr; = Diet 4
and various choices of 7, and at two sample sizes: ng = ns = 10 (first row)

and ng = ng = 30 (second row).
median;, ;, (REL(p1;,, P2i,))-

T

i1

Nl

=1

€ = 10%, nP = 30 and calibration coefficients, and R = 300.)

Y2 REL(p1;,,P2:,), T2 =
(Based on M = 100 samples of pseudo-seals with
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Figure 6.2: Plots of power versus effect size at @ = 0.1, using 71 =
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Effect size is measured as ABS(7r;, 72) or REL(7ry, 73). 7r; =Diet 1 is denoted by 1
and o =Diet 4 is denoted by 4.
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essentially the same then this test may also be used to test for a difference in diet, given
only the signatures. Otherwise, to test for a difference in diet, a prey base is needed
to estimate the diet estimates and the multivariate permutation test can be applied
to the diet estimates. In this case, although the P[Type I Error] was reasonable
for sample sizes of 10, the test was not particularly powerful. Sample sizes close to
30 appear to be needed to obtain decent power when the diet estimates are used.
While a variety a test statistics can be used with the multivariate permutation test,
we recommend the sum of relative differences on the untransformed compositions,
namely 77 = Y0, 502, REL(-, ).

11=1

6.3 Paired Comparison

6.3.1 Analysis Based on Seal FA Signatures Only

We now consider the case where we are given paired samples of FA signatures, say Y p;
and Ya;, i = 1,...,ns, with respective true diets 75 and 74. (B =Before, A =After.)
Recall that the dimension of the signatures is denoted by nr4 and Npa =npa—1. As
in Subsection 6.2.1, given only the FA signatures, we will actually test for a difference
in the before and after FA signatures and, through simulations, will examine the
extent to which the test may be used to test for a change in the diets of the seals.
Let

ZB = Iog (2-71}:4) 3
nFA

ZA = log ('Y;;:-nFA> 3
NFA

D = ZA—ZB7

and consider testing
Ho:pup=0
Hy:pp #0,
where pup = E[D]. Let D; = Z4; — ZB,-', if ng > Np4 and

(6.6)

D~ NNFA ("‘Dv 2:D)7
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then standard multivariate procedures can be applied and we would reject Hp if

S/a—11 (ns - l)NFA

T? = n,D'S5'D > Fnpane—Npa(l — ), (6.7)
ns — Nra

where D = 2 ¥, D; and Sp = -5 X (Ds — D)(D; — D). If n; — Npa is large
then the normality assumption is not needed and %AFNF ame—Npa(l — @) =
X¥rpa (1 — @)

It should be mentioned that Aitchison and Ng (2003) use a different but equivalent
approach for the general problem of testing for change in compositions. They argue
that perturbations are the appropriate measure of difference in compositions. Recall
that if P and V are two D-part compositions then the perturbation P oV is defined
by

U=PoV =C[PVW,...,PoVp],

where C is the constraining operator that divides each component by the sum of the

components. The inverse operation is then

P=U@V=C[U1 UD].

WUV
To test for a difference in the before and after FA signatures, Aitchison and Ng
(2003) consider the hypotheses

Ho![LQ=0

(6-8)
Hl HQ ?é 01

where po =E [log (%i&)] and P = Yp0Y,. It is straightforward to show that
g = HEp-

For n, < N4, dimension reduction techniques such as principal component anal-
ysis could be applied to the transformed differences. Alternatively, Aitchison’s (1986)
methods such as log contrast principal component analysis or subcompositional anai-
ysis could be applied to the perturbations. We would then apply the test in Equation
6.7 to the reduced data. A drawback to this method is that it still requires the
multivariately normal distribution assumption if n, is small relative to the reduced

dimension.
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Another approach to testing Equation 6.9 which we will call the “Regression
Method” involves fitting ns straight lines to the n, before and after (transformed)

signatures. That is, for 2 =1...,ns, assume that
Zpij = Poi + PriZaij + €ijs

. Yaq: Ya:s . .
for the pairs (Zpij, Zaij) = (log (ﬁ:) ,log (ﬁ;—)) For this analysis, orthog-
onal least squares (as opposed to ordinary least squares) is used to estimate fg; and
By; so that the Z4; and Zp; variables are treated equally. If we let b; = [bos, bys) be

the vector containing the estimates of Bp; and By; respectively then we will test

HO . ( Hbg )
Hby

I
TN
= O
~——_—

using
7% =n, (b-[0,1]) S* (6 - [0,1]),

where b = ;1;2?;1 b; and Sy = n—l—— ne (b; — b)(b; — b)'. We reject Hy if T? >

1 2ai=1
57:;—'_122F2,n,_2(1 — @). Again, unless n, — 2 is large, the appropriateness of the test
relies on b being multivariately normal.

We have also considered an extension to the univariate matched-pair randomiza-
tion P-value discussed in Problem 7 (page 186) in Davison and Hinkley (1997). Their
univariate method involves re-sampling under the null hypothesis of no difference by
computing D} = S$;D;, ¢ = 1,...,ns where D; are the computed differences in the
original data set and S; are independent and equally likely to be +1 and -1. For each
generated sample, a suitable test statistic is computed.

In the multivariate setting, while we could compute D}; = S;;D;; for each FA, we
would then not be taking into account the possible correlation between the variables.
For example, if the transformed FAs j and k were positively correlated, then we
might expect d;; and dy to have the same sign. If they were negatively correlated,
they would likely have opposite signs. Therefore, to preserve the signs, we have
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chosen to compute D} = S;D;. Note that when the untransformed data is used (such
as when essential zeros are present), we will actually use relative differences. That is,

let R; have jth component

0 if Ypij = Yauj,
Tij = Yaij=YBij .

-7-1—-1—7 otherwise

max(Yai;,YBij ?

Also, let R = - T, R..

Possibilities for a test statistic in the multivariate case are:
1. Ty = $754 |R;(Y)

2. Ty = T} |mediany (Ry(Y))|

3. Tz = T35 | D;(2Z)]

4. Ty = T35 Iﬁledian,-(Dj(Z))l

5. Ts = /5 DX(Z)

where R;(Y) denotes that the (relative) differences are taken on the original data
while D;(Z) indicates differences in the transformed data. Recall also that Nps =
nga — 1.

