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Ey elastic modulus in longitudinal direction

Ej elastic modulus in transverse direction

E laminate stiffness matrix

F@) impulse force

F, failure index of delamination

Fl failure index of fiber in tension mode

F fC failure index of fiber in compressive mode

F laminate stiffness matrix

FDM finite difference method

FRP fiber-reinforced plastics

FS fixed-end support

FSDT first-order shear deformation theory

G, in-plane shear modulus

G, mode I strain energy release rate

G mode I critical strain energy release rate

G, mode II strain energy release rate

Gy mode II critical strain energy release rate

G laminates stiffness matrix

h thickness of beam

h, thickness of upper delaminated region

h, thickness of lower delaminated ergion
H laminate stiffness matrix
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pinned-end support
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linear combination of load from delaminated legs of beam
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fourier coefficients of motion equation

scanning electron microscopy
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in-plane shear strength

transverse tensile strength

transverse compressive strength
through-the-thickness shear strength

time

axial displacement of beam
non-dimensional axial displacement of the beam
lateral displacement of the beam

non-dimensional lateral displacement of the beam
displacement of impactor

initial velocity of impactor

initial geometric imperfection

magnitude of initial geometric imperfection

axial coordinate
non-dimensional axial coordinate
transverse deflection of the beam
initial geometric imperfection
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o, axial stress of each lamina

T non-dimensional time

T shear stress in each lamina

T, inter-laminar shear stress

At non-dimensional time step

£, axial strain of each lamina

Y12 Poisson ratio

Y inter-laminar shear strain

% rotation of cross section of beam

7] non-dimensional rotation of cross section of beam
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p mass density of the lamina.
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v, mode I partitioning factor for work done by moment
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Abstract

The dynamic behavior, including pulse buckling, damage initiation and delamination
growth of slender fiber-reinforced plastic (FRP) laminated beams, having initial
geometric imperfections, subjected to an axial impulse was investigated numerically and
experimentally.

The dynamic equilibrium equations of slender FRP beams, having initial geometric
imperfections were established based on the Timoshenko beam theory, with the
consideration of several parameters such as the beam’s axial and transverse inertia,
transverse shear deformation, and the cross section rotational inertia. The von-Karman
nonlinear strain-displacement relationship was used to describe the beam’s response. The
First-Order and Higher-Order Shear Deformation Theories were used to model the
displacement fields of the beams. The dynamic differential equations were solved with
the finite difference method. The results obtained from the proposed formulations agree
well with those of the finite element analysis.

Pulse buckling, as an instability form (that is, the excessive growth of lateral, or out of
plane displacement) can result from a single transient pulse load with a magnitude greater
than that of the static Euler buckling load. Several parameters were investigated to assess
the effects of initial geometric imperfection, slenderness ratio, curvature and boundary
conditions of the beams on its pulse buckling response. A criterion for establishing the
onset of the dynamic pulse buckling of the beams was also suggested.

The investigation of dynamic damage behavior of laminated beams was also carried out
for understanding the damage initiation mechanism in the beams impacted axially by a
moving mass. Hashin’s failure criteria was used to predict the likelihood of damage
generated in the beams. The experimental work was conducted using a horizontal linear
bearing impact setup. Scanning Electron Microscopy was used to analyze the damage
mechanism of laminated beams. The influence of fiber angle, lay-up sequence and initial
imperfection on the critical energy required for damage initiation was also investigated.

Delamination propagation characteristics of the beam were also investigated numerically
and experimentally. Carbon fiber/epoxy specimens with different initial delamination
length, located along beams' length and through their thickness, were experimentally
tested and numerically analyzed. The strain energy release rate based on the virtual crack
closure technique (VCCT) was calculated at the tip of the delaminations. Critical impact
energy for delamination growth was predicted numerically as well.

The dynamics pulse-buckling response of carbon/epoxy and E-glass/epoxy laminated
composite beams with [(£67.5),], angle lay-up, subject to axial impact was investigated

experimentally and numerically as well. These beams exhibited plasticity like response
under axial impact.
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1 Introduction

1.1 Overview

In design of engineering structures, three basic criteria must be satisfied. One 1s the
strength criterion, which states that the maximum stresses in the structure must not
exceed the allowable stresses under the designated load conditions. The second is the
stiffness criterion, which specifies that the maximum deflection of the structure under a
specified load case must be lower than that of a specified criterion. This criterion ensures
a comfortable and safe feel to the users of the structures, and minimizes undesirable and
potentially dangerous behaviors such as fluttering or excessive mechanical vibration,
which hinder the normal service. Stability is the third important issue that structural
engineers must consider seriously in their design, particularly for thin-walled or slender
structural components such as bars, beams, columns, plates and shells, which may fail in
some instability mode(s) under compressive load and/or under static or dynamic

compressive loading conditions.

The well-known Euler column theory can be used to provide the solution for determining
the stability of a slender, perfectly straight and concentrically compressed column with
various boundary conditions. For a one end fixed and the other end free column (see
Figure 1-1(a)), the smallest critical load causing the member buckling can be determined

by

P = (1.1)

in which £ is the elastic modulus, 7 is the moment inertia of the cross-section and L is the

length of the beam. The corresponding buckling mode is shown in Figure 1-1(b).
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Figure 1-1 The Euler’s column buckling.
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Figure 1-2 Slender and thin-walled structural components may lose their stability
under static or dynamic compressive loads.




Thin-walled or slender structural components (Figure 1-2) may lose their stability under
static or dynamic load. In the real world, many stability problems are concerned with
dynamic loading. For example, airplanes, automobiles and ships have many components

that may be subjected to dynamic instability.

Dynamic stability of structures (i.e., dynamic buckling) is a broad topic which includes
not only dynamic buckling from oscillatory loads and impact pulse loads, but also those
due to the interaction with the media surrounding the structures, such as solid-fluid
interaction or fluttering due to wind on tall buildings or on aircraft fuselages. In general,
we classify dynamic buckling from oscillatory loads as vibration buckling and dynamic
buckling from (transient) impact or pulse loads as dynamic pulse buckling [Lindberg and

Florence, 1987].

Vibration buckling, which is defined as unacceptably large vibration amplitudes, is
caused by oscillating loads, when the combination of load amplitude, frequency and
structural stiffness, mass and damping meet certain criteria for a given structure.
Vibration buckling, on the other hand, is caused due to bending moment resulting from
an inevitable imperfection. The resonance phenomena, which occurs when the
stimulating frequency meets the natural frequency of the structure is well known. But
vibration buckling is different from resonant vibration, in that resonant vibration deforms
the component in the same direction as the stimulating pulse, however, in vibration
buckling, the axial force induces a bending moment and the bending moment in turn
causes the lateral deflection of the beam. Figure 1-3(a) is an example of vibration
buckling in which a simply supported beam is loaded by an oscillatory force. The critical
load of vibration buckling can be either larger or smaller than the Euler buckling load for
the same structure, as it depends on the oscillatory frequency and the intrinsic frequency

of the structure.
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Figure 1-3 Vibration Buckling and Pulse Buckling [Lindberg and Florence, 1987].
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Figure 1-4 A hammer hit a nail and the nail buckled plastically.

Pulse buckling, as an instability phenomenon, that is, the excessive growth of the lateral,
or out of plane displacement can result from a transient loading function in the form of a
single pulse with a magnitude greater than the static Euler buckling load [Ari-Gur, et al,
1982]. A simple example is shown in Figure 1-3(b) that describes a simply supported
beam which buckles under pulse load that is much greater than the critical Euler buckling
load. The buckling mode depends on the load amplitude, its duration and the intrinsic
properties of the beam. Figure 1-3(b) shows a high-order mode caused by a shorter
duration, but more intense load. The most simple and easily understood example is that of
a hammer impacting a nail, as shown in Figure 1-4. In practical engineering, shock wave
from an explosive detonation against a shelled structure (e.g. submarine hull), the force
on landing gears of airplanes and crash loads on vehicles are some of the classical

examples of impact or pulse loads on structures.



Besides the loading, the component’s material significantly also influences the dynamic

buckling characteristics.

In the last two decades, due to their high specific strength and stiffness, fiber-reinforced
composites have been widely used in industrial applications such as aerospace,
automotive, shipbuilding and civil engineering. A large amount of research has been
performed on static buckling and post-buckling of composite structures, while relatively
less work has been done on their dynamic buckling and post-buckling. On the topic of
dynamic buckling and post-buckling, most of the previous works concentrate on vibration
buckling of plates/shells (i.e., instability under in-plane periodic loads and transverse
periodic loads on cylindrical shells), and some on transverse pulse loads on cylindrical
shells [Liaw and Yang, 1991; Balamurugan, et al, 1996; Lam and Ng, 1998 for example].
But till now, to the best of author’s knowledge, very few works (including analytical,
numerical and experimental) have been conducted on investigating pulse buckling and
post-buckling behavior of composite laminated slender beams, despite the fact that pulse
loads (impact) are very common mode of loading on structures. Although considerable
work has been done on pulse buckling characteristics of isotropic structures, because of
the difference in response of isotropic and orthotropic materials, the research results on
isotropic materials cannot be directly applied to composites. The mechanical properties of
fibers, matrix, volume ratios of fibers and matrix, stack sequences, and fiber orientation
have significant effects on the response of the laminated composites. To ensure adequate
impact resistance, all above factors should be considered when designing thin-walled

load bearing composite components.

Initial geometric and material imperfections due to manufacturing and installation of
composites are inherent to these materials. They have significant effects on the buckling

and damage resistance of composite components.



To investigate the dynamic pulse buckling behavior of laminated composite beams with
initial geometric imperfections subject to axial impact, this dissertation will present the
details of the analytical and numerical investigation carried out to better understand the

behavior of composites.

As stated earlier, composite materials have attracted a wide market in a variety of
engineering applications. Their susceptibility to damage resulting from mechanical,
physical and chemical factors, however, greatly degrades their stiffness, strength and
durability. Impact in particular is one of the main causes of damage in composites, which
can cause matrix cracks, laminate delamination and fiber breakage. Often damages
generated in FRP (fiber-reinforced plastics) are undetectable to the naked eye, therefore,
it is particularly important to understand the damage mechanism (including their
initiation and progress) in composite structures. Although a great number of
investigations have considered impact characterization of FRP composite materials, most
such works [Choi, ef al,1992; Pavier and Clarke, 2000; Zhou, 1995; Park and Zhou,
2000; Necib and Mili, 2001; Luo, et al 2001] have concentrated on the damage due to
transversely impacted loads (as the details will be presented in Chapter 5). Only a few
works have investigated the response of composite laminates subject to axial or in-plane

impact.

Slender, axially loaded structural components are commonly used components found in
various structures. These components may easily buckle when subject to static or
dynamic loads. Due to manufacturing induced factors, many composite laminates often
bear initial imperfections and/or voids. When subjected to axial or in-plane static or
dynamic loads, irrespective of occurrence of buckling, such laminates could experience
damage, in the form of delamination, fiber breakage and matrix cracking if certain stress
or strain components exceed the limiting criterion during the pre- and post-buckling
periods. Investigation of damage and damage propagation in laminated composite beams

subject to axial impact is another topic of research besides the dynamic pulse buckling



analysis in this dissertation. This dissertation will therefore also investigate the damage
behavior of laminated composite beams subject to axial impulse, both numerically and

experimentally.

1.2 Organization of this dissertation

The governing equations of motion and their solutions for the beams considered will be
presented in Chapter 2. The finite difference solutions of the governing equations based
on the first and higher order shear deformation theories will be presented and discussed
as well. The state of current literature on dynamic pulse buckling is reviewed and

presented in chapter 2.

In Chapter 3, numerical investigations on dynamic pulse buckling and post-buckling of
FRP composite laminated beams subject to axial impulse will be discussed. Results
obtained by the finite difference method based on the first and higher order shear
deformation theories are compared with those of the finite element method. A definition
of pulse buckling of beams, a measure for the onset of pulse buckling, stress wave

propagation and sensitivity of initial geometric imperfections are discussed, as well.

Chapter 4 presents the details of the experimental program on investigation of dynamic
pulse buckling and damage behavior of composite laminated beams subjected to axial
impact. Experimental setup, the data acquisition system, specimen preparation and other

experimental details are also discussed.

Numerical and experimental investigation of damage initiation of laminated composite
beams subject to axial impact will be presented in Chapter 5. The literature on damage

analysis of composite materials will be reviewed. Damage criterion and critical energy



for damage initiation as a function of different lay-up sequences will be discussed in that
chapter as well.

Chapter 6 will present the analytical model of delaminated beams subject to axial impact.
A literature review of delamination buckling and propagation will be presented. The
details for the analysis of a delaminated beam model and the comparison of the numerical

and experimental results will also be presented.

Chapter 7 will discuss the findings of our experimental results on pulse buckling

characteristics of laminated composite beams with [(£67.5), ], lay-up.

Finally, a summary and conclusions of the results will be outlined in Chapter 8.

Recommendations for future research are proposed as well.
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2 Governing Equations of Motion

A literature review on dynamic pulse buckling analysis is presented in this chapter.
Governing equations of motion of slender fiber-reinforced plastic (FRP) composite
laminated beams, having initial geometric imperfections, subjected to an axial impulse
are established. Solutions based on the first and higher order shear deformation theories
are derived. A numerical solution scheme developed based on the finite difference

method (FDM) is also presented.

2.1 Literature review

2.1.1 Description of the problem

As described in Chapter 1, dynamic pulse buckling, as an instability form, or in the form
of excessive growth of lateral or out of plane displacement, can result from a transient
loading function of a single pulse with a magnitude greater than the static Euler buckling
load. Considerable progress has been made regarding the dynamic pulse buckling
analysis of metallic components (isotropic) since the earlier work of Koning and Taub in
1934. Our investigation considered a beam impacted by a moving mass, as shown in
Figure 2-1. The beam is fixed at the left end. The right end is also fixed but is allowed to
move in the axial direction. If the beam is perfectly straight and the impact has no
eccentricity, it will deform only in the axial direction. If the beam is not perfectly straight,
(i.e., the beam has initial geometric imperfections), or the moving mass impacts the beam
eccentrically, the beam will deform not only in the axial direction, but also in the lateral
direction because the axial force creates a bending moment in the beam. Additionally, the
beam’s cross section will also rotate. So, the inertia of the beam in the axial and lateral
directions, as well as the rotation of cross section play important roles in the movement of

the beam when impacted by a pulse. Shear stress distribution through thickness, and
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inter-laminar shear stresses are also important factors that affect the behavior of

laminated components.

Z ‘ A w(x,t)
/_,ﬁ u(x,t)
rot{x,t)
O X

Figure 2-1 Example of a beam impacted by a moving mass.

2.1.2 Impact pulse buckling of isotropic beams

A monograph by Lindberg and Florence [1987] on dynamic pulse buckling
characteristics of isotropic materials provided a systematic overview of pulse buckling,
both theoretically and experimentally. They developed the dynamic equation of motion
for a simply supported beam under a rectangular pulse, as well as determining the lateral
displacement amplification function. The concept of “preferred mode” of dynamic
buckling was accordingly proposed. In their formulations, the axial stress wave was
neglected, hence the axial shortening was ignored, and the shear deformation was not
considered either. With reference to Figure 2-2, only the transverse direction was

considered, as defined by:

o 8 8
Elgx—f—+Pa—x7(y+y0)+pAgt—21=0 (2.1.1)
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By assuming the displacement field of the beam as

y(x,t) = i q,(t)sin 11? , (2.1.2)

n=|

dynamic equation (2.1.1) was solved. The solution of the dynamic equation was related to
the dynamic impact load, material properties, beam geometric properties and buckling

modal order.

» L >
. . o [
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Figure 2-2 Simply supported beam is loaded by a constant load.
[Lindberg and Florence, 1987]

The solution was derived only for a rectangular impulse load, thus, it is not admissible for
other types of loading, such as triangle pulse, half-sine pulse, and the case of a known

impact mass and velocity. Another key disadvantage of the above work is that no axial
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displacement or axial stress wave propagation along the beam length was considered in
developing the dynamic equation, although the axial stiffness offers significant resistance

to such structures.

Housner and Tso [1962] studied the dynamic response of a pin-ended prismatic structure
subjected to a rapidly applied constant axial load, in which both shear deformation and
rotary inertia were accounted for in the solution; the axial deformation and inertia were
however neglected in their solution. Abrahamson and Goodier [1966] presented their
research on dynamic flexural buckling of rods subjected to an axial plastic compressive
wave. The dynamic plastic buckling of rods was investigated for a material that exhibited
strain-hardening. They also neglected the axial deformation and inertia effect in their
studies. Ari-Gur, et al. [1982] studied the dynamic response of columns subjected to an
axial impact, experimentally and theoretically. A criterion was defined for determining
the dynamic buckling loads based on their analytical and experimental results for
columns with initial geometric imperfection under an axial impact. In their studies, axial
displacement and inertia were considered, while the rotary inertia of the cross section was
neglected. Hayashi and Sano [1972a, 1972b] investigated the dynamic instability of
pinned end columns subjected to axial impact with the consideration of several factors,
such as axial displacement and inertia, rotary inertia of cross section, transverse shear
deformation and large deflection. In their solution, the shear stress across the column
section was assumed to be uniformly distributed through the thickness of the cross
section. Sugiura, et al. [1985] analyzed the dynamic instability of axially impacted the
columns with the Euler-Bernoulli assumption in which the rotary inertia of the cross
section of column and transverse shear deformation effects were neglected. Energy loss
of the striking body was introduced to assess the criterion of dynamic buckling. Ari-Gur
and Elishakoff [1997] researched the dynamic instability of a transversely isotropic
pinned-end column subjected to a compressive pulse, using a numerical method. Their
analytical model was based on the Timoshenko beam-column theory in which the axial

displacement and inertia effects, rotary inertia effects of cross section, and transverse
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shear deformation were included. The shear stress across the column section was also
assumed to be uniformly distributed through the thickness of the cross section.
Karagiozova and Jones [1996] also studied the dynamic elastic-plastic buckling of a rod
under axial impact. A discrete model was proposed to investigate the influence of the
axial and lateral inertias. Their numerical results showed that the striking mass played an
important role in the development of buckling shape, and it caused different patterns of
axial strain distributions at the onset of buckling. The authors stated that there was a
strong interaction between the axial inertia (wave propagation) and the lateral inertial
effect for the dynamic elastic-plastic buckling of a column with an axially moving and
stationary end. Kenny, et al. [2000, 2002a, 2002b] presented results from their numerical
(both Finite Difference and Finite Element Methods) and experimental investigations, on
the dynamic buckling analysis of elastic and plastic slender beams subjected to axial
impact.  Their analyses demonstrated that only randomly distributed geometric
imperfections would trigger the exponential growth of transverse displacement.
Moreover, their finite element analysis demonstrated that the nonlinear geometric
behavior could be used in considering the coupled axial and transverse displacement

terms, for evaluating the effect of load intensity and other related parameters.

2.1.3 Dynamic instability of laminated beams/plates

As stated earlier, in comparison to the work done on dynamic instability of metallic
materials, relatively much less research has been performed on characterization of the
dynamic buckling response of FRP beams/plates. The mechanical properties and volume
ratios of fibers and matrices, fiber angles, and stacking sequence, all have considerable

effect on the dynamic buckling response of FRP beams.

Ekstrom [1973] investigated the elastic buckling of a simply supported rectangular
orthotropic plate, with initial imperfection, under a compressive pulse load. The

shortening of the plate along the load direction and the shear effect through the plate
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thickness were not considered in his analysis. Ari-Gur and Simonetta [1997] constructed
the analytical dynamic pulse buckling model of rectangular composite plates based on the
Kirchhoff thin-plate deformation theory and the assumption of small rotation of the cross-
section. The rotary inertia effect was neglected in the equations of dynamic equilibrium.
Abramovich and Grunwald [1995] studied the dynamic stability of axially impacted
laminated plates experimentally, in which the plates had various aspect ratios and
boundary conditions. The Dynamic Load-amplification Factor (DLF) was used as a
criterion for dynamic pulse buckling. Wang, et al., [1998] also reported their
investigation on the topic of dynamic buckling of laminated composite bars subjected to
axial impact. Their governing equations were based on the Timoshenko beam
assumption. The total transverse displacement was assumed as the sum of the initial
transverse deflection and the transverse deflection due to bending and shearing. The shear
stress was assumed uniformly distributed on the cross section and the rotation of cross
section due to shear deformation was not included in the governing equations. The
proposed solution was valid for a problem in which the beam was impacted with a

constant velocity.

The above literature review, on the topic of dynamic pulse buckling of composite
laminated beam revealed that very few investigations have considered the pulse buckling
of laminate composite. Several areas have been identified that need particular attention,

thus additional research on this topic is necessary.

As stated, FRP beams/plates with layer-wise anisotropic characteristics, undergoing
dynamic pulse buckling, behave considerably different from their isotropic counterparts.
Therefore, when formulating their dynamic equilibrium equations, in view of the
resulting large deflection and cross section rotation, one should account for the associated
axial shortening and inertia. Moreover, due to susceptibility of FRP to shear deformation,

the distribution of shear stress though the thickness of the beam and the rotation of the
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cross section should also be considered. Finally, the equations should be admissible for

multiple boundary conditions and impact loading types.

In the next section of this chapter, governing equations of motion will be constructed
with consideration of the transverse and axial inertias, shear deformation, the cross
section’s rotational inertia and the axial shortening in the equilibrium equations. The von-
Karman nonlinear strain-displacement relationship will be used to model the deformation
of the beam. The First & Higher Order Shear Deformation Theories are adopted to model
the displacement field of the beam. The kinematic equations are developed and are valid

for various boundary conditions and types of impulse.

2.2 Governing equations of motion

2.2.1 Dynamic equilibrium equations

Consider a FRP composite laminated beam with one end compressed by a pulse load as
shown in Figure 2-3. The pulse load can be generated by a moving mass (M ) with

velocity (V) or an impulse force ( F(z) ). The boundary conditions of the beam can be a

combination of either two ends fixed with one end allowed to move along the axial
direction(as shown in Figure 2-3 ), or, one end pinned and the other end simply
supported. The cross section of the beam is rectangular (as shown in the figure), with
width b, thickness 4, and is made of # layers of laminae. The length of the beam is L. The
initial geometric imperfection is w,(x), which is defined as the initial displacement of
the beam in the Z-direction as a function of location x, in the form of one or more sine

waves distributed along the beam’s length, or it can be randomly distributed, or it can be

measured from real structure.
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With the Timoshenko beam assumption, the equilibrium equations are constructed for the
laminated FRP beam with the consideration of both the axial and flexual inertias, as well

as the rotation inertia, and the through thickness shear deformation of the beam,

ON 0u
1 2o =0 2.2.1a
ox "ot ( )
ow
AN (6 -—2)) 2
Ox —a—V+115—2‘Y=o (2.2.1b)
Ox ox ot
oM %6
ST G Y+ = =0 2.2.1c
x 2 ot ( )

where u(x,t), unknown, is the axial displacement of the beam in the x direction;
w(x,t) , unknown, is the lateral displacement of the beam,;

6(x,t) , unknown, is the rotation of the cross section of the beam;

WNaM )= [ o,:2)dz (2.2.2ab)

are the axial force and bending moment per unit beam width, respectively,

and o is the axial stress of each lamina;

V=" c.d 2.2.3)

is the shear force per unit beam width across the cross section of beam,

and 7, is the shear stress in each lamina;

/2 5
(I:1,) = fm p(L;2%)dz (2.2.4a,b)

are the translational and rotational inertia per unit beam width,

respectively, and p is the mass density of each lamina.
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Ari-Gui and Elishakoff (1997) derived similar equations of motion for a transversely

isotropic column.

VR Ve
ox g
Central axis I
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X
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©
Figure 2-3 The laminated FRP Beam Model.

2.2.2 Constitutive relationship

The strain and stress relationship for the 4th layer of the laminated beam is,

pv4

O—x éll Q2 Q—](, 8x . Q_ Q
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where Q_‘.j are the transformer stiffness terms [Daniel and Ishai, 1994] . Shear correction

factors does not appear in Equation (2.2.5b). This is because shear corrction factors are
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used for uniformly distributed shear strain assumptions. In this dissertation, the shear
strains are not assumed to be uniformly distributed through beam thickness, as described

in section 2.3.

For the slender laminated beam, we can assume &, =0, y,, =0, and y . =0, then

equation (2.2.5) simplifies to

o, =0, (2.2.6a)

and 7_ = Q... (2.2.6b)

2.3 Shear deformation theory solutions

2.3.1 The first order shear deformation theory (FSDT)

We can now solve the differential equation of motion (2.2.1) with the First-Order Shear
Deformation Theory (FSDT). The displacement field in the First-Order Shear

Deformation Theory is expressed by:

u (x,z,t) =u(x,t)+ z0(x,t) (2.3.1a)

u_(x,z,t) = w(x,t) = wy(x) (2.3.1b)

where w,(x) is the initial imperfection of beam.

For the dynamic pulse buckling problem of FRP laminated beams, the von-Karman
strain-displacement relationship is used to model the nonlinear relationship between the

axial strain, displacement and the deflection of the beam,

£ :%+l(§w_)2 _l(%

2 232
o %) ) (2.3.22)
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Substituting equations (2.3.1) into equation (2.3.2), we get,
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Expanding the definition of axial force, moment and shear force which are defined in

equations (2.2.2) and (2.2.3), we obtain:
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ou 1 0w 1 ow 06
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where A, B, D, and F in the above equations are defined as,
/12 — L
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k=1
1 = Il O=e,,2 12
B= [MzandZ = EZQ”(hk —- k) (2.3.5b)
k=1
T 1 & —
D= [‘h/zzzQ”dZ ZEZQlﬁ(h: —hli—l) (2.3.5¢)
k=1
12— 1
= " Dudz =30k, ~1,.,) (2.3.50)
k=]
Taking derivatives of the three equations in (2.3.4) with respect to x, gives,
8Nx 82 ow_0*w,_  ow, 0w 0’0
3 (—~)( )= ( 0)( 0)] B(—) (2.3.6a)
X ox
ov 06 *w 9w,
a T atw a -
oM o*u  ow_d*w, ow, 0w 0’6
L= Bl—+(— -(—= 91+ D 2.3.6
Ox [8x2 (8x )(ax?') ( ox X ox* ) e ( ©
Substituting equations (2.3.6) into equation (2.2.1), we get the following
differential equations,
0*u o’'u ,ow 0w
iy S e oWy 237
157 [axz+((3 )(az) ( )( (2.3.7a)
o*w 'u  ow_o*w ow, . 0°w 06 ow,
_—= A — 0 [t} B 0
15 { [ax2 (5x)(ax2) ( )( 7]+ ( (= = —)
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ou 10w, 1 ow 00 o*w
{A[—” SCP - B(—)}(—— %o
ox ox Ox
2 2
. F(_a_e Ow 9wy, (2.3.7b)
ox ox? ox?
2 2 2 2 2
, 20 _ [<_9__ g_vga»zv_aw aWO] Dafv_F(ng@_
6t ox?  ox Ox ox ox? Ox Oox

To non-dimensionalize equations (2.3.7), we define the following non-dimensional
variables
u= t, (2.3.8a,b,c¢,d,e)

2ow=23=20=0,:=%
L L’ L L

where ¢ is the wave propagation velocity along the beam length [Ari-Gur, et al., 1982],
c= A (2.3.9

in which 4 and [, are defined in equation (2.3.5a) and (2.2.4a), respectively.

The derivatives in terms of the non-dimensional variables can be expressed by:

u_om
ox ox’
u_10
oxt Lox?’
ow _ow
ox o
o*w 0w
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a0 _108

ox L ox
2’0 _ 120 6
8x L2 ox*
ot* L or?’
0w _iﬁzw
ot L ort’
%0 _c* o8
ot? L} or?
ow_ 10w
o’ P ox}

3 3—
5@@0 :—LlTaa’M;O (2.3.10a,b,¢,d, ¢, f, g b, 1, j, k)

X X

Substituting (2.3.10) into (2.3.7), equilibrium equations can be rewritten in the non-

dimensional form as:

u _o'u owd'w ow 0w, B 30

= +— +— 2.3.11a
ort ox* ox ox'  Ox Ox* AL ox° ( )
o’w o'u owo'w ow,d0'w, B 06
5 (— e (-6 ——)
or ox? Ok Ox ox ox AL ox?
ou 1 ow,, B 86 . 06 62
[6" 2(6_) 2(8_) AL 8_]( 8_ 5
F 060 &*w 62WO
(<Y 2.3.11b
A(a_ oxt  ox* ) ( )
2 2— 2
6(92___{[(6_ 6waw _ oW, a_wo)BL D89
or ox? 8x ox® ox ok’ ox*
_F2e+ 2 Moy I 2.3.11¢)

o ox Al )
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The finite difference solution of the above 3 differential equations will be presented in

section 2.4.

2.3.2 The higher order shear deformation theory (HSDT)

We can also solve the equation of motion (2.2.1) with Reddy's Higher-Order Shear
Deformation Theory [Reddy, 1984].

Displacement fields of laminated plate in the HSDT are defined as:

u=uy(x,y)+20, +z°6 +2°¢,
v=v,(x,y)+20, + 2%, +27¢,

w = w(x, y) (2.3.12a, b, c)

in which u, v and w denote the displacements of a point (x, y) on the mid-plane, and

6.and 6 are the rotations of normal about the y and x axes, respectively. The functions

$.»6,.¢, and ¢, will be determined using the assumption that transverse shear strain

¢, and ¢, vanish at the top and bottom surfaces,

£, =a—u+%=gx+2z§(+3zzé’x+@ (2.3.13a)
T 0z ox ) ox

£, = @+@ =0, +2z& +32°¢, +§K (2.3.13b)
¥z aZ ay J ] ) ay

So, by setting ¢ _=¢,_.=0at z = i%h gives
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S =§ =0
g, = 2(6? +—)
41 ow
é_v——gh—z(é’ —a;) (2.3.14a, b, ¢)

Substitute (2.3.14) into (2.3.12) gives the following displacement field equations,

ow 4 7°
= —+z0, ———0, 2.3.15a
u=uy(x,y)-z o T3 ( )
ow 4 7
V—VO(X y) Z‘éy—'*' 9 '——3'-;179}, (2316b)

The above displacement fields will degrade to the classical theory when 6, and &, (shear
rotation) are very small and they indicate cubic variation of the in-plane displacements
and a parabolic distribution of the transverse shear strains through the thickness of the

plate.

