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Abstract

SiLK Tools is a suite of network flow tools that network analysts use to detect intru-

sions, viruses, worms, and botnets, and to analyze network performance. One tool in

SiLK is tuple filtering, where flows are filtered based on inclusion in a “multi-key” set

(MKset) whose unique members are composite keys whose values are from multiple

fields in a SiLK flow record. We propose and evaluate a more efficient method of im-

plementing MKset filtering that uses cuckoo hashes, which underlie McHugh et al.’s

cuckoo bag (cubag) suite of MKset SiLK tools. Our solution improves execution time

for filtering with an MKset of size k by a factor of O(logk), and decreases memory

footprints for MKset filtering by 50%. The solution also saves 90% of disk space for

MKset file storage, and adds functionality for transformations such as subnet masking

on flow records during MKset filtering.
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Chapter 1

Introduction

Analysis of network traffic is an important part of network maintenance, security, and

infrastructure planning. Concise measurements of the types and volumes of traffic

passing through a network provide network managers with quantitative data that help

to organize network structure, defend against attacks, and plan upgrades to network

hardware and software.

As traffic volumes on local networks and the Internet have increased, and with

the rise of encrypted data transfer, analysis of the payload contents (e.g., deep packet

inspection) of all traffic is quickly becoming unmanageable and intractable for many

analysis purposes and some higher-level analysis is desirable. One solution to gaining

a broader view of network activity with a manageable amount of data is to collect

“network flow” data, which records routing information about conversations between

applications on host computers without retaining the actual contents of every packet

passing through the network.

Network flow analysis is a technique for examining traffic patterns and behaviour

on networks. By focusing on routing information in packet headers instead of the

packet payload, we can store complete network traffic information using relatively

small amounts of disk space. Network flow further reduces analysis data by aggregat-

ing network traffic into individual conversations, or “flows”, between host machines,

based on IP addresses, ports, and protocol. In addition to these identifying attributes,

network flow records contain information such as the number of packets and bytes

transmitted, start and end times, and a number of other aggregate information [5].

By focusing on the “who”, “where”, and “when” of network traffic, and moving the

“what” from individual packets to the broader context of flows, we can gain insight

into the “why” of various network issues and behaviours.

Network flow analysis is used by people such as network managers and security

analysts to monitor [34], plan, and maintain [25] IP networks. Analysis ranges in

1
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scope from profiling hosts [16] to monitoring overall network statistics [35]. They

employ varying data mining techniques to solve problems such as detecting specific

host application activity (e.g., peer-to-peer software, botnet robots, FTP and Web

servers) [10], profiling different types of traffic (e.g., TCP vs UDP), ensuring satis-

faction of service-level agreements or SLAs [31] (e.g., data throughput guarantees),

and targeting network hardware for infrastructure changes (e.g., adding new routers

or switches in high-traffic sections of a network).

Network flow is generally used as a forensics tool, with flow records stored on disk

for months’ and even years’ worth of network traffic. As such, the quantities of flow

data that analysts work with can be very large, and a set of efficient tools is required

to search for and analyze flow records. Developed by the CERT Network Situational

Awareness team (CERT NetSA), the SiLK (System for Internet-Level Knowledge)

network flow collection and analysis suite [3] is one such set of efficient tools; others

include JFlow [18], SFlow [24], and Argus [26].

The SiLK suite includes a tool to filter network flow records based upon inclusion

in a set of tuples, which are comprised of arbitrary subsets of the fields found in a

flow record. Filtering can assist in tasks as simple as extracting all flows from a given

subnet, to complex analysis such as detecting network activity from specific types

of host operating systems or software. For instance, one might build a set of tuples

containing the destination IPs (DIPs), destination ports (DPORTs), and protocols

used by known FTP servers on a network, and use this set to remove FTP traffic from

flow data before searching the data for peer-to-peer (P2P) activity. For clarity, we

shall denote the general notion of a set of tuples, each containing multiple SiLK flow

fields, as a “multi-key set”, or “MKset” for short, and filtering SiLK flow data with

an MKset shall be called “MKset filtering”. To remain consistent with the current

SiLK terminology, we will call the SiLK tools’ version of a MKset a “tuple”, and

SiLK’s current method of MKset filtering “tuple filtering”.

As suggested by Kumar [12], the MKset filtering functionality in SiLK currently

has limitations in functionality and efficiency that warrant investigation into improve-

ments in file storage, MKset creation, filtering options, internal algorithms, and data

structures. Building on work done by McHugh et al. [15], we present an improved

MKset filtering mechanism in SiLK using a search structure called a cuckoo hash [23].
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McHugh et al. call their MKsets “cusets” (short for “cuckoo sets”); we follow this

convention, and call MKset filtering with cusets “cuset filtering”.

The goal in this work is to provide an improved means for network flow analysts to

perform MKset filters on SiLK flow data. The key desired improvements over SiLK’s

current MKset filtering capabilities are three-fold:

1. faster execution times

2. decreased memory usage

3. added functionality for manipulation of set keys

These improvements are desirable both when building MKsets and using them to

filter SiLK data.

As additional considerations, we wish to work within the following constraints to

help make our work as accessible as possible to users of the SiLK toolset:

• Maintain or improve the numbers of commands and non-SiLK scripting required

to generate, store, and filter MKsets

• Assure that any new tools or methods fit within the standard flow of the SiLK

tools

• Consider that we may want to modify or merge MKsets to allow greater filter

flexibility, similarly to SiLK’s current bag and set tools

The main contribution of this dissertation is in providing faster and more flexible

filtering to network analysts, which allows the analysts to explore their network traffic

data in a more iterative and flexible manner. Specifically, by altering the SiLK tools

code to allow MKset filtering with cuckoo bags using cuckoo hashing, we provide net-

work analysts with an improved tool to replace SiLK’s tuple filtering. Cubag filtering

is faster and uses less memory than tuple filtering, and provides added functionality

for manipulation of MKset keys during the creation and filtering processes.

SiLK’s tuple filtering mechanism does not allow for filtering of flows containing

IPv6 address fields, and cubag filtering expands MKset filtering in SiLK to fully

support filtering IPv6 flows and MKsets containing IPv6 keys. In addition, while the



4

library used to build and search MKsets uses SiLK’s Netflow-specific data structures,

replacement of these data structures with more generalized structures would provide

a code base on which other, non-flow-specific MKset filtering could be implemented.

This would entail some modifications to the actual hash library functions as well, but

the algorithms and framework should generalize well to filtering of any other types of

data such as MAC addresses or even non-networking-specific data.

The organization of the thesis is as follows: network flow using SiLK tools, in-

cluding current methods for MKset filtering, are discussed in Chapter 2. Chapter 3

outlines the steps taken to design, implement, and validate an improved method for

MKset filtering in SiLK. Chapter 4 contains our analyses of data structures and the

SiLK application framework in which our solution was developed. Chapter 5 presents

the results of our experimental validation, and Chapter 6 provides concluding remarks

and future directions for this work.



Chapter 2

Background

To aid in our explanation and analysis of MKset filtering in SiLK, we present an

overview of network flow and the SiLK tools suite. The notion of MKset filtering

is explained, along with some information on cuckoo hashes and a related structure,

the Bloom Filter. Finally, we present previous works on operations similar to MKset

filtering, and provide motivation for improved MKset filtering by describing some

tools with which it could be used.

2.1 Network Flow

Network flow is a technique created by Cisco Systems [4] to gather and analyze

summarized information about traffic on IP networks. Using routing information

from packet headers, network flow tracks and stores information on conversations

between network hosts, or “flows”. A “network flow” is defined as a unidirectional

sequence of packets that share the following five attributes:

• Source IP address

• Destination IP address

• Source port

• Destination port

• IP protocol

Flows are uniquely identified on a given network by these five attributes, and

the flow start and end times. There are several variations on network flow collection

and analysis techniques, including JFlow [18], SFlow [24], Argus [26], and NetFlow [4]

(and NetFlow’s industry standard offspring, IPFIX [5]). Some of these, such as Argus

and IPFIX, include the ability to mix deep packet inspection with flow analysis; our

5
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work concerns only flow analysis. While implementations of these protocols abound,

our work focuses on the System for Internet-Level Knowledge, or SiLK, collection and

analysis suite [3].

