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ABSTRACT 

 

In this MSc thesis I determine if wind-generated bubbles elevated measurements 
of above-water normalized water-leaving radiance (nLw) and subsequent remote sensing 
estimates of particulate inorganic carbon (PIC) in a coccolithophore bloom on the 
Patagonian Shelf. Although no measurements were made of bubbles, shipboard wind 
speed was used as a proxy for bubble backscattering. An empirical orthogonal function 
(EOF) analysis was performed on nLw. The first EOF accounted for 95% of the variance, 
and was attributed to changes in spectral amplitude. Scores of the first EOF were 
positively correlated with flow-through PIC backscattering (bb′) > 5x10-4 m-1, indicating 
that above this threshold PIC was an optically active seawater constituent. There was 
only evidence for a bubble elevation of nLw at values of bb′ < 5x10-4 m-1 and wind speeds 
> 12.5 m s-1. There was no evidence for a bubble elevation of PIC estimated using the 
two-band PIC algorithm. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 A Bright Southern Ocean 

 

A feature characterized by bright water was identified in the Southern Ocean that 

completely encircles the globe from ~40°S to 60°S during austral summers (Balch et al. 

2011). This feature has consistently been observed in all NASA satellite ocean color 

missions, which were initiated in 1978 with CZCS, and have subsequently included 

SeaWiFS, MODIS-Terra, MODIS-Aqua, and most recently VIIRS (Balch et al. accepted) 

(Figure 1.1). Bright water is indicative of elevated reflectance, i.e. the ratio of the amount 

of light leaving the ocean to that entering the ocean. In the context of ocean color remote 

sensing, reflectance is typically measured as remote sensing reflectance (Rrs; sr-1), which 

is defined according to Mobley (1999): 

   (1.1) 

where Ed (μW cm-2 nm-1) is the downwelling irradiance just above the sea surface and Lw 

(μW cm-2 nm-1 sr-1) is the water-leaving radiance, the primary radiometric quantity 

essential for surface ocean bio-optical studies (Hooker et al. 1999). 

Reflectances, including Rrs, are classified as apparent optical properties (AOPs), 

which indicates that they are dependent on the medium (water and its dissolved and 

particulate constituents), as well as the directional structure of the ambient light field 

(Mobley 1994). This is in contrast to inherent optical properties (IOPs), e.g. the total 

absorption (a; m-1) and backscattering (bb; m-1) coefficients, which are solely dependent 

on the medium. The AOPs and IOPs of seawater are connected through radiative transfer 

theory (Mobley 1994), which describes the absorption and scattering fates of photons as 

they travel through the water column and air-water interface. For example, Rrs is a 

function of both a and bb. This relationship is often modeled according to Gordon et al. 

(1988), and is explicitly stated in Lee et al. (2002) according to: 

 
Rrs =

Lw

Ed



2

   (1.2) 

where rrs (sr-1) is Rrs just below the sea surface, and g1 and g2 (sr-1) are fitting coefficients 

determined by Monte Carlo simulations. Examination of Equation 1.2 indicates that Rrs is 

inversely proportional to a, and proportional to bb. Therefore, one explanation for the 

bright feature observed in the Southern Ocean is that it is due to the presence of 

backscattering seawater constituents. 

 

 

 

 
Figure 1.1. Seasonal climatology (austral summer: 21 December through 20 March) of 
Rrs(555) recorded during the MODIS-Aqua mission (2002 through 2013). Note the band 
of elevated reflectances that encircles the globe in the Southern Ocean. Source imagery 
was provided by the NASA Ocean Color Web (http://oceancolor.gsfc.nasa.gov/). 
 

 

1.2 The Great Calcite Belt 

 

Application of particulate inorganic carbon (PIC), i.e. calcium carbonate 

(CaCO3), remote sensing algorithms (Gordon et al. 2001, Balch et al. 2005) to the 

reflectances observed in the Southern Ocean yield elevated concentrations (Balch et al. 

2011) (Figure 1.2). These algorithms are designed specifically to estimate calcite, a 

  
rrs = gi

bb

a + bb

⎡

⎣
⎢

⎤

⎦
⎥

i=1
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∑
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polymorph of calcium carbonate that is produced by coccolithophores, Haptophyte algae 

that synthesize small (1 to 10 μm diameter) external calcite scales (coccoliths). 

Coccolithophores are ubiquitous throughout the global ocean (Winter et al. 1994), 

although blooms typically consist of the cosmopolitan species Emiliania huxleyi (Tyrrell 

and Merico 2004). During such blooms, functionally defined as cell concentrations 

exceeding 1x106 cell L-1 (Tyrrell and Merico 2004), excess coccoliths are shed as a result 

of overproduction and cell senescence, typically yielding 10 to 15 detached coccoliths per 

cell (Paasche 2001). Coccoliths do not absorb visible light (Balch et al. 1991), but given 

their large size relative to visible light wavelengths, as well as the large difference 

between the refractive indices of calcite and water (1.58 and 1.33, respectively), they are 

highly efficient light scatterers. For example, coccolith backscattering can exceed 90% of 

total backscattering during blooms (Balch et al. 1991), and even 10% during non-bloom 

conditions (Balch et al. 1999). It has been demonstrated that due to the strong scattering 

properties of coccoliths, blooms of coccolithophores can have considerable impacts on 

surface ocean optics, including elevating reflectance (Holligan et al. 1983, Ackleson et al. 

1988, Balch et al. 1991, Ackleson et al. 1994, Balch 1996a,b, Tyrrell et al. 1999). 

Remote sensing methods used to identify coccolithophore blooms have typically 

exploited this strong reflectance signal. The visual characteristic of a bloom is a region of 

bright water with a turquoise color, and this can be observed from ships, airplanes, and 

even satellites. Early remote sensing methods therefore consisted of the visual 

identification of blooms based either on their color (Holligan et al. 1983), or just their 

brightness in AVHRR imagery (Groom and Holligan 1987). Such methods have become 

more sophisticated with the development of algorithms that automatically classify 

satellite imagery pixels as blooms based on their reflectance characteristics (Brown and 

Yoder 1994, Iglesias-Rodriguez et al. 2002, Moore et al. 2012). An alternative approach 

to simply identifying the spatial extent of blooms is the estimation of coccolith calcite 

concentration with the semianalytic two-band (Balch et al. 2005) and three-band (Gordon 

et al. 2001) PIC remote sensing algorithms. Both algorithms first invert reflectance to 

determine the backscattering coefficient due to PIC (bb′; m-1), which is then converted to 

PIC concentration (mol m-3) through division by the average PIC-specific backscattering 

cross-section (bb*; m2 mol-1) according to: 
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   (1.3) 

The current estimate of bb* is 4 m2 mol-1, based on light scattering measurements of 

coccolithophore cultures (Balch et al. 1999). 

Results from the March 2008 Southern Ocean Gas Exchange Experiment (SO 

GasEx) expedition provided multiple sources of evidence that the elevated reflectances 

observed in the Southern Ocean are at least partially due to coccolith backscattering 

(Balch et al. 2011). There are multiple other references to elevated coccolithophore 

abundance in this feature, as measured with shipboard observations, in all sectors of the 

Southern Ocean (summarized in Holligan et al. (2010)). As a result, this feature was 

named the Great Calcite Belt (GCB) (Balch et al. 2011). With a total area of ~56x106 km2 

(16% of the global ocean), the GCB is likely the largest water mass in the world 

characterized by an elevated abundance of coccolithophores (Balch et al. 2011). In 

addition to the optical impacts of coccolithophores, as well as their inherent ecological 

interest, the GCB is potentially an important feature due to the role of coccolithophores in 

various global biogeochemical cycles. Coccolithophores are the dominant producers of 

calcite on earth (Brownlee and Taylor 2004). As calcifying primary producers they 

contribute to the global carbon cycle through the organic carbon and carbonate pumps, 

which together comprise the biological pump (Rost and Riebesell 2004). These two 

mechanisms involve carbon fixation via photosynthesis and calcification, respectively, 

the products of which are exported through sinking, effectively transporting dissolved 

inorganic carbon from the surface ocean into the ocean interior and sediments. 

Photosynthesis consumes CO2, and therefore the organic carbon pump can decrease the 

partial pressure of CO2 in the surface ocean, further facilitating its absorption from the 

atmosphere. In contrast, and perhaps counter-intuitively, calcification produces CO2 

according to: 

   (1.4) 

At timescales shorter than 103 years the carbonate pump can increase the partial pressure 

of CO2 in the surface ocean, facilitating its release into the atmosphere (Iglesias-

Rodriguez et al. 2002). However, at timescales of 106 years calcium carbonate sediments 

become a dominant global carbon sink (Falkowski et al. 2000). Additionally, 

  
PIC =

bb ′
bb *

 2HCO3
− +Ca2+ ↔ CaCO3 + H2O+CO2
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coccolithophores contribute to the global sulfur cycle through the production of dimethyl 

sulfide (DMS) (Malin and Steinke 2004). As a precursor of cloud condensation nuclei, 

DMS has important implications for planetary albedo (Charlson et al. 1987). Given its 

geographic size, and the role of coccolithophores in both the global carbon and sulfur 

cycles, the GCB is relevant to the environmental and societal issues of global climate 

change and ocean acidification. 

 

 

 

 
Figure 1.2. Seasonal climatology (austral summer: 21 December through 20 March) of 
PIC recorded during the MODIS-Aqua mission (2002 through 2013) estimated with the 
merged two-band/three-band algorithm (Gordon et al. 2001, Balch et al. 2005). The Great 
Calcite Belt can be identified as the band of elevated PIC concentrations that encircles the 
globe in the Southern Ocean. Source imagery was provided by the NASA Ocean Color 
Web (http://oceancolor.gsfc.nasa.gov/). 
 