Now, considering the current problem, dynamic pulse buckling of a slender laminated

beam with initial geometric imperfection w,(x), we use the following Higher-Order

Shear Deformation Theory (HSDT) displacement field:

ow  ow, 4z°
t t 60— —
u (x,z,t) =u(x,t)+z( 6x+ r 3h2

u_(x,z,t) = w(x,t) — wy(x) (2.3.17b)

(2.3.172)

Similar to the FSDT solution, we will also use the von-Karman strain-displacement

relationship to model the deformed shape of the beam,
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6ux 1 0w, .,
&, = 8x ( ) 2(6)
2 2
_Qu, 00 42700 0w Oy Low, L@y: 3180
Ox ox 3k ox oxt oOx 2 Ox 2
7,\': =au-" a —9_——(0 —QXV——% +§W__8W0
0z Ox ox oOx  Ox ox
=(1— 470+ @_?K_) (2.3.18b)

Now the axial force, moment and shear force and their derivatives for a unit width beam

can be rewritten as,

N, =["od
= o .az
x ni2 o X

_ [z/Z _ d
- h/zQ""g-‘ z
n— ou 00 427 080 w d'w,, 1 0w, 1 0w, .,
= —tz— (- + +—(—) —=(—)"ld
me"x[ax o e w2 G
ou 1, 0w, 66’ 4E 06 0*w 62w0
=A—+—(—)" —— B——(—+ 2.3.19
[ax ( ) ( )] o o ) ( a)
112
V= .[h/zr""'dz
z? ow  ow,
= [, Q=20 + 22 - Tz
4 ow  ow
=(F-—G)@+—-—"—= 2.3.19b
( 3 )0+ o 8x) ( )

/2
M, = [ o, zdz
; hi2
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_I/Z— au 60 4z 00 o*w awo) _(@)2 ( )]

P— —_— e —— _-—+—.
"/ZQ [ 6x 30 ox ox?
ou 1 6‘w pd0 _4H ae azw 82
Y R ki oW —— 2.3.19¢
[ax ( ) 2(8)] ox 3h2(6x 82 ) )
and
ov 06 o*w 0w
—= F——G — - 2.3.20a
8x( h? )(x ot 82) ( )
ON ou’ 8w62w ow, 62w0 629 4E 0%6 O'w 83w0
s=Al—— 2 1+ b S 3” 3)
ox ox 8x ox? ox 8 3h° ox-  ox
(2.3.20b)
oM | _B[Ozu 8w82w ow, 8°w,
ox o’ ox ax®  dx ox’
0’0 4H 0’0 d'w 0w,
+ 2.3.20c
ox’ 3K (8x ox®  ox’ ) ( )
where E, G, and H in the above equations are defined,
/2
= |,,70udz = EQu(h“ ) (2.3.21a)
12— 1 < —
G= fh/zzzstdZ=§kZ=;Q5§(hk3 ~h.)) (23.21b)
12 4= LG xws s
H= [mzz Qndzzng;Qn(hk - k) (2.3.21¢)
Now substitute (2.3.20) into equations (2.2.1), we get,
2 2 2 2 2 3 3
Ilau:A[éu owo'w  ow, 8w0] 80_4E(8f+8v3v_6w3/0) (2.3.22)
ox~ oOx ox

8x2 8x ox?  ox ox’ ox* 3’
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T gl WO oy Oy p 0%
i ox® ox o' ox ox ox’
4E 5% Lo a3w
TEA N ) ‘—)+
ou 1 0w, 1 0w 590 _
-+ (—) FLr °)]
O ax
4E 00 62w 62w 00 O'w
> = 0)}(__— 2 )+
3 ox o’ ox Ox
4G, 00 3'w 3w,
p-46)20 _ 2.3.22b
(F- D+ -2 (2.3:220)
[ 80 gl awdlw ow, 62WO] 9,
* o’ ox® ox ax®  ox ox’ ox’
3 3
4H 50 O awo) (F_ 4Gy g+ 20 _ % (2.3.220)
3h7 oxt ox Yo ax

Similar to the earlier procedure (in the FSDT), we can non-dimensionalize the equation,

as:

2— 2 2 A 2q 3— —
Q_L;__Q:in w oW awoawo +_1_9_80 4E2(69 o'w ) (2.3.232)
Oox 6x ox* ok ox’ AL &x* 3ALW* ox*  ox°
o’w [(az— ow d'w _ ow, 0° wo) B (a 6 ow 83w0) 4E &° 9]_
or? x:  ox x:  ox oxd . AL 82' ox®  ox’ " 3ALh* ox°
4F 89 azw o*w, 00 82
+ —(— ——0—)](—**— )
3ALh 6 ax
4G
i (Q61 oW 82 =20 (2.3.23b)
A ox? 2 o
2— 2— 2 2
89_[(81,: awa awawo)BL Dae
ot? ax ox? ox ox° ox?
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4H 3'F o'w awo) Lz(F___)(g w 8W)] (2.3.23¢)

+— +
3L oxt &% 5

2.4 Finite difference equations

The differential equations (2.3.11) and (2.3.23) are solved with the Finite Difference
Method (FDM) to evaluate the dynamic buckling response of the FRP laminated beam.
The analysis model was discretized into n segments with equal length Ax along the
beam’s length and the solution was carried out with m time steps with the interval (time
step) of Az. The explicit central difference scheme with accuracy order of O(h*) was
used to compute the solution of u,w and @ of the j* spatial grid of beam at (k+1)* time
step. The selection of time step A7 should be with the consideration of ensuring
numerical stability and the spatial discretization of the beam should be such to promote

convergence.

To configure the finite difference equations to solve the differential equations (2.3.11) for
the First-Order Shear Deformation solution and (2.3.22) for the Higher-Order Shear

Deformation solution, we define,

spatial step as AX, thus, for stepj, ¥ = j- Ax

time step as A7, thus, forstep k, 7=k At
The central difference formulae can be expressed as,

Ou Uy Uy
ox 2AX

e = _ae L
Ol Uy =2, U,

oxl A
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e = A _
O U 2uj,k TU;

or? Ar?

ow wj+1,k - wj-l k

ox 2Ax

5’_‘470 0 T Wieo

ox 2A%

. - .
oW Wi 2Wj,k TW ik
ox* Ax?

y— _ _
0w, _ Wiae ™ 2Wj,0 TWi 0
ox’* Ax?

1 — o — =
oW Wiy 2Wj+l,k + 2wj-l,k Wik
ox’ 2(Ax)

3 W W
Wy Wiag =2W 0 +2W, =W,
ox’ 2(Ax%)

PR, —

O°W Wi =2W,  + W,
or? AT?

06 _ 8j+1.k _9,—1k

ox 2Ax

629‘ _ g/,/m - 29_j,k +6_j,k—l

2.4.1a-1
or’ AT’ ( )

Substitute Equations (2.4.1a-1) into equations (2.3.11), and with the help of constants
(4,B,,C,, and E(i=1,6)) defined in Appendix A, the following finite difference

formulae for the solution of FSDT can be obtained,

7, = E(AT) - 4, (2.4.32)

W, = Ey (A7) - B, (2.4.3b)
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6

Jk+1

= E,(A7)* -C, (2.4.3¢)

Similarly way, we get the finite difference formulae for the solution of HSDT,

i = E,(AT) — 4, (2.4.4a)
W, = Es(A7)" - B, (2.4.4b)
6, 4 = Es(A7)* - C, . (2440)

2.5 Boundary conditions and initial conditions

The boundary conditions for the problems considered in this dissertation can be pinned or
fixed supports or any reasonable combinations with the impacted end allowed to move
freely along the axial direction of the beam. The impact can be due to a known impulse

force time history F(z), known mass M with initial velocity ¥, of the impact body, or

other types of impact contact model. In the numerical analysis of pulse buckling, the

initial geometric imperfection of the beam is assumed as a half sine form,
w, (x) = W, sin(%) (2.5.1)

In the damage and delamination propagation analysis, the initial geometric imperfection
of the beam was measured based on the actual shape of each specimen. The beam is

assumed to be initially at rest.

Two types of impact loads will be considered,

(1) A known impact force time history F'(¢) ;
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(ii) A known impact mass M with velocity V.

Also, two types of boundary conditions will be considered,
(1) The left end (x=0) is fixed and the right end (x=L) of the beam is
restrained laterally, but it can move in the x direction at the right end.
(i)  The beam is simply supported, i.e., the left end (x=0) is pinned, and the
right end (x=L) is restrained in the normal direction, but the beam can

move in the x direction.

2.5.1 Fixed support - case a

For this kind of boundary condition, both the left end (x=0) and right end (x=L) of the

beam are fixed, but the beam can move in the x direction at the right end. Then we have,

(i) w=%ﬁ=9=0 at x=0, x=L (2.5.22)
X

(i1) u=0 at x=0 (2.5.2b)

The initial conditions for this case are

) ow,
(i) Mﬂw=wuxmdw=—&) (2.5.3a)
.. ow 06 Ou

il I e I =22 =0 2.5.3b
o Ol Ol u’,=o Ot ( )

2.5.2 Pinned support — case b

The beam is simply supported, i.e., the left end (x=0) is pinned, and the right end (x=L) is

restrained in normal direction, the beam can move in the x-direction at the right end,



2
(1) w:%—zv—:—aaﬁ:() at x:O, x=1
X X

(i) wu=0at x=0

The initial conditions for this case are

0w, = w (), 6], =0

@ 2 - %) u = o =0
at =0 at =0 =0 at t=0,x<L
ou
= =V =7
(iii) ol (x=L)

2.5.3 Impact force time history F(z)
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(2.5.4.2)

(2.5.4.b)

(2.5.52)

(2.5.5b)

(2.5.5¢)

For the case of knowing the impact force time history, we assume that the external impact

force is transferred to the impacted end without loss, that is,
N (1)=F(@) (x=L)
For the solutions based on the FSDT, we have

ou 1 ow 1 ow, 06
No= AL e (D2 _ 2 (Doyry, gl
* [ax 2(6x) 2(8x)] (ax)

(2.5.6)

(2.5.7)

Considering the boundary conditions of the impacted end for both types of support

conditions, we have
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ou, _FQ@
o= (2.5.8)

Using a similar method, we can get the solution of the HSDT.

2.5.4 Impact mass M and velocity V)

This impact model is based on Ari-Gur’s work [1982]. At the moment when the moving

mass (M ) traveling at velocity (V) begins to impact the beam’s end, we assume the

displacement of the mass along the axial direction of the beam is defined as

U, =0 (2.5.9)
and the velocity of the moving mass is,

Ve =Upy =V, (2.5.10)
The mass is decelerated by the repulsive force bN, at the impacted end of the beam

(x = L), where b is the beam’s width. According to the "Momentum Balance" theory, we

have,
AﬂVU)—KsziNgndt (2.5.11)

Divide both sides of equation (2.5.11) by M and move the terms involving ¥, to the right

side, we would get,

dt (2.5.12)

x=L

b
V@=%+EIM
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From Equation (2.5.6) and (2.5.8), we have,

Nx |x=L= Aé}i Ix=L= Ag.\' |x=L (2513)
ox
Substitute (2.5.13) into (2.5.12), we get,
=V, b A d 2.5.14
V)=V, + Al d (25.14)
The displacement of the moving mass can be obtained by
U@):IVay#. (2.5.15)

Equation (2.5.14) indicates that the velocity ¥(z Jof the impact mass M can be obtained
through the strain accumulation at the right end of the beam (x=L), from beginning of the

event to time 7. We also assume that during the impact period:

u(t)=U at x=1 (2.5.16)

where U is the displacement of the impact mass, and also the displacement of the

impacted end of the beam.
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2.6 Evaluation of the solution methodologies

2.6.1 Convergence tests of FDM Solutions

2.6.1.1 Mesh Sensitivity analysis the of Finite Difference Solution

An E-glass/epoxy laminated composite beam with [0°]; lay-up was impacted by a

moving mass at the right end of the beam, in which the beam was restrained according to
the boundary conditions described in equation (2.5.3). The geometry and physical
properties of the beam are as follows: Length=0.25m, Width=0.0185m,
Thickness=0.0014m. The initial geometric imperfection was assumed as a sine form,
with the amplitude equal to 100% of the beam thickness (i.e., 0.0014m). The mechanical
properties were E;1=39x10° Pa, E»=3.9x10 Pa, Glz=3.9X109 Pa, and Density
=2100Kg/m’. The mass of the impacter was 0.175Kg, and the velocity of the moving

mass was at 5.0 nv/sec.

Figure 2-4 shows the deflection at the mid-span of the beam vs. time for different mesh
densities in terms of the aspect ratio. The aspect ratio is defined as the ratio of the
element length over thickness of the beam. From Figure 2-4, we can observe that the

results converge when the aspect ratio is smaller than or equal to 0.893.

2.6.1.2 Time Step Sensitivity analysis of the Finite Difference Solution

The same problem used to test the mesh sensitivity was used for this test. The geometry
was analyzed with 80 segments along the beam length, but the time step was taken
differently. From Figure 2-5 we observe that the analysis results are the same for non-

diverging time steps.
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The comparison of the results with LS-DYNA will be shown in the next chapter.
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Figure 2-4 Grid Sensitivity Analysis — Deflection at mid-span of beam vs time history
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Figure 2-5 Time Step Sensitivity Analysis.
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3 Pulse buckling Analysis

Numerical studies on dynamic pulse buckling and post-buckling response of FRP beams
subject to axial impulse will be presented in this chapter. Results of the finite difference
analyses based on the first and higher order shear deformation theories are compared with
those of the finite element method obtained using LS-DYNA [LSTC, 1999]. Definition of
pulse buckling of beams, establishing a measuring criterion for the onset of pulse

buckling, stress wave propagation and sensitivity will be discussed.

3.1 Problem description

Two types of problems will be discussed in this chapter. One is a simply supported
Kevlar/epoxy laminated beam impacted by a rectangular impact force, another is an E-
glass/epoxy laminated beam with a fixed boundary condition subject to an impact by a

moving mass.

The purpose of these problems is to investigate the dynamic buckling response of the
beams subject to an impact force with short time duration and impact of a moving mass
And further more, it is also targeted to establish a mean to establish the onset of pulse
buckling criterion and perform sensitivity analysis in terms of slenderness ratio,

magnitude of initial geometric imperfection, beam curvature and fiber angle.

3.1.1 Simply supported beam

An 8-layer simply supported Kevlar/epoxy laminated beam impacted by a rectangular
pulse force is considered as shown in Figure 3.1. The lay-up of the laminated beam is

[(0),]. The force magnitude is 1115 N. The initial geometric imperfection of the beam is
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assumed to have a half sine wave form. The geometrical and material properties are

tabulated in Table 3.1.

Table 3-1 Geometric and material properties of the simply supported beam.

Length Width | Thickness | ImperfectionW, (m) Ey En Grz Density
(m) (m) (m) (W, singx/ L) Nmd) | Nmd) | (Nmd) Via (Kg/m®)
0.762 0.0127 [ 0.0003175 | Factor * thickness 87 x10° | 55x10° 22x10° | 0.34 1380

Table 3-2 Geometric and material properties of the fixed support beam.

. . Imperfection .
Length | Width | Thickness Wottmm) Eu_ En_ Gy | 7, | Density
(mm) (mm) (mm) O, sin@w/ L) (N/m”) (N/m®) (N/m®) (Kg/m”)
300 20 1.6 Factor * thickness 39x10° | 86x10° | 38x10° | 0.28 2100
b (L)
POy Ot ™

e oy -

Figure 3-1 A slender beam is impacted by a pulse force.

———————— —iF | MY,

Figure 3-2 A slender beam is impacted by a moving mass.

3.1.2 Fixed-pinned beam

An 8-layer E-glass/epoxy laminated beam with the boundary condition shown in Figure
3.2 is considered. The initial geometric imperfection of the beam is assumed to have a

half sine wave form. The lay-up of this beam is [(0),]. The right end of the beam is
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impacted by a moving mass (see Figure 3-2). The geometrical and material properties are

tabulated in Table 3.2.

3.2 Verification of the solutions

3.2.1 Comparison between FDM solution based on FSDT with FEM

3.2.1.1 Axial displacement at impacted end

Figure 3.3 shows the time history results (time range 0-0.001 second) of the axial
displacement at the impacted end of the simply supported beams described in Section
3.1.1 obtained by the finite difference method (FDM) and finite element method (FEM)
of LS-DYNA [LSTC, 1999], a commercial FEM code. In the FEM model, the beam is
modeled as an orthotropic elastic laminated plate with the Belytschko-Tsay shell element.

The load time duration is 5.0 microseconds.

For the fixed beam described in Section 3.1.2, the resuits obtained by the finite difference
solution (FDM) of the First Order Shear Deformation Theory solution are compared with
those of the FEM. The amplitude of the initial geometric imperfect half-sine wave was 10
percent of the thickness of the laminated beam. The beam was impacted by a moving

rigid body with mass M=0.10 kg and initial velocity ¥,=10.0 m/s. Figure 3.4 shows the

results of axial displacement at the impacted end of beam.
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Figure 3-3 Axial Displacement of the impacted end of the simply supported beam.
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Figure 3-4 Axial Displacement of the impacted end of the fixed-pinned beam.
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3.2.1.2 Compressive strain and stress wave propagation

Stress wave propagation is an important issue in dynamic buckling analysis. In this
dissertation, we evaluate the stress wave in terms of strain wave. Figure 3.5 shows the
comparison of strain wave results (time range 0-0.0001 seconds) of the simply supported
beam obtained by proposed FDM and LS-DYNA FEM. From Figure 3.5, we can see that
the FDM results agree well with the FEM results. Figure 3.6 shows the strain wave
propagation at different stations along the beam obtained by FDM. With the help of
Equation (2.3.9), we calculate the wave propagation velocity to be 7970 m/sec. The time
for the stress wave to travel half of the beam length is 0.5%0.762/7970=4.78x107
seconds; this is graphically illustrated in Figure 3.6, as the time period between the first
and third peaks (7.57 x10™ - 2.71 x10° = 4.86 x10”).

The minor discrepancies observed in the graphs of Figure 3.5 can be due to the
differences in the formulations of the FDM and FEM. As stated, the proposed
formulation accounts for the effects of axial and lateral deformation of the beam on the
axial behavior (compressive shortening) by the von-Karman Strain-Displacement
nonlinear relationship, as shown in Equation (2.3.2a). During the post-impact response of
the beam, the increase in lateral deflection weakens the axial compressive endurance of
the beam. Moreover, the Belytschko-Tsay shell element of LS-DYNA [LSTC, 1999]
used in the analysis adopts an hourglass control algorithm to induce proper bending effect.
It can be seen from Figure 3.5 that the FEM predictions become larger than that of FDM
after the first compressive strain peak. The nonlinear relationship of strain and
displacement can also be seen from Figure 3.6, in which the strain wave decreases as it
travels from the impacted end to the fixed end, as the lateral deflection of the beam
increases. This increase in deflection reduces the compressive strain as per Equation
(2.3.2a). This is also consistent with the dynamic pulse buckling phenomenon, in that the

axial load capacity does not increase as it will be described in the next section.
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Similar phenomenon was obtained for the beam with fixed support, impacted by a
moving mass, as described in section 3.1.2. Figure 3-7 shows the comparison of strain
wave results of the fixed support beam obtained by proposed FDM and LS-DYNA FEM.
Figure 3-8 shows the strain wave propagation at different stations along the beam

obtained by the FDM.

4000 1 B -
3000 - —FDM
---FEM,

2000 - S

[

‘® 1000 - s .

: Izl al L] il 'i‘

g 0 ) ' ' \l’ L Y '.’ ‘l 3

S 10fPE*00 20E-05 4.0E-05 oEds 8UE.05 '1.0E-04
-2000 -
-3000 -
-4000 -

Time (sec)

Figure 3-5 Time history results of compressive strain taken at the neutral
axis of the simply supported beam’s mid-span.
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Figure 3-10 Comparison of the mid-span deflection at different impact velocities.

3.2.2 Comparison of the FDM-HSDT with FDM-FSDT and 3D-FEM results

The results obtained by the finite difference solution (FDM) of the higher order shear
deformation theory (HSDT) are compared with those predicted by the Kirchhoff thin
plate theory, the first order shear deformation theory (FSDT) in section 3.2.1 and those of
3-dimensional finite element (3D-FEM) produced by LS-DYNA [LSTC, 1999]. In the
analysis with Kirchhoff thin plate theory, the rotational inertia of the cross section of the
beam is not considered. In the FEM analysis, the beam was modeled as an orthotropic
elastic solid with 8-node, 3D elements. The 3D solid element used was a 3D fully
integrated quadratic 8-node element with nodal rotations. This element type has 48
degrees-of-freedom (LS-DYNA, 1999). It should be noted that with the ability to
accommodate the rotational degrees of freedom, the behavior of this element is not as
stiff as the conventional 3D element (which accommodates only the degrees of freedom

at each node), when modeling behavior of plates and beams.
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3.2.2.1 Axial displacement at impacted end

Figure 3-11 shows the results of the axial displacement sampled at the impacted end of
the beam when the beam is impacted by a moving rigid body with a mass of M=0.10 kg

at an initial velocity of ¥;=10.0 m/s. The boundary condition was taken as a fixed
support as shown in Figure 3-2. The amplitude (W) of the initial geometric imperfect

half-sine wave was taken as 10% of the thickness (#) of the laminated beam. From Figure
3-11, one can see that the axial displacement results of the FDM-HSDT analysis agree
very well with the results obtained from FDM-FSDT, 3D-FEM and the Kirchhoff thin
plate theory.
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Figure 3-11 Comparison of the FDM-HSDT, FDM-FSDT and 3D-FEM results —
Axial displacement at the impacted end.
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3.2.2.2 Lateral deflection and compressive strain at mid-span of the beam

For the deflection of the beam (Figure 3-12), the FDM-HSDT results agree more closely
to the 3D-FEM results than that of FDM-FSDT during the period when the mid-span
deflection reaches its first peak. Without consideration of the rotation of the cross section
of the beam, however, the Kirchhoff thin plate theory predicts a lower transverse
deflection than other theories. From Figure 3-13, one can also see that in predicting the
peak compressive strains at the neutral axis, the HSDT prediction is closer to the 3D-
FEM results than the other two theories. This demonstrates that the solution of the HSDT
is more accurate than that of FSDT in depicting the lateral displacement and strains of the

beam in this type of dynamic problem.
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Figure 3-12 Comparison of the FDM-HSDT, FDM-FSDT and 3D-FEM results —
mid-span deflection of the beam.
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Figure 3-13 Comparison of the FDM-HSDT, FDM-FSDT and 3D-FEM results -
compressive strain at the neutral axis of the beam mid-span.

3.3 Pulse buckling response and momentum

As mentioned earlier, dynamic pulse buckling, as an instability phenomenon, is
characterized with excessive growth of the lateral, or out of plane displacement while the
load capacity of the structure remains relatively unchanged. For the problem of simply
supported beams described in Section 3.1.1, the right end of the beam is loaded by a
constant force. In such a case, the dynamic response of the beam varies with the force
time duration. When the force time duration is increased to the vicinity of some ‘critical
value’, the deflection of the beam would increase drastically with a small increase of
force time duration while the compressive strain of the beam remains relatively constant.
Figure 3-14 shows the results of maximum lateral deflection of the beam versus the
maximum compressive strain taken at the neutral axis of the beam’s mid-span. The

maximum deflection is chosen as the maximum lateral displacement of the beam and the
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maximum compressive strain is chosen as the maximum compressive strain during the
period of impact. Figure 3-15 shows the results of maximum deflection as a function of
impulse (product of the force amplitude and force time duration). Figures- 3-14 and 3-15
show that after the impulse reaches a critical value, a small increase of the impulse causes
the beam to buckle dynamically. The axial load capacity (see from the axial compressive

strain diagram), however, does not increase as much as the deflection.

For the fixed beam described in Section 3.1.2, the beam is impacted by a moving mass. In
such a case, the dynamic response of the beam varies with the different impact velocity of
the moving mass. When the velocity of the moving mass is increased to the vicinity of
some 'critical value', with a small increase of impact velocity (i.e., momentum of the
moving mass), the deflection of the beam increases dramatically (see Figure 3-16), while
the axial displacement and compressive strain of the beam have relatively smaller

variation.
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Figure 3-14 Dynamic pulse buckling response of beam (Length = 0.762m)
with initial geometric imperfection amplitude W, = 0.10h . Maximum deflection

at mid-span of beam versus maximum axial compressive strain taken
at the neutral axis of the beam's mid-span.
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Figure 3-15 Dynamic pulse buckling response of beam (Length = 0.762m) with initial
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Figure 3-16 Dynamic pulse buckling response of the beams with Length = 150 mm,
width = 20 mm, initial geometric imperfection W, = 0.014 — (a) mid-span deflection
versus maximum axial displacement at the impacted end, (b) mid-span deflection of
beam versus compressive strain at the neutral axis of the beam's mid-span, and (c) mid-
span deflection versus impact momentum.



53

3.4 Sensitivity analysis

3.4.1 Sensitivity analysis of initial geometric imperfection

3.4.1.1 Simply supported beam loaded by a constant force

To investigate the effect of initial geometric imperfection of the beam on the critical
impulse, (i.e., the sensitivity of imperfection,) four beams with length of 0.762m and

different initial geometric imperfections of W, =0.01k, W, =0.054, W, =0.10k, and
W, =0.15h were analyzed with varying load time duration. Figure 3-17(a) shows the

maximum deflection of the beams versus the compressive strain taken at the neutral axis
of the mid-span of the beam. Figure 3-17(b) shows the maximum deflection of the beam
as a function of impulse. It is obvious that the bigger the initial geometric imperfection,
the smaller the critical impulse and axial load capacity (i.e., axial compressive strain).
Similar phenomenon occurs for the other beams with different lengths (0.6096m and

0.4572m).

3.4.1.2 Fixed beam impacted by a moving mass

To investigate the influence of initial geometric imperfection of the beam on the critical
momentum, three beams with lengths of 450mm, 300 mm and 150 mm, each with width

of 20 mm, and different initial geometric imperfections of W, =0.0014, W, =0.01k, and
W, =0.10h, were analyzed subject to varying impact velocities. The resulting lateral

deflection at the mid-span of the beam versus the maximum axial displacement at the
impacted end is shown in Figure 3-18(a). Figure 3-18(b) shows the resulting mid-span
deflection versus the maximum compressive strain (taken during the period of impact),
for the 450 mm long beams. In Figure 3-18(c), the resulting deflection is plotted as a
function of impact momentum (product of the impact mass and velocity). It is obvious

that the larger the initial geometric imperfection, the smaller the critical momentum and
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Figure 3-17 Dynamic pulse buckling of beam (Length=0.762m) for different initial

geometric imperfections.

(a) maximum deflection versus compressive strain;

(b) maximum deflection as a function of impulse.
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Figure 3-18 Dynamic pulse buckling response of the beams with Length = 450 mm,
Width = 20 mm, for different initial geometric imperfection — (a) mid-span deflection
versus maximum axial displacement at the impacted end, (b) mid-span deflection of
beam versus compressive strain at the neutral axis of the beam's mid-span, and (c) mid-
span deflection versus impact momentum.
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axial load capacity (i.e., axial displacement and axial compressive strain). Similar
responses are exhibited for the other beams with different lengths (300 mm, and 150 mm),
as shown in Figures 3-19 and 3-20, respectively. Figure 13-18(c) also indicates that
regardless of the initial imperfection amplitude, once the momentum reaches a critical
value, with a minor increase in the momentum, the beams undergo dynamic buckling (i.e.,
the lateral deflection increases rapidly and excessively). The axial load capacity (seen
from the axial displacement and axial compressive strain diagram), however, does not
increase as significantly as the lateral deflection. In Section 3.5, we will see the

momentum can be viewed as a mean for detecting the onset of pulse buckling for beams.

3.4.2 Sensitivity analysis of slenderness ratio

Under static and quasi-static loading conditions, the Euler critical buckling load increases
with the decrease of slenderness ratio. This, however, does not hold in dynamic pulse

buckling.

Figure 3-21(a) shows the variation of maximum deflection versus maximum compressive
strain for beams with different lengths (0.4572m, 0.6096m and 0.7620m) and with an

initial geometric imperfection W, =0.104 for the simply supported beams described in

Section 3.1.1. Figure 3-21(b) shows the variation of maximum deflection as a function of
impulse for the same beams. From Figure 3-21, we observe that for a specific initial
imperfection, the buckling critical impulse and compressive strain (i.e., the axial load
capacity) decrease as the length decreases (i.e., the decrease of slenderness). Similar

phenomenon occurs for the other beams with different imperfection magnitudes

(W, =0.05h,and W, = 0.15h ).