In summary, our multivariate randomization P-value is computed using the fol-

lowing algorithm

Multivariate Randomization Test
1. Compute the differences and denote these by D(-) or R(-).
2. Compute the test statistic, T', using differences in 1.
3. forr=1,...,R

(2) For the ith observation, randomly select +1 or -1 and call this 57" ¢ =
1,...,n,.

(b) Compute D;™ = S*D;, where D; denotes the ith row of D, ¢ =1,..., 7.
(And similarly for R;.)
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(c) Compute T*" using D*"(-). (And similarly for R..)

4. Compute
prand — #{T*r Z T}
—5
To evaluate and compare the principal component (PC), regression (REG) and
randomization (RAND) P-value methods through simulations, it is necessary to be
able to generate paired samples of pseudo-seals. While there may be various ways of

accomplishing this, we have chosen to adjust our “after” seals as follows: let
Y, = (1—5)YA+WB,

where Y and Y4 are the “before” and “after” pseudo-seals with diets wp and 74
respectively, and Y is our adjusted “after” seal. In our simulations, we set ¢ equal
to 0.2 and 0.5.

As in Subsection 6.2.1, simulations were carried out to determine whether, given
only the seal FA signatures, the above described tests would be useful in testing

Ho:‘l‘l'3=7fA (69)

H, : ®p # 7a-

Note that we did not consider splitting the prey base since in Section 6.2 it was
concluded that if the prey populations from which the seals were eating were different,
then the P[Type I Error] would be large and we expect similar results in the paired
comparison case. Additionally, we now do not require independent samples. Note
further that by not splitting the prey base, we are essentially assessing the usefulness
of the methods in testing for a difference in the FA signatures. That is, testing for a
difference in FA signatures should be roughly equivalent to testing for a difference in
the diets when the prey populations are similar.

The following simulation algorithm was used to compute the P[Type I Error]

and/or the power, B(wp, 7 4), associated with our methods:
1. form=1,....M

(a) Choose 7 and 74.
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(b) Using the full prey base, generate n, pseudo-seals with diet 7, YB1,.--5 YBn,,
and n, pseudo-seals with diet 4, Ya1,..., Y an,-
(c) Adjust the “after” seals: Yi; = (1 -08)Y 4 +6Ypi, i=1,...,7,.

(d) Compute the PC, REG, or RAND P-value, p™, using Ypi,..., Y ga, and
Yooy Yan,-

2. If wg = 74, compute

#{p" < a}

P[Type I Error] = i

If g # 4, compute

#{p™ > a} '

Power = (g, mwa) =1— i

We chose to use o = 0.01, 0.05 and 0.1, 6 = 0.2 and 0.5, M = 100, and ns = 10.

The results are given in Tables 6.7-6.11 and in Figure 6.3.

[, |m |#PCs|[6=020]06=050]

Diet 1 | Diet 1 | 3 0.786 0.788
4 0.869 0.870
Diet 4 | Diet 4 | 3 0.814 0.814
4 0.882 0.883

Table 6.7: Mean proportion of total variance explained by first 3 and 4 principal
components with ny = 10. (Based on M = 100 samples of pseudo-seals with ¢ = 10%
and n? = 30.)

Firstly, the results corresponding to § = 0.2 and § = 0.5 were almost identical and

we have therefore not chosen to illustrate the power results for § =0.2. Also, although

from Table 6.7, three and four principal components explained a large proportion of

the total variance, the PC method is consistently out-performed by the other methods.

Consequently, the comments that follow are focused primarily on the REG and RAND

methods. Based on our simulation results, the PC method is not recommended for

small sample sizes.

The P[Type I Error] = o (Tables 6.8 and 6.9) for both the REG and RAND
methods. Apart from Ts = / Zﬁ{‘ D%(Z) giving a slightly small P[Type I Error]



P[Type I Error]
f) | Method a=001]a=005|a=0.10
0=02|3PC 0 0 0
4 PC 0 0 0
REG 0.02 0.04 0.10
RAND -T; | 0.01 0.05 0.10
RAND - T3 | 0.01 0.03 0.09
RAND - T3 | 0.01 0.05 0.11
RAND - T, | 0.01 0.04 0.08
RAND - T5 | 0.01 0.02 0.07
6=05]3PC 0 0 0
4 PC 0 0 0
REG 0.02 0.04 0.10
RAND -T7 | 0.01 0.05 0.08
RAND - 75 | 0.01 0.03 0.10
RAND - T3 | 0.01 0.04 0.11
RAND - T, | 0.01 0.04 0.09
RAND - T5 | 0.01 0.03 0.05

164

Table 6.8: wg = w4 = Diet 1: P[Type I Error] for PC,REG and RAND methods

atn, =10. Ty =

NFA

J"l

]medlan,(D (Z))|, and T5 =
of pseudo-seals with € = 10% and n? =

TrEf |R;(Y)|, To = £7E1 |median;(R; (Y)|, T3 =
\ et Yra D;(Z)2. (Based on M = 100 samples
30, and R 300.)

S35t 1D5(2)],
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P[Type I Error]
§ | Method a=001]a=005|a=0.10
0.2 |3PC 0 0 0.01
4 PC 0 0 0
REG 0 0.02 0.08
RAND - T3 | 0.02 0.08 0.12
RAND - T { 0.03 0.04 0.12
RAND - T3 | 0.01 0.07 0.11
RAND - T} | 0.02 0.05 0.10
RAND - T5 | 0.01 0.06 0.10
0.5{3PC 0 0 0.01
4 PC 0 0 0
REG 0 0.03 0.11
RAND - T3 | 0.02 0.08 0.11
RAND - T5 | 0.03 0.04 0.11
RAND - T3 | 0.01 0.07 0.10
RAND - T | 0.02 0.06 0.11
RAND - T5 | 0.01 0.06 0.10

Table 6.9: wp = w4 =Diet 4: P[Type I Error] for PC, REG, and RAND methods
atng =10. 71 =
ppiie [medlan,(D (Z))|, and Ty = /25 D;(Z)?. (Based on M = 100 samples
10% and n? = 30, and R 300.)

Ty =

St IR (V) T =

of pseudo-seals with € =

nFA
3—1

Imedian; (R;(Y)), Ts = T 1D;(2)],
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at o = 0.1 when g = 74 = Diet 1, the test statistics all performed similarly and
yielded appropriate P[Type I Error].