 

1.3 Wind-Generated Entrained Bubble Populations 

 

Given that the Southern Ocean is characterized by strong average wind speeds 

(Figure 1.3), backscattering due to wind-generated entrained bubble populations could 

contribute to the elevated reflectances observed in the GCB. Similar to coccoliths, 

bubbles are highly efficient light scatterers due to their large size relative to visible light 
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wavelengths, as well as the large difference between the refractive indices of air and 

water (1.00 and 1.33, respectively). Due to continuous wind stress, waves grow, become 

unstable, and finally break, entraining plumes of bubbles. In the absence of precipitation, 

and during wind speeds exceeding 3 m s-1, this is the dominant source of bubbles in the 

surface ocean (Thorpe 1992).  

Monahan and Lu (1990) describe the evolution of a bubble plume immediately 

after entrainment. Initially confined within the top ~0.5 m, the plume subsequently 

expands and is mixed deeper due to turbulence. It typically reaches a depth of ~4Hs, 

where Hs (m) is the significant wave height, but can extend to ~6Hs (Thorpe 1995). 

Furthermore, the size spectrum of the plume narrows as large and small bubbles rise and 

dissolve, respectively. Persistent bubble radii observed in nature range from ~10 to ~300 

μm (Zhang et al. 1998). However, that minimum might be due to limited instrument 

resolution (Zhang 2001), as smaller bubbles have been observed in the laboratory 

(Johnson and Cooke 1981). The remaining bubbles are immediately covered in organic 

films, which provide mechanical stability, and thus become “dirty” (Thorpe 1982). 

Additionally, as a result of dilution due to mixing, and the loss of small and large 

bubbles, the number density of the plume is reduced, and can range from 104 to 108 m-3 

(Zhang et al. 1998). Finally, during wind speeds exceeding 7 m s-1 separate bubble 

plumes near the sea surface join and produce a stratus layer (Thorpe 1995). Although 

observations are quite variable, the number density of a wind-generated entrained bubble 

population (Nbub; m-3) typically increases with wind speed, and decays exponentially with 

depth (Thorpe 1992). For example, Zhang (2001) modeled the number density of a 

bubble population at the sea surface (Nbub,0; m-3) according to: 

 Nbub,0 ∝U10
4   (1.5) 

where U10 (m s-1) is the wind speed 10 m above the sea surface, and the exponent is based 

on an average of values found in the literature. 

Stramski (1994) conducted fundamental research on the optics of entrained 

bubble populations, and demonstrated with Mie scattering that bubbles could contribute a 

non-negligible amount of backscattering even in calm conditions. Mie scattering 

describes the scattering of light by a sphere, and the backscattering coefficient due to an 
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entrained bubble population (bb,bub; m-1) can be computed according to Zhang et al. 

(1998): 

   (1.6) 

where Qb,bub(rbub) (dimensionless) is the Mie backscattering efficiency factor of a single 

bubble of radius rbub (m), pbub(rbub) (m-1) is the probability density function of the bubble 

population at radius rbub, and the limits of the integral are the minimum and maximum 

radii of the bubble population. The work of Zhang et al. (1998) expanded on that of 

Stramski (1994), using a more representative range of bubble population spectra and 

number densities. They also focused on dirty bubbles, demonstrating that the 

backscattering efficiency of bubbles could be enhanced by a factor of four due to organic 

films. Using a high-resolution time series of bubble measurements, Terrill et al. (2001) 

showed that due to the intermittent nature of wave breaking, bubble backscattering could 

fluctuate dramatically over periods of minutes. Based on theory, as well as laboratory and 

field measurements, the volume scattering function of natural bubble populations was 

determined by Zhang et al. (2002). Multiple studies have demonstrated through radiative 

transfer modeling that bubble backscattering will elevate reflectance (Flatau et al. 2000, 

Stramski and Tegowski 2001, Zhang 2001, Yan et al. 2002, Zhang et al. 2004). 

Furthermore, although bubbles are colorless, they will have a spectral effect on 

reflectance, enhancing it relatively more at longer wavelengths and thus making the 

ocean appear greener (Zhang et al. 1998, Flatau et al. 2000, Stramski and Tegowski 2001, 

Zhang 2001, Zhang et al. 2004). This could potentially impact the performance of remote 

sensing chlorophyll algorithms that rely on ratios of blue to green light (O’Reilly et al. 

1998), resulting in an overestimation. Furthermore, by elevating reflectance in the near-

infrared (Zhang et al. 1998, Zhang 2001, Yan et al. 2002, Zhang et al. 2004), bubbles will 

cause a violation of the black pixel assumption (Siegel et al. 2000) used by standard 

satellite atmospheric correction procedures (Gordon and Wang 1994a). 

It must be emphasized that entrained bubble populations are distinct from 

whitecaps at the sea surface, which also elevate reflectance (Koepke 1984, Frouin et al. 

1996, Moore et al. 2000). Although both are generated by breaking waves and thus co-

occur (Monahan and Lu 1990), whitecaps are not considered to be a component of Lw 

since they surface phenomena. Therefore, an attempt is made to remove whitecaps in 

bb,bub = NbubQb,bub∫ (rbub )πrbub
2 pbub (rbub )drbub
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standard satellite atmospheric correction procedures (Gordon and Wang 1994b) and 

above-water radiometric protocols (Mueller et al. 2003). I am unaware of any method 

that removes the scattering effects of entrained bubbles. Furthermore, while the residence 

time of whitecaps is seconds (Monahan and Lu 1990), entrained bubbles will typically 

persist for minutes (Thorpe 1995). 

 

 

 

 
Figure 1.3. Monthly climatology (January) of wind speed recorded during the QuikSCAT 
mission (2000 through 2009) (Risien and Chelton 2008). Note the band of elevated wind 
speeds that encircles the globe in the Southern Ocean. 
 

 

1.4 Thesis Focus 

 

Although it has been demonstrated that backscattering due to wind-generated 

entrained bubble populations can impact surface ocean optics, there have been few field 

studies that have verified an associated elevation of Rrs (Zhang et al. 2004, Randolph et 

al. 2010). However, note that Zhang et al. (2004) primarily focused on bubbles entrained 

by ship wakes, not wind-generated breaking waves. Furthermore, previous studies have 

only investigated the effects of bubbles on remote sensing chlorophyll algorithms. 

Regarding the semianalytic PIC algorithms (Gordon et al. 2001, Balch et al. 2005), which 
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rely on the magnitude of reflectance, an increase in backscattering and reflectance due to 

bubbles would theoretically elevate the estimated value of bb′, resulting in a subsequent 

overestimation of PIC concentration (Equation 1.3). It is essential to determine if this 

phenomenon is occurring in the GCB, given its geographic size, potential biogeochemical 

importance, and wind field. 

In this MSc thesis my goal is to determine if backscattering due to wind-generated 

entrained bubble populations elevated measurements of reflectance, and subsequent 

remote sensing estimates of PIC, using a dataset collected on the Patagonian Shelf (PS). 

The PS is located in the southwestern Atlantic Ocean, offshore of the Argentinean and 

Uruguayan coasts. It is the brightest region of the GCB (Balch et al. accepted), and is 

characterized by the seasonal occurrence (austral summer) of coccolithophore blooms 

(Brown and Podestá 1997, Signorini et al. 2006, Garcia et al. 2011). The dataset was 

collected during the December 2008 Coccolithophores of the Patagonian Shelf 

(COPAS’08) expedition, during which a mesoscale coccolithophore bloom was observed 

on the southern portion of the shelf (Figure 1.4). Relevant variables measured during the 

cruise included: 1) flow-through bb′, 2) above-water normalized water-leaving radiance 

(nLw; μW cm-2 nm-1 sr-1), which is an AOP proportional to Rrs, 3) above-water bb′ 

resulting from application of the two-band PIC algorithm (Balch et al. 2005) to the nLw, 

and 4) shipboard wind speed. Although no measurements were made of bubbles, the 

shipboard wind speed was used as a proxy for bb,bub, which is justified upon examination 

of Equations 1.5 and 1.6. The ultimate application of this study is to improve the ability 

to identify coccolithophores from remote sensing data, thereby allowing further insights 

into the global dynamics of this important phytoplankton group. 
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Figure 1.4. Monthly average (December 2008) of MODIS-Aqua PIC over the PS 
estimated with the merged two-band/three-band algorithm (Gordon et al. 2001, Balch et 
al. 2005). The solid black line is the COPAS’08 cruise track. The solid white line is the 
1000 m bathymetry contour. Source imagery was provided by the NASA Ocean Color 
Web (http://oceancolor.gsfc.nasa.gov/). 



11

CHAPTER 2 

 

METHODS 

 

2.1 COPAS’08 Cruise Track 

 

The COPAS’08 cruise was conducted in the PS region onboard the R/V Roger 

Revelle (cruise “Knox 22RR”) during December 2008. The ship departed Montevideo, 

Uruguay on 4 December 2008 and arrived in Punta Arenas, Chile on 2 January 2009. 

Data collection relevant to my study occurred over 27 days from 5 through 31 December 

2008. Henceforth, all dates will be 2008. The cruise track (Figure 2.1) consisted of an 

initial southeastward transect across the shelf break, followed by a southwestward 

transect that crossed back onto the shelf. Between 45.0 and 50.0°S the cruise track 

consisted of zonal transects across the shelf break. This was followed by a northwestward 

transect from 51.0°S, 55.0°W to 47.5°S, 60.0°W during 21 through 23 December, with a 

southeastward return transect during 23 through 25 December. These two transects 

passed through the main axis of the portion of the coccolithophore bloom located to the 

north of the Falkland Islands (FI) (Figure 1.4). The cruise track then concluded with a 

sequence of radial transects extending away from the eastern and southern extent of the 

FIs. 

