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 Abstract 

Marine ecosystem-based management requires end-to-end models, which are models ca-
pable of representing the entire ecosystem including physical, chemical and biological 
processes, anthropogenic activities, and multiple species with different sizes, life histories 
and from different trophic levels. To adequately represent ecosystem dynamics in shallow 
coastal regions, end-to-end models may need to include macrobiota species (wild and 
aquacultured) and may have to allow feedbacks (i.e. two-way coupling) between macro-
biota and planktonic ecosystem dynamics. This is because the biomass of macrobiota can 
locally exceed the biomass of plankton, thus influencing the distribution of planktonic 
ecosystem tracers and altering the overall food web structure. Here, I describe a hybrid 
(Eulerian/Individual-Based) ecosystem framework, implemented in the Regional Ocean 
Modeling System (ROMS), a state-of-the-art 3-D ocean circulation model. The frame-
work was applied to a model of a synthetic embayment containing seagrass, rockweed 
and kelp beds, a wild oyster reef, a mussel ranch and a fish farm. I found that two-way 
coupling is essential to reproduce expected spatial patterns of all variables and to con-
serve mass in the system. I also developed a shellfish ecophysiology model (SHELL-E) 
and compared its results against water samples collected over 5 years in Ship Harbour, a 
fjord with mussel aquaculture in Nova Scotia, Eastern Canada. Also, from a high-
resolution bio-optical survey of the fjord, I found that mussels decrease phytoplankton 
biomass inside the farm, but also cause a bloom of phytoplankton outside the farm. Using 
ROMS/SHELL-E, I determined that the increase of phytoplankton around the farm is 
caused by the waste products of the farmed bivalves, which have a fertilization effect, 
enhancing phytoplankton production outside the farm during nutrient-limited and light-
replete conditions (i.e. late spring to late fall in Ship Harbour). The main conclusion of 
this thesis is that—in shallow coastal regions—ecosystem models must represent bilateral 
interactions between macrobiota and physical-planktonic dynamics, in a spatially-explicit 
setting, to adequately represent mass flows and ecosystem dynamics. The hybrid end-to-
end modelling system provides a computationally efficient framework for describing 
these interactions and, through careful comparisons against observations, can be a power-
ful tool to test hypotheses and generate insights into coastal ecosystems. 
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bivalve in Culture Unit k (SHELL-E model) 

AEP dimensionless Absorption efficiency on phytoplankton of an individ-
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ual bivalve in Culture Unit k (SHELL-E model) 

AEZ dimensionless Absorption efficiency on zooplankton of an individual 
bivalve in Culture Unit k (SHELL-E model) 

iA
FAE ,  dimensionless Absorption efficiency on artificial food of an individ-

ual aquacultured fish of species i 

iF
PAE ,  dimensionless Absorption efficiency on phytoplankton of an individ-

ual filter-feeder of species i 

iF
ZAE ,  dimensionless Absorption efficiency on zooplankton of an individual 

filter-feeder of species i 

iF
DAE ,  dimensionless Absorption efficiency on detritus of an individual fil-

ter-feeder of species i 

Faek mmol N ind-1 d-1 Faeces production rate of an individual bivalve in Cul-
ture Unit k (SHELL-E model) 

iF
kFae ,  mmol N ind-1 d-1 Faeces production rate of an individual filter-feeder of 

species i 
iA

kFae ,  mmol N ind-1 d-1 Faeces production rate of an individual aquacultured 
fish of species i 

iA
kFood ,  mmol N ind-1 Amount of feed delivered to an individual aquacultured 

fish of species i 

Gonadk mmol N ind-1 Structural biomass of an individual bivalve in Culture 
Unit k (SHELL-E model) 

Harvestk ind d-1 
Number of individual bivalves removed from Culture 
Unit k in a time step through harvesting (SHELL-E 
model) 

iA
FIE ,  dimensionless Absorption efficiency on artificial food of an individ-

ual aquacultured fish of species i 

OxyL mmol O2 m-3 Lower tolerance range for oxygen (SHELL-E model) 

PsFaek mg m-3 Pseudofaeces production rate of an individual bivalve 
in Culture Unit k (SHELL-E model) 

SaltL PSU Lower limit of tolerance range for salinity (SHELL-E 
model) 

Somak mmol N ind-1 Reproductive biomass of an individual bivalve in Cul-
ture Unit k (SHELL-E model) 

Spawningk mmol N ind-1 d-1 
Loss term representing the gamete biomass expelled 
during reproduction by an individual bivalve in Culture 
Unit k (SHELL-E model) 

TempH °C Upper limit of tolerance range for temperature 
(SHELL-E model) 

TempL °C Lower limit of tolerance range for temperature 
(SHELL-E model) 

iM
kupNO ,3  mmol N ind-1 d-1 Uptake rate of nitrate of an individual macroalga of 

species i 
iS

kupNO ,3  mmol N ind-1 d-1 Uptake rate of nitrate of an individual seagrass shoot of 
species i 

iM
kupNH ,4  mmol N ind-1 d-1 Uptake rate of ammonium of an individual macroalga 

of species i 
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iS
kupNH ,4  mmol N ind-1 d-1 Uptake rate of ammonium of an individual seagrass 

shoot of species s 

Ak mmol N ind-1 d-1 Assimilation rate of an individual bivalve in Culture 
Unit k (SHELL-E model) 

iF
kA ,  mmol N ind-1 d-1 Assimilation rate of an individual in super-individual k

from species i and the filter-feeder functional group 

iA
kA ,  mmol N ind-1 d-1 

Assimilation rate of an individual in super-individual k
from species i and the aquacultured fish functional 
group 

Bk mmol N ind-1 Biomass of an individual bivalve in Culture Unit k
(SHELL-E model)  

BPub mmol N ind-1 Biomass of bivalve at puberty (SHELL-E model)  

Bref mmol N ind-1 Biomass of reference bivalve (SHELL-E model)  
j

EulC  mmol N m-3 s-1 Eulerian source/sink terms for tracer j 

j
IBMC  mmol N m-3 s-1 Individual-based source/sink terms for tracer j 

D  mmol N m-3 s-1 Horizontal diffusive terms 

Fk m3 ind-1 d-1 Filtration rate of an individual bivalve in Culture Unit k
(SHELL-E model) 

max
kF  m3 ind-1 d-1 Maximum filtration rate achievable by an individual 

bivalve in Culture Unit k (SHELL-E model) 
max

refF  m3 ind-1 d-1 Filtration rate exhibited by a reference bivalve when 
evaluated in ideal conditions (SHELL-E model) 

FF,i m3 ind-1 d-1 Filtration rate of an individual filter-feeder of species i 

G - A set of all super-individuals of species i and func-
tional group  that occur within the target grid cell 

H m Total water depth 

Hz m Thickness of the grid cell 

I W m-2 Photosynthetically available radiation  

K  m2 s-1 Vertical eddy diffusivity coefficient 
iM

NOK ,
3  mmol N m-3 Half-saturation constants for the uptake of NO3 

iM
NOK ,

3  mmol N m-3 Half-saturation constants for the uptake of NH4 

KP (mmol N m-3) 2 Half-saturation concentration of phytoplankton inges-
tion by zooplankton 

H
TempK  (°C) -1 Decreasing coefficient for limitation due to tempera-

ture at upper boundary (SHELL-E model) 
L
TempK  (°C) -1 Decreasing coefficient for limitation due to tempera-

ture at lower boundary (SHELL-E model) 
L
SaltK  (PSU) -1 Decreasing coefficient for limitation due to salinity at 

lower boundary (SHELL-E model) 
L
OxyK  (mmol O2 m-3) -1 Decreasing coefficient for limitation due to oxygen at 

lower boundary (SHELL-E model) 

KFood mmol N m-3 Half-saturation food concentration for bivalve filtration 
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(SHELL-E model) 

KRE mmol N ind-1 Half-saturation constant for RE (SHELL-E model) 

iFM ,  mmol N ind-1 d-1 
Weight-specific maintenance respiration rate of an 
individual from species i and the filter-feeder func-
tional group 

iAM ,  mmol N ind-1 d-1 
Weight-specific maintenance respiration rate of an 
individual from species i and the aquacultured fish 
functional group 

NOQ mol N (mol O2) -1 Nitrogen:oxygen quotient for bivalve respiration 
(SHELL-E model) 

iMP ,
max  units can vary, but common units are 

μmol O2 (g Fresh Weight)-1 h-1  
Maximum photosynthesis rate of an individual macro-
alga of species i 

iSP ,
max  units can vary, but common units are 

μmol O2 (g Fresh Weight)-1 h-1  
Maximum photosynthesis rate of an individual sea-
grass shoot of species i 

Rk mmol N ind-1 d-1 Respiration rate of an individual bivalve in Culture 
Unit k (SHELL-E model) 

iF
kR ,  mmol N ind-1 d-1 Respiration rate of an individual in super-individual k

from species i and the filter-feeder functional group 
Ai
mR  d-1 Weight-specific maintenance respiration rate of an 

individual aquacultured fish of species i 

REk dimensionless 
Reproductive effort (i.e. fraction of production allo-
cated to reproduction) of an individual bivalve in Cul-
ture Unit k (SHELL-E model) 

T dimensionless Threshold fraction (i.e. Gonadk/Bk) triggering spawn-
ing (SHELL-E model) 

V m3 Volume of grid cell 

g - Column index representing properties in the individ-
ual-based matrix 

h m Mean water depth 

i - Index representing individual-based species of the 
functional group 

j - Index representing Eulerian tracer variables 

k - Row index representing super-individuals (or Culture 
Units in SHELL-E) in the individual-based matrix  

iA
km ,  mmol N ind-1 Biomass of an individual in super-individual k from 

species i and the aquacultured fish functional group 
iF

km ,  mmol N ind-1 Biomass of an individual in super-individual k from 
species i and the filter-feeder functional group 

iM
km ,  mmol N ind-1 Biomass of an individual in super-individual k from 

species i and the macroalgae functional group  
iS

km ,  mmol N ind-1 Biomass of an individual in super-individual k from 
species i and the seagrass functional group 

i
km ,  mmol N ind-1 Biomass of an individual in super-individual k from 

species i and the  functional group 

nk ind Number of identical individuals forming the Culture 
Unit k (SHELL-E) 



 xxi

iA
kn ,  ind 

Number of identical individuals forming super-
individual k from species i and the aquacultured fish 
functional group 

iF
kn ,  ind 

Number of identical individuals forming super-
individual k from species i and the filter-feeder func-
tional group 

iM
kn ,  ind 

Number of identical individuals forming super-
individual k from species i and the macroalgae func-
tional group  

iS
kn ,  ind 

Number of identical individuals forming super-
individual k from species i and the seagrass functional 
group 

i
kn ,  ind Number of identical individuals forming super-

individual k from species i and the  functional group 

p - Number of super-individuals (i.e. rows) in the individ-
ual-based matrix for species i and functional group  

q - Number of properties (i.e. columns) in the individual-
based matrix for species i and functional group  

r - Number of Eulerian tracers forming the state  

s - Number of individual-based species of the  functional 
group 

t d Time 

u m s-1 Mean component of the velocity in the horizontal (x) 
direction 

v m s-1 Mean component of the velocity in the horizontal (y) 
direction 

x m Horizontal coordinate in the North-South direction 

y m Horizontal coordinate in the East-West direction 

z m Vertical coordinate 

i
kx ,  m x location of super-individual k of species i and func-

tional group  
i

ky ,  m y location of super-individual k of species i and func-
tional group  

i
kz ,  m Depth of super-individual k of species i and functional 

group  

 s-1 Mean component of the velocity in the vertical ( ) di-
rection 

j Vary according to tracer State representing the concentration of the jth Eulerian 
tracer in the gridded field 

,i Vary according to property State of species i and functional group  in the individ-
ual-based framework 

M,i d-1 Specific erosion rate of an individual macroalga of 
species i 

S,i d-1 Specific erosion rate of an individual seagrass shoot of 
species i 
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i,  unit · m-3 
Grid-based equivalent of i

k
,  representing the con-

centration variable for all super-individuals of species i 
and functional group  in the grid cell 

M,i units of Pmax divided by W m-2 Initial slope of photosynthesis vs. irradiance curve of 
an individual macroalga of species i 

S,i units of Pmax divided by W m-2 Initial slope of photosynthesis vs. irradiance curve of 
an individual seagrass shoot of species i 

 dimensionless Cost of growth coefficient of an individual bivalve 
(SHELL-E model) 

F,i dimensionless Cost of growth coefficient of an individual filter-feeder 
of species i 

A,i dimensionless Cost of growth coefficient of an individual aquacul-
tured fish of species i 

 - Index representing functional groups 
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bivalve in Culture Unit i (SHELL-E model) 

P dimensionless Feeding efficiency on phytoplankton of an individual 
bivalve in Culture Unit i (SHELL-E model) 

Z dimensionless Feeding efficiency on zooplankton of an individual 
bivalve in Culture Unit i (SHELL-E model) 

iA
F

,  dimensionless Feeding efficiency on artificial food of an individual 
aquacultured fish of species i 

iF
D

,  dimensionless Feeding efficiency on detritus of an individual filter-
feeder of species i 

iF
P

,  dimensionless Feeding efficiency on phytoplankton of an individual 
filter-feeder of species i 

iF
Z

,  dimensionless Feeding efficiency on zooplankton of an individual 
filter-feeder of species i 

 m Wave-averaged free surface elevation 

CDOM m-1 Diffuse attenuation coefficient of PAR downwelling 
irradiance due to CDOM 

TOTAL m-1 Diffuse attenuation coefficient of PAR downwelling 
irradiance due to water plus chlorophyll plus CDOM 

Nat d-1 Natural mortality rate of bivalves in Culture Unit k 
(SHELL-E model) 

Harv d-1 Harvesting rate (SHELL-E model) 

M,i d-1 Constant mortality rate of an individual macroalga of 
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S,i d-1 Constant mortality rate of an individual seagrass shoot 
of species i 

F,i d-1 Constant mortality rate of an individual filter-feeder of 
species i 

A,i d-1 Constant mortality rate of an individual aquacultured 
fish of species i 

iM
k

,  d-1 Specific rate of increase in biomass (after accounting 
for respiration) of an individual macroalga of species i 
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CHAPTER 1 
 

1 Introduction 

Coastal ecosystems are among the most dynamic ecosystems on earth (Haslett, 2008; 

Leon et al., 2011). In these fast-changing environments, trying to answer the seemingly 

simplest ecological question challenges the ingenuity of coastal ecologists, who are con-

tinuously developing new techniques to be able to discern patterns in the apparent tur-

moil. The interdisciplinary nature of coastal systems has pushed modern coastal ecolo-

gists to explore tools from disciplines like physical oceanography, sediment dynamics, 

ocean optics, etc. While these tools are powerful, their "instruction manuals" are often 

written in a language foreign to ecologists. Therefore, the role of ecologists is increas-

ingly not only to answer ecological questions, but also to bridge the gap between ecology 

and these other disciplines. This thesis attempts to narrows the gap between macrobiota 

and planktonic ecology, aquaculture and hydrodynamic modelling, through the develop-

ment of new tools, but also through the thorough description of their application, so they 

can be used more broadly in future ecological research. 

 

This thesis is about assessing interactions between macrobiota and the hydrodynamic and 

planktonic environment. To this end, I need a modelling framework that allows the simul-

taneous representation of both, macrobiota (e.g. fish, shellfish and macroalgae) and 

planktonic ecosystem variables (i.e. plankton, detritus and nutrients), in a 3-D hydrody-

namic environment. However, modelling a large number of state variables in a three-

dimensional space is computationally intensive and, in shallow coastal applications—

where hydrodynamic constrains demand small grid cells (~100 × 100 m) and a fast time-

step (approx. a few seconds)—modelling a large number of state variables truly exceeds 

the limits of even today's high-performance computer clusters. Therefore, in this thesis, 

the first step is to develop a modelling framework capable of overcoming this computer 

limitation; that is, a hybrid (Eulerian/Individual-based) framework optimized for repre-
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senting two-way feedbacks among a large number of variables in a three-dimensional 

space. Below I describe some key concepts and pertinent history, before I further intro-

duce the chapters of this thesis. 

 

 

1.1. Eulerian vs. Lagrangian Frameworks 

The terms Eulerian and Lagrangian are used in fluid dynamics to distinguish between the 

two alternative kinds of specification of the flow field (Batchelor, 2000). In the Eulerian 

specification, flow quantities are defined as functions of position in space, thus flow 

quantities can be thought of as records of a current meter that is moored at a fixed loca-

tion. In the Lagrangian specification, flow quantities are defined as functions of a particle 

within the fluid. This can be thought as records of position from a GPS onboard a drifting 

buoy, from which flow quantities can be calculated. 

 

The vast majority of ocean circulation models describe flow using an Eulerian framework 

(e.g. ROMS, Haidvogel et al., 2008; NEMO, Madec, 2008). That is, the model domain is 

divided into a gridded field, and the model tracks the flow characteristics inside every 

single grid cell. However, some models describe flow using a Lagrangian framework, 

where many particles are released within the model domain and then the model tracks the 

trajectory of each of the particles (e.g. Thompson et al., 1998). There are advantages and 

disadvantages to both frameworks, and therefore, most modern Eulerian circulation mod-

els also include a Lagrangian or particle-tracking sub-model (e.g. ROMS, Haidvogel et 

al., 2008) to exploit the advantages of both modelling frameworks. These Eule-

rian/Lagrangian models simultaneously (1) estimate flow characteristics in every grid 

cell, and (2) use the predicted Eulerian flow to transport particles, whose locations are 

tracked. 

 

Strictly speaking, the terms Eulerian and Lagrangian frameworks are only applicable to 

physical models describing flow fields. However, the concept of tracking properties asso-

ciated with grid cells or with particles is also widely applied in biology, biogeochemistry, 
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population dynamics, etc. (see examples in Table 1-1), and therefore, the terms Eulerian 

and Lagrangian are also used sometimes to describe the frameworks use by these models. 

However, in this study I will use the terms grid-based framework (for Eulerian) and parti-

cle-based or individual-based framework. I will not use the term Lagrangian because it 

applies exclusively to particles passively drifting with the flow, and thus should not be 

used to describe particles displaying any kind of swimming or sinking behaviour or parti-

cles that are not transported by the flow. See Table 1-1 for a detailed comparison of these 

modelling frameworks, Figure 1-1 for a graphical representation, and Chapter 2 for the 

equations describing these modelling systems. 

 

 

1.2. History of Marine Ecosystem Modelling 

Today's ecosystem models utilize a very diverse range of approaches and techniques, and 

therefore it is not easy to draw a generalized description of their evolution. However, the 

following trends can be loosely sketched: (1) ecosystem models often adopt techniques 

earlier developed for physical oceanography, (2) the spatial resolution of models in-

creases over time, and (3) simpler models get coupled into increasingly more complex 

models. Below I give a brief history of the evolution of models using different frame-

works, which I also show in a graphical representation in Figure 1-2. 

  

1.2.1. Grid-based (Eulerian) Models 

Eulerian or grid-based models were first used in physical oceanography to study ex-

changes of temperature and salinity between a few box compartments to understand basic 

ocean circulation (e.g. Seiwell, 1938). About a decade later, the same principles were ap-

plied to nutrient, phytoplankton and zooplankton to understand the dynamics of plank-

tonic ecosystems (Riley, 1946). Faster computers permitted tracking of tracers like tem-

perature and salinity in dense 3-dimensional grids for detailed studies of ocean currents 

and circulation (e.g. Bryan, 1969; Hess, 1976). Some time later, the same principles were 

used to track not only temperature and salinity, but also nutrients and plankton. That is,  
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Table 1-1. Comparison between modelling frameworks in ecosystem models. 

Grid-based (Eulerian) models Particle-based or  
individual-based models Hybrid models 

Model domain is divided into grid 
cells (i.e. gridded field). Within each 
cell, the model tracks the concentra-
tion of a many tracers. 

Model domain is not divided (i.e. con-
tinuous field). The model tracks many 
properties (e.g. location, mass, etc.) for 
many individuals. 

Model tracks tracers in a gridded 
field AND particles in a continu-
ous field. At every time step, indi-
viduals are projected onto the 
Eulerian grid for coupling with 
tracers. 

Outputs one time-series for every 
tracer and grid cell. Each series rep-
resent the system from the point of 
view of the observer (e.g. from a 
moored instrument). 

Outputs one time-series for every prop-
erty and individual. Each series represent-
ing the system from the point of view of 
an individual. 

Outputs one time-series for every 
tracer and grid cell, AND one 
time-series for every property and 
individual. 

Tracer concentrations act as bulk 
property variables. That is, a mean 
value describes ecophysiological 
traits of all individuals in a cell. In-
formation on individuals is not re-
tained. 

Variability among individuals is allowed 
and recorded. Average values are com-
puted a posteriori using recorded fields. 

Grid-based species are described 
with a single (bulk property) vari-
able. Individual-based species 
allow individual variability and 
average values to be computed 
from recorded fields. 

Difficult to represent processes re-
quiring a history of the conditions 
experienced by an individual. 

Natural way to represent processes requir-
ing a history of the conditions experi-
enced by an individual. 

Individual-based variables have 
access to a history of conditions 
experienced by each individual. 
grid-based variables do not. 

Abundant and ubiquitous species (i.e. 
found in all cells at all times) are 
represented efficiently. Details from 
many organisms within one cell are 
condensed into one bulk calculation. 

Abundant and ubiquitous species are rep-
resented inefficiently, because the number 
of required individuals is many times 
larger than the number of grid cells in a 
grid-based model. 

Rare species (i.e. found in only a few 
cells), are represented inefficiently, 
because the model has to calculate 
the species concentration in all grid 
cells, even if the species is absent in 
most of those cells. 

Rare species are handled very efficiently. 
Especially in cases where number of indi-
viduals of a species is a lot smaller than 
the number of grid cells in a grid-based 
model. 

Abundant and ubiquitous species 
are efficiently represented as trac-
ers, while rare species are effi-
ciently represented as individuals. 

Other names: Eulerian models, field 
models (Woods and Onken, 1982), 
bulk property models (Lande and 
Lewis, 1989) and community- or 
population-based models (Neuheimer 
et al., 2010), biogeochemically-based 
approach (Fulton, 2010). 

Other names: Agent-based models, multi-
agent models, Lagrangian models. How-
ever, the term Lagrangian is not accurate 
if individuals display any movement (or 
lack of movement) that deviates from 
passive advection by currents. 

Other names: Two-way coupled 
biological-physical individual-
based model 

Examples—Lower-trophic models: 
Fasham et al, (1990), Franks and Chen 
(2001), Fennel et al. (2006). 
Aquaculture models: Grant et al. 
(2008), Guyondet et al. (2010). 
End-to-end models: NEMURO (Kishi 
et al. 2007), Ecospace (spatial version 
of Ecopath, Christensen and Walters, 
2004), ATLANTIS (Fulton et al. 2005), 
SEAPODYM (Lehodey et al. 2008), 
APECOSM (Maury, 2010), ERSEM 
(Baretta-Bekker et al., 1997) 

Examples—Saunders et al. (2010), Neu-
heimer et al. (2010). 
IBMs forced with output from an Eulerian 
model: LTRANS (North et al., 2008), 
models in review by Miller (2007). 
Aquaculture models: Nunes et al. (2003), 
Nobre et al. (2010), Brigolin et al. (2009) 
End-to-end models where IBM is forced 
with output from an Eulerian model: 
OSMOSE (Shin and Cury, 2004), North 
et al. (2010). 

Examples— Woods and Onken 
(1982), only for nutrients and 
plankton. 
Aquaculture models: SHELL-E 
(Chapter 3) 
End-to-end models: Chapter 2 
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Figure 1-1. Conceptual diagram showing the three kinds of modelling frameworks. (A) In 
the grid-based or Eulerian framework, the model domain is divided into a gridded field 
and the model tracks state variables in every grid cell. (B) In the particle-based frame-
work, the model (defined in continuous space) tracks the location and other properties of 
every particles. (C) In the hybrid framework, two models (i.e. one grid-based and one 
particle-based) work simultaneously; some state variables are tracked in every grid cell 
and some by every particle.

Source:

A) Grid-based 
(Eulerian)
framework

B) Particle-based
(Lagrangian)
framework

C) Hybrid
(Eulerian/Lagrangian)
framework



Figure 1-2. History and evolution of marine ecosystem models. Background colour represents 
main discipline and background texture represents modelling framework. One-way coupling 
between models is shown with single arrow, while two-way coupling is shown with two arrows or 
simply by extending the model box over two or more disciplines or frameworks. At the farthest 
right, we show the model developed in this study (Chapters 2 and 3). Note: timeline is not linear.

Source:
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biological oceanographers piggybacked on the infrastructure of circulation models by 

adding new tracers capable of representing biological dynamics. These models are often 

called physical-biological coupled models (e.g. Fasham et al., 1990; Sarmiento et al., 

1993; Baretta-Bekker et al., 1997; Fennel et al., 2006) or, when applied to the study of 

global ocean cycles, they are sometimes referred to as biogeochemical ocean general cir-

culation models (Friedrichs et al., 2009). These models are currently the standard for 

planktonic ecosystem modelling.  

 

The modelling of higher-trophic levels, such as tuna and other carnivorous fish, diverged 

early on from the modelling of lower-trophic levels (i.e. plankton). Kremer and Nixon 

(1978) suggested that—in the absence of computers—ecosystem modellers from the late 

40's and early 50's had to choose between two paths: (1) if one wanted to assess the dy-

namics of populations over time, then it was necessary to use simple equations with very 

general coefficients that one could solve by hand; or (2) if one wanted to use more com-

plex equations and parameters with significant biological meaning, then one was limited 

to solve the equations only for steady-state conditions and under various limiting assump-

tions. The former path was followed by fisheries scientists and population ecologists 

studying higher-trophic level species (e.g. Beverton and Holt, 1957), while the later path 

was followed by scientists studying lower-trophic levels like plankton dynamics (Kremer 

and Nixon, 1978). These two branches of marine ecology have been separated for the last 

50 years, partially because they have their own separate funding bodies, scientific jour-

nals and scientific meetings, and partially because they focus of different scientific ques-

tions (Moloney et al., 2011). However, it has been recently recognized that the higher- 

and lower-trophic levels should not be studied in isolation from each other, thus a large 

initiative has begun to bring these two disciplines together (DeYoung et al., 2004; 

Travers et al., 2009; Moloney et al., 2011). 

 

1.2.2. Particle-based or Individual-based Models 

Although Eulerian models are certainly favoured in physical oceanography, particle-

tracking models have been implemented to aid in the study of circulation in complex sys-
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tems, like tidal exchange through a narrow strait (Awaji et al., 1980; Thompson et al., 

1998). As mentioned above, most modern Eulerian circulation models have particle-

based sub-models that allow users to insert and track particles through the model domain 

(e.g. Sheng et al., 2009). As particle-tracking models become more popular, biologists 

have started to figure out ways to piggyback in the infrastructure of these physical parti-

cle-based models, just as they did with the physical Eulerian models. The aim of biolo-

gists is to add enough biological dynamics to convert those initially "inert" particles into 

virtual biological entities, like larvae, fish, etc., for example by allowing them to sink or 

swim as influenced by various environmental factors. So far, most biological particle-

based models are one-way coupled to an Eulerian physical-biological model. That is, the 

output from a physical-biological model simulation is used to force the particle-based 

model (see reviews by Werner et al., 2001; Miller, 2007). Therefore, the grid-based bio-

logical variables can modify the behaviour and the physiology of the biological particles; 

however the reverse is not possible. Part of the mass of the system is tracked as grid-

based tracers, and the other part is tracked as biological particles; however because parti-

cles and tracers are not dynamically linked, mass is not conserved in the system. For ex-

ample, particle-based fish larvae may grow faster in grid cells with high concentration of 

phytoplankton, but in one-way coupled models, phytoplankton will not be reduced by the 

corresponding amount taken by the larvae, thus mass is not conserved. In this thesis, I 

developed a three-dimensional Eulerian/particle-based two-way coupled model, which, as 

I describe in detail later, is of key importance for coastal applications. 

 

The use of particle-based models in not restricted to the research of ocean circulation. 

Therefore, the so called individual-based models (IBMs) evolved from another kind of 

particle-based models. The history of individual-based models is somewhat difficult to 

piece together since there is a wide range of applications: Early individual-based models 

were used to model plasma properties from individual electrons (Buneman et al., 1980), 

flock properties from individual birds (e.g. Thompson et al., 1974), phytoplankton dy-

namics (Woods and Onken, 1982), etc. In recent years, most individual-based models ap-

plied to marine ecology are used to study the dynamics of fish larvae (see reviews by 

Werner et al., 2001; Miller, 2007), where an Eulerian circulation model is used to predict 
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currents which are used (online or offline) to transport particles that simulate larvae. 

However, the particles can be used to represent just about anything; for example, Kohl-

meier and Ebenhöh (2007) also used output from an Eulerian circulation model to trans-

port particles, but in this case the particles represented parcels of water, each simulating a 

pelagic mesocosm (with nutrients, plankton, detritus, etc.). Other individual-based model 

have been applied to study zooplankton (Neuheimer et al., 2010), impacts of climate 

change on lobsters (Chang et al., 2010), elk population management (Kindall et al., 

2011), transmission of human diseases (Guzzetta et al., 2011), etc.   

 

In physics, the relationship of flow quantities between the grid-based and particle-based 

frameworks has been known since the early 1930's (i.e. Fokker-Planck equation; Ka-

danoff, 2000). However, in ecology, it has been difficult for IBM modellers to define the 

differences between their individual-based models and the more traditional models (i.e. 

Eulerian models), which they have referred to as state-variable models (Huston et al., 

1988; Grimm, 1999) or equation-based models (Nguyen et al., 2008), thus implying that 

IBM models do not have state variables or equations. In practice, individual-based mod-

els are described using a set of rules or a brief description of what the model code does 

(e.g. Grimm and Railsback, 2005). However, I argue that this is not because individual-

based models cannot be described by state variables and equations, but rather because it 

is very hard to extend the notation used in a grid-based framework to describe a problem 

in a particle-based framework. In Chapter 2, I tackled the task of developing a set of 

equations, and a notation based on state variables, to describe individual-based systems. 

The new notation shows the relationships between the two modelling frameworks explic-

itly and should be useful for future IBM modelling work. 

 

Individual-based models have been defined as models where the properties of an entire 

ecosystem "emerge" from the properties of the individuals constituting it (Grimm and 

Railsback, 2005). Woods and Onken (1982) suggested that tracking individual phyto-

plankters yields more accurate results that computing the dynamics of a bulk property 

representing the average state inside a grid cell. However, Lande and Lewis (1989) com-

pared the two approaches and found negligible differences on the predicted results for 
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phytoplankton. However, DeYoung et al. (2004) emphasised that modelling individual 

variability and life-history details (rather than bulk properties) becomes increasingly im-

portant with distance up the food-web, thus individual-based models are needed to repre-

sent organisms from higher-trophic levels. 

 

 

1.3. Outline of the Thesis 

Besides the general introduction (Chapter 1) and the general conclusions (Chapter 5), the 

main content of this thesis is divided into three chapters (Chapters 2, 3 and 4), each writ-

ten to be a self-contained entity.  

 

In Chapter 2, I present a hybrid (Eulerian/IBM) modelling framework and I demonstrate 

its applicability by simulating two-way interactions between five species of macrobiota 

(i.e. rockweed, kelp, seagrass, wild oysters, aquacultured mussels and farmed fish) and 

planktonic ecosystem variables (i.e. nutrients, plankton and detritus), in an idealized em-

bayment. I also show how the two-way coupled model produces mass-balanced results 

that are fundamentally different from results of (commonly used) one-way coupled mod-

els, which can spuriously increase mass in the system. Finally, I show how the hybrid 

framework is an adequate alternative for tackling the high computational demands of in-

tegrating a large number of species in a 3-D space: ubiquitous species (e.g. plankton) are 

handled in the grid-based system, while rarer species (e.g. shellfish) are represented in the 

particle-based system. The objective of this chapter is to develop a hybrid (Eulerian/IBM) 

modelling framework and to demonstrate its applicability. 

 

In Chapter 3, I present a hydrodynamic model capable of representing interactions be-

tween the planktonic ecosystem and aquacultured bivalves. This model operates under 

the hybrid (Eulerian/IBM) framework that I developed in Chapter 2. Here, I also apply 

this model to a fjord with a mussel farm and I compare model results against water sam-

ples collected over 5 years. Finally, I use the model to estimate the carrying capacity of 

the mussel farm. The objective of this chapter is to develop a coupled hydrodynamic, 
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planktonic and bivalve ecophysiology model and to apply it to estimated the carrying ca-

pacity of an embayment with bivalve aquaculture.  

 

In Chapter 4, I use data from a high resolution survey in the fjord with mussel aquacul-

ture, and the model developed in Chapter 3, to assess the effects of mussel aquaculture on 

the spatial distribution of phytoplankton. In this chapter I show that, as expected, mussels 

locally decreased phytoplankton biomass inside the mussel farm. However, unexpectedly, 

mussels also increased phytoplankton biomass in areas outside and around the farm. 

Here, I use the model to determine that the outside-farm increase in phytoplankton bio-

mass is a result of enhanced phytoplankton production caused by the farm wastes during 

nutrient-limited and light-replete conditions. I also show that bivalve-induced spatial gra-

dients in the concentration of planktonic ecosystem variables have the potential to drasti-

cally bias the results of 0-D bivalve-environment models, which assume a uniform con-

centration of all variables within the model domain. The objective of this chapter is to 

determine the effect of mussel aquaculture on the spatial distribution of phytoplankton in 

an embayment in Eastern Canada. 

 

In Chapter 5, I present general conclusions about the interactions between macrobiota and 

its hydrodynamic and planktonic environment, and about the significance of this work. I 

end this thesis with recommendations for future work.  



 12

CHAPTER 2 
 

2 Two-way Coupling of Macrobiota and 

Planktonic Dynamics in Shallow 

Embayments Using a Hybrid 

(IBM/Eulerian) End-to-End Model* 

2.1. Introduction 

There is a growing consensus that the management of marine resources must encompass 

whole ecosystems (Pikitch et al., 2004; Soto et al., 2008). Consequently, there has been 

an accelerating effort towards the development of so called end-to-end models, which 

integrate physical dynamics with biological processes that span from lower-trophic levels 

(e.g. plankton) to higher-trophic levels (e.g. large fish), including human activities 

(Travers et al., 2007; Cury et al., 2008; Huse and Fiksen, 2010). Perhaps the greatest 

challenge in the development of end-to-end models is the coupling of models of different 

trophic levels (DeYoung et al., 2004), especially if the coupling allows feedbacks (i.e. 

two-way coupling; Travers et al., 2009). This is because, until recently, lower- and 

higher-trophic levels of marine ecosystems have been studied by different research com-

munities that utilize fundamentally different modelling tools (Latour et al., 2003; Cury et 

al., 2008; Fennel, 2008; Shin et al., 2010; Moloney et al., 2011). That is, planktonic or 

lower-trophic levels are commonly studied with grid-based (or Eulerian) models that 

track organisms as concentrations of tracers in a gridded field (see details in Table 1-1 
                                                 
* This chapter comprises a co-authored manuscript by D. A. Ibarra, K. Fennel, J. J. Cullen. The contribution 
of the author of this thesis to this manuscript includes the development of a modelling framework and mac-
robiota ecophysiological models, and all the analysis and writing of this manuscript. Other authors contrib-
uted with guidance and multiple rounds of corrections. 



