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Abstract

The role of the natural host immunity (sometimes called the immune response) to HIV in-
fection has received much attention in recent years. It is clear that some patients progress
to AIDS much more rapidly than others, and the specific immune response to HIV has
been shown to be an important determinant of the rate of disease progression (or non-
progression). In this thesis, we examine control theoretic mathematical models of HIV and
its interaction with the immune system. We derive a system of ordinary differential equa-
tions that specifically incorporates patient immunity as a dynamic variable and introduce a
control function to reflect the level of treatment intervention. We establish existence and
continuity of an optimal control, characterise it, and show uniqueness of the optimality
system. Numerical simulations of the optimality system are examined so as to determine
the qualitative aspects of optimal treatment schemes, and the behaviour of the immune sys-
tem under such an optimal regime. Extensions to the model are examined, and results are
compared with those obtained from models not including immunity. Finally, a new model
incorporating the nutritional status of the patient and its interaction with drug therapy and

the immune system is considered.
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Chapter 1
Introduction

In the past two decades, over 200,000 journal articles pertaining to AIDS and/or the hu-
man immunodeficiency virus (HIV) have been published. Among these are hundreds of
mathematical and statistical models of various aspects of the disease.

Epidemiologists attempt to qualitatively assess the spread of an infection through-
out a population using quantitative and theoretical means. Many of the early models of
HIV/AIDS were developed to predict how the disease would spread outward from its orig-
inal risk groups. Many epidemic models have been studied, and are still being studied.
They model heterosexual and homosexual spread of virus, spread within prisons, vertical
(mother-to-child) transmission, and many more aspects of this complex disease. Mathemat-
ical epidemiologists are able not only to predict with a certain degree of accuracy where
an infection will go next, but also to determine using models just how much of an initial
innoculum is needed for a disease to establish a persistent presence in the population un-
der consideration. Also, using epidemic models, it is possible to simulate treatment and/or
vaccination schedules in a persistently infected population, and, therefore, determine how
and if it is possible to eliminate or at least significantly reduce the contagion.

Another aspect of mathematical modelling that is coming to the forefront of current
research is immunological modelling. It is similar to epidemic modelling in that we are
simulating populations of infected and healthy individuals, but in this case the individuals
are cells and viral particles. Immunological modelling of HIV is a popular subject, due in
part to the large volume of experimental evidence available, but more importantly, with the

technology that we now have to determine how a pathogen behaves on a cellular level, we



can accurately describe its evolution in time using mathematical models.

Another reason HIV is a popular subject for modelling is its long latent period. A good
model can predict what will happen in the long term very accurately and, with this, we
can describe the progression to disease of a pathogen that does not immediately cause any
noticeable effects and whose behaviour as a consequence is hard to predict.

In this thesis, we will examine HIV from the perspective of its interaction with the im-
mune system. We will be investigating the role of the cytotoxic immunity to infection. But
most importantly, we will be examining the qualitative effect of various treatment strategies
on the components of the immune system that are most actively involved in responding to
the virus. To that end, in the following section we briefly describe biologically how the

immune system reacts to infection with HIV.

1.1 The Immune System and HIV

To accurately model any physical process, we must first understand how it works on its
basic level. As its name indicates, the human immunodeficiency virus targets cells in the
immune system.

Our “immune system” refers to a collection of cells and organs that work together
synergistically. In its broadest sense, any part of our body that helps to keep us healthy is a
component of the immune system. For the purposes of this thesis we consider the immune
system as it consists of lymphocytes (white blood cells) and their sources. (See [31] for
more background on the immune system.)

One class of white blood cells is the collection of T-cells, so called because they mature
in the thymus, after originating in the bone marrow. The types of T-cells with which we
shall be concerned are the CD4+ (helper) T-cells, and the cytotoxic lymphocytes (“CTL”s),
which are activated CD8+ cells.

When an infectious agent enters the body, memory cells recognise this infection as
non-self (that is, not a natural occurrence within the host’s body). Helper T-cells are cells
that can be considered as “messengers”, or command centres of the immune system —
they send a signal to other immune cells that an invader is to be fought. These other cells
include, as the case may be, CTLs and macrophages (which destroy the invader) and B cells

(which produce antibodies against the present invader and the possibility that this invader



may again enter. In this thesis, we will refer as “CTLs” those cells whose function it is to
destroy infected CD4+ cells, and retain memory of this function.

If the immune system is functioning optimally, all of these components work together
in an efficient manner and an infection is eliminated in short order, causing only temporary
discomfort to the host. However, there are many ways in which the immune system may
malfunction. In stressed or malnourished individuals, both types of T-cell response may be
weakened and simple infections cannot be fought off. In autoimmune diseases, the body
no longer differentiates between self and non-self, and immune cells are confused into
attacking normal parts of the host. (This is similar to what happens in an allergic reaction.)

In the case of HIV, the specific concern lies with the helper T-cells. These cells (among
others, including macrophages) express a CD4+ protein on their surface. HIV contains a
CD4+ receptor and hence binds to these cells and infects them. Over time, it is able to
deplete the population of CD4+ cells. The exact mechanism by which this occurs remains
unknown, but several models have been suggested. See Kirschner, Webb and Cloyd [39].

Clearly this is a problem, since without the “immune messengers”, none of the disease-
fighting cells are aware that an invader is to be attacked. Therefore, infections that would
be eliminated easily in a healthy individual eventually wear the patient down and cause
death.

Pioneering mathematical models considered the eventual effect of HIV upon the popu-
lation of CD4+ cells and early simulation of treatment considered how to maximise levels
of these cells, and sometimes reduce virus levels. A classical and much-cited model is
that of Perelson, Kirschner and deBoer [57] in 1993, which considered four populations of
cells, each represented by a variable dependent upon time: healthy CD4+ cells, latently and
actively infected CD4+ cells, and free virus. The evolution in time of each population is
represented by a differential equation. Early treatment models ([35], [37], [73]) considered
the effects of AZT and similar drugs, which reduce the infectivity of infected cells by halt-
ing the process of reverse transcription (a key part of HIV’s replication process, whereby
the genetic material is transcribed from RNA to DNA). Later, with the advent of protease
inhibitors, researchers were able to investigate mathematically the effect of a drug that re-
duces the production rate of free virus (see [74], [76], [6], [36]). In Chapter 2, we will
explain this concept further, and provide mathematical illustration.

Many early models did not include any specific expression for immunity to HIV, as



it was assumed to be constant over time. By “immunity”, we mean (in this thesis) the
ability of killer cells to actually recognise and eliminate the invader, as measured by actual
numbers of these cells, their fitness, or both. These cells are the cytotoxic lymphocytes —
or CTLs, the term we will henceforth use in this thesis.

However, it has been noted clinically for some time (see Gray et. al. [24], Arnaout,
Nowak and Wodarz [2], Ogg et. al. [54], Wein at. al. [73], and references cited therein)
that individuals who maintain a high level of CTLs remain healthy longer, in spite of the
fact that HIV does not target these cells directly.

With these complexities in mind, and considering that the treatment strategy of “hit
hard, hit early” that was so popular in the early days of combination drug therapy is now
seen as potentially harmful, due to concerns of toxicity, expense, and the sheer burden of
adherence to some of the strict protocols enforced upon individuals who choose to undergo
therapy, it is obvious that optimal drug treatments schemes may not be so straightforward.

Certain strategies have been suggested to help deal with these problems. One is to
allow periodic intervals of no treatment to allow the population of CTLs to rebuild to pre-
treatment levels. Antigenic boosts to the immune system — in which a small amount of
antigen is introduced into the host to fool the immune system into believing a new infection
has occurred, and therefore mount a substantial response — is another. Non-monotonic
levels of drugs, and delaying treatment until CD4+ levels are quite low and/or virus levels
are quite high, are among the other options available.

1.2 How Models can Help

Given so many different possible regimes, and so much uncertainty as to which is best, we
need a way to help narrow our options. One tool that can assist is an accurate mathematical
model. We shall consider systems of differential equations in this thesis, although other
types of models exist (stochastic models, which account for random effects, or computer
models to deal with very large systems not tractable “by hand”, are two examples). Differ-
ential equations model the evolution in time of populations of cells, and thus may help to
track the long-term progression of infection, and determine when and if an equilibrium is
reached, and whether it is stable. In general, it is desirable for an equilibrium point to be
stable. We shall see systems in which there is a “healthy” equilibrium (no infection present)



and an “endemically infected” equilibrium (both healthy and infected cells co-exist). Usu-
ally, it is unrealistic to expect the healthy equilibrium to be stable once infection has been
introduced into a system. The most that we can hope for in this case is stability of the
infected equilibrium, so that healthy cells do not crash to zero.

Interesting — and most often undesirable — behaviour occurs when an infected equi-
librium is driven unstable. There are many ways in which this can happen, including resta-
bilisation of the healthy equilibrium. The real problem occurs when an equilibrium is
driven unstable and periodic solutions are born. We shall see instances in which the pres-
ence of a time delay causes this to occur. Biologically, this means that our cell populations
are oscillating, which can cause real problems if either infection peaks at too high a level,
or healthy cells “trough out” at too low a level. In this case, it would be desirable to figure
out if and how it is possible to restabilise the equilibrium.

A good model will predict with some accuracy the long-term course of infection. We
seek steady states (equilibria), at which the cell populations remain relatively unchanged
for some time. Including treatment in models can be done in several ways. A new “forcing”
function can be introduced, or a parameter that mimics the effect of the drug can be inserted
into the model.

In this thesis, we use two methods of modelling therapy. We compare treatment as ap-
proximated by a constant parameter with treatment as represented by a control. In the latter
case, we use the tools of optimal control theory to determine treatment strategies. We let
our drug be represented by a function that satisfies certain restrictions, and use Pontryagin’s
Maximum Principle to characterise the optimal control and derive the optimality system,
which describes mathematically how the system representing the infected immune system
behaves subject to optimal treatment. More background to optimal control theory will be
given as it is needed. We refer to the excellent text by Fleming and Rishel [22] for further
background to optimal control theory.

We shall examine various models of HIV infection. The two primary models are a
model with and a model without an explicit compartment modelling immune response. The
reason for doing this is so that we can compare the behaviour of the models, both untreated
and subject to therapy. This will help provide a theoretical answer to the question: How

important is specific immune response in the progression of HIV infection?



In the models that we will examine in this thesis, we assume that infection is spread di-
rectly from cell to cell is an important mode of HIV spread. There is precedent for studying
cell-to-cell spread of HIV, since the virus is present in high concentrations in compartments
such as the brain, bone marrow, and lymph tissue. See, for example, Chun et al. [10], Haase
et al. [26], [27], Pantaleo et al. [S5], Schacker et al. [61], Spouge et al. [66]. In such cases,
itis highly probable that the close proximity of cells and the absence of blood plasma would
render cell-to-cell spread the dominant transmission method. Additionally, we find that the
dynamical behaviour of the models assuming cell-to-cell spread is qualitatively similar to
that of those assuming a separate compartment for free virus. We further justify this as-
sumption by noting that viral load is proportional to levels of infected cells (see [2]), and
that we may thus estimate total body virus load from levels of infected cells.

In summary, the following are questions that, ideally, we would like to answer in this

thesis:

e The role of immunity cells appears to be important in the progress of infection. Given

this fact, how does the immune system react to HIV?

e What sort of drug treatment schemes are optimal in order to maintain a high level of
immunity to HIV?

e Does the intracellular “latent” period affect the stability of the untreated models? If
so, how do we treat? Will optimal treatments be very different from the case in which

delay is not considered?

e How different should treatment be when we do consider immunity than when we do

not?

e How do we deal with the intimate interplay between the nutritional status of the
patient and their drug therapy? Specifically, what can we do to deal with the fact that
medication has a negative effect on nutritional status, which is important for proper
immune function?

This thesis shall be structured as follows:

e In Chapter 2, we will review four already-published models of HIV treatment. Three
are control-theoretic in nature, but do not include immune response. The fourth does
include immunity but is solved numerically.



e In Chapter 3, we will present an ODE model that is a modification of Wodarz and
Nowak’s [76] immunity model. We analyse stability of the ODE model and then
introduce treatment via a control which we characterise completely, as well as pre-
senting existence and regularity results for the optimal control, as well as uniqueness
results for, and numerical simulations of the optimality system. We will observe the
shape of the curve representing treatment so that we can determine the qualitative

aspects of optimal treatment, in terms of strength of treatment as a function of time.

e In Chapter 4, we modify Chapter 3’s immunity model. There is a biological time de-
lay in the intercellular infection process, and we examine this via a delay-differential
equation system. We present results on stability and bifurcation using the general
characteristic equation for such a system, and apply these results to our specific sys-

tem.

o In Chapter 5, we examine treatment of the delayed systems in Chapter 4 in two ways.
First, we assume that treatment can be approximated by a parameter that suppresses
the intercellular infection rate. We find that this parameter actually restabilises a
system that has been destabilised by delay. We also approach treatment from a con-
trol theoretic perspective, deriving an optimal control and an optimality system for
both discrete and distributed delayed cases. While it is possible to derive an opti-
mality system in the case that we have a discrete delay, it is not generally possible
to analyse the optimality system to the extent that we would like. The best we can
usually hope for is to determine when and if delay-induced bifurcation occurs. A
much more tractable method is to use a distributed delay and then apply the lin-
ear chain trick to transform our three-dimensional delay differential equation system
into a four-dimensional ODE system. The problem then becomes one of controlling

a four-dimensional system of ODEs.

¢ In Chapter 6, we consider a model of cell-to-cell spread of HIV that does not include
immunity. We wish to completely analyse the model in the presence and absence
of treatment. We first consider stability of the ODE model and then consider how
treatment approximated by a constant parameter affects this. In the following sec-
tion, we include the effect of delay and determine that delay-induced bifurcation

does occur, under realistic parameter ranges. This is, as in Chapter 5, offset by “high



enough” treatment levels, as we find that the region of absolute stability for the inte-
rior equilibrium is directly proportional to the value of the treatment approximation
parameter. Also, we consider theoretical aspects of optimal control of the delayed
system.

e In Chapter 7, we present a model of HIV treatment that incorporates the patient’s
nutritional status as a variable. This is done because it is clinically evident that the
higher the patient’s nutritional status, the better the patient fares in terms of both clin-
ical and surrogate markers. However, large doses of drugs cause rapid elimination
and poor absorption of nutrient in the patient. We model this interplay and attempt
to determine what, if any, restrictions we must place upon treatment in order to min-
imise these negative effects. We conclude by proposing an optimal control model for

this problem.

e In Chapter 8, we present our conclusions and suggest possible extensions to the mod-

els presented.

As a final note before we proceed, we would like to point out that this is primarily a math-
ematical thesis. However, we approach it from the perspective of attempting to answer bi-
ological questions using mathematics. Effort will be taken to explain biological relevance
wherever possible, but in some cases a mathematical result may be presented because it is
of interest for its own sake.



Chapter 2
Review of Some Earlier Models

To date, many mathematical models of drug treatment of the human immunodeficiency
virus (HIV) have been developed. Some models in the mid-1990s focused on modelling
AZT treatment (see, for example, Kirschner and Webb [37], or Kirschner and Perelson
[35]). However, as our understanding of HIV’s dynamics has changed, so too have treat-
ment strategies. Drug treatment has evolved and is becoming ever more sophisticated.
Multiple-drug therapy has become the standard of care.

There are many different possible regimes for drug treatment of HIV, and ideas as
to which is best have varied over the twenty-plus year history of AIDS. When AZT was
introduced in 1987 there was hope of its being a “magic bullet”, and patients swarmed
to their doctors and pharmacists to get their prescriptions. However, the Concorde Trial
[63], still one of the largest-scale and longest-term clinical studies of anti-HIV medication,
showed no benefit to early AZT treatment. Indeed, by the early 1990s, it was apparent that
many patients were not deriving the benefit from AZT they had hoped.

AZT (azidothymidine) is one of a class of medications referred to as nucleoside ana-
logue reverse transcriptase inhibitors (NRTIs). Reverse transcriptase is an enzyme con-
tained in HIV that transcribes its RNA to DNA, thus enabling replication of the virus. AZT
and other NRTTs work by interrupting this process in the following way: RNA and DNA are
composed of chains of the nucleotides adenosine, cytosine, guanine, and thymidine, each
of which has two links. One is on either “end” of the nucleotide, so they can link together
much like a train. AZT is an analogue of the nucleotide thymidine (‘“T”"), but it contains

only one link. Therefore, it attaches onto another nucleotide in the chain in the place where



10

thymidine is meant to be, and its free “end” contains no link for any other nucleotides to
attach. This is how it interrupts the production of DNA chains, and hence prevents viral
replication at this point. Other NRTIs such as ddI (Zerit) and ddC work similarly.

In the years to follow AZT’s approval by the FDA, several other reverse transcriptase
inhibitors were approved, some of which are NRTIs and others that are not. These drugs
have met with varying degrees of success and patient tolerance, but it was not until the
advent of protease inhibitors in the late 1990s that any sort of sustained hopefulness arose.

Protease inhibitors are not a new concept — they have been used for years to treat
diseases such as hypertension and arthritis, among others. In the case of HIV, they work by
inhibiting HIV’s aspartyl protease, which is needed to cleave bonds between nine different
proteins during HIV’s reproductive cycle. In essence, they render any newly created viral
particles non-infectious.

Mathematically, an RTT has classically been represented by a function (a parameter or
a control) multiplying the infection rate and a protease inhibitor by a function reducing the
production rate of new viral particles. (See Perelson and Nelson [58] for more information
on using mathematics to describe the different ways of modelling drug treatment.) In a
model of cell-to-cell infection such as we will see, a parameter reducing infectivity may be
used to model the effect of either drug, given the assumption that viral load is proportional
to infected cells (see Arnaout et. al. [2]).

In this chapter, we consider some models of HIV treatment that have already been
published, and describe how our models introduce something new.

