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Abstract

Multicast communication has become a key requirement for many applications where
one source transmits the same information simultenously to many destinations. The
problem of finding a route from the source to other group members is referred to
as multicast routing. The main objective of multicast routing is to find a route
shaped tree that either has the least total cost, which is known as the Steiner tree,
or has the least cost for every path from source to each destination, which is known
as the shortest path tree. Due to the fast evolution of real time and multimedia
applications such as audio/video conferencing, interactive distributed games and real
time remote control systems, some quality of services, QoS, need to be guaranteed
in the underlying network. Multicast routing algorithms should support the required
QoS. This thesis presents a constrained multicast routing scheme based on genetic
algorithm (GA) by constructing a multicast tree that satisfies two quality of service
(QoS) requirements: (i) End-to-End delay and (ii) Delay variation among path delays.
The proposed scheme constructs a multicast tree by using a simple mapping technique
that does not require a complex transformation in order to obtain a feasible multicast
tree, and also scales well for large size networks. A new multicast routing algorithm
with constraints based on genetic algorithm, called Genetic Algorithm With Delay and
Delay Variations GADVM, is proposed and discussed in depth with the flowcharts
and pseudo codes of its main subroutines. The proposed algorithm is applied to the
problem of multicast routing with delay and delay-variation constraints. The delay
variation constraint is a bound on the delay difference between any two destinations.

The problem is formulated as one of the shortest path routing under delay and delay



variation constraints which is know to be NP-complete. A large number of simulation
experiments have been done to analyze the performance of the proposed GADVM

algorithm and compare it to some other known multicast algorithms.
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Chapter 1

Introduction

With the advances in networking and switching technology and rapid growth of the In-
ternet, many new communication services, high-bandwidth real time and multimedia
applications have become reality. Some of these applications require the transforma-
tion of multiple copies from a source node to a set of destination nodes in a network.
This kind of communication must be supported by a network and is called multi-
casting. Multicasting is defined as the ability of a communication network to accept
a single message from an application and to deliver copies of the message to many

recipients at different locations.

One of the challenges is to minimize the amount of network resources employed by
the multicast. To illustrate this point, assume that a video server wants to transmit
a movie to 1000 recipients. If the server were to employ 1000 separate point-to-point
connections, 1000 copies of the movie may have to be sent over a single link, thus
making poor use of the available bandwidth (Fig. 1.1a). An efficient implementation
of multicasting results in a much better use of the available bandwidth by sending

one copy of the movie on each link in the network (Fig. 1.1b).
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Figure 1.1: Multicast vs.unicast communications.

Computer networks available today were mainly designed to support point-to-
point connection(unicast) and therefore many multicast applications are not effi-
ciently implemented, and as more and more multicast applications become popular
and bandwidth-intense, there is a growing need to provide an efficient multicasting
support.

There are a wide variety of multicast applications , for example:

e Video/telebroadcasts, where one source sends messages to potentially large and

geographically spaced set of destinations;

o Video/telelectures, where a small group of sources transmit to potentially large

and geographically dispersed set of recipients;

o Video/teleconferencing, where a group of participants where each one concur-
rently being both a source and recipients of information while participating in

a group visual display, discussions, and distributed work environment; and

e Applications that require efficient and regular distribution and update of infor-

mation ( such as databases, files, or digitized images) to group of sites.



1.1 Multicast

Computer networks are constructed from two classes of hardware blocks, nodes and
links. A node can serve as a host that users run applications on, it might be used
inside the network as a switch that forwards messages from one link to another, or
it can be used as a router that forwards internet packets from one network to an-
other. Network links are implemented on a variety of different physical media, such
as twisted pair, coaxial cable, optical fiber, microwaves, and radio waves. Information
packets transmitted from a source to a destination are routed through these intercon-
nected nodes. A network is represented bydirected graph which consists of a set of
nodes V and a set of links E. A link connecting a node u to node v is represented by
a tuple(u,v). Communication links in a network may have different properties. For
example, the fiber optical link may have a very large bandwidth compared to copper
wire. A property of a communication link is represented by a weight of the correspond-
ing link in a graph. For example, if the propagation delay of the communication link

is 1ms this information can be represented by assigning a weight equal to 1 in the link.

The communication links can be of two types: symmetric and asymmetric. Sym-
metric links have the same weight in both directions, while asymmetric links have

different weights that depend on the direction of transmission.

In one-to-one communications (unicast), this is when the source wants to send
a message to single destination node. The routing problem in this case is treated
as a shortest path problem in graphs and when two nodes wish to communicate, a

minimum weighted path (shortest path) connecting both nodes is selected.

In multicast communications , when the source node wants to send a message to a
subnet of other nodes, but not all of them, and in this case a minimum weighted tree
which spans over all nodes in the multicast group is constructed. Figure 1.2 shows a

network with multicast group connections.



Depending on the application, the tree constructed in multicast communication
can be either Source-specific, where only one node acts as a source and sends data
while all other nodes receive data, or Group-shared, where each node can send/receive
data to/from other members in the group. For example, applications that involve
reliable transfer of data such as software distribution and update, has different re-

quirements from real time multimedia such as videoconferencing.

Figure 1.2: Multicast group (shown in black circles) in a network

1.2 Routing in Computer Networks

Routing is the process of determining systematically how to forward messages to
their destination nodes based on their addresses. The routing function in computer
networks is executed at the network layer and consists of two phases. The first phase
is to select a route of connected links during the connection establishment period.
The second phase is to make sure that each packet of that session is forwarded along
the route selected in phase one [5].

A routing algorithm is a way to select routes connecting a set of sources belonging to
a given session to the set of destinations of the same session. This dissertation deals

only with the route selection mechanisms.



There are three types of routing algorithms based on the type of the communication

session :

e A unicast session involves only one source and one receiver. A unicast routing

algorithm constructs a path from the source to the receiver.

¢ Routing algorithms for a one-to-many multicast session: construct a multicast
tree rooted at the source and spanning all receivers.

There are two approaches to the many-to-many multicast routing problem.

1. Source-specific multicast trees: Construct a one-to-many multicast tree for

each source.

2. Shared multicast trees: Construct only one multicast tree to carry the

traffic from any source to any destination.

e Broadcast session, that is when the set of receivers of a given session includes all
nodes in the network, then the routing algorithm constructs a broadcast tree
that spans the entire network. The broadcast and unicast routing problems
are special cases of the multicast routing problem. They are usually of lesser
complexity than the general problem. In this thesis, only multicast routing al-

gorithms are discussed.

A routing protocol describes how to implement a theoretical routing algorithm in
practical networks. Protocols must be robust and fault tolerant. For example a
protocol is expected to react fast and safely to link or (node) failures, in order to
minimize the resulting instability in the network. Similarly, a protocol should be
designed such that, if given incorrect or outdated input information, the results will
not be disastrous for the applications. The work in this thesis is a study of routing
algorithms and not routing protocols. The objective is to study the performance of
the proposed genetic algorithm multicast routing with constraints and determine its

suitability for real-time communication over high-speed networks. Robustness and



fault tolerance are examples of protocol implementation issues that are beyond the
scope of this dissertation. Routing protocols usually reside in the network layer of

the open systems interconnection (OSI) protocol stack.

1.3  Quality of Service Requirements(QoS)

Real-time applications impose strong requirements on the underlying network. The
application’s demands are expressed by their quality of service (QoS) parameters such
as acceptable end-to-end delay and delay jitter, needed bandwidth, and acceptable
loss rate. The QoS parameters usually depend on the traffic streams. For example,
video and audio streams can tolerate certain loss rates, but they have stringent end-
to-end delay and delay jitter requirements. High bandwidth must be guaranteed in
order to accommodate the high transmission rates of real-time video. Data streams
require very low loss rates, but their end-to-end delay and delay jitter requirements
are not as demanding. The upper bound on end-to-end delay from any source to
any receiver and the delay variation among path delays are the two QoS parameter

considered in the investigation of various routing problems.

In high-speed wide-area networks, the transmission delay is required to be small
and the queuing delay is also required to be small, because small buffer sizes are used
[1]. Therefore, the propagation delay is the dominant component of the link delay.
The propagation delay is proportional to the distance traversed by the link. It is
fixed, irrespective of the link utilization. Therefore, a route selection algorithm can
guarantee an upper bound on the end-to-end delay by choosing the appropriate links
for the session being initiated, such that the delay from any source to any receiver

does not exceed the overall delay bound.

The routing problem studied in this dissertation is formulated as delay-constrained

optimization problem, i.e., the upper bound on the end-to-end delay is used as a



constraint. The other QoS parameter considered is the delay variation among the

paths from source to any two destination nodes.

1.4 Dissertation Objectives and Outline

With the advent of real-time interactive applications, attention has not only been
given to minimizing the total tree cost, but also to providing guarantees in terms of
end-to-end delay along individual paths from the source to each of the destination
nodes. The problem of minimizing the tree cost under the end-to-end delay constraint
is known as the delay constrained Steiner tree problem, and it is known as NP-
complete. Many heurestic soultions have been proposed for this problem . However,
there are certain classes of applications that require, in addition to end-to-end delay
bound on each indivitual path, a bound on a wariation of delay among paths to
different destinations of the multicast group. For example, in interactive applications
suéh as video-conferencing, a guarantee on delay variations is needed in order to
maintain the feeling of a face-to-face discussion, and all participatns should hear and
see the speaker at almost the same time. Another example is an online software
update and distribution. It is neccessary that all the remot hosts get a new copy of
the software at the same time so that sites never lose integrity while working in the
virtual world environment. Finally, minimizing the delay variation may be needed
in order to reduce the competitive advantage a destination gains by being able to
process a message sooner than the other destinations, as in the case of distributed
game applications where the server multicasts information to competing users.

The work in this thesis is motivated by the need for new algorithms for multicast
routing that can guarantee certain Quality of Services (QoS). Applications like those
mentioned above require bounds on both delay and delay variation to be guaranteed.
A new multicast routing scheme based on genetic algorithm that takes into account

both delay and delay variation when constructing multicast tree is proposed.



Chapter 2 starts with a classification of multicast routing algorithms. Then we
survey previous work on multicast routing for communication networks. The chapter

concludes with a brief discussion of multicast routing protocols.

In chapter 3, The proposed genetic algorithm for multicast routing is introduced.
First, a brief overview of genetic algorithms is given, and then the proposed algorithm
is explained in detail. Parameters setting and genetic operations, such as crossover,

mutation and selection are described.

In chapter 4, simulations are used to evaluate the performance of the proposed
Genetic Algorithm for Delay and Delay Variation Multicast (GADVM) which is ap-
plied to the multicast routing problem with delay and delay-variation constraints, and

compareed the performance with the other four known multicast routing algorithms.

In chapter 5, conclusions along with directions for future work are given. Finally,

we summarize the contributions of the research presented in this dissertation.



Chapter 2

Overview of Multicast Routing

Algorithms

The multicast routing problem in communication networks has been the subject of
intense research for many years. However, only in recent years, the concept has
been used over wide-area networks . For example, the early significant experiment
over the Internet was the audiocast of the Internet Engineering Task Force(IETF)
meeting to 20 sites on three continents in March of 1992 [6]. Many efforts have
been under way since then, aimed at both developing the algorithms and protocol
levels, and developing multicast routing mechanisms which incorporate the following

characteristics:
e Satisfying the QoS requirements of real-time applications,
o Efficient management of the network resources, and
e Application to large network sizes.