 13

and section 2.2.2.1). These grid-based models—commonly referred to as physical-

biological coupled models—typically focus on the dynamics of nutrients, plankton and 

detritus, but do not explicitly describe the effects of organisms bigger than zooplankton 

(e.g. Fasham et al., 1990; Fennel et al., 2006). In contrast, higher-tropic levels are often 

studied with individual-based models (also known as particle-based) that track species as 

a collection of individuals, from which emerging properties of the ecosystem are com-

puted a posteriori (see more details in Table 1-1 and section 2.2.2.2). These individual-

based models often focus on commercially-valuable fish and only utilize plankton as 

forcing (e.g. Jennings et al., 2008); that is, the modelled fish do not affect plankton dy-

namics. Commercially valuable species are also the focus of aquaculture models, which 

are designed to assess the carrying capacity and/or environmental impacts of farming op-

erations. Aquaculture models can be either grid-based (e.g. Dowd, 2003) or individual-

based (e.g. Brigolin et al., 2009) and tend to focus on a single farmed species from either 

a lower- or higher-trophic level. Aquaculture models sometimes include plankton (usu-

ally as forcing), but rarely take wild macrobiota into consideration.  

 

The importance of two-way coupling of multiple trophic levels has been highlighted in 

recent studies. Feedback loops among multiple trophic levels were found to be a funda-

mental requirement for the stability of complex food webs (Rooney et al., 2006; Neutel et 

al., 2007) and an essential component for the prediction of ecosystem dynamics beyond 

the near term (Hannah et al., 2010). Also, feedbacks between lower- and higher-trophic 

levels may provide insight on the combined effects of fishing and climate change on fish 

populations (Travers et al., 2009). It is not surprising that many modelling approaches for 

integrating multiple species of different sizes and trophic levels are under development 

(e.g. Travers et al., 2007; Fennel, 2008; Grant et al., 2008; Libralato and Solidoro, 2009; 

Fulton, 2010; Nobre et al., 2010; Shin et al., 2010). 

 

In this paper we focus on embayments and other shallow coastal regions where the need 

for integration of multiple species may be greater than anywhere else. Unlike the open 

ocean, where most of the ecosystem biomass resides in plankton, in shallow coastal re-

gions the planktonic biomass per unit area can be locally exceeded by the biomass of wild 



 14

and aquacultured macrobiota*. Therefore, aggregations of macrobiota species can influ-

ence (and sometimes even control) the variability of planktonic ecosystem variables (i.e. 

nutrients, plankton and detritus) in coastal ecosystems. For example, corals in the Red 

Sea (Yahel et al., 1998), wild oysters in Chesapeake Bay (Newell, 1988) and aquacul-

tured mussels in Prince Edward Island (Grant et al., 2008) filter ecologically significant 

amounts of phytoplankton. In addition, production of wild seaweeds in St. Margaret's 

Bay (Eastern Canada) is three times the production of phytoplankton (Mann, 1973). Con-

sequently, ecosystem models applied to shallow coastal areas may need to include not 

only plankton, but also wild and aquacultured macrobiota, in order to adequately repre-

sent mass flows and trophic dynamics. 

 

The aquaculture sector also needs ecosystem models capable of representing multiple 

species from different trophic levels. In particular, these models are of interest in Inte-

grated Multi-Trophic Aquaculture (Barrington et al., 2009), where multiple species of 

different trophic levels (e.g. salmon, mussels and kelp) are farmed in proximity of each 

other with the purpose of maximising growth of aquacultured species while minimising 

environmental impacts. Ecosystem models designed to help farmers and regulators in the 

planning and management of aquaculture farms will have to account not only for the dif-

ferent aquacultured species, but also for plankton and nearby wild macrobiota. 

 

In shallow coastal applications, ecosystem models may need to represent interactions 

among species in a 3-D or spatially-explicit framework to be able to reproduce ecologi-

cally relevant spatial patterns of planktonic ecosystem variables. Miyajima et al. (2007) 

conducted fine-scale sampling in a coastal lagoon with wild seagrass beds and coral reefs. 

They found that nutrients decreased above seagrass beds and chlorophyll decreased over 

coral reefs, effectively forming persistent small-scale spatial patterns. Moreover, aquacul-

ture operations can also cause patterns in the distributions of water column properties. 

For example, a decrease in chlorophyll has been observed inside and around shellfish 

                                                 
* For example, in a mussel farm in Ship Harbour (Nova Scotia, Canada), for a water column of 8 m, the 
biomass of farmed mussels (~134 mmol N m-2) is much larger than the biomass of phytoplankton (~16 
mmol N m-2).  
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farms (e.g. Grant et al., 2008), and high ammonia has been observed inside and around 

fish farms (e.g. Sanderson et al., 2008). In Integrated Multi-Trophic Aquaculture, quanti-

tative and spatially-explicit information about these water column spatial patterns is nec-

essary when deciding where and how far apart to rear one species with respect to the oth-

ers (e.g. Reid et al., 2010).  

 

Two-way coupling may be particularly important in ecosystem models applied to coastal 

regions. In the open ocean, most fish larvae models (see review by Miller, 2007) and 

small fish models (e.g. Politikos et al., 2011) utilize a one-way coupling scheme that al-

lows phytoplankton and other water properties to modify the physiology and behaviour of 

fish, but do not account for feeding, excretion and defecation of fish, implicitly assuming 

a negligible effect of fish on water properties. However, in coastal ecosystems the bio-

mass of macrobiota (wild or aquacultured) can be large enough to influence food web 

structure and the variability of the planktonic ecosystem (e.g. Cranford et al., 2007; 

Guyondet et al., 2010). In this case, ignoring dynamic feedbacks between macrobiota and 

planktonic ecosystem variables (i.e. two-way coupling) would cause spurious losses or 

gains of mass, which would disrupt the inferred mass balance of the system. 

 

In this study, we assessed the importance of two-way coupling in the estimation of inter-

actions among multiple species of macrofauna (wild and aquacultured) and water column 

biogeochemistry (i.e. plankton, nutrients and detritus) in shallow coastal regions. We did 

not intend to assess the quantitative effect of any one species on the others—which is 

site- and case dependent. Instead we focused on demonstrating that modelling planktonic 

and macrobiota species simultaneously produces fundamentally different results than 

modelling them separately. In other words, we tested the following working hypothesis: 

 

In a shallow coastal embayment, the coupling of planktonic ecosystem dynamics with re-

alistic densities of wild and farmed macrobiota species performing known physiological 

activities, will (a) significantly alter the planktonic food web structure, and (b) create 

spatial gradients in biomass of the macrobiota species, if and only if, coupling between 

macrobiota and planktonic ecosystem variables is two-way and mass-balanced. 
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To test the above hypothesis, we developed a spatially-explicit model capable of account-

ing for two-way trophic interactions among multiple species. We applied the two-way 

coupled model to an idealized embayment with wild and aquacultured species, and we 

compared the model results against results from a one-way coupled version of the same 

model. 

 

During the development of the two-way coupled model, we found that neither of the two 

basic modelling approaches (i.e. grid-based or individual-based) can efficiently represent 

a wide range of species from different sizes, abundances and trophic levels: Eulerian 

models are inefficient at representing rare species (i.e. species found only in a few cells) 

because they have to solve ecosystem equations in all cells, even if the species is absent 

in most of those cells. Individual-based models are inefficient at representing abundant 

and ubiquitous species (i.e. species found in all cells at all times), where the number of 

individuals needed to represent a system is many times larger than the number of grid 

cells in the domain. Therefore we developed a hybrid (Eulerian/IBM) ecosystem frame-

work for the Regional Ocean Modeling System (ROMS), that simultaneously operates a 

grid-based model for the planktonic ecosystem (Fennel et al., 2006) and a new individual-

based model for six wild and aquacultured macrobiota species. 

 

In this study we (1) presented and described a hybrid modelling framework; (2) applied 

the hybrid model to an idealized embayment with wild and aquacultured species; (3) as-

sessed the fidelity of our hybrid model by comparing model results against published data 

from different laboratory and field studies; and (4) tested the working hypothesis by com-

paring results from the two-way coupled hybrid model against results from a one-way 

coupled version of the same model. 
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2.2. Materials and Methods 

2.2.1. The Regional Ocean Modeling System (ROMS) 

ROMS is a state-of-the-art, open-source, 3-D ocean circulation model that is particularly 

suited for coastal applications (Haidvogel et al., 2008; http://myroms.org). ROMS oper-

ates under a collaborative framework, which has resulted in the inclusion of modules of, 

for example, sea ice (Budgell, 2005), sediment transport (Warner et al., 2008), planktonic 

biological processes (e.g. Fennel et al., 2006) and individual-based biological processes 

(this study). Each module can be included or excluded in the executable file, therefore 

maximizing applicability and minimizing memory use. Also, ROMS can be spatially op-

timized by using non-uniform grids with smaller grid cells in regions of interest (i.e. in-

side and around a bivalve farm) and nested grids to allow for finer grids in regions of in-

terest (e.g. close to the coast). ROMS is widely used in the ocean and planktonic ecosys-

tem modelling communities. 

 

2.2.2. Hybrid Ecosystem Modelling Framework 

In this study we utilized the ROMS conventional Eulerian framework to represent abun-

dant and ubiquitous species like plankton (also nutrients and detritus), and we used a 

newly implemented individual-based framework for ROMS (described below) to repre-

sent rare species like benthic macrobiota and aquacultured species.  

 

2.2.2.1. Grid-based (Eulerian) Framework 

ROMS is an Eulerian circulation model, which means that the model domain is divided 

into a grid and—within every grid cell—the model keeps track of r number of tracers, 

each representing a scalar quantity like temperature or zooplankton concentration. Some 

tracers (i.e. temperature and salinity) influence physical dynamics and are always calcu-

lated, while other tracers (e.g. suspended sediments or plankton) do not affect circulation, 
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and therefore are modelled only if the sediment or ecosystem modules are activated. The 

state of the grid-based system is defined by: 

 

2-1    ),,,( tzyxj              for tracer j = 1, … , r 

 

where x, y and z are the used Cartesian coordinates, t is time and j is the tracer index. For 

a complete list of symbols, see the list of abbreviations and symbols at the beginning of 

this thesis.  

 

The time-rate of change of any tracer, j, is estimated using the following scalar transport 

equation (adapted from Haidvogel et al., 2008; Warner et al., 2008). 

 

Eq. 2-2  
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where u, v (m s-1) and  (s-1) are the mean components of the velocity in the horizontal (x 

and y) and vertical ( ) directions, respectively. The vertical sigma coordinate ( , dimen-

sionless) ranges from  = –1 at the bottom to  = 0 at the free surface, and is calculated 

with  = (z– )/H, where z is the vertical coordinate (positive upwards, z = 0 at the mean 

sea level),  is the wave-averaged free-surface elevation and H is the total water depth, H 

= h + , where h is the mean water depth. Also, Hz (m) is the thickness of the grid cell, K  

(m2 s-1) is the vertical eddy diffusivity coefficient, v  (m2 s-1) is the tracer kinematic diffu-

sivity, D  represents the horizontal diffusive terms, j
EulC  are the Eulerian source/sink 

terms for tracer j, and j
IBMC  are the individual-based source/sink terms for tracer j. 

 

For biologically active tracers, such as nutrients, plankton and detritus, the j
EulC  terms are 

solved using the ROMS grid-based biology module. Several planktonic ecosystem mod-

els are included in the grid-based biology module (Bissett et al., 1999; Lima and Doney, 
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2004; Fennel et al., 2006; Powell et al., 2006); however only one model can be used dur-

ing each simulation (Haidvogel et al., 2008). Currently, the hybrid-ecosystem framework 

can be used only with the Fennel et al. (2006) ecosystem model. The j
IBMC  terms are 

solved using ROMS individual-based biology module described below. 

 

2.2.2.2. Individual-based (Particle-based) Framework 

The individual-based biology module allows ROMS to track properties of an array of par-

ticles. Here, each particle represents a group of identical individuals of species i and func-

tional group . Each functional group (e.g. Macroalgae or Filter-feeders) refers to a col-

lection of species whose dynamics are simulated using the same ecophysiological model. 

Different species within a functional group (e.g. kelp vs. rockweed, or oysters vs. mus-

sels) differ only in the value of the parameters used by the ecophysiological model. Fol-

lowing established terminology (Scheffer et al., 1995), we herein use the term super-

individual to refer to each group of identical individuals (i.e. each particle). For each su-

per-individual k of species i and functional group , the individual-based module tracks a 

q number of properties, like position ( i
kx , , i

ky , , i
kz , ), biomass ( i

km , ), number of identical 

individuals in the super-individual ( i
kn , ), nitrate uptake ( i

kupNO ,3 ), etc. Therefore, the 

state of the individual-based system is defined by: 

 

2-3           

qg
pk

si
tgki

,,1
,,1
,,1
,,1

propertiesfor 
 sindividual-superfor 

speciesfor 
 groups functionalfor 

),,(,  

 

where the state of species i and functional group , ,i, is represented (at any given time) 

by a separate p × q matrix with rows corresponding to super-individuals and columns to 

properties: 
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Eq. 2-4  
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where i
gk

,
, )(  are elements of the ,i matrix, each representing the property g of super-

individual k of species i and functional group . Note that, in the first 5 columns, we util-

ized a simplified notation by substituting the element symbol  for the specific symbol 

used to describe the property g (e.g. ii x ,
1

,
1,1 )( ). Also, for simplicity, we eliminated 

the parentheses, however note that the subscripts k and p are different for different ,i 

matrices and should be referred to as k ,i and p ,i if not accompanied by a superscript ,i. 

We used this simplified notation hereinafter. 

 

In this nitrogen-based model, the biomass of each super-individual is defined by the 

product of the biomass of a single individual, i
km ,  (mmol N ind-1) and the number of 

identical individuals in the super-individual, i
kn ,  (ind). The ecophysiological dynamics of 

each super-individual are defined by the following two generic equations: the first (Eq. 

2-5) is a physiology equation determining the time rate of change of the biomass of an 

individual, and the second (Eq. 2-6) is a population dynamics equation controlling the 

time rate of change of the number of individuals forming the super-individual.  

 

Eq. 2-5    i
k

i
k

i
k

i
k

dt
dm ,,,

,

lossesother -nrespiratio-production  

 

Eq. 2-6    i
k

i
k

i
k

i
k

dt
dn ,,,

,

lossesother -mortality-trecruitmen  
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At every time-step, individual-based variables that interact with the Eulerian model have 

to be converted into their grid-based equivalents (in units of concentration) to allow reac-

tions among all involved variables (see section 2.2.2.3 for details on the coupling of trac-

ers and individuals). The conversion from the individual-based framework to the grid-

based framework is implemented using the following generic formula:  

 

Eq. 2-7    
Gk

i
ki

k
i

i tyxV
tyxntyxtyx

, ),,,(
),,,(),,,(),,,(

,
,,  

 

where G is a set of all super-individuals of species i and functional group  that occur, at 

time t, within a target grid cell—which is defined by the coordinates x, y, . Then, i
k

,  

(unit · ind-1) is any individual-based variable of the super-individuals of G, and ,i (unit · 

m-3) is the grid-based equivalent of i
k

, , which represents the concentration variable ac-

counting for all super-individuals of species i and functional group  in the target grid 

cell. Note that the volume of the target grid cell, V (m3), changes over time due to varia-

tions in the free surface and its representation in the sigma coordinate system used by 

ROMS. 

 

The individual-based module currently has five ecophysiology models. The first four 

(Figure 2-1) are generic models to simulate the ecophysiology of different functional 

groups (i.e. macroalgae, seagrass, filter-feeders and aquacultured fish), and are described 

below. The fifth is a more elaborate model to simulate Shellfish Ecophysiology (SHELL-

E), and is described in detail in Chapter 3. In the individual-based framework, all eco-

physiology models can be used in the same simulation run. Note that we disable the abil-

ity of the particles to be transported by currents, therefore the individuals remain in the 

location of initial insertion throughout the model simulation. See Appendix A for more 

details on the functioning of the individual-based module. 

 

Macroalgae Model: This model simulates photosynthetic macroalgae (e.g. kelp and rock-

weed), where the time rate of change of the biomass of a single macroalga is given by: 
 



Figure 2-1. Conceptual diagram showing the coupling between all four generic ecophysi-
ological models in this study (green squares) and the planktonic ecosystem model (yellow 
squares) from Fennel et al. (2006).

Source:

ROMS
Grid-based model Individual-based model

NO3

NH4

Phytoplankton

Zooplankton
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Eq. 2-8    iM
k

iMiM
k

iM
k

iM
k mm
t

m ,,,,
,

 

 

where the superscript M,i denotes any species i from the Macroalgae functional group 

(i.e. M); iM
km ,  (mmol N ind-1) is the biomass of an individual of species M,i. In turn, the 

term iM
k

,  (d-1) is the specific rate of increase in biomass after accounting for respiration 

and M,i (d-1) is the specific erosion rate, which includes grazing and is assumed to be 

independent of location. 

 

The specific rate of increase in biomass, iM
k

, , depends on the maximum growth rate, 

iM ,
max (d-1), the local concentrations of nitrate, NO3 (mmol N m-3) and ammonium, NH4 

(mmol N m-3), and the photosynthetically available radiation, I (W m-2) which is attenu-

ated throughout the water column using a constant attenuation coefficient for seawater 

plus a variable attenuation coefficient as a function of chlorophyll concentration, which is 

calculated in the Eulerian component of the model. Note that the Eulerian tracer quanti-

ties are evaluated at the specific location of the super-individual k ,i. However, for sim-

plicity, we omitted the spatial dependency; for example, NO3 instead of 

NO3( i
k

i
k

i
k zyx ,,, ,, ). 

 

Eq. 2-9    )]()([)( ,,,,
max

, NH4fNO3fIf iMiMiMiMiM
k  

 

where 

 

Eq. 2-10   
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Eq. 2-11   
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Eq. 2-12   
NH4K

NH4NH4f iM
NH4

iM
,

, )(  

 

where iMP ,
max  is the maximum photosynthesis rate for macroalgae of species i (units can 

vary, but common units are μmol O2 (g Fresh Weight)-1 h-1), and M,i (units of iMP ,
max  di-

vided by W m-2) is the initial slope of photosynthesis vs irradiance curve. Finally, iM
NOK ,

3  

and iM
NHK ,

4  (mmol N m-3) are the half-saturation constants for the uptake of NO3 and NH4, 

respectively, for macroalgae of species i, with inhibition of nitrate uptake by ammonium 

as implemented for phytoplankton by Fennel et al. (2006). 

 

We define the uptake rate of nitrate and ammonium (mmol N ind-1 d-1) as: 

 

Eq. 2-13   iM
k

iMiMiMiM
k mNO3fIfupNO3 ,,,,

max
, )()(  

 

and 

 

Eq. 2-14   iM
k

iMiMiMiM
k mNH4fIfupNH4 ,,,,

max
, )()(  

 

Population dynamics in the super-individual are determined by the time evolution of the 

number of individuals of macroalgae of species i, nM,i (ind): 

 

Eq. 2-15   iM
k

iM
iM

k n
t

n ,,
,

 

 

where M,i (d-1) is a constant mortality rate for macroalgae of species i. Dead individuals 

are immediately decomposed and added to the ammonium pool (see Table 2-1). 
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Seagrass model: This model simulates photosynthetic macro-organisms that grow hori-

zontally by creating new shoots, rather than by lengthening their shoots (e.g. seagrass; 

functional group S). In this case, the biomass of an individual shoot of seagrass of species 

i ( iS
km , ; mmol N ind-1) is considered to remain constant at the initial biomass value de-

fined at the beginning of the simulation (Table 2-1). Consequently, the time rate of 

change in an individual shoot biomass is zero. However, the number of individuals in the 

super-individual, and thus the total biomass of the super-individual, varies over time. The 

time evolution of the number of shoots in a super-individual, iS
kn , , is calculated as: 

 

Eq. 2-16   iSiS
k

iS
k

iS
k n
t

n ,,,
,

 

 

where S,i (d-1) is the specific erosion rate for seagrass of species i, which is assumed to 

be spatially constant over the entire domain. The specific rate of increase in biomass, iS
k

,  

(d-1), estimated similarly as iM
k

,  in Eq. 2-9, but with parameters for species S,i. Our sea-

grass model is designed to evaluate the effect of seagrass on the planktonic ecosystem 

variables over short time scales (i.e. weeks), therefore we neglected to include processes 

like rhizome and shoot growth as well as the mass allocation among these compartments 

(Larkum et al., 2006). These process should not be neglected in longer simulations (i.e. 

months to years). 

 

Filter-feeder model: This model simulates organisms that feed on particles suspended in 

the water column (e.g. oysters or sponges; functional group F) and is built upon earlier 

work (Dowd, 1997). The time rate of change of the biomass of an individual filter-feeder 

of species i is defined as: 

  

Eq. 2-17   iF
k

iF
k

iF
k RA
t

m ,,
,
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where the superscript F,i denotes any species i from the filter-feeder functional group, 
iF

km ,  is the biomass of an individual filter-feeder (mmol N ind-1), iF
kA ,  is the assimilation 

rate (mmol N ind-1 d-1) and iF
kR ,  is the respiration rate (mmol N ind-1 d-1) for an individ-

ual filter-feeder.  

 

The assimilation rate represents the total amount of food absorbed per individual and per 

unit time, and is calculated as follows: 

 

Eq. 2-18   SDetAEZooAEPhyAEFA iF
D

iF
D

iF
Z

iF
Z

iF
P

iF
P

iFiF
k

,,,,,,,,  

 

where FF,i is the individual filtration rate (m3 ind-1 d-1), F,i and AEF,i are the dimen-

sionless feeding and absorption efficiencies, and subscripts P, Z and D indicate phyto-

plankton, zooplankton and small detritus, respectively. 

 

The respiration rate iF
kR , , represents the biomass lost due to catabolic processes, and is 

estimated as follows: 

 

Eq. 2-19   iF
k

iFiF
k

iFiF
k AmMR ,,,,,  

 

where MF,i (d-1) is the weight-specific maintenance respiration rate (for now, assumed to 

be constant) and F,i is the dimensionless cost of growth (see Dowd, 1997; Grant et al., 

2007). 

 

The production rate of faeces by one individual, iF
kFae ,  (mmol N ind-1 d-1), is determined 

as follows: 
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Eq. 2-20   

 

SDetAEZooAEPhyAEFFae iF
D

iF
D

iF
Z

iF
Z

iF
P

iF
P

iFiF
k )1()1()1( ,,,,,,,,

 

Once faeces are produced, they are incorporated into the large detritus pool (Table 2-1), 

where they undergo sinking and decomposition. This model assumes negligible produc-

tion of pseudofaeces, which are rejected particles that are packed into pellets and expelled 

before undergoing ingestion.  

 

The number of individuals in a super-individual, iF
kn , , is influenced only by a constant 

mortality rate, calculated in the same way as iM
kn ,  in Eq. 2-15. This generic filter-feeder is 

a simplification of the SHELL-E (Chapter 3) used for bivalve aquaculture. 

 

Aquacultured fish model: This model simulates farmed fish (i.e. functional group A) that 

are fed by humans and remain in a fixed location because they are contained within net-

cages. The time-rate of change of the biomass of an individual fish is defined as: 

 

Eq. 2-21   iA
k

iA
k

iA
k RA
t

m ,,
,

 

 

where iA
km ,  is the biomass of an individual aquacultured fish of species i (mmol N ind-1), 

iA
kA ,  is the assimilation rate (mmol N ind-1 d-1) and iA

kR ,  is the respiration rate (mmol N 

ind-1 d-1). The assimilation rate represents the total amount of food absorbed per individ-

ual and per unit time, and is calculated as follows: 

 

Eq. 2-22   iA
k

iA
A

iA
A

iA
A

iA
k FoodAEIEA ,,,,,  

 

where iA
A

,  is the dimensionless feeding representing the fraction of food swallowed by 

the fish; however, part of the swallowed food is spit out as food crumbs (i.e. sloppy feed-
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ing), thus the dimensionless ingestion efficiency, iA
AIE , , represents the fraction of swal-

lowed food that makes it to the stomach. The fraction of ingested food that is digestible is 

defined by the dimensionless absorption efficiency, iA
AAE ,  (subscripts A indicates Aqua-

cultured fish ). iA
kFood ,  (mmol N ind-1 d-1) is the amount of feed delivered to an individ-

ual fish per day, and is estimated as follows: 

 

Eq. 2-23   iA
k

iAiA
k mFood ,,,   

 

where A,i (d-1) is the artificial food delivery or feeding rate. 

 

The respiration rate iA
kR , , represents the biomass of an individual aquacultured fish of 

species i lost due to catabolic processes, and is estimated as follows: 

 

Eq. 2-24   iA
k

iAiA
k

iAiA
k AmMR ,,,,,  

 

where MA,i (d-1) is the weight-specific maintenance respiration rate and A,i is the dimen-

sionless cost of growth for an individual aquacultured fish of species i. Both parameters 

are assumed to remain constant. 

 

The production rate of faeces by one individual fish ( iA
kFae , , mmol N ind-1 d-1) is deter-

mined as follows: 

 

Eq. 2-25   iA
k

iA
F

iA
F

iA
F

iA
k FoodAEIEFae ,,,,, )1(  

 

Similar to filter-feeder faeces, fish faeces are incorporated into the large detritus pool 

(Table 2-1), where they undergo sinking, decomposition and ingestion by filter-feeders. 

Population dynamics are estimated by the time evolution of the number of individuals in 

a super-individual, affected only by a constant natural mortality term, similarly as in Eq. 
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2-15. A harvesting term can be easily incorporated, but for the purpose of this study, we 

did not include losses due to harvesting. 

 

2.2.2.3. Coupling the Grid-based and the Individual-based Frameworks 

The two-way coupling allowing bidirectional exchanges of mass between the grid-based 

variables (e.g. plankton and nutrients) and the individual-based variables (e.g. bivalves, 

fish) is achieved as follows: (1) the effect of tracers on individuals occurs in the eco-

physiology equations, where source/sink terms are modulated by the local concentration 

of tracers; and (2) the effect of individuals on tracers is accomplished by the insertion, in 

Eq. 2-2, of the term j
IBMC  that represents individual-based source/sink terms for tracer j, 

and follows this functional form: 

 

Eq. 2-26   
Gk

k
is

i

j
IBM

i

i

V
f

C
,

, ),(,

11
 

 

where  are grid-based variables and ik , are individual-based variables. The specific 

j
IBMC  terms for each tracer j are shown in Table 2-1 and are represented graphically in 

Figure 2-1. 

 

2.2.3. Example Application 

To demonstrate the applicability of the hybrid ecosystem model and to test our working 

hypothesis, we set up ROMS for an idealized shallow bay, typical of Eastern Canada, 

containing wild aggregations of plants and oysters, and aquaculture farms of mussels and 

fish. We chose this region because wild and aquacultured species typical of this region 

have been studied extensively. To avoid adding more complexity, we did not account for 

influence of benthic microalgae, although they can account for a significant portion of the 

primary productivity in shallow environments (e.g. MacIntyre and Cullen, 1996; Guarini 

et al., 1998). We ran the simulation for 1 month. 
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Model domain and grid: The idealized bay is rectangular (4 km × 14 km) with three 

closed boundaries and an open boundary to the east (Figure 2-2). Depth increases linearly 

from 2.1 m in the western end to 6 m in the eastern end. The domain has 10 sigma layers 

resulting in a vertical spatial resolution that varies from approximately 20 cm in the shal-

low end to 60 cm in the deep end. The horizontal grid-size is uniform (200 m × 200 m) 

throughout the model domain. Also, we found that the boundary conditions have a strong 

influence on the concentration of tracers inside the bay. Therefore, we extended the 

model domain eastwards by 5 km. The added grid cells allowed tracers in the incoming 

water to mix with “bay water” before entering the region of interest. The buffer region is 

not shown in our results. 

 

Forcing: We used synthetic tides and atmospheric variables to force the model. Sinusoi-

dal functions were used to create M2 tides (amplitude 1.5 m), diurnal southerly winds 

(max 6.3 km h-1 or 1.75 m s-1), seasonal air temperature (min 8°C, max 15°C), and diur-

nal short wave solar radiation (max 920 Watt m-2). Surface air relative humidity (95%) 

and pressure (1015 mbar or 101500 Pa), cloud fraction (0.5 dimensionless) and rain fall 

rate (0 kg m-2 s-1) were kept constant through the model simulation. We also included 

small random noise (i.e. ~10% of mean) to the time-series of winds and short wave solar 

radiation to produce more realistic forcing.  

 

Initial and boundary conditions: At the beginning of the simulation, the concentration of 

all tracers was set constant throughout the model domain (values shown in Table 2-2). 

We initialize nitrate to relatively high initial concentration (5 mmol N m-3) typically ob-

served during upwelling events (e.g. Chapter 3), which are common in the region during 

the fall (Platt et al., 1972). Water entering the bay through the eastern boundary during 

flood tide was set to have constant concentrations of all biological tracers as given in 

Table 2-2.  

 

Individual organisms: We inserted groups of identical individuals (i.e. super-individuals) 

as shown in Figure 2-2. Rockweed (Ascophyllum nodosum) was inserted on the bottom in  



Figure 2-2. Diagram of the idealized embayment used for model simulations. Colors 
show the grid cells occupied by different species of macrofauna. The fish farm (red 
blocks) and the mussel farm (light blue blocks) are suspended in the water column. Black 
arrows give an idea of the physical circulation produced by tidal and wind forcing.
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Table 2-2. Initial and boundary condition for biological 
tracers in the planktonic ecosystem model. 

Variable Units Initial Boundary 
Chlorophyll mg Chl m-3 1 1 
Phytoplankton mmol N m-3 1 1 
Zooplankton mmol N m-3 0.2 0.2 
Small detritus mmol N m-3 0.5 0.5 
Large detritus mmol N m-3 0.1 0.1 
Ammonium mmol N m-3 0.1 0.1 
Nitrate mmol N m-3 5 0.5 

 

 

all cells along the coast. Kelp (Laminaria digitata) was also added to the coast cells, but 

only close to the mouth of the bay where there are stronger currents. A natural oyster reef 

(Crassostrea virginica) was inserted on the bottom at the shallow end of the bay, and a 

mussel farm (Mytilus edulis) was inserted in middle water-column near the mouth of the 

bay. A fish farm with steelhead trout (Oncorhynchus mykiss) was also added at the mouth 

of the bay, but cages only occupied the upper water-column. Seagrass (Zostera marina) 

was inserted at the bottom throughout the model domain with exception of the cells oc-

cupied by rockweed or oysters. We utilized data from several field studies in Eastern 

Canada as initial conditions for our ecophysiological models, and we parameterize them 

using published physiological rates for the specific species used in our example applica-

tion (see footnotes of Table 2-3). The initial densities of all species were realistic, yet 

leaning on the conservative (low) side. In total, 1854 super-individuals were inserted 

within the model domain. 

 

2.2.4. Comparison of One-way and Two-way Coupled Models 

To test our hypothesis and assess the effects that two-way coupling had on our modeling 

results, we also ran the application described above using a one-way coupled model. In 

the one-way coupled model, the feedback from the individual-based variables to the grid-

based variables was disconnected. That is, the term j
IBMC  from Eq. 2-2 was eliminated.  
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Table 2-3. Parameters and initial conditions used in the example simulation. 
Functional group: Macroalgae Seagrass Filter-feeders Fish 

Symb. Description Units 

i =
 M

1 
K

el
p 
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2 
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kw

ee
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i =
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1 
Se
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i =
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,i Mortality rate d-1 0 0 0 0 0 0 
i,

max
 Maximum growth rate d-1 0.09

a
 0.14

b
 0.27

c
 - - - 

,i Erosion rate d-1 0.006
d 0.0001 0.0001 - - - 

iP ,
max

 Maximum photosynthesis rate see footnotes 45
e
 64

f
 0.25

g
 - - - 

,i Initial slope see footnotes 12.52
h

1.03
i
 0.014

j
 - - - 

i
kI ,  Pmax /  W m-2 3.6 62 17 - - - 

i
NOK ,

3
 Half-saturation for NO3 mmol N m-3 5

k
 11

l
 9.2

m
 - - - 

i
NHK ,

4
 Half-saturation for NH4 mmol N m-3 12.7

n
 14

o
 9.2

p
 - - - 

F ,i Individual filtration rate m3 ind-1 d-1 - - - 0.012
q

 0.048
r
 - 

M ,i Weight-specific maintenance respiration rate d-1 - - - 0.002 0.002
t
 0.001225

y

,i Artificial food delivery rate (feeding)  d-1 - - - - - 0.0085
u

 
i

A
,  Feeding efficiency on artificial food dimensionless - - - - - 0.92

v
 

i
P

,  Feeding efficiency on phytoplankton dimensionless - - - 1 1 - 
i

Z
,  Feeding efficiency on zooplankton dimensionless - - - 0 0 - 
i

D
,  Feeding efficiency on detritus dimensionless - - - 1 1 - 

i
AIE ,  Ingestion efficiency on artificial food dimensionless - - - - - 0.95

u
 

i
AAE ,  Absorption efficiency on artificial food dimensionless - - - - - 0.885

w
 

i
PAE ,  Absorption efficiency on phytoplankton dimensionless - - - 0.9

s
 0.9

t
 - 

i
ZAE ,  Absorption efficiency on zooplankton dimensionless - - - 0 0 - 

i
DAE ,  Absorption efficiency on detritus dimensionless - - - 0.2

x
 0.2

t
 - 

,i Cost of growth coefficient dimensionless - - - 0.1 0.1
y
 0.44

z
 

n ,i (t = 0) Initial number of individuals per grid cell ind × 106  0.3
aa

 0.18
bb

3.8
cc

 1.7
dd

 0.85
ee

 
0.020642

f

f
 

see 
foot-
notes 

Initial biomass per individual mmol N ind-1 5
gg

 143
hh

 1.5
ii

 0.48
jj

 4.17
kk

 1104
ll

 

a Gordillo et al. (2002). 
b Nielsen and Sand-Jensen (1990). 
c Dennison and Alberte (1982). 
d Schmidt and Scheibling (2007) using biometric conversions from Gevaert et al. (2008). 
e Units of μmol O2 (g Fresh Weight)-1 h-1; Forster and Luning (1996). 
f Units of μmol O2 g dwt-1 h-1; Peckol et al. (1988). 
g Units of μmol O2 g (mg Chl)-1 min-1; Dennison and Alberte (1982). 
h Units of μmol O2 (g Fresh Weight)-1 h-1 (W m-2)-1; Forster and Luning (1996). 
i Units of μmol O2 g dwt-1 h-1 (W m-2)-1; Peckol et al. (1988). 
j μmol O2 g (mg Chl)-1 min-1 (W m-2)-1; Dennison and Alberte (1982). 
k For a similar species in Nova Scotia: Laminaria longicruris; Harlin and Craigie (1978). 
l For another brown algae: Fucus vesiculosus; Pedersen and Borum (1997). 
m Zimmerman et al. (1987). 
n For another Laminaria species; Korb and Gerald (2000). 
o For another brown algae Fucus vesiculosus; Pedersen and Borum (1997). 
p Thursby and Harlin (1984). 
q 0.5 l h-1; "low gear", Powell et al. (1992). 
r 2 l h-1; Carver and Mallet (1990). 
s We assumed the same AEP

,i as mussels (see t). 
t Dowd 1997. 
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u Estimated from Hall et al. (1990) where fish were grown from 300 g to 2000 g in 6 months (assuming a 3.45 food 
conversion ratio). 

v Hall et al. (1992) found ~23% of food ends in particle sedimentation. We assumed 5, 8 and 10% ending as sloppy-
feeding detritus, uneaten pellets and faeces, respectively.  

w Calculated to yield 10% of food ending in faeces (see u). 
x Langdon and Newell (1990). 
y Grant et al. (2008). 
z Assumed so that there is 48% of food ending in ammonia + urea and that 30% of that is due to maintenance respira-

tion (Rodehutscord and Pfeffer, 1999). 
aa 30 ind m-2 (Schmidt and Scheibling, 2007) × 50 m strip × 200 m grid cell length. 
bb 45 ind m-2 (Schmidt et al., 2011) × 20 m strip × 200 m grid cell length. 
cc 190 ind m-2 (Schmidt et al., 2011) × 40000 m2 per grid cell × 0.5 (assuming patchy distribution thus only 50% of the 

cell has seagrass).  
dd 217 ind m-2 (Grizzle et al., 2008) × 8000 m2 (assumed only 20% of grid cell covered with reefs) per grid cell. 
ee 80 gdw m-2 (Carver and Mallet, 1990) × 40000 m2 (grid-column area) ÷ 5 grid cells. 
ff 8.5 fish m-3 (Hall et al., 1990) × 4000 m2 (only 10% of grid cell contains cages) × 0.2 m average cell depth. 
gg )0(1 tmM

k ; 38 cm (Schmidt and Scheibling, 2007) and conversions biometrics from Gevaert et al. (2008). 
hh )0(2 tmM

k ; 0.09 kg N m-2 (Schmidt et al. unpublished data). 
ii )0(1 tmS

k ; 0.004 kg N m-2 (Schmidt et al. unpublished data). 
jj )0(1 tmF

k ; 31.7 mm = 0.05 gdw (Grizzle et al., 2008) = 0.337 g wet weight (conversion from USDA, 2008) and 2% 
N content of fresh weigh (Boucher and Boucherrodoni, 1988). 

kk )0(2 tmF
k ; 55 mm = 9.94 g wet weight = 0.75 gdw (Ibarra 2003) and 7.79% N content of dry weight (Smaal and 

Vonck, 1997). 
ll )0(1 tm A

k ; 300 g wet weight (Hall et al. 1990) using conversions in Hall et al. (1992). 
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2.2.5. Comparison of Model Results against Published Data 

We assessed the fidelity of the hybrid ROMS model and our IBM module by assessing its 

ability to reproduce expected patterns of tracer concentrations and patterns in the biomass 

of macrobiota species (i.e. pattern-oriented modelling; Grimm and Railsback, 2005). We 

used multiple field studies researching interactions between species similar to the ones 

modelled in this study (see references in the results section) to generate a matrix with a 

total of 40 expected patterns (Figure 2-3), where each species could decrease or increase 

the biomass of other species. For example, filter-feeders were expected to decrease 

phytoplankton through grazing, and aquacultured fish were expected to increase phyto-

plankton through fertilization by the farm wastes. Then we compared the expected pat-

terns against modeled results. 