57

2.0 1
e W0=0.001h
454  —=—W0=001h
’ _ —<—W0=0.1h |

Deflection (mm)
5

0.5 1

0.0 - T T 1
0.0 1.0 20 30 4.0
Axial Displacement (mm)
(a)
2.0 1
| —8—W0=0.001h "
= 154  —=—Wo0=0.01h
E i
£ ——W0=0.1h |
c
S 1.0
o
Q
=
-]
Q 905 1
0.0 T T ]
0.0 5000.0 10000.0 15000.0 20000.0
MicroStrain
(b)
20
—=—W0=0.001h
is ——W0=0.01h |
£ "1 —wo=01n
£ o wWuiEbah
c
2 1.0 1
(4]
[-F]
-
[}
0 o5
0.0 Y

T T T "

0.00 0.50 1.00 1.50 2.00 2.50 3.00
Momentum (Kg*m/s)

(©)

Figure 3-19 Dynamic pulse buckling response of the beams with Length = 300 mm,
Width = 20 mm, for different initial geometric imperfection — (a) mid-span deflection
versus maximum axial displacement at the impacted end, (b) mid-span deflection of
beam versus compressive strain at the neutral axis of the beam's mid-span, and (c¢) mid-
span deflection versus impact momentum.
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59

20E037 — ——— ————
| —e—L=0.762m |
3 | —a—1.=0.6096m
o VSE03 4 o (=0.4572m
o L .
©
2 1.0E-03 -
(V]
a
% 5.0E-04
=
0.0E+00 T '
2500 2600 2700 2800 2900
MicroStrain
(a)
128031 =0762m
‘E 1.0E-03 1 —=—L=0.6096m |
= | = |
.5 8.0E-04 - —a—L=0.4572m'
Q
% 6.0E-04 -
O 4.0E-04 -
5
= 2.0E-04 -
0.0E+00 - T -
0.0E+00 4.0E-03 8.0E-03 1.2E-02

Impulse (N.Sec)

(b)

Figure 3-21 Variation of the maximum deflection for different beam lengths.
(a) deflection versus maximum compressive strain;

(b)

Considering the momentum

deflection as a function of impulse.

graphs (Fig. 3-18(c), 3-19(c), and 3-20(c)) of the fixed

beams described in Section 3.1.2, one would observe that shortening the beam length

does not necessarily increase the buckling momentum.
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The response depicted by the above plots presents a contradictory response, in that, the
beams undergo sudden instability as the slenderness ratio decreases (i.e., as the length
gets shorter), for all of the initial imperfection values tested. This is opposite to what
common sense would indicate, as one would expect that the critical buckling capacity
should increase as the slenderness ratio decreases. Such a response is due to the fact that
for a specific imperfection amplitude, the shorter the beam, the larger the curvature of the
beam. With the realization that the bending moment is proportional to the curvature,
therefore, the larger the curvature, the higher the bending moment. This phenomenon is
also validated by the response shown in Figure 3-22 and Figure 3-23. One can therefore
state that the curvature of the imperfect beam plays a more significant role than the

beam’s slenderness ratio.
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Figure 3-22 The critical buckling impulse as a function of sienderness ratio for
different initial geometric imperfections.
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Figure 3-23 Variation of buckling momentum as a function of slenderness ratio.

3.4.3 Effect of the beam’s curvature

Figure 3-24 and Figure 3-25 show the variation of buckling impulse/momentum as a

function of maximum curvature of the beam for different initial geometric imperfections.

From the diagrams, one can predict the critical impulse/momentum of a beam for a

specific imperfection and slenderness ratio based on the maximum curvature of the beam.
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Figure 3-24 Buckling impulse as a function of curvature for different initial geometric
imperfections for the simply supported beam subject to a constant force

with a short time duration.
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Figure 3-25 Critical buckling momentum as a function of curvature for different initial
geometric imperfections for the fixed beam subject to impact of a moving mass.

3.4.4 Effects of fiber angle

For FRP laminated beams, the fiber angle has an important effect on the critical buckling

impulse. Beams with imperfection of W, =0.10h, and different fiber angles were

analyzed. Figure 3-26(a) shows the maximum deflection at the mid-span of the beams as
a function of impulse, while Figure 3-26(b) shows the maximum axial displacement at
the impacted end of the beams as a function of impulse. From Figure 3-26, we can see
that the increase in stiffness in transverse direction and relative decrease in longitudinal
stiffness would increase the dynamic buckling capacities of the beams. It is also noted
that increase in stiffness in the transverse direction would result in an increase of
maximum axial displacement. Figure 3-27 shows the critical buckling impulse as a

function of the ratio of longitudinal to transverse stiffness ( 4,, / 4,,).
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Figure 3-26 Dynamic pulse buckling response for beams with different fiber angle layup.

(a) maximum deflection as a function of impulse;

(b) maximum axial displacement as a function of impulse.
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Figure 3-27 Critical buckling impulse as a function of stiffness ration of
longitudinal and lateral stiffness A4,/ 4,,.

3.4.5 Comparison of effects of boundary conditions

As stated earlier, to investigate the influence of boundary conditions on the pulse
buckling and postbuckling responses of the beams, two types of boundary conditions
were considered: (i) fixed-end support (FS) and (ii) pinned-end support (PS), as shown in
Figure 3-28.

—————————— :"ﬁ' M,V

e = MV, b

Figure 3-28 The Laminated FRP beam model with different boundary conditions
(fixed and simply supported).
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3.4.5.1 The influence of axial displacement, axial compressive strain and deflection

Figure 3-29 shows the results of the axial displacement, axial compressive strain and
deflection for different boundary conditions when the beam was impacted by a moving

rigid body with a mass of M=0.10 kg and initial velocity of ¥;=10.0 m/s. The amplitude
(W,) of the initial geometric imperfect half-sine wave was taken as 10 percent of the

thickness (4) of the laminated beam. From Figure 3-29, we can see that during the impact
period (approximately 0.0~0.5ms), the transverse boundary conditions had no influence
on the response. In general, the axial displacement was much larger than the lateral
deformation of the beam. Considering the one-dimensional wave propagation equation of
a perfect beam as

1 A2
one can forecast that the axial component of the boundary condition controls the axial
wave propagation. During the post impact period, however, the deflection for the simply-
support case becomes larger than that of the fixed-pinned support beam, as shown in
Figure 3-29(b). This is mainly due to the fact that the PS provides no rotational

constraint to the beam.
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Figure 3-29 Comparison of the influence of fixed-pinned support (FS) and pinned-end
support (PS) on: (a) axial displacement at the impacted end; (b) mid-span deflection of
the beam; (c) compressive strain at the neutral axis of the beam mid-span.
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3.5 Pulse buckling criterion

3.5.1 Momentum as a dynamic pulse buckling criterion

Momentum (M, ), defined as the product of mass () and impact velocity (¥, ) of the

moving mass, can be considered as a parameter that predicts dynamic instability. It is
assumed that the investigated beams experienced dynamic instability when their
momentum approached a critical value. Figure 3-30 shows the resulting deflection as a
function of momentum, in which four curves were plotted for the fixed beam with

W, =0.001hand L=300mm impacted by a moving mass, M =0.1Kg, with velocities of
V,=6.0m/s,V, =80m/s. Figure 3-31 and Figure 3-32 illustrate the graphs for the

beams with W, =0.014 and W, = 0.1k, respectively.

These plots illustrate that the critical buckling momentum for a beam with a given initial
imperfection is a stationary value, irrespective of variation of the impact mass and
velocity. Therefore, momentum may be used as a reasonable mean for predicting the
onset of dynamic pulse buckling of FRP laminated beams subjected to axial impact of a

moving mass.

3.5.2 Effects of boundary conditions

3.5.2.1 Buckling criteria

As mentioned earlier, dynamic pulse buckling, as an instability phenomenon, is
characterized with unbounded growth of the lateral, or out of plane displacement, while
the load bearing capacity of the component remains relatively unchanged. In our
investigation, the beams with different boundary conditions were impacted by a moving

mass. In such a case, the dynamic response of the beams varied with the impact velocity
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Figure 3-30 Variation of the mid-span deflection as a function of impact momentum for
various combinations of velocity and initial imperfection (W, = 0.0014, L=300mm).
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Figure 3-31 Variation of the mid-span deflection as a function of impact momentum for
various combinations of velocity and initial imperfection (W, = 0.014, L=300mm).
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Figure 3-32 Variation of the mid-span deflection as a function of impact momentum for
various combinations of velocity and initial imperfection (W, = 0.10h, L=300mm).

of the moving mass. When the velocity of the moving mass was increased to the vicinity
of a 'critical value', the deflection of the beams increased dramatically, while the
compressive strain of the beams remained relatively unchanged. As discussed in section
3.5.1 and by Zhang and Taheri [2002b, 2002c], the momentum (product of mass and
velocity) could be used as a mean for predicting the onset of dynamic pulse buckling of
FRP laminated beams subjected to axial impact of a moving mass. To further validate our
hypothesis, we examined the variation of mid-span deflection of beams as a function of
momentum for beams having various initial geometric imperfections, restrained by
various boundary conditions, as shown in Figure 3-33. One can clearly see from the
figure that for both types of supports, the larger the magnitude of the initial geometric
imperfection, the smaller the critical buckling momentum. This is consistent with the
earlier findings of Zhang and Taheri [2002a, 2002b, 2002¢] and the discussion outlined in
Section 3.4.1. Figure 3-33 indicates that the influence of boundary conditions on the
critical pulse buckling momentum is relatively negligible. This phenomenon can also be

seen from the time history results of mid-span deflection of the beams impacted with
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Figure 3-33 Dynamic pulse buckling response of beams having different initial
geometric imperfections and boundary conditions - mid-span deflection versus
impact momentum.
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Figure 3-34 Time history results of mid-span deflection for different impact velocities.
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different impact velocities, as shown in Figure 3-34. The magnitude of initial geometric

imperfection was taken as W, =0.1h. Although the lateral response of beams is different

depending on the boundary conditions, the critical impact velocity is very similar. From
Figure 3-33, we can also see that the critical buckling momentum for the initial geometric

imperfection of W, = 0.1k is about 1.2 Kg.m/s, which corresponds to the impact velocity

of 12.0 nv/s for a striker mass of 0.1Kg. The same trend can be seen from the deflection
curves of Figure 3-34, in which the lateral deflection for the 12.0m/s velocity is much

larger than that at a velocity of 10.0m/s, particularly for the simply supported beam.

3.5.2.2 Buckling profile

Beam buckling profile is an important concern in buckling analysis. The position of the
maximum deflection of the beam plays an important role in such analysis. Figure 3-35
shows the buckling profiles of the beams under the critical impact velocity of
V¢=12.0m/s restrained by PS and FS boundary conditions. One can see that the maximum

deflection occurs at the impacted end of the beam at the onset of pulse buckling.

Beam station (x/L)

Figure 3-35 Buckling profiles of the beams under the critical impact velocity
(Vo=12.0m/s) for both types of boundary conditions.
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3.6 Post-buckling analysis

Figure 3-36 shows the dynamic profile (lateral deflection), and axial displacement along
the pinned supported beam, before and after the onset of puise buckling. The beam was
impacted by a critical momentum, corresponding to the impact velocity of 12.0m/s. One
can see from the graphs that the onset of buckling occurred at 0.5ms during the event.
The beam then oscillated in high modes, with deflection larger than its pre-buckling state.
The axial displacement reached a maximum before the beam buckled, and then kept
oscillating with a lower magnitude after buckling. Similar phenomenon occurred for the
fixed support beam, as shown in Figure 3-37. Comparing Figures 3-36 and 3-37, one
observes that the vibration amplitude of the PS beam is larger than the FS beam, when

beams are subjected to the same momentum.

3.7 Conclusions

Dynamic pulse buckling of FRP laminated slender beams with initial geometric
imperfections, subject to impulse loads were numerically investigated. Several factors,
such as the beam’s axial and transverse inertia, transverse shear deformation, the non-
uniform distribution of shear stress across the beam section, and the cross section’s
rotational inertia, were considered in the equilibrium equations, as described in Chapter
2. The von-Karman nonlinear Strain-Displacement relationship was used to model the
deformation of the beam. The First-Order Shear Deformation (FSDT) and Higher-Order
Shear Deformation (HSDT) theories were adopted to model the displacement field of the
beam. The kinematics equations were developed and demonstrated to be valid for various
boundary conditions and types of impulse. The parameters investigated in the study
(through sensitivity analysis) included the effect of initial geometric imperfection,
slenderness ratio and curvature of the beam on the pulse buckling response. The effects

of boundary conditions on the pulse buckling and postbuckling responses were also
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numerically investigated and discussed. A mean for predicting the onset of the dynamic

pulse buckling was established.

The following summaries and conclusions are reached:

@)

(i)

(iii)

(iv)

)

(vi)

The results obtained from the proposed finite difference formulations agree well
with the results obtained from the 3D finite element analyses. The results based
on the HSDT solution are closer to those of FEA.

Momentum may be considered as a viable parameter for predicting the dynamic
pulse buckling limit of beams.

The onset of dynamic pulse buckling may be predicted from the graph of
momentum/impulse versus curvature.

It is apparent that critical buckling momentum decreases with the increase in
initial geometric imperfection amplitude. The amplitude of initial geometric
imperfection plays a more significant sole in promoting dynamic pulse buckling
than the slenderness ratio of the beam.

As the ratio of the transverse to longitudinal stiffness increases, the critical
dynamic buckling capacity also increases, thereby indicating the influence of fiber
angle or layup sequence.

It is evident that pulse buckling response is mainly controlled by the axial
component of the restraints, while the rotational restraints produce minimal

influence.
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Figure 3-36 Dynamic profile of the beam and distribution of the axial displacement
along the beam length, before and after the onset of buckling, for the pinned
support condition.
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support condition.
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4 Experimental Program

Relatively few experimental investigations have addressed the dynamic buckling,
postbuckling and damage behavior of FRP composite laminated beams subjected to axial
impact. As reviewed in Chapter 2, most of the analytical and experimental research on
pulse buckling of slender beams were concentrated on those made of isotropic materials.
Also, as will be discussed in Chapters 5 and 6, most of the works on composite damage

investigation is about that induced by transverse impact or dynamic load.

In this chapter, an experimental program on investigation of dynamic pulse buckling and
damage behavior of composite laminated beams subjected to axial impact will be
presented. Experimental setup, data acquisition system and specimen preparation will be
discussed. Experimental procedure will be presented in detail. The experimental results

will be discussed in the next three chapters.

4.1 Experimental setup

The drop-weight setup is a common means of applying impact load for dynamic testing,
as reported in several experimental works [Choi, ef al, 1992; Christoforrou and Yigit,
1994; Sohn, et al, 2000; Necib and Mili, 2001; Olsson, 2001; Kenny, 2000]. The
disadvantage of a drop-weight setup is that it is difficult to eliminate the rebound impact.
To overcome this problem, a new impact setup was designed and fabricated, as shown in
Figures 4-1 and 4-2. The major components include a pendulum, a guiding tube with
linear bearings along its full length, specimen support fixtures and an impactor. The
linear bearings are horizontally fixed on a strand. The linear bearing, fixture and
specimen were calibrated horizontally so that the impact contact would be collinear.

When the impactor is hit by the pendulum, it would travel through the tube on the



77

bearings. In this system, the impactor rebound and will not impact the specimen more
than once. The impactor’s mass can be adjusted according to the experimental
requirement. The pendulum’s mass can also be adjusted. By lifting the pendulum to
different heights, various speeds can be applied to the impactor. The velocity of the
impactor is monitored by two non-contact optical sensors (Omron Model E25-Q13). The
first optical sensor also acts as a trigger for the data acquisition card, which then collects
the data. When the impactor passes the leading sensor, the data acquisition system is
triggered by the output signal. The time gap can be recorded on the data acquisition
system when the impactor passes the two sensors, so that the velocity of the impactor

before it impacts the specimen can be obtained.

‘\j“' A o,

Specimen Support Fxtu.re A

¥

,,,,,
,,,,,,

Cuiding Tube =

s, -

Figure 4-1 Test setup for dynamic axial impact experiment.
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Figure 4-3 OM2-165/BE 490 Data Acquisition System
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The strain gages used in this work were pre-wired strain gages made by KYOWA (Model
KFRP-5-350-C1-1L5M3R). Strain data, as well as the signal from the non-contact optical
sensors were collected by the OM2-165/BE490 Data Acquisition system, which was
assembled in-house. Figure 4-3 shows the OM2-165/BE490 Data Acquisition system.

4.2 Specimen preparation

Both carbon/epoxy and E-glass/epoxy materials were used in this study. The laminates
used for the study were hand-made in the lab of the Department of Civil Engineering,

Dalhousie University.

4.2.1 Carbon/Epoxy laminate

The carbon fiber material used in this study was TENAX/R6376 carbon fiber/epoxy pre-
preg by HEXCEL. R6376 is a high performance tough matrix formulated for the
fabrication of primary aircraft structures. It offers high impact resistance and damage
tolerance. Figure 4-4 shows the typical lay-up sequence for bagging operations. When the
lay-up procedure was finished, vacuum machine was used to vacuum the bag to a

vacuum of 700 KN/m? pressure according to the manufacturer's specification. Then the
laminate panel was cured for 2 hours at 175°C temperature with heating rate of 2°C to

5° C per minute in an oven, as recommended by the manufacturer, as well.
Thermocouples were inserted in the bag for monitoring the temperature. For the purpose
of delamination growth test, Teflon strips with thickness of 0.001” with appropriate width
and length were inserted into the laminate during the lay-up, so that control delaminations

could be formed.
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4.2.2 E-Glass/Epoxy laminates

The lay-up and cure of E-glass/epoxy fiber laminates was performed under room

temperature. The laminate panels were then cut into beams.

RELEASE FILM
BAGGING FILM
BLEEDER
BREATHEH PEEL OP#YTOE%
PERFORA
VACUUM hHOSE RELEASE FILM PRESSURE
SENSITIVE
VA&JLUVME .e. S IV :97/‘9&.:&. srmsmqf_ TAPE
» VA
FLASH -
TAPE

SEALANT

AN \

‘ RELEASE PLY OR
RELEASE FILM

DA

Figure 4-4 Lay-up sequence for bagging operations.
(Richmond Aircraft Product Inc., 2000)

The mechanical properties of the laminates were evaluated according to ASTM D3039,
ASTM D5467, ASTM D5379 [1999] test methods. The critical energy release rate was
estimated according to the ASTM D5528-94a [1999] standard test method as well.

4.3 Experimental contents

Two categories of tests were performed. One was a dynamic damage initiation test. The
other was a delamination propagation test. The purpose of the damage initiation test was

to investigate the damage initiation behavior of laminated composite beams subjected to
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axial impact. The objective of delamination propagation test was to study the
delamination propagation characteristics of delaminated composite beams subject to axial

impact.

4.3.1 Damage initiation

To investigate the damage initiation behavior of carbon/epoxy composite laminated
beams with initial geometric imperfections subject to axial impact of a moving mass,
several groups of beams with different lay-up configurations were fabricated and tested.

The lay-up configurations in this study were [0,] , [(£22.5),], , [(#45),], ,
[(£67.5),], , [(0/90),], and [(0/90),/0,], . The initial geometric imperfection was

measured before each test for every specimen. The support condition of the beam is
fixed at the left, and the right end is also fixed but is allowed to move in the axial
direction, as shown in Figure 2-3. The mechanical properties of the laminate and
geometric properties of the beams are listed in Table 4-1. The damping coefficient of the
beam was determined to be 0.04 approximately by a GrindoSonic MKS5 “Industrial”
instrument [Lemmens, 2001]. The extent of damage in the specimens was inspected
visually and by Scanning Electron Microscopy (SEM) fractography. Experimental results

and associated numerical analysis will be discussed in Chapter 5.

4.3.2 Delamination growth

The critical energy release rate was estimated according to ASTM D5528-94a [1999] as
G,=411.0 J/m* and G, =1007.0 J/m?*. Tsai, et al [2001] stated that the dynamic
delamination fracture toughness in unidirectional polymeric composites was basically

equal to the static fracture toughness and was not significantly affected by crack speed up

to 1100 m/s. We will use these values in our numerical investigation.
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In total 7 groups of specimens with different delamination lengths and locations along the
beams’ length and through the thickness were tested. Each specimen was impacted once
by a steel impactor with a mass of 0.518 Kg. The impactor’s velocity was different for
every event. The purpose of this test was to investigate the delamination growth of
laminated beams with different delamination situations under axial impact. Microscope
was used to visualize the delamination position and growth. Detailed information of each
group of specimens and the associated experimental results, as well as the numerical

analysis results will be presented and discussed in Chapter 6.

Table 4-1 Physical and mechanical properties of carbon/epoxy and E-glass/epoxy
laminated beams.

Material Types Carbon/Epoxy | Glass/Epoxy
Specimen Length (mm) 105~148 145
Specimen Width (mm) 15.93~16.43 | 15.68~18.20
Specimen Thickness (mm) 1.6 3.65~3.95
Imperfection Magnitude Wy (mm) Z[ee;z;r;(; (f)r;) tr)r:: ;ﬁgal
Longitudinal Modulus E,, (GPa) 1.18 x10? 21.97
Transverse Modulus E,; (GPa) 5.54 4.13
In-plane Shear Modulus G;; (GPa) 4.77 0.518
Major Poisson's Ratio (vi) 0.27 0.31
Density (Kg/m’) 1512 2100
Longitudinal Tensile Strength S;." (MPa) 1094.8 560
Longitudinal Compressive Strength S; " (MPa) 712.9 255
Transverse Tensile Strength St (MPa) 26.44 9.13
Transverse Compressive Strength Sy (MPa) 84.33 50.5
In-plane Shear Strength S; 7 (MPa) 84.42 333
Through-the-thickness Shear Strength St (MPa) 65.36 42.0
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S Damage Initiation

The dynamic damage initiation of fiber-reinforced plastic (FRP) composite laminated
beams, having initial geometric imperfections, subject to an axial impact is investigated
numerically and experimentally in this chapter. The dynamic equilibrium equations
presented in Chapter 2 are updated with the consideration of damping effects. Based on
our findings in Chapter 3 (in that the Higher-Order Shear Deformation Theory produced
more accurate results), the HSDT solution was adopted to model the nonlinearly
distributed shear strain across the beam thickness. Hashin’s failure criteria was used to
predict the damage of beams. The experiments were performed on the horizontal linear
bearing impact setup. The Scanning Electron Microscopy (SEM) fractographic technique
was used to identify the extent of damage in the laminated beams. Effect of fiber angle,
lay-up sequence and initial geometric imperfections on the critical energy of damage

initiation, were also investigated.

5.1 Literature review on damage analysis

As reviewed in Chapters 1 and 2, due to their high specific stiffness and strength, fiber-
reinforced plastic (FRP) laminated composites have been widely used in industrial
applications such as aerospace, automobile, shipbuilding, marine and civil infrastructures.
However, their susceptibility to damage resulting from mechanical, physical and
chemical factors can greatly degrade their stiffness, strength and durability. Impact is
particularly one of the important damage sources, which can cause matrix cracking,
laminate delamination and fiber breakage. Often damage generated in FRP 1is
undetectable to the naked eye, therefore, it is particularly important to understand the

damage mechanism in FRP (including its initiation and propagation).



84

Although a great number of investigations have considered FRP impact characterization,
most works [Choi, et al, 1992; Christoforou and Yigit, 1994; Pavier and Clarke, 1995;
Zhou, 1995; Sohn, et al, 2000; Park and Zhou, 2000; Franz, 2001; Necib B and Mili,
2001; Luo, et al, 2001; Olsson, 2001] considered damage due to transverse impact. Choi,
et al [1992] conducted analytical and experimental investigations of damage initiation of
graphite/epoxy composite plates subject to transverse line-loading impact, in which the
effects of laminate lay-up sequence and impactor’s mass were the prime focus. Pavier
and Clarke [1995] proposed an experimental technique which could be used to replicate
the damage of composite laminates, which was transversely impacted by a drop-weight.
Zhou [1995] conducted tests on thick glass-fiber-reinforced laminates under transverse
impact by a flat-ended impactor. Damage mechanism was investigated by post-impact
visual inspection and ultrasonic C-scanning techniques. Sohn, et al [2000] performed
drop-weight impact damage tests of carbon-fiber/epoxy composites and used several
characterization techniques, such as cross-section fractography, scanning acoustic
microscopy, and scanning electron microscopy (SEM), to observe and assess the damage
due to impact. Park and Zhou [2000] investigated the transverse impact response and
damage in composite laminates by obtaining time history results of contact force,
displacement and energy absorption on a three-point bend fixture in a split Hopkinson
pressure bar. With the photo elastic stress coating technique, Franz [2001] established an
experimental method for investigating dynamic response and damage behavior of
composite plates due to impact load. Necib and Mili [2001] experimentally investigated
the dynamic behavior of various E-glass/epoxy laminates subject to a drop weight
impacting the specimens on their transverse side. Luo, ez al [2001] proposed an approach
to evaluate the impact damage initiation and propagation in composite plates, both
experimentally and numerically. The plates were impacted transversely by a controlled
drop weight, and the damage and propagation were inspected with an optical microscope
and X-ray chamber. Olsson [2001] suggested an analytical model for predicting the
impact damage initiation and growth of composite laminates; critical loads and energies

for damage initiation and growth were also discussed.
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As the above literature review indicates, most of the experimental and analytical works
have been based on transverse impact of composite laminates using the so called 'drop-
weight' method of testing. In comparison, only a few investigations have been reported
by which the response of composite laminates subject to axial or in-plane impact was

investigated.

Slender, axially loaded bearing structural components are commonly found in various
structures. These components may easily buckle when subjected to static or dynamic
loads [Zhang and Taheri, 2002a, 2002b, 2002¢]. Due to manufacturing induced factors,
many composite laminates bear initial imperfections and/or voids. When subject to axial
or in-plane static or dynamic loads, regardless of the occurrence of buckling, such
laminates could experience damage, in the form of delamination, fiber breakage and
matrix cracking if certain stress or strain components exceed the limiting criterion during

the pre- and post-buckling periods.

Using a falling weight impact system, Hsiao and Daniel [1998] investigated the strain
rate effect on the compressive and shear behavior of carbon/epoxy composite laminates.
Bogdanovich and Friedrich [1994] predicted the initial failure and ply-by-ply failure
processes of composite laminates under dynamic loading. Abrate [2001] introduced
models for simulating impact on composite structures. An energy-balance model, spring-
mass model and a complete model were used to simulate the impact of composite

laminates.

It can be seen that damage characterization in axial composite members, subject to
impulse loading, has not been thoroughly investigated. The scarcity of such experimental

data motivated the present investigation.

The purpose of this chapter is to experimentally investigate the damage initiation

mechanism and types of damage in fiber-reinforced composite laminated beams subject
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to axial impulse. The objective is also to predict and simulate such damage mechanism

by computational simulations.

5.2 Numerical model of damage analysis

To analytically investigate the dynamic behavior of composite laminated beams subject
to axial impulse, the analytical model developed in Chapter 2, was further developed by
including damping effects in the dynamic equilibrium equations. We consider a n-layer
FRP composite laminated beam with one end impacted by a pulse load as shown in
Figure 5-1. The cross section of the beam was rectangular with width b and thickness 4.

The length of the beam is L. The initial geometric imperfection is w,(x), which is

defined as the initial displacement of the beam in the Z-direction as a function of location

X.
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(Initial geometric imperfection) (Cross section of the beam)

Figure 5-1 Schematics of a FRP beam being impacted by a moving mass.
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With the Timoshenko beam assumption, the equilibrium equations were constructed for
the FRP laminated beam. The formulation includes the axial, lateral and rotational
inertias of the beam, the shear deformation through the thickness of the beam, and the

damping effects in the axial, lateral and rotational directions as follows:

o*u ON ou
] —=—2*_(C, — 5-1a
Yot ox tor (5-1a)
ow
2 AN (6-—2)
1w 9 o _c (5-1b)
Ot Ox Oox ot
2’0 oM 00
7.2 oo, 5-1c
2o ox R ot (-1¢)

where u(x,t),w(x,t) ,60(x,t) ,N_,M _,V,I, and I, are defined in Chapter 2.
C, ,C,,C, are damping factors in the axial, lateral and rotational directions of the

beam, respectively, which are defined as follows.

For a single degree of freedom (DOF) system, the free vibration equation with

damping is,
5+ly: 5,20 (5-2)
m m

We define,
m

in which & is the damping coefficient and  is the natural frequency. Then damping

factor can be represented by:

c=28om (5-4)
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5.3 Damage criterion

Three failure modes in forms of fiber failure, matrix failure and delamination can be
expected to occur in the composite laminated beams subject to the dynamic load. For the
one-dimensional laminated beams subject to axial impact, we will not consider the matrix
failure along the width of the beam and, therefore, only fiber failure and delamination
through the thickness of the beam will be considered in simulation of the laminated

beams in this investigation.

5.3.1 Fiber failure

5.3.1.1 Tension fiber mode

As Hashin [1980] stated, both tensile stress, o}, and shear stress, 7,, of the fibers affect

their failure. Fiber failure occurs if the tensile stress o], and shear stress 7, of fibers

satisfy the following equations,

Fr =Gy Jiysig 5.5
' (SZ) (SLT) (5-5)

in which, F fT is the failure index of fiber in a tension mode, the S; is the tension

strength of lamina and S|, is the shear strength of the lamina in the 1-3 plane.

5.3.1.2 Compressive fiber mode

Under compressive situation, fibers are assumed to fail in microbuckling and/or kinking.

Rosen [1965] stated that fibers under axial compression buckle in a shear mode when the
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volume fraction of fibers is higher than a certain limit (e.g., = 60% for carbon/epoxy).
The shear and compressive stresses both contribute to the compressive failure of fibers.
The deviatoric strain energy theory, known as Tsai-Hill criterion [Azzi and Tsai, 1965;

Hill, 1948), is similar to Hashin’s failure criteria for fibers in tension, that is:

FC=(Puy (Faysig 5.6
f (SL_) (SLT) (5-6)

in which, F fc is the failure index of fiber in the compressive states, S, is the

compressive strength of fiber, and the o7, is the compressive stress.

5.3.2 Delamination

Delamination in laminates occurs due to normal and inter-laminar shear stresses. As
described by the differential equations, the normal and through-the-thickness stresses are
ignored for the current one-dimensional laminated beam subject to axial impulse. The

failure criteria is described as,

F,=(21)?>1.0 (5-7)

TL

in which, F,is the failure index of delamination and Sy, is the through-the-thickness

shear strength of the lamina.