This chapter offers a survey of previous work on multicast routing algorithms.
Sections 2.1 and 2.2, present various classifications of multicast routing algorithms

and discuss some important criteria for surveying previous work. section 2.3 gives a
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problem definition and a mathematical model of a communication network. Then sec-
tion 2.4 surveys previous work on multicast routing algorithms. Section 2.5, provides
a brief overview of multicast routing protocols. Finally, summary and concluding

remarks are given in section 2.6.

2.1 Multicast Routing Approaches

There are two main approaches for multicast routing:

1. The shortest path algorithms where the objective is to find a tree that minimizes

the length of each route from the source node to each node in the multicast

group.

2. The minimum Steiner tree algorithms. In this case the objective is to minimize

the overall cost of the multicast tree. This problem is known to be NP-hard [7].

A special case of minumum steiner tree is a minimum spanning tree, where all
nodes in the network become receivers/members in the multicast tree as is the case
for example in broadcast applications. The minimum spanning tree is solvable in
polynomial time [8]. |

Real-time applications require certain QoS guarantees. Network algorithms and
protocols must be designed to support such QoS. For example, distributed multime-
dia applications require a guaranteed upper bound on the end-to-end delay, and it is
sufficient for the network to satisfy this bound and there is no need to minimize the

end-to-end delay.

Routing algorithms designed specifically for high-speed networks construct an ef-
ficient multicast tree without violating the constraint implied by the upper bound
on delay. These are called delay-constrained algorithms, to distinguish them from

other algorithms which are unconstrained. In many cases, the network nodes have
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a limited copying capability, i.e., there is an upper limit on the number of copies
of an incoming packet which the node can forward simultaneously to the next hop
nodes on the multicast tree. This is known as the degree constraint, and algorithms

that consider this problem are called degree-constrained multicast routing algorithms.

Dynamic multicast routing algorithms permit sources and receivers to join and
leave a multicast session and the corresponding multicast trees at any time. In static
multicast routing algorithms, however, the multicast group is fixed, and paths from
the sources to all receivers are computed at the same time when initiating a multicast

session.

In distributed multicast routing algorithms, the computations required to con-
struct a multicast tree are shared among multiple nodes. This reduces the compu-
tational overhead at each node but requires messages to be exchanged between the
nodes. The complexity of these algorithms is measured by the number of messages
exchanged. The amount of information about the state of the network that must
be stored at each node is another factor affecting the practicality of a distributed

algorithm.

Centralized multicast routing algorithms are usually more stable than the dis-
tributed algorithms. However, complete network topology information must be avail-
able at any node running the centralized algorithm. As has been mentioned already
in section 1.2, multicast trees can be classified into source-specific trees and shared
trees. The construction of a shared multicast tree consists of two parts: the center
selection part and the route selection part. On the other hand, the construction of a
source-specific multicast tree requires only the selection of proper routes. The focus

in this chapter is on route selection only.
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2.2 Characteristics of Multicast Routing Algorithms

The following criteria is considered when summarizing the features and performance

of the different multicast routing algorithms.

e End-to-end delay performance. A measure of the suitability of the algorithm

for real-time applications imposing delay constraints.

o Network management efficiency. The ability of an algorithm to manage the
network bandwidth and buffer space efficiently. The cost of a link is frequently
defined as a function of the utilized link bandwidth. We therefore refer to
the efficiency of an algorithm in managing the network bandwidth as the cost

performance of the algorithm.

e Complexity of the algorithm. The algorithm’s complexity together with the
possibility of distributed implementation are major factors in determining the

algorithm’s scalability to large network sizes.

e Symmetric/asymmetric networks. The multicast routing problems in symmet-
ric networks are less complex than equivalent problems in asymmetric networks.
Furthermore, an algorithm designed with the assumption that the network is
symmetric is not guaranteed to perform well when applied to asymmetric net-

works, even if it performs well with symmetric networks.

The performance of multicast routing algorithms is usually evaluated using simu-
lations. Researchers used different assumptions and created different scenarios when
evaluating multicast routing algorithms. Some of the major differences between these

scenarios are listed below.

e The network topology used, e.g., real networks, randomly generated networks,

or mesh networks.

e The size of the networks used.
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e The link cost and link delay functions used. The link cost may be some mon-
etary cost or a function of the link’s utilization, or, in some cases, unity cost
is assigned to all links. Some researchers even defined a link’s cost to be equal
to its delay. The link delay may represent only the queuing component of the

link’s delay or only the propagation component of the link’s delay or both.

If researchers evaluation of an algorithm’s performance is based on simulation of
special case scenarios, such as mesh networks, then it is not appropriate to generalize
the results to all networks. It is therefore important to take the evaluation scenarios
into account when surveying and evaluating previous work on multicast routing al-
gorithms.

The literature survey, given in section 2.4, uses the classification of section 2.1 and
the criteria listed earlier to differentiate between the various algorithms. Before pro-

ceeding to the survey itself, we present some definitions.

2.3 Network Model and Problem Definition

A point-to-point communication network is represented as a directed, connected, sim-
ple network N = (V, E) , where V is a set of nodes and F is a set of directed links.
The existence of a link e = (u,v) from node u to node v implies the existence of
a link e' = (v,u) for any u ; v € V , ie., full duplex in networking terms. A link
(u;v) € E is an outgoing link for node u € V and an incoming link for v € V. Any
link e = (u,v) € E has a cost C(e) (the same as C(u,v)) and a delay D(e) (the
same as D(u,v)) associated with it. C(e) and D(e) may take any nonnegative real
values. The link cost C(e) may be either a monetary cost or some measure of the
link’s utilization.

The link delay D(e) is a measure of the delay a packet experiences when traversing
the link e. Thus it may consist of queuing, transmission, and propagation compo-

nents. Because of the asymmetric nature of computer networks, one often finds that
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C(e) # C(e') and D(e) # D(e') . If the network is symmetric, it can be repre-
sented as an undirected network in which C(e) = C(e‘) and D(e) = D(e) for all
e € E. A path is defined as an alternating sequence of nodes and links P(vg,v;) =
Vo, €1, U1, €2, V2, ....Vk—1, €k, Uk, SUch that every e; = (v;_1,v;) € E,1 <i < k. A path
contains loops if some of its nodes are not distinct. If all nodes are distinct, then the
path is loop-free.

In the remainder of this dissertation, it will be explicitly mentioned if a path contains
loops. Otherwise a path always denotes a loop-free path. We will use the following
notation to represent a path: P(vg,vx) = v_v; — .... = Up—1 — V. The cost of a

path P(vg,vy) is defined as the sum of the costs of the links constituting P (v, vy)

Cost(P(vo,vx)) = »_ Cle (2.1)

e¢€P(vo,vx)
Similarly, the end-to-end delay along the path P(vg,vk) is defined as the sum of
the delays on the links constituting P(ve, vk) '

Delay(P(vy, vi)) Z D(e (2.2)
e€P(vo,vx)

The definitions given below apply to a multicast session with a single source. A
multicast group G = gy, ...g, €V, where n = |G| < |V, is a set of nodes participating
in the same network activity, and is identified by a unique group address 7, and |G|
denots the cardinality of the set G. A node s € V is a multicast source for the
multicast group G. A multicast source s may or may not be itself a member of the
group G. A source-specific multicast tree T'(s,G) C E, is a tree rooted at the source
s and spanning all members of the group G. The total cost of a tree T'(s, G) is simply

the sum of the costs of all links in that tree.

Cost(T Z Cle (2.3)

e€T'(s,G)
In general, an algorithm that minimizes the total cost of a multicast tree will

encourage the sharing of links. The maximum end-to-end delay of a multicast tree is
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the maximum delay from the source to any multicast group member.

Maz — Delay(T(s,G)) = max( Y _ (Pr)(s.g)D(e)) (2.4)

e€Pp

where Pr(s, g) is the path from s to g along the tree T'(s, g).

2.4 Survey of Multicast Routing Algorithms

This section provides a survey of different multicast algorithms and group them ac-
cording to the classification provided in the previous section. Only distinguishing
features of each algorithm are presented without listing the pseudo code. For simplic-
ity, we consider only source-specific trees when describing the features of an algorithm.
However, many of the algorithms surveyed are also applicable for the construction of
shared trees.

The focus of this dissertation is on the ability of multicast routing algorithms to
satisfy the delay constraints of real-time applications. Due to the large amount of
work reported in the literature on multicast routing problems, we cannot survey all
of them in detail. So we focus primarily on static multicast delay constrained routing
algorithms. Such algorithms will be covered in more detail in the survey than the

other classes of multicast routing algorithms.

2.4.1 Shortest Path Algorithms

As the name indicates, a shortest path algorithm minimizes the sum of the lengths
of the individual links on each individual path from the source node to a multicast

group member.

The properties of a shortest path tree depend on the metric the link length rep-
resents. If unit link lengths are used, the resulting shortest path tree is called a

minimum-hop tree. If the link length is set equal to the link cost, then a shortest
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path algorithm, denoted as the least-cost (LC) algorithm in this case, computes the
LC tree. The objective of an LC algorithm can be expressed mathematically as

follows

in Cost(Pr(s,g)), Vg € G 2.5
Zin ost(Pr(s,g)), Vg € (2.5)

ecT

The total cost of an LC tree is not necessarily optimal. If the length of a link is a
measure of the delay on that link, then a shortest path algorithm, denoted as least-
delay (LD) algorithm in this case, computes the LD tree. The objective function of
an LD algorithm is to

i 2.
in Delay(Pr(s,9)), Vg € G (2.6)

An LD tree is optimal with respect to end-to-end delay. For real-time applica-
tions, if the LD tree cannot satisfy the imposed delay constraint, no other multicast

tree can.

The Bellman-Ford algorithm [11] and the Dijkstra algorithm [12] are two well
known shortest path algorithms. Both algorithms are exact and run in polynomial
time. The worst case time complexity of the Bellman-Ford algorithm is O(|V]?)
where |V| is the number of nodes in the network. An exact, distributed version of
the Bellman-Ford algorithm is given in [5]. It requires only limited information about
the network topology to be kept at each node. Awerbuch et al. [13] show that the
worst case message complexity of the exact, distributed Bellman-Ford algorithm may
grow exponentially with the number of nodes. To avoid this excessive complexity,
they propose two approximate distributed versions of the algorithm. For Dijkstra’s

shortest path algorithm, only centralized versions exist. Its execution time is O(|V|?)
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time in the worst case. Efficient, nondistributed versions of both Bellman-Ford and
Dijkstra’s algorithms have comparable average running times [14]. Both algorithms

remain exact for asymmetric networks.

The reverse path forwarding (RPF) algorithm proposed by Dalal and Metcalfe
[15] is an algorithm for broadcasting in datagram networks. Each packet is forwarded
from the source to the receivers over the reverse shortest paths, i.e., the shortest paths
from the receivers back to the source. Thus RPF creates an optimal shortest path
broadcast tree only if the network is symmetric.