 

To objectively assess whether the presence of our modelled macrobiota produced spatial 

patterns in all other modelled variables, we ran six hybrid model simulations, each with-

out one macrobiota species. Then, for each modelled variable, we calculated the percent 

increase (positive difference) or percent decrease (negative difference) with respect to the 

standard simulation that included all macrobiota species (Figure 2-3). To evaluate the ef-

fect of each macrobiota species on itself (i.e. self-regulation), we ran an additional six 

two-way coupled hybrid simulations, and six one-way coupled simulations (see below), 

each with only one macrobiota species. Then, for each macrobiota species, we calculated 

the percent increase/decrease of the two-way coupled simulation with respect to the one-

way coupled simulation (Figure 2-3). We did the above calculations in a pixel-per-pixel 

basis, thus resulting in a map for every pair of analysed variables (Figure 2-3). However, 

we also calculated the percent increase or decrease averaged over the entire bay after ex-

cluding data showing negligible difference (i.e. from -1% to +1% difference). We estab-

lished that a modelled species had an overall increasing effect on another species (symbol 

 in Figure 2-3) if the difference averaged over the entire bay was positive. Similarly, 

we established an overall decreasing effect (symbol  in Figure 2-3) if the bay-averaged 

difference was negative, and no effect (symbol  in Figure 2-3) if the bay-averaged dif-

ference was zero. We repeated the assessment using the one-way coupled model to test  



Figure 2-3. Expected vs. modelled patterns. Color plots are aerial views of the domain. 
Colours represent the enhancement (yellow to red) or depression (cyan to blue) effect that 
each macrobiota species had on all other biological variables. We also calculated the do-
main-averaged effect, which we represent using symbols for enhancement ( ), depres-
sion ( ) or no effect ( ). The first symbol of each pair (left) denotes the expected effect 
according to the literature (see results), and the second symbol (right) denotes the effect 
yielded by the two-way coupled (hybrid) model (see details in section 2.2.5 of the meth-
ods). The one-way coupled model did not produce any spatial patterns.
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our hypothesis, and to demonstrate that none of the expected patterns can be reproduced 

using the one-way coupled model and thus emphasising that two-way coupling is essen-

tial in shallow water applications.  

 

Finally, we utilize the procedure from Franks (2009) to assess the fidelity of the hybrid 

ROMS model, where we compared modeled rates of growth, assimilation, respiration and 

nutrient uptake, against published physiological rates for the specific species used in our 

application. Data used in validation was different from the data used in parameterization. 

 

 

2.3. Results 

2.3.1. Planktonic Ecosystem (Grid-based) Variables 

After the one-month simulation with the two-way coupled ROMS hybrid model, the con-

centration of all the planktonic ecosystem tracers (i.e. nutrients, plankton and detritus) 

showed spatial gradients that resulted from interactions among macrofauna species, 

planktonic ecosystem variables and physical processes (Figure 2-4 and Figure 2-5, right 

panels). On the contrary, the concentrations of the planktonic ecosystem tracers from the 

one-way coupled model exhibited spatial variability that was solely caused by the influ-

ence of physical processes on the planktonic ecosystem (Figure 2-4 and Figure 2-5, left 

panels). The patterns in the spatial distribution of the planktonic ecosystem variables 

shown by the one-way coupled model are consistent with water entering the embayment 

through the open boundary, causing relatively strong gradients in all the planktonic eco-

system variables and resulting in the prominent feature at the seaward end of the embay-

ment (Figure 2-4 and Figure 2-5, left panels). When we allowed the macrobiota to inter-

act with the planktonic ecosystem variables (i.e. two-way coupled model), the spatial dis-

tribution of all of the planktonic ecosystem variables changed dramatically, yielding spa-

tial features consistent with the presence of macrobiota. 

 

 



Figure 2-4. Color maps (top-view, middle of the water column) representing the concen-
tration of different biological tracers (all units are in mmol N m-3; note logarithmic scale). 
Left panels are results from the one-way coupled model and right panels are results form 
the two-way coupled (hybrid) model. On the color scale bars, there are histograms 
displaying the same data as in the color maps; one-way coupled model in red and two-
way coupled (hybrid) in blue. The water dashed line represent the location of the transect 
shown in the next figure.

Source:
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Figure 2-5. Caption is the same as in Figure 2-4, but from side-view.

Source:

40
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The concentrations of biological tracers from the one-way coupled model were higher, 

but less variable, than the concentrations from the hybrid model (see histograms on the 

colour bars of Figure 2-4 and Figure 2-5). Most notably, the mean concentration of 

phytoplankton and large detritus from the one-way coupled model were doubled and tri-

pled, respectively, compared to those from the two-way coupled model.  

 

2.3.2. Macrobiota (Individual-based) Variables 

The individual-based portion of our hybrid model tracked the biomass (and other proper-

ties) of each of the 1854 macrobiota super-individuals that we inserted throughout the 

domain for these simulations. Therefore, we were able to visualize the time-evolution of 

the biomass of each and all super-individuals of each macrobiota species (Figure 2-6, 

right panels), or to visualize the spatial distribution (at any given time) of their biomass 

(e.g. end of simulation, Figure 2-6, left panels), to assess the importance of location on 

the macrobiota dynamics. We also ran a one-way coupled version of our hybrid model, 

where we disabled the feedbacks between macrobiota and the planktonic ecosystem vari-

ables, to assess the differences between one-way and two-way coupling, and to establish 

the importance of these feedbacks. Both, the one-way and two-way coupled models, 

showed similar temporal dynamics (Figure 2-6, right panels), but the accumulation of 

biomass was greater in the one-way coupled model because food resources were never 

depleted. 

 

In the simulation with the two-way coupled hybrid model, individual-based species (i.e. 

plants and most animals) grew at different rates creating spatial patterns in size (or den-

sity) among individuals of the same species (Figure 2-6, left panels). Aquacultured fish 

were the exception because all fish were fed equally and therefore grew at the same rate. 

All plants and animals (except farmed fish) showed high growth rates at the beginning of 

the simulation when nitrate concentration was high, and then rates decreased as nitrate 

was used up (Figure 2-6, right panels). Results from both, the two-way and the one-way 

coupled models, showed variability in growth among individual plants and animals (ex-

cept farmed fish). Also, individuals of all species (except farmed fish) in the one-way  



Figure 2-6. Right panels: Time-series of modeled biomass or density for different species 
(one-way coupled model in red and two-way coupled (hybrid) in blue). On each plot, 
each line represents the biomass trajectory of a single super-individual from the species 
ensemble. Left panels: Color maps (top view) of the biomass or density corresponding to 
the last time-step in the time-series produce with the two-way (hybrid) model. Respective 
colour bars are shown on the y-axis of the right panels.

Source: /misc/1/apps/user_apps/ibarrad/ROMS52/IBM/IBM_3DTOY/RUN2/macro_1and2way.pdf      …converted to tiff

A) Rockweed (mmol N ind-1) 

B) Kelp (mmol N ind-1) 

C) Seagrass (103 × shoots m-2) 

D) Mussels (mmol N ind-1) 

E) Oysters (mmol N ind-1) 

F) Fish (mmol N ind-1) 
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coupled model grew to a total biomass 10 to 70% higher than those in the two-way cou-

pled, during the same one-month simulation.  

 

2.3.2.1. Rockweed and Kelp 

In the hybrid simulation, rockweed individuals grew approximately three times faster to-

wards the mouth of the bay than at the head of the bay because nitrate and ammonium 

concentration were higher at the mouth of the bay. The biomass of kelp only increased 

for a few days and then it decreased for the remainder of the simulation, losing about 

10% of its biomass in less than one month (Figure 2-6). This is consistent with field 

measurements of kelp growth in Eastern Canada (Schmidt and Scheibling, 2007), where 

kelp erodes faster than it grows when nutrients are depleted (i.e. late spring and summer). 

Rockweed grew slightly faster (1%) on the area closest to the fish farm (Figure 2-3) due 

to higher ammonium concentrations produced by the fish (see section 2.3.2.4 Aquacul-

tured fish).  

 

In the two-way coupled model, rockweed locally reduced ammonium and nitrate concen-

trations (Figure 2-3), particularly along the southern shore. The reduction of nutrients due 

to uptake by rockweed and kelp also resulted in a local decrease in phytoplankton, zoo-

plankton and detritus concentrations (Figure 2-3). Studies using mesocosms (Smith and 

Horne, 1988) and 3-D modelling (Trancoso et al., 2005) also found a decrease in phyto-

plankton biomass due to competition for nutrients by macroalgae. Rockweed also caused 

a slight decrease in the biomass of kelp and seagrass as a result of competition for nutri-

ents (Figure 2-3). We are unaware of any field study assessing the competition for nutri-

ents between rockweed and seagrass. However, it is known that in some places in Eastern 

Canada the macroalgae production is three times the production of phytoplankton (Mann, 

1973), and therefore we suspect that the uptake of nutrients required to support such pro-

duction of macroalgae may have some influence on the growth of adjacent seagrass.  

 

In the one-way coupled model, rockweed and kelp achieved a higher biomass than in the 

hybrid model (approx. 13% and 10%, respectively); however spatial variability in bio-
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mass was smaller than in the hybrid model. Because one-way coupling does not allow 

depletion of nutrients by rockweed, its growth did not cause any spatial patterns in any of 

the planktonic ecosystem or individual-based variables. 

 

2.3.2.2. Seagrass 

In the hybrid model, seagrass became denser around the mussel and fish farms and, to a 

lesser extent, around the natural oyster bed (Figure 2-6). We described the effect of bi-

valves and aquacultured fish in sections 2.3.2.3 and 2.3.2.4, respectively. 

 

The presence of seagrass resulted in a decrease in the all the planktonic ecosystem vari-

ables as well as all individual-based species (except farmed fish). Seagrass beds are 

known to play an important role in controlling coastal biogeochemistry (Marbà et al., 

2006), particularly because seagrass is very effective at removing nutrients from the wa-

ter (Romero et al., 2006).  

 

In the one-way coupled model, seagrass became 30% more dense than in the hybrid 

model after the one-month simulation. However, seagrass density was less spatially vari-

able in the one-way model than in the hybrid model because of the inability of the model 

to represent feedbacks between macrobiota and tracers. Seagrass did not cause any spatial 

patterns in any of the planktonic ecosystem or individual-based variables in the simula-

tions using the one-way coupled model. 

 

2.3.2.3. Aquacultured Mussels and Wild Oysters 

In the hybrid model, mussels grew twice as fast at the edges of the farm as in the farm 

center (Figure 2-6), because the middle of the farm became depleted in phytoplankton 

and small detritus due to extensive filter-feeding (Figure 2-3 and Figure 2-4). Similar 

gradients in mussel growth have been documented in field studies (e.g. Karayucel and 

Karayucel, 2000) and have been studied using models (Bacher et al., 2003; Grant et al., 

2007). Since zooplankton feeds on phytoplankton, the local reduction in phytoplankton in 
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and around the farm (due to mussel feeding) resulted in a reduction in the concentration 

of zooplankton (Figure 2-3 and Figure 2-4). Similar to our results, Lonsdale et al. (2009) 

found in a shallow coastal embayment that resource competition between bivalves and 

zooplankton can result in periods when zooplankton biomass is regulated by bivalve fil-

tration. 

 

Mussels produced a local increase of ammonia inside the farm (Figure 2-3 and Figure 

2-4) due to (1) excretion of ammonia by mussels, (2) benthic remineralization of mussel 

faeces, and (3) reduced uptake by phytoplankton resulting from the low phytoplankton 

abundance in the farm. However, surrounding the area of increased ammonia was a larger 

area where the effects of mussels reverted to a decrease in ammonia (Figure 2-3 and 

Figure 2-4). The decrease in ammonia in the far-field area (i.e. area surrounding the farm) 

was smaller than the increase in ammonia inside the mussel farm, therefore mussels over-

all increased ammonia in the system. The far-field decrease in ammonia (and all other 

planktonic ecosystem variables) is a result of the decreased zooplankton due to depleted 

phytoplankton, which in turn lowered detritus, and ultimately lowered ammonia. Field 

studies of nutrient dynamics in bays with mussel farming showed findings that are in 

agreement with our modelling results (Strain, 2002; Cranford et al., 2007). 

  

Similarly to the patterns in ammonia, the concentration of large detritus was also in-

creased inside and near the mussel farm, but was decreased in the far-field area surround-

ing the mussel farm (Figure 2-3 and Figure 2-4). Results from field and modelling studies 

(Grant et al., 2005; McKindsey et al., 2009) are in agreement with our findings. 

 

Although nitrate was found at very low concentrations everywhere in the bay, nitrate was 

higher within the mussel farm due to the decreased uptake resulting from the lower 

phytoplankton concentration within the farm, and some inhibition of nitrate uptake by 

ammonium. To our knowledge, the effect of farmed mussels on nitrate has not been stud-

ied. 
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Similarly to the farmed mussels, the wild oyster reef caused a local increase of ammonia, 

nitrate and large detritus, a local decrease of phytoplankton, zooplankton and small detri-

tus, and a far-field decrease in all planktonic ecosystem variables (Figure 2-3). When av-

eraged over the entire bay, oysters caused an increase only in nitrate and a decrease in all 

other variables (Figure 2-3). However, the results from the hybrid model with all macro-

biota species (Figure 2-4) showed a higher concentration of phytoplankton inside the oys-

ter reef, which corresponded to a higher oyster growth in the center of the reef compared 

to the edges of the reef (Figure 2-6). We speculate that these patterns may have been 

caused by the absence of seagrass, rather than by the presence of oysters. That is, we 

think that the absence of nutrient uptake by seagrass inside the oyster reef resulted in 

higher phytoplankton growth inside the reef (i.e. compared to the area outside the reef, 

which was occupied by seagrass; Figure 2-6), which in turn resulted in higher oyster 

growth. Simulations with and without the feedback between oysters and tracers (Figure 

2-3) showed that oysters had a decreasing effect on themselves (i.e. self-limitation) as 

well as on the surrounding seagrass.  

 

The effect of bivalves on seagrass is not straightforward: In close proximity to the bi-

valves, we speculate that seagrass growth was enhanced (Figure 2-3) partially due to the 

increased light penetration resulting from the depletion of seston by filter-feeding, but 

mainly due to the increase in nutrient concentrations resulting from bivalve excretion and 

remineralization of faeces. However, a few hundred meters away from the bivalves, sea-

grass growth was depressed (Figure 2-3) because the water downstream and around the 

bivalve region was impoverished in ammonium and nitrate. Also note that our model did 

not account for epiphytes, which—in regions of increased nutrient concentrations—can 

grow to the point of limiting light availability to seagrass (Short et al., 1995). 

 

Seagrass grew slightly denser immediately around the oysters (Figure 2-6). In agreement 

with our results, mesocosm studies found an enhancement of seagrass productivity asso-

ciated with suspension-feeding bivalves (Wall et al., 2008), and Smith et al. (2009) mod-

eled and showed a positive effect of oyster reefs on seagrass due to increased light pene-

tration and decreased wave height (breakwater-effect); however, they did not include nu-
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trient dynamics in their model. Contrarily to our results, transplant studies found that sea-

grass grew less dense close to oysters beds (Kelly and Volpe, 2007). In summary, the ef-

fect of bivalves on seagrass depends on the scale and location of interest. In our study, 

when averaging over the entire bay, mussels enhanced seagrass while oysters decrease it. 

 

At the end of the one-way coupled simulation, mussels and oysters were remarkably lar-

ger (by approx. 50% and 70%, respectively) than those in the hybrid model (Figure 2-6); 

however the variability in individual biomass was smaller in the one-way coupled simula-

tion. Both patterns can be related to the lack of seston depletion inside the mussel farms 

or oyster reefs. This reinforces the notion that two-way coupling between filter-feeders 

and their food is essential in aquaculture and ecosystem models in shallow regions (Grant 

et al., 2008). 

 

2.3.2.4. Aquacultured Fish 

Since all fish were subject to the same feeding regime, each grew at exactly the same 

rate. However, the external feeding inputs had visible effects on all biological tracer vari-

ables (Figure 2-4 and Figure 2-5) and on the growth of many species of individual organ-

isms (Figure 2-6). The concentrations of all biological tracers were increased inside the 

fish farm and beyond farm boundaries, with visible effects over half of the embayment 

(Figure 2-3 and Figure 2-4). Concentrations of phytoplankton, ammonia, nitrate and de-

tritus (large and small) were particularly increased in the water parcels located inside the 

farm during periods of minimal current speed at high and low tide stages (Figure 2-4). 

Sanderson et al. (2008) conducted a survey around salmon cages in Scotland and found 

spatial patterns in ammonia concentration similar to our model results; with higher con-

centrations close to shore and in shallower regions. In both, Sanderson et al. (2008) and 

here, the concentration of ammonia near the farm was about 5 times larger than the far-

field concentration. Our results are also in agreement with other modelling studies show-

ing spatial patterns of deposition of solids inside and around marine finfish farms 

(Cromey et al., 2002; Cromey et al., 2009). The effect of fish farms on zooplankton is 

currently poorly understood. 
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Phytoplankton, seagrass, and rockweed grew faster in areas enriched with ammonia and 

nitrate originating from fish feed. Field studies assessing the effect of fish farms on adja-

cent seagrass (e.g. Holmer et al., 2008; Apostolaki et al., 2009), showed that enrichment 

of organic matter in sediments and anoxia can harm nearby plants. However, our model 

does not account for oxygen limitation on plants and thus was unable to reproduce such 

effects. On the other hand, there is an increasing interest in the effect of fish farms on 

aquacultured macroalgae, where algae are grown around farms because of faster growth 

(i.e. increased profit), but also because it removes fish-produced nutrients (Chopin et al., 

2001; Carmona et al., 2006; Abreu et al., 2009).  

 

Since our ecophysiology model for aquaculture fish did not include dependencies of fish 

growth on any tracer variable, fish in the one-way coupled model grew at exactly the 

same rate as in the hybrid model. However, only the hybrid model was able to reproduce 

the impact of fish on water-column variables (Figure 2-4 and Figure 2-5). 

 

2.3.3. Ecosystem Properties 

Time-series of all biological tracer variables and of the total biomass of all individual-

based species were calculated using the two-way coupled hybrid model and the one-way 

coupled model (Figure 2-7). In both models, tracer variables showed short-term variabil-

ity (hours to days), while individual-based variables showed longer-term variability (days 

to weeks). 

 

In the two-way coupled hybrid model, total nitrogen remained constant around 1.78 × 

1010 mmol N, with small oscillations due to tides through the open boundary (Figure 

2-7C). At the end of the simulation, 94% of total nitrogen in the bay was stored in indi-

vidual-based species, while tracer variables accounted for only a small (6%) fraction of 

the total nitrogen.  
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At the end of the one-month simulation with the one-way coupled model, all variables 

(individual-based and grid-based) were remarkably higher than those in the two-way cou-

pled model. As a consequence of the lack of feedbacks between macrobiota and the 

planktonic variables, total nitrogen in the one-way coupled ecosystem spuriously in-

creased throughout the one-month simulation from 1.78 × 1010 mmol N to 2.4 × 1010 

mmol N (Figure 2-7C). At the end of the one-way coupled simulation, 88% of the total 

nitrogen in the bay was stored in individual-based species, while tracer variables ac-

counted for 12% of the total nitrogen; however this results must be viewed with caution 

because nitrogen was not conserved. Our study exemplifies how models that use one-way 

coupling between biogeochemistry and macrobiota are not mass-conserving and could 

cause spurious results (Fennel, 2008), particularly when applied to shallow water envi-

ronments. 

 

2.3.4. Comparison of Model Results against Published Data 

We compared diagnostic physiological rates calculated with ROMS against measured 

rates for the same species in comparable field scenarios. The model was able to resolve 

short-scale variability (hours to days) of physiological rates, which are a result of short-

scale variability in solar irradiance, in the concentration of biological tracers, and in the  

degree of resource limitation experienced by each super-individual. Published rates were 

often calculated using much coarser temporal and spatial resolutions, and they are not 

expected to show the level of variability shown in the model. All physiological rates cal-

culated with ROMS were within the range of measured rates (Figure 2-8).  

 

We also assessed the model based on its capacity to match expert knowledge; that is, to 

reproduce patterns seen in field studies (i.e. expected patterns). Based on the literature, 

we expected to see 40 patterns resulting from the increasing or decreasing effect of mac-

robiota species on other individual-based or grid-based variables. Out of the 40 expected 

patterns, 9 modelled results showed negligible effects (i.e. between -1% and +1% differ-

ence) and 28 patterns were reproduced as expected. In three cases the model behaved op-

posite to the expectation: (1) oysters were expected to increase ammonia, which they did  



Figure 2-8. Black lines represent diagnostic physiological rates, modelled with the two-
way (hybrid) model, for different macrobiota species (one line per super-individual). Red 
lines are comparable rates from the literature.
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inside the oyster bed, but the far-field decrease in ammonia (Figure 2-3) was greater that 

the increase inside the oyster bed and therefore the total effect of oysters was a decrease 

in ammonia; (2 and 3) oysters and mussels were expected to increase large detritus, 

which they did inside the oyster reef and mussel farm, but again, the far-field decrease in 

large detritus was greater than the local increase. In retrospect, the results from these 

three mismatches make sense: the plume of phytoplankton-depleted water causes a tro-

phic cascade of decreases in zooplankton, detritus and ultimately nutrients. These mis-

matches are, in fact, new hypotheses that may direct future research about the far-field 

effect of bivalve filter-feeding. There were 13 cases where no effects were expected but 

the model showed enhancing or decreasing effects (Figure 2-3). 

 

Results from the one-way coupled model were unable to reproduce any of the expected 

spatial patterns. This emphasizes that two-way coupling is essential in shallow water ap-

plications. 

 

 

2.4. Discussion 

The goal of this study was to demonstrate that—in shallow environments—modelling 

macrobiota and planktonic ecosystem dynamics simultaneously, produces fundamentally 

different results than modelling them separately. Specifically, we tested the hypothesis 

that a two-way coupled model applied to a shallow coastal embayment with wild and 

farmed macrobiota species, will (a) significantly alter the planktonic food web structure, 

and (b) create spatial gradients in biomass of the macrobiota species. 

 



 53

2.4.1. Importance of Two-way Coupling of Macrobiota and Planktonic Ecosystem 

Variables in Coastal Ecosystem Models 

2.4.1.1. Effects on Planktonic Ecosystem Variables 

Results from our (two-way coupled) hybrid model showed that macrobiota can play a 

major role regulating the magnitude and spatial/temporal variability of the concentration 

of planktonic ecosystem tracers (i.e. nutrients, plankton and detritus) in coastal embay-

ments (Figure 2-4 and Figure 2-5). This is consistent with findings of a fine-scale field 

survey in a coastal tropical embayment (Miyajima et al., 2007), where small-scale 

patches in chlorophyll and ammonia concentrations where detected over small patches of 

seagrass and coral reefs, respectively. Also Grant et al. (2008) and Ibarra (Chapter 3) 

have reported gradients in the concentration of phytoplankton caused by intense filter-

feeding pressure from mussel farming. 

 

Our modelling results also showed that aggregations of macrobiota can affect the nitro-

gen budget among the planktonic ecosystem tracers (Figure 2-7). A simulation from a 

one-way coupled version of our model—which can be interpreted as a planktonic ecosys-

tem model running without macrobiota—resulted in higher concentrations of all the 

planktonic ecosystem variables, compared to the two-way coupled simulation (Figure 2-4 

and Figure 2-5). In the two-way coupled model, the available nitrogen was shared among 

the macrobiota and the planktonic ecosystem variables, thus resulting in lower concentra-

tions of all the planktonic ecosystem variables, and also in less nitrogen stored in the 

planktonic ecosystem tracers, compared to the simulation without macrobiota. Therefore, 

in shallow regions, planktonic ecosystem models that do not account the bilateral interac-

tions between macrobiota and planktonic ecosystem variables, may overestimate the con-

centrations of all the planktonic ecosystem tracers. 
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2.4.1.2. Effects on Macrobiota Variables 

Our hybrid model also showed that the gradients in tracer concentrations affect the physi-

ology of macrobiota species, resulting in spatial gradients in their biomass. In other 

words, the spatial heterogeneity in planktonic ecosystem tracers caused by macrobiota 

also regulated the distribution of the macrobiota itself. Similar spatial gradients in growth 

and biomass have been observed in a mussel farm (Karayucel and Karayucel, 2000; 

Strohmeier et al., 2008).  

 

Our modelling results also showed that two-way coupling of macrobiota and planktonic 

ecosystem variables is important in the estimation of the nitrogen budget among the mac-

robiota variables (Figure 2-7). A simulation from a one-way coupled version of our 

model—which in this case is interpreted as using the output of a planktonic ecosystem 

model to force a separate macrobiota model—resulted in higher concentrations of all 

macrobiota variables, compared to the two-way coupled simulation (Figure 2-4 and 

Figure 2-5). At the end of the one-way coupled simulation, the nitrogen stored in every 

macrobiota variable was higher than the results from the two-way coupled simulation. 

Therefore, macrobiota modelling studies should account for two-way interactions with 

planktonic ecosystem variables, and models that fail to do so may overestimate the con-

centrations of all macrobiota variables. 

 

2.4.1.3. Effects on the Overall Mass-balance of the System 

In shallow regions, modelling macrobiota and planktonic ecosystem dynamics separately 

(i.e. one-way coupling) generates results that are not mass-balanced. That is, the total ni-

trogen in the system spuriously increases over time (Figure 2-7C), due to the overestima-

tion of both, macrobiota and planktonic ecosystem variables. For now, it is still a com-

mon practice to use the output of a planktonic ecosystem model to force food-web mod-

els representing the dynamics of higher-trophic macrobiota (i.e. one-way coupling; e.g. 

Cerco et al., 2010). However, there are increasingly more studies focusing efforts on the 

implementation of feedbacks from higher-trophic macrobiota to planktonic ecosystem 

dynamics (e.g. Steele and Ruzicka, 2011). 
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2.4.1.4. Implications for Food-web Stability and Long-term Ecosystem Predictions 

In nature, two-way feedbacks have been found to be a fundamental requirement for the 

stability of complex food webs (Rooney et al., 2006; Neutel et al., 2007). It is not surpris-

ing that the stability of modelled food webs is also dependent on the ability of the model 

to represent two-way interactions among modelled species. Therefore, new trends in ma-

rine ecosystem modelling are calling for a more complete representation of the food web 

structure, by increasing the number of interacting components of the ecosystem, and 

feedback loops connecting them (Hannah et al., 2010). Also, researchers studying eco-

logical networks are calling for metabolically-driven individual-based models that in-

volve a large number of species (Ings et al., 2009).  

 

2.4.1.5. Applications for Integrated Multi-Trophic Aquaculture 

Generally speaking, all areas of aquaculture research, management and regulation should 

consider using spatially-explicit models that realistically couple the dynamics of aquacul-

tured macrobiota with the planktonic ecosystem dynamics. However, there is an acute 

need for this type of modelling in Integrated Multi-Trophic Aquaculture (Barrington et 

al., 2009), where multiple species of different trophic levels are farmed in proximity of 

each other with the purpose of maximising yields while minimising environmental im-

pacts. Quantitative and spatially-explicit information about planktonic ecosystem vari-

ables is key when deciding where and how far apart to rear one species with respect to the 

others (e.g. Reid et al., 2010). A recent study about the effect of bivalves on finfish farms 

(Navarrete-Mier et al., 2010) came under public criticism (Troell et al., 2011) because the 

authors neglected to consider the role of hydrodynamics, the impact of plumes of nutri-

ents, and the response of primary producers. This is an example of how a sizable field 

survey (Navarrete-Mier et al., 2010)—without an appropriate model to fill in the gaps—

arrives at conclusions that may or may not be correct, but that are certainly challengeable. 

End-to-end models that include hydrodynamics, planktonic ecosystem dynamics and 



 56

aquacultured macrobiota can be very useful in providing information to support or reject 

these types of research hypotheses.  

 

2.4.2. Benefits of Hybrid Ecosystem Modelling 

2.4.2.1. An Efficient Solution to Multi-species Integration 

One challenge ahead is to develop modelling technologies that can handle the increased 

computational load demanded by modelling feedback loops among a large number of 

species in a 3-dimensional space. Here we argue that the hybrid approach may be the 

most appropriate approach to model a large number of species, by representing abundant 

and ubiquitous species with a grid-based model and rare species with an individual-based 

model. 

 

In the hybrid model presented here, we represented six macrobiota species using the indi-

vidual-based model, which required 1854 solutions of the ecosystem equations every 

time-step. Representing the same six species using a grid-based model would have re-

quired solving the ecosystem equations 84000 times every time step (i.e. number of cells 

× number of species, or 14000 × 6). Therefore the individual-based model only used 

2.2% of the computations required to represent the same species with a grid-based model. 

On the other hand, we represented two abundant species (i.e. phytoplankton and zoo-

plankton) using the grid-based model, which needed to solve the ecosystem equations 

28000 times every time step. Representing abundant species using an individual-based 

model requires the addition of enough individuals to ensure that every grid cell has 

enough individuals to represent the species dynamics. Even if we only add 1 individual 

for every 100 m3 of water, the individual-based model would have required to solve the 

ecosystem equations almost 4.5 × 106 times every time-step (i.e. number of cells × num-

ber of individuals per cell × number of species, or 14000 × 160 × 2). Therefore the grid-

based model only used 0.6% of the computations required to represent the same two 

abundant species with the individual-based model. 
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Our hybrid ecosystem framework was thus able to represent the ecosystem dynamics us-

ing only 27% of the calculations needed by a grid-based model alone to represent the 

same ecosystem, or only 0.6% of the calculation needed by an individual-based model 

alone to represent the same ecosystem. The hybrid approach may be the most adequate 

approach to represent multiple species from across trophic levels, sizes and abundances. 

 

2.4.2.2. A Hypothesis Testing Tool to Assess the Effect of Individuals on the 

Planktonic Ecosystem 

Ecosystem models have been recognized as powerful tools to create and test hypotheses 

(Franks, 2009; Neuheimer et al., 2010). Eulerian models are adequate to test hypotheses 

of the effect of one tracer variable on the others (e.g. impact of zooplankton grazing on 

phytoplankton dynamics). In addition, individual-based models forced with the output of 

an Eulerian planktonic ecosystem model may be adequate to test hypotheses regarding 

the effect of tracer variables (e.g. phytoplankton concentration) on individual-based vari-

ables (e.g. larvae survival), especially when the research question focus on the processes 

such as transport over trophic dynamics. However, hypotheses regarding the effect of in-

dividual-based variables of macrobiota on planktonic ecosystem dynamics can only be 

tested using hybrid ecosystem models. Effectively, hybrid ecosystem models enable re-

searchers to take results from laboratory experiments (e.g. filtration rate of fish larvae) 

and extrapolate them to an entire bay, to test whether they can explain the observed pat-

terns.  

 

Although the proposed framework is aimed to the development of models with high tro-

phic resolution (i.e. many species or functional groups), it must be remembered that the 

increase of model complexity needs to be done gradually (Anderson, 2005) and with care 

of not surpassing the our ability to constrain the model with observations (Denman, 

2003). 
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2.5. Conclusions 

We presented a hybrid-ecosystem modelling framework, where ROMS simultaneously 

operates two ecosystem models: (1) a grid-based ecosystem model that represents plank-

tonic ecosystem variables (i.e. nutrients, plankton and detritus) and (2) an individual-

based ecosystem model that represents larger or higher-trophic level species (e.g. filter-

feeders, macroalgae and fish). The hybrid framework allows for two-way interactions be-

tween the tracer- and individual-based models and therefore is strictly mass balanced.  