5.4 Results and discussion

To investigate the damage initiation behavior of carbon/epoxy composite laminated

beams with initial geometric imperfections subject to axial impact of a moving mass,
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several groups of beams with different lay-up configurations were fabricated and tested,

and also analyzed numerically. The lay-up configurations in this study were[0,],
[(x22.5),],, [(£45),],, [(£67.5),],,[(0/90),],, and [(0/90),/0,],. The imtial geometric

imperfections were measured before testing for every specimen. The support condition of
the beam is shown in Figure 5-1. The mechanical properties of the laminate and the
geometric properties of beams are listed in Table 4-1 in Chapter 4. The damping
coefficient of the beam is approximately 0.04, as measured by a GrindoSonic MK5

“Industrial” instrument [Lemmens, 2001], and as mentioned in Chapter 4.

5.4.1 Strain records

Figure 5-2 shows typical strain values recorded by two strain gages mounted on the top
and bottom surfaces, at the mid-span of the beam. When a geometrically imperfect beam
is impacted axially, it would vibrate in both axial and transverse directions. From Figure
5-2, we can see that both top and bottom surfaces experience compressive strain at the
beginning of the event, because the beam is deformed axially due to the impacting
compressive load. As the stress wave propagates along the beam, the beam experiences
combined bending and axial compressive loading, in which the top surface of the beam is
in a compressive state, and the bottom is in tension. Due to the damping effect, the
vibration diminishes gradually. From this figure, we can see the maximum strain or stress
that occurred during the first transverse vibration cycle. Considering the dynamic pulse-
buckling phenomenon [Zhang and Taheri, 2002¢], the damage may occur during pre-

and/or post-buckling phases.
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Figure 5-2 Typical strain records.

5.4.2 Damage investigation

The damage mechanism of axially impacted FRP beams differs from damage from
transverse impact in the latter of which delamination, fiber breakage and matrix cracking
mainly occurs around the contact area of the impacted region [Zhou, 1995; Sohn, ef al,
2000; Park and Zhou, 2000]. Under axial impact, the damage occurs at a location in part
or along the whole length of the beam. Damage location through the beam thickness
varies depending on lay-up configurations. When impacted axially, the beams with initial
geometric imperfections deform transversely and axially. The maximum tension and/or
compression strains occur at the outer plies. According to the higher order shear
deformation theory, the shear strain through the beam thickness varies in a parabolic
distribution and the maximum occurs at the beam’s mid-plane. This phenomenon was
demonstrated in Figure 5-3. Figure 5-3 represents a typical delamination and matrix
damage. Initial voids due to manufacturing are not negligible, the delamination and
matrix cracking occurs usually in the weak regions. For all tested specimens except those

with [0,,] and [(£67.5),], layups, delamination and matrix cracking dominated the



92

damage mechanism. Matrix damage, normal to the fiber direction, occurred in most of

the [0,,] lay-up beams.

.- Dclam‘matlon_% EOUE N T Y
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Figure 5-3 Typical delamination and matrix crack damage.

No delamination and matrix cracking were observed after impact in most of the

[(£67.5),], lay-up beams, but their deformed shape remained after impact due to the

plastic deformation of the matrix, as shown in Figure 5-4(2) and 5-4(b). The details of the

mechanism and a prediction method will be presented in Chapter 7.
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Figure 5-4 Initial and deformed beam shape of one of the beams
with [(£67.5),], lay-up.

5.4.2.1 Damage analysis of beams with [(£22.5),]. Lay-up

Three groups of beams, having a lay up sequence of [(£22.5),], had three different

lengths (105 mm, 128mm and 148 mm). Each group had 4 specimens and each specimen
was impacted with different impact energy. Damage, mostly in the form of delamination,
was observed between plies 6 and 7. Some of the delaminations extended along the
whole length of the beams, but was limited between the two restrained ends. Figures 5-
5(a) and 5-5(b) show the time history results of axial displacement and lateral deflection
at station 0.7 of the beam (0.7 indicates '/,oL distance from the fixed support end of the

beam), obtained through our numerical analyses for one of the specimens. Figure 5-5(c)
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shows the lateral deformed shape at time 0.4ms compared with the initial shape of the
beam. Figures 5-6(a) and 5-6(b) show the failure indices of fiber breakage for each layer,
and delamination failure for each inter-laminar interface at station 0.7 of the beam,
obtained though equations (5-5, 5-6, and 5-7). From the figures, we can see that all fiber
failure indices are less than 1.0, which indicates that the fibers do not break; Some of the
delamination failure indices are however greater than 1.0, indicating that delamination
should have occurred. Further analysis of Figure 5-6(b) indicated that even though failure
indices of interface 5-6 and 7-8 were greater than 1.0, visual observation did not confirm
such a mechanism. This was because the interface 6-7, which was at the beam’s mid-
plane, met the delamination criterion before the other interfaces. In this case the other
interfaces did not have the opportunity to delaminate, even though the failure factors

were greater than 1.0.

5.4.2.2 Damage analysis of beams with [(£45),], Lay-up

Unlike beams with a [(£22.5),], lay-up in which delamination dominated the damage

mechanism, extending along the whole length of beam, delamination in these beams
occurred at some discrete stations along the beam length and was accompanied by matrix
cracking. Figure 5-7 illustrates a typical illustration of delamination and matrix cracking
in those beams. Figure 5-8 shows another example of this beam group, showing a major
delamination occurring between plies 6 and 7, which was also connected to another
delamination (between ply 3 and 4) by a matrix crack, which facilitated through an initial

void. Figure 5-9 illustrates a typical matrix cracking of this group.

In summary, most of the delaminations in [(£22.5),], and [($45),], beams occurred at

the beam mid-spans, extending though the beams’ thickness. The specimens having

[(0/90),], lay-up, however exhibited different failure patterns, discussed as follows.
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Figure 5-5 Numerical results: (a) time history of axial displacement at station 0.7 of the

beam; (b) time history of deflection at station 0.7 of the beam; (c) initial and
deformed shape and initial shape of the beam.
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Figure 5-6 Numerical results of the failure indices.
(a) failure index for fiber breakage. (b) failure index for delamination.
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Figure 5-9 SEM fractograph of a typical matrix crack.

5.4.2.3 Damage analysis of beams with [(0/90),], Lay-up

In this group of beams, the two 90° plies in their mid-plane did not contribute much in
carrying the axial force. During the transverse deformation stage, the outer plies endured
most of the tensile and compressive loads. Moreover, the 3, 5™, 8™ and 10™ 0° plies
would have endured the maximum shear strain. Therefore, it is reasonable to expect to
see that delaminations would occur between plies 1-2, 11-12, 5-6 and 7-8, as was the case.
Furthermore, a matrix crack, running through plies 6 and 7, linked the 5-6 delamination
to the 7-8 delamination. Figure 5-10(a) is an example of delamination between plies 1
and 2, while Figure 5-10(b) shows the connection of the two delaminations, as described

above.



Figure 5-10 SEM fractographs. (a) showing delamination between ply 1 and 2.
(b) showing delamination between plies 5 and 6 connected to delamination
between plies 7 and 8 by a matrix crack.
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5.4.2.4 Damage analysis of beams with [(0/90),/0,]. Lay-up

Four specimens were tested within this group. Similarly, delamination dominated the
damage mechanism. The most delaminations occurred at the mid-plane. Similarly,

delamination modes were very similar to those discussed earlier.

5.4.3 Location of damage initiation

When a damage criterion is exceeded, the damage (fiber breakage, delamination and or
matrix crack) will initiate due to excessive stresses. According to the visual inspection
and the associated numerical analysis for the test specimens, delamination and matrix
cracks are the dominating damage mechanism observed in the imperfect beams that were
subject to axial impact. Once the delamination and or matrix crack occurs, the energy
absorbed by the beam is partially released by generation of the damage, delamination
propagation then depends on the amount of energy absorbed by the beam. This
phenomena will be discussed in Chapter 6. Here we discuss the location of delamination
initiation (i.e., location along the beam and through inter-laminar interfaces). Visual and
microscopic inspection of the tested specimens suggested that most delaminations
occurred between the supports. Numerical analysis results for all the tested specimens
predicted that initial geometric imperfections had a significant effect on the delamination
initiation position along the beam. Figure 5-11(a) and 5-11(b) are histograms showing the
density of the delaminations based on their relative distance along the beam, and their
interface location. From Figure 5-11, one can see that besides the local damages initiated
at station 0.0 (fixed end) and 1.0 (impacted end) along the beam, most damages took
place around stations 0.3 ~ 0.4 (near the fixed end) and 0.7, near the impacted end. The
delamination positions through the thickness were at inter-laminar 4, 5 and 6. The
distribution of shear strain through the beam thickness is maximum at the beam mid-span,

and minimum at the top and bottom surfaces of the beams. Due to the different ply
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orientations, however, the center plies did not necessarily experience the maximum

stress, therefore, a certain amount of delaminations occurred at 4-5 interface.
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Figure 5-11 Histograms from all specimens illustrating (a) location of delamination
initiation failure in the FRP beams; (b) total number of interface failure.

Initial geometric shapes of beams were either sinusoidal or random. Some of the typical
initial geometric imperfections measured before impact tests are shown in Figure 5-12.

Observation of the experimental results also indicated that beams having relatively large
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imperfection; (i.e., W% >0.2), failed mostly at their ends; otherwise, failure occurred

along the length of the beams.

0.8 -
_ - = #1031
'% 0.6 - —o—# 1035
2 —a—# 1040
E 0.4 1 —e—# 1061
'-3 —B—# 1066
£ ——— 1 1070
é ——# 1075

0 —— i 1080
——# 1090

Beam station (x/L)

Figure 5-12 Initial out of plane geometric shapes of tested specimens.

5.4.4 Critical energy for damage initiation

When addressing the damage initiation of FRP laminated beams subject to axial impulse
load, one should consider the critical energy used for damage initiation, an unavoidable
phenomenon. The angle ply laminates with relatively large axial and bending stiffness
will endure greater axial and transverse deformation resistance when subject to impact,
and thus would endure larger stresses; the reverse is true for laminates which have
smaller axial and bending stiffness. Moreover, the larger the slendemess ratios, the larger
the energy required to initiate the damage. This can be seen from Figure 5-13, which was
constructed based on the inspection of the experimental results. The axial stiffness (along

the x-axis) is normalized relative to that of the zero degree (uniaxial) layers.
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Figure 5-13 Variation of the critical energy for damage initiation as a
function of the axial stiffness and slenderness ratio.

5.5 Summary

Dynamic damage behavior of FRP laminated slender beams, having various lay-ups,
subject to axial impact was investigated experimentally and numerically. Several factors,
such as the beam’s axial transverse inertia, cross section’s rotational inertia, the non-
uniform distribution of shear stress across the beam cross-section, damping effect, and
the nonlinear strain-displacement relationship between axial strain and transverse

displacement, were all accounted for in the numerical solution.

Axial impact experiments were performed on carbon/epoxy laminated beams with
different lay-up and slenderness ratios. From the results of the numerical and

experimental analyses, the following conclusions can be drawn,

(1) Delamination and matrix cracking were the dominant damage mechanism in the
carbon/epoxy laminated beams subjected to axial impulse.

(11)  The density and length of delaminations depended on the lay-up sequences.



(iif)

(iv)
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Delamination position and interlaminar interface locations of the delaminations
were mainly concentrated at stations 0.4 and 0.7, and at layers 4 and 5 interface,
respectively. The damage mechanism was also strongly dependent on the nature
of the initial geometric imperfections.

The critical energy for damage initiation varied with the lay-up and slenderness

ratio.
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6 Delamination Growth

In this chapter, the dynamic delamination growth behavior of fiber-reinforced plastic
(FRP) composite laminated beams subject to axial impulse was investigated
experimentally and numerically. The impact experiments were performed on a horizontal
linear bearing impact setup as described in Chapter 4. Carbon fiber/epoxy specimens with
different initial delamination length and position along the beam length and through its
thickness were tested. The dynamic equilibrium equations derived in Chapter 5 were
applied to each region of the delaminated beam (including the intact and delaminated
parts) to develop the solutions. The strain energy release rate at the tips of each end of the
delamination was calculated based on the virtual crack closure technique (VCCT),
through a numerical analysis. The evaluation was performed for every increment of the
delamination growth (at every time step). Critical impact energy for delamination growth
was also evaluated numerically. The numerical analysis results obtained for each

specimen group were compared to the experimental resuits.

6.1 Introduction

In Chapter 5, numerical and experimental investigations of damage initiation of
laminated composite beam subjected to axial impact were presented. As a continuation of
dynamic damage behavior analysis, delamination propagation of a laminated composite

beam with initial delamination subjected to axial impact will be presented in this chapter.

Delamination and its growth in composite laminated structures can greatly degrade the
integrity and durability of a FRP structural component. Since the earlier works of
Whitcomb [1981] and Chai [1981], research on delamination propagation of laminates
under in-plane or out-of-plane loads attracted considerable attention. Whitcomb [1981]

performed a numerical investigation on the effects of delamination length, depth, applied
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load and lateral deflection on the stress distribution and strain energy release rate of post-
buckled laminates with through-width delamination. He also experimentally investigated
the delamination growth of composites under cyclic loads. Chai [1981] introduced the
‘thin-film’ and ‘general’ models for characterizing delamination buckling and growth.
He stated that a delamination may propagate stably, unstably or unstably and then stably.
To examine the unstable growth of delamination, Gaudenzi, et al [2001] proposed an
incremental-iterative method in their numerical investigation of the response of
composite panels having a through-width delamination. Cochelin and Patier-Ferry [1992]
proposed a numerical model to treat buckling and delamination growth in composite
laminates with circular delamination. He concluded that Griffith’s type criterion (without
mode separation), derived based on the J-integral theory, could provide a reasonable
means for predicting the onset of delamination growth, but it was inadequate for
predicting the growth of delamination. Delamination geometry and position, and fiber
orientation were found to have crucial effect on the buckling response and delamination
growth. Kruger, et al [1996] demonstrated that the mixed mode of energy release rate
was extremely sensitive to the geometry of the delamination through their numerical and
experimental investigations of the delamination growth of carbon fiber reinforced epoxy
laminates, having embedded delaminations. Kyoung and Kim [1995] also stated that
delamination location and size had pronounced effects on the buckling loads and growth
of delamination through examination of one-dimensional delaminated beam-plates.
Nilsson, et al [2001], through their investigation on buckling and growth of
delaminations in a slender composite panel, observed that the delaminated panels failed
by delamination growth at a slightly lower load than that of an intact panel. They also
investigated the stability of the delamination growth as a function of the through-

thickness location of delamination.

Due to the anisotropic nature of composite laminates, fiber orientation of plies plays an
important role in the distribution of strain energy release rate on the delamination front.

The development of a suitable simulation scheme that could predict the delamination
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growth could therefore be a worthy contribution. For instance, Shen, et al [2001]
demonstrated that for circular delaminated plates, one quarter of the model is inadequate
to simulate the entire model when predicting delamination growth. To predict the growth
of delamination, the critical energy release rate is a very effective criterion. Many
researchers [Ricco, et al, 2001; Tsai , et al, 2001; Yin ,1993; Hwang , et al, 2001; Suo
and Hutchinson, 1990; Williams, 1988; Whitcomb, 1986; Zou, 2001; Sheinman and
Kardomateas, 1997; Park and Sankar, 2002; Rybicki and Kanninen, 1977; Robinson and
Besant, 1998] have expended effort in calculating the strain energy release rate associated
with crack/delamination growth. Many workers have also used other schemes, such as
numerical modeling, to predict the propagation. To simulate the degradation influence on
the stiffness of laminates due to the delamination progress, Sun, et al/ [2001] used the
moving mesh scheme for simulating the progressive failure analysis of lamina}ted plates
with delaminations. Wagner, et al [2001] used a stress based criterion to predict the
critical points of the delamination interface by using a non-vanishing layer in their
investigation of delamination propagation. Luo, et a/ [2001] used delamination strength,
instead of critical energy release rate to determine whether the delamination propagation
would occur in their investigation of a composite plate impacted transversely by a rigid

ball.

It should be noted that the research into delamination buckling of composite laminates
and resulting delamination growth reported in most of the above mentioned references
have considered the cases of in-plane static or quasi-static loads. However, structures in
most real engineering situations are subjected to dynamic loads. Axial or in-plane
dynamic loads on plate/shell and beam/column components can cause dynamic buckling
and/or pulse buckling [Ari-Gur, et al, 1982; Lindberg and Florence, 1987; Kenny, 2000;
Kenny, et al, 2000, 2001, 2002a and 2002b; Zhang and Taheri, 2002a, 2002b, 2002¢, and
2003], delamination growth and/or other types of damages, such as fiber breakage and
matrix crack as reported in Chapter 5. To the best of the author’s knowledge, most of the

reported works on damage/delamination growth of composite laminated plates/beams
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have considered laminates subjected to transverse force or impact. The lack of
information and experimental data in characterizing delamination growth in laminates
subject to axial impulse (impact), therefore, constitutes a major motivating reason for the

work of this chapter.

As stated, the research examining the delamination growth of laminate composites
subjected to impact loading is relatively scarce. Kusaka, et al [2001] proposed a method
for estimating the mixed mode interlaminar fracture toughness of composite laminates
subjected to a transversely applied low velocity impact load. Li, et al [2001a, 2002b]
presented their FEM model and experimental investigation of laminate damages induced
by transverse low-velocity impact of a rigid body into a plate. Sankar and Hu [1991]
modeled the dynamic delamination propagation of composite beams subjected to
transverse impact load. Their delaminated beam was modeled as two beams, idealizing
the laminates above and below the delamination plane, while the uncracked portion was

modeled as a spring element.

To further enhance the available limited bank of experimental data and research in
delamination growth characterization of composite laminates, this chapter will therefore
investigate the delamination growth of laminated composite beams subject to axial

impact, experimentally and numerically.

6.2 Delaminated beam model and strain energy release rate

6.2.1 Differential equations of motion

The delaminated composite beam considered herein, with a delamination through its
width subject to axial impact is shown in Figure 6-1(a). The beam is divided into four

regions as shown in Figure 6-1(b), including two intact and two delaminated parts. The
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(b)

Figure 6-1 Delamination growth model of an imperfect composite beam. (a) the beam is
impacted by a moving mass, (b) the beam modeled into four regions.

cross section of this n-layered FRP composite laminated beam is rectangular with width b
and thickness 4. The length of the beam is L, and the delamination length is a, the
thickness of the upper delaminated region (2) is A, , the thickness of the lower part (3) is

h,, .The initial geometric imperfection is w,(x). To analytically investigate the dynamic

delamination growth behavior of composite laminated beams subject to axial impulse, we
adopt the dynamic equilibrium equations developed in Chapter 5, in which the response
of a FRP laminated beam subject to axial impact was considered. The formulation
accounts for the beam’s axial, lateral and rotational inertias, the through thickness shear
deformation, and the damping effects in axial, lateral and rotational directions with the

following equations:

a0 aN @ ou®
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where (i=1, 2, 3 and 4), represents each region of the beam as shown in Figure 6-1(b);
u”(x,t)is the axial displacement of the region i in the x-direction (an unknown),
w?(x,t) is the lateral displacement of the region i (also an unknown), 8 (x,¢), also an

unknown, is the rotation of the cross section of the beam region 7; and
Wy (i) RCID
W, M= [ 62z (6-2a,b)

are the axial force and bending moment, respectively, per unit beam width, for the i*

region; o' is the axial stress in the i region; and

X

)
yo = ['h /ZZT(i)xde (6-3)

(i)/

is the shear force per unit beam width across the cross-section in the i region, 7_is the

shear stress of each lamina in the i region, and finally

72

(L5 10= 1, p(2%)dz (6-4a,b)

ALY

are the translational and rotational inertia per unit width of the beam, respectively. p"is

the mass density of the i region and C”,CY,CY are the axial, lateral and rotational

damping factors, respectively, of the /™ region. These latter three factors vary with the

delamination length during the impact event.
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The solution of the equilibrium equations is based on the von Karman strain-
displacement relationship and Reddy’s higher order shear deformation theory, as

described in Chapter 2.

6.2.2 Delamination growth in delaminated beams

Evaluation of delamination growth is believed to be the key step in characterizing the
response of composite laminated beams subject to axial impact. Strain energy release rate
is an effective criterion for predicting the delamination growth. It is assumed that the
growth of delamination is dependent on the comparison of strain energy release rate of

the crack tip when exceeding a critical value.

In consideration of the current problem, when the beam is impacted by a moving mass,
the beam would deform dynamically in both axial and transverse directions. The
delamination is assumed to grow if the strain energy release rate at the delamination front
exceeds the critical value, so that the strain energy of the beam is released. The strain
energy release rate is calculated at the tip of the delamination and the evaluation is
performed for the growth of delamination for every time step of the analysis. With the
virtual crack closure technique (VCCT) [Rybicki and Kanninen, 1977], the strain energy
release rate of Mode 1 and Mode 1I can be calculated. The discretized model is shown in
Figure 6-2. In the current problem, the mode III fracture resulting from the out-of-plane
deflection (in Z-direction) is not considered; thus the energy release rates can be

expressed by:

1 (VAw, +V Aw, +y (M A6, + M ,A6,))
' 2Aa 2

1 (PAu, + PAu, +y,(M,A6, + M A6,))
2Aa 2

(6-5a)

G, = (6-5b)
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in which, w, and y, are mode separation factors for work done by moment (details are

given in the next section).

During the delamination analysis, the dimensional dynamic equations (2.3.22) based on

HSDT are solved, instead of the non-dimensional equations (2.3.23). This is because

during the delamination procedure, the beam segment length (L") of regions 1,2,3 and 4

) . . ) ) _ u
vary, thus making the solution based on the non-dimensional variables, such as # = 7o

complicated, consuming unnecessary calculation time and computer resources.

The critical energy release rates, G, (Mode I) and G, (Mode II) of the tested laminates

were experimentally obtained based on the ASTM standard test methods [ASTM, 1999b
and Johnson, 1985]. The following criterion was used to evaluate whether the

delamination growth would occur,
G,Y (6,Y
zdz(_z_j L_J 210
GIC GIIC
(6-6)

in which 7, is the delamination index; the assumption being if 7, >1.0, then the

delamination would grow.

The delamination growth index is evaluated for both ends of the delamination, on every

time step.
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Figure 6-2 The discrete half model of the delamination beam for calculation of strain
energy release rate of Mode I and Mode II.

6.2.3 Mode partitioning factors

Bending moment can cause either mode I or mode II, or mixed mode delamination in
composite beams. Mode partitioning factors described in section 6.2.2 were derived

based on the work of Kardomates [1993] and Suo and Hutchinson [1991].

Stress intensity factors of Mode I and Mode II are expressed by Karmodates [1993],

1 P’ M
K, =— cosw + sin(w + 6.7a
I \/5{ A*hs \/-1,73 ( 7)} ( )
1 P’ M
K, =— sinw — cos(w + 6.7b
u ﬁ[m \/—173 ( 7):1 ( )

in which, P* and M~ are linear combinations of loads from delaminated legs of beam,

and 4", I', ® and y are defined as follows,

A = ! > 5 (6.8a)
l1+4n+6n° +3n
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I= ﬁ (6.8b)
siny =61 (1+ n)m (6.8¢)
w=521°-3% (6.8d)
n=hIh (6.8¢)

where A and A are thicknesses of the upper delaminated region and intact region,

respectively.

From Equation (6.7), one can see that the coefficients of stress intensity factors
contributed by bending moment are sin(w + y) and cos(@ + 7). Considering our current
problem, we define the mode separation factors for work done by the bending moment as
follows,

_ sin(@ +y) (6.92)
" sin(@ + y) + cos(w + ¥) '

cos(w +
yy =— @t 7) (6.9)
sin(w + y) +cos(@w +¥)

6.3 Experimental results

6.3.1 Specifications of the specimens

The details of the experimental set up, intact specimen preparation, curing cycle and
other physical and geometrical specifications were described in Chapter 4. To generate
the desired delamination, a 0.001” thick strip of Teflon was embedded in between the
laminae during laying-up of the laminates. The cured laminates were then cut into strips.
The mechanical properties of each laminate were evaluated experimentally and provided

in Chapter 4. The experimentally measured critical energy release rates were determined
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to be G, =411.0 J/m* and G, =1007.0 J/m*. Tsai, et al [2001] observed that the
dynamic delamination fracture toughness of the unidirectional polymeric composites that
they tested was basically the same as their static fracture toughness, and it was not
significantly affected by crack speed of up to 1100 m/s. In the current numerical
investigation, therefore, the values of the strain energy release rates obtained

experimentally under static condition will be used for the purpose of dynamic analysis.

A total of 7 groups of specimens were tested, and each group had 6 specimens, except
group A, which had S specimens. Each group of specimens had different delamination
length and locations (with respect to the beam length and thickness). Table 6-1 lists the
specifications of each groups of specimens. For all beams, the length between two
supports was 150mm. Each specimen was impacted only once by a 0.518 Kg steel
impactor. The impactor’s velocity, however, was different for each impact event. The
main objective of the investigation was to study the growth of delamination in the
laminated beams subject to varying conditions. The initial geometric imperfection of each

specimen was measured for the numerical analysis.

Table 6-1 Delamination specifications of each group of specimens.

Sepcimen | Delamination Delamination Location
Groups | Length (mm) | Along Beam (mm)* | Through Thickness
A 10.0 75.0 [0, //0,]
B 20.0 75.0 [0, 7/04]
C 30.0 75.0 [0 //0,]
D 20.0 75.0 [0,//0,,]
E 20.0 75.0 [0,/7/0,]
F 20.0 35.0 o, //0,]
G 20.0 115.0 [0 //04]

Note: * Along beam means distance from the delamination center to the fixed end of
beam.
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6.3.2 Results of groups A, B and C with different delamination lengths

These three groups of specimens had the same lay-up [O8 // 08], but different initial

delamination lengths, 10mm, 20mm and 30mm, located at the mid-span of the beams.
The ¢//” indicates delamination location through the beam thickness. Table 6-2 lists the
test results of delamination growth for group A with an initial delamination length of 10
mm, including geometric data and delamination growth of both left end (DIm_LG) and
right end (DIm_RGQG) of the delaminations, total delamination growth (Dlm_TG), impactor
mass and velocity, and the derived impactor momentum, energy and delamination growth
per unit momentum and energy. Table 6-3 and 6-4 tabulate the test results for group B
and C, for initial delamination lengths of 20mm and 30mm, respectively. Due to the
brittle nature of carbon/epoxy laminates and the variation in the mechanical properties,
including the elastic modulus, and in particular the critical energy release rate and impact
velocity for each individual specimen, the delamination growth due to axial impact were
found to vary inconsistently from specimen to specimen. Considering the amount of
delamination growth due to the impact, Tables 6-2, 6-3 and 6-4 indicate an average
growth per unit impact energy of the impactor as follows: (a) an average growth of 11.9
mm for group A (this group had a 10 mm long initial delamination); (b) an average
growth of 14.4 mm for group B (this group had a 20mm long initial delamination); (c)
while only an average of 8.9 mm growth was observed for group C (the beams of this
group had 30 mm long initial delamination). A similar trend exists when considering
growth per unit momentum of the impactor as well. That is, the amount of delamination
growth per unit impact energy did not increase monotonously for the beams tested. This
phenomenon can also be seen when analyzing the relation between critical impact energy

and delamination growth, as presented in section 6.4.3.



Table 6-2 Delamination specifications of Group A: Delamination Length =10mm,

located in the mid-span of beam.

Specimen No. Al A2 A3 A4 A5 | Average
Width (mm) 17.02 17.36 17.31 17.37 16.87 17.19
Thickness (mm) 2.24 2.28 2.25 2.24 2.31 2.26
Dlm LG (mm) 63.35 6740 | 60.85 | 55.10 | 51.65 | 59.67
Dlm RG (mm) 28.70 15.60 | 63.95 | 26.70 9.60 28.91
Dim_TG (mm) 92.05 83.00 | 124.80 | 81.80 | 61.25 | 88.58
Mass (Kg) 0.518 0.518 | 0.518 | 0.518 | 0.518 | 0.518
Velocity (m/s) 5.480 5230 | 5.630 | 5270 | 5200 | 5.362
Momentum (Kg.m/s)| 2.838 2710 | 2917 | 2.729 | 2,692 | 2.777
Energy (J) 7.772 7.089 | 8211 | 7.186 | 6.993 | 7.450
Delam. Growth Per | 3, 435 | 30 677 | 42.784 | 20.974 | 22.753 | 31.895
Unit Momentum
Delam. Growthper | 1} g44 | 11708 | 15.199 | 11383 | 8.759 | 11.890
Unit Energy
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Table 6-3 Delamination specifications of Group B: Delamination Length =20mm,
located in the mid-span of beam.

Specimen No. B1 B2 B3 B4 BS5 B6 |Average
Width (mm) 1712 | 1740 | 1720 | 17.30 | 1738 | 1745 | 17.31
Thickness (mm) | 191 | 2.02 | 1.89 | 199 | 1.99 | 2.03 | 1.97
Dim LG (mm) | 58.55 | 27.25 | 5465 | 30.90 | 48.50 | 49.50 | 44.89
Dim RG (mm) | 5035 | 51.05 | 19.00 | 29.80 | 5840 | 27.30 | 39.32]
Dim TG (mm) | 108.90 | 7830 | 73.65 | 60.70 | 106.90 | 76.80 | 84.21
Mass (Kg) 0518 | 0518 | 0518 | 0.518 | 0.518 | 0.518 | 0.518
Velocity (m/s) | 5.330 | 4.480 | 4.790 | 4.710 | 4.700 | 4.510 | 4.753
Momentam (Kg.m/s)| 2.759 | 2318 | 2480 | 2438 | 2435 | 2337 | 2.461
Energy () 7347 | 5.188 | 5.938 | 5.736 | 5.722 | 5.274 | 5.868
Delam. Growth Per | g 1) | 33 979 | 29,698 | 24.897 | 43.901 | 32.863 | 34215
Unit Momentum
Delam. Growthper | 1 75 | 15003 | 12.403 | 10.582 | 18.682 | 14.562 | 14352
Unit Energy
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Table 6-4 Delamination specifications of Group C: Delamination Length =30mm,
located in the mid-span of beam.