Deering [4, 16] generalized the RPF algorithm to the multicast case by presenting the
truncated reverse path broadcasting (TRPB) algorithm and the reverse path multi-
casting (RPM) algorithm. The objective function of TRPB and RPM can be stated as

min Z C(é), Vg e G (2.7)

€T(sG) & o

where e = (u : v) and é = (v : v). TRPB and RPM do not suffer from some of the
limitations which RPF suffers from with respect to its applicability to multi-access
networks. RPF, TRPB, and RPM are distributed algorithms that rely on limited in-
formation at each node in the network. They scale well with the size of the network,

and dynamic implementations of these algorithms exist.

The shoretst path Algorithms presented above are unconstrained algorithms. Delay-
Constrained Shortest Path Algorithms minimize the cost of each path, i.e., the
sum of the link costs, from the source node to a multicast group member subject to
an end-to-end delay constraint. Thus the tree is a delay-constrained LC tree. An
algorithm for solving the delay-constrained LC problem has the same objective func-
tion as that of the unconstrained LC problem, stated in equation 2.5, with the added

constraint that
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Maz — Delay(T(s,G)) < A (2.8)

where A is the value of the imposed delay constraint. The delay-constrained
shortest path problem is NP-hard [17]. Algorithms for solving that problem were
proposed recently, motivated by the increasing importance of end-to-end delay as a
QoS constraint for real-time applications. The distinguishing characteristics of each
algorithm are summarize below. Note that the delay-constrained multicast routing
algorithms surveyed in this section and in the next section are only applicable for the

construction of source-specific trees.

Widyono [18] presented the constrained Bellman-Ford (CBF) algorithm. CBF
performs a breadth-first search to find the delay-constrained shortest path tree. CBF
is optimal and therefore its running times grow exponentially with the size of the net-
work. Widyono used CBF as a basis for several delay-constrained minimum Steiner

tree heuristics which will be surveyed in the next section.

Sun and Langendoerfer [19] proposed a delay-constrained shortest path heuristic.
It is called the constrained Dijkstra heuristic (CDKS) because it is based on Dijkstra
shortest path algorithm. This heuristic computes an unconstrained LC tree. If the
end-to-end delay to any group member violates the delay constraint, the path from
the source to that group member is replaced with the LD path. Thus if the LC tree
violates the delay constraint, an LD tree must be computed, and the two trees are
merged. This algorithm always finds a constrained multicast tree if one exists. CDKS
runs in O(|V|?) time, the same as Dijkstra’s algorithm. The authors compared the
cost performance of their heuristic to LD and KPP (a delay-constrained minimum
Steiner tree heuristic which will be presented in the next section) using simulation
over random networks. They used unit link costs and integer link delays ranging in

value from 1 to 5.
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Wi and Choi [20] presented a distributed LD algorithm to use for solving the delay-
constrained shortest path problem. They used simulations to evaluate its performance

and execution times relative to KPP for 20-node symmetric networks.

2.4.2 Minimum Steiner Tree Algorithms

The objective of the minimum Steiner tree problem is to minimize the total cost of

the multicast tree, i.e.

i 2.
6611111(131,10) Cost(T(s,R)) (2.9)

This problem is known to be NP-complete [7].

Hwang [21] provided an extensive survey of both exact and heuristic minimum
Steiner tree algorithms. Another survey was given by Winter [22]. Few algorithms
have been proposed for the minimum Steiner tree problem in asymmétric networks,
and all of them operate under special assumptions, e.g. acyclic networks. If the
multicast group includes all nodes in the network, the minimum Steiner tree problem
reduces to the minimum spanning tree problem. The minimum spanning tree problem
in symmetric networks can be solved in O(|V|?) time in the worst case using Prim’s
algorithm [8]. Unconstrained minimum Steiner tree algorithms do not attempt to op-
timize the end-to-end delay at all. Therefore they may not be suitable for real-time

applications.

The best known minimum Steiner tree heuristics were proposed by Kou, Markowski,
and Berman (KMB heuristic) [23], Takahashi and Matsuyama (TM heuristic) [24],
and Rayward- Smith (RS heuristic) [25].

The KMB heuristic [23] uses Prim’s minimum spanning tree algorithm [8] during
its computation. Prim’s algorithm is optimal only for symmetric networks. Thus the

cost performance of the KMB heuristic may be affected if it is applied to asymmetric
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networks. The worst case time complexity of the KMB heuristic is O(|G||V|?), where
|G| is the size of the multicast group.

Wall [26, 27] proposed a distributed version of the KMB heuristic. The total
cost of trees generated using KMB heuristic in symmetric networks is on the average
only 5% worse than the cost of the optimal minimum Steiner tree [28, 29]. The TM
heuristic [24] starts with a tree that contains the source node only. Then it adds the
multicast group members, one at a time, to the existing tree via the cheapest LC
path to any node already in the tree. TM heuristic runs in O(]G||V|?) time in the
worst case. The RS heuristic [25] starts with a forest of trees, with each multicast
group member constituting a tree included. Then the heuristic unites trees that are
closest to each other (in terms of cost) by adding the appropriate links until it ends

up with a single tree.

Using a limited number of simulations, Rayward-Smith and Clare [30] showed that
RS heuristic yields tree costs that are closer to optimal than KMB and TM heuristics.
Unfortunately, however, the RS heuristic was designed for symmetric networks, and
we cannot envision an efficient method for implementing it in case of asymmetric
networks. Jiang [31] presented modified versions of KMB heuristic and RS heuris-
tics that construct multicast trees with lower costs than the original heuristics. Jiang
simulated a symetric network model with random link connections and heterogeneous
link capacities. He defined the link cost as function of the utilized link bandwidth.

The same author also proposed a distributed minimum Steiner tree heuristic in [32].

Ramanathan [33] proposed a heuristic for constructing minimum Steiner trees in
asymmetric networks. This heuristic permits trading off low tree cost for fast exe-
cution time by proper selection of a parameter k. The author showed that Dijkstra
shortest path algorithm, KMB minimum Steiner tree heuristic, and TM minimum
Steiner tree heuristic are particular cases of his proposed heuristics when £ is set to

1, (|G| + 1), and |V| respectively. Many other heuristics for constructing minimum
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Steiner trees in communication networks were proposed. See for example Chow [33],
Leung and Yum [35], and Bauer and Varma [36].

As with the shortest path tree algorithms, we now survey a Delay-Constrained

Minimum Steiner Tree Algorithms.
The delay-constrained source-specific minimum Steiner tree problem was
first formulated by Kompella, Pasquale, and Polyzos [37, 38]. The authors proved
the NP-completeness of the problem. The objective of the problem is to minimize the
total cost of the tree, equation 2.8, without violating the imposed delay constraint,
equation 2.9. Optimal algorithms for this problem exist. For example, Noronha and
Tobagi [39] proposed an algorithm, based on integer programming, which constructs
the optimal source-specific delay-constrained minimum Steiner trees for multiple mul-
ticast sessions simultaneously. However, this algorithm is rather complex and is useful
only as a reference to evaluate heuristic solutions for the same problem.

The first heuristic for the delay-constrained minimum Steiner tree problem was
given by Kompella, Pasquale, and Polyzos [37, 38]. this is labeled as the KPP heuris-
tic. KPP assumes that the link delays and the delay constraint A are integers, while
the link costs may take any positive real value. The heuristic is dominated by com-
puting a constrained closure graph which takes time O(A[V[®). Thus KPP takes
polynomial time only if A has a fixed value. When the link delays and A take nonin-
teger values, Kompella et al. propose to multiply out fractional values to get integers.
Following this approach, KPP is guaranteed to construct a constrained tree if one ex-
ists. However, in some cases the granularity of the delay constraint becomes very
small, and hence the number of bits required to represent it increases considerably.
As a result the order of complexity, O(|V[®), may become too high. To avoid pro-
hibitively large computation times, a fixed granularity may be used. However, fixing
the granularity has side effects. When the granularity is comparable to the average
link delays, KPP’s accuracy is compromised and in many cases it fails to construct

a constrained multicast tree when one exists. The authors proposed two alternative
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objective functions for KPP to use during tree construction. The first is a function
of the link cost only. The second objective function is a function of both the link cost
and the residual delay if this link is added to the tree. The authors used simulation
of random, symmetric networks with up to 100 nodes to evaluate their heuristic pro-

cedure.

Similar to KMB, KPP uses Prim’s algorithm [8] to obtain a minimum spanning
tree of a closure graph. Prim’s algorithm is only optimal for symmetric networks.
This might affect the performance of KPP when applied to asymmetric networks.
Kompella, Pasquale, and Polyzos also proposed a distributed heuristic solution for
the delay-constrained minimum Steiner tree problem [40]. The heuristic is based on
Prim’s algorithm [8], but it involves the making and breaking of cycles during the
construction of the multicast tree. It runs in O(|V|?) time, and is guaranteed to find

a multicast tree, if one exists.

Widyono [34] proposed four delay-constrained minimum Steiner tree heuristics.
The four delay-constrained heuristics are based on the CBF algorithm described in
the previous section. Therefore all of them have worst case scenarios with expo-
nentially growing execution times. Widyono’s constrained adaptive ordering (CAO)
heuristic yields better performance than the other three constrained heuristics he pro-
posed. In CAO, the CBF algorithm is used to connect one group member at a time
to the source. After each run of CBF, the unconnected member with the cheapest
constrained LC path to the source is chosen and is added to the existing subtree. The
costs of links in the already existing subtree are set to zero. CAO is always capable
of constructing a constrained multicast tree, if one exists, because of the nature of
the breadth-first search CBF conducts. Widyono defined the link cost as a function
of the available bandwidth, the residual buffer space, and the link’s delay. The link
delay was defined as the sum of the queuing, transmission, and propagation delays

along the link. The author evaluated his heuristics using simulation of eight by eight
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mesh networks.

The bounded shortest multicast algorithm (BSMA) was proposed by Zhu, Parsa,
and Garcia-Luna-Aceves [41]. BSMA starts by computing an LD tree for a given
source and multicast group. Then it iteratively replaces superedges in the tree with
cheaper superedges not in the tree, without violating the delay constraint, until the
total cost of the tree cannot be reduced any further. BSMA uses a kth-shortest path
algorithm to find cheaper superedges. It runs in O(k|V|3log|V]|) time. For large,
densely connected networks, & may be very large, and it may be difficult to achieve
acceptable running times. It is possible to trade off multicast tree cost for fast exe-
cution speed when using BSMA by either limiting the value of k in the kth-shortest
path algorithm or by limiting the number of superedge replacements. BSMA always
finds a constrained multicast tree, if one exists, because it starts with an LD tree.
The authors defined the link cost as a function of the link utilization and defined the
link delay as the sum of the queuing delay, transmission delay, and propagation delay
over the link. They evaluated the performance of BSMA and compared it to KMB
and LD. Random networks with up to 100 nodes generated using Waxman’s random

network generator [42] were used.

The minimum Steiner tree heuristic proposed by Waters [43] is considered to be
semi-constrained, because it uses the maximum end-to-end delay from the source to
any node in the network (not to any group member) as the delay constraint. Note
that this constraint is not related directly to the application’s QoS constraints, and
that, depending on the network delays, this internally computed constraint may be
too strict or too lenient as compared to the QoS requirements of the application. The
heuristic then constructs a broadcast tree that does not violate the internal delay
constraint. Finally the broadcast tree is pruned beyond the multicast nodes. this is a
semi-constrained (SC) heuristic. In [44], they implemented original version of the al-

gorithm proposed in [43] which resembles a semi-constrained minimum spanning tree,
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and also implemented a modified version which is closer to a semi-constrained short-
est paths broadcast tree. Simulation results given in [44] showed that the modified
version, denoted as the modified semi-constrained (MSC) heuristic always performs
better than the original heuristic with respect to tree costs, end-to-end delays, and
network balancing. SC and MSC are dominated by the computation of the inter-
nal delay bound. This computation uses an extension to Dijkstra’s algorithm, and
therefore it takes O(V?) time in the worst case.