 

We also applied the ROMS hybrid-ecosystem framework in an idealized embayment 

typical of Eastern Canada and found that—when accounting for two-way and mass-

balanced interactions in shallow regions—the inclusion of wild and aquacultured macro-

biota species significantly decreases the concentration of all planktonic ecosystem vari-

ables (i.e. plankton, nutrients and detritus) and all macrobiota variables (i.e. biomass of 

seagrass, macroalgae and bivalves). The two-way coupling also allows the creation of 

spatial gradients in biomass of the macrobiota species. Our findings suggest that future 

ecosystem modelling efforts in shallow coastal regions should account for macrobiota 

species (wild and/or aquacultured), using two-way and mass-balanced coupling.  

 

Our results also showed that—in shallow coastal regions—two-way and spatially-explicit 

coupling are essential to reproduce planktonic ecosystem and macrobiota dynamics. 

However, one-way coupling between grid-based species and individual-based species 

may be sufficient to reproduce processes of interest in applications where the biomass of 

tracers is significantly larger than the biomass of individuals (e.g. fish larvae studies, 

when concentrations of larvae are too low to significantly affect concentrations of plank-

ton). Although even in these cases two-way coupling may capture a new range of dynam-

ics that may provide insight on the effect of fishing and climate change on fish popula-

tions (Travers et al. 2009). 

 

The capabilities of the ROMS hybrid-ecosystem framework should be useful in the envi-

ronmental management of any aquaculture operation (Henderson et al., 2001), particu-
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larly in the design and management of Integrated Multi-Trophic Aquaculture. The hybrid 

ROMS can assist on the spatial planning of polyculture farms by estimating the produc-

tion yields of the different aquacultured species, grown under different farm configura-

tions. It can also be used to estimate the potential impact that the aquaculture species may 

have on the nearby wild macrobiota.  

 

The ROMS hybrid-ecosystem framework is a 3-D, mass-balanced model optimized to 

efficiently represent interactions between physical, biological (lower- and higher-trophic 

levels) and anthropogenic processes in end-to-end models. But more importantly, the 

framework represents a path towards the unification of the previously separated disci-

plines of planktonic ecosystem, fisheries and aquaculture modelling (Travers et al., 2007; 

Cury et al., 2008; Moloney et al., 2011).  
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CHAPTER 3 
 

3 Coupling 3-D Eulerian Bio-physics 

(ROMS) with Individual-based 

Shellfish Ecophysiology (SHELL-E): A 

Hybrid Model for Carrying Capacity 

and Environmental Impacts of Bivalve 

Aquaculture* 

3.1. Introduction 

Bivalve aquaculture is growing exponentially worldwide, representing about 65% of total 

marine aquaculture production and about 11% of total seafood produced for human con-

sumption (statistics for 2009; FAO, 2010). If this industry is to expand in a sustainable 

manner, it is imperative to understand and quantify (1) the effect of farmed bivalves on 

the environment, (2) the influence of environmental conditions on the production of bi-

valves, and (3) the relevant feedbacks between bivalves and the environment. 

 

Following the expansion of bivalve aquaculture, the development of models that repre-

sent bivalve-environment interactions has also been growing rapidly during the last three 

decades (e.g. Incze et al., 1981; Fréchette et al., 1989; Dowd, 2003; Bacher and Gang-

                                                 
* This chapter comprises a co-authored manuscript by D. A. Ibarra, K. Fennel, J. J. Cullen. The contribution 
of the author of this thesis to this manuscript includes the development of a shellfish ecophysiological 
model (SHELL-E), data analysis, and manuscript writing. K. Fennel provided some of the model forcing, 
and K. Fennel and J. J. Cullen contributed with guidance and multiple rounds of corrections. 
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nery, 2006; Grant et al., 2008; Grangeré et al., 2010). Although these models have di-

verse focuses and approaches, they all fall into two basic categories: (1) Eulerian or grid-

based models, or (2) Lagrangian or particle-based models. 

 

Eulerian or grid-based models track variables inside fixed volumes of space (i.e. boxes or 

grid cells). They are the model of choice to simulate variables that behave like tracers 

(e.g. temperature, phytoplankton concentration, etc.), where a single average value repre-

sents the state inside a whole box or grid cell (Lande and Lewis, 1989), and where ex-

changes among boxes or grid cells, along with changes within the box, are used to repre-

sent the dynamics everywhere within the gridded model domain. Eulerian models are by 

far the most commonly used models representing bivalve-environment interactions. The 

first models described the interactive influences of bivalve filtration and water currents 

on the concentration of phytoplankton in 1-D horizontal (Incze et al., 1981; Rosland et 

al., 2011) and vertical (Fréchette et al., 1989; Duarte et al., 2008) scenarios. Later models 

also included primary productivity and other lower-trophic level dynamics; however, a 

single box (i.e. 0-D model) was used to represent an entire bay (e.g. Dowd, 1997; Dame 

and Prins, 1998). Some newer studies use an individual growth model forced with envi-

ronmental data (Bourles et al., 2009; Rosland et al., 2009). Meanwhile, the spatial resolu-

tion of other bivalve-environment models has increased over the years from 2-D box 

models (Grant et al., 2007; Troost et al., 2010), to 2-D models with fine grids (Duarte et 

al., 2003; Grant et al., 2008; Grangeré et al., 2010; Guyondet et al., 2010), to fine grids in 

3-D (Marinov et al., 2007; Spillman et al., 2008; Leon et al., 2011, this study). These bi-

valve-environment models differ: for example, some estimate bivalve growth using 

Scope-For-Growth sub-models (SFG; Bayne et al., 1976), while others use Dynamic En-

ergy Budget theory (DEB; Kooijman, 1986; 2000). However, all these models use the 

Eulerian framework, with domains divided in boxes or grid cells, and with variables rep-

resenting the average state in each box or cell. Bivalves inside grid cells are also repre-

sented as an average concentration; however, unlike conventional Eulerian tracers (e.g. 

plankton concentration or temperature), the concentration of bivalves is not subject to 

transport by advection and turbulent diffusion processes. Moreover, if the Eulerian model 

is designed with many size-classes, each class would be defined with its own state vari-
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able. For bivalves to grow from one size-class to the next one, each time-step some mass 

has to be subtracted from the smaller class and added to the larger class. 

  

Lagrangian* or particle-based models track variables associated with sparsely distributed 

particles. Each particle usually represents a separate individual, thus particle-based mod-

els are often called individual-based models (IBMs; Grimm and Railsback, 2005). Com-

monly, 2-D and 3-D individual-based models are used to study larval dynamics (fish lar-

vae: see review Miller 2007; bivalve larvae: North et al. 2008, 2010). The majority of 

these IBM models are forced with output from an Eulerian bio-physical model (i.e. one-

way coupling). These IBM models allow the particles (each representing an individual 

larva) to "drift around", thereby experiencing different environmental conditions, like 

temperature, plankton concentration, etc. As each particle encounters different environ-

mental conditions, the variables tracked for each particle (e.g. larval biomass or larval 

size) also evolve differently, depending on their surroundings. At the end of the simula-

tion, the variables tracked for all particles are used to compute the properties of the entire 

system (e.g. total larval biomass, or larval abundance in a particular region). Therefore, 

system properties are said to "emerge" from the properties of the individual particles 

(Grimm and Railsback, 2005). For example, in an IBM with bivalves of different sizes, 

the model would track the size of each bivalve as it grows over time. Then, after the 

simulation is finished, the size of all the bivalves can be binned into size-classes to assess 

the evolution of size structure over time. 

 

One-way coupled IBMs allow individuals to react to environmental variability, arguably 

better approximating reality than representing the system using a single bulk or average 

value (Woods and Onken, 1982; Lande and Lewis, 1989). However, it is important to 

emphasize that—although one-way coupled IBM models are very useful to assess the 

impact of the environment on individuals—the reverse is not possible. That is, the model 

structure of conventional one-way coupled IBM models does not allow individuals to in-

                                                 
* The term Lagrangian applies only to particles drifting passively with local currents, and cannot be applied 
to particles than do not move or that move using swimming behaviour. Therefore, for the remainder of this 
study, we will not use the term Lagrangian to represent particle-based models. 
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fluence the variables of the Eulerian model in which they are embedded (e.g. larvae can-

not change the concentration of phytoplankton).  

 

In bivalve aquaculture, individual-based models have not been used extensively; however 

there are a few examples of their use in 0-D applications (e.g. Bacher and Gangnery, 

2006). In addition, Duarte et al. (2010) used an IBM as a method for parameter optimiza-

tion. That is, a model run is set up with hundreds of individual bivalves, each having 

physiological parameters randomly chosen within a permitted range. At the end of the 

simulation, comparisons of bivalve trajectories against observed bivalve growth allows 

the user to quickly select the model parameters that best reproduce the data. Ferreira et al. 

(2008) used output from a 3-D Eulerian bio-physical model to force growth of a modelled 

oyster and a modelled mussel in a few locations. The focus of the model was to evaluate 

the effect of the environment on bivalve growth; therefore the effects of bivalves on the 

environment were not resolved. Bivalve-environment feedbacks cannot be studied with 

this model configuration. 

 

Here, we utilize a type of model referred to as an Eulerian/IBM hybrid (Chapter 2). Such 

hybrids simultaneously operate two models: an Eulerian model describes the dynamics of 

physical and planktonic ecosystem variables that are defined everywhere within a gridded 

domain (e.g. currents, temperature, nutrients, plankton, detritus etc.), while an IBM 

model describes the dynamics of variables only defined at discrete locations that are 

sparsely distributed within the domain (e.g. bivalve biomass). The Eulerian and IBM 

models run simultaneously and are two-way coupled, thus allowing Eulerian variables to 

modify IBM variables and vice-versa. Mass is exchanged among variables in the two 

models, and total mass is conserved in the system. This hybrid model allows (1) the envi-

ronment to alter bivalve physiology, (2) bivalves to alter the environment, and (3) feed-

backs between the two. 

 

The objective of this study is to develop an Eulerian/IBM hybrid model capable of re-

solving spatially variable interactions and feedbacks between planktonic ecosystem vari-
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ables and aquacultured bivalves, thereby enabling the assessment of carrying capacity 

and environmental impacts of bivalve aquaculture. 

 

In this work we (1) describe the hybrid model, (2) assess model performance by compar-

ing model results with available data, (3) estimate the carrying capacity for mussel aqua-

culture in a fjord in Eastern Canada, and (4) assess the sensitivity of the model to parame-

ters and boundary conditions. 

 

 

3.2. Materials and Methods 

3.2.1. Model Overview 

We implemented the shellfish ecophysiology model, SHELL-E, as part of the Regional 

Ocean Modeling System (ROMS), which is a state-of-the-art, open-source, 3-D ocean 

model (Haidvogel et al., 2008; http://myroms.org). ROMS is made of different modules 

that can be included or excluded in the executable file. Besides the hydrodynamic mod-

ule, we also employed the sediment transport module (Warner et al., 2008), one of the 

lower-trophic biological modules (Fennel et al., 2006), and the individual-based biologi-

cal module (Chapter 2). The first three modules (i.e. hydrodynamics, planktonic ecosys-

tem and sediment transport) operate under an Eulerian or grid-based framework, where 

the model domain is discretized using a curvilinear, orthogonal and staggered Arakawa 

C-grid (Arakawa, 1966; Haidvogel et al., 2008). Beneath the water-column grid there is 

also a three-dimensional sediment bed grid, which is used to track sediment layering and 

bedload transport (Warner et al., 2008). The individual-based biological module operates 

in a particle-based framework (Chapter 2), where many particles can be inserted at dis-

crete locations anywhere within the model domain. In this study, each particle represents 

a separate Culture Unit (CU), each containing a number of identical bivalves (Figure 

3-1). 

 

 



Figure 3-1. Diagram of the Eulerian/IBM hybrid model used in this study.
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3.2.2. Hydrodynamic Model (ROMS) 

ROMS is a 3-D, free-surface, terrain-following numerical ocean model that solves finite-

difference approximations of the Reynolds-averaged Navier-Stokes equations using the 

hydrostatic and Boussinesq assumptions (Haidvogel et al., 2000; Shchepetkin and 

McWilliams, 2005). Here we only present relevant equations; see Chapter 2 for a com-

plete description of the Eulerian/IBM hybrid modelling approach. 

 

The time rate of change of any tracer, j (e.g. salinity, phytoplankton, suspended sedi-

ments, etc.), is estimated using the following scalar transport equation (Chapter 2): 

 

Eq. 3-1  
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The first three terms on the right hand side of the equation describe advection in the hori-

zontal (x and y) and vertical ( ) directions, where  is a dimensionless proportion of the 

water column depth, Hz (m). The fourth term describes vertical mixing and the fifth term 

(D , mmol N m-3 s-1) represents the horizontal diffusion terms, which vary depending on 

the settings chosen by the user (see Hedström, 2009). The sixth term ( j
EulC , mmol N m-3 

s-1) represents the Eulerian source/sink terms. For planktonic ecosystem tracers, j
EulC  is 

replaced with source/sink terms described in Fennel et al. (2006), and for sediment trac-

ers, j
EulC  is replaced with source/sink terms described in Warner et al. (2008). The last 

term, j
IBMC  (mmol N m-3 s-1), represents the individual-based source/sink terms, and is 

replaced with equations Eq. 3-19 to Eq. 3-23, which are described in detail in section 

3.2.6 below. All terms vary in space and time (x,y, ,t) however, for simplicity, we omit-

ted the spatial-temporal dependency in the terms on the right hand side of the equation. 

See Table 3-1 for a complete list of symbols and units. 
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Table 3-1 - List of variables, parameters and other symbols used in this chapter. 
Symbol Units Value 

(Reference)
Description 

(i) Coordinates and indices 
j dimensionless 2-1 Eulerian scalar index 
k dimensionless 2-3 Culture Unit index 
t s (or d) 2-1 Time 
x m 2-1 Horizontal coordinate in the East-West direction 
y m 2-1 Horizontal coordinate in the North-South direction 
 dimensionless 2-1 Vertical sigma coordinate 

(ii) State variables 
 Hydrodynamic model 

Temp °C (1) Local temperature 
Salt dimensionless (1) Local salinity 
u m s-1 (1) Mean component of the velocity in the x direction 
v m s-1 (1) Mean component of the velocity in the y direction 

 s-1 (1) Mean component of the velocity in the vertical ( ) direction 
 Planktonic ecosystem model 

Chl mg Chl m-3 (Eq. 9 in 2) Local concentration of chlorophyll 
LDet mmol N m-3 (Eq. 12 in 2) Local concentration of large detritus 
NO3 mmol N m-3 (Eq. 13 in 2) Local concentration of nitrate 
NH4 mmol N m-3 (Eq. 14 in 2) Local concentration of ammonium 
Phy mmol N m-3 (Eq. 1 in 2) Local concentration of phytoplankton 
Oxy mmol O2 m-3 (18) Local concentration of oxygen 
SDet mmol N m-3 (Eq. 11 in 2) Local concentration of small detritus 
Zoo mmol N m-3 (Eq. 10 in 2) Local concentration of zooplankton 
 Sediment transport model 

Sed g m-3 (Eq. 5 in 4) Local concentration of inorganic sediments 
 Shellfish ecophysiology (SHELL-E) model 

Gonadk mmol N ind-1 Eq. 3-12 Reproductive biomass of an individual bivalve in Culture Unit k
Somak mmol N ind-1 Eq. 3-11 Structural biomass of an individual bivalve in Culture Unit k 
nk ind Eq. 3-17 Number of individual bivalves in Culture Unit k 
(iii) Other ancillary and diagnostic variables and functions  
 Hydrodynamic model 

Hz m (1) Thickness of the grid cell 
 Planktonic ecosystem model 

I W m-2 (Eq. 5 in 2) Photosynthetically available radiation 
 Shellfish ecophysiology (SHELL-E) model 
o Bivalves 

Ak mmol N ind-1 d-1 Eq. 3-3 Assimilation rate of an individual bivalve in Culture Unit k 
Bk mmol N ind-1 Eq. 3-2 Biomass of an individual bivalve in Culture Unit k 
Fk m3 ind-1 d-1 Eq. 3-4 Filtration rate of an individual bivalve in Culture Unit k 

max
kF  m3 ind-1 d-1 Eq. 3-4 Maximum filtration rate of an individual bivalve in Culture 

Unit k 
Faek mmol N ind-1 d-1 Eq. 3-15 Faeces production rate of an individual bivalve in Culture Unit 

k 
Food mmol N m-3 Phy+Zoo+ 

SDet 
Local concentration of food 

Harvestk ind d-1 Eq. 3-18 Number of individual bivalves removed from a Culture Unit in 
a time step through harvesting 

PsFaek mmol N ind-1 d-1 Eq. 3-16 Pseudofaeces production rate of an individual bivalve in Cul-
ture Unit k 

Spawn-
ingk 

mmol N ind-1 d-1 Eq. 3-14 Biomass of gametes expelled during reproduction by an indi-
vidual bivalve in Culture Unit k 
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Rk mmol N ind-1 d-1 Eq. 3-10 Respiration rate of an individual bivalve in Culture Unit k 
 

REk dimensionless Eq. 3-13 Reproductive effort (i.e. fraction of production allocated to re-
production) of an individual bivalve in Culture Unit k 

fk(Temp) dimensionless Eq. 3-6 Functional response of bivalve filtration to temperature 
fk(Salt) dimensionless Eq. 3-7 Functional response of bivalve filtration to salinity 
fk(Food) dimensionless Eq. 3-9 Functional response of bivalve filtration to food (i.e. plankton + 

zooplankton + detritus) 
fk(Oxy) dimensionless Eq. 3-8 Functional response of bivalve filtration to oxygen 
(iv) Parameters 
 Hydrodynamic model 

K  m2 s-1 (1) Eddy diffusivity coefficient 
 m2 s-1 (1) Tracer kinematic diffusivity 

 Planktonic ecosystem model. Same as in Fennel et al. (2006), except for the parameters below. 
KP (mmol N m-3) 2 (2) Half-saturation concentration of phytoplankton ingestion by 

zooplankton 
CDOM m-1 (3) Diffuse attenuation coefficient for downwelling PAR irradiance 

due to CDOM 
TOTAL m-1 (3) Total diffuse attenuation coefficient for downwelling PAR ir-

radiance 
gmax (mmol N m-3)-1 d-1 0.75 (21) Maximum grazing rate of phytoplankton by zooplankton 
nmax d-1 0.072 (21) Phytoplankton mortality 
mP d-1 0.01 (21) Maximum nitrification rate 

max mg Chl (mg C)-1  0.15 (21) Maximum ratio of chlorophyll to phytoplankton C 
 Shellfish ecophysiology (SHELL-E) model 

AEP dimensionless 0.9 (5) Absorption efficiency of bivalves on phytoplankton 
AED dimensionless 0.2 (5) Absorption efficiency of bivalves on small detritus 
AEZ dimensionless 0.3 (6) Absorption efficiency of bivalves on zooplankton 
BPub mmol N ind-1 0.43 (7) Bivalve biomass at puberty 
Bref mmol N ind-1 1 (Eq. 3-5) Biomass of a reference bivalve 

max
refF  m3 ind-1 d-1 0.025 (21) Filtration rate exhibited by a reference bivalve, Bref, when 

evaluated in ideal environmental conditions 
GT dimensionless 0.44 (20) Threshold fraction (i.e. Gonad/B) triggering spawning 

H
TempK  (°C)-1 0.1 (9) Decreasing coefficient for limitation due to temperature at up-

per boundary  
L
TempK  (°C)-1 0.5 (9) Decreasing coefficient for limitation due to temperature at 

lower boundary  
L
SaltK  (PSU)-1 0.25 (10) Decreasing coefficient for limitation due to salinity at lower 

boundary 
L
OxyK  (mmol O2 m-3)-1 0.02 (12) Decreasing coefficient for limitation due to oxygen at lower 

boundary 
KFood mmol N m-3 1 (6) Half-saturation food concentration for bivalve filtration 
KRE mmol N ind-1 0.86 (11) Half-saturation constant for reproductive effort, RE 
NOQ mol N (mol O2)-1 0.01 (17) Nitrogen:oxygen quotient for bivalve respiration 
OxyL mmol O2 m-3 17.5 (12) Lower limit of tolerance range for oxygen 
Rm d-1 0.002 (21) Weight-specific maintenance respiration rate of an individual 

bivalve 
SaltL PSU 10 (10) Lower limit of tolerance range for salinity 
TempH °C 25 (8) Upper limit of tolerance range for temperature 
TempL °C -4 (9) Lower limit of tolerance range for temperature 
 dimensionless 0.12 (5) Cost of growth coefficient of an individual bivalve 
P dimensionless 1 (6) Filtration efficiency of bivalves on phytoplankton 
D dimensionless 0.5 (6) Filtration efficiency of bivalves on small detritus 
Z dimensionless 0.3 (6) Filtration efficiency of bivalves on zooplankton  
Nat d-1 0.00137(19) Natural mortality rate of bivalves in Culture Unit k 
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Harv d-1 0.001 (15) Harvesting rate 
(v) Other 

 j vary  State of the jth Eulerian tracer (e.g. temperature, sediment con-
centration or phytoplankton concentration) 

D  vary  Horizontal diffusivity terms 
j

EulC  vary  Eulerian source/sink terms for the jth Eulerian scalar 

j
IBMC  vary  Individual-based source/sink terms for the jth Eulerian scalar 

1 Haidvogel et al. (2008) 
2 Fennel et al. (2006) 
3 See text in section 0 
4 Warner et al. (2008) 
5 Grant et al. (2008) 
6 Guyondet et al. (2010) 
7 Bayne et al. (1983) 
8 Gonzales and Yevich (1976) 
9 Calculated to yield less than 10% limitation at 0°C and 30% limitation at 15°C (Thompson 1984) 
10 Calculated based on lethal salinity of 10 PSU and 10% limitation at 22.5 PSU (Almada-Villela 1984) 
11 Calculated to yield a maximum mussel size of approximately 100 mm (Ibarra 2003) 
12 Calculated to stop filtration at 17.5 mmol O2 m-3 and to cause a 5% limitation at 175 mmol O2 m-3 

(Wang and Widdows, 1993) 

13 Kooijman (2000) 
14 Wallentinus (1984) 
15 pers. comm. (J. Stairs, 2011)  
16 Lotze et al. (1999) 
17 Widdows and Johnson (1988) 
18 Fennel et al. (in prep.) 
19 Estimated so that, at the end of the one-year simulation, the final total biomass of bivalves in the em-

bayment was the same as the initial total biomass. 
20 Estimated from mussel meat yields (Smith, 2009), where maximum observed yields correspond to mus-

sel with full gonad and minimum yields correspond to mussels with empty gonads. 
21 Tuned 
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3.2.3. Planktonic Ecosystem Model 

ROMS includes several planktonic or lower-trophic ecosystem models. In this study we 

used the Fennel et al. (2006) model, which has been described in detail elsewhere; here 

we present a brief summary. The planktonic model is a representation of the pelagic ni-

trogen cycle using six state variables (all with units of mmol N m-3): phytoplankton 

(Phy), zooplankton (Zoo), nitrate (NO3), ammonium (NH4), small detritus (SDet), and 

large detritus (LDet). The model also tracks phytoplankton chlorophyll (Chl, mg Chl m-3) 

and oxygen concentration (Oxy, mmol O2 m-3, Fennel et al. in preparation). 

 

Phytoplankton nitrogen and chlorophyll are estimated separately from each other, thus 

allowing the nitrogen-to-chlorophyll ratio to change depending on the acclimation of 

phytoplankton to environmental conditions. Increases in both phytoplankton nitrogen and 

chlorophyll depend on the local concentration of ammonium and nitrate and the local 

photosynthetically available radiation (I, W m-2), which is calculated at each grid cell 

depth using a variable attenuation coefficient (i.e. TOTAL (m-1), attenuation due to water 

plus attenuation due to chlorophyll). For this study, we also added attenuation due to col-

oured dissolved organic matter (CDOM), estimated using an empirical relationship be-

tween CDOM and salinity in Ship Harbour, Nova Scotia, Canada ( CDOM = 

(-0.0315 salinity) + 1.1429; Ibarra, 2003). Both, phytoplankton nitrogen and chlorophyll, 

are subject to grazing by zooplankton, sinking, flocculation into large detritus, and natural 

mortality. In this study we also added an individual-based loss term representing grazing 

by bivalves, which is explained in Section 3.2.6.  

 

Zooplankton feeds on phytoplankton and excretes ammonium produced through basal 

metabolism and through a variable component proportional to the ingested phytoplank-

ton. Zooplankton is also subject to natural mortality and, in this study, to filtration by bi-

valves (see Section 3.2.6). 

 

The small detritus pool gains matter through zooplankton’s “sloppy feeding” on phyto-

plankton and through mortalities of zooplankton and phytoplankton. The small detritus 
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loss terms include flocculation into aggregates, remineralisation into ammonium and 

sinking. We added consumption by bivalves (see Section 3.2.6). 

 

Large detritus is formed by natural flocculation of phytoplankton and small detritus, and 

is lost by remineralisation into ammonium, and sinking. We also added a term represent-

ing gains due to bivalve faecal deposition (see Section 3.2.5.1.6). 

 

Ammonium is lost due to uptake by phytoplankton and due to nitrification. The ammo-

nium pool increases through the respiration of zooplankton, and through the remineralisa-

tion of small and large detritus. We added remineralization of ammonium associated with 

respiration of bivalves (see section 3.2.5.1.3). An additional production of ammonium 

occurs in the sediment as a result of benthic remineralisation. This process is included as 

a bottom boundary condition, where the flux of sinking phytoplankton, detritus and ag-

gregates out of the bottommost grid box results immediately in a corresponding influx of 

ammonium at the sediment/water interface. 

 

Nitrate is produced by the nitrification of ammonium, which occurs only in the dark and 

only in aerobic conditions. Nitrate decreases due to uptake by phytoplankton. 

 

Oxygen dynamics are described in Fennel et al. (in preparation). Oxygen is exchanged 

between the atmosphere and the surface layer of the ocean depending on wind speed 

(Wanninkhof, 1992) and on the oxygen solubility in seawater, which is a function of tem-

perature and salinity (Garcia and Gordon, 1992). In seawater, oxygen is produced via 

photosynthesis by phytoplankton and it is consumed by zooplankton respiration and by 

mineralization of detritus in the water column and of organic matter at the sea floor. We 

added a sink term due to respiration by bivalves (see section 3.2.5.1.3). 

 

3.2.4. Sediment Transport Model 

The sediment transport model (Warner et al., 2008) represents a three-dimensional sedi-

ment bed underneath the ocean layers. The sediment layers are initialized with specified 
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thickness, sediment-class distribution, porosity and age. The sediment classes are speci-

fied using fixed attributes of grain diameter, density, settling velocity, critical shear stress 

for erosion and an erodibility constant.  

 

If sediment is eroded from the sediment bed and suspended in the water column, then it is 

transported by solving the advection-diffusion Eq. 3-1, where the term j
EulC  is replaced by 

the source/sink terms shown in Equation 22 of Warner et al. (2008). 

 

In this study, the transport model treats suspended sediments as being inorganic and not 

digestible by bivalves. Therefore, inorganic sediments filtered by bivalves are immedi-

ately returned to the water column as pseudofaeces (see section 3.2.5.1.7).  

 

3.2.5. Shellfish Ecophysiology (SHELL-E) Model 

Shellfish physiology and population dynamics are represented using a particle-based or 

individual-based framework (Chapter 2), where discrete Culture Units (k)—each contain-

ing a number (nk, ind) of identical bivalves (Bk, mmol N ind-1)—are inserted anywhere 

within the model domain and then tracked throughout the model simulation. The total 

biomass of bivalves in a Culture Unit (mmol N) is defined as nk × Bk. Many Culture Units 

can coexist in the space of a single Eulerian grid cell. 

 

Below we present functions that describe influences of environmental factors on the 

physiology of bivalves. However, the validity of these functions depends on the use of 

appropriate parameters, which are not always available. Please refer to Section 3.4.2. for 

a discussion on our choice of parameters. It should be noted that parameters and functions 

can vary for different model applications; therefore careful consideration and validation 

of functions and parameters is required for each particular application. 
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3.2.5.1. Growth of an Individual Bivalve 

Our bivalve physiology model follows a classic approach described in Kremer and Nixon 

(1978), where key physiological rates are estimated as the product of a maximum rate and 

several dimensionless functions that impose the effect of environmental variables. This 

approach is extensively used in lower-trophic ecosystem models (e.g. Fasham et al., 

1990; Sarmiento et al., 1993; Fennel et al., 2006) and is sometimes applied to bivalve-

environment models (Fréchette et al., 1989; Dowd, 1997; 2005; Grant et al., 2008). Our 

model also implements two key aspects of the Dynamic Energy Budget theory 

(Kooijman, 1986; 2000), which is another approach that is gaining popularity in bivalve-

environment models (Van der Veer et al., 2006; Maar et al., 2009; Rosland et al., 2009). 

The DEB theory is rooted in the assumption that feeding is proportional to body surface, 

while maintenance is proportional to the body volume (Kooijman, 1986; 2000). There-

fore, in our model we imposed a surface-to-volume scaling between filtration and bivalve 

biomass by using a  exponent. Kooijman's DEB theory also assumes that the fraction of 

energy (or mass) allocated to reproductive tissue changes over time throughout the life 

history of an organism. Therefore, we implemented a dynamic mass allocation method to 

allow juvenile bivalves to mainly grow their structural biomass, while allowing adults to 

mainly grow their reproductive biomass (see section 3.2.5.1.4). 

 

In our SHELL-E model, the time evolution of the biomass of an individual bivalve (i.e. 

growth), is defined by: 

 

Eq. 3-2    kkk
k SpawningRA

t
B )(  

 

where Bk is bivalve biomass of an individual bivalve in Culture Unit k (mmol N ind-1), 

the assimilation rate Ak (mmol N ind-1 d-1) is the total amount of food assimilated into bi-

valve tissue by an individual bivalve per unit time, the respiration rate Rk (mmol N ind-1 

d-1) is the biomass of an individual bivalve lost due to catabolic processes, and Spawningk 

(mmol N ind-1 d-1) is the loss term representing the gamete biomass expelled during re-
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production by an individual bivalve in Culture Unit k. Note that, for simplicity, we omit-

ted the spatial-temporal dependency (x,y, ,t) in all variables.  

 

3.2.5.1.1. Assimilation 

The assimilation rate, which represents the biomass absorbed by an individual bivalve 

(after food filtration and ingestion), is estimated using the following equation: 

 

Eq. 3-3           SDetAEZooAEPhyAEFA DDZZPPkk  

 

where the individual filtration rate Fk (m3 ind-1 d-1) is multiplied by the available food 

(phytoplankton, zooplankton and detritus) scaled by their respective filtration efficiencies 

( P, Z, and D) and absorption efficiencies (AEP, AEZ and AED). This is to account for the 

fact that some food in the water is not retained by the filtering apparatus of the bivalve, 

and also some of the ingested food is not absorbed (i.e. incorporated into bivalve tissue) 

and is instead returned to the detrital pool in the form of faecal biodeposits (see sections 

3.2.5.1.6 and 3.2.6). No organic material is incorporated in pseudofaeces (see Section 

3.2.5.1.7). For details on the estimation of model parameters, see footnotes in Table 3-1.  

 

3.2.5.1.2. Filtration 

The individual filtration rate Fk, which represents the volume of water that an individual 

bivalve clears of particles per unit time, is estimated as follows: 

 

Eq. 3-4    )()()()(max FoodfOxyfSaltfTempfFF kkkkkk  

 

where terms two to five are dimensionless limiting functions for temperature fk(Temp), 

salinity fk (Salt), oxygen fk (Oxy) and food particles fk(Food). The first term, max
kF  (m3 

ind-1 d-1), represents the maximum filtration rate achievable by a bivalve of size Bk, and is 

estimated as follows: 
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Eq. 3-5    
3

2

maxmax

ref

k
refk B

BFF  

 

where max
refF  (m3 ind-1 d-1) is the filtration rate exhibited by a reference bivalve of biomass 

Bref (usually 1 mmol N ind-1), when evaluated in ideal environmental conditions (i.e. all 

the dimensionless limiting functions are equal to 1). The allometric exponent, , is in ac-

cordance with the surface-to-volume scaling proposed in the Dynamic Energy Budget 

theory (Kooijman, 1986; 2000). 

 

We included limiting functions for all these environmental variables because these are the 

variables simulated by ROMS that have been shown to affect physiology in aquaculture 

bivalves (Gosling, 2003). However, depending on the application (e.g. species, geo-

graphical location, etc.), not all of these environmental variables may be important. 

Therefore, we included the ability to (1) generate diagnostic time-series for each limiting 

function, and (2) turn on/off each limitation. For each different application, test simula-

tions can be run to assess which environmental limitations play an important role, and 

then one can turn off the limitations deemed unimportant. Moreover, because ROMS is 

open-source, the included limiting functions can be replaced for other more appropriate 

for a particular application. 

 

3.2.5.1.2.1. Temperature Limitation 

Temperature modulates the individual filtration rate through a sigmoid-type threshold 

equation, which is similar in form to the Type 3 threshold equation (Gentleman et al., 

2003), typically used to describe the feeding response of zooplankton as a function of 

food concentration. We modified the sigmoid equation to include a species-specific toler-

ance range and a separate rate of decrease at the higher boundary (Eq. 3-6, Figure 3-2). 

Our equation has similar functionality as the 6-parameter Arrhenius-type equation used  

 



Figure 3-2. Illustration of the shape of the limiting functions for temperature (Eq. 3-6) 
and salinity (Eq. 3-7).
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by Kooijman (2000), Van der Veer et al. (2006) and Bacher and Gangnery et al. (2006), 

however our equation only uses 4 parameters.  

 

Eq. 3-6   

1)exp(
)exp(1

1,0

)(exp1,0

)(

H
H
Temp

H
Temp

L
L
Temp

k

TempK
TempK

MAX

TempTempKMAX

MINTempf  

 

where Temp (°C) is local temperature, LTemp  and HTemp  (°C) are the lower and upper 

temperature limits of the tolerance range, and L
TempK  and H

TempK  (units: (°C)-1 ) define the 

rate of decrease at the lower and upper boundaries, respectively. Note that in systems for 

which temperature never exceeds the upper limit, a simpler, 2 parameter equation is ap-

propriate (e.g. see Section 3.2.5.1.2.2).  

 

3.2.5.1.2.2. Salinity Limitation 

We assumed that filtration rate is only limited when salinity is too low (e.g. Almada-

Villela, 1984). Therefore we used a simpler sigmoid-type threshold equation: 

 

Eq. 3-7    )(exp1,0)( L
L
Saltk SaltSaltKMAXSaltf  

 

where Salt (PSU) is local salinity, LSalt  (PSU) is the salinity at which filtration shuts 

down (i.e. lower end of the tolerance range), and L
SaltK  (PSU-1) defines the rate of de-

crease at the lower boundary (Figure 3-2). 
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3.2.5.1.2.3. Oxygen Limitation 

Similar to salinity, low oxygen concentration limits the individual filtration rate (Wang 

and Widdows, 1993). Thus we implemented this limitation through a sigmoid-type 

threshold equation: 

 

Eq. 3-8    )(exp1,0)( L
L
Oxyk OxyOxyKMAXOxyf  

 

where Oxy (mmol O2 m-3) is local oxygen concentration, LOxy  (mmol O2 m-3) is the oxy-

gen concentration at which filtrations shuts down (i.e. lower limit of the tolerance range), 

and L
OxyK  (units: (mmol O2 m-3)-1 ) defines the rate of decrease at the lower boundary.  