Specimen No. C1 C2 C3 C4 C5 C6 | Average
Width (mm) | 1748 | 16.81 17.31 17.04 17.48 | 17.21 17.22
Thickness (mm)| 2.27 2.27 2.33 2.31 2.35 2.31 2.31

DIm BP 57.00 | 21.20 57.00 59.65 58.00 9.60 43.74
Dlm EP 10.40 | 55.00 25.00 13.55 10.15 | 30.10 24.03
DIm TP 67.40 | 76.20 82.00 73.20 68.15 | 39.70 67.78
Mass (Kg) 0.518 | 0.518 0.518 0.518 0.518 | 0.518 0.518
Velocity (m/s) | 5.300 | 5.550 5.490 4.860 5.110 | 4.560 5.146
Mom.(Kg.m/s) | 2.747 | 2.874 2.846 2.518 2.649 | 2.360 2.666
Engy.(J) 7.286 | 7.975 7.816 6.119 6.771 | 5.374 6.890
Delam Growth
Per Unit 11.302 | 26.509 | 28.816 29.072 | 25.730 | 16.825 | 23.042
Momentum

Delam Growth
per Unit Energy

4262 | 9.554 | 10.491 11.962 | 10.064 | 7.387 8.953

6.3.3 Results of groups D and E with different delamination positions through
beam thickness

These two groups ( D and E) of specimens had different lay-ups: [05 /1 0”] and [02 110, 4],

hosting a 20 mm long delamination located at their mid-span. The purpose of the tests
was to investigate the influence of the through thickness position of delamination and lay
up sequence on delamination growth. Tables 6-5 and 6-6 tabulate the delamination
growth information for group D and E, respectively. Comparing the average growth per
unit impact energy of group D, E and B, we can see that delamination growth of group E

with [02 // 014] lay-up is smaller than that of group D with [05 /10, Jlay-up and group B
with [0, /0, |lay-up. That is, the closer the delamination is to the outer surface, the more

energy it takes for it to grow.
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Table 6-5 Delamination specifications of Group D: Delamination Length =20mm,
located in the mid-span of beam.

Specimen No. D1 D2 D3 D4 D5 D6 Average
Width (mm) 16.58 | 16.33 16.61 16.58 | 16.50 16.47 16.51
Thickness (mm) | 2.33 2.30 2.29 2.08 2.27 2.25 2.25
Dim LG (mm) | 51.13 | 35.39 25.29 28.53 | 41.42 27.85 34.94
Dim RG (mm) | 66.74 | 46.20 30.95 54.89 | 28.62 36.54 43.99
Dim TG (mm) | 117.87 | 81.59 56.24 83.42 | 70.04 64.39 78.93
Mass (Kg) 0.518 | 0.518 0.518 0.518 | 0.518 0.518 0.518
Velocity (m/s) | 5.490 | 4.240 4.500 4.510 | 4.520 4.300 4.593
Momentum
(Kg.m/s) 2.844 | 2.196 2.331 2.336 | 2.341 2.227 2.379
Energy (J) 7.806 | 4.656 5.245 5.268 | 5.291 4.789 5.465
Delam. Growth
Per Unit
Momentum 41.45 | 37.15 2413 35.71 | 29.91 28.91 33.17

Delam. Growth
per Unit Energy | 15.10 | 17.52 10.72 15.83 | 13.24 13.45 14.44

Table 6-6 Delamination specifications of Group E: Delamination Length =20mm,
located in the mid-span of beam.

Specimen No. El E2 E3 E4 E5 E6 Average

Width (mm) 16.35 | 16.77 | 16.53 | 16.83 | 16.56 | 16.88 16.65
Thickness (mm) | 2.25 2.03 2.08 2.14 2.16 2.17 2.14
Dim LG (mm) 5.03 7.51 337 | 10.04 | 12.34 | 12.84 8.52
DIim RG (mm) 3.82 6.52 16.41 | 16.14 15.2 38.36 16.08
Dim TG (mm) 885 | 14.03 | 19.78 | 26.18 | 27.54 | 51.20 | 24.60

Mass (Kg) 0.518 | 0.518 | 0.518 | 0.518 | 0.518 | 0.518 0.518
Velocity (m/s) 4.550 | 4.980 | 4.880 | 4.960 | 4.920 | 5.200 4.915

Momentum
(Kg.m/s) 2.357 | 2.580 | 2.528 | 2.569 | 2.549 | 2.694 2.546
Energy (J) 5362 | 6423 | 6.168 | 6.372 | 6.269 | 7.003 6.257

Delam. Growth Per

Unit Momentum 3.75 5.44 7.82 10.19 | 10.81 | 19.01 9.66

Delam. Growth per

Unit Energy 1.65 2.18 3.21 4.11 4.39 7.31 3.93
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6.3.4 Results of groups F and G with different delamination positions along beam
length

These two groups of specimens had the same lay-ups [O8 // 08], and the same initial

delamination length of 20mm, but with delamination at different locations along the
beam length, as listed in Table 6-1. The purpose of these two groups of tests was to
investigate the influence of the longitudinal location of delaminations on their growth.
Table 6-7 and 6-8 list the delamination growth data for Group F and G. In these tables,
the centre locations of delaminations with respect to the fixed end of the beams were
35mm and 115 mm, for Group F and G, respectively. Comparing the average growth per
unit impact energy of the beams, one can see that for Group F (with delamination center
located at 35 mm from the fixed end of the beams), the growth length was larger than that
of group G (with delamination center located at 115 mm to the fixed end of the beams);
both groups showed lower growth than that of Group B, in which the delamination was

located at the mid-span of beam.

6.4 Numerical results

6.4.1 Delamination growth

Numerical analysis was performed for every specimen of Group B and for a model
representing the ‘average’ of all specimens in Group B (i.e., with average geometry,
average initial geometric imperfections, and average impact velocity). Group B had a 20-
mm delamination located at the mid-span of each beam with [08 // 08] lay-up, subject to
impact by a moving mass with different velocities. Figures 6-3(a) and 6-3(b) show the
delamination index (Equation 6-6) calculated for the left end and right end of the

delamination of the ‘average’ beam, impacted by a moving mass of M=0.518Kg, with an
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Table 6-7 Delamination specifications of Group F: Delamination Length =20mm,
delamination center located at 35mm from fixed end of beam.

Specimen No. Fl F2 F3 F4 FS F6 | Average

Width (mm) 1681 | 1682 | 17.08 | 16.60 | 16.81 | 17.02 | 16.86
Thickness (mm) | 2.19 | 221 | 220 | 219 | 219 | 225 | 221
Dim LG (mm) | 13.87 | 543 | 831 | 1994 | 17.56 | 15.04 | 13.36
Dim RG (mm) | 93.15 | 7.54 | 30.62 | 33.03 | 26.07 | 58.14 | 41.43
Dim TG (mm) | 107.02 | 12.97 | 38.93 | 52.97 | 43.63 | 73.18 | 54.78
Mass (Kg) 0.518 | 0.518 | 0.518 | 0.518 | 0.518 | 0.518 | 0.518
Velocity (m/s) | 5.620 | 5.490 | 5.440 | 5.690 | 5.470 | 5.530 | 5.540

Momentum
(Kg.m/s) 2.912 2.846 | 2.817 | 2947 | 2.834 | 2.866 2.870

Energy(J) 8.187 7816 | 7.662 | 8.382 | 7.750 | 7.929 7.954
Delam. Growth

Per Unit 36.751 4,557 | 13.820 | 17.974 | 15.395 | 25.534 | 19.086
Momentum
Delam. Growth

13.072 | 1.659 | 5.081 | 6.319 | 5.630 | 9.229 6.887

per Unit Energy

Table 6-8 Delamination specifications of Group G: Delamination length =20mm,
delamination center located at 115 mm from fixed end of beam.

Specimen No. Gl G2 G3 G4 G5 G6 Average
Width (mm) 16.31 16.89 | 16.87 | 16.22 | 17.03 16.66 16.66
Thickness (mm) 2.27 2.24 2.26 2.23 2.28 2.26 2.26

Dim LG (mm) 26.44 13.88 | 6.90 6.07 16.94 14.04 14.05
Dim RG (mm) 23.39 30.10 | 19.73 | 16.25 | 17.51 21.39 21.40
Dilm_TG (mm) 49.83 43.98 | 26.63 | 2232 | 3445 35.44 35.44

Mass (Kg) 0.518 0.518 | 0.518 | 0.518 | 0.518 0.518 0.518
Velocity (m/s) 5.110 5.110 | 5.070 | 4.880 | 5.050 5.043 5.044

Momentum
(Kg.m/s) 2.645 2649 | 2.624 | 2.527 | 2.617 2.613 2.613
Energy (J) 6.753 6.771 | 6.647 | 6.166 | 6.612 6.590 6.590
Delam. Growth
Per Unit 18.839 | 16.602 | 10.149 | 8.833 | 13.164 | 13.561 13.566
Momentum

Delam. Growth

: 7.379 6.495 | 4.006 | 3.620 | 5.210 5.377 5.378
per Unit Energy
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average velocity of 4.75m/s. This ‘average’ beam was supported as fully fixed at its left
side and impacted at its right end as shown in Figure 6-1(a). From Figure 6-3(a), one can
see that the delamination growth began at the right end of the delamination, which was
closer to the impacted end (right end). Figure 6-3(b) illustrates the details of the
delamination index between time steps 1800 to 2200. The stress wave started from the
right end and then propagated to the left, and then, the stress wave met the fixed support
end and reflected back; as a result, the delamination growth of the left end of the

delamination dominated the growth.

Numerical analyses results of group B are also compared with the experimental results, as
tabulated in Table 6-9. The table lists the values of growth of the left and right ends of
the delaminations, as well as the total growth amounts. One can see the discrepancy when
comparing the numerical results with the individual experimental results. However,
when one compares the numerical results with the average of the experimental results for
groups A to G, as tabulated in Table 6-10, one can see much less discrepancy (in the

order of 10%), with the experimental results.

6.4.2 Strain energy release rate

Figures 6-4(a) and 6-4(b) show the Mode I (G, ) and Mode II (G}, ) strain energy release
rates for the left and right ends of the delaminations for the ‘average’ beam of group B.
The values of the critical strain energy release rates are also illustrated in the figures. The
unit for the strain energy release rates in the figures is in J/mm®. One can see from the
figures that for the examined axially impacted beams, the mode II strain energy release

rates are considerably larger than the mode I values.
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Figure 6-3 Delamination index of left and right ends of delamination.
(a) time steps 0-10000 (1ms); (b) time steps 1800-2200.
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Table 6-9 Comparison between the numerical and experimental results of delamination
growth of Group B (Delamination Length =20mm, located in the mid-span of beam).

Specimen No. Bl B2 | B3 | B4 | BS | B6 Average
Dim LG E (mm)| 58.55 |27.25|54.65|30.90 | 48.50 | 49.50 44.89
Dlm LG N (mm)| 21.00 |22.50 | 65.25 | 42.75 | 42.75 [ 23.25 | 36.25a |42.00b
Dim RG E (mm)| 50.35 | 51.05]19.00 | 29.80 | 58.40 | 27.30 39.32
Dim RG N (mm)| 64.50 |32.25]45.00 |32.25]32.25[31.50 | 39.63a |34.50b
Dim_TG_E (mm)| 108.90 | 78.30 | 73.65 | 60.70 |106.90| 76.80 84.21
Dim TG E (mm)| 85.50 |54.75|110.25| 75.00 | 75.00 | 54.75 | 75.88a |76.50b

Note: DIm_LG_N is for numerical results, Dim_LG_E is for experimental results.
a results are the average of each specimens,
b results are calculated based on the average geometry of the specimens and
subjected to the average impact velocity.

Table 6-10 Summary of comparison between numerical and experimental results.

Average Delamination Growth

Sepcimen [T o6 Fnd Growth Right End | Total Growth
Groups (mm) Growth (mm) (mm)

Exp. | Num. | Exp. (Num. | Exp. | Num.

59.67 | 36.00 |28.9145.00 | 88.58 | 81.00
44.89 | 42.00 |39.3234.50 | 84.21 | 76.50
43.74 | 32.25 [24.03129.25| 67.77 | 61.50
3494 | 47.25 143.99127.75] 78.93 | 75.00
8.52 8.25 116.08| 6.75 | 24.60 | 15.00
13.36 | 25.50 |41.43135.25]| 54.79 | 60.75
14.05 | 35.35 |21.40]20.89| 3545 | 56.24

QDO (>
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Figure 6-4 Strain energy release rate of modes I and II.
(a) left end of delamination; (b) right end of delamination.

6.4.3 Critical impact energy of delamination growth

The average critical impact energy causing delamination growth obtained for all beam
series are illustrated in Figures 6-5(a-c). The results are organized into three charts. The
chart in Figure 6-5(a) summarizes the results of groups A, B, and C, with their
specifications tabulated in Table 6-1. One can see from the figure that the critical impact
energy for the delaminations grew for the three beam groups (having 10mm, 20mm and
30mm long delaminations). Interestingly, their critical energies do not decrease, as the
common sense would have indicated (in that, the critical impact energy should have

decreased as the delamination length increased). This finding is indeed consistent with
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Figure 6-5 Critical impact energy of delamination growth. (a) groups A, B, and C with
delamination at the same location but with different length of 10mm, 20mm, and 30mm;
(b) groups B, D, and E with same delamination length of 20mm, but at different position

through beam thickness [08 I 08], [0,//0,,], and [02 /10,,); (c) groups F, B, and G with

same delamination length of 20mm, but at and different position along beam length,
35mm, 75mm and 115 mm, respectively.
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Figure 6-6 Variation of critical impact energy as a function of the delamination length.

the experimental results described in Section 6.3.2, which showed that the amount of
delamination growth per unit outer impact energy did not monotonously increase with the
delamination length. To further analyze the effect of delamination length on the critical
impact energy, a group of beams with assumed sinusoidal geometric imperfection (i.e.,

W,(x)=0.1hsin(zx/ L) ), having different delamination length, subject to axial impact,

were numerically analyzed. Figure 6-6 shows the critical impact energy at the onset of
delamination propagation as a function of delamination length. One can see from the
figure that the critical impact energy did not vary monotonously with the increase in

delamination length.

Figure 6-5(b) shows the variation of the critical impact energy as a function of the
through-thickness location of delamination (i.e., as the delamination moves from the mid-
plane to toward the surfaces). One can see that the critical impact energy were larger
when delamination was located near the surface. This is also consistent with the
phenomenon described in section 6.3.3, in that more energy was required for

delamination growth when the delamination was closer the surface.
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Figure 6-5(c) illustrates the variation of the critical impact energy as a function of the
lengthwise location of delamination (i.e., as the delamination moves from the center of
the beam toward the beam-ends). One can see that the critical impact energy was lower
when the delamination was located near the either ends of the beams. This is also
consistent with our findings as discussed in section 6.3.4, in that the experimental values
of the energy required for the delamination growth near the ends were larger than that

required for the delaminations near the mid-span.

6.5 Conclusions

Dynamic delamination growth behavior of FRP laminated beams, with various
delamination lengths located at various positions along the span and through the
thickness of the beams, subject to axial impact was investigated experimentally and
numerically in this chapter. The experiments were performed on delaminated
carbon/epoxy beams. The numerical and experimental results led us to draw the
following conclusions:

(1) Unlike common sense would have indictated, the delamination growths per unit
impact energy and the critical impact energy required for delamination growth of
the beams tested did not monotonously increase as the delamination length was
increased.

(1)  More energy was required for a delamination to grow when the delaminations
were located near the beam surfaces, than when the delamination was located at
the mid-plane of a beam. This phenomenon was also consistent when examining
the beams’ critical impact energy.

(i)  The critical impact energy was lower when the delamination was located near the

fixed-end or the impacted-end of the beams than that located at the mid-span.
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7 Dynamic Pulse-buckling of Plasticity-like FRP
Beams

In this chapter, dynamic pulse-buckling response of carbon/epoxy and E-glass/epoxy

laminated composite beams with [(+67.5),], angle lay-up, subjected to axial impact is

investigated experimentally and numerically. These FRP beams behaved like ductile
metal, exhibiting plasticity like behavior. Both types of FRP beams had residual
deformed shapes after axial impact, while no obvious delamination was evident.

Numerical investigation was also performed for the two category beams.

7.1 Introduction

As described in the previous chapters, dynamic pulse buckling, as a response to axial
impact, has been a research topic since the early work of Koning and Taub [1934]. Due to
their anisotropic and layer-wise nature of composite components, lay-up sequence and
angle of lamina have a crucial effect on the buckling behavior of axial components when
subject to axial impact [Zhang and Taheri, 2002a], as described in Chapter 3. The
damage behavior of composite laminated beams subject to axial impact is also different
from that of the isotropic materials. As stated in Chapter 5, the laminated beams with
[(£67.5),], lay-up showed different deformation and damage characteristic in comparison
with beams with other lay-up sequences when subjected to axial impact. The beams
exhibited a pronounced residual deformation after impact. In this chapter, dynamic pulse-
buckling behavior of the laminated beams with [(£67.5), ] lay-up subject to axial impact

will be investigated. Two categories of composites were tested: E-glass/epoxy laminates

and carbon/epoxy laminates.
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7.2 Experimental specimens

A total of 3 groups (CA, CB and CC) of carbon/epoxy beams, each with 4 specimens.
were tested. For the E-glass/epoxy fiber laminated beams, two groups (GA, GB) were
tested; group GA had 10 specimens and GB had 4 specimens. The mechanical properties
of the carbon/epoxy and E-glass/epoxy laminates were listed in Table 4-1 along with the

geometric properties of the beams.

7.3 Experimental results and discussion

7.3.1 Carbon/Epoxy laminated beams

Three groups (CA, CB and CC), each having 4 specimens were tested. As described in
Chapter 5, the specimens with lay-ups of [0,,] , [(¥22.5),], , [(#45),], and

[(0/90),], showed damage in the form of matrix crack, delamination and fiber breakage
when impacted by a moving mass. However, most of the specimens with [(+67.5),]; lay-

up had no obvious damage, but they remained in a deformed shape after impact. Figures
7-1(a), 7-1(b), and 7-1(c) show the deformed shapes of these beams (group CA, CB and
CC). This phenomenon is consistent with plastic pulse buckling of isotropic beams, as
demonstrated by Abrahamson and Goodier [1966] and Kenny [2000], and Figure 7-2
presents the post-buckled profile of aluminum beams impacted by a moving mass
obtained by Kenny [2000]. Comparing Figures 7-1(a), 7-1(b) and 7-1(c) with Figure 7-2,
one can observe that the laminated beams with [(£67.5),], lay-up showed ‘plasticity’ like

behavior.

Table 7-1 summarizes the impact information of specimens in each group of

carbon/epoxy laminated beams, including specimen length, impact velocity and energy,
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Table 7-1 Specifications of carbon/epoxy laminated beams.

Specimen LentteIT(r?nm) Velocity | Energy (Wmax/Wo
CAl 105 3.92 3.98 0.694
CA2 105 4.11 438 0.688
CA3 105 4.84 6.06 0.963
CA4 105 5.46 7.72 1.381
CBl1 128 5.21 7.02 1.267
CB2 128 4.92 6.26 1.140
CB3 128 5.36 7.44 1.150
CB4 128 6.36 10.48 1.784
CCl1 148 6.00 9.32 1.236
CC2 148 6.30 10.28 1.138
CC3 148 5.98 9.26 0.900
CC4 148 5.75 8.56 0.939

and ratio of the maximum deflection over beam thickness. W, is the measured

maximum deflection of a beam with one buckled crest, or sum of the crest deflections of
a beam with two or more crests. The impactor mass was 0.518 Kg. The typical deformed
shape, (i.e., the buckled profiles and the initial shapes) of specimens of groups CA, CB
and CC are shown in Figures 7-3(a-d), 7-4(a-d), and 7-5(a-d). Comparing these figures,
one can see that there is only one buckle crest for each beam of group CA with length of
105 mm, while other beams in groups CB and CC exhibited 2 or more crests. Figure 7-6
summarizes the relationship between the normalized residual maximum deflection versus
impact energy for beams with various slenderness ratios. One can observe from the figure
that most of the specimens with slenderness ratios of (L/r=227 and 277) developed only
one crest once they buckled, as shown in Figures 7-3 and 7-4, with a linear relationship
between their residual maximum deflections and impact energies. The beams with

slenderness ratio (L/r=320), however, developed two or more crests in their buckled

profile. For beams with this kind of lay-up ([(£67.5),], ), the axial and bending stiffness

are much lower than those of beams with [0,,], [(£22.5),],,[(245),], lay-ups, as shown



132

in Figure 7-7. The matrix of beams with [(£67.5),], lay-up, being epoxy and an

inherently a brittle matrix, easily failed and the beams thus lost their elasticty and could
not rebound back to their original position. As a result the beams retained their deformed
shapes after impact. Figure 7-8 shows the time history resulits for the transverse stress
component ( o, , the stress normal to the fiber direction) taken at the mid-span of
specimen CA1 which was impacted by a moving mass of M =0.518Kg with velocity of

V,=3.92m/s. From the figure one can observe that both top and bottom surfaces of this

specimen experienced o, stress exceeding the ultimate tensile strength of the matrix.

CB1

ST s L NS
CB2

]

CB3

2cm CB4
R
(a)
a ccl
| 5w ML it e Sz e g
cC2
e e R AR R
cC3
2 em [ofer)
L]
(b)

Figure 7-1 Residual deformed shape of carbon/epoxy laminated beams after impact.
Group CA; (b) Group CB; (¢) Group CC.
(continued in the next page)
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Figure 7-1 continued.

Figure 7-2 Deformed Buckled Profiles of aluminum beams subjected to

axial impact [Kenny, 2000].
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Figure 7-4 Initial shape and buckled profile of specimens of Group CB.
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Figure 7-5 Initial shape and buckled profile of specimens of Group CC.
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Figure 7-8 Time history results of the transverse stress component ( o, ) taken at the
beam mid-span for specimen CA1, impacted by a moving mass of M =0.518Kg
with velocity of ¥, =3.92m/s .

7.3.2 E-Glass/Epoxy laminated beams

To further verify the dynamic behavior of laminated beams with lay-up of

[(£67.5),], subjected to axial impact, 2 groups (GA and GB) of E-glass/epoxy laminated

beams were tested. These specimens also exhibited residual deformed shapes after being
impacted by a moving mass, similar to the phenomenon experienced by the carbon/epoxy
laminate beams. Figure 7-9(a) and 7-9(b) show typical deformed shapes of these two
groups. Table 7-2 summarizes the impact information of specimens in each group. The
comparison of typical deformed and undeformed shapes of specimens of group GA and
GB are shown Figure 10(a-j) and 11(a-d). The relationship between the residual
deformation of these beams as a function of the impact energy for various slenderness
ratios is also presented in Figure 7-6. A linear relationship exists between the residual
deformation and impact energy for beams with slenderness ratio of L/r=145 and 173.

Figure 7-12 shows the time history results of the o, stress component taken at the beam
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mid-span for specimen GA1 which was impacted by a moving mass of M =0.518Kg
with a velocity of ¥, =5.04m/s. One can see that both top and bottom surface laminae

experienced tensile stress exceeding the matrix's ultimate tensile strength. This behavior

is consistent with those of the carbon/epoxy laminate beams.

7.4 Summary

Dynamic pulse-buckling response of carbon/epoxy and E-glass/epoxy laminated
composite beams with angle lay-up of [(£67.5),]. subject to axial impact was
investigated experimentally and numerically. Both types of laminates exhibited post-
impact residual deformation, while no obvious delamination was observed. The crest
deflection of the beam was linearly proportional to the impact energy. The numerical
investigation showed that both the top and bottom surfaces of the beams failed due to

eXCessive transverse stress.

Table 7-2 Specifications of E-glass/epoxy laminated beams.

. Beam .

Specimen Length(mm) Velocity Energy | Wmax/Wo
GAO1 145 5.04 6.579 0.39
GAO02 145 4.78 5918 0.50
GAO3 145 5.17 6.923 0.32
GAO04 145 5.27 7.193 0.18
GAOS 145 5.15 6.869 0.53
GAO06 145 5.59 8.093 0.27
GAO07 145 6.19 9.924 0.82
GAO08 145 5.98 9.262 0.57
GAO09 145 6.43 10.708 0.56
GA10 145 6.04 9.449 0.81
GBO01 173 5.12 6.790 0.36
GB02 173 6.48 10.876 0.66
GBO03 173 6.25 10.117 0.41
GB04 173 6.16 9.828 0.63
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Figure 7-9 Residual deformed shape of Eglass/epoxy laminated beams after impact.
Group GA; (b) Group GB.
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8 Summary and Conclusion

In this dissertation, the dynamic behavior, including pulse buckling response, damage
initiation and delamination growth of slender fiber-reinforced plastic (FRP) composite
laminated beams, having initial geometric imperfections, subject to an axial impact was

investigated numerically and experimentally.

This chapter provides a summary of the work and conclusions in this dissertation.

Recommendations for future work are proposed.

8.1 Numerical model

When a beam with initial geometric imperfections is impacted axially, it will deform in
both axial and lateral directions. The cross section of the beam will also rotate about the
neutral axis. When the beam is impacted axially, the inertia in the axial and lateral
directions, as well as the rotation of the cross section would have significant effects on
the beam's deformation. To evaluate the complete and accurate dynamic behavior of a
beam under such a case, one should not ignore the effects of these factors. For laminated
components, shear stress distribution through the thickness, and inter-laminar shear

stresses are important factors that affect the behavior of laminated components.

In this dissertation, the dynamic equilibrium equations of slender fiber-reinforced plastic
(FRP) composite laminated beams, having initial geometric imperfections, subjected to
an axial impulse, were established based on Timoshenko beam theory with the
consideration of all above mentioned parameters. During the deformation of such beams,
there exists a nonlinear relationship between the axial and lateral displacement of beams.
The von-Karman nonlinear strain-displacement relationship was therefore employed to

describe such relationships. To best describe the shear stress distribution through the
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beam thickness, the First-Order and Higher-Order Shear Deformation Theories were used
to model the displacement fields of the beam, respectively, and the results were compared
based on these two theories. The central difference method was used to solve the
developed dynamic equations. The integrity of the numerical results were verified with
those of the finite element analysis obtained from commercial codes, and good agreement

was observed.

8.2 Dynamic pulse buckling

Pulse buckling, as an instability form, that is, as excessive and sudden growth of lateral,
or out of plane displacement, can result from the application of a transient loading
function of a single pulse with a magnitude greater than the static Euler buckling load.
Numerical analysis for both the FSDT and HSDT were performed for FRP laminated
slender beams with initial geometric imperfections subject to an impulse load. The
dynamic pulse buckling phenomenon was identified as the variation of lateral deflection
versus the axial deformation, axial compressive strain and impact momentum/impulse. It
was demonstrated that the momentum/impulse could be taken as a viable parameter for
predicting the onset of dynamic pulse buckling. The parameters investigated in this study
(through sensitivity analysis), included the effect of initial geometric imperfection,
slenderness ratio and curvature of the beam on the pulse buckling response. The proposed
kinematic equations were developed and demonstrated to be valid for various boundary

conditions and types of impulse through several numerical cases.

8.3 Damage initiation

Fiber-reinforced composites’ susceptibility to damage resulting from mechanical,
physical and chemical factors adversely affect their stiffness, strength and durability.

Impact is one of the most significant sources of damage that can cause matrix cracking,
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laminate delamination and fiber breakage. The study of dynamic damage behavior of
laminated beams was performed numerically and experimentally. Hashin’s failure criteria
was used to predict a damage mechanism in the beams. Scanning Electron Microscopy
was also used to analyze the damage mechanism. The influence of fiber angle, lay-up
sequence and initial geometric imperfection on the critical energy causing damage

initiation was also investigated.

Delamination and matrix cracking were the two dominating damage mechanisms in the
carbon/epoxy laminated beams subjected to axial impulse. The density and length of
delamination(s) depended on the lay-up sequences. The damage mechanism was also
observed to be strongly dependent on the nature of the initial geometric imperfections.

The critical energy for damage initiation varied with the lay-up and slenderness ratio.

8.4 Delamination propagation

Delamination propagation in the beams was investigated numerically and experimentally.
The strain energy release rate based on the virtual crack closure technique (VCCT) was
calculated at the tips of the delamination. Carbon fiber/epoxy specimens having various
size delamination, located along the beams' length and through the thickness, subjected to
impact were tested and analyzed. The critical impact energy for delamination growth
was predicted numerically as well. It was observed that the delamination growth per unit
impact energy and the critical impact energy to propagate the delamination did not
consistently increase as the delamination length was increased. The closer the
delamination to the outer surface, the more energy would be consumed to grow the
delamination; the same was observed for the critical impact energy. The critical impact
energy was lower when the delamination was located near the fixed end or the impacted

end of the beams.
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8.5 Pulse buckling behavior of plasticity-like angle ply laminated

beams

Dynamic pulse-buckling response of carbon/epoxy and E-glass/epoxy laminated

composite beams with [(£67.5),], lay-up, subjected to axial impact was investigated

experimentally and numerically. For both types of materials (carbon/epoxy and E-

glass/epoxy), the [(£67.5),], laminated beams exhibited post-impact residual deformed

shape, while no obvious delamination was evident. The crest deflection of the beams was
linearly proportional to the impact energy. The numerical investigation showed that both
the top and bottom surfaces failed due to excessive transverse tensile stress (normal to the

fiber direction).

8.6 Recommendations for future research

Based on the numerical and experimental investigations conducted during the work of

this thesis and the outcoming results, the following recommendations are offered.

The initial geometric imperfection of the beams was assumed to be a sinusoidal shape in
the pulse buckling investigation. Experimental and numerical investigations should be
performed to verify the findings of our sensitivity analysis conducted in Chapter 3 by

investigating beams having randomly distributed initial geometric imperfections.