In Tables 6.10 and 6.11 the power of the test is given for the various methods.
As in Section 6.2.1, wp was set to be either Diet 1 or Diet 4 and w4 to one of the
six previously discussed modified diets. Overall, the RAND method tends to give
a larger power then the REG method. This is most noticeable when 7 = Diet 4.
For example, in Table 6.11, for ma(4) — wa(6), the power for the RAND method
(especially for T7 = Y354 |R;(Y)]) is large (> 0.9) and is small (< 0.26) for the REG
method.

As in the independent case, at o > 0.05, the RAND and REG methods appear
to be able to detect a difference when 2 non-zero species is interchanged with a zero
species having diet m; > 0.15. From Figure 6.3, it appears that generally a change
in the diet by an absolute difference of 0.20 or a relative difference of approximately
1 is detected by the RAND method with T3 = $754 |R;(Y)|. An exception is when
4 = 74(6) as this change was not usually detected.

Overall we recommend the RAND method with test statistic 7y = 354 |R; ().

6.3.2 Analysis Based on Seal and Prey FA Signatures

As in Subsection 6.2.2, in this subsection we assume that prey bases (X4 and Xp)
or a single prey base (X) are available to estimate the before and after diets of the
seals. Since the multivariate randomization P-value (RAND) method appeared, from
our simulation study, to be the most appropriate testing procedure we will examine
its performance in testing:
Ho:ma =4 (6.10)
H;: 7w # ®4
using the diet estimates.

Recall from the previous subsection that test statistics involving relative differ-
ences taken on the untransformed data performed sufficiently well. Since these test
statistics do not involve log transformations they may be applied to the diet estimates
which will likely contain essential zeros. As functions of our diet estimates, these test

statistics are as follows:
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Species B A
Diet 1 1 | 2 | 3 | 4 | 5 | 6 |
Cod 0.30 0.30 |0.30 |0.318 | 0.345|{ 0.39 | 0.363
Haddock 0.30 0 0.30 | 0.318 | 0.345 | 0.39 | 0.237
Plaice 0 030 |0 0 0 0 0
Pollock 0.15 015 |0 0.132 | 0.105 | 0.06 | 0.213
Sandlance 0 0 015 |0 0 0 0
SilverHake 0.15 0.15 {0.15 |{0.132{0.105| 0.06 | 0.087
WinterFlounder | 0 0 0 0 0 0 0
YellowTail 0 0 0 0 0 0 0
ABS(7ry, 72) 0.600 | 0.300 | 0.072 | 0.180 | 0.360 | 0.252
REL(7ry, 72) 2.00 |2.00 |{0.353|0.861| 1.66 | 1.10
a=0.01 3PC 0.43 [0.07 |0.00 {0.00 |0.04 |0.00
4 PC 0.27 10.00 {0.00 |0.00 {0.00 |0.00
REG 0.77 1048 ]0.02 [0.25 |0.55 |0.04
RAND-T7; /098 |0.77 [0.03 |0.25 |0.70 |0.10
RAND-T, {098 |0.70 |0.03 |0.20 | 0.49 | 0.06
RAND-T3 {097 |0.73 |0.07 |04 0.81 | 0.02
RAND-T, (093 |0.71 |[0.05 |0.36 |0.68 |0.01
RAND-T75 [0.98 [0.80 |0.06 |0.33 |0.81 |0.02
a=0.05 3PC 0.88 {041 |[0.01 |0.06 |0.27 {0.00
4 PC 0.82 |10.22 [0.00 |{0.00 |0.12 |0.00
REG 096 |0.88 |0.12 {050 {090 |0.10
RAND-T; |1.00 {097 |[0.13 |0.52 |0.95 |0.24
RAND-T>|1.00 [093 |0.11 | 039 |0.86 |0.24
RAND-T3|1.00 [ 094 023 |0.79 |0.98 |0.13
RAND-T, {100 [0.92 |[0.22 |0.75 |0.97 |0.15
RAND-T5|1.00 [ 096 [0.16 |0.74 | 0.98 |0.14
a=0.10 3 PC 093 | 060 |0.02 {021 |0.58 |0.01
4 PC 0.96 | 0.47 |0.00 |[0.05 |0.38 |0.00
REG 099 (093 {024 |0.68 |0.95 |0.14
RAND-T; |1.00 [ 099 |[0.26 |0.74 |[1.00 |0.40
RAND-T,{1.00 [ 099 [0.21 |0.58 {095 |0.39
RAND-T75|1.00 [0.99 [0.39 |0.93 |0.99 |0.19
RAND-T,{1.00 | 098 {032 |0.86 |0.99 |0.23
RAND-T5{1.00 {1.00 [0.28 |0.86 [0.99 |0.27
Table 6.10: Power, B(mwg,ma), for PC, REG and RAND methods with 7 B
Diet 1 and various choices of ma, at n, = 10. Ti = ZFEFR(Y)|, To
S8 |mediany(R;(Y))|, T3 = Tyt |Di(Z)), Ta = ;5 Imedlam(D (Z))|, and

Ts =

¢ = 10% and n? = 30, and R = 300.)