 

3.2.5.1.2.4. Limitation due to Particle Concentration 

Previous modelling studies (e.g. Dowd, 1997; Grant et al., 2007) proposed that the filtra-

tion rate of some bivalves is reduced at low concentrations of particles, and thus they im-

plemented a Michaelis–Menten limitation of filtration dependent on the concentration of 

all food particles; in our case, Phy + Zoo + SDet:  

  

Eq. 3-9    
SDetZooPhyK

SDetZooPhyFoodf
Food

k )(   

 

where KFood (mmol N m-3) is the half-saturation concentration of food particles. 

 

3.2.5.1.3. Respiration 

The mass lost by an individual bivalve through respiration (Rk, mmol N ind-1 d-1, second 

term on the right hand side of Eq. 3-2), is estimated using Eq. 3-10 below. The individual 

respiration rate includes a maintenance respiration rate, which depends solely on bivalve 
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biomass, and an active respiration rate representing losses directly related to feeding ac-

tivity resulting in assimilation of food: 

 

Eq. 3-10   )()( kkmk ABRR  

 

where Rm (d-1) is the weight-specific maintenance respiration rate, Bk is biomass of an 

individual bivalve (mmol N ind-1) and  is the dimensionless cost of growth coefficient 

(Grant et al., 2007). 

 

3.2.5.1.4. Dynamic Mass Allocation 

After accounting for respiration, the remaining assimilated biomass is divided between 

soma and gonads. The allocation of mass between the two compartments is dynamic, 

changing through the life cycle of the bivalve. In juveniles, all available energy is allo-

cated to the soma, and after puberty, an increasingly larger portion of the resources is al-

located to reproduction. Finally, in large bivalves, almost all resources go to gonads and 

growth almost stops. The dynamic allocation of mass is described in the following two 

equations: 

 

Eq. 3-11   )1()( kkk
k RERA

t
Soma  

 

 

Eq. 3-12   kkkk
k SpawningRERA

t
Gonad )(  

 

where Somak and Gonadk (mmol N ind-1) are the bivalve structural and reproductive 

compartments, respectively. The first term on the right hand side of both equations, (Ak – 

Rk), is the Scope for Growth (SFG; Bayne et al., 1976) and represents the net rate of in-

crease of biomass, either soma or reproductive products. The second term of both equa-

tions, (1–REk) and REk, respectively, are used to scale the SFG and define the dynamic 
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allocation. REk (dimensionless) is the reproductive effort, which is defined as the fraction 

of the total production that is allocated to reproduction, and is calculated as follows: 

 

Eq. 3-13   
PubkRE

Pubk
k BBK

BB
MAXRE

2
,0  

 

where BPub (mmol N ind-1) is the bivalve biomass at puberty, and KRE (mmol N ind-1) is 

the half-saturation biomass for RE. 

 

3.2.5.1.5. Spawning 

Once a bivalve reaches puberty and starts allocating resources to reproduction, the gonad 

starts to grow. When the gonad weight reaches a threshold fraction of the total weight 

(GT, dimensionless), the entire gonad pool is emptied into the zooplankton pool in a 

process called spawning. The loss term Spawningk (mmol N ind-1 d-1) represents the go-

nad biomass evacuated in one time-step and is calculated using the equation below:  

 

Eq. 3-14   
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3.2.5.1.6. Faeces 

The amount of undigested food that is evacuated as faeces (Faek, mmol N ind-1 d-1) is 

calculated with the equation below: 

 

Eq. 3-15 

 

SDetAEZooAEPhyAEFFae DDZZPPkk )1()1()1(  
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3.2.5.1.7. Pseudofaeces 

In our model, inorganic suspended particles filtered by bivalves are not ingested. Instead 

they are immediately rejected back into the water-column as pseudofaeces (PsFaek, mg 

m-3) according the following equation:  

 

Eq. 3-16   SedFPsFae kk  

 

where Sed is the local concentration of suspended inorganic sediments (mg m-3). Note 

that bivalves can incorporate algal cells and detritus into pseudofaeces, particularly when 

algal cells are toxic (e.g. Mafra et al., 2009). This process is not included in the current 

model formulation. 

 

3.2.5.2. Population Dynamics 

Following Bacher and Gangnery (2006), the time-rate of change of the number of identi-

cal bivalves in Culture Unit k (nk, ind), is controlled by the natural mortality of bivalves, 

and by harvesting practices: 

 

Eq. 3-17   kk
Natk Harvestn

t
n )(  

 

where Nat  is the natural mortality rate (d-1), and Harvestk (ind d-1) is the loss term de-

scribing the number of individuals in a Culture Unit removed from the system in one time 

step through harvesting. Harvesting is described below. 

 

3.2.5.2.1. Harvesting 

Every time step, a fraction of the bivalves in all Culture Units is harvested (i.e. removed 

from the system), as follows:  
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Eq. 3-18   k
Harv

k nHarvest  

 

where Harv is the harvesting rate (d-1), which is calculated to be inverse of the time that 

bivalves spend in the farm. For example, in Ship Harbour mussels are harvested up to 3 

years after they are seeded in the farm, therefore Harv = 1/(3×365) = 0.0009 d-1. Note that 

we implemented this harvesting function because it is a simple way to maintain a realistic 

total biomass of the aquaculture stock in the embayment. However, in reality, the harvest-

ing process occurs differently, where farmers harvest a few entire culture units while 

leaving the rest intact. Future work should test whether a more realistic harvesting 

scheme would play an important role in the overall dynamics of the ecosystem.  

 

3.2.6. Two-way Coupling of Planktonic and Shellfish Models 

Perhaps the most significant advantage of an Eulerian/IBM hybrid model is its ability to 

represent feedbacks between bivalves and the surrounding environment. These feedbacks 

can be resolved because of the two-way coupling between the Eulerian planktonic eco-

system model and the individual-based bivalve physiology model, which allows for the 

simultaneous computations of (1) the effect of the environment on bivalves and (2) the 

effect of bivalves on the environment.  

 

The effect that the environment exerts on bivalves is imposed through the dimensionless 

limiting functions in Eq. 3-4. On the other hand, the effect that the bivalves have on the 

environment is implemented through, j
IBMC , the individual-based source/sink terms in Eq. 

3-1. The j
IBMC terms are different for every biological tracer, therefore we describe each 

separately in the sections below. 

 

Phytoplankton concentration in a grid cell G is decreased by the sum of the filtration ac-

tivity of all k Culture Units within the grid cell (i.e. k  G). 
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Eq. 3-19   
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where V is the grid cell Volume (m3). See Table 3-1 for other notation. Note that, for 

simplicity, we omitted the spatial and temporal dependencies (xG, yG, G, t) in the equa-

tions below. 

 

Similarly, zooplankton concentration in grid cell G is decreased by the sum of the filtra-

tion activity of all k Culture Units within the grid cell. However zooplankton is also in-

creased when bivalves spawn.  

 

Eq. 3-20   
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Small detritus in grid cell G is decreased by the sum of the filtration activity of all Culture 

Units within the grid cell.  

 

Eq. 3-21   
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Large detritus in grid cell G is increased with the production of faeces of bivalves of all 

Culture Units within the grid cell.  

 

Eq. 3-22   
Gk

kkLDet
IBM V

nFaeC  

 

Ammonia in grid cell G is increased with excretion and mortality of bivalves of all Cul-

ture Units within the grid cell.  

 

Eq. 3-23   
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Oxygen in grid cell G is decreased due to respiration of bivalves of all Culture Units 

within the grid cell. 

 

Eq. 3-24   
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4  

 

where NOQ (units: mol N (mol O2)-1) is the Nitrogen:Oxygen quotient. 

 

3.2.7. Model Application 

We applied the SHELL-E model to Ship Harbour, Nova Scotia, Eastern Canada (Figure 

3-3), which is an estuarine fjord with a mussel farm (see farm details in section 3.2.7.1). 

We compared model results with observations, however the modelling period (2004-

2005) was different than the period of collection of the observations, because we did not 

have boundary forcing for the time when samples were collected (water samples: 1988-

1992; CTD and currents: 2001; mussel size-distributions: 2001). Also, we compared our 

model results against published data from other sites in Atlantic Canada, including Ma-

hone Bay and Bedford Basin, Nova Scotia (Cranford and Hill, 1999) and Trinity Bay, 

Newfoundland (Thompson, 1984). The application of the model encompassed six model-

ling experiments, which we briefly outline below. 

 

Experiment 1 - Comparison against physical data. Using default parameters (Table 3-1), 

we ran the model to simulate two months (output at 15 min intervals) during a time of the 

year concurrent with our data of currents, temperature and salinity (see section 3.2.8.1). 

Only the hydrodynamic module was used for this run. 

 

Experiment 2 - Comparison against biochemical and mussel physiology data. We ran the 

model to produce a one-year simulation (output at daily intervals) to compare model out-

put against water samples collected from 1988 to 1992 for analysis of nutrients, chloro-

phyll, oxygen and particulate organic matter (see section 3.2.8.2) and against published  



Figure 3-3. Upper-right corner shows bathymetry of the larger model domain (North-East 
North American shelf), which was used to force the open boundary of the smaller model 
domain (Ship Harbour, Eastern Canada), marked in the larger domain map with a red 
square. The main panel shows the bathymetry of the smaller model domain. The arrow 
marks the location of the river. The larger dots mark the stations where water samples 
(red) and mussel samples (green) were collected. The small black dots represent the Cul-
ture Units. Note that there are 4 Culture Units (on top of each other) occupying the mid-
dle of the water column, but this cannot be seen due to the perspective of this illustration.

Source:
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rates of mussel physiology (Thompson, 1984; Cranford and Hill, 1999). We used default 

parameters (Table 3-1) and a mussel standing stock consistent with the stock reared at the 

time of collection of water samples (see section 3.2.7.1).  

 

Experiment 3.- Comparison against mussel size-classes. We ran the model to produce a 

one-year simulation (output at daily intervals) to compare model output against the size-

distributions of mussels collected in 2001 (see section 3.2.8.3). While all mussels in a 

Culture Unit are identical (same size), it is possible to create a size distribution by insert-

ing many Culture Units (each of different size) in a single grid cell. At the end of the 

simulation, the size of all the mussels from all the Culture Units in the cell can be binned 

into size-classes to evaluate the resulting size-distribution after the one-year simulation. 

 

We used default parameters (Table 3-1) and a mussel standing stock consistent with the 

stock reared during 2001. However, in the location where mussel samples were collected, 

we inserted multiple Culture Units, each initialized with a different initial biomass (i.e. 

initial size) so that the ensemble of Culture Units in that location would mimic the size-

distribution of the mussel samples. Note that our notation should have an additional su-

perscript denoting the size-class (e.g. d
kB , d

kA  and d
kR , where d is the size-class index). 

However, since the use of size classes is restricted to a small portion of our study, we 

opted to show a simplified notation where the size-class index is omitted.  

 

Experiment 4 - Determination of carrying capacity. We ran 28 one-year simulations to 

estimate the harvest yield as a function of initial mussel density and mussel mortality (see 

details in section 3.2.10). 

 

Experiment 5 - Analysis of model sensitivity to different parameters. We ran 55 one-year 

simulations using a low resolution grid (see section 3.2.7.2) to assess the effect of 

changes in the model parameters (see details in section 3.2.9). 
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Experiment 6 - Analysis of model sensitivity to boundary conditions. We ran three one-

year simulations to assess the effect of changes in the boundary conditions (see details in 

section 3.2.9). 

 

3.2.7.1. Study Site 

Ship Harbour is a long (10 km) and narrow estuarine fjord, with a deeper inner basin with 

maximum depth of 27 m, and a shallow sill with an approximate depth of 7 m. The 

dominant source of fresh water is the Ship Harbour River (Figure 3-3), discharging an 

annual average of 18 m3 s-1 (Gregory et al., 1993), and driving an estuarine circulation. 

Mean tides are 1.4 m and spring tides are 2.0 m (Gregory et al., 1993). At the seaward 

boundary, Ship Harbour is open to the North Atlantic. 

 

Ship Harbour has one of the largest mussel farms in Nova Scotia (Aquaprime Mussel 

Ranch Ltd.). Blue mussels (Mytilus edulis and M. trossolus) are grown in mesh socks 

suspended from long-lines (Sénéchal et al., 2008). Juvenile mussels are seeded at an ap-

proximate size of 8 mm (i.e. Bk = 0.016 mmol N ind-1), and they are harvested 3 years 

later at a approximate size of 75 mm or 10 mmol N ind-1 (John Stairs, pers comm.). At 

the time of collection of the water samples used in this study (1988 - 1992), the farm con-

tained about 225 tons of mussels (wet weight with shell; Strain et al., 2002), and at the 

time of collection of the mussel size-distribution samples (2001) the farm had about 1000 

tons of mussels (Ibarra, 2003). 

 

3.2.7.2. Model Grids and Grid Nesting 

We created two grids representing Ship Harbour. The high resolution grid (Figure 3-3) 

had 100 × 100 m grid cells and 10 sigma layers. The low resolution grid (not shown) had 

700 × 700 m grid cells and 5 sigma layers. One-year simulations using the high resolution 

grid required about 1 day to run on 4 CPUs on our computer system (Linux cluster with 

2.8 GHz Opteron processors), while the same simulation using the low resolution grid 

took about 15 minutes. We used the low resolution grid only for the analysis of sensitiv-
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ity to model parameters (see section 3.2.9) and we used the high resolution grid for all 

other modelling experiments. 

 

In both grids, the seaward open boundary was forced with output from a large meso-scale 

ROMS model for the North-East North American shelf (Figure 3-3), which has been de-

scribed in detail in Fennel et al. (2008). 

 

3.2.7.3. Forcing 

Wind speed, air temperature, air pressure, relative humidity and rainfall rate from archive 

records (2004-2005) were obtained from the meteorological station in Shearwater Airport 

(http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/azmp-pmza/met/plot-graph-eng.asp? 

a=30), which is approximately 50 km from the study site. Short wave radiation was ob-

tained from a Satlantic Land/Ocean Biogeochemical Observatory (LOBO; http:// 

lobo.satlantic.com), about 55 km from the study site. The LOBO buoy was not opera-

tional during the time period of the modelling experiments, therefore we shifted in time 

the LOBO data, by subtracting 5 years from the time-stamps. We assumed that the dy-

namics in Ship Harbour are mainly driven by the seasonal signal of short wave radiation, 

and that daily variability is not as important. 

 

The open boundary at the seaward end of Ship Harbour was forced with output from the 

WebTide tidal prediction model (Department of Fisheries and Oceans, Canada; http:// 

www2.mar.dfo-mpo.gc.ca/science/ocean/coastal_hydrodynamics/WebTide/webtide.html) 

Also, the concentrations of all planktonic ecosystem variables entering the open boundary 

were forced using output from a meso-scale ROMS model described above. 

 

Fresh water entering Ship Harbour through the river was simulated using a synthetic 

time-series created using data from Gregory et al. (1993). The concentration of the plank-

tonic ecosystem tracers in the river's water was set to resemble a seasonal pattern (e.g. 

Dowd, 2005).   
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3.2.7.4. Initial Conditions 

All physical and planktonic ecosystem variables were initialized with constant values 

over the entire domain. Modelling experiments began after a six-month model spin-up to 

allow physical and planktonic ecosystem variables to reach a distribution representative 

of the model dynamics. However, the individual-based variables (i.e. mussel soma, gonad 

and number of individuals) were reset at the beginning of the modelling experiment, to 

evaluate their evolution from a uniform condition. 

 

3.2.8. Data Collection and Analysis 

3.2.8.1. Physical Data 

Temperature, salinity and current velocity were measured from September 19 to October 

15 of 2001 using a CTD/current meter (2D-ACM, Falmouth Scientific, Inc.) moored at 

4.5 m from the bottom Figure 3-3). Instrument deployment did not coincide with the pe-

riod for which boundary forcing was available. That is, our model results correspond to a 

different year from the year when physical data were collected. Therefore, we restricted 

data/model comparison to seasonal means and did not attempt to explain short term vari-

ability. 

 

3.2.8.2. Biological and Chemical Samples 

Biological and chemical data were obtained from the BioChem database (DFO, 2005) 

and correspond to water samples collected in Ship Harbour (Figure 3-3) from 1988 to 

1992. Data have been published elsewhere (Keizer et al., 1996; Strain, 2002); here we 

present only a brief description of their sample analysis. Ammonia and nitrates (i.e. ni-

trate + nitrite) were measured with autoanalyzer techniques (Strain, 2002), oxygen con-

centration was determined using a polarographic oxygen electrode (1991 survey) and 

Winkler titrations (1992 survey). Chlorophyll concentrations were determined using ex-

tracted fluorometry (Strickland and Parsons, 1968). Suspended particulate matter (SPM) 
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was estimated using preweighed filters and gravimetric analysis (Winneberger et al., 

1963). 

 

3.2.8.3. Size-distribution of Mussels 

Mussels in Ship Harbour were sampled in September 2001 (Ibarra, 2003). At the time of 

collection, mussels from each of the three year classes were sampled from the lease 

shown in Figure 3-3. The length of individual mussels was measured and size-

distributions for each year-class were calculated. See Appendix B for the equation to 

convert from mussel length into biomass. 

 

3.2.9. Sensitivity Analysis 

We assessed the sensitivity of our model to different model parameters and to boundary 

conditions. The sensitivity of individual-based variables (i.e. bivalve soma) and biologi-

cal Eulerian variables (i.e. Phy, Zoo, O2, NH4, NO3, SDet and LDet) to all SHELL-E pa-

rameters was evaluated using 55 one-year model runs using the low resolution grid (see 

Section 3.2.7.2). First we ran a "standard" run using the default parameter values shown 

in Table 3-1. Then we ran two runs for each evaluated parameter, one where the standard 

parameter (P) was doubled and the other where it was halved. We estimated the sensitiv-

ity values, PXS |  (dimensionless), using the following equation (Beres and Hawkins, 

2001): 

 

Eq. 3-25   
1

| P
P

X
XS PX  

 

where, for each of the variables mentioned above, X is the "standard" state, and X is the 

difference of the states obtained with the doubled and halved parameters. P = (P×2)-

(P÷2). 
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To assess the sensitivity to boundary conditions, we ran 3 one-year model runs using the 

high resolution grid (see Section 3.2.7.2). We ran the "standard" run using the default pa-

rameter values shown in Table 3-1. We also ran one model simulation where the values 

of the biological tracers at the boundary were doubled, and one simulation where the 

boundary values where halved.  

 

3.2.10.  Estimation of Carrying Capacity 

In this study we evaluated the production carrying capacity, defined as the "optimized 

level of production" of aquacultured bivalves (McKindsey et al., 2006). The evaluation of 

bivalve production on the environment (i.e. ecological carrying capacity, McKindsey et 

al., 2006) is studied in detail in Chapter 4. 

 

We ran 7 one-year long simulations using the high resolution grid, and using all the de-

fault parameters from Table 3-1. We ran each simulation with a different initial mussel 

density, ranging from 3 to 200 gdw m-3. For each simulation we estimated the harvest 

yield, which was defined as the total mussel biomass at the end of the simulation minus 

the total biomass at the beginning of the simulation. The production carrying capacity 

was determined as the smallest initial mussel density that produced the highest harvest 

yield. 

 

We observed that the estimated carrying capacity was dependant on the natural mortality. 

Therefore we repeated the procedure described above at natural mortalities of 0, 0.0001, 

0.0005 and 0.001 d-1. 
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3.3. Results 

3.3.1. Hydrodynamics 

We compared modelling results of temperature, salinity and current speed, against obser-

vations recorded with a CTD/current meter deployed in Ship Harbour in 2001 (Figure 

3-4). Observed average current speeds in the East-West and North-South directions were 

0.03 and 0.002 m s-1 higher than the modelled average speeds, respectively. Observed 

average temperature was the same as the model (15.40°C), but the observed average sa-

linity was 0.1 PSU lower than the model. Considering that the model simulation corre-

sponded to a different year from the observations (but same dates), the relatively small 

discrepancies between model and observations indicate that the model is reproducing the 

main hydrodynamic features of Ship Harbour. However, it is important to be aware that 

comparisons of histogram distributions (e.g. Figure 3-4) is not a very robust validation 

method because it cannot resolve difference in phase or in vertical structure. 

 

3.3.2. Planktonic Ecosystem 

Water-column planktonic ecosystem variables showed large spatial variability through 

Ship Harbour, as well as pronounced seasonal variability (Figure 3-5). The spring bloom 

caused the largest concentration of phytoplankton nitrogen, chlorophyll, oxygen and large 

detritus; while the lowest concentration of phytoplankton, chlorophyll, zooplankton and 

small detritus were seen in winter. Concentration of nitrate and large detritus were lowest 

in the summer. A detailed study on the planktonic ecosystem dynamics in Ship Harbour 

is presented in Chapter 4. 

 

We compared observations from water samples collected from 1988 to 1992, against a 

one-year model simulation (Figure 3-6). Modelled phytoplankton nitrogen and chloro-

phyll concentrations showed seasonal variability with a very distinguishable spring 

bloom (peak of 4.2 mmol N m-3 or 17 mg Chl m-3, see Figure 3-6) and a less distinguish-

able fall bloom (peak of 2 mmol N m-3 or 13 mg Chl m-3). However the largest modelled  



Figure 3-4. Comparison of hydrodynamic observations (red) against model results (blue). 
Histograms show the distribution of current speeds, temperature and salinity, recorded 
every 10 min at 4.5 m above the bottom, from September 19 to October 15 (n = 3605). 
Observations were made in 2001 (see location in Figure 3-3), however model results cor-
respond to the same period in 2005, because the 2001 forcing was not available. Numbers 
are averages (A), medians (M) and standard deviations (S).

Source:
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Figure 3-5. Four snapshots (winter, spring, summer and fall) of all Eulerian planktonic 
ecosystem state variables (coloured maps) and of the individual-based mussel soma (dot-
ted maps) for Ship Harbour. All maps are top-views of the middle of the water column. 
The range and units of the colour-coding is the same among maps of the same variable, 
but different among variables (see parenthesis).

Source:
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Figure 3-6. Comparison of biological and chemical observations from water samples (red 
dots) against model time-series from the same location (blue/purple lines; see collection
location in Figure 3-2). Lighter blue lines correspond to shallower layers while darker 
purple lines correspond to deeper layers. Water samples were collected between 1988 and 
1992 but model simulation is for 2005, because earlier forcing was not available.

Source:
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concentrations occurred during late December (5.2 mmol N m-3 or 23 mg Chl m-3). Both, 

phytoplankton nitrogen and chlorophyll, also showed periodic variability with a period of 

about 15 days, that is likely due to the spring-neap tidal cycle. Modelled chlorophyll is 

within the range of observations from water samples. However, the model did not repro-

duce very high peaks of chlorophyll seen sporadically during the summer. These peaks 

may be attributed to vertical migrations of phytoplankton (e.g. Hall and Paerl, 2011), re-

suspension of microalgae and detritus of macroalgae during wind events (e.g. MacIntyre 

and Cullen, 1996; Koh et al., 2006), or enhanced productivity associated with resuspen-

sion of sediments (e.g. Chen et al., 2010). We ran the model adding periodic discharges 

of nutrients at the location of the mussel processing plant (results not shown), but the 

bursts of nutrients were not enough to cause the observed chlorophyll spikes. Modelled 

chlorophyll also overestimated the observed concentration during late December to mid 

March. We speculate that the overestimation is because the model did not account for ice 

formation during winter months, which drastically reduces light penetration (Pegau and 

Zaneveld, 2000). 

 

Modelled zooplankton was highest during late spring (4 mmol N m-3) and lowest during 

the winter (0.5 mmol N m-3). However, unlike phytoplankton, zooplankton remained rela-

tively high during summer months. The zooplankton series also showed oscillation of ap-

proximately 15 days, likely due to the spring-neap tidal cycle. 

 

Oxygen concentrations from both, water samples and model, showed highest concentra-

tions when the water was coldest and lowest concentration when water was warmest, in 

accordance with oxygen solubility properties of seawater (Garcia and Gordon, 1992). 

However, the observations showed a much larger variability with depth, where lower 

concentrations were seen in deeper waters. At times, oxygen concentration in deeper wa-

ters was as low as 20 mmol O2 m-3; below the hypoxic threshold of 17.5 mmol O2 m-3 

(Wang and Widdows, 1993). The model did not reproduce the low oxygen concentration 

observed in deeper waters. This implies that there are sources of organic matter in Ship 

Harbour that are not accounted for by the model, and that lead to oxygen depletion. Also, 
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our model immediately remineralizes organic matter reaching the bottom, while in nature 

remineralization is spread out over seasons (Strain, 2002). 

 

In both model and observations, ammonia was low in the winter (approximately 1 mmol 

N m-3) and increased during the spring and summer as the water-column stratified (ap-

proximately 20 mmol N m-3 for the observations and 5 mmol N m-3 for the model). How-

ever the increase in ammonia concentration was much more pronounced in the observa-

tions (up to 48 mmol N m-3) than in the model (up to 9 mmol N m-3). Again, this suggests 

that there is a source of organic matter not accounted for in the model. Strain et al. (2002) 

were also puzzled by the high ammonia concentrations in Ship Harbour, which they 

could not explain by the presence of mussels alone. 

 

Nitrate concentration in the model and the observations were high during the winter and 

late fall (up to 8 mmol N m-3) and very low during the summer (0 to 0.25 mmol N m-3). 

Strain et al. (2002) analysed nitrate-salinity relationships and concluded that nitrate in 

Ship Harbour likely comes from shelf water when the water column is mixed. Our model 

results are consistent with Strain et al. (2002) description of the nitrate dynamics in Ship 

Harbour. 

 

The concentration of both, small and large detritus, follow similar patterns with highest 

concentration in late spring (1.5 and 3.2 mmol N m-3 for large and small detritus, respec-

tively), intermediate concentration in the summer and early fall, and lowest concentration 

in the winter (0.1 and 0.9 mmol N m-3 for large and small detritus, respectively). 

Throughout the year, the concentration of small detritus was about double the concentra-

tion of large detritus. The modelled concentration of suspended inorganic particles 

showed sporadic spikes (maximum of 1.5 mg m-3), consistent with resuspension of sedi-

ments during strong wind events. The concentration of suspended particulate matter 

(SPM; i.e. large detritus + small detritus + inorganic sediments + phytoplankton + zoo-

plankton) predicted by the model was roughly within the range observed from the water 

samples. However the model could not reproduce some of the large spikes observed in 

the data. This is probably because the model did not account for resuspension of material 
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from the mussel socks, which is likely greater than resuspension at the bottom, because 

socks are closer to the surface where they can experience higher current speeds. 

 

3.3.3.  Mussel Physiology 

We compared modelling results from the individual-based SHELL-E model against pub-

lished physiological rates from different parts of Atlantic Canada (Thompson, 1984; 

Cranford and Hill, 1999). The modelled number of individuals in all Culture Units de-

creased exponentially (Figure 3-7); from 2 - 7 × 104 ind, to 1 - 4 × 104 ind) due to natural 

mortality and harvesting. Modelled soma (i.e. structural biomass of mussels) increased 

throughout the year (from 6.3 to approximately 6.8 mmol N ind-1), however it increased 

more slowly after May. Modelled mussels at different locations grew at different rates. 

Although all mussels started the simulation with the same biomass, at the end of the one-

year simulation there were differences in soma biomass of up to 0.5 mmol N ind-1, with 

higher values in mussels in surface layers (Figure 3-5). In model runs with higher initial 

density this difference was 1.5 mmol N ind-1 (data not shown), including some mussels 

that did not gain any biomass during the one-year model simulation. Mussels in the sur-

face layers appeared to grow faster than the rest, which is consistent with observation (J. 

Stairs, pers comm).  

 

The shell length of modelled mussels was estimated diagnostically using an empirical 

relationship for Ship Harbour (Ibarra, 2003; see Appendix B). Because it was calculated 

from biomass, it followed the same pattern as the soma, where slower growth occurred 

during the winter months, and faster growth during the spring, particularly in mussels in 

surface layers. 

 

The most notable pattern of the gonad state was the three spawning events. However, 

Guyondet et al. (2010) stated that it is common for mussels of the region to spawn 2 

times per year. The discrepancy in numbers of spawning events per year may be attrib-

uted to the fact that mussels in our model spawn simply by reaching a soma/gonad thresh-

old, while real mussels are known to spawn not only when their gonads are full, but also  



Figure 3-7. Comparison of results from the individual-based shellfish ecophysiology 
(SHELL-E) model (blue/purple time-series) against published physiological rates (black 
circles = Thomson 1984; red dots or lines = Cranford and Hill 1999). Lighter blue lines 
correspond to shallower layers while darker purple lines correspond to deeper layers.

Source:
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when presented with a temperature cue (Gosling, 2003), which was not programmed in 

the modelled mussels. Like the soma, mussel gonads grew all year round (except during 

spawning events); however gonad growth was slower during the winter. Also, the gonads 

of mussels close to the surface grew faster and therefore, mussels close to the surface 

were usually the first to spawn. The total biomass of modelled mussels showed a large 

variability during the one-year simulation, mainly because of the spawning events, but 

also because of the spatial variability observed in soma growth among the modelled mus-

sels. 

 

Clearance rates varied throughout the one-year simulation showing both, low and high 

frequency variations. The bulk of the modelled clearance rates were between 0.5 and 2.8 

L gdw-1 h-1 (i.e. 0.002 and 0.012 m3 mmol N-1 d-1), however there are some short mo-

ments where clearance rate in the surface layers was completely shut down because of 

low salinity. Also, there were some short peaks where clearance rates almost reached 4 L 

gdw-1 h-1. (i.e. 0.017 m3 mmol N-1 d-1). One of the advantages of the SHELL-E model is 

its ability to separately track the different limitations modulating clearance rates. There-

fore we can evaluate which environmental factor had the largest impact during different 

times of the year. Temperature played a large role in limiting filtration during months 

with hot water temperature, particularly in surface layers. However, during the rest of the 

year, food was the factor modulating clearance rates. Food limitation showed high fre-

quency variations due to the tides (lowest during slack tides) and was responsible for the 

high frequency variability in clearance rates. Oxygen did not play an important role in our 

"standard" simulation, however in other model runs with high mussel densities, mussels 

depleted oxygen enough to cause a limitation as low as 0.4 (data not shown). Salinity 

only played a small role, where it limited filtration only for short periods of time and only 

in surface layers.  

 

Modelled absorption rates were highest during blooms in the spring and late fall (ap-

proximately 40 mg gdw-1 d-1 or 0.6 mmol N ind-1 d-1) and remained about 8 mg gdw-1 d-1 

(or 0.1 mmol N ind-1 d-1) for the rest of the year (see Appendix B for conversions). The 

variability in the absorption rate was within the range reported by Cranford and Hill 
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(1999), however they observed the highest rates only during the fall. Modelled excretion 

rates were also highest during blooms in the spring and late fall (approximately 20 g N 

gdw-1 h-1 or 0.06 mmol N ind-1 d-1) and remained about 3 g N gdw-1 h-1 (or 0.01 mmol N 

ind-1 d-1) for the rest of the year. The variability in excretion rates was within the range 

reported by Thompson (1984), however he observed the highest rates only during early 

fall, when water temperature was warmest. Time-series of both, absorption and excretion 

rates (Figure 3-7), showed variability consistent with the variability in the time-series in 

phytoplankton biomass (Figure 3-6). 

 

Egestion rates were highest during the spring bloom (up to 40 mg gdw-1 d-1 or 0.4 mmol 

N ind-1 d-1), however they remained relatively high during the summer. Unlike the rates 

of absorption and excretion, that closely resemble the time-series of phytoplankton, the 

rate of egestion depended more strongly on the local concentration of detritus and zoo-

plankton. This is because mussels have lower absorption efficiencies for zooplankton and 

detritus, compared to the absorption efficiency for phytoplankton. Therefore, a large por-

tion of the filtered zooplankton and detritus ends up egested as undigested faeces. Simu-

lated egestion rates were within the range of rates measured in the field (Cranford and 

Hill, 1999). However, observed rates were highest in the fall when water temperature was 

the warmest.  

 

The time series of reproductive effort resembled the series of soma and length, because 

both, soma and reproductive effort, are calculated diagnostically as a function the soma 

biomass. All mussels in the simulation were initialized to have the same initial size of 63 

mm (1 gdw or 5.564 mmol N), which is the size of a "standard" adult mussel. This facili-

tates comparisons with physiological rates in the literature; however, because all mussels 

in the simulation were adults, the modelled reproductive effort shows only a slight in-

crease (from 0.92 to 0.94) over the one-year simulation.  
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3.3.4. Mussel Growth and Size-distributions 

We compared size-frequency distribution from mussels collected in 2001, against pre-

dicted size-distributions after a one-year model simulation (Figure 3-8). Comparing the 

modes of each distribution, we saw that mussels of the 2000 year-class grew in the model 

from 40 to 50 mm during the one-year simulation (i.e. from panel A to panel D, in Figure 

3-8). Similarly, mussels of the 1999 year-class grew in the model from 60 to 65 mm 

(from panel B to panel E), and mussels of the 1998 year-class grew in the model from 65 

to 70 mm (from panel C to panel F). Comparing sizes of mussels of the same age—that 

is, panel B with D, and panel C with E—we found that modelled growth of younger mus-

sels was somewhat slower than the inferred from the measured differences between age 

classes (i.e. 10 mm yr-1 or from A to D, instead of 20 mm yr-1 or from A to B), while the 

modelled growth of older mussels (5 mm yr-1 or from B to E) was the same as the meas-

ured difference (from B to C). At the end of the experiment, the modelled variability in 

size of the 2000 and 1999 year-classes (panels D and E) was smaller than the observed 

variability of the measured counterparts at the beginning of the experiment (panels B and 

C). This is partially because the model does not account for the recruitment of seedlings 

from the spawning events, which accounted for the smaller size-classes in the initial (i.e. 

measured) distributions. Considering that the model was forced with atmospheric and 

boundary conditions from 2005, while mussels were sampled in 2001, we concluded that 

the model predicts mussel growth satisfactorily. 

 

3.3.5. Sensitivity Analysis 

We ran multiple one-year simulations to assess the sensitivity of model variables to 

changes in model parameters (Figure 3-9). The reference clearance rate parameter, max
refF , 

was one of the most sensitive parameters affecting all assessed variables. Unfortunately, 

bivalves of the same species can exhibit large variations in estimated clearance rates (e.g. 

see Table 2 in Cranford and Hill 1999), partially due to differences in the techniques used 

to estimate of clearance rates (e.g. Cranford and Hill, 2001; Riisgard, 2001).  

