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o(x,t + At) Order parameter updated by semi-implicit equations
A Prefactor used in accelerated algorithms in conserved dynamics
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Abstract

The first part of this thesis (Chapters 1 — 4) addresses accelerated algorithms for
coarsening systems — we review unconditionally stable algorithms for the study of
coarsening systems with a conserved or non-conserved scalar order parameter. These
algorithms allow us to take arbitrarily large time-steps constrained only by desired
accuracy. For conserved coarsening systems, these accelerated algorithms provide
maximally-fast numerical algorithms — we can actually use the natural time-step
At = At?’/ } To study the accuracy we compare the scaling structure obtained from
our maximally-fast conserved systems directly against the standard fixed-time-step
Euler algorithm, and find that the error is time-independent in the scaling regime
and scales as VA — this is consistent with an approximate bound of the error.
Arbitrary accuracy is accessible for these maximally driven coarsening algorithms.
These algorithms provide the most efficient and accurate means to reach the scaling
regime for large systems. For non-conserved systems, however, with these accelerated
algorithms, only effectively finite time-steps are accessible. The maximal time-step
obtained by these algorithms is about four times the time-step of the Euler algorithm.

The second part of this thesis (primarily Chapter 5) applies these accelerated
algorithms to the study of universality classes of scaled correlations in coarsening sys-
tems. Specifically, we study the universality classes found by introducing asymmetric

bulk mobilities. We also develop accelerated algorithms for the study of systems with
anisotropic surface tension.
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Chapter 1

Introduction

This Chapter contains an introduction of some basic topics that related to the thesis,

and a précis of the thesis.

1.1 Phase ordering dynamics

The theory of phase-ordering dynamics or “coarsening” has a history of more than
three decades. For reviews, see Bray [1], Gunton et al. [2], Furukawa [3] and Langer
[4]. Examples are found in the non-equilibrium coarsening of polymer mixtures [5],
alloys [6, 7], liquid-crystals [8, 9], and in cosmology [10].

Phase ordering dynamics studys a system quenched from a high temperature
disordered phase into a low temperature ordered phase, after which a complicated
domain structure develops. A simple example is found in the two-dimensional Ising
system under spin-exchange or spin-flip dynamics, where the spins can be either +1
or —1, and can only interact with the nearest neighbors. We look at what happens
when it is cooled rapidly under T, from a disordered state. At time ¢ = 0 we make
a temperature quench from an initial temperature 77 > T, to a final temperature
Tr < T, (see Fig.1.1 and Fig.1.3).

As time proceeds, we will see “domain coarsening” — domain structure coarsens
and the average size of the domain grows by continuously reducing the amount of
the domain walls (see Fig.1.2). After the quench, the system is not in equilibrium —
the experimental observation is that a pattern of domains of the equilibrium phase
develops and as the time ¢ increases the length scale of these regions grows. The later
stage of this phase ordering process is believed to show universal scaling behavior: it is
found that the dynamics are dominated by a single length scale, the domain size L(%),
which increases with a power law in time, L(t) ~ t*. The patterns at different time

scales are statistically similar, apart from a global change of length scale at different

1
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Figure 1.1: The phase diagram of an Ising model in zero applied field (schematic) to
illustrate a temperature quench at time ¢ = 0. The arrow indicates a quench from
T; > T, in the disordered phase to Tr < T, in the ordered phase where there are two
degenerate equilibrium state £¢y.
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Figure 1.2: Typical snapshots of coarsening simulation for the non-conserved system
with Lg,s = 256 at times ¢t = 4.3, 12.9, 67.8 and 4095.3, with a direct update (a, = 3,
a; = 0). The left one represents the transient period, the middle two are in scaling
regime, and the right one shows strong finite-size effects (see Appendix B).
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times. For non-conserved scalar order parameter, o = 1/2, and for conserved scalar

order parameter, o = 1/3 [1].

1.2 Dynamical models

To study coarsening, we first need a description in terms of an order parameter field

#(x,t). A suitable Ginzburg-Landau free energy functional to describe the ordered
phase is

FIg)= [ &z |5(Va7 4 Vi), L
where the potential V(@) has a double-well structure (see Fig.1.3):
2 _ 132
V(g) = ) 1 D (1.2)

This is used throughout this thesis, though with modifications in Chapter 5. We
choose V(¢) so that the minima occur at ¢ = %1, and V(£1) = 0. The two minima
of V' correspond to the two equilibrium phases ¢ = +1, while the gradient-squared
term in Eq.(1.1) associates an energy cost to an interface between the phases.
When the order parameter is conserved under the dynamics, our equation of mo-

tion can be written in the form of a continuity equation,

with current
j = —MOVM. (14)

where M is the mobility and y is the local chemical potential defined by

_O0F AV, 3 3
=55 V¢+d¢— Vg — o+ ¢° (1.5)
Absorbing Mj into the time scale, we obtain the dimensionless form
) :
= VAV + 5 - 8. (16)

Eq.(1.6) is often called the Cahn-Hillard (CH) equation [12]. In this thesis, this

equation describes “conserved dynamics”.
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Figure 1.3: Plot of potentials V(¢) vs ¢ before and after the quench. As the system
is quenched from an initial temperature Ty > T, to a final temperature Tr < T, the
potential goes from having a single minimum at ¢ = 0 to having two global minima
at @ = =¢. As a result, locally, the system must choose either +@g or —@, (see
Eq.(1.2)).

In the case where the order parameter is not conserved by the dynamics, the

simplest dissipative equation for the time evolution of the field ¢ is

o¢ -
S =—H=Vo+o- ¢ (1)
Eq.(1.7) describes that the rate of change of ¢ is proportional to the gradient of the
free-energy functional in functional space, and is often called the Time-Dependent-

Ginzburg-Landau (TDGL) equation [1]. In this thesis, this equation describes “non-

conserved dynamics”.

In the late time scaling regime, the characteristic length scale L(¢) is large com-
pared to the interfacial width £ and the equilibrium correlation length, the thermal
fluctuations become unimportant and the system behaves as if it were at T = 0 ac-
cording to a renormalization group (RG) study [1, 11]. Therefore we have ignored
the noise terms in Eq.(1.6) and Eq.(1.7).



1.3 Domain walls

Following Bray [1], if we look at the equilibrium interface profile (for a flat and
therefore stationary interface), from Eq.(1.7), the wall profile (see Fig.1.4) is the

solution of
A
H=4p " dg2 ~
with boundary condition ¢(£oo) = =£1, where g is a coordinate normal to the wall.

Without loss of generality, we let ¢(0) = 0. Multiplying by d¢/dg on both side,

(1.8)

integrating, and imposing the boundary conditions, gives

do\? (6" —1)
which is solved by
#(g) = tanh (%) , (1.10)

which implies that a natural interfacial width & ~ 2v/2. This result can be used in

Eq.(1.1) to give the free energy per unit area of wall, i.e. the surface tension, as

o= [Lafs(3) +ve
= /_11 dé~\/2V (6), (1.12)

23
3 ?

where Eq.(1.9) is used. Note that in this calculation, the two terms in the free energy

, (1.11)

(1.13)

Eq.(1.1) contribute equally.

1.4 Dynamical scaling

The scaling hypothesis states that there exists, at late times, a single characteristic
length L(t) such that the domain structure is independent of time when lengths
are scaled by L(t). This hypothesis is supported by experiment [13] and numerical
simulation [14]. Two commonly used probes of the domain structure are the equal-

time pair correlation function

C(r,t) = (¢(x +1,t)0(x, 1)), (1.14)
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Figure 1.4: Domain wall profile function ¢(g) (schematic, see Eq.(1.10)).

and its Fourier transform, the equal-time structure factor

Sk, t) = (dx(t)o-x(t))- (1.15)

where ¢y (t) is the Fourier transform of ¢(x,t). Here angle brackets indicate an
average over initial conditions. The existence of a single characteristic length scale,
according to the scaling hypothesis, implies that at late times after the quench the

pair correlation function and the structure factor have the scaling forms
r
ot = £(3), (116)
S(k,t) = L%*g(kL), (1.17)
where the function ¢ is the Fourier transform of the function f. We can measure
the spatial scaling functions f and g and see if they are independent of time. On
the other hand, we know that the energy density E(t) ~ 1/L(t) (see Chapter 4 for
details). Therefore, in two-dimensions, we obtain more convenient scaling form
ftE) = C(r,t), (1.18)
k
g (E) = S(k,t)E?, (1.19)

which are easy to measure numerically. These scaling forms are used in this thesis.
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1.5 TUniversality classes of correlations

In the study of the equilibrium critical behavior of quantities such as the correlation
length and specific heat near a critical temperature T;, we encounter the concept of
“universality class” [15] — the sets of all systems which have a given “universal”
critical behavior such as the values of critical exponents and critical amplitude ratios.
The critical behavior only depends on the spatial dimensionality d and the order
parameter dimensionality n, but not on specific values of coupling constant, lattice

type, or the precise form of the model Hamiltonian.

Universality classes are also exhibited in far-from-equilibrium phase ordering dy-
namics. As in equilibrium critical behavior, the lattice structure, initial conditions,
and the average values of the order parameters are not important [1] in determining
the growth exponents o for different systems. On the other hand, any conservation
laws obeyed by the dynamics (1 = 0 for non-conserved dynamics and y = 2 for
conserved dynamics [16]), spatial dimensionality d and the order parameter dimen-
sionality n (n = 1 for scalar order parameter and n > 1 for vector order parameter)

are parameters that affect the scaling exponents.

The universality class of growth exponents are large ones — in two dimension, a =
1/3 for conserved scalar order parameter, and o = 1 /2 for non-conserved scalar order
parameter (1]. In this thesis, we will study a relatively small universality class — the
universality class of correlations. The correlation function is an important quantity
to characterize phase ordering dynamics, and is measured in both experiments and
computer simulations. Spatial anisotropy of the surface tension has been shown to
change the scaled correlations in the scaling regime but not growth exponents [36],
and so represents an example of much smaller universality classes. Recently, there is
some research showing that the different values of mobilities in the two equilibrium
states will affect correlations shortly after the quench [17]. We investigate this system

in the late time scaling regime in Chapter 5.



1.6 Précis

Throughout this thesis, all the systems we have studied are in two dimensions. Chap-
ter 1 introduces the basic concepts including phase ordering dynamics, dynamical
scaling and universality class. The numerical algorithms which have been used in
phase ordering dynamics are discussed in Chapter 2 — we talk about the traditional
Euler fixed-step algorithm, followed by discussion of some recent accelerated algo-
rithms, and their drawbacks, then we introduce the algorithm proposed by Eyre,
which is extended to our maximally-fast algorithms. Chapter 3 discusses the stabil-
ities of numerical algorithms, including a von Neumann linear stability analysis and
a numerical test for stability. This chapter also introduces the unconditionally stable
algorithm that enables time-step At — oo as t; — co. Chapter 4 contains the dis-
cussion of accuracy of these unconditionally stable algorithms in both conserved and
non-conserved systems. The concepts of effective time-step and structural time-step
will be introduced and analyzed here, together with some calculations. Chapter 5
applies these accelerated algorithms to investigate universality class of correlations
on asymmetric bulk mobilities. Finally, in Chapter 6, there is a summary and a
discussion of the work done so far and some perspective of the future work. The

Appendices expand on some topics that are not discussed in detail in the body of the
thesis.



Chapter 2

Numerical algorithms

The CH and TDGL equations introduced in Chapter 1 are non-linear partial differ-
ential equations that cannot generally be solved analytically for random (disordered)
initial conditions. Therefore, computer simulations of the CH and TDGL equations
play an essential role in our understanding and characterization of coarsening. In this
Chapter, we will discuss numerical algorithms used to study coarsening systems with

conserved (CH) or non-conserved (TDGL) order parameter.

2.1 Previous algorithms

The traditional Euler time-discretization of the TDGL equation Eq.(1.7) is

SEtns = be — Aty (2.1)
and
Prrar = 6+ AtV (2.2)
for the CH equation, where
pe = —V2¢, ~ ¢, + 6}. (2.3)

Euler updates are “explicit” since the field at the earlier time (¢;) explicitly determines
the field at the next step (¢i+a:). The standard Euler integration of the CH and
TDGL equations is known to be unstable for time step Az above a threshold (see
Appendix A and [19]). This forces the use of a fixed time step irrespective of the
natural time scale of the dynamics. Meanwhile, the motion of the domain walls
becomes extremely slow at late times after a quench. For example, in the conserved
case, where L ~ /3, typical domain-wall speeds are v ~ L ~ ¢t~2/3, and in the

non-conserved case, where L ~ t!/2, typical domain-wall speeds are v ~ L ~ t~1/2,

9
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so a fixed time-step results in decreasing amounts of domain wall motion per step as
time increases. This implies that the Euler update is very inefficient, and in practice
it is computationally costly to use to evolve large systems until the late time scaling
regime.