 

 

 

 

Figure 2.1 (following page). The COPAS’08 cruise track. The circles indicate flow-
through (i.e. IN) bb′ measurements, and were plotted every 5th measurement for visual 
clarity. The data were plotted in a temporally ascending manner. Therefore, given the 
cruise track configuration, the northwestward transect from 51.0°S, 55.0°W to 47.5°S, 
60.0°W during 21 through 23 December is covered by the southeastward return transect 
during 23 through 25 December. The solid black line is the COPAS’08 cruise track. The 
solid gray line is the 1000 m bathymetry contour. 
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2.2 Flow-Through PIC Backscattering 

 

Continuous measurements of particulate backscattering (bbp; m-1) were made 

during the cruise with a WET Labs ECO VSF backscattering meter as one part of a flow-

through system located inside the ship. Balch et al. (2011) describe in detail a similar 

system that was used during the March 2008 SO GasEx expedition. Surface seawater was 

continuously collected through the ship’s nontoxic sampling line, and was initially fed 

into a vortex debubbler before entering the flow-through system. The ECO VSF was 

contained in a sealed 2 L PVC chamber and measured volume scattering (β; m-1 sr-1) at a 

wavelength of 530 nm at three angles (100°, 125°, and 150°). Calculation of bbp was 

performed by first fitting a fourth-order polynomial to the three β values and integrating 
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over the range of 90 to 180°, which defines the backscattering region. A Milli-Q blank 

was then subtracted from this result to correct for the PVC chamber wall effect and 

seawater backscattering, yielding bbp. 

The primary application of this flow-through system was to continuously measure 

bbp from non-acidified and acidified seawater, thereby allowing estimation of the acid-

labile component of bbp that was due to PIC, i.e. bb′. The determination of a single bb′ 

value consisted of first making an initial sequence of bbp measurements. The number of 

measurements was typically 60, but at some points during the cruise this was adjusted to 

as few as 30. This was done to increase the bb′ spatial and temporal resolution by 

reducing its measurement time. Next, any PIC present in the flow-through system 

seawater was dissolved by gently lowering the pH with a weak acid (10% glacial acetic 

acid) to < 5.8, which is below the dissociation points of calcite and aragonite. Once the 

pH had stabilized downstream from the ECO VSF, another sequence of bbp 

measurements was made on the acidified seawater (bbp,acid; m−1), equal in number to the 

initial non-acidified sequence. The averages of the non-acidified and acidified bbp 

measurements were then computed. Henceforth, the terms IN bbp and IN bbp,acid will refer 

to these averages, rather than the individual values from which they were computed. The 

“IN” prefix emphasizes that these variables were measured by the flow-through system 

ECO VSF located inside the ship, and distinguishes them from the above-water (OUT) 

and satellite (SAT) variables described below in the text. Finally, IN bb′ was defined as 

the difference between IN bbp and IN bbp,acid. With this procedure IN bb′ was estimated 

every ~6 minutes during the cruise (effective spatial resolution of ~2 km assuming the 

median ship speed of ~5 m s-1). This yielded 5826 IN bb′ estimates. 

The resulting IN bbp, IN bbp,acid, and IN bb′ time series contained noticeably 

suspect values (Figure 2.2), apparent as large deviations from the surrounding data, i.e. 

outliers, as well as negative IN bb′ values. To quality control the IN bb′ time series a 

statistically-based flagging procedure was developed. An initial flag was designed to 

identify excessively short or long measurement times, which yielded data that were 

automatically considered suspect. A specific example of this was the initial measurement 

made after periods when the flow-through system was stopped for maintenance. Any 

record with a time differential that was not within two standard deviations of the mean 
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time differential was flagged and removed from all three of the time series. Another flag 

to identify outliers was then derived by computing a running median (11 values; ~1 h) for 

both the IN bbp and IN bbp,acid time series. Anomalies for both of these variables were 

defined as the difference between their respective time series and running median. Any 

record where the anomaly of either variable was not within two standard deviations of the 

mean anomaly was flagged. These steps were not performed for the IN bb′ time series, as 

any large deviations that were present resulted from those in either the IN bbp or IN bbp,acid 

time series. An additional flag identified positive IN bb′ values < 1x10-5 m-1, which was 

considered to be the limit of detection. The final flag identified negative IN bb′ values. 

While not physically meaningful, negative IN bb′ values were possible given that during a 

6-minute cycle the ship was moving, and therefore the flow-through system did not 

necessarily sample the same particle suspension during the non-acidified and acidified 

sequences. In total, 765 of the 5826 values (13%) were flagged and removed from the IN 

bb′ time series. This yielded 5061 valid IN bb′ estimates. 

 

 

 

 
Figure 2.2. Time series of IN bbp, IN bbp,acid, and IN bb′ before application of the flagging 
procedure. 
 

 

2.3 Above-Water Radiometry 
 

Continuous measurements of above-water radiance were made during the cruise 

with a Satlantic Micro Surface Acquisition System (MicroSAS). Balch et al. (2011) 
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describe in detail a similar system used during the March 2008 SO GasEx. The 

MicroSAS consisted of three radiometers (one irradiance and two radiance), all 

measuring at the same seven wavelengths (412, 443, 490, 510, 532, 555, and 670 nm). 

The irradiance radiometer was mounted at the top of the bow meteorological mast. The 

two radiance radiometers were mounted to the bow in such a way as to not be subject to 

ship shadow or reflection, and to avoid viewing bow wake. 

In an above-water system, the total radiance measured by a shipboard radiometer 

pointed towards the sea surface (Lsfc; μW cm-2 nm-1 sr-1) is given according to Mobley 

(1999) and Mueller et al. (2003): 

   (2.1) 

where Lsky (μW cm-2 nm-1 sr-1) is the incident sky radiance and ρ (dimensionless) is the 

proportionality factor that determines the amount of Lsky reflected into the sea-viewing 

radiometer (Mobley 1999). The two MicroSAS radiance radiometers viewed the sea 

surface and sky to measure Lsfc and Lsky, respectively. The radiometers were oriented 40° 

from nadir and zenith, respectively, and continuously viewed 120° away from the solar 

azimuth (Mueller et al. 2003). The latter was controlled automatically with a custom built 

positioning system that used navigation and time information from the ship’s navigation 

system. Above-water radiometry was collected at 10 Hz throughout the cruise during 

periods when the solar zenith angle was greater than 20°. For computational storage 

considerations, the data were temporally averaged to ~2 s during post-processing with 

ProSoft (Satlantic). Using the temporally averaged Lsfc and Lsky, Lw was calculated 

according to Equation 2.1, with ρ fixed at 0.024. Normalized water-leaving radiance 

(nLw; μW cm-2 nm-1 sr-1), was then calculated according to Mueller et al. (2003): 

   (2.2) 

where  (μW cm-2 nm-1) is the average solar irradiance (Thuillier et al. 2003). The 

normalization of Lw to nLw is performed to account for effects of the atmosphere and 

solar zenith angle, and allows the comparison of Lw measurements collected at different 

times and locations (Gordon and Clark 1981). 

Lsfc = ρLsky + Lw

nLw =
Lw
Ed

F0

  F0
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To align the temporally averaged above-water radiometry and IN bb′ time series 

the above-water data spanning the duration of each IN bb′ measurement (~6 minutes) 

were further temporally averaged. During this process only the lowest 5% of the above-

water radiometry data in each temporal bin was accepted to eliminate the effects of 

whitecaps and sun glint (Mueller et al. 2003). Henceforth, the term OUT nLw will refer to 

these temporally averaged and quality-controlled nLw spectra. The “OUT” prefix 

emphasizes that this variable was measured by radiometers mounted outside on the bow 

of the ship, and distinguishes it from the laboratory (IN) and satellite (SAT) variables 

described above and below, respectively, in the text. In total, 2367 OUT nLw spectra were 

generated. However, 40 spectra (2%) were subsequently flagged and removed. This 

included 36 spectra that were incomplete and 4 that were visually identified as outliers 

due to their magnitude and shape. This yielded 2327 valid OUT nLw spectra. The 

nighttime gaps in the above-water radiometry due to the solar zenith angle restriction 

resulted in ~50% less OUT nLw spectra than IN bb′ values (2327 versus 5061). 

 

2.4 Above-Water Radiometry EOF Analysis 

 

An empirical orthogonal function (EOF) analysis was performed on the OUT nLw 

spectra to identify the dominant modes of variability. Also commonly referred to as 

principal component analysis, EOF analysis is a multivariate statistical technique that 

aims to reduce the dimensionality of a dataset (Wilks 2006). Modes of variability (EOFs) 

within the dataset are empirically derived. These EOFs can be geometrically interpreted 

as vectors, or axes, in the multi-dimensional space of the dataset. The first EOF is aligned 

in the direction along which the dataset demonstrates the most variance. Subsequent 

EOFs account for progressively less variance, and are restricted to be orthogonal to the 

previous EOFs. New variables can be constructed by projecting the original dataset onto 

individual EOFs. Elements of these new variables (scores) result from linear 

combinations of the variables in each original dataset record weighted according to the 

EOF elements (loadings). By using the EOFs and scores that account for the most 

variance, the dimensionality of the original dataset can be reduced while retaining its 

primary information. EOF analysis is typically applied in the geophysical sciences to 
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identify spatial and temporal patterns (Wilks 2006). However, Mueller (1976) 

demonstrated that this technique is also useful to parameterize ocean color spectra. 

Recent efforts have been successful in deriving models using EOF analysis of ocean 

color spectra to predict bio-optical variables (e.g. Fichot et al. 2008, Craig et al. 2012, 

Barnes et al. 2014). 

The EOF analysis was implemented on the OUT nLw spectra according to Craig et 

al. (2012). In this application the seven wavelengths of the spectra represented the multi-

dimensional aspect of the dataset. Computation of the EOF analysis was performed with 

the MATLABTM function pca, which required as input the spectra formatted into a 2327 

× 7 (row × column) array, where rows corresponded to observations and columns to 

wavelength. It should be noted that Craig et al. (2012) ultimately used integral-

normalized spectra for their study. This was done to remove any variability due to 

spectral amplitude, as their focus was on changes in spectral shape due to phytoplankton 

optical properties. However, given that spectral amplitude is of primary interest in my 

study, the decision was made to not normalize the spectra. The output of the EOF 

analysis consisted of a 7 × 7 array of the EOFs, where rows corresponded to loadings, 

and columns to EOF number. In addition, a 2327 × 7 array was output containing the 

EOF scores, where rows corresponded to observations and columns to EOF number. 