\/ j;"f D;(Z)?. (Based on M = 100 samples of pseudo-seals with § = 0.5,
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Species B A
Diet 4 T ]2 |3 |4 [5 [6 |
Cod 0.09 0.09 [0.09 |0.099 |0.108 | 0.117 | 0.072
Haddock 0 0 009 |0 0 0 0
Plaice 0.09 009 |0 0.099 | 0.108 | 0.117 | 0.072
Pollock 0 0.45 |0 0 0 0 0
Sandlance 0.45 0 0.45 | 0.405|0.36 [ 0.315] 0.54
SilverHake 0.09 0.09 |[0.09 |0.099 | 0.108 | 0.117 | 0.072
WinterFlounder | 0.09 0.09 {0.09 |0.099 |0.108 | 0.117 | 0.072
YellowTail 0.09 0.09 |0.09 | 0.099 | 0.108 | 0.117 | 0.072
ABS(7r1,7r2) 0.900 | 0.180 | 0.009 | 0.180 | 0.270 | 0.180
REL(7ry, 72) 2.00 |2.00 |0.555 | 1.033 | 1.454 | 1.167
a=0.01 3PC 1.00 [0.00 | 0.00 |0.00 |0.00 |0.00
4 PC 0.89 | 0.00 {0.00 |0.00 |0.00 |0.00
REG 1.00 [0.00 | 0.0l |{0.04 |0.01 |0.03
RAND-T; {099 [0.01 |{0.00 |0.56 |0.81 |0.52
RAND-T, {099 |[0.01 [0.0L [0.50 |0.73 | 0.53
RAND-7T3 (099 |0.00 |0.01 |[0.14 {028 }0.15
RAND-T, {097 {000 [0.01 |[0.12 [0.25 |0.15
RAND-T5 {099 |0.00 |{0.00 |0.17 |0.34 |0.20
a = 0.05 3PC 1.00 | 0.00 | 0.00 |0.0L [0.02 |0.04
4 PC 1.00 | 0.00 | 0.00 | 0.00 |0.00 |0.01
REG 1.00 |0.04 [0.06 |0.17 |0.10 |0.07
RAND-T; {1.00 |0.07 [0.08 [0.83 |096 |0.81
RAND-T, | 100 [0.08 |[0.07 |0.75 [091 |0.74
RAND-T3 {100 |0.06 [0.04 |0.32 |[0.63 |O0.37
RAND-T, | 1.00 |0.09 |0.04 |0.37 |0.65 |0.40
RAND-T;|1.00 | 0.04 [0.04 |0.37 |0.69 |0.42
a=0.10 3PC 1.00 | 0.00 | 0.00 {0.06 |0.07 |0.09
4 PC 1.00 | 0.00 |0.00 |0.02 |0.12 |0.06
REG 1.00 {0.15 |0.14 |0.26 |0.21 |0.15
RAND-T; [ 1.00 }0.12 | 0.14 |0.92 |0.98 |0.94
RAND -7, {1.00 |0.17 |[0.12 |0.87 | 097 |0.89
RAND-7T3 {100 [0.16 [0.08 [0.58 {081 |0.58
RAND-T, [ 1.00 |0.17 [ 0.10 |0.56 |0.82 |0.54
RAND-T; {100 [0.15 [0.11 [0.59 |0.84 |0.59
Table 6.11: Power, B(mwp,m4), for PC, REG and RAND methods with #g
Diet 4 and various choices of w4, at n, = 10. T1 = SRR (YY), T2
?fi‘ jmediany(R;(Y))], Tz = T |D;(2)], To = ;5 Imedlam(D (2))}, and

=4/ j;"l“ D;(Z)?. (Based on M = 100 samples of pseudo-seals with 6 = 0.5,
€= 10% and n? = 30, and R = 300.)
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Figure 6.3: Plots of power versus effect size at a = 0.1 using T1 = 335 |R;(Y)
with ng = 10. Effect size is measured as ABS(7ry, 3) or REL(7ry, 7). 71 =Diet 1 is
denoted by 1 and 75 =Diet 4 is denoted by 4.
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1. T1 = Z{::l IRk(p)l
2. Ty = ¥f_, |median; (R (p))|

To assess the P[Type I Error] and power of the RAND method applied to the diet
estimates, we generated paired samples of pseudo-seals as in the previous subsection
but now estimated the diet of each of the pseudo-seals in our sample using the full
prey base. Results on the P[Type I Error] and power are given in Tables 6.12 - 6.14
and in Figure 6.2. Note that we used ¢ = 0.5 and the AIT distance measure.

From Table 6.12, the P[Type I Error] associated with this test is usually larger
than a. For Diet 1, Ty = Ti_, |Rx(p)| gives a smaller P[Type I Error] than T3 =
sI_, |median;(Rx(p))| while for Diet 4, T» gives the smaller P[Type I Error]. In
practice, to ensure that P[Type I Error] < a, we should consider rejecting Ho if the
P—value < /2.

Tables 6.13-6.14 are analogous to the power tables in the previous subsections and
the choices of 7w and 74 are identical to the choices of 7r; and 7r2 in Subsection 6.2.2
where a test based on independent samples of diet estimates was examined.

Compared to the power calculations when the test was applied to the FA signa-
tures, the power is much lower when the diet estimates are used. Recall that this
drop in power also occurred in the independent case and is most probability due to
the diet estimates being more variable than the FA signatures. We therefore again
examined the power at two sample sizes: 1, = 10 and n; = 30.

The test appears to be most powerful when Ty = Y_f_; | Rx(p)| is used as the test
statistic. At ns = 10, the test appears to only detect an interchanging of a non-zero
and zero species when the non-zero diet is close to 0.30. At ng = 30, the test almost
always detects a difference when a non-zero species with 7 > 0.15 is interchanged
with a zero species.

The extent to which a change in the diet of non-zero species can be detected is
depicted in Figure 6.4. At ny = 10, an absolute difference of roughly 0.8 and a relative
difference of at least 3 is needed to obtain decent power at a = 0.1. By ns = 30, the
power has greatly improved and it appears that generally an absolute difference of
roughly 0.6 and a relative difference of about 2.3 yield high power at a 2 0.05. One

exception is when 7 = Diet 4 and w4 = w(6).
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6.3.3 Conclusions

The RAND method appears to be an effective method of testing for a difference in
paired FA signatures at a sample size of 10. If we reject the null hypothesis that
the FA signatures are the same, then, provided the prey from which the seals were
eating was the same throughout the experiment, we may also conclude that the before
and after diet has changed. If prey bases are available to estimate the diets then we
may apply the RAND method to the diet estimates to yield a more appropriate
test for a difference in diet. Based on our simulation study, this test must be used
cautiously at small sample sizes. When the sample size is small we should probably
only reject our null hypothesis of equal diets if the P-value< § (to ensure that the
P[Type I Error] ~ o) and in which case our test may not be exceptionally powerful.
As in the independent case, using the test on the diet estimates may be much more
appropriate with sample sizes closer to 30. Finally, our preferred test statistic is
Ty = Sk, |Re(-)| which is somewhat analagous to the test statistic chosen for the

independent case.

P[Type I Error]
™ T T |a=001]a=0.05|a=0.10
Diet 1 | Diet 1 | T3 | 0.01 0.07 0.14
T5 | 0.04 0.09 0.19
Diet 4 | Diet 4 | 71 | 0.01 0.11 0.24
T5 | 0.03 0.09 0.17

Table 6.12: P[Type I Error] for RAND method at n, = 10. T; = Y |Rk(P)l,
T, = YI_, jmedian;(Ri(p))|- (Based on M = 100 samples of pseudo-seals with
§ = 0.5, € = 10%, n? = 30 and calibration coefficients, and R = 300.)