In addition to the algorithms surveyed above, many other variations of the mul-
ticast routing problem have been studied over the years. Research reports on the
dynamic multicast routing problem, in particular, appeared frequently in the litera-
ture. We dedicate the next section to previous work on this problem. Then, in section

2.4.6, we survey previous work on other variations of the multicast routing problem.

2.4.3 Dynamic Multicast Routing Algorithms

Dynamic multicast routing algorithms were proposed to avoid rerouting an entire
multicast tree whenever a node joins or leaves a multicast session. In dynamic multi-
cast routing algorithms, when a node leaves a multicast session, the path connecting
that node is simply pruned from the tree if it is not used to connect any other mul-
ticast group members. The situation is more difficult when a node joins an existing

multicast session.

Waxman [42, 45] presented a greedy dynamic multicast routing algorithm. The
algorithm has a weighting parameter w that varies from 0 to 0.5. When w = 0, a
node joins an existing source-specific multicast tree via the shortest path to the tree.
When w = 0.5, the node is added to the existing tree via the shortest path to the
source. Waxman evaluated his algorithm using simulation over randomly generated
56-node and 60-node networks. He proposed an algorithm for generating random
networks that resemble realistic networks. This random network generator has been

adopted by many researchers since then.
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Doar and Leslie [24] investigated a naive (simple) approach that always connects
a joining node to the existing tree via the shortest path from the source. They simu-
lated this mechanism using randomly generated networks, both flat and hierarchical.
Their random network generator is a modified version of Waxman’s generator. Simu-
lations over 100-node networks showed that the naive approach constructs trees that
are on the average 50% more expensive than costs of trees constructed using the static
KMB heuristic.

Kadirire [46] defined the geographic spread as the shortest distance from any node
in the network to the existing tree averaged over all nodes not in the tree. He pro-
posed a geographic spread dynamic multicast (GSDM) algorithm that maximizes the
geographic spread for the multicast tree it constructs. Kadirire also evaluated the
performance of GSDM and compared it to Waxman’s heuristic and Doar and Leslie’s .
heuristic in [47] using simulation over random networks with up to 100 nodes. He
showed that GSDM and Waxman’s heuristics yield similar performance and are con-

sistently better that Doar and Leslie’s naive approach.

Biersack and Nonnenmacher [48] proposed a dynamic, distributed multicast rout-
ing algorithm named WAVE. WAVE uses a weighted function of the cost and the
delay to attach a joining node to the existing tree. The authors evaluated their algo-

rithm in comparison to static algorithms only.

Bauer and Varma [49] presented a dynamic multicast routing algorithm: ARIES.
The operation of ARIES is similar to Waxman’s dynamic algorithm. In addition,
however, a subtree of the multicast tree is completely reconstructed each time a pre-
specified number of joins and leaves affects that subtree. The subtree reconstruction
ensures that the cost of the multicast tree remains close to optimal. ARIES was

evaluated using simulation over 200-node random networks. The authors used a
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2.4.4 Other Multicast Routing Algorithms

This subsection briefly surveys a few more multicast routing algorithms that do not

belong to any of the categories listed in the previous subsections.

Bharath-Kumar and Jaffe [50] presented a tradeoff algorithm between the mini
mum Steiner tree and the LD tree. This algorithm constructs the minimum Steiner
tree; then it locates the receiver with the largest difference between the delay along
its path in the minimum Steiner tree and the delay along the LD path from the source
to that receiver. The algorithm then replaces the minimum Steiner tree path with
the corresponding LD path. The same authors also proposed two distributed mul-

ticast routing heuristics which are based on local information from nearby nodes only.

Rouskas and Baldine [51] studied the problem of constructing multicast trees sub-
ject to both an end-to-end delay constraint and a delay variation constraint. They
defined the delay variation constraint as the maximum difference, that can be tol-
erated, between the end-to-end delays along the paths from the source to any two
receivers. The authors proved that this problem is NP-complete; then they proposed
a heuristic solution. Research on the degree-constrained multicast routing problem is
motivated by the fact that current multicast capable high-speed switches have lim-
ited copy capability. In addition, limiting the maximum degree at any node in the

multicast tree results in more evenly distributed load among all nodes in the network.

Tode et al. [52] proposed two algorithms for degree-constrained multicast routing.
The first algorithm minimizes the average degree of the multicast tree it constructs,
while the second algorithm attempts to construct a low-cost multicast tree subject to
a given maximum degree constraint. The authors set the link costs equal to the link

delays when evaluating the performance of their heuristics.
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Bauer and Varma [53] investigated a variation of the degree-constrained multicast
routing problem in which the degree-constraint may vary for different nodes in the
network. Using simulation, they showed that many of the existing unconstrained
minimum Steiner tree heuristics are capable of constructing degree-constraint mul-
ticast trees. The authors also proposed a simple degree-constrained heuristic which

performs better than all other algorithms of the same or lesser complexity.

Ammar et al. [54] studied the problem of routing virtual paths (VP) for multicast
communication in ATM networks. When constructing a multicast tree, they took
into account the bandwidth cost, the switching cost, and the connection establish-
ment cost. The authors studied different types of VPs. They formulated the problem
as an integer programming problem and proposed heuristic solutions based on the
transshipment simplex algorithm. The authors used a single 16-node network for

evaluating their heuristics.

Kim [55] studied a problem similar to that in [54]. He proposed an optimal
solution to the problem of routing multiple multicast connections simultaneously in
ATM networks.

2.4.5 Evaluation of Multicast Routing Algorithms

It is evident from the previous sections that a large number of algorithms have been
proposed for many variations of the multicast routing problem. Researchers used dif-
ferent networking environments and made different assumptions when evaluating the
algorithms they proposed. An analytical study of the tradeoffs between shortest path
trees and minimum Steiner trees was reported by Bharath-Kumar and Kadaba [50]
in 1983. The authors did not distinguish between link cost and link delay, because,

at the time, QoS issues and resource management issues were not well defined yet.



Tanaka and Huang [56] compared the performance of several static unconstrained
minimum Steiner tree algorithms. In addition, they evaluated one dynamic algorithm,
the weighted greedy algorithm [42, 45]. The authors ran simulations of a single 20- |
node symmetric network with the cost of a link being proportional to the distance

spanned by that link.

Wei and Estrin [57] studied the LD algorithm and the KMB heuristic for con-
structing minimum Steiner trees. The authors simulated 50-node and 200-node ran-
dom networks generated using Waxman’s random network generator. The networks
were asymmetric, and each link had a delay (equal to its length) and a cost assigned
to it. Simulation of 50-node networks with an average node degree of 4 showed that
minimum Steiner trees are lower in cost than least-delay trees by approximately 20%.
However, the maximum end-to-end delays along minimum Steiner trees are up to 60%

larger than those along least-delay trees.

Noronha and Tobagi [58] reported an evaluation of multicast routing algorithms
for real-time applications . They evaluated three unconstrained algorithms, the LD
algorithm, the LC algorithm, and the KMB heuristic, with respect to their suitability
for real-time applications with delay constraints. The authors used the optimal delay-
constrained algorithm which they presented in [39] to benchmark the algorithms. The
link cost represented a monetary cost, while the link delay represented the actual de-
lay along the link. The following admission control policy was enforced: the sum
of the bandwidths of the multicast sessions utilizing a link cannot exceed the link’s
capacity. The authors defined the blocking probability as the probability that an
algorithm fails to construct a multicast tree. There are two causes of failure: delay
constraint violation and insufficient bandwidth to support the multicast session. Sim-
ulations were run on real networks as well as on random networks. Simulation results
showed that, in the absence of a delay constraint, KMB heuristic is almost as good as

optimal with respect to tree cost and blocking probability. When a delay constraint
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is enforced, however, the blocking probability of KMB is higher than those of the
other algorithms studied. KMB has up to 20% blocking probability in scenarios in
which no other algorithms fail. LD and LC have comparable blocking probabilities in
all scenarios. The same authors also experimented with different randomly generated
network topologies, and they concluded that two-connected random topologies yield
simulation results that are closest to the results obtained from simulation of real net-
works. In real networks, short links are more likely to exist than long ones. However,
the authors found that it is not necessary to bias the random network generator to-
wards short links in order to get random topologies which yield similar performance

to that of real networks.

2.5 Multicast Routing Protocols

Efforts to develop multicast routing protocols for wide-area networks have started in .. .

the late 1980s motivated by the rapid growth of the Internet and the emergence of

new applications involving multiple users.

Semeria and Maufer [59] provided an introduction to IP multicast routing. IP
Multicast routing protocols adopt the host group addressing model (3, 4]. The Inter-

net Society designated Class D IP addresses for multicast group addressing.

The Internet Group Management Protocol (IGMP) [60,61] is used to exchange
group membership information on a local subnetwork. We will focus only on mul-
ticast routing in wide-area networks. An in depth investigation of the complete IP
multicast architecture can be found for example in [62].

Initially, there were two standard protocols for IP multicast routing. To avoid some
of their shortcomings, two additional protocols were developed and standardized.
The Distance Vector Multicast Routing Protocol (DVMRP) [63] is the first standard
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protocol for IP multicast routing. It is widely implemented in commercially avail-
able routing equipment, and it is the protocol used in most routers of the Internet’s
Multicast Backbone (MBone) [2, 64] which currently spans thousands of nodes on all

continents.

DVMRP is based on the TRPB heuristic [4, 16]. It is a distributed protocol
that uses the limited information available in the distance vectors of the Routing
Information Protocol (RIP) [65, 66] to forward datagram packets from the source to
all receivers over the reverse shortest paths. DVMRP uses source-specific multicast
routing, and it allows receivers to dynamically join and leave a multicast session. In
order to discover new members in a multicast session, DVMRP periodically sends the
source’s packets over a broadcast tree to all nodes in the network. Then leaf nodes
which are not members of the multicast group send prune messages upstream towards
the source to prune the links leading to these nodes from the tree. The occasional
broadcasting behavior of DVMRP causes inefficient use of the network bandwidth,
especially if the size of the multicast group is small. This limits the scalability of
DVMRP to larger networks. A more efficient version of DVMRP is also developed
[67].

The Multicast Extensions to OSPF (MOSPF) [68, 69, 70] is a standard multicast
routing protocol for interior gateway routing, i.e., within a single domain. As the
name indicates, MOSPF is based on the Open Shortest Path First (OSPF) [71] uni-
cast routing protocol. MOSPF uses the centralized Dijkstra algorithm to construct
the forward shortest path multicast tree. To achieve this, a node that runs MOSPF
must maintain complete information about the network topology. Therefore complete
topology information must be periodically broadcast to all MOSPF-capable nodes in
the networks. The centralized nature of MOSPF as well as the necessary periodical
broadcast operations severely limit the scalability of the protocol. In addition to

the limitations mentioned above, both DVMRP and MOSPF rely on specific unicast
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routing protocols, RIP and OSPF respectively. Thus they cannot be deployed on
routers not running these unicast protocols. Two new multicast routing protocols
were then developed to avoid the shortcomings of DVMRP and MOSPF. The two

new protocols are independent of the underlying unicast routing mechanisms.