 

2.5 Above-Water PIC Backscattering 

 

The two-band PIC algorithm (Balch et al. 2005) was applied to the OUT nLw to 

estimate OUT bb′. The algorithm requires as input nLw(440) and nLw(550), and then 

estimates bb′ with a lookup table (LUT) (Figure 2.3). This LUT was previously generated 

with a forward implementation of the semianalytic model described by Gordon et al. 

(1988). As discussed, PIC (mol m-3) is then estimated from bb′ (m-1) through division by 

bb* (m2 mol-1) (Equation 1.3). I used a MATLABTM implementation of the two-band PIC 

algorithm, which was constructed based on the calcite.c code distributed with SeaDAS 

6.4. The LUT is sensor-specific, so a LUT appropriate for SeaWiFS spectra was used, 

which requires as input nLw(443) and nLw(555). Additionally, the LUT is constantly 

updated as more data become available, and the most recent version was used (created on 
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13 November 2013). The LUT estimates bb′(550), whereas the flow-through system ECO 

VSF estimated bb′(530). The spectral (λ; nm) dependence of bb′ has previously been 

approximated as λ-1.35 (Voss et al. 1998), and OUT bb′(550) was converted to OUT 

bb′(530) according to Gordon et al. (2001): 

   (2.3) 

Application of the two-band PIC algorithm to the 2327 OUT nLw spectra yielded 2100 

OUT bb′ estimates. 

 

 

 

 
Figure 2.3. The two-band PIC algorithm SeaWiFS lookup table (LUT). A) image of the 
LUT, which demonstrates how the algorithm estimates bb′ from measurements of 
nLw(443) and nLw(555) and B) histogram of the LUT bb′ values. 
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2.6 Shipboard Wind Speed 

 

Continuous measurements of relative wind, defined as the wind vector referenced 

to the ship, were made during the cruise using an ultrasonic wind sensor (Vaisala 

WS425A2C2B) mounted on the bow meteorological mast 17 m above the sea surface. 

Data were recorded every 30 s by the R/V Roger Revelle Shipboard Meteorological 

Acquisition System (MetAcq), and were merged with time, navigation, and heading 

information. True wind, defined as the wind vector with direction and speed referenced to 

true north and the fixed earth respectively, was calculated by the MetAcq using the 

relative wind measurements in combination with the ship’s heading, course over ground 

(COG), and speed over ground (SOG) according to Smith et al. (1999). 

To quality control the wind data, a procedure was developed based on the 

automatic preprocessing program described by Smith et al. (1996) to flag values that 

failed a series of objective tests. This procedure consisted of checking each record for the 

following: 1) a valid GPS fix, 2) a sequential and non-duplicate time, and 3) realistic data 

values. Regarding the third test, acceptable data ranges were taken from Smith et al. 

(1996). Variables that were verified included (acceptable data ranges in parentheses) 

latitude and longitude (35 to 55°S and 65 to 50°W, respectively, which were the 

approximate spatial bounds of the cruise track), ship heading and COG (0 to 360°), ship 

SOG (0 to 15 m s-1), relative and true wind direction (0 to 360°), and relative and true 

wind speed (0 to 40 m s-1). If a record failed any of the above three tests it was flagged. In 

total, 112 of 77759 (0.1%) records were flagged and removed. Finally, to align the 

quality-controlled true wind speed with the IN bb′ time series the true wind speed data 

were temporally averaged in a manner identical to the above-water radiometry data. This 

yielded 5824 true wind speed measurements. Henceforth, the term “true” will be omitted 

with regard to wind speed for brevity. 

 

2.7 Satellite Radiometry 

 

To independently verify the above-water radiometry it was compared with 

corresponding satellite imagery. Global Level-3 Standard Mapped Images (SMIs) of 
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daily 4 km MODIS-Aqua Rrs for all 10 available wavelengths (412, 443, 469, 488, 531, 

547, 555, 645, 667, and 678 nm) were obtained for the month of December 2008 from the 

NASA Ocean Color Web (http://oceancolor.gsfc.nasa.gov/). The SMIs were subsetted to 

the region defined by the bounds 35 to 55°S and 70 to 50°W, which broadly encompasses 

the PS. Pixels corresponding to incomplete spectra were removed from all of the SMIs. 

The Rrs was then converted to nLw according to Mueller et al. (2003): 

   (2.4) 

Henceforth, the term SAT nLw will refer to these nLw spectra. The “SAT” prefix 

emphasizes that this variable was measured by a satellite radiometer, and distinguishes it 

from the laboratory (IN) and above-water (OUT) variables described above in the text. 

Comparison of the above-water and satellite radiometry was facilitated with a 

match-up analysis. The method for determining coincident satellite imagery was based on 

the NASA Ocean Biology Processing Group’s (OBPG) satellite validation procedure 

described by Bailey and Werdell (2006). For each day of the COPAS’08 cruise, the 

corresponding OUT nLw records were sorted in an ascending manner according to the 

time differential between their measurement and 13:30 local (UTC-4), the approximate 

time of an ascending (daytime) MODIS-Aqua equatorial overpass. Only records within 3 

h of this time were considered. For each of the sorted records, the closest pixel of the 

corresponding daily satellite imagery was identified. Next, a 3 × 3 pixel box was defined 

around this location. If at least 50% of the pixels encompassed were valid, then the 

average of the satellite imagery within the box was calculated. Finally, the valid pixels 

used in this calculation were then removed from consideration for subsequent match-ups. 

The match-up analysis yielded 81 SAT nLw spectra at various locations throughout the 

cruise (Figure 2.4).  

It is acknowledged that the OBPG procedure avoids the use of spatially and/or 

temporally averaged imagery (e.g. SMIs) in satellite validation procedures (Bailey and 

Werdell 2006). However, the application of my match-up analysis was an independent 

check on the above-water radiometry, not a rigorous validation of the satellite imagery. 

Therefore it was determined that the use of SMIs, which are simpler to use than 

individual overpass imagery, was acceptable. Additionally, while the OBPG procedure 

defines a 5 × 5 satellite pixel box around in situ measurements, I used a 3 × 3 pixel box. 

nLw = Rrs F0
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This was done to account for the larger spatial resolution (4 km) of the SMIs, and to 

ensure that fewer pixels would be removed from consideration for subsequent match-ups. 

Finally, the presence of outliers within each box was not diagnosed. This was justified 

because SMIs are the result of spatially and temporally averaged imagery that has already 

been quality controlled. 

 

 

 

 
Figure 2.4. Locations of the OUT nLw and SAT nLw match-ups. The solid black line is the 
COPAS’08 cruise track. The solid gray line is the 1000 m bathymetry contour. 
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CHAPTER 3 

 

RESULTS 

 

3.1 Flow-Through PIC Backscattering 

 

IN bb′ spanned four orders of magnitude from 10-5 to 10-2 m-1, although the data 

were concentrated within a range of 10-4 to 10-3 m-1 (Figure 3.1A). The dominant signal 

in the time series was a sequence of three periods of consistently elevated values during 

19 through 20, 21 through 22, and 24 through 25 December (Figure 3.2A). These periods 

correspond to three transects through the center of the coccolithophore bloom located to 

the northeast of the FIs at 50°S, 57.5°W (Figures 1.4 and 3.3A). The highest values of the 

cruise were seen in this area, with maximum values of ~11x10-3, 8x10-3, and 5x10-3 m-1 

during the three transects, respectively. Elevated values (~3x10-3) were also seen in the 

portion of the bloom encircling the FIs to the east and south, to the northwest of the FIs, 

and to a lesser extent as far north of the FIs as 42.5°S (Figure 3.3A).  
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Figure 3.1. Histograms of A) IN bb′, B) scores of the first OUT nLw EOF, C) OUT bb′, 
and D) wind speed. The x-axes of panels A and C are shown on a logarithmic scale as IN 
bb′ and OUT bb′ spanned multiple orders of magnitude. 
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Figure 3.2. Time series of A) IN bb′ and OUT bb′, B) scores of the first OUT nLw EOF, 
and C) wind speed. The gaps in the scores and OUT bb′ occurred at night, and were due 
to the solar zenith angle restriction on the above-water radiometry. 
  

05 08 11 14 17 20 23 26 29
0

5

10

15

b b′ x
 1

03  (
m

−
1 )

 

 
A IN OUT

05 08 11 14 17 20 23 26 29
−3

0

3

6

9

S
co

re
s 

(μ
W

 c
m

−
2  n

m
−

1  s
r−

1 )

B

05 08 11 14 17 20 23 26 29
0

5

10

15

20

25

30

Date (December 2008)

W
in

d 
S

pe
ed

 (
m

 s
−

1 ) C



25

 
 
Figure 3.3. Surface plots of A) IN bb′, B) scores of the first OUT nLw EOF, C) OUT bb′, 
and D) wind speed. Data were plotted every five measurements for visual clarity. Data 
were plotted in a temporally ascending manner, and therefore some sections are self-
covered (refer to Figure 2.1 for details). The gaps in the scores and OUT bb′ occurred at 
night, and were due to the solar zenith angle restriction on the above-water radiometry. 
The solid black lines are the COPAS’08 cruise track. The solid gray lines are the 1000 m 
bathymetry contour. 
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3.2 Above-Water Radiometry 

 

The dominant shape of the OUT nLw spectra was characterized by an increase 

with wavelength from 412 nm to a maximum at 490 nm in the blue region of the 

spectrum, followed by a decrease with wavelength to a minimum at 670 nm (Figure 

3.4A). The spectra demonstrated the most variability at lower wavelengths, for example 

nLw(412) and nLw(670) were primarily within 3.0 and 1.0 μW cm-2 nm-1 sr-1, respectively. 

Spectra with elevated amplitudes were clearly associated with higher IN bb′ values. When 

the spectra were normalized by their integral to emphasize variations in shape rather than 

amplitude, a secondary shape was evident (Figure 3.4B). This shape was characterized by 

a maximum at either 532 or 555 nm in the green region of the spectrum, and was 

associated with lower IN bb′ values. 