Several different means have been used to model treatment. Some authors have pub-
lished mathematical models of HIV treatment using control theory (see Kirschner, Lenhart
and Serbin [36], Wein, Zenios and Nowak [73], and Fister, Lenhart and McNally [21]).
However, none of these papers has included immunity as a specific compartment. In 1999,
Wodarz and Nowak [76] published a four-dimensional ordinary differential equation (ODE)
model of the interactions between T-4 cells, viral load and immunity (both precursor or
“memory” cells and effector immunity cells). They assumed that treatment negatively af-
fects the population of immunity cells and modelled treatment numerically by running
simulations of their ODE model with a parameter that reduces viral infectivity to represent
treatment. Their conclusions were that interruption of therapy (to allow the immunity to re-
build after being suppressed by chemotherapy), or antigenic boosts to the immune system,
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would be beneficial to the long-term clinical outcome of the patient.

In this chapter, we shall review the four models mentioned above and their conclusions.
In the remainder of this thesis, we shall modify the models. Bearing in mind that this is
primarily a mathematical thesis, our goals nevertheless include deriving some conclusions
as to how we can best maintain optimal levels of cells we want (healthy CD4™ cells and
immunity cells), given the nature of chemotherapy available.

Now, we shall introduce some of the models that have been established in the literature.

2.1 Model 1

In 1996, Kirschner, Lenhart and Serbin [36] published a modification to the original HIV-
dynamics model published by Perelson, Kirschner and deBoer [57], which modelled the
interactions between healthy CD4* cells (T'(¢)), latently and productively infected CD4*
cells (T*(¢) and T**(¢) respectively) and free virus (V(¢)). Healthy T cells are produced
at a rate s, die at a rate yr, grow at a rate r to a carrying capacity of T, and are lost to
infection at a rate k;. Latently infected cells are produced from free virus at a rate k;, decay
at a rate ur and become productively infected at a rate k;. Productively infected cells die
by bursting (lysis) at a rate up, and each bursting particle releases an average of N virions,
so this is the source term for free virus. Free virus is lost by infecting T cells at a rate k;
and dies at a rate uy.

In the absence of treatment, the model has two equilibria of interest: a healthy equilib-
rium with maximal levels of healthy T cells and zero levels of all other populations of cells,
and an “endemically infected” equilibrium, with all populations at positive levels. It was
shown in [57] that N, the average number of infectious virions produced, is a bifurcation
parameter. If N is below a critical value N, persistent infection cannot be established and
the healthy equilibrium is stable, whereas if N < N, the infected equilibrium becomes
stable. Therefore, the goal of a mathematically modelled treatment should logically be
to reduce N by as much as we can. Indeed, we shall see that this is how the problem is
formulated.

Chemotherapy is introduced into an infected immune system, and an optimal chemother-
apy strategy is solved for in terms of a control representing the percentage of effect the
chemotherapy has on viral production.
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Treatment is modeled by a drug reducing viral production. The optimal control problem

is given by:

maxJ (i) = / () %B(l —u(t))Ydt @.1.1)

start

subject to the state system:

dT T+T*+T*

== - — - 1.
o s—urT +rT(1 T )—kiVT (2.1.2)
dT*
- = kKVT —urT* —koT* (2.1.3)
dT** * *%k
— = kT =T 2.1.4)
dV *k
g{ = u(t)N/.le "'leT'—,UVV. (215)

So the control u(z) is the multiplier for the parameter N representing viral production.
The objective functional has the effect of maximising retention of T-4 cell levels while
minimising the cost in the sense that high concentrations of drugs can lead to resistance,
because the body has “grown used to” the drug. In some cases prolonged treatment can
even cause the drugs to become toxic to the system. Both of these effects are to be avoided,
so the authors of [36] control those as well.

(1—u)? represents the cost and B is the weight on the benefit and cost. The authors
of [36] applied the Pontryagin Maximum Principle to the constrained control problem in
order to determine the optimal #* which maximises J(u). They found the optimal control
to be:

« AMNupT** + @) — 0 +B\ *
0= = )
where a™ = max(a,0).
Simulations performed by the authors of [36], in addition to analysis of the analyti-
cal results reproduced above, reveal the optimality of earliest treatment, coupled with a
dynamic treatment where the initial dosages are strong and lessen over the course of treat-
ment. This is one way in which a control — rather than simply a parameter that remains
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constant for a fixed time period — is advantageous. Mathematically speaking, optimal
treatments were, in general, monotone decreasing over the time interval of treatment. In
the case where treatment was initiated 800 days after infection, there was a small peak
in the drug level very shortly after initiation, after which the control was monotone de-
creasing. In both other scenarios (1000 and 1200 days after infection), the optimal control
was monotone decreasing. Balancing effects to T-4 cell counts with drug cost, the earliest

treatment is best, and furthermore, is always best no matter the length of treatment interval.

2.2 Model 2

In 1999, Fister, Lenhart and McNally [21] proposed a controlled model similar to that of
Kirschner, Lenhart and Serbin (our “Model 17), with a few differences. First, their drug
multiplied the infectivity rate, a formulation that may be more appropriate for describing
a reverse transcriptase inhibitor than a protease inhibitor (see [58] for further background
on how to model different anti-HIV drugs). Also, they established more theoretical mathe-
matical results, including existence of an optimal control and uniqueness of the optimality
system. They sought to maximize T cells and minimise cost and as such their problem was

formulated as:

maxJ[u] = / () - B4\ 4
0 2
subject to the state system:
dT * *%k
— = s—,uTT+rT(1—u)—(l—u(t))leT (2.2.6)
dt Tinax
dT* * *
el (1—u(®))k)VT —urT* —kyT (2.2.7)
ar**
= kT —umT* 2.
T 2 Hb (2.2.8)
av
= NuT™ —kaVT —pyV. 2.2.9)

In addition to establishing existence, they completely characterised their optimal control
as:
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kiVT (A —A2) ™
B

u*(t) = min(1, ).

(Note that A , are the adjoint variables.)

They also performed numerical simulations indicating that strength of treatment should
balance with duration (that is, the longer the treatment length, the smaller the dose should
be). As well, optimal treatment schemes are monotone decreasing.

2.3 Model 3

In 1998, Wein, Zenios and Nowak [73] constructed a model which allowed for viral muta-
tion and the ability for the clinician to choose, at any time point during treatment, to change
treatment (hence the term “dynamic”). Their model assumed treatment that corresponds to
different combinations of reverse transcriptase inhibitors.

The model itself is of high dimension, allowing for I different strains of virus and hence
21 + 1 equations (I each for virus and infected cells, plus one for healthy cells). Assuming
J different possible drugs, their control variables satisfied:

J
Y. di(n)<1
j=I
dj(t) =0,1,

where a value of 1 means the drug is applied at time ¢ and 0 means that it is not. x(t)
represents healthy T-cells, y;(¢) are cells infected by virus strain i and v;(¢) is virus strain i.
They also included efficacy of drug j on virus strain i by the parameter p;;, and infectivity
of the strain, represented by B;. As well, g; j represents mutation rate, or the fraction of
reverse transcriptions of strain i resulting in a cell infected by strain j. &; is the replication
rate of strain i. Other parameters include A, the source of healthy T-cells, u, the natural
death rate of healthy T cells, o, the death rate of cells infected by strain i, and k;, the death
rate for virus strain i.

Finally, the treatment is modelled as follows. The objective functional sought to be min-

imised represents the amount of virus in the system and hence the problem is formulated
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as:

T I
min.I:/ Y vi(t)dt
0 i=1

subject to the state system:

% - ?»—(.u+§|3ivz'(f)[1—jépijdj(t)}>x(t)

dyi(t) (< S ) Vi
el (IZ,I qxifivi(t) [1 —Zi ijdj(’)} )x(t) — 04yi(t)

@Cgt—) = y;(t) — [ki+ Bix(t)]vi(t).

Clearly, such a complex and high-dimensional model does not readily admit a closed-form
solution, and the authors do not use standard control techniques such as Pontryagin’s Max-
imum Principle. Instead, they use a “perturbation technique”, to arrive at the conclusion
that dynamic treatment protocols, in which the clinician may decide at any point in time
what treatment to initiate or stop, are far preferable to static protocols. Obviously, this is
not entirely realistic, since no patient is available for monitoring continuously, but never-
theless is a helpful approximation, illuminating the fact that developing any drug treatment
regimen for HIV is no simple matter.

The model we will introduce in Chapter 3 is similar to this model but without multiple
strains and including immunity. It is stated in their paper that the authors “implicitly assume
that the strength of the immunity remains constant over the time horizon under study”.

2.4 Model 4

The final model we present is in some sense the inspiration for much of this thesis. It is a
model that incorporates the specific immunity to HIV into the model mathematically.
The first model that Wodarz and Nowak [76] presented is:
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dx

I | 2.4.10
7 x — Bxy ( )
d
?‘% = Bxy—ay—pyz (2.4.11)
%v_ = cxyw—cqyw—bw (24.12)
%f— = cqyw—hz. (2.4.13)

This is the untreated model; our “Model 4” refers to the treated model as represented by
(2.4.14-2.4.17).

The variables and parameters are explained as follows:

x(t) represents healthy CD4™ cells, y(¢) is sort of a catchall term representing infectious
cells and viral load (since there is no specific expression for viral evolution, the authors
assume the dominance of cell-to-cell transmission, and measure viral load as levels of y(t)),
w(t) represents the population of CTL precursors and z(¢) the population of CTL effectors
(the ones who actually do the killing). A is the rate (assumed here to be constant) at which
uninfected CD4™ T cells are produced, d is their death rate, and [ is the rate at which they
become infected. Infected cells decay at a rate a and are killed by CTL effectors (z) at a
rate p. CTL precursors proliferate at a rate ¢ and differentiate into CTL effectors at a rate
cq. Precursors have a natural decay rate b, and effectors a rate of A.

This model is stated to have two equilibria:

(32409

"c(E—q) cqy p

and

where

c(A+dq) —bB+/[c(A+dq) — bB)2 — 4c2hqd
2cd '
Ej represents the case in which the pathogen replicates freely with no immunity. Obviously

X =



17

this is not desirable. E», on the other hand, means that a persistent immunity has been

established. If A4
a
c(——=)(s—q)>0,
G-5)G—9

then E; is unstable and Ej is stable provided it actually exists and is not complex.

(We would like to note that this model actually has a third equilibrium that was not
mentioned in [76]. It is given by Eg = (%, 0,0,0), and represents maximal levels of healthy
cells and no infection or specific immunity. It is stable for BA < ad, a not terribly likely

situation.)

The authors then modelled treatment by a new parameter s which mimics a drug that re-
duces the viral replication rate, and as such s multiplies the term Bxy.

% — A—dx—sPxy (2.4.14)
d

d_}t) = sPxy—ay—pyz (2.4.15)
% = cxyw—cqyw —bw (2.4.16)
Z—j— = cqyw—hz. (2.4.17)

s = 1 represents no therapy, whereas s = (0 means that therapy is 100% effective. Com-
puter simulations indicated that antigenic boosts to the immune system, coupled with, or
instead of, intermittent drug therapy, would have the most positive effect on maintaining
the immunity as measured in terms of precursor and effector cytotoxic T lymphocytes.

We have provided a brief summary of some of the work that has been done in this arena.

In chapter 3, we present the results of a controlled ODE model incorporating immunity.



Chapter 3

A Controlled ODE Model With Immune
Response

In this chapter, we will:

e Introduce the untreated system modelling the interaction of HIV and immunity, and

completely determine its stability properties.
e Define the optimal control problem for this system.
o Establish existence of the optimal control and characterise it completely.
e Show regularity (continuity) of the optimal control.

e Derive the optimality system and show its uniquéness over “suitably small” time

intervals.

e Determine the qualitative behaviour of the optimality system via numerical simula-

tions.

3.1 The ODE Model

Here we introduce the ordinary differential equations modelling the immune dynamics of
an HIV-infected immune system. Please bear in mind that these equations model an un-

treated individual. Treatment will be introduced in the next section via an optimal control.

18
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The system is defined as follows:

dx

e A&y — 3.1.1
5 A — &x — By (3.1.1)
d

.‘% = B/xy—ay——pyz (3.1.2)
dz

— = —hz. 1.
o cxyz —hz (3.1.3)

Variables are defined as follows: x(¢) and y(z) are populations of uninfected and infected
CD4™ cells at time ¢, respectively. We consider viral load as proportional to levels of
infected cells, since according to Arnaout et. al. [2], “free virus is thought to be short
lived relative to infected cells”. z(¢) is the population of immunity cells at time ¢. In this
model, to reduce the dimension, we consider a single pool of immunity cells rather than
separating them into precursor and effector cells as in [76] (that is, we are measuring the
combined levels of both types of CTLs). We feel fairly confident in doing so, since the
stability analysis we perform in the following section indicates that our system behaves
qualitatively very much the same as that in [76].

Our parameters are explained as follows: A is the source term for healthy CD4s, & is
their death rate and B is the rate at which they are infected by virus (in this case, we consider
the viral source to be directly from infected cells). B’/P is the proportion of infected cells
that survive the cellular incubation period (the time between infection and infectiousness).
Throughout the remainder of this section, we shall assume that § = B’ for simplicity. a
is the death rate of infected cells by means other than killing by CTLs, and p is the rate
at which they are killed by CTLs. c is a generation constant for the CTL pool. Since
it is an immunity specific to HIV, clearly it is proportional to y(¢), the term representing
infection level. It is also dependent upon healthy CD4+ help (particularly the immune
“memory” portion of the pool of CTLs), and levels of CTLs themselves, hence the cubic
term. Finally, £ is the death rate for CTLs. Parameter ranges used in simulations, as well
as their references, are in Table 3.1 at the end of this chapter. Following the analysis in
[2] and clinically cited viral load ranges for HIV-positive individuals, we assume that viral
load is ~ 106 — 10%y(z).
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3.1.1 Stability of the ODE Model

We find that this system has three equilibria. They are:

By = (50,0
El - (’{%7%%_%70)

Ac—Bh  hd B'(?»c—Bh)_g)
cd "Ac—Bh  pcd p’

I = (

The first is an uninfected equilibrium corresponding to maximal levels of healthy CD4ts
and no infected cells or immunity. While at first glance the lack of immunity may seem
alarming, we note that the immune response we are modelling here is that which is spe-
cific to HIV; therefore, in the absence of infection, we should expect no specific immune
response.

The second equilibrium E corresponds to positive levels of both healthy and infected
cells, but no immunity. Clearly this is not desirable.

The interior equilibrium, E, corresponds to positive levels of all three components—
healthy and infected CD4% cells, and immune response (i.e. cytotoxic lymphocytes, or
CTLs, as we shall refer to them). Notice that in this situation only the population of CTLs
is affected by the ratio of ' to f.

Recall that an equilibrium is stable if all of the eigenvalues of its Jacobian matrix have
negative real parts. This amounts to finding the roots of the characteristic equation, defined
as

VI —J(E)| =0, (3.1.4)

where [ refers to the identity matrix, i.e. the n X n matrix with 1’s along the diagonal and
0’s elsewhere. J(E) is the Jacobian matrix evaluated at the equilibrium E. The general
Jacobian is determined as follows. Suppose we have the following nonlinear system of
differential equations:
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% = fl(xlax2>“'axn)
dx
'd—tz = f2(x1,x2)“"xn)
dxy,

T = fz(xl,xz,...,xn).

Its Jacobian is given by:

-9 A AT
x; dxp T Oxp
dfr dfs afs

ofn  Ofn ofr
L a0 3 0 an
Given the complicated nature of the coefficients of this equation in higher- dimensional
systems, and their dependence upon parameters, we must apply the Routh-Hurwitz criteria.

For a three-dimensional system, they state that for a characteristic equation:

Vrav+av+az =0, (3.1.5)

all roots have negative real part if and only if all of the following are satisfied:

a1 >0
a3 >0

aiay —az > 0.

We find that the general Jacobian is:

-0 —PBy* —Bx* 0
cy*z* CX*Z* cx*y* —h

Analysis of the Jacobian matrix evaluated at Eyp, the healthy equilibrium, reveals that it is
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stable if B’ < %, or that the fraction of infected cells surviving incubation is quite low.

Analysis of the Jacobian reveals at the interior equilibrium E reveals that it is stable
exactly when the equilibrium E; is unstable, and vice-versa. In other words, a transcritical
bifurcation occurs whereby the stability of the two equilibria switch. Specifically, E is
stable so long as it is feasible and the following condition holds:

, acd
B> Ac—PBh’

Note that this is the feasibility condition for the interior equilibrium. When this inequality is

reversed, E is unstable and E; is stable. However, under most realistic parameter ranges we
find E to be the stable equilibrium. See Table 3.1 at the end of this chapter for a complete
listing of parameter rages used and their references. Also, E is in fact a spiral point, as
J(E) has one real and two complex conjugate eigenvalues.

We summarise the above in the following proposition:

Proposition 3.1.1 The uninfected equilibrium Egy of the system (3.1.1)—(3.1.3) is stable for
B < %—? When this inequality is reversed, either Ey or E is stable, depending upon param-

eters. Specifically, for B' < 28 Ej is stable and E is unfeasible. When this inequality is
Xc—Bh

reversed, E| loses stability and E becomes a locally asymptotically stable spiral point.

3.1.2 Numerical Simulations

We can see that the equilibrium is stable under “reasonable” parameter ranges. (Again we
refer to Table 3.1 at the end of this chapter for parameter ranges used and their references.)
Numerical simulations were run using the XPP package for phase-plane analysis of
systems of differential equations. XPP was developed by Dr. Bard Ermentrout and further
information on this package can be found at [16].
We show a plot of x versus time and see that it quickly settles toward a steady state
value:
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Figure 3.1.1: Healthy cells converge to equilibrium.

We see also that y and z quickly converge to their steady state values: (see Figures 3.1.2
and 3.1.3).

Figure 3.1.2: The population of infected cells converges to its steady state value.

2.6
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Figure 3.1.3: The population of immunity cells converges to an equilibrium.
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3.1.3 Model Rationale

There are two considerations we would like to address here. The first is the choice of
infection source, which is the infected CD4% cells. Cell-to-cell spread is an important
method of HIV spread, since it is believed that the vast majority of viral activity occurs in
compartments such as lymph nodes and the brain as well as other tissues, with only a small
proportion actually happening in the peripheral blood (see Chun et. al. [10], Embretson
et. al. [15], Haase et. al. [26] and [27], Pantaleo [55], Spouge et. al. [66], Schacker
et. al. [61], Zack et. al. [79], Zhang et. al. [80], and [62]). Drug treatments such as
abacavir, or ziagen, have the ability to penetrate the blood-brain barrier (see [40] for this
and other information on effects of anti-HIV drugs), and most drug treatments, particularly
nucleoside analogues, affect bone marrow and glandular tissue, rendering the assumption
that drug treatment may affect such a system a fairly realistic one.