Various computational algorithms have been developed by increasing At com-
pared to the simplest Euler discretization. For example, the Cell-Dynamical-Scheme
(CDS) [20] exploits universality to choose a free energy that is convenient in terms of
numerical stability, but then applies a fixed-step Euler algorithm to it. More recently,
Fourier spectral methods [21, 22] have been developed by introducing implicit terms
in the Fourier transform of the equation of motion (this is equivalent to a; = 1 and
a» = 0 case in our unconditionally stable algorithms), and have been shown to allow
an increase of the maximum time step At by two orders of magnitude. While CDS
was broadly applied [23, 24], the Fourier spectral method was not. Neither of these
two methods can adjust to the naturally slowing dynamics, so they eventually become

more and more inefficient at the late time scaling regime.

2.2 Unconditionally stable algorithms

Before introducing the algorithms, it is interesting to know the nature time-step of
the dynamics. The interface moves through a point in a time 6t ~ £/v ~ t¥/2 in
conserved systems and 6t ~ £/v ~ t}/2 in non-conserved systems, so the natural time

step should also scale as
Atco ~ t2/3, (2.4)
and

Atye ~ /2 (

N

[
p——

in conserved and non-conserved systems, respectively.

Ideally, we want a numerical algorithm that efficiently integrates the CH and
TDGL equations by moving the interface by a small fraction of the domain wall
width at each time-step without encountering numerical instabilities. Unconditionally

stable algorithms [25, 26, 27] are a class of stable algorithms free of the fixed time step
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constraint for CH and TDGL dynamics due to a mix of implicit and explicit terms.
A general family of such mixed algorithms for the TDGL equation in an arbitrary

dimension is

Grent + (a1 — 1) Atdp,as + (as — 1)AtV2<23t+_A.z
= ¢y + At(a10; + a; V3¢ ~ d’?): (2.6)

while for the CH equation, we have

‘.5&+At - (al - I)Atvzéwm - (02 -~ 1)Atv4<5t+m
= @ — At(a; V3¢, + a2 V49, — V367). (2.7)

Implicit terms (@t4+a:) are on the left and ~ indicates that ¢;4a; is not precisely
obtained by the Cahn-Hilliard dynamics. The explicit terms (¢;) are on the right.
Eq.(2.6) and Eq.(2.7) are called “direct steps” since they can be directly solved for
ng+ A¢ in Fourier space. When a; = a, = 1 these two equations correspond to the
simple Euler update Eq.(2.1) and Eq.(2.2) without implicit terms.

In our simulations in conserved systems using the direct update, we use parameters
Az =1, a; = 3and ap = 0. The two dimensional order parameter is initially chosen to
be randomly distributed between —1 and +1, and with periodic boundary conditions.
The discretized Laplacian (see Appendix A) is generated by using both the nearest
neighbor and the next nearest neighbor to reduce lattice anisotropy. In non-conserved
systems, everything is the same except that we vary a; and a, to explore the Aty

dependence on them (see Chapter 4).



Chapter 3

Instabilities and Stabilities

Stability is crucial to computer simulations, so the criterion of stability constrains
the parameters a; and a, in Eq.(2.6) and Eq.(2.7). The stability limits the Euler
algorithm (see Appendix A for details) by imposing a maximal threshold for the time-
step, above which the simulation becomes unstable. In the systems we are studying,
the energy density plays an important role as a criterion of stability — after the
quench, the energy is continuously decreased by dissipative dynamics Eq.(1.6) and
Eq.(1.7), so any increase of the energy corresponds to a numerical instability. If
increasing energies are never seen for an algorithm for any At > 0, we call the
algorithm “gradient stable”. We have also checked the system snapshots, structures
and interfacial profiles and have not found any evidence of remaining instabilities in
gradient stable algorithms.

Vollmayr-Lee and Rutenberg [27] have implemented a von Neumann (vN) stability
analysis, which is a linear stability analysis, since any gradient stable algorithm must
be linearly stable. They found that. all of the von Neumann stable algorithms are
also numerically gradient stable. Their work suggests that it is useful to impose
von Neumann linear stability analysis to determine a broadly parameterized class
of potential unconditionally stable semi-implicit algorithms, and then to numerically

check the algorithms that will be implemented.

3.1 Spinodal condition of non-conserved dynamics

von Neumann stability is a linear stability analysis around a constant phase ¢ = c.
We analyze the exact dynamics for physical instabilities that we will want to preserve
in our discretized dynamics. Taking

o(x,t) = c+n(x,1t), (3.1)

12
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where 7(x,t) is the deviation from the constant solution, we linearize the exact non-

conserved dynamics Eq.(1.7) to get

7= V?n+n-3c. (3.2)
Fourier transform this to get
e = (A + 1 — 3¢%) i, (3.3)
where A = —k?. The stability condition |7k t+a¢| < |7 requires
M +1-3c? <0, (3.4)

which demonstrates the spinodal instability for the exact dynamics that we want to
preserve when we consider the stability of our discretized computational algorithms.

Note that the same instability is seen in conserved dynamics [27].

3.2 von Neumann linear stability analysis

Vollmayr-Lee and Rutenberg [27] have employed unconditional von Neumann condi-
tions for linear stability [28] to identify possibly gradient stable algorithms for con-
served dynamics. Here, we present a similar analysis for non-conserved dynamics.

We linearize Eq.(2.6) using @(x,t) = ¢+ n(x, t) and take its Fourier transform to
get

L+ At{(a1 — 1) + M@z — 1)}

= [1 + At{a1 + Aeaz — 3. (3.5)
We write this as
where

L = (a1 - 1) + /\k(az - 1), (37)

R = a;+ Mag — 3 (3.8)
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Solving Eq.(3.5) for 7k t+a¢, we see that |7 srae] < |7kl if and only if

|1+ AtR| <
|1+ AtL] )

This is the von Neumann linear stability criterion, which forces n to decrease in

(3.9)

magnitude as the system evolves. We have

1+ AR
1+ AR 3.10
TxaiL b (310)
and AR
1+ At
At 11
Tx oL > L (3:11)

The inequality (3.10) implies R < £ since At > 0 and £ > 0:
0<L—-R=-1-MX+3c, (3.12)
which recovers the spinodal condition (3.4). The inequality (3.11) implies
At(L+R) > 2. (3.13)

In order to solve for this inequality, we need to distinguish two cases, i.e. CASE I:
L+R>0and CASEIL: L+R <0.
First considering CASE I (£ + R > 0), we have

At > — (3.14)

L+TR’
which implies that to keep the system stable, At¢ can take any arbitrary positive

values. The condition £+ R > 0 gives
2a; — 1 — 3¢ + A\ (20, — 1) > 0. (3.15)

If we choose a; < 1/2, then since M\ < 0 we get 2a; — 1 — 3¢® > 0 independent of our

spatial discretization. So our stability condition on the inequality (3.15) are:

a; > 2,

@ < 1/2, (3.16)

where we impose ¢ € [-1,1]. In our numerics, we use a; = 3 and a; = 0 throughout

this thesis for conserved dynamics. Next, considering CASE II (£ + R < 0), we have

(3.17)

9
M<—FTR
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which implies that to keep the system stable, At, like the checkerboard instability in
the Euler algorithm, has a threshold. This is in fact the generalization of the Euler
instability threshold. To better illustrate this threshold, we define Aty as

At
Ateff = H—Atﬁ (318)
To express At in terms of At.sf, we have
At
At = ——¢F 3.19
1-At, f fﬁ ( )
Substituting the expression for At in inequality (3.17), we get
Atess(L—R) < 2. (3.20)
Noting the stability condition £ — R > 0, we have
At 2 2 3.21
SISTIR T 3 (3.21)

where ¢ = 1 is applied. This recovers the form of the stability condition for Euler
update in non-conserved systems (inequality (A.12)). This analysis indicates that
outside the unconditionally gradient stable region, we will have a maximal stable At

given by inequality (3.17).

3.3 Numerical tests of stability

von Neumann stability analysis is a common test for numerical stability [27], however,
it does not provide a decisive criterion since it does not explore nonlinear contribu-
tions. Eyre’s theorem, by imposing a strict non-increase of the energy density in time
(25, 26, 27], provides sufficient but not necessary conditions for gradient stability.
Fig.3.1 shows the results of the numerical tests. We checked that a single step of
the direct algorithm only decreases the energy for various time-steps in the range
At € (0,10%. Larger time-steps than A¢ = 10* are not explored to avoid roundoff
errors. We have found that no linearly stable algorithm is numerically gradient un-
stable, therefore in all cases, the algorithms that are von Neumann stable appear to

be gradient stable as well.
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Figure 3.1: Numerically tested 400 direct algorithms Eq.(2.6) uniformly distributed
with a; € [0,4], a2 € [~2,2], for non-conserved systems, with system size of 512 x 512
and integrating forward to tme; = 10%. We evolve systems with Euler updates (At =
0.1) and direct updates both with fixed At = 100 and with an increasing time-step
At = 0.1t/4. The dark shaded region corresponds to Eyre stable algorithms (provably
gradient stable), the light shaded corresponds to absolutely linear stable algorithms
(von Neumann test), and the open circle denote algorithms that are numerically
gradient stable under all of our tests. Any system that ever increased its free energy
in a single update is labeled gradient unstable (filled circle). Inequality (3.15) implies
that for a given a; > 2 and specific lattice Ay, we can have larger ap. As q; is larger,
we have more chance to have larger ay. This is the reason we see some open circles
outside the light shaded region. However we should note that (a;,a3) outside the
stability bounds is lattice-dependent, so are risky to depend on. For most of the
thesis, we use a; = 3 and a; = 0, which are gradient stable under numerical tests.



Chapter 4

Accuracy

With the unconditional stable algorithms described by Eq.(2.6) and Eq.(2.7), we will
be able to take arbitrarily large time-steps. We now need to consider the accuracy of
the algorithms. With the traditional Euler algorithm, accuracy is not an issue since
the Euler algorithm becomes more and more accurate as time increases (see Chapter
6 for a detailed discussion). With the accelerated algorithms, we hope to control

the error at an arbitrary but fixed level, so that we can trade unneeded accuracy for
speed.

In principle, we can take At — oo, but we also want to keep track of the system
evolution, so we need an independent measure of time rather than just At In
this chapter, we introduce the Fourier-space effective time-step At.ss(k, At) and the
structural time-step At;. These unconditionally stable algorithms act quite differently
in conserved and non-conserved systems as revealed by the effective time-step and
structural time-step. They provide a truly accelerated scheme in conserved systems,
but only a fixed time-step scheme in non-conserved systems. These conclusions are
supported by calculations for both conserved and non-conserved systems. Focusing on
conserved systems, we discuss the single-step accuracy and the multi-step accuracy,
which is a cumulative effect of the single-step error. We also discuss the accuracy of
correlation functions in the scaling regime, which we measure numerically. Finally, by
examining the accuracy of the multi-step error in the non-conserved systems, we find
that unconditionally stable algorithms only give a small relative speedup compared

to the arbitrarily accurate Euler algorithm.

17
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4.1 Effective time-step

First we consider non-conserved systems. We re-express ¢;4a:(x) and ¢;(x) on both
sides of Eq.(2.6) by their Fourier Transform ¢x = Y., e"**@(x) and obtain

Grerar + (a1 — 1) Atdsae + (a2 — 1) At AP et at
= i+ (@1 — 1)Atdrs + (a2 — 1) AtAkdice + At + AicBice — (6%)ice)s (4.1)

where the Fourier-transformed Laplacian A = —k?. Therefore,
“ AtBrs + Mcdice — (6°)ke]
= ’ : ’ 4.2
¢k,£+.’lt ¢k,t 1 + At[(al — 1) + Ak(ag — 1)] ( )
Aty
= . 4.3
P+ 1+ Atf(a; — 1) + A(az — 1)] (43)
Note that when a; = a2 = 1, the above equation reduces to Euler update
Pretras = Pt + Atgudrg. (4.4)
Comparing Eq.(4.3) with Eq.(4.4), we are led to define the effective time-step
At
At (k, At) = ——, 4.5
Y5, 00 = —=— 45)
where
N=(1-a1)+ (1 - a)A, (4.6)
so we can rewrite Eq.(4.3) in a way analogous to Eq.(4.4)
Ok psar = Prs + Atess . (4.7)
Eq.(4.5) indicates that
€k, At) < ALVC(k, o0) = ! <1 (4.8)
Atet I I R (l—ay) @ -1 '

where a; —1 > 0 and 1 —ay > 0 are used. Therefore, we cannot obtain an accelerated
algorithm in non-conserved systems since there is an upper bound for the effective
: NC

time-step A, (k, At).
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In conserved systems, we can obtain the expression for At.ss in a similar way:

At
Atk At) = ———, 4.9
kA = ——— (49)

where
K = (a1 — DA+ (a2 — 1)A}. (4.10)

For an accurate algorithm, we require Ateff(l/L At) = At since most structures
are at k ~ 1/L. This condition yields At < £23 , allowing an accelerated algorithm
At = At?/®. This is a truly accelerated algorithm since AtS f I(A At) grows with ;.