 

 

 

 
Figure 3.4. OUT nLw spectra. A) non-normalized and B) integral-normalized. Spectra are 
colored according to the coincident IN bb′ values, where gray indicates missing values. 
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3.3 Above-Water Radiometry EOF Analysis 

 

The first OUT nLw EOF represented the primary mode of variability, as it 

accounted for 95% of the variance in the dataset (Figure 3.5A). The shape of the first 

EOF, visualized by plotting its loadings versus wavelength (Figure 3.5B), resembled the 

dominant shape of the OUT nLw spectra (Figure 3.4A). Additionally, all the loadings 

were of the same sign, indicating that this mode of variability affected the entire spectrum 

in the same manner. Therefore, the first EOF was attributed to changes in the amplitude 

of the OUT nLw spectra. This mode of spectral variability is of primary interest, as it is 

theoretically dependent on seawater backscattering constituents such as PIC and bubbles 

(Equation 1.2). As a result, I decided to use the scores of the first EOF (henceforth simply 

“scores”) as a surrogate for the OUT nLw spectra. To reiterate, each score was a single 

value that resulted from projecting an individual OUT nLw spectrum onto the mode of 

variability defined by the first EOF. This reduced the dimensionality of the OUT nLw 

dataset from seven to one while retaining 95% of its information. Therefore, the scores 

provided a parsimonious means of representing the OUT nLw spectra.  

The scores ranged from -2 to 8 μW cm-2 nm-1 sr-1, although they were primarily < 

3 μW cm-2 nm-1 sr-1 (Figure 3.1B). As with IN bb′, the highest values of the cruise were 

seen during the three transects through the center of the coccolithophore bloom located to 

the northeast of the FIs, with maximum values of 8, 5, and 7 μW cm-2 nm-1 sr-1, 

respectively (Figures 3.2B and 3.3B). In general, elevated scores were observed in 

regions of elevated IN bb′, including the portion of the bloom encircling the FIs to the 

east and south, to the northwest of the FIs, and as far north of the FIs as 42.5°S (Figure 

3.3A and B). 
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Figure 3.5. A) scree plot demonstrating the proportion of the OUT nLw variance 
explained by each EOF and B) loadings of the first EOF versus wavelength.  
 

 

3.4 Above-Water PIC Backscattering 

 

OUT bb′ spanned four orders of magnitude from 10-5 to 10-2 m-1 (Figure 3.1C), 

similar to IN bb′ (Figure 3.1A). However, OUT bb′ was concentrated within 10-3 to 10-2 

m-1, at the upper end of this range. Some of the highest values of OUT bb′ were seen 

during the three transects through the center of the coccolithophore bloom located to the 

northeast of the FIs, with a typical maximum value of ~1x10-2 (Figures 3.2A and 3.3C). 

In general, OUT bb′ was elevated relative to IN bb′, and the two variables did not 

consistently covary (Figures 3.2A and 3.3A and C). 

 

3.5 Shipboard Wind Speed 

 

Wind speed ranged from 0 to 25 m s-1, although it was primarily < 15 m s-1 

(Figure 3.1D). The cruise encountered two periods of strong wind. The first occurred 

during 21 through 22 December, coinciding with the second transect through the center 

of the coccolithophore bloom located to the northeast of the FIs (Figures 3.2C and 3.3D). 

The second occurred during 30 through 31 December, when the ship was located to the 
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southwest of the FIs. During these two periods the maximum wind speed observed was 

~25 and 21 m s-1, respectively. 

 

3.6 Satellite and Above-Water Radiometry Comparison 

 

Similar to the OUT nLw spectra, the dominant shape of the SAT nLw spectra was 

characterized by a maximum around 490 nm in the blue region of the spectrum, followed 

by a minimum at longer wavelengths (Figure 3.6A). As before, the spectra demonstrated 

the most variability at lower wavelengths, and those with elevated amplitudes were 

clearly associated with higher values of IN bb′. A secondary shape was again identified in 

the integral-normalized spectra, which was characterized by a maximum around 555 nm 

in the green region of the spectrum and associated with lower values of IN bb′ (Figure 

3.6B). 

The magnitude of OUT nLw and SAT nLw was compared at their common 

wavelengths (412, 443, 490/488, 532/531, 555, and 670/667 nm; OUT/SAT) with 

statistical metrics used by Bailey and Werdell (2006). For each wavelength, the ratio and 

absolute percent difference (PD; dimensionless) between coincident SAT and OUT 

values were computed according to the following expressions: 

   (3.1) 

   (3.2) 

where i indicates the ith match-up. The median ratio (MR; dimensionless) and median 

percent difference (MPD; dimensionless) were then computed. The semi-interquartile 

range (SIQR; dimensionless) of the ratios was also determined according to the following 

expression: 

   (3.3) 

where Q1 and Q3 (dimensionless) are the 25th and 75th percentiles, respectively. 

Additionally, for each wavelength SAT nLw was regressed onto OUT nLw, and the slope, 

  
Ratioi =

SATi

OUTi

  
PDi =

SATi −OUTi

OUTi

×100

  
SIQR =

Q3 −Q1

2
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coefficient of determination (r2; dimensionless), and root-mean-square error (RMSE) of 

the resulting least-squares regression line was computed. 

The results of this analysis are shown in Figure 3.7 and summarized in Table 3.1. 

There was general agreement between the magnitude of OUT nLw and SAT nLw. The 

only exception was the comparison of OUT nLw(670) and SAT nLw(667), but this was 

attributed to incorrect atmospheric correction of the satellite imagery due to violation of 

the black pixel assumption, and those results were not considered. For the other 

wavelengths the MR was primarily within 20% of unity, with a typical SIQR of ~0.070. 

A negative bias in the satellite data was evident given that the MR was consistently less 

than unity. The MPD ranged from 15.18 to 22.32%. There was a systematic decrease in 

the regression slopes with wavelength, and the furthest deviation of the slope from unity 

was 0.624. Finally, the r2 was generally greater than 0.750, and the typical RMSE was 

~0.150 μW cm-2 nm-1 sr-1. 

 

 

Table 3.1. OUT nLw and SAT nLw comparison statistics. Here n (dimensionless) is the 
sample size. 
 

OUT Wavelengtha MR (±  SIQR) MPD Slope r2 RMSEb n 
412 0.813 (± 0.086) 20.27 0.898 0.817 0.169 73 
443 0.837 (± 0.075) 18.62 0.851 0.809 0.180 73 
490c 0.782 (± 0.070) 22.32 0.805 0.833 0.182 73 
532d 0.854 (± 0.066) 15.18 0.741 0.752 0.113 73 
555 0.822 (± 0.067) 17.84 0.624 0.742 0.089 73 
670e 0.627 (± 0.131) 38.12 0.219 0.329 0.028 73 
aUnits: nm bUnits: μW cm-2 nm-1 sr-1 
cSAT nLw(488) dSAT nLw(531) eSAT nLw(667) 
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Figure 3.6. SAT nLw spectra. A) non-normalized and B) integral-normalized. Spectra are 
colored according to the coincident IN bb′ values, where gray indicates missing values. 
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Figure 3.7. SAT nLw versus OUT nLw. The solid black lines are the least-squares 
regression lines. The dashed gray lines are the 1:1 lines. All units are μW cm-2 nm-1 sr-1. 
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3.7 Wind Speed Elevation of Above-Water Radiometry 

 

A positive correlation between the scores and wind speed would have suggested 

an elevation of OUT nLw due to wind speed, and therefore entrained bubbles. However, 

there was no clear relationship between the scores and wind speed (Figure 3.8A). For a 

given wind speed, increasing scores were generally associated with increasing IN bb′, as 

indicated by the horizontal bands of color. A positive correlation was possibly apparent 

between the scores and wind speed approximately > 12.5 m s-1. However, it was not clear 

if this relationship was apparent only because of a relative lack of observations in the 

dataset that occurred during high wind speeds, particularly in combination with low 

values of IN bb′. In contrast, a clear positive correlation was apparent between the scores 

and IN bb′, although this relationship existed primarily at IN bb′ approximately > 5x10-4 

m-1 (Figure 3.8B). For a given value of IN bb′, increasing scores were not associated with 

increasing wind speed, as indicated by the absence of horizontal bands of color. 

It was considered that the strong relationship between the scores and IN bb′ might 

have obfuscated a comparatively minor relationship between the scores and wind speed. 

It was also considered that these relationships might have varied depending on the 

magnitude of IN bb′ and wind speed. To investigate this, the dataset was isolated into four 

different combinations of low and high IN bb′ and wind speed. This was accomplished by 

first isolating the dataset into LOW and HIGH IN bb′ scenarios. A threshold of 5x10-4 m-1 

was used, as above this value the scores displayed a positive correlation with IN bb′ 

(Figure 3.8B). The two resulting IN bb′ scenarios were then further isolated into LOW 

and HIGH wind speed scenarios. A threshold of 12.5 m s-1 was used, as above this value 

a positive correlation between the scores and wind speed was possibly apparent (Figure 

3.8A). 

The following steps were then performed for each of these four scenarios. First, 

the Pearson correlation coefficient was computed between the scores and IN bb′ (rs,IN; 

dimensionless). Statistical significance was defined at α = 0.05, and was based on padj 

(dimensionless), a p-value adjusted for any autocorrelation present in the data (Appendix 

A). If rs,IN was significant, a least-squares linear regression model was constructed using 
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IN bb′ and the scores as predictor and response variables, respectively. The residuals of 

this model represented the unexplained variability in the scores. The correlation 

coefficient was then computed between the residuals and wind speed (rr,w; dimensionless) 

to examine a potential effect of wind speed on the scores. However, if rs,IN was not 

significant, the correlation coefficient was computed between the scores and wind speed 

(rs,w; dimensionless) to examine a potential effect of wind speed on the scores. A positive 

value of either rr,w or rs,w would have suggested an elevation of the scores (and therefore 

OUT nLw) due to wind speed (and therefore entrained bubbles). 

