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Abstract

We introduce a new paradigm in graph compression and formal language theory. We

show that the ideas behind some of the most important data structures for compress-

ing and indexing strings — such as the suffix array, the Burrows-Wheeler Transform

and the FM-index — are much more general and provide a new approach to study-

ing automata and regular languages, which retrospectively explains the impact of

these data structures. We classify all automata and all regular languages by their

propensity to be sorted. Our classification represents a useful parameterization simul-

taneously for diverse automata-related measures: (i) the encoding bit-complexity of

automata/labeled graphs, (ii) the complexity of operations on regular languages (e.g.

membership) and on labeled graphs (e.g. pattern matching), (iii) the complexity of

NFA determinization by the powerset-construction algorithm. To the best of our

knowledge, ours is the only parameterization of automata/labeled graphs capturing

simultaneously all these aspects. We show that our parameterization has deep and

unexpected consequences both in data compression (encoding, pattern matching) and

in automata theory (nondeterminism, entanglement, minimization).
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Chapter 1

Introduction

One of the biggest challenges of computer science is handling the explosive growth

of data. While technology is improving our ability to store data, it is paramount to

rely on compression algorithms. But compression is not sufficient: we also need to

efficiently retrieve and query data. The classical data structures required to query

data impose a significant space overhead. A typical field in which we need to both

compress and process data is bioinformatics. The DNA of a human genome consists

of about 3.3 billion bases. Each base can be of one of the following four types: adenine

(A), cytosine (C), guanine (G) and thymine (T). If we store each base using 2 bits,

we need almost 800 megabytes. In bioinformatics applications — such as sequence

assembly — we also need to efficiently process and query genomic data. To this end,

a typical solution is to build the suffix tree of the genome. However, storing the suffix

tree requires at least 10 bytes per base, and so we need more than 30 gigabytes [96].

The field of compressed data structures aims to compress data in such a way

that it is possible to efficiently solve queries without decompressing the data. The

nineties marked the beginning of a golden age for compressed data structures, a

time of prosperity that went beyond any reasonable expectation and keeps having a

strong impact on current research. Some new conferences on the topic (DCC, CPM,

SPIRE) were established. New ideas for storing fundamental data structures — such

as trees [105] — proved that space-time tradeoffs in computer science can often be

overcome: it is possible to design procedures that are both time-efficient and space-

efficient. More generally, the new techniques inspired by compressed data structures

have influenced the field of algorithms as a whole.

One of the striking features of compressed data structures is that they combine

elegance and practicality, thus removing the gap between the beauty of theory and the

pervasiveness of applications. In 1990 Udi Manber and Gene Myers invented the suffix

array [88], in 1994 Michael Burrows and David Wheeler invented the Burrows-Wheeler

1
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Transform [27], and in 2000 Paolo Ferragina and Giovanni Manzini invented the FM-

index [56]. These data structures solve theoretical problems which lead to surprising

applications in bioinformatics, as witnessed by the 2022 ACM Paris Kanellakis Theory

and Practice Award awarded to Micheal Burrows, Paolo Ferragina and Giovanni

Manzini.

The suffix array, the Burrows-Wheeler Transform and the FM-index can handle

unstructured data, that is, strings and texts. However, the World Wide Web relies

on hypertext, in which there are relationships between data. These relationships are

modeled through graphs : for example, graphs can be used to describe the behavior

of social networks. Graphs can also be used to model the idea of computation itself:

the field of automata theory can be traced back to the fifties and it is related to

Turing machines. The classical approach to automata theory — which establishes a

deep connection between automata, regular expressions and monoid theory — focuses

on the study of regular languages. Most classical results that are presented in an

introductory course on automata theory (such as Kleene’s theorem, the Myhill-Nerode

theorem and Hopcroft’s algorithm for minimizing a DFA [74]) date back to more than

fifty years ago.

In this thesis, we present a new paradigm in automata theory, based on the same

flavor of the classical results in the field. The suffix array, the Burrows-Wheeler

Transform and the FM-index are explicitly or implicitly based on the idea of sorting.

We show that the idea behind these data structures is much more general and provides

a new approach to studying automata and regular languages, which retrospectively

explains the impact of these data structures. We will classify automata and regular

languages by their propensity to be sorted. Our classification represents a useful

parameterization simultaneously for diverse automata-related measures:

1. the encoding bit-complexity of automata/labeled graphs.

2. the complexity of operations on regular languages (e.g. membership) and on

labeled graphs (e.g. pattern matching).

3. the complexity of NFA determinization by the powerset-construction algorithm.

To the best of our knowledge, ours is the only parameterization of automata/labeled
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graphs capturing simultaneously all these aspects. We will show that our parameteri-

zation has unexpected consequences both in data compression and in formal language

theory.

1.1 Graph Compression

Graph compression is a vast topic that has been extensively studied in the literature

(see for example the survey [16]). Most solutions discussed below consider the un-

labeled case; a compressor for a labeled graph can be obtained by compressing the

unlabeled version of the given labeled graph and storing the labels separately using

⌈log σ⌉ additional bits per edge (σ is the alphabet’s size).

Existing results studying worst-case information-theoretic lower bounds of graph

encodings can be used as the reference base for the compression methods discussed

below. First of all, note that the worst-case information-theoretic number of bits

needed to represent a directed graph with m edges and n vertices is log
(

n2

m

)

=

m log(n2/m) + Θ(m), that is, log(n2/m) + Θ(1) bits per edge [96]. The same lower

bound holds on undirected graphs up to a constant additive number of bits per edge.

Other useful bounds (on automata) are studied in the recent work of Chakraborty

et al. [29]. In that paper, the authors present a succinct encoding for DFAs using

log σ+log n+1.45 bits per transition (n is the number of states) and provide worst-case

lower bounds as a function of the number of states: in the worst case, DFAs cannot be

encoded using less than (σ−1) log n+O(1) bits per state and NFAs cannot be encoded

in less than σn+1 bits per state. The same paper provides encodings matching these

lower bounds up to low-order terms.

For our purposes, it is useful to divide graph compression strategies into general

graph compressors and compact encodings for particular graph classes. The former

compressors work on arbitrary graphs and exploit sources of redundancy in the graph’s

topology in order to achieve a compact representation. Compressors falling into this

category include (this list is by no means complete, see [16] for further references)

K2 trees on the graph’s adjacency matrix [24], straight-line programs on the graph’s

adjacency list representation [33], and context-free graph grammars [48]. A shared

feature of these compressors is that, in general, they do not provide guarantees on the

number of bits per edge that will be used to encode an arbitrary graph (for example,
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a guarantee linked with a particular topology or graph parameter such as the ones

discussed below); the compression parameter associated with the graph is simply the

size of the compressed representation itself. This makes these techniques not directly

comparable with our approach (if not experimentally).

Techniques exploiting particular graph topologies or structural parameters of the

graph to achieve more compact encodings are closer to our parameterized approach,

bearing in mind that also in this case a direct comparison is not always possible in

the absence of known relations between our parameter and the graph parameters

mentioned below. A first example of such a parameter (on undirected graphs) is

represented by boxicity [107], that is, the minimum number b of dimensions such

that the graph’s edges correspond to the intersections of b-dimensional axes-parallel

boxes (the case b = 1 corresponds to interval graphs). Any graph with boxicity b

can be represented naively using O(b) words per vertex (that is, storing each ver-

tex as a b-dimensional box), regardless of the fact that its number of edges could

be quadratic in the number of vertices (even in the interval graph case). Similar

results are known for graphs of small clique-width/bandwidth/treedepth/treewidth

[78, 79, 52] and bounded genus [43]; any graph from these graph families can be en-

coded in O(k) bits per vertex, where k is the graph parameter under consideration.

Similarly, posets (transitively-closed DAGs) of width w can be encoded succinctly

using 2w + o(w) bits per vertex [120]. While the above-mentioned methods focus on

particular graph parameters, another popular approach is to develop ad-hoc compact

encodings for particular graph topologies. Separable graphs (graphs admitting a sep-

arator of size O(nc) breaking the graph into components of size αn for some c < 1

and α < 1) allow for an encoding using O(1) bits per vertex [18]. This class includes

planar graphs — admitting also an encoding of 4 bits per vertex [58] — and trees

— admitting an encoding of 2 bits per vertex (e.g. a simple balanced-parenthesis

representation) and an encoding of 1 + o(1) bits per vertex when every internal node

has exactly two children [77]. Circular-arc graphs (a class including interval graphs)

of maximum degree ∆ can be encoded in log ∆+O(1) bits per vertex, and this bound

is asymptotically tight [30]; in the same paper, the authors show that circular-arc

graphs with chromatic number χ admit an encoding using χ+ o(χ) bits per vertex.
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1.2 Regular Expression Matching and String Matching on Labeled

Graphs

“Regular expression matching” (REM) refers to the problem of determining whether

there exist substrings of an input string that can be derived from an input regular

expression. This problem generalizes that of determining membership of a string to

a regular language, and it finds important applications which include text processing

utilities (where regular expressions are used to define search patterns), computer

networks (see [119]), and databases (see [41]). A closely-related problem is that of

“exact string matching on labeled graphs” (SMLG): find which paths of an edge-

labeled graph match (without edits) a given string (see [49]). This problem arises

naturally in several fields, such as bioinformatics [10, 114], where the pan-genome is a

labeled graph capturing the genetic variation within a species (and pattern matching

queries are used to match an individual’s genome on this graph), and graph databases

[7]. Since NFAs can be viewed as labeled graphs, it is not surprising that existing

lower and upper bounds for both problems have been derived using the same set of

techniques.

Backurs and Indyk in [9] carry out a detailed study of the complexity of the REM

problem as a function of the expression’s structure for all regular expressions of depth

up to 3. For each case (there are in total 36 ways of combining the regular operators

“|”, Kleene plus, Kleene star, and concatenation up to depth 3), they either derive a

sub-quadratic upper bound (where quadratic means the string’s length multiplied by

the regular expression’s size) or a quadratic lower bound conditioned on the Strong

Exponential Time Hypothesis [76] or on the Orthogonal Vectors conjecture [23]. Note

that this classification does not capture regular expressions of arbitrary depth. Simi-

larly, Equi et al. [49] establish lower and upper bounds for the SMLG problem, even

in the scenario where one is allowed to pre-process the graph in polynomial time [50]

(that is, building a graph index); their work represents a complete classification of

the graph topologies admitting either sub-quadratic pattern matching algorithms or

quadratic lower bounds (obtained assuming the Orthogonal Vectors conjecture); in

this context, quadratic means proportional to the string’s length times the graph’s

size. In all these works, as well as in further papers refining these analyses by provid-

ing finer lower bounds or better upper bounds for particular cases [22, 67, 65, 68, 15],
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the problem’s complexity is studied by cases and does not depend on a parameter of

the language or a parameter of the graph.

Techniques parameterizing the problem’s complexity on a graph parameter do

exist in the literature, and are closer to the spirit of our work. These parameters

include (these works consider the SMLG problem) the size of the labeled direct prod-

uct [106], the output size of powerset construction [97], and a generalization of DAGs

called k-funnels [28]. Like in our setting, in all these cases quadratic query com-

plexity is obtained in the worst case (on graphs maximizing the parameter under

consideration)

1.3 NFA Determinization and Existing Subregular Classifications

An extensive and detailed classification of the complexity of the powerset construction

algorithm on families of subregular languages is carried out in [19]. That study proves

that for the most popular and studied classes of subregular languages — including (but

not limited to) star-free [92], ordered [112], comet [25] and suffix/prefix/infix-closed

languages — the output of the powerset construction is exponential in the size of the

input NFA: for all the mentioned families, the resulting DFA may have at least 2n−1

states in the worst case, where n is the number of states of the input NFA. Previously-

known families with a sub-exponential upper bound include unary regular languages,

with a bound of eΘ(
√
n lnn) states [32] and the family of finite languages over alphabet of

size σ, with a bound of O(σ
n

log2 σ+1 ) states [109]. In this context, our nondeterministic

hierarchy of subregular languages represents a more complete classification than the

above-mentioned classes (since it captures all regular languages).

Interestingly, [19] shows that the class of ordered automata [112] — automata

admitting a total states’ order that must propagate through pairs of equally-labeled

edges — does have a worst-case exponential-output powerset construction. Since in

our work we show that the powerset construction builds a small-size DFA on bounded-

width automata, this fact shows that the small difference between simply imposing

an order on the states which is consistent with the transition relation (ordered au-

tomata) and linking this property with a fixed order of the underlying alphabet (our

framework), does have significant practical consequences in terms of deterministic

state complexity.
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As far as other parameterizations of powerset construction are involved, we are

aware of only one previous attempt in the literature: the notion of automata width

introduced in [86]. Intuitively, given an NFA N the width of N as defined in [86] is

the maximum number of N ’s states one needs to keep track of simultaneously while

looking for an accepting path for some input word (for the word maximizing such

quantity). By its very definition, this quantity is directly linked to the output’s size

of powerset construction.

Further notable classifications of subregular languages include the star-height hi-

erarchy [46] (capturing all regular languages) and the Straubing-Thérien hierarchy

[116, 117] (capturing the star-free languages). To the best of our knowledge, these

classifications do not lead to useful parameterizations for the automata/graph prob-

lems considered in this thesis.

1.4 Our Approach: The Power of Sorting

Equipping the domain of a structure with some kind of order is often a fruitful move

performed in both computer science and mathematics. An order provides direct access

to data or domain elements and sometimes allows tackling problems otherwise too

computationally difficult to cope with. For example, in descriptive complexity it is

not known how to logically capture the class P in general, while this can be done on

ordered structures [85]. In general, the price to be paid when requiring/imposing an

order, is a — sometimes significant — restriction of the class of structures to which

subsequent results refer. If we do not wish to pay such a price, a partial order can

be a natural alternative. Then, the “farther” the partial order is from a total order,

the less powerful will be the applications of the established results. In other words,

the “distance” from a total order of the partial order at hand becomes a measure

of the extent to which we have been able to “tame” the class of structures under

consideration.

Partial orders and automata have already met and attracted attention because of

their relation with logical, combinatorial, and algebraic characterizations of languages.

In the literature (see, among many others, [26, 110, 90]) a partially-ordered NFA is

an automaton where the transition relation induces a partial order on the set of

its states. Here we pursue a different approach, closer to the one given in [112].
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Our starting point is a work by Gagie et al. [61], presenting a simple and unified

perspective on several algorithmic techniques related to suffix sorting (in particular,

to the Burrows-Wheeler transform). The general idea is to enforce and exploit a total

order among the states of a given automaton, induced by an a priori fixed order of its

underlying alphabet which propagates through the automaton’s transition relation.

The resulting automata, called Wheeler automata, admit efficient data structures for

solving string matching on the automaton’s paths and enable a representation of the

automaton in space proportional to that of the edges’ labels — as well as enabling

more advanced compression mechanisms, see [6, 103]. This is in contrast with the

fact that general graphs require a logarithmic (in the graph’s size) number of bits

per edge to be represented, as well as with recent results showing that in general,

regular expression matching and string matching on labeled graphs can not be solved

in subquadratic time, unless the strong exponential time hypothesis is false [9, 50,

49, 66, 102]. Wheeler languages — i.e. languages accepted by Wheeler automata

— form an interesting class of subregular languages, where determinization becomes

computationally easy (polynomial). As was to be expected, however, requiring the

existence of a total Wheeler order over an automaton comes with a price. Not all

automata enjoy the Wheeler property, and languages recognized by Wheeler automata

constitute a relatively small class: a subclass of star-free languages [5].

1.5 Our Contribution

In this thesis, we present a new paradigm, based on (partially) sorting automata. We

lay out a theory that encompasses all automata and all regular languages, with appli-

cations to both data compression and formal language theory. This thesis is the first

work in which the results obtained in the last years are presented in a systematic and

comprehensive fashion (see Figure 1.1). All results in this thesis appeared in journals

or conference proceedings; some results have been slightly modified or rearranged for

the purpose of designing a consistent and coherent presentation. Chapter 4 is based

on [40, 38]. Chapter 5 is based on [40, 38, 3]. Chapter 6 is based on [35]. Chapter 7

is based on [36]. Chapter 8 is based on [34, 39]. In addition, before the PhD defence

the results on generalized automata sketched in Section 9.1 were also accepted for

publication [37].
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Figure 1.1: Organization of the thesis

• In Chapter 2, we introduce our notation and we present some classical results

on compressed data structures that will be used in the subsequent chapters.

• In Chapter 3, we describe the suffix array, the Burrows-Wheeler Transform and

the FM-index of a string and we explain how they can be used to compress

a string while supporting efficient pattern matching (Problem 1). We do not

aim to provide a comprehensive discussion of the literature on the topic. Our

presentation deviates from the textbook approach (see for example the definition

of the Burrows-Wheeler Transform, Definition 3.4), because we want to outline

the properties of these data structures that can be extended to automata.

• In Chapter 4, we implement our approach by defining co-lex orders, which par-

tially sort the states of an automaton (Definition 4.1). The key parameter is

the width of a partial order, which measures how far the partial order is from
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being a total order. Co-lex orders can be seen as an extension of suffix arrays to

automata. The setting is more complicated, though: an automaton may admit

several co-lex orders, so we need a measure of optimality (Definition 4.6). We

will see that, if we consider deterministic automata, then there exists a single

optimal co-lex order (Lemma 4.12), the maximum co-lex order, that can be de-

termined in polynomial time (Lemma 4.15); on arbitrary non-deterministic au-

tomata, the problem is NP-hard. Next, we extend the Burrows-Wheeler Trans-

form (Definition 4.28 and Lemma 4.50) and the FM-index (Theorem 4.47) to

arbitrary automata, thus showing how to compress automata while supporting

efficient pattern matching queries.

• In Chapter 5, we explore the applications of co-lex orders to formal language

theory, thus defining the deterministic and non-deterministic widths of a reg-

ular language (Definition 5.1). We show that co-lex orders lead to a surpris-

ing parametrization of the powerset construction (Theorem 5.4), implying that

problems that are computationally difficult on non-deterministic automata but

tractable on deterministic automata are fixed-parameter tractable with respect

to the widths of the considered automata. In the remainder of the chapter,

we study the deterministic width. We prove that the deterministic width can

be obtained by studying the entanglement of the minimum DFA recognizing

the language (Theorem 5.24) and thus can be effectively computed (Theorem

5.30). To this end, we introduce the so-called Hasse automaton (Definition

5.23), which requires a deep understanding of the structure of convex parti-

tion (see Appendix A). Next, we study the classical problem of minimization in

the context of co-lexicographically ordered language and we prove a full Myhill-

Nerode theorem (Theorem 5.40). In particular, the convex structure of Wheeler

languages implies that Wheeler DFAs can be minimized in linear time, without

resorting to Hopcroft’s algorithm (Theorem 5.42). In Section 5.6 we investigate

the relationship between our hierarchy and star-free languages.

• In Chapter 6, we overcome the hardness of determining an optimal co-lex order

on arbitrary non-deterministic automata (see Chapter 4). Intuitively, we prove

that the hardness is only due to some states that are inherently equivalent from
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a pattern matching perspective, which cannot be captured by partial orders.

As a consequence, we switch from partial orders to relations: we define co-lex

relations (Definition 6.1), we prove that on arbitrary NFAs there is always one

single optimal co-lex relation (Lemma 6.8), the maximum co-lex relation, which

can be computed in polynomial time (Theorem 6.17). The maximum co-lex

relation allows building a quotient automaton (Definition 6.22) which can be

used to improve the bounds of the FM-index that we present in Chapter 4

(Theorem 6.32).

• In Chapter 7, we consider the problem of building the maximum co-lex order of a

deterministic finite automata. In Chapter 4, we show that the maximum co-lex

order of a DFA can be determined in polynomial time, namely in O(|δ|2+|Q|5/2)

time (Lemma 4.15), where |Q| is the number of states and |δ| is the number of

transitions. We significantly improve this bound by proposing an O(|δ| + |Q|2)

time algorithm inspired by Farach’s algorithm for building the suffix tree of a

string (Theorem 7.1). To this end, we show how to build the min/max-partition

of a DFA efficiently; intuitively, we show how to quickly sort the minimum and

the maximum string reaching each state. We design a rather intricate algorithm

that recursively builds the min/max partition of a smaller DFA.

• In Chapter 8 we show how to compute matching statistics on Wheeler DFAs

(Theorem 8.1); intuitively, we show how to solve a popular variant of the pattern

matching problem on Wheeler DFAs. This is possible by extending the notion

of longest common prefix array from strings to Wheeler DFAs (Definition 8.3).

If the suffix array of a string is augmented with the longest common prefix

array of the string and some additional data structures, we can retrieve the

functionality of a suffix tree, a powerful and versatile data structure in computer

science. As a consequence, we managed to make remarkable advancements

toward building the suffix tree of an automaton. We also show how to sample

the longest common prefix array of a DFA so that it can it can be accessed

efficiently (Theorem 8.5), and we present an application to variable-order de

Bruijn graphs, which are popular in bioinformatics to perform Eulerian sequence

assembly (Theorem 8.8).
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• In Chapter 9, we present some additional partial results that are still unpub-

lished. We also outline open problems and future research directions.



Chapter 2

Notation and Preliminaries

In this chapter we first present all basic definitions required in order to follow the

thesis. We also recall and adapt some classical results that we will use in the next

chapters (see Section 2.5).

2.1 Sequences and Basics

Let Σ be a finite alphabet and let Σ∗ be the set of all finite sequences (also called

words or strings) on Σ, with ε being the empty sequence.

As customary, we denote by Σ∗ the set of all finite strings over the alphabet Σ,

and we denote by Σω the set of all coutably infinite strings over the alphabet Σ. If

n ≥ 0, let Σn ⊆ Σ∗ be the set of all strings of length n. If α ∈ Σ∗ ∪ Σω, we denote

by α[i] the i-th character of α; moreover, α[i, j] = α[i]α[i+ 1] . . . α[j − 1]α[j] if j ≥ i,

and α[i, j] = ε if j < i. We write β ⊣ α if α, β ∈ Σ∗ and β is a suffix of α.

Throughout our thesis, we assume that there is a fixed total order ⪯ on Σ (in our

examples, the alphabetical order). The special symbol # ̸∈ Σ is considered smaller

than any element in Σ. We extend ⪯ to words in Σ∗ either lexicographically or co-

lexicographically. The lexicographic order on Σ∗ is the standard dictionary order; the

co-lexicographic order on Σ∗ is the order in which a string α is co-lexicographically

smaller than a string β if and only if the reverse string αR is lexicographically smaller

than the reverse string βR. In other words, up to reversing the strings, the lexi-

cographic order and the co-lexicographic order are the same order. For notational

convenience, it will be expedient to use both orders. In Chapter 3 we will outline the

interplay between these two orders (see in particular Section 3.4). In Chapters 4, 5

abd 6 we will use the co-lexicographic order, and in Chapters 7 and 8 we will use the

lexicographic order.

If a, b are natural numbers, with a ≤ b, we write [a, b] for the integer set {a, a +

1, . . . , b}. If b < a, then [a, b] = ∅. All logarithms are in base 2.

13
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2.2 Finite Automata

A non-deterministic finite automaton (an NFA) accepting strings in Σ∗ is a tuple

N = (Q, s, δ, F ) where Q is a finite set of states, s is a the initial state, δ(·, ·) :

Q × Σ → Pow(Q) is the transition function (where Pow(Q) is the set of all subsets

of Q), and F ⊆ Q is the set of final states. We write QN , sN , δN , FN when the

automaton N is not clear from the context and, conversely, if the automaton is clear

from the context we will not explicitly say that s is the initial state, δ is the transition

function and F is the set of final states.

With |δ| we denote the cardinality of δ when seen as a set of triples over Q×Q×Σ.

In other words, |δ| = |{(u, v, a) | v ∈ δ(u, a), u, v ∈ Q, a ∈ Σ}. In fact, in our results

(especially the data-structure related ones) we will often treat NFAs as edge-labeled

graphs having as set of nodes Q and set of edges E = {(u, v, a) | v ∈ δ(u, a), u, v ∈

Q, a ∈ Σ}.

As customary, we extend δ to operate on strings as follows: for all u ∈ Q, a ∈ Σ,

and α ∈ Σ∗:

δ(u, ε) = {u}, δ(u, αa) =
⋃

v∈δ(u,α)
δ(v, a).

We denote by L(N ) = {α ∈ Σ∗ : δ(s, α) ∩ F ̸= ∅} the language accepted by the

automaton N . We say that two automata are equivalent if they accept the same

language.

We assume, without loss of generality, that all states in our automata are useful,

that is, from each state one can reach a final state (possibly, the state itself). We

assume also that every state is reachable from the (unique) initial state. Hence, the

collection of prefixes of words accepted by N , Pref(L(N )), will consist of the set of

words that can be read on N starting from the initial state.

If α ∈ Pref(L(N )), let Iα be the set δ(s, α) of all states reached from the initial

state by α.

A deterministic finite automaton (a DFA), is an NFA D where |δ(u, a)| ≤ 1, for

any u ∈ Q and a ∈ Σ. If the automaton is deterministic we write δ(u, α) = v for

the unique v such that δ(u, α) = {v} (if defined: we are not assuming a DFA to be

complete).
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Let L ⊆ Σ∗ be a language. An equivalence relation ∼ on Pref(L) is right-invariant

if for every α, β ∈ Pref(L) such that α ∼ β and for every a ∈ Σ it holds αa ∈ Pref(L)

iff βa ∈ Pref(L) and, if so, αa ∼ βa. We will extensively use the Myhill-Nerode

equivalence induced by L, namely, the right-invariant equivalence relation ≡L on

Pref(L) such that for every α, β ∈ Pref(L) it holds:

α ≡L β ⇐⇒ {γ ∈ Σ∗ | αγ ∈ L} = {γ ∈ Σ∗ | βγ ∈ L}.

We denote by DL the minimum (with respect to state-cardinality) deterministic

automaton recognizing a regular language L.

If u ∈ Q, then λ(u) denotes the set of labels of edges entering u, except when

u = s when we also add # ̸∈ Σ to λ(s), with # ≺ e for all e ∈ Σ (see e.g. Figure

4.1 where s = 0, λ(s) = {#, a}, λ(1) = {a}, and λ(5) = {b, c}). If u ∈ Q, by minλ(u),

maxλ(u) we denote the minimum and the maximum, with respect to the order ⪯,

among the elements in λ(u).

If u ∈ Q, we will use the symbol Iu with two distinct, yet related, meanings. In

Chapters 4, 5 and 6, where we use the co-lexicographic order (see Section 2.1), we

denote by Iu the set of all finite words reaching u from the initial state:

Iu = {α ∈ Pref(L(N )) : u ∈ δ(s, α)}.