Also, due to the structure of the model, and the fact that we consider infected cells and
viral load to be proportional, we are really modelling a drug that affects viral production in
any compartment.

We would like also to briefly note the reason we consider only a single source/growth
term A. Primarily, it is a simplicity consideration. We consider a model incorporating a
specific growth term for healthy CD4™ cells as follows:

dx | x+y

i 7»+rx( M) 3x — Pxy (3.1.6)
d

d_i) = B’xy —ay—pyz 3.1.7)
dz

2; = nyZ—hZ. (318)

We find essentially the same qualitative behaviour in this system as we do in the system
(3.1.1)—(3.1.3) — a healthy equilibrium with no infection and no specific immunity, an
equilibrium with positive levels of healthy cells, high levels of infected cells, and no specific
immunity, and an interior equilibrium with all quantities at positive levels, which is stable
in most realistic situations.

Also, the cubic term in the equation for % could be given by a quadratic term dependent
only on infected cells y(¢) and immunity effectors z(¢). The behaviour of the system, again,
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is quite similar, except that our interior equilibrium is represented by lower levels of healthy
cells and higher levels of infected cells, and is stable when it exists.

Another possibility for the CTL gain term would be a differential equation for z of the
form % = ¢y — hz. Such a model has been analysed in [2], and could well be considered as

an option for an optimal control problem.

3.2 The Optimal Control Problem

We would like to maximise levels of healthy CD4 cells, as well as levels of CTLs (immu-
nity cells). Also, we want to keep cost—as measured in terms of chemotherapy strength, a
combination of duration and intensity—as low as possible. Our control is a function u(t)
between 0 and 1, where u(t) = 1 represents totally effective chemotherapy and u(t) = 0

represents no treatment. We choose as our control class:
U:={u(t) : u is Lebesgue-measurable with values between 0 and 1}.

Mathematically, the problem is formulated as:

T Bu?
maxJ[u] = / (x+z— T)dt (3:2.9)
0
subject to the state system:

% = A—0x—(1—u)Bxy (3.2.10)
d

d_—: — (1_u)B’xy_ay—pyz (3211)
dz

i cxyz — hz. (3.2.12)

Since the control reduces the viral replication rate, we multiply our infectivity terms Bxy
and B'xy by (1 —u). In this case, both our cellular infection rate and our viral (infection)
production rate are represented by the same term, B, so the drug may represent either a
protease or a reverse transcriptase inhibitor drug.

Prior to determining the mathematical formulation of our control, we must establish

that it actually exists.
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3.2.1 Existence of Optimal Control

Theorem 3.2.1 An optimal control u*(t) € U exists maximising the objective functional
(3.2.9) subject to the state system (3.2.10)—(3.2.12).

Proof: We establish existence of the optimal pair (x*,u*) satisfying (3.2.9)—(3.2.12) using
the following result from Fleming and Rishel [22].

Lemma 3.2.2 Consider the problem

max (ao,) = | " L, x(t), u(e))de

fo

subject to the state system:

& — fx )< <n

If f is continuous and satisfies the following inequalities:
(D) £ x,u)| < Cr(1+ x| + |u]),
(2) |£(t,x,u) — f(t,x,u)| < Co|x’ — x|(1 + |u|)| for positive C1,Cs,
and if the following conditions hold:

(a) F'= the class of all initial conditions xo such that u is Lebesgue-integrable on [to, 1]
with values in the admissible control set U and such that the state system is satisfied is not
emply;

(b) U is closed and convex;

(c) The right hand side of the state system is continuous, bounded above by a sum of the
bounded control and the state, and can be written as a linear function of u with coefficients
depending on time and the state variables;

(d) The integrand of the objective functional, L(t,x,u), is concave in u and can be

bounded above by ci — c3|u|*, where ¢c; > 0,00> 1;
then there exists (x§,u*) maximising J(xo,u) on F'.
Proof Sketch of Lemma 3.3:

We require that the following notation be observed:

S:= the set to which the end (boundary) conditions e belong. S is compact by definition;
here it is [tg,#1]. (We are letting 0 =t and T =¢;.)
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x*,u*,e*,xy are optimal solutions to the state system, the optimal control, and corre-
sponding end and initial conditions, respectively. The end conditions are framed in terms
of the initial and final times and the values of the state at those times in the following way:
e= (to,tl,x(to),x(tl)).

We will show that the assumptions in Lemma 3.3 ensure the existence of an optimal
pair(x(, u*) maximising J on F’. Then we shall use this result to establish existence of the
optimal control for our specific system.

Define y = supzJ(xp,u). A sequence (xj,u”) € F' is a maximising sequence if

p= lim (a5,

Such a sequence (x{,u”) € F' yields a corresponding sequence u” defined on [¢],#]]. The
corresponding end conditions are e = (#],1],x5,x]), where x;,i = 1,2 are the state values
evaluated at ¢;.

By Lemma 5.3 in [22], such a sequence always exists. Here we provide a brief example
of such a maximising sequence:

Consider the problem maxJu] = [ —tu*dt subject to the one-dimensional state system.:
dx/dt = u,x(0) = 1,x(1) = 0. We can see that on the interval [0,1], J[u] < 0 always. A
maximising sequence for x(t) is x'(t) = 1 — t1/7, which satisfies the endpoint conditions
and maximises J[u} in the following way: Take u" = dx" /dt and integrate to obtain J{u"] =
~1/2r — 0 as r — oo. Since J < 0 on the interval with which we are concerned, (x",u")

maximises J[u].

Now we choose some maximising sequence (%o, %/ ), with X/ being the corresponding
solution of the state system. Since S is compact the set of end conditions &’ is bounded.
Now, application of Ascoli’s theorem yields a subsequence ji, ja, ... such that ¥/r = x" — x*
uniformly on [fg,#1], and lim,_,e ¢/ = ¢*. By boundedness of x” (satisfaction of condition
(c) in Lemma 3.3), x* is also bounded. Thus: lim,_..#] = ¢} and lim,.x"(z]) = x*(¢}).

So we know that x" — x* and ¢” — ¢*. It can also be shown that x* is in fact absolutely
continuous.

We now define a new sequence: Z"(t) := ftf) L(s,x"(s),u"(s))ds. The sequences above
can be chosen so that lim, ,..Z"(¢) = Z*(r) for every t € [to,#], and so that Z*(z) +ct is
monotone on the interval [, #;].
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Now, if we let ¥ = (x",Z") and ¥* = (x*,Z*), we find that the derivative of X* is an
element of F(¢,x*(¢)) for each € [tg,#1], so long as this derivative exists. Also, we obtain
the existence of an integrable u* and a measurable v* such that: (a) % = f(t,x*(t),u*(¢))
and (b) %—Zti = L(t,x*(¢),u*(t)) + v* almost everywhere in [, #}.

These conditions above are used to show that as we approach the limit in r (that is,
when we let r become a very large number), after some calculations we obtain:

4]

}LI{lc[Zr(tf)—Zr(t6)]S/ L(t,x",u")dt = c[(1] —11) + (1 —t0)]-

fo
But the left hand side above is simply the value u defined above, and the integral on
the right hand side is the objective functional J(x{j,u*) as we defined it perviously, minus a
quantity that is fast approaching zero. So we have shown:

1< I (xp,u%).
In other words, the optimal pair (x*,#*) maximises J.

We proceed with the proof of Theorem 3.2.

Note that the preliminary conditions (1) and (2) of Lemma 3.3 are simply growth and
Lipschitz conditions on the RHS of the state system. These are trivially satisfied in our case
because the RHS, f, is differentiable in all state variables.

For the satisfaction of condition (a), we require continuity of the right hand side of the
state with respect to the state variables, measurability of u, and boundedness of the right
hand side in the time interval [0,7]. With these, we may apply Caratheodory’s Theorem
(see [41], Theorem 9.2.1). Our control class consists of Lebesgue-measurable functions,
and the RHS is clearly continuous with respect to the state variables, so it remains only to
show boundedness.

Define £, ¥, Z as the supersolutions of x, y, z respectively.

First note that x < % over any time horizon. This is because % < A — dx, and separation
of variables yields x(¢) = %‘ —ole™® where o.is an arbitrary positive real number. Clearly, as
t — cowehavex — % This yields £ = % = M. Therefore, %{: = M, and the supersolution
y on a fixed time interval will be y = M, < e, Thus, % = cM1M>Z. In matrix form:
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P _ | BMp 0 ¥
4 0 MM, || ¢

This is a linear system in finite time with bounded coefficients, so the supersolutions
are uniformly bounded. Application of Caratheodory’s Theorem yields the desired result;
that is, the satisfaction of condition (a).

We move on to condition (b). The admissible control set U is closed and convex by def-
inition. This condition is needed because we require 4" € U for each u” such that u” — u*.
(That is, the components of the maximising sequence must be contained in the admissible

control set.)

To establish condition (c)’s satisfaction, we note that by the result established to assist
with the proof of (a), we know that the right hand side of the state system is indeed bounded
above by a sum of the bounded control and the state. It is clear that the RHS is already

written as a linear function of u as desired.

Finally, we verify condition (d), which is needed because if it does not hold, J [u] may
never achieve its maximum. The integrand of our objective functional J{u| is given by:
X+ il
2=
Clearly, this is a concave function in u given that it is a negative quadratic. Since x < MA
and z < Z = C for some constant C, we say that ¢; = g, ¢y =MA+C,and 0. = 2:
Bu? Blu
(t2) - 22 < mrc— B
2 2
So the four existence conditions are established and Theorem 3.2 is proven.

2

=C1— Cz|u|a.

This method shall be referred to in subsequent chapters whenever we wish to establish

existence results.

3.2.2 Characterisation of an Optimal Control

We invoke Pontryagin’s Maximum Principle to determine the precise formulation of our

optimal control u*(z). To do this, we note that our Hamiltonian is given by:
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B 2
H=x+z—- —;—+7»W1 —dxwy — (1 —u)Bxyw; + (1 —u)B'xywz

—aywy — pyzwy + cxyzws — hzws + vy (£)u(t) +va(t) (1 — u(z)).

Note that v;(¢) and v,(¢) are penalty multipliers ensuring that u(¢) remains bounded be-
tween 0 and 1. We have that vi(#)u(t) = 0 and v2(¢)(1 — u(z)) = O at the optimal u*.

The w;s are our adjoint variables; they determine the adjoint system which, together
with our state system, helps to determine our optimality system.

We shall consider all possible values for the control, including those on the boundary
(u=0and u=1).

Consider the set {¢: 0 < u(t) < 1}.
Note that Pontryagin’s Maximum Principle states that the unconstrained optimal control

u* satisfies;

oH

ou*

So we find %—ZI and solve for u* by setting our partial derivative of H equal to zero. Thus:

oH
. = ~ButBrywi — Blxyws +vi —v2 =0
= Bu = Bxyw; — B'xyws +vi — v
= u*(t) — Bxywl “B,xyWZ +v1 )

B
So we find that in this case, where v|(¢) = v2(¢) = 0, our optimal control is characterised
as:

To completely characterise u*(¢), we must consider the boundary cases u* =0 and u* =1

as well as the non-boundary cases. We have:
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Consider the set {¢ : u(#) = 0}. In this case, vo = 0. Thus, from the definition of the optimal

control above, we have:

0= Bryw — Blxyws + v
= .

Since (by definition) vi > 0, we see that the above implies that

Bxyw — B'xywa <0,
so to ensure that u* is not negative, we must define a new function:
sT = max{s, 0}.

Therefore, on this set,

v _ Brywi —Boyws ™
u*(t) = B .

Now consider the set {¢ : u(¢) = 1}. In this case, vi = 0. Thus:

[ = Bxyws — Bxyws —vo
3 .
This tells us that 0 < vy(¢) = Bxyw; — B'xyw, — B, or, more precisely:

Bxywi — B'xyw,

B >1=u"

So, on this set, we must choose

u*(t) = min

{Bxywl ;B’xsz,l}.

To conclude, we take all three cases together and we find that we can completely charac-

terise u*(¢) as follows:

4 (¢) = min { p Bow ;B'xyw{“}.

We summarise the above results in the following proposition:
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Proposition 3.2.3 An optimal control for the optimal control problem (3.2.9)—~(3.2.12) is

completely characterised by

W) = min{l, Bayw — B'xwa}

B

So, we can see that the control is described in terms of levels of circulating healthy and
infected cells as well as their related adjoint/dual variables.

The optimality system is an important part of this problem. It describes mathematically
how the system behaves under application of the control. Therefore, we may find how the
different populations of cells grow or decay when the individual is treated with optimal
therapy as characterised in section 3.2.

The optimality system is defined as the state system together with the adjoint system
and the optimal control u#*. The adjoint system is given by:

dwi _ oH
dr o
dwy, oH
a9y
dws oH
d - ez

The final component in the optimality system is the set of transversality conditions. They

are a consequence of the following result.

Given the maximisation problem maxJ{u] = F(x(T)) + fOT fo(x,u)dt, subject to the state
system dx/dt = f(t,x,u) and such that x(T') belongs to some target set g(x(T)), we have
the following transversality conditions on the adjoint variables:

k
wi(T) = VF (x(T)) + 3, cigi(x(T)). (3.2.13)

i=1

Note that the function F is known as the terminal cost.

In our problem, there is no terminal cost, so F (x(T)) = 0. We also do not have a target set
for our state variables — we have a desired end result, of course, but the final state is in
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fact free, so the summation term is also zero.

Therefore, the transversality conditions for the adjoint variables are:

wi(T) =0,i=1,2,3. (3.2.14)

Therefore, taking the state system together with the adjoint system, the optimal control,

and the transversality conditions, we have the following optimality system:

dx
dt
dy
dt
dz
dt
dw
dt
dws
dt
dws
dt

u*(t)
wi(T)

A—dx—(1—u)Pxy

(1 —u)B'xy —ay—pyz

cxyz —hz

—1+dwi + (1 —u)y(Bwi — B'w2) — cyzws
(1 —u)x(Bwy — P'wa) +awy + pzwz — cxzws

—1 4 pyws —exyws 4 hws

min { 1 x)’(BwlB— B'w2) +}

0,i=1,2,3.

3.2.3 Continuity Properties of the Optimal Control

We find that not only is our optimal u* Lebesgue-measurable, it is in fact far better than

that: it is continuous. To prove continuity, we employ a result from Fleming and Rishel

[22] (Theorem 6.2).

Theorem 3.2.4 An optimal control u*(t) for the problem (3.2.9)-(3.2.12) is continuous on

the interval [0, T].

Proof: To prove the above result, we apply the following lemma:

Lemma 3.2.5 Consider the optimal control problem:



maxJ{u] = /0 " Lt x(0), ()t
subject to:

dx

_d_t :f(tax(t)au(t))'
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If there exists an absolutely continuous vector function P = (P, ..., P,) defined on [0,T]

such that, for almost all t € [0,T]:
(1) L = —P(r)' filt, (), u* (1)) — Lu(t,2* (1), (1))
(2) H(t,u) > H(t,u*(t)),Yu € U, where
H(t,u) = P(t) f(t,x*(¢),u) + L(t,x*(t),u),
and if the following conditions hold:
(3) L satisfies Lemma 3.3 (e)
(4) —H(t,) is strictly convex on U,

then u* is continuous on [0, T).

Clearly, condition (3) is satisfied, since it was necessary for the previous existence result.

We shall examine the remaining three conditions.

Condition (1): The component functions of the vector P are the antiderivatives of the ad-

joint variables w;. We can see this as follows. Condition (1) is equivalent to saying:

[dPl(t)’ apy(t) dP3(t)’]
dt dt dt

=8 — (1 —u)By* —(1—u)Bx* 0
=—| PGy Py P || (1-wBy (l-wBx—a—pz  —py"
cy*z” cx*z* cx*y* —h

Matrix multiplication yields the following system:

+

-1
0
-1
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dP(]lgl)’ _ (8+(1—u)ﬁy)P1(t)/_(l —u)B?Pz(t)’—cy_zP3(t)’— 1
dP;Et)l = (1 —M)prl(t),—((l —u)Bf—a—pZ)P2(t)’_cx—ZP3(t)l
deiEt)’ = pyP:(t)' — (cxy —h)P3(r) — 1.

This is exactly the adjoint system that we derived in Section 3.2.2. Thus, the functions
P,(t) = w;(t), are the adjoint variables. Since the adjoint variables are continuous, their
integrals must be absolutely continuous. The components P;(¢) of the vector P are simply
the integrals of the P/, or w;s. Thus such a vector of absolutely continuous functions exists.

Note also that the function H in (2) is simply the Hamiltonian. Recall also that the
Hamiltonian was formulated as

H = —Bu?/2+ terms linear in u+ terms without u.

Taking its negative, we obtain:

—H =Bu*/2+ou+y.

This is a quadratic function, a parabola in fact, since its coefficients do not depend on u, so
we can see that it is convex in u. By Pontryagin’s Maximum Principle, H(¢,u) > H(t,u*).

Therefore, all conditions in Lemma 3. are satisfied and an optimal control for (3.2.9)-
(3.2.12) is continuous.

Now we return to the analysis of the optimality system. Our goals are as follows:

e Establish uniqueness of solution to the optimality system over suitably small time
intervals.

e Perform numerical simulations to determine the precise qualitative behaviour of the
optimality system, and of the optimal control itself, over fixed time intervals.

This system has the following interior equilibrium:

————— o _ (A=(1—u")Bh dh (1—u*)B'(cA—(1—u*)Bh) a
(53,2, 1,72,3) = ( cd  A—(—uph’ o -5
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px+z)+a (1—u")(ch—(1—u")Bh) Plp(x+2) +a]>
pxd ' pdh " cdpxz '

3.2.4 Uniqueness of the Optimality System

Before we analyse our optimality system (3.2.9)—(3.2.12), we shall establish uniqueness of
its solutions over suitably small time intervals. To do this, we must use the results about
boundedness that we established in Section 3.2.1. This method is based upon results in
Fister et. al. [21].

Proposition 3.2.6 For T sufficiently small, the solution to the optimality system is unique.