To further the current research, it is recommended to expand the scope of materials
investigated; ceramics, metal or ceramic matrix composite materials, and their hybrids
should be considered. Smart sensors (Piezoelectric), optical fibers, high-speed imaging
and other advanced experimental techniques would also constitute a suitable research
auxiliary. Besides one-dimensional structural components, other slender and thin-walled

structural components, such as plates and cylindrical geometries (to simulate submarine
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hulls), subject to in-plane dynamic loads should be investigated for their stability and
damage behavior. To further understand the mechanics of damage and propagation, the
effects of strain rate on the strain energy release rate of composite materials should be

considered as well.
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Appendix A: Constants of Finite Difference

Solutions

Constants Definitions
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E, = (4, + BB, - B,B,+ D,C;)~ D;(C, + By~ B;) (A-5d)
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Appendix B: Procedures of Making Laminates
with Pre-pregs

1. Preparation
a. Determine the dimensions of the laminate and lay-up sequence, including
layers and ply-angle.
b. Cut the following materials to size:
e Bagging film - one sheet, larger than the double size of the laminate, used
for folding and seal,
Release film - two sheets, larger than the size of the laminate,
Bleeder and breather- two sheets, larger than the size of the laminate,
Peel ply — one sheet, larger than the size of the laminate,
Pre-preg
c. Place the pre-preg in freezer.
2. Sequence of bagging operation
a. Lay-up sequence
1) Bagging film
2) Tool ( plate )
3) Peelply
4) Release film (perforated)
5) Pre-preg
6) Thermal couples on the surface of laminate
7) Release film (perforated)
8) Bleeder and Breather ( one sheet)
9) Peel ply
10) Bleeder and Breather ( one sheet)
11) Tool ( plate )
12) Put the connector on the plate
13) Bagging film
14) Use sealant tape to seal the bagging films
b. Vacuum the bag
1) Vacuum test the bag to make sure the seal works well
2) Put the bag into the oven
3) Connect the hose with the connector in the bag
4) Vacuum
¢. Cure cycle
1) Heat up the oven according to the cure cycle of the prepreg, using
thermocouple to monitor the temperature variation.
2) For Carbon R63 76 cure for 2 hours at 175°C and 700kN/m pressure with
heating up rate 2°C to 5°C/min
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Appendix C: Source Code of Dynamic Response
of Slender Beam Subject to Axial Impact

PROGRAM FRP BEAM_PULSE BUCKLING
CALL INPUT

CALL ABDEFH

CALL SOLVE

STOP

END

SUBROUTINE INPUT
INCLUDE 'COMMON.INC'
CALL OPEN_FILES

CALL READ_DATA

END

SUBROUTINE OPEN _FILES
INCLUDE 'COMMON.INC'
CHARACTER*20 FINP,FOUT,FDIS,FVEL,FACC,FSTS,FSTR,
& FCMP,TEMP_STRING
CHARACTER*20 FFU1,FFW1,FFC1,FFU2 FFW2,FFC2
CHARACTER*20 FHU1,FHW1,FHC1,FHU2 FHW2,FHC2
CHARACTER*20 FFC,FHC
CHARACTER TEMP CH
INTEGER LEN_STRING
I FLAG=0
DO WHILE(I_FLAG.EQ.0)
CALL GETARG(1,FINP)
LEN_STRING=LEN_TRIM(FINP)
TEMP_CH=FINP((LEN_STRING-3):(LEN_STRING-3))
IF((LEN_STRING.LE.4) .OR. (TEMP_CH. NE."")) THEN
WRITE(*,*) "Your file name is bad, input again,’
WRITE(*,*) 'Remember: The style is: abcd.xyz'

ELSE

I FLAG=1
ENDIF
END DO
FDIS='DIS'
FVEL="VEL'
FACC=".ACC
FSTS='STS'
FSTR="STR'



FCMP="CMP'
FOUT="OUT'

FFU1="FU1'

FFW1="FWI'

FFC1="FCI'

FFU2="FU2'

FFW2='FW2'

FFC2='FC2'

FHU1="HU!'

FHW1="HW1!'

FHCI="HCI'

FHU2="HU?2'

FHW2="HW2'

FHC2="HC2'

FFC ='FFC'

FHC ='.FHC'
FDIS=FINP(1:(LEN_STRING-4))/FDIS
FVEL=FINP(1:(LEN_STRING-4))/FVEL
FACC=FINP(1:(LEN_STRING-4))//FACC
FSTS=FINP(1:(LEN_STRING-4))//FSTS
FSTR=FINP(1:(LEN_STRING-4))//FSTR
FCMP=FINP(1:(LEN_STRING-4))//FCMP
FOUT=FINP(1:(LEN_STRING-4))//FOUT
FFU1=FINP(1:(LEN_STRING-4))//FFU1
FFW1=FINP(1:(LEN_STRING-4))//FFW1
FFC1=FINP(1:(LEN_STRING-4))//FFC1
FFU2=FINP(1:(LEN_STRING-4))//FFU2
FFW2=FINP(1:(LEN_STRING-4))//FFW2
FFC2=FINP(1:(LEN_STRING-4))//FFC2
FHU1=FINP(1:(LEN_STRING-4))/FHU1
FHW =FINP(1:(LEN_STRING-4))//FHW1
FHC1=FINP(1:(LEN_STRING-4))//FHC]
FHU2=FINP(1:(LEN_STRING-4))//FHU2
FHW2=FINP(1:(LEN_STRING-4))//FHW2
FHC2=FINP(1:(LEN_STRING-4))//FHC2
FFC =FINP(1:(LEN_STRING-4))//FFC
FHC =FINP(1:(LEN_STRING-4))//FHC
[FINP=1

IFDIS=2

IFVEL=3

[FACC=4

IFSTS=5

[FSTR=6

[FCMP=7
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IFOUT=8

IFFU1=9

I[FFW1=10

IFFCI=11

I[FFU2=12

IFFW2=13

IFFC2=14

IFHU1=15

IFHW1=16

IFHC1=17

IFHU2=18

IFHW2=19

IFHC2=20

IFFC =21

IFHC =22

IPOS=23

OPEN(IFINP,FILE=FINP,STATUS='OLD")

OPEN(IFDIS,FILE=FDIS,STATUS="UNKNOWN')

OPEN(IFVEL,FILE=FVEL,STATUS="UNKNOWN")

OPEN(IFACC,FILE=FACC,STATUS="UNKNOWN")

OPEN(IFSTS,FILE=FSTS,STATUS=UNKNOWN")

OPEN(IFSTR,FILE=FSTR,STATUS="UNKNOWN')

OPEN(IFCMP,FILE=FCMP,STATUS="UNKNOWN")

OPEN(IFOUT,FILE=FOUT,STATUS="UNKNOWN")

OPEN(IFFU1,FILE=FFU1,STATUS="UNKNOWN")

OPEN(IFFW1,FILE=FFW1,STATUS="UNKNOWN")

OPEN(IFFCI1,FILE=FFC1,STATUS="UNKNOWN')

OPEN(IFFU2,FILE=FFU2,STATUS="UNKNOWN')

OPEN(IFFW2,FILE=FFW2,STATUS="UNKNOWN")

OPEN(IFFC2,FILE=FFC2,STATUS="UNKNOWN")

OPEN(IFHU1,FILE=FHU1,STATUS="UNKNOWN")

OPEN(IFHW LLFILE=FHW1,STATUS="UNKNOWN")

OPEN(IFHC1,FILE=FHC1,STATUS="UNKNOWN)

OPEN(IFHU2,FILE=FHU2,STATUS="UNKNOWN)

OPEN(IFHW2,FILE=FHW2,STATUS="UNKNOWN')

OPEN(IFHC2, FILE=FHC2,STATUS="UNKNOWN")

OPEN(IFFC,FILE=FFC,STATUS="UNKNOWN")

OPEN(IFHC,FILE=FHC,STATUS="UNKNOWN")

OPEN(IPOS,FILE="POSPLY.DAT',STATUS="UNKNOWN',
& ACTION="WRITE', POSITION='APPEND")

END

SUBROUTINE READ DATA
INCLUDE 'COMMON.INC'
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CHARACTER SYM_FLAG
INTEGER LJN_DEG,HALF _LAYERSN DEG ON MAT
REAL(8) DEG,TEM_MAT(10,20)
READ(IFINP,*) A LEN,B WID,LAYERS,H THK
WRITE(IFOUT,*)) BEAMLENGTH="', A LEN
WRITE(IFOUT,*)) BEAM WIDTH=',B WID
WRITE(IFOUT,*)' TOTAL LAYERS =', LAYERS
WRITE(IFOUT,*)THICKNESS OF BEAM ="' H THK
READ(IFINP,*) N_STACK
N _DEG _0=0
DO 10 I=1,N_STACK
READ(FINP,*) DEG, N DEG, N MAT
WRITE(IFOUT,*) ' DEG ="', DEG,' N DEG='N_DEG,' N_MAT='N_MAT
DO 5 J=1,N_DEG
L _ANG(J+N_DEG 0)=DEG
L MAT(J+N_DEG 0)=N_MAT
N_DEG_0=N_DEG 0+N_DEG
CONTINUE
READ(FINP,*) SYM_FLAG
IF (SYM_FLAG=='S') THEN

IF (MOD(LAYERS,2) .EQ. 1) THEN

WRITE(*,*) ' Your model is symmetric, but your layers
is not even, check your input file!'

STOP
ENDIF
HALF LAYERS=LAYERS/2
DO 20 I=1,LHALF LAYERS
L MAT(HALF LAYERS+I)=L MAT(HALF LAYERS+1-I)
L ANG(HALF LAYERS+)=L ANG(HALF LAYERS+1-I)
END IF
READ(IFINP,*) I MAT
DO 25 =1, MAT
READ(IFINP,*) TEM_MAT(L1), TEM_MAT(1,2), TEM_MAT(,3),

& TEM_MAT(1,4)

READ(IFINP,*) TEM_MAT(L,5),TEM_MAT(,6),TEM_MAT(,7)
READ(IFINP,*) TEM_MAT(L,8),TEM_MAT(,9),TEM_MAT(I,10)
READ(IFINP,*) TEM_MAT(,11),TEM_MAT(1,12),TEM_MAT(I,13)
DO 30 I=1,LAYERS
HZ(I)=(I-1)*H_THK/LAYERS-0.5*H_THK
DO J=1,13
MAT(LJ)=TEM_MAT(L MAT(),))
ENDDO
WRITE(IFOUT,9)I,L_ANG(I),HZ(1),(MAT(1,J),J=1,13)
FORMAT(13,'', 1F5.2,'', 14ES11.3)
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CONTINUE
L _ANG(0)=0
DO J=1,7
MAT(0,])=0.0
ENDDO
HZ(LAYERS+1)=H THK*0.5
WRITE(IFOUT,*) 'HZ(LAYERS+1)="HZ(LAYERS+1)
WRITE(IFOUT,*) THICKNESS OF THE PLATE =", H THK
READ(IFINP,*) BND TYPE
READ (IFINP,*) IMP_TYPE
SELECT CASE (IMP_TYPE)
CASE (1)
READ(IFINP,*) MASS,VEL 0
WRITE(IFOUT,*) 'The impacter mass is:', MASS
WRITE(IFOUT,*) 'The impacter velcity is:', VEL 0
CASE (2)
READ(FINP, *) IFORCE
IF(IFORCE.EQ.1) THEN
READ(IFINP,*) F_MAG, F_DUR
WRITE(IFOUT,*) 'The constant force magnitude is:', F MAG
WRITE(IFOUT,*) 'The force time duration is:', F_ DUR
ELSEIF(IFORCE.EQ.2) THEN
READ(IFINP,*) MASS,VEL 0
ENDIF
CASE (3)
READ(IFINP,*) N_VSTEPS
WRITE(IFOUT,*) 'Total time steps:', N_VSTEPS
DO I=1,N_VSTEPS
READ(IFINP,*) VEL(I), V_TIME()
WRITE(IFOUT,50) VEL(), V_TIME(I)
FORMAT(2X,F12.4,3X,F10.6)
ENDDO
END SELECT
READ(IFINP,*) NX STEP,NT STEP,T END
WRITE(IFOUT,*) 'Total steps in X direction : ', NX STEP
WRITE(IFOUT,*) 'Total steps in Time direction : ', NT _STEP
WRITE(IFOUT,*) 'Time duration is from 0 sec to', T _END, 'sec'
WRITE(IFOUT,*) 'Initial Gemetric Imperfection'

DO I=0,NX_STEP
READ(IFINP,*) W_INK(I)

WRITE(IFOUT,*) W_INI(I)

END DO

READ(IFINP,*) NX_OUT_STEP,NT OUT STEP,BETA
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WRITE(IFOUT,*) 'The analysis results are output by '
WRITE(IFOUT,*) 'every ', NX OUT_STEP,'s in X-tirection'
WRITE(IFOUT,*) 'every ', NT_OUT _STEP,'s in T-tirection'
WRITE(IFOUT,*) ' Analysis Type for hiogher order shear deformation'
WRITE(IFOUT,*) ' Beta ="', BETA
READ(IFINP,*) N STR
DO I=0,N_STR
READ(IFINP,*) X_STR(])
ENDDO
WRITE(IFOUT,*) ' You have total ', N_STR,

& '+1 postions to output strains'
DO I=0,N_STR
WRITE(IFOUT,*) X_STR(I)
ENDDO
READ(IFINP,*) CIL,CIT,CIR
WRITE(IFOUT,*) 'Damping Factors are:', CIL,CIT,CIR
END

SUBROUTINE ABDEFH
INCLUDE 'COMMON.INC'
CALL A MATRIX

CALL B_MATRIX

CALL D_MATRIX

CALL E_ MATRIX

CALL F_MATRIX

CALL G_MATRIX

CALL H MATRIX

CALL DI1_MATRIX
CALL DI2 MATRIX
CALL DAMPINGS

END

SUBROUTINE Q_MATRIX(Q,])
INCLUDE 'COMMON.INC'

REAL(8) M,N,M4,N4,M2N2,M3N,MN3,Q(3,3)
REAL(8) QXX,QYY,QXY,QXS,QYS,QSS
REAL(8) POYX

INTEGER I
POYX=MAT(L4)*MAT(I,2)/MAT(L1)
Q(1,1)=MAT(L,1)/(1-MAT(L4)*POYX)
Q(2,2)=MAT(1,2)/(1-MAT(L,4)*POYX)
Q(1,2)=POYX*Q(1,1)

Q(2,1)=Q(1,2)

Q(3,3)=MAT(,3)



Q(1,3)=0

Q(2,3)=0

Q@3,1)=0

Q(3,2)=0
M=COSD(L_ANG(I))
N=SIND(L_ANG(I))
M4=M*M*M*M
N4=N*N*N*N
M2N2=M*M*N*N
M3N=M*M*M*N
MN3=M*N*N*N
M2=M*M

N2=N*N

QXX=M4*Q(1,1)+N4*Q(2,2)+2*M2N2*Q(1,2)+4*M2N2*Q(3,3)
QYY=N4*Q(1,1)+M4*Q(2,2)+2*M2N2*Q(1,2)+4*M2N2*Q(3,3)
QXY=M2N2*Q(1,1)+M2N2*Q(2,2)+(M4+N4)*Q(1,2)-4*M2N2*Q(3,3)
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QXS=M3N*Q(1,1)-MN3*Q(2,2)+(MN3-M3N)*Q(1,2)+2*(MN3-M3N)*Q(3,3)
QYS=MN3*Q(1,1)-M3N*Q(2,2)+(M3N-MN3)*Q(1,2)+2*(M3N-MN3)*Q(3,3)

QSS=M2N2*Q(1,1)+M2N2*Q(2,2)-2*M2N2*Q(1,2)+(M2-N2)**2*Q(3,3)

Q(L,1)=QXX
Q(1,2)=QXY
Q(1,3)=QXS
Q(2,1)=QXY
Q(2,2)=QYY
Q(2,3=QYS
Q(3,1)=Q(1,3)
Q(3,2)=Q(2.3)
Q(3,3)=QSS
END

SUBROUTINE QQ_MATRIX(QQ,])
INCLUDE 'COMMON.INC"
REAL(8) QQ(2,2)

INTEGER I

QQ(1,1)=MAT(L5)
QQ(2,2)=MAT(L6)

QQ(1,2)=0.0

QQ(2,1)=0.0
END

SUBROUTINE A_MATRIX
INCLUDE 'COMMON.INC'
REAL(8) Q(3,3),TEMP
INTEGER LJ,K
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DO 10 I=1,3
DO 10 J=1,3

A(LT)=0.0

DO 20 K=1,LAYERS
TEMP=HZ(K+1)-HZ(K)
CALL Q MATRIX(Q,K)
DO 201=1,3

DO 20 J=1,3
ALD=AI)+Q(LI)*TEMP
CONTINUE

END

SUBROUTINE B MATRIX
INCLUDE 'COMMON.INC'
REAL(8) Q(3,3), TEMP

INTEGER LJ.K

DO 101=1,3

DO 10 J=1,3

B(LJ)=0.0

DO 20 K=1,LAYERS

CALL Q MATRIX(Q,K)
TEMP=(HZ(K+1)**2-HZ(K)**2)*0.5
DO 20 I=1,3

DO 20 J=1,3
B(LJ)=B(1,))+Q(LJ)*TEMP

END

SUBROUTINE D_MATRIX
INCLUDE 'COMMON.INC'

REAL(8) Q(3,3), TEMP
INTEGER LJ,K

DO 10 I=1,3

DO 10 J=1,3

D(1,J)=0.0

DO 20 K=1,LAYERS

CALL Q MATRIX(Q,K)
TEMP=(HZ(K+1)**3-HZ(K)**3)/3.0
DO 20 1=1,3

DO 20 J=1,3
D(I,J)=D(I,1)}+Q(LJ)* TEMP
END

SUBROUTINE E_ MATRIX
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INCLUDE 'COMMON.INC'
REAL(8) Q(3,3),TEMP
INTEGER LJ,K
DO 101=1,3
DO 10 J=1,3

E(LJ)=0.0
DO 20 K=1,LAYERS
CALL Q MATRIX(Q.K)
TEMP=(HZ(K+1)**4-HZ(K)**4)/4.0
DO 201=1,3
DO 20J=1,3
E(LJ)=E(LJ)+Q(LJ)*TEMP
END

SUBROUTINE F_MATRIX
INCLUDE 'COMMON.INC'
REAL(8) QQ(2,2),TEMP
INTEGER LJ,K

DO 101=1,2

DO 10 J=1,2

F(1,J)=0.0

DO 20 K=1,LAYERS

CALL QQ_MATRIX(QQ,K)
TEMP=HZ(K+1)-HZ(K)

DO 20 I=1,2

DO 20 J=1,2
F(L))=F(LJ)*+QQ(LJ)*TEMP
END

SUBROUTINE G_MATRIX
INCLUDE 'COMMON.INC'
REAL(8) QQ(2,2),TEMP
INTEGER LJ,K

DO 10 I=1,2

DO 10 J=1,2

G(L3)=0.0

DO 20 K=1,LAYERS

CALL QQ MATRIX(QQ,K)
TEMP=(HZ(K+1)**3-HZ(K)**3)/3.0
DO 20 I=1,2

DO 20 J=1,2
G(L)=G(LJ)+QQ(LJ)*TEMP

END
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SUBROUTINE H MATRIX
INCLUDE 'COMMON.INC'
REAL(8) Q(3,3),TEMP

INTEGER LJ,K

DO 101=1,3

DO 10 J=1,3

H(LJ)=0.0

DO 20 K=1,LAYERS

CALL Q MATRIX(Q,K)
TEMP=(HZ(K+1)**5-HZ(K)**5)/5.0
DO 20 I=1,3

DO 20 J=1,3
H(IJ)=H(L,)}+Q(LJ)*TEMP

END

SUBROUTINE DI1_MATRIX
INCLUDE 'COMMON.INC'
REAL(8) TEMP

INTEGER K

DO 20 K=1,LAYERS
TEMP=HZ(K+1)-HZ(K)
DI1=DI1+MAT(K,7)*TEMP
CONTINUE

END

SUBROUTINE DI2_MATRIX
INCLUDE 'COMMON.INC'
REAL(8) TEMP

INTEGER K

DO 20 K=1,LAYERS
TEMP=(HZ(K+1)**3-HZ(K)**3)/3.0
DI2=DI2+MAT(K,7)*TEMP
CONTINUE

END

SUBROUTINE DAMPINGS()
INCLUDE 'COMMON.INC'
REAL(8) OMEGA_T,OMEGA L

176

OMEGA_T=4.0*3.14159**2*SQRT(D(1,1)/(MAT(1,7)*H_THK))/A_LEN**2

CT=2.0*CIT*OMEGA_T*DI1

OMEGA_L=SQRT(2.0*A(1,1)/(H_THK*MAT(1,7)))A_LEN

CL=2.0*CIL*OMEGA L*DI1
CR=0.5*CT
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END

SUBROUTINE SOLVE
INCLUDE 'COMMON.INC'
INTEGER status
REAL(8), ALLOCATABLE :: UWC_OUT(.,:,:)
REAL(8), ALLOCATABLE :: STR_OUT(,:,:)
REAL(8), ALLOCATABLE :: STS_OUT(:,:,:)
REAL(8), ALLOCATABLE :: FFC_OUT(.,:,:)
REAL(8), ALLOCATABLE :: FHC_OUT(:,:,:)
REAL(8) XA(20,4),XB(7,4),XC(9,4),H2,Q(3,3),QQ(2,2)
REAL(8) TEMPO1,TEMP02,TEMP03,TEMP04, TEMP05, TEMPO6
REAL(8) TEMP07,TEMPOS,TEMP09,TEMP_ SXX H,TEMP_SXX F
REAL(8) TEMP61,TEMP62,TEMP63, TEMP64,TEMP65, TEMP66
REAL(8) TEMP11,TEMP12,TEMP13,TEMP14,TEMP15,BAL11
REAL(8) TEMP21,TEMP22, TEMP23, TEMP24,TEMP25
REAL(8) TEMP31,TEMP32,TEMP33,TEMP34, TEMP35,TEMP36,
& TEMP37,TEMP38
REAL(8) TEMP41,TEMP42, TEMP43, TEMP44,TEMP45 TEMP46,
& TEMP47,TEMP48
REAL(8) TEMPF
NX=INT((NX_STEP-1)/NX_OUT_STEP)+1
NT=INT((NT_STEP-1)/NT OUT_STEP)+1
ALLOCATE(UWC_OUT(0:NX,0:NT,12),STAT=status)
[F(status /=0) THEN
WRITE(*,*) ' Allocation mem for UWC_OUT failed !'
STOP
ENDIF
NOUT=4*(LAYERS+1)
NOUTF=2*LAYERS-1
ALLOCATE(STR_OUT(0:NT,0:NOUT,0:N_STR),STAT=status)
IF(status /=0) THEN
WRITE(*,*) ' Allocation mem for STR_OUT failed !'
STOP
ENDIF
ALLOCATE(STS_OUT(0:NT,0:NOUT,0:N_STR),STAT=status)
IF(status /=0) THEN
WRITE(*,*) ' Allocation mem for STS_OUT failed !"
STOP
ENDIF

ALLOCATE(FFC_OUT(0:NT,0:NOUTF,0:N_STR),STAT=status)
IF(status /=0) THEN
WRITE(*,*) ' Allocation mem for FFC_OUT failed !"
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STOP
ENDIF
ALLOCATE(FHC OUT(0:NT,0:NOUTF,0:N_STR),STAT=status)
[F(status /=0) THEN
WRITE(*,*) ' Allocation mem for FHC_OUT failed !'
STOP
ENDIF
UWC=0.0
UWCK _1=0.0
UWCK 2=0.0
BAL11=B(1,1)/(A(1,1)*A_LEN)
UJK 1=0.0
CALL NON_DIMENSION
H2=HT**2
ICONTACT=1
IPF=1
IF(MOD(LAYERS,2).EQ.0) THEN
LAYERS HALF=LAYERS/2
ELSE
LAYERS HALF=0
ENDIF
CALL BND_INI
N=NT_STEP
M=NX_STEP
IB=0

DO 10 JJ=0,NX-1

DO 10 I=1,12

IF(MOD(1,3).EQ.2) THEN
TEMPO1=UWC(JJ*NX_OUT STEP,I)-W_INI(JJ*NX_OUT_STEP)
UWC_OUT(JJ,0,)=TEMPO1*A_LEN

ELSE :

UWC_OUT(JJ,0,)=UWC(JJ*NX_OUT STEP,])

ENDIF

CONTINUE

DO 15 I=1,12

UWC_OUT(NX,0,)=UWC(NX_STEP,])

DO 20 K=1,N

DO 18 I=1,4

UMK_2(I)=UWCK_1(NX_STEP,3*-2)

UWCK_1=UWCK 2
UWCK_2=UWC
DO 20 J=IBM
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CALL X_ABC(J,K,XA,XB,XC)
TEMP11=XB(1,1)+XC(1,1)*XA(8,1)+XC(7,1)
TEMP12=XB(7,1)+XC(1,1)*XA(7,1)
TEMP13=XC(2,1)*XB(5,1)-XC(8,1)
TEMP14=XB(1,1)*XC(3,1)+XC(4,1)*XA(8,1)
TEMP15=XC(5,1)*XB(6,1)-XC(9,1)
TEMP21=XB(1,2)+XC(1,2)*XA(8,2)
TEMP22=XB(7,2)+XC(1,2)*XA(7,2)
TEMP23=XC(2,2)*XB(5,2)
TEMP24=XB(1,2)*XC(3,2)+XC(4,2)*XA(8.2)
TEMP25=XC(5,2)*XB(6,2)
TEMP31=XB(1,3)+XC(1,3)*XA(8,3)
TEMP32=BETA*XA(15,3)*XB(2,3)+XC(7,3)
TEMP33=(XC(2,3)-BETA*XA(16,3))*XB(5,3)-XC(8,3)
TEMP34=BETA*XA(15,3)*XB(5,3)
TEMP35=XB(7,3)+XC(1,3)*XA(7,3)
TEMP36=XB(1,3)*XC(3,3)+XC(4,3)*XA(8,3)
TEMP37=BETA*XA(17,3)*XB(2,3)-XC(9,3)
TEMP38=XC(5,3)-BETA*XC(6,3)
TEMP41=XB(1,4)+XC(1,4)*XA(8,4)
TEMP42=BETA*XA(15,4)*XB(2,4)
TEMP43=(XC(2,4)-BETA*XA(16,4))*XB(5,4)
TEMP44=BETA*XA(15,4)*XB(5,4)
TEMP45=XB(7,4)+XC(1,4)*XA(7,4)
TEMP46=XB(1,4)*XC(3,4)+XC(4,4)*XA(8,4)
TEMP47=BETA*XA(17,4)*XB(2,4)
TEMP48=XC(5,4)-BETA*XC(6,4)
UWC(J,1)=TEMP11*H2-XA(9,1)
UWC(J,7)=(TEMP31-TEMP32)*H2-XA(9,3)
UWC(J,4)=TEMP21*H2*(1-0.5*XB(3,2)¥*2)-XA(9,2)
UWC(J,10)=(TEMP41-TEMP42)*H2*(1-0.5*XB(3,4)**2)-XA(9,4)
UWC(J,2)=(TEMP11*XB(3,1)+TEMP12*XB(4,1)+TEMP13)*H2-XA(10,1)
UWC(J,8)=((TEMP31-TEMP32)*XB(3,3)+
(TEMP35-TEMP34)*XB(4,3}+TEMP33)*H2-XA(10,3)
UWC(J,5)=(TEMP21*XB(3,2)+ TEMP22*XB(4,2)+ TEMP23)*H2-X A(10,2)
UWC(J,11)=((TEMP41-TEMP42)*XB(3,4)+
(TEMP45-TEMP44)*XB(4,4)+ TEMP43)*H2-XA(10,4)
UWC(J,3)=(TEMP14-TEMP15)*H2/XA(18,1)-XA(11,1)
UWC(J,6)=(TEMP24-TEMP25)*H2/XA(18,2)-XA(11,2)

UWC(J,9)=(TEMP36-TEMP37-TEMP38*XB(6,3))*H2/XA(18,3)-XA(11,3)
UWC(J,12)=(TEMP46-TEMP47-TEMP48*XB(6,4))*H2/XA(18,4)-XA(11,4)
IF(J.EQ.0) THEN

UWC(J,1)=0.0
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UWC(J,4)=0.0

UWC@J,7)=0.0

UWC(J1,10)=0.0

ENDIF

IF((J.EQ.M).OR.(J.EQ.0)) THEN

UWC(J,2)=0.0

UWC(J1,5)=0.0

UWC(J,8)=0.0

UWC(J,11)=0.0

ENDIF

IF (J.EQ.M) THEN

DO I=1,4

CALL LEFTENDU(L,K)

ENDDO

ENDIF

IF (MOD(K,NT_OUT_STEP).EQ.0).AND.(MOD(J,NX_OUT_STEP).EQ.0)

AND.(J.LT.M)) THEN
JJ=INT(J/NX_OUT _STEP)
=INT(K/NT_OUT_STEP)

UWC_OUT(JT,KK,1)=UWC(J,1)*A_LEN
UWC_OUT(JIKK,2)=(UWC(,2)-W_INI(J))*A_LEN
UWC_OUT(JJ,KK,3)=UWC(J,3)
UWC_OUT(JJ,KK,4)=UWC(J,4)*A_LEN
UWC_OUT(II,KK,5)=(UWC(J,5)-W_INI(J))*A_LEN
UWC_OUT(JJKK,6)=UWC(J,6)
UWC_OUT(JJ,KK,7)=UWC(J,7)*A_LEN
UWC_OUT(JJ,KK,8)=(UWC(J,8)-W_INI(J))*A_LEN
UWC_OUT(JJ,KK,9)=UWC(J,9)
UWC_OUT(JJ,KK,10)=UWC(J,10)*A_LEN
UWC_OUT(J,KK,11)=(UWC(J,11)-W_INI(J))*A_LEN
UWC_OUT(JJ,KK,12)=UWC(J,12)