In Chapters 7 and 8, where we use the lexicographic order, the set of Iu is defined

starting from the notion of occurrence. An occurrence of α ∈ Σ∗ starting at u ∈ Q

and ending at u′ ∈ Q is a sequence of states u1, u2, . . . , u|α|+1 of Q such that (i) u1 = u,

(ii) u|α|+1 = u′ and (iii) ui ∈ δ(ui+1, α[i]) for every 1 ≤ i ≤ |α|. An occurrence of

α ∈ Σω starting at u ∈ Q is a sequence of states (ui)i≥1 of Q such that (i) u1 = u

and (ii) ui ∈ δ(ui+1, α[i]) for every i ≥ 1. Intuitively, a string α ∈ Σ∗ ∪ Σω has an

occurrence starting at u ∈ Q if we can read α on N starting from u and following

edges in a backward fashion. In Chapters 7 and 8, if the initial state has no incoming

edge, we add a self-loop labeled #; in this way, every state u has at least one incoming

edge, so Iu ̸= ∅. We denote by minu and the maxu the (lexicographically) smallest

and largest string in Iu.
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2.3 Relations and Orders

If V is a set, a (binary) relation R on V is a subset of V × V . We say that u, v ∈ V

are R-comparable if (u, v) ∈ R ∨ (v, u) ∈ R (note that (u, v) ∈ R and (v, u) ∈ R

may be both true). We write u ∥ v if u and v are not R-comparable. We denote by

Trans(R) the transitive closure of R. If R and R′ are binary relations on V , we say

that R refines R′ if (u, v) ∈ R′ ⇒ (u, v) ∈ R. If R is a binary relation on V and

U ⊆ V , we say that U is R-convex if:

(∀u, v, z ∈ V )((u, z ∈ U ∧ (u, v) ∈ R ∧ (v, z) ∈ R) =⇒ v ∈ U).

A preorder ≤ on V is a binary relation being reflexive and transitive. We write u <

v if u ≤ v and u ̸= v. Moreover, the preorder ≤ is a partial order if it antisymmetric,

and it is a total order if it is a partial order and every pair of elements are ≤-

comparable. If (V,≤) is a partial order and V ′ ⊆ V , we denote by (V ′,≤V ′) the

restriction of the partial order ≤ to the set V ′. To simplify notation, we will also use

(V ′,≤) when clear from the context.

We introduce some notation typical of partial order, and we naturally extend it

to preorders. Let (V,≤) be a preorder. A set V ′ ⊆ V is a ≤-chain if every u, v ∈ V

are ≤-comparable. A set V ′ ⊆ V is a ≤-antichain if every distinct u, v ∈ V are not

≤-comparable. A partition {Vi | 1 ≤ i ≤ p} of V is a ≤-chain partition if every Vi is a

≤-chain. The width of (V,≤), denoted by width(≤), is the minimum size of a ≤-chain

partition. Note that if ≤ and ≤′ are preorders on V , and ≤ refines ≤′, then the width

of ≤ is smaller than or equal to the width of ≤′ (because every ≤′-chain partition is

also a ≤-chain partition). If (V,≤) is a partial order, then Dilworth’s theorem [45]

states that the width of (V,≤) is equal to the maximum size of a ≤-antichain.

Let us recall a standard method for obtaining a partially-ordered quotient set from

a preorder. Let (V,≤) be a preorder. For every u, v ∈ V , let u ∼≤ v if and only if

(u ≤ v) ∧ (v ≤ u). It is immediate to check that ∼≤ is an equivalence relation. Now,

let [v]≤ be the quotient class of v, and consider the quotient set V/≤ = {[v]≤|v ∈ V }.

Define ≤∼ on V/≤ by letting [u]≤ ≤∼ [v]≤ if and only if u ≤ v. The definition of ∼≤

implies that ≤∼ is well-defined (that is, the definition does not depend on the choice

of representatives), because if u ∼≤ u′, v ∼≤ v′ and u ≤ v, then u′ ≤ u ≤ v ≤ v′.

Moreover (V/∼,≤∼) is a partial order. Indeed, if [u]≤ ≤∼ [v]≤ and [v]≤ ≤∼ [u]≤, then
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u ≤ v and v ≤ u, so [u]≤ = [v]≤.

If A,B are disjoint subsets of a partial order (V,≤), then A < B denotes:

(∀a ∈ A)(∀b ∈ B)(a < b).

A monotone sequence in (a partial order) (V,≤) is a sequence (vn)n∈N with vn ∈ V

and either vi ≤ vi+1, for all i ∈ N, or vi ≥ vi+1, for all i ∈ N.

If α ⪯ α′ ∈ Σ∗, we define [α, α′] = {β : α ⪯ β ⪯ α′}; if the relative order between

α, α′ is not known, we set [α, α′]± = [α, α′], if α ⪯ α′, while [α, α′]± = [α′, α], if

α′ ⪯ α.

2.4 Data Structures

When presenting our data structures in detail, we will assume to be working with

integer alphabets of the form Σ = [0, σ− 1], that is, alphabets formed by all integers

{0, 1, . . . , σ−1}. Our data structure results hold in the word RAM model with words

of size w ∈ Θ(log u) bits, where u is the size of the input under consideration (for

example, u may be the size of an automaton or the length of a string, depending on

the input of the algorithm under consideration). When not specified otherwise, the

space of our data structures is measured in words.

Recall that the zero-order entropy of a sequence S ∈ Σn of length n over alphabet

Σ is H0(S) =
∑

c∈Σ
|S|c
n

log2
n
|S|c , where |S|c denotes the number of occurrences of

character c in S. We will use some well-known properties of H0(S): the quantity

nH0(S) is a lower bound to the length of any encoding of S that encodes each character

independently from the others via a prefix code of the alphabet Σ, and in particular

H0(S) ≤ log2 |Σ|.

2.5 Rank and Select

Let S ∈ Σn be a string. We define the following operation on S:

• Access: compute S[i], for any 1 ≤ i ≤ n.

• Rank: compute S.rank(i, c) = |{j ∈ {1, . . . , i} | S[j] = c}|, for any 1 ≤ i ≤ n

and c ∈ Σ.
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• Select: compute S.select(i, c) equals the integer j such that S[j] = c and

S.rank(j, c) = i, for any 1 ≤ i ≤ S.rank(n, c) and c ∈ Σ.

In other words, the operation S[i] simply returns the i-th character appearing in

S, the operation S.rank(i, c) returns the number of occurrences of character c among

the first i characters of S, and the operation S.select(i, c) returns the position of

the i-th occurrences of character c in S (if it exists). It will be expedient to assume

S.rank(0, c) = S.select(0, c) = 0, for c ∈ Σ, and S.select(i, c) = n + 1, for c ∈ Σ and

i > S.rank(n, c).

We report a few results on data structures that will be helpful in the following.

Recall that H0(S) is the zero-order entropy of S ∈ Σ∗.

Lemma 2.1 (Succinct string [13], Thm 5.2 and [96], Sec. 6.3). Let S ∈ Σn be a

string over an integer alphabet Σ = [0, σ− 1] of size σ ≤ n. Then, there exists a data

structure of nH0(S)(1 + o(1)) +O(n) bits supporting the following operations in time

O(log log σ):

• compute S[i], for any 1 ≤ i ≤ n.

• compute S.rank(i, c), for any 1 ≤ i ≤ n and c ∈ Σ.

• compute S.select(i, c) equals the integer j such that S[j] = c and S.rank(j, c) =

i, for any 1 ≤ i ≤ S.rank(n, c) and c ∈ Σ.

Given S, the data structure can be built in O(n log log σ) worst-case time.

Note that Lemma 2.1 requires the cardinality σ of the alphabet to be no larger

than the length of the string. However, this will turn out to be too restrictive, for

two reasons: (1) we would like to be able to handle also automata labeled with larger

alphabets and, most importantly, (2) in our data structures (see the proof of Theorem

4.47) we will also need to manage rank and select queries over strings defined not

on Σ, but [1, p] × Σ (where p ≤ n is an integer will be the width of the underlying

automaton), and even if σ ≤ n it may still be p ·σ > n. With the following lemma we

cover this more general case. The requirement |Σ| ≤ nO(1) ensures that characters fit

in a constant number of computer memory words and thus they can be manipulated

in constant time. Note that we lose fast access functionality (which however will not

be required in our application of this data structure).
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Lemma 2.2 (Succinct string over large alphabet). Let S ∈ Σn be a string over an

integer alphabet Σ = [0, σ − 1] of size σ = |Σ| ≤ nO(1). Then, there exists a data

structure of nH0(S)(1 + o(1)) + O(n) bits, where H0(S) is the zero-order entropy of

S, supporting the following operations in time O(log log σ):

• Rank: S.rank(i, c) = |{j ∈ {1, . . . , i} | S[j] = c}|, for 1 ≤ i ≤ n and c ∈ Σ that

occurs in S.

• Select: S.select(i, c) equals the integer j such that S[j] = c and S.rank(j, c) = i,

for any 1 ≤ i ≤ S.rank(n, c) and for any character c ∈ Σ that occurs in S.

Given S, the data structure can be built in expected O(n log log σ) time.

Proof. If σ ≤ n, then we simply use the structure of Lemma 2.1. Otherwise (σ > n),

let Σ′ = {S[i] | 1 ≤ i ≤ n} be the effective alphabet of S. We build a minimal

perfect hash function h : Σ → [0, |Σ′| − 1] mapping (injectively) Σ′ to the numbers

in the range [0, |Σ′| − 1] and mapping arbitrarily Σ \ Σ′ to the range [0, |Σ′| − 1]. We

store h using the structure described in [72]. This structure can be built in O(n)

expected time, uses O(n) bits of space, and answers queries of the form h(x) in O(1)

worst-case time. Note that |Σ′| ≤ n, so we can build the structure of Lemma 2.1

starting from the string S ′ ∈ [0, |Σ′| − 1]n defined as S ′[i] = h(S[i]). Then, rank

and select operations on S can be answered as S.rank(i, c) = S ′.rank(i, h(c)) and

S.select(i, c) = S ′.select(i, h(c)), provided that c ∈ Σ′. Notice that the zero-order

entropies of S and S ′ coincide, since the character’s frequencies remain the same after

applying h to the characters of S. We conclude that the overall space of the data

structure is at most nH0(S)(1 + o(1)) +O(n) bits.

Finally, we need a fully-indexable dictionary data structure. Such a data structure

encodes a set of integers and supports efficiently a variant of rank and select queries

as defined below:

Lemma 2.3 (Fully-indexable dictionary [53], Theorem 4.1). A set A = {x1, . . . , xn} ⊆

[1, u] of cardinality n can be represented with a data structure of n log(u/n) + O(n)

bits so that the following operations can be implemented in O(log log(u/n)) time:

• Rank: A.rank(x) = |{y ∈ A | y ≤ x}|, for any 1 ≤ x ≤ u.



20

• Select: A.select(i) = x such that x ∈ A and A.rank(x) = i, for any 1 ≤ i ≤

|A|.

Given A as input, the data structure can be built in O(n) worst-case time.

Remark 2.4. The queries of Lemma 2.3 can be used to solve in O(log log(u/n)) time

also:

• Predecessor: the largest element of A smaller than or equal to x, if it exists.

For any 1 ≤ x ≤ u, A.pred(x) = A.select(A.rank(x)) if A.rank(x) > 0, and

A.pred(x) = ⊥ otherwise.

• Strict-Successor: the smallest element of A strictly greater than x, if it exists.

For any 1 ≤ x ≤ u, A.succ(x) = A.select(A.rank(x) + 1) if A.rank(x) < |A|,

and A.succ(x) = ⊥ otherwise.

• Membership: For any 1 ≤ x ≤ u, x ∈ A if and only if x = A.pred(x).



Chapter 3

Compressing and Indexing Strings

In this chapter, we outline some classical results in the data compression field. The

literature has constantly grown in the past 30 years, so we do not aim to provide

a comprehensive discussion. We believe that a good starting point for the reader

interested in the field is Navarro’s book [96], which can be complemented by additional

resources depending on the specific interests of the reader (bioinformatics applications

[93], the Burrows-Wheeler Transform [2], suffix trees [71], and so on). In this thesis,

we extend several important results in data compression from string to automata, so

the aim of this chapter is to present some classical results on string from a perspective

that better encompasses the ideas that we will develop in the subsequent chapters.

3.1 Pattern Matching in Compressed Space

Given a text, we want to compress the text in such a way that we can efficiently

solve pattern matching queries without decompressing the text. We can describe our

problem as follows.

Problem 1. Let S ∈ Σn. Build a data structure S ′ such that:

1. S ′ is small.

2. S ′ is an encoding of S.

3. S ′ can be used to solve the following problem efficiently: given π ∈ Σ∗, count

the number of occurrences of π as a substring of S by only using S ′.

Requirement 2 means that, given S ′, it is possible to retrieve S. Requirement 3

implies that we can solve pattern matching queries on S by using S ′. In addition, we

want S ′ to be a space-efficient encoding (Requirement 1) that supports a time-efficient

pattern matching algorithm (Requirement 3).

21
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i Sorted suffixes SAS SA−1S BWTS
1 $ 12 6 i
2 i$ 11 5 p
3 ippi$ 8 12 s
4 issippi$ 5 10 s
5 ississippi$ 2 4 m
6 mississippi$ 1 11 $
7 pi$ 10 9 p
8 ppi$ 9 3 i
9 sippi$ 7 8 s
10 sissippi$ 4 7 s
11 ssippi$ 6 2 i
12 ssissippi$ 3 1 i

Figure 3.1: The sorted suffixes of “mississippi$” and the arrays SAS, SA−1S , BWTS.
We assume that $ is the smallest character.

In the following, we consider an alphabet Σ of size σ = |Σ|, and we assume that

there is a fixed total order ⪯ on Σ. We denote by Σ∗ the set of all finite strings on

the alphabet Σ, and we extend Σ to Σ∗ lexicographically, that is, we consider the

standard dictionary order. For example, if Σ is the English alphabet and ⪯ is the

order in which a ≺ b ≺ c ≺ . . . , then it holds cost ≺ cottage.

3.2 The Suffix Array

A first solution to Problem 1 is based on suffix arrays (see Figure 3.1 for an example).

Definition 3.1. Let S ∈ Σn. The suffix array SAS of S is the sequence of length n

such that, for every 1 ≤ i ≤ n, it holds SAS[i] = j if and only if S[j, n] is the i-th

lexicographically smallest suffix of S.

The inverse suffix array SA−1S is the inverse permutation of SAS, that is, SA−1S [j] =

i if and only if S[j, n] is the i-th lexicographically smallest suffix.

Now, let S ′ be the data structure consisting of the original string S and the suffix

array SAS. Let us show how to use S ′ for solving pattern matching queries (as defined

in Requirement 3 of Problem 1). Consider a pattern string π ∈ Σm. Note that every

substring of S is a prefix of some suffix of S. As a consequence, we only have to count

the number of suffixes of S starting with π. The definition of suffix array implies

that, if π occurs as a substring of S, then there exist unique 1 ≤ l ≤ r ≤ n such
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that for every 1 ≤ i ≤ n we have that suffix S[SAS[i], n] starts with π if and only if

l ≤ i ≤ r. For example, in Figure 3.1, if π = issi, then l = 4 and r = 5. We conclude

that we only have to explain how to determine l and r (or establish that π does not

occur as a substring of S). We can determine l, if it exists, by means of a binary

search. In our example, since n = 12, we perform a binary search on [1, 12]. We

start from i = 12/2 = 6, and we compare ψ = issi and S[SAS[i], n] = mississippi$

to determine which one is smallest. To this end, it is sufficient to compare at most

|ψ| = m characters. Since ψ ⪯ S[SAS[i], n], we conclude that it must be l ≤ 6, if

l exists, so we only have to search the interval [1, 6] recursively. The binary search

for l requires O(log n) steps, and each time we compare at most m characters, so the

running time is O(m log n). Analogously, we can compute r in O(m log n) if it exists.

Then, the number of occurrences of ψ as a substring of S is simply r − l + 1.

To sum up, if S ′ is the data structure consisting of the original string S and the

suffix array SAS, then we can solve Problem 1, since (i) S ′ is trivially an encoding

of S (because S ′ contains S) and we can efficiently solve pattern matching queries.

More precisely, S ′ requires n(log n + log σ) bis (because n log n bits are required for

storing SAS and n log σ bits are required for storing S) and allows solving pattern

matching queries in O(m log n), where m is the length of the pattern.

The suffix array can be compressed by means of the techniques introduced by

Grossi and Vitter [70], but we will not further pursue this direction here.

3.3 The Burrows-Wheeler Transform

Let us present a second solution to Problem 1 based on the Burrows-Wheeler Trans-

form. In this section, we assume that a string S ∈ Σn ends with a special character

$ ̸∈ Σ that is assumed to be smaller than all characters in Σ.

It is expedient to see a string as a graph (see Figure 3.2) because (i) it will help to

develop our intuition on the problem and (ii) it is the approach that will be generalized

in the next chapters. Intuitively, a node is labeled j if starting from node j one can

read the j-th lexicographically smallest string.

Definition 3.2. Let S ∈ Σn. We define the graph GS = (VS, ES) as follows:

1. VS = {1, 2, . . . , n}.
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6 5 12 10 4 11 9 3 8 7 2 1
m i s s i s s i p p i

$

Figure 3.2: The graph GS = (VS, ES), for S = “mississippi$′′.

2. ES = {(SA−1[i], SA−1[i+ 1], S[i]) | 1 ≤ i ≤ n} ∪ {(1, SA−1[1], $)}.

The next lemma establishes some simple but crucial properties that will be at the

core of this thesis (see Definition 4.1).

Lemma 3.3. Let S ∈ Σn and consider the graph GS = (VS, ES).

1. For every (i, i′, a), (j, j′, b) ∈ ES, if i < j, then a ⪯ b.

2. For every (i, i′, a), (j, j′, a) ∈ ES, if i < j, then i′ < j′.

Proof. 1. The property is trivially true if i = 1, so we can assume 1 < i < j.

Define i∗ = SAS[i] and j∗ = SAS[j]; then (i, i′, a) = (SA−1S [i∗], SA−1S [i∗+ 1], S[i∗])

and (j, j′, b) = (SA−1S [j∗], SA−1S [j∗+ 1], S[j∗]). We must prove that S[i∗] ⪯ S[j∗].

Since i < j, then S[SAS[i], n] ≺ S[SAS[j], n], or equivalently, S[i∗, n] ≺ S[j∗, n],

which implies S[i∗] ⪯ S[j∗].

2. Only one edge is labeled with $, so we can assume 1 < i < j. Define i∗ = SAS[i]

and j∗ = SAS[j]; then (i, i′, a) = (SA−1S [i∗], SA−1S [i∗ + 1], S[i∗]) and (j, j′, a) =

(SA−1S [j∗], SA−1S [j∗+1], S[j∗]), with S[i∗] = S[j∗]. We must prove that SA−1S [i∗+

1] < SA−1S [j∗ + 1]. Since i < j, then S[SAS[i], n] ≺ S[SAS[j], n], or equivalently,

S[i∗, n] ≺ S[j∗, n]. From S[i∗] = S[j∗] we obtain S[i∗ + 1, n] ≺ S[j∗ + 1, n], so

SA−1S [i∗ + 1] < SA−1S [j∗ + 1].

We can now definite the Burrows-Wheeler Transform of a string.

Definition 3.4. Let S ∈ Σn. The Burrows-Wheeler Transform BWTS of S is the

array of length n such that BWTS[i] is the label of the edge entering node i in

GS = (VS, ES).
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Let us give an explicit characterization of the Burrows-Wheeler Transform, which

corresponds to the usual definition of the Burrows-Wheeler Transform in the litera-

ture.

Lemma 3.5. Let S ∈ Σn. Then:

BWTS[i] =







S[SAS[i] − 1] if SAS[i] ̸= 1

$ if SAS[i] = 1.

Proof. BWTS[i] is the label of the edge entering node i in GS = (VS, ES). If SAS[i] ̸=

1, then the definition of ES implies that this label is S[SAS[i]− 1]; if SAS[i] = 1, then

the definition of ES implies that this label is $.

Let us prove that BWTS satisfies Requirement 2 of Problem 1.

Lemma 3.6. Let S ∈ Σn. Then, BWTS is an encoding of S.

Proof. In order to retrieve S, we only have to show how to retrieve then GS, because

then S is the string that can be read starting from the node whose incoming edge

is labeled with $. If BWTS has length n, then VS = {1, 2, . . . , n}, so we only have

to show how to retrieve ES. In order words, we must show how to retrieve the edge

leaving each node 1 ≤ i ≤ n. The definition of BWTS implies the BWTS contains all

characters of S with the same multiplicities as in S. Fix any character a in S; we are

only left with the problem of determining the start node and the end node of each

edge labeled a. By the second property of Lemma 3.3, we only have to determine the

set Ba of all nodes whose outgoing edge is labeled a and the set Ca of all nodes whose

incoming edge is labeled a. For example, in Figure 3.2, we have Bi = {2, 3, 4, 5} and

Ci = {1, 8, 11, 12}, and by the second property of Lemma 3.3 the edges labeled i are

(2, 1, i), (3, 8, i), (4, 11, i), (5, 12, i).

First, we can retrieve each set Ca by the definition of BWTS. For example, if

S = mississippi$, we know that BWTS = ipssm$pissii, which implies C$ = {6},

Ci = {1, 8, 11, 12}, Cm = {5}, Cp = {2, 7}, Cs = {3, 4, 9, 10}.

Second, we can retrieve each set Ba by the first property of Lemma 3.3. For exam-

ple, if S = mississippi$, we know BWTS = ipssm$pissii; by sorting the characters in

BWTS we obtain $iiiimppssss, so B$ = {1}, Bi = {2, 3, 4, 5}, Bm = {6}, Bp = {7, 8},

Bs = {9, 10, 11, 12}.
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Now, let DS[1, n] a bit array such that DS[i] = 1 if and only i = 1 or the i-

th smallest character of S is distinct from the (i − 1)-th smallest character of S.

For example, if S = mississippi$, we consider $iiiimppssss and so DS[1, 12] =

110001101000. Let us see how to search for the pattern ψ = issi. We will start from

the end of ψ (backward search). Since i is the second smallest character (including

$), we consider the positions between the second 1 in C and the third 1 in C, that it,

2, 3, 4, 5 (we include the position of the second i and we exclude the position of the

third i). The definition of C implies that the suffixes starting with i are the second,

the third, the fourth and the fifth one. Now we want to determine which suffixes

start with si. The edges labeled s in Figure 3.2 are (9, 3, s), (10, 4, s), (11, 9, s)

(12, 10, s); the set of all end nodes is Cs = {3, 4, 9, 10} and the set of all start nodes

is Bs = {9, 10, 11, 12}.

The number of edges labeled s reaching node 1 is zero, and the number of edges

labeled s reaching nodes 1, 2, 3, 4, 5 is two. By the second property of Lemma 3.3,

from Bs we conclude the suffixes starting with si are the ninth and the tenth suf-

fix. Let us determine the suffixes starting with ssi. The number of edges labeled s

reaching node 1, 2, 3, 4, 5, 6, 7, 8 is two, and then number of edges labeled s reaching

node 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 is four, By the second property of Lemma 3.3, from Bs

we conclude the suffixes starting with ssi are the eleventh and the twelfth suffix.

Analogously, we finally obtain all suffixes starting with ψ = issi.

Notice that, when computing the interval starting with ssi from the interval start-

ing with si, we only need to solve rank and select queries (Section 2.5) on Bs and

Cs. The set Bs is implicitly stored in DS (since s is the fifth smallest character, we

must consider the fifth i in DS), while the set Cs is implicitly stored in BWTS by

the definition of the Burrows-Wheeler Transform of S. We conclude that, in order

to perform the backward search, we only need to store BWTS and DS in such a way

that they efficiently support rank and select operations.

Let S ′ be the data structure consisting of the strings BWTS and DS stored as in

Lemma 2.1. Then S ′ solves Problem 1, because it requires n(H0(S) + H0(DS))(1 +

o(1)) +O(n) ≤ n log σ(1 + o(1)) +O(n) bits (Requirement 1), it is an encoding of S

(by Lemma 3.6) and allows solving pattern matching queries in O(m log log σ) time,

where m in the length of the pattern (Requirement 3).
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The Burrows-Wheeler Transform is a compressible encoding of a string because

it can be stored using a number of bits equal to the entropy of the string. As a

consequence, the previous results can be further improved by suitably compressing

the Burrows-Wheeler Transform, thus obtaining the full FM-index [57]; we will not

give further details here.

3.4 The Co-Lexicographic Variant

In the previous sections, we find the occurrences of a pattern by determining the

interval corresponding to the suffixes starting with the pattern. A complementary,

yet equivalent, approach is possible: we can determine the interval corresponding

to the prefixes ending with the pattern. Note that now prefixes are sorted co-

lexicographically (see Section 2.1). The suffix array of a string S corresponds to

the prefix array of the reverse string SR, and all the results of the previous sections

can be immediately adapted by assuming to be working with the reverse string and

the reverse pattern.

In the rest of this thesis, we will generalize to autoamta the co-lexicographical

variant, and not the lexicographic variant. One reason is that we will mainly ex-

tend the results in Section 3.3, and it will be more natural to describe a forward

search rather than a backward search. A second reason is that, in automata theory,

many structural properties depend on the strings reaching a state (and not leaving a

state), which can be seen as a generalization of prefixes, not suffixes. However, the

most important reason is that, as we will see, our results are simpler if we consider

deterministic automata: if we considered the lexicographic variant, we should intro-

duce co-deterministic automata, that is, automata where for each state u and each

character c there exists at most one edge labeled c reaching state u.



Chapter 4

Co-lex Orders: Compression And Pattern Matching

In this chapter we extend the results in Chapter 3 from strings to NFAs. We will

consider the co-lexicographic order ⪯ on Σ∗ (see Section 2.1), and we will see how to

lift it to the states of an NFA, thus obtaining the co-lex order of an NFA.

We capture co-lex orders on an NFA by means of two axioms, inspired by Lemma

3.3, which ensure a local comparability between pairs of states. Given two states u

and v such that u < v, Axiom 1 of Definition 4.1 imposes that all words in Iu end with

letters being smaller than or equal to letters ending words in Iv; Axiom 2, instead,

requires that the order among states u and v propagates backwards when following

pairs of equally-labeled transitions.