The results of this analysis are shown in Figures 3.9 and 3.10, and the 

corresponding statistics are summarized in Tables 3.2 and 3.3. Three primary 

observations were apparent: 1) the correlation between the scores and IN bb′ was only 

significant in the two HIGH IN bb′ scenarios (LOW wind speed: rs,IN = 0.867, HIGH 

wind speed: rs,IN = 0.705; Table 3.2, Figures 3.9A and C and 3.10A and C), 2) the 

correlation between the residuals and wind speed was not significant in either of the 

HIGH IN bb′ scenarios (Table 3.3, Figure 3.10B and D), and 3) the correlation between 

the scores and wind speed was only significant in the LOW IN bb′, HIGH wind speed 

scenario (rs,w  = 0.755; Table 3.3, Figure 3.9B and D). Therefore, the scores were only 

correlated with IN bb′ at values of IN bb′ > 5x10-4 m-1, and there was only an elevation of 

the scores due to wind speed at wind speeds > 12.5 m s-1 in combination with values of 

IN bb′ < 5x10-4 m-1. 
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Table 3.2. Pearson correlation coefficients between the scores and IN bb′ (rs,IN) for the 
four scenarios of LOW and HIGH IN bb′ and wind speed. Here neff and padj are the sample 
size (n; dimensionless) and p-value (p; dimensionless), respectively, adjusted for any 
autocorrelation present in the data (Appendix A). Bolded correlations are significant at α 
= 0.05 based on padj. 
 

IN bb′  Wind Speed rs,IN n p neff padj 
LOW LOW 0.223 680 < 0.001 24 0.271 
LOW HIGH -0.103 52 0.468 13 0.678 
HIGH LOW 0.867 1206 < 0.001 42 < 0.001 
HIGH HIGH 0.705 138 < 0.001 13 0.013 

 

 

Table 3.3. Pearson correlation coefficients between the residuals and wind speed (rr,w) or 
the scores and wind speed (rs,w) for the four scenarios of LOW and HIGH IN bb′ and 
wind speed. Here neff and padj are the sample size (n; dimensionless) and p-value (p; 
dimensionless), respectively, adjusted for any autocorrelation present in the data 
(Appendix A). Bolded correlations are significant at α = 0.05 based on padj. 
 

IN bb′  Wind Speed rr,w rs,w n p neff padj 
LOW LOW - 0.088 680 0.022 17 0.719 
LOW HIGH - 0.755 52 < 0.001 8 0.020 
HIGH LOW 0.035 - 1206 0.230 29 0.844 
HIGH HIGH 0.267 - 138 0.002 8 0.456 
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Figure 3.8. Scores of the first OUT nLw EOF versus A) wind speed and B) IN bb′. Data 
points in panels A and B are colored according to the coincident IN bb′ values and wind 
speeds, respectively, where gray indicates missing values. 
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Figure 3.9. A and C) scores of the first OUT nLw EOF versus IN bb′ for the two LOW IN 
bb′ scenarios. B and D) scores of the first OUT nLw EOF versus wind speed for the two 
LOW IN bb′ scenarios. Refer to Tables 3.2 and 3.3 for the corresponding Pearson 
correlation coefficients. 
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Figure 3.10. A and C) scores of the first OUT nLw EOF versus IN bb′ for the two HIGH 
IN bb′ scenarios. The solid black lines are the least-squares regression lines. B and D) 
residuals of the linear regressions in A and C, respectively, versus wind speed for the two 
HIGH IN bb′ scenarios. The dashed black lines are the zero reference lines. Refer to 
Tables 3.2 and 3.3 for the corresponding Pearson correlation coefficients. 
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3.8 Wind Speed Elevation of Above-Water PIC Backscattering 

 

As with the scores, a positive correlation between OUT bb′ and wind speed would 

have suggested an elevation of OUT bb′ due to wind speed, and therefore entrained 

bubbles. However, there was no apparent relationship between these variables (Figure 

3.11A). For a given wind speed, increasing values of OUT bb′ were generally associated 

with increasing values of IN bb′, as indicated by the horizontal bands of color. Indeed, a 

clear positive correlation was apparent between OUT bb′ and IN bb′, although this 

relationship existed primarily at IN bb′ approximately > 5x10-4 m-1 (Figure 3.11B). For a 

given IN bb′ value, increasing values of OUT bb′ were not associated with increasing 

wind speed, as indicated by the absence of horizontal bands of color. 

To further investigate the relationship between OUT bb′ and wind speed, the 

dataset was again isolated into four combinations of low and high IN bb′ and wind speed. 

The previous threshold values of 5x10-4 m-1 and 12.5 m s-1 were used for IN bb′ and wind 

speed, respectively. As with the scores, for each of these four scenarios the Pearson 

correlation coefficient was computed between OUT bb′ and IN bb′ (rOUT,IN; 

dimensionless). Statistical significance was again defined at α = 0.05 based on padj 

(Appendix A), and OUT bb′ and IN bb′ were log-transformed to yield a linear 

relationship. If rOUT,IN was significant, a least-squares linear regression model was 

constructed using IN bb′ and OUT bb′ as predictor and response variables, respectively. 

The residuals of this model represented the unexplained variability in OUT bb′. The 

correlation coefficient was then computed between the residuals and wind speed (rr,w; 

dimensionless) to examine a potential effect of wind speed on OUT bb′. However, if 

rOUT,IN was not significant, the correlation coefficient was computed between OUT bb′ 

and wind speed (rOUT,w; dimensionless) to examine a potential effect of wind speed on 

OUT bb′. A positive value of either rr,w or rOUT,w would have suggested an elevation of 

OUT bb′ due to wind speed (and therefore entrained bubbles). 

The results of this analysis are shown in Figures 3.12 and 3.13, and the 

corresponding statistics are summarized in Tables 3.4 and 3.5. Two primary observations 

were apparent: 1) the correlation between OUT bb′ and IN bb′ was only significant in the 
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two HIGH IN bb′ scenarios (LOW wind speed: rOUT,IN = 0.616, HIGH wind speed: rOUT,IN 

= 0.643; Table 3.4, Figures 3.12A and C and 3.13A and C) and 2) neither the correlation 

between the residuals and wind speed or the correlation between OUT bb′ and wind speed 

were significant in any of the four scenarios (Table 3.5, Figures 3.12B and D and 3.13B 

and D). Therefore, OUT bb′ was only correlated with IN bb′ at values of IN bb′ > 5x10-4 

m-1, and there was no elevation of OUT bb′ due to wind speed in any combination of 

wind speed and IN bb′. 

 

 

Table 3.4. Pearson correlation coefficients between OUT bb′ and IN bb′ (rOUT,IN) for the 
four scenarios of LOW and HIGH IN bb′ and wind speed. Here neff and padj are the sample 
size (n; dimensionless) and p-value (p; dimensionless), respectively, adjusted for any 
autocorrelation present in the data (Appendix A). Bolded correlations are significant at α 
= 0.05 based on padj. 
 

IN bb′  Wind Speed rOUT,IN n p neff padj 

LOW LOW 0.051 535 0.240 22 0.820 
LOW HIGH -0.387 51 0.005 14 0.146 
HIGH LOW 0.616 1173 < 0.001 38 < 0.001 
HIGH HIGH 0.643 138 < 0.001 14 0.015 

 

 

Table 3.5. Pearson correlation coefficients between the residuals and wind speed (rr,w) or 
OUT bb′ and wind speed (rOUT,w) for the four scenarios of LOW and HIGH IN bb′ and 
wind speed. Here neff and padj are the sample size (n; dimensionless) and p-value (p; 
dimensionless), respectively, adjusted for any autocorrelation present in the data 
(Appendix A). Bolded correlations are significant at α = 0.05 based on padj. 
 

IN bb′  Wind Speed rr,w rOUT,w n p neff padj 

LOW LOW - 0.287 535 < 0.001 15 0.265 
LOW HIGH - 0.257 51 0.069 9 0.448 
HIGH LOW 0.177 - 1173 < 0.001 31 0.333 
HIGH HIGH 0.182 - 138 0.033 8 0.601 
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Figure 3.11. OUT bb′ versus A) wind speed and B) IN bb′. The dashed gray line is the 1:1 
line. Data points in panels A and B are colored according to the coincident IN bb′ values 
and wind speeds, respectively, where gray indicates missing values.  
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Figure 3.12. A and C) OUT bb′ versus IN bb′ for the two LOW IN bb′ scenarios. The 
dashed gray lines are the 1:1 lines. B and D) OUT bb′ versus wind speed for the two 
LOW IN bb′ scenarios. Refer to Tables 3.4 and 3.5 for the corresponding Pearson 
correlation coefficients. 
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Figure 3.13. A and C) OUT bb′ versus IN bb′ for the two HIGH IN bb′ scenarios. The 
solid black lines are the least-squares regression lines. The dashed gray lines are the 1:1 
lines. B and D) residuals of the linear regressions in A and C, respectively, versus wind 
speed for the two HIGH IN bb′ scenarios. The dashed black lines are the zero reference 
lines. Refer to Tables 3.4 and 3.5 for the corresponding Pearson correlation coefficients. 
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CHAPTER 4 

 

DISCUSSION 

 

4.1 Above-Water Radiometry Accuracy 

 

There was confidence in the accuracy of the OUT nLw spectra. The SAT nLw 

spectra were used for an independent verification. The results of comparing their 

magnitude at common wavelengths (Table 3.1) were similar to those reported by Bailey 

and Werdell (2006) for a global dataset of nLw. In that study the MR was consistently 

within 10% of unity, with a typical SIQR of about 0.15, and a negative bias in the 

satellite data was also evident. Furthermore, the MPD ranged from 13.74 to 24.09%, 

there was a systematic decrease in the regression slopes with wavelength, the furthest 

deviation of the slope from unity was 1.146, the r2 was consistently above 0.800, and the 

typical RMSE was ~0.225 μW cm-2 nm-1 sr-1. Additionally, the dominant shape of the 

OUT nLw and SAT nLw spectra were similar, characterized by a maximum around 490 

nm in the blue region of the spectrum, followed by a minimum at longer wavelengths 

(Figures 3.4A and 3.6A). When normalized by their integral, both datasets showed a 

secondary shape, which was characterized by a maximum around 555 nm in the green 

region of the spectrum and associated with lower values of IN bb′ (Figures 3.4B and 

3.6B). Both of these shapes were evident in the hyperspectral Rrs spectra reported by 

Garcia et al. (2011), who observed a PS coccolithophore bloom further to the west in 

January 2008. 