 



Figure 3-8. Histograms of size-distributions of mussels collected in Ship Harbour in 2001 
from three year-classes (panels A, B and C). Note the seeding is done with 1-year old ju-
venile mussels purchased from a different site. Therefore, for clarity, we included in pa-
rentheses the age of mussels at harvest. These measured size-distributions were used to 
initialize the biomass of multiple Culture Units that were inserted at a single location cor-
responding to the location where the mussels were collected. After a one-year model 
simulation, the resulting size-distribution from the ensemble of Culture Units (panels D, 
E and F) can be compared against mussels of the same age from the initial distributions 
(i.e. compare D against B, and E against C).

Source:
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Figure 3-9. Sensitivity analysis: relative sensitivity of various model variables to changes 
in parameters of the SHELL-E model. A large positive sensitivity indicates that a small 
increase in the parameter causes a large increase in the outcome variable. Large negative 
sensitivities indicates that small parameter increases causes large decreases in the 
outcome variables. The magnitude of the sensitivity is comparable only within outcome 
variables.
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The filtration and absorption efficiencies, P and AEP respectively, were also parameters 

that had relatively strong effects on all assessed variables. The cost of growth of an indi-

vidual bivalve, , had a large effect only on the Eulerian variables, and the threshold frac-

tion triggering spawning, , had a large effect on all Eulerian variables except for oxygen 

and nitrate concentration. Some parameters only had a large effect on one variable. 

Namely, the filtration efficiency for detritus, D , had an impact only on the concentration 

of small detritus; the Nitrogen:Oxygen quotient, NOQ, had an effect only on the concen-

tration of oxygen; and the half-saturation constant for reproductive effort, KRE, had an 

effect only on mussel soma. It should be recognized that comparison of the sensitivities 

of variables to changes in different parameters is complicated by the fact that changing 

each parameter value by a factor of two does not ensure that each change has the same 

relationship to uncertainty in the value of that parameter, either due to biological factors 

or inherent uncertainty in the formulation of the function. 

 

The analysis of sensitivity of variables to the boundary forcing (Figure 3-10) showed that 

an increase of oxygen concentration at the boundary results in a increase in oxygen in ar-

eas close to the boundary, but that the effect diminishes with distance from the boundary 

to an almost unchanged state at the opposite end of the fjord. Similar patterns were seen 

with small and large detritus. However, phytoplankton and chlorophyll showed the oppo-

site; an increase at the seaward boundary resulted in a strong decrease in phytoplankton 

and chlorophyll in the inner basin. The increase in phytoplankton at the boundary pro-

motes an increase in growth of the mussels. Then, the increase in mussel biomass triggers 

a feedback resulting in a local decrease of phytoplankton in the inner basin, which is 

where most of the mussels are farmed. Also, the strong decrease in phytoplankton in the 

inner basin results in a decrease in nutrient uptake, which may explain the strong increase 

in nitrate in the inner basin. 

 

3.3.6. Carrying Capacity 

We estimated the production carrying capacity for farmed mussels in Ship Harbour using 

multiple one-year simulations of the hybrid model to determine the relationship of har- 



Figure 3-10. Sensitivity analysis: sensitivity of various modeled variables to changes in 
the forcing at the seaward boundary. Positive numbers indicate an increase in the as-
sessed variable as a response to an increase of the boundary forcing. Negative numbers 
indicate a decrease in the variable as a response to an increase in the boundary forcing. 
Units in all the panels are dimensionless.

Source:
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vested yield as a function of initial seeding density* and natural mortality (Figure 3-11). 

For any given natural mortality, at low initial seeding densities, the harvested yield in-

creases substantially with small increases in initial density. However at intermediate 

seeding densities, mussels become food limited, thus small increases in initial density 

translate into minimal or null increases in yield. Finally, at high initial seeding densities, 

food limitation is so strong that mussels in the centre of the lease do not get enough food 

to offset their catabolic metabolism (Eq. 3-2) and natural mortality (Eq. 3-17), so the Cul-

ture Units start losing weight. Therefore, the harvested yield at high seeding densities ac-

tually decreases compared to the yield estimated at intermediate seeding densities. The 

production carrying capacity of the system is the optimized level of production 

(McKindsey et al., 2006), which is usually reached when seeding at an intermediate seed-

ing density. Farmers seeding mussels at a lower density than the optimal density are un-

derutilizing their resources, while farmers seeding above the optimal seeding density are 

overexploiting their resources, wasting seeding effort, and ultimately not harvesting as 

much as with a smaller initial density. 

 

For Ship Harbour, we estimate that the carrying capacity should be achieved at mussel 

seeding densities of approximately 60 gdw m-3 (for a natural mortality of 0.001 d-1), 

yielding a harvest of about 400 tons of mussels per year. The current seeding density in 

Ship Harbour is about 33 gdw m-3 (Ibarra, 2003) suggesting that aquaculture activities in 

Ship Harbour have not reached their carrying capacity. However, we do not advise to in-

crease their seeding densities on the basis of this prediction alone, because of uncertain-

ties associated with our estimation of the natural mortality rate of mussels. This parame-

ter has to be accurately estimated before the model can provide a more reliable estimate 

of the carrying capacity for Ship Harbour. Testing of the model predictions would then 

focus on the other assumptions of the model. 

 

 

                                                 
* Note that the mussel densities (units: mmol N m-3) reported in this study reflect the bivalve biomass di-
vided by the volume of the mussel lease. Other studies used as a reference the volume of the entire inner 
basin of the fjord (e.g. Strain et al. 2002). 



Figure 3-11. Estimation of carrying capacity for a mussel farm in Ship Harbour. Each 
density-yield curve was generated using multiple one-year simulations of the Eule-
rian/IBM hybrid model, and each curve depicts the relationship between initial seeding 
density and harvested yield under one of four scenarios with different natural mortalities. 
For each curve, the carrying capacity is estimated as the point of the curve with the 
maximum yield. The grey dashed line connects the maximum yields of all four mortality 
scenarios.

Source:
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Our results also show that natural mortality plays an important role in the estimation of 

harvest yield, where higher mortalities translate into lower yields. However, the more 

significant result is that the shape of the density-yield curves changes with increasing 

mortality. That is, the harvest yield at high initial densities decreases very rapidly in sce-

narios with high mortality; sometimes to the point where the harvests is less than the ini-

tial seeding (i.e. negative yield). The main implication of this change in shape of the den-

sity-yield curves is that the maximum yield (i.e. carrying capacity) shifts towards smaller 

initial densities at higher natural mortalities. In our lower-mortality simulations, a five-

fold increase in natural mortality (from 0.0001 to 0.0005 d-1) did not change the estimated 

maximum yield (90 gdw m-3). However in our higher mortality simulations, a doubling of 

the natural mortality (from 0.0005 to 0.001 d-1) resulted in a 33% decrease in yield (from 

90 to 60 gdw m-3). Our results emphasize the importance of considering natural mortality 

when attempting to estimate the carrying capacity of a farm. Although there are a few 

studies investigating the effect of natural mortality on bivalve standing stock (e.g. Bald et 

al., 2009), we are unaware of any study assessing the effect of natural mortality on the 

estimated carrying capacity.  

 

 

3.4. Discussion 

3.4.1. Hybrid (Eulerian/IBM) Ecosystem Modelling 

The Eulerian/IBM modelling system presented in this study simultaneously represented 

planktonic ecosystem and bivalve ecophysiology processes in a 3-D spatially-explicit 

context. Many bivalve-environment models assume a negligible effect of local primary 

production (e.g. Incze et al., 1981; Bacher et al., 2003). That is, the local concentration of 

phytoplankton only depends on the balance between material entering the model domain 

(via forcing through an open boundary) and material filtered by the bivalves. These mod-

els cannot resolve feedbacks between bivalve physiology and phytoplankton dynamics, 

which are thought to be important in applications where the residence time of water 

within the domain is comparable to the doubling time of phytoplankton (Pilditch et al., 
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2001). The application of bivalve-environment models neglecting primary production 

should be restricted to lease-scale applications (e.g. Ibarra, 2003).  

 

Our hybrid modelling system can assess feedbacks between bivalves and the environment 

because the model explicitly represents both water column environmental variables and 

bivalve physiological variables. The effect of the environment on bivalves was imposed 

via environmental limiting functions (e.g. fk(Temp), fk(Salt), fk(Oxy), etc.). Through these 

functions, environmental variables modulate the physiological rates that regulate bivalve 

growth. As bivalve physiology changes, the impact of bivalves on environmental vari-

ables also changes, allowing for feedbacks acting at different time and space scales. In 

our study, it appears that mussel filtration caused a decrease in the concentration of avail-

able food at the head of the estuary (Figure 3-5, panels at the top).  

 

The simultaneous simulation of planktonic ecosystem and bivalve physiology processes 

allowed us to assess relationships that are essential for the sustainable management of 

aquaculture operations. For example, our results showed that the relationship between 

initial seeding density and final harvest yield, which is the basis of the estimation of car-

rying capacity, depends on natural mortality. Many bivalve-environment models designed 

to estimate carrying capacity do not account for bivalve mortality (e.g. Incze et al., 1981; 

Sarà and Mazzola, 2004; Grant et al., 2007; Filgueira et al., 2010). Other carrying capac-

ity models do take bivalve mortality into consideration (e.g. Dame and Prins, 1998; 

Duarte et al., 2003; Guyondet et al., 2010); however, these studies do not investigate the 

effect of mortality on the estimation of carrying capacity. 

 

Another common type of bivalve-environment models does include primary productivity 

and other lower-trophic level process, but at the expense of spatial resolution. These are 

ecosystem box models, where an entire bay is represented with a single box (i.e. 0-D 

models; e.g. Dowd, 1997; Dame and Prins, 1998; Rosland et al., 2009) or with a few 

boxes (i.e. coarse 2-D models; e.g. Grant et al., 2007; Troost et al., 2010). These models 

assume that the contents of the box are completely mixed, thus bivalves have access to all 

the food within a box. In reality, food is usually not distributed homogeneously within a 
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bay. Physical process such as solar heating of surface waters and freshwater runoff can 

produce water stratification, and biological process such as the filtration by bivalves can 

produce gradients in the distribution of phytoplankton (Ibarra, 2003; Grant et al., 2008). 

The differences between a fine-scale 3-D model and a coarse 2-D model was briefly stud-

ied by Guyondet et al. (2010). They compared results from their 3-D model for the 

Grande-Entrée lagoon (Iles-de-la-Madeleine, Québec, Canada) against results from a 2-D 

multiple-box model for the same region (Grant et al., 2007). The coarse 2-D model pre-

dicted a reduction in the concentration of phytoplankton of 15%, and a reduction of bi-

valve growth of 11%, as a result of a doubling in bivalve biomass. The fine-scale 3-D 

model predicted a 2.6% reduction in phytoplankton and a 3.5% reduction in bivalve 

growth as a result of the same doubling in bivalve biomass; however there were other dif-

ferences between the two models apart from their spatial resolution. Spillman et al. 

(2008) also developed a fine-scale 3-D model and argued that—compared to coarse 1-D 

or 2-D models—their model predicted lower concentrations of food (and higher waste) in 

grid cells closest to their modeled bivalves; however, bay-averaged concentrations of 

food and nutrients remained relatively unaffected.  

 

As we mentioned before, there are other advanced bivalve-environment models that cou-

pled physical-biological and bivalve physiology models, and that are spatially resolved 

by using fine scale grids in 2-D (Duarte et al., 2003; Grant et al., 2008; Grangeré et al., 

2010; Guyondet et al., 2010) and fine grids in 3-D (Spillman et al., 2008; Leon et al., 

2011). All these are Eulerian or grid-based models and therefore they all have to repre-

sent the bivalve biomass in each grid cell as an average concentration. State variables in 

Eulerian models must be defined in all grid cells within the model domain; hence, equa-

tions must be solved for each variable and for each grid cell. This is the main disadvan-

tage of Eulerian models, where only a limited number of variables can be added (e.g. ad-

ditional bivalve species, or size-classes, or physiological state variables) before the model 

slows down beyond practical limits. Therefore, Eulerian models with many grid cells (i.e. 

3-D) may be limited to use simple physiological models, while Eulerian models using 

many bivalve physiological variables (e.g. soma, gonad, fk(Temp), fk(Salt), fk(Oxy), etc.) 

may be limited to use 2-D domains with fewer grid cells. 
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Our model is an Eulerian/IBM hybrid, which means that bivalves are represented using 

sparsely distributed particles. Adding particle-based variables also increases the length of 

time required to finish a simulation, however the increase in time depends on the amount 

of particles, and not on the number of grid cells. Therefore, the Eulerian portion of the 

hybrid model can be 3-D and with many grid cells, while the IBM portion of the model 

can track many variables, without compromising the speed of the model (see Chapter 2). 

The particle-based portion of our Eulerian/IBM hybrid model tracks 3 prognostic and 17 

diagnostic variables (see Table 3-1). While the prognostic variables (i.e. Somak, Gonadk, 

nk,) allow the model to represent complex physiological processes, like spawning 

events—the diagnostic variables (e.g. Ak, Rk, Fk, REk, fk(Temp), fk(Salt), fk(Oxy), etc.) pro-

vide information crucial to the testing of the model (Franks, 2009) and valuable for the 

application of the model in site selection and farm management. The ability of Eule-

rian/IBM hybrid models to employ many particle-based variables makes them an ideal 

candidate to simulate ecosystems with multiple species and/or polyculture farms (e.g. 

Chapter 2), and to simulate scenarios with multiple size-classes in each grid cell (e.g. this 

study).  

 

Our results also showed that cultured bivalves can have a significant effect on the plank-

tonic ecosystem variability and nutrient cycling of the system. However, the effect of 

aquacultured bivalves on the environment in Ship Harbour is studied in detail elsewhere 

(Chapter 4). 

 

3.4.2. Choice of Model Parameters 

A disadvantage of all numerical models is that they can produce results even when sup-

plied with non-sense parameters. Since the validity of the model results depends on the 

validity of the chosen of parameters, it is essential to validate the chosen parameters—for 

each particular application—by comparing model results against data. Data-model com-

parisons should include the main model results (i.e. prognostic variables), but also ancil-

lary results (i.e. diagnostic variables) that should include modelled estimates of physio-
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logical rates that are directly comparable against results from laboratory and field ex-

periments (Franks, 2009). See Section 3.4.3 for a discussion of the data-model compari-

sons in this study. 

 

 Ideally, modellers should choose functions and parameters estimated from physiological 

experiments conducted on the same species, and under the same environmental condi-

tions, as the model application. Unfortunately, ideal parameters are rarely available, thus 

modellers are often forced to improvise and use less appropriate parameters, often in 

simplified functions, and sometimes even to use parameters arising from educated 

guesses. Therefore, it is critical that modellers disclose their assumptions and point out 

their limitations.  

 

In this study, the limitation of filtration by temperature was regulated by parameters that 

we chose from a study from Newfoundland (Thompson, 1984). These parameters im-

posed a reduction in the modelled filtration rate of up to 80% in the summer. We cannot 

verify if this temperature effect on filtration indeed occurred. However, based on anecdo-

tal information from mussel farmers, we think that mussels in Eastern Canada are 

stressed during the weeks of hottest temperatures. But this limitation due to high tempera-

ture may be restricted to populations of mussels acclimated to cold water, since some 

population of mussels in Italy have been shown to exhibit normal filtration rates at tem-

peratures above 25ºC (Schulte, 1975). 

 

Also, the limitation of filtration by salinity was mediated through parameters we chose 

from a study assessing the impact of salinity on shell growth (Almada-Villela, 1984). We 

assumed that a decrease in shell growth reflects a decrease in filtration, but this may not 

be the case. The sporadic, yet pronounced, decreases in filtration due to low salinity in 

our modelled results (Figure 3-7) are the results of our choice of parameters and we do 

not have any way to verify if this phenomenon indeed happens in Ship Harbour. How-

ever, this can be seen as a new hypothesis that needs field data to be tested, with results 

being used to improve the parameterization. Overall, the effect of salinity on our mod-

elled results was minimal and limited only to the mussels closest to the surface.  
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3.4.3. Comparison of Model Results against Data 

Data-model comparisons showed that our model predicts planktonic ecosystem variables 

and bivalve physiology variables within ranges observed in the field (Figure 3-6 and 

Figure 3-7). However, due to restricted availability of forcing, our model results corre-

spond to a different time from the time of collection of the observations. Also, some ob-

servations (from Cranford and Hill, 1999 and Thompson, 1984) were collected from dif-

ferent embayments than the modelled study site. This lack of concomitance limits the 

ability of the data to reject the model (Franks, 2009). That is, it is difficult to separate 

how much of the differences between the model results and observations are due to spa-

tial and temporal differences, and how much is due to inadequacies of the model, or er-

rors in our assumptions. However, even with these limited abilities, the available data 

provided a frame of reference that allowed us to constrain the model, and to evaluate the 

overall range of the modelled output. Nevertheless, it is important to confront the model 

against data collected in the same place and time as model results to be able to assess the 

model in more detail—particularly its ability to reproduce short term variations in plank-

tonic ecosystem variability. 

 

 

3.5. Conclusions 

We developed an Eulerian/IBM hybrid modelling system capable of simultaneously rep-

resenting feedbacks between planktonic ecosystem variables and bivalve ecophysiology 

processes. The Eulerian part of the modelling system was used to represent grid-based 

processes such as phytoplankton photosynthesis, grazing by zooplankton, uptake of nutri-

ents and mineralization of detritus; while the IBM part of the modelling system repre-

sented bivalve ecophysiological processes, e.g., bivalve filtration, absorption, excretion, 

egestion and mortality. The simultaneous and combined simulation of these grid- and par-

ticle-based processes allowed us to assess (1) the effect of the environment on cultured 
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bivalves, (2) the effects of bivalves on the environment, and most importantly (3) feed-

backs between the two. 

 

The hybrid modelling system used in this study facilitates the implementation of numer-

ous prognostic and diagnostic ecophysiological variables that make this model a versatile 

tool for aquaculture management. In this work we estimated the carrying capacity of a 

mussel farm in Ship Harbour, and we emphasized that carrying capacity is sensitive to the 

natural mortality of bivalves, a parameter that needs to be estimated accurately to produce 

precise estimations of the carrying capacity of a system. The 3-D hybrid model used in 

this work exemplifies the applicability of models with high spatial-resolution that also 

have high complexity in the number of processes represented by the model. However, 

these complex models must be carefully set up with appropriate parameters and rigor-

ously tested against data before their use in operational decision making. 

 

The hybrid model presented in this study is part of the Regional Ocean Modeling System 

(ROMS), which is an ocean model that has been widely used in applications ranging from 

effects of climate change (Wang et al., 2008), to larval connectivity (North et al., 2008; 

Rasmussen et al., 2009), to data assimilation from autonomous underwater vehicles 

(Chao et al., 2008), and is recognized as state-of-the-art ocean model by the oceano-

graphic community. The use of ROMS for an aquaculture application is a step towards 

narrowing the gap between fundamental and applied sciences. It is beneficial for the 

aquaculture community because it adds sound tools to its repertoire, and it is also benefi-

cial for the ocean modelling community because it makes modelling techniques more 

main-stream and promotes the wide use of these oceanographic tools. 



 116

CHAPTER 4 
 

4 Impacts of Bivalve Aquaculture on the 

Spatial Distribution of Phytoplankton* 

4.1. Introduction 

Bivalve aquaculture is growing exponentially world-wide (FAO, 2010). Therefore, the 

ability to measure and predict bivalve-induced changes in water quality, particularly the 

concentration and spatial distribution of phytoplankton, is essential to foster a sustainable 

and profitable shellfish aquaculture industry (Grangeré et al., 2010) and to preserve the 

functioning of coastal ecosystems (Worm et al., 2002). 

 

Our current understanding of the effect of bivalves on phytoplankton is that dense aggre-

gations of bivalves, through filter-feeding, decrease the local concentration of phyto-

plankton, as shown inside long-line farms (Grange and Cole, 1997; Ogilvie et al., 2000; 

Pilditch et al., 2001; Cranford et al., 2008; Grant et al., 2008; Guyondet et al., 2010), raft 

farms (Cabanas et al., 1979; Heasman et al., 1998), natural mussel beds (Prins and Smaal, 

1994; Prins et al., 1996; Smaal and Zurburg, 1997), oyster reefs (Nelson et al., 2004) and 

beds of native (Nakamura and Kerciku, 2000) and invasive bivalves (Ackerman et al., 

2001) in freshwater lakes. In addition, it is well documented that the waste products of 

bivalves locally increase the concentration of nutrients, particularly ammonia (e.g. 

Baudinet et al., 1990; Dame et al., 1991; Cranford et al., 2007; Jansen et al., 2011). How-

ever, the impact of this bivalve-mediated fertilization on the concentration and spatial dis-

tribution of phytoplankton has not been fully resolved. Mesocosm experiments with and 

                                                 
* This chapter comprises a co-authored manuscript by D. A. Ibarra, K. Fennel, J. J. Cullen. The contribution 
of the author of this thesis to this manuscript includes data collection and analysis, and manuscript writing. 
K. Fennel provided some of the model forcing, and K. Fennel and J. J. Cullen contributed with guidance 
and multiple rounds of corrections. 
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without bivalves showed that ammonia generated by bivalves may increase the growth 

rate of phytoplankton (Pietros and Rice, 2003). Also, field studies in mussel beds (Asmus 

and Asmus, 1991; Prins and Smaal, 1994) and long-line farms (Jansen et al., 2011) 

showed that—during nutrient-limited conditions*—the nitrogen released by the bivalves 

as waste exceeded the nitrogen consumed as phytoplankton. Therefore, many have sug-

gested that during nutrient-limited conditions the bivalve-mediated fertilization has the 

potential to enhance phytoplankton primary production (Asmus and Asmus, 1991; Jansen 

et al., 2011), and perhaps even to increase phytoplankton biomass (Baudinet et al., 1990). 

However, Newell et al. (2004) debated that, due to burial of biodeposits and denitrifica-

tion, bivalves ultimately reduce system-level phytoplankton production and biomass. 

Also, Prins and Small (1994) stated that bivalve grazing is an effective 'top-down' control 

that maintains a low phytoplankton biomass even during periods of nutrient enrichment, 

arguing that filter-feeders merely cause a higher turnover of phytoplankton. The key eco-

logical question still remains: During nutrient-limited conditions, do bivalves decrease or 

increase phytoplankton biomass? 

 

In this study, we argue that bivalves simultaneously do both, decrease and increase phyto-

plankton biomass, however they do so in separate locations. That is, bivalves decrease 

phytoplankton inside the farm, while increasing it outside the farm. To be clear and rig-

orous, we stated our argument in the form of a working hypothesis: 

 

(A) Throughout the year, filter-feeding by aquacultured bivalves causes a localized de-

crease in phytoplankton production and biomass inside the farm; but also, (B) during 

nutrient-limited and light-replete conditions, bivalve-mediated fertilization causes a lo-

calized increase in phytoplankton production and biomass outside, but close to, the bi-

valve farm. 

 

                                                 
* In this study, "nutrient-limited" refers to conditions where the concentration of ammonium and nitrate is 
low enough to depress the growth rate of phytoplankton. In other words, it refers to conditions where the 
nutrient limitation term (Equation 2 in Fennel et al. 2006) is significantly less than 1. 
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Note that this hypothesis proposes localized increases and decreases in phytoplankton 

biomass. When averaging phytoplankton biomass over the whole embayment and over a 

whole year, we expect a net decrease of phytoplankton due to the presence of bivalves. 

However, it is the local concentration of plankton, nutrients and other biological vari-

ables, that is of interest for farm management (e.g. Waite et al., 2005) and for the assess-

ment of the impacts of bivalves on other species (e.g. D'Amours et al., 2008). Therefore, 

in this study we focus on the distribution of phytoplankton at fine spatial and temporal 

scales. 

 

To test the hypothesis above, first we have to use the hypothesis to predict patterns in the 

distribution of phytoplankton biomass in embayments with bivalve aquaculture. Then, to 

test the hypothesis, we can use field surveys and modelling experiments to see if we can 

find the predicted patterns. However, before we outline the predictions, it is important to 

define some spatial regions within embayments with bivalve aquaculture: the "inside-

farm" region is defined as the space occupied by the aquacultured bivalves (Figure 4-1); 

the "beside-farm" region is the space surrounding the farm*; and the "far-field" region is 

the area away from the farm, but adjacent to the beside-farm region. The spatial patterns 

predicted by the hypothesis are illustrated in Figure 4-1 and outlined below: 

 

From part (A) of the hypothesis, we expect to find—throughout the year—the minimum 

concentration of phytoplankton in the inside-farm region.  

 

From part (B) of the hypothesis, we also expect to find—during nutrient-limited and 

light-replete conditions—the maximum concentration of phytoplankton in the beside-

farm region, while finding an intermediate phytoplankton concentration in the far-field 

region. 

 

As mentioned above, there many studies showing an inside-farm decrease in phytoplank-

ton (e.g. Ogilvie et al., 2000; Guyondet et al., 2010), thus supporting the part of the hy- 

                                                 
* For the purpose of this study, we arbitrarily defined the width of the beside-farm region to be one farm 
length. 



Figure 4-1. Diagram illustrating the different regions within an embayment with a bivalve 
farm. The minimum concentration of phytoplankton is expected to occur in the inside-
farm region. However, during nutrient-limited and light-replete conditions, phytoplankton 
production is expected to increase around the farm, causing a halo of increased phyto-
plankton in the beside-farm region. Short red dashes represent the threshold between nu-
trient-limited and nutrient-replete conditions. Long gray dashes represent the concentra-
tion of phytoplankton in the absence of bivalves.

Source:
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pothesis about decreased phytoplankton due to filter-feeding (i.e. part A). However, to 

the best of our knowledge, there is only one study showing an increase in phytoplankton 

biomass beside an aggregation of bivalves (Nakamura and Kerciku, 2000); thus support-

ing the part of the hypothesis about increased phytoplankton biomass due to bivalve-

mediated fertilization (i.e. part B). However, the study by Nakamura and Kerciku (2000) 

was conducted in a lake with natural populations of bivalves. It is unknown whether bi-

valve-mediated fertilization can cause local increases of phytoplankton in coastal envi-

ronments, which generally experience stronger currents than lakes, and which are the 

main arenas for the development of bivalve aquaculture.  

 

To test the hypothesis above, we surveyed the spatial distribution of chlorophyll in an 

embayment with a bivalve farm during a time of the year characterized by nutrient-

limited and light replete conditions (Platt et al., 1972). Like many other field studies of 

phytoplankton in bivalve farms (e.g. Fréchette et al., 1991; Pilditch et al., 2001; Dowd, 

2003; Cranford et al., 2008; Grant et al., 2008), we used a combination of water samples 

and an in situ fluorometer to assess the spatial distribution of chlorophyll. However, 

unlike previous studies, we also used measurements from an in situ absorption meter, as a 

secondary (and independent) proxy for chlorophyll concentration (see instrument details 

in Section 4.2.2). The intention of our survey was to determine if distributions of chloro-

phyll were consistent with predictions from parts A and B of our hypothesis (see above). 

However, we could not be certain that the observed patterns were caused by the proposed 

mechanisms because we lacked appropriate controls (i.e. embayments without bivalves) 

and replicates (i.e. other embayments with bivalves), and even then there may be little 

validity in the notion of replicate embayments. Therefore, we used a 3-D hydrodynamic 

model coupled to a plankton ecosystem model and to a bivalve ecophysiology model 

(Chapter 3) to (1) predict patterns of phytoplankton distribution that could be compared 

to our measurements, thus increasing confidence that our observations could be caused by 

the proposed mechanisms; and to (2) run simulations with and without bivalves to isolate 

the effect that bivalves have on the concentration of phytoplankton and other biochemical 

variables. 
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There are many models representing interactions between bivalves and their surrounding 

environment. Many of these models are spatially-explicit, that is, the ecosystem model is 

coupled to a hydrodynamic model that divides the embayment into a fine grid in two di-

mensions (i.e. 2-D models; e.g. Duarte et al., 2003; Grant et al., 2008; Grangeré et al., 

2010; Guyondet et al., 2010) or in three dimensions (i.e. 3-D models; e.g. Marinov et al., 

2007; Spillman et al., 2008; Leon et al., 2011). However, many recent models represent 

an entire embayment using a single box (i.e. 0-D models; e.g. Grangeré et al., 2009; 

Byron et al., 2011). We wanted to explore if 0-D models could reproduce the embay-

ment-averaged properties of the system, despite their inability to reproduce the fine scale 

gradients produced by bivalve farms. Therefore, we developed a 0-D version of our 3-D 

model to compare runs of the two models using the same physiological parameters and 

forcing, thus isolating the differences due to the spatial simplification of the 0-D model. 

 

In this work, we (1) measured chlorophyll along a fjord in Eastern Canada during nutri-

ent-limited and light-replete conditions; (2) reproduced the observed patterns using a 3-D 

model; (3) used the 3-D model to infer what mechanisms caused the patterns observed in 

the data and the model; (4) used the 3-D model to determine the effects of bivalve aqua-

culture on other planktonic ecosystem variables in the fjord; (5) compared results from 

the 3-D and 0-D models to assess whether the spatial gradients caused by the bivalve 

farm affect the predictive ability of 0-D models. 

 

 

4.2. Materials and Methods 

4.2.1. Study Site 

Ship Harbour is a 10 km-long estuarine fjord in the Eastern shore of Nova Scotia, Canada 

(Figure 4-2). A shallow sill at a depth of approximately 7 m divides the fjord into an in-

ner and an outer basin, both with maximum depths of approximately 25 m. The inner ba-

sin hosts one of the largest mussel farms in the province (Aquaprime Mussel Ranch Ltd.), 

where blue mussels (Mytilus edulis and M. trossolus) are grown in mesh socks suspended  



Figure 4-2. Upper-right corner shows bathymetry of the larger model domain (North-East 
North American shelf), which was used to force the open boundary of the smaller model 
domain, marked with a red square in the larger domain map. The main panel shows the 
bathymetry of the smaller model domain (Ship Harbour, Eastern Canada). The arrow 
marks the location of the river. The larger magenta dots mark the sampling stations, and 
the small black dots represent the Culture Units. Note that there are 4 Culture Units (on 
top of each other) occupying the middle of the water column, but this cannot be seen due 
to the perspective of this illustration. The gray transect line marks the location of the data 
presented in subsequent figures.

Source:
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from long-lines (Sénéchal et al., 2008). At the time of this experiment, the farm had a 

stock of about 1000 tons of mussels (J. Stairs, pers. comm.). More information about 

Ship Harbour can be found in Gregory et al. (1993), Strain et al. (2002) and Ibarra 

(2003). 

 

4.2.2. Data Collection and Analysis of Water Samples 

During 5 days and nights (9 to 14 September, 2006), we conducted 18 transects along 

Ship Harbour (Figure 4-2). At every sampling station along the transect we cast an 

oceanographic sonde equipped with a chlorophyll fluorometer (ECO-FL3, WET Labs 

Inc.) and an absorption/attenuation meter (ac-s, WET Labs Inc.). At some of the sampling 

stations we also collected water samples. Sampling depths were chosen after visualizing 

output from the sonde to ensure water collection at prominent features of fluorescence 

and absorption. Additional water samples were collected at the surface and at approxi-

mately the middle of the water column, which was the depth where mussels were thought 

to have the greatest impact on the concentration of phytoplankton. Water samples were 

transported to shore within 2 h of collection, where triplicate aliquots (70 ml) were fil-

tered through a Whatman GF/F glass fibre filter, and preserved in 10 ml of pre-chilled 

90% acetone. The concentration of chlorophyll-a was later determined from the extracted 

samples using the Welschmeyer fluorometric method (Welschmeyer, 1994). 

 

In situ fluorescence was measured in volts, but units were subsequently converted to mg 

Chl m-3 using a linear regression between in situ fluorescence and extracted chlorophyll 

concentration from the water samples (Figure 4-3). 

 

Absorption spectra (400 - 758 nm) from the absorption meter were used to estimate a 

second proxy of chlorophyll using the method of Davis et al. (1997). Briefly, digital 

counts from the absorption meter were converted to engineering units (m-1) by referenc-

ing them to clean Nanopure water counts, and by dividing by the pathlength of the in-

strument. Then absorption at the red peak of chlorophyll, a(676) (i.e., absorption coeffi-

cient at 676 nm), was baseline-corrected using a linear interpolation between a(633) and  



Figure 4-3. Calibration of instruments onboard the profiling sonde. Upper panel show the 
linear regression between in situ fluorescence and extracted chlorophyll from water 
samples (R2 = 0.26, p < 0.001, n = 204). Lower panel shows the linear regression between 
baseline-corrected absorption at 676 nm, a (676), and extracted chlorophyll nm (R2 = 
0.70, p < 0.001, n = 178). Green lines are 95% confidence intervals. Both regressions 
were calculated using 68 water samples (dots show each triplicate aliquot).

Source:
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a(698). This corrected absorption was converted to mg Chl m-3 using a linear regression 

with extracted chlorophyll concentration from the water samples (Figure 4-3). We also 

compared the slope of this regression (units: m2 mg-1), which is an estimate of the spe-

cific absorption coefficient of phytoplankton (cf. Bricaud et al., 1995), to published ob-

servations. 

 

4.2.3. 3-D Physical-biological Coupled Model 

We used the Regional Ocean Modeling System (ROMS), which is a state-of-the-art, 

open-source, 3-D ocean modelling system (Haidvogel et al. 2008; www.myroms.org). 

Details of the application of ROMS to Ship Harbour, as well as its validation against a 

multi-year dataset of water samples, can be found in Chapter 3. Here we only present a 

summary.  

 

ROMS is made of different modules that can be included or excluded. For this study, we 

used the hydrodynamic module (Haidvogel et al. 2008), one of the planktonic ecosystem 

modules (Fennel et al. 2006), and the individual-based biological module (Chapter 2) in 

combination with a shellfish ecophysiology module (Chapter 3). The hydrodynamic 

module of ROMS is an Eulerian, 3-D, sigma-coordinate, free-surface, terrain-following 

numerical hydrodynamic model that solves finite-difference approximations of the Rey-

nolds-averaged Navier-Stokes equations using the hydrostatic and Boussinesq assump-

tions (Haidvogel et al., 2000; Shchepetkin and McWilliams, 2005; Haidvogel et al., 

2008). 

 

The planktonic ecosystem module (Fennel et al. 2006) describes the pelagic nitrogen cy-

cle using six state variables: phytoplankton (Phy), zooplankton (Zoo), nitrate (NO3), am-

monium (NH4), small detritus (SDet), and large detritus (LDet), all quantified in units of 

mmol N m-3. The planktonic ecosystem model also tracks phytoplankton chlorophyll 

(Chl, mg Chl m-3) and oxygen concentration (Oxy, mmol O2 m-3, Fennel et al. in prepara-

tion), and it has a simplified benthic component that immediately remineralizes (into 

ammonium) any organic matter reaching the bottom.  
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The shellfish ecophysiology model (SHELL-E; Chapter 3) describes shellfish physiology 

and population dynamics using an individual-based framework (Chapter 2). The model 

tracks the state of many discrete Culture Units (k)—each containing a number (nk, ind) of 

identical bivalves (Bk, mmol N ind-1). The total biomass of bivalves in a Culture Unit is 

defined as nk × Bk. Bivalve biomass is divided in reproductive and structural tissues (i.e. 

gonad and soma), and the model represents several physiological processes such as parti-

cle filtration, absorption, respiration, excretion, defecation, spawning, natural mortality 

and harvesting. Comparisons between model results and data from Ship Harbour, as well 

as discussion about the validity of the used parameters, are presented elsewhere (Chapter 

3). 