We see that Atess(k, At) is an effective time-step for a mode £, corresponding to an
algorithmic time-step A¢. We shall confirm these tentative observations in the next

several sections in this chapter.

4.2 Structural time-step in conserved systems

For both conserved and non-conserved scalar order parameters, we can calculate the
scaling behavior of the energy density, F, which is expressed by the gradient term of
Eq.(1.1) [30, 31]:

E ~ ((V9)?), (4.11)
~ [ o), (412)
= / &2k K2L2g(kL), (4.13)

where we restrict the calculation to two-dimensions, d = 2, for comparison with our

numerical work (though it is easily generalized). As kL > 1,

1
g(kL) ~ L (4.14)
and we have
E ~ /dzkk kdkdgo /dk— (4.15)

Although theoretically the largest k¥ = 7/Az, where Az is the lattice spacing, the

effective large-k cutoff is imposed by the interfacial structure, i.e. by the Porod tail
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dropping away above 1/¢ (see Fig.4.2), where £ is the domain wall width. Therefore,

/¢

L FT g E (4.16)

where L(t) ~ t* [1] is used.

The k-dependent effective time-step Eq.(4.5) and Eq.(4.9) provide a measure of
the system evolution in Fourier-space, however, it changes for each mode. The energy
density E, on the other hand, serves a good probe for the system evolution, and easy
to measure. This leads us to introduce an empirical “structural time” in terms of the

monotonically decaying energy density F,

t, = E?/a, (417)
where B is conveniently calibrated so that At; = At as At — 0 in the late-time scaling
regime, and @ = 1/3 or 1/2 for conserved or non-conserved coarsening, respectively.
The evolution of the structural time probes the real-world speed-up of our coarsening
algorithms, and it also turns out to provide important insight into the observed errors
of the scaled correlations. The relation between the structural time-step and the

effective time-step in Fourier-space will be discussed in Chapter 6.

1/3
E= (Btco) (4.18)

From Eq.(4.17), we have

for conserved dynamics, and

—3BcoAE  —3AE

Aty = 22002 o

(4.19)

On the other hand, integrating E from each Fourier mode and using the Fourier

transform of conserved dynamics Eq.(1.6):

5F _2‘
7l k"¢, (4.20)
we have
1/¢ 1 SF
AE =~ / d’k <<—)A > 4.21
o FEmr \\5s) 2 @2
Ve L 1 co
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where the approximation in the first line is because the large-k cutoff is not exactly

at 1/€. The time-derivative correlation function

Ty = ($x-r) (4.23)
was used in the energy-scaling calculations [1, 30, 31], and has a natural scaling form
given by

. L2h

Ti = L*h(kL) = 09—2%’2 (4.24)

where L = Lotil 3 and h(z) is the scaling function. We can then solve for AFE in
Eq.(4.22) and thus for the structural time-step At, from Eq.(4.19). Using Eq.(4.9),

we have

At L/¢
_C / dz hz) , (4.25)
At o T Atla; —1) ,  At(l-ap) ,
1+ 12 z°+ 7 T
L/¢
1+ 52" + 573
Lg LiL
L3

where C = ——Bl—/g, T = kL and At = At?® is used, and £ is proportional to the

n

domain wall width. As £ — L/¢ — co, the integrand is 0 because h(z) is at most a

constant at large z. For a fixed z, the 2* term is negligible. So we do not have any

a, dependence. We then obtain

At L/e h(z) _
7 =C ) G =), (4.27)

where
A= é(a_jl:%:-_lz_ (4.28)

Aty /At is ts-independent in the scaling regime where L = L,t}/® applies since it is

ultraviolet convergent. The form of h(z) as x> 1 [31] (see Appendix E) is

h(z) = D, (4.29)

T
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where D is a prefactor. We split the integral into two pieces (0,z,) and (zo, L/€),
where 2o > 1 is a constant. Thus

f(A) = L(4) + L(4), (4.30)
where
o d:r h(z
! 4.31
1(4) C/ z 1+ 4’:::2’ (4:31)
and
Lie 4z
N = —_— 4.32
L(4) CD/IO — (4.32)
When A’ — 0, we obtain
Z0
LO)=C / P g, (4.33)
o Z
and
CD
L(0) = — (4.34)
To

when L/ — oo. From the definition of At,, we should recover that f(0) = 1 because
Aty = At.

Next we consider the case when 0 < A’ < 1. Expanding the right hand side of
Eq.(4.31), we have

! — o h(x _ ! i P Tz 2
L(A) = c/ CA/O h(z)zdz + O(A?), (4.35)
— h{0)+ 0(). (4.36)

Directly solving the integral on the right hand side of Eq.(4.32), we can get the explicit
form for I,(A):

L(A")

§
= CD [i - f\//? + VA tan—l(@xo)] , (4.38)

= (0)——CD\/— AT+ O(A", (4.39)

—VA'tan™ <@> - %+ VA tan" (VA'zg) + 5;] [(4.37)
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where L — oo at late times. Finally using Eq.(4.30), we obtain that, as A’ is small,

At
At

Eq.(4.40) implies that as A’ — 0, 1 — f(4') = 0. Also, 1 — f(A’) = 0 in the Euler

algorithm in the L/§ — oo limit. The value of C can be obtained from the numerical

1- =2 =1~ f(4') = ZCDVA + O(4). (4.40)

data, and the value of the time-derivative correlation Porod-amplitude D has not
been precisely measured. 1 — f(A4’) > 0 for finite A’ indicates that less energy is
dissipated in a time-step than would be exactly integrated CH dynamics Eq.(1.6),
and it can be related to the error in correlations. We will discuss f(A’) in more detail

in the next section.

4.3 Accuracy in conserved systems

For conserved systems, the analysis in Section 4.2 indicates that we can use a time-
step that is proportional to the natural time-step of conserved systems, At = Atf/ 3
(see Fig.4.1 for a plot). With our unconditional stable algorithms Eq.(2.7), we can use
such a progressively larger time-step as the dynamics slows at late times. However,
the accuracy should be determined by the prefactor A. We can study the single-step
error by obtaining an explicit expression of ét+At in terms of ¢;. We will then use
these expressions to obtain a useful bound on the multi-step error.

At a given time ¢, we can formally expand d;t-mt in powers of At:

(.;SH-At = ¢ + Z o AL™, (4.41)

n=1

where «,, are independent of A¢. Substituting éH.At into Eq.(2.7), we have
o
Zan/_\t" +[(1 = a1) V0, + (1 = ag) Via,|At™H?
n=1
= ~ AtV (¢, + V26, — &}). (4.42)
The right hand side is just ¢, At. Comparing all the At™ terms on both sides, we have

o = ¢ (4.43)
on1 = Kean (n>1), (4.44)
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Figure 4.1: Plot of S(k)E? vs k/E in conserved systems, with Direct update, At =
0.01t%/3, Lgys = 2048, averaged 20 samples. The two reference lines are ~ 2t as kis
small [46] and ~ z~3, which is corresponding to the Porod tail [29]. In this plot, we
see excellent scaling collapse at different structural time ¢; in the scaling regime.

where
K. =(a - 1)V + (ap — 1) V4 (4.45)
We obtain
~ w ~ .
Geiat = & + Z AtK o (4.46)
n=1

The real-space single-step error is obtained by comparing with the exactly evolved
field @(t; + At,) that has the same energy:

AG = Gt + At) — (s + At), (4.47)
0 R . [eS] 3"45
— n n—1 14 n
= Y ArKFH-D LPAL, (4.48)
n=1 n=1
where
1
O(ts + Ats) = ¢(ts) + At0,0 + %Atf@fgﬁ + gAti’qu‘) +... (4.49)

is the Taylor expansion and ¢(ts + At) represents the field by the accelerated algo-

rithm. Note that we compare the fields at the same energy, so we use At for the
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exactly evolved field.
Since 97 ~ t5*7* and (V2)"$ ~ £77%% in the bulk [27], if we take At =
At with small A, we can ignore the higher order terms O(A?) in the sum in
Eq.(4.48), and we obtain

A = (At - At)d+ 0423, (4.50)
= (1-F(A) A7V + 0413, (4.51)
~ AU (4.52)

A previous study [27] showed that these unconditionally stable algorithms do not
allow a time-step At ~ t# with 3 > 1 /3 because their single-step error in real-space
near the interface would grow without bound. In Sec.IIL.A of [27], the scaling of the
real-space error near interfaces at O(At™) for direct conserved algorithms should be
O(¢) ~ t72/3 for all n > 2. Fig.4.2 indicates that the interface profile is properly
maintained and the errors near the interface can be ignored. Therefore, we should
only consider the errors in the bulk.

Next we consider the multi-step error. At worst this single-step error will accu-
mulate with each update. Evolving to t, with time-step At = AR o dts/dn requires

the number of steps

. /‘8 dt, =3t§/3NL(ts)
0 At§/3 A A

So we place an upper bound on the multi-step error for system evolving from the

beginning to ¢ as

(4.53)

AG™ ~ Ad*n ~ A3/2t;1/3£f§—5) ~ VA. (4.54)

If we consider the error for the real-space correlation function f(r/L) = (¢(z)¢(z+r)),
we obtain Af ~ 2A¢7¢ ~ VA.
Besides considering the error spatially; i.e. at a given position, we can also consider

the error at a particular k-value or mode. The Fourier space single-step error is, using
Eq.(4.7) and Eq.(4.9),

AG = Gilts + At) — Gilts + Aty), (4.55)
Aty = 0Py ;

= — ) A 4.56

1 _ AtK z TL! ( )

n=1
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Figure 4.2: A plot of S(k)/E vs k to show the interfacial profile in conserved systems,
Lgys = 2048, driven by At = 0.01¢2%, averaged over 20 samples. The Porod tail [29]
line of k™3 represents S(k)/F in the sharp interface limit. The data that deviated from
the Porod tail line (thick solid line) reflects the interfacial profile at k ~ 1 /€, where £
is the domain wall width. We compare the interfacial profiles for three different ts in

the scaling regime, and see that the domain wall profile does not change with respect
to time. Note ke = 7/Az = 7.
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Figure 4.3: Plot of S(k)E? vs k/E for Lg;s = 512 at t, = 1024 with the Euler

update (circles) with At = 0.03 and the Direct update (“+”) with At = 0.01t%°.
We see excellent overlap between these computational algorithms. Triangles indicate
the absolute difference between Direct and Euler updates. To quantify the error at a
certain t;, we take the absolute value of the maximal value of the difference between
the scaled structures. We find that this maximum difference is approximately constant
in magnitude throughout the late time scaling regime. See Fig.4.4 for a summary of
errors of different A.
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where ¢ (ts+ At;) is the exactly evolved field, and K= —(a1—Dk2=(1—-a2)k* <0.
For small values of the prefactor A, using |0} ¢x| ~ 523 asn > 1 (see Eq.(E.11)),
the n > 2 terms are O(A42) and sub-dominant (see below). The Fourier-space single-

step error becomes

- Atdk y 57
. ~ 4.
A¢k T Atkz(al — 1) Ats¢k7 ( D/)
— 4 2 b - ;
_ ZABGGHR (@ = 1) + (AT - AL)é (4.58)
14+ Atkz(al -1)
[—A'f(A)2? +1 - f(A)]AVA(Z) (4.59)
14224 ’ .
where A' = —A(a};— _1), fl4) = AAtts ,z = kL, L = Lot’* and ¢ ~ t°/° (see
0

Eq.(E.11)) are used. We find numerically that the single-step error is largest at z =~ 1
(data not shown), and this is reasonable since most of the structure is there. For
small A, 1 — f(A") ~ VA ~ VA, and using z = O(1) and h(z) = O(1), we find

- 3/2
ad s 2

2
STz +oM. (4.60)

Using Eq.(4.53), we obtain the upper bound on the multi-step error at %, is

A2L(¢)

A"m NA"s <
Pk o S A

~ L(t)VA. (4.61)

We can use this to bound the error of the scaled correlation.

_ (o)
9(kL) = 3 &)’ (4.62)
which implies
Ag~ 2% ~ VA. (4.63)

It is interesting that the accumulated error in the correlations has the same form as
1 - Ats/At in Eq.(4.40).