Definition 4.1. Let N = (Q, s, δ, F ) be an NFA. A co-lex order on N is a partial

order ≤ on Q that satisfies the following two axioms:

1. (Axiom 1) For every u, v ∈ Q, if u < v, then maxλ(u) ⪯ minλ(v);

2. (Axiom 2) For every a ∈ Σ and u, v, u′, v′ ∈ Q, if u ∈ δ(u′, a), v ∈ δ(v′, a) and

u < v, then u′ ≤ v′.

Remark 4.2. 1. Since # ∈ λ(s) and # ̸∈ λ(u) for u ̸= s, then from Axiom 1 it

follows that for every u ∈ Q it holds u ̸< s.

2. If D is a DFA, then we can restate Axiom 2 as follows: for every a ∈ Σ, if

u = δ(u′, a), v = δ(v′, a), and u < v, then u′ < v′ (it must be u′ ̸= v′ because u

and v are distinct).

We note that Axiom 2 implies that the order between two states is not defined

whenever their predecessors cannot be unambiguously compared, as observed in the

following remark.

Remark 4.3. Let N = (Q, s, δ, F ) be an NFA and let ≤ be a co-lex order on N . Let

u, v ∈ Q be two distinct states. Then, u ∥ v if at least one of the following holds:

28



29

1. There exist u′, v′ ∈ Q and a ∈ Σ such that u ∈ δ(u′, a), v ∈ δ(v′, a) and u′ ∥ v′.

2. There exist u′, v′, u′′, v′′ ∈ Q and a, b ∈ Σ such that u ∈ δ(u′, a) ∩ δ(u′′, b),

v ∈ δ(v′, a) ∩ δ(v′′, b), u′ < v′ and v′′ < u′′.

Indeed, if e.g. it were u < v, then Axiom 2 would imply that in case 1 it should hold

u′ ≤ v′ and in case 2 it should hold u′′ ≤ v′′ (which is forbidden by the antisymmetry

of ≤).

Co-lex orders can be seen as a generalization of prefix array from strings to au-

tomata. The prefix array of a string is a permutation of the text positions, while in

general a co-lex order does not yield a permutation of the set of all states, because in

general a co-lex order is only a partial order. The special case where a co-lex order

is a total order is both of theoretical and practical interest, as we will see, so let us

give the following definition.

Definition 4.4. Let N = (Q, s, δ, F ) be an NFA.

1. If a co-lex order ≤ on N is a total order, we say that ≤ is a Wheeler order.

2. If N admits a Wheeler order, then N is a Wheeler NFA.

Note that a co-lex order ≤ is Wheeler if and only if its width is equal to 1.

Wheeler orders were first introduced in [61] in a slightly less general setting. The

class of Wheeler languages — that is, the class of all regular languages recognized

by some Wheeler NFA — is rather small: for example, unary languages are Wheeler

only if they are finite or co-finite, and all Wheeler languages are star-free (see [5]).

Moreover, Wheeler languages are not closed under union, complement, concatenation,

and Kleene star [5]. In contrast, as observed in the following remark, any regular

automaton admits a co-lex order.

Remark 4.5. Every NFA N admits some co-lex order. For example, the order

{(u, u) | u ∈ Q} and the order {(u, v) | maxλ(u) ≺ minλ(v)} ∪ {(u, u) | u ∈ Q}

are co-lex orders on N .

More than one non-trivial co-lex order can be given on the same automaton. As

an example, consider Figure 4.1: the automaton on the left admits the two co-lex

orders whose Hasse diagrams are depicted on the right. The first, ≤1, is total and
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states that 2 <1 3, while the width of the second one, ≤2, is equal to 2 and 3 <2 2

holds. As a matter of fact, in any co-lex order ≤ for this automaton in which 3 < 2

holds, nodes 4 and 5 must be incomparable.

0start 2
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a

a

b

b

b

b

b,c
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1
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Figure 4.1: An NFA and the Hasse diagrams — that is, graphs depicting the transitive
reductions of the partial orders — of two of its (maximal) co-lex orders. Characters
are sorted according to the standard alphabetical order.

4.1 The Co-lex Width of NFAs and DFAs

In Sections 4.3 and 4.4 we will prove that a co-lex order over an automaton enables

compression and indexing mechanisms whose efficiency is parameterized by the width

of the co-lex order (the smaller, the better, so the maximum efficiency is reached on

Wheeler NFAs): this justifies introducing the co-lex width of an NFA (Definition 4.6)

as a meaningful measure for compression and indexing. In fact, the co-lex width can

also be used for further, interesting, language-theoretic consequences — more on this

in Chapter 5.

Definition 4.6. The co-lex width of an NFA N is the minimum width of a co-lex

order on N :

width(N ) = min{width(≤) |≤ is a co-lex order on N}

In Example 4.18 below we shall see that the value width(N ) may depend on the

choice of the total order ⪯ on Σ.

As a matter of fact, string sorting stands at the core of the most popular string

compression and indexing paradigms, which for this reason also suffer from a sharp

dependence on the total alphabet order. For example, the number r of equal-letter
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runs of the Burrows-Wheeler transform (BWT) of a string [27] is an important string

compressibility parameter (see [62]) and its value depends on the choice of the total

order on the alphabet; deciding whether there exists an ordering of the alphabet of a

string such that r is bounded by a given value, however, is an NP-complete problem

[14]. Despite this limitation, the BWT and the data structures based on it — such

as the FM-index [56] and the r-index [62] — are widely used in applications with a

fixed (often sub-optimal) alphabet order.

Similarly, in our scenario it is natural to wonder whether it is possible to determine

an ordering of the alphabet that minimizes the width of an automaton. Unfortunately,

also this problem is not tractable: deciding whether there exists a total alphabet

order under which a given DFA is Wheeler (that is, it has co-lex width equal to one)

is already an NP-complete problem [42]. In such situations, one possible way to tame

the problem’s complexity is to study a more constrained version of the problem, with

the goal of shedding new light on the more general (unconstrained) scenario. For

this reason, we start by fixing a total order on the alphabet and investigating the

implications of this choice. In particular we will prove that, if we fix an order on the

alphabet, then the width of a DFA with respect to that order can be determined in

polynomial time. This finding can already be used, for example, as a black-box to

test candidate alphabet orderings in search for the one minimizing the automaton’s

width.

In the following, we establish preliminary useful properties of the new measure

width(N ). Our first observation is that this measure is linked with the graph’s spar-

sity.

Lemma 4.7. Let N be an NFA on an alphabet of cardinality σ with n states and |δ|

transitions, and let p = width(N ). Then:

|δ| ≤ (2n− p)pσ.

Proof. Let N be an NFA on an alphabet of cardinality σ with n states and |δ|

transitions, and let p = width(N ). Let ≤ be a co-lex order of width p, {Qi | 1 ≤

i ≤ p} be a ≤-chain partition of the set of states, and for all 1 ≤ i ≤ p let Qi =

{vi,1, . . . , vi,ni
}, where ni = |Qi| and vi,k < vi,k′ whenever k < k′. Fix 1 ≤ i, j ≤ p and

a ∈ Σ, and consider all the transitions (vi,k, vj,l, a) labeled with a that leave Qi and
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reach Qj. We denote with ei,j,a the number of such transitions; our goal is to establish

an upper bound to this quantity for all i, j, a. Sort these ei,j,a edges (vi,k, vj,l, a) by

the index l of their destination state, breaking ties by the index k of their source

state. Now, let us prove that the value k+ l is strictly increasing with respect to this

order. In order words, we want to prove that if we pick two edges (vi,k, vj,l, a) and

(vi,k′ , vj,l′ , a) being consecutive with respect to the edge order, then k+ l < k′+ l′. By

the definition of the edge order, we have l ≤ l′. If l = l′, again by the definition of the

edge order we have k < k′ and so k+ l < k′+ l′. If l < l′, by Axiom 2 of co-lex orders

we have k ≤ k′, and again we conclude k+ l < k′+ l′. Since we have proved that k+ l

is strictly increasing with respect to the edge order, then from 2 ≤ k+ l ≤ ni +nj we

obtain ei,j,a ≤ ni + nj − 1. Observing that
∑p

i=1 ni = n, we conclude:

|δ| =
∑

a∈Σ

p
∑

i=1

p
∑

j=1

ei,j,a ≤
∑

a∈Σ

p
∑

i=1

p
∑

j=1

(ni + nj − 1) = 2σpn− σp2 = (2n− p)pσ.

The above lemma will be useful later, when measuring the size of our NFA en-

codings as a function of the number of states. Note that Wheeler automata (p = 1)

have a number of transitions proportional to O(σn). This relation was already noted

in the literature [69, Thm. 4].

Next, we move on to studying some preliminary properties of the smallest-width

co-lex order. Recall (see Section 2.3) that ≤∗ is a refinement of ≤ if, for all u, v ∈ Q,

u ≤ v implies u ≤∗ v. Since there are only finitely many co-lex orders over an

automaton, every co-lex order ≤ is maximally refined by a co-lex order. Moreover,

if ≤∗ is a refinement of ≤, then it must be that width(≤∗) is less than or equal to

width(≤), since every ≤-chain partition is also a ≤∗-chain partition. This implies

that there is always a maximal co-lex order ≤ on an NFA N such that width(N ) =

width(≤). In general an NFA admits several maximal co-lex orders of different widths.

For example, the two co-lex orders presented in Figure 4.1 are both maximal and have

different widths. This cannot happen over DFAs: in the following lemma we prove

that a DFA always admits a unique maximal co-lex order (the maximum co-lex order)

so that this order realizes the width of the DFA. In particular, the maximum co-lex

order refines every co-lex order on the DFA.
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Definition 4.8. Let D be a DFA. The relation <D over Q is defined by:

u <D v if and only if (∀α ∈ Iu)(∀β ∈ Iv) (α ≺ β).

One can easily prove that ≤D (that is, <D ∪ {(u, u) | u ∈ Q}) is a partial order

over Q. Moreover:

Lemma 4.9. If D is a DFA then (Q,≤D) is the maximum co-lex order on D.

Proof. First, let us prove that ≤D is a co-lex order on D.

To see that Axiom 1 holds assume that u <D v: we must prove that e = maxλ(u) ⪯

e′ = minλ(v). Notice that it must be v ̸= s because the empty string ε is in Is and

ε is co-lexicographically smaller than any other string. Hence, e′ ≻ # and if e = #

we are done. Otherwise, there are αe ∈ Iu and α′e′ ∈ Iv, so that u <D v implies

αe ≺ α′e′ and therefore e ⪯ e′. As for Axiom 2, assume that u ∈ δ(u′, a), v ∈ δ(v′, a),

and u <D v. We must prove that u′ <D v′. Fixing α ∈ Iu′ and β ∈ Iv′ , we must prove

that α ≺ β. We have αa ∈ Iu and βa ∈ Iv, hence from u <D v it follows αa ≺ βa,

and therefore α ≺ β.

Let us now prove that ≤D is the maximum co-lex order.

Suppose, reasoning for contradiction, that ≤ is a co-lex order on D and for some

distinct u, v ∈ Q, u < v, and u ̸<D v. Then, there exist α ∈ Iu, β ∈ Iv with β ≺ α.

Let us fix u, v, α and β with the above properties such that β has the minimum

possible length. Notice that β cannot be the empty word, otherwise v would be the

initial state s, while z ̸< s for all z ∈ Q (see Remark 4.2). Hence, β = β′e for some

e ∈ Σ and β ≺ α implies α = α′f for some f ∈ Σ. We then have e ∈ λ(v), f ∈ λ(u),

and by Axiom 1 of co-lex orders we get f ⪯ e. From β = β′e ≺ α = α′f we conclude

f = e and β′ ≺ α′. If u′, v′ are such that δ(u′, e) = u, δ(v′, e) = v and α′ ∈ Iu′ , β
′ ∈ Iv′ ,

then by Axiom 2 of co-lex orders and Remark 4.2 we get u′ < v′; however, the pair

α′, β′ witnesses u′ ̸≤D v′, contradicting the minimality of β.

Having proved that ≤D is the maximum co-lex order over D, we immediately

deduce that its characterizing property is satisfied by any co-lex order.

Corollary 4.10. If ≤ is a co-lex order over a DFA and u < v then (∀α ∈ Iu)(∀β ∈

Iv) (α ≺ β).
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Remark 4.11. The previous corollary shows that Axiom 1 of co-lex orders propagates

from a local level (i.e. letters in λ(u), λ(v), for which it holds (∀e ∈ λ(u))(∀f ∈

λ(v))(e ⪯ f)) to a global one (i.e. words in Iu, Iv, for which it holds (∀α ∈ Iu)(∀β ∈

Iv)(α ⪯ β)). This works for DFAs because different states are reached by disjoint

sets of words: if u ̸= v then Iu ∩ Iv = ∅. On NFAs things become more complicated

and the existence of a maximum co-lex order is no longer guaranteed.

Since ≤D extends any possible co-lex order on Q, it realizes the width of the

automaton D, as stated in the following lemma.

Lemma 4.12. If D is a DFA then width(≤D) = width(D).

Now, let us prove that ≤D can be computed in polynomial time. We start with a

characterization of ≤D in terms of graph reachability.

Definition 4.13. We say that a pair (u′, v′) ∈ Q×Q precedes a pair (u, v) ∈ Q×Q

if u′ ̸= v′, u ̸= v and there exists α ∈ Σ∗ such that δ(u′, α) = u, δ(v′, α) = v.

Lemma 4.14. Let D be a DFA and let u, v ∈ Q, with u ̸= v. Then:

u <D v ⇔ for all pairs (u′, v′) preceding (u, v) it holds maxλ(u′) ⪯ minλ(v′).

Proof. (⇒) Suppose u <D v. Let (u′, v′) be a pair preceding (u, v) and let γ ∈ Σ∗ be

such that δ(u′, γ) = u and δ(v′, γ) = v. We must prove that maxλ(u′) ⪯ minλ(v′). First,

notice that it cannot be v′ = s, otherwise, given α ∈ Iu′ , we would have αγ ∈ Iu and

γ ∈ Iv, which contradicts u <D v. So we are only left with proving that if u′ = δ(u′′, e)

and v′ = δ(v′′, e′), with e, e′ ∈ Σ, then e ⪯ e′. Let α′′ ∈ Iu′′ and β′′ ∈ Iv′′ . Then

α′′eγ ∈ Iu, β
′′e′γ ∈ Iv and from u <D v it follows that α′′eγ ≺ β′′e′γ, which implies

e ⪯ e′.

(⇐) Suppose that for all pairs (u′, v′) preceding (u, v) it holds maxλ(u′) ⪯ minλ(v′).

Let α ∈ Iu and β ∈ Iv. We must prove that α ≺ β. Since u ̸= v, then α ̸= β. Write

α = α′γ and β = β′γ, where α′ and β′ end with a distinct letter (or, possibly, exactly

one of them is equal to the empty string). Let u′, v′ ∈ Q be such that α′ ∈ Iu′ and

β′ ∈ Iv′ . Then, (u′, v′) precedes (u, v), so it must be maxλ(u′) ⪯ minλ(v′). This implies

that v′ ̸= s, so β is not a suffix of α. If α is a suffix of β, we are done. Otherwise,

it must be α′ = α′′a and β′ = β′′b, with a, b ∈ Σ, a ̸= b; from maxλ(u′) ⪯ minλ(v′) it

then follows a ≺ b, which implies α ≺ β.
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Using the previous lemma we are now able to describe a polynomial time algorithm

for computing <D. Let G = (V, F ) where V = {(u, v) ∈ Q × Q | u ̸= v} and

F = {((u′, v′), (u, v)) ∈ V × V | (∃e ∈ Σ)(δ(u′, e) = u ∧ δ(v′, e) = v)}, where

|F | ≤ |δ|2. Intuitively, we will use G to propagate the complement ̸<D of <D. First,

mark all nodes (u, v) of G for which maxλ(u) ⪯ minλ(v) does not hold. This process

takes O(|Q|2) time: for any state u we find the minimum and the maximum of λ(u)

by scanning the transitions of the automaton (total time O(|δ|)); then we decide in

constant time when maxλ(u) ⪯ minλ(v) does not hold. Then, mark all nodes reachable

in G from marked nodes. This can be done with a simple DFS visit of G, initiating

the stack with all marked nodes. This process takes O(|δ|2) time. By Lemma 4.14,

the set of unmarked pairs is <D. Hence, we proved:

Lemma 4.15. Let D = (Q, s, δ, F ) be a DFA. We can find the order ≤D in O(|δ|2)

time.

The width of a partial order can be determined in polynomial time [54].

Lemma 4.16. Let (V,≤) be a partial order, with |V | = n. The smallest ≤-chain

decomposition of V can be found in O(n5/2) time.

From Lemma 4.12 and Lemma 4.16 we conclude that the width of a DFA can be

computed in polynomial time.

Corollary 4.17. Let D = (Q, s, δ, F ) be a DFA. Then, width(≤D) can be computed

in O(|δ|2 + |Q|5/2) time.

Lemma 4.15, Lemma 4.16 and Corollary 4.17 show that the problem of computing

width(≤D) can be solved in polynomial time, but this is not the end of the story;

improving the bounds is algorithmically challenging and requires advanced techniques,

as we will see in Chapter 7. As for the width-complexity over NFAs, it is known that

the problem is NP-hard, since already deciding whether the width of an NFA is equal

to 1 (i.e. deciding whether the NFA is Wheeler) is an NP-complete problem (see [69]).

With the next example we show that the co-lex width of an automaton may

depend on the total order on the alphabet.
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Example 4.18. Let D be a DFA. Let us show that, in general, the value width(D) =

width(≤D) (Lemma 4.12) may depend on the total order ⪯ on the alphabet. Let D

be the DFA in Figure 4.2.

First, assume that ⪯ is the standard alphabetical order such that a ≺ b ≺ c ≺ d.

We have q1 <D q2 <D q4 and q1 <D q3 <D q4, so width(≤D) is at most two. Notice that

q2 and q3 are not ≤D-comparable because acc, ac ∈ Iq2 , bc ∈ Iq3 and ac ≺ bc ≺ acc,

so width(≤D) is equal to two.

Next, assume that ⪯ is the total order such that a ≺ c ≺ b ≺ d. Then, q1 <D

q2 <D q3 <D q4, hence width(≤D) is equal to one.

q1

q2

q3 q4

a

b

c

c

d

Figure 4.2: A DFA D where the value width(D) depends on the total order ⪯ on the
alphabet.

We now generalize Corollary 4.10 to NFAs, coping with the fact that, on NFAs,

sets Iu, Iv may intersect for u ̸= v.

Lemma 4.19. Let N = (Q, s, δ, F ) be an NFA and let ≤ be a co-lex order on N . If

u < v, then (∀α ∈ Iu)(∀β ∈ Iv)({α, β} ̸⊆ Iu ∩ Iv =⇒ α ≺ β).

Proof. Let α ∈ Iu and β ∈ Iv such that {α, β} ̸⊆ Iu ∩ Iv. We must prove that

α ≺ β. Let γ ∈ Σ∗ be the longest string such that α = α′γ and β = β′γ, for some

α′, β′ ∈ Pref(L(N )). If α′ = ε the claim follows, therefore we can assume |α′| ≥ 1.

Let γ = cp . . . c1, with ci ∈ Σ for i ∈ {1, . . . , p} (p ≥ 0), α′ = aq . . . a1, with ai ∈ Σ

for i ∈ {1, . . . , q} (q ≥ 1), and β′ = br . . . b1, with bi ∈ Σ for i ∈ {1, . . . , r} (r ≥ 0).

Assume |γ| > 0. Since α ∈ Iu and β ∈ Iv, then there exist u1, v1 ∈ Q such

that α′cp . . . c2 ∈ Iu1 , β
′cp . . . c2 ∈ Iv1 , u ∈ δ(u1, c1) and v ∈ δ(v1, c1). By Axiom

2, we obtain u1 ≤ v1. However, it cannot be u1 = v1 because this would imply
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{α, β} ⊆ Iu ∩ Iv, so it must be u1 < v1. By iterating this argument, we conclude that

there exist u′, v′ ∈ Q such that α′ ∈ Iu′ , β
′ ∈ Iv′ and u′ < v′, and the same conclusion

holds if γ = ε as well.

Now, it cannot be r = 0 because this would imply v′ = s, and u′ < s contradicts

Remark 4.2. Hence, it must be |β| ≥ 1. By Axiom 1, it must be a1 ⪯ b1. At the

same time, the definition of γ implies that it cannot be a1 = b1, so we obtain a1 ≺ b1

and we can conclude α ≺ β.

Lemma 4.19 has an important implication (which will stand at the core of the

encoding and indexing results in Sections 4.2): given a co-lex order on an NFA, then

the sets Iα’s are convex w.r.t this order.

Corollary 4.20. Let N = (Q, s, δ, F ) be an NFA and let ≤ be a co-lex order on N .

If α ∈ Pref(L(N )) then Iα is convex in (Q,≤).

Proof. Suppose u, z ∈ Iα and let v ∈ Q be such that u < v < z. We have to prove

that v ∈ Iα. If this were not true, we would have α ∈ (Iu ∩ Iz) \ Iv. Consider any

β ∈ Iv. By Lemma 4.19 we would have α ≺ β ≺ α, a contradiction.

A natural question is whether there is a connection between the notion of width

and the complexity of regular expressions. The case width(N ) = 1 corresponds to the

class of Wheeler automata [61]. In [5], it was shown that Wheeler languages, that is,

regular languages recognized by Wheeler automata, are closed essentially only under

intersection and under concatenation with a finite language. On the other hand, with

the next two remarks we point out that our notion of width can easily be used to

capture complementation, intersection and union.

Remark 4.21. Let D be a DFA. Then, there exists a DFA D′ such that L(D′) = Σ∗ \

L(D) and width(D′) ≤ width(D)+1. The DFA D′ is obtained by first transforming D

into a complete DFA by adding a non-final sink state that is reached by all transitions

not defined in D (including the ones leaving the sink itself), then switching final and

non-final states, and finally removing all states that neither are final, nor allow to

reach a final state. In the worst case, the new sink state is not ≤D′-comparable with

any other state and therefore the width cannot increase by more than one.
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Remark 4.22. Let D1 = (Q1, s1, δ1, F1),D2 = (Q2, s2, δ2, F2) be DFAs, with width(D1) =

p1 and width(D2) = p2. Let us prove that there exists a DFA D such that L(D) =

L(D1)∩L(D2) and width(D) ≤ p1 ·p2 and a DFA D′ such that L(D′) = L(D1)∪L(D2)

and width(D′) ≤ p1 ·p2 +p1 +p2. In the following, we will implicitly use Lemma 4.12.

Let {Q1, . . . , Qp1} and {Q∗1, . . . , Q
∗
p2
} be a ≤D1-chain partition of Q1 and a ≤D2-chain

partition of Q2, respectively. In order to build both D and D′, we first turn D1 and D2

into complete DFAs by adding non-final sinks ⋆1, ⋆2 to Q1 and Q2, respectively (like

in Remark 4.21), then we build the standard product automaton: the set of states is

(Q1 ∪ {⋆1}) × (Q2 ∪ {⋆2}), the initial state is (s1, s2), and the transition function is

defined by δ((u, v), a) = (δ1(u, a), δ2(v, a)), for every state (u, v) and for every a ∈ Σ.

The difference between D and D′ lies in how the set of final states is defined.

We define D by letting F = F1 × F2 being the set of all final states, and then

removing (i) all states that are not reachable from the initial state and (ii) all states

that neither are final, nor allow to reach a final state. Let D = (Q, s, δ, F ) the

resulting DFA at the end of the construction. Notice that Q ⊆ Q1 ×Q2 (that is, the

sinks play no role) because in D1 and D2 the sinks are not final and do not allow to

reach a final state. Moreover we have I(u,v) = Iu ∩ Iv for every (u, v) ∈ Q, because

for every α ∈ Σ∗ there exists a path labeled α from (s1, s2) to (u, v) on D if and only

there exist a path labeled α from s1 to u on D1 and a path labeled α from s2 to v on

D2. As a consequence, L(D) =
⋃

(u,v)∈F I(u,v) =
⋃

u∈F1,v∈F2
Iu ∩ Iv = L(D1) ∩ L(D2).

Now, let us prove that width(D) ≤ p1 · p2. For every i = 1, . . . , p1 and for every

j = 1, . . . , p2, define:

Qi,j = {(u, v) ∈ Q | u ∈ Qi, v ∈ Q∗j}.

Since {Qi,j | 1 ≤ i ≤ p1, 1 ≤ j ≤ p2} is a partition of Q, we only have to show that

every Qi,j is a ≤D-chain. Let (u1, v1), (u2, v2) be distinct elements in Qi,j. Hence,

at least one between u1 ̸= u2 and v1 ̸= v2 holds true. Assume that u1 ̸= u2 (the

other case is analogous). Since u1, u2 ∈ Qi, then u1 <D1 u2 or u2 <D1 u1. Assuming

without loss of generality that u1 <D1 u2, then from I(u1,v1) ⊆ Iu1 and I(u2,v2) ⊆ Iu2

we conclude (u1, v1) <D (u2, v2).

Next, we define D′ by letting F ′ = (F1 × Q2) ∪ (Q1 × F2) be the set of all final

states, and then removing (i) all states that are not reachable from the initial state

and removing (ii) all states that neither are final, nor allow to reach a final state.
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Let D′ = (Q′, (s1, s2), δ, F ′) the resulting DFA at the end of the construction. Again,

we have I(u,v) = Iu ∩ Iv for every (u, v) ∈ Q′ such that u ∈ Q1 and v ∈ Q2, so

L(D) =
⋃

(u,v)∈F I(u,v) =
⋃

u∈F1∨v∈F2
Iu ∩ Iv = L(D1) ∪ L(D2). Let us prove that

width(D′) ≤ p1 · p2 + p1 + p2. Notice that this time if (u, v) ∈ Q′, then it may

happen that u = ⋆1 or v = ⋆2 (but not both). Moreover, if (u, ⋆2) ∈ Q′, then

I(u,⋆2) = Iu \ Pref(L2), and if (⋆1, v) ∈ Q′, then I(⋆1,v) = Iv \ Pref(L1). For every

i = 1, . . . , p1 and for every j = 1, . . . , p2, define:

Q′i,j = {(u, v) ∈ Q′ | u ∈ Qi, v ∈ Q∗j}

Q′i,⋆2 = {(u, ⋆2) ∈ Q′ | u ∈ Qi}

Q′⋆1,j = {(⋆1, v) ∈ Q′ | v ∈ Q∗j}.

These sets identify a partition of Q′, and like before one can show that each set is a

≤D′-chain. We conclude that width(D′) ≤ p1 · p2 + p1 + p2.