The first protocol currently being developed is Protocol Independent Multicasting
(PIM) [72]. PIM specifies a dense mode (PIM-DM) [73] and a sparse mode (PIM- SM)
[74]. When a multicast group densely populates an internetwork, PIM-DM is used to
create source-specific multicast trees. The basic operation of PIM-DM is very similar
to that of DVMRP, but it is independent of the underlying unicast routing protocol.
PIM-SM is specified for multicast groups where members are sparsely distributed
over an internetwork. PIM-SM uses rendezvous points (RP) which are central nodes
at which receivers can meet sources of the same multicast session. A shared tree is
constructed around the RP. Receivers join the shared tree via the forward shortest.
paths towards the RP, and sources transmit to the shared tree via the forward short-
est paths towards the RP. Thus packets are forwarded over the reverse shortest paths
from the RP to the receivers. A receiver r discovers the existence of a source s when
it receives that source’s packets over the shared tree. Then the receiver r can elect to
continue receiving packets from source s over the shared tree, or, alternatively, it can
join that source’s specific tree via the reverse shortest path from that s to r. Thus
PIM-SM permits the use of both shared trees and source-specific trees. Routing for
the same multicast session can use a mixture of shared trees and source-specific trees.
Similar to DVMRP, PIM relies on a soft state refreshment mechanism, and thus it
suffers from periodical message overhead to maintain the multicast trees. However,

soft state enhances the robustness of PIM.

Core Based Trees (CBT) [75, 76, 77, 78] is the other protocol proposed for mul-
ticast routing over the Internet. In CBT, all sources sending to the same group use

a single multicast tree to carry their traffic to all receivers belonging to that group.
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The multicast tree has one or more cores. Similar to the shared mode of PIM-SM, a
new receiver joins an existing core based tree via the forward shortest path towards a
core, and therefore packets are forwarded on the tree along the reverse shortest paths
from the cores to the receivers. The cores are interconnected via a core backbone.
CBT relies on an explicit reliability mechanism to maintain the multicast tree. This
mechanism introduces much less message overhead than that introduced by PIM’s

soft state mechanism.

Both PIM and CBT are expected to scale well to large networks. Interoperability
with other multicast routing protocols is being considered in the specifications of both
PIM and CBT. A quantitative comparison of the two protocols and suggestions to
improve their performance can be found in [79]. Work on QoS routing has started
only recently, motivated by the need for routing algorithms capable of providing QoS
guarantees. Quality-of Service extensions to OSPF (QOSPF) (80] is a protocol capable
of routing both unicast and multicast connections and reserving bandwidth and other

resources for those connections..

2.6 Summary

In this chapter, we classified the multicast routing algorithms into different categories
based on the problems they address. Then we presented important criteria to be con-
sidered when summarizing the features of a multicast routing algorithm. The bulk
of this chapter was dedicated to surveying previous work on multicast routing algo-
rithms. Over the years, a lot of algorithms have been proposed for many variations
of the multicast routing problem. However, different researchers have made different

assumptions when evaluating the performance of the algorithms they proposed.



Chapter 3

Genetic Algorithm For Multicast
Routing

Genetic Algorithms (GAs)[86] are computational models inspired by natural evolu- -
tion. They have been used mainly as function optimizers[83,84]. NP hard combi-
natorial optimization problems have also been effectively treated [82],[85]. Genetic
algorithm’s strength is essentially due to the updating of the whole population of pos-
sible solutions in an adaptive way guided by operators such as selection, crossover,
and mutation [82-86].

There are four basic components in GA:
1. representation of individuals,
2. determination of the fitness function,
3. design of genetic operators, and
4. determination of the probabilities controlling the genetic operators.

In this chapter, these issues are addressed within the framework of the genetic algo-
rithm newly proposed for solving multicast routing problem. Our new algorithm is
described in section 3.2. Comparison of the performance of the proposed algorithm

with other known algorithms is given in chapter 4.
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3.1 Overview of Genetic Algorithms

Holland [85] described a methodology for studying natural adaptive systems and
designing artificial adaptive systems. It is now frequently used as an optimization
method. The biological basis for this adaptation process is Darwinian natural selec-
tion and Mendelian genetics, that is elimination of weak elements by favoring retention
of optimal and near-optimal individuals (survival of the fittest) and recombination of

features of good individuals to perhaps make better individuals.

Multicast routing belongs to a class of problem known as NP-hard problems.
The computation of a truly optimal solution to these class of problems is very hard
and usually possible only for a very limited domain. Some heuristic methods must
typically be applied to reduce the search space and generate sets of approximate
(near-optimal) solutions. In the genetic algorithm approach, as shown in Fig. 3.1,
each point in .thé s-ear(‘:hkspacbé is called a chromosome or strihg, and represents a

possible solution to the problem [83].

A GA approach requires a population of chromosomes (strings) representing a
combination of features from the set of features, and requires a cost function (called
an evaluation or fitness function) F(n). This function calculates the fitness of each
chromosome. The algorithm manipulates a finite set (population) of chromosomes,
based loosely on the mechanism of natural evolution. In each generation, chromo-
somes are subjected to certain operators, such as crossover, inversion, and muta-
tion, analogous to processes which occur in natural reproduction. The crossover of
two chromosomes produces a pair of offspring chromosomes which are syntheses or
combinations of the traits of their parents. Inversion in a chromosome produces a
mirror-image reflection of a contiguous subset of the features of the chromosome. A
mutation on a chromosome produces a nearly identical chromosome with only local
alterations of some regions of the chromosome. A great deal of information regarding

these operators is available in the literature and will not be presented in detail here.
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Figure 3.1: Simple genetic algorithm flowchart

3.1.1 Operation of the GA

The optimization process is performed in cycles called generations [90]. Figure 3.1
shows a flowchart of a typical GA algorithm. During each generation, a set of new
chromosomes is created using the crossover, inversion, and mutation operators. Since
the population size is finite, only the best chromosomes are allowed to survive to the
next cycle of reproduction. The crossover rate often assumes quite high values (of the

order of 80 — 85%), while the mutation rate is small (typically 1 — 15%) for efficient
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search. The cycle is repeated until the population converges; that is, the diversity of
the feature values among the population is very low and further exploration seems

pointless, or until the answer is good enough.

3.2 The Proposed GA for Constrained Multicast
Routing

3.2.1 Problem Formulation and Network Model

The problem considered here is how communication paths are generated through a
packet-switched network for multicast traffic. A network is presented as a directed
graph G = (V, E) consisting of a set of switches, V, and a set of directed links, E.
Let the link from node 7 to node j be denoted by e(z, j). Each link e € E is associated
with a cost C(e) and several QoS parameters, such as a delay, loss probability, and
jitter. The cost function, C(e) is a positive real function, i.e.,, C : E — R*. The cost
function reflects the amount of resources required to support the quality of service
provided by the link. The QoS supported on a link is described by QoS functions.
Each QoS function, Q;(e), is a positive real function which gives the quality of the

parameter that can be guaranteed on the link e.

For a multicast connection, packets originating at the source node s € V, have to
be delivered to a set of destination nodes M C V —s. We refer to M as the destination
group, and s{J M the multicast group. Multicast packets are routed from the source
to the destinations via the links of a multicast tree T' = (Vp, Ep). A multicast tree
is a subgraph of G spanning S and the nodes in M. In addition, V' may contain re-

lay nodes, that is, nodes in the multicast tree but not members of the multicast group.
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3.3 QoS Metrics

The QoS guarantee for a multicast connection is defined as follows. Let ¢1,..,¢, be
the n QoS functions and @4, ., @» be the corresponding QoS constraints that need to
be satisfied. A multicast tree is said to be able to provide the required QoS guarantee
if the end to end QoS of each source-destination pair of the multicast connection is
satisfied.

In this thesis, we only consider QoS parameters that are additive, i.e., the end to end
QoS of a path is the sum of individual QoS of each link on the path. QoS parameters
such as a delay and jitter are additive in nature. The end to end loss probability of a
path can be approximated by the sum of loss probabilities of all links of the path if
the link loss probability is very small. Formally, for each v € M, the end to end QoS

is guaranteed by

Z 6(e) <Qi,Yve M,i=1,2,...n (3.1)
e€P(s,v) v ‘

Where P(s,v) is the path in T' from s to v.
The multiple-constraint multicast routing problem is defined as follows

minZC(e)S.t Z g(e) <@,YweMi=12..,n (3.2)

eeT e€P(s,v)

Two important QoS metrics are considered in this dissertation :

o Source-destination delay: A: The parameter A represents an upper bound
on the acceptable end-to-end delay along any path from the source to the des-
tination nodes. This parameter reflects the fact that the information carried
by a multicast packets becomes stale A time units after its transmission at the
source. This parameter reflects the fact that a packet delivered A time units

after its transmission at the source is of no value to the receivers.

o Interdestination delay variation : 0 : is the parameter that represents the

maximum difference between end-to-end delays along the paths from source to
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any two destination nodes that can be tolerated by the application. In essence,
this parameter defines a synchronization window for the various receivers. By
supplying values for parameters A, 4, the application in effect imposes a set of

constraints on the paths of the multicast tree.

Given the delay, A and delay variation, & tolerances, our objective then is to de-
termine a multicast tree such that the delays along all source-destination paths are

within the two tolerances. Or mathematically can be stated as:

Given o network G = (v, A), a source node s € V, a multicast group M CV — s,
a link-delay function D : A — R, a delay A and delay variations, 6, is there a tree

T = (v, A7) spanning s nodes in M, such that

Y Dl <AWweM (3.3)
lEPT(S,’U) .
> D)- ). D)< VveMY(vu)eM (3.4)
1ePp(s,v) lePr(s,u)

where Eq. 3.3 is the source-destination constraint, and Eq. 3.4 is the interdestination
delay constraint. A tree T is feasible if and only if T satisfies both Eq. 3.3 and Eq.
34.

3.4 Algorithm description

3.4.1 Construction of Routing table

In the network graph , G = (V, E), there are |V|(|V| — 1) possible source-destination
pairs. There are usually many possible routes between any source-destination pair.
Our GADVM algorithm assumes that a routing table, consisting of R possible routes,
has been constructed for each source-destination pair using the k-shortest path al-
gorithm proposed in [82]. The size of the routing table, R, is the parameter of our

algorithm.
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3.4.2 Generating The Initial Population

for a given source node s and a destination set M = {m,,ma,...my}, a chromosome
can be represented by a string of integers with length k. A gene, ¢;,1 < I,... <k, of
the chromosome is an integer in {1, 2, ,7} which represents a possible route between s
and m;, where m; € M [87]. Obviously, a chromosome represents a candidate solution
for the multicast routing problem since it guarantees a path between the source node
to any of the destination nodes. However a chromosome does not necessarily represent
a tree. Therefore, we trim the extra edges using a minimum directed spanning tree

algorithm, modified from the optimum branching algorithm proposed in [84].