It is noted that our analysis are consistent in both Fourier-space and real-space.
For a single update, the relative error is of the order t; /*A%2 as A is small — this

guarantees that the relative error is bounded by v/A for multi-steps. Therefore, the
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Figure 4.4: Plot of maximal difference of scaled structural factor vs A. The difference
is obtained by comparison of scaled structural factor for conserved systems with Direct
update (At = At %) with Euler update At = 0.03, and averaged in the scaling regime.
The system sizes are L, = 256 (at least 200 samples, open square, averaged over
4 times in t; € [60,200]) and Ly, = 512 (at least 20 samples, open circle, averaged
over 9 times in ¢ € [60,1600]). The error bars are obtained as variances by averaging
in the scaling regime. For comparison, we also include the plot of time-step error
1—Ats/At vs A. The system sizes are Ly,s = 256 (at least 200 samples, filled square)
and Ly, = 512 (at least 20 samples, filled circle). The reference line is ~ VA. We
see that 1 — At,/At  V/A, as predicted in Eq.(4.40), and Ag ~ /A, which confirms
Eq.(4.63).
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error compared with exact dynamics in both g(kL) and f(r/L) scales as v/ A for small
A.

In order to test accuracy, we quantitatively compare the accelerated algorithm
with the standard fixed time-step Euler algorithm, which is a slow but accurate algo-
rithm. We compare the scaled correlation function in the scaling regime to show the
maximal difference between them is always around the peak and is time-independent.
Thus we plot the averaged maximal difference in the scaling regime vs A and find
that A ~ /A (see Fig.4.4).

The numerical result that we saturate the upper bound of the multi-step error
indicates that the single-step error does not grow but accumulate over time. At the
early time transient period, where all the order parameters start to choose either of the
two equilibrium states to lower their energy, we do not expect the error to grow since
that tends to increase energy. In the late time scaling regime, any error introduced
in the bulk tends to decay to lower the energy. The error near the interface tends
to decay too to maintain a fixed interfacial profile (see Fig.4.2). On the other hand,
the error introduced in the interfacial motion tends to grow over time and becomes a

cumulative effect. So these explains what we observe in Fig.4.4.

4.4 Structural time-step in non-conserved systems

In non-conserved systems, using Eq.(4.17) with a = 1/2, we have

1/2
E= (B;"C ) : (4.64)

where Byc is analogous to B¢o in conserved systems, and used to distinguish between

non-conserved and conserved systems. From Eq.(4.17), we have

~2BycAE _ —2AEtY?

At = =
TTE

(4.65)

Integrating E' from each Fourier mode and using the Fourier transform of the non-

conserved dynamics Eq.(1.7):

OF .
-(57&; = _¢—k7 (466)
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we have

1/¢
AE ~ d’k ( 2/17)2 <(%) A¢k> , (4.67)

0
RANPN| NC
= - /C; d kWAteff (k, At)Tk, (4.68)
where the time-derivative correlation function T [1, 30, 31] has a natural scaling form
of

L2h(kL)
4t,

Ty = ($rb-s) = L2h(kL) = (4.69)

where L = Loti/? and h(z) is the scaling function. We can then solve for AE in
Eq.(4.68) and for At, from Eq.(4.65). Using Eq.(4.5), we have

1/¢ kh(kL)Atdk
At, = C' , 4.70
° ¢ /0 1+ At(a; — 1)+ Atk%(1 - ay) (4.70)
o /L/E Th(z)Atdz (4.71)
- o [1+At(a; — 1)]L2 + Atz?(1 — ay)’ )
LIS zh(z)Atdz
= = 4.72
Ay = (4.72)
* zh(r)Atdz L/e  Atdz
— ! ! ™y 4."
) Brrr2 O | B (473)
= ']1 + J27 (4‘74)
L
where C' = —%, z=kL, E=1+ At(a; — 1), F = At(1 — ay), £ is the domain
47 By
wall width and
, [*° zh(z)Atdz .
= _— 4.7
/i C/O EL? + F1? (4.73)
and
, Lis  Atdz _
JZ =C'D m (4.(6)
o '
and
h(z) = % (4.77)

as £ = zo > 1 is used. Now consider the integral J; as 0 < z < z5. We have

E ~ F ~ At for large At, and E ~ 1 and F ~ At for small At, but L2 — oo at late
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times — this implies that the denominator is infinite at late times for any At¢. Also

since h(z) is finite, J; — 0 at late times. Therefore we have
! !

ITEE tan™! (@%) —tan™! (@%)

C'D F1
At———=tan™' [ /== |, 4.79
LVEF . ( Eé) (479)

where L — oo is used in the late time scaling regime. With the condition Aty = At

Aty=Jo = At

. (478)

as At — 0, we obtain that
£ = ——. (4.80)

So we have

— Atf n_l At(l - a2) l
Aty = V1 + At(a; — 1)]AL(1 - ay) ta (\/:+ At(a, — 1) §> . (4.81)

As At — oo, we obtain the maximal structural time-step:

mer _ f _1( 1—a2l> o
A7 N CER T tan aT1e) (4.82)

where £ is an undetermined inverse ultraviolet cut-off expected to be close to the
interfacial width. Eq.(4.82) implies

f 1—a21 1
Ao < Z= , 483
Vi —1)(1=-a)Va—-1§ a—1 (4.83)

because tan~}(z) < z for z > 0.

Unlike the conserved dynamics, in non-conserved dynamics, Ats can only have
a finite value even if we drive At — oo. This is consistent with the early analysis
of the effective time-step inequality (4.8). If we choose a; = 2% and a; = 0.57, we
get AtT%* =~ (.84, which is about 4 times the maximal time-step of Euler algorithm
Atg, = 0.23 for lattice spacing Az = 1. In Fig.4.6, we show numerical results of

At for various a; and as to test Eq.(4.82) and some relevant discussion.
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Figure 4.5: Plot of At™%* vs t; in non-conserved systems, with Direct update, At —
o0, a; = 2 and a; = 0.5, averaged over 20 samples for each systems size. We see
that At™* =~ 0.84 at late times. Lgys = 128, 256 and 512. This plot confirms a fixed
structural time-step At in the scaling regime (see Eq.(4.82)). Also see a summary
of AtT%* using various a; and a» in Fig.4.6.
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Figure 4.6: Plot of At7"**/(a; —1)(1 — ay) vs v/(1 — a2)/(a; — 1) in non-conserved
systems, with Direct update, At — oo, Ly,s = 512, averaged 20 samples for various
a; and a,. The open circles denotes measured values. The error bars are obtained
as variances by averaging over At7*** in the scaling regime t; € [100,1000]. The
solid line denotes the theoretical prediction y = £tan~'(z/€), where £ = 0.85 for
best fit. For small z, the fit is good, but for larger z, Eq.(4.82) is inconsistent with
our measured At7**. The reasons for the inconsistency is that the systematic errors
in time-derivative correlation function T'(k) become large as /(1 — ap)/(a; — 1) is
large [32] (the Fourier-space multi-step relative error increases monotonically with
v/ (1 = a2)/(a; — 1), see Section 4.5 for details).
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4.5 Accuracy in non-conserved systems

For non-conserved systems, we do not get a truly accelerated algorithm since these
unconditional stable algorithms allow us to drive At — oo, but we can only get a
fixed structural time-step At and have a fixed speedup. In this section, we study the
accuracy of this algorithm.

The Fourier space single-step error is

Agr = ¢ilts + At) — it + Aty), (4.84)
Aték = 8{‘d>k -

= % N 0%k 4.85

1 - AtN :4:‘1 nt (4.83)

where @(ts + At,) is the exactly evolved field, and N = —(a; = 1)~ (1 —ap)k?* <0.
Since |0 ¢x| ~ MM a5 > 1 (see Eq.(E.12)), and At is a constant, we can
ignore the higher order terms of At, in the sum. As At — co, we obtain the Fourier

space single-step error

1S _ ék mazx ;
s sy gy S (4.86)

[ 1 —At;’m] S (4.87)

a1—1

R

Note the field scaling ¢y ~ L ~ ¢/% and ¢ ~ L ~ t71/? (see Eq.(E.12)) in non-
conserved systems. Evolving to t, with a fixed structural time-step At™*® requires

the number of steps t;/At7***, so the Fourier-space multi-step relative error is at most

AP 1 Oits
— < - A7 | ——— .
o [a1 -1 ° ] grAtmes’ (488)
1
~N —_— ] .
(@ — 1)Agmez ™ (4.89)
_ v1—as 1 ~ - 1, (4.90)
&v/a; —1tan™! ( 92 —)
a) — 1 §
z
= —° 1 .
tan~(z) (4.91)
= f(2), (4.92)
-al
where z = Cll aig. The function f(2) monotonically increases with z. This
-

indicates that the multi-step error upper bound increases with z. Numerically while
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we do not observe a significant z-dependent error in the correlations, we observe a
larger error in the time-derivative correlations as z is larger (data not shown), which
leads the worse fitting as z is larger (see Fig.4.6). Surprisingly, although this algorithm
Eq.(2.6) leads to a fixed structural time-step, the error does not approach 0 at late
times as in the Euler algorithm with fixed time-step.

It is interesting to consider the relative speedup of these algorithms with respect
to the standard Euler algorithm with a fixed time-step Atg, =~ 0.23. The computer
time per step for the direct update Eq.(2.6) is about 2.5 times the computer time
per step for Euler update Eq.(2.1) because of the FFT needed for the direct update.
Therefore we need At7*** > 0.23 x 2.5 = 0.58 to make this algorithm useful. Since
At < 1/(a; — 1) (see Eq.(4.83)), we need a; < 1+1/0.58 = 2.74. With a; = 2.74,
we need as — 0.5~ to obtain a minimal relative error bound Agy/dx ~ f(z) = 0.184.
With a non-zero error and small relative speedup (maximally 0.84/0.58 = 1.45), we
conclude that these algorithms in non-conserved systems, have no advantage over the

arbitrarily accurate Euler algorithm.



Chapter 5

Universality classes of correlations

In phase ordering dynamics, there are universality classes of the non-equilibrium dy-
namical growth exponent o, where the characteristic length grow as L(t) ~ t* at late
times. In these universality classes, only conservation laws (non-conserved dynamics
or conserved dynamics [16]), spatial dimensionality d and the order parameter di-
mensionality n are the parameters that affect the scaling exponents. The universality
classes of the growth exponents were demonstrated by Renormalization Group (RG)
methods [11] and the energy scaling method [30, 31].

Correlations of coarsening systems are important probes of their structure, and
the characteristic length L(¢) is only part of the correlations. There has been little
work on the universality classes of correlations. We think it is useful to understand
the correlations and study universality class in correlations — which parameters affect
the correlation, and which do not? The order parameter correlations in the coarsening
systems have been found to depend on spatial dimensionality d and order parameter
dimensionality 7, even for systems with the same growth exponents [1]. For a given
system, no dependence of correlations on the microscopic details of the numerical
algorithm are expected. This underlies the usefulness of CH equation and other
simplified dynamical models of coarsening phenomenon.

In this chapter, as an application of our accelerated algorithms, we explore the
universality classes of correlations in conserved systems that result from introducing
asymmetric bulk mobilities (Section 5.1). We also derive accelerated algorithms for

the study of how anisotropic surface tension (Section 5.2) affect spatial correlations.

5.1 Asymmetric bulk mobilities

Eq.(1.6) describes conserved dynamics with a constant mobility My = 1 and a sym-

metric double-well potential V' (#). A more general form will include an asymmetric

37
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order-parameter-dependent bulk mobility M(¢) and an asymmetric potential V(¢).

The general equations of motion are

09 .
5 - VY
j = —‘M(é)v.u‘a
OF o . _
= — =— % ;
© 53 Vi +V'(9), (5.1)

where V'(¢) = dV/do.
Following Bray [1], the Gibbs-Thomson boundary condition for a stationary in-

terface gives the relation
pAop =AV — oK (5.2)

at the interface, where A¢ is the change in ¢ across the interface, AV is the difference

in the minima of the potential for the two bulk phases and K is the curvature.

Simplifying to the case where the minima have equal depth and taking the minima to

be at ¢ = £1 as usual give AV =0 and A¢ = 2. Then the above equation becomes
cK .

p=-— (5-3)

4

This condition determines u on the interface in terms of the interfacial curvature.
Now consider the case of a single spherical domain of negative phase (¢ = —1) inan
infinite sea of positive phase (¢ = +1) with asymmetric bulk mobilities My = M(d+).

Deep in the bulk, the chemical potential u obeys the equation
V2u=0. (5.4)

Eq.(5.4) implies 4 = 0 at infinity. Let the domain have radius R(t), and we have
K = 1/R in two dimensions. The solution of Eq.(5.4) that obeys the boundary
conditions x4 = 0 at infinity and Eq.(5.3) at r= R is

ag
-2 r<R
={ 2R - 5.5
K _l. r>R ( )
2r

An interface moves with a velocity given by the imbalance between the current flowing

into and out it:

. . d 0
VA® = Jout — Jin = —M+'ﬁ + M=

5gls M3 (5.6)
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where v is the speed of the interface in the direction of increasing ¢. With A¢ = 2,

we have

dR 1 o Ou oM,

#=v=a (gl E) -5 G0
We see that the single spherical domain of ¢ = —1 evaporates by the diffusion of

negative phase to infinity, the rate of which is controlled by the bulk mobility M,
Likewise, the evaporation of a single spherical domain of ¢ = +1 is controlled by the
bulk mobility M_. This result shows that the process of coarsening is dominated by
the bulk mobilities [1, 34], so we do not expect correlations to depend on the interfacial
mobilities. Indeed, a study [18] of a conserved scalar system in two-dimensional with
a symmetric order-parameter-dependent mobility which only changes in the interface
showed that an interfacially varying but symmetric mobility does not change the
spatial correlations unless it vanishes in the bulk phases. Some studies of asymmetric
order-parameter-dependent mobility [17, 33] showed that the correlations change at
early times. Because the bulk mobilities explicitly appear in the equation of motion
Eq.(5.1), we expect the correlations of coarsening systems with asymmetric bulk
mobilities are different from that with symmetric bulk mobilities. We can characterize
asymmetric bulk mobilities by the dimensionless ratio

M. _ M)

R= TR IrE (5.8)

Note that R =1 for symmetric phases where M(¢.) = M(¢_).