The above two remarks suggest that our notion of width is related with the struc-

tural complexity of the regular expressions accepting a given regular language (see

also Remark 5.2 for the consequences of the above two remarks on the smallest-width

DFA recognizing a regular language).

4.2 Path Coherence and Lower Bounds

The reason why Wheeler automata admit an efficient indexing mechanism lies in two

key observations: (i) on finite total orders a convex set can be expressed with O(1)

words by specifying its endpoints, and (ii) the set of states reached by a path labeled

with a given string α forms a convex set (path-coherence). We now show that the

convex property holds true also for co-lex orders by generalizing the result in [61].

Intuitively, the next lemma generalizes from strings to automata the property that

the set of all prefixes ending with a given pattern are consecutive in the prefix array

(see Section 3.4).

Lemma 4.23 (Path-coherence). Let N = (Q, s, δ, F ) be an NFA, ≤ be a co-lex order

on N , α ∈ Σ∗, and U be a ≤-convex set of states. Then, the set U ′ of all states in Q

that can be reached from U by following edges whose labels, when concatenated, yield

α, is still a (possibly empty) ≤-convex set.
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Proof. We proceed by induction on |α|. If |α| = 0, then α = ε and we are done.

Now assume |α| ≥ 1. We can write α = α′a, with α′ ∈ Σ∗, a ∈ Σ. Let u, v, z ∈ Q

such that u < v < z and u, z ∈ U ′. We must prove that v ∈ U ′. By the inductive

hypothesis, the set U ′′ of all states in Q that can be reached from some state in

U by following edges whose labels, when concatenated, yield α′, is a ≤-convex set.

In particular, there exist u′, z′ ∈ U ′′ such that u ∈ δ(u′, a) and z ∈ δ(z′, a). Since

a ∈ λ(u) ∩ λ(z) and u < v < z, then λ(v) = {a} (otherwise by Axiom 1 we would

obtain a contradiction), so there exists v′ ∈ Q such that v ∈ δ(v′, a). From u < v < z

and Axiom 2 we obtain u′ ≤ v′ ≤ z′. Since u′, z′ ∈ U ′′ and U ′′ is a ≤-convex set, then

v′ ∈ U ′′, and so v ∈ U ′.

Note that Corollary 4.20 also follows from Lemma 4.23 by picking U = {s},

because then U ′ = Iα.

As we will see, the above result implies that indexing mechanism can be extended

to arbitrary finite automata by updating one ≤-convex set for each character of

the query pattern. This, however, does not mean that,in general, indexing can be

performed as efficiently as on Wheeler automata: as we show next, in general it is

not possible to represent a ≤-convex set in a partial order using constant space.

Lemma 4.24. The following hold:

1. Any partial order (V,≤) of width p has at least 2p distinct ≤-convex subsets.

2. For any n and p such that 1 ≤ p ≤ n, there exists a partial order (V,≤) of width

p and |V | = n with at least (n/p)p distinct ≤-convex subsets.

Proof. (1) Since V has width p, there exists an antichain A of cardinality p. It is

easy to see that any subset I ⊆ A is a distinct ≤-convex set. The bound 2p follows.

(2) Consider a partial order formed by p mutually-incomparable total orders Vi, all

having n/p elements. Since any total order of cardinality n/p has (n/p+1)(n/p)/2+1

distinct convex sets and any combination of ≤Vi-convex sets forms a distinct ≤-convex

set, we obtain at least

p
∏

i=1

((n/p+ 1)(n/p)/2 + 1) ≥

p
∏

i=1

n/p = (n/p)p

distinct ≤-convex sets.
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Remark 4.25. Given an NFA N with n states and a co-lex order ≤ of width p on

N , Lemma 4.24 implies an information-theoretic lower bound of p bits for expressing

a ≤-convex set, which increases to Ω(p log(n/p)) bits in the worst case. This means

that, up to (possibly) a logarithmic factor, in the word RAM model Ω(p) time is

needed to manipulate one ≤-convex set.

Remark 4.26. If (V,≤) is a partial order, V ′ ⊆ V and U is a convex subset of (V,≤),

then U ∩ V ′ is a convex set over the restricted partial order (V ′,≤V ′). In particular,

if {Vi | 1 ≤ i ≤ p} is a partition of V then any ≤-convex set U is the disjoint union

of p (possibly empty) sets U1, . . . , Up, where Ui = U ∩ Vi is a convex set over the

restriction (Vi,≤Vi).

The above remarks motivate the following strategy. Letting p be the width of a

partial order ≤, by Dilworth’s theorem [45] there exists a ≤-chain partition {Qi | 1 ≤

i ≤ p} of Q into p chains. Then, Remark 4.26 implies that a ≤-convex set can be

encoded by at most p convex sets, each contained in a distinct chain, using O(p)

words. This encoding is essentially optimal by Remark 4.25.

Using the above mentioned strategy we can now refine Lemma 4.23 and Corollary

Corollary 4.20.

Lemma 4.27. Let N = (Q, s, δ, F ) be an NFA, ≤ be a co-lex order on N , {Qi}
p
i=1

be a ≤-chain partition of N , α ∈ Σ∗, and U be a ≤-convex set of states. Then, the

set U ′ of all states in Q that can be reached from U by following edges whose labels,

when concatenated, yield α, is the disjoint union of p (possibly empty) sets U ′1, . . . , U
′
p,

where U ′i = U ′ ∩Qi is ≤Qi
-convex, for i = 1, . . . , p.

In particular, if α ∈ Pref(L(A)) then, Iα is the disjoint union of p (possibly empty)

sets I1α, . . . , I
p
α, where I

i
α = Iα ∩Qi is ≤Qi

-convex, for i = 1, . . . , p.

4.3 Encoding DFAs and Languages: the Automaton BWT (aBWT)

Let us define a representation of an automaton that is a generalization of the Burrows-

Wheeler transform (BWT) of a string. We call this generalization the automaton

Burrows-Wheeler transform (aBWT) and, just like the BWT of a string is an encoding

of the string (that is, distinct strings have distinct BWTs), we will show that the
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aBWT of a DFA is an encoding of the DFA. We will also see that, on NFAs, the

aBWT allow us to reconstruct the accepted language and to efficiently solve pattern

matching queries, but in general it is not an encoding since it is not sufficient to

reconstruct the NFA’s topology. A variant, using slightly more space and encoding

NFAs, will be presented in Section 4.5.

v1start v2 v3 v6 v7

v5 v4

a b

a

b

b

a
a b,cb

v1

v2

v3 v5

v6

v7 v4

CHAIN 1 0 0 0 1 0 0
FINAL 0 0 0 1 1 1 0
IN DEG 1 01 001 001 01 01 0001

OUT DEG OUT 1 2 3 4 5 6 7

01 (1,a) 1 (1,a)

01 (2,b) 2 (2,b)

01 (2,a) 3 (2,a)

01 (2,b) 4 (2,b)

001 (1,a),(2,b) 5 (1,a) (2,b)

001 (1,a),(2,b) 6 (1,a) (2,b)

001 (1,b),(1,c) 7 (1,b)
(1,c)

Figure 4.3: A DFA D accepting L = ab(aa)∗(b(b + c))∗, together with the Hasse
diagram of its maximum co-lex order ≤ and the adjacency matrix of D. In the fol-
lowing examples we consider the ≤-chain partition given by Q1 = {v1, v2, v3, v4},
Q2 = {v5, v6, v7}. The adjacency matrix is sorted according to the total order
Q = {v1, v2, v3, v4, v5, v6, v7}. The two different shades of gray divide the edges by
destination chain (either 1 or 2). Each edge is represented in this matrix as the pair
(i, c), where i is the destination chain and c ∈ Σ is the edge’s label. This way of
visualizing the adjacency matrix can be viewed as a two-dimensional representation
of the automaton Burrows-Wheeler transform (aBWT, Definition 4.28). The aBWT
can be linearized in five sequences, as shown here and in Example 4.29.

The aBWT is given for an automaton N = (Q, s, δ, F ) and it depends on a co-lex

order ≤ endowed with a fixed ≤-chain partition {Qi | 1 ≤ i ≤ p} of Q (we assume

s ∈ Q1, so s is the first element of Q1). An intuition behind the aBWT is provided in
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Figure 4.3: after sorting the states in a total order which agrees with the co-lex order

≤ on pairs whose elements belong to the same class of the partition {Qi | 1 ≤ i ≤ p}

and drawing the transition function’s adjacency matrix in this order, we build five

sequences collecting the chain borders (CHAIN), a boolean flag per state marking final

states (FINAL), the states’ in-degrees (IN DEG), the states’ out-degrees (OUT DEG), and

the states’ labels and destination chains (OUT).

Definition 4.28 (aBWT of an automaton). Let N = (Q, s, δ, F ) be an NFA and

let e = |δ| be the number of N -transitions. Let ≤ be a co-lex order on N , and let

{Qi | 1 ≤ i ≤ p} be a ≤-chain partition of Q, where w.l.o.g. s ∈ Q1. Let π(v) be the

unique map such that v ∈ Qπ(v) and consider the total state order Q = {v1, . . . , vn}

such that, for every 1 ≤ i < j ≤ n, it holds 1 π(vi) < π(vj)∨ (π(vi) = π(vj)∧vi < vj).

The automaton Burrows-Wheeler transform aBWT(N ,≤, {Qi | 1 ≤ i ≤ p}) of (N ,≤

, {Qi | 1 ≤ i ≤ p}) consists of the following sequences.

• CHAIN ∈ {0, 1}n is such that the i-th bit is equal to 1 if and only if vi is the first

state of some chain Qj.

• FINAL ∈ {0, 1}n is such that the i-th bit is equal to 1 if and only if vi ∈ F .

• IN DEG ∈ {0, 1}e+n stores the nodes’ in-degrees in unary. More precisely, (1)

IN DEG contains exactly n characters equal to 1, (2) IN DEG contains exactly

e characters equal to 0, and (3) the number of zeros between the (i − 1)-th

character equal to one (or the beginning of the sequence if i = 1) and the i-th

character equal to 1 yields the in-degree of vi.

• OUT DEG ∈ {0, 1}e+n stores the nodes’ out-degrees in unary. More precisely, (1)

OUT DEG contains exactly n characters equal to 1, (2) OUT DEG contains exactly

e characters equal to 0, and (3) the number of zeros between the (i − 1)-th

character equal to one (or the beginning of the sequence if i = 1) and the i-th

character equal to 1 yields the out-degree of vi.

• OUT stores the edges’ labels and destination chains, as follows. Sort all edges

(vj, vi, c) by their starting state vj according to their index j. Edges originating

1Notice the overload on symbol ≤, also used to indicate the co-lex order among states.
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from the same state are further sorted by their label c. Edges sharing the

starting state and label are further sorted by destination node vi. Then, OUT

is obtained by concatenating the pairs (π(vi), c) for all edges (vj, vi, c) sorted in

this order.

Example 4.29. The aBWT of (D,≤, {Qi | 1 ≤ i ≤ 2}) in Figure 4.3 consists of the

following sequences:

• CHAIN = 1000100.

• FINAL = 0001110.

• IN DEG = 10100100101010001.

• OUT DEG = 01010101001001001.

• OUT = (1, a)(2, b)(2, a)(2, b)(1, a)(2, b)(1, a)(2, b)(1, b)(1, c).

It is not hard to show that the aBWT generalizes all existing approaches [27,

55, 89, 21, 87, 61], for which p = 1 always holds (and so sequences CHAIN and the

first components of the pairs in OUT are uninformative). For example, on strings also

OUT DEG and IN DEG are uninformative (FINAL does not apply); the only sequence left

is the concatenation of the second components of the pairs in OUT, that is, the classic

Burrows-Wheeler transform (to be precise, its co-lexicographic variant, see Section

3.4).

In this section we will prove that if we only know the aBWT of an automaton

we can reconstruct all the sets I iα of Lemma 4.27 (we recall that I iα is the set of all

states in the i-th chain being connected with the source by a path labeled α), and

in particular we can retrieve the language of the automaton. To this end, we first

define some auxiliary sets of states of an NFA — S(α) and L(α) — and we prove

that, for any 1 ≤ i ≤ p, on the i-th chain the convex set corresponding to I iα lays

between (the convex sets) S(α) ∩ Qi and L(α) ∩ Qi. Intuitively, S(α) (respectively,

L(α)) is the set of all states u whose associated regular language Iu contains only

strings co-lexicographically strictly smaller (respectively, larger) than α.
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Definition 4.30. Let N = (Q, s, δ, F ) be an NFA, ≤ be a co-lex order on N , and

{Qi | 1 ≤ i ≤ p} be a ≤-chain partition of Q. Let α ∈ Σ∗. Define:

S(α) = {u ∈ Q | (∀β ∈ Iu)(β ≺ α)}

L(α) = {u ∈ Q | (∀β ∈ Iu)(α ≺ β)}.

Moreover, for every i = 1, . . . , p define Si(α) = S(α) ∩Qi and Li(α) = L(α) ∩Qi.

In the following, we see a ≤-chain Qi as an array of sorted elements, so Qi[j]

and Qi[1, k] denote the j-th smallest state in Qi and the k smallest states in Qi,

respectively.

In Lemma 4.31 we show that in order to compute Iα it will be sufficient to compute

S(α) and L(α).

Lemma 4.31. Let N = (Q, s, δ, F ) be an NFA, ≤ be a co-lex order on N , {Qi | 1 ≤

i ≤ p} be a ≤-chain partition of Q, and α ∈ Σ∗.

1. If u, v ∈ Q are such that u ≤ v and v ∈ S(α), then u ∈ S(α). In particular, for

every i = 1, . . . , p there exists 0 ≤ li ≤ |Qi| such that Si(α) = Qi[1, li] (namely,

li = |Si(α)|).

2. If u, v ∈ Q are such that u ≤ v and u ∈ L(α), then v ∈ L(α). In particular, for

every i = 1, . . . , p there exists 1 ≤ ri ≤ |Qi| + 1 such that Li(α) = Qi[ri, |Qi|]

(namely, ri = |Qi| − |Li(α)| + 1).

3. Iα, S(α), and L(α) are pairwise disjoint. In particular, it always holds that

li < ri.

4. Let 1 ≤ i ≤ p. If I iα ̸= ∅, then I iα = Qi[li + 1, ri − 1], that is, {Si(α), I iα, Li(α)}

is an ordered partition of Qi.

Proof. 1. Let β ∈ Iu. We must prove that β ≺ α. Now, if β ∈ Iv, from v ∈ S(α)

we obtain β ≺ α. If β ̸∈ Iv, then for any γ ∈ Iv we have β ≺ γ by Lemma 4.19.

Again, we have γ ≺ α, so we conclude β ≺ α.

2. Analogous to the previous point.
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3. We have Iα ∩ S(α) = ∅ because if u ∈ Iα, then α ∈ Iu, so u ̸∈ S(α). Similarly,

Iα ∩ L(α) = ∅. Finally, we have S(α) ∩ L(α) = ∅ because if there existed

u ∈ S(α) ∩ L(α), then for any β ∈ Iu (there exists at least one such β since

Iu ̸= ∅) we would obtain β ≺ α ≺ β, a contradiction.

4. To begin with, let us prove that, for every v ∈ Iα, (1) if u < v, then either

u ∈ Iα or u ∈ S(α), and (2) if v < z, then either z ∈ Iα or z ∈ L(α). We only

prove (1), the proof of (2) being analogous. Assume that u ̸∈ Iα, and let β ∈ Iu.

We must prove that β ≺ α and, since α ∈ Iv \Iu, this follows from Lemma 4.19.

Now, let 1 ≤ i ≤ p be such that I iα ̸= ∅, and let us prove that {Si(α), I iα, Li(α)}

is an ordered partition of Qi. Consider u ∈ I iα. Then, if v ∈ Qi \ I
i
α we have

either v < u or u < v, hence what we have proved above implies that either

v ∈ Si(α) or v ∈ Li(α). Therefore, if I iα ̸= ∅ then {Si(α), I iα, Li(α)} is an

ordered partition of Qi and point 4 follows.

Remark 4.32. Notice that if I iα = ∅ then {Si(α), Li(α)} is not, in general, an ordered

partition of Qi, as shown in Fig. 4.4.

sstart

q1

q2

q3

q4 q5

a, c

a

c

b

c

c

d
S1(b)

L1(b)

S2(b)

I2b

L2(b)

s

q1

q3

q2

q4

q5

Figure 4.4: Consider the NFA in the figure and the Hasse diagram of a co-lex order
≤ with chain partition Q1 = {s, q1, q3} and Q2 = {q2, q4, q5}. If we consider the word
b, then, on the one hand, I1b = ∅ and {S1(b) = {s}, L1(b) = {q3}} is not a partition
of Q1. On the other hand, since I2b = {q4} ≠ ∅, then {S2(b) = {q2}, I

2
b , L1(b) = {q5}}

is an ordered Q2-partition.

Our next step is to show how to recursively compute the sets S(α) and L(α)

defined above. We begin with the following two lemmas.

Lemma 4.33. Let N = (Q, s, δ, F ) be an NFA, ≤ be a co-lex order on N , {Qi | 1 ≤

i ≤ p} be a ≤-chain partition of Q, α′ ∈ Σ∗, a ∈ Σ, and u ∈ Q.
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1. u ∈ S(α′a) if and only if (1) maxλ(u) ⪯ a and (2) if u′ ∈ Q is such that

u ∈ δ(u′, a), then u′ ∈ S(α′).

2. u ∈ L(α′a) if and only if (1) a ⪯ minλ(u) and (2) if u′ ∈ Q is such that

u ∈ δ(u′, a), then u′ ∈ L(α′).

Proof. Let us prove the first statement.

(⇒) Let c ∈ Σ such that c ∈ λ(u) \ {#}. Let u′ ∈ Q such that u ∈ δ(u′, c), and

let β′ ∈ Iu′ . Then β′c ∈ Iu, so from u ∈ S(α′a) we obtain β′c ≺ α′a, which implies

c ⪯ a. Now assume that c = a. Suppose for sake of contradiction that u′ ̸∈ S(α′).

This means that there exists γ′ ∈ Iu′ such that α′ ⪯ γ′. This implies α′a ⪯ γ′a and,

since γ′a ∈ Iu, we obtain u ̸∈ S(α′a), a contradiction.

(⇐) Let β ∈ Iu. We must prove that β ≺ α′a. If β = ε we are done, because

ε ≺ α′a. Now assume that β = β′b. This means that there exists u′ ∈ Q such that

u ∈ δ(u′, b) and β′ ∈ Iu′ . We know that b ⪯ a. If b ≺ a, then β ≺ α′a and we are

done. If b = a, then u′ ∈ S(α′), so β′ ≺ α′, which implies β ≺ α′a.

The proof of the second statement is analogus (the only difference being that in

(⇐) it must necessarily be β ̸= ε, because a ⪯ minλ(u)).

Lemma 4.34. Let N = (Q, s, δ, F ) be an NFA, ≤ be a co-lex order on N , {Qi | 1 ≤

i ≤ p} be a ≤-chain partition of Q, α′ ∈ Σ∗, and a ∈ Σ. Fix 1 ≤ i ≤ p, and let

Si(α
′a) = Qi[1, li] and Li(α

′a) = Qi[ri, |Qi|].

1. If u′ ∈ S(α′) and u ∈ Qi are such that u ∈ δ(u′, a), then u ∈ Qi[1,min{li +

1, |Qi|}].

2. If u′ ∈ L(α′) and u ∈ Qi are such that u ∈ δ(u′, a), then u ∈ Qi[max{ri −

1, 1}, |Qi|].

Proof. We only prove the first statement, the proof of the second statement being

entirely analogous. We can assume li < |Qi| − 1, otherwise the conclusion is trivial.

If a ≺ max(λ(Qi[li + 1])) the conclusion is immediate by Axiom 1, so we can assume

max(λ(Qi[li + 1])) ⪯ a. We know that Qi[li + 1] ̸∈ S(α′a), so by Lemma 4.33 there

exists v′ ∈ Q such that Qi[li + 1] ∈ δ(v′, a) and v′ ̸∈ S(α′). Suppose for sake of

contradiction that Qi[li + 1] < u. By Axiom 2 we obtain v′ ≤ u′. From u′ ∈ S(α′)

and Lemma 4.31 we conclude v′ ∈ S(α′), a contradiction.
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The following definition is instrumental in giving an operative variant of Lemma

4.33 (i.e. Lemma 4.36) to be used in our algorithms.

Definition 4.35. Let N = (Q, s, δ, F ) be an NFA, ≤ be a co-lex order on N , and

{Qi | 1 ≤ i ≤ p} be a ≤-chain partition of Q. Let U ⊆ Q. We denote by in(U, a) the

number of edges labeled with character a that enter states in U :

in(U, a) = |{(u′, u) | u′ ∈ Q, u ∈ U, u ∈ δ(u′, a)}|.

We denote by out(U, i, a) the number of edges labeled with character a that leave

states in U and enter the i-th chain:

out(U, i, a) = |{(u′, u) | u′ ∈ U, u ∈ Qi, u ∈ δ(u′, a)}|.

In the following lemma we show how to compute the convex sets corresponding

to Si(α
′a) and Li(α

′a), for every i = 1, . . . , p, using the above definitions.

Lemma 4.36. Let N = (Q, s, δ, F ) be an NFA, ≤ be a co-lex order on N , {Qi | 1 ≤

i ≤ p} be a ≤-chain partition of Q, α′ ∈ Σ∗, a ∈ Σ, and α = α′a. For every

j = 1, . . . , p, let Sj(α
′) = Qj[1, l

′
j] and Lj(α

′) = Qj[r
′
j, |Qj|]. Fix 1 ≤ i ≤ p, and let

Si(α) = Qi[1, li] and Li(α) = Qi[ri, |Qi|].

1. Let x = out(S(α), i, a) =
∑p

j=1 out(Qj[1, l
′
j], i, a). Then, li is the largest in-

teger 0 ≤ k ≤ |Qi| such that (i) in(Qi[1, k], a) ≤ x, and (ii) if k ≥ 1, then

max(λ(Qi[k])) ⪯ a.

2. Let y = out(L(α), i, a) =
∑p

j=1 out(Qj[r
′
j, |Qj|], i, a). Then, ri is the smallest

integer 1 ≤ k ≤ |Qi|+ 1 such that (i) in(Qi[k, |Qi|], a) ≤ y, and (ii) if k ≤ |Qi|,

then a ⪯ min(λ(Qi[k])).

Proof. Again, we just prove the first statement since the proof of the second one is

analogous.

Let zi be the largest integer 0 ≤ k ≤ |Qi| such that (i) in(Qi[1, k], a) ≤ x, and (ii)

if k ≥ 1, then max(λ(Qi[k])) ⪯ a. We want to prove that li = zi.

(≤) The conclusion is immediate if li = 0, so we can assume li ≥ 1. It will suffice

to prove that in(Qi[1, li], a) ≤ x and max(λ(Qi[li])) ⪯ a. This follows from Lemma

4.33 and the definition of x.
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(≥) The conclusion is immediate if li = |Qi|, so we can assume li < |Qi|. We

only have to prove that if li + 1 ≤ k ≤ |Qi|, then either in(Qi[1, k], a) > x or

max(λ(Qi[k])) ≻ a. By Axiom 1, it will suffice to prove that we have in(Qi[1, li +

1], a) > x or max(λ(Qi[li + 1])) ≻ a. Assume that max(λ(Qi[li + 1])) ⪯ a. Since

Qi[li + 1] ̸∈ S(α), by Lemma 4.33 there exists v′ ∈ Q such that Qi[li + 1] ∈ δ(v′, a)

and v′ ̸∈ S(α′). We will conclude that in(Qi[1, li+1], a) > x if we show that for every

j = 1, . . . , p, if u′ ∈ Qj and u ∈ Qi are such that u′ ∈ Qj[1, l
′
j] (and so u′ ∈ S(α′))

and u ∈ δ(u′, a), then it must be u ∈ Qi[1, li + 1]. This follows from Lemma 4.34.

We now use Lemma 4.36 to retrieve the language of the automaton starting from

the aBWT.

Lemma 4.37. Let N = (Q, s, δ, F ) be an NFA, ≤ be a co-lex order on N , and

{Qi | 1 ≤ i ≤ p} be a ≤-chain partition of Q, with s ∈ Q1. Let v1, . . . , vn be the

ordering of Q defined in Definition 4.28. Assume that we do not know N , but we

only know aBWT(N ,≤, {Qi | 1 ≤ i ≤ p}). Then, for every α ∈ Σ∗ we can retrieve the

set {i ∈ {1, . . . , n} | α ∈ Ivi}, which yields δ(s, α).

Proof. First, let us prove that for every k = 1, . . . , n, we can retrieve the labels —

with multiplicities — of all edges entering vk. By scanning CHAIN we can retrieve

the integers k1 and k2 such that the states in chain Qi are vk1 , vk1+1, . . . , vk2−1, vk2 .

By scanning OUT, which stores the label and the destinational chain of each edge, we

can retrieve how many edges enter chain Qi, and we can retrieve the labels - with

multiplicities - of all edges entering chain Qi. By considering the substring of IN DEG

between the (k1 − 1)-th one and the k2-th one we can retrieve the in-degrees of all

states in chain Qi. Since we know the labels - with multiplicities - of all edges entering

chain Qi and the in-degrees of all states in chain Qi, by Axiom 1 we can retrieve the

labels - with multiplicities - of all edges entering each node in chain Qi: order the

multiset of incoming edge labels, scan the nodes in Qi in order, and assign the labels

to each node in Qi in agreement with their in-degrees.

Let us prove that for every i = 1, . . . , p we can retrieve the integers li and ri such

that Si(α) = Qi[1, li] and Li(α) = Qi[ri, |Qi|]. We proceed by induction on |α|. If

|α| = 0, then α = ε, so for every i = 1, . . . , p we have li = 0, for every i = 2, . . . , p we

have ri = 1, and r1 = 2. Now, assume |α| > 0. We can write α = α′a, with α′ ∈ Σ∗
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and a ∈ Σ. By the inductive hypothesis, for j = 1, . . . , p we know the integers l′j and

r′j such that Sj(α
′) = Qj[1, l

′
j] and Lj(α

′) = Qj[r
′
j, |Qj|]. Notice that by using OUT DEG

and OUT we can compute out(Qj[1, l
′
j], i, a) for every j = 1, . . . , p (see Definition 4.35).

Since we know the labels - with multiplicities - of all edges entering each state, we can

also compute in(Qi[c, d], a) and λ(Qi[k])) for every i = 1, . . . , p, 1 ≤ c ≤ d ≤ |Qi|,

and 1 ≤ k ≤ |Qi|. By Lemma 4.36 we conclude that we can compute li and ri for

every i = 1, . . . , p, and we are done.