Proof: We shall proceed by assuming that there are two solutions to the optimality sys-
tem, and show that they must be equal. Let the two solutions be (x,y,z, w;,w2,w3) and
e ¥rwy = e s, w3 = e~ y. Similarly we define X = e¥p,y = e¥p*,z = g, w; =
e %7, wy = e Y5, W3 = e M7

Thus we have that:

Of (4 * +
u—_-min{l,—————Be (rBs)pp }

and

Ot (= \mm*t
zz:min{l,_ﬁfﬁB_ﬂpL }

The next step is to substitute the expressions for x,y,z, ... into the state system differential
equations. We begin with x = e p; the first equation in our system becomes (after dividing
through by e*):

d (% __ S o,k
d—f—i—ap:le'“’—dp—(l—min{l,ﬁe 4 ;)Be pp })Bewpp*.

Similarly, we proceed with the other five equations in our system. (The equations for our

“second” solutions are virtually identical, except that in place of p we have p, and so forth.
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So I will only be reproducing the equations for the “originals”.)

dp* U (7 \RLM gk T

;d—q- +og = ce®¥pp*q—hq

(v < ot .kt
Y o = ™ —dr— (l—min{l,Be (F=5)Be"pp })ewp*(r—s)—i-cezwp*qr

B
d (041 7 o *+
'—2::'4‘(15 _ —(l—min{l,Be (r ;)Be pp })epr(r__s)_ar_pequ+082wpqv
d
_d_‘t) +ov = ¥ — pewp*s + cezwpp*v — hv.

X, for y and y, for z and Z, for w; and Wy, wy and w3, and for wz and w3 are subtracted.
Then, each equation is multiplied by an appropriate function and integrated from O to T'.
Our integral equations are given by:

S P o[ (p-pde=—d [ (p=pYar

T - T -
+B/0 e (pp*u—pp*u)(p—p)dt — ﬁ/o e (pp* —pp*)(p—Dp)dt.

T T T
%[p*m—ﬁ*m]zm /0 (p*—P")2dt = —a /0 (p" —P")2dr+B /0 & (pp* —pp)(p" — 7" )t
T o T .
B /0 ¢ (pp*u— ppru)(p* — p*)dt — p /0 e (p*q—°q) (p* — P*)dr.

Sla) -aOF +o [ g=22di=c [ & pp'a—pra)a—aar

T T
—c [ & (pp*qu—ppran) (g2t —h | (q—7)%r
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—;—[r(T) _HT)P+o /0 " r—7)dr = /0 " s /0 "7
—B/ (p*r—p*r)(r—7) dt+B/ pis—p*s)(r—r)dt
T . T L
—I—B/O ew(p*ru—p*ru)(r—f)dt—B/O e¥ (p*su— p*su)(r—7)dt

T T
+c/ e (p*qv—p*qv)(r—F)dt — c/ e (p* qvu— p*qvu) (r—F)dt
0 0

—;—[s(T) —E(T)]z—%—OL/OT(s—E)zdt = —a/OT(s—E)Zdt—B/()Tew(pr—ﬁ)(s——E)dt
-I-B/ (ps—ps)(s—s dt—l—B/ e (pru—pru)(s—5 dt—B/ (psu—psu)(s—3)dt

T T
—p/ (gs—qs)(s— s)dt+c/ eo"(p*qr—p*qr)(s—-f)dt—c/0 e¥ (p*qru—p*qru)(s—3)dt.
0

%[V(T) —V(T)]2+0L/OT(V—V)2dt = —p/OT e (p*s —p*s)(v—v)dt

T

T T
+c/ e2w(pp*v—pp*v)(v—v)dt—c/ ezw(pp*vu——pp*vu)(v—-v)dt—h/ (v—7)2dt.
0 0 0

Further, we can make estimates, bounding all these integral equations above by new integral

equations. We obtain:

ST 5P +a [ (p-p)ar <
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d [ (o-pPart i [[(p=P (5" = =7 (s
L) P o[ (7 e <
af (-7t + G / (p-PP+ (0" P+ (g -7 s
0 0
£ [ (p= P+ ("~ =+ (=5

e g o (-7l

h /0 (g2 i+ Cie™T /O -7+ (0 =72+ (g - .
(1) ~H()P +a /0 "7 <
d/OT(r—T)de—Cse“T /OT[(p* — ")+ (r—7)%+ (s —3)?]at
406 [ P+ =)+ (=7l

0
£ [M(p—pP+ (5 + (=7 (59
%[S(T) —E(T)]2+oc/0T(s—§)2dt <

o[ (s=5Pdi+Coe™ [ p-PP+ (g =2+ (r= 7+ (=3
0 0
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£ [ (p—p + (0 5+ (=7 + (5= 9Pl

%[V(T) —W(I) +o /0 " =) <

[ 9P o [ =P+ (7 =R (5= (v

Finally, we add these together, which enables us to make the following estimate:

o) =B+ 310" (1) =7 (1) + 5 la(T) —a(D)P
T =R + 5[5(0) ~ SO+ 5 b(T) = F(DP

w01 [ -+ -+ g -2

+Cy /0 T[(r— )2+ (s =32+ (v—9)dt <

Gt [ (=) (7~ =2+ (=7 (5= + (o=

+C /OT[(p P+ (p =)+ (g—9) + (r =T+ (s—5)* + (v—V)?]ar.

Thus taking everything to the LHS, we have:

(a—c1—c2e*T) /0 T[(p—ﬁ)2+(p*—ﬁ*)2+(q—a)2+(r—f)2+(s—§)2+(v—V)2]dt <0.

However, note that for
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o=>crte
and

o—C)

1
T<—1 :
< g og( = )

we must have p =p, p* =p*,q =¢,r =F,s =5,v=". In other words, over the time interval

bounded as above, the solution of the optimality system is unique.

3.3 Numerical Results

Several methods of solving the optimality system were attempted before a correct, working
method was found.

First, we attempted to use the boundary value solver in XPP. However, because the
Jacobian of the system is not invertible, it is not possible to solve the system with the
transversality (end) conditions on the adjoint variables. The best we can do in this case is
to assume a free final time, but the solution will likely be quite different and not applicable
in practice.

We also attempted to solve the system using a Runge-Kutta four scheme (programmed
in Fortran), solving the state equations forward and the adjoint equations backward in time.
However, the nonlinearity of the system rendered it highly sensitive to the initial guess
that was made for the adjoint variables. Thus, the problem could not converge — the end
conditions were not satisfied for any initial guess that was made.

Finally, the correct method was determined. As mentioned, because of the problem’s
nonlinearity and resultant sensitivity to the initial guess, the time scale of the problem
caused difficulties. The problem first had to be rescaled, so that the time interval of [0, 100]
appears to be [0, 1]. This is simply a result of rescaling — on the graphs, ¢ = 0.1 actually
means ¢ = 10 days.

The boundary value problem was then solved by implementing a Fortran program in
which the initial guess was produced based upon known initial values, and the system
was solved by analytic continuation. Essentially, the solution was determined first on a

very small interval, and each step of the program “continued” that solution, extending it
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onto longer and longer intervals, until ultimately a convergent solution was found for the
entire interval. Recall in Section 3.2.3, in the proof sketch of Lemma 3.3, we discussed
the construction of a maximising sequence — a sequence of approximations to the solution
of the state system and the optimal control (x",u") that maximised the performance index
J over the interval [0,7]. This numerical method employed essentially the same idea,
constructing approximations to the control and the solution of the state that ultimately
converged to the optimal pair.

The following graphs were generated for the control and the state variables in the case
of a small weight factor B = 1. Note that a final time of T = 100 was chosen (partly due to
the difficulty of programming over longer time periods); a longer time schedule could have
been chosen, but the asymptotic behaviour of the variables does not change much after this
point. If B were larger, we would expect that the second peak in u would be lower, and the
drug would begin to drop off earlier. We shall see later that this is true.

1

0.9
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0.4

0.3

0.2+
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Figure 3.3.4: The optimal control versus time.

Note that the control starts out at its boundary value of ¥ = 1, no matter the initial guess
for u. It then drops to u = 0.67 before increasing again to remain between u = 0.9 — 0.95,
from ¢ ~ 20 to ¢ =~ 90, at which point it drops sharply and reaches zero at the final time.
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Figure 3.3.5: The healthy cell population versus time.

We can see that the optimal chemotherapy scheme has a very desirable effect upon the
population of healthy cells. They increase to near their maximal level for almost the entire
length of treatment. The sharp drop off at the end is because of the fact that the drug is
stopped.

1 : v v T v . -
0.9 ~
osl _
o7l 4
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Figure 3.3.6: The infected cell population versus time.

The infection level actually drops to near zero for most of the treatment interval. It then
increases somewhat when treatment is stopped. The infection level actually does not reach
zero (although it appears to in the graph!), but rather a very small value, equivalent to a
viral load from about 10° — 103 (please refer to the section on parameter values at the end
of this chapter for further explanation). So although infection is held at very low levels,
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it is not eradicated. We must consider why this is true, from both a mathematical and a
biological perspective.

Mathematically, the reason that optimal therapy is not succesful at eradicating infec-
tion is that no optimal solution has a drug that is given at 100% strength for the duration
of the course of therapy. This is due to the formulation of the objective functional J[u];
specifically, the fact that we are balancing benefit and cost. We cannot afford to ignore
drug toxicity or cost and therefore the fact that we are not only maximising healthy cells
and CTLs but also minimising the square of the treatment function ensures that it would be
far from optimal to administer full strength drug therapy continually.

Biologically, it is unrealistic to assume that any drug could be totally effective for long
enough to reduce the system to its uninfected state, and this is reflected in our model. It is
significant to note that infected cells are not eradicated, because many people believe that
the class of latently infected cells is the reason antiviral therapy cannot be totally effective
at eradicating infection [57]. Our model indicates that even without eradication, infection
can be controlled and healthy cells maintained despite this fact.

2.5

" L "
0.6 0.7 0.8 0.9 1

Figure 3.3.7: The immunity population versus time.

We can see that at the end of treatment, the immunity population has been reduced to a value
very close to zero. As in the case of infected cells, we note that this never actually reaches
zero. There is always a small pool of immunity cells, even at the final time. However, we
can also see that there is an initial “spike” in the population of immunity cells. Looking

back at the graph of infection versus time, we can see that this spike occurs in response to
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the peak in infection level. We expect that after the final peak in infection level (the one
occurring at t = 100), the immunity would then rise again. Although these results may seem
less than optimal, given that we had initially defined the problem in terms of maximising
immunity as well as healthy cells, we could also look at it another way. The drug has
so effectively suppressed infection that the immunity is not needed. But we should also
consider the possibility of separating immunity into memory and effector CTLs, rather
than a generalised pool describing both, to determine whether it is possible to maintain
memory CTLs at positive levels. This also shows that although the asymptotic properties
of the ODE models are the same, the properties of the controlled models may not be.

We also note that the higher weight factor B, the lower is the second peak in the control.
In all cases, we start out with treatment at full strength, but as the weight on cost grows, the
amount of drug we give is lowered.

We ran simulations of the optimality system for various weighting factors ranging from
B =0.1 tp B = 10 and found the following results. First we can see that for B = 0.1, the

medication scheme is not much different than it is for B = 1:
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Figure 3.3.8: The control for B =0.1.

But when we increase the weighting factor we can see that the drug scheme is slightly
different. Observe the following graphs for the control u(¢) for weighting factors of B =5
and B=10:
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Figure 3.3.9: The control for higher weights on cost.
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Alternatively, we could consider giving the drug for a shorter time as the weight is

increased.

Comparing our results with those established in [36] and [21], we find that our con-

trol does behave somewhat differently from drugs used to control systems not explicitly

modelling immunity. In [36], the control was either monotone decreasing from its maxi-

mum value, or it peaked slightly right near the initiation of treatment and then dropped off.

However, we actually observe that our control decreases soon after initiation of treatment,

only to rise again, remain close to constant, and drop rapidly near the end. We believe that

this drop is directly dependent upon the action of the immunity, which occurs shortly after

treatment initiation in response to the high infection level.
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Table 3.1: Variables and Parameter Ranges for Immune Response

Parameters and Variables Values
Dependent Variables
x(t)  uninfected T-4 cell population size
y(t)  infected T-4 cell population size/viral load
) immunity cell population size
Parameters and Constants

A source rate of T-4 cells 1 — 10 cells/day
) decay rate of healthy cells 0.007 — 0.1 cells/day
B rate T-4 cells become infected 0.00025 — 0.5 cells/day
B':B proportion of infected cells surviving incubation ~ 1
a death rate infected T-4 cells, not by CTL killing 0.2 — 0.3 cells/day
p rate at which infected cells are killed by CTLs 1/day
c immunity activation rate 0.1 — 1/day
h death rate of CTLs 0.1 —-0.15/day

Parameter ranges used for numerical simulations of Model 1 are given in Table 3.1 above.
All parameter ranges for A, 9, 3, a were used in references [2], [73], [76], [57], [66], [38].
(Not all parameter values were used in all of these references.) However, the ranges for
p,c,h were found in [2] and [76]. A wide range of possible parameter values has been
suggested for HIV modelling. Part of the reason for this is that it is so difficult to assign
one set of parameters to individuals showing such dramatically different clinical outcomes.
Add to this the belief by some researchers that “with HIV, not many parameters are known...
except for the half-life of infected cells” (Dominik Wodarz, personal communication, [78]).

However, the parameters are generally given in units of cells mm™3 day~!. We must
be somewhat careful, however. For example, assuming that A lies in the range of 5 — 10,
c=p=1,=0.5h=0.1and & = 0.02, we obtain healthy cells at a level of = 250 — 500
mm 3, consistent with an HIV-infected individual. We also obtain a CD4+:CTL ratio of
about 2 : 1. (No matter the value we use for infection rate, CTLs remain proportional with
CD4+s.) Assuming viral load to be proportional to infected cells and that it is ~ 10° —
10° x y(t), we obtain a viral load in the 1,000 — 100,000 range. This is not unreasonable,
considering the nature of the viral load test — “viral load” is an approximation based upon
PCR (as opposed to “viral burden”, the actual number of viral particles per millilitre of

plasma, a much harder to measure quantity).
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In the simulations reproduced in this and Chapters Four and Five, we use parameters
from [76] to display the qualitative behaviour of the systems in parameter space, but we
note that the stability properties of the models are retained using most values from the
ranges given in Table 3.1.

As a final note, we point out that the goals of this thesis are mathematical and qualitative
in nature. Much larger, more quantitatively sophisticated models are needed to determine
precise treatment regimes in terms of days on therapy, exact drug quantities, and so forth.
Such models are a logical extension of the model presented here.



Chapter 4

A Delay-Differential Equation Model of
HIV Including Immune Response

In this chapter, we analyse the qualitative behaviour of model (3.1.1)-(3.1.3) in the case
where we incorporate a time lag. As will be the case in Chapter Six as well, the delay rep-
resents the time lag between when a cell becomes infected and when it is actually infectious

(i.e. begins producing virus). Our objectives are to:

e Derive general conditions for delay-induced bifurcation for a three-dimensional sys-

tem.

o Apply these to our specific problem to determine when and if delay-induced bifurca-

tion occurs.

e Determine what the significance of our results are. So we ask: does the system be-
have “better” when nonconstant HIV-specific immunity is considered? In this case
that would amount to delay-induced bifurcation either not occurring at all, or occur-
ring only under unrealistic parameter ranges. We shall see in Chapter Six that when
nonconstant immunity is not considered, instability results under realistic parameter

ranges.
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4.1 Biological Background

The reasons for considering delays are not only mathematically but biologically important.
First of all, there is a time lag after a cell becomes infected with HIV, but before it begins
to infect others, that has been estimated to be anywhere from six hours to two days (see
for example Mittler at al. [46] or Nelson et al. [50], amd references cited therein for
estimates of the intracellular latent period). Therefore, incorporating this delay into the
models mathematically renders the systems in some sense more “continuous”, as we are no
longer ingoring a block of time that should be accounted for.

In this chapter and the two that follow, we shall be specifically concerned with whether
the models incorporating delay are capable of exhibiting delay-induced or Hopf bifurcation
for realistic values of the delay. This question has been addressed in a model including
free virus, see Culshaw and Ruan [13]. We do this because the existence of stable steady
states is very important biologically. For example, in Model (3.1.1)—(3.1.3), the interior
equilibrium is stable in the absence of delay. This is desirable, as it indicates that the host
remains healthy in all probability. However, if the incorporation of a time delay allows for
a Hopf bifurcation to occur for realistic parameter values, we must consider the possibility
that in life, the patient could easily be perturbed out of a steady state into instability, which
will likely result in destruction of the host.

We will be examining the possibility of Hopf bifurcation occurring in our models. A
Hopf bifurcation occurs when a pair of complex conjugate roots of the characteristic equa-
tion switch from having negative real parts (indicating asymptotic stability of the system) to
having positive real parts (indicating a bifurcation occurs and the system is rendered unsta-
ble). When this occurs, a stable spiral point becomes a family of periodic orbits, indicating
a fundamental instability in the patient’s condition and likely destruction of the host.

4.2 Analysis of the General Characteristic Equation

To analyse the stability of the system and determine whether the delay may render it unsta-
ble, we must consider the characteristic equation. As in ODE systems, a delay system is
asymptotically stable if and only if all roots of the characteristic equation have negative real

parts. The characteristic equation is derived from the linearised system which is expressed
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as

dx(t)
dt

where A and B are matrices with constant coefficients. Below we show how this linearised

= Ax(t) + Bx(t — 1),

system is derived from the original nonlinear system, and how the characteristic equation
is obtained.

Consider a system describing the change over time of » interacting populations. Now,
assume that some of these populations are dependent upon events that are not occurring at
time ¢, but rather T time units ago. Mathematically such a system would be expressed as:

X = Fx(0) + (o= 7).
where x, f and g are vector-valued functions. In this case, the vectors are three-dimensional,
consisting of three space variables, all dependent upon time.

The model is analysed by linearising the system about its interior equilibrium (%,¥,Z)

so that we can express a system in the following form:

d X X X
il t)=A|y |(®)+B]|y | (-7,
Z Z Z

where A and B are coefficient matrices. We assume a solution of the form x(¢) = "' and
by substituting into the above expansion we obtain:

ve" = Ae™ + Be"'™ = |wl —A — Be ™| =0.

