Show simple item record

dc.contributor.authorMenéndez-Delmestre, Karínen_US
dc.contributor.authorBlain, Andrew W.en_US
dc.contributor.authorSwinbank, Marken_US
dc.contributor.authorSmail, Ianen_US
dc.contributor.authorIvison, Rob J.en_US
dc.contributor.authorChapman, Scott C.en_US
dc.contributor.authorGonçalves, Thiago S.en_US
dc.date.accessioned2014-03-12T19:20:57Z
dc.date.available2014-03-12T19:20:57Z
dc.date.issued2013-02-08en_US
dc.identifier.citationMenéndez-Delmestre, Karín, Andrew W. Blain, Mark Swinbank, Ian Smail, et al. 2013. "Mapping the Clumpy Structures within Submillimeter Galaxies using Laser-Guide Star Adaptive Optics Spectroscopy." The Astrophysical Journal 767(2):151en_US
dc.identifier.issn0004-637X
dc.identifier.urihttp://hdl.handle.net/10222/45399
dc.identifier.urihttp://dx.doi.org/10.1088/0004-637X/767/2/151
dc.description.abstractWe present the first integral-field spectroscopic observations of high-redshift submillimeter-selected galaxies (SMGs) using Laser Guide Star Adaptive Optics (LGS-AO). We target H-alpha emission of three SMGs at redshifts z~1.4-2.4 with the OH-Suppressing Infrared Imaging Spectrograph (OSIRIS) on Keck. The spatially-resolved spectroscopy of these galaxies reveals unresolved broad H-alpha line regions (FWHM>1000 km/s) likely associated with an AGN and regions of diffuse star formation traced by narrow-line H-alpha emission (FWHM<500 km/s) dominated by multiple Halpha-bright stellar clumps, each contributing 1-30% of the total clump-integrated H-alpha emission. We find that these SMGs host high star-formation rate surface densities, similar to local extreme sources, such as circumnuclear starbursts and luminous infrared galaxies. However, in contrast to these local environments, SMGs appear to be undergoing such intense activity on significantly larger spatial scales as revealed by extended H-alpha emission over 4-16 kpc. H-alpha kinematics show no evidence of ordered global motion as would be found in a disk, but rather large velocity offsets (~few x 100 km/s) between the distinct stellar clumps. Together with the asymmetric distribution of the stellar clumps around the AGN in these objects, it is unlikely that we are unveiling a clumpy disk structure as has been suggested in other high-redshift populations of star-forming galaxies. The SMG clumps in this sample may correspond to remnants of originally independent gas-rich systems that are in the process of merging, hence triggering the ultraluminous SMG phase.en_US
dc.relation.ispartofThe Astrophysical Journal
dc.titleMapping the Clumpy Structures within Submillimeter Galaxies using Laser-Guide Star Adaptive Optics Spectroscopyen_US
dc.title.alternativearXiv:1302.2145 [astro-ph]en_US
dc.typearticleen_US
dc.identifier.volume767
dc.identifier.volume2
dc.identifier.startpage151en_US
 Find Full text

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record