We will introduce asymmetric mobility M (¢) and test whether correlations depend
on R (R #1).
5.1.1 Algorithms with asymmetric bulk mobilities

The simplest analytic method of implementing asymmetric mobilities in the bulk

phase is through a linear mobility term

M(¢) =1+ ag, (5.9)

where a € [0,1]. When a = 0, we recover the well-studied symmetric case. V(@) is still

the symmetric double-well form V(¢) = (¢*~1)?/4, which yields p = ~V2¢+V'(¢) =



40

-V2¢ — ¢ + ¢°. Using Eq.(5.1), we obtain the equation of motion

ke

5 = =V - [—(1+ad)Vy,

= V2u+aV - [¢Vy],
= Vu+apViu+aVe- V. (5.10)

The bulk phases are at ¢. = +1. Therefore, the bulk mobilities are

M:=M(¢:) =1=%aq, (5.11)
and
l1—a
= 5.12
R 1+4a’ (5.12)

with R € [0,1] for a € [0, 1].

To implement Eq.(5.10) with an unconditionally stable algorithm with direct pa-
rameterization, we introduce some implicit terms. Note that the choices of introduc-
ing implicit terms are not unique. Although different choices might lead to different
constraints of the parameters, they all provide unconditionally stable algorithms. For

simplicity, we use the same parameterization as used in Eq.(2.7):

Grint + AtV3[(1 = ay) e + (1 — a2)V2rra)
= ¢+ AtV (~a1¢; — 0, V3, + ?)
+  altg, V(=g — V¢ + ¢3) + AtV - V(=6 — V36, + ¢%).  (5.13)

We do a von Neumann stability analysis of this equation, following the analysis of
Section 3.2 and obtain the conditions for a; and as. Linearizing this equation around

¢(x,t) = c+n(x,t), where ¢ = cis a constant phase, and taking its Fourier Transform,
we obtain

[1 = Athe{(ar — 1) = M1 — a2) Hrmeerae
= [1-Ath{(a + a2 —3¢%) — (ac +a) (=1 — M + 3 s (5.14)

Writing this as
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where

L = —)\k[(al - 1) - /\k(l - ag)], (516)
R = —/\k[(al + Ak@o — 3(:2) - a(c -+ 1)(—1 - A+ 362)]. (5.17)

The von Neumann linear stability criterion leads to

11+ AtR]

—_— <1, 5.18
|1+ AtL] (5.18)
which leads to AR
14+ At
i i 5.19
1+ AtL <1 (5.19)
and AR
14+ At
—_> -1 5.20
Ty AL - (5-20
The inequality (5.19) implies R < L:
0<L-R=-M(ac+a+1)(—1- X +3c). (5.21)

Because ac + a + 1 > 0, this recovers —1 — A\ + 3¢? > 0, which is the spinodal
condition of the conserved dynamics [27]. To impose unconditional linear stability on

the inequality (5.20), we want R + £ > 0:
~A[2a; — 1 =3 +a(c+ 1)(1 — 3¢®) — Me{l — 205 —a(c+1)}] > 0, (5.22)

which implies that

1+3c®+alc+1)(3c2 - 1)
2 ?

1+a(c+1)
—_—

-

a,
ao (523)

Insisting on stability for all ¢ € [-1,1] and a € [0,1], we obtain the global stability
bounds for asymmetric bulk mobilities Eq.(5.13):

K

a >
<

as (5.24)

N =

These bounds are more restrictive than the symmetric a = 0 case because of the range

of asymmetries, but only for a;. As with the symmetric algorithms, we expect the
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Figure 5.1: Plot of maximal difference of scaled structural factor vs A. The difference
is obtained by co /panson of scaled structural factor for conserved systems with Direct
update (At = At2'°) and asymmetric bulk mobilities (R =1/3) with the same Direct
update (same A) and symmetric bulk mobilities (R = 1), and averaged in the scaling
regime. The system sizes are L,,; = 256 (at least 200 samples, open square, averaged
over 4 times in ¢, € [60,200]) and L, = 512 (at least 50 samples, open circle,
averaged over 9 times in ¢, € [60, 1600]). The error bars are obtained as variances by
averaging in the scaling regime.
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greatest accuracy to be found for the smallest implicit terms. As a result, we choose
values close to the threshold of inequality (5.24) for our numerical values: a; = 5 and
as = 0.

In order to detect the difference in correlations that are due to asymmetric bulk
mobilities, we compare the correlations between algorithms with the same A to reduce
the errors that result from the time-steps, and we control random errors in initial
transients and finite-size effects by averaging large numbers of samples. Fig.5.1 shows
a non-zero A-independent difference, as well as a small time-step errors that related
to A. We will try smaller values of A and smaller values of R (more asymmetry)
to get a larger resolved signal that are due to asymmetric bulk mobilities. We will
also try asymmetric initial conditions (with () # 0) to get an enhanced asymmetric

signal.

5.1.2 Algorithms with asymmetric bulk diffusivities

Here we develop the algorithms for a study of universality classes of correlations with
asymmetric bulk diffusivities, but leave a detailed numerical study for future work.

In the bulk, V?¢ = 0 far from the interface, and using Eq.(5.1), we obtain

i=-M(¢2)[VV'(¢s)] = —D:V¢, (5.25)

where the bulk diffusivity is

Di: = M(¢+)V"(¢z)- (5.26)

Asymmetric bulk diffusivities D. can be characterized by the dimensionless ratio

g = D- _ M(¢_)V"($-)
Dy M(84)V"(94)

We will introduce asymmetric bulk diffusivities D+ but symmetric bulk mobilities

(5.27)

My in the dynamics to test whether the scaled correlations only depend on asym-
metric bulk mobilities as expected. We can introduce asymmetric bulk diffusivities
only through asymmetric potentials, where the bulk mobilities M (¢.) = 1. For our
asymmetric potential Vi(¢), we want to retain the feature V}(¢) = 0 for ¢, = %1 to

maintain symmetric quenches when (¢) = 0, but we want V"(¢,.) # V"(¢_) for the
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asymmetric bulk diffusivities. This is possible with (see Appendix G for other choices
of potentials)

1

i(¢) = 3(6° - 1)%(¢* + 206 + 1), (5.28)
where b € [0, 1]. This V;(¢) has only two global minima at ¢ = =1. In fact
V) = 76 - 1)(36° + 56+ 6-b)
= %(3& + 5b¢* — 2¢° — 6b¢* — ¢ + b) (5.29)

leads to only one real local maximum, so the potential retains the qualitative shape

of a double-well potential. Also

1
Vi'(¢) = Z(15¢“ + 20b¢° — 6¢° — 12b¢ — 1), (5.30)
so that V"(¢+) = 2(1 £b), which by Eq.(5.27) leads to asymmetric mobilities
1-9
R =— 5.
1+b (5:31)
with R' € [0,1] as b € [0,1]. Thus we get the same form as Eq.(5.12).
The dynamical equation with the asymmetric potential V;(¢) is
2 = VvV,
1
= V?|-V%+ Z(3¢>5 + 5b¢* — 2¢° — 6b6° — @) | . (5.32)

If we consider unconditionally stable algorithms with direct parameterizations, we

need to introduce some implicit terms:
Brrat + AVA[(1 — a1)Broas + (1 — a2)V?¢rind]
= ¢+ AtV (—a10;, — V20, + 59)
1
+ AV 60— 6F + 2(367 + 5bg; — 267 — 6667 — )| . (5.33)

We want to do a von Neumann stability analysis for this equation, and obtain the
conditions for a; and ap. Linearizing this equation around ¢(x, t) = c+n(x,t), where

¢ = cis a constant phase, and taking its Fourier Transform, we obtain

1 - At hf(a1 = 1) = M(1 = a2) }7e,e+ae
1
[1 — At {(a1 + Akag — 1 — Z(15(:‘1 + 20bc® — 6¢* — 12bc — 1)}] T t-
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Figure 5.2: Plot of Vi(¢) vs ¢, for different b € [0,1]. We can see from the figure
that larger values of b lead to local maximum at larger values of ¢. V; always has two

equal-depth local minima at z = +1.

Writing this as
[1 + Atﬁ]nt-i-At = [1 + AtR]T]t,

where

L = =XN(a; —1) = A(1 —a)],

R = =) [(al -1) - %(l5c4 +20bc® — 6¢? — 12bc — 1) + Aeag| .

The von Neumann linear stability criterion leads to

|1+ AtR| <
1+ AtL] ’
which leads to
1+ AtR <1
1+AtL 7
and
1+ AtR >
1+ AL '
The inequality (5.38) implies R < L:

0<L—-R=-X %(15644-20563 —6¢ —12bc — 1) — M| .

(5.34)

(5.35)
(5.36)

(5.38)

(5.39)

(5.40)
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which follows
1
Z(15c4 + 20bc® — 6c2 — 12bc — 1) — Xy > 0. (5.41)

This is our spinodal condition, which is different from the standard spinodal condition
—1—Xc+3c® > 0[27] since we used a different form of potential. Imposing R+£L > 0

for unconditional linear stability, we have
I |20 —2— %(1561 +20bc® — 6c2 — 120c — 1) — M\ (1 — 2a0) | >0,  (5.42)
which implies that
ag > 1+ %(15c4 + 20bc® — 6¢% — 12bc — 1),

(5.43)

| —

a <

For ¢ € [-1,1] and b € [0, 1], the maximal value of (15¢* + 20bc® — 6¢* — 12bc — 1) /8
is 2. Thus the global bounds are:

a >

a < (544)

o= W

We choose to do numerics with a; = 4 and a, = 0.

5.2 Anisotropic surface tension

Although the study of phase ordering dynamics has a long history, most of the work
is confined to studies of isotropic surface tension. In general, the physical systems
do not always have full rotational symmetry, and we need to consider anisotropic
surface tension. Siegert [35] studied anisotropic surface tension in two-dimensional
non-conserved systems and showed that anisotropy does not change the characteristic
interfacial speeds. Recently, Rutenberg [36] showed that in two-dimensional conserved
and non-conserved systems, with nonzero anisotropy, the correlation functions depend
on the orientations in the scaling regime. Rutenberg and Vollmayr-Lee [37] solved a
simplified coarsening system with arbitrary anisotropic surface tension and interface

mobility, and found that the shapes of growing domains are anisotropic but different
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from the equilibrium crystal shape. Anisotropic surface tension affects correlations in
the scaling regime. While this indicates that anisotropy is relevant, nobody has yet
investigated the universality classes that results from anisotropic surface tension. In
principle our accelerated algorithms are ideal for this application. In this section, we

develop the algorithms for a study of anisotropic surface tension, but leave a detailed

numerical study for future work.

5.2.1 Algorithms with anisotropic surface tension

We want to implement surface tension anisotropy into systems as generally as pos-
sible in order to study a broad range of problems related to anisotropy. Recently
several authors [38, 39, 40, 41] have introduced anisotropy into their systems. Here
we introduce the method due to Kobayashi [42] and Wheeler, Murray and Schaefer
[43], who include anisotropy by introducing a gradient energy coefficient €(6) [44],

which depend on the orientation 6 of the gradient vector V¢, where

6 = tan~! (%Z—)

is the angle that V¢ = (¢,, ¢,) makes with the z axis. The angle 6 is thus defined

(5.45)

throughout the domain. The equations admit steady solutions of the form ¢ = ¢(g-11),
where 1 is a constant unit vector and g is a coordinate normal to the domain wall.
We have g-1 = zcosfy +ysinf. The orientation is then constant, with 8 = §,, and

the solution is given by

g-n
@(g) = tanh (——) . 5.46
) V2¢(6o) 548
The surface free energy for this orientation is then given by
2v/2¢(8
o(60) = I;L"l (5.47)

The above two results are obtained using Eq.(1.10) and Eq.(1.13).