Now, let us prove that for every α ∈ Σ∗ we can retrieve the set {i ∈ {1, . . . , n} | α ∈

Ivi}. We proceed by induction on |α|. If |α| = 0, then α = ε and {i ∈ {1, . . . , n} | ε ∈

Ivi} = {1}. Now, assume |α| > 0. We can write α = α′a, with α′ ∈ Σ∗ and a ∈ Σ. By

the inductive hypothesis, we know {i ∈ {1, . . . , n} | α′ ∈ Ivi}. For every i = 1, . . . , p

we decide whether I iα ̸= ∅ by using {i ∈ {1, . . . , n} | α′ ∈ Ivi}, OUT DEG and OUT. If

I iα ̸= ∅, then by Lemma 4.31 we know that I iα = Qi[li + 1, ri − 1], and we know how

to determine li and ri. Hence, we can easily compute {i ∈ {1, . . . , n} | α ∈ Ivi}.

Corollary 4.38. If aBWT(N ,≤, {Qi | 1 ≤ i ≤ p}) = aBWT(N ′,≤′, {Q′i | 1 ≤ i ≤ p′}),

then:

1. p = p′;

2. for every 1 ≤ i ≤ p we have |Qi| = |Q′i|;

3. L(N ) = L(N ′).

Proof. Since N and N ′ share the sequence CHAIN, it must be p = p′ and |Qi| = |Q′i|

for every i . Fix a string α ∈ Σ∗. Then, by Lemma 4.37 we conclude that the set

{i ∈ {1, . . . , n} | α ∈ Ivi} is the same for both N and N ′. Since N and N ′ share also

the sequence FINAL, we conclude that α is accepted by N if and only if it is accepted

by N ′.

Corollary 4.38 ensures that aBWT(N ,≤, {Qi | 1 ≤ i ≤ p}) is enough to reconstruct

the language L(N ) of an NFA. Similarly to the string case, however (where the BWT

is augmented with light data structures in order to achieve efficient indexing with the

FM-index [56]), we will need additional data structures built on top of the aBWT

in order to solve efficiently string matching queries. In Section 4.4 we will show
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how to extend the FM-index to automata by augmenting the aBWT with light data

structures.

While Corollary 4.38 establishes that the aBWT preserves the automaton’s lan-

guage, it does not state anything about whether it preserves the automaton’s topology.

In fact we now show that this is not, in general, the case.

Definition 4.39. Let N = (Q, s, δ, F ) be an NFA. We say that N is distinguished

by its paths if for every v ∈ Q there exists α ∈ Σ∗ such that Iα = {v}.

Remark 4.40. If an NFA is not distinguished by its paths, then in general we cannot

retrieve its topology from its aBWT, because there exist two non-isomorphic NFAs

having the same aBWT: see Figure 4.5 for an example.
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Figure 4.5: Consider the two non-isomorphic NFAs N1 and N2 in the figure, both
with set of states Q = {v1, v2, v3, v4, v5, v6}. Let ≤1 and ≤2 be the maximal co-lex
orders given by the Hasse diagrams shown in the figure, and notice that in both
cases if we consider Q1 = {v1, v2, v3, v4} and Q2 = {v5, v6} we obtain a minimum-
size chain partition Q = {Q1, Q2}. It is easy to check that aBWT(N1,≤1,Q) =
aBWT(N2,≤2,Q) because in both cases we have CHAIN = 100010, FINAL = 001101,
OUT DEG = 0010110100101, OUT = (1, a)(2, a)(1, c)(1, d)(1, c)(2, d)(2, b), and IN DEG =
1010100101001. Consistently with Theorem 4.41, we have that N1 and N2 are not
distinguished by their paths.

Let us prove that aBWT(N ,≤, {Qi | 1 ≤ i ≤ p}) is a one-to-one encoding for the

class of automata which are distinguished by paths.

Theorem 4.41. Let N = (Q, s, δ, F ) be an NFA, ≤ be a co-lex order on N , and

{Qi | 1 ≤ i ≤ p} be a ≤-chain partition of Q, with s ∈ Q1. Assume that we do

not know N , but we only know aBWT(N ,≤, {Qi | 1 ≤ i ≤ p}). Then, we can decide

whether N is distinguished by its paths and, if so, we can retrieve N .



52

Proof. Let v1, . . . , vn be the ordering of Q in Definition 4.28. We know that v1 is

the initial state and for every j = 1, . . . , n we can decide whether vj is final by using

FINAL. Now, for every α ∈ Σ∗, let Cα = {i ∈ {1, . . . , n} | α ∈ Ivi}. Notice that we

can compute Cα for every α ∈ Σ∗ by Lemma 4.37. Consider a list that contains pairs

of the form (α,Cα). Initially, the list contains only (ε, {1}). Remove recursively an

element (α,Cα) and for every a ∈ Σ add (αa, Cαa) to the list if and only if Cαa is

nonempty and it is not the second element of a pair which is or has already been in the

list. This implies that after at most |Σ| ·2n steps the list is empty, and any non-empty

Cα has been the second element of some pair in the list. Then, we conclude that N

is distinguished by its paths if and only for every k = 1, . . . , n the set {vk} has been

the second element of some pair in the list. In particular, if N is distinguished by its

paths, then for every k = 1, . . . , n we know a string α′ ∈ Σ∗ such that Cα′ = {k}. We

are only left with showing that we can use α′ to retrieve all edges leaving vk. Fix a

character a ∈ Σ. Then, compute Cα′a using again Lemma 4.37. Then, vk has |Cα′a|

outgoing edges labeled a, whose indexes are given by Cα′a.

Since any DFA is distinguished by its paths, we obtain the following corollary:

Corollary 4.42. The aBWT is a one-to-one encoding over DFAs.

By counting the number of bits required by the aBWT, we can determine the size

of our encoding for NFAs that are distinguished by their paths:

Corollary 4.43. Let N be an NFA that is distinguished by its paths (for example, a

DFA), and let p = width(N ). Then, we can store N using log(pσ) + O(1) bits per

transition. If N is a DFA, this space can also be expressed as (at most) σ log(pσ) +

O(σ) bits per state. If N is an NFA, this space can also be expressed as (at most)

2pσ log(pσ) +O(pσ) bits per state.

Proof. The bound of log(pσ)+O(1) bits per transition follows directly from Definition

4.28 and Theorem 4.41. Letting |δ| denote the number of transitions and n denote the

number of states, on DFAs the naive bound |δ| ≤ nσ holds; this allows us to derive the

bound of σ log(pσ)+O(σ) bits per state on DFAs. On arbitrary NFAs, we can use the

bound |δ| ≤ 2pσn implied by Lemma 4.7, yielding the bound of 2pσ log(pσ) +O(pσ)

bits per state on NFAs.
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We stress that, while not being an encoding of the NFA, the aBWT still allows

to reconstruct the language of the automaton and — as we will show in the next

subsection — to solve pattern matching queries by returning the convex set of all

states reached by a path labeled with a given input query string. In Section 4.5 we

will augment the aBWT and obtain an injective encoding of arbitrary NFAs.

4.4 An Index for NFAs and Languages

We now show how to support subpath queries by augmenting the aBWT with light

data structures and turning it into an index. In fact, our structure is a generalization

of the FM-index to arbitrary automata.

Solving subpath queries on an NFA requires finding the subset T (α) of its states

reached by some path labeled by the query string α. In turn, note that there is a

path labeled α ending in state u if and only if Iu contains a string suffixed by α. This

motivates the following definition.

Definition 4.44. Let N = (Q, s, δ, F ) be an NFA, ≤ be a co-lex order on N , {Qi | 1 ≤

i ≤ p} be a ≤-chain partition of Q, and α ∈ Σ∗. Define:

T (α) = {u ∈ Q | (∃β ∈ Iu)(α ⊣ β)},

R(α) = S(α) ∪ T (α) = {u ∈ Q | (∀β ∈ Iu)(β ≺ α) ∨ (∃β ∈ Iu)(α ⊣ β)}.

Moreover, for every i = 1, . . . , p define Ti(α) = T (α) ∩Qi and Ri(α) = R(α) ∩Qi.

Intuitively, T (α) contains all states reached by a path labeled with α, while R(α)

contains all the states that are either reached by a string suffixed by α, or only reached

by strings co-lexicographically smaller than α. Note that the goal of an index solving

pattern matching queries is to compute the (cardinality of the) set T (α). The aim

of the next lemma is to show that, once a co-lex order is fixed, T (α) always forms a

range (a convex set). Indeed, we now prove a counterpart of Lemma 4.31, where for

any α ∈ Σ∗ we showed that Si(α) = Qi[1, li], for some 0 ≤ li ≤ |Qi|.

Lemma 4.45. Let N = (Q, s, δ, F ) be an NFA, ≤ be a co-lex order on N , and

{Qi | 1 ≤ i ≤ p} be a ≤-chain partition of Q. Let α ∈ Σ∗. Then:

1. S(α) ∩ T (α) = ∅.
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2. T (α) is ≤-convex.

3. If u, v ∈ Q are such that u ≤ v and v ∈ R(α), then u ∈ R(α). In particular, for

every i = 1, . . . , p there exists 0 ≤ ti ≤ |Qi| such that Ti(α) = Qi[|Si(α)| + 1, ti]

(namely, ti = |Ri(α)|).

Proof. 1. If u ∈ T (α), then there exists β ∈ Iu such that α ⊣ β. In particular,

α ⪯ β, so u ̸∈ S(α) = {v ∈ Q | (∀β ∈ Iv)(β ≺ α)}.

2. It follows from Lemma 4.23 by picking U = Q.

3. If v ∈ S(α), then u ∈ S(α) by Lemma 4.31 and so u ∈ R(α). Now, assume

that v ∈ T (α). If u ∈ T (α) we are done. If u ̸∈ T (α) (and therefore u ̸= v),

we want to prove that u ∈ S(α), which implies u ∈ R(α). Fix β ∈ Iu; we must

prove that β ≺ α. Since v ∈ T (α), then there exists γ ∈ Σ∗ such that γα ∈ Iv.

Moreover, γα ̸∈ Iu because u ̸∈ T (α). Since u < v, by Lemma 4.19 we conclude

β ≺ γα. Since u ̸∈ T (α) implies α ̸⊣ β, from β ≺ γα we conclude β ≺ α.

We now show how to recursively compute the range on each chainQi corresponding

to Ri(α). Note that, by Lemma 4.36, we can assume to be able to recursively compute

the range on each chain Qi corresponding to Si(α). A computational variant of

Lemma 4.45 will allow us to compute Ti(α) on each chain 1 ≤ i ≤ p. Each recursive

step of this procedure — dubbed here forward search (see Section 3.4) — will stand

at the core of our index.

Lemma 4.46 (Forward search). Let N = (Q, s, δ, F ) be an NFA, ≤ be a co-lex order

on N , and {Qi | 1 ≤ i ≤ p} be a ≤-chain partition of Q. Let α′ ∈ Σ∗, a ∈ Σ and

α = α′a. For every 1 ≤ i, j ≤ p, let:

• Sj(α
′) = Qj[1, l

′
j];

• Rj(α
′) = Qj[1, t

′
j];

• Si(α) = Qi[1, li];

• Ri(α) = Qi[1, ti].
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Fix 1 ≤ i ≤ p, and define c =
∑p

j=1 out(Qj[1, l
′
j], i, a) and d =

∑p
j=1 out(Qj[1, t

′
j], i, a).

Then d ≥ c, and:

1. If d = c, then Ti(α) = ∅ and so ti = li.

2. If d > c, then Ti(α) ̸= ∅ and ti, with 1 ≤ ti ≤ |Qi|, is the smallest integer such

that in(Qi[1, ti], a) ≥ d.

In particular, li can be computed by means of Lemma 4.36, and:

Ti(α) = Qi[li + 1, ti].

Proof. Since S(α) ⊆ R(α), we have d ≥ c. Now, notice that Ti(α) ̸= ∅ if and only

there exists an edge labeled a leaving a state in T (α′) and reaching chain Qi, if and

only if d > c. Hence, in the following we can assume Ti(α) ̸= ∅. In particular, this

implies li < |Qi| and ti ≥ li + 1. By Lemma 4.34 all edges labeled a, leaving a

state in S(α′), and reaching chain Qi must end in Qi[1, li + 1]. At the same time,

since Ti(α) ̸= ∅, the definition of ti implies that there exists v′ ∈ T (α′) (and so

v′ ∈ R(α′)) such that Qi[ti] ∈ δ(v′, a). Hence, the conclusion will follow if we prove

that if u′, u ∈ Q are such that u ∈ Qi[1, ti − 1] and u ∈ δ(u′, a), then u′ ∈ R(α′).

Since u < Qi[ti], from Axiom 2 we obtain u′ ≤ v′ and since v′ ∈ R(α′), from Lemma

4.45 we conclude u′ ∈ R(α′).

We are ready to present the main result of this section (Theorem 4.47): a linear-

space index supporting subpath queries on any automaton in time proportional to

p2 · log log(pσ) per query character (p being the automaton’s width).

Theorem 4.47 (aBWT-index of a finite-state automaton). Let N = (Q, s, δ, F ) be

an NFA on alphabet Σ of size σ = |Σ| ≤ eO(1), where e = |δ| is the number of N -

transitions. Assume that we are given a ≤-chain partition {Qi | 1 ≤ i ≤ p}, for some

co-lex order ≤ of width p. Then, in expected time O(e log log σ), we can build a data

structure using e log(pσ)(1 + o(1)) + O(e) bits that, given a query string α ∈ Σm,

answers the following queries in O(m · p2 · log log(pσ)) time:

1. compute the set T (α) of all states reached by a path on N labeled α, represented

by means of p ranges on the chains in {Qi | 1 ≤ i ≤ p};
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2. compute the set Iα of all states reached by a path labeled with α originating in

the source, represented by means of p ranges on the chains in {Qi | 1 ≤ i ≤ p}

and, in particular, decide whether α ∈ L(N ).

Proof. Let n = |Q|. In this proof we assume that the states of Q have been sorted like

in Definition 4.28: if π(v), for v ∈ Q, is the unique integer such that v ∈ Qπ(v), then

we consider the ordering v1, . . . , vn of Q such that for every 1 ≤ i < j ≤ n it holds

π(vi) < π(vj) ∨ (π(vi) = π(vj) ∧ vi < vj). Moreover, we assume that s ∈ Q1 (again

like in Definition 4.28), so s = v1. For every i = 1, . . . , p, let ei = |{(u, v, a) | δ(u, a) =

v, u ∈ Q, v ∈ Qi, a ∈ Σ}| be the number of edges entering the i-th chain, let Σi =

(
⋃

u∈Qi
λ(u))\{#} be the set of characters labeling edges entering the i-th chain, and

let σi = |Σi|.

We store the following data structures:

• One fully-indexable succinct dictionary (Lemma 2.3) on each Σi to map Σi ⊆

[0, σ− 1] to [0, σi− 1]. The total number of required bits is
∑p

i=1(σi log(σ/σi) +

O(σi)) ≤
∑p

i=1(ei log(σ/σi) + O(ei)) = e log σ −
∑p

i=1(ei log σi) + O(e). As a

consequence, we can solve rank, select, predecessor, strict-successor and mem-

bership queries on each dictionary in O(log log(σ/σi)) ⊆ O(log log σ) time.

• The bitvector CHAIN ∈ {0, 1}n of Definition 4.28 represented by the data

structure of Lemma 2.1. The number of required bits is nH0(CHAIN)(1 +

o(1)) + O(n) = O(n) ⊆ O(e). As a consequence, we can solve rank and select

queries on CHAIN in O(1) time. In particular, in O(1) time we can compute

|Qi|, for i = 1, . . . , p, because |Qi| = CHAIN.select(i+1, 1)−CHAIN.select(i, 1).

• The bitvector FINAL ∈ {0, 1}n of Definition 4.28 represented by the data struc-

ture of Lemma 2.1. The number of required bits is again O(n) ⊆ O(e).

• The bitvector OUT DEG ∈ {0, 1}e+n of Definition 4.28 represented by the data

structure of Lemma 2.1. The number of required bits is (n+e)H0(OUT DEG)(1+

o(1))+O(n+e) ⊆ O(e). As a consequence, we can solve rank and select queries

on OUT DEG in O(1) time.

• The string OUT ∈ ([1, p]×Σ)e of Definition 4.28 represented by the data structure

of Lemma 2.2 (the assumption on the size on the alphabet in Lemma 2.2 is
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satisfied because |[1, p] × σ| = p · σ ≤ n · σ ≤ (e + 1) · σ = eO(1)). The number

of required bits is eH0(OUT)(1 + o(1)) + O(e). We will bound the quantity

eH0(OUT) by exhibiting a prefix-free encoding of OUT. The key idea is that if

(i, c) ∈ [1, p]×Σ occurs in OUT, then it must be c ∈ Σi, so we can encode (i, c) by

using ⌈log(p+1)⌉ ≤ log p+1 bits encoding i, followed by ⌈log(σi+1)⌉ ≤ log σi+1

bits encoding c (note that this part depends on i). We clearly obtain a prefix

code, so we conclude eH0(OUT) ≤
∑p

i=1 ei(log p + log σi + O(1)) = e log p +
∑p

i=1(ei log σi)+O(e) bits. Observing that
∑p

i=1(ei log σi) ≤ e log σ, we conclude

that the number of required bits for OUT is bounded by eH0(OUT)(1 + o(1)) +

O(e) = (e log p+
∑p

i=1(ei log σi) +O(e)) (1 + o(1)) +O(e) ≤ (1 + o(1))e log p+
∑p

i=1(ei log σi) + o(e log σ) + O(e) bits. Notice that in O(log log(pσ)) time we

can solve rank and select queries on OUT (that is, queries OUT.rank(j, (i, c))

and OUT.select(j, (i, c))) for all 1 ≤ i ≤ p and for all c ∈ Σ. Indeed, given i

and c, we first check whether c ∈ Σi by solving a membership query on the

dictionary for Σi in O(log log σ) time. If c ̸∈ Σi, then we immediately conclude

that OUT.rank(j, (i, c)) = 0 and OUT.select(j, (i, c)) is undefined. If c ∈ Σi, then

(i, c) appears in OUT, so the conclusion follows from Lemma 2.2.

• The bitvector IN DEG ∈ {0, 1}e+n of Definition 4.28 represented by the data

structure of Lemma 2.1. The number of required bits is again O(e). As a

consequence, we can solve rank and select queries on IN DEG in O(1) time.

• A bitvector IN′, represented by the data structure of Lemma 2.1, built as follows.

We sort all edges (vj, vi, c) by end state vi and, if the end state is the same,

by label c. Then, we build a string IN ∈ Σe by concatenating all labels of the

sorted edges. Finally, IN′ ∈ {0, 1}e is the bitvector such that IN
′[k] = 1 if and

only if k = 1 or IN[k] ̸= IN[k− 1] or the k-th edge and the (k− 1)-th edge reach

distinct chains. The number of required bits is O(e).

For an example, consider the automaton of Figure 4.3. All sequences except for

bitvector IN′ are reported in Example 4.29. To build bitvector IN′, we first build the

string IN of all incoming labels of the sorted edges: IN = aaabcabbbb. Then, bitvector

IN
′ marks with a bit ’1’ (i) the first character of each maximal unary substring in IN,

and (ii) the characters of IN labeling the first edge in each chain: IN′ = 1001111000.
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By adding up the space of all components (note that the terms −
∑p

i=1(ei log σi)

in the dictionaries Σi and
∑p

i=1(ei log σi) in sequence OUT cancel out), we conclude

that our data structures take at most e log(pσ)(1 + o(1)) +O(e) bits.

We proceed by showing how to solve queries 1 (string matching) and 2 (member-

ship).

(1) Let us prove that, given a query string α ∈ Σm, we can use our data structure

to compute, in time O(m · p2 · log log(pσ)), the set T (α) of all states reached by a

α-path on N , presented by p convex sets on the chains {Qi | 1 ≤ i ≤ p}. By Lemma

4.46, it will suffice to show how to compute R(α) and S(α). We can recursively

compute each R(α) and S(α) in time proportional to m by computing R(α′) and

S(α′) for all prefixes α′ of α. Hence, we only have to show that we can update R(α′)

and S(α′) with a new character, in O(p2 · log log(pσ)) time. We start with the empty

prefix ε, whose corresponding sets are R(ε) = Q and S(ε) = ∅. For the update we

apply Lemmas 4.36 and 4.46. An inspection of the two lemmas reveals the we can

update R(α′) and S(α′) with a new character by means of O(p2) calls to the following

queries.

• (op1) for any 1 ≤ i, j ≤ p, 1 ≤ k ≤ |Qj|, and a ∈ Σ, compute out(Qj[1, k], i, a);

• (op2) for any 1 ≤ i ≤ p, a ∈ Σ, and h ≥ 0, find the largest integer 0 ≤ k ≤ |Qi|

such that in(Qi[1, k], a) ≤ h;

• (op3) for any 1 ≤ i ≤ p, a ∈ Σ, and z ≥ 1, find the smallest integer 1 ≤ t ≤ |Qi|

such that in(Qi[1, t], a) ≥ z, if it exists, otherwise report that it does not exist.

• (op4) for any 1 ≤ i ≤ p and a ∈ Σ, find the largest integer 0 ≤ h ≤ |Qi| such

that, if h ≥ 1, then max(λ(Qi[h])) ⪯ a.

As a consequence, we are left to show that we can solve each query inO(log log(pσ))

time.

(op1). The states in Qj[1, k] correspond to the convex set of all states (in the

total order v1, . . . , vn of Definition 4.28) whose endpoints are vl and vr, where l =

CHAIN.select(j, 1) and r = l + k − 1. Considering the order of edges used to define

OUT, the set of all edges leaving a state in Qj[1, k] forms a convex set in OUT and in

OUT DEG. Define:
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• x = OUT DEG.rank(OUT DEG.select(l − 1, 1), 0);

• y = OUT DEG.rank(OUT DEG.select(r, 1), 0).

Notice that x is equal to the number of edges leaving all states before vl, while y

is the number of edges leaving all states up to vr included. As a consequence, we

have x ≤ y. If x = y, then there are no edges leaving states in Qj[1, k] and we can

immediately conclude out(Qj[1, k], i, a) = 0. Assuming x < y, x + 1 and y are the

endpoints of the convex set of all edges leaving states in Qj[1, k]. Hence, we are left

with counting the number of such edges labeled a and reaching chain Qi. Notice that

OUT.rank(x, (i, a)) is the number of all edges labeled a and reaching chain i whose

start state comes before vl, whereas OUT.rank(y, (i, a)) is the number of all edges

labeled a and reaching i whose start state comes before or is equal to vr. We can

then conclude that out(Qj[1, k], i, a) = OUT.rank(y, (i, a)) − OUT.rank(x, (i, a)).

(op2). First, we check whether a ∈ Σi by a membership query on the dictionary for

Σi. If a ̸∈ Σi, we immediately conclude that the largest k with the desired properties

is k = |Qi|. Assume a ∈ Σi and notice that the states in Qi correspond to the convex

set of all states whose endpoints are vl and vr, where l = CHAIN.select(i, 1) and

r = CHAIN.select(i+ 1, 1)− 1. Considering the order of edges used to define IN, the

set of all edges entering a state in Qj[1, k] forms a convex set in IN and in IN DEG.

Define

• x = IN DEG.rank(IN DEG.select(l − 1, 1), 0);

• y = IN DEG.rank(IN DEG.select(r, 1), 0).

Notice that x is equal to the number of edges reaching all states before vl, while y is

the number of edges reaching all states coming before or equal to vr. Since a ∈ Σi, we

have x < y, and x+ 1 and y are the endpoints of the convex set of all edges reaching

a state in Qi. The next step is to determine the smallest edge labeled a reaching a

state in Qi. First, notice that the number of characters smaller than or equal to a

in Σi can be retrieved, by Lemma 2.3, as Σi.rank(a). Notice that f = IN
′.rank(x, 1)

yields the number of 0-runs in IN
′ pertaining to chains before chain Qi so that, since

we know that a ∈ Σi, then g = IN
′.select(f + Σi.rank(a), 1) yields the smallest edge

labeled a in the convex set of all edges reaching a state in Qi. We distinguish two

cases for the parameter h of op2:
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• h = 0. In this case, the largest k with the desired properties is equal to the po-

sition on chain Qi of the state reached by the g-th edge minus one. The index of

the state reached by the g-th edge is given by p = IN DEG.rank(IN DEG.select(g, 0), 1)+

1, so the largest k with the desired properties is k = p− l.

• h > 0. The quantity h′ = IN
′.select(f + Σi.rank(a) + 1, 1) − g = IN

′.select(f +

Σi.rank(a) + 1, 1) − IN
′.select(f + Σi.rank(a), 1) yields the number of edges

labeled a in the convex set of all edges reaching a state in Qi. If h′ ≤ h, then we

conclude that the largest k is |Qi|. Hence, assume that h′ > h. We immediately

obtain that the (h+ 1)-th smallest edge labeled a reaching a state in Qi is the

(g + h)-th edge, and the largest k with the desired properties is equal to the

position on chain Qi of the state reached by the (g + h)-th edge minus one.

Analogously to case 1, the index of the state reached by this edge is given by

p = IN DEG.rank(IN DEG.select(g+h, 0), 1)+1, so the largest k with the desired

properties is k = p− l.

(op3). We simply use operation (op2) to compute the largest integer 0 ≤ k ≤ |Qi|

such that in(Qi[1, k], a) ≤ z − 1. If k = |Qi|, then the desired integer does not exist,

otherwise it is equal to k + 1.

(op4). We first decide whether Σi.succ(a) is defined. If it is not defined, then

the largest integer with the desired property is |Qi|. Now assume that Σi.succ(a)

is defined. Then the largest integer with the desired property is simply the largest

integer 0 ≤ k ≤ |Qi|−1 such that in(Qi[1, k],Σi.succ(a)) ≤ 0, which can be computed

using (op2).