In both cases our characteristic equation is of the form:

w? +aw? + ayw + (azw?® +aqw +as)e ™" +ag = 0. 4.2.1)

Since we are interested in when and if delay-induced bifurcation occurs, we wish to de-
termine if (4.1.1) may exhibit purely imaginary roots. We note that there are in fact two
possibilities:

(a) Under certain assumptions on the coefficients of equation (4.1.1), all roots have
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negative real part, for all values of the delay t > 0.

(b) If the assumptions in (a) are not satisfied, there is a critical value Tp, such that when
the delay T < 10, the real parts of all roots remain negative. When T = Ty, there is a pair of
purely imaginary roots and all other roots have negative real parts. When T > T, there is at
least one eigenvalue with a positive real part.

We shall study the distribution of the roots of this polynomial, following the analysis in
Ruan and Wei [60].
To begin with, note that roots of (4.1.1) will be complex of the form:

w=0+io,

where ® may be zero (if they are real).

For delay-induced bifurcation, we want to see if roots of the form w = i® are possible.
This is because in the case of delay-induced bifurcation, it occurs as a stable spiral point
becomes unstable as the real part goes from negative to positive, passing through a pure
imaginary value. What happens at this point is a family of periodic solutions bifurcates
from the equilibrium when the eigenvalue is purely imaginary.

Substitution of w = i into equation (4.1.1) yields:

3

—i®® — a1 0 +iay® + (—a30” + iag® + as) (cos(wr) — isin(wt) +ag = 0.

(Note that the trigonometric forms come from the use of Euler’s formula.)

We separate real and imaginary parts to obtain:
a0® —ag = —(azw?® —as)cos(wt) +asmsin(wr)
0 —amo = (a30° —as)sin(wt) + ag0cos(wT).

Squaring both sides and adding, we obtain:

@0 + (a? — d} — 2a7)w* + (d} — 2a1a6 + 2a3a5 — a3) 0* + a2 — a2 = 0. 4.2.2)
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For purely imaginary roots of (4.1.1), we require that the above exhibit positive roots. To

make our analysis easier, we employ the following notation:

v = o
p = at—ad5—2a
q = a% —2a1a¢+2azas — a%
r = at-di.
Equation (4.1.2) becomes:
h(v) =V +p? +qv+r=0. (4.2.3)

Claim 1: If r < 0, then equation (4.1.2) has at least one positive root.

Proof: Let

(V) =V +p? +qu+r.
It is obvious that A(0) = r, and since limy_.. A(v) = oo, we can see that there is some
vp € (0,e0) such that ~(vg) = 0.

Claim 2: Suppose that r > 0. Then, for equation (4.1.2) to have positive real roots, we
require that p?> —3¢q > 0.

Proof: Differentiating h(v) with respect to v yields:

dh(v)
dv
The roots of the above equation, which correspond to the extrema of (4.1.2), are:

-pEvVp*—3q
3

= 3y? +2pv+q.

Vi2 =

Clearly, if p> — 3¢ < 0, dh/dv does not have real roots, and the function k(v) would thus

be monotone increasing in v. Together with the assumption that r > 0, there must be no
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positive real roots of h(v). Therefore, for positive real roots of (4.1.2), it is necessary that
p?—3¢>0.

Note that, if p> =3¢ >0, v| = :ﬁ@ is the local minimum of 4(v). This yields:
Claim: If r > 0, then equation (4.1.2) has positive roots if and only if v > 0 and 2(v;) <0.

Proof: Since sufficiency is obvious, we prove necessity by contradiction. Suppose that
either vi < 0 or that both v; > 0 and h(v;) > 0. In the first case, if v{ < 0, since h(v) is
increasing for v > v; and h(0) = r > 0, there must be no positive real roots. In the second
case, if both v; > 0 and A(v;) > 0 hold, then since v; = i@ is the local maxi-
mum, A(v;) < h(v2). So since £(0) > 0, A(v) must have no positive real roots. Therefore,

necessity is proven.

We summarise the above analysis in the following Lemma:

Lemma 4.2.1 Suppose that vi = ig@.

(a) If r <0 = (4.1.2) has at least one positive root.

(b) If r > 0 and p* —3q < 0 = (4.1.2) has no positive root.

(c) If r > 0 = (4.1.2) has positive roots if and only if vi = %(—p + \/,;2——3q) > 0and
h(vi) <0.

We note that at the bifurcation value T,

w = 0(Tp) = Wo.
So:
o(To) = o
o(To) =0.

So the real part of the characteristic equation equals zero and the imaginary part equals ®g:
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al(‘)(z) —aeg+ (GB(D% —as) cos(WpT) — asgp sin(@Wpt) =

@p — ar 0 — (a3 3 — as) sin(wpT) — agwpcos(wpt) =

We multiply the first equation by (a3®3 — as) and the second by —a4p, and add them

together to cancel the sine terms. Thus:

{ (a4 —0103)(08 + (alaS +a3de —aas — a4)03(2, — 959 } + 2jn7j= 0,1,2,....

To = —- arccos
%) (a3co% —a5)2+a40)(2)

4.2.4)

Lemma 4.2.2 Suppose that a; > 0, as+ag > 0, ajay —as —ag > 0.
(a) If r > 0 and p* —3q < 0= all roots of (4.1.1) have negative real part for all T > 0.
(b) If r <0 or r >0, vi > 0 and h(vy) < 0= all roots have negative real parts for
1 € [0,70).

Proof: When 1t =0, (4.1.1) becomes:

w +a1w2 +axw—+as+aeg.

By the Routh-Hurwitz criteria, all roots of the above have negative real part if and only
if a; > 0,a5+ag > 0 and ajap —as —ag > 0. If r > 0 and p* — 3¢ < 0, we have shown
already that (4.1.1) has no roots with zero real part for any T > 0. Otherwise, if T # 1o,
(4.1.1) has no roots with zero real part, and 7y is the minimum value of 7 so that (4.1.1) has
purely imaginary roots. Application of Lemma 1.1 from [60], this concludes the proof.

Finally, from Ruan and Wei [60], we have the following transversality condition:

d
Zﬁa(m‘:‘o > 0.

This means that the real part of our root w is increasing as the delay increases.

We summarise the above results in the following proposition:

Proposition 4.2.3 Let 0y, T and w(7) be defined as above, and let vo = 3. Suppose also
thata; > 0, as+ag > 0, aja; —as —ag > 0.
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(i) If r > 0 and p? —3q < 0, all roots of (4.1.1) have negative real part for all T > 0.

(i) If r <0 orr >0, vi >0 and h(v1) < 0 then all roots of (4.1.1) have negative real
parts when T € [0,T).

(iii) If the conditions in (ii) are satisfied, T = Ty and h'(vp) # 0O, then +iwy is a pair of
simple purely imaginary roots of (4.1.1) and all other roots have negative real parts. As
well, (d/dt)Rew(tg) > 0.

4.3 Analysis of a Model with Delay in Infection Rate

We wish to examine how system (3.1.1)—(3.1.3) behaves when we have a delay in infection
rate. That is, infected cells do not begin producing virus or infecting other cells until T time
units have elapsed. So the cells remain “latent” and the current behaviour of the system
depends upon the behaviour of some of its components now, and that of some others T time
units ago.

Mathematically we express the system as:

d_);(;’l = A= 8x(t) — Pr()y() 43.5)
DO Bx(e -0y -) -y (0) —py(0)elt) (43.6)
%(;—) = cx(t)y(t)z(t) — hz(z). (4.3.7)

In this case, 7T is the length of the delay. To employ the methods we developed in the
previous section, we must linearise about the interior equilibrium, which is the same as

before. So we define new variables:
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We transform the interior equilibrium to zero and drop the nonlinear terms. Replacing our



dummy variables u, v,w by x,y,z again, we obtain the following linear system:

dx(t) A B(hc — Bh)

TR v T Y )

dy(t) _ PB'on B'(Ac—PBh) B'(Ac —Bh) poh
i T g U T O YO )

W= (s s (g o

In matrix form;

dx(r)
= Ax(t) + Bx(t — 1),
where
_ Acd __Blhc—Bh) 0
E—Bh o
0 _P'(Ac—Bh) poh
A= cd Ac—Bh
B'h acdh Ae—Bh [ B'(Ac—Bh) a 0
P p(Ac—Ph) p 8
and

0 0 0

_ 'Sh B (he—Bh)
B=| B Bl
0 0 0

Now we are all set to analyse our characteristic equation, which is the determinant:

Acd '(Ac—Bh

=1 , e 0
B_Sh -, B(Aﬁ—Bh) (1—e™)

acsh __ Bh heph( B’(M—Bh)>

p(Ac—Bh) P 3p cd

which is of the form (4.1.1) with:
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Acd N B'(Ac—Bh)

ay =

Ac—Bh cd
o = BB,
L _BOc—ph)
3T cd
o _ BB

c
as = 0
ag = ——Bh(xi_ﬁh)—adh.

Recall that the first condition for bifurcation was that:

r=a%—a§<0.

However, as = 0, and a% > 0 always, so this condition will never hold. So we’ll check the
second condition.

Notice that, with parameter values given in [76], v; =~ 1/30 and h(v;) =~ —0.037255.
The bifurcation value is 7g ~ 8.7.

We would like to note that, for simplicity, simulations were run using parameter val-
ues from [76], but for any parameters given in Table 1 (Chapter Three), we do not find
bifurcations occurring for any value of T < 8.

4,3.1 Numerical Simulations

Numerical simulations of the delayed system, using XPP, are quite instructive. We can see
that for values of the delay t = 1, the system behaves exactly as the ODE system, with all
components converging to their steady state values.

Here we can see x,y,z versus time:



Figure 4.3.1: The population of healthy cells converges to equilibrium for T = 1.
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Figure 4.3.2: Infected cells converge to equilibrium for 1 =1

Figure 4.3.3: Immune response cells converge to equilibrium for 1 =1
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As well, we can see that when we plot the phase portrait of any two components, they spiral

in to an equilibrium.
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Figure 4.3.4: Healthy versus infected cells, T =1
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Figure 4.3.5: Healthy cells versus immunity, T =1
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Figure 4.3.6: Infected cells versus immunity, T =1

However, when we increase the delay we observe some periodicity in our components

when they are plotted against time:

Figure 4.3.7: Healthy cells no longer tend to stability, T = 10
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LU

Figure 4.3.8: Infected cells oscillate, T = 10

Figure 4.3.9: So does the immunity, T = 10

Also, we can see convergence to some sort of periodic orbit in the phase plane:
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Figure 4.3.12: Infected cells versus immunity, T = 10
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All simulations above are shown for B’ = . We note that if we assume only 70% of infected

cells survive incubation, our oscillations appear slightly different:

Figure 4.3.13: Healthy cells oscillate, B = 0.35,7= 10
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Figure 4.3.14: Infected cells oscillate, § =0.35,1= 10
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Figure 4.3.15: Immune response cells oscillate, p = 0.35,7 = 10

We should note here that although this system does exhibit bifurcation behaviour, it
does not occur for a realistic value of the delay, and hence our system is likely to remain
stable and behave similarly to the ODE system (3.1.1)-(3.1.3).

4.3.2 Using a Distributed Delay

Another way to eliminate the appearance of (¢ —T) from our differential equations is to use
a distributed delay instead of a discrete delay. We then may apply the linear chain trick
to transform our three-dimensional system into a four-dimensional system. This is useful
because it will make the numerical analysis of our optimality system possible.

In this case the system would become:

dx

2 NSy — 4.3,

o A — &x — Bxy (4.3.3)
t

% = B'/ ote™ W) xydw — ay — pyz 4.3.9)

dz

7l cxyz — hz. 4.3.10)

We let

t
¥ = / ote™ " ) xydw,

—o0
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whereby we obtain the relation % = oy — o¥. Thus the above system of functional

differential equations is equivalent to the following system of ODEs:

dx

il A —&x —PBxy
% = B'¥—ay—pyz
% = cxyz—hz

% = oxy—aov.

@.3.11)
4.3.12)
(4.3.13)

(4.3.14)

It is simple to verify that this system exhibits instability under the same circumstances as

does the system with discrete delay.

Our characteristic equation is:

with

v 4+ b1y +byv? +b3v+bs = 0.

o+a+3+p'y+pz
o(a+8) +ad— afdx + (hp + o’ + af'a)y + (ap + dp + af'py)z

(4.3.15)

aad — ofdx + (ohp + oaf’ + 8hp + B'hpy)y + (adp + o' py — Phpy)z

ohpy(8+ By — B'z).

We may apply the Routh-Hurwitz criteria, which state that for a four-dimensional system

with characteristic equation (4.2.15), the interior equilibrium is stable for:

by > 0,b1baby — b2bs — b3 > 0.

A quick check of these conditions for the distributed delay model reveal that the system

becomes unstable for o0 < 0.15 or an average delay of about 9 days as in the system with

discrete delay.
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4.3.3 Biological Significance

Although our parameters were scaled, they are measured in time units of days (see [76]).
We would like to call attention to the fact that the value of the delay after which instability
occurs is about 8 days or so, which is far longer than the average delay in infectivity of 1-2
days. This indicates that in most situations, we should expect an individual with adequate
immune response to HIV to remain stable unless some perturbation occurs (which most
often does at some point in AIDS progression).

We shall contrast this result with the results of Chapter Six, in which we will examine
a model of HIV spread that goes from cell to cell as does this one. However we will not
assume any specific immunity to HIV in that model. Recall that that model quickly became
unstable due to delay. One reason this might occur is that the immunity is important to keep
the system stable — without it, the patient’s condition is more likely to destabilise. Note,
however, that we were not assuming that there was no immunity, but rather that it remains
constant. When we consider variable immunity, our patient fares better. We conjecture that
this is because even though the system is detrimentally affected by high levels of infection,
if conditions are such that the immunity remains sustained (i.e. the interior equilibrium is

stable), the patient will not destabilise due to the intracellular delay.



Chapter 5

Treatment of the Delay-Differential
Equation Model

5.1 The Delayed Model with Suppression of Infection

We observed in the previous sections that our model with a delay in infection rate exhibited
delay-induced bifurcation when T was increased beyond its critical value, Tg, which was
close to nine days. Mathematically speaking, the interior equilibrium was conditionally
stable and a Hopf bifurcation occurs at Tg, whereby a periodic solution was born.

In this section, we ask: what is the effect of incorporating treatment into the delayed
system? Ultimately, we would like to answer this using optimal control theory, so that we
can maximise desirable quantities at the same time as we minimise cost. But we can also
add the treatment as represented by a parameter and examine how this parameter affects
the conditional stability of the equilibrium. That is, is the steady state still stable under the
same circumstances as before? _

Let u be a constant between 0 and 1, with u = 1 representing fully effective treatment

and u = O representing no treatment. Our treated system with delay is represented by:

68
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d%(;l = A—=8x(r) — (1 —u)Bx(t)y() (5.1.1)
did(tﬂ = (1—u)B'x(t = t)y(t — ) —ay(t) — py(t)z(r) (5.1.2)
iz[z%t—) = (I=wex(r)y(r)z(e) — hz(e). (5.1.3)

Its interior equilibrium is given by:

o Ae—(1—u)ph dh (1—uw)pAc—(1—u)?pph a
N ( cd "he— (1 —u)Bh’ cdp —B)

We linearise about the interior equilibrium to obtain a system of the form:

ax() = Ax(t) + Bx(t — 1),
dt
where
'Sh !(Ac—(1—u)Bh
6~ M—?l—u)ﬁh oL ia A 0
Ao 0 B e—(1—u)Bh _ pdh
= 5 Ae—(1—u)Bh
Bhr acdh B'(Ac—(1-w)Bh)®  a(he—(1-u)Bh) 0
P ple—(1-u)Bh) pcd c
and
0 0 0
— p'sh B’ (Ac—(1—u)Bh
B=| r=i—am B o
0 0 0

Our characteristic equation is again of the form:

Vv tap? +av+ (a3v2 +agv+as)e " +ag =0,

with the coefficient values:



B'(he — (1 —u)Bh)

a, =

" = B’(xc—fcf—umh)(%HHM%ﬁ_%
" - _B’(Kc—g—u)ﬁh)

@ = (1-u)’pp'n  B'(he— (1 —u)Bh)

= 0 c c

= B’(kc—(clz——u)Bh)_aéCSh_i_(l—u)CZBB’hz(%_l)_

Recall that we had two requirements for conditional stability, and they were that either:

at—ad? <0,

which is clearly impossible in this case, or that:

—(a? — a2 —2ap) + \/(a% —a3 —2a)? + a3 — d} +2a1a6 — 2azas 0
v = >
3

and that

h(vl) < 0,

where h(v) is represented by equation (4.1.3) from Chapter Four.
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It turns out that indeed this condition is satisfied for any value of u. We also note that

the conditions for two purely imaginary roots of the characteristic equation (4.1.1) were

checked and found not to be satisfied for any value of u. This means that there is only one

switch in stability as T varies.

What does this mean in practical terms? Well, we still have an interior equilibrium that

is conditionally stable, but there is a dependence of our bifurcation parameter Tp upon u.

That is, the higher u is, the higher Top must be to induce bifurcation. What this means in

terms of actual treatments is that if treatment is high enough, the destabilising effect of the
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delay is eliminated.
We can observe some striking examples of this phenomenon when we observe the fol-

lowing numerical simulations.

tau=19, u=0.1

=]

Figure 5.1.1: Healthy cells oscillate with time, T = 10, u = 0.1
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14 |
1au=10, u=0.1

Figure 5.1.2: Infected cells oscillate with time, T = 10, u = 0.1
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Figure 5.1.3: Immune response cells oscillate, T = 10, u = 0.1

We can see that the cells oscillate about a periodic orbit in the phase plane:
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Figure 5.1.4: Healthy versus infected cells, T =10, u = 0.1
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Figure 5.1.5: Infected cells versus the immunity, T = 10, u = 0.1

Now, observe what happens when u is increased:

Figure 5.1.6: Healthy cells stabilise, T = 10, u = 0.6
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Figure 5.1.7: Infected cells stabilise, T = 10, u = 0.6
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Figure 5.1.8: Immune response cells stabilise, T = 10, u = 0.6

It is clear from these images that if enough treatment is administered, the destabilising
effect of the delay will be offset. Clearly maximal treatment will eliminate the infected cell
population, but there is no treatment currently available that is in fact totally effective in

this sense.