We can also calculate the chemical potential for anisotropic interfacial energies as
oF
o9

v avgy s D [ 2e08) 0 (deds) av
= V(€V¢)+8x(€d98y> 3y<€d96x>+7¢;’ (5.48)

=
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where the relation 60 = (¢.0¢, — ¢,0¢.)/|Vé|® is used. Using the relations

0z = (¢abay - ¢y¢zx)/lv¢|2,
ey = (¢z¢yy - ¢y¢zy)/lv¢l2a (5.49)

if €(f) is continuous everywhere, Eq.(5.48) can also be expressed in a form more

suitable for computations [45],

po= =€V — e'[sin(20)(dyy — Gzz) + 2c05(260) g, _
+%(€'2 + e€")[25in(260) ¢gy — V¢ — c05(20)(¢yy — G2z)] + %, (5.50)

where €' = de/df, € = d?¢/d§?, and the subscripts denote partial differentiation with

respect to z or y.
Eq.(5.50) can be substituted into equations of motion Eq.(1.6) and Eq.(1.7) to de-

scribe conserved dynamics and non-conserved dynamics, respectively, for anisotropic

surface tension.

5.2.2 von Neumann stability analysis

The von Neumann stability analysis for anisotropic surface tension is similar to the

isotropic case. The difference is that we now have more terms and more parameters.

Below we will show the von Neumann analysis for non-conserved dynamics.
Substituting Eq.(5.50) into the equation of motion for non-conserved dynamics,

Eq.(1.7), and using V(¢) = (¢* — 1)?/4, we get the non-conserved equation for
anisotropic interfaces

¢ = €V?¢+ec'[sin(26)(dyy — buz) + 2¢05(260) 6]
1
—5(6'2 + €€”)[251n(26) by — V26 — c05(26) (¢ — bza)] + & — ¢°. (5.51)
For a particular orientation 6, we can simplify the above equation as follows
6 = &+ B2(0) ez + Bs(0)dyy + Ba(8) 9oz + Gy + 262,) — &°, (5.52)

where

By(8) = €+ %(6’2 + €€”) — €€’ sin(26) — %(6'2 + €€”") cos(26)
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—e€' cos(20) + = (€ + ec”) sin(29), (5.53)

<

B;(§) = €+ %(5'2 + €€’

< ~

1
2
1
) + €€ sin(26) + 5(6'2 + e€") cos(26)
—ee' cos(26) + %(e + e€”) sin(26), (5.54)

By(0) = e€'cos(26) — = (€ + e€”) sin(26). (5.53)

N =

If we consider unconditionally stable algorithms, we need a general mix of implicit

and explicit terms for the above equation:

2 4
Grrar + At [(al — 1)¢rrat + (a2 — 1) By(6) Y gHz-At + (as — 1)Bs () —=22L & ¢‘+At

0? 824 a
los DB (T T e a )

5
- ¢t+At[a1¢t+asz( ) ait 0333(0)?9_;5;
8%, 9%¢,

a2¢t 3 -
+“*Bde)(ax2*'ay2'+2axay)"¢4‘ (5.56)

Taking ¢(x,t) = ¢+ n(x,1), linearizing Eq.(5.56) in 7, and taking its Fourier Trans-
form, we obtain

[1 -+ At{(al — 1) - kng(a) (a2 - 1) — k§B3(9)(a3 - 1)
—(kz + ky)*Ba(8) (as — 1) Nk ,e+a
= [1 + At{a1 - kiBz(e)ag - k§B3(9)a3 - (kx + ky)2B4 (9)&4 - 362}]771(’,5(5.57)
Writing this as
[1 + Atﬁ]'f]H.At = [1 + AtR]Th. (5-58)

Similar to von Neumann analysis for isotropic case, the necessary and sufficient con-

dition for unconditional linear stability is

L-R > 0, (5.59)
L+R > 0. (5.60)

Firstly £ — R > 0 yields:

0< L—R=-1+kZBy(0) + k2B3(8) + (ks + k,)? B4(6) + 3¢*. (5.61)
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We can see that when B,(6) = Bs(f) = 1, B4(f) = 0, the above inequality recovers
the spinodal condition of the non-conserved dynamics (3.4). Secondly L+ R > 0
vields

0<L+R = (2a;—1-3c) —k2By(8)(2ay — 1)
—ij;;(e) (2@3 - ].) - (kz + ky)234(9)(204 - 1) (562)

If we impose the most restrictive value of ¢ € [—1,1], we get 2a; — 1 — 3¢* > 0. Also,
we require the three terms B;(6)(2a; — 1) in inequality (5.62) to be negative. This
means the a; are greater or smaller than 1/2, depending on the signs of B;(f). In

summary, the stability condition are:

a; > 2,

a; < 1/2 if Bi(8) >0,

a; > 1/2 if B;(f) <0. (5.63)
Since we do not know the sign for B;(f) in general, we should set a; = 1/2, (i = 2, 3,4)

to eliminate B;(f) from the stability condition. Therefore the stability condition for

becomes

[SV)

ey

a >

a; =

, i=2,3,4. (5.64)

N

The von Neumann analysis for conserved dynamics with anisotropic surface ten-
sion is quite similar to the non-conserved dynamics. We obtain the same stability

condition (5.64) since the extra —)\ term drops out of the stability equation.



Chapter 6
Summary and discussion

This chapter contains a summary of our results, and then discussion and some future

research possibilities.

6.1 Summary

In Chapter 4, we obtain unconditionally stable accelerated algorithms (At = At 3)
for conserved dynamics with arbitrary accuracy controlled by the size of the pref-
actor A. The relative multi-step error in scaled correlations with these accelerated
algorithms scales as VA (shown in Fig.4.4), which is consistent with our analysis in
Chapter 4.

It is meaningful to explore the relative computational advantage offered by such
an algorithm. In our simulations, we want to evolve the system as far as possible in
the scaling regime, i.e. until largest possible L(¢;). This means evolving until finite
size effects, which is expected to appear when L(t;) ~ Loti/ % is some fraction of the

system size, so we define the simulation ending time Zsmez bY L(tsmaz) = fLsys, OF

L \°® AzN\?®
tsmaz = (%) = (f L:Z ) (61)

where IV is the linear size of the lattice, Az = 1 is the lattice spacing, f = 0.1 reflects

the fraction of the averaged domain size as finite size effects appear and Ly ~ 1.4
[27]. With the fixed time-step (Atg, & 0.05) Euler algorithm, evolving the system to

tsmez requires the number of steps

t
“ — smazxr . 6 .2
ne Atgy ( )

On the other hand, with our accelerated algorithm At = At 3 evolving the system

t0 tsmer Needs the number of steps (see Eq.(4.53))

_ Btih

A

(6.3)

NAc
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Therefore the ratio of computer time cost is [27]

TEuler _ }_nEu

= , (6.4)
TDirect ,B N4c
where § is the ratio of computer time per step
N
= 2reet 95, (6.5)
TEuler

Combining all these relations, we obtain the relative speedup of this algorithm

with respect to the Euler algorithm as [27]

TEuler — A (fA:L‘N)z ~ N2
Tpirect  3PBALgy Ly ’

(6.6)

which is of order N2, indicating that we will gain dramatic speedup as N is larger.

Unlike the Euler algorithm, in these accelerated algorithms in conserved systems
(At = At 3), we have a At- and k-dependent effective time-step At.sr Eq.(4.9) —
the effective time-step is not the same for each mode. The structural time-step At
Eq.(4.19) and Eq.(4.22) can be considered as the integrated “effect” of the effec-
tive time-step over all modes. It is interesting to note that the difference between
Atess and At corresponds to the single-step error in Fourier-space (see Eq.(4.56) and
Eq.(4.85)). We have not obtained a significant speedup for non-conserved systems —
the maximum relative speedup factor is roughly 1.45 with parameters a; — 2% and
a; — 0.5".

The structural time ¢; and structural time-step At play crucial role in determining
the “real acceleration” since structural time is the only probe of how fast the algorithm
actually evolves the system structure. Conversely, the algorithmic time-step At is not
meaningful except in the expression of the effective step At and in the discussion
of accuracy. It is by rigorously distinguishing At and At, that we were able to
understand these algorithms more clearly.

6.2 Discussion

Why is the Euler algorithm wastefully accurate at late times? By studying the asymp-

totic scaling of field derivatives in both real space and Fourier space, we can see that
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the multi-step error is decreasing with time, thus making it more and more accurate,
ie., wastefully accurate. As an illustration, consider the single-step error of Euler

update (fixed Atg,) with respect to the actual conserved dynamics in real space

A = AtEué—Z?;—fbmg, (6.7)
n=1
0 ) i
= _2 'It’I,' AtEu’ (68)
¢
~ w, (6.9)
~ t753, (6.10)

where the field scaling in real space 67¢ ~ t5 1/3~2n/3 [27] and At, = Atg, are used.
Evolving the system until ¢, requires ¢,/Atg, updates, which, following the argument
of multi-step error in Chapter 4, indicates that the multi-step error is at most O(ts 2/ 3).
Thus the Euler algorithm is more and more accurate as time evolves. More generally,
since an accelerated scheme of At = At? will have a constant multi-step error only
if B = 2/3, any scheme with 8 < 2/3 will lead to a multi-step error that decreases
towards 0 at late times, and so will be wastefully accurate.

Another question related to these accelerated algorithm is which parameters q;
and a; make the algorithm most efficient. The answer to this question in non-
conserved systems is quite clear from Eq.(4.82). Asa; — 2% and a; — 0.5 at
the stability boundary, this algorithm gives a maximum At and the smallest errors.
In conserved systems, Eq.(4.27) and Eq.(4.28) indicates that ay does not contribute
so is not of interest, at least in the scaling regime. For fixed prefactor A, the smaller
the value of a;, the larger the At;, the smaller the error. Therefore as a; — 2%, this
scheme approaches maximum speedup.

It is interesting to compare the time it takes to reach finite-size effect in both

systems. With At ~ ¢, the number of steps to get to the finite-size effect in conserved
dynamics is

neo ~ N3(1-a), (6.11)
while for non-conserved dynamics it is

nyc ~ N21~a) (6.12)
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where N = Lgys/Az is the linear lattice size. nyc ~ N? as At, = const in non-
conserved dynamics, and ngo ~ N as At ~ tﬁ/ % in conserved dynamics. This indi-
cates that we spend much less time reaching finite-size effect in conserved dynamics
than in non-conserved dynamics using our accelerated algorithms.

We expect these accelerated algorithms to have extensive application in various
systems. The implementation of these accelerated algorithms is straightforward. First
we semi-implicitly parameterize the dynamics, then we do a von Neumann linear
stability analysis and determine the constraints for the parameters. We then need to
check numerically the unconditional stability of specific von Neumann stable systems,
as per Section 3.3. The last thing we need to check is the accuracy — we need to know
whether the multi-step error can be controlled at arbitrary accuracy. It is helpful but
not essential to know the physics behind the system under study since it helps us to
pick the appropriate algorithmic time-step At. The combination of At and errors
related to correlations are useful in choosing the right time-step At. The obvious

systems for future study are hydrodynamic models [16].



Appendix A
“Checkerboard instability” for Euler algorithm

For the Euler algorithm in the study of partial differential equations, there is a thresh-
old for the time-step At, above which the simulation becomes unstable. This is the
checkerboard instability [19] which forces one to use a fixed value time-step. In
this Appendix we study this threshold in both non-conserved and conserved two-
dimensional systems by doing a von Neumann linear stability analysis. We will also
see the spinodal condition is a natural outcome of this analysis.
In two-dimensional, a discrete form of Laplacian V?n(z,y) can be written as
A — -
Vin(z,y) = a[n(z + Az,y) + (e — Az, y) — 29(z, y)
A2z
L@y + AY) +n(z,y = Ay) = 20(z, y)]
A%y
+ B [n(:v + Az, y + Ay) + n(z — Az, y — Ay) = 2n(z, y)
A2z + A2y
A2z + A%y ’ )

where Az and Ay are lattice spacing in z and y direction, & (0 < & < 1) is associated

with the nearest neighbor terms and 5 (0 < 8 < 1) is associated with the second
nearest neighbor terms, and with the relation ¢« + § = 1. In our study, we let
Az = Ay = 1. Now z and y are integers ranging from 0 to L — 1, where L is the
system size. We have

Vin(z,y) = efn(z+1,9) +n(z—1,y) +n(z,y + 1) + n(z,y - 1) - 4n(z, y))]
+§[n(x+1,y+ D+nz-1,y+1)+nlz+1,y—1)
+n(z = 1,y — 1) — 4n(z,y)]. (A.2)

In the discrete form, we can write

niz,y) = » » ekthllog k). (A.3)
k= ky

Ut
t
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For non-conserved dynamics, taking ¢(x,t) = ¢+ n(x, t), we linearize Eq.(1.7) to get

f = V2n+n—3c%n. (A.4)

Substituting Eq.(A.3) and Eq.(A.2) into Eq.(A.4), we have

ﬁ(kl" ky7 t)
a[egm‘k:/L + e-—27rz'kz/L + e21riky/L + e—2m’ky/L _ 4]7](kz, ky,t)