 

We ran three experiments using a high resolution grid made of 100 × 100 m cells and 10 

evenly spaced vertical layers (Figure 4-2). Unless otherwise indicated, forcing and initial 

conditions were the same as in Chapter 3. Summarizing, forcing at the seaward open 

boundary was obtained from the output of a large meso-scale ROMS model for the 

North-East North American shelf (NENA; Figure 4-2) and from the WebTide tidal pre-

diction model; atmospheric forcing was obtained from a meteorological station nearby; 

and freshwater entering Ship Harbour through the river was simulated using a synthetic 

time-series created using data from Gregory et al. (1993). The concentration of the plank-

tonic ecosystem tracers in the river's fresh water was set to resemble a seasonal pattern 

(e.g. Dowd, 2005). All physical and planktonic ecosystem variables were initialized with 

constant values over the entire domain, followed by a model spin up to allow physical 

and planktonic ecosystem variables to reach a distribution representative of the model 

dynamics (see details below). 

 

Experiment 1 - Comparison against bio-optical data. Using default parameters (Table 

3-1), we ran ROMS/SHELL-E to simulate two weeks (output at 30 min intervals) during 

the time of the year of the survey, but for the year of 2005, because the NENA boundary 

forcing for 2006 was not available. The model was spun up for 2 weeks prior to the be-

ginning of the experiment.  



 127

 

Experiment 2 - Effect of mussel density on planktonic ecosystem variables. We ran four 1-

year simulations (output at 1 day intervals) for the year of 2005. For the four model simu-

lations, we used all the default parameters (Table 3-1) with the exception of bivalve con-

centration*, which were 0, 15, 33.5 and 67 mmol N m-3, respectively. Note that at the 

time of sampling (i.e. 2006), bivalve concentration was 33.5 mmol N m-3 (Ibarra, 2003). 

Therefore, the simulations represent a scenario with the current density (33.5 mmol N 

m-3), scenarios with double and half the current density (15 and 67 mmol N m-3, respec-

tively), and a control without mussels. Simulations were spun up for 6 months prior to the 

beginning of the experiment. After all simulations were completed, the year-averaged 

concentration of every planktonic ecosystem variable was computed, and the effect of 

bivalves on each planktonic ecosystem variable was estimated by subtracting the year-

average of each treatment run (i.e. bivalve concentrations of 15, 33.5 or 67 mmol N m-3) 

from the year-average of the control run without bivalves. 

 

Experiment 3 - Comparison of 0-D and 3-D models. We ran the 3-D ROMS/SHELL-E 

model using the same configuration of Experiment 1, with the exception of the planktonic 

ecosystem forcing at the seaward open boundary, where we used a constant concentration 

for all planktonic ecosystem variables to facilitate the comparison with the 0-D model. 

The constant values of the planktonic ecosystem variables were Phy = 0.7, Zoo = 1, SDet 

= 1.5, LDet = 0.5, NO3 = 0.5 and NH4 = 0.5; all in units of mmol N m-3. 

 

4.2.4. 0-D Biological Model 

To assess if a 0-D model can accurately predict the bay-averaged properties of a system 

despite its inability to represent spatially-resolved patterns, we needed to compare results 

from two models, one 0-D and the other 3-D, which were otherwise identical to each 

other. Therefore, we created a 0-D version of the 3-D ROMS/SHELL-E model (see Ap-

pendix C). The 0-D model utilizes a single box to describe the planktonic ecosystem dy-

                                                 
* The concentration of bivalves in each Eulerian grid cell was estimated as the biomass of the Culture Unit 
(i.e. nk × Bk) divided by the volume of the grid cell.  
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namics averaged over the entire embayment. The transport dynamics are reduced to a 

single parameter (i.e. flushing rate; d-1) governing the exchange rate between the embay-

ment and the open ocean waters. In this study, we assumed that the concentration of all 

planktonic variables in the open ocean remain constant throughout the simulation (values 

shown above), thus allowing us to estimate a steady-state solution for the concentration 

of all variables inside the embayment.  

 

To compare the 0-D model against the 3-D ROMS/SHELL-E model, we used the 3-D 

model (i.e. Experiment 3) to compute the average bivalve concentration and the average 

filtration rate, which are quantities required as parameters for the 0-D model. After run-

ning the 3-D and 0-D models with the exact same initial conditions, parameters and open 

boundary forcing, we calculated the bay-averaged concentrations of all the variables of 

the 3-D model (at every time-step) and we compared them against the output of the 0-D 

model. 

 

 

4.3. Results 

4.3.1. Comparison of Bio-optical Proxies and Chlorophyll from Water Samples 

We used two independent instruments onboard a profiling sonde to assess the concentra-

tion of chlorophyll in Ship Harbour: (1) a chlorophyll fluorometer and (2) an absorption 

meter. We also used measurements of extracted chlorophyll from water samples to cali-

brate the bio-optical instruments. The calibration consisted of linear regressions between 

extracted chlorophyll from the water samples and co-occurring measurements of in vivo 

fluorescence (R2 = 0.26, p < 0.001, n = 204, Figure 4-3A) and baseline-corrected absorp-

tion at 676 nm (a (676), R2 = 0.70, p < 0.001, n = 178, Figure 4-3B); the latter was a bet-

ter predictor of chlorophyll than the former (i.e. higher R2). Measurements of in situ 

stimulated fluorescence are subject to non-photochemical quenching during conditions of 

bright light, which causes a decrease in the observed fluorescence in surface layers during 

the day (Cullen and Lewis, 1995). Fluorescence profiles conducted during the day were 
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subject to some degree of non-photochemical quenching and thus exhibited lower fluo-

rescence signal than the profiles conducted at night, which were not subject non-

photochemical quenching (data not shown). This is the main reason why the coefficient 

of determination of the regression between extracted chlorophyll and fluorescence was 

relatively poor. Also, this is why the standard deviation of the fluorescence-derived chlo-

rophyll (Figure 4-4B) is higher than the standard deviation of the absorption-derived 

chlorophyll (Figure 4-4D). 

 

Measurements of in situ absorption can be influenced by light absorbing substances other 

than chlorophyll, like coloured dissolved organic matter (CDOM) and non-algal sus-

pended particles (Kirk, 1994; Mobley, 1994). However, CDOM absorption decreases ex-

ponentially with wavelength and at 676 nm is small compared to the shorter wavelengths. 

Also, the baseline correction method (Davis et al., 1997) further minimizes the effect of 

CDOM and other non-algal substances. In Ship Harbour, high concentration of CDOM 

can be found in the freshwater discharged by the river (Ibarra, 2003), however river flow 

was minimal during the experiment, thus CDOM close to the surface was not a problem 

in our dataset. However, CDOM can also be produced in the sediments (Shank et al., 

2005). To minimize the risk of detecting CDOM or resuspended sediments, we tried to 

stop our instrument profiles a couple of meters away from the bottom. However, some of 

the observed high absorption close to the bottom (Figure 4-4C) may be the result on high 

CDOM or resuspended particles. Measuring a second proxy for chlorophyll is a good 

practice to avoid arriving at incorrect ecological conclusions due to biases on the relation-

ship between chlorophyll and any proxy.  

 

From the slope of linear regression between a (676) and chlorophyll [a (676) = (0.007 × 

Chl) + 0.015; R2 = 0.7], we estimated the specific absorption of phytoplankton, a *(676) 

[m2 (mg Chl)-1], which is related to the dominant cell size of natural phytoplankton com-

munities (Ciotti et al., 2002). The a *(676) found in Ship Harbour during the experiment 

(0.007 m2 mg-1) was consistent with the specific absorption of phytoplankton of about 

100 m (i.e. microplankton; 0.007 to 0.01 m2 mg-1; Ciotti et al. 2002). Realistic values for 

the slope of the regression reinforce the interpretation that the baseline-corrected red peak  



Figure 4-4. Bioptically-derived chlorophyll concentration, averaged over the 5 days of the 
experiment, along the transect line shown in Figure 4 2. The average chlorophyll concen-
tration was estimated from 132 profiles using two independent instruments: an chloro-
phyll fluorometer (panel A) and an in situ absorption meter (panel C). The small inserts 
(panels B and C) are the standard deviation of the data shown in their respective larger 
panels. The dotted squares mark the region occupied by aquacultured mussels. The main 
chlorophyll feature shows a phytoplankton bloom beside the farm.
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of the absorption coefficient is a useful measure of chlorophyll concentration. Notably, it 

is not sensitive to non-photochemical quenching, as is chlorophyll fluorescence. 

 

4.3.2. Measured and Modelled Chlorophyll Concentration 

From the 132 profiles conducted, over 5 days and nights, along Ship Harbour (see Figure 

4-2 for details on the location of the transect line), we calculated two independent esti-

mates of the average concentration of chlorophyll, based on fluorescence and absorption 

(Figure 4-4, panels A and C). Both estimates showed the lowest concentrations of chloro-

phyll (i.e. ~ 3.2 mg Chl m-3) in the section of the transect occupied by aquacultured mus-

sels (i.e. inside-farm region). Also, both estimates showed the highest concentrations of 

chlorophyll (i.e. ~ 4.5 mg Chl m-3) in a region immediately beside the farmed mussels 

(i.e. beside-farm region); this apparent beside-farm bloom extended about 2 km away 

from the mussel farm. The concentration of chlorophyll close to the mouth of the fjord 

was approximately 3.5 to 3.7 mg Chl m-3, somewhere in between the lowest inside-farm 

and the highest beside-farm concentrations. Our observations are consistent with the ex-

pected spatial distribution of phytoplankton biomass (i.e. inside-farm minima and beside-

farm maxima) and thus support our hypothesis (see 4.1 Introduction). One discrepancy 

between the two methods used to estimate chlorophyll was that, using the fluorescence 

method, a relatively high estimated concentration of chlorophyll was shown in the surface 

layers above the region occupied by mussels (Figure 4-4A) , which was not evident in the 

estimates derived from absorption (Figure 4-4C). Examination of the possible causes of 

this discrepancy, such as influences of excreted nutrients on the physiology of phyto-

plankton and hence fluorescence yield, are beyond the scope of this study. 

 

The depletion of chlorophyll inside the mussel farm, and the chlorophyll bloom beside 

the region with farmed mussels, were also reproduced using the ROMS/SHELL-E 3-D 

model (Figure 4-5). Although the magnitude and the horizontal location of the modelled 

bloom resemble that of the measured bloom, the modelled bloom occurred mainly in the 

surface layers. However this discrepancy may be because we used forcing from 2005 to 

force the model (forcing from 2006 was unavailable), thus two storms that occurred dur- 



Figure 4-5. Modelled chlorophyll concentration. Panels show the average chlorophyll 
concentration estimated from a 5 days simulation using ROMS/SHELL-E, a 3-D hydro-
dynamic model coupled to a planktonic ecosystem model and to a bivalve ecophysiology 
model. Panel A is top view (surface layer), panel B is a side-view along the transect line 
shown in Figure 4-2. The dotted squares mark the region occupied by aquacultured mus-
sels. The higher modelled chlorophyll concentrations occurred beside the aquaculture 
farm.

Source:
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ing the 5-day experiment were not represented in the forcing. We speculate that these 

storms mixed the bloom deeper into the water column. 

 

4.3.3. Impacts of Mussel Aquaculture on the Concentration of Chlorophyll 

To estimate the effect of mussels on the concentration of chlorophyll, we subtracted a 

control model run without mussels from three treatment model runs with mussels at the 

current concentration (33.5 mmol N m-3), half of the current concentration (15 mmol N 

m-3) and double the current concentration (67 mmol N m-3; Figure 4-6). We found that 

the modelled concentration of chlorophyll was reduced in the region occupied by the 

mussel farm (i.e. inside-farm region). The reduction of chlorophyll within the farm was 

observed at all times throughout the year, however the reduction was stronger during the 

spring and fall blooms (approx. -7 mg Chl m-3, corresponding to 75%), and less intense 

during the summer months (approx. -1 mg Chl m-3, corresponding to -50%). Also, the 

concentration of chlorophyll within the farm was more reduced in model runs with higher 

mussels concentrations (Figure 4-6). The low concentrations of chlorophyll inside the 

mussel farm are consistent with phytoplankton depletion by the filter-feeding activity of 

mussels, and with findings of others studying the impact of bivalve filter-feeding on 

phytoplankton (e.g. Fréchette et al., 1989; Pilditch et al., 2001; Ibarra, 2003; Grant et al., 

2008; Cugier et al., 2010).  

 

We also found in our model results that during half of the year (late spring to early win-

ter), bivalves caused an increase in the concentration of chlorophyll around the farm 

(about 1 to 2 mg Chl m-3). The halo extended several kilometres outside the farm, some-

times reaching the mouth of the fjord (Figure 4-6). This halo of enhanced chlorophyll was 

strongest close to the edge of the mussel farm (up to +8 mg Chl m-3 during some extreme 

events during the spring bloom). The enhancement of chlorophyll beside the farm was 

more pronounced in model runs with higher mussel concentrations. Also, in all model 

runs, the halo of enhanced chlorophyll was strongest during the spring bloom, and absent 

from January to late March. During these winter months, the chlorophyll-depleted water  

 



Figure 4-6. Effect of aquacultured bivalves on chlorophyll. Panels A, B and C show time-
series of modelled chlorophyll difference along the transect line (see Figure 4-2) and the 
middle of the water column. Modelled chlorophyll difference was calculated by subtract-
ing a control run without mussels from treatment runs with bivalve concentrations of 15 
(panel A), 33.5 (panel B) or 67 mmol N m-3 (panel C). In all cases, chlorophyll was re-
duced in the region inside the mussel farm; however, from April to October (i.e. day 90 to 
275), chlorophyll was enhanced in a region around the farm. Panel D shows the 
concentration of chlorophyll along the transect line, averaged between days 90 and 275, 
which the period when the system is nutrient limited (see Figure 4-7) and when the 
beside-farm enhancement of chlorophyll occurs.

Source:
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inside farm produced a plume that extended several kilometres outside the farm, some-

times reaching the mouth of the fjord. 

 

The gradient in chlorophyll between inside and beside the farm was steepest during the 

spring bloom (~10 mg Chl m-3 over 2 km; Figure 4-6B) because chlorophyll beside the 

farm was the most enhanced at the same times when the chlorophyll inside the farm was 

the most depleted. The gradient in chlorophyll difference between inside and beside the 

farm was also steeper in model runs with higher mussel concentrations. For example, dur-

ing the summer, the chlorophyll difference between inside and beside the farm (i.e. 2 km 

apart) was 2 mg Chl m-3 in the simulation with half the current mussel concentration, 4 

mg Chl m-3 in the simulation at the current mussel concentration, and about 6 mg Chl m-3 

in the simulation with double the current mussel concentration. 

 

During the half of the year when the halos of enhanced chlorophyll occurred, the average 

concentration of chlorophyll, for the run at the current mussel concentration (i.e. 33.5 

mmol N m-3), was reduced approximately 44% inside the farm, while it was increased 

about 8% in the area beside the farm (Figure 4-6C). The length of the plume of enhanced 

chlorophyll was approximately 4 km. Model runs with different mussel concentrations 

showed differences in the magnitude of the reduction in chlorophyll inside the farm, and 

in the enhancement of chlorophyll beside the farm. However, the spatial location of the 

regions of chlorophyll depletion and enhancement remained unchanged in all model runs. 

That is, model simulations with mussels crossed over the simulation without mussels (i.e. 

switching from chlorophyll enhancement to chlorophyll depletion), at the exact same lo-

cation in the three simulations with different mussel densities. 

 

In the ecosystem model used by the ROMS model (i.e. Fennel et al. 2006), phytoplankton 

production is estimated as the product of (1) the light- and temperature-limited growth 

rate (d-1), (2) the dimensionless nutrient limitation, and (3) the local concentration of 

phytoplankton (mmol N m-3). We calculate each of these three terms, as well as their 

product (i.e. phytoplankton production), to understand the processes that cause the devel-

opment of the halo of enhanced chlorophyll (Figure 4-7). We found that Ship Harbour  



Figure 4-7. Modelled time-series along the transect line (middle of water column) of (A) 
phytoplankton nutrient limitation, (B) temperature- and light-limited phytoplankton 
growth, and (C) phytoplankton production, which was calculated by multiplying panel A 
by panel B, and by the phytoplankton standing concentration (not shown). Panel D shows 
the difference in phytoplankton production, which was calculated by subtracting the 
phytoplankton production from the model run using the current bivalve concentration (i.e. 
panel C), minus the production from a run without mussels (not shown).

Source:
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follows a phytoplankton growth cycle typical of the North Atlantic (Riley, 1946; Platt, 

1971). During the winter and late fall there is an abundance of nutrients thus relieving 

phytoplankton of any nutrient limitation (i.e. the nutrient limitation term is close to 1); 

however light is limiting, hence phytoplankton production is relatively low during those 

dark and cold months (Figure 4-7C). High primary production mainly occurs during two 

small windows in the spring and early fall (i.e. spring and fall blooms, respectively), 

which are times with high nutrients and high light. In the absence of aquacultured mus-

sels, low primary productivity occurs during the bright summer months because the low 

nutrient concentration limits growth. However, in the case with aquacultured mussels, the 

waste products of mussels relieve the nutrient limitation inside and around the mussel 

farm (Figure 4-7A). Inside the mussel farm, the concentration of phytoplankton is kept 

low by bivalve filter-feeding, therefore the surplus of nutrients cannot be used. However, 

beside the mussel farm—where the phytoplankton stock is not reduced by mussel filtra-

tion—phytoplankton production is enhanced due to the increased concentration of nutri-

ents produced as the wastes of the mussel farm. It is important to emphasise that currently 

our ROMS/SHELL-E model immediately remineralizes organic matter reaching the bot-

tom thus not allowing for a lagged remineralization, which would further increase the lo-

cal concentration of nutrients during the summer and thus further enhancing primary pro-

duction beside the farm.  

 

In Figure 4-7D, we subtracted the phytoplankton production from a control model run 

without mussels from the production from a treatment run with mussels. We found that 

mussels decreased primary production inside the mussel farm throughout the year (by 0.2 

to 0.5 (mmol N m-3) d-1 during the summer and by up to 1 (mmol N m-3) d-1 during the 

spring bloom)—because of the local decrease in the phytoplankton standing stock, due to 

bivalve filter-feeding. However we also found that mussels increase primary productivity 

beside the lease during months with abundant light (by ~0.2 (mmol N m-3) d-1 during the 

summer and by up to 1 (mmol N m-3) d-1 in the spring bloom). Therefore we concluded 

that the halos of enhanced chlorophyll shown in Figure 4-4, are a result of halos of en-

hanced phytoplankton production caused by the increased nutrient concentration from 

mussel wastes, during the months of abundant light but limited nutrients. Our modelling 
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results support our hypothesis. Again, if our model would allow for a lagged reminerali-

zation of biodeposits, we would expect an even stronger pattern with higher concentration 

of phytoplankton in the halo. 

 

4.3.4. Impacts of Mussel Aquaculture on other Planktonic Ecosystem Variables 

To understand the effect of mussels on phytoplankton, we also looked at the effect of 

mussels on the concentration and spatial distribution of all other planktonic ecosystem 

variables. We calculated the year-averaged concentration of each planktonic ecosystem 

variable for a control model run without mussels, and we subtracted it from the year-

averages of three treatment model runs with mussel concentrations of 15, 33.5 and 67 

mmol N m-3 (Figure 4-8). 

 

Mussels locally reduced phytoplankton nitrogen and chlorophyll in the area inside and in 

close proximity of the farm (Figure 4-8). However, mussels also caused a slight increase 

in the year-averaged concentrations of phytoplankton and chlorophyll, evaluated at mid 

depth, in regions outside the boundaries of the farm that extended all the way to the 

mouth of the fjord. The maximum depletion of phytoplankton and chlorophyll occurred 

in the middle of the largest mussel lease (i.e. 63% depletion of phytoplankton nitrogen, or 

92% depletion of chlorophyll, for the simulation at the current mussel density). The 

maximum enhancement of phytoplankton and chlorophyll occurred outside, but close to, 

the mussel leases (i.e. 28% enhancement of phytoplankton nitrogen, or 63% enhancement 

of chlorophyll, for the simulation at the current mussel density); however the enhance-

ment decreased with distance from the mussel leases. The value of the mean, minimum 

and maximum percent changes of phytoplankton and chlorophyll were dependent on the 

concentration of aquacultured mussels. However the spatial location of the minimum de-

pletion and maximum enhancement did not appear to be dependent on the concentration 

of farmed mussels. That is, the region of the domain experiencing depletion or enhance-

ment of phytoplankton remained approximately the same in the three simulations, despite 

their different mussel densities. What changed between the simulations was the degree by 

which phytoplankton was depleted or enhanced. When evaluating the entire domain for  



Phytoplankton Chlorophyll

Zooplankton Oxygen
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TOT Mean:  -0.4            - 0.5              -0.4                                                -0.4 -0.5             -0.4

a               b                c                              a               b                c

a               b                c                              a               b                c

Min:  0                  0                  0             0                  0    0
Max:  3                  7                11               88               138        188
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TOT Mean:  0.2               0.3              0.2               0.5                0.9        0.3

a               b                c                              a               b                c

Min: -75             -105            -125                                                    0        0                  0
Max:   0                   0                 1             546             789        883

Mean: -19               -29              -37                                                 128          194              244
TOT Mean:  -0.1             -0.2              -0.3                                               -0.4              -0.4 -0.2

a               b                c                              a               b                c
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Max:  37                96              144                -0.3              -0.3 -0.4
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TOT Mean:    1.0              1.1               0.2             -0.02            -0.03            -0.03
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Figure 4-8. Effect of bivalve concentration on planktonic ecosystem variables. Each map 
of Ship Harbour (middle of the water column) represents the percentage difference calcu-
lated by subtracting the year-averaged results of a control model run without bivalves, 
from one of the treatment model runs with bivalves at half of the current concentration (a; 
15 mmol N m-3), bivalves at the current concentration (b; 33.5 mmol N m-3), and bivalves 
at double the current concentration (c; 67 mmol N m-3). Negative values (blue and cyan) 
indicate percent decrease in tracers due to the effect of mussels, while positive values 
(yellow and red) indicate percent increase. Min, max and mean numbers are the mini-
mum, maximum and means of the data shown in each map (middle of the water column), 
respectively. Tot mean values are the mean of the entire domain.

Source:
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the entire year, mussels decreased phytoplankton nitrogen and chlorophyll only by a 

small 0.5%  (Figure 4-8). 

 

Mussels had a similar effect on zooplankton and small detritus in the middle of the water 

column. Both zooplankton and small detritus were depleted by mussels, yielding the 

greatest depletion in the middle of the largest mussel lease (see metrics in Figure 4-8). 

The percentage of depletion of zooplankton and small detritus decreased with distance 

from the mussels to the point of negligible effect close to the mouth of the fjord. Both, the 

intensity of the maximum depletion and the length of plume of depleted water, were de-

pendent on the concentration of aquacultured mussels. When evaluating the entire do-

main for the entire year, mussels increase zooplankton by 1.1% but decreased small detri-

tus by 0.2%  (Figure 4-8). 

 

Oxygen in the middle of the water column was slightly depleted due to mussel respira-

tion. However, the effect of mussels on oxygen was only restricted to an area inside the 

mussel leases and a small distance away from them (Figure 4-8). Nitrate was slightly en-

hanced by the presences of aquacultured mussels, presumably because of the decreased 

uptake caused by the depletion of phytoplankton. The enhancement of nitrate, although 

small, was highest inside the mussel leases and lower everywhere else. When evaluating 

the entire domain for the entire year, mussels decreased oxygen by 0.03% and increased 

nitrate by 0.3%  (Figure 4-8). 

 

Mussels had a large increasing effect on the concentration of both, ammonia and large 

detritus in the middle of the water column (see metrics in Figure 4-8). The concentration 

of ammonia and large detritus were greatly enhanced close to the mussels and the en-

hancement effect decreased with distance from the mussels. However, the enhancing ef-

fect extended all the way to the mouth of the embayment. The magnitude of the en-

hancement in ammonia and large detritus was directly related to the concentration of 

aquacultured mussels. In the entire domain (average for the entire year), mussels in-

creased ammonia by 0.09%, but decrease large detritus by 0.4%  (Figure 4-8), showing 
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that the effect of mussel on the water column variables depends on the scale of assess-

ment. 

 

4.3.5. Comparison of 3-D Model vs. 0-D Model 

In the previous sections we emphasized that aquacultured bivalves produced strong gra-

dients in the spatial distribution of planktonic ecosystem variables. However, number of 

bivalve-environment models are 0-D (e.g. Dowd, 1997; Rosland et al., 2009; Byron et al., 

2011). That is, they represent an entire embayment using a single box, hence disregarding 

any spatial variability, and only representing temporal changes in the average state of the 

system. In order to assess the effect of this spatial simplification on the predictive capa-

bilities of 0-D models, we constructed a 0-D version of the 3-D ROMS/SHELL-E model 

used in this study (see Appendix C for details). First we ran the 3-D model for 10 days 

using constant boundary conditions. Then we used the output from the 3-D model to 

compute parameters required by the 0-D model (i.e. average bivalve filtration rate and 

average phytoplankton growth rate). Finally, we ran the 0-D model and compared its out-

put against the results from the 3-D model. We did this comparison on model runs with 

and without mussels (Figure 4-9). 

 

When comparing results from the simulations without mussels, we found that the results 

from the 0-D model were very close to the 3-D model. The 3-D model showed semidiur-

nal tidally-driven oscillations that the 0-D model could not reproduce because of its sim-

plified flushing scheme. However, the magnitude of most variables modelled with the 

0-D model were remarkably close to those of the 3-D model. After the 10-day simulation, 

the largest discrepancies were on the concentrations of phytoplankton and ammonia (7% 

and 12%, respectively), but even those discrepancies were not very large. 

 

On the contrary, when comparing the 0-D and 3-D results from the simulations with mus-

sels, we found large differences. After a 10-day simulation, large detritus predicted with 

3-D model was 44% higher than the predicted with the 0-D model, and small detritus pre-

dicted with the 0-D model was 22% higher than the predicted with the 3-D model. For all  



Figure 4-9. Comparison between the steady-state 0-D model (dashed lines) and the 3-D 
ROMS/SHELL-E model averaged over the entire embayment (solid lines). Different col-
ors represent different planktonic ecosystem variables (see legend). Panel A show results 
from a run without mussels, while panel B shows results from a run with mussels at the 
current concentration.

Source:

A) without mussels

B) with mussels
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other variables, the difference between the results of the 0-D and 3-D models with mus-

sels were larger than the differences between the simulations without mussels. We con-

cluded that the spatial gradients produced by sessile sources or sinks (e.g. mussel filtra-

tion or mussel excretion) can have a significant effect on the average state of the system. 

In these cases, 0-D models cannot resolve the average dynamics of the system and a 2-D 

or 3-D model is needed to adequately represent the system. However, multi-box models 

(e.g. Dowd, 2005; Grant et al., 2007) could be a computationally economic alternative to 

adequately represent systems with bivalve aquaculture.  

 

 

4.4. Discussion 

4.4.1. Impacts of Bivalve Aquaculture on the Spatial Distribution of Phytoplankton 

In this study we found that bivalves locally reduced the concentration of phytoplankton 

inside the farm, but also—during nutrient-limited and light-replete months—enhanced 

the concentration of phytoplankton beside the farm. Many field studies measuring phyto-

plankton proxies have found results consistent with a decrease of phytoplankton biomass 

inside bivalves farms using long-lines (e.g. Rosenberg and Loo, 1983; Fréchette et al., 

1991; Grange and Cole, 1997; Ogilvie et al., 2000; Pilditch et al., 2001; Coffin, 2003; 

Dowd, 2003; Ibarra, 2003; Grant et al., 2008; Strohmeier et al., 2008), farms using rafts 

(e.g. Cabanas et al., 1979; Heasman et al., 1998), and also inside naturally occurring mus-

sel beds (e.g. Asmus and Asmus, 1991; Dame et al., 1991; Prins et al., 1996; Smaal and 

Haas, 1997). The depletion of phytoplankton inside farms has also been predicted using 

models that include hydrodynamics, bivalve filtration and phytoplankton production (e.g. 

Dowd, 2003; Grant et al., 2008; Cugier et al., 2010; Guyondet et al., 2010), and also with 

models that included hydrodynamics and bivalve filtration, but did not include phyto-

plankton production (e.g. Pouvreau et al., 2000; Pilditch et al., 2001; Ibarra, 2003). 

 

The localized increase in phytoplankton biomass due to an enrichment of nutrients caused 

by bivalve wastes (i.e. excretion and remineralization of bio-deposits) has had far less 
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attention than the decrease of phytoplankton due to bivalve grazing. After measuring 

phytoplankton and nutrient fluxes in mussel farms (e.g. Baudinet et al., 1990; Jansen et 

al., 2011) and in natural mussel beds (e.g. Asmus and Asmus, 1991), the authors hy-

pothesized that the nutrients from the wastes of bivalves had the potential to promote 

primary productivity, potentially offsetting bivalve filter-feeding, and thus resulting in a 

net increase in phytoplankton in the system. However, Prins and Small (1994) later con-

cluded that bivalve filter-feeding keeps the phytoplankton biomass low, thus minimizing 

its ability to uptake nutrients, and thus rendering bivalve-rich system as net sinks of 

phytoplankton. Since then, the conclusion of Prins and Small (1994) has gained popular-

ity, thus most researchers consider coastal ecosystems with dense aggregations of bi-

valves as systems controlled by top-down processes (i.e. filter-feeding) and net sinks of 

phytoplankton (e.g. Newell et al. 2004). Our model showed that for the system as a 

whole, mussels are of course a sink for phytoplankton. However, local increases are gen-

erated, and these merit careful consideration. 

 

The main limitation of the work done in the early 1990's (Baudinet et al., 1990; Asmus 

and Asmus, 1991; Prins and Smaal, 1994) is that, when doing their nutrient budget calcu-

lations, the entire bay had to be considered as a single uniformly-mixed box. The 0-D ap-

proach used by these authors cannot resolve the spatial variability within the system; 

therefore the authors could not assess a scenario where phytoplankton biomass is de-

creased inside a farm or bivalve bed, but increased somewhere else within the embay-

ment. With the development of spatially-explicit 2-D and 3-D models, researchers were 

able to assess the spatial distribution of phytoplankton in embayments with bivalve aqua-

culture; however, the emphasis was made on the depletion of plankton by filter-feeding. 

In one case (i.e. Cugier et al., 2010), results from a 2-D model of an embayment with bi-

valves actually showed an outside-farm increase in phytoplankton; yet this finding was 

overlooked. However, Cugier et al. (2010) did emphasize the importance of the feedback 

between bivalve waste production and phytoplankton growth on the increase of phyto-

plankton production during nutrient-limited conditions. 
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In the introduction we presented the working hypothesis that, besides decreasing phyto-

plankton biomass inside the farm, bivalves also increase phytoplankton beside the farm 

during conditions of limited nutrients but plentiful light. To our knowledge, our study is 

the first to provide observations and modelling results that support this hypothesis in a 

marine environment with aquacultured bivalves. However there is one other study, con-

ducted in a freshwater lake, showing a chlorophyll decrease over a natural bivalve bed, 

follow by an increase in chlorophyll some distance away from the bed (Nakamura and 

Kerciku, 2000). In our study, the observed and modelled beside-farm enhancement of 

chlorophyll were higher than the reported by Nakamura and Kerciku (2000), which is 

likely because the farmed bivalves are kept at a higher concentrations that in natural beds. 

 

On larger scales, the impact of bivalve filtration on phytoplankton has been described as 

the balance of residence time, filtration turnover rates and primary production rates 

(Dame and Prins, 1998; Gibbs, 2007). However, the localized effect of bivalves on 

phytoplankton is also of importance. Our results show how bivalves can locally enhance 

phytoplankton biomass during nutrient-limited conditions (i.e. in agreement with Asmus 

and Asmus, 1991; Jansen et al., 2011), while at the same time causing a system-wide de-

crease in phytoplankton biomass (i.e. in agreement with Prins and Smaal, 1994; Newell et 

al., 2004). This is an example of how spatially-explicit models can help resolve conun-

drums that cannot be solved by 0-D models. However, even within fine resolution mod-

els, it is hard to determine what is an appropriate spatial resolution; for example, Rosland 

et al. (2011) used grid cells of a few meters, much finer than the cell size used in this 

study. One advantage of ROMS is that it can handle nested grids of different resolutions, 

and also it can handle different cell sizes within one grid (i.e. finer cells in areas of inter-

est), however we did not used this functionality in this study. 

 

4.4.2. Mechanisms Responsible for the Beside-farm Increase of Phytoplankton  

In this study, we also investigated the mechanisms responsible for the beside-farm en-

hancement of phytoplankton biomass. We found that—during months with sufficient 

light but limited nutrients—ammonia from bivalve excretion and remineralization of bi-
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valve faeces and pseudofaeces, relieves phytoplankton from nutrient limitation in areas 

inside and around bivalve farms. The alleviation of nutrient limitation enhances primary 

productivity beside bivalve farms. However, inside the farm, the intense filter-feeding 

pressure maintains phytoplankton biomass low, minimizing the uptake of the available 

nutrients, and thus maintaining a low primary productivity inside the farm. The mecha-

nisms responsible for the beside-farm enhancement of phytoplankton biomass imply that, 

during nutrient-limited conditions, phytoplankton beside bivalve farms grow using nitro-

gen that was fixed or deposited by the bivalves during times of food abundance and then 

slow-released throughout times of nutrient scarcity. In other words, bivalve farms may 

act as bio-capacitors that accumulate nitrogen directly in their tissues and indirectly in 

their biodeposits, during the spring and fall blooms, and then slow-release it throughout 

the year, effectively subsiding primary productivity beside the farm during times with 

bright light but low nutrient concentrations. The indirect effect, where organic matter 

produced during the spring bloom is accumulated into the biodeposit pool and subse-

quently remineralized and slow-released as nutrients, has been identified as an important 

mechanism to continue primary production during nutrient-limited conditions (Dowd, 

2005; Cugier et al., 2010). We argue that the same happens with the nitrogen fixed in bi-

valve tissue (i.e. direct effect), which is then slow-released as metabolic by-products of 

maintenance metabolism (Rm × Bk × nk × V-1 = 0.072 mmol N m-3 d-1; evaluated for an 

average cell in day 250, see equations, parameters and figures in Chapter 3) and through 

the decomposition of mussels that died due to natural mortality ( nat × Bk × nk × V-1 = 

0.049 mmol N m-3 d-1). The ammonium released as a result of growth-related metabolism 

(  × Ak × nk × V-1 = 0.029 mmol N m-3 d-1) is somewhat smaller than the other two 

sources because there is little food at time of the year (late summer). Also note the am-

monium released through this last term (i.e. growth-related metabolism) is not "time-

lagged"; that is, it is a result of food ingested shortly before the ammonium release. 