5.2 Theoretical Aspects of Optimal Control of the Delayed
System

In this section, we would like to analyze how the delayed system behaves under application

of our optimal control. Note that for systems with discrete delay, Pontryagin’s Maximum
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Principle still holds and the main difference will lie in time-dependence in our control and
the optimality system, which will now contain delays in several terms.

We shall consider control of model (5.1.1-5.1.3).

Similar to the control problem for the ODE system, we find that we must:

T 2
maxJ[u] = /0 (x+z— Ez—)dt
subject to the state system:
—c% = A—0x(t)— (1 —u(®))Bx(t)y(z) (5.2.4)
DO~ (1w -D ) -py(el)  529)
d-z—(tt) = ex(t)y()z(e) — ha(s). (52.6)

We find the Hamiltonian is:

2
H = x(t) +2(t) - B"g S dawn(6) = Sx(e)wi (1) — (1 — u(e))Br(e)y(e)

+(1—u(®))Bx(t — 1)yt —7) — ay()wa(t) — py(t)a(t)wa(t)

+ex(8)y(t)z(e)ws(t) — hz(t)ws (1) +vi(2)u(r) +va(r) (1 —u(r)).

Applying Pontryagin’s Maximum Principle to this Hamiltonian we find that our optimal

control is almost the same as before, but there is one notable difference:

u*(t) = min { 1, max { Bx()y(B)wa(t) = Blz(t = _T)M(t),o}}. (5.2.7)

Using the conditions for the adjoint variables we obtain an optimality system as follows:
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A 8x(1) — (1 — u(t) Be(t)y()

(1—u(e))Bx(t = R)y(t =) — ay(t) — py(1)2(t)
ex(e)y(e)2(t) - halt)

—1+dwi (1) + (1 u(e)By()wi (0)

(1= u(O))B3(t = Dwa(t) — ey(t)a(t)ws(t)

(1= w(e))Bx()wi (1) — (1 — u(t)Bx(t = T)wae)
aw (1) +pz{t)walr) — ex(r)e(t)wa(r)

L4 py(e)walt) — ex(e)p(e)w(e) +ws (1)

win {1, { B0 =B 0= wal) 1,

To properly analyze this delayed system, we must find and linearise about its interior equi-

librium:

Ac— (1 —u*)Bh

cd
Oh

he— (1 —u*)Bh
(1 —u")B'(Ac— (1 —u")Bh)

T

pcd

p+p
op

Ac—(1—u*)Bh

Ohp
B'(p+B')(Ac — (1 —u")Bh)

acd

(1—u*)[ 2p _1] +B’(kc—(1—u*)3h)

Ae — (1—u*)Bh [B’(%c— (1= u")ph) _a].

Shp cd
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As usual, we linearise by setting:

U = xX—X
v = y-y
w = z—2
o = w—wi
oy = wy—wy
o3 = Ww3—ws.

This yields a characteristic equation of the form:

w—aj —ap 0 0 0 0
—bre ™" w—az—bre™' —ay 0 0 0
—as —dag w—ay 0 0 0
C(W) prmng = 0
0 —ag — bze ™" —a9 w—ajp —ai —ap
—ay3 —bse™* 0 —ayy  —aj;s w—aig —arg
—a7 —aig 0 0 —ajlg  w—ay
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This equation is of the form:
w6 + c1w5 + czw4 + C3w3 -+ C4w2 +csw+cg

+(c7w’ +cgw* + cow® +crow? + criw +cip)e ™.

This is a sixth-degree transcendental equation for our characteristic equation. Theoret-
ically, it is possible to evaluate such an equation to determine whether it exhibits purely
imaginary roots, but we follow the analysis as performed in section 1 of this chapter and
find that this amounts to determining if and when a twelfth- degree polynomial exhibits
positive roots. Clearly this is next to impossible in a general setting. So, we choose to
analyse this equation using Maple. We find purely imaginary roots for T ~ 5.

5.2.1 Numerical Results

Numerical simulations of the delayed optimality system were run using XPP. We assumed
a free final time, since it is not possible to solve such a nonlinear delayed boundary value
problem using this method. All initial values were set close to the calculated equilibrium
values. The results obtained were as follows:

For T = 1, we find that the system tends toward its interior equilibrium as the ODE
system does.

However, we notice that as the length of the delay is increased to a value of T =5,
periodicity begins to appear in all components. Notice the behaviour of x,y,z versus time
now:



Figure 5.2.9: Healthy cells oscillate, T =5

09 =

08 p

07 F

06 |

0S5 F

04

0.3

0.2

0.1

Figure 5.2.10: Infected cells exhibit periodicity, T =5

Figure 5.2.11: Immune response cells oscillate with time, T =5
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Also, plotting any two components against each other, we notice limit cycle behaviour.

Observe the following phase portrait of y versus x:

x vs. y, delay=5

Figure 5.2.12: Infected versus healthy cells, T =5

We do not consider optimal control of the system with distributed delay, since realistically,

the system is unlikely to exhibit bifurcation in most realistic scenarios.



Chapter 6

A Treatment Model without Immune

Response

In this chapter, we examine a model of cell-to-cell spread of HIV and its behaviour under
treatment that reduces infection rate. This model was adapted from the paper by Spouge
et. al. [66]. It assumes direct infection from infected to healthy cells, which is important to
consider since a significant amount of HIV activity occurs in tissues such as lymph glands
(see [62]). We shall begin by reviewing the qualitative behaviour of the ODE model as
presented in [66], and then we shall modify it and investigate its behaviour in the following

situations:

e We examine treatment of the ODE system with a parameter representing a drug that
reduces the infectivity rate. We find that the higher the strength or efficacy of the
treatment, the more infected cells that must survive to ensure stability of the interior

(infected) equilibrium. Otherwise, the healthy equilibrium may regain stability.

e We incorporate a delay between the time of infection and the time that infected cells
begin to produce virus. We discover that the interior equilibrium loses stability via
a delay-induced bifurcation, so long as the number of infected cells surviving the
incubation period is large enough. Moreover, we find that the higher the number of
infected cells that survive, the smaller the critical value of the delay.

e We incorporate treatment into the delayed model. We find that since the critical delay

depends upon the fraction of infected cells surviving incubation, which depends upon

81
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the treatment level, that treatment, if high enough, has the ability to restabilise the
system after it has become unstable due to the delay.

6.1 The ODE Model

In this section, we discuss the ODE model

1 rCC(t)(1—CL>C*A‘4’—(’))_k,C(t)I(z) 6.1.1)
% = KC@)I(t) —pl(2). (6.1.2)

Variables and parameters are explained as follows: C(z) represents the concentration
of healthy cells and I(¢) represents the concentration of infected cells. rc¢ is the effective
reproductive rate of healthy cells (the term is the total reproductive rate for healthy cells,
minus the death rate for healthy cells), Cys is the effective carrying capacity of the system,
kr represents the infection of healthy cells by the infected cells in a well-mixed system, %
is the fraction of cells surviving the incubation period, y; is the death rate of the infected
cells.

Notice that the system has the following three equilibria: the trivial equilibrium Ey =
(0,0), the healthy equilibrium E{ = (Cy,0), and the infected equilibrium E = (C,I). Sta-
bility analysis of these three equilibria reveals two possible scenarios:

(1) When Cyy < ’,:,—; (which, under parameter ranges given, usually is not the case), the
healthy cells predominate and infected cells die exponentially. In this case Ey is unstable,
Eq is asymptotically stable, and E is unstable. We note that the condition for E; to be stable
is that k; < 1.5 x 10~7, or that less than 7.5% of infected cells survive the incubation period
to become infectious. In this case Ej is asymptotically stable. We note, however, that in
reality it is unlikely that so few cells would survive latency, and that the following case is
more likely.

(ii) When ’7% <Cy< 7'(?, healthy cells and infected cells co-exist. This would corre-
spond to the case where, in models representing cell-free viral spread, we have an endemi-
cally infected steady state. This means that infection is present but it does not grow out of
bound, and levels of healthy cells do not crash to zero. In this case Ep remains unstable, E;
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is now also unstable and E has become asymptotically stable. A transcritical bifurcation
occurs at Cys > iy /ky, corresponding to k; = 1.5 x 10~7. With parameter values given in Ta-
ble 6.1 at the end of this chapter, numerical simulations show that the positive equilibrium

E is asymptotically stable (see Figure 3.1).

200000 -
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300000 |

200000 |-
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Figure 6.1.1: C(¢) and I(¢) converge to the steady state values.

In the (C,I)—plane, trajectories spiral towards the equilibrium (see Figure 6.1.2).
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Figure 6.1.2: The infected equilibrium is asymptotically stable.

The equilibrium E is, in fact, globally stable for %’} <Cy< g;;— We can see this by
T
applying Liapunov’s theorem. We choose the following Liapunov function:
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- C — D § -
V(C,I)=¢c (——ClogE—I—C—C) +cz<—llog?+1—1> (6.1.3)

This function is clearly positive if we choose ¢, ¢, to be positive constants, and it equals

zero for E = E. We have

dv dC/ds, . - dljdt, -
d_t = (1 C (C—C)+C2 ] (I—I)
(rc = kiCwm)

= —c1é%(C—5)2 + [Czk; —CIT} Cc-O)-1

Assume that Cyy < % and choose ¢; = kj, ¢ = _("C;C];llgﬂl > (0. We have

& _ M <o
priniaroml GRS RRY
which implies that the equilibrium E is globally asymptotically stable for % <Cum<E.
We thus have proved

Proposition 6.1.1 If

HI rc
— -— 6.14
k} <Cy< kl’ ( )

then the infected equilibrium E of the ODE model (6.1.1)—(6.1.2) is globally asymptotically
stable.

6.2 The ODE Model With Suppression of Infection Rate

In this section, we examine the stability properties of system (6.1.1)-(6.1.2) under treatment
by a drug that reduces the viral replication rate. We let treatment be represented by u, which
is bounded below by zero (no treatment) and above by one (fully effective treatment). The
system is now given by:

U rcC(t)(l—%—#)—(l—u)kIC(t)I(t) 62.5)
A (1= wkCOI) (1), (62.6)

dt
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Once again we observe three equilibria: a trivial equilibrium which remains an always

unstable saddle point, a healthy equilbrium

El = (CMaO)

and an interior equilibrium given by:

E— _ ( HI (1 - u)rck}CM —rcuy ) .
(1 =k’ (1= w)kj(re + (1 - w)kiCy)
Analysis of the Jacobian matrix shows that the healthy equilibrium is stable for k; <
(”1—74%' When kj passes through this value a transcritical bifurcation occurs whereby the
healthy equilibrium loses stability and the infected equilibrium is asymptotically stable.
However we note that this condition may also be stated in terms of the treatment u. That

is, the healthy equilibrium is stable provided

A
k;CM ’

and the infected equilibrium is stable if this inequality is reversed. For example, if 50%

u>1-—

of infected cells survive incubation, we require a treatment level of u > 0.85 to drive the
system back to health. If 75% of infected cells survive incubation, we require u > 0.9 to
drive the system back to health.

We would like to note that giving such high treatment continuously is unrealistic given
drug toxicity concerns, but examining the system’s behaviour under these circumstances is
useful in that it provides reassurance that it does indeed behave in a realistic way. In the
following section we shall examine what happens when we use optimal control theory to

determine a treatment that will minimise drug cost.

6.3 The Controlled ODE Model: A Theoretical Examina-
tion

We wish to examine what happens when we control treatment so as to maximise levels
of healthy cells and minimise drug cost. In this case our treatment is a control u(t) with

values between zero and one; we assume that u is Lebesgue-measurable. Our optimal
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control problem becomes:

T Bu?
maxJ{u| = /0 (C - —2—> dt (6.3.7)
subject to the state system:
dc = rcC(t) (1 — M) — (1 —w)k/C(2)I(2) (6.3.8)
dt Cu
d /
d_f = (1= wKCOI(E) -l (D). (6.3.9)

We may use Pontryagin’s Maximum Principle to find the optimal control from the Hamil-

tonian:

Bu? C?
H:C——;—+rCC?\,1—rC

M — rcCIl

Cor Cr A — (1 — w)k/CI\y

—I—(l — u)k;CI}\.z —,u[n\,z—i-vl (t)u(t) +V2(t)(1 — u(t))

(Note that the A ; are the adjoint or dual variables.)
As in chapter three, we find that

At
u* (1) =min{1,C1(k1le kiha) }

Our optimality system is the state system together with the optimal control «*(¢) and the
adjoint system as defined by:

2 i
M+ 2 T (= wIA — (1 — W)k (6.3.10)
dt Cm Cm
D reCy (1= u)Ch — (1 — wKICha + o, (6.3.11)
dt Cu

So the full optimality system is given by:



dC

dt
dl

dt
dh

dt
d\,

w* (1)
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reC() (1 - 9(’)7“—(’2> — (1= Wk COI(F) (6.3.12)
M
(1= WK COI(E) — il (¢) (6.3.13)
—~1—rchi+ 2rcc7\.1 + —r—C—IM + (1 —w)kIh — (1 — u)k;n\.z (6.3.14)
Cr T Cor
rg—cxl (1= u)kiCht — (1 — WK Cha + s (63.15)
M
RTINS
min { 1, Cl(k’)‘; kiha) } (6.3.16)

6.3.1 Stability Results

For the sake of mathematical completeness, we shall determine the stability properties

of the optimality system. We can easily find the interior equilibrium of this system and

determine its stability by finding the roots of the Jacobian matrix. The Jacobian is given

by:

where

ar ap 0 0
az 0 O 0

a4 as —ap —aj

as 0 —ajn 0

2rcC  rcl "
= - L (1—w)
a = re=—p=—om= (1)
rcc
= = -
ar CM ( u)kIC
az = (1—u)kjl
0 = 2rcM
$ T e
A
as = (1 —wkihy — (1—w)kjAs.

Cu
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This yields a characteristic equation in a highly tractable form; it is:

vt — (@} +2apa3)V? +ddd} = 0, (6.3.17)

or, setting v = z:

22 — (@} +2apa3)z + a3a3 = 0, (6.3.18)
which has repeated roots for:
) a% +2aza3 taj4 /a% +4aras

V- =
2
However, we note that there is no possibility of all roots having negative real part due

to the repeated roots; therefore, the infected equilibrium of the optimality system will be
unstable. We find that both values of v? are positive; this ensures no complex roots of the
characteristic equation. So, the general optimal control problem with a “free” final time
exhibits an interior equilibrium that is an unstable saddle point. This means that under
therapy with the optimal control, we have C(¢) increasing and /(¢) decreasing. Examining
the qualitative appearance of the control, we deduce that the optimal control is decreasing
from its maximum to an end of u = 0, corresponding to no treatment at the final time (when

one is implemented).

However, while of theoretical interest, we would not necessarily expect the infected equilib-
rium to be stable, since we are trying to drive the system back to health. More information
can be gleaned from observing numerical simulations. We solve the optimality system nu-
merically using a Runge-Kutta four scheme (forward and backward calculations for state
and adjoint varibles). We start with a guess for the adjoint variables and the optimal con-
trol, and find that healthy cells increase linearly until they reach a saturation point about
6 — 7% higher than their initial value, whereas infected cells drop quite rapidly to near zero.
However, infection is never completely eradicated. We find that the control itself stays near
its maximal value until almost the end of treatment (250 days in this case), at which point
it drops off sharply to zero.
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6.4 The Discrete Delay Model

In this section we consider the delay differential equation model with a discrete delay,

namely:

%f. = rcC(t) (1 - 9%) ~kiC()I(r) (6.4.1)
% = KC(t—0)I(t—1)—pul(t). (64.2)

Notice that the model has the same equilibria given in section 2, Ey = (0,0), E;
(Cym,0), and E = (C,1).
We are interested in the stability of the infected equilibrium E. The characteristic equa-

tion of the linearized system is given by:

AN) = A2+ pA+r+ (sA+q)e ™ =0, (6.4.3)
where
ur(kiCy +r¢)
P K.C
M
_ (k1Crm — 2u1)
;o= rcﬂ%
k}CM
s = —u.

Characteristic equations of this form have been extensively examined in [59]. Certain con-
ditions on the coefficients p, g, r and s will ensure either all roots of the characteristic
equation have negative real part or at least one root has positive real part. The results of

interest to us are as follows:

Lemma 6.4.1 Consider a characteristic equation of the form (6.4.3).

(i) If p+s > 0and q+r > 0, then all roots of the characteristic equation have negative

real part in the absence of delay.
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(i) If p+s >0, g+r >0, and either (s> — p?> +2r < 0 and r* — q*> > 0) or (s —p*+
2r)? < 4(r? — %), then all roots of the characteristic equation have negative real

part for all delay values, that is, the equilibrium is absolutely stable.

(iii) If p+s>0, g+r >0, and either r* —g* <0 or (s* — p?>+2r > 0 and (s*> — p* +2r)? =
4(r* — g?)), then there is a critical value 1 defined by:

1 W2 —r) — psw?
’Co=—arccosq( + )= +

: 6.4.4
o4 s2af + ¢ €49

where ®; satisfies

202 = (P =P H2) 4/ (- P2 42— ), (645)

when T € [0,70), all roots of the characteristic equation have negative real part;
when T = Ty, there is a pair of purely imaginary roots L£i®,; and when T > T, the
characteristic equation has at least one root with positive real part.

We will use the above results to analyze the stability of the infected equilibrium. Check-
ing the first two conditions, we note that p +s > 0 holds if

k;CM—%-rc
e | 0
.U1< k}CM >

which is obviously the case, since r¢ is positive. The second condition, g+ r > 0, holds
whenever k} > u1/Cy, which is exactly the condition for the feasibility of the interior equi-
librium in the ODE model. This is not surprising, because the preceding two conditions are
simply conditions for stability of the system in the absence of delay.

Consider the third condition for the characteristic equation to have only roots with

negative real part. For this to be true, we require that both of the following conditions hold:

2—g?>0, (6.4.6)
s?—p*+2r<0. (6.4.7)

The second condition holds for all values of parameters. However, the first condition is

somewhat more interesting. Notice that for > — g > 0, we require the following inequality
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to be satisfied:
2 172 / 2
CMk] - 4,UICMk1 + 3[.11 < 0.
This is true when

oo, 3
ky < .
CM < CM

We summarize the conditions on stability as follows:

Proposition 6.4.2 The positive equilibrium E of system (6.4.1)—(6.4.2) is asymptotically
stable for all delay T when

g 3,UI
6.4.8
Cn <ky< v ( )

Thus, there is a region of absolute stability for the infected equilibrium. Notice that this
region corresponds to only between 7.5% and 22.5% of infected cells surviving the latent
period. The obvious question to ask is, what happens when more cells survive (which, in
realistic situations, is likely)?