3.4.3 Generating the new population

Select two chromosomes from the population of the current generation of which is the
best chromosome (parent 1) and the other a randomly selected chromosome (parent
2). Make a crossover operation between the two chromosomes producing two new
genomes (child 1 and child 2). Make a mutation operation to both of the children

(Figure 3.2). Perform a selection to obtain the new generation.

| ﬁopuiati‘o‘n

Mutation

oI,

INENE

T

Figure 3.2: Generating a new population



3.4.4 Crossover Operation

Crossover operation generates two children from two parents. The children inherit
genes randomly from the parents. Whether the crossover is made at all is determined
by the parameter p, (usually in the interval [0.5, 1.0]. If p. = 1.0 crossover is always
made. If p. < 1.0 crossover is made with probability p.. If the crossover operation is
not made to the parents the genes are copied to the children unchanged. If crossover
is made to the parents then in this algorithm the (method of two points) is used in
which two randomly selected genes the starting point (6 in Figure 3.2) and the ending
point (8 in Figure 3.2) are determined for parent 2. Then, the genes between these
points are exchanged between the parents. In Figure 3.3 we present a more detailed
example of crossover. In this example only one gene is changed between the parents
(the starting and ending points are the same = 2, the corresponding values of the

changing genes are 7 and 4).

Crossover
DIEAEIER)

Rutated
Chilg ¥

Figure 3.3: Crossover and mutation operations

3.4.5 Mutation Operation

When the children chromosomes have been created both of them undergo mutation
operations. The number of the operations n,, is determined by the parameter p,

(usually in the interval {0.01, 0.2]) and is calculated as follows

Nop = () (Prm) (3.5)
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where n,, is the number of mutations, p is the length of chromosome, and p,, is a
user-defined parameter, in the interval[0.01,0.2].

The mutation operations are performed by selecting no, random genes of the
chromosome and replacing the value of the selected gene by a random ¢ integer from

the feasible interval of the corresponding integer variable (Figure 3.3).

3.4.6 Steps of the Algorithm
The GADVM algorithm is outlined in the following steps [88]

o Step 1: Initialize a population of chromosomes. The GADVM algorithm first
generates P different chromosomes at random which form the first generation.
The set of chromosomes is called the chromosomes pool (or population), and P

is the size of the gene pool.

e Step 2: Evaluate each chromosome in the chromosome pool. The fitness value
of a chromosome is the value of the objective (fitness) function for the solution
( e.g., a multicast tree) represented by the chromosome. Given a chromosome
pool H = {hy,hs,..,h,}, the fitness value of each chromosome is computed
as follows. Let C(h;) be the overall link cost of the graph represented by the
chromosome h;. Let C'(E) be the sum of the costs of all links of the network.

The fitness value of the chromosome h;, F'(h;), is given by

fo = 1-2B G S e < Qe Mi=1,23,.0 (36)
C(E)
e€P(s,v)
=0 Otherwise (3.7)

where P(s,v) is the path from source s to destination v, derived from chromo-
some h;. After evaluating the fitness values of all chromosomes, chromosomes
are then sorted according to their fitness values such that F(hy) > F(hy) >
... > F(h,). That is the first chromosome in the pool is the best solution found

so far.
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e Step 3: If the number of generations is larger than the pre-defined maximum
number of attrations, MaxGen, then stop and output the best chromosome

(solution), otherwise, go to step 4.

o Step 4: Discard duplicated chromosomes. There might be duplicated chromo-
somes in the pool. Apply some of the genetic operations, e.g. crossover, on
two duplicate chromosomes will yield the same offspring. Therefore, too many
redundant chromosomes will reduce the ability of searching. Once this situ-
ation occurs, the redundant chromosomes must be discarded. New randomly

generated chromosomes replace them.

e Step 5: Generate next generation of chromosomes by applying generic opera-

tions: reproduction, crossover, and mutation.

e Step 6: Stop when the number of generations reaches the maximum number of
generation, MaxGen, or when no further improvement is observed on the fitness

function.

The Pseudo code for the GADVM algorithm:

Given the input parameters as follows:

G=(v,E)

s= source node.

M= destination nodes.

M size = size of the destination set.

Qi = QoS constraints (A, ).

n = number of QoS parameters.

P = Size of the chromosome pool.

k1, ha,...hp= chromosome pool of previous generation.
h1, hy, .....hp= chromosome of the new generation.
MulRate = mutation rate.

F(h;) = Fitness of the chromosome h;
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MazGen= Maximum number of generations
G;= current number of generations.
(initialization of the chromosome)

fori=1to P Do

begin

for each m; € M do

begin

randomly choose a route from s to m; to the jth gene of the chromosomeh,;.
end = for/

end = for/

Gi=1

start the GADVM generations/

begin

/ Evaluation of the chromosome/

for i = 1toP do

begin

if EeeP(s,v) Qile) <A, veeM,j=1,2,...,n
F(hi)=1- G35

else
F(h;) =0
end = for/

Sort the chromosomes according to their fitness values such that
E(hy) > Flhg) > ...... > F(hy)

/Stopping Criteria

if(G;;MaxGen) then

begin

T = decode(h,) where T is the multicast tree constructed hy
end

else

Gi=G;+1

Discard the duplicated chromosomes

fori=1to P do

begin

forj=j+1to Pdo

begin
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if ( chromosome h; = chromosome h;)

chromosome h; =ramdomly generate a new chromosome, h; # h;

end

end Begin genetic operations

Reproduction

generate a random integer p, 1 < P< P

The new chromosomes hf, h, ....h;, are reproduced from Ay, hg,...hp.

Crossover

i=p

while (i < P ) DO

begin

Randomly choose two chromosomes, hg,hy, from population pool P

Randomly choose two values ¢, 7 such that (1 < g <7 < Msize)

for j =1 to M,ize do

begin if (j < q) or( j =) then

begin

the jth gene of the new chromosome hj,, = the jth gene of the chromosome h,
the jth gene of the new chromosome h}, , = the jth gene of the chromosome h,
end = if

else

the jth gene of the new chromosome h},, = the jth gene of the chromosome h,,
the jth gene of the new chromosome ki, , = the jth gene of the chromosome h,
begin

end = else

end = for

i =14+ 2 discard chromosome h},

end = while

Mutation

fori=11t0 P do

begin

generate random number 7, (0 < r < 1)

if (r < MuRate) then

begin

generate a random number p, (1 < p < Msize)

the pth gene of new chromosome h‘; = randomly choose a new route
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end

end = for
replace hy, hy, ..., hy with hl, hi, ...h;,

end

Output T as a multicast tree end

3.5 GADVM Parameters Setup

Parameters of the GADVM algorithm, such as the size of the chromosome pool,

mutation rate, and the number of generations, must be properly selected to yield the

best performance. In this section we present simulation results from different values

of the above parameters and we use the best values obtained later in chapter 4 when

comparing the performance evaluation of the proposed GADVM algorithm.

o Choosing the chromosome’s pool size: We first examine the effect of the size of

the chromosome pool on the performance of the GADVM algorithm. Figure 3.4
shows the minimum cost obtained after 200 generations with different chromo-
some pool sizes under 60-node random graphs where the size of the destination
group is set to be 20% of the graph nodes. The mutation rate is set to be 0.4.
From Fig. 3.4, we can observe that after 200 generations, the chromosome pool

size of 90 yields the best performance.

Choosing proper mutation rate: Figure 3.5 shows the effect of mutation rate
on the performance of GADVM. It shows the cost under various mutation rates
when the chromosome pool size is set to 90. We can observe that GADVM

yields the best performance when mutation rate is set to 0.4.

Choosing the number of generations: Figure 3.6 shows the effect of the number
of generations and the size of the routing table on the performance of the al-
gorithm. The chromosome pool size is set to 90 and the mutation rate is set
to 0.4. The three curves in Fig. 3.6 show that minimum cost obtained at each

generation when the sizes of the routing table are set to 60, 80, 100 respectively.
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Figure 3.4: Crossover and Mutation operation
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Figure 3.5: Crossover and Mutation operation
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One might expect that a larger number of routes in routing table lead to bet-
ter performance, because more diverse routes available in a large routing table
can prevent the generic algorithm from getting trapped in the local optimum.
However, we have observed that the smaller the routing table the better the
performance. This may be due to the slow convergent rate of larger routing
table size. That is, the process has not converged to the optimal solution yet.
In our later simulations, we set the size of the routing table to 40. The number
of generations is set to 250 since the cost does not decrease much after this

number.
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Cost
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Generation
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Figure 3.6: Crossover and Mutation operation
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Chapter 4

Performance Evaluation of the
Proposed GADVM

In this chapter, we report the results of comprehensive simulations to evaluate the
proposed algorithm and compare its performance with other algorithms. We use
the random network generator described in section 4.1. The simulated scenarios of
algorithms are presented in section 4.2. In section 4.3, we present the performance
metrics that are used to evaluate the different algorithms. The effect of relaxing the
delay variation constraint is investigated in section 4.4. In section 4.5, we examine the
effect of changing the multicast group size on the performance of different algorithms.
The effect of increasing the number of nodes in the network is investigated in section
4.6. Section 4.7 describes a technique to improve the speed of the algorithm. Finally,

the chapter is concluded in section 4.8.

4.1 Random network generator

To guarantee fair simulation results, we use the same graph generator [32] that is
used in all problems related to multicasting. N nodes are randomly distributed over a
rectangular area with size 2000 by 2000 where each node is placed at a location with

integer coordinates. The probability of edge existence between any two nodes u and



v can be calculated from the function:

Plu,v) = fexp(Z22)) (@.1)

where d(u,v) is the distance between nodes v and v. L is the maximum distance
between any two nodes, @ and g are two parameters used to adjust the degree of the
graph and the density of short and long edges. If P(u,v) is greater than 0.5, then
an edge exists between nodes u and v, otherwise, there is no edge between these two
nodes. After calculating the preceding function for each pair, the resulting graph
does not necessarily need to be connected, so, we add edges at random till we get a
connected graph. The cost of any edge e(u, v) is equal to the distance d(u,v) and the
delay of any edge is a random value according to uniform distribution between 1 and
10. Finally, for each algorithm to be correctly evaluated, we run it on 3000 different

graphs with the same values of n, , § and taking their average.

4.2 Simulated Algorithms

The random graph generator described in section 4.1 is used to simulate and compare

the following:

o The shortest path delay tree (SPT) obtained by applying Dijkstra algorithm
[3].

e CDKS algorithm [8], designed for the delay constrained shortest path tree. It
first constructs the shortest path cost tree. Then, it looks for every destination
and tests it according to the delay constraint A. If the destination satisfies A,
then the shortest path cost for this destination will be in the resulting tree,
otherwise, it replaces the path for this destination from the shortest path delay

tree.

e The BSMA algorithm [41] that is described in section 2.4 for the delay con-
strained shortest path problem.
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4.3

The KPP [37,38], is a heuristic algorithm proposed for the delay constrained

minimum Steiner tree problem. KPP is described in section 2.4.4.

The proposed GADVM algorithm that is designed for the delay and delay vari-

ation constrained shortest path problem.

Performance Metrics

For all the simulated tests of the algorithms, we consider two performance measures,

the failure rate and the average cost per path of the resulting tree.