 

4.2 PIC as a Dominant Optically Active Seawater Constituent 

 

The PS coccolithophore bloom peaked north of the FIs between 24 November and 

1 December, and was substantially reduced in size and intensity when it was initially 

observed about three weeks later on 19 December during the COPAS’08 cruise (Painter 

et al. 2010). The portion of the bloom encircling the FIs to the east and south formed 
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later, peaking between 18 and 25 December. Overall this feature represented the 

maximum coccolithophore concentration in the region for eight months (Balch et al. 

accepted). Bloom waters were dominated by the E. huxleyi morphotype B/C (Poulton et 

al. 2011). Other notable features that were observed in the IN bb′ dataset included a 

subordinate bloom located to the northwest of the FIs, likely due to a band of stratified 

water trapped between two tidal fronts (Balch et al. accepted). This bloom was probably 

similar to the feature observed by Garcia et al. (2011). Additionally, the elevated values 

of IN bb′ observed as far north of the FIs as 42.5°N were a result of water rich in PIC 

being carried northwards by the Falklands Current. Throughout the cruise IN bb′ showed 

similar spatial patterns to PIC concentration determined by Inductively-Coupled Plasma 

Optical Emission Spectroscopy (Balch et al. accepted). This provided confidence that IN 

bb′ was an appropriate indicator of PIC. 

Multiple lines of evidence were presented in this study demonstrating that PIC 

was a dominant optically active seawater constituent at higher concentrations. The first 

OUT nLw EOF represented the primary mode of spectral variability, accounting for 95% 

of the dataset variance, and was due to changes in spectral amplitude (Figure 3.5). 

Elevated spectra were clearly associated with higher values of IN bb′ (Figure 3.4A). 

Furthermore, the scores of the first EOF, which could be physically interpreted as indices 

of spectral amplitude, were positively correlated with IN bb′ in the two HIGH IN bb′ 

scenarios (LOW wind speed: rs,IN = 0.867; HIGH wind speed: rs,IN = 0.705; Table 3.2, 

Figure 3.10A and C). Assuming bb* = 4 m2 mol-1, the threshold IN bb′ value of 5x10-4 m-1 

is equivalent to ~2 μgPIC L-1 (Equation 1.3), which is the global average PIC 

concentration (Balch et al. 2005). Above this threshold PIC was clearly a dominant driver 

of OUT nLw spectral variability. These results are consistent with those of Garcia et al. 

(2011), who performed an EOF analysis on their Rrs spectra. In that study the first EOF 

resembled the dominant spectral shape and accounted for 98% of the dataset variance. 

Furthermore, the authors found a positive correlation (0.77) between the scores of the 

first EOF and PIC concentrations ranging from ~35 to 300 μgPIC L-1. Given the strong 

backscattering properties of coccoliths, it is not surprising that PIC was a dominant 

optically active constituent at higher concentrations during the cruise. 
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However, the scores were not correlated with IN bb′ in the two LOW IN bb′ 

scenarios (Table 3.2, Figure 3.9A and C). This indicates that below the threshold of ~2 

μgPIC L-1 PIC did not drive OUT nLw spectral variability, suggesting that it might have 

been difficult to detect optically. Indeed, although OUT bb′ was positively correlated with 

IN bb′ in the two HIGH IN bb′ scenarios (LOW wind speed: rOUT,IN = 0.616; HIGH wind 

speed: rOUT,IN = 0.643; Table 3.4, Figure 3.13A and C), it was not correlated with IN bb′ 

in the two LOW IN bb′ scenarios (Table 3.4, Figure 3.12A and C). As was observed, 

OUT bb′ was generally elevated compared to IN bb′ (Figures 3.1A and C, 3.2A, 3.3A and 

C, and 3.11B). However, the RMSE of the two-band PIC algorithm in this application 

was ~2x10-3 m-1, equivalent to ~6 μgPIC L-1 assuming bb* = 4 m2 mol-1, which is well 

within the published RMSE of 28 μgPIC L-1 (Balch et al. 2005). Interestingly, the fact 

that the scores were correlated with higher values of IN bb′ suggests that an alternative 

PIC algorithm could be constructed with the EOF methodology of Craig et al. (2012). 

This is something that I will actively pursue in the future. 

 

4.3 Limited Impact of Bubbles 

 

There was limited evidence to suggest that wind-generated entrained bubble 

populations elevated OUT nLw during the cruise. In the two LOW IN bb′ scenarios the 

scores of the first OUT nLw EOF were only correlated with wind speed in the HIGH wind 

speed scenario (rs,w = 0.755; Table 3.3, Figure 3.9B and D). Indeed, it was expected that 

this would be the most likely scenario for bubbles to elevate OUT nLw, given the higher 

wind speeds and minimal elevation of the spectra due to PIC. However, this result should 

be interpreted cautiously. The correlation was sensitive to the wind speed threshold used. 

For example, it was no longer significant if the threshold was reduced from 12.5 to 12.0 

m s-1. Additionally, in the two HIGH IN bb′ scenarios there was no evidence that bubbles 

elevated OUT nLw, even in the HIGH wind speed scenario, as there was no correlation 

between the residual variability of the scores and wind speed (Table 3.3, Figure 3.10B 

and D). In contrast to OUT nLw, there was no evidence that bubbles elevated OUT bb′ in 

any of the four scenarios. Specifically, OUT bb′ was not correlated with wind speed in 



47

either of two LOW IN bb′ scenarios (Table 3.5, Figure 3.12B and D). Furthermore, there 

was no correlation between the residual variability of OUT bb′ and wind speed in either 

of the two HIGH IN bb′ scenarios (Table 3.5, Figure 3.13B and D). This may suggest that 

the elevation of OUT nLw observed in the LOW IN bb′, HIGH wind speed scenario was 

obscured by errors inherent to the two-band PIC algorithm. 

Since no measurements of bubbles were made in this study, it is not possible to 

definitively confirm their presence or absence during the cruise. One ramification of this 

is that it is not possible to directly link the correlation between the scores and wind speed 

in the LOW IN bb′, HIGH wind speed scenario to bubbles, rather than a different 

phenomenon mediated by wind speed (whitecaps, ship roll, etc.). However, it is likely 

that bubbles were present throughout the cruise, even in the LOW wind speed scenarios 

(wind speed < 12.5 m s-1). For example, during wind speeds > 3 m s-1 bubble entrainment 

is the dominant source of bubbles in the surface ocean in the absence of precipitation 

(Thorpe 1992). Additionally, during wind speeds > 7 m s-1 separate bubble plumes near 

the sea surface join and produce a stratus layer (Thorpe 1995). Furthermore, Randolph et 

al. (2014) observed wind-generated entrained bubble populations during wind speeds of 

~13 m s-1 as part of the SO GasEx expedition. 

Given the impact of bubbles on surface ocean optics demonstrated in the literature 

(e.g. Stramski 1994, Zhang et al. 1998, Stramski and Tegowski 2001), it is surprising that 

in my study there was only limited evidence for an elevation of OUT nLw due to bubbles, 

even in the HIGH wind speed scenarios (wind speed > 12.5 m s-1). One possible 

explanation for this is that most of the impact of bubbles was removed during the above-

water radiometry quality control procedure. As described above, only the lowest 5% of 

the above-water radiometry in each temporal bin (~6 minutes) was accepted. This is a 

routine procedure, and is performed to eliminate the effects of whitecaps and sun glint 

(Mueller et al. 2003). It has been demonstrated that the optical impacts of bubbles can be 

highly variable over time periods of minutes or less (Stramski and Tegowski 2001, Terrill 

et al. 2001), and therefore it is possible that they could be removed during this procedure. 

There have been few field studies that have verified an elevation of nLw or Rrs due to 

entrained bubbles. Zhang et al. (2004) observed elevated in-water and airborne Rrs due to 

bubbles entrained by ship wakes in the equatorial Pacific and offshore of New Jersey. 
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Additionally, Randolph et al. (2010) observed elevated in-water and above-water Rrs due 

to wind-generated entrained bubbles in the Atlantic Sector of the Southern Ocean during 

wind speeds of 13 to 15 m s-1. However, in-water measurements of Rrs do not require the 

removal of whitecaps or sun glint, and the airborne and above-water measurements of Rrs 

by Zhang et al. (2004) and Randolph et al. (2010), respectively, did not employ quality 

control procedures to remove whitecaps or sun glint. 