We note that for &} > 3u;/Cy, r* — g* < 0, and delay-induced instability may occur
because the characteristic equation has a root with positive real part. Define

A = /(K Chr)? 1) ((KICu)? — 3pu).

We summarize the conditions for bifurcation as follows:

Theorem 6.4.3 Assume that

3w
k> ——. 6.4.9
Cn (6.4.9)
Then there is a critical value Ty given by
o 1 arccos 1 [(KCm(rc+ur) — repn)A — 2reprkiCr (KCr — 2p1y)
" o K'Cy 1A+ 2rc(K/Cy — 2ur)? ’

where

v 2rcpr(2A — repy),

O+ = 2k’

such that the infected equilibrium E of system (6.4.1)—(6.4.2) is asymptotically stable when
1T € [0,70) and unstable when T > 1y. A Hopf bifurcation occurs at E when T = Tp; that is, a

family of periodic solutions bifurcates from E when T passes through the critical value Tp.
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Notice that Ty depends on kj. In the following, we will see that for larger values of
kj, the critical value To gets smaller, whereas the periods and amplitudes of the oscillatory
solutions get larger.

Using values of kj corresponding to 25%,50%,75% of cells surviving incubation, we
obtain the following results for the critical value of the delay.

Suppose that 25% of infected cells survive incubation. This corresponds to a value of
k} = 5x 1077, In this case, using the formulas given above, we obtain a critical value of
the delay to be 19 = 6.23 days. Since the actual incubation period is one day, we do not
expect this to be of biological significance. Numerical simulations show that both C and 1
are stable for realistic values of all other parameters, when k} =5x%x10"7.

Now suppose that half the infected cells survive incubation. In this case, the critical
value for 7p obtained analytically is 0.82 days, which is of biological significance. Numer-
ical simulations show that for k; = 10~® and © = 0.4 < 10, the components C(¢) and I(¢)
are converging to the steady state values as time increases (see Figure 6.4.1).

400000 |-

200000 |

20 a0 60 80 oo

Figure 6.4.1: C(¢) and I(¢) converge to the steady state values when T < T, here T = 0.4.

In the (C,I)—plane, trajectories spiral towards the equilibrium (see Figure 6.4.2).
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Figure 6.4.2: The infected equilibrium is asymptotically stable when T = 0.4 < 1.

When the delay is increased to T = 1 > 19, the components C(¢) and I(¢) oscillate with

increasing time (see Figure 6.4.3).
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Figure 6.4.3: The oscillations of C and I vs. time, T =1

In the (C,I)—plane, trajectories are approaching the periodic solution as the time in-
creases (see Figure 6.4.4).
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Figure 6.4.4: There is an orbitally asymptotically stable periodic solution whent =1 > 1.

If 75% of the infected cells survive, numerical analysis shows that when k} is smaller
the oscillations are more frequent (i.e., the periods are shorter) and the amplitudes are
smaller. Thus, increasing the value of k; will increase the periods and the amplitudes of
the periodic solutions. There appears to be an interplay between the value of the delay
and the fraction of infected cells surviving incubation. Specifically, the more cells survive
incubation, the smaller the critical value of the delay must be to induce instability of the
interior equilibrium.

Note that this system has been dealt with in the case in which the delay is distributed,
see [14]. The asymptotic behaviour of the distributed delay system is both qualitatively and
quantitatively (i.e. length of the critical delay) similar to that of the discrete delay case, so
we shall only refer back to the distributed delay model in the section on optimal control.

6.5 The Delayed Model With Suppression of Infection Rate

In this section we will show that treatment, if strong enough, restabilises the system that
has been driven unstable by the delay. This happens because of the dependence of tp on
k; as we saw in the previous section. The smaller the fraction of infected cells that survive
incubation, the longer the critical value of the delay. However, the stronger the treatment
is, the smaller will be the fraction of infected cells that actually will survive incubation, and
hence a system that was previously unstable given realistic values of T will be stable under
sufficient treatment.
Consider the following treated model with discrete delay:
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ic c(t)+10)
- = rcC(t) (1 — —CM————> — (1= u)kiC(t)I(2) (6.5.10)
% = (1=K Clt =TIt —7) — il 2). (65.11)

Recall from section 6.2, describing the ODE model treated with a constant parameter, that
the uninfected equilibrium was stable provided u > 1 — E’—'é—m, or that k < (1_“% So
we can see that there is a dependence on u of the number of infected cells surviving the
incubation period. This makes sense from a biological perspective; we would expect a
treatment reducing the infectivity rate to decrease the number of infected cells. But recall
from the section in which we studied the effect of the delay on the untreated system that the
bifurcation value Ty depended upon k; in the sense that the more infected cells surviving
the incubation period, the shorter the delay needed to be to induce instability. So we might
deduce that the stronger the treatment, the longer the delay needs to be to induce instability.
This is in fact true! For example, consider the delayed system with a delay of one day. If we
add in a treatment value of u = 0.2, we see that the system remains unstable, with periodic
solutions bifurcating from the interior equilibrium. However,as we increase our treatment
value to u = 0.5, we see these oscillations begin to die out and for u = (.8, as treatment
efficacy increases, the oscillations are gone entirely. We can see the dependence of T on
u; for example, if we observe numerical simulations of the above system with © = 0.5 and
T =1, we can see the oscillations beginning to die out; but if we increase T to 3 days, we
see oscillations reappearing in both components.

In fact, we can refer back to the results on absolute and conditional stability of the
interior equilibrium in the case without treatment. We find that the region of absolute
stability can be framed in terms of u.

Proposition 6.5.1 The interior equilibrium of (6.5.8-6.5.9) is absolutely stable for

I ) 3ur
< (1—uky < ==
Cir (1 —u)k; Cur

Thus, if 50% of infected cells survive incubation, the equilibrium is absolutely stable
for 0.55 < u < 0.85. For 75% surviving, the range of absolute stability is smaller, from
0.7 <u <0.9. Observe the following numerical simulations:
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First, we observe the behaviour of C versus time when only half the infected cells

survive incubation and treatment is at a low level u = 0.1:
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Figure 6.5.5: The oscillations of C and [ vs. time, T=1, u = 0.1

We can see that when we increase our treatment level to only u = 0.6, the oscillations damp
out with time, and the system tends to a steady state:
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Figure 6.5.6: C and I converge to stability under sufficient treatment.

But we note that it takes more treatment to stabilise the system when 75% of infected cells

survive incubation. We still observe oscillations if ¥ = 0.3:
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Figure 6.5.7: C and I oscillate for u = 0.3.



98

We must increase our treatment parameter to u = (.75 to observe a decrease in oscillatory

behaviour:

xxxxxxx

400000+

Figure 6.5.8: C and I converge to stability under sufficient treatment.

We carry out stability analysis exactly as in Section 6.4, noting that the interior equi-
librium will be stable in the absence of delay so long as k; > (1_—’:4’)5 We can check the
conditions for absolute and conditional stability, and we notice that r2— q2 < () whenever
(1— u)k} > %“;’, and our equilibrium remains conditionally stable, but the bifurcation value
To increases with increasing treatment u.

We would like to note, also, that when 75% of infected cells survive incubation, there
is a higher level of infection at equilibrium (with treatment) than there is when only half of
infected cells survive.

6.6 Theoretical Aspects of Optimal Control of the Delayed
Model

We note before we begin that there are two ways we can analyse an optimal control problem
for a delay-differential equation system. They are:
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e We can use a discrete delay and apply Pontryagin’s Maximum Principle which holds
for delayed systems ([23]). The difficulty lies in analysing the optimality system,
which will be a delay-differential equation system of twice the dimension of the
state system. In this case, only limited numerical analysis to determine when and
if bifurcation occurs is possible. While of theoretical interest, it does not help us to
gain a deep understanding of the behaviour of the optimality system and the optimal

control.

e We may use a distributed delay and then apply the linear chain trick to transform our
n-dimensional delay system into a higher-dimensional ODE system. For simplicity,
we assume the delay kernel to be the weak kernel so that we increase the dimension
of our state system by only one and that of our optimality system by only two. Then
we may proceed in exactly the same fashion as in the ODE case. We will provide
more background on the use of distributed delay in Section 6.6.2. We would like to
note that this system has proven very difficult to analyse numerically, and we include
this section principally in the interest of possible future work.

6.6.1 The Discrete Delay Controlled Model

Again we assume that the control u(z) is a Lebesgue-measurable function with values be-
tween zero and one, and that T is the length of the delay in days. Assuming a discrete delay,
the control problem becomes to:

maxJ[u] = /0 - B—;z—)dt

subject to the state system:

dccrigt) _ rcc(z)(l—%)—(l—u)kIC(t)I(t), (6.6.12)
ig_(tﬁ = (L= wkClt =)t —T) — il 1). (6.6.13)

The Hamiltonian is given by:
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H=C(t)- Bg—z +rcC(t)h(t) — qu_g)_z_M (1) — fc%(:%l(—t)xl (1) = (1 —wkiC () (t)\1(2)

+(1 =)k C(t =)t — )2 (t) — prl (1) X2 (2) +v1()u(e) +va(2) (1 — u(?)).

As in chapter three, the v; are penalty multipliers, ensuring that the control remains bounded
between 0 and 1. Again we apply Pontryagin’s maximum principle, and consider the
boundary cases as in chapter three, to deduce that our optimal u* is given by:

ki COI()M (1) = kC(t — 1)t —1)ha(t) 0>}
B e

u*(t) = min{l,max(

Again we can determine the optimality system using the following definitions for the time-
derivatives of the adjoint variables:

dM _ oH
dt ~ oC
d\y _ oH
dr ol

Note that due to the fact that our partial derivatives are being taken with respect to the
state variables and not to time, the delay only affects the system by its appearance in the
differential equations for the adjoint variables.

The full optimality system is given by:
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f‘f(% = reC(t) <1 - %’-@> — (1= wWkC)I(t)
? = (1—-wKCE—1)I(F—71)—pul(t)
T o MmO+ %@xl (1) + %%x,(t)
+ (L= kI (M () — (1= )k (t = D)o (2)
d;f = ’Cgﬁy I (1) + (1 — )k C(OM () — (1 = WKC(E — TYA2(£) + A2 (2)
W*(6) = min (l,max(kIC(t)I(t)M(t) —k};‘(t —0)I(t—1)A2 () ,0)>.

6.6.2 Optimal Control of the System with Distributed Delay

Prior to introducing the optimal control model, we first present the distributed delay model.

Let C(¢) represent the concentration of healthy cells and I(¢) be the concentration of
infected cells. We consider the following system modeling the interaction of the healthy
and infected cells:

ac _ C(t)+1(z)
dr rCC(’)(l_T >—k1C(t)1(t) (6.6.14)
% =k /_wc(”)l(”)F (r = w)du — el (2). (6.6.15)

The initial values of system (6.6.14)—(6.6.15) are
C(s)=0(s) 20, I(s)=wy(s) =0, s€(—=,0],

where ¢ and y are continuous functions on (—es,0].

We assume that the cells, which are productively infectious at time ¢, were infected u
time units ago, where u is distributed according to a probability distribution F(u), called
the delay kernel. We use the family of generic delay kernels of the form

0(’n+1 u”

— —Ou
F(u) = e
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where o, > 0 is a constant and » > 0 is an integer. According to MacDonald [43], n is called
the order of the delay kernel and the average delay is defined by

’c—/ uF (u)du n-l—l

In the literature, the kernels withn =0andn =1, i.e.,
Fu)=oe ™™ and F(u)=clue ™,

are called the weak and strong kernels, respectively, and are frequently used in biological
modeling.

We consider the distributed delay model with a weak kernel, that is:

c _ rCC(t)<1—-€(—t)—i(t)>—k1C(t)l(t) (6.6.16)
dt Cm

dl [ —oft—u

- =K /_ _oe E=OC W) (u)du— I (). (6.6.17)

We study the stability of the infected equilibrium by letting:

X(t) = /_t 3 oe "I C () (u)du. (6.6.18)

Then system (6.6.16)—(6.6.17) is equivalent to the following ODE system

%f_) _ rcc(t)(l__c%@>_k,ca)z(t) (6.6.19)
O kx ()~ (6620)
d’flf’) = aC()I(t) — oX (). (6.6.21)

The positive steady state of system (6.6.24)—(6.6.26) is given by E = (C,1,X), where X =

E’I . Its stability properties are summarised in the following proposition:
1

Propesition 6.6.1 If the conditions
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aj(@) >0, a3(o)>0 and aj(a)az(a)—az(o) >0 (6.6.22)

are satisfied, then the positive steady state E of system () is asymptotically stable. If there

is a critical value og > 0 such that conditions

ar(cp)az (o) = az(0), (6.6.23)
dRel; 3
| o (6.6.24)

and

= fan (@)a2(0) ~ (@) o 70

are satisfied, then a Hopf bifurcation occurs at E; that is, a family of periodic solutions

bifurcates from E when o passes through the critical value 0.

Notice that for the weak kernel ole™**, the average delay is defined as T = é. The above
analysis demonstrates that when 7T is small (i.e. when « is large), the steady state is stable.
When 7 is sufficiently large (i.e. as o becomes smaller), the steady state becomes unstable
and a Hopf bifurcation occurs. That is, a periodic solution bifurcates from the steady state
when o passes a critical value ol.

With parameter values given in Table 6.1 and a value of k; = 1.5 X 1079, g ~ 1.95.
Numerical simulations show that the steady state E = (C,I) is asymptotically stable when
o> 0 (e, T<Tg).

We note that we may use this system of ordinary differntial equations to help simplify our
delayed control problem. The problem of controlling a two-dimensional system of delay
differential equations becomes one of controlling a three-dimensional system of ordinary
differntial equations. The optimal control problem becomes:

2
maxJ{u] = /0 - Eg—)dt (6.6.25)

subject to
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d_fzgl B ’CC(I)<1‘£(L)5;—@>—(l—u)kIC(t)I(t) (6.6.26)
51% = (1= wkX () —pul () (6.6.27)
d}fzgt) = aC()I(r) —aX(r). (6.6.28)

Before continuing, we would like to note that the observant reader might notice that this
three-dimensional system is not unlike a system we might derive were we to consider a
specific compartment for latently infected cells, X (¢), rather than modelling using a time
delay.

Our Hamiltonian will be:

H =)~ 2 4 recioma() - Ce ) - EXOIy

—(1 = Wk CO(OM () + (1 — KX (Ao (t) — pl ()Aa(2)

+aC(t)I(t)A3(t) — oX (£)A3(2) +vi(£)u(t) +v2(t) (1 —u(?)).

Again applying the maximum principle, we find that our optimal control takes on a slightly
different form:

H
%.; — —Bu+kCIM — KX

and therefore

(6.6.29)

i
u*(t) = min{l,max{ kiCTh kIXM,O}}.

B

Our adjoint system is given by:
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dM 2rcCM relh

= = 11— 1—w)kiIhy —od 6.6.30
7 rc+ o + C. + (1 —w)kiI A3 ( )
d

_c%% _ ’CCCM+(1—u)k,cx1+u17»2—acx3 (6.6.31)
d

B - wkp o (6.6.32)

We must ensure existence of an optimal control for this problem. Referring back to the
conditions (a)-(d) of Lemma 3.3 in Chapter Three, we note that the only one we need be
concerned with specifically are the boundedness results necessary for the satisfaction of
conditions (a), (c). We’d like to check that the right-hand side of the state system does in
fact exhibit at most linear growth. This is a fairly simple matter as we note that C,, > C(¢)

and so we have that:

E = Cm
df .
— = KX
dt I
dX .
— = Cul.
dt "
In matrix form:
d| I _ 0 k} 1
dr | X Cu O X

So again, since this is a linear system in finite time with bounded coefficients and the other
three conditions are satisfied by assumption, this system does have an optimal control as
characterised by (6.6.34). This boundedness will also ensure uniqueness of the optimality

system, following the same method as in chapter three.

6.7 Biological Significance

We would like to point out that in this system with no immunity considered, our system
very easily tends to instability, which is bad for the patient. We hypothesise that if immunity



Table 6.1: Variables and Parameters for Cell-to-Cell Spread

Parameters and Variables Values
Dependent Variables
C concentration of healthy cells 5x10°/mL
1 concentration of infected cells 500/mL
Parameters and Constants
Cmax  carrying capacity of healthy cells 2% 10%/mL
ky rate constant for cell-to-cell spread 2 x 1078/(mL)(day)
r healthy cell reproductive rate constant 0.7/day
uc  death rate of healthy cells 0.02/day
U death rate of infected cells 0.3/day
Derived Quantities
Cy  effective carrying capacity of healthy cells 2% 109/mL
rc effective healthy cell reproductive rate constant 0.68/day

is considered, delay will induce instability in far fewer cases.

All parameters in this table are from [66].
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Chapter 7

Incorporating Nutritional Status of the
Patient

It has been common knowledge since its advent that AIDS has a detrimental effect upon
the bodyweight of an infected individual. In fact, since 1987, this condition, known as
“HIV-associated wasting syndrome”, has been on the Centre for Disease Control’s list of
AIDS-defining illnesses ([9]).

However, the problem is even more involved than this. Not only does HIV negatively
affect the patient’s weight, but the nutrient intake of the patient has a strong effect upon
the patient’s overall health. This is true even for individuals with uncompromised immune
systems. Malnutrition is one of the leading causes of immune deficiency worldwide. It is
clear that adequate nutritional intake can only benefit the HIV-positive individual.