(2) Let us prove that, given a query string α ∈ Σm, we can use our data structure

to compute Iα in O(m · p2 · log log(pσ)) time, represented as p ranges on the chains in

{Qi | 1 ≤ i ≤ p}. We claim that it will suffice to run the same algorithm used in the

previous point, starting with R = {v1} and S = ∅. Indeed, consider the automaton

N ′ obtained from N by adding a new initial state v0 and adding exactly one edge

from v0 to v1 (the old initial state) labeled with #, a character smaller than every

character in the alphabet Σ. Let ≤′ the co-lex order on N ′ obtained from ≤ by adding

the pair {(v0, v1)}, and consider the ≤′-chain partition obtained from {Qi | 1 ≤ i ≤ p}

by adding v0 to Q1. It is immediate to notice that for every k = 1, . . . , n and for every

string α ∈ Σ∗ we have that vk ∈ Iα on N if and only if vk ∈ T (#α) on N ′. Since
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v0 has no incoming edges and on N ′ we have R(#) = {v0, v1} and S(#) = {v0}, the

conclusion follows. Now, given Iα, we can easily check whether α ∈ L(N ). Indeed, for

every i = 1, . . . , p we know the integers li and ti such that I iα = Qi[li + 1, ti], and we

decide whether some of these states are final by computing f = CHAIN.select(i, 1),

and then checking whether FINAL.rank(f + li− 1, 1)−FINAL.rank(f + ti− 1, 1) is

larger than zero.

4.5 Encoding NFAs

We now show a simple extension of the aBWT of Definition 4.28, yielding an injective

encoding of NFAs. It turns out that in order to achieve these goals it is sufficient to

collect the components of the aBWT and, in addition, the origin chain of every edge

(see Figure 4.6 for an example):

Definition 4.48. Let N = (Q, s, δ, F ) be an NFA and let e = |δ| be the number

of N -transitions. Let ≤ be a co-lex order on N , and let {Qi | 1 ≤ i ≤ p} be a

≤-chain partition of Q, where w.l.o.g. s ∈ Q1. Let π(v) and Q = {v1, . . . , vn} be

the map and the total state order defined in Definition 4.28. Define a new sequence

IN CHAIN ∈ [1, p]e, storing the edges’ origin chains, as follows. Sort all edges (vj, vi, c)

by increasing destination index i, breaking ties by label c and then by origin index j.

Then, IN CHAIN is obtained by concatenating the elements π(vj) for all edges (vj, vi, c)

sorted in this order.

The following lemma presents a function that will ultimately allow us to show

that our augmented aBWT is indeed an injective encoding on NFAs.

Lemma 4.49. Let 1 ≤ i, j ≤ p and a ∈ Σ. Let w be the number of edges labeled

with character a leaving any state in Qj and entering any state in Qi. Let Bj,i,a =

(f1, f2, . . . , fw) be state indices such that (i) 1 ≤ f1 ≤ f2 ≤ · · · ≤ fw ≤ n, (ii) if

1 ≤ k ≤ n occurs in Bj,i,a, then π(vk) = j and (iii) if 1 ≤ k ≤ n occurs t ≥ 1

times in Bj,i,a, then there exist exactly t edges labeled with character a leaving vk

and entering a state in Qi. Let Cj,i,a = (g1, g2, . . . , gw) be state indices such that (i)

1 ≤ g1 ≤ g2 ≤ · · · ≤ gw ≤ n, (ii) if 1 ≤ h ≤ n occurs in Cj,i,a, then π(vh) = i and (iii)

if 1 ≤ h ≤ n occurs t ≥ 1 times in Cj,i,a, then there exist exactly t edges labeled with
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v1start

v2

v3 v4

v5

v6

a
a

d

b

c
c

d

CHAIN 1 0 0 0 1 0
FINAL 0 0 1 1 0 1
IN DEG 1 01 01 001 01 001

IN CHAIN 1 1 21 1 22

OUT DEG OUT 1 2 3 4 5 6

001 (1,a),(2,a) 1 (1,1,a) (1,2,a)

01 (1,c) 2 (1,1,c)

1 3

01 (1,d) 4 (1,1,d)

001 (1,c),(2,d) 5 (2,1,c) (2,2,d)

01 (2,b) 6 (2,2,b)

Figure 4.6: Augmented aBWT of an NFA (the one in Figure 4.5 on the left), using
the chain partition {{v1, v2, v3, v4}, {v5, v6}}. In addition to the aBWT of Definition
4.28, we add a sequence IN CHAIN collecting the origin chain of every edge. For
each labeled edge (u, v, a), in the adjacency matrix we show the triple (π(u), π(v), a),
that is, the origin chain, destination chain, and label of the edge (the matrix is visu-
ally divided in 4 sectors, corresponding to all combinations of origin and destination
chains). Vector IN CHAIN collects vertically the incoming chains, that is, the first
component of each triple in the corresponding column of the adjacency matrix.
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character a entering vh and leaving a state in Qj. Then, {(vfℓ , vgℓ , a) | 1 ≤ ℓ ≤ w} is

the set of all edges labeled with character a, leaving a state in Qj and entering a state

in Qi.

Proof. Consider the set of all edges labeled with characater a, leaving a state in Qj

and entering a state in Qi. Then, Bj,i,a is obtained by picking and sorting all start

states of these edges, and Cj,i,a is obtained by picking and sorting all end states of

these edges. The conclusion follows from Axiom 2.

Lemma 4.49 allows reconstructing the topology of a NFA starting from our aug-

mented aBWT, as we show in the next lemma.

Lemma 4.50. The aBWT of Definition 4.28, in addition to sequence IN CHAIN of

Definition 4.48, is a one-to-one encoding over the NFAs.

Proof. From CHAIN and FINAL we can retrieve the chain of each state, and we can de-

cide which states are final. We only have to show how to retrieve the set {(vf , vg, a) | vg ∈

δ(vf , a), vf , vg ∈ Q, a ∈ Σ} of all NFA’s transitions. By Lemma 4.49, we only have

to prove that for every 1 ≤ i, j ≤ p and for every a ∈ Σ we can retrieve Bj,i,a and

Cj,i,a. We will use ideas similar to those employed in the proof of Lemma 4.37.

Let us show how to retrieve Bj,i,a for every 1 ≤ i, j ≤ p and for every a ∈ Σ. Fix

i, j and a. From OUT DEG we can retrieve the number of edges leaving each state in

the j-th chain. Then, the definition of OUT implies that, for every state in the j-th

chain, we can retrieve the label and the destination chain of each edge leaving the

state, so we can decide how many times a state in the j-th chain occurs in Bj,i,a.

Let us show how to retrieve Cj,i,a for every 1 ≤ i, j ≤ p and for every a ∈ Σ. Fix i,

j and a. From IN DEG we can retrieve the number of edges entering each state in the

i-th chain. From OUT we can retrieve all characters (with multiplicities) labeling some

edge entering the ith-chain. As a consequence, Axiom 1 implies that, for every state

in the i-th chain, we can retrieve the label of each edge entering the state. Moreover,

the definition of IN CHAIN implies that, for every state in the i-th cain, we can retrieve

the the start chain of each edge entering the state, so we can decide how many times

a state in the i-th chain occurs in Cj,i,a.

By analyzing the space required by our extension of the aBWT and applying

Lemma 4.50, we obtain:
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Corollary 4.51. Let N be an NFA, and let p = width(N ). Then, we can store N

using log(p2σ) + O(1) bits per transition. This space can also be expressed as (at

most) 2pσ log(p2σ) +O(pσ) bits per state.

Proof. The bound of log(p2σ) +O(1) bits per transition follows easily from the defi-

nitions of aBWT (Definition 4.28) and IN CHAIN (Definition 4.48). In order to bound

this space as a function of the number of states, we use the bound |δ| ≤ 2pσn implied

by Lemma 4.7, where |δ| is the number of transitions.

In Theorem 4.47 we provided an aBWT-index supporting pattern matching queries

on any NFA. Being a superset of the aBWT, our (indexed) augmented aBWT can

clearly support the same operations (in the same running times) of Theorem 4.47,

albeit using additional log p bits per edge. Actually, these operations turn out to

be much simpler on the augmented aBWT than on the aBWT (thanks to the new

sequence IN CHAIN). This is possible because by means of our augmented aBWT,

given any convex set U of states (represented by means of p ranges on the chains)

and a character c, one can compute the convex set of all states that can be reached

from U by following edges labeled c (see Lemma 4.23). However, the queries’ running

times remain the same as in Theorem 4.47 so we will not describe them here.



Chapter 5

Co-lex Orders: Nondeterminism, Entanglement and

Minimization

In Chapter 4 we studied the relationship between automata and co-lex orders. In

this chapter we study the relationship between regular languages and co-lex orders,

that is, we aim to study the properties of a regular languages (and not a specific

automaton) through co-lex orders.

We start by defining the width of a regular language based on the co-lex orders

of the automata recognizing it.

Definition 5.1. Let L be a regular language.

1. The non-deterministic co-lex width of L, denoted by widthN(L), is the smallest

integer p for which there exists an NFA N such that L(N ) = L and width(N ) =

p.

2. The deterministic co-lex width of L, denoted by widthD(L), is the smallest

integer p for which there exists a DFA D such that L(D) = L and width(D) = p.

In Example 4.18 we showed that the width of an automaton may depend on

the total order ⪯ on the alphabet. In Example 5.27 below, we will show that the

deterministic and nondeterministic widths of a language may also depend on the order

⪯ on the alphabet.

On the grounds of Remarks 4.21 and 4.22, we observe the following relations,

which allow us to conclude that already constant-width regular languages form an

interesting class:

Remark 5.2. Let L, L1, and L2 be any regular languages. Then:

1. widthD(Σ∗ \ L) ≤ widthD(L) + 1

2. widthD(L1 ∩ L2) ≤ widthD(L1) · widthD(L2)

65
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3. widthD(L1 ∪ L2) ≤ widthD(L1) · widthD(L2) + widthD(L1) + widthD(L2).

These inequalities are a direct consequence of Remarks 4.21 and 4.22 by starting from

smallest-width DFAs recognizing L, L1, and L2.

By Remark 5.2, if L can be written as the boolean combination of a constant

number of Wheeler languages (for example, of a constant number of finite languages),

then widthN(L) ≤ widthD(L) ∈ O(1). Furthermore, this bound holds for any total

order ⪯ on the alphabet if the starting languages are finite (because finite languages

are Wheeler independent of the alphabet order).

5.1 The Powerset Construction

In this section we show that the notion of width can be used to prove some crucial

relationships between an NFA N and the powerset automaton Pow(N ) obtained from

N . First, we bound the width of Pow(N ) in terms of the width of N and prove that

the number of Pow(N )’s states is exponential in width(N ) rather than in the number

of N ’s states. This implies that several problems easy on DFAs but difficult on NFAs

are in fact fixed-parameter tractable with respect to the width.

Recall that, given an NFA N = (Q, s, δ, F ), the powerset construction algorithm

builds an equivalent DFA Pow(N ) = (Q∗, s∗, δ∗, F ∗) defined as:

• Q∗ = {Iα | α ∈ Pref(L(N ))};

• s∗ = {s};

• δ∗(Iα, a) = Iαa for all α ∈ Σ∗ and a ∈ Σ such that αa ∈ Pref(L(N ));

• F ∗ = {Iα | α ∈ L(N )}.

For α, α′ ∈ Pref(L(N )) we have:

δ∗(s∗, α′) = Iα ⇐⇒ Iα′ = Iα

and defining as usual Iu∗ = {α ∈ Pref(L(Pow(N ))) | u∗ ∈ δ∗(s∗, α)} for u∗ ∈ Q∗,

we have that for α ∈ Pref(L(N )):

IIα = {α′ ∈ Pref(L(N )) | Iα′ = Iα}. (5.1)
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We start with a characterization of the maximum co-lex order on Pow(N ) (which

exists by Lemma 4.9).

Lemma 5.3. Let N = (Q, s, δ, F ) be an NFA and let Pow(N ) = (Q∗, s∗, δ∗, F ∗) be

the powerset automaton obtained from N . Let ≤Pow(N ) be the maximum co-lex order

on Pow(N ). Then, for Iα ̸= Iβ:

(Iα <Pow(N ) Iβ) ⇐⇒ (∀α′, β′ ∈ Pref(L(N )))((Iα′ = Iα) ∧ (Iβ′ = Iβ) → α′ ≺ β′)

Moreover, let ≤ be a co-lex order on N , and fix α, β ∈ Pref(L(N )). Then:

(∃u ∈ Iα)(∃v ∈ Iβ)({u, v} ̸⊆ Iα ∩ Iβ ∧ u < v) =⇒ (Iα <Pow(N ) Iβ).

Proof. The first part follows immediately from the characterization of the maximum

co-lex order over a DFA (Lemma 4.9) and Equation 5.1. Let us prove the second

part. Consider u ∈ Iα and v ∈ Iβ such that {u, v} ̸⊆ Iα ∩ Iβ and u < v. We prove

that Iα <Pow(N ) Iβ using the characterization of <Pow(N ) given in the first part of the

proof. Fix α′, β′ ∈ Pref(L(N )) such that Iα′ = Iα and Iβ′ = Iβ. We must prove that

α′ ≺ β′. From the hypothesis it follows u ∈ Iα′ , v ∈ Iβ′ , and {u, v} ̸⊆ Iα′ ∩ Iβ′ so that

α′ ∈ Iu, β
′ ∈ Iv, and {α′, β′} ̸⊆ Iu ∩ Iv hold. Hence, α′ ≺ β′ follows from u < v and

Lemma 4.19.

We can now prove the main result of this section.

Theorem 5.4. Let N = (Q, s, δ, F ) be an NFA and let Pow(N ) = (Q∗, s∗, δ∗, F ∗) be

the powerset automaton obtained from N . Let n = |Q| and p = width(N ). Then:

1. width(Pow(N )) ≤ 2p − 1;

2. |Q∗| ≤ 2p(n− p+ 1) − 1.

Proof. Let ≤ be a co-lex order on N such that width(≤) = p, and let {Qi | 1 ≤ i ≤ p}

be a ≤-chain partition. Let ≤Pow(N ) be the maximum co-lex order on Pow(N ). For

every nonempty K ⊆ {1, . . . , p}, define:

IK = {Iα | (∀i ∈ {1, . . . , p})(Iα ∩Qi ̸= ∅ ⇐⇒ i ∈ K)}.

Notice that Q∗ is the disjoint union of all IK . More precisely:

Q∗ =
⊔

∅̸=K⊆{1,...,p}
IK . (5.2)
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Let us prove that each IK is a ≤Pow(N )-chain. Fix Iα, Iβ ∈ IK , with Iα ̸= Iβ. We

must prove that Iα and Iβ are ≤Pow(N )-comparable. Since Iα ̸= Iβ, there exists either

u ∈ Iα \ Iβ or v ∈ Iβ \ Iα. Assume that there exists u ∈ Iα \ Iβ (the other case is

analogous). In particular, let i ∈ {1, . . . , p} be the unique integer such that u ∈ Qi.

Since Iα, Iβ ∈ IK , from the definition of IK it follows that there exists v ∈ Iβ ∩ Qi.

Notice that {u, v} ̸⊆ Iα ∩ Iβ (so in particular u ̸= v), and since u, v ∈ Qi we conclude

that u and v are ≤-comparable. By Lemma 5.3 we conclude that Iα and Iβ are

≤Pow(N )-comparable.

1. The first part of the theorem follows from Equation 5.2, because each IK is a

≤Pow(N )-chain and there are 2p − 1 choices for K.

2. Let us prove the second part of the theorem. Fix ∅ ≠ K ⊆ {1, . . . , p}. For

every Iα ∈ IK and for every i ∈ K, let mi
α be the smallest element of Iα ∩ Qi

(this makes sense because (Qi,≤) is totally ordered), and let M i
α be the largest

element of Iα ∩Qi. Fix Iα, Iβ ∈ IK , and note the following:

(a) Assume that for some i ∈ K it holds mi
α < mi

β ∨M i
α < M i

β. Then, it

must be Iα <Pow(N ) Iβ. Indeed, assume that mi
α < mi

β (the other case is

analogous). We have mi
α ∈ Iα, mi

β ∈ Iβ, {mi
α,m

i
β} ̸⊆ Iα∩Iβ and mi

α < mi
β,

so the conclusion follows from Lemma 5.3. Equivalently, we can state that

if Iα <Pow(N ) Iβ then (∀i ∈ K)(mi
α ≤ mi

β ∧M
i
α ≤M i

β).

(b) Assume that for some i ∈ K it holds mi
α = mi

β ∧M
i
α = M i

β. By Corollary

4.20, the sets Iα and Iβ are convex in (Q,≤). This implies that Iα ∩ Qi

and Iβ ∩Qi are ≤Qi
-convex, and having the same minimum and maximum

they must be equal, that is, Iα ∩Qi = Iβ ∩Qi.

(c) Assume that (∀i ∈ K)(mi
α = mi

β ∧M
i
α = M i

β). Then, it must be Iα = Iβ.

Indeed, from point (b) we obtain (∀i ∈ K)(Iα ∩ Qi = Iβ ∩ Qi), so Iα =
⋃

i∈K(Iα∩Qi) =
⋃

i∈K(Iβ∩Qi) = Iβ. Notice that we can equivalently state

that if Iα ̸= Iβ, then (∃i ∈ K)(mi
α ̸= mi

β ∨M
i
α ̸= M i

β).

Fix Iα, Iβ ∈ IK . Now it is easy to show that:

Iα <Pow(N ) Iβ ⇐⇒ (∀i ∈ K)(mi
α ≤ mi

β ∧M
i
α ≤M i

β)∧

∧ (∃i ∈ K)(mi
α < mi

β ∨M
i
α < M i

β).
(5.3)
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Indeed, (⇐) follows from point (a). As for (⇒), notice that (∀i ∈ K)(mi
α ≤ mi

β ∧

M i
α ≤ M i

β) again follows from point (a), whereas (∃i ∈ K)(mi
α < mi

β ∨M i
α < M i

β)

follows from point (c).

Let |mi
α| and |M i

α| be the positions of mi
α and M i

α in the total order (Qi,≤) (so

|mi
α|, |M

i
α| ∈ {1, . . . , |Qi|}). For every Iα ∈ IK , define:

T (Iα) =
∑

i∈K
(|mi

α| + |M i
α|).

By Equation 5.3, we have that Iα <Pow(N ) Iβ implies T (Iα) < T (Iβ), so since IK

is a <Pow(N )-chain we have that |IK | is bounded by the values that T (Iα) can take.

For every Iα ∈ IK we have 2|K| ≤ T (Iα) ≤ 2
∑

i∈K |Qi| (because |mi
α|, |M

i
α| ∈

{1, . . . , |Qi|}), so:

|IK | ≤ 2
∑

i∈K
|Qi| − 2|K| + 1. (5.4)

From Equations 5.2 and 5.4, we obtain:

|Q∗| =
∑

∅⫋K⊆{1,...,p}
|IK | ≤

∑

∅⫋K⊆{1,...,p}
(2

∑

i∈K
|Qi| − 2|K| + 1)

= 2
∑

∅⫋K⊆{1,...,p}

∑

i∈K
|Qi| − 2

∑

∅⫋K⊆{1,...,p}
|K| +

∑

∅⫋K⊆{1,...,p}
1.

Notice that
∑

∅⫋K⊆{1,...,p}
∑

i∈K |Qi| = 2p−1
∑

i∈{1,...,p} |Qi| = 2p−1n because every i ∈

{1, . . . , p} occurs in exactly 2p−1 subsets of {1, . . . , p}. Analogously, we can write
∑

∅⫋K⊆{1,...,p} |K| = 2p−1p and
∑

∅⫋K⊆{1,...,p} 1 = 2p − 1, We conclude:

|Q∗| ≤ 2pn− 2pp+ 2p − 1 = 2p(n− p+ 1) − 1.

As a first consequence of Theorem 5.4 we start comparing the non-deterministic

and deterministic width hierarchies of regular languages. Clearly, for every regular

language L we have widthN(L) ≤ widthD(L) since DFAs are particular cases of NFAs.

Moreover:

Corollary 5.5. Let L be a regular language. Then, widthD(L) ≤ 2width
N (L) − 1.

Proof. Let N be an NFA such that L(N ) = L and width(N ) = widthN(L). By

Theorem 5.4, we have widthD(L) ≤ width(Pow(N )) ≤ 2width(N ) − 1 = 2widthN (L) −

1.
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The above corollary shows that widthN(L) = 1 implies widthD(L) = 1, that is,

the non-deterministic and deterministic widths are equal for Wheeler languages.

Theorem 5.4 has another intriguing consequence: the PSPACE-complete NFA

equivalence problem [115] is fixed-parameter tractable with respect to the widths of

the automata. In order to prove this result, we first update the analysis of Hopcroft

et al. [74] of the powerset construction algorithm.

Lemma 5.6 (Adapted from [74]). Let N = (Q, s, δ, F ) be an NFA and let Pow(N ) =

(Q∗, s∗, δ∗, F ∗) be the powerset automaton obtained from N . Let n = |Q| and p =

width(N ). Then, the powerset construction algorithm runs in O(2p(n − p + 1)n2σ)

time.

Proof. By Theorem 5.4, we know that N = 2p(n − p + 1) is an upper bound to the

number of states of the equivalent DFA. Each state in Q∗ consists of k ≤ n states

u1, . . . , uk of Q. For each character a ∈ Σ, we need to follow all edges labeled a leaving

u1, . . . , uk. In the worst case (a complete transition function), this leads to traversing

O(k · n) ⊆ O(n2) edges of the NFA. The final complexity is thus O(N · n2 · σ).

Corollary 5.7. We can check the equivalence between two NFAs over an alphabet of

size σ, both with number of states at most n and width at most p, in O(2p(n−p+1)n2σ)

time.

Proof. First, build the powerset automata, both having at most N = 2p(n − p + 1)

states by Theorem 5.4. This takes O(Nn2σ) time by Lemma 5.6. Finally, DFA

equivalence can be tested in O(Nσ logN) time by DFA minimization using Hopcroft’s

algorithm.

Similarly, the powerset construction can be used to test membership of a word

of length m in a regular language expressed as an NFA. When m is much larger

than n and 2p, this simple analysis of a classical method yields a faster algorithm

than the state-of-the-art solution by Thorup and Bille, running in time O(m · e ·

log logm/(logm)3/2 + m + e) [17] where e is the NFA’s (equivalently, the regular

expression’s) size:

Corollary 5.8. We can test membership of a word of length m in the language

recognized by an NFA with n states and co-lex width p on alphabet of size σ in O(2p(n−

p+ 1)n2σ +m) time.
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5.2 The Deterministic Width

It is natural to wonder whether the deterministic width of a language equals the

width of its minimum DFA. As we show in Example 5.9, unfortunately this is not the

case. Moreover, there is, in general, no unique (up to isomorphism) minimum DFA

of minimum width recognizing a given regular language.
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Figure 5.1: Three DFAs recognizing the same language.

Example 5.9. In Figure 5.1, three DFAs recognizing the same language L are shown.

We prove that widthD(L) = 2, the width of the minimum DFA for L is 3, and there

is not a unique minimum automaton among all DFAs recognising L of width 2.

Consider the DFA D1 on the left of Figure 5.1 and let L = L(D1). The automaton

D1 is a minimum DFA for L. The states 0, . . . , 5 are such that: I0 = {ε}, I1 = ac∗,

I2 = bc∗, I3 = ac∗d ∪ {gd, ee, he, f, k}, I4 = {e, h}, I5 = {g}. States 1 and 2 are

≤D1-incomparable because a ∈ I1, b ∈ I2, ac ∈ I1 and a ≺ b ≺ ac. Similarly one

checks that states 3, 4, 5 are pairwise ≤D1-incomparable. On the other hand, 0 is the

minimum and states 1, 2 precede states 3, 4, 5 in the order ≤D1 . We conclude that

the Hasse diagram of the partial order ≤D1 is the one depicted in Figure 5.2.
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Figure 5.2: The Hasse diagram of ≤D1

The width of the DFA D1 is 3 because {3, 4, 5} is a largest ≤D1-antichain. A

≤D1-chain partition of cardinality 3 is, for example, {{0, 1, 3}, {2, 4}, {5}}.

Let us prove that widthD(L) ≥ 2. Suppose by contradiction that there exists a

DFA D of width 1 recognizing L. Then, the order ≤D is total. Moreover, there exists

a state u such that two words of the infinite set ac∗ ∈ Pref(L), say aci, acj with i < j,

belong to Iu. Consider the word bci ∈ Pref(L). Since bci ̸≡L aci, it follows that

bci ̸∈ Iu. If u′ is such that bci ∈ Iq′ , from aci ≺ bci ≺ acj we have that u and u′ are

≤D-incomparable, a contradiction.

Finally, let D2 be the DFA in the center of Figure 5.1 and let D3 be the DFA on

the right of Figure 5.1. Notice that L(D2) = L(D3) = L, and D2 and D3 have just

one more state than D1 and are non-isomorphic. We know that D2 and D3 cannot

have width equal to 1. On the other hand, they both have width 2, as witnessed by

the chains {{0, 1, 4}, {2, 3, 5, 3′}} (for D2) and {{0, 1, 3}, {2, 4, 5, 4′}} (for D3).

Motivated by the problem of computing the deterministic width of a regular lan-

guage is not a trivial problem, in the next sections we develop a set of tools that will

ultimately allow us to derive an algorithm solving the problem.

Example 5.9 triggers a further natural and important observation. It is known

that languages with deterministic width equal to 1 (that is, Wheeler languages) admit

a (unique) minimum-size Wheeler DFA [4]. Note that Example 5.9 implies that no

such minimality result holds true for higher levels of the deterministic width hierarchy.

In Section 5.7 we will explain why Example 5.9 is not the end of the story and we

will derive an adequate notion of minimality.

5.3 The Entanglement of a Regular Language

We now exhibit a measure that on the minimum DFA will capture exactly the width of

the accepted language: the entanglement number of a DFA. We shall use the following
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terminology: if D is a DFA and V ⊆ Pref(L(D)), then a state u occurs in V if there

exists α ∈ V such that u = δ(s, α).

Definition 5.10. Let D be a DFA with set of states Q.

1. A subset Q′ ⊆ Q is entangled if there exists a monotone sequence (αi)i∈N in

Pref(L(D)) such that for all u′ ∈ Q′ it holds δ(s, αi) = u′ for infinitely many i’s.

In this case the sequence (αi)i∈N is said to be a witness for (the entanglement

of) Q′.

2. A set V ⊆ Pref(L(D)) is entangled in D if there exists a monotone sequence

(αi)i∈N, with αi ∈ V for every i, witnessing that the set {δ(s, α) | α ∈ V },

consisting of all states occurring in V , is entangled.

Moreover, define :

ent(D) = max{|Q′| | Q′ ⊆ Q and Q′is entangled }

ent(L) = min{ent(D) | D is a DFA ∧ L(D) = L}.

Notice that any singleton {u} ⊆ Q is entangled, as witnessed by the trivially

monotone sequence (αi)i∈N where all the αi’s are equal and δ(s, αi) = u.