Failure Rate: Any algorithm can fail to find a suitable tree by not satisfying
either the delay constraint or the delay variation constraint. From the definition
of SPT and CDKS algorithms, all algorithms will find a delay constrained tree
if one exists. So, all simulated algorithms have the same failure rate to find a
delay constrained tree. Hence, we will not use the failure in the delay constraint
as a performance measure. On the other hand, the failure of finding a tree that
satisfies the delay variation constraint is different for all algorithms and gives an
indication of how suitable these algorithms are in meeting the delay variation
constraint. So, we define the failure rate as the rate that at which the algorithm

failed to find a tree that satisfies the delay variation constraint.

Average Cost per Path The second performance measure we consider is the
average cost per path of the resulting tree. For the algorithms SPT, CDKS
and BSMA that are designed mainly for the delay constrained shortest path
tree problem, we calculate the cost whether the algorithm failed to satisfy the
delay variation constraint or not. For the GADVM algorithm, when the fail-
ure happened, we calculate the cost of the tree with minimum possible delay -

variation.
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4.4 Performance with respect to the Delay Varia-
tion

4.4.1 Failure Rate

Figures 4.1, 4.2, and 4.3 display the effect of changing the delay variation constraint
on the failure rate. For the three figures, we set the number of nodes in the network N
= 50 and the delay constraint A= 0.05, while changing the delay variation constraint
6 from 0 to 0.05. Setting the delay variation constraint to 0 means that all the
destinations should get the data at the same time while setting 6 = 0.05, the same
value as A, cancels the effect of the delay variation constraint. In Fig. 4.1, we set the
average node degree d = 4 and the multicast group size M = 5. With a tight delay
variation constraint, the performance of SPT, CDKS and BSMA is very poor with
BSMA being the worst. The SPT algorithm is always better than CDKS and BSMA.
This can be deduced from the fact that SPT tends to minimize the delay and hence
all the destinations have the lowest possible delay. The failure rate of all algorithms
is zero at § = A = 0.05. This is because the problem is reduced to be a shortest
path problem under delay constraint. Fig. 4.2 differs from Fig. 4.1 in the size of
multicast group M which is set to 25 instead of 5. The increase in multicast group
size raises the difficulty of satisfying the delay variation constraint. CDKS and BSMA
algorithms have a very poor response for this increase where they give 100% failure
at § < 0.02, also SPT gives 100% failure at § < 0.015. GADVM still dominates the
other algorithms.

Fig. 4.3 differs from Fig. 4.1 in the average node degree d where we set it to 10
instead of 4. Increasing the average degree increases the number of available paths,
which results in decreasing the failure rate. GADVM almost has zero failure rate
for all delay variations even when § = 0. KPP gives zero failure rate 6 > 0.005.
The performance of SPT, CDKS, and BSMA is enhanced but still gives almost 100%

failure for small values of 6
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size=50, Multicast group=>5, Average node degree = 4
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4.4.2 Average Cost per Path

Figures 4.4, 4.5 and 4.6 show the effect of changing the delay variation constraint
on average cost per path. For the three figures, we set the number of nodes in the
network to N = 50 and the delay constraint A = 0.05, while changing the delay

variation constraint 4 from 0 to 0.05.

For the three figures, it can be observed that the three lines of SPT, CDKS and
BSMA algorithm are constant values. This means that the cost of the resulting tree
is not dependent on the delay variation constraint. This can be deduced from the
fact that the three algorithms are mainly developed for the problem of shortest path
tree under delay constraint. So, they do not pay any attention to the delay variation
constraint. The performance of BSMA is always better than CDKS which is better
than SPT.

In Fig. 4.4, we set the average node degree d = 4 and the multicast group size M
= 5. KPP gives very high cost that is not comparable to any other algorithm when
6 < 0.02, then it approaches the same performance of CDKS at § > 0.04. GADVM
has a high cost at § < 0.01. This cost is considered to be paid for the added con-
straint. Recalling that at small §, it was very difficult to obtain a solution for the other
algorithms, so, finding a solution for small § should be with a very high cost. The
performance of GADVM is enhanced by relaxing the delay variation constraints and
it dominates CDKS at § > 0.025, then it approaches BSMA but it did not overcome
it. GADVM never dominates BSMA because GADVM uses an additional constraint
which results in an additional cost. Comparing GADVM with CDKS when ¢ > 0.025
yielding that, although GADVM has an additional constraint, it also gives better cost.

In Fig. 4.5, we increase the multicast group size M to 25, this gives almost the
same graph of Fig. 4.4 with the same analysis. This indicates that changing the

multicast group does not really have a significant effect on the average cost per path.
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This is because all algorithms compared deal with multicast as a special case of broad-
casting, so, it does not matter how large is the the multicast group is. Fig. 4.6 differs

from Fig. 4.4 in the average node degree d which is set to 10 instead of 4.

The performance of GADVM is enhanced with the increase of average node degree.
The difference between GADVM and BSMA is decreased. Also, KPP dominates
CDKS when § > 0.03. For all algorithms, the average cost per path is decreased to
half of its value in Fig. 4.4. This is because increasing the average degree results in

more available paths, which results in more available cheaper paths.

4.5 The Effect of Changing Multicast Group Size
on GADVM Algorithm

4.5.1 Failure Rate

The effect of changing the multicast group size on the failure rate is investigated in
Figures 4.7, 4.8 and 4.9. For the three figures, we set the network size N = 50, delay
constraint A = 0.05 while changing the multicast group size from 5 to 45. Increasing
the size of the multicast group makes the problem of delay variation constraint more
difficult, since finding suitable values for delay in 45 nodes is more difficult than find-
ing it for 5 nodes.

In Fig.4.7, we set the average node degree d = 4 and we force a tight delay vari-
ation constraint § = 0.05. It can be observed that for tight delay variation, SPT,
CDKS and BSMA algorithms do not work at all since they give 100% failure rate at
M > 10. This indicates that these algorithms are not suitable for the delay variation
constrained problem. On the other hand, GADVM gives relatively good results and

its failure rate increases slightly with the increase of the size of multicast group.

This indicates that GADVM is working well even with tight delay constraint and
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in large multicast group size. KPP has a higher failure rate GADVM by almost a
constant difference 15% in the different sizes of multicast group. In Fig. 4.8, we still
keep the tight delay variation constraint while increasing the average node degree d

to 10 instead of 4. This is to increase the number of available paths and to decrease
the failure rate of all algorithms. However, CDKS and BSMA are still affected by

the tight delay variation, so, they have no performance enhancement for the increase
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Figure 4.7: The effect of multicast group constraint on failure rate with network
size=50, delay variation constraint= 0.05, delay constraint=0.2, Average node degree
=4

of the average node degree where they have 100% failure rate when M > 10. Also,
SPT has a failure rate of 100% when M> 15. On the other hand, GADVM performs

well with the increase of the average node degree even with the tight delay variation.
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GADVM has almost zero failure for all different multicast group sizes. This indicates
that GADVM works better for networks with high average node degree.

Fig. 4.9 differs from Fig. 4.7 in that we relax the delay variation constraint ¢ to
be 0.15 instead of 0.05 while keeping the average node degree d = 4. The effect of
relaxing the delay variation constraint is significant for all algorithms. CDKS and
BSMA perform well in small multicast groups but they still cannot stand out with
large multicast group size. SPT always has a failure rate below 50%, recalling that it
was always 100% in Fig. 4.7 yielding that SPTD has the best response for relaxing
delay variation. GADVM has a good performance and always results in a failure rate
that is below 5%. The difference between KPP and GADVM is also decreased. This
indicates that GADVM is preferable for applications with tight delay variations.

4.5.2 Average Cost per Path

Figures 4.10, 4.11 and 4.12 demonstrate the effect of changing the multicast group
size M on the average cost per path for the resulting tree. For the three figures, we set
the network size N = 50, the delay constraint A = 0.20 while changing the multicast
group size from 20 to 120.

In Fig. 4.10, we set the delay variation constraint § = 0.05 and the average node
degree d = 4. BSMA always dominates the other algorithms, this is the result of
the high failure rate. GADVM yields a cost which is worse than CDKS and better
than SPTD. The additional cost that GADVM suffers from is due to its low failure
rate. We should pay an additional cost to satisfy an additional constraint. KPP is
not practical at all since it gives relatively high cost.

In Fig. 4.11, we increase the average node degree d to 10 while keeping the tight delay
variation constraint. Comparing GADVM to CDKS, it is observed that GADVM
gives better cost and better failure rate, which means that in all measures GADVM
dominates CDKS in the case of large average node degree. BSMA still get the best
result in terms of cost. KPP still gives a very high cost which makes it not practical.

The increase of average node degree results in less cost for all algorithms.
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Fig. 4.12 differs from Fig. 4.10 in that we relax the delay variation limit to be
0.15 instead of 0.05 while keeping the same average node degree d. Relaxing the
delay variation constraint results in making the performance of GADVM better than
CDKS. KPP gives reasonable results and always dominates SPT. This indicates that
the performance of GADVM algorithm gives better results in the case of relaxing

delay variation constraint.
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Figure 4.10: The effect of multicast group constraint on average cost/path rate with
network size=50, delay variation constraint= 0.05, delay constraint=0.20, Average
node degree = 4
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Figure 4.12: The effect of multicast group constraint on average cost/path rate with
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4.6 The Effect of Changing Network Size on GADVM
Algorithm

4.6.1 Failure Rate

The effect of changing network size on the failure rate is investigated in Figures 4.13
and 4.14. For both figures, we set the delay constraint A = 0.2, the multicast group
M = 5 and the average degree d = 8 while changing the network size from 20 to 90.
In Fig. 4.13, we set the delay variation constraint § = 0.05. GADVM always gives
zero failure rate for different network sizes. KPP gives 25% failure rate at N = 10,
then the failure rate is decreased as the network size increases.

The performance of SPT is decreased with the increase in network size. This is
because SPT tends to minimize the delay, so, for small network size, minimizing the
delay gives almost the same values at all destinations. However for large networks,
this is not necessary. So, at N = 10, SPT dominates KPP. CDKS and BSMA always
give a failure rate above 90% in different network sizes.

In Fig. 4.14, we relax the delay variation constraint to be 15 instead of 5. GADVM
gives almost zero failure rate . The performance of SPT starts by zero failure rate and
then decrease as the size of the network increased. BSMA has the worst performance

but it is better than Fig. 4.13.

4.6.2 Average Cost per Path

Figures 4.15 and 4.16 demonstrate the effect of changing network size on the average
cost per path. The figures use the same parameters as in Figures 4.13 and 4.14.

In Fig. 4.15, we set the delay variation constraint § =0.05. BSMA always dominates
all other algorithms. CDKS dominates GADVM at N > 30. With large network size,
GADVM dominates CDKS. This indicates that GADVM is more suitable in large
network size. KPP gives a very high cost compared to all other algorithms.

In Fig. 4.16, we relax the delay variation constraint to be 0.15 instead of 0.05. BSMA
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Figure 4.13: The effect of Network size on failure rate with delay variation constraint=
0.02, delay constraint=0.05, Average node degree = 8
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still gets the best results. GADVM always dominates CDKS for all different network
sizes. It can be observed that KPP is comparable with CDKS and even dominates it
at N > 30. This indicates that GADVM works very well for large network size and

large delay variation.

4.7 Speeding up the GADVM

One of the key factors that dominates the computation complexity of GADVM is the
number of generations. By reusing past solutions, the number of generations required
to obtain a good solution can be significantly reduced.