ENDIF

IF (MOD(K,NT_OUT_STEP).EQ.0).AND.(J.EQ.M)) THEN
KK=INT(K/NT OUT _STEP)
UWC_OUT(NX,KK,1)=UWC(J,1)*A_LEN
UWC_OUT(NX,KK,2)=(UWC(J,2)-W_INI(J))*A_LEN
UWC_OUT(NX,KK,3)=UWC(,3)
UWC_OUT(NX,KK,4)=UWC(J,4)*A_LEN
UWC_OUT(NX,KK,5)=(UWC(J,5)-W_INIJ))*A_LEN
UWC_OUT(NX,KK,6)=UWC(J,6)
UWC_OUT(NX,KK,7)=UWC(J,7)*A_LEN
UWC_OUT(NX,KK,8)=(UWC(J,8)-W_INI(J))*A_LEN
UWC_OUT(NX,KK,9)=UWC(J.9)
UWC_OUT(NX,KK,10)=UWC(J,10)*A_LEN
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UWC_OUT(NX,KK,11)=(UWC(J,11)-W_INI(J))*A_LEN
UWC_OUT(NX,KK,12)=UWC(J,12)
ENDIF

IF (MOD(K,NT_OUT_STEP).EQ.0) THEN

KK=INT(K/NT_OUT_STEP)
DO 11=0,N_STR
IX=INT(X_STR(I1)/GX)
IF(J.EQ.IX) THEN

STR_OUT(KK,0,I1)=K*T_END/NT_STEP
STS_OUT(KK,0,I1)=K*T_END/NT_STEP
FFC_OUT(KK,0,11)=K*T_END/NT_STEP

FHC_OUT(KK,0,I1)=K*T_END/NT_STEP

IF(J.EQ.M) THEN
TEMP04=(UWC(J,1)-UWC(J-1,1))/(1.0*GX)
TEMP05=(UWC(J,2)-UWC(J-1,2))/(1.0*GX)
TEMPO7=(UWC(J,3)-UWC(J-1,3))/(1.0*GX*A_LEN)
TEMPO6=(W_INI(J)-W_INI(J-1))/(1.0*GX)

ELSE
TEMP04=(UWC(J+1,1)-UWC(-1,1))/(2.0*GX)
TEMPO5=(UWC(J+1,2)-UWC(J-1,2))/(2.0*GX)
TEMPO7=(UWC(J+1,3)-UWC(I-1,3))/(2.0*GX*A_LEN)
TEMPO6=(W_INI(J+1)-W_INI(J-1))/(2.0*GX)

ENDIF

DO I=0,LAYERS

TEMP08=(I*H_THK/LAYERS-0.5*H_THK)*TEMP07

STR_OUT(KK,I+1,I1)=TEMP04+TEMP08-+

& (TEMPO5+TEMPO6)*(TEMP05-TEMP06)*0.5
STR_OUT(KK,I+1,11)=1000000*STR_OUT(KK,I+1,I1)
STR_OUT(KK,LAYERS+2+L11)=UWC(J,3)+*TEMP05-TEMP06
STR_OUT(KK,LAYERS+2+1,11)=1000000*STR_OUT(KK,LAYERS+2+1,11)

IF(LEQ.0) THEN
QQ(2,2)=0.0
ELSE
CALL QQ_MATRIX(QQ,])
ENDIF
TEMPF=STR_OUT(KK,LAYERS+2+L]11)
STS_OUT(KK,LAYERS+1+L11)=TEMPF*QQ(2,2)/1000
ENDDO
DO I=1,LAYERS
TEMP_SXX_F=0.5*(STR_OUT(KK,LI1)+STR_OUT(KK,I+1,11))
CALL Q MATRIX(Q,D)
STS_OUT(KK,LI1)=TEMP_SXX_F*Q(1,1)/1000
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ENDDO
DO I=1,LAYERS

IF(STS_OUT(KK,LI1).GT.0.0) THEN
FFC_OUT(KK,LI1)=(STS_OUT(KK,LI1)/MAT(I,8))**2+
((STS_OUT(KK,LAYERS+LI1)+STS_OUT(KK,LAYERS+1+L,11))
((2*MAT(1,13)))**2

ELSE

FFC_OUT(KK,LI1)=(STS_OUT(KK,L11)/MAT(I9))**2+
((STS_OUT(KK,LAYERS+LI1)+STS OUT(KK,LAYERS+1+LI1))
(2*MAT(L,13)))**2

ENDIF

ENDDO

DO I=1,LAYERS-1
FFC_OUT(KK,LAYERS+L11)=4.0%(STS_OUT(KK,LAYERS+1+LI1)/
MAT(,13))**2

ENDDO

IF(J.EQ.M) THEN
TEMP04=(UWC(J,7)-UWC(J-1,7))/(1.0*GX)
TEMP05=(UWC(J,8)-UWC(J-1,8))/(1.0*GX)
TEMPO7=(UWC(J,9)-UWC(J-1,9))/(1.0*GX*A_LEN)
TEMPO6=(W_INI(J)-W_INI(J-1))/(1.0*GX)
TEMP61=(UWC(J,8)-2.0*UWC(J-1,8)+UWC(I-

2,8))(GX*GX*A_LEN)
TEMP62=(W _INI(J)-2.0*W_INI(J-1)+W_INI(J-
2))(GX*GX*A_LEN)
ELSE
TEMPO4=(UWC(J+1,7)-UWC(I-1,7))/(2.0*GX)
TEMPO5=(UWC(J+1,8)-UWC(J-1,8))/(2.0*GX)
TEMPO7=(UWC(J+1,9)-UWC(J-1,9))/(2.0*GX*A_LEN)
TEMPO6=(W_INI(J+1)-W_INI(J-1))/(2.0*GX)
TEMP61=(UWC(J+1,8)-2.0*UWC(J,8)+UWC(J-
1,8))(GX*GX*A_LEN)
TEMP62=(W _INI(J+1)-2.0*W_INI(J)+W_INI(J-
))(GX*GX*A_LEN)
ENDIF
DO I=0,LAYERS
TEMP09=I*H_THK/LAYERS-0.5*H_THK
TEMP08=TEMP09*TEMP07
TEMP63=4.0*TEMP09**3*BETA/(3.0*H_THK**2)
TEMP64=TEMP63*(TEMP07-TEMP61+TEMP62)
TEMP65=(TEMPO05+TEMP06)*(TEMP05-TEMP06)*0.5
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STR_OUT(KK,2*LAYERS+3+1,11)=TEMP04+TEMPO0S-
TEMP64+TEMP65
TEMP64=1.0-4.0*TEMP09**2*BETA/H_THK**2
STR_OUT(KK,3*LAYERS+4+L11)=TEMP64*(UWC(J,9)+TEMPO5-
TEMP06)
STR_OUT(KK,2*LAYERS+3+L11)=1000000
*STR_OUT(KK,2*LAYERS+3+L]11)
STR_OUT(KK,3*LAYERS+4+1,11)=1000000
*STR_OUT(KK,3*LAYERS+4+1,11)
CALL QQ MATRIX(QQ,])
IF(L.EQ.0) THEN
QQ(2,2)=0.0
ENDIF
STS_OUT(KK,3*LAYERS+2+111)=QQ(2,2)
*STR_OUT(KK,3*LAYERS+4+1,11)/1000
ENDDO
DO I=1,LAYERS
TEMP_SXX_H=0.5%(STR_OUT(KK,2*LAYERS+2+1,11)
+STR_OUT(KK,2*LAYERS+3+1,11))
CALL Q MATRIX(Q,D)
STS_OUT(KK,2*LAYERS+1+LI1)=TEMP_SXX_H*Q(1,1)/1000
ENDDO
DO I=1,LAYERS
IF(STS_OUT(KK,2*LAYERS+1+L11).GT.0.0) THEN

TEMPF1=(STS_OUT(KK,2*LAYERS+1+LI11)/MAT(I,8))**2
TEMPF2=STS_OUT(KK,3*LAYERS+1+L11)+STS OUT(KK,3*LAYE
RS+2+L11)
TEMPF2=(TEMPF2/(2*MAT(, 13)))**2
FHC_OUT(KK,LI1)=TEMPF1+TEMPF2
ELSE
TEMPF1=(STS_OUT(KK,2*LAYERS+1+L11)/MAT(I,9))**2
TEMPF2=STS_OUT(KK,3*LAYERS+1+LI1)+
& STS_OUT(KK,3*LAYERS+2+L11)
TEMPF2=(TEMPF2/(2*MAT(I, 13)))**2
FHC_OUT(KK,LI1)=TEMPF1+TEMPF2
ENDIF
ENDDO

DO I=1,LAYERS-1
TEMPF=STS_OUT(KK,3*LAYERS+2+L11)MAT(,13)
FHC_OUT(KK,LAYERS+L,11)=4.0*TEMPF**2
IF(IPF.EQ.1) THEN
IF(FHC_OUT(KK,LAYERS+L11).GT.1.0) THEN
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WRITE(IPOS,19)
FHC OUT(KK,LAYERS+LI1),X STR(I1),1

IPF=0
ENDIF

ENDIF

19 FORMAT(2F6.2,14)
ENDDO
ENDIF
ENDDO
ENDIF

20 CONTINUE
DO KK=0,NT _
WRITE(IFFU1,30) (UWC_OUT(JJ,KK,1), JJ=0,NX)
WRITE(IFFW1,30) (UWC_OUT(J,KK,2), JJ=0,NX)
WRITE(IFFC1,30) (UWC_OUT(J,KK,3), JJ=0,NX)
WRITE(IFFU2,30) (UWC_OUT(JJ,KK,4), JJ=0,NX)
WRITE(IFFW2,30) (UWC_OUT(JJ,KK,S), JJ=0,NX)
WRITE(IFFC2,30) (UWC_OUT(J,KK,6), JJ=0,NX)
WRITE(IFHU1,30) (UWC_OUT(J,KK,7), JJ=0,NX)
WRITE(IFHW1,30) (UWC_OUT(JJ,KK,8), JJ=0,NX)
WRITE(IFHC1,30) (UWC_OUT(JJ,KK,9), JJ=0,NX)
WRITE(IFHU2,30) (UWC_OUT(J,KK,10), JJ=0,NX)
WRITE(IFHW2,30) (UWC_OUT(J,KK,11), JJ=0,NX)
WRITE(IFHC2,30) (UWC_OUT(J,KK,12), JJ=0,NX)
30 FORMAT(201E12.3E3)
40 FORMAT(F10.6,70F10.1)
ENDDO
STR_OUT(0,0,0)=0.0
STS OUT(0,0,0)=0.0
WRITE(IFSTR,*) 'MicroStrain OutPut'
WRITE(IFSTS,*) 'Stress Output (MPa)'
DO I1=0,N_STR
WRITE(IFSTR,45) X _STR(11)
WRITE(IFSTS,45) X_STR(I1)
45 FORMAT('Station="F5.3)
WRITE(IFSTR,46)
46 FORMAT(20X,'First Order Results Shear Deformation’,
& 20X,'Higher Order Shear Deformation Results')
WRITE(IFSTR,47)
47 FORMAT(20X,'Axial Strain of each layer',
&  20X,'Shear Strain of Each layer',
&  20X,'Axial Strain of each layer',
&  20X,'Shear Strain of Each layer')
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WRITE(IFSTR 48) (I+100, I=0,LAYERS),(1+200,I=0,LAYERS),
(1+300, I=0,LAYERS),(1+400,I=0,LAYERS)
FORMAT(2X,'time', 4X, 60110)
WRITE(IFSTS,S6)
FORMAT(20X,'First Order Results Shear Deformation',
20X,'Higher Order Shear Deformation Results')
WRITE(IFSTS,57)
FORMAT(20X,'Axial Stress of each layer’,
20X,'Shear Stress of Each layer',
20X,'Axial Stress of each layer’,
20X,'Shear Stress of Each layer')
WRITE(IFSTS,58) (I+100, I=1,LAYERS),(I+200,]=0,LAYERS),
(1+300, I=1,LAYERS),(1+400,I=0,LAYERS)
FORMAT(2X,'time', 4X, 60110)
DO KK=0,NT
WRITE(IFSTR,60) (STR_OUT(KK,I,11),I=0,NOUT)
WRITE(IFSTS,60) (STS_OUT(KK,LI1),I=0,NOUT-2)
WRITE(IFFC,70) (FFC_OUT(KK,L1I1),I=0,NOUTF)
WRITE(IFHC,70) (FHC_OUT(KK,I,I1),I=0,NOUTF)
FORMAT(E10.4E1,80E12.3E3)
FORMAT(F6.3,'',80F6.2)
NDDO
ENDDO
DO I=1,23
CLOSE(I)
ENDDO
END

SUBROUTINE X_ABC(J,.K,XA,XB,XC)
INCLUDE 'COMMON.INC'

REAL(8) UJ(-1:1),CJ(-1:1),WJ(-2:2),W0(-2:2),UK_1,WK_1,CK 1

REAL(8)
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TEMPO,TEMP1, TEMP2, TEMP3,TEMP4,TEMPS, TEMP6,TEMP7,TEMP8, TEM

P9
REAL(8) XA(20,4),XB(7,4),XC(9,4), TEMP10
DO 30 I=1,4

DO 10 11=-1,1

UJ(11)=UWCK_2(J+I1,1*3-2)
CJ(11)=UWCK_2(J+I1,1¥3)

ONTINUE

DO 1511=-2,2

WI(I11)=UWCK_2(J+I1,1*3-1)
WO(I1)=W_INI(J+I1)

CONTINUE



IF(IMP_TYPE.EQ.1).AND.(BND_TYPE.EQ.1)) THEN

IF(J.EQ.0) THEN
UJ(-1)=-U3(1)
CI(-1)=-CI(1)
UJ(0)=0.0
CJ(0)=0.0
WI(-2)=WI(2)
WI-1)=WI(1)
WJ(0)=0.0
WO(-2)=WO0(2)
WO(-1)=W0(1)

ELSEIF(J.EQ.NX_STEP) THEN
UI(1)=-UJ(-1)
CJ(1)=-CI(-1)
CJ(0)=0.0
WI(2)=WI(-2)
WI(1)=WI(-1)
WJ(0)=0.0
WO0(2)=W0(-2)
WO(1)=W0(-1)

ELSEIF(J.EQ.1) THEN
UJ(-1)=0.0
CJ(-1)=0.0
WI(-2)=WI(0)
WI(-1)=0.0
WO(-2)=W0(0)
WO0(-1)=0.0

ELSEIF(J.EQ.NX_STEP-1) THEN
WI(2)=WJ(0)
WJ(1)=0.0
WO(2)=W0(0)
W0(1)=0.0
ENDIF
ENDIF

IF((IMP_TYPE.EQ. 1).AND.(BND_TYPE.EQ.2)) THEN

IF(J.EQ.0) THEN
UJ(-1)=-UI(1)
CJ(-1)=CJ(1)
WI(-2)=2.0*WJ(0)-WJI(2)
WI(-1)=2.0*WJ(0)-WJ(1)
WO(-2)=2.0*W0(0)-WO0(2)
WO(-1)=2.0*W0(0)-WO0(1)
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ENDIF

IF((IMP_TYPE.EQ.2).AND.(BND_TYPE.EQ.1)) THEN

ELSEIF(J.EQNX_STEP) THEN
CJ(1)=CJ(-1)
WI(2)=2.0*WJ(0)-WJ(-2)
WI(1)=2.0*WI(0)-WI(-1)
WO0(2)=2.0*W0(0)-W0(-2)
WO(1)=2.0¥W0(0)-WO(-1)

ELSEIF(J.EQ.1) THEN
WI(-2)=2.0*WI(-1)-WJ(0)
WO(-2)=2.0*W0(-1)-W0(0)

ELSEIF(J.EQ.NX_STEP-1) THEN
WI(2)=2.0WJ(1)-WJ(0)
WO0(2)=2.0*W0(1)-WO0(0)

ENDIF

IF(J.EQ.0) THEN
UI(-1)=-UI(1)
CJ(-1)=-CJ(1)
UJ(0)=0.0
CJ(0)=0.0
WI(-2)=WI(2)
WI(-1)=WI(1)
WJ(0)=0.0
WO(-2)=W0(2)
WO(-1)=Wo(1)

ELSEIF(J.EQ.NX_STEP) THEN
CJ(1)=-CJ(-1)
CJ(0)=0.0
WI(2)=WI(-2)
WI(1)=WI(-1)
WO(2)=W0(-2)
WO(1)=W0(-1)

ELSEIF(J.EQ.1) THEN
UJ(-1)=0.0
CJ(-1)=0.0
WI(-2)=WI(0)
WJ(-1)=0.0
WO(-2)=W0(0)
WO(-1)=0.0

ELSEIF(J.EQ.NX_STEP-1) THEN
WI(2)=WI(0)
WJ(1)=0.0
WO(2)=W0(0)
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WO0(1)=0.0
ENDIF
ENDIF
IF(IMP_TYPE.EQ.2).AND.(BND_TYPE.EQ.2)) THEN
IF(J.EQ.0) THEN
UX(-1)=-UI(1)
CJ(-1)=CI(1)
WI(-2)=2.0*WJ(0)-WJ(2)
WI(-1)=2.0¥WJ(0)-WJ(1)
WO(-2)=2.0¥W0(0)-W0(2)
WO(-1)=2.0*W0(0)-WO(1)
ELSEIF(J.EQ.NX_STEP) THEN
CJ(1)=CI(-1)
WI(2)=2.0WJ(0)-WJ(-2)
WI(1)=2.0*WJ(0)-WJ(-1)
W0(2)=2.0*W0(0)-W0(-2)
WO(1)=2.0*W0(0)-WO(-1)
ELSEIF(J.EQ.1) THEN
WI(-2)=2.0¥WI(-1)-WJ(0)
WO(-2)=2.0*W0(-1)-W0(0)
ELSEIF(J.EQ.NX_STEP-1) THEN
WI(2)=2.0*WJ(1)-WJ(0)
W0(2)=2.0*W0(1)-W0(0)
ENDIF
ENDIF
IF (K.EQ.1) THEN
UK_1=UWCK_2(J,1¥3-2)
WK_1=UWCK_2(J,1*3-1)
CK_1=UWCK_2(J,1*3)
ELSE
UK_1=UWCK_1(J,*3-2)
WK_1=UWCK_1(J,I*3-1)
CK_1=UWCK_1(J,I*3)
ENDIF
XA(1,D=(UJ(1)-UX(-1))/(2.0*GX)
XA(2,1)=(UJ(1)-2*UJ(0)+UJ(-1))/(GX*GX)
XA, D=(WI(1)-WI(-1))/(2.0*GX)
XA(4,1)=(WI(1)-2*WI(0)+WI(-1))(GX*GX)
XA(5,D=(WO(1)-WO(-1))/(2.0¥*GX)
XA(6.1)=(WO0(1)-2*WO(0)+WO(-1))/(GX*GX)
XA(7,)=(CJ(1)-CI(-1))/(2.0*GX)
XA(8,)=(CJ(1)-2*CJ(0)y+CI(-1))(GX*GX)
XA(9,1)=-2.0*UJ(0)+UK_1
XA(10,1)=-2.0*WJ(0)+WK_1
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XA(11,1)=-2.0%CJ(0)+CK_1
XA(12,))=CJ(0)
XA(13,)=(WI(2)-2*WI(1+2*WI(-1)-WI(-2))/(2*GX**3)
XA(14,1)=(WO0(2)-2*WO0(1)+2*WO(-1)-WO(-2))/(2*GX**3)
XA(15,1)=4.0¥E(1,1)/(3.0*A(1,1)*A_LEN*H_THK**2)
XA(16,1)=4.0*G(2,2)/(A(1,1)*H_THK**2)
XA(17,1)=4.0¥H(1,1)/(3.0*A_LEN*H_THK**2)
XA(18,1)=A(1,1)*DI2/DI1
XA(19,)=A_LEN*(F(2,2)-4.0*G(2,2)/H_THK**2)
XA(20,1)=4.0*G(2,2)/(H_THK**2)
XB(1,))=XA(2,)+XA3,)*XA(4,])-XA(5,)*XA(6,])
XB(2,)=XA(8,)+XA(13,1)-XA(14,])

XB(3,D)=-XA(12,)+XA(5.])

XB(4,])=-XA(7,])+XA(6,1)

XB(5,1)=XA(7,))+XA(4,D)-XA(6,])
XB(6,1)=XA(12,))+XA(3.,)-XA(5,])
XB(7,1)=XA(1,1)+0.5*XA(3,1)*XA(3,])-0.5*XA(5,])*XA(5,])
XC(1,h=B(1,1)/(A(1,1)*A_LEN)

XC(2,D)=F(2,2)/A(1,1)

XC(3,])=B(1,1)*A_LEN

XC(4,1)=D(1,1)

XC(5,1)=F(2,2)*A_LEN**2

XC(6,)=XA(20,))*A_LEN**2
XC(7,)=((UJ(0)-UK_1)/HT)*CL*SQRT(A(1,1)/DI1)*A_LEN/A(1,1)
XC(8,1)=((WJ(0)-WK_1)Y/HT)*CT*SQRT(A(1,1)/DI1)*A_LEN/A(1,1)
XC(9,)=((CJ(0)-CK_1)/HT)*CR*A_LEN/(SQRT(A(1,1)/DI1)*DI2)
CONTINUE

END

SUBROUTINE BND _INI
INCLUDE 'COMMON.INC'
IF (IMP_TYPE.EQ.1) THEN
V_END=VEL_0
SELECT CASE (BND_TYPE)
CASE (1)
DO 1111=1,12
UWC(0,1)=0.0
DO 112 I=1,NX_STEP
DO 112 J=0,3
UWC(I,3*J+1)=0.0
UWC(L,3*J+2)=W_INKI)
IF(LEQ.NX_STEP) THEN
UWC(I,3*J+3)=0.0
ELSE
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UWC(I,3*]+3)=0.0
ENDIF
112 CONTINUE
CASE (2)
DO 122 [=0,NX_STEP
DO 122 J=0,3
UWC(L,3*J+1)=0.0
UWC(IL,3*J+2)=W_INI(I)
IF(LEQ.0) THEN
UWC(I,3*J+3)=(W_INI(I)-W_INI(I+1))/GX
ELSEIF(LEQ.NX_STEP) THEN
UWC(I,3*J+3)=(W_INI(I-1)-W_INI(I))/GX
ELSE
UWC(I,3*J4+3)=(W_INI(I-1)-W_INI(I+1))/(2*GX)
ENDIF
122 CONTINUE
END SELECT
ELSEIF (IMP_TYPE.EQ.2) THEN
SELECT CASE (BND _TYPE)
CASE (1)
DO 211 I=1,12
211 UWC(0,1)=0.0
DO 212 I=1,NX_STEP
DO 212 J=0,3
UWC(1,3*J+1)=0.0
UWC(L,3*J+2)=W_INI(I)
IF(LEQ.NX_STEP) THEN
UWC(1,3*J+3)=0.0
ELSE
UWC(L,3*J+3)=(W_INI(I-1)-W_INI(I+1))/(2*GX)
ENDIF
212 CONTINUE
CASE (2)
DO 222 I=0,NX_STEP
DO 222 J=0,3
UWC(1,3*J+1)=0.0
UWC(L3*J+2)=W_INI(I)
IF(LEQ.0) THEN
UWC(I,3*J+3)=(W_INI(D)-W_INI(I+1))/GX
ELSEIF(LEQ.NX_STEP) THEN
UWC(L,3*J+3)=(W_INI(I-1)-W_INI(I))/GX
ELSE
UWC(IL,3*J+3)=(W_INK(I-1)-W_INI(I+1))/(2*GX)
ENDIF
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CONTINUE
END SELECT

ELSEIF (IMP_TYPE.EQ.3) THEN
SELECT CASE (BND_TYPE)
CASE (1)

CASE ()

CASE (3)

CASE (4)

CASE (5)

END SELECT

ENDIF

END

SUBROUTINE NON_DIMENSION

INCLUDE 'COMMON.INC'
REAL(8) C
C=SQRT(A(1,1)/DI1)
GX=1.0/NX_STEP

HT=T END/NT_STEP
HT=C*HT/A_LEN
W_INI=W_INIA_LEN
VEL_0=VEL,_0/C

END

SUBROUTINE LEFTENDU(IK)
INCLUDE 'COMMONL.INC

REAL(8) TEMP1,TEMP2, TEMP3

SELECT CASE (IMP_TYPE)

CASE (1)

IF (K.EQ.1) THEN
TEMP1=V_END*HT

TEMP2=0.5*HT*B_WID*DI1*A_LEN/MASS
UWC(NX_STEP,I*3-2)=TEMP1*(1.0-TEMP2)

ELSE
IF(ICONTACT.EQ.1) THEN

TEMP1=DI1*A_LEN*B_WID*HT*HT/(MASS*GX)
TEMP2=-UWCK_2(NX_STEP,I*3-2)+UWCK_2(NX_STEP-1,1*3-2)

IF(TEMP2.GT.0.0) THEN

191

TEMP3=2.0¥UWCK_2(NX_STEP,[*3-2)-UWCK_1(NX_STEP,I¥3-2)

UWCNX_STEP,1*3-2)=TEMP3+TEMP1*TEMP2

ELSE

ICONTACT=0
ENDIF
ENDIF
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IF(ICONTACT.EQ.0) THEN
UWC(NX_STEP+1,1*3-2)=UWC(NX_STEP-1,1*3-2)
UWC(NX_STEP,1*3-2)=UWC(NX_STEP-1,1*3-2)

ENDIF

ENDIF

CASE (2)

ALL FORCE_TIME(K,FORCE)
TEMP1=2.0%(FORCE/(A(1,1)*B_WID))*GX
UWC(NX_STEP+1,1*¥3-2)=TEMP1+UWC(NX_STEP-1,1*3-2)
END SELECT
END
SUBROUTINE FORCE_TIME(ITSTEP,FORC)
INCLUDE 'COMMON.INC'

REAL(8) STIFF,PL,OMEGA,T,DELTA_T,TIME,FORC,C

ELECT CASE (IFORCE)

CASE (1)

DELTA_T=T END/NT_STEP
TIME=ITSTEP*DELTA_T
IF(TIME.GE.F_DUR) THEN
FORC=0.0
ELSE
FORC=F MAG
ENDIF
CASE (2)
PI=3.141592654
STIFF=A(1,1)*B_WID/A_LEN
OMEGA=SQRT(STIFF/MASS)
T=PI/OMEGA
DELTA_T=T END/NT _STEP
TIME=ITSTEP*DELTA_T
IF(TIME.GE.T) THEN
FORC=0.0
ELSE
C=SQRT(A(1,1)/DI1)
X=((VEL_0*C)/OMEGA)*SIN(OMEGA*TIME)
FORC=STIFF*X
ENDIF
END SELECT
END

REAL(8) A(3,3),B(3,3),D(3,3),E(3,3),F(2,2),G(2,2),H(3,3),DI1,DI2
REAL(8) FORCE,FORCE_T(0:20000),F TIME(0:20000),F MAG, F_DUR
REAL(8) VEL(0:20),V_TIME(0:20)
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REAL(8) UWC(-2:2501,1:12),UWCK_1(-2:2501,1:12),UWCK_2(-
2:2501,1:12)
REAL(8) V_END,UMK_2(4),W_INI(-2:2501)
REAL(S)
L_ANG(0:48),L_ MAT(50),MAT(0:48,10),MASS BETA,X_STR(0:20)
& INTEGER, BND TYPE,IMP_TYPE,NX OUT _STEP,NT OUT_STEP,
& IFORCE,ICONTACT
REAL(8) A_LEN,B_WID,H_THK,HZ(48),VEL 0
REAL(8) CIL,CIT,CIR,CL,CT,CR
COMMON/ELAS1/A,B,D,E F,G,H,DI1,DI2
COMMON/IMPLOAD/FORCE,FORCE_T,F_TIME,VEL,V_TIME,F_MAG,
& F_DUR
COMMON/DVA/UWC,UWCK_1,UWCK_2,V_END,UMK_2,W_INI
COMMON/STACK/L_ANG,L MAT,MAT MASS,BETA,X_STR
COMMON/BNDINI/BND _TYPE,IMP_TYPE, IFORCE,JCONTACT
COMMON/OUTCTL/NX_OUT _STEP,NT OUT_STEP,N_STR
COMMON/ANA/NX_STEP,NT STEP,T END,GX,HT
COMMON/GEO/MM,NN,A_LEN,B_ WID,H_THK,HZ,VEL _O,N_FSTEPS
COMMON/FILE/IFINP,IFDIS,IFVEL,IFACC,IFSTS,IFSTR,IFCMP,
& IFOUT
COMMON/FILE2/IFFU1,IFFW 1,IFFC1,IFFU2,IFFW2,IFFC2
COMMON/FILE3/IFHU,IFHW 1, IFHC1,IFHU2,IFHW2,IFHC?2
COMMON/FILE4/IFFC,IFHC,IPOS
COMMON/OTHERSO01/N_STACK,Q0,LAYERS
COMMON/DAMPING/CIL,CIT,CIR,CL,CT,CR

SUBROUTINE SOLVE
INCLUDE 'COMMON.INC'

INTEGER status, INDEX_DLM

REAL(8) XA(19),XB(7),XC(3),Q(3,3),QQ(2,2),GRF(4)
REAL(8) DGROTHB,DGROTHE,DGROTHT
NX=INT((NX_STEP-1)/NX_OUT_STEP)+1
NT=INT((NT_STEP-1)/NT OUT _STEP)+1
NOUT=4*(LAYERS+1)

NOUTF=2*LAYERS-1

TEMP_W=0.0

UWC=0.0

UWCK_1=0.0

UWCK_2=0.0

UWC_S=0.0

UWCK_1_S=0.0

UWCK_2_$8=0.0

UJK_1=0.0

GX=A_LEN/NX_STEP
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HT=T END/NT_STEP

H2=HT**2

ICONTACT=1

IPF=1

IF(MOD(LAYERS,?2).EQ.0) THEN
LAYERS HALF=LAYERS/2

ELSE

LAYERS HALF=0

ENDIF

CALL BND_INI

N=NT_STEP

M=NX_STEP

IB=0

DO 10 JJ=0,NX-1

DO 101=1,3

IF(LEQ.2) THEN

UWC_OUT(@I,D=UWC{I*NX_OUT _STEP,I)-W_INI(JJ*NX_OUT_STEP)
UWC_OUT_S(JJ,)=UWC(II*NX_OUT_STEP,])-

W_INI(JJ*NX_OUT STEP)