The results of my study suggest that wind-generated entrained bubble populations 

can possibly elevate measurements of quality-controlled above-water nLw at wind speeds 

> 12.5 m s-1. However, there is no evidence that bubbles elevate estimates of PIC made 

using the two-band PIC algorithm (Balch et al. 2005) at the wind speeds observed during 

the cruise (0 to 25 m s-1). Future work should verify if routine quality control procedures 

applied to above-water radiometry measurements, which are designed to remove 

whitecaps and sun glint, also remove entrained bubbles. This could be done with 

concurrent field measurements of bubbles and above-water nLw or Rrs, in combination 

with radiative transfer modeling. These results also have implications for satellite 

radiometry measurements, e.g. those in the GCB, as an attempt is made to remove 

whitecaps in standard satellite atmospheric correction procedures (Gordon and Wang 

1994b). These procedures could also remove entrained bubbles, which should be verified 

in future work. Overall, the results of my study emphasize the need to consider the 

practical use of nLw or Rrs when assessing the optical impacts of bubbles. If bubbles are 

removed from above-water or satellite measurements during routine quality control or 

atmospheric correction procedures, their impacts could be minimal.  
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CHAPTER 5 

 

CONCLUSION 

 

In December 2008 the COPAS’08 cruise observed a mesoscale coccolithophore 

bloom on the PS, the brightest region of the GCB. Observations made during the cruise 

provided an opportunity to determine if wind-generated entrained bubble populations 

elevated measurements of above-water nLw and subsequent remote sensing estimates of 

PIC. The first OUT nLw EOF accounted for 95% of the dataset variance, and was 

attributed to changes in spectral amplitude. Scores of the first EOF were positively 

correlated with IN bb′ > 5x10-4 m-1, regardless of wind speed. This indicated that PIC was 

an optically active seawater constituent above this threshold. However, there was limited 

evidence to suggest that bubbles elevated OUT nLw, and no evidence that they elevated 

OUT bb′. This is in contrast to the results of previous studies that have demonstrated the 

impact of bubbles on surface ocean optics (e.g. Stramski 1994, Zhang et al. 1998, 

Stramski and Tegowski 2001). The results of this study are primarily applicable to above-

water nLw or Rrs measurements (i.e. not in-water or satellite) employing routine quality 

control procedures to remove sun glint and whitecaps. Future studies should expand upon 

this by incorporating field measurements of bubble concentration, in combination with 

radiative transfer modeling, to compare observed and modeled nLw or Rrs. This should 

provide insight into, among other things, whether quality controls for sun glint and 

whitecaps are simultaneously removing the impact of bubbles. 
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APPENDIX A 

 

NOTE ON AUTOCORRELATION 

 

The time series of both IN bb′ and wind speed were autocorrelated, as indicated by 

their respective autocorrelation functions (Figure A.1). It was not possible to directly 

diagnose the presence of autocorrelation in the time series of the scores of the first OUT 

nLw EOF and OUT bb′ due to the nighttime gaps in the data. Instead, it was assumed that 

they had an autocorrelation structure similar to that of IN bb′. Autocorrelation indicates 

that future values of a variable are dependent on its previous values. Indeed, because they 

were measured continuously during the cruise, it was expected that these variables would 

be autocorrelated. However, classical statistical tests assume independent data. 

Application of these tests without considering the effects of autocorrelation can result in 

incorrect conclusions. 

I took great care to develop a parsimonious analysis that was both effective and 

accounted for the autocorrelated data. The analysis consisted of first isolating the 

complete time series of the variables into four scenarios of low and high IN bb′ and wind 

speed. For each scenario the Pearson correlation coefficient was then computed between 

various pairs of variables. To appreciate the effect of autocorrelation on these correlation 

coefficients, consider the vectors X and Y (dimensionless), each of sample size nX,Y 

(dimensionless). These vectors are analogous to the complete time series of the variables. 

Additionally, consider the vectors x and y (dimensionless), aligned segments of X and Y, 

each of sample size nx,y (dimensionless) << nX,Y. These vectors are analogous to the 

variables once they were isolated into the four scenarios of low and high IN bb′ and wind 

speed. The sample correlation of x and y (rx,y; dimensionless) has approximately a normal 

distribution with a standard deviation (σx,y; dimensionless) given according to: 

 σ x,y =
1− ρx,y

2

nx,y
  (A.1) 
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where ρx,y (dimensionless) is the true correlation of x and y. Under the null hypothesis 

that ρx,y is zero, the distribution of rx,y has a mean of zero, and Equation A.1 simplifies 

according to: 

 σ x,y =
1

nx,y
  (A.2) 

If either x or y is autocorrelated, then the effective standard deviation of rx,y (σx,y,eff; 

dimensionless) is approximated according to: 

 σ x,y,eff =
1

nx,y,eff
  (A.3) 

where nx,y,eff (dimensionless) is the effective sample size of x and y, and nx,y,eff < nx,y since 

the data are not independent. Taking the ratio of σx,y,eff to σx,y indicates that the 

autocorrelation present in either x or y effectively increases σx,y. The larger standard 

deviation makes the tail of the sampling distribution of rx,y under the null hypothesis 

heavier than would be expected for independent data. Therefore, by not taking 

autocorrelation into account, test p-values will be underestimated. The effect of this 

increase in σx,y can be quantified if the autocorrelation structures of x and y are relatively 

simple, for example if the variables can be modeled as first-order autoregressive (AR(1)) 

processes. In the present study wind speed could be modeled as an AR(1) process (Figure 

A.1A). This is often the case for daily meteorological variables (Wilks 2006). However, 

IN bb′ could not be modeled as an AR(1) process (Figure A.1B), and therefore it was 

assumed that the scores and OUT bb′ could not either. 

Given that the autocorrelation structures of IN bb′, the scores, and OUT bb′ were 

unknown, a novel resampling method was developed to assess the statistical significance 

of rx,y. To estimate the sampling distribution of rx,y under the null hypothesis, 1x105 pairs 

of unaligned segments (x′ and y′; dimensionless) were randomly resampled (with 

replacement) from X and Y. For each pair of x′ and y′ the correlation coefficient (rx,y′; 

dimensionless) was computed. The resulting 1x105 values of rx,y′ provided an empirical 

distribution that was used to estimate nx,y,eff and an adjusted p-value (padj; dimensionless) 

for rx,y under the null hypothesis.  
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The resampling method was applied to four test cases of simulated data, where X 

and Y were: 1) independent processes and not correlated, 2) independent processes and 

correlated, 3) AR(1) processes and not correlated, and 4) AR(1) processes and correlated. 

To be consistent with the present study, X and Y were chosen to be of length nX,Y = 5000, 

the approximate sample size of IN bb′ and wind speed. Additionally, x and y were chosen 

to be of length nx,y = 500, the average sample size of the low and high IN bb′ and wind 

speed scenarios (Tables 3.2, 3.3, 3.4, and 3.5). For each test case of simulated data the 

resampling method yielded the expected results. In the first test case nx,y,eff was 

determined to be ~500 and padj indicated that rx,y was not significant (X and Y were 

independent processes and not correlated; Table A.1, Figure A.2). In the second test case 

nx,y,eff was again computed to be ~500, but padj correctly indicated that rx,y was significant 

(X and Y were independent processes and correlated; Table A.1, Figure A.3). In the third 

test case nx,y,eff was computed to be < 500 and padj indicated that rx,y was not significant, 

therefore preventing a Type I error, i.e. a false positive (X and Y were AR(1) processes 

and not correlated; Table A.1, Figure A.4). In the fourth test case nx,y,eff was again 

computed to be < 500, but padj correctly indicated that rx,y was significant (X and Y were 

AR(1) processes and correlated; Table A.1, Figure A.5). 

In practice the autocorrelation structure of IN bb′ was used to approximate that of 

the scores and OUT bb′, as well as the residuals of the regressions of the scores onto IN 

bb′ and OUT bb′ onto IN bb′. Additionally, because X and Y were not subset according to 

time, but rather IN bb′ and wind speed, x and y did not consist of uniformly contiguous 

data. Therefore, the reported values of padj (Tables 3.2, 3.3, 3.4, and 3.5) were likely 

conservative in the sense that the probability of a Type I error was less than the nominal 

value of 0.05. 
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Table A.1. Results of the resampling method on the four test cases of simulated data. 
 

Test Case nX,Y nx,y
a rx,y p nx,y,eff padj 

Independent, Not Correlated 5000 500 -0.007 0.870 496 0.872 
Independent, Correlated 5000 500 0.720 < 0.001 496 < 0.001 
AR(1)b, Not Correlated 5000 500 -0.145 0.001 144 0.081 
AR(1)b, Correlated 5000 500 -0.756 < 0.001 104 < 0.001 
aThe first nx,y elements of X and Y were selected for x and y. 
bThe AR(1) coefficients of X and Y were 0.85 and 0.65, respectively. 
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Figure A.1. Autocorrelation function (ACF) of A) IN bb′ and B) wind speed. Each lag 
represents six minutes. The black lines show how the ACFs would appear if an AR(1) 
process generated the variables. 
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Figure A.2. Results of the resampling method on the first test case of simulated data (X 
and Y were independent processes and not correlated). A) the first 100 elements of x and 
y, B) y plotted versus x, and C) sampling distribution of rx,y under the null hypothesis. 
The gray bars are the histogram of the 1x105 values of rx,y′ computed by the resampling 
method and converted to Student’s t-distribution test statistics. For comparison, the red 
line is the theoretical t-distribution. The resampled and theoretical distributions agree 
because X and Y were both independent processes. 
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Figure A.3. Results of the resampling method on the second test case of simulated data (X 
and Y were independent processes and correlated). A) the first 100 elements of x and y, 
B) y plotted versus x, and C) sampling distribution of rx,y under the null hypothesis. The 
gray bars are the histogram of the 1x105 values of rx,y′ computed by the resampling 
method and converted to Student’s t-distribution test statistics. For comparison, the red 
line is the theoretical t-distribution. The resampled and theoretical distributions agree 
because X and Y were both independent processes. 
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Figure A.4. Results of the resampling method on the third test case of simulated data (X 
and Y were AR(1) processes and not correlated). A) the first 100 elements of x and y, B) y 
plotted versus x, and C) sampling distribution of rx,y under the null hypothesis. The gray 
bars are the histogram of the 1x105 values of rx,y′ computed by the resampling method 
and converted to Student’s t-distribution test statistics. For comparison, the red line is the 
theoretical t-distribution. The resampled distribution is wider than the theoretical 
distribution because X and Y were both AR(1) processes. 
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Figure A.5. Results of the resampling method on the fourth test case of simulated data (X 
and Y were AR(1) processes and correlated). A) the first 100 elements of x and y, B) y 
plotted versus x, and C) sampling distribution of rx,y under the null hypothesis. The gray 
bars are the histogram of the 1x105 values of rx,y′ computed by the resampling method 
and converted to Student’s t-distribution test statistics. For comparison, the red line is the 
theoretical t-distribution. The resampled distribution is wider than the theoretical 
distribution because X and Y were both AR(1) processes. 
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