In real networks, the solutions obtained for setting up a multicast connection can be
reused as initial chromosomes for the next multicast request, either with the same
source and destination set or not. Since the network status (e.g., cost, delay and
loss probability on each link) will not change dramatically during a short period of
time (e.g. the time between two consecutive multicast requests), chromosomes in the
chromosome pool of the past solution are very likely to still be good solutions.
When two multicast connection requests have the same source node and destination
set, the chromosomes in the past solution pool to the new initial pool is too large, the
evolution process may not progress effectively. Therefore, we suggest only copying
the top 50% of the chromosomes from the past solution pool. Fig. 4.15 shows the
effect of reusing the past solutions. The simulations were done on a 20-node random
graph. The number of destination nodes is set to 4. The dashed line with circle marks
shows the costs of multicast trees when chromosomes in the initial chromosome pool
are randomly generated. The solid line with trinagle marks shows the improvement
on the convergence speed when the top 50% of the past solutions were reused as the
initial chromosomes. Changing the cost and QoS parameters (delay, loss), simulates
the fluctuations of the network traffic of each link randomly to a value within the
interval of (80%, 120%) of the original values. The same method is adopted for the
following simulations. As we can observe from Fig. 4.16 that GADVM yields very
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good solutions very quickly, if past solutions are reused.

If two multicast requests do not have the same destination set but with the same
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Figure 4.15: The effect of the past solution on the performance of GADVM algorithm
with same source and set of destinations

source node, the chromosomes in the past-solution pool can still be reused. In particu-
lar, if the destination set of the current multicast request is a subset or superset of the
previous request’s destination set, the chromosomes can be reused as follows. If the
current destination set is a superset of the previous destination set, the chromosomes
are initialized such that genes that represent routes to destinations in the previous
destination set are copied directly from the chromosomes in the past-solution pool
while genes that represent new destinations are generated randomly (or with prefer-

ence for shorter routes). on the other hand, if the current destination set is a subset
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of the previous destination set, genes of initial chromosomes are copied directly from

the corresponding genes in the past solution pool.
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Figure 4.16: The effect of the past solution on the performance of GADVM algorithm
when the destination set is different from the previous one

4.8 summary

Multimedia applications involved in real-time applications have multiple QoS require-
ments that must be guaranteed by the underlying network. The problem of construct-

ing a multicast tree with multiple constraints is NP complete. In this work, we used
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a heuristic approach based on the genetic algorithm to tackle this problem. Our sim-
ulation results show that GADVM yields better performance than other algorithms

under various sizes of random graphs.

We summarize the performance of the multiple constraint muiticast algorithms
studied in this work as follows. The SPT algorithm requires the lowest computa-
tion complexity, but yields the worst performance. The KPP algorithm requires the
highest computation complexity, but yields worse performance than GADVM and
BSMA. After all, all algorithms are able to construct low cost trees, which satisfies
the given QoS parameters, but GADVM performs the best. The GADVM approach
also has the advantages that no matter how QoS constraints may be satisfied, the

time complexity will not increase significantly.

In this section, we have assumed that the link costs are randomly generated and
the bandwidth required on each link of the multicast tree is fixed, e.g, obtained based
on the effective bandwidth. However, if end to end QoS is required for each source-
destination pair of a multicast connection, the bandwidth required at each link may
not be the same, it would depend on the end to end QoS, the length of the path,
current resource utilization of each link on the multicast tree, etc. Therefore, how to

define link cost and perform QoS on the multicast tree, etc. is worth further study.

A large number of simulation experiments have been done to compare the proposed
GADVM algorithm that was developed in chapter 3 for delay and delay variation
shortest path problem with other algorithms mainly for delay constrained shortest
path problem. We considered two performance measures, the failure rate and the
average cost per path. For the failure rate, GADVM always dominates all other
algorithms with a very great difference. For the average cost per path, GADVM
sometimes gives results that dominate SPT and CDKS algorithms in case of large

degree and large network size. On the other hand, BSMA algorithm always dominates
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GADVM in terms of cost. GADVM suffers additional cost which is paid for satisfying

the additional constraint of delay variation.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusion

This thesis considers the problem of multicast routing under special constraints that
represent QoS parameters. A survey of current algorithms that deal with different
kinds of constraints is presented with other problems that are related to multicast

routing. The need for more algorithms for multicast routing problems was apparent.

In our work, we focus on constrained multicast routing problems . It is shown
that there is a need for an algorithm for multicast routing in real-time networks that
satisfies the requirements for the new applications like real time and multimedia ap-

plications.

We considered networks with delay and delay-variation constraints that represent
real-time applications such as video conferencing, which not only needs to be real
time, but also a certain balance between participants must be guaranteed. This bal-
ance is formulated as a delay variation constraint and added to the delay constraint
which results in a new problem that is finding a shortest path route under delay
and delay variation constraints. The problem studied is known to be NP-Complete.

A new algorithm based on genetic algorithm for multicast routing with constraints



called GADVM (Genetic Algorithm for Delay and Delay-Variation Multicast), is pro-
posed and then applied for the delay and delay-variation constrained shortest path
problem. An extensive analysis of GADVM performance is done by comparing it

with other algorithms via large number of simulation experiments that simulate real

networks.

Simulation results show that GADVM always dominates the other algorithms and

its performance is increased at tight delay constraint and large average node degree.

Two performance measures are considered, the failure rate to satisfy the delay
variation constraint and the average cost per path. GADVM gives a very low failure
rate with respect to other algorithms. In addition, the cost of GADVM is comparable

to other algorithms and even in sometimes dominates some algorithms.

5.2 Suggestions for Future Work

The work of this thesis can be extended in several areas:

e The proposed algorithms are centralized which means that all data must be
stored in the source node. A need for a distributed implementation of these
algorithms will be valuable and more scalable in case of large network size,

where we will need that every node stores only a limited amount of information.

o The dynamic change of multicast group members should be considered to be
embedded in the proposed algorithms so that we do not need to run the algo-

rithm from the beginning with every change in the multicast group.

e The proposed algorithms should be incorporated in an appropriate protocol to

be used in real networks.

e More constraints can be added to the proposed algorithms like the degree con-

straint which is suitable for the internet .
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e The proposed algorithm minimizes the cost of each path individually which
results in a shortest path tree, similar work could be done in minimizing the

total cost of the multicast tree which is called minimum Steiner tree.

e The proposed algorithm deals with multicasting problems, similar work could

be done for broadcasting and unicast problems.
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Appendix A

Complexity Theory and NP

problem

There are many practical problems for which no polynomial-time algorithm is cur-
rently known to exist. Computational complexity theory has shown that there are
many problems which indeed have no polynomial-time or even exponential-time so-
lution. There exist problems of arbitrary complexity. Many problems we encounter
usually admit a good network or integer LP model and the question arises why it is
so hard to find a polynomial-time algorithm for them. In 1971, Cook[ 91], showed
that the essence of the question is a major open problem in complexity theory: the
P-versus-NP question.

In this appendix a brief description of the theory of NP-completeness is given, .

The definition of polynomial-time computability and similar notions requires an un-

derlying model of computation with a fair instruction set.

A.1 Size of the Problem

When we refer to the size of a problem (or variable, or instance) we mean the size
of its specification in bits, unless explicitly stated otherwise. Problem specifications

must also be finite. Thus, if any numbers are involved, they are normally restricted



to being integers or rationals. The size of problem instances and other bit strings z
will be denoted by z. An algorithm is said to be polynomial if its running time on
instances of size n = z is bounded by n* for some fixed k.

Problem size is sometimes measured more loosely. For example, for networks G
with n nodes one often uses |G| = n, even though it may take O(nlogn + mlogn) =
O(n2logn) bits to specify the network and its m edges. Note that for integers n,
In| = logn. An algorithm has a single integer n as input, e.g. a primality tester, has

polynomial running time if it runs in time O((log n).

A.2 Computational Problems

Computational Problem can be defined as, Given an input z that is encoded over the
alphabet {0,1}, find an output y that satisfies some property. The computational
problem is then described by the property that the output has to satisfy given the
input .

There are four types of computational problems, decision problem, research prob-
lem, optimization problems, and counting problems

Definition: Therelation R C {0,1} z {0, 1} is polynomially-bounded if there exists
a polynomial p such that for every(z,y) € R it holds that |y| < p (|z)].

A.3 Search Problem

P as a natural class of search problems. With each polynomially bounded relation
R, we associate the following search problem: given z find y such that (z;y) € R or
state that no such y exists. The class P corresponds to the class of search problems
that are solvéble in polynomial time. NP as another natural class of search problems
NP as another natural class of search problems. A polynomially bounded relation R
is called an NP relation if given an alleged instance solution pair one can efficiently

verify whether the pair is valid; that is, there exists a polynomialtime algorithm that
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given x and y determines whether or not (z;y) € R. It is reasonable to focus on search
problems for NPrelations, because the ability to recognize a valid solution seems to
be a natural prerequisite for a discussion regarding finding such solutions.

The P versus NP question in terms of search problems: states that, Is it the
case that the search problem of every NP relation can be solved in polynomial time?
In other words, if it is easy to test whether a solution for an instance is correct then
is it also easy to find solutions to given instances? If P = NP then this would mean
that if solutions to given instances can be efficiently verified for correctness then they
can also be efficiently found (when given only the instance). This would mean that
all reasonable search problems (i.e., all NP relations) are easy to solve. On the other
hand, if P # NP then there exist reasonable search problems (i.e., some NP relations)
that are hard to solve. In such a case, the world is more interesting: some reasonable

problems are easy to solve whereas others are hard to solve.

A.4 The decision Problem

For an NP relation R, we denote the set of instances having solution by Lp ; that
is, Lp = = : y(z;y) € R. Such a set is called an NP set. Intuitively, an NP set is a
set of valid statements (i.e., statements of membership of a given x in Ly that can
be efficiently verified given adequate proofs (i.e., a corresponding NP witness y such
that (z;y) € R).

NP-proof systems. Proof systems are defined in terms of their verification
procedures. Here we focus on the natural class of efficient verification procedures,
where efficiency is represented by polynomialtime computations. (We should either
require that the time is polynomial in terms of the statement or confine ourselves
to “short proofs” that is, proofs of length that is bounded by a polynomial in the
length of the statement.) An NPrelation R yields a natural verification procedure,
which amounts to checking whether the alleged statementproof pair is in R. This

proof system satisfies the natural completeness and soundness conditions: every true
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statement (i.e.,x € Lg) has a valid proof (i.e., an NP-witness y such that (z;y) € R),
whereas false statements (i.e., z ¢ Ly ) have no valid proofs (i.e., (z;y) ¢ R for all
y's).

The P versus NP question in terms of decision problems: Is it the case that NP
proofs are useless? That is, is it the case that for every efficiently verifiable proof
system one can easily determine the validity of assertions without given suitable
proofs. If that were the case, then proofs would be meaningless, because they would
have no fundamental advantage over directly determining the validity of the assertion.
Recall that P is the class of sets that can be decided efficiently (i.e., by a polynomial
time algorithm). Then the conjecture P # NP asserts that proofs are useful: there
exists NPsets that cannot be decided by a polynomialtime algorithm, and so for these
sets obtaining a proof of membership (for some instances)is useful (because we cannot

determine membership by ourselves).

A.5 NP Complete

The NP problem is NP complete if it is NP is reducible to it, and the polynomial-
bounded relation is NP complete if it is an NP relation and every NP-relation is

reducible to it.
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