6.4 Real-life Example: Before and After Seal Data

In this section, paired data consisting of before and after seal FA signatures, collected
by Margi Cooper (Dalhousie University), is analyzed. In particular, for each of two
separate experiments, one conducted in the Fall of 1999 and the other in the Spring of
2000, the FA signatures of seals before and after a feeding experiment were recorded.
The data consists of 8 seals for the 1999 data set and 10 seals for the 2000 data sets.
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Species B TA
Det1(1 12 ]3[4 15 16 7 8
Cod 0.30 0.30 | 0.30 ]0.345 | 0.435| 0.435 | 0.45 | 0.12 | 0.03
Haddock 0.30 0 0.30 |0.345 | 0.435 | 0.165 | 0.09 | 0.12 | 0.03
Plaice 0 030 |0 0 0 0 0 0 0
Pollock 0.15 015 |0 0.105 | 0.015 | 0.285 | 0.36 | 0.33 | 0.42
Sandlance 0 0 015 |0 0 0 0 0 0
SilverHake 0.15 0.15 | 0.15 | 0.105 | 0.015 | 0.015 | O 0.33 | 0.42
WinterFlounder | 0 0 0 0 0 0 0 0 0
YellowTail 0 0 0 0 0 0 0 0 0
ABS(7wp,74) 0.600 | 0.300 | 0.180 | 0.540 | 0.540 | 0.720 | 0.720 | 1.080
RELdist(7g,74) 9.000 | 2.000 | 0.861 | 2.421 | 2.134 | 2.617 | 2.291 | 3.086
a=0.01 Th 040 022 [0.02 {012 [0.09 |015 [0.19 |0.49
1 0.82 016 [0.73 |035 |[0.71 |0.77 | 0.98
T 0.15 [ 0.19 [0.03 |0.07 (004 |0.11 |0.19 |0.27
087 1074 [029 [086 |0.54 |0.82 {086 |0.98
a = 0.05 Th 0.76 | 0.45 [0.13 {037 [022 |032 |0.44 | 0.80
100 {0.95 |0.43 [0.97 |0.64 |092 |0.97 |1.00
T 042 041 [0.12 036 |0.13 |0.24 |038 |0.57
1.00 | 0.86 |0.59 [0.98 |0.79 | 098 |0.97 |1.00
a=0.10 T 089 |0.57 (027 {059 [031 |044 |0.64 |0.92
100 [ 097 [059 [098 |[0.76 }0.94 |0.97 |1.00
T 064 059 [022 (054 [029 |043 |0.51 |0.75
100 {093 [0.72 |1.00 |0.90 {099 |1.00 |1.00

Table 6.13: Power, B(wp,w4), for RAND methods for wg = Diet 1 and various
choices of 4, and at two sample sizes: n, = 10 (first row) and ns = 30 (second
row) . Ty = $i_; |Re(P)], To = i, |median;(Ri(p))|- (Based on M = 100 samples

of pseudo-seals with § = 0.5, € = 10%, n?

R =1300.)

30 and calibration coefficients, and
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Species TR A
Diet 4 | 1 | 2 |3 | 4 | 5 | 6 | 7 | 8
Cod 0.09 0.09 [0.09 |0.153 | 0.162 | 0.171 | 0.045 | 0.036 | 0.027
Haddock 0 0 009 |0 0 0 0 0 0
Plaice 0.09 009 (O 0.153 | 0.162 | 0.171 | 0.045 | 0.036 | 0.027
Pollock 0 045 |0 0 0 0 0 0 0
Sandlance 0.45 0 0.45 |0.135|0.09 | 0.045 | 0.675 | 0.72 | 0.765
SilverHake 0.09 0.09 [0.09 |0.153 |0.162 | 0.171 | 0.045 | 0.036 | 0.027
WinterFlounder | 0.09 0.09 [0.09 |0.153 | 0.162 | 0.171 | 0.045 | 0.036 | 0.027
YellowTail 0.09 0.09 10.09 |0.153 |0.162 | 0.171 | 0.045 | 0.036 | 0.027
ABS(7p,m4) 0.900 [ 0.180 | 0.630 | 0.720 | 0.810 | 0.450 | 0.540 | 0.630
REL(wg,™4) 2.000 [ 2.000 | 2.759 | 3.022 | 3.268 | 2.833 | 3.375 | 3.912
a=0.01 Ty 029 10.06 [046 {062 |0.70 |0.01 |021 |O0.21
095 (034 [100 [1.00 |[1.00 |0.27 |0.89 |0.90
T 0.12 [0.05 [030 |[046 |0.42 [0.01 |0.13 |0.14
0.67 1020 [1.00 |1.00 |[1.00 {023 [0.80 |0.86
a=0.05 1 050 [0.21 [075 {08 |0.88 [0.13 |0.51 |0.44
099 (055 |[1.00 [1.00 {1.00 |0.46 |0.99 |0.97
T 0.36 1020 [069 |067 [0.71 |0.11 |0.35 |0.37
0.93 {041 [1.00 |[1.00 |1.00 {0.46 |0.98 |0.96
a=0.1 T 0.71 1032 [0.86 [092 [093 |[0.24 |0.66 | 0.64
1.00 |0.77 [1.00 [1.00 |1.00 |0.65 |1.00 | 0.98
Ts 050 (031 [0.80 |[0.86 |0.82 [0.19 |0.51 | 0.53
097 1049 |[1.00 [1.00 |[1.00 |066 |1 0.98

Table 6.14: Power, B(wp,w4), for RAND methods for wp = Diet 4 and various
choices of 74, and at two sample sizes: n, = 10 (first row) and n, = 30 (second
row). Ti = $koy |Ri(p)|, To = Ti~; |median;(Ry.(p))|- (Based on M = 100 samples
of pseudo-seals with § = 0.5, ¢ = 10%, n? = 30 and calibration coefficients, and

R =1300.)
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Figure 6.4: Plots of power versus effect size at & = 0.1, using Ty = i1 |Re(®)
with two sample sizes: ng = ns2 = 10 and ng = ng = 30. Effect size is measured as
ABS(ry, 72) or REL(7ry, 7r2). 1 =Diet 1 is denoted by 1 and a, =Diet 4 is denoted
by 4.
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The raw FA signatures contained 69 FAs but since only the extended dietary FAs (a
subset of 39 FAs) provide information about the diet, these FAs only were used in
the analysis. Recall that given only the FA signatures of the seals, we are limited to
testing for a change in the FA signatures. For this experiment, of interest is whether
or not the FA signatures have changed to reflect the known change in the diet.

