Show simple item record

dc.contributor.authorFleischauer, Michael D.en_US
dc.date.accessioned2014-10-21T12:35:10Z
dc.date.available2006
dc.date.issued2006en_US
dc.identifier.otherAAINR16697en_US
dc.identifier.urihttp://hdl.handle.net/10222/54788
dc.descriptionThis work describes combinatorial investigations of high-capacity thin film negative electrode materials for Li-ion batteries. Amorphous alloy electrode materials are emphasized since they offer much better charge/discharge capacity retention than their crystalline counterparts. Various combinatorial and high-throughput methods, designed to deal with the experimental challenges posed by amorphous materials, are described.en_US
dc.descriptionThe aim is to understand the electrochemistry of the Si-Al-M (M = transition metal such as Cr, Fe, Mn or Ni) system. Certain compositions of Si-A1-M can be mass produced as amorphous alloys, offer high capacities, and good capacity retention. Separate investigations of the Si-M, Al-M, and Al-Si systems were performed since the literature for each system is either conflicting or non-existent.en_US
dc.descriptionThe electrochemical performance of Si-M can be explained by assuming the presence of active amorphous Si and inactive nanocrystalline SiM. Diffusion effects lower the observed capacity for compositions above 30 atomic percent M for all tested values of M except Mn.en_US
dc.descriptionMossbauer and XRD measurements suggest that M atoms are not randomly distributed throughout Al-M samples, but instead occur in isolated and clustered sites. A phenomenological model based on the relative amounts of isolated and clustered sites is presented to explain the capacities of Al1 -xMx samples observed at room and elevated temperature. Interactions between Si, Al and Li complicate the electrochemistry of the Si-Al system. Measurements suggest the presence of AlLi, AlLiSi or Al3Li7Si4, Al2Li18Si 6, and Li15Si4 in fully-lithiated films.en_US
dc.descriptionCapacities in the Si-Al-M system are dominated by the influence of Al-M and Si-M interactions at high Al and Si contents, respectively. Compositions with less than 80 atomic percent Si and more than 10-20 atomic percent M remained amorphous during Li insertion and removal and could be used as high capacity electrode materials. There is also some evidence all Si-Al-M equilibrium phases are inactive. Possible future research directions based on the insight gained during this research are provided.en_US
dc.descriptionThesis (Ph.D.)--Dalhousie University (Canada), 2006.en_US
dc.languageengen_US
dc.publisherDalhousie Universityen_US
dc.publisheren_US
dc.subjectPhysics, Condensed Matter.en_US
dc.subjectEngineering, Materials Science.en_US
dc.titleThe effect of transition metals on amorphous alloy negative electrode materials for lithium-ion batteries.en_US
dc.typetexten_US
dc.contributor.degreePh.D.en_US
 Find Full text

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record