2.2 SiLK

Developed and maintained by the CERT Network Situational Awareness (NetSA)

team and researchers from Carnegie Mellon University, the SiLK suite [3] offers a

comprehensive set of tools for collection, storage, and analysis of network flow data.

The SiLK suite uses a network flow format that is based on Cisco NetFlow [2],

which was created by Cisco Systems to run on its routers; however, as NetFlow is

supported by other platforms and SiLK can collect and convert network flow in other

formats, we use the more general terms “network flow” (or simply “flow”, for brevity)

when referencing SiLK flow records.

A SiLK flow record contains a variety of information about the flow, as itemized

in Table 2.1 [3]. A SiLK data store consists of SiLK flow records stored in a time

and date-indexed file and directory structure. For example, SiLK flow records with

an “sTime” value of August 16, 2009 between 1pm and 2pm would be stored in the

SiLK file /path/to/data/store/2009/08/16/20100816.13.

The SiLK suite contains a number of tools to display, filter, and analyze flow

records. The flow of analysis in SiLK normally consists of using a tool called rwfilter

to select SiLK flow records from a data store, and either piping the selected records

to other SiLK tools for analysis or storing them in a file for subsequent analyses. For

example, the following command generates a list of the ten most commonly-occurring

source IP addresses in all TCP flows on August 16, 2009:

r w f i l t e r −−s ta r t−date=2009/08/16 −−end−date=2009/08/16

−−p r o to co l=6 −−pass=stdout | rws tat s −− f i e l d s=sIP

−−count=10

In this example, the −−start−date and −−end−date parameters tell rwfilter which

SiLK records to read from the data store, and −−protocol=6 specifies that we want

flows for TCP traffic only. −−pass=stdout causes rwfilter to write the flows matching

the date and protocol parameters to the standard output stream, which is then piped

to the rwstats tool. Finally, the −−fields=sIP and −−count=10 cause rwstats to count
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Field Name Description
sIP Source IP address for flow record
dIP Destination IP address for flow record
sPort Source port (or ICMP type) for flow record(or 0)
dPort Destination port (or ICMP code) for flow record(or 0)
protocol Protocol number for flow record
packets Number of packets in flow
bytes Number of bytes in flow
flags Logical or of TCP flag fields of flow (or blank)
sTime Start date and time of flow (in seconds)
dur Duration of flow (in seconds)
eTime End date and time of flow (in seconds)
sensor Sensor that collected flow
nhIP Next hop IP address (currently used only for annotations)
stype Source group of IP addresses (pmap required)
dtype Destination group of IP addresses (pmap required)
scc Source Country Code (pmap required)
dcc Destination Country Code (pmap required)
class Class of sensor that collected flow
type Type of flow for this sensor class
sTime+msec Start date and time of flow (in milliseconds)
eTime+msec End date and time of flow (in milliseconds)
dur+msec Duration of flow (in milliseconds)
icmpTypeCode ICMP type and code values
InitialFlags TCP flags in Initial Packet
SessionFlags TCP flags in remaining Packets
attributes Constants for termination conditions
application Standard port for application that produced traffic

Table 2.1: SiLK Flow Fields [3]

flows for each unique source IP address (SIP) in the selected data, and print a list

of the top ten SIPs and their associated flow counts. A selection of commonly-used

SiLK commands is shown in Table 2.2.

Many of the analysis tasks performed by SiLK analysts involve creating and main-

taining sets of specific network parameters or behaviours, as defined by a set of values

for a subset of SiLK flow fields. For instance, one might wish to maintain a set of

tuples with format (IP address, protocol, port) for hosts running a specific client or

server applications such as FTP, P2P, or SSH. As these sets contain keys consisting of

multiple SiLK fields, we shall call such a set a “multi-key set”, or MKset. We define

a multi-key set as follows:
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Command Description
rwfilter Select SiLK flow records from a file or data store, based on specified

values for any of the SiLK flow fields
rwcut Print selected fields of binary SiLK flow records in ASCII text format
rwsort Sort SiLK Flow records on one or more fields
rwset Builds a set of unique source, destination, or next-hop IP addresses

from SiLK flow records
rwbag Builds a bag of (unique key, counter) entries from SiLK flow records.
rwtotal Count how much traffic matched specific keys
rwcount Print traffic summary across time
rwstats Print interval counts or top-N/bottom-N lists
rwuniq Bin SiLK flow records by a key and print the bins’ volume

Table 2.2: Commonly-Used SiLK Tools

A “multi-key” is an entity containing values in the key from one or more SiLK

flow fields. A “multi-key set”, or “MKset”, is a set containing one or more unique

multi-key elements.

While viewing and analyzing MKsets on their own has value, the ability to filter

flow records using stored MKsets gives the analyst the power to both remove sets of

known “normal” traffic when searching for anomalous data, and to use a given set as

a fingerprint to search for a given network behaviour. This work focuses on filtering

SiLK flows using MKsets, which we shall call “MKset filtering”.

As an example, consider the FTP traffic filter mentioned in the introduction.

The technique comes from the SiLK tooltips site [3], and is used to identify FTP

traffic in SiLK flows either to analyze the FTP traffic itself or remove it from SiLK

flows to speed up an analysis in which FTP traffic is not important to the analyst.

rwfilter is used to find flows containing the “short” command, which initiates every

FTP transfer, by searching for flows with an sPort value of 21 (the standard port

for initializing FTP transfers), protocol of 6 (TCP), and two or more packets. These

flows are used to build an MKset containing the SIP and DIP of all hosts participating

in FTP transfers. Finally, an MKset filter is performed to find all outbound FTP

traffic by searching for TCP flows from FTP source ports (20,21, or 1024+) to any

destination port greater than 1024, and with the (SIP, DIP) pair matching the MKset.

A similar process is used to find incoming FTP traffic. Using rwfilter’s −−pass or

−−fail arguments, all FTP flows in the selected SiLK flows can either be all the FTP
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sIP| dIP| pro

10.0.45.214| 189.7.83.12| 17

10.0.45.111| 64.4.35.253| 17

10.0.45.48| 10.0.0.1| 6

74.86.125.37| 10.0.45.164| 1

10.0.45.18| 64.4.36.59| 6

10.0.45.69| 98.137.80.32| 6

64.233.161.164| 10.0.45.109| 6

78.140.149.103| 10.0.45.77| 6

10.0.45.137| 38.108.99.201| 6

10.0.45.73| 212.58.226.142| 6

Figure 2.1: Tuple file with 10 keys

flows that were found, or everything but the FTP flows. The resulting flows can then

be stored for further analysis.

The current SiLK method to perform an MKset filter is called “tuple filtering”,

and is performed by specifying a “tuple file” to rwfilter with the −−tuple−file option.

A SiLK tuple file is a text file consisting of a header row that specifies the SiLK fields

used in the file (as per Table 2.1), followed by one tuple record (SiLK’s version of

a multi-key) per line. The standard method to create a tuple file in SiLK uses the

rwuniq tool, which uses a hash table to build bins of unique SiLK field values in a

set of SiLK flow records, and prints the bins and the number of flows in each bin in

ASCII text format. The output from rwuniq must then be processed by an external

utility such as the Unix “cut” command to generate a SiLK tuple file. This process

is detailed in Chapter 5. Figure 2.1 shows an example of a tuple file.

When executing a tuple filter, rwfilter reads a tuple file into a red-black tree [6],

and searches this tree to determine whether each input flow is present in the tuple

file. Records found in the tuple file can then be sent to either of rwfilter’s “pass” or

“fail” output streams, to be saved on disk or piped into further processing commands.

One drawback of SiLK’s tuple filtering is that creation of a tuple file must be

performed by the analyst, either by hand or by formatting the output of the other

SiLK text dump tools using external utilities. In addition, using a text-based file

format results in slower read and write times than a binary file in SiLK’s native

format would allow.
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The main aspect of SiLK tuple filtering that we have identified for improvement is

execution time. A red-black tree can perform insert and search operations in O(logn)

time and allows for fast deletion time (also O(logn)) [6]. We propose to replace the

red-black trees with a data structure with faster performance for insertion and search,

and allowing for slower deletion times.