Additionally, there are studies indicating that nutrients such as zinc, thiamin and others
have a direct impact on the HIV-immune system dynamics (see Baum et. al., [5], [4],
Fields-Gardner et.al. [19], Kim et. al. [33], Macallan et. al. [42], as well as references
cited therein). Sufficient intake of macronutrients (proteins, carbohydrates and fats) and
certain micronutrients such as vitamins A, E, B, K, and minerals zinc and selenium, is

strongly associated with:

e reduced infectivity on the cellular level, and

e increased production of helper and killer lymphocytes.
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To add to the complexity of the issue, we note that most (if not all) anti-HIV drugs have
a negative effect on the nutritional status of a patient, creating an unfortunate feedback loop
wherein the treatments used to enhance immune function suppress a key contributor to im-
mune function itself! A quick look at the 2001 Lippincott’s Nursing Drug Guide ([40])
reveals that the reverse transcriptase inhibitors abacavir, delavirdine mesylate, didanosine
(ddI), efavirenz (Sustiva), lamivudine (3TC), nevapirine and zidovudine (AZT), as well
as the protease inhibitors saquinavir, ritonavir (Norvir), nelfinavir mesylate (Viracept) and
indinavir sulfate (Crixivan) all have commonly occurring adverse effects on the gastroin-
testinal system. Virtually all of these drugs list nausea, diarrhea, vomiting and anorexia as
adverse effects, with diarrhea listed as “common” in all cases; the others are “common”
side effects of most of the aforementioned drugs. Add to this the difficulty of eating prop-
erly on such regimens, and it becomes obvious that the patient’s nutritional status will be
compromised by drug therapy.

So what can we do?

We attempt to determine a drug treatment strategy that will address these problems. We
examine a very simple model to begin with, which shows the interactions between healthy
and infected CD4™ cells and the nutrient status of the patient. Treatment is approximated
by a parameter that has a detrimental effect on the nutrient status, which in turn has a
positive effect on generation of healthy cells. We examine the stability properties of this
model to determine what sort of restrictions should be imposed upon treatment in order to
maintain a high nutritional status.

We would like also to note that extensions to this system may be useful for understand-
ing alternative AIDS treatments in third-world countries where malnutrition is a very real
factor and drugs are not readily available due to cost.

Finally, we note that this model is extremely preliminary and as such, relatively prim-
itive as a mathematical biology model representing the interaction between nutrition and
the immune system. In the future, there will doubtless be models that are formulated far
better than is this one. Even if this proves to be the case, we feel that this model is of value
both for the effort it represents to model an important medical problem, and as a model that

can stand on its own for applied mathematical analysis.
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7.1 The System

We shall start off very simply, assuming that the treatment u’ is constant. The reason
we use u' rather than u is because in this system a value of &' = 0 will correspond to
totally effective treatment whereas «’ = 1 will mean the absence of treatment. Please be
careful to distinguish this #’ from u from previous chapters — in this case, ¥’ = 0 means
totally effective treatment, not no treatment. This is done because it renders the analysis
far simpler. We assume that nutrient status, as modelled by the variable n(¢), enhances the
production of CD4+ lymphocytes. In future work, we shall expand the model and assume
that it also enhances the immunity. But for now, we shall consider only healthy cells as
represented by x(¢), infection level as modelled by y(¢), and nutrient status, n(z). Our
model is represented by the following equations:

P~ o)~ 5e) ~uBx(0() (1.1.1)
DO upe(y0) - () (1.12)
dn(t)

0] (7.13)

The model equations are explained as follows: We see that the source A for healthy cells is
enhanced by n(t). They are lost to decay at a rate of 8 and to infection at a rate of B. We
see that »’ multiplies the infectivity rate and so if #’ = 1 the system behaves as if there were
no treatment, whereas if ' = 0, treatment will be totally effective. Infection is gained at
the rate at which healthy cells are lost, and decays at a rate of a. Finally, nutrient status is
dependent upon treatment level in the following way: if treatment is fully effective, there
is no source for nutrient. This assumes two things: first, it is implicit that «’ shall never
actually reach zero, or full effectiveness. This is not unrealistic, as no therapy has yet
managed to cure HIV infection. Also, it assumes that the closer we are to no treatment, the
more likely we are to have a constant source of nutrition (the parameter s). But as u’ — 0,
the source for nutrient becomes more and more suppressed. Also, we assume that infection
has a detrimental effect upon nutrient status, so that n(z) is lost at a rate proportional to
ky(t).

Note that in the absence of infection (y(¢) = 0), any equilibrium will correspond to
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su' = 0, in which case we would assume that nutrient status is constant. This is realistic,
subject to the normal (presumably minor) fluctuations in the average healthy person’s diet.
This “reduces” the system to the differential equations for x(¢) and y(z), where x(¢) is
proportional to ng, the constant value for the healthy person’s nutrient status.

But the interesting things happen when we try to model the effect of drugs and nutrition
on an infected individual. Assuming that infection level is nonzero, we solve for equilibria
and note that:

_ _ a
YT OB
s
Y= %
LB e
B T

Let’s just take a look at these values and see what they mean. First, as u’ — 0 (its maximal
value), x grows very large and if there is no treatment then X = % y(t), on the other hand,
is directly proportional to treatment so that if &' — 0, then we also have y(¢) — 0. The
equilibrium value for n(t) is proportional to both #’ and its inverse.

In the next section, we study the local stability of the equilibrium E = (%,¥,7).

7.2 Stability Analysis

The general Jacobian matrix for this system is given by:

—d—uPy —u'Px A
J= wpy  u'Px—a 0O
0 —k 0
Evaluated at this interior equilibrium and taking the characteristic equation |vI — J(E)|, we
obtain:

c(v) = V4av +apv+az = 0, (7.2.4)
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where:

u'%s
ap = 0+ kB
u%sa
a = X B
a3 = u*sPA.

Recall that the Routh-Hurwitz criteria require that the conditions

ay > 0,613 > 0,a1a; > a3

be satisfied for stability. Clearly for positive parameter values, the first two hold so we need
only check the last condition. This yields the following necessary condition:

a(8k+uB) > Ak,

which is equivalent to the restriction on u’ that:

u/2 > kO" — 5)
s
Clearly, taking only the positive root makes sense, and we find that for stability of the
equilibrium E, we require:

7.3 Numerical Results

Simulations were run in XPP, using parameter values of § = 0.2, k = 0.05, s = 1 and all
other parameter values from [76]. First, we observe that under these parameter values we
find that »’ > 0.25 (approximately) for stability. (Recall that this means that treatment must
actually be below a certain level of strength.)

First, let’s see how things look for u = (.2 (a value too small for stability, theoretically):



Figure 7.3.1: The healthy cell population is unstable.

Figure 7.3.2: The infection level is unstable.

Figure 7.3.3: The nutrient level is unstable.
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Note that u’ = 0.2 corresponds to a fairly strong level of treatment. Now, consider the case
in which we administer a “medium” amount of treatment, so that &’ = 0.5. We can see the

populations all converging to equilibrium.

3s | u=0.5

Figure 7.3.4: The healthy cell population converges to equilibrium.

Figure 7.3.5: The infection level is stable.
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Figure 7.3.6: The nutrient level is stable.

Finally, consider what happens if we let ' = 0.75. (Recall that this corresponds to less

treatment than the previous two cases.)

Figure 7.3.7: The healthy cell population converges to equilibrium.
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il
u=0.75

Figure 7.3.8: The infection level is stable.

u=0.75

Figure 7.3.9: The nutrient level is stable.

We can see that the level of healthy cells is lower than it would be with stronger treatment,
whereas the level of infection is higher. The level of nutrient status, however, decreases
with increasing treatment (#' lower). Observe also that, though the system is stable for low
treatment values, the infection level is high and the healthy cell population is low. There-
fore, the goal should be to provide a “medium” or “medium-strong” level of treatment.
It must be low enough that stability is not lost, but not so low that infection is very high.
Therefore a balance between benefit and cost is required, thus rendering this model an ideal
candidate for an optimal control problem.

If we let u’ = 1, and consider only the untreated system, we find that stability depends

upon s being high enough (sufficient nutrient source), or k being low enough (nutrient is
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not cleared too quickly by infection).

However, an integral part of this study was the assumption that treatment has a detri-
mental effect upon nutrient status. Nutrient status, on the other hand, also has a positive
effect upon health as measured in terms of the supply rate of healthy CD4+s. The model
shows that #/ has a destabilising effect upon the equilibrium E. In practical terms, this
means that if treatment is above a certain level of strength, stability will be lost, and pre-
sumably, the patient’s condition will deteriorate. This fits with the assumptions of the
model.

We would like to point out that though this is a very preliminary model, its behaviour
appears realistic and we are examining extensions to this model, including immunity as

well as other factors.

7.4 Optimal Control Aimed at Maintenance of High Nu-

tritional Status

Finally, we propose a model that seeks the drug treatment that would be optimal in terms
of maintaining the patient’s nutrient status at a fairly high level as well as controlling in-
fection. We note that we can approach this as a maximisation or a minimisation problem,
and the results will probably be similar. This is because the qualitative behaviour of the
ODE system indicates that high healthy CD4+ cells correlate with low infection levels.
Therefore, we shall propose the following possible model.

The problem is to

T
maxJ[u] = /0 () +n(8) = (1 — (1)) D)t (7.4.5)

subject to the state system:

d_fz‘(it“) = Ant) — 8x(r) — ! () Bx(e)y(0) (7.4.6)
DO ey -yt (7.47)
dn(t) = su'(t) —ky(t). (7.4.8)

dt
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Note that here we have chosen to maximise healthy CD4+s and nutrient status, while min-
imising drug cost. Cost is represented by (1 —u/(¢))? because, in this case, /() = 0 actu-
ally represents highest treatment. We are currently working on establishing the behaviour
of this optimal system.



Chapter 8
Conclusions and Future Work

In this chapter, we discuss the results that we have derived in this thesis, and refer back to
the goals with which we started. We discuss how we answered the questions we posed in
the beginning, and if we were not able to answer them, we explain why, and how we might
tackle them in the future. Also, we suggest some possible modifications to the primary

model (3.1.1-3.1.3), which may make it more realistic.

8.1 Discussion and Conclusions

We have considered several models of the HIV-immune system interaction. To discuss
our results, it is natural to look back at the questions posed in the Introduction. We shall

reproduce these questions and answer them one at a time.

o The role of immunity cells appears to be important in the progress of infection. Given
this fact, how does the immune system react to HIV?

Mathematically, we find that an immune system infected with HIV will either estab-
lish a persistent specific immunity or it will not. The establishment of such an immunity
depends upon host and viral parameters. When it exists, immunity equilibrates at a level

proportional to healthy CD4+ cells.

e What sort of drug treatment schemes are optimal in order to maintain a high level of

immunity to HIV?
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We sought to determine optimal treatment strategies that would maximise not only
healthy cells but immunity cells as well. In addition to the mathematical results of exis-
tence and uniqueness of control and optimality system, we found that optimal treatments
begin at full strength. After an initial decrease, the optimal treatment grows high again
and drops sharply to zero at the final time. Healthy cells are able to be maintained at close
to maximum levels for most of the duration of therapy. Infection level decreases to very
low levels, but is never eradicated. However, at the end of the treatment schedule, when
the drug is no longer given, the infection level begins to rise again. When the infection
is low, so too is the specific immune response. We should note that the specific immu-
nity is always maintained at a positive level — it is never eliminated. Also, note that an
increase in infection is followed by a corresponding increase in the immunity, which then
serves to suppress infection (by killing off infected cells). Once the infection is low, the
immunity is not needed at such high levels and this is why it too drops off. We note the
initial decrease in the control with interest. This occurs at roughly the same time as the
immunity is high, indicating that during periods of effective immune responsiveness, less
medication is needed to control infection. We suggest that this may indicate that high/low
or on/off drug treatment schemes may work well to keep infection under control, provided
we can maintain a sufficient immunity. As well, implementing treatments that enhance a
patient’s natural immunity may be beneficial as an alternative to quite such high levels of
drug therapy.

e Does the intracellular “latent” period affect the stability of the untreated models? If
s0, how do we treat? Will optimal treatments be very different from the case in which

delay is not considered?

The intracellular “latent” period can cause delay-induced bifurcation in our model, but
for all parameter ranges considered, we find that the bifurcation value of the delay is sig-
nificantly lower than the 1 —2 day latent period documented in the literature (see [66] and
references cited therein). As well, the amplitude of the oscillations is not very large. So,
although the results are of mathematical interest, in most situations the delay is unlikely to
affect stability. Very roughly contrasting this with a model not incorporating immunity as
a variable, we can see that in the situation with only constant immune responsiveness, we
may see delay-induced instability more often and this may indicate the importance of the

immune response in controlling infection.
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Stability and bifurcation analysis of the delayed systems with constant-valued treatment
indicated that the treatment widens the range of parameter values for which the delayed
systems are absolutely stable — that is, stable no matter the value of the delay. This means
that if high enough, treatment has the ability to restabilise a system that has been driven
unstable by delay.

Optimal control of the delayed system was also considered. It is difficult to proceed
beyond the characterisation of an optimal control and the establishment of the optimal-
ity system when we have a fixed final time due to the lack of software available to deal
with such delayed nonlinear boundary value problems. We may assume a free final time
and consider when bifurcation occurs, but this is of limited practical interest since it does
not help with determining optimal strategies. In this case, applying the linear chain trick
and converting an n-dimensional system of delay differential equations into an (n + k)-
dimensional system of ordinary differential equations enables us to analyse the optimality
system. In general, from the analytic properties of the system and the control, optimal treat-
ment strategies are not dramatically different than they are in the non-delayed case. They
are generally decreasing over the time interval of treatment [0, T]. Together with the results
about constant-valued treatment, we may wish to consider maintaining maximal treatment
for a longer initial time period in order to help restabilise the system.

The numerical analysis of delayed optimality systems is an important one and, together
with a numerical analyst, we are working on constructing a code that will solve such sys-

tems, in particular with application to biological problems.

¢ How different should treatment be when we do consider immunity than when we do

not?

Contrasting our optimal strategies from those derived in [36] and [21], we can see that
the main difference is that our optimal treatment actually lowers for a period of time while
the immunity of the host takes over. Other than that, all optimal strategies are “essentially”
decreasing. (Ours are simply non-monotone, whereas those in [21] are monotonically de-

creasing.)

e How do we deal with the intimate interplay between the nutritional status of the

patient and their drug therapy? Specifically, what can we do to deal with the fact that
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medication has a negative effect on nutritional status, which is important for proper

immune function?

Finally, our very simple model incorporating nutritional status of the patient indicates
that in order to maintain health and stability of the patient, we must be careful not to over-
treat. Extensions of this model, including the incorporation of the immunity and treatment

as a control problem to maximise health and nutrient status, are currently being considered.

8.2 Possible Extensions to the Model and Future Work

8.2.1 A Model Incorporating Age Structure

We note that some HIV chemotherapies no longer have an effect after the maximum age at
which reverse transcription occurs. Therefore, in the case where we model a RT-inhibitor
drug, we may wish to include age structure in the model, so that we can include the fact
that treatment only affects cells of less than a certain age.

Age-structured models of HIV infection have been considered before; see Kirschner
and Webb [37]. Similarly to the inclusion of delays in HIV models, the incorporation of
cellular age structure renders the models more realistic as it reflects the clinical fact that
cells older than a certain age likely remain unaffected by drug therapy. The model that we
propose below is a direct modification of that of Kirschner and Webb.

We let the parameter a denote the age of infection (how long a cell has been infected).
We then let y(z,a) be the density of infected cells having age of infection a at time ¢ and
note that the total population of infected cells is given by:

Amax
/ y(t,a)da.
0

With that in mind, the model we suggest is:
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Eg- = A—dx—PBxy 8.2.1)
¥(,0) = Pxy (8.2.2)
dy dy
DY - 8.2.3
% 32 ay — pyz (8.2.3)
G / " (t,a)da— hz. (8.2.4)
dt 0

We can integrate the equation for y with respect to age to obtain:

% +y(a+pz) = Bxy. (8.2.5)

We then substitute in the equilibrium value (which is the same as for (3.1.1-3.1.3)) and the
value for y(z,0) to obtain an expression for y as a function of age:
Bh

y= —7a+k, (8.2.6)

where k is an arbitrary real-valued constant.
We can model treatment by solving the problem:

T ramax 2
max/ / (x+z— Ey—)dadt
0 Jo 2

subject to

% — A—dx—Pry+ /0 " ult,a)y(t,a)da 8.2.7)
y1,0) = Poy 828)
ay ay B Amax
S+ = —ay—pye— [ u(t,a)y(t,0)da (8:29)

dz Gmax

T = e /0 y(t,a)da— hz. (8.2.10)

We assume that u(t,a) has an effect only in the first @, units of time after infection.
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8.2.2 Including Diffusion Effects

We may account for the diffusion of healthy and infected cells in the context of cell-to-cell
spread. First we examine the combined effects of delay and diffusion upon the system from

chapter four:

% = dAC(t)+rC(1——§—£#2)—kIC(f)I(t) (8.2.11)
a_lag—) = AI(t) +kC(t —0)I(t —T) — il (¢). (8.2.12)

(Note that the case of diffusion without delay was examined in [74], and no diffusion-
induced instability occurred.)

Or, we may wish to consider diffusive effects in the model with immune response:

PO~ aae(e) +1- 8x(0) - Br(e)y(o) (8.2.13)
DO~ ay(e) + B - 1)xl =)~ ay(®) ~ py(e)e(t) (8.2.14)
Q%(tt—) = cx(t)y(t)z(t) — hz(2), (8.2.15)

where T may equal zero.

8.2.3 Including Viral Evolution

None of the models analysed in this thesis specifically accounted for viral evolution, as viral
load was presumed to be proportional to infected cell levels. We might wish to include a

specific compartment for viral evolution, which might look something like:
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O () - Brlov) (8216
D Blolo) - ay(6) - py(o)z(0) (82.17)
DO Nay(t)~Br(0(0) (o) —p0)e(r) #2.18)
B0~ exleyieretn) ~nelo), (8.2.19)

8.2.4 A Minimisation Problem

In our analysis of the original immunity model from Chapter Three, we conisdered our
optimal pair to be one that maximised the objective functional — that is, we considered
which quantities we wished to keep high. However, it is also reasonable and a biologically
important problem to consider the minimisation of total viral load as represented by (a
quantity proportional to) y(¢). In this case, our state system would remain the same as in

Chapter Three, but our control problem would be:

u2
minJ{u] = /0 o) +B—2—)dt

subject to the state system (3.2.10)—(3.2.12).

However, we conjecture that since, in the untreated ODE system, infection is inversely
proportional to healthy cells, the optimal solution will be very similar qualitatively to that
which we derived in Chapter Three.
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