As an example consider the entanglement of all DFAs in Figure 5.1. For any of

them the entanglement is two, because the only entangled subset of states is {1, 2},

as witnessed by the sequence a ≺ b ≺ ac ≺ bc ≺ acc ≺ bcc ≺ · · · .

When two states u ̸= u′ of a DFA D belong to an entangled set, there are words

α ≺ β ≺ α′ such that α, α′ ∈ Iu, β ∈ Iu′ , so that neither u <D u′ nor u′ <D u can

hold. In other words, two distinct states u, u′ belonging to an entangled set are always

≤D-incomparable. Since by Lemma 4.12 we have width(≤D) = width(D), it easily

follows that the entanglement of a DFA is always smaller than or equal to its width.

Lemma 5.11. Let D be a DFA. Then ent(D) ≤ width(D).

The converse of the above inequality is not always true: for the (minimum) DFA

D1 on the left of Figure 5.1 we have ent(D1) = 2 and width(D1) = 3.

Contrary to what happens with the width, we now prove that the entanglement

of a regular language is realized by the minimum-size automaton accepting it.
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Lemma 5.12. If DL is the minimum-size DFA recognizing L, then ent(DL) = ent(L).

Proof. It is enough to prove that ent(DL) ≤ ent(D), for any DFA D such that

L(DL) = L(D). Suppose u1, . . . , uk are pairwise distinct states which are entan-

gled in DL, witnessed by the monotone sequence (αi)i∈N. Since DL is minimum, each

Iuj is a union of a finite number of Iv, with v ∈ QD. The monotone sequence (αi)i∈N

goes through uj infinitely often, so there must be a state vj ∈ QD such that Ivj ⊆ Iuj

and (αi)i∈N goes through vj infinitely often. Then (αi)i∈N goes through the pairwise

distinct states v1, . . . , vk infinitely often and v1, . . . , vk are entangled in D.

5.4 The Hasse Automaton of a Regular Language

Our aim is to prove that the entanglement measure over the minimum DFA DL

captures the deterministic width of a language L:

widthD(L) = ent(DL)

In order to prove the previous equality we shall describe an automaton, the Hasse

automaton of L, realizing the width and the entanglement of the language as its

width (Theorem 5.24). As a first step, given a DFA D we prove that there exists

an equivalent DFA D′ that realizes the entanglement of D as its width: ent(D) =

width(D′) (Theorem 5.22).

To give an intuition on the construction of the automaton D′ we use the trace of the

DFA D, that is, the (in general) transfinite sequence: (δ(s, α))α∈Pref(L), indexed over

the totally ordered set (Pref(L),⪯), where L = L(D). We depict below a hypothetical

(Pref(L),⪯), together with the trace left by a DFA D with set of states {u1, u2, u3}

and δ(s, αi) = δ(s, α′) = u1, δ(s, βi) = δ(s, β′i) = u2, and δ(s, γi) = u3:

α1 ≺ β1 ≺ α2 ≺ β2 ≺ · · · ≺ αi ≺ βi ≺ · · · ≺ β′1 ≺ γ1 ≺ β′2 ≺ γ2 ≺ · · · ≺ β′i ≺ γi ≺ · · · ≺ α′

u1 u2 u1 u2 . . . u1 u2 . . . u2 u3 u2 u3 . . . u2 u3 . . . u1

Consider the entanglement and width of D. Notice that the sets {u1, u2} and

{u2, u3} are entangled. The set {u1, u3} is not entangled and therefore the set

{u1, u2, u3} is not entangled. However, {u1, u2, u3} contains pairwise incomparable
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states. Hence the whole triplet {u1, u2, u3} does not contribute to the entanglement

but does contribute to the width so that ent(D) = 2 < width(D) = 3.

In general, an automaton where incomparability and entanglement coincide would

have ent(D) = width(D). Hence, we would like to force all sets of incomparable

states in the new automaton D′ to be entangled. To this end, we will first prove

that there always exists a finite, ordered partition V = {V1, . . . , Vr} of Pref(L) com-

posed of convex sets which are entangled in D. In the example above we can write

Pref(L) = V1 ∪ V2 ∪ V3, where:

V1 = {α1, β1, . . . , αi, βi, . . . }, V2 = {β′1, γ1, . . . , β
′
i, γi . . . }, V3 = {α′}

and the states occurring (and entangled) in V1, V2, V3 are, respectively: {u1, u2},

{u2, u3}, and {u1}. In order to construct an equivalent automaton D′ in which the

pairwise incomparability of the three states u1, u2, u3 is eliminated and width(D′) = 2,

we could try to duplicate some of the original states, as it would be the case if the

states occurring in V1, V2, V3 where, respectively, {u1, u2}, {u2, u3}, and {u′1}. To this

end, we will consider a refinement ∼ of the Myhill-Nerode equivalence on Pref(L)

stating that two strings are equivalent if and only if they are in the same Iu and all

V ∈ V laying between the two strings intersect Iu. In the above example we have

βi ∼ β′j for all integers i, j, because no V ∈ V is contained in [βi, β
′
j], while α1 ̸∼ α′,

since V2 ⊆ [α1, α
′] but V2 ∩ Iu1 = ∅.

We will prove that the equivalence ∼ decomposes the set of words reaching u

into a finite number of ∼-classes and induces a well-defined quotient automaton D′

equivalent to D.

By construction, in the automaton D′ any set of ≺D′-incomparable states {u1, . . . , uk}

will occur in at least an element V ∈ V , so that, V being entangled, they will con-

tribute to the entanglement number of D and width(D′) = ent(D) will follow.

In our example, the new automaton D′ will leave the following trace:

α1 ≺ β1 ≺ α2 ≺ β2 ≺ · · · ≺ αi ≺ βi ≺ · · · ≺ β′1 ≺ γ1 ≺ β′2 ≺ γ2 ≺ · · · ≺ β′i ≺ γi ≺ · · · ≺ α′

u1 u2 u1 u2 . . . u1 u2 . . . u2 u3 u2 u3 . . . u2 u3 . . . u′1

and ent(D) = width(D′) = 2.

In order to give a formal definition of D′ we need some properties of entangled

sets. Since these properties hold true with respect to a partition of a generic total
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order, we state and prove them in a more general setting in Appendix A, while we

state them without proof in this section. In particular, most of the properties of D′

will be proved using a finite partition of (Pref(L(D)),⪯), composed by entangled,

convex sets.

Definition 5.13. If D is a DFA, we say that a partition V of Pref(L(D)) is an

entangled, convex decomposition of D (e.c. decomposition, for short) if all the elements

of V are convex in (Pref(L(D)),⪯) and entangled in D.

Theorem 5.14. If D is a DFA, then there exists a finite partition V of Pref(L(D))

which is an e.c. decomposition of D.

Proof. The existence of such a decomposition is guaranteed by Theorem A.5 of Ap-

pendix A, applied to (Z,≤) = (Pref(L(D)),⪯) and P = {Iu | u ∈ Q}.

Using an e.c. decomposition of an automaton D we can express a condition

implying the equality width(D) = ent(D).

Lemma 5.15. Let D be a DFA. Suppose V1 ≺ V2 ≺ · · · ≺ Vm is an e.c. decomposition

of D such that for every u ∈ Q there are 1 ≤ i ≤ j ≤ m with:

Iu ⊆ Vi ∪ Vi+1 ∪ · · · ∪ Vj, and Vh ∩ Iu ̸= ∅, for all i ≤ h ≤ j.

Then, width(D) = ent(D).

Proof. We already proved that ent(D) ≤ width(D) in Lemma 5.11. In order to prove

the reverse inequality, let width(D) = p and let u1, . . . , up be p ⪯D-incomparable

states. If we prove that u1, . . . , up are entangled, we are done. Fix i ∈ {1, . . . , p} and

denote by Wi the convex set Vh ∪ Vh+1 ∪ · · · ∪ Vk where Iui ⊆ Vh ∪ Vh+1 ∪ · · · ∪ Vk

and Vj ∩ Iui ̸= ∅, for all h ≤ j ≤ k. From the incomparability of the ui’s it follows

that Wi ∩Wj ̸= ∅, for all pairs i, j, so that
⋂

iWi ̸= ∅ by Lemma A.13 in Appendix

A. Since all Wi’s are unions of consecutive elements in the partition V , there must be

an element V ∈ V with V ⊆
⋂

iWi. Such a V must contain an occurrence of every

ui, and since V is an entangled set, we conclude that u1, . . . , up are entangled.

The previous lemma suggests that in order to construct an automaton D′ recogniz-

ing the same language as D and satisfying width(D′) = ent(D′) = ent(D), we might
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Figure 5.3: The upper line represents the words in Pref(L), partitioned by the e.c.
decomposition V , where some words are highlighted and labelled by the state they
reach in D. The lower line still represents Pref(L), with the same e.c. decomposition,
but now the highlighted words are labelled by states of D′. Note that the strings
α, α′ reach the same state in D, but in different states in D′, because V3 ⊆ [α, α′],
and V3 ∩ Iu2 = ∅. However, the words α′, α′′ reach the same state in both automata.

duplicate some states in D in order to ensure that the new automaton D′ satisfies

the condition of the previous Lemma. Consider two words α ≺ α′ reaching the same

state u of D: if the convex [α, α′] is not contained in a union of consecutive elements

of the partition V , all having an occurrence of u, then in D′ we duplicate the state u

into u and u′, with α reaching u and α′ reaching u′ (see Fig. 5.3). As usual, an equiv-

alence relation ∼D over Pref(L) is used to introduce the new states of the automaton

D′. In order to maintain the definition of D′ independent from any particular e.c.

decomposition V , in the definition below we use generic entangled convex sets instead

of elements of an e.c. decomposition. In Lemma 5.20 we prove that this is equivalent

to using elements of an e.c. decomposition of minimum cardinality.

Definition 5.16. Let D be a DFA and let ∼D be the equivalence relation on Pref(L(D))

defined as follows: α ∼D α′ if and only if:

• δ(s, α) = δ(s, α′) and

• there are entangled convex sets C1, . . . , Cn ⊆ Pref(L(D)) such that:

- [α, α′]± ⊆
⋃n
i=1Ci;

- Ci ∩ Iδ(s,α) ̸= ∅, for all i ∈ {1, . . . , n}.

Note that ∼D is indeed an equivalence relation (in particular, it is transitive).

When the DFA D is clear from the context, we shall drop the subscript D in ∼D.
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In the following lemma we prove that the equivalence ∼ has finite index and L(D)

is equal to the union of some of its classes.

Lemma 5.17. Let D be a DFA. Then, ∼ has a finite number of classes on Pref(L(D))

and L(D) is equal to the union of some ∼-classes.

Proof. Consider an e.c. decomposition V = {V1, . . . , Vm} of D, whose existence is

guaranteed by Theorem 5.14. Since all Vi’s are entangled convex sets in Pref(L(D)),

two words belonging to the same Vi and ending in the same state belong to the same

∼-class. Hence, the number of ∼-classes is at most m×|Q|. Moreover, α ∼ β implies

δ(s, α) = δ(s, β). Hence, α ∈ L(D) and α ∼ β imply β ∈ L(D), proving that L(D) is

equal to the union of some ∼-classes.

Lemma 5.18. Let D be a DFA. Then, the equivalence relation ∼ is right-invariant.

Proof. Let L = L(D), assume α ∼ α′ and let a ∈ Σ be such that αa ∈ Pref(L).

We must prove that α′a ∈ Pref(L) and αa ∼ α′a. Since α ∼ α′ we know that

δ(s, α) = δ(s, α′) and there exist entangled convex sets C1, . . . , Cn such that [α, α′]± ⊆

C1 ∪ · · · ∪ Cn and Ci ∩ Iδ(s,α) ̸= ∅ for all i = 1, . . . , n. We must prove that α′a ∈

Pref(L), δ(s, αa) = δ(s, α′a), and there exist entangled convex sets C ′1, . . . , C
′
n′ such

that [αa, α′a]± ⊆ C ′1 ∪ · · · ∪ C ′n′ and C ′i ∩ Iδ(s,αa) ̸= ∅ for all i = 1, . . . , n′.

From δ(s, α) = δ(s, α′) and αa ∈ Pref(L) we immediately obtain α′a ∈ Pref(L)

and δ(s, αa) = δ(s, α′a). Moreover, from [α, α′]± ⊆ C1∪· · ·∪Cn we obtain [αa, α′a]± =

[α, α′]±a ⊆ C1a∪· · ·∪Cna, and from Ci∩Iδ(s,α) ̸= ∅ we obtain Cia∩Iδ(s,αa) ̸= ∅. We are

only left with showing that every Cia = {γa |γ ∈ Ci} is an entangled convex set. The

fact that they are convex follows directly from the definition of co-lex ordering. Let us

prove that the Cia’s are entangled. Fix i and consider a monotone sequence (αj)j∈N

witnessing that Ci is entangled. Then (αja)j∈N is a monotone sequence witnessing

that Cia is entangled.

We are now ready to complete the construction of the automaton D′ using ∼.

Definition 5.19. Let D be a DFA and let L = L(D). Define D′ = (Q′, s′, δ′, F ′) by:

• Q′ = {[α]∼ : α ∈ Pref(L)};
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• δ′([α]∼, a) = [αa]∼ for every α ∈ Pref(L) and for every a ∈ Σ such that αa ∈

Pref(L);

• s′ = [ε]∼;

• F ′ = {[α]∼ : α ∈ L}.

The equivalence relation ∼ is right-invariant (Lemma 5.18), has finite index, and

L is the union of some ∼-classes (Lemma 5.17). Hence, D′ is a well-defined DFA, and

α ∈ [β]∼ ⇐⇒ δ′(s′, α) = [β]∼, which implies that for every α ∈ Pref(L) it holds:

I[α]∼ = [α]∼ (5.5)

and so L(D′) = L.

In the following lemma we prove that it is safe to replace C1, . . . , Cn in Defini-

tion 5.16 by the elements of a minimum-size e.c. decomposition, that is, an e.c.

decomposition with minimum cardinality.

Lemma 5.20. Let D be a DFA and let V = {V1, . . . , Vr}, with V1 ≺ · · · ≺ Vr, be a

minimum-size e.c. decomposition of D. Then, α ∼ α′ holds if and only if:

• δ(s, α) = δ(s, α′) and

• there exist integers i ≤ j such that:

- [α, α′]± ⊆
⋃j
h=i Vh;

- Vh ∩ Iδ(s,α) ̸= ∅, for all h ∈ {i, . . . , j}.

Proof. To prove that α ∼ α′ holds under the above hypotheses, it is sufficient to recall

that Vi, . . . , Vj are entangled convex sets and apply Definition 5.16.

Let us prove the reverse implication. Pick α ∼ α′ ∈ Pref(L(D)) and let C1, . . . , Cn

be entangled convex sets such that [α, α′]± ⊆
⋃n
i=1Ci and Ci ∩ Iu ̸= ∅, for every

i = 1, . . . , n, where u = δ(s, α) = δ(s, α′). By Lemma A.12 of Appendix A we can

assume that C1 ≺ C2 ≺ · · · ≺ Cn. Let i ≤ j be such that [α, α′]± ⊆
⋃j
h=i Vh and

Vh ∩ [α, α′]± ̸= ∅ for all h ∈ {i, . . . , j}. We just have to prove that Vh ∩ Iu ̸= ∅, for

all h ∈ {i, . . . , j}. From Vh ∩ [α, α′]± ̸= ∅ it follows that either Vh contains α or α′,

or Vh ⊆ [α, α′]± ⊆
⋃n
i=1Ci. In the first case we have Vh ∩ Iu ̸= ∅ because α, α′ ∈ Iu,

while in the second case Vh ∩ Iu ̸= ∅ follows from Lemma A.9 of Appendix A.
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Let D′ be the automaton of Definition 5.19. The following corollary allows us to

consider an e.c. decomposition of D of minimum size as an e.c. decomposition of D′.

Corollary 5.21. Any e.c. decomposition of minimum size V1 ≺ · · · ≺ Vr of D is also

an e.c. decomposition of D′. Moreover, for all u′ ∈ Q′, there exist i ≤ j such that

Iu′ ⊆
⋃j
h=i Vh and Vh ∩ Iu′ ̸= ∅, for h = i, . . . , j.

Proof. In order to prove that an e.c. decomposition of minimum size V1 ≺ · · · ≺ Vr

of D is also an e.c. decomposition of D′ we just have to check that Vh is entangled

in D′, for all h = 1, . . . , r. Let u′1, . . . , u
′
k be the pairwise distinct D′-states occurring

in Vh. Notice that by the definition of δ′ we have {u′1, . . . , u
′
k} = {δ′(s′, α) | α ∈

Vh} = {[α]∼ | α ∈ Vh}. Hence, for every j = 1, . . . , k there exists αj ∈ Vh such

that u′j = [αj]∼. Then the D-states uj = δ(s, αj), for j = 1, . . . , k, occur in Vh.

Notice that u1, . . . , uk are pairwise distinct as well: if ui were equal to uj for i ̸= j,

then from Lemma 5.20 we would have αi ∼ αj and u′i = [αi]∼ = [αj]∼ = u′j would

follow. Since Vh is entangled in D, there exists a monotone sequence (βi)i∈N in Vh

reaching each uj infinitely many times. Fix j ∈ {1, . . . , k}. If δ(s, βi) = uj then

from δ(s, αj) = uj and βi, αj ∈ Vh it follows αj ∼ βi again by Lemma 5.20, so that

δ′(s′, βi) = [βi]∼ = [αj]∼ = u′j in D′. It follows that the sequence (βi)i∈N reaches u′j

infinitely many times. Hence, Vh is entangled in D′.

As for the second part of the Corollary, if u′ = [α]∼ ∈ Q′ then Iu′ = [α]∼ (see

Equation 5.5 above). Let i (j, respectively) be the minimum (maximum) index h with

[α]∼ ∩ Vh ̸= ∅; then [α]∼ ⊆ Vi ∪ · · · ∪ Vj. Fix h ∈ {i, . . . , j} and consider u = δ(s, α).

Since there exist α′, α′′ ∈ Pref(L(D)) such that α′ ∼ α ∼ α′′, α′ ∈ Vi and α′′ ∈ Vj,

then, Lemma 5.20 implies δ(s, α′) = δ(s, α′′) = δ(s, α) = u and Vh ∩ Iu ̸= ∅. Pick

β ∈ Vh ∩ Iu. Then, the same lemma implies β ∼ α so that β ∈ Iu′ and Vh ∩ Iu′ ̸= ∅

as well.

We can now prove that D′ has width equal (to its entanglement and) to the

entanglement of D.

Theorem 5.22. If D is a DFA, then ent(D) = ent(D′) = width(D′).

Proof. Let us prove that ent(D′) ≤ ent(D). Let {[α1]∼, . . . , [αh]∼} be an entangled

collection of h states in D′. Then, there is a monotone sequence (γi)i∈N such that,
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for each j ∈ {1, . . . , h} we have δ′(s′, γi) = [αj]∼ for infinitely many i’s. Let V be

a minimum-size finite e.c. decomposition of D. Since V is a finite partition and all

the elements of V are convex, there exists V ∈ V and n0 such that γi ∈ V for all

i ≥ n0. In particular, there are words β1, . . . , βh in V such that δ′(s′, βk) = [αk]∼,

for every k = 1, . . . , h. Define uk = δ(s, βk) and notice that the states u1, . . . , uh are

pairwise distinct. In fact, if ur = us for r ̸= s, then by Lemma 5.20 we would have

βr ∼ βs and [αr]∼ = δ′(s′, βr) = [βr]∼ = [βs]∼ = δ′(s′, βs) = [αs]∼, a contradiction.

Moreover, {u1, . . . , uh} is an entangled set in D, because all these states occur in V

(as witnessed by β1, . . . , βh) and V is an element of an e.c. decomposition. Since this

holds for any collection of entangled states in D′, it follows that ent(D′) ≤ ent(D).

Let us now prove that ent(D) ≤ ent(D′). Let {u1, . . . , uh} be an entangled set of

h states in D, witnessed by some monotone sequence (αi)i∈N. Every Iuk is equal to

a finite union of some Iu′ ’s, with u′ ∈ Q′, and (αi)i∈N goes through any uk infinitely

many times. Therefore, for all k = 1, . . . h there exist u′k ∈ Q′ such that Iu′k ⊆ Iuk

and (αi)i∈N goes through u′k infinitely many times. We conclude that u′1, . . . , u
′
h are

pairwise distinct and {u′1, . . . , u
′
h} is an entangled set of states in D′, which implies

ent(D) ≤ ent(D′).

Finally, we prove that width(D′) = ent(D′). If V is an e.c. decomposition of D

of minimum size, then Corollary 5.21 implies that V is an e.c. decomposition of D′

satisfying the hypothesis of Lemma 5.15 so that width(D′) = ent(D′) follows from

this lemma.

If we start from the minimum DFA DL of a regular language L, then, as we shall

see in Theorem 5.24, the automaton D′L acquires a special role because it realizes the

deterministic width of the language L.

Definition 5.23. If DL is the minimum DFA of a regular language L, the DFA D′L

is called the Hasse automaton for L and it is denoted by HL.

The above definition is motivated by the fact that the width of the language can

be “visualized” by the Hasse diagram of the partial order ≤HL
.

Theorem 5.24. If DL is the minimum DFA of the regular language L, then:

widthD(L) = width(HL) = ent(DL) = ent(L).
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Proof. By Lemma 5.12 we have ent(DL) = ent(L). Since ent(D) ≤ width(D) for all

DFAs (Lemma 5.11), we obtain ent(L) ≤ widthD(L), while from Theorem 5.22 we

know that width(HL) = ent(DL). Hence, we have:

width(HL) = ent(DL) = ent(L) ≤ widthD(L) ≤ width(HL)

and the conclusion follows.

The previous theorem allows us to provide an automata-free characterization of

the deterministic width of a regular language. Recall that a property is eventually

true for a sequence if it holds true for all but finitely many elements of the sequence.

Corollary 5.25. Let L be a regular language. Then widthD(L) ≤ p iff every (co-

lexicographically) monotone sequence in Pref(L) is eventually included in at most p

classes of the Myhill-Nerode equivalence ≡L .

Proof. Let DL be the minimum DFA for L. By definition, k states u1, . . . , uk are

entangled in DL iff there exists a monotone sequence (αj)j∈N such that, for each

i = 1, . . . , k, we have δ(s, αj) = ui for infinitely many j’s. Moreover, since DL is

minimum, if i ̸= i′ a word arriving in ui and a word arriving in ui′ belong to different

≡L-classes. Hence, ent(DL) > p iff there exists a monotone sequence in Pref(L) which

eventually reaches more than p classes of the Myhill-Nerode equivalence ≡L infinitely

often, and the corollary follows from the previous theorem.

Summarizing, the Hasse automaton HL captures the deterministic width of a

language. An interesting open question is whether it is possible to devise an effective

procedure to build the Hasse automaton.

5.5 Computing the Deterministic Width of a Regular Language

In this section we shall use Theorem 5.24 — stating that the deterministic width of L

is equal to the entanglement of the minimum DFA for L — to study the complexity

of the problem of finding the deterministic width of a language recognized by a given

automaton. We show that if we are given a regular language L by means of a DFA

D accepting L and a positive integer p, then the problem

widthD(L)
?

≤ p
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is solvable in polynomial time for constant values of p. More precisely, we show that

the problem of computing widthD(L) is in the class XP with parameter p. This result

is achieved by exhibiting a dynamic programming algorithm that extends the ideas

introduced in [5] when solving the corresponding problem for Wheeler languages.

Theorem 5.24 suggests that the minimum DFA contains all “topological” infor-

mation required to compute the width of a language. In the next theorem we clarify

this intuition by providing a graph-theoretical characterization of the deterministic

width of a language based on the minimum DFA recognizing the language.

Theorem 5.26. Let L be a regular language and let DL be the minimum DFA of L,

with set of states Q. Let k ≥ 2 be an integer. Then, widthD(L) ≥ k if and only if

there exist strings µ1, . . . , µk, γ and pairwise distinct states u1, . . . , uk ∈ Q, such that

for every j = 1, . . . , k:

1. µj labels a path from the initial state s to uj;

2. γ labels a cycle starting (and ending) at uj;

3. either µ1, . . . , µk ≺ γ or γ ≺ µ1, . . . , µk;

4. γ is not a suffix of µj.

Proof. By Theorem 5.24 we have widthD(L) = ent(DL). We begin by proving that,

if the stated conditions hold true, then ent(DL) ≥ k. Notice that for every integer

i we have µjγ
i ∈ Iuj . Moreover, the µj’s are pairwise distinct because the uj’s are

pairwise distinct, so without loss of generality we can assume µ1 ≺ · · · ≺ µk.

1. If µ1 ≺ · · · ≺ µk ≺ γ, consider the increasing sequence:

µ1 ≺ · · · ≺ µk ≺ µ1γ ≺ · · · ≺ µkγ ≺ µ1γ
2 ≺ · · · ≺ µkγ

2 ≺ µ1γ
3 ≺ · · · ≺ µkγ

3 ≺ . . .

2. If γ ≺ µ1 ≺ · · · ≺ µk, consider the decreasing sequence:

µk ≻ · · · ≻ µ1 ≻ µkγ ≻ · · · ≻ µ1γ ≻ µkγ
2 ≻ · · · ≻ µ1γ

2 ≻ µkγ
3 ≻ · · · ≻ µ1γ

3 ≻ . . .

where µ1γ
i ≻ µkγ

i+1 holds because µ1 ≻ γ and γ is not a suffix of µ1.
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In both cases the sequence witnesses that {u1, . . . , uk} is an entangled set of distinct

states, so ent(DL) ≥ k.

Conversely, assume that ent(DL) ≥ k. This means that there exist distinct states

v1, . . . , vk and a monotone sequence (αi)i∈N that reaches each of the vj’s infinitely

many times. Let us show that, up to taking subsequences, we can assume not only that

(αi)i∈N reaches each of the vj’s infinitely many times, but it also satisfies additional

properties.

• Since |Σ| and |Q| are finite and (αi)i∈N is monotone, then up to removing a

finite number of initial elements we can assume that all αi’s end with the same

m = |Q|k characters, and we can write αi = α′iθ, for some θ ∈ Σm. Notice that

such a new monotone sequence (αi)i∈N still reaches each of the vj’s infinitely

many times.

• Up to taking a subsequence of the new (αi)i∈N, we can assume that αi reaches

vj if and only if i− j is a multiple of k, that is, αj, αk+j, α2k+j, · · · ∈ Ivj . Notice

that such such a new monotone sequence (αi)i∈N still satifies αi = α′iθ for every

i.

• Since |Q| is finite, up to taking a subsequence of the new (αi)i∈N we can assume

that all αi’s reaching the same vj spell the suffix θ visiting the same m+1 states

xj0, x
j
1, . . . , x

j
m = vj.

Consider the k-tuples (x1s, . . . , x
k
s), for s ∈ {0, . . . ,m} (corresponding to the states

in column in Figure 5.4). There are m + 1 = |Q|k + 1 such k-tuples and there-

fore two of them must be equal. That is, there exist h, ℓ, with 0 ≤ h < ℓ ≤ m,

such that (x1h, . . . , x
k
h) = (x1ℓ , . . . , x

k
ℓ ). Hence, for all j ∈ {1, . . . , k} there is a cycle

xjh, x
j
h+1, . . . , x

j
ℓ, all these cycles are labelled by the same string γ′, and we can write

θ = ϕγ′ψ for some ϕ and ψ.

Let u1, u2, . . . , uk be the pairwise distinct states x1h, x
2
h, . . . , x

k
h (they are distinct,

because if ui = uj for some i ̸= j we would have vi = vj). Hence, we have k

pairwise distinct states and k equally labelled cycles. In order to fulfill the remaining

conditions of the theorem, we proceed as follows. Considering the monotone sequence

(α′iϕ)i∈N, reaching each of the ui’s infinitely many times, we may suppose without loss

of generality (possibly eliminating a finite number of initial elements) that all α′iϕ’s
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s ...

x10
x
1

h
=x

1

ℓ

u1
v1

...
...

xk0
x
k
h
=x

k
ℓ

uk

...

vk

. . .
ϕ

. . .

...

ϕ

ψ
. . .

...

ψ
. . .

γ′

γ′

α′1, α
′
k+1, . . .

α′k, α
′
2k, . . .

Figure 5.4

are co-lexicographically larger than γ′ or they are all co-lexicographically smaller than

γ′.

If γ′ is not a suffix of any α′iϕ we can choose γ = γ′ and, considering k words

µ1, . . . , µk of the sequence (α′iϕ)i∈N arriving in u1, . . . , uk, respectively, we are done.

Otherwise, if γ′ is a suffix of some α′iϕ, pick 2k − 1 strings δ1, . . . , δ2k−1 in the

sequence (α′iϕ)i∈N such that δk ends in uk, while δi and δk+i end in ui for i = 1, . . . , k−

1, and

δ1 ≺ · · · ≺ δk ≺ · · · ≺ δ2k−1.

Let r be an integer such that |(γ′)r| > |δi| for every i = 1, . . . , 2k − 1. Then

γ = (γ′)r is the label of a cycle from ui, for every i = 1, . . . , k, and γ is not a suffix of

δi, for every i = 1, . . . , 2k − 1. We distinguish two cases:

1. δk ≺ γ. In this case, let µ1, . . . , µk be equal to δ1, . . . , δk, respectively.

2. γ ≺ δk. In this case, let µ1, . . . , µk be equal to δk, . . . , δ2k−1, respectively.

In both cases, we have either µ1, . . . , µk ≺ γ or γ ≺ µ1, . . . , µk and the conclusion

follows.

Example 5.27. Let L be a regular language. Let us prove that, in general, widthD(L)

and widthN(L) may depend on the total order ⪯ on the alphabet. Let D be the DFA
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in Figure 4.2, and let L be the language recognized by D. Notice that D is the

minimum DFA recognizing L.

First, assume that ⪯ is the standard alphabetical order such that a ≺ b ≺ c ≺ d.

Let us prove that widthD(L) = 2. From Example 4.18, we obtain widthD(L) ≤ 2, and

from Theorem 5.26 we obtain widthD(L) ≥ 2 by choosing u1 = q2, u2 = q3, µ1 = a,

µ2 = b, γ = c. Notice that Corollary 5.5 implies that widthN(L) = widthD(L) = 2.

Next, let ⪯ be the total order such that a ≺ c ≺ b ≺ d. From Example 4.18 we

immediately obtain widthN(L) = widthD(L) = 1.

The strings µ1, . . . , µk, and γ of Theorem 5.26 can be determined by a dynamic

programming algorithm whose running time can be computed using the following

lemma.

Lemma 5.28. Let D be a DFA with set of states Q, and let s1, q1, . . . , sh, qh ∈ Q.

Suppose there are strings ν1 ⪯ · · · ⪯ νh such that δ(si, νi) = qi, for every i = 1, . . . , h.

Then, there exist strings ν ′1 ⪯ · · · ⪯ ν ′h such that, for every i, j ∈ {1, . . . , h}, it holds:

- δ(si, ν
′
i) = qi;

- νi = νj iff ν ′i = ν ′j;

- νi ⊣ νj iff ν ′i ⊣ ν
′
j;

- |ν ′i| ≤ h− 2 +
∑h

t=1 |Q|
t.

Proof. We will prove the lemma for h = 3 (the extension to the general case is

straightforward). Given φ ∈ Σ∗, we denote by φ(k) the k-th letter of φ from the right

(if |φ| < k we write φ(k) = ε, where ε is the empty string); therefore, if φ ̸= ε, then

φ(1) is the last letter of φ.

Let ν1 ⪯ ν2 ⪯ ν3 be strings with δ(si, νi) = qi, for i = 1, 2, 3. Let d3,2 be the

first position from the right where ν3 and ν2 differ (if ν3 = ν2, let d3,2 = |ν3|). Since

ν2 ⪯ ν3, we have d3,2 ≤ |ν3|. Defining d2,1 similarly, we have d2,1 ≤ |ν2|.

We distinguish three cases.

1. d3,2 = d2,1.

2. d3,2 < d2,1 (see Fig. 5.5a, assuming that ν1 ≺ ν2 ≺ ν3).
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ν3 ≡ . . . θ3 . . . ν3(d3,2) . . . ξ . . .

⋎ ⋎

ν2 ≡
. . . θ2 . . . ν2(d3,2) . . . ξ . . .

. . . θ′2 . . . ν2(d2,1) . . . ξ′ . . . ν2(d3,2) . . . ξ . . .

⋎ ⋎ q

ν1 ≡
. . . θ1 . . . ν1(d3,2) . . . ξ . . .

. . . θ′1 . . . ν1(d2,1) . . . ξ′ . . . ν1(d3,2) . . . ξ . . .

(a) Case ν1 ≺ ν2 ≺ ν3 and d3,2 < d2,1.

ν3 ≡
. . . θ3 . . . ν3(d2,1) . . . ξ . . .

. . . θ′3 . . . ν3(d3,2) . . . ξ′ . . . ν3(d2,1) . . . ξ . . .

⋎ ⋎ q

ν2 ≡
. . . θ2 . . . ν2(d2,1) . . . ξ . . .

. . . θ′2 . . . ν2(d3,2) . . . ξ′ . . . ν2(d2,1) . . . ξ . . .

⋎ ⋎

ν1 ≡ . . . θ1 . . . ν1(d2,1) . . . ξ . . .

(b) Case ν1 ≺ ν2 ≺ ν3 and d2,1 < d3,2.

Figure 5.5

3. d2,1 < d3,2 (see Fig. 5.5b, assuming that ν1 ≺ ν2 ≺ ν3).

Case 3 is analogous to case 2 and will not be considered. In cases 1 and 2, |ν3| ≥ d3,2

and |ν2| ≥ d2,1 ≥ d3,2, so that ν3, ν2, and ν1 end with the same (possibly empty) word

ξ with |ξ| = d3,2 − 1. Summing up:

ν1 = θ1ν1(d3,2)ξ ⪯ ν2 = θ2ν2(d3,2)ξ ⪯ ν3 = θ3ν3(d3,2)ξ

for some (possibly empty) strings θ1, θ2, θ3.

Without loss of generality, we may assume that |ξ| ≤ |Q|3. Indeed, if |ξ| > |Q|3

then when we consider the triples of states visited while reading the last |ξ| letters
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in computations from si to qi following νi, for i = 1, 2, 3, we should have met a

repetition. If this were the case, we could erase a common factor from ξ, obtaining a

shorter word ξ1 such that θ1ν1(d3,2)ξ1 ⪯ θ2ν2(d3,2)ξ1 ⪯ θ3ν3(d3,2)ξ1, with the three new

strings starting in s1, s2, s3 and ending in q1, q2, q3, respectively, respecting equalities

and suffixes. Then we can repeat the argument until we reach a word not longer than

|Q|3.

If d3,2 = d2,1, the order between the ν ′is is settled in position d3,2. Let r1, r2, r3

be the states reached from s1, s2, s3 by reading θ1, θ2, θ3, respectively. For i = 1, 2, 3,

let θ̄i be the label of a simple path from si to ri and let ν ′i = θ̄iνi(d3,2)ξ. Then

δ(si, ν
′
i) = qi, ν

′
1 ⪯ ν ′2 ⪯ ν ′3, |ν

′
1|, |ν

′
2|, |ν

′
3| ≤ |Q| + |Q|3.

If d3,2 < d2,1 we have ν1(d3,2) = ν2(d3,2). Moreover, θ1 and θ2 end with the same

word ξ′ with |ξ′| = d2,1 − d3,2 − 1 (see Fig. 5.5a), and we can write

θ1 = θ′1ν1(d2,1)ξ
′ ⪯ θ2 = θ′2ν2(d2,1)ξ

′.

Arguing as before we can assume, without loss of generality, that |ξ′| ≤ |Q|2. More-

over, we have ν1(d2,1) ⪯ ν2(d2,1) and, as before, we can assume that θ′1, θ
′
2 and θ3

label simple paths. Therefore, |θ′1|, |θ
′
2|, |θ3| ≤ |Q| − 1. Hence, in this case we can find

ν ′1, ν
′
2, ν
′
3 such that δ(si, ν

′
i) = qi, ν

′
1 ⪯ ν ′2 ⪯ ν ′3, and |ν ′1|, |ν

′
2|, |ν

′
3| ≤ 1+|Q|+|Q|2+|Q|3.

Finally, the construction implies that νi = νj iff ν ′i = ν ′j, and νi ⊣ νj iff ν ′i ⊣ ν
′
j.

We are now ready for a computational variant of Theorem 5.26.

Corollary 5.29. Let L be a regular language and let DL be the minimum DFA of L,

with set of states Q. Let k ≥ 2 be an integer. Then, widthD(L) ≥ k if and only if

there exist strings µ1, . . . , µk, and γ and there exist pairwise distinct u1, . . . , uk ∈ Q

such that, for every j = 1, . . . , k:

1. µj labels a path from the initial state s to uj;

2. γ labels a cycle starting (and ending) at uj;

3. either µ1, . . . , µk ≺ γ or γ ≺ µ1, . . . , µk;

4. |µ1|, . . . , |µk| < |γ| ≤ 2(2k − 2 +
∑2k

t=1 |Q|
t).
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Proof. (⇐) Since condition 4. implies that γ is not a suffix of any of the µj,

widthD(L) ≥ k follows from Theorem 5.26.

(⇒) If widthD(L) ≥ k, we use Theorem 5.26 and find words µ′1, . . . , µ
′
k, γ

′ and pairwise

distinct states u1, . . . , uk ∈ Q such that for every j = 1, . . . , k:

1. µ′j labels a path from the initial state s to uj;

2. γ′ labels a cycle starting (and ending) at uj;

3. either µ′1, . . . , µ
′
k ≺ γ′ or γ′ ≺ µ′1, . . . , µ

′
k;

4. γ′ is not a suffix of µ′j.

We only consider the case γ′ ≺ µ′1, . . . , µ
′
k, since in the case µ′1, . . . , µ

′
k ≺ γ′ the proof

is similar. Up to an index permutation, we may suppose without loss of generality

that γ′ ≺ µ′1 ≺ · · · ≺ µ′k. Consider the 2k-words νi and states si, qi defined, for

i = 1, . . . 2k, as follows:

- ν1 = · · · = νk = γ′, s1 = q1 = u1, . . . , sk = qk = uk;

- νk+i = µ′i, sk+i = s, qk+i = ui for i = 1, . . . , k, where s is the initial state of DL.

If we apply Lemma 5.28 to these 2k-words, we obtain words ν ′1 = · · · = ν ′k ≺ ν ′k+1 ≺

· · · ≺ ν ′2k such that, for all i = 1, . . . , k:

1. δ(ui, ν
′
1) = ui, that is, ν ′1 labels a cycle from every ui;

2. δ(s, ν ′k+i) = ui;

3. ν ′1 is not a suffix of ν ′k+i;

4. |ν ′1|, |ν
′
k+i| ≤ 2k − 2 +

∑2k
t=1 |Q|

t.

Let r be the smallest integer such that |(ν ′1)
r| > max{|ν ′k+i| | i ∈ {1, . . . , k}}. Let

µ1 = ν ′k+1, . . . , µk = ν ′2k, γ = (ν ′1)
r. Since ν ′1 is not a suffix of µi, for all i = 1, . . . , k,

from ν ′1 ≺ µ1 ≺ · · · ≺ µk it follows γ = (ν ′1)
r ≺ µ1 ≺ · · · ≺ µk, Moreover:

|µ1|, . . . , |µk| < |γ| ≤ max{|ν ′k+i| | i ∈ {1, . . . , k}} + |ν ′1| ≤ 2(2k − 2 +
2k
∑

t=1

|Q|t)

and the conclusion follows.
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We can finally provide the main theorem of this section.

Theorem 5.30. Let L be a regular language, given as input by means of any DFA

D = (Q, s, δ, F ) recognizing L. Then, for any integer p ≥ 1 we can decide whether

widthD(L) ≤ p in time |δ|O(p).

Proof. We exhibit a dynamic programming algorithm based on Corollary 5.29, plug-

ging in the value k = p + 1 and returning true if and only if widthD(L) ≥ k is

false.

First, note that the alphabet’s size is never larger than the number of transitions:

σ ≤ |δ|, and that |Q| ≤ |δ|+1 since we assume that each state can be reached from s.

Up to minimizing D (with Hopcroft’s algorithm, running in time O(|Q|σ log |Q|) ≤

|δ|O(1)) we can assume that D = DL is the minimum DFA recognizing L. Let N ′ =

2(2k− 2 +
∑2k

t=1 |Q|
t) be the upper bound to the lengths of the strings µi (1 ≤ i ≤ k)

and γ that need to be considered, and let N = N ′+1 be the number of states in a path

labeled by a string of length N ′. Asymptotically, note that N ≤ |Q|O(k) ≤ |δ|O(k).

The high-level idea of the algorithm is as follows. First, in condition (3) of Corollary

5.29, we focus on finding paths µj’s smaller than γ, as the other case (all µj’s larger

than γ) can be solved with a symmetric strategy. Then:

1. For each state u and for each length 2 ≤ ℓ ≤ N , we compute the co-lexicographically

smallest path of length (number of states) ℓ connecting s with u.

2. For each k-tuple u1, . . . , uk and for each length ℓ ≤ N , we compute the co-

lexicographically largest string γ labeling k cycles of length (number of states) ℓ

originating (respectively, ending) from (respectively, in) all the states u1, . . . , uk.

Steps (1) and (2) could be naively solved by enumerating the strings µ1, . . . , µk,

and γ and trying all possible combinations of states u1, . . . , uk. Because of the string

enumeration step, however, this strategy would be exponential in N , i.e. doubly-

exponential in k. We show that a dynamic programming strategy is exponentially

faster.

Step (1). This construction is identical to the one used in [5] for the Wheeler case

(p = 1). For completeness, we report it here. Let πu,ℓ, with u ∈ Q and 2 ≤ ℓ ≤ N ,

denote the predecessor of u such that the co-lexicographically smallest path of length
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(number of states) ℓ connecting the source s to u passes through πu,ℓ as follows:

s ⇝ πu,ℓ → u. The node πu,ℓ coincides with s if ℓ = 2 and u is a successor of s; in

this case, the path is simply s→ u. If there is no path of length ℓ connecting s with

u, then we write πu,ℓ = ⊥. We show that the set {πu,ℓ : 2 ≤ ℓ ≤ N, u ∈ Q} stores

in just polynomial space all co-lexicographically smallest paths of any fixed length

2 ≤ ℓ ≤ N from the source to any node u. We denote such a path — to be intended

as a sequence u1 → · · · → uℓ of states — with αℓ(u). The node sequence αℓ(u) can

be obtained recursively (in O(ℓ) steps) as αℓ(u) = αℓ−1(πu,ℓ) → u, where α1(s) = s

by convention. Note also that αℓ(u) does not fully specify the sequence of edges (and

thus labels) connecting those ℓ states, since two states may be connected by multiple

(differently labeled) edges. However, the corresponding co-lexicographically smallest

sequence λ−(αℓ(u)) of ℓ− 1 labels is uniquely defined as follows:

{

λ−(αℓ(u))=min{a∈Σ | δ(s,a)=u} if ℓ=2

λ−(αℓ(u))=λ
−(αℓ−1(πu,ℓ)→u)=λ−(αℓ−1(πu,ℓ))·min{a∈Σ | δ(πu,ℓ,a)=u} if ℓ>2.

It is not hard to see that each πu,ℓ can be computed in |δ|O(k) time using dynamic

programming. First, we set πu,2 = s for all successors u of s. Then, for ℓ = 3, . . . , N :

πu,ℓ = argmin
v∈Pred(u)

(

λ−(αℓ−1(v)) · min{a ∈ Σ | δ(v, a) = u}
)

where Pred(u) is the set of all predecessors of u and the argmin operator compares

strings in co-lex order. In the equation above, if none of the αℓ−1(v) are well-defined

(because there is no path of length ℓ − 1 from s to v), then πu,ℓ = ⊥. Note that

computing any particular πu,ℓ requires comparing co-lexicographically |Pred(u)| ≤ |Q|

strings of length at most ℓ ≤ N ≤ |δ|O(k), which overall amounts to |δ|O(k) time. Since

there are |Q| × N = |δ|O(k) variables πu,ℓ and each can be computed in time |δ|O(k),

overall Step (1) takes time |δ|O(k). This completes the description of Step (1).

Step (2). Fix a k-tuple u1, . . . , uk and a length 2 ≤ ℓ ≤ N . Our goal is now

to show how to compute the co-lexicographically largest string γ of length ℓ − 1

labeling k cycles of length (number of states) ℓ originating (respectively, ending)

from (respectively, in) all the states u1, . . . , uk. Our final strategy will iterate over all

such k-tuples of states (in time exponential in k) in order to find one satisfying the

conditions of Corollary 5.29.
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Our goal can again be solved by dynamic programming. Let u1, . . . , uk and

u′1, . . . , u
′
k be two k-tuples of states, and let 2 ≤ ℓ ≤ N . Let moreover πu1,...,uk,u′1,...,u′k,ℓ

be the k-tuple ⟨u′′1, . . . , u
′′
k⟩ of states (if it exists) such that there exists a string γ of

length ℓ− 1 with the following properties:

• For each 1 ≤ i ≤ k, there is a path ui ⇝ u′′i → u′i of length (number of nodes)

ℓ labeled with γ, and

• γ is the co-lexicographically largest string satisfying the above property.

If such a string γ does not exist, then we set πu1,...,uk,u′1,...,u′k,ℓ = ⊥.

Remember that we fix u1, . . . , uk. For ℓ = 2 and each k-tuple u′1, . . . , u
′
k, it is easy

to compute πu1,...,uk,u′1,...,u′k,ℓ: this k-tuple is ⟨u1, . . . , uk⟩ (all paths have length 2) if

and only if there exists c ∈ Σ such that u′i = δ(ui, c) for all 1 ≤ i ≤ k (otherwise it

does not exist). Then, γ is formed by one character: the largest such c.

For ℓ > 2, the k-tuple πu1,...,uk,u′1,...,u′k,ℓ can be computed as follows. Assume we

have computed those variables for all lengths ℓ′ < ℓ. Note that for each such ℓ′ < ℓ

and k-tuple u′′1, . . . , u
′′
k, the variables πu1,...,uk,u′′1 ,...,u′′k ,ℓ′ identify k paths ui ⇝ u′′i of

length (number of nodes) ℓ′. Let us denote with αℓ′(u
′′
i ) such paths, for 1 ≤ i ≤ k.

Then, πu1,...,uk,u′1,...,u′k,ℓ is equal to ⟨u′′1, . . . , u
′′
k⟩ maximizing co-lexicographically the

string γ′ · c defined as follows:

1. u′i = δ(u′′i , c) for all 1 ≤ i ≤ k,

2. πu1,...,uk,u′′1 ,...,u′′k ,ℓ−1 ̸= ⊥, and

3. γ′ is the co-lexicographically largest string labeling all the paths αℓ−1(u′′i ). Note

that this string exists by condition (2), and it can be easily built by following

those paths in parallel (choosing, at each step, the largest character labeling all

the k considered edges of the k paths).

If no c ∈ Σ satisfies condition (1), or condition (2) cannot be met, then πu1,...,uk,u′1,...,u′k,ℓ =

⊥.

Note that πu1,...,uk,u1,...,uk,ℓ allows us to identify (if it exists) the largest string γ of

length ℓ− 1 labeling k cycles originating and ending in each ui, for 1 ≤ i ≤ k.



93

Each tuple πu1,...,uk,u′1,...,u′k,ℓ can be computed in |δ|O(k) time by dynamic program-

ming (in order of increasing ℓ), and there are |δ|O(k) such tuples to be computed (there

are |Q|O(k) ≤ |δ|O(k) ways of choosing u1, . . . , uk, u
′
1, . . . , u

′
k, and N ≤ |δ|O(k)). Overall,

also Step (2) can therefore be solved in |δ|O(k) time.

To sum up, we can check if the conditions of Corollary 5.29 hold as follows:

1. We compute πu,ℓ for each u ∈ Q and ℓ ≤ N . This identifies a string µℓu for each

such pair u ∈ Q and ℓ ≤ N : the co-lexicographically smallest one, of length

ℓ− 1, labeling a path connecting s with u.

2. For each k-tuple u1, . . . , uk and each ℓ ≤ N , we compute πu1,...,uk,u1,...,uk,ℓ. This

identifies a string γℓu1,...,uk for each such tuple u1, . . . , uk and ℓ ≤ N : the co-

lexicographically largest one, of length ℓ − 1, labeling k cycles originating and

ending in each ui, for 1 ≤ i ≤ k.

3. We identify the k-tuple u1, . . . , uk and the lengths ℓi < ℓ ≤ N (if they exist)

such that µℓiui ≺ γℓu1,...,uk for all 1 ≤ i ≤ k.

The conditions of Corollary 5.29 hold if and only if step 3 above succeeds for at

least one k-tuple u1, . . . , uk and lengths ℓi < ℓ ≤ N , for 1 ≤ i ≤ k. Overall, the

algorithm terminates in |δ|O(k) = |δ|O(p) time.

5.6 Relation with Star-Free Languages

Theorem 5.26 allows us to describe the levels of the width hierarchy looking to cycles

in the minimum automata for the languages. This result resembles another very well

known result on a class of subregular languages, the star-free ones, which can also be

described by inspecting the cycles in the minimum DFA for the language.

Definition 5.31. A regular language is said to be star-free if it can be described

by a regular expression constructed from the letters of the alphabet, the empty set

symbol, all boolean operators (including complementation), and concatenation (but

no Kleene star).
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A well-known automata characterization of star-free languages is given by using

counters. A counter in a DFA is a sequence of pairwise-distinct states u0, . . . , un (with

n ≥ 1) such that there exists a non-empty string α with δ(u0, α) = u1, . . . , δ(un−1, α) =

un, δ(un, α) = u0. A language is star-free if and only if its minimum DFA has no coun-

ters [111, 91].

We can easily prove that a Wheeler language, i.e. a language L with widthN(L) =

widthD(L) = 1 for a fixed order of the alphabet, is always star-free. Indeed, if the

minimum DFA for a language has a counter u0, . . . , un with string α, and γ ∈ Iu0 ,

then (γαn)n∈N is a monotone sequence (increasing or decreasing depending on which

string between γ and γα is smaller) which is not ultimately included in one class of

the Myhill-Nerode equivalence ≡L (because in a minimum DFA the Iu’s are exactly

equal to Nerode classes). Hence, the language is not Wheeler by Corollary 5.25.

This implies that the first level of the deterministic width hierarchy is included

in the class of star-free languages. On the other hand, in the next example we prove

that there is an infinite sequence of star-free languages (Ln)n∈N over the two letter

alphabet {a, b} such that widthD(Ln) = n, for both total orders ⪯ on {a, b}.

Example 5.32. In Figure 5.6 we depicted a DFA Dn with 3n states accepting the

language Ln =
⋃n−1
j=0 b

jab∗aj+1. Notice that:

1. for every state u and for every 1 ≤ j ≤ n, we have that δ(u, abaj) is defined and

final if and only if u = qj;

2. for every state u in the second or third row and for every 1 ≤ j ≤ n, we have

that δ(u, baj) is defined and final if and only if u = rj;

3. for every state u in the third row and for every 1 ≤ j ≤ n, we have that

δ(u, aj−1) is defined and final if and only if u = sj.

We conclude that Dn is the minimum DFA of Ln.

Since Dn has no counters (because every cycle is a self-loop), the above mentioned

characterization of star-free languages tells us that Ln is star-free. Let us prove that

ent(Dn) = n, so that widthD(Ln) = n follows from Theorem 5.24. Notice that (1)

states in the first row are reached by only one string, (2) states in the second row are

reached infinitely many times only by string ending with b, and (3) states in the third
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row are reached only by strings ending with a. This implies ent(Dn) ≤ n, because the

words belonging to a monotone sequence witnessing an entanglement between states

will definitely end by the same letter, so only states belonging to the same row may

belong to an entangled set. Finally, the n states in the second level are entangled ,

as it witnessed by the monotone sequence:

a ≺ ba ≺ bba ≺ · · · ≺ bn−1a ≺ ab ≺ bab ≺

bbab ≺ · · · ≺ bn−1ab ≺ · · · ≺ abk ≺ babk ≺ bbabk ≺ . . .

if a ≺ b, and by the monotone sequence:

bn−1a ≻ bn−2a ≻ · · · ≻ a ≻ bn−1ab ≻

bn−2ab ≻ · · · ≻ ab ≻ · · · ≻ bn−1abk ≻ bn−2abk ≻ · · · ≻ abk ≻ . . .

if b ≺ a. Hence, in both cases we have ent(Dn) = n.
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Figure 5.6: A minimum DFA Dn recognizing a star-free language Ln with
widthD(Ln) = n for the two possible orders on the alphabet {a, b}.

5.7 The Convex Myhill-Nerode Theorem

In the previous sections we described a hierarchy of regular languages by means of

their deterministic widths. A natural question is whether a corresponding Myhill-

Nerode