 

Unfortunately, we could not fully test the bio-capacitor hypothesis because our model 

instantaneously remineralizes organic matter reaching the bottom. Therefore, our results 

only reflect the effect of the slow-release of ammonium through bivalve maintenance me-

tabolism (i.e. direct bio-capacitor effect). Future work should quantitatively explore the 
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impact of the time lag between the deposition of bivalve faeces and pseudofaeces and 

their remineralization (i.e. indirect bio-capacitor effect). For alternative benthic-pelagic 

coupling schemes, see Soetaert et al. (2000). 

 

4.4.3. Ecological Significance of the Beside-farm Increase of Phytoplankton  

The near-field enhancement effect of bivalve farms and natural bivalve beds may play a 

significant ecological role in temperate ecosystems. Our measurements showed a maxi-

mum concentration of chlorophyll beside the mussel farm that was about 1 mg Chl m-3 

higher than the far-field concentration. Although, this represents an increase of about 

28% in chlorophyll, it still is a small increase compared to the main features of phyto-

plankton variability in the system (i.e. 15 mg Chl m-3 during the spring bloom; Strain 

2002). However, in Chapter 3, we presented data from water samples showing spikes of 

up to 18 mg Chl m-3 in a station beside a mussel lease during the summer (Figure 3-6). 

We speculate that these chlorophyll spikes may be a result of resuspension of benthic mi-

croalgae, or vertical migrations of pelagic phytoplankton. However these processes can-

not be reproduced by our model in its current configuration.  

 

Regardless of the magnitude of the increase in chlorophyll in the beside-farm region, we 

argue that its ecological significance lies on the timing of this event. Nutrient-limited 

conditions occur during warm summer months, which are characterized by highest abun-

dance and diversity of benthic invertebrates and demersal fish (Schmidt and Scheibling, 

2007). Because the increased phytoplankton productivity associated with the relief of nu-

trient limitation occurs during this biologically active time of the year, the enhancement 

of primary productivity may propagate up the food chain, effectively increasing secon-

dary and tertiary production in regions adjacent to bivalve farms and natural beds (e.g. 

D'Amours et al., 2008). Also, the relief of nutrient limitation beside the farm may benefit 

other primary producers besides phytoplankton—like seagrass (e.g. Wall et al., 2008) and 

macroalgae (e.g. in integrated aquaculture; Chopin et al., 2001). However, it is important 

to emphasize that bivalves simply rearrange the available nitrogen in the system, causing 
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enrichments that are localized in space and lagged in time (i.e. bivalves do not make ni-

trogen, so their effect on the inlet as a whole is as a net sink for nitrogen). 

 

4.4.4. Potential Implications of the Spatial Gradients Caused by Bivalves  

We found that bivalve farms may cause pronounced spatial gradients in the concentration 

of phytoplankton, not only by reducing the concentration inside the farm, but also by in-

creasing the concentration beside the farm. The strong gradients in phytoplankton con-

centration have been shown to generate strong gradients in bivalve growth resulting in 

larger bivalves at the edge of bivalve farms (e.g. Waite et al., 2005; Strohmeier et al., 

2008). Modelling studies attempting to predict the spatial gradients in phytoplankton 

concentration or in bivalve growth should include a planktonic ecosystem sub-model 

(Grant et al., 2008) and should include feedbacks between bivalve waste production and 

phytoplankton production (Cugier et al., 2010). Models not including these processes 

may have to "tweak" model parameters (e.g. bivalve filtration or bivalve absorption rate) 

to abnormally high values, to be able to reproduce observations; which is a bad modelling 

practice (Franks, 2009). 

 

The restoration of natural bivalve beds (e.g. Pietros and Rice, 2003) or the development 

of bivalve farms (e.g. Rice, 2001) have been proposed as strategies to increase water clar-

ity. Our results indicate that this strategy should work well in very eutrophic systems. 

However, if the system experiences nutrient-limited conditions during times of the year, 

the increase in water clarity may be restricted to areas inside bivalve farms or beds; but 

also, in cases with high-density bivalve farms, water clarity may actually decrease in re-

gions outside the farm. Therefore, projects attempting to improve water clarity through 

bivalve filtration should consider the use a spatially-explicit 2-D or 3-D model to prevent 

undesired results.  
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4.4.5. Comparison of the 3-D and 0-D Bivalve-environment Models 

In this study we compared a 3-D physical/planktonic ecosystem/bivalve ecophysiology 

model and a 0-D version of the 3-D model. We specifically built the 0-D model, with 

minimal physics but with the same ecosystem equations as the 3-D model, to be able to 

isolate the effect of spatial resolution on the model outcome. Guyondet et al. (2010) com-

pared output of a fine-grid model against a coarse-box model applied to the same region 

and for the same time; however the equations of the two models were different, thus it 

was impossible to separate differences due to spatial resolution from the differences due 

to the distinct model formulations.  

 

Our modelling results showed that 3-D and 0-D models produced very similar results in 

the absence of bivalves. However, when bivalves were added, the results from the 3-D 

and 0-D were different. This means that the presence of bivalves creates spatial gradients 

that modify the average state of the systems, in ways that 0-D models cannot reproduce. 

However, 0-D bivalve-environment models are still commonly used (e.g. Grangeré et al., 

2009; Byron et al., 2011), and most of these studies have shown fairly good agreement 

between modelled and observed variables. Thus we think it is possible to counteract the 

effect of bivalve-induced spatial gradients by 'tuning' the ecophysiological parameters of 

0-D bivalve-environment models. However—using the 'wrong' parameters to obtain the 

'right' result—produces misleading insight about the system and is overall a bad model-

ling practice (e.g. Franks, 2009). In addition, when 0-D bivalve-environment models are 

used in an inverse configuration (i.e. where the objective of the model is to estimate 

model parameters from the observations), the resulting parameters are likely to be wrong. 

Also, 0-D models may have to be 'tuned' again after small changes in the system, like the 

addition of a second farm, thus making them less applicable for management. Therefore, 

0-D bivalve-environment models may not be very useful for management or research ap-

plications that depend on the quantitative analysis of model results. However, multi-box 

models (e.g. Chapelle et al., 2000; Dowd, 2005; Grant et al., 2007) may provide a compu-

tationally economic alternative that may be used to estimate the average state of systems 

with bivalve aquaculture.  
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4.5. Conclusions 

In this study we provided conclusive evidence supporting our hypothesis that aquaculture 

bivalves not only decrease phytoplankton biomass inside the farm, but also increase phy-

toplankton beside the farm during conditions of limited nutrients but adequate light. We 

observed an inside-farm chlorophyll minima and a beside-farm chlorophyll maxima, and 

we reproduced this observations using ROMS/SHELL-E, a 3-D physical/planktonic eco-

system/bivalve ecophysiology coupled model. We also determined that the inside-farm 

chlorophyll minima was caused by bivalve filter-feeding, while the beside-farm maxima 

were a result of bivalve-mediated fertilization caused by the farm wastes, which enhanced 

primary productivity during nutrient-limited and light-replete conditions (i.e. late spring 

to late fall). We also found that bivalve farms act as bio-capacitors effectively subsidizing 

primary productivity with ammonium released (via maintenance excretion and natural 

mortality) during times with low concentrations of nutrients, potentially having ecosys-

tem-wide effects by enhancing nearby seagrass and macroalgae. Our results showed that 

the effect of bivalves on the spatial distribution of phytoplankton are complex, non-linear, 

and require spatially-explicit 2-D or 3-D models to be adequately resolved. 

 

As bivalve aquaculture continues its exponential growth throughout the most complex 

and dynamic regions of the world (i.e. coastal environments), it is increasingly more im-

portant to employ state-of-the-art ocean models and bio-optical instruments, to assist eco-

system management and to prevent a decline of the functions and services of these 

coastal ecosystems.  
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CHAPTER 5 
 

5 Conclusions 

5.1. Weaving Marine Ecosystems from End to End  

It is a common practice in experimental ecology, and perhaps in science in general, to 

isolate successively smaller parts of nature for its detailed study. As Kremer and Nixon 

(1978) pointed out, this reductionism is implicit in a large and growing literature dedi-

cated to the study of physiological and ecological responses of organisms under con-

trolled laboratory conditions, and controlled field experiments. The aim of many of these 

studies is to generate insights about the role of these organisms in their ecosystems. How-

ever, it is very difficult to intuitively deduce the role of these organisms in hydrodynamic 

and complex ecosystems with many feedback controls. Therefore, researchers have used 

numerical simulation models to propagate the effect of these organism-level responses to 

entire ecosystems. For example, Eppley and Thomas (1969) estimated the growth rate of 

some species of marine phytoplankton in a controlled laboratory experiment, then 

Fasham et al. (1990) used these growth rates (and others, Eppley, 1972) to estimate the 

role of phytoplankton in oceanic mixed layer ecosystems. 

 

While models are inherently reductionist because they can never include all the complex-

ity of the "real world", one may argue that modellers follow an approach reversed to the 

reductionist approach used by experimental scientists. That is, the building blocks of 

models are the findings from controlled experiments, which are then pieced together into 

successively larger and more comprehensive models. While most modellers strive to use 

the simplest model that reproduces the observed data, the scientific questions confronting 

scientists are increasingly more complex, and thus there is a trend towards developing 

holistic models, which out of necessity are increasingly more complex and comprehen-

sive models (Arhonditsis et al., 2008). However, as we explain below, overly complex 
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and over-parameterized models can surpass our ability to constrain them properly with 

observations and may not necessarily increase insight or predictability. As suggested by 

Anderson (2005), the increase of model complexity needs to be done gradually and with a 

"healthy dose of scepticism regarding model outcomes." 

 

While ecosystem models are also becoming increasingly more complex, differences in 

scientific questions have resulted in two distinct modelling paths. When interested in bio-

geochemical cycles, models tend to increase in complexity by coupling planktonic eco-

system models to hydrodynamic and particle dynamics models (e.g. Fasham et al., 1990). 

On the other hand, when interested in marine resource management, models have tended 

to increase in complexity by increasing the number of species in the model (e.g. Ecopath; 

Christensen and Walters, 2004). Until a few years ago, computational constraints forced a 

choice between including high spatial resolution and hydrodynamic realism, or including 

a high trophic resolution (i.e. many species or functional groups). However, it is increas-

ingly more evident that ecosystem models need both, spatial/hydrodynamic realism and 

trophic realism (Moloney et al., 2011). In nature, feedback loops among multiple trophic 

levels are a fundamental requirement for the stability of complex food webs (Rooney et 

al., 2006; Neutel et al., 2007). It makes sense to think that the same feedback loops are a 

fundamental requirement for the stability of modelled food webs (Hannah et al., 2010). 

Therefore, the goal ahead is to develop broadly applicable hydrodynamic modelling 

frameworks (e.g. Biogeochemical Ocean General Circulation Models; Friedrichs et al., 

2009), capable of representing interactions of species from end to end of the trophic spec-

trum (Travers et al., 2007; Fennel, 2008; Fulton, 2010; Moloney et al., 2011). 

 

Two foreseeable challenges on the road to develop end-to-end models are: (1) how to 

deal with the increased model complexity? and (2) how to deal with the increased com-

puting demand? The first challenge regards the observation that, in complex models, the 

increased number of parameters can surpass our ability to constrain them properly from 

observations (i.e. unjustifiable degrees of freedom; Denman, 2003; McDonald and Urban, 

2010). That is, increases in model complexity tend to produce a better model fit to cali-

bration data; however, beyond a certain level of complexity the benefits of adding pa-
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rameters are diminished because the risk of overfitting becomes greater (Myung, 2000; 

McDonald and Urban, 2010). On the other hand, removing parameters indiscriminately is 

also dangerous and it has been argued that modellers should not omit biological complex-

ity unless it had been demonstrated (empirically and/or mathematically) that it is safe to 

do so (Flynn, 2005). Therefore, the increase in model complexity should be guided by the 

increase in the number of observational data sets that can be used to validate the model 

parameters. However, the risk of overfitting is only one problem of model complexity, 

another problem regards the observation that when models become too complex, the 

model "payoff" starts to decrease (Grimm et al., 2005), likely because the modeller has to 

spend too much time figuring out what is the model doing, thus leaving less time to use 

the model to solve scientific questions. This later problem may be solved by following a 

"community approach", where many modellers share the task of developing and validat-

ing different parts of the modelling framework, and where exchanges of information 

among developers, users and modellers in-training are accomplished via online discus-

sion boards and wikis (e.g. www.ecopath.org and www.myroms.org). Other examples of 

community models are the models targeted to specific regions, like those developed by 

multinational European groups (e.g. COHERENS and ERSEM). In community-supported 

models, the total time invested to model development and validation (i.e. the sum of the 

time investment from all community members) can be much greater than the time in-

vestment of a single modeller or a single modelling laboratory. Therefore, if the main 

limitation of model "payoff" is the time investment for model development and valida-

tion, then the community approach is the only plausible alternative to tackle the increas-

ing demands for model complexity. However, users of complex models (same as any 

other model) still need to validate model parameters and still need to understand the 

model assumptions and limitations, and achieving these requirements is not necessarily 

any easier under a "community approach". 

 

The problem of increased computing demand is discussed in the next section. 
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5.2. Hybrid (Eulerian/IBM) Modelling Framework 

Modelling a large number of state variables in a Eulerian 3-D space demands a lot of 

computing resources. In shallow coastal applications—where the grid cells must be about 

100 m apart and where the model time step must be in the order of a few seconds—

modelling a large number of state variables truly exceeds the limits of even today's high-

performance computer clusters. In this thesis, to overcome this computer limitation, a hy-

brid (Eulerian/Individual-based) modelling framework was developed (Chapter 2). In this 

hybrid framework, tracer-like variables that occur everywhere within the model domain 

(e.g. temperature or phytoplankton concentration) are specified using a grid-based or Eul-

erian framework, while variables that only occur in a few places within the domain (e.g. 

biomass of aquacultured mussels) are specified using a particle-based framework. In an 

example shown in Chapter 2, the hybrid framework was able to represent the ecosystem 

dynamics using only 27% of the calculations needed by a grid-based model alone, or only 

0.6% of the calculations needed by an individual-based model alone. However, in this 

thesis the hybrid model was applied to examples with only a few species; far less than 

conventional food web models. Although a reasonable starting point, the hybrid approach 

still needs to be applied to a true multispecies ecosystem, in 3D space, to verify the claim 

of optimal performance. 

 

Hybrid models were first developed almost 30 years ago to study phytoplankton dynam-

ics (Woods and Onken, 1982) and have also been used to study zooplankton dynamics 

(Batchelder et al., 2002). However, these models were not widely used, perhaps because 

plankton is ubiquitous and needs to be specified more or less everywhere within the 

model domain, therefore these hybrid models require more computing resources, than a 

grid-based model would, to represent the same variables. Also, Lande and Lewis (1989) 

showed that plankton dynamics computed with an individual-based model were very 

similar to results from an equivalent Eulerian or grid-based model, thus concluding that 

the increased computing demand was not worth it. However, a different story emerges 

from hybrid models that utilize their individual-based capabilities to study macrobiota 

species that are only found in a few grid cells. Here not only the computing efficiency of 
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the model is greatly increased, but also the individual-based approach is better suited to 

represent the life-history of macrobiota species. 

 

The main limitation of hybrid models is that they require coding the ecophysiology mod-

els directly inside the code of an ocean circulation model, which are usually written in a 

language foreign to ecologists (i.e. Fortran). However, ecology is a field used to interdis-

ciplinary work. For example, the newest generation of ecologists are now very fluent in R 

(www.r-project.org), a statistical software initially developed by statisticians for statisti-

cians, but that is now increasingly used in ecological studies. Nonetheless, to promote a 

wide use of hybrid ecosystem models, it is key to demonstrate their applicability and to 

lay out their usefulness. The message of this thesis is that—in the ocean—all phenomena 

of ecological interest occur within a fluid environment that is non-intuitive for us terres-

trial-minded beings. Therefore, studying these phenomena within a hydrodynamic 

framework is likely to produce new insights about marine ecosystems. Ocean circulation 

models are a natural platform where these ecological processes can be represented, and 

thus the implementation of these hydrodynamic tools in ecological research should be 

fostered. 

 

 

5.3. Interactions Between Macrobiota and its Physical-

planktonic Environment 

In this thesis, it was shown that—in shallow costal regions—macrobiota species, like 

macroalgae and bivalves, can have a large influence in the concentration and spatial dis-

tribution of planktonic ecosystem variables like the plankton, nutrients and detritus. It 

was also shown that the resulting persistent gradients in the concentration of the plank-

tonic variables can in turn affect the physiology of macrobiota, representing feedbacks 

that can regulate the spatial distribution of macrobiota biomass.  
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The interactions between macrobiota and planktonic variables are complex, non-linear, 

and sometimes non-intuitive. Here, a hydrodynamic model coupled to a planktonic eco-

system model and several macrobiota ecophysiology models was able to reproduce most 

of the expected patterns, like bivalves locally decreasing phytoplankton, or fish wastes 

enhancing nearby macroalgae (Chapter 2, Figure 2-3). However, the model also produced 

other patterns that were not expected, such as oysters decreasing ammonia and large de-

tritus. In Chapter 3, one of those non-expected results (i.e. mussels locally increasing 

nearby phytoplankton) was studied in detail. It was found that the waste products of mus-

sels (i.e. ammonium) cause a localized increase in phytoplankton production and biomass 

in areas outside, but nearby, mussel farms during nutrient-limited and light-replete condi-

tions. In this thesis, 67 studies researching the influence of bivalves on phytoplankton 

were reviewed. Form those 67 studies, the localized increase in phytoplankton due to bi-

valve wastes was only briefly mentioned as a possibility in 3 studies, and actually meas-

ured in only one study. This is an example about how patterns that are not intuitively ex-

pected can be lost in the data and modelling results. Unfortunately, in hydrodynamically 

complex systems like shallow coastal regions, even subtle feedbacks can cause patterns 

that escape intuition, but that are ecologically relevant. This emphasises (1) the need for 

hydrodynamic models capable of resolving feedbacks among macrobiota and planktonic 

variables, and (2) the need to look at the model results without any 'tuning' (i.e. all pa-

rameters set to their default, or best guess, value*). Unexpected model results can be 

caused by human mistake in the model formulation or parameterization, but they can also 

be evidence of a pattern that is escaping our intuition and that deserves further investiga-

tion. 

 

Macrobiota species increase the temporal and spatial variability of the planktonic ecosys-

tem variables—particularly in shallow coastal ecosystems. This is shown in the data and 

modelling results presented throughout this thesis (e.g. Figure 2-4, Figure 3-6 and Figure 

4-4), but also in data and modelling results from most of the studies conducted in shallow 

regions that were reviewed here. This high temporal and spatial variability probably has a 

                                                 
* After the first inspection of model results using the default or best guess values, the parameters can still be 
fine tuned to improve model predictions. 
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large influence in all organisms living in these shallow regions, but certainly, it has a 

huge influence on the research efforts attempting to depict ecosystem dynamics in these 

systems. One approach to produce scientific insight in these highly variable regions is to 

use mechanistic numerical models like the one used in this thesis. However, as shown in 

Chapter 2, these models must integrate macrobiota and planktonic ecosystem variables 

using a two-way coupling approach that allows bidirectional transfers of mass; thus con-

serving the mass-balance of the system. Also, as shown in Chapter 4, these models must 

be spatially-explicit (i.e. 2-D or 3-D) because in these shallow regions macrofauna often 

produces persistent gradients in the spatial distribution of the planktonic variables. Box 

models (i.e. 0-D) that assume a uniform distribution of all variables throughout the model 

domain cannot reproduce the average state of systems showing persistent and/or strong 

spatial gradients of any variable. In summary, in applications where the modelling objec-

tive is to resolve spatial interactions between macrobiota and the planktonic ecosystem, it 

is essential to use coupled hydrodynamic-biological models that are spatially-explicit and 

with ecosystem components are two-way coupled. 

 

Understanding the interactions between macrobiota and its physical-planktonic environ-

ment is of special interest in the management of any activity taking place in coastal re-

gions, particularly aquaculture. As shown Chapter 3, calculations essential to the man-

agement of bivalve farms, such as the estimation of the carrying capacity of the system, 

involves simulations that depend on the appropriate representation of subtle feedbacks 

between spatially-heterogeneous variables. As shown in Chapter 2, these simulations are 

of particular importance in systems where many species are farmed simultaneously (i.e. 

Integrated Multi-Trophic Aquaculture). In theory, growing multiple species simultane-

ously maximizes growth and minimizes wastes. However, in practice, it is key to place 

each farmed species in an appropriate location in relation to the other species given the 

hydrodynamic environment, and this is very hard to do without a spatially-explicit hydro-

dynamic-ecosystem model that bilaterally integrates planktonic variables and macrobiota 

variables. Finally, as pointed out earlier, this requires an optimized hybrid modelling 

framework capable of handling both, grid-based and particle-based, biological variables. 
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5.4. Future Work 

In Chapter 2, interactions among macrobiota and planktonic species were assessed in a 

synthetic embayment. Future work should attempt to assess these interactions in a real 

embayment where the spatial distribution of macrofauna has been appropriately surveyed.  

Also, the ecophysiological models in this chapter are simplistic because they were devel-

oped with the intention to demonstrate the effect of macrobiota on planktonic variables 

over a short time period. Applications needing longer simulations or that need a more in-

depth assessment of interactions between species, may require to formulate more realistic 

ecophysiological models. An example of a more realistic ecophysiological model was 

presented in Chapter 3 (i.e. SHELL-E). 

 

The limiting functions used in the ecophysiology models presented in this thesis (i.e. 

Chapters 2 and 3) need to be better assessed and validated either by using targeted labora-

tory experiments, or by confronting model results (including diagnostic variables, Franks, 

2009) against observational data from different locations and environments. Also, many 

of the parameters used in this thesis came from studies conducted in a different region 

from the study region, or for a different species, or measuring different rates that the ones 

modelled in this study. While often modellers are forced to improvise by adapting results 

from studies that are not ideal for the model application, efforts should be made to ex-

pand our library of parameters. This process should be guided by close interactions be-

tween modellers and experimental physiologists and ecologists (Flynn, 2005).   

 

The planktonic ecosystem model used in this thesis assumes an immediate remineraliza-

tion of organic matter reaching the ocean bottom (Fennel et al., 2006). Future work 

should attempt to implement a time lag in this remineralization, preferably controlled by 

temperature and oxygen concentration. An even more ambitious remineralization scheme 

could also attempt to replace the small and large detritus variables (i.e. SDet and LDet) 

for 2 sediment size classes from the Warner et al. (2008) sediment model, thus allowing 

the new detritus variables to be resuspended back to the water column during times of 
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high current velocity. These modifications to time-lag the process of remineralization of 

organic particles should improve the data-model comparisons of Chapters 3 and 4 (par-

ticularly ammonia). But also, this modifications would allow the testing of the full bio-

capacitor hypothesis presented in Chapter 4. Under the current configuration, the model 

can only test the part of the hypothesis related to bivalve excretion and mortality, and 

cannot test for the impact of a time-lag in the remineralization of biodeposits. 

 

The SHELL-E model (Chapter 3) may be improved by adding a new "gut" state variable, 

that would hold nitrogen ingested but awaiting to be absorbed and incorporated into bi-

valve soma or gonad. This new state variable should improve estimates of the bivalve 

"meat yield", which is the ratio of bivalve meat to whole weight, and an index routinely 

monitored by bivalve farmers. Also, the new "gut" variable may improve estimates of 

bivalve filtration rates if filtration is made a function of "gut fullness" (Duarte et al., 

2010). 

 

Finally, in Chapter 4 it was shown that bivalve-mediated fertilization locally enhances 

phytoplankton biomass outside a mussel farm in Ship Harbour. Also, while mussels had  

a system-wide depletion effect on phytoplankton, the local increase of phytoplankton  

near the farm ameliorates this system-wide depletion effect. Future work should investi-

gate if this phenomenon occurs in other embayments with bivalve aquaculture in temper-

ate regions. 

 

In this thesis, a new modelling framework was developed to study multi-species ecologi-

cal interactions in hydrodynamic coastal ecosystems. Here, this modelling framework 

was used to test hypotheses and to develop insight. However, the use of this framework 

for quantitative prediction of marine ecosystem dynamics will depend on the validation 

of functions and parameters and assessment of the accuracy of the model predictions. 

These are essential next steps. 
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APPENDIX A 
 

A Individual-based Module 

 

The IBM module allows the insertion and tracking of individual groups of organisms 

within the model domain. To accomplish this, we built the IBM module as an extension 

of the existing “floats module” of ROMS, which enables the insertion of inert particles 

that can be tracked through the model domain. When the IBM module is “turned on”, in-

ert floats are treated as individual organisms by (1) activating additional code that allows 

floats to carry on ecophysiological processes, (2) reading additional biological parameters 

from the floats input file, and (3) printing additional biological variables and parameters 

in the floats output file. Future improvements on the float tracking algorithms in ROMS 

are immediately usable by the IBM module.  

 

Super-individuals: The individual-based biology module tracks groups formed by many 

identical individuals, herein referred to as super-individuals (Scheffer et al., 1995). The 

initial number of organisms in the super-individual is specified by the user, and can de-

crease or increase using population dynamics equations. However, super-individuals can-

not divide into multiple super-individuals of smaller size. Many super-individuals of dif-

ferent species, life-stages, and/or size-classes can co-exist in a single grid cell, and the 

total number of super-individuals in the model domain is unlimited. 

 

Inputs: Super-individuals are inserted using an input text file. Each row in the input file 

represents a super-individual and contains: (1) x, y and z insertion coordinates; (2) time of 

insertion, which allows seeding or recruitment events throughout the model run; (3) ini-

tial number of organisms forming the super-individual; (4) initial-conditions for all other 

state variables of the ecophysiological models; (5) parameters of the ecophysiological 
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model; (6) integers indicating species and life-stage and (7) integers specifying which 

transport, behavioural and ecophysiological models to use. 

 

Physical transport: ROMS estimates the trajectory followed by floats (or super-

individuals) using one of three algorithms: (1) 3-D Lagrangian, where floats can move 

solely according to local advection and diffusion; (2) isobaric, where floats are restricted 

to move along planes of constant pressure; or (3) geopotential, where floats are restricted 

to move along planes of constant depth. We added one more option, (4) static or sessile, 

in which floats are not transported by ocean currents and therefore remain in the location 

where they were inserted. 

 

Behavioural transport: We allotted space to include behavioural models to allow super-

individuals to move independently of ocean currents via swimming or buoyancy changes. 

For now, we have only included the simplest case, which denotes no behaviour. How-

ever, note that the isobaric, geopotential and static options for physical transport yield 

trajectories that may deviate from a purely Lagrangian transport; therefore implying an 

implicitly behaviour of floats or super-individuals.  

 

Ecophysiology: The module currently has five models. The first four (Fig. 1) are generic 

models to simulate the ecophysiology of different functional groups (i.e. generic macro-

algae, seagrass, filter-feeders and aquacultured fish). The fifth is an advanced model to 

simulate Shellfish Ecophysiology (SHELL·E), which is described in detail in Chapter 3. 

Other physiological and population dynamics models can be easily coupled. 

 

General approach: At each time-step, the IBM module loops over all super-individuals. 

For each super-individual, the module: (1) identifies the 3-D location of the super-

individual and reads the concentration of all tracers (e.g. temperature, phytoplankton, 

etc.) in the containing grid cell; (2) identifies which ecophysiology model to use and se-

lects it; (3) applies the selected ecophysiology model and local tracers to estimate physio-

logical rates of one individual in the super-individual; (4) uses the individual physiologi-

cal rates to grow or catabolically consume each individual in the super-individual; (5) 
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used the selected ecophysiology model to update the number of organisms forming the 

super-individual using mortality and/or recruitment rates; and (6) uses the individual 

physiological rates estimated in step (3) and the updated super-individual size, to estimate 

the production or consumption of local tracers by the super-individual. At the end of the 

time-step, the tracer concentrations in each grid cell reflect the cumulative effect of all 

super-individuals in each cell. The dynamics of the entire ecosystem are computed post-

simulation using the recorded model output. 

 

Outputs: The interface generates one NetCDF file containing (1) time-series of each of 

the 12 state variables for each super-individual; (2) time-series of all biological and 

physical tracers (e.g. phytoplankton, salinity, etc.) at the location of each super-

individual; (3) initial-conditions and parameters for each super-individual, and (4) bio-

logical and physical parameters for the ROMS run. 

 

Conditionals: During each time step, the IBM module estimates the production or con-

sumption of biological tracers in each cell containing individuals. In the reactions where 

tracers decrease due to filter-feeding, there is the potential for the filtration capacity of the 

individuals to exceed the volume of the cell containing them, causing ROMS to crash. 

The following condition must be fulfilled: 

 

Eq. A-1   

s
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This condition may be easily met in most cases. However, in applications using very high 

grid resolution (hence very small cell volume) and with large congregations of individu-

als (i.e. large ns), the time step dt may be constrained by the above (biological) condition 

rather than by the (physical) condition to resolve gravity waves. 
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APPENDIX B 
 

B Conversions Used in Chapter 3 

5.4.1. Biomass (mmol N, gdw, gww) 

To convert the mussel biomass from units of gram dry weight of soft tissue (gdw) to 

mmol N, and to grams wet weight of whole mussels (gww), we assume that dried soft 

tissues contain 7.79% of nitrogen (Smaal and Vonck, 1997), and that dried tissue weight 

is 7.5% of the total wet weight (Ibarra, 2003), then: 

 

Eq. B-1   1 gdw = 5.564 mmol N 

Eq. B-2   1 gww = 0.075 gdw 

 

5.4.2. Length vs. Weight 

We used a relationship estimated using mussels from Ship Harbour (Ibarra 2003). 

 

Eq. B-3   W = 0.0001 × L2.8714 

 

were W is mussel wet weight (gww) and L is length (mm). 

 

5.4.3. Absorption Rate 

To convert absorption rate in units of mmol N ind-1 d-1 (i.e. Ak) into units of mg gdw-1 d-1 

(i.e. kA~ ), we follow the following conversion: 

 

Eq. B-4   
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where 14 and 12 are the molar masses (g mol-1 or mg mmol-1) of nitrogen and carbon, 

respectively. The term (Bk  0.18) is the bivalve biomass in units of gdw ind-1, and NC is 

the nitrogen-to-carbon ratio of the absorbed food. Here we assumed NC = 10 mmol C 

(mmol N)-1. Note the mg in the units of kA~  refer to mg of C plus mg of N. 

 

5.4.4. Excretion Rate 

To convert modelled excretion rates (or respiration rate) in units of mmol N ind-1 d-1 (i.e. 

Rk) into units typically used in the literature of g N gdw-1 h-1 (i.e. kR~ ), we follow the fol-

lowing conversion: 

 

Eq. B-5   
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5.4.5. Egestion Rate 

To convert egestion rate (or faeces production rate) in units of mmol N ind-1 d-1 (i.e. Faek) 

into units of g gdw-1 h-1 (i.e. kFae ), we follow the following conversion: 

 

Eq. B-6   
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APPENDIX C 
 

C Description and Equations of the 0-D 

Ecosystem Model 

The following ecosystem model is a simplification of the 3-D ecosystem model presented 

in Fennel et al. (1996) and the bivalve ecophysiology model, SHELL-E, presented in 

Chapter 3. In this model, the planktonic ecosystem dynamics in an embayment are repre-

sented with a single box (i.e. 0-D model), where exchanges in and out of the box are rep-

resented with a single parameter,  (d-1), denoting the flushing rate of the embayment. 

The time rate of change of phytoplankton is given by: 

 

Eq. C-1 
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where  (d-1) is the maximum growth at a given temperature and irradiance; g (units: 

(mmol N m-3)-1 d-1) is the maximum grazing rate of phytoplankton by zooplankton; mP 

(d-1) is the phytoplankton mortality;  (units: (mmol N m-3)-1 d-1) is the aggregation pa-

rameter representing the flocculation of phytoplankton into large detritus; wP (m d-1) is 

the sinking velocity of phytoplankton; F (d-1) is the clearance rate of the entire bivalve 

community in the embayment; P (dimensionless) is the filtration efficiency of bivalves 

on phytoplankton, and Phy0 is the constant concentration of phytoplankton outside of the 

embayment. The phytoplankton growth limitations due to the concentration of nitrate, 

LNO3 (dimensionless), and ammonium, LNH4 (dimensionless), are described below: 
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Eq. C-2   
NH4NO3

NO3 KNH4NO3K
NO3L

/1
1  

 

Eq. C-3   
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where KNO3 and KNH4 (both with units of mmol N m-3) are the half-saturation concentra-

tion for uptake of nitrate and ammonium, respectively. 

 

The limitation for phytoplankton grazing by zooplankton, LP (dimensionless), is de-

scribed below: 
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where KP (mmol N m-3) is the half-saturation concentration of phytoplankton ingestion by 

zooplankton. 

 

The time rate of change zooplankton and detrital pools are described are described by: 

 

Eq. C-5     )( 0
2 ZooZooZooFZoomZooLlZoolZoogL

t
Zoo

ZZPEBMP  

 

 

Eq. C-6      
)(

)1(

0

2

SDetSDetSDetF
z

SDetw

SDetrSDetPhySDetPhymZoomZoogL
t

SDet

DSD

SDPZP
 

 

 

 

 



 167

Eq. C-7  

 

 
)()1(

)1()1(

0

2

LDetLDetSDetF

ZooFPhyF
z

LDetwLDetrPhySDet
t

LDet

DD

ZZPPLDLD
 

 

where  (dimensionless) is the assimilation efficiency of zooplankton on phytoplankton; 

lBM (d-1) is the excretion rate of zooplankton due to basal metabolism; lE (d-1) is the 

maximum rate of assimilation-related excretion; mZ (d-1) is the zooplankton mortality 

rate; Z and D (dimensionless) are the filtration efficiencies of bivalves on zooplankton 

and small detritus, respectively; Zoo0, SDet0 and LDet0 are the constant concentrations of 

zooplankton, small detritus and large detritus outside of the embayment, respectively; rSD 

(d-1) and rLD (d-1) are the remineralization rates of small and large detritus, respectively; 

wSD and wLD (m d-1) are the sinking rates of small and large detritus, respectively; P, Z 

and D (dimensionless) are the absorption efficiencies of bivalves on phytoplankton, zoo-

plankton and small detritus, respectively; and z (m) is the depth of box, which represents 

the average depth of the embayment. 

 

The time rate of chance of the concentration of nitrate and ammonium are defined by:  
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where n (d-1) is the nitrification rate; Rm (d-1) is the weight-specific maintenance respira-

tion rate of bivalves; lB (dimensionless) is the cost of growth coefficient for bivalves; mB 

(d-1) is the mortality rate for bivalves; and NO30 and NH40 are the constant concentrations 

of nitrate and ammonia outside of the embayment, respectively. 

 

Finally, the time rate of change of the concentration of bivalves inside the embayment is 

defined as follows: 

 

Eq. C-10  
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