+§ [e2milhethi)/L | g=2milketiy)/L  G2milkz—ky)/L | g=2milks=k)/L _ gln(k . )

(1= 3n(ka, by 1),

2acos(27k, /L) + cos(27ky /L) — 2n(kz, ky, t)

+B[cos(27 (kg + ky) /L) + cos(2w(k; — ky) /L) — 2]n(kz, ky, 1)
+(1 = 3¢*)n(ks, ky, 1),

= ()‘k +1- 362)77(k:z:7 kya t)’ (.AE))
where
27k 27k 27 (kg + ky) 2m(k, — ky)
= =2 — z_ vl — - il ShC s A b S 74
Ak o' [2 c0s — cos 7 ] B [2 cos 7 Ccos 7 ,
. o 7k . o Tk Lok +ky) o w(ke —ky)
_ 2 TRz 2 Thy | 2 T\Rz T Ky 2 y
= —4o [sm 7 + sin 7 } 2B [sm T + sin |
> —8a — 4ﬂ7
= —da-—4, (A.6)
On the other hand, we have
) kg, ky, t + At) — n(ks, kyy t
(e by 1) = WEm 1 87) — ks By 1) (A7)

At

Substituting Eq.(A.7) into Eq.(A.5), we get

n(kz, ky, t + At)
77(k-‘c’ ky’ t)

= (M +1-3c*)At +1. (A.8)

The linear stability criterion requires that

n(kz, ky, t + At)| < |n(kz, ky, t)]; (A.9)

which implies that

M +1-3HAt+1< 1, (A.10)
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and
(Ak+1-3c%)At+1> ~1. (A.11)

The inequality (A.10) recovers the spinodal condition inequality (3.4). The inequality
(A.11) shows the checkerboard instability for the Euler update; i.e. Af most be below
a threshold to maintain stability:

9

4

3¢z —-1- /\k.
The threshold for At is k-dependent, and we want to find a threshold that satisfies

At < (A.12)

every mode. Using inequality (A.6) and ¢ < 1, we obtain

o2 1
T 4a+4+2 2a+3°

(A.13)

Note that when « is taken extreme values 1 and 0, the right hand side is 1/5 and 1/3,
respectively. In the code we are currently using, we use a = 2/3 for isotropy, and we
have At < 0.23 for stability. Numerically we always use At = 0.2 in non-conserved
systems throughout this thesis.

For conserved dynamics, linearizing Eq.(1.6), we get
1= —-V3(V’n+n-23cn). (A.14)

Likewise, we can get an equation analogous to Eq.(A.5)

ks, Ky, t) = = (A + 1 — 3¢%)n(ke, &y, 2). (A.15)
Similar to non-conserved case, we get
2
At < ; Al
(BE—1-0g) (4.16)

and we choose

) 1
At= da+4)(da+4+2) ([da+d)(2a+3) (A.17)

which satisfies every mode. Note that when o is taken extreme values 1 and 0, the

right hand side is 1/40 and 1/12, respectively, which are smaller than in non-conserved
case. In the code we are currently using, where oo = 2/3, we have At < 0.034 for
stability. Numerically we always use At = 0.03 in conserved systems throughout this
thesis.



Appendix B
Finite-size effects

During the evolution of 2 finite system, there are three different regimes (see Fig.1.2):
the first is a transient period, during which the domain size is nearly stationary and
the order parameters saturate into one of the two equilibrium states, followed by a
scaling regime during which the domain size L(t) increases with a power law in time,
L(t) ~ t*. When the domain size L(t) reaches a fraction of the system size Ly,
finite-size effects appear, which will cause the domain size to deviate from the power
law. In our simulation, we usually ignore the transient period (0 < t < 10), ie.,
we take our data starting from ¢ & 10 until the finite-size effect becomes significant.
Fig.B.1 illustrate the effect. Among these regimes, we are only interested in the
scaling regime. Therefore, we halt the simulation when the system is in the finite-size
effect for computational efficiency. Estimated maximal times for various System sizes

are outlined in Table B.1 for non-conserved and in Table B.2 for conserved dynamics.
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L=256
L=128 weerereennns
r L=64 — - -~ 7

Essqri(t)

10 100 1000 10000

Figure B.1: Plot of Et'/? as a function of time ¢, where E is the energy density,
with an Euler update with a fixed time step At = 0.2 in non-conserved systems,
with three different system sizes Lyy; = 64,128 and 256. We can see the finite-size
effect for different system sizes: the bigger the system size, the longer the finite-size
effect. Since in non-conserved systems, E ~ 1/L ~ t~%/2 in scaling regime, we have
Et'/2 ~ const. Finite-size effect appears as EtY/? deviates from a constant.

64 8
128 | 32
256 | 128
512 | 512

1024 | 2048
2048 | 8192

Table B.1: Estimated maximal time %,,,, that a system can evolve before finite-size
appears for both energy density E and scaled correlation function, for different linear
system sizes Ly in non-conserved systems. Since L(t) ~ t/2 for non-conserved
systems, we have t,,,, ~ Lﬁys. Therefore, we will expect evolving the system 4 times
longer to reach finite-size effect if we double the linear system size. We use this table
as a guideline in non-conserved systems throughout this thesis.
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Lsys tmaz |

64 4
128 32
256 256
512 | 2048

1024 | 16384
2048 | 131072

Table B.2: Estimated maximal time t,,, that a system can evolve before finite-size
appears for both energy density E and scaled correlation function, for different linear
system sizes L,y in conserved systems. Since L(t) ~ t1/3 for conserved systems, we
have tper ~ Lgys. Therefore, we will expect evolving the system 8 times longer to
reach finite-size effect if we double the linear system size. We use this table as a
guideline in conserved systems throughout this thesis.



Appendix C

FFT algorithm for calculating correlations

While standard, the algorithm of Fast Fourier Transform (FFT) for calculating the
correlation function and its Fourier transform, the structure factor, is by no means
transparent. It is therefore useful to explicitly explain how it works to help any
debugging.

We have a two-dimensional discrete array of the order parameter ¢.(ni, ns), where
n; and n, are integers ranging from 0 to L — 1, and L is the system size 2™ (with m
being a positive integer for FFT). In order to calculate the correlations, it is necessary
to obtain @x(n1,n2), which is the explicit form of the discrete Fourier Transform of
array @z(n1,m2). In “Numerical Recipes in C” [28], there is a standard routine rift3
for this. I will introduce this routine and show how the correlations can be obtained.

The input data @;(ny, ny) is stored as a real, three-dimensional array data[1..1][1..L][1..L],

with the first dimension vanishes
data[1][i1][i2] = @=(1 — 1,52 — 1) 41,40 € [1, L]. (C.1)

After FFT, the output data @x(n;,n2) comes as a complex, three dimensional array
SPEC[1..1]{1..L][1..L/2 + 1]. The subscript range SPEC|[1..1][1..L}[1..L/2] is returned
in the input array data[l..1)[1..L][1..L] with the correspondence

Re(SPEC[1][i][i2]) = data[l][i;][2*i» — 1],

Im(SPEC[1][i1][iz]) = data[l][i1][2 =], (C.2)
with 4; € [1,L] and i, € [1,L/2]. The remaining SPEC[1..1][1..L][L/2 + 1] is returned
in the two-dimensional array speq[1..1][1..2 * L], with the correspondence

Re(SPEC[1][i][L/2+1]) = speq[1][2 =iy — 1],
Im(SPEC[1][i,][L/2+1]) = speq[1][2 xiy], (C.3)
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with 4; € [1, L]. To summary, we obtain ¢x(n;,n,) as

O(ts — 1l — 1) =

(data[1][iy][2 iz — 1] + ¢ = data[1][i1][2 * iy i €[1,L],4, € [1,L/2]
speq[1][2 * iy — 1] + ¢ = speq[1][2 * iy] i1 €[1,L],4p=L/2+1
data[1][1]2 % (L+2 —ip) — 1]

—i x data[1][1][2 % (L +2 — iy)] ih=1,ip € [L/2+2,1]
data[lJ[L+2-iy]2x (L+2~ip) — 1]
(| —ixdata[l[L+2-i)2% (L+2-0)] & €[2,L]ir € [L/2 42, L]

where @ (i1 — 1,72 — 1) with 4, € [1,L] and 45 € [L/2 + 2, L] terms are obtained in
such a way that ¢x(n1, n2) is complex conjugate symmetric at ¢ (L/2, L/2). Now we

can obtain the structure factor

Sk(n17n2) = ¢k(n17n2)¢k(_n17 —Tlg),
= ¢k(n17n2)¢k(L_n17L—n2)7
= Re*¢r(n1, o) + Im? @ (ny, ny), (C.4)

Se(iy — 1,3 — 1) =

( data?{1[is][2 i — 1] + data?(1][i)2 %] i1 € [1, L), i € [1, L/2]

speq”[1)[2x i1 — 1] + speq?[1][2 # iy] €L L],iz=L/2+1
data?[1][1]{2 % (L + 2 —ip) — 1]
+data?[1][1][2 * (L + 2 ~ ip))] =14 €[L/2+2,L]

data?[1][L +2 — iy][2% (L +2 —ip) — 1]
\ +data®[l[L+2—y)2% (L+2-0)] 4 €[2,L)ire (L/2+2,L)

The array Si(ni,n2) is symmetric at S¢(L/2,L/2), and we have Sk(ni,ne) = Si(L —
ny, L - TL2).
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If we want to obtain correlation function C;(n;, n,), which is the Fourier transform
of structure factor Si(ni,n2), we need fill in the arrays rdata[l..1][1..L][1..L] and
rspeq(1..1][1..2 % L] for inverse FFT. Because Sy is real, the imaginary parts of the

correlation function C; is zero. Therefore, we can fill in as follows

rdata[l..1][1..ih][2 i — 1] = data®[1][i1][2 * iz — 1] + data?[1][i1][2 * i2),
rdata[l..1)[1..i1][2 % i3] = 0,

with ¢; € [1,L] and i, € [1,L/2), and

rspeq(l..1][2 xiy — 1] = speq?[1][2i; — 1] + speq?[1][2 = i),
rspeq(l..1][2xi;] = O,

with ¢; € [1,L]. Thus combine rdata[1..1][1..L][1..L] and rspeq[1..1][1..2 * L], we will
be able to form a complex, three dimensional array RSPEC[1..1][1..L][1..L/2 + 1] for
inverse FFT

Re(RSPEC[1[i][ia]) = rdata[L][iz][2 #i» — 1],
Im(RSPEC[1][i][ia]) = rdata[L][iz][2 # io], (C.3)

with ¢; € [1,L] and i, € [1,L/2], and

Re(RSPEC[1][i;][L/24+1]) = rspeq[l][2 xi; — 1],
Im(RSPEC[1][i1][L/2 +1]) = rspeq[1][2 *iy], (C.6)

with ¢; € (1, L]. After inverse FFT, rlft3 routine will transform the complex, three di-
mensional array RSPEC[1..1][1..L][1..L/2+1] to the array rdata[1..1][1..L}][1..L], which

corresponds with Cy(n,ny) as
Ce(iy — 1,4y — 1) = rdata[1][i1]fia] 1,42 € [1, L] (C.7)

The array Cz(ni, ny) is symmetric at C;(L/2, L/2), and we have C;(n,ng) = Co(L—

n1, L — ng).



Appendix D

Test of correlation function and structure factor

It is important to test the structure and make sure the FFT works. We find a good test
of numerical algorithm is “white-noise”, which is a typical example of a completely

disordered configuration of order parameter. In a two-dimensional system, we have

(6(x)8(x')) = Ad(x — x), (D.1)

with x = n,i+n,j, where n; and n, are integers ranging from 0 to L—1. (...) represents
an average over different systems, and A controls the size of the fluctuation in ¢. We

characterize the “noise” by its moments

(6()) = O,
(*(x) = 4,
(¢'(x)) = B, (D.2)

where A and B are constants depending on the details of the distribution, and

0 ifr#0
Clr)=(o(x+1)o(x ={ D.3
(r) = (6(x +1)o(x)) A ifreo (D.3)
Thus, we can calculate the Fourier transform of ¢(x) and structure factor as
— 1 —27ik-x/L
b = 326 (x), (D.4)
Sk) = dxdx (D.5)

We can now calculate the average value of structure factor S(k) as

(S(k)) = (dxd-x),
= 5 IR (6(x),

= A (D.6)
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Next we calculate the average value of S%(k) as

(S*(k)) = <¢k¢ K PP_ic)s

= L4ZZZZe‘2’*(" XN (3(0) (<)) (X", )

1 1 , /
= Y FEOEEN L Y ()

v Y R 0) ()

!l ol =1 ']
x=x" x'=x"" x#x

1 4
+73 > ('),

x=x'=x" =x"
9 A2
— 2‘42 _ "‘Liz + LB L4 z e—4~rzk (x—x' )/L (D?)

x#Ex!