Before applying the techniques in Subsection 6.3.1, the zeros in the data set, which
we assume to be rounded zeros, had to be adjusted. We proceeded as follows: FAs
that had zero entries for all seals (that is, ¢8.0 and c16.3w1 for the 1999 data and ¢8.0
for the 2000 data) were removed while FAs that had some zero entries (c22.2w6 for
the 1999 data and c16.3wl and ¢22.2w6 for the 2000 data) were modified using the
multiplicative replacement strategy (MRS) discussed in Section 6.1. (For the 1999
data, § = 1.736 x 108 while for the 2000 data, § = 1.328 x 1077.)

Based on the results of our simulation study, we chose to use T3 = 3354 | R;(Y)]

and the randomization P-value (RAND) method. The P-values are given in Table
6.15.

1999 | 2000

g 8 10
P-value | 0.007 | 0.003

Table 6.15: P-values obtained using the RAND method (with test statistic T =
Y254 |R;(Y)|) applied to the 1999 and 2000 before and after FA signatures.

For both data sets the P-values are very small. At a = 0.05, we may conclude,
for both data sets, that the FA signatures of the seals significantly changed during
the feeding experiment.



Chapter 7

Conclusions

In this final chapter we first present a summary of the results and recommendations
from the previous chapters, and then a discussion of future research. In accordance
with the three main topics of this thesis, we divided our summary section into three
subsections: Confidence Intervals, Measuring Species Contribution to Seal Variability

and Testing for a Difference in Diet.

7.1 Summary

Our research was motivated by the quantitative FA signature analysis (QFASA)
method of estimating the diet of predators presented in Iverson et al (2004). The
method is based on the knowledge that predator FA signatures reflect the signatures
of their prey. Given a sample of predator and prey FA signatures from the various po-
tential species in the predators’ diet, the proportion of each species in the predators’
diet is estimated. In Iverson et al (2004), diet estimates were chosen to be the weights
that minimized the “distance” between the predator FA signatures and a weighted
mixture of the FA signatures of the prey species. We examined the Kulback-Leibler
(KL) distance measure (suggested in Iverson et al (2004)) as well as another distance
measure (AIT) proposed by Aitchison (1992). While a maximum likelihood approach

was examined in Section 3.6, it was found to be problematic.

In this thesis we explored in more detail the QFASA model from a statistical
perspective and developed QFASA based methods to gain further insight into the diet
of predators. These methods are now summarized and we begin with our primary

goal of developing confidence intervals for the true diet.
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7.1.1 Confidence Intervals

Developing confidence interval (CI) methods for the true diet of a predator or com-
mon diet of a group of predators based on QFASA essentially required an examination
into ways of parametric modeling the QFASA diet estimates, “parameterizing” the
true diet, and estimating the standard error of the diet estimates. As the data, and in
particular the diet estimates themselves, encountered in QFASA are compositional,
we began in Chapter 2 with a review of the fundamental concepts in compositional
data analysis. (This review was based on Aitchison’s (1986) book dedicated to com-
positional data analysis.)

A major challenge in modeling the diet estimates was that they contained essen-
tial zeros and, consequently, the models presented in Aitchison (1986) could not be
used without some modifications to allow for zero components. Since the dimension
of the diet estimate corresponds to the potential number of species in the diet and
could be large, we chose to derive marginal distributions for the components, and
subsequently individual confidence intervals instead of a confidence region for the
true diet. We proposed a mixture distribution obtained by dividing our population
of diet estimates into sub-populations according to where the zeros occurred. The
nonzero components in each population were modeled by Aitchison’s multiplicative
logistic normal distribution. Recall that although we derived marginal distributions,
these distributions did utilize information from the other components because of how
the sub-populations were defined. By making certain assumptions, we saw that this
distribution could be simplified which yielded another potential way of modeling the
diet estimates. This simpler distribution, however, does not use any information
from the other components. We also considered a modification to the simpler distri-
bution in which the multiplicative logistic normal distribution was replaced by the
multiplicative logistic skew-normal distribution. When all three distributions were
fit to the diet estimates (Chapter 3), we found that the simpler distribution often
produced similar fits to those obtained by the more complex mixture distribution but
that overall the skew-normal distribution provided the best fit. While our aim was to
model the diet estimates, these distributions could potentially be used to model any

population of compositional data with a significant number of zero components.
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We also examined the distribution of aggregate point estimators of the diet for a
sample of independent seal FA signatures such as the sample mean or median. We
found that for ny > 10, the point estimators were approximately normally distributed.
When both the sample size of the predators (n) and of the prey (n;) are large,
we proved mathematically that these point estimators are approximately normally
distributed. This fact and the adequate fits of the parametric models to the diet

estimates allowed us to develop parametric CI methods for the true diet.

Our approach to CI estimation was to derive Cls for certain measures of location
(MOLSs) of the diet estimates that should be close to the true diet and then to shift
our CIs by an estimated amount. In addition to the (population) mean and median
of the diet estimates, MOLs that might potentially be better suited for compositional
data were discussed in Section 2.4. In Section 3.3 these MOLs were applied to the diet
estimates to see if any of the MOLs tended to be closer to the true diet than others.
Since a diet estimate could be defined in various ways depending on how the prey are
summarized (see Section 3.2), applying the MOLs to the diet estimates involved first
defining the population of diet estimates. We concluded that given a FA signature
Y from a seal with true diet o, p(Y, tx) was the most appropriate diet estimate
of the true diet and that the population of diet estimates would then be all possible
diet estimates that could be obtained from all possible seal FA signatures when the
true diet is 7ro. (Recall that in practice, we estimate px by X and therefore have to
incorporate this source of variability into our CI methods.) We carried out a small
simulation study using pseudo-seals with a known diet to examine the closeness of
the MOLs of the simulated population of diet estimates to the true diet. The MOLs
were generally close to the true diet and there did not appear to be one best MOL.
The median however was an exceptionally good parameterization of the diet when

the true diet was zero.

In Chapter 4 we examined various ways of obtaining CI methods for the MOLs
and presented a bootstrap based method of estimating the difference or “bias” be-
tween the MOLs and the true diet. When the MOL is the mean, the algorithm
estimates the bias in the QFASA diet estimates. We divided our interval methods



179

into four groups: large sample, parametric, semi-parametric and nonparametric inter-
vals. The large sample intervals were simply based on a normal approximation while
the more complex parametric and semi-parametric intervals were modifications of Cls
discussed in Chapter 2. Recall that in Chapter 2, parametric Cls for MOLs of general
compositional data with some zero components were derived based on our proposed
parametric mixture models. To apply these intervals to the diet estimates, boot-
strap procedures had to be used for two reasons: 1) these intervals involved certain
nuisance parameters which would be poorly estimated for small sample sizes and 2)
because gy is unknown and the variability due to the prey needs to be incorporated.
We also examined two bootstrap based nonparametric methods, one of which was
the percentile method (Davison and Hinkley (1997)) and the other of which involved
inverting a hypothesis test in which seals are generated under the null hypothesis and
bootstrap P-values computed. (Note that the technique of inverting the hypothesis

test was also used in the parametric and semi-parametric intervals.)