A cuckoo hash, as detailed in Chapter 4, is named after the parasitic Cuckoo bird,

whose newly-hatched young will push eggs out of a host bird’s nest. The cuckoo

hash addresses hash table collisions by employing multiple hash functions. During

an insertion, if a key k is hashed to an occupied location, the key residing there

is “pushed out” and re-hashed using a different hash function. The insert/re-hash

process continues until either an empty spot is found for an evicted key, orK evictions

occur where K is the number of keys in the hash table, and the hash table must be

rebuilt. With constant (O(1)) amortized insert and search times [23], the cuckoo hash

is one logical choice to improve upon SiLK’s tuple filtering functionality.

Additions to the SiLK suite by McHugh et al. [15] have provided a means of

building, manipulating, and viewing multi-key sets directly from a SiLK data store,

with disk storage in a native binary format, using cuckoo hashing. These MKsets

are referred to as “cuckoo sets”, or cusets for short. McHugh’s work extended to

multi-key bags, and hence the new tool suite refers mainly to “cubags” in its tool

names; our work focuses on the cuset features of the cubag additions.

A cuset is similar in concept to a SiLK tuple file, as previously described. Cusets

are built using McHugh’s cubag tool (see Appendix A), which generates cuset files

based on aggregated SiLK data from user-specified SiLK flow fields. For example,

the following command would generate a cuset file called sip dip protocol .cu, similar

to the tuple file from Figure 2.1, from a SiLK input file called example.rwf:

cubag −−set− f i l e=s i p d i p p r o t o c o l . cu : sIP , dIP , p r o t o co l example . rwf

In addition to the tuple-like MKset creation ability, the cubag tool allows the user

to apply modifications to SiLK data during cuset creation, such as bit masking and

bit shifting. For instance, we could modify the above example to create a cuset file

that stores the class-B subnet of each sIP instead of the entire IP address, by masking

the lower 16 bits as follows:
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cubag

−−set− f i l e=s i p d i p p r o t o c o l . cu : sIP (& ,255 .255 .0 . 0 ) , dIP , p r o t o co l

example . rwf

Extending McHugh’s work to add direct integration with rwfilter for performing

an MKset filter would provide an alternative to SiLK’s tuple filtering. MKset filtering

with cusets provides a potential speed improvement of cuckoo hashing over red-black

trees, and faster and more efficient data storage and retrieval of the binary cubag file

over an ASCII text tuple file. Also, using a specific SiLK tool for the generation of the

multi-key set requires no user manipulation of SiLK output, and has the added feature

of key modification during the cubag building and filtering processes. Through these

improvements, we will show that the addition of a cubag search to SiLK’s rwfilter

tool provides an improved means for flow analysts to perform multi-key set filters on

SiLK data.

McHughs work investigated using Bloom filters [1] to create MKsets for fast exe-

cution of MKset searches. The Bloom filter is a probabilistic data structure that uses

an array of bits to store information about set membership. An element x is added

to an m-bit filter by computing hi(x) for k hash functions (h1, h2, ..., hk) that map x

to locations in the bit array, and setting those bits to 1. To test for set membership

of an element, the hash functions are computed for the element, and if any bit array

location computed by the hash functions is not set, then the element is not in the set.

If all of its bits are set in the array, then either the element exists in the set, or its

bit array locations happen to have been set by insertions of other elements into the

set (a false positive). Deletions are not allowed, which ensures that no false negatives

occur in membership testing.

Increasing the ratio m/n of the size of the bit array m to the number of elements

n, and the number of hash functions k, reduces the rate of false positives at the cost

of increased memory usage. For instance, with five hash functions and a bit array ten

times larger than the number of elements to filter (i.e., k = 5 and m/n = 10), we get

a false positive rate of 0.9% [8]. However, to match the functionality of SiLK’s tuple

filtering, whose output is the exact subset of input flows matching keys in an MKset,

even a single false positive during filtering is unacceptable.



12

2.3 Related Work

Operations similar to MKset filtering are used for tasks such as network visualization,

classification of peer-to-peer and other application-specific traffic, and detection of

intrusion and anomalous network behaviour. We present previous work describing

some similar techniques to MKset filtering, and provide motivation for improved

MKset filtering of NetFlow data by describing systems which could benefit from our

cuckoo hashing solution.

Autofocus [7] is a traffic analysis and visualization tool that uses clustering of

NetFlow data to display visual characterizations of network behaviour. Autofocus

creates “multidimensional clusters” of network traffic using hierarchical, multidimen-

sional graphs - i.e., trees. It uses these trees to create visual reports of network

behaviour and compute the “unexpectedness”, or likelihood, of a particular subset

being present in a set of NetFlow data. Lakhina et al. [13] use a measure of entropy

to cluster NetFlow data, and the clusters it creates, which are comparable to MKsets,

are used for automatic classification in an anomaly detection system. However, as

mentioned in Section 2.2, we require MKset filtering to create exact subsets of flows

matching MKset keys, so these probabilistic approaches are unsuitable for our use.

Nickless [21] uses a relational database to store NetFlow data and allow SQL

queries for analysis tasks. MKset queries could be designed in SQL using sub-select

statements, but adapting SiLK to use an RDBMS violates our constraint of maintain-

ing the current flow of SiLK analyses and sacrifices execution speed due to RDBMS

overhead.

Possible Uses for Cubag Filtering

FlowRank [33] uses Google’s PageRank [22] algorithm to rank NetFlow records from

the perspective of bandwidth consumption, threat likelihood, and revenue genera-

tion. Cubag filtering could be used as a post-processing mechanism for FlowRank

to help find flows that match a set of FlowRank-ranked flows representing different

characterizations of the bandwidth, threat, and revenue rankings.

Nagaraj [19] uses hash functions to perform computation of “aggregates” based on

“group-by” attributes, which is similar to creation of tuple or cubag-based MKsets.
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Aggregates are filtered using a tree structure, which might be improved using our

cuckoo hashing technique.

MIND [14] and SkipIndex [36] both use prefix hash trees [27] (PHT) and dis-

tributed hash tables [29] (DHT) to perform multidimensional range searches on mul-

tiple NetFlow data stores. MIND is focused on anomaly detection, and SkipIndex

is used to create peer-to-peer indexing services. Cubag filtering could be used with

both MIND and SkipIndex to perform base-level searches of NetFlow data after the

PHT and DHT structures have been used to narrow down searches to a particular

NetFlow data store.

Snort [28] uses aggregated network information from packet captures to perform

network intrusion prevention and detection. Snort uses a two-dimensional linked list

to search for packets matching signatures of known attack methods. Using cubags as

intrusion signatures, a NetFlow-based system similar to Snort is conceivable, which

could allow broader analysis by leveraging the reduced data volumes of NetFlow as

compared to packet captures.
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Approach

The main goal in this work is to provide an improved means for network flow analysts

to perform MKset filters on SiLK flow data. To that end, the following steps were

taken.

1. Identify the best context within which to deploy a solution in SiLK.

In development by the CERT NetSA team since 2003, SiLK has a fairly mature

code base and a well-established flow for network data analysis. We wish to

maintain that flow with any new tools we create, and when possible, leverage any

existing libraries and methods for doing menial tasks such as option processing,

file I/O, and operations on SiLK data.

2. Identify the profile of the data structure usage that will fit into the

chosen context, and the range of data sizes that the design should

consider.

Given the overall framework of our MKset filtering method, choice of a data

structure to represent a MKset is guided by details about how and when in-

sertion, deletion, sorting, and search operations are performed. Knowledge of

the size and composition (such as heterogeneity) of the network flow data to be

analyzed will help narrow down the type of structure to employ.

Most important to our results are operations performed while filtering an MKset

against a SiLK data stream. However, ideally, the chosen structure should also

be compatible with an MKset data representation that allows creation of new

and/or usage of existing fast and flexible tools for building, modification, and

merging of MKsets to be used for filters.

3. Identify properties of the current data structure used by SiLK’s MK-

set filtering.

14



15

Theoretical analysis of the current implementation for SiLK’s tuple file filtering

capability, compared with some alternate methods, gives us an informed choice

for an improved solution.

4. Choose a data structure to improve filtering performance. Using our

statement of desired performance improvements in our chosen framework, the

makeup of the data to be analyzed, and the nature of a potentially better

data structure, we can select a structure based on the expected asymptotic

performance.

5. Implement the chosen solution as a prototype in SiLK.

Integration of our chosen design decisions into the SiLK Tools code base provides

the opportunity to compare actual performance against that of the current

method and analyze any new functionality we have provided.

6. Validate the implementation experimentally against the theoretical

expectations.

Watching primarily for execution time and memory footprint as success factors

for the basic implementation, we can determine whether our predicted perfor-

mance improvements worked in practice, and analyze why our solution did or

did not perform as expected. We also compare the performance with different

modifiers to assess the cost of the added functionality to MKset filters.



Chapter 4

MKset Filtering Solution

When designing an improved MKset filtering solution in SiLK, implications of the

following aspects were considered:

• Code framework in which to implement the solution

• Use characteristics of MKset filtering

• Candidate data structures to replace SiLK’s red-black trees

• Details of previous work by McHugh et al. [15] to implement cuckoo hashing in

SiLK

• Ability to export the solution to other applications

4.1 Framework

rwfilter is the cornerstone of most SiLK analyses, and is the only SiLK tool currently

providing data selection and filtering capabilities. While a new tool could be created

for the specific purpose of MKset filtering, adding functionality to rwfilter serves to

maintain the common flow of SiLK analyses and leverages the existing code base

and implementation structure of the SiLK filter tool. In addition, the current SiLK

MKset filter method uses rwfilter, and using a similar framework lends fairness to

any comparison of our method to tuple filtering. To enable improved MKset filtering

in the SiLK toolset, our design choice is to improve upon the MKset filter capability

of SiLK’s rwfilter tool.

4.2 Use Characteristics

In choosing a data structure for MKset filtering, the following algorithmic properties

of such a filter were considered.

16
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Insertion/Deletion

The MKset is loaded only once, with no insertions or deletions required during fil-

tering. As such, for filtering purposes, structures with fast one-time allocation and

insertion are preferable, with no considerations for deletion or modification of keys

required.

Search

The number of search operations performed on the MKset will be as many as the

number of input records to the filter, i.e., each SiLK record to be filtered will result

in exactly one key search in the MKset. Combined with the one-time building phase,

search speed is our most important feature of a MKset filter structure.

To illustrate the need for speed, one of the key advantages of Network Flow anal-

ysis over deep packet inspection methods (DPI) is improved ability to analyze data

over a wide range of times and hosts, a trade-off for DPI’s ability to determine exact

host behaviour using actual application-level data. Our validation data set spans 6

months of flow collection on a small network of 567 IP addresses (two /24 networks

and 60 externally routable addresses). Filtering this data for records matching unique

source IP, destination IP, protocol (SIP, DIP, proto) pairs seen in a 2-week subset

entails filtering about 140,000,000 flow records through an MKset of about 1,000,000

keys. Fast search speed is key to ensuring that analysts can perform such filtering on

larger networks and longer time spans than this small example.

Memory

rwfilter’s input records are processed as a stream. Consequently, the space require-

ments of the MKset hash table will be the largest contributor to the overall memory

footprint of the filter tool. Our 534,354-key MKset from Section 4.2 is about 18MB in

size, with each (SIP, DIP, proto) key requiring 33 bytes of storage (16 bytes for each IP

address - allowing for both IPv4 and IPv6 addresses, and one for protocol) [3]. Even

if we presume an overhead or loading factor that doubles this size, this MKset would

still require less than 40MB of space when loaded into a search structure in memory.

While memory usage remains pertinent to allow scaling to larger MKset searches, with
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current commodity computers commonly containing 4GB of RAM, memory usage is

less important than speed considerations in our choice of data structure.

In summary, the ideal data structure for an MKset filter is one that can be built

quickly and performs search operations as quickly as possible, with efficient memory

usage as a secondary consideration.

4.3 Candidate Data Structures

With the use characteristics from Section 4.2 in mind, a desirable data structure for

MKset filtering is one with the following properties, in order of importance:

• fast execution of search operations

• fast MKset creation

• efficient usage of memory

A case can be made for many different data structures to meet these requirements.

We present analysis of three: splay trees, which provide fast search times by self-

reorganization to optimize searches for common keys; minimal perfect hashing, which

boast constant-time insertion and search operations with optimal space usage; and

cuckoo hashing, which also give constant time insert and search operations.

SiLK’s current MKset or “tuple” filter tool uses a red-black tree to search for

keys in an MKset. With O(logn) insertion and search operations, and O(n) memory

usage, this provides our baseline for performance improvements.

Table 4.1 shows a summary of these search structures.

Structure Insert Search Space
Red-Black Tree O(logn) O(logn) O(n)

Splay Tree O(logn) O(logn) O(n)
Minimal Perfect Hash O(1) O(1) O(n)

Cuckoo Hash O(1) O(1) O(n)

Table 4.1: Search Structure Summary
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Splay Trees

Average-case lookup time may be improved with an adaptive data structure that

rearranges itself based on search frequency of keys, such as a splay tree [30]. After

each search operation, a splay tree rearranges entries such that frequently-searched

keys are found more quickly by subsequent searches. As the filter progresses, searching

the tree for frequently-occurring records in the input set would become faster.

Splay trees could be especially advantageous in a filter where, for example, one or

more IP address fields have a bitmask modifier applied (i.e. matching on subnet inclu-

sion), as many input SiLK records may map to the same search key. A splay tree has

O(logn) amortized insert and search times, with actual times on homogenous input

data often outperforming those of red-black trees [30]. However, on heterogeneous

input data, splay trees display similar performance to red-black trees [30]. Consid-

ering that MKset filtering may be performed using any user-defined combination of

flow fields, we can not easily predict the homogeneity on any particular combination

of fields of the flow data to be filtered. As such, splay trees are not an ideal candidate

for MKset filtering.

Minimal Perfect Hashing

A perfect hash function maps a set of N keys to M integers without collisions, where

M > N . While memory usage is only a secondary consideration in our choice of data

structure, the simplest perfect hash structures use O(R) space, where R is the range

of the input elements. With 16-byte IPv6 addresses as possible MKset keys, giving

a range of 216 for even a single-key MKset, simple perfect hashing is impractical for

MKset filtering.

If M = N in our definition of a perfect hash — that is, the size of the hash table

is equal to the size of the input set — the function is called a minimal perfect hash

(MPH) [32]. With constant time insertion and lookups, and optimal memory usage,

data structures based on an MPH would match all of our criteria for improvement

over red-black trees. MPH function generators exist for up to several billion keys, and

McHugh et al. use MPH functions to store and query MAC addresses from network

data [17]. However, MPH function generation time is at best linear in the number

of keys [32], which would add an extra constant factor to the overall MKset creation
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time.

While perfect hash functions could be useful for filtering a large, known key set,

the extra constant factor during building make perfect hash functions undesirable for

a framework where flexibility and speed is desired in MKset generation and modifi-

cation. Some manner of non-perfect hashing algorithm may be a good candidate to

mitigate the tradeoff between space and time constraints over a variety of input sets.

In addition, as implementation of an MPH algorithm is made difficult by the process

of hash function generation, verification of correctness could be an obstacle to the

using minimal perfect hashing for MKset filtering.

Cuckoo Hashing

The cuckoo hash [23] uses multiple hash functions to provide more than one possible

spot for each key in the hash table. Using two functions h1 and h2 as an example, a

key x is inserted by computing h1(x). If the space at h1(x) is occupied by a key y,

then y is evicted to make room for x, and we place y in its alternate location h2(y),

similarly evicting any key that may reside there. This process continues until a vacant

location is found, or until K evictions have occurred, where K is the number of keys

in the hash table. If K evictions occur before a vacant location is found, then the

hash table is doubled in size and rebuilt. This insertion process succeeds in amortized

constant time when amortized over the complete insertion process [23].

In our two-function example, searching for a key x in the hash table involves

examining only two locations: h1(x) and h2(x), and so proceeds in constant time

as well. Also, as shown by McHugh [15], 50% space utilization is guaranteed with

two hash functions, and above 90% is guaranteed if we increase the number of hash

functions to 4, giving a memory requirement of O(n). In fact, McHugh’s work [15]

showed over 90% space utilization in practice even when the hash table is rebuilt after

less than K evictions.

With constant-time insertion and lookup, O(n) space, and linear time MKset

modification operations, the cuckoo hash presents the combination of speed, memory,

and data flexibility improvements over red-black trees that we desire. Our decision

to use cuckoo hashing was further aided by the previous work done on cubags by

McHugh et al., as the ability to leverage their work in creation and manipulation of
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cubags strengthen the case for using cuckoo hashing to attain our desired performance

and functionality gains.

4.4 Cuckoo Hashing in SiLK

An MKset filter is performed as described by Algorithm 1. Figure 4.1 shows the

rwfilter framework of Section 4.1 in which MKset filtering is implemented.

In our cubag model, the MKsetInsert and MKsetSearch functions in Algorithm 1

are cuckoo hash operations, and the modifyFields function applies cubag field mod-

ifiers such as AND/OR mask, reduce, right shift, and shift reduce, to a SiLK flow

record, as detailed in Appendix A.

A cubag filter consists of reading a cubag file into a cuckoo hash, and, for each

SiLK record to be filtered, applying any cubag field modifiers defined in the cubag

file header and performing a cuckoo hash search to see if the SiLK record matches

any keys in the cuckoo hash. If the SiLK record was found in the cuckoo hash, write

it to the “pass” output stream specified by the user, otherwise write it to the “fail”

output stream.

For a set of n SiLK input records and tuple file with k keys, k tuples must be

inserted into the red-black tree at a cost of O(log k) per insertion, giving an initial-

ization time of O(k log k). Each of the n SiLK input records must be searched for

in the tree at O(log k) per search, for a total search time of O(n log k). This gives a

total time for tuple filtering of O(k log k + n log k). Replacing the O(log k) red-black

tree insert and search times with O(1) searches and insertions for cubag filtering, we

get a total tuple filtering time of O(k + n), and we see that cubag filtering can be

expected to perform better asymptotically over tuple filtering.

The cubag filter module for rwfilter was designed to function as similarly as pos-

sible to the existing tuple architecture. This provides confidence that our tests are

comparing the performance of the different data structures, rather than the details

of the implementation framework.



22

Algorithm 1 MKset filter overview

Input: Set of SiLK data INRECS

MKset file MKSETFILE

SiLK fields FIELDNAMES used to build MKset keys

Field modifiers FIELDMODS used to build MKset keys

PASSRECS : Output file to write SiLK records from INRECS whose values

in FIELDNAMES matched a key in MKSET

FAILRECS : Output file to write all SiLK records from INRECS whose values

in FIELDNAMES did not match a key in MKSET

Output: PASSRECS output stream will contain SiLK records from INRECS

whose values in FIELDNAMES matched a key in MKSET

FAILRECS output stream will contain SiLK records from INRECS whose

values in FIELDNAMES did not match a key in MKSET

1: boolean variable PASS ← false

2: boolean variable FAIL← false

3: cuckoo hash MKSET ← ∅

4: for every key k in MKSETFILE do

5: MKsetInsert(MKSET, k)

6: end for

7: for every rwrec in INRECS do

8: modifyFields(FIELDNAMES, FIELDMODS, rwrec)

9: PASS ← MKsetSearch(MKSET, FIELDS, rwrec)

10: if PASS = true then

11: PASSRECS ← rwrec

12: else

13: FAILRECS ← rwrec

14: end if

15: end for

16: RETURN PASSRECS, FAILRECS
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Figure 4.1: SiLK MKset Filter Framework
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4.5 Implementation

With an existing framework for MKset filtering already present in the form of tuple

filtering, major conceptual changes to the SiLK code were not needed. Rather, the

challenge in implementation lay in adapting the cubag infrastructure, which was

designed for building, modifying, and viewing cubag files, to fit into a model that

includes filtering SiLK records with cubags similarly to tuple filtering.

4.5.1 Expanded Cubag Model

Our expanded cubag architecture was designed with the following considerations in

mind:

• Common structures and functions should be available to all applications that

work with cubags to create and manipulate cubag keys, and insert keys into a

cuckoo hash structure

• Applications using cubags should be able to load keys from a cubag file into a

cuckoo hash structure

• Applications using cubags should be able to search keys loaded from a cubag

file for a given SiLK record, after applying any field modifiers that were applied

during creation of the cubag file

4.5.2 Cubag Library

Cubag code is divided into two locations: the SiLK library called “cutab”, and in-

dividual applications that use the cutab library. To implement our expanded cubag

model as described, structures and functions to build, modify, read, and write cubags

are located in the cutab library (see Appendix B). Code to perform user option pro-

cessing such as input and output filenames and selection of SiLK fields and modifiers

for cubag keys is left to the implementation of each individual application, such as

cubag, cubagtool, and rwfilter.

The cutab library uses SiLK’s Netflow data structures to perform cuckoo hash

functions. The library could be extended to support other network data such as packet

captures, or even generalized to use raw bit strings, by modifying its comparison and
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modification functions. This would be more than a trivial task; however, the main

structure and framework of the library could provide a good starting point for general-

purpose filtering of multi-dimensional data.

4.5.3 Cubag Filtering in rwfilter

With our expanded cubag code model, additions to rwfilter code to enable cubag

filtering are focused on the logistics of adding the framework to enable the cubag

filtering option. Using a framework similar to that used by SiLK’s tuple filtering,

the loading of cubag keys into a cuckoo hash, application of cubag field modifiers

to SiLK records, and searching for SiLK records in the cuckoo hash, are performed

through calls to the cutab library functions. We have thereby essentially replaced

SiLK’s red-black tree operations with similar operations using cuckoo hashing, with

the caveat that we have also added the ability to perform cubag field modifications

to SiLK records before filtering.

4.5.4 Code Changes

Our changes were made to SiLK version 2.3.1. The areas of code that required

modification were in the rwfilter and cubag source, as well as the cutab library code.

Our main contributions were to add a cuBagLoad() function to the cutab library and

modify rwfilter to perform cubag filtering, and details can be found in Appendix B.
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Results

To validate our goal of improved performance in SiLK MKset filtering, we examine

running times and peak memory usage for MKset filters using SiLK tuple filtering and

our cubag filtering. We execute MKset filters using a range of input sets and MKset

sizes, and we measure the performance effects of cubag field modification during cubag

filtering by executing filters with the bit-masking modifier applied to the DIP field.

Bit-masking is chosen as the SiLK field modifier because it is a common operation

for subnet operations, a common operation to any networking task.

To validate our auxiliary goal of improved MKset creation over SiLK’s tuple files

using the cubag tool, we show the commands necessary for MKset generation, along

with performance metrics for these commands.

All filters are timed using the GNU time tool [9], and peak memory usage is ob-

tained with the Massif tool in the Valgrind software instrumentation framework [20].

All tests were performed on a quad-core, 3.1MHz computer running OpenSuSe Linux

11.1. SiLK release 2.3.1 [3], with McHugh et al.’s [15] cubag modifications, is the

code base upon which our cubag filtering mechanism is built.

5.1 Data Set

Our data set consists of 142,143,967 SiLK flow records collected from a small hospi-

tality network, representing 6 months of network activity. The internal network has

567 IPv4 addresses, broken down as follows:

• two /24 ranges (x.x.x.2-x.x.x.254) + 61 routable addresses

• 288 distinct internal source IP addresses (SIPs) seen

• 314 distinct internal destination IP addresses (DIPs) seen
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• 3 internal SIPs not seen in internal DIPs (i.e. 3 internal hosts sent but did not

receive packets)

• 29 internal DIPs not seen in internal SIPs (i.e. 29 internal addresses were sent

packets but did not send any)

SiLK data sets of varying size were created by partitioning the full data set into

subsets using SiLK’s rwsplit tool. Each data set was then used to create MKset files

with source IP, destination IP, and protocol (SIP, DIP, protocol) keys. Contiguous

subsets of SiLK flow records were used to produce a consistent increase in MKset

size. Each data set is labeled DS< N >, where N is the number of SiLK flow records

in the set; the MKset created from a data set DS< N > is labeled MK< N >.

The size and labels of the SiLK data sets and their resultant MKsets are shown

in Table 5.1.

Data Set #SiLK flows MKset #Keys
DS100M 100,000,000 MK100M 7,727,158
DS90M 90,000,000 MK90M 6,995,550
DS80M 80,000,000 MK80M 6,453,435
DS70M 70,000,000 MK70M 5,737,916
DS60M 60,000,000 MK60M 4,504,124
DS50M 50,000,000 MK50M 3,611,667
DS40M 40,000,000 MK40M 2,867,330
DS30M 30,000,000 MK30M 2,300,485
DS20M 20,000,000 MK20M 1,619,791
DS10M 10,000,000 MK10M 534,354

Table 5.1: Data Set and MKset Labels

5.2 Experimental Validation

To compare SiLK’s tuple filtering performance to that of cubag filtering, two types

of filtering tests are performed. In the first test, we filter a fixed number SiLK flows

with each of our MKsets, to view the relationship between MKset size and filtering

performance. In the second test, we filter a varying number of SiLK flows with a

single MKset, to determine the effects of the number of input flows on an MKset

filter. In addition, we present performance metrics measured during creation of the
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MKset files, to verify that performance improvements in MKset filtering do not come

at a cost of slower or less memory-efficient MKset creation.

5.2.1 MKset Creation

We begin by comparing the generation performance of three types of MKset files with

keys SIP, DIP, and protocol: tuple files and cubag files both with and without the

bit-masking cubag field modifier applied to the DIP field. We call these three types

of files “tuple”, “cubag”, and “modcubag” files, and refer to tests involving these

three file types as operating in “tuple mode”, “cubag mode”, and “modcubag mode”,

respectively.

Modcubag mode differs from cubag mode in that the DIP field of each key is

AND-bitmasked with the IP address 255.255.255.255 before insertion into the cubag.

This trivial bitmask was chosen so that the effects of the field modification process

could be measured while maintaining equal-sized MKsets for all three modes.

SiLK’s standard tool to create MKset files, the rwuniq tool, does not use the

red-black tree structure. Instead, rwuniq uses a hash table to create a list of unique

SiLK field values, which is output as ASCII text. As such, we expect that MKset

creation times will be linear in the number of input records for both tuple and cubag

modes, since the main difference between the two creation methods is utilization

of different hashing techniques. We present performance metrics to illustrate the

differences between the MKset creation methods. Since MKset creation performance

is an aspect of previous work by McHugh et al. [15], our theoretical analysis of MKset

creation performance is brief.

MKset Creation Commands

The following pipeline of Unix and SiLK commands are used to build a tuple file

mkset.tuple.txt with fields SIP, DIP, and protocol, from a set of SiLK records in the

file inputrecords.rwf:

rwuniq −− f i e l d s=sip , dip , proto inpu t r ecord s . rwf | cut − f 1 ,2 ,3 −d

” | ” > mkset . tup l e . txt

Our tests measure only the performance of the rwuniq tool, and not the cut com-

mand. Testing showed that the cut command added negligible time and no increase



29

in peak memory to the overall creation tasks, so rwuniq was made the focus of these

tests for simplicity’s sake.

In contrast, the following commands create the MKset files mkset.cubag.cub and

mkset.modcubag.cub used in cubag and modcubag modes:

Cubag:

cubag −−set− f i l e=mkset . cubag . cub : s ip , dip , proto inpu t r ecord s . rwf

Modcubag:

cubag −−set− f i l e=mkset . cubag . cub : s ip , dip , proto inpu t r ecord s . rwf

While not the main focus of our work, the simplicity of MKset creation with the

cubag command relative to the tuple file creation pipeline adds value and usability

to the MKset filtering process.

MKset Creation Performance: Tuple Mode vs Cubag Mode vs Modcubag

Mode

As shown by Figure 5.1, MKset file creation was comparable in all three modes up

to the point of 5.7M keys, with cubag creation time taking an average of 10% more

time than tuple files. However, for larger sets, we see the cubag method perform

more slowly in comparison to tuple, with cubag file creation time dropping to 23%

less than tuple file creation at 7.7M keys. The cubag tool sorts keys before writing to

disk, and the tuple files are not sorted. On all data sets, the times in Figure 5.1 would

be smaller for cubag, and possibly faster than rwuniq, if cubag functioned similarly

to rwuniq and did not sort the keys. To improve cubag generation times, this sorting

step could be skipped. However, the sorting allows for stream-based cubag merge

operations with the cubagtool utility program, and we choose to keep this step to

allow the analyst the option to use this tool.

Examination of the hash table implementation used by SiLK’s rwuniq tool for

tuple creation indicates that this is likely due to a higher number of collisions during

key insertion for the larger data sets. While cubag’s cuckoo hashing code increases

hash table size by a factor of two for unresolvable collisions, rwuniq’s hash table adds

blocks of a fixed size when the load factor exceeds 75%. As hash table size increases,

this fixed block addition results in less reduction in load factor, and thus the number



30

0

20

40

60

80

100

120

1.0M 2.0M 3.0M 4.0M 5.0M 6.0M 7.0M

10M 20M 30M 40M 50M 60M 70M 80M 90M 100M

T
im

e
(s

e
c
o

n
d

s
)

MKSet Size

MKSet Creation

Input DS Size

Tuple
Cubag

ModCubag

Figure 5.1: Time taken to build MKsets

of collisions and re-hashing increases. If memory usage were to become a limiting

factor in MKset creation, analysis of actual hash table collisions in the tuple and

cubag MKset creation processes should be a starting point for reduction in memory

usage.

Figure 5.2 shows peak memory usage in the cubag and rwuniq tools during MKset

file creation. We see a rough average of 33% decrease in memory usage in the cubag

modes over tuple mode while generating the MKset file.

To explain the areas of constant memory usage in Figure 5.2, consider the fol-

lowing: the load factor of a hash table is defined as the ratio of occupied hash table

locations to the total number of locations in the hash table. Except in perfect hash-

ing [32], when a key is to be inserted into a hash table, there is some probability that

its location in the table is already occupied, giving rise to a hash table collision. The

SiLK hash table model maintains a load factor of less than 75% [3], after which a

collision triggers a re-build of its hash table.

Cuckoo hashing with four hash functions, and McHugh’s reduction in the number

of evictions that cause a re-build of the hash table [15], can operate at a load factor

of over 90% before collisions occur [23], and a hash table re-build only occurs when
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Figure 5.2: Peak memory usage while building MKsets

an unresolvable collision occurs. Increases in the number of hash table re-building

operations for tuple MKset creation occur at MKset sizes of 1.6M, 5.7M, 6.5M, and

7.7M, these increases cause the rises in memory usage seen in Figure 5.2. In both

cubag modes, these increases occur at 1.6M, 2.3M, and 4.5M. Between these increases

in MKset size, hash table sizes remain constant while the numbers of keys in the tables

increase. This is shown by the horizontal segments in Figure 5.2.

At 4.5M keys in Figure 5.2, we see memory usage for cubag modes surpassing

that of tuple mode. This is explained by the fact that the cuckoo hash table has just

increased in size, and the SiLK hash table will increase in size at the next MKset size

increment.

These graphs indicate that the major preliminary step to an MKset filter, i.e. gen-

erating the MKset file, is performed comparably quickly, and with a smaller memory

footprint by the cubag tool over SiLK’s rwuniq, even with the added step of sorting

the hash table to allow for cubag merging with cubagtool.
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Figure 5.3: Peak memory usage by MKset filters with MK100K

5.2.2 MKset Filtering

Using our generated MKset files from Table 5.1, we perform two types of MKset

filtering on our data sets. To view the relationship between MKset size and filtering

performance, we filter DS100K with all MKsets. To determine the effects of the

number of input flows on an MKset filter, we filter all data sets with MK100K, an

MKset similar to those in previous tests as seen in Table 5.1, created from 100,000

SiLK records and containing a total of 6,207 keys. The size of this MKset was chosen

to be small enough that the time taken reading and building the MKset would not

dominate the time taken to filter each data set with the MKset, but large enough to

produce measurable times for filtering operations.

Variable Input size, Fixed MKset Size: All Data Sets Filtered with MK100K

Figures 5.3 and 5.4, and Tables 5.2 and 5.3 show performance metrics from our

variable input size filters. Using MKset MK100K, (which contains 6,207 keys), MKset

filtering performance was measured over all input sizes.

From Figure 5.3 we see that input set size has no effect on peak memory usage,

in both modified and unmodified MKset filters.
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Data set Tuple Filter Memory Cubag Filter Memory Modcubag Filter Memory
10M 3224688 927760 927784
20M 3224688 927760 927784
30M 3224688 927760 927784
40M 3224688 927760 927784
50M 3224688 927760 927784
60M 3224688 927760 927784
70M 3224688 927760 927784
80M 3224688 927760 927784
90M 3224688 927760 927784
100M 3224688 927760 927784

Table 5.2: Peak memory usage by MKset filters with MK100K

Data Set Tuple Filter Time Cubag Filter Time Modcubag Filter Time
10M 11.07 5.82 6.11
20M 22.65 11.83 11.72
30M 33.91 17.33 17.35
40M 43.69 22.88 23.08
50M 53.33 28.72 29.08
60M 64.21 34.84 33.96
70M 72.72 40.27 39.47
80M 81.91 44.86 44.74
90M 90.89 49.94 49.40
100M 99.29 54.57 54.68

Table 5.3: Time taken by MKset filters with MK100K

Recall from Chapter 4 that we expect to see O(1) search time per input record

for cubag filters, and O(log k) for tuple filters, with k the number of keys in the

cubag or tuple file, respectively. Total filter time, then, is expected to be O(n) for

cubag filtering, and O(n log k) for tuple filters. However, with k held constant for the

variable input size, fixed MKset size tests summarized in Figure 5.4, we expect overall

filtering time to be linear in the number of input records for both cubag and tuple

modes. R2 tests on the data as seen in table 5.4 confirm that filter time is linear in

Mode Function R2 Value
Tuple y = 9.7553x+ 3.7127 0.99781
Cubag y = 5.4634x+ 1.0525 0.9984

Modcubag y = 5.4054x+ 1.2293 0.99916

Table 5.4: Regression Analysis for MKset filtering with MK100K
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Figure 5.4: Time taken by MKset filters with MK100K

n, with tuple mode incurring a larger constant multiplier. Figure 5.6 serves as simple

confirmation that execution time of cubag filtering is lower than that of tuple filtering

over a range of input sizes.

Fixed Input Size, Variable MKset Size: DS100K Filtered With All MKsets

Figures 5.5 and 5.6, and Tables 5.5 and 5.7 show performance measurements from our

variable MKset filters. Keeping input size constant at 100,000 records, MKset filtering

performance was measured over all MKset sizes, with and without field modifiers.

R2 tests on data as seen in Table 5.6 reveals that memory usage by rwfilter during

MKset filtering is linear in the size of the MKset, which is expected since the main

contributors to memory usage in MKset filters of using MKsets of size k keys are the

red-black tree and the cuckoo hash table, each taking O(k) space. Also, we see a

negligible increase in memory demands for the bit-masking modifier of 104 bytes for

every MKset filter, to store the modifier value and some structure overhead.

Table 5.5 shows that the cuckoo hash tables consume 50% or less memory than

the red-black trees. Consideration of the red-black tree algorithm and inspection of

the SiLK implementation reveal that two child node pointers per MKset key can be
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Figure 5.5: Peak memory usage by MKset filters on DS100K

attributed to this memory increase.

With an average time decrease of 90%, cubag’s cuckoo hash structure has out-

performed SiLK’s red-black tree in these MKset filters, as shown in Figure 5.6 and

Table 5.7. With an added .01% in filtering time, adding the bit-masking field modifier

to the cubag filters has a negligible impact on speed.

In addition, we see in Figure 5.6 that filter time is constant per input record for

the cubag filters, while time increases linearly in MKset size for the tuple filters.

Given a fixed input set, the cubag filters improve time and memory usage in

MKset filters over SiLK’s tuple filtering tool. As well, bit-mask field modification at

filter time adds negligible reduction in execution speed.

5.2.3 Summary

Analyses of our experimental validation tests have shown comparable time and a 33%

reduction in memory usage for MKset creation using cubags instead of SiLK tuple

files. MKset filtering using a cubag of size k shows O(log k) improvement in execution

time over tuple filtering using a tuple file of size k, with a 50% reduction in memory

usage.
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MKset Size Tuple Filter Memory Cubag Filter Memory Modcubag Filter Memory
534354 45,877,424 32,093,976 32,094,080
1619791 132,582,008 63,551,080 63,551,184
2300485 188,045,352 126,465,936 126,466,040
2867330 232,817,960 126,465,488 126,465,592
3611667 294,757,776 126,465,312 126,465,416
4504124 363,224,112 252,295,168 252,295,272
5737916 464,084,320 252,294,704 252,294,808
6453435 522,477,072 252,294,360 252,294,464
6995550 565,890,104 252,294,976 252,295,080
7727158 621,027,464 252,295,080 252,295,184

Table 5.5: Memory Footprint of MKset filters on DS100K

Mode Function R2 Value
Tuple y = 60, 000, 000x+ 10, 000, 000 0.99425
Cubag y = 30, 000, 000x+ 30, 000, 000 0.85455

Modcubag y = 30, 000, 000x+ 30, 000, 000 0.85455

Table 5.6: Regression Analysis for MKset filtering on MK100K

MKset Size Tuple Filter Cubag Filter %Impr Modcubag Filter %Impr
534354 6.86 0.70 89.80 0.72 30.04
1619791 19.99 1.90 90.50 1.95 52.07
2300485 28.54 3.14 89.00 3.19 32.75
2867330 36.06 3.56 90.13 3.50 45.68
3611667 45.66 4.22 90.76 4.17 57.10
4504124 57.89 6.27 89.20 6.26 30.54
5737916 74.27 7.45 90.00 7.44 45.64
6453435 84.47 8.09 89.97 7.87 51.71
6995550 91.40 8.51 90.42 8.28 55.42
7727158 100.77 9.19 90.89 9.18 59.37

Table 5.7: Time taken by MKset filters on DS100K
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Chapter 6

Conclusions

Network flow analysis is used by network analysts to monitor [34], plan, and main-

tain [25] IP networks. One common network flow analysis task is MKset filtering,

which involves filtering flow records based on inclusion in a “multi-key set”, or MK-

set. An MKset is a set containing one or more unique “multi-key” elements, each of

which consists of values for one or more network flow attributes. The SiLK suite of

network flow analysis tools provides a method of performing MKset filtering called

“tuple filtering”, which uses red-black trees [6] to speed up the filtering process.

6.1 Main Goals

Our main goals for improving MKset filtering in SiLK were as follows:

• faster run times

• decreased memory usage

• added functionality for manipulation of set keys

Using the fast and memory-efficient cuckoo hashing algorithm, we have improved

execution time for MKset filtering in SiLK from O(n log k + k log k) to O(n + k),

where n is the number of SiLK records to be filtered, and k is the number of keys in

the MKset. Experimental results confirmed O(log k) speed improvement and two-fold

memory efficiency in cubag filtering as compared to tuple filtering.

Previous work by McHugh et al. [15] provided a cuckoo-hash-based MKset struc-

ture called a cubag. Building upon this work, we also have added cubag key modifica-

tion at MKset filter time with negligible effects on performance compared to filtering

without key modification.
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6.2 Auxiliary Goals

Auxiliary goals for our cubag filters were:

• ensure any new tools or methods fit within the standard flow of the SiLK tools

• maintain or improve the number of commands and non-SiLK scripting required

to generate, store, and filter MKsets

• keep in mind that we may want to modify or merge MKsets to allow greater

filtering flexibility, similarly to SiLK’s current bag and set tools

By fitting our cubag filter mechanism into a similar framework as SiLK’s tuple

filters, we have created a tool that fits with the SiLK tool paradigm for tool usage and

code structure. As shown in the results section, creation, storage, and manipulation

of cubags via the existing suite of cubag tools uses less commands than piping rwuniq

output through scripts to create text-based tuple files, for which no manipulation tool

exists.

With faster execution times and less space usage than tuple filtering, and the

added functionality of cubag field modification, we have created an improved tool to

replace SiLK’s tuple filtering, through modification of the SiLK tools code to allow

MKset filtering with cuckoo bags using cuckoo hashing. We have provided faster and

more flexible filtering to network analysts, which allows the analysts to explore their

network traffic data in a more iterative and flexible manner.

6.3 Future Work

The next step in our work will be to integrate the cubag suite of tools, including our

rwfiltercubag, into the main SiLK code repository. With better performance, easier

usage, and flexible file management, the cubag suite will give SiLK analysts the power

to perform larger and more complex analyses than previously possible.

While cubag filtering provided considerable speed and memory improvements over

tuple filters, potential improvements in MKset filtering speed remain, ranging from

minor tweaks to major changes.

For filtering tasks involving large MKsets relative to the number of SiLK records

to be filtered, an improved filtering model could involve reading subsets of an MKset
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file into memory as necessary. For instance, if an MKset was constructed with a large

number of hosts on the Internet known to be involved in botnet activity and the

port numbers on which they undertake this activity, an analyst may want to search

in targeted time periods, such as a few hours, for potential botnet activity on their

internal network during those times, by performing an MKset filter on SiLK flow

records for the given time period with the botnet MKset. If the IP addresses seen

in a small set of SiLK records are few and closely related, a sorting of the k keys in

the MKset, say with the O(k log k) merge sort [11] algorithm, will tend to place keys

matching this small set of SiLK records closely together on disk in the MKset file.

Taking advantage of the sorted MKset keys, a targeted subset of the MKset could be

read from disk that is likely to contain most or all of the keys that could match the

SiLK records to be filtered. If this botnet search is a commonly-performed analysis,

this subset-loading algorithm could provide gains in filtering time that outweigh the

O(k log k) sorting of the botnet MKset.

Currently, cubags are stored by writing hash keys to simple binary flat files. The

loading speed of a cubag file into a hash table during the filter initialization stage

could be improved by implementing a file format that is a serialized version of the hash

table, with actual memory offsets and hash table specifics stored in the cubag file.

Ensuring successful deserialization on different architectures with different endianness

and word sizes would require careful implementation of such a file format, and with

O(1) cuckoo hash amortized insertion time, it is expected that this would result in

only small constant time gains; however, as cubag sizes scale upward, this could be a

worthwhile improvement.

Before loading an input file, SiLK’s rwfilter code performs initial tests on the file

header to possibly fail the entire file before any records are checked. For instance,

if the filter parameters include an IPv6 address, and the input file header specifies

that its records are IPv4 only, then rwfilter can simply write all the records in that

file to its “fail” output stream. Adding the cubag filter parameters into this checking

process should be done to maintain consistency with the rwfilter framework when our

code is included in the main SiLK repository.

For further clarification, note that these header checks are more relevant when

using rwfilter’s file selection switches, and not just specifying a single input file as we
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have done in our examples.

Neither tuple nor cubag filtering currently take advantage of rwfilter’s multi-

threading capabilities. Enabling multiple concurrent search threads, during either

kind of MKset filter, should result in an improvement in filtering speed on multiple-

core systems.

MKset filtering could be extended to other problem domains by modification of

the data structures and functions in the cutab library. By modifying cutab to be a

general-purpose API for cuckoo hashing, applications for tasks such as data mining,

classification, and database querying could benefit from the concepts employed by

our improved tuple filtering in SiLK.
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Appendix A

Cubag Syntax

The following syntax description comes from the John McHugh’s cubag manual [15].

syntax

cubag --bag-file=OUTPUTFILE:keyfield[(modifier)][,keyfield...]

:datafield[,datafield ...]

Field names are not case sensitive and names can be abbreviated

to the shortest unambiguous string. The following fields can be

used as keys:

sIP, 1 :

Source IP

dIP, 2 :

Destination IP

sPort, 3 :

Source Port - if ports are specified as keys zero values

will be supplied for protocols other than TCP and UDP.

dPort, 4 :

Destination Port

Protocol, 5 :

Protocol

Packets, pkts, 6 :

Packet count

Bytes, 7 :

Byte count

Flags, 8 :
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TCP Flags - set to zero for non-TCP flows

sTime, 9 :

Start time

Duration, 10 :

Duration

eTime, 11 :

End time

Sensor, 12 :

Sensor index

In, 13 :

Input interface index

Out, 14 :

Output interface index

nhIP, 15 :

Next Hop IP

InitialFlags, 26 :

Flags from the first packet of a TCP session. Zero if not

a TCP packet or if not collected.

SessionFlags, 27 :

OR of the flags from the remainder of the session. Zero if

not a TCP packet or if not collected.

Attributes, 28 :

Miscellaneous information about the flow including its

reason for termination. Bit map with 8 bits.

0x01 :

Additional TCP-state machine information is available.

This must be set for every TCP flow where the init_flags

and rest_flags fields are set.
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0x08 :

Flow received packets following the FIN packet that were

not ACK or RST packets.

0x20 :

Flow ends prematurely due to a timeout by the collector.

0x40 :

Flow is a continuation of a previous flow that was killed

prematurely due to a timeout by the collector.

0x80 :

Used as a flag to mark a record as having IPv6 addresses.

Application, 29 :

Canonical port for a limited set of applications.

TypeClass :

An 8 bit field that is interpreted with respect to the

silk.conf file for the data in question.

sTime+msec, 22 :

Start time plus milliseconds. Only the seconds value is used

as a key. The milliseconds are discarded. Included for

completeness only.

eTime+msec, 23 :

End time as above.

Dur+msec, 24 :

Duration, as above.

icmpTypeCode, 25 :

256 * ICMP Message Type + ICMP Message Code. Set to (255,255),

an illegal value, if the protocol is not ICMP.

scc, 18 :

Source country code, a two character code associated with the

country of the source IP.

dcc, 19 :

Destination country code, a two character code associated with

the country of the destination IP.
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IPversion :

This is a 1 byte key field that will be included automatically

when mixed IPv4, IPv6 addresses are possible and an IP address

is specified as a key field.

keyfield modifiers

Some key fields can be operated on in a number of ways.

Fields that contain IP addresses can be masked. IPv4

fields can be divided or reduced. Time, duration, and

volume fields (used as keys) can be divided or reduced.

TCP flag fields can be masked. This allows, for example,

removing the significance of the non-state flags so that

flows containing, for example ACK and PSH,ACK would have

the same key field. At the present time, most 8 and 16

bit fields cannot be modified. The following operations

are currently supported:

& AND mask

Applies to IP fields and TCP flag fields only. The modifier is a

parseable IP address for V4 and V6 IP fields, an integer for V4 IP

and flag fields, and a string containing any combination of the

characters "FSRPAUEC" for flag fields. The key field is "ANDed"

with the mask value before insertion into the key. Masking the low

order bits of an IP address with 0s has the effect of aggregating

volumes by subnet.

| OR mask

Similar to AND but the operation is a bitwise OR.

/ divide

Applies to time, duration, and volume key fields. The key field value

is integer divided by the operand before insertion in the key. This
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could be used to change the units of a field, e.g. duration divided

by 60 gives minutes. Note that rounding does not take place. This

should not matter for a key field.

/* reduce

Similar to divide, but multiplies the key field back to its original

scale after division. Applied to epoch times, this allows time

printing routines to treat the key field as a normal time_t, but with

reduced precision.

>> right shift

Applies to IP addresses. Shifts bits right by the specified amount,

effectively leaving a subnetwork prefix.

>< shift reduce

Applies to IP addresses. Shifts bits right by the specified amount,

then left by the same amount effectively leaving a CIDR specification



Appendix B

Code Changes/Additions

cutab.c

cuBagLoad() As the cubag creation, modification, and viewing tools do not require

loading of a full cubag file from disk into memory, there was no function written in the

cubag library to do so. A new function, cuBagLoad(), was created to complete the

cubag suite’s shared library of functions to work with cuckoo hash tables (cutab.c).

Some modification to the existing cuBagReadHeader() function was necessary to read

all of the required header information, but the bulk of the work here entailed meshing

portions of the cubag tool’s hash creation functions, the SiLK stream I

O library, and some new code to calculate the optimal hash table size based on the

number of entries in the cubag.

rwfiltercubag.c

Setup/Cleanup Some standard SiLK tool functions are used to handle input op-

tions, provide a hook to register rwfiltercubag with the main rwfilter code, and specify

startup and teardown operations for the specified cubag file. In particular, the setup

function calls the new cuBagLoad() to get header information and read the cubag

into a cuckoo hash, and the teardown function calls cutab.c’s cuBagFree() function

to release any memory allocated for the cubag structures.

cuBagCheck() The meat of the new functionality lies in cuBagCheck(), which is

the function that gets called by rwfilter to test a SiLK record for inclusion in the

specified cubag file. The flow is as follows:

• copy the cubag key fields, as specified in the cubag header, into a buffer to be

passed to cutab.c’s cuBagLookup()
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• apply any key modifiers to the buffer’s keys, again as specified by the cubag

header

• call cutab.c::cuBagLookup() to test whether the given SiLK record matches a

key in the cuckoo hash built from the cubag file

• return pass or fail to rwfilter

rwfilter.c

Some minor modifcations were necessary to include the rwfiltercubag.c functionality

in rwfilter’s filter options.