L. L,
Note that in the two extreme cases of k; i.e. k = 0 and k = -2—1 + 53, we have

e-—47rik-(x—x’)/L =1 and
(5§%(0,0)) = (S%(L/2,L/2)) = 3A% - = + =. (D.8)

We continue our calculation of (S%(k)) for other k as

(S*(k)) = 2A2—2£4;—2 (Z Z Z Z) —4milky(n1—n})+k2(n2—np)]/L

ni#n} n2,nh  ni=n| na#nh

242 B
_ 2
= 24° - F-{- ﬁ
A2 L-1 " : "
s A (- ettt i
'n.1=1
L-1
X | 3 (L = (el 4 gt/ 4
n’2'=1
+ L Z (L — nlf) (e~ 4miken/L 4 gtwikant /Ly (D.9)
n2_1

where n = n;—n{ and nj = ny—ns. Note that cos(4nk,n)/L) = cos(4nk,(L-nf)/L),

we have
L-1

Z (L )( —4xikyny /L + e—4mk1n1/L)

"__
ny=1
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= QZ(L ny) cos(dnkyny /L),

n{=1
Lj2-1

= 2L Z cos(4wkyny/L) + L

n{=1
= 2Lcos((L/2)2nk,/L)sin((L/2 — 1)2rk,/L)/sin(27k, /L) + L
= 2L cos(wk,)sin(7k, — 27k, /L)/sin(2nk, /L) + L,
= 2L(—1)"1 (—1)"1 sin(—27k;/L)/ sin(27k,/L) + L,
= —L. (D.10)
Substituting Eq.(D.10) into Eq.(D.9), we have

(209 =242 - 2 4 B (0.1

We can now calculate the standard deviation o5 of S(k) as

= S (50k) -

gs =
= V($*(k)) - (S(k))2,
2
\/A2—%+B ifk;éOork;éEi+£j
2A? 4B ifk=0 dk—L° L;
—F+ iHk=0an —;2-1+5,]
Thus if we measure S(k) M (k) times, the standard deviation of the mean oz is
0s

o5 = . D.13
T (D-13)

Next let us consider some examples. We consider an order parameter randomly
chosen to be ¢ = x1. We get A= B = 1. Thus

[ 2 : L. L.
~ l—ﬁ 1fk#00rk7é§1+§J

= 1
v ,/2—3 ifk—Oandk—L'+£' -
L2 = = 21 2.]
For an order parameter uniformly distributed between —1 and +1, we have
1, 1
A = 5 /_1 rdzr = g,
1t 1
B = [ zidz== .
5 /_ 1 z=z. (D.15)
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Figure D.1: Structure factor S(k) vs k (open square in the upper figure for an order
parameter ¢ randomly chosen to be either —1 or +1, open circle in the lower figure
for an order parameter uniformly distributed between —1 and +1). The theoretical
predicted averaged value is also plotted (thick solid line in both figures). The standard
deviation of the mean of the structure factor S(k) vs k is plotted too (open diamond
in the upper figure, and open hexagon in the lower figure). The theoretical predicted
averaged value o3 (see Eq.(D.13)) is also plotted (thin solid line in both figures),
where M(k) is the times we average S(k). The linear system size Ly = 256. The
data is obtained by averaging over 10000 systems.
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= 2 2 (D.16)

Os =
2 ) L, L,
9_15? 1fk—0andk—§1+§,]

Thus we have

| b —

and these are confirmed by the computational calculation with two different random
generator ran2 and ran4 [28], and they give the same results, which is plotted with
the theoretical predicted values in Fig.D.1. All the data in the figures are obtained

using ran4.



Appendix E
Scaling of field derivatives in Fourier space

In order to study the accuracy of these accelerated algorithms, it is necessary to
know the scaling of field derivatives in both real and Fourier space. Vollmayr-Lee and
Rutenberg [27] have studied the scaling of field derivatives in real-space in order to
study the single-step error. In this thesis, our analysis on accuracy of these accelerated
algorithms are based on scaling of field derivatives in Fourier space.

We first consider conserved dynamics. Since
S(k) = (Igx[*) = L?g(kL), (E.1)
where g(kL) ~ (kL)™3 as kL >> 1, we obtain
|6x| ~ L/g(kL) ~ ¢, (E2)
because g(kL) = O(1) for kL = O(1). Previous studies [1, 31] showed that
& = Lkoy, (E.3)
as kL > 1, so we have the form for the time-derivative correlation function as
T(k) = (|$[*) = L*k*(|6x[*) = L*m (KL), (E-4)
where
hi(kL) = k*L*g(kL) ~ (kL) (E.5)
as kL > 1 is the scaling function, and we have
66l ~ Lv/ha (kL) ~ £/2 (E-6)
because h; (kL) = O(1) for kL = O(1).
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Figure E.1: Plot of T'(k)/E* vs k/E for conserved systems, with Euler update, At =
0.03, Lsys = 256, averaged 15 samples. The two reference lines are ~ z* and ~ z71.
Although as kL > 1, the data do not show precisely T'(k)/E* ~ (k/E)™!, we think

it is due to finite time transients. For a larger system size and later times, we expect
to confirm the relation in Eq.(4.29).



71

102 ﬁ T R T IR
ts=64 +
L - ts=1280 4
. ts=256 %
ts=512 ¢
109+ i
W
N 120 ]
< 10
=
- oo -
x %
oo
10_4 = -'- °°° ]
l. 0o
°
- - ° -
10‘5 P | N el - 21 i
0.1 1.0 10.0 100.0

Figure E.2: Plot of T(k)/E? vs k/E for non-conserved systems, with Euler update,
At = 0.2, Ly, = 256, averaged 15 samples. The reference line is ~ z~1. Although
as kL > 1, the data do not show precisely T'(k)/E? ~ (k/E)~}, we think it is due to
finite time transients. For a larger system size and later times, we expect to confirm
the relation in Eq.(4.77).

The time-derivative correlation function T'(k) have not been studied before. We
measure T'(k) numerically and confirm the scaling of A(x) in both conserved and
non-conserved systems. See Fig.E.1 and Fig.E.2 for details.

The generalization of more time-derivative correlations for conserved two dimen-

sional scalar order parameter is
(107 xl*) ~ L* K107 i), (E.7)

where ~ is used to indicate that LHS may not exactly equal to RHS.
Applying this relation will yield

(107 0x[?) ~ L L* =2 h, (KL), (E.8)
where

ha(kL) = K*L2h,_y (kL) ~ (KL)*? (E.9)



as kL > 1. Note that as n > 1, hy(kL) < (L/€)23 ~ 2371 1t follows that
|82 x| ~ LML \/ Ry (KL) ~ t72/3-1/6 (E.10)

for n > 1. To summary, we have

—n+1/3
n=0,1
07kl ~ 4 7 ’ (E.11)

for conserved two dimensional scalar order parameter. For non-conserved two dimen-

sional scalar order parameter, we can obtain similarly that

-n+1/2

n, | Jts n=0,1 N
10 9 {t;n/2-—1/4 n>1 (E.12)

Note that the scaling functions for non-conserved and conserved two dimensional
scalar order parameter have the same behavior as kL > 1.

Eq.(E.11) and Eq.(E.12) are important relations we use in our accuracy analysis

for accelerated algorithms.



Appendix F
Moments of correlations in conserved systems

Study of the moments of correlations looked like an interesting topic in understanding
the structure of the coarsening systems. However they prove to have time dependence
even in the scaling regime due to transients in the correlations.

The definition of nth moments of a function f(z) is

M, (z) = / F(@)s"dz. (F.1)

In conserved systems, first, we want to predict what moments can be calculated for
S(k). Because S(k) ~ k* as k is small [46, 47) and S(k) ~ k2 as 1 < k < 1/€ [29],
we expect S(k) has valid moments for —4 < n < 2.

It is interesting to predict the time-dependence of the moments of the correlation
functions and structure factors. First, note that for a given time, 1/F ~ L ~ £/ 3,
Emin ~ 1/Lgys and kpmer ~ 1/€, where £ is the domain wall width. Therefore,

(k/E)min ~ £/ /Lsys and (k/E)maz ~ ti/ 3/5. For the nth moments, we have

’
0

Zo ZTmazx
M,=C+ / z"dy + / " 3dz, (F.2)

Tmin
where zp is a constant in small k regime, zj is a constant in large k regime, C is
a constant represents the integral between zy and zj, and z = k/E. When n # 2
(-4 < n <1), we obtain

xn-{-S xn—2
M — Cl_ min max
" n+5 n-—2
(n+5)/3 t(n—?)/3
_ ! S S
= 0= M- + Nogrrm, (F.3)
sys

where C' is a constant, M and N are prefactors. As late times, the third term
Nt/ /€*7% — 0. For the second term, note that Lgys > L(t;) ~ £ we get
a small but non-zero time-dependent contribution in the moments. This has been

confirmed by numerical studies (data not shown).
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Figure F.1: Plot of M, ([ S(k)k*dk) vs t, for conserved systems, with Direct update,
At = 0.001¢/3, for three different system sizes Ly, = 128, 256 and 512. We see the
linear increase of M, with respect to ¢;. This confirms Eq.(F.5), which indicates that
the slope is N'.

When n = 2, we obtain

-
{

M2 = C” - $m7in + ln xmaz7
i ! t7/3 !
= C —ML7—+Nlnts, (F4)
SYys

where C” is a constant, M’ and N’ are prefactors. At late times, the third term

N'Int; dominates the integral. Therefore, we get
M, = N'Int,, (F.5)

at late times. Fig.F.1 confirms this prediction.
We see that these moments depend on time. Since we always want to study the
time-independence of the correlations in coarsening systems, the moments appear not

to be a good probe.



Appendix G
Asymmetric potentials for asymmetric bulk diffusivities

In the study of asymmetric bulk diffusivities generated by asymmetric potentials, the
choices of selecting a suitable potential that agrees with Eq.(5.12) is not unique, even
with the requirement that V'(¢.) = 0 at ¢+ = +1. In this Appendix, we introduce
some other forms of potential that may be of interest.

Chapter 5 introduced

Vi(4) = %(452 — 1)2(¢? + 2b6 + 1), (G.1)

which is O(¢%). We can instead add terms to the symmetric potential Vp(¢) =
(¢* — 1)?/4. Probably the simplest is

Va(8) = (6 — 1)+ 586° ~ bs, (G2)
with b € [0, 1], which yields
Vi(6) = (6 = 1)(6+ ). @3)

This indicates that V5(¢) has two global minima at ¢, = &1, and a local maximum
at ¢ = —b. Calculating V'(¢) gives

VY () = 3¢ — 1 + 2b6. (G.4)

We have V;'(¢+) = 2(1 £ b), which agrees with Eq.(5.12).

The another choice is

1 3 1 1
Va(¢) = Z(¢2 -1+ 2—0b¢5 - gb¢3 - Zb¢’ (G.5)
with b € [0, 1], which yields
1
Vi(g) = 306"+ 6 = 0% — 6 7. (G.6)
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Figure G.1: Plot of different choices of potentials V;(¢) vs ¢ for b = 0.5, together with
the double-well potential V(¢) = (4% — 1)?/4.

This indicates that V3(¢) has two global minima at ¢+ = +1, and a local maximum.
Calculating V5'(¢) gives

V3'(6) = (36" = 1)(1 + bg). (G.7)

We have V3'(¢+) = 2(1 + b), which agrees with Eq.(5.12).

The another choice is

1+b, , s b .
—("—1)"— - fo>0

Va(g) = lib(¢ ) 3 o= (G8)
T(<z>2—1)2+Z if <0

with b € [0,1]. Vi(¢) is continuous at ¢ = 0, and we have
1+0)(¢°~¢) ifp>0
1-0)(¢*-¢) ife<0
V{(#) is also continuous at ¢ = 0. We see that V;(¢) has two global minima Fb/4 at
¢+ = %1 and a local maximum 1/4 at ¢ = 0. Calculating V}(¢) gives

Vi(9) = { (G.9)

(1+5)(3¢2 1) ife>0

Vi) = { 1-b0)32 -1 ifé<0

(G.10)



We have V' (¢+) = 2(1 £ b), which agrees with Eq.(5.12).

See Fig.G.1 for a comparison of these choices. For V;(¢), the advantage is that it
has equal-depth minima, but its disadvantage is also obvious — as the asymmetric
parameter b = 0, Vi(¢) # Vo(@), also, the local maximum is at ¢ = 0 only as b = 0.
Vao(¢) and V3(¢) are quite similar — their advantages are that as the asymmetric
parameter b = 0, Vo(¢) = V3(4) = Vo(¢), but their disadvantage is that the local
maximum is at ¢ = 0 only as b = 0, and they do not have equal-depth shape. For
Vi(@), the advantage is that as the asymmetric parameter b = 0, V4(¢) = Vo(4), and
the local maximum is always at ¢ = 0. The disadvantage is that this form is not

analytic, and so may not be physically reasonable.
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