ELSE

UWC_OUT(II,)=UWC(II*NX_OUT_STEP,])

UWC_OUT_S(IJ,)=UWC(IJ*NX_OUT STEP,])

ENDIF

CONTINUE

DO 15 1=1,3

UWC_OUT(NX,)<UWC(NX_STEP,I)

UWC_OUT_S(NX,)=UWC_S(NX_STEP,])

J DLM_B=INT(X_DLM/GX)+1

J DLM_L=INT(XL DLM/GX)+1

J DLM_E=] DLM B+J DLM L

J DLM Bl=] DLM B

J DLM E1=] DLM E

WRITE(IFDLM,*)' CTIME J DLM B J DLM_EJ DLM L'

CALL WRITETITLES()

DO 22K=1,N

UMK_2(1)=UWCK_1(NX_STEP,1)

UWCK_1=UWCK 2

UWCK_2=UWC

UWCK_1_S=UWCK 2 S

UWCK_2_S=UWC_S

RATIOB=0.0

RATIOE=0.0

INDEX_DLM=0

DO 20 J=IBM
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IF(J.GE.J_DLM_E) THEN
CALL X_ABC(J,K,XA,XB,XC,1)
CALL UWCM(J,K, XA, XB,XC,1)
CALL UWCSM(J)
ELSEIF(J.LE.J DLM_B) THEN
CALL X_ABC(J,K,XA,XB,XC,4)
CALL UWCM(J,K,XA,XB,XC,4)
CALL UWCSM(J)
ELSE
CALL X_ABC(J,K,XA,XB,XC,2)
CALL UWCM(J,K,XA,XB,XC,2)
CALL X_ABC(J,K,XA,XB,XC,3)
CALL UWCS(J.K,XA,XB,XC,3)
IF(UWC_S(J,2).GT.UWC(J,2)) THEN
DLT=UWC_S(J,2)-UWC(,2)
DLTS=DLT*DM(1,1)(DS(1,1)+*DM(1,1))
DLTM=DLT*DS(1,1)/(DS(1,1)+DM(1,1))
UWC_S(J,2)=UWC_S(J,2)-DLTS
UWC(J,2)=UWC(J,2)+DLTM
ENDIF
ENDIF
IF(J.EQ.0) THEN
UWC(J,1)=0.0
UWC_S(J,1)=0.0
ENDIF
IF((J.EQ.M).OR.(J.EQ.0)) THEN
UWC(J,2)=0.0
UWC_S(J,2)=0.0
ENDIF
IF (J.EQ.M) THEN
CALL LEFTENDU(K)
ENDIF
CONTINUE
CALL DLM_STRERR(GRF)
RATIOB=(GRF(1)/GC1)**2+(GRF(2)/GC2)**2
RATIOE=(GRF(3)/GC1)**2-+(GRF(4)/GC2)**2
IF(RATIOB.GE.1.0) THEN
J DLM_B=J DLM B-1
J DLM L=] DLM L+1
ENDIF
IF(RATIOE.GE.1.0) THEN
J DLM_E=J DLM_E+1
] DLM _L=J DLM L+1
ENDIF
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IF((RATIOB.GE.1.0).0R.(RATIOE.GE.1.0)) THEN
INDEX_DLM=1
ENDIF
CTIME=K*HT
DGROTHB=(J DLM _B1-J] DLM_B)*GX
DGROTHE=(J DLM_E-J DLM_E1)*GX
DGROTHT=DGROTHE+DGROTHB
IF((MOD(K,10).EQ.0).OR.(INDEX_DLM.EQ.1)) THEN
WRITE(IFVEL,23) GRF(1),GRF(2),GRF(3),GRF(4)
WRITE(IFDLM,21) CTIME, ] DLM B, J DLM_E,J DLM L,
RATIOB,RATIOE,
& DGROTHB,DGROTHE,DGROTHT
21 FORMAT(E14.5E3, 318, SF14.7)
ENDIF
IF(INDEX_DLM.EQ.1) THEN
CALL WRTDLMFM(K)
ENDIF
IF (MOD(K,NT_OUT STEP).EQ.0) THEN
CALL WRTOUT(K,M,NX,NT)
ENDIF
22 CONTINUE
23 FORMAT(4E14.5E3)
DO =125
CLOSE(I)
ENDDO
END

SUBROUTINE X_ABC(J,K,XA,XB,XC,IDLM)
INCLUDE 'COMMON.INC'
REAL(8) UJ(-1:1),CJ(-1:1),WJ(-2:2),W0(-2:2),UK_1,WK_1,CK_1
REAL(8) XA(17),XB(7),XC(3)
REAL(8) TE,TF,TG,TH,TH_THK
XA=0.0
XB=0.0
XC=0.0
CALL DAMP_MS(IDLM)
SELECT CASE (IDLM)
CASE (1)
DO 10 11=-1,1
UJ(I11)=UWCK_2(J+I1,1)
CI(I1)=UWCK_2(J+11,3)
10 CONTINUE
DO 15 11=-2.2
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WI(I11)=UWCK_2(J+11,2)
WO(I1)=W_INI(J+1)
15 CONTINUE
IF(J.EQ.J DLM_E+1) THEN
WI(-2)=UWCK_2(J-2,2)*DM(1,1)/(DM(1,1)+DS(1,1))
& +UWCK_2_S(J-2,2)*DS(1,1)/(DM(1,1)+DS(1,1))
ELSEIF(J.EQ.J DLM_E) THEN
UJ(-1)=UWCK_2(J-1,1)* AM(1,1)/(AM(1,1)+AS(1,1))
+UWCK_2_S(J-1,1)*AS(1,1)/(AM(1,1)+AS(1,1))
CJ(-1)=UWCK_2(J-1,3)*DIM2/(DIM2+DIS2)
+UWCK_2_S(J-1,3)*DIS2/(DIM2+DIS2)
WI(-1)=UWCK_2(J-1,2)*DM(1,1)/(DM(1,1}+DS(1,1))
+UWCK_2_S(J-1,2)*DS(1,1)(DM(1,1)+DS(1,1))
WI(-2)=UWCK_2(J-2,2)*DM(1,1)(DM(1,1)+DS(1,1))
+UWCK_2_S(J-2,2)*DS(1,1)/(DM(1,1)+DS(1,1))
ENDIF
TE=E(1,1)
TF=F(2,2)
TG=G(2,2)
TH=H(1,1)
TH_THK=H_ THK
CASE (2)
DO 20 [1=-1,1
UJ(I1)=UWCK_2(J+I1,1)
CJ(I1=UWCK_2(J+11,3)
20 CONTINUE
DO 25 11=-2,2
WI(I1)=UWCK_2(J+11,2)
WO(ID=W _INIJ+I1)
25 CONTINUE

IS S o

TE=EM(1,1)
TF=FM(2,2)
TG=GM(2,2)
TH=HM(1,1)
TH_THK=H THK*(1.0-LAY DLM/LAYERS)
CASE (3)
DO 30 I1=-1,1
UJ(I1)=UWCK_2_S(J+I1,1)
CJ(11)=UWCK_2_S(J+I1,3)
30 CONTINUE
DO 35 11=-2,2
WI(I1)=UWCK_2_S(J+I1,2)
WO(I1)=W_INI(J+T1)
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40

45

S R

CONTINUE
TE=ES(1,1)
TF=FS(2,2)
TG=GS(2,2)
TH=HS(1,1)
TH THK=H THK*LAY DLM/LAYERS
CASE (4)
DO 40 I1=-1,1
UJ(11)=UWCK_2(J+1,1)
CI(I1)=UWCK_2(J+I1,3)
CONTINUE
DO 45 11=-2,2
WI(I1)=UWCK_2(J+11,2)
WO(I1)=W_INIQJ+I1)
CONTINUE
IF(J.EQ.J DLM_B-1) THEN
WI(2)=UWCK_2(J+2,2)*DM(1,1)/(DM(1,1)+DS(1,1))
+UWCK_2_S(J+2,2)*DS(1,1)/(DM(1,1)+DS(1,1))
ELSEIF(J.EQ.J DLM_B) THEN
UJ(1)=UWCK_2(+1,1)*AM(1, )/(AM(1,1)+AS(1,1))
+UWCK_2_S(J+1,1)*AS(1,1)/(AM(1,1)+AS(1,1))
CJ(1)=UWCK_2(J+1,3)*DIM2/(DIM2+DIS2)
+UWCK_2_S(J+1,3)*DIS2/(DIM2+DIS2)
WI(1)=UWCK_2(J+1,2)*DM(1,1)/(DM(1,1)+DS(1,1))
+UWCK_2_S(J+1,2)*DS(1,1)/(DM(1,1)+DS(1,1))
WI(2)=UWCK_2(J+2,2)*DM(1,1)/(DM(1,1)+DS(1,1))
+UWCK_2_S(J+2,2)*DS(1,1)/(DM(1,1)+DS(1,1))
ENDIF
TE=E(1,1)
TF=F(2,2)
TG=G(2,2)
TH=H(1,1)
TH THK=H THK
END SELECT
IF(J.EQ.0) THEN
UJ(-1)=-UJ(1)
CJ(-1)=-CJ(1)
UJ(0)=0.0
CJ(0)=0.0
WI(-2)=WI(2)
WI(-D=WI(1)
WJ(0)=0.0
WO(-2)=W0(2)
WO(-1)=Wo(1)
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ELSEIF(J.EQ.NX_STEP) THEN
UI(1)=-UI(-1)
CJ(1)=-CJ(-1)

CJ(0)=0.0
WI(2)=WI(-2)
WI(1)=WI(-1)
WJ(0)=0.0
WO(2)=W0(-2)
WO(1)=WO0(-1)

ELSEIF(J.EQ.1) THEN
UJ(-1)=0.0
CJ(-1)=0.0

WI(-2)=WJ3(0)
WI(-1)=0.0
WO(-2)=W0(0)
WO0(-1)=0.0
ELSEIF(J.EQ.NX_STEP-1) THEN
WI(2)=WI(0)
WI(1)=0.0
WO(2)=W0(0)
W0(1)=0.0
ENDIF
IF (K.EQ.1) THEN
UK_1=UWCK_2(J,1)
WK_1=UWCK_2(J,2)
CK_1=UWCK_2(J,3)

ELSEIF(IDLM.EQ.3) THEN
UK_1=UWCK_1_S(,1)
WK_1=UWCK_1_S(J,2)
CK_1=UWCK_1_S(J,3)

ELSE
UK_1=UWCK_1(J,1)
WK_1=UWCK_1(J,2)
CK_1=UWCK_1(J,3)

ENDIF

XA(1)=(UJ(1)-UJ(-1))/(2.0*GX)

XA(2)=(UJ(1)-2*UJ(0)+UJ(-1))/(GX*GX)

XA3)=(WI(1)-WJ(-1))/(2.0*GX)

XAA)=(WI(1)-2*WI(0)+WI(-1))/(GX*GX)

XA(5)=(W0(1)-WO0(-1))/(2.0*GX)

XA(6)=(WO0(1)-2*W0(0)+WO0(-1))/ (GX*GX)

XA(7)=(CJ(1)-CJ(-1))/(2.0*GX)

XA(8)=(CJ(1)-2*CI(0)+CI(-(GX*GX)

XA(9)=-2.0*UJ(0)+UK _1
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XA(10)=-2.0*WJ(0)+WK_1
XA(11)=-2.0%CJ(0)+CK_1

XA(12)=CJ(0)
XA(13)=(WJ(2)-2¥WI(1)+2*WI(-1)-WI(-2))/(2*GX**3)
XA(14)=(W0(2)-2*WO0(1)+2*WO0(-1)-WO(-2))/(2*GX**3)
XA(15)=4.0*BETA*TE/(3.0*TH_THK**2)
XA(16)=TF-4.0*TG*BETA/TH_THK
XA(17)=4.0*TH*BETA/(3.0*TH_THK**2)
XB(1)=XA(2)+XA(3)*XA(4)-XA(5)*XA(6)
XB(2)=XA(8)+XA(13)-XA(14)

XB(3)=-XA(12)+XA(5)

XB(4)=-XA(7)+XA(6)

XB(5)=XA(7)+XA(4)-XA(6)
XB(6)=XA(12)+XA(3)-XA(5)
XB(7)=XA(1)+0.5*XA(3)*XA(3)-0.5*XA(5)*XA(5)
XC(1)=((UJ(0)-UK_1)/HT)*CL
XC(2)=((WJ(0)-WK_1Y/HT)*CT
XC(3)=((CJ(0)-CK_1)/HT)*CR

END

SUBROUTINE UWCM(J.K,XA,XB,XC,IDLM)
INCLUDE 'COMMON.INC"
REAL(8) XA(19),XB(7),XC(3)
SELECT CASE (IDLM)
CASE (1)

TA=A(1,1)

TB=B(1,1)

TD=D(1,1)

TDI1=DIl

TDI2=DI2
CASE (4)

TA=A(1,1)
TB=B(1,1)
TD=D(1,1)
TDI1=DI1
TDI2=DI2

CASE (2)
TA=AM(1,1)
TB=BM(],1)
TD=DM(1,1)
TDI1=DIM1
TDI2=DIM2

END SELECT
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UWC(J, 1)=((TA*XB(1+TB*XA(8)-XA(15)*XB(2)-XC(1))/TDI1)*H2-XA(9)
UWC(I,2)=((TA*XB(1)+TB*XA(8)-XA(15)*XB(2))*XB(3)
+HTA*XB(7)+TB*XA(7)-XA(15)*XB(5))*XB(4)
+XA(16)*XB(5)-XC(2))/TDI1)*H2-XA(10)
UWC(J,3)=((TB*XB(1 +TD*XA(8)-XA(17)*XB(2)-XA(16)*XB(6)-XC(3))
/TDI2)*H2-XA(11)
END

SUBROUTINE UWCS(J,K,XA,XB,XC,IDLM)
INCLUDE 'COMMON.INC'
REAL(8) XA(19),XB(7),XC(3)
SELECT CASE (IDLM)
CASE (3)
TA=AS(1,1)
TB=BS(1,1)
TD=DS(1,1)
TDI1=DIS1
TDI2=DIS2
END SELECT
UWC_S(J,1)=((TA*XB(1)+TB*XA(8)-XA(15)*XB(2)-XC(1))/TDI1)*H2-XA(9)
UWC_S(J,2)=(((TA*XB(1)+TB*XA(8)-XA(15)*XB(2))*XB(3)
+HTA*XB(7)+TB*XA(7)-XA(15)*XB(5))*XB(4)
+XA(16)*XB(5)-XC(2))/TDI1)*H2-XA(10)
UWC_S(J,3)=((TB*XB(1)+TD*XA(8)-XA(17)*XB(2)-XA(16)*XB(6)-XC(3))
/TDI2)*H2-XA(11)
END
SUBROUTINE UWCSM(J)
INCLUDE 'COMMON.INC'
INTEGER J1
DO JI=1,3
UWC_S(J,J)=UWC(J,JT)
ENDDO
END
SUBROUTINE WRTOUT(K,M,NX,NT)
INCLUDE 'COMMON.INC'
INTEGER JJITEMP
DO JJ=0,NX-1
J=JJ*NX_OUT STEP
UWC_OUT(JJ,1)=UWC(J,1)
UWC_OUT(JJ,2)=(UWC(J,2)-W_INI(J))
UWC_OUT(JJ,3)=UWC(J,3)
UWC_OUT_S(JJ,1)=UWC_S(J,1)
UWC_OUT_S(J1,2)=(UWC_S(J,2)-W_INI(J))
UWC_OUT _S(J7,3)=UWC_S(J,3)
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ENDDO
=M

UWC_OUT(NX,1)=UWC(J,1)
UWC_OUT(NX,2)=(UWC(,2)-W_INI(J))
UWC_OUT(NX,3)=UWC(J,3)

UWC_OUT_S(NX,1)=UWC_S(J,1)
UWC_OUT_S(NX,2)=(UWC_S(J,2)-W_INI(J))
UWC_OUT_S(NX,3)=UWC S(J.3)
WRITE(IFHU1,30) (UWC_OUT(J],1), JJ=0,NX)
WRITE(IFHW1,30) (UWC_OUT(JJ,2), JJ=0,NX)
WRITE(IFHC1,30) (UWC_OUT(JJ,3), JJ=0,NX)
WRITE(IFHU2,30) (UWC_OUT_S(JJ,1), JJ=0,NX)
WRITE(IFHW2,30) (UWC_OUT_S(JJ,2), JJ=0,NX)
WRITE(IFHC2,30) (UWC_OUT_S(JJ,3), JJ=0,NX)
30  FORMAT(201E12.3E3)
END

SUBROUTINE WRTDLMFM(K)

INCLUDE 'COMMON.INC'

REAL(8) CTIME

INTEGER JDLM

CTIME=K*HT

DO JDLM=0,NX_STEP
TEMP_W(JDLM)=UWC(JDLM,2)-W_INI(JDLM)

ENDDO

WRITE(IFDDM,21) CTIME, (TEMP_W(JDLM),JDLM=0,NX_STEP)

DO JDLM=0,NX_STEP
TEMP_W(JDLM)=UWC_S(JDLM,2)-W_INI(JDLM)

ENDDO

WRITE(IFDDM,21) CTIME, (TEMP_W(JDLM),JDLM=0,NX_STEP)

21  FORMAT(E14.5E3, 201E12.3E3)
END

SUBROUTINE WRITETITLES()
INCLUDE 'COMMONL.INC'
WRITE(IFSTR,*) 'MicroStrain OutPut'
WRITE(IFSTS,*) 'Stress Output (MPa)'
WRITE(IFSTR,46)
46 FORMAT(20X,'First Order Results Shear Deformation’',
&  20X,'Higher Order Shear Deformation Results')
WRITE(IFSTR,47)
47 FORMAT(20X,'Axial Strain of each layer’,
&  20X,'Shear Strain of Each layer',



56

57

&
&

&

&
&
&

E

20X,'Axial Strain of each layer’,
20X,'Shear Strain of Each layer')
WRITE(IFSTS,56)
FORMAT(20X,'First Order Results Shear Deformation’,
20X,'Higher Order Shear Deformation Results')
WRITE(IFSTS,57)
FORMAT(20X,'Axial Stress of each layer’,
20X,'Shear Stress of Each layer’,
20X,'Axial Stress of each layer',
20X,'Shear Stress of Each layer')
ND

SUBROUTINE DAMP_MS(IDLM)
INCLUDE 'COMMON.INC'
REAL(8) OMEGA T,OMEGA L,TH THK,TA_LEN,TD,TA,TDII
SELECT CASE (IDLM)
CASE (1)
TH_THK=H THK
TA_LEN=A_LEN*(1.0-] DLM_E/NX_STEP)
TD=D(1,1)
TA=A(1,1)
TDI1=DI!
CIT1=CIT
CIL1=CIL
CASE (2)
TH_THK=H_THK*(1.0-LAY DLM/LAYERS)
TA_LEN=A LEN*] DLM L/NX_STEP
TD=DM(1,1)
TA=AM(1,1)
TDI1=DIM1
CIT1=CIT/DR
CIL1=CIL/DR
CASE (3)
TH_THK=H_THK*LAY DLM/LAYERS
TA_LEN=A_LEN*J DLM_L/NX_STEP
TD=DS(1,1)
TA=AS(1,1)
TDI1=DIS1
CIT1=CIT/DR
CIL1=CIL/DR

CASE (4)
TH_THK=H_THK
TA_LEN=A LEN*J DLM B/NX_STEP
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TD=D(1,1)
TA=A(1,1)
TDI1=DII
CIT1=CIT
CIL1=CIL
END SELECT
OMEGA_T=4.0*3.14159**2*SQRT((TD)/(MAT(1,7)*TH_THK))/TA_LEN**2
CT=2.0*CIT1*OMEGA_T*TDI1
OMEGA_L=SQRT(2.0*TA/(TH_THK*MAT(1,7)))/TA_LEN
CL=2.0*CIL1*OMEGA_L*TDII
CR=0.5*CT
END

SUBROUTINE DLM_STRERR(GRF)

INCLUDE 'COMMON.INC'

REAL(8) GRF(4),FMLFMII

CALL MODE_SEPARATE(FMIFMII)

J=] DLM_B

FI=DS(1,1)/(DS(1,1)+DM(1,1))

FIP=2.0*AS(1,)/(AS(1,1)+AM(1,1))

FIV=2.0*FS(1,1)/(FS(1,1)+FM(1,1))

FIW=2.0*DS(1,1)ADS(1,1)+DM(1,1))

FFI=25.0

TEMPO1=(UWC(J,1)-UWC(J-2,1))/(2.0*GX)

TEMP02=(UWC(J,2)-UWC(J-2,2))/(2.0*GX)

TEMP03=(UWC(J,3)-UWC(J-2,3))/(2.0*GX)

TEMP04=(W_INI(J)-W_INI(J-2))/(2.0*GX)

TEMPOS=(UWC(J,2)-2¥*UWC(J-1,2)+*UWC(I-2,2))(GX*GX)

TEMPO6=(W_INI(J)-2*W_INI(J-1)+W_INI(J-2))(GX*GX)

TH THK=H THK*LAY DLM/LAYERS

P1=A(1,1)*(TEMP01+0.5*TEMP02**2-0.5*TEMP04**2)+B(1,1)*TEMP03
& -4.0%E(1,1)*BETA*(TEMP03+TEMPO05-TEMPO6)/(3.0*H_THK**2)

V1=(F(1,1)-4.0*G(1,1*BETA/H_THK**2)*(UWC(J-1,3)+TEMP02-TEMP04)

W1=B(1,1)*(TEMPO1+0.5*TEMP02**2-0.5*TEMP04**2)+D(1,1)*TEMP03
& -4.0%H(1,1)*BETA*(TEMPO3+TEMPO0S-TEMPO06)/(3.0*H_THK**2)

TH THK1=0.5*H_THK-H THK*LAY DLM/LAYERS

P1=P1*FIP

V1=VI*FIV

W1=W1*FIW

W1=W1+P1*TH_THK l/FFI

TEMPO1=(UWC(J,1)-UWC(-1,1))/(1.0*GX)

TEMPO02=(UWC(J,2)-UWC(J-1,2))/(1.0*GX)

TEMPO3=(UWC(J,3)-UWC(J-1,3))/(1.0*GX)

TEMPO04=(W_INI(J)-W_INI(J-1))/(1.0*GX)



TEMP15=(UWC(J+1,2)-2*UWC(J,2)*UWC(J-1,2))(GX*GX)
TEMP25=(UWC_S(J+1,2)-2*UWC_S(J,2)+UWC_S(J-1,2))/(GX*GX)
TEMPO5=FI*TEMP15+(1.0-FI)*TEMP25
TEMPO6=(W_INI(J+1)-2*W_INI(J)+W_INI(J-1))(GX*GX)

P2=A(1,1)*(TEMP01+0.5*TEMP02**2-0.5*TEMP04**2)+B(1,1)*TEMP03
& -4.0*E(1,1)*BETA*(TEMP03+TEMPOS5-TEMP06)/(3.0*H_THK**2)
V2=(F(1,1)-4.0*G(1,1)*BETA/H_THK**2)*(UWC(J,3)+TEMP02-TEMP04)
W2=B(1,1)*(TEMP01+0.5*TEMP02**2-0.5*TEMP04**2)+D(1,1)*TEMP03
& -4.0*H(1,1)*BETA*(TEMP03+TEMPO05-TEMP06)/(3.0*H_THK**2)
P2=P2*FIP
V2=V2*FIV
W2=W2*FIW
W2=W2+P2*TH_THK I/FFI
U3=UWC_S(+1,1)-UWC(+1,1)
U4=UWC_S(J+2,1)-UWC(J+2,1)
W3=UWC_S(J+1,2)-UWC(J+1,2)
W4=UWC_S(J+2,2)-UWC(J+2,2)
C31=FI*UWC_S(J+1,3)+(1.0-FI)*UWC(J+1,3)-UWC(J,3)
C41=FI*UWC_S(J+2,3)+(1.0-FI)*UWC(J+2,3)
& -FI*UWC_S(J+1,3)-(1.0-F*UWC(J+1,3)
C3=UWC_S(J+1,3)-UWC(J+1,3)
C4=UWC_S(J+2,3)-UWC(J+2,3)
GRF(1)=(abs(V1*W3)+abs(V2*W4)+abs(FMI*(W1*C3+W2*C4)))*0.25/GX
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GRF(2)=(abs(P1*U3)+abs(P2*U4)+abs(FMII*(W1*C3 [ +W2*C41)))*0.25/GX

TEMPO1=(UWC(J+2,1)-UWC(J,1))/(2.0*GX)
TEMP02=(UWC(J+2,2)-UWC(J,2))/(2.0¥GX)
TEMP03=(UWC(J+2,3)-UWC(J,3))/(2.0*GX)
TEMPO4=(W_INI(J+2)-W_INI(J))/(2.0*GX)
TEMPO5=(UWC(J+2,2)-2*UWC(J+1,2)+UWC({J,2))(GX*GX)
TEMPO6=(W_INI(J+2)-2*W_INI(J+1)+W_INIJ)/(GX*GX)
P2=A(1,1)*(TEMPO1+0.5*TEMP02**2-0.5*TEMP04**2)+B(1,1)* TEMP03

& -4.0*E(1,1)*BETA*(TEMP03+TEMPO05-TEMP06)/(3.0*H_THK**2)

V2=(F(1,1)-4.0*G(1,1)*BETA/H_THK**2)*(UWC(J+1,3)+TEMP02-TEMP04)

W2=B(1,1)*(TEMP01+0.5*TEMP02**2-0.5*TEMP04**2)+D(1,1*TEMP03
& -4.0*H(1,1)*BETA*(TEMP03+TEMPO5-TEMPO6)/(3.0*H_THK**2)

P2=P2*FIP

V2=V2*FIV

W2=W2*FIW

W2=W2+P2*TH_THK1/FFI

TEMPO1=(UWC(J+1,1)-UWC(,1))(1.0*GX)

TEMP02=(UWC(J+1,2)-UWC({J,2))/(1.0GX)

TEMPO3=(UWC(J+1,3)-UWC(J,3))/(1.0*GX)

TEMPO4=(W_INI(J+1)-W_INI(J))/(1.0*GX)
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TEMP15=((UWC(J+1,2)-2*UWC(J,2)+UWC(J-1,2))(GX*GX))/A_LEN
TEMP25=((UWC_S(J+1,2)-2*UWC_S(J,2)+UWC_S(J-1,2))(GX*GX))/A_LEN
TEMPO5=FI*TEMP15+(1.0-FI)*TEMP25
TEMPO6=((W_INI(J+1)-2*W_INIJ)}+W_INI(J-1))(GX*GX))/A_LEN

P1=A(1,1)*(TEMP01+0.5*TEMP02**2-0.5*TEMP04**2)+B(1,1)*TEMP03

& -4.0%E(1,1)*BETA*(TEMPO03+TEMPOS-TEMP06)/(3.0*H_THK**2)
V1=(F(1,1)-4.0*G(1,1)*BETA/H_THK**2)*(UWC(J,3)+TEMP02-TEMP04)
W1=B(1,1)*(TEMP01+0.5*TEMP02**2-0.5*TEMP04**2)+D(1,1)*TEMP03

& -4.0*H(1,1)*BETA*TEMP03+TEMPO5-TEMPO06)/(3.0*H_THK**2)
P1=P1*FIP
VI=VI*FIV
W1=WI*FIW
W1=W1+P1*TH_THK1/FFI
U3=UWC_S(J-2,1)-UWC(-2,1)

U4=UWC_S(J-1,1)-UWC(-1,1)
W3=UWC_S(J-2,2)-UWC(J-2,2)
W4=UWC_S(J-1,2)-UWC({-1,2)
C31=FI*UWC_S(J-1,3)+(1.0-FI)*UWC(J-1,3)

& -FI*UWC_S(J-2,3)-(1.0-FI)*UWC(J-2,3)
C41=UWC(J,3)-FI*UWC_S(J-1,3)-(1.0-F)*UWC(J-1,3)
C3=UWC_S(J-2,3)-UWC(-2,3)

C4=UWC_S(J-1,3)-UWC(-1,3)
GRF(3)=(abs(V1*W3)+abs(V2*W4)+abs(FMI*(W1*C3+W2*C4)))*0.25/GX
GREF(4)=(abs(P1*U3)+abs(P2*U4)+abs(FMII*(W 1*C3 1+ W2*C41)))*0.25/GX
END

SUBROUTINE MODE_SEPARATE(FMLFMI)

INCLUDE 'COMMON.INC'

REAL(8) FMLFMII

THKS=H THK*LAY DLM/LAYERS

THKM=H_THK-THKS

ETA=THKS/H_THK

EV=1.0/(12.0%(1.0+3.0¥ETA**3))
EU=1.0/(1.0+4*ETA+6*ETA**2+3*ETA**3)
EOMEGA=3.14159%(52.1-3.0*ETA)/180.0
EGAMA=ASIN(SQRT(EU*EV)*6.0*ETA**2*(1.0+ETA))
EA2=SIN(EOMEGA+EGAMA)

EB2=COS(EOMEGA+EGAMA)

FMI=EA2/(EA2+EB2)

FMII=EB2/(EA2+EB2)

END
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Appendix D: Typical Test Results of Physical
properties
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Figure D-1 Typical tensile property E;; test results of carbon/epoxy laminate.
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Figure D-2 Typical tensile property E,; test results of carbon/epoxy laminate.
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Figure D-3 Typical tensile property G, test results of carbon/epoxy laminate.

74.0

72.0 A

70.0 -

Load (N)

68.0 1
66.0 -

64.0 H ¥ ¥ V
6.58 11.58 16.58 21.58

Load point deflection(mm)

Figure D-4 Typical load deflection curve of double cantilever beam (DCB) for Gyc test.
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Figure D-5 Typical load deflection curve of end notched flexure (ENF) for Gyic test.



