Show simple item record

dc.contributor.authorKennedy, Catherine Anne.en_US
dc.date.accessioned2014-10-21T12:33:21Z
dc.date.available2005
dc.date.issued2005en_US
dc.identifier.otherAAINR00972en_US
dc.identifier.urihttp://hdl.handle.net/10222/54702
dc.descriptionSeveral framework solids exhibit negative thermal expansion (NTE) over a wide temperature range, e.g. ZrW2O 8 exhibits NTE from 0.3 to 1050 K. Although NTE is observed in other materials, it occurs over much smaller temperature ranges. NTE in ZrW 2O8 is associated with the low-energy modes corresponding to the correlated vibrations of the [WO4]2- tetrahedra and their three nearest [ZrO6]8- octahedra. This involves translation as well as libration, and low-energy optic modes play a central role. Thermal expansion and resistance to heat flow both originate in the anharmonic terms of the lattice dynamics. The influence of NTE in these framework materials on thermal conductivity was investigated by measuring thermal properties (thermal conductivity, kappa, from ca. 2 to 390 K and heat capacity, CP, from ca. 0.4 to 300 K) of ZrW2O8 and HfMo2O8.en_US
dc.descriptionLiterature values of the CP of ZrW2 O8 showed more disagreement than one might expect. In this research, it was found that the discrepancy could be due to low thermal conductivity of ZrW2O8. The CP of HfMo 2O8 is reported here for the first time. Analysis of CP reveals low-frequency modes that are not present in the binary oxides. A calculation of CP of HfMo 2O8 from HfMo2O8, ZrW2O 8, and ZrMo2O8 fits experimental C P of HfMo2O8 better since each AB 2O8 compound exhibits NTE and therefore has the low-frequency modes attributed to NTE. The thermodynamic calculations of the production of ZrW2O8 and HfMo2O8 from the appropriate oxides confirm that both are thermodynamically unstable with respect to the oxides.en_US
dc.descriptionThe kappa values of both ZrW2O8 and HfMo 2O8 are exceptionally low: kappadense(ZrW 2O8) is 0.91 W m-1 K-1 and kappadense(HfMo2O8) is 0.64 W m-1 K-1 at T = 300 K. Temperature-dependent kappa values of ZrW2O8 and HfMo2O8 are glass-like, despite polycrystalline morphology. Through consideration of the CP, phonon mean free path, and Gruneisen parameter, the kappa behavior is attributed to the low-frequency modes which are also responsible for NTE. It is possible that other NTE framework oxides similar to those studied here will also exhibit this low, glass-like kappa, hence low-frequency modes in materials could provide a basis for design of new materials with low kappa.en_US
dc.descriptionThesis (Ph.D.)--Dalhousie University (Canada), 2005.en_US
dc.languageengen_US
dc.publisherDalhousie Universityen_US
dc.publisheren_US
dc.subjectChemistry, Physical.en_US
dc.subjectEngineering, Materials Science.en_US
dc.titleInvestigation of the relationship between negative thermal expansion and other thermal properties of framework oxides.en_US
dc.typetexten_US
dc.contributor.degreePh.D.en_US
 Find Full text

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record