To compare these methods a simulation study was carried out in which the cov-
erage probabilities and average lengths of the intervals were computed at various
sample sizes, for two known diets, and with the AIT and KL distance measure. Be-
cause obtaining each diet estimate required an optimization in I dimensions, our CI
methods could be very slow and we could not consider every combination of sample
size, diet and distance measure that we desired. Instead we carried out a preliminary
simulation study and, based on the results, selected a few methods for which to carry

out further simulations.

Our overall recommended interval method is the (nonparametric) basic percentile
method used with the median point estimator of diet. The basis for this choice was not
only its decent coverage probabilities and lengths but also the fact that this method is
relatively easy to implement compared to the other methods. Furthermore, although
this method can be slow in S-PLUS for larger sample sizes, it is faster than some of the
other methods. As the percentile method is not too complex, it would likely be fairly
straightforward to convert the S-PLUS code to Fortran to reduce computational time.
Additionally, the percentile method incorporates both the variability due to the prey
and seals and could easily be extended to include the variability due to fat content.
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Recall, however, that we only examined the percentile method for ny; < 25 due to
(computational) time constraints. Although the CI results were good at these sample
sizes, for two species (Pollock and SilverHake), the coverage probabilities showed a
downward trend. For these species it appeared that the intervals were getting shorter
more quickly than the bias estimate was becoming accurate. For Pollock, however, the
issue may also be related to the 10% noise that was used. Although the percentile
method is preferred, when ng > 25, except for Pollock and SilverHake, a normal
approximation (without bootstrapping) might suffice.

Note that our CIs suggested that the AIT distance measure was somewhat superior
to the KL distance measure but we surmise that this will not always be the case.

We applied the percentile method to real-life captive seabird data and obtained
very useful results. The percentile method produced intervals of desirable lengths
and appeared to reflect the true diet.

As a final remark, recall that in computing a diet estimate we could summarize the
prey in various ways other than by the sample mean prey FA signature. These other
methods (discussed in detail in Section 3.2) served two purposes in this thesis: 1)
they were used to adjust the variability in the diet estimates obtained using pseudo-
seals to approximate the variability expected in real-life and 2) they may be used to
incorporate a potential source of variability arising from the fact that seals do not

consume the mean prey signature but rather a sample of the prey signatures.

7.1.2 Measuring Species Contribution to Seal Variability

In accordance with the requests of the biologists with whom we have been collabo-
rating, in Chapter 5 we defined a measure of species contribution to the variability in
the seal FA signatures. Our statistic was analogous to the coefficient of determina-
tion, R2, used in regression analysis and we called it “PVE” (proportion of variability
explained). We defined our “SSE” to be the distance (AIT or KL) from the seal and
fitted seal and our “SST” to be the distance from the seal to a fitted seal obtained by
randomly assigning prey FA signatures a species label. A desirable property of our
PVE statistic is that it is always between zero and one.

We carried out simulations to assess the usefulness of the PVE statistic. We
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considered removing species from the prey base and computing the PVE statistic.
When species k& was removed, we found that generally PVE decreased in accordance

with the magnitude of the true diet for species k.

It should be mentioned that although we have not applied our PVE statistic to
real-life data in this thesis, the biologists have made use of it.

We also examined a potential “backward elimination” type procedure to reduce
the number of possible species in the diet of a predator. Because our approach was
bootstrap based it was time consuming to run but initial results (applied to a prey
base with 27 species) seemed to indicate that provided a accurate estimates of diets
could be obtained with the prey base, the procedure could be used to significantly
reduce the number of species in the prey base. If the true proportion of a species in
the diet is less than or equal to 0.15, however, the species may be incorrectly dropped.

More research into this method is needed.

7.1.3 Testing for a Difference in Diet

Motivated by real-life data on before and after samples of FA signatures of seals, in
Chapter 6 we examined methods of testing for a difference in the signatures. We '
considered tests for both independent and paired samples. For each setting we ex-
amined the case where only the seal FA signatures were known and where the prey
FA signatures were also known. (In the latter case the tests were carried out on the
diet estimates.) Although ultimately it may be the diet of the predators (in our case,
seals) that was of interest, if the FA signatures of the predator only were supplied,
we found that a significant difference in the signatures may not imply a difference in

the underlying diets.
Recall that the major challenge for carrying out such tests was that the number

of seals in the sample may be smaller than the dimension of the FA signatures or of
the diet estimates, and standard multivariate techniques (modified to deal with com-
positional data) could not be used. For the case of independent samples, we proposed
a multivariate permutation test and for the paired samples a multivariate random-

ization test. We carried out simulation studies to investigate the P[Type I Error]
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and power of the tests. In testing for a difference in FA signatures both tests per-
formed well at sample sizes of 10. When the tests were applied to the diet estimates,
it was determined that sample sizes closer to 30 were needed to ensure appropriate
P[Type I Error] and power.

In this chapter we also applied our multivariate randomization test to two real-life
independent samples of before and after seal FA signatures. Because the sample sizes
in the data were much smaller than the dimension of the FA signatures, standard

multivariate techniques could not be applied and our test proved to be highly useful.

7.2 Future Research

While QFASA allows accurate point estimates of diet to be obtained in a relatively
straightforward manner, we have seen that extending QFASA beyond point estima-
tion presents many statistical challenges. The basis for these challenges include, for
example, the data involved being compositional and often containing a fair number of
zeros, the potential for small sample sizes compared to the data dimension, variabil-
ity arising from many sources, the computational burden when several diet estimates
need to be computed etc... Some of these issues have been addressed in this thesis;
some are still unresolved or require further investigation.

A major issue has been the computational time required to carry out our devised
methods in S-PLUS. Although in practice when presumably only a few results would
be required, this may not be hugely problematic. We were, however, somewhat limited
to what could be investigated through simulations, particularly with respect to our
ClIs and PVE statistic. Having our code converted to Fortran or C+-+ might be a
useful next step in our research. This would allow, for example, the CIs to be assessed
when there is large number of species in the prey base. Additionally, there may exist
ways of improving our estimates of bias, such as using a double bootstrap, and we
could examine these alternative approaches more efficiently.

Another issue requiring addressing involves incorporating the additional sources
of variability into our methods. As previously mentioned, the variability due to fat
content is one such source. Another source is the variability due to calibration as we

have been treating the calibration factors as known constants.
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Throughout our investigations we have found that for data sets with several
rounded zeros, our procedures are often largely affected by how we treat these ze-
ros. This suggests that a more thorough examination into the zero issue is needed.
Furthermore, it would be very beneficial to have procedures that are robust against
outlying FAs.

Thus far we have not considered the PVE statistic and associated backwards
elimination procedure in great detail. Accurate modeling of changes in the PVE
statistic and the development of a straightforward test for a significant change in
the PVE statistic would advantageous. We would also like to examine asymptotic
properties of the PVE statistic.

Finally, the biologists with whom we have been working suggested that it would
be useful if we could extend our test for a difference in before and after FA signatures
to successive periods of time. We could also consider tests for comparing more than

two independent populations.



Appendix A

Prey Base

The prey base (see Budge et al, 2002) contained FA signatures of prey collected from
various areas surrounding the Scotian shelf. Specifically, we selected prey from the
following regions: 4Vn, 4Vs, 4VsW, and 4W. (A map of these locations can be found
at http://www.nafo.ca.)

Two variations of this prey base were used in this thesis by selecting certain species
of interest. The larger of the two was obtained by selecting 27 species corresponding
to those in Iverson et al (2004). A second prey base, which was referred to as the
reduced prey base, contained 8 selected species. The species and their corresponding

sample sizes are given in Tables A.1-A.2.
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| Species Sample Size | Species Sample Size |
Argentine 25 RedHake 25
Butterfish 33 Redfish 11
Capelin 132 RockCrab 37
Cod 84 Sandlance 96
Gaspereau 48 SeaRaven 18
Haddock 88 Shrimp 96
Halibut 8 SilverHake 43
Herring 157 SmoothSkate 5
Lobster 9 ThornySkate 36
LonghornSculpin 45 WhiteHake 39
Mackerel 34 WinterFlounder 14
OceanPout 11 WinterSkate 15
Plaice 53 Yellowtail 81
Pollock 39
Figure A.1: Large Prey Base
| Species Sample Size |

Cod (COD) 84

Haddock (HAD) 88

Plaice (PLC) 53

Pollock (POL) 39

Sandlance (SAND) 96

SilverHake (SH) 43

WinterFlounder (WF) 14

Yellowtail (YT) 81

Figure A.2: Reduced Prey Base



Appendix B

Pseudo-Seals

Given a prey base with X; denoting the prey FA signatures from species k, the
following algorithm (analogous to the algorithm in Iverson et al (2004)) was used to

generate a single pseudo-seal and its QFASA diet estimate:

1. Choose at random one of the 8 vectors of calibration coefficients (used to adjust
the FAs as some may always be higher or lower in the predator than in the

prey). Let c denote the chosen vector.

9. Choose the true diet vector 7, the amount of noise €, and the number of prey

to be sampled n?.

3. Randomly split X (k= 1,...,I) into a simulation set X} and a modeling set
X7. Note that the splitting assigned 1/3 of the prey signatures to Xj and 2/3
to XT. The splitting process is only carried out if nx > 5.

4. Sample with replacement n? x m; times from X3, to obtain Xj.

5. Sample with replacement n? X ¢ times from species which are not part of the

true diet, 7 to obtain €*.

6. Compute
I nPxmg n?xe
Y= ——c 0> > X+ S el
1+ ) k=1 I=1 1=1
The “pseudo-seal” is then Y?* normalized so that the jth FA of Y?° is

S Y'ps
}Gp Z] Fi YP3

7. Calibrate Y?* using the mean of the 7 vectors of calibration coefficients not

used in Step 1.
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8. Select the extended dietary FAs from Y?® and re-normalize.
9. Select the extended dietary FAs from X7, k = 1,...,I and re-normalize.
10. Summarize X (by X7, for example), k=1,...,I.

11. Compute p(Y?*,X™).

A sample of ng pseudo-seals and corresponding diet estimates were computed by

repeating Steps 1. - 11. n, times.



Appendix C

Resampling Techniques

Resampling the Predator FA signatures:

Method 1: Pseudo-Seal Method
1. forr=1,...,n

(a) Compute the diet estimate for the ith seal p(Y3, X).

(b) Generate a pseudo-seal, Y7, using the algorithm in Appendix B with diet
(1-ep(Y;X).

Method 2: Nonparametric Bootstrap

1. Sample with replacement from Yj,..., Y,, to obtain Yy*,..., Yy . 1

Ns

Method 3: Parametric Bootstrap

1. Transform Y4,...,Y,, using the additive logratio transformation to obtain
Tl7 st Tns .

2. Compute T and Sy where T = L 3%, T;,and St = s (T; — T)(T: — T).

3. Sample from a multivariate normal distribution with p = T and ¥ = St to
obtain T7",..., ;.

4. Transform Ty,..., T} to YI7,..., Y, using the additive logistic transforma-

tion. 1

1Note that if a sample containing more than one calibration vector is supplied, each generated
pseudo-seal, Y7, can be assigned a calibration vector with which to be calibrated. In Method 1, the
assigned cahbratxon vector could be the mean of the calibration vectors not used in generating the
pseudo-seal. In Methods 2 and 3, Y; could be assigned a calibration vector chosen by sampling with
replacement from the sample of calibration vectors.
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Resampling the Prey FA signatures:

Method 1: Nonparametric Bootstrap

For each prey type k,

1. Sample from the rows of X; with replacement 7 times to obtain Xj'.

Method 2: Parametric Bootstrap

For each prey type &,

1.

Transform the rows of X, using the additive logratio transformation to obtain
Zy.

Compute zk and Spool(z) = —Z—an——I E£=1(nk - 1)Sk, where Z = -r%— Y 4y,
- = _k- s
and S; = —L- Y% (Z; — Z) (% — Z)'.

ne—1

. Sample from a multivariate normal distribution with gz, = Z; and X = Speai(2)

ny times to obtain Z;'.

Transform Z}" to X} using the additive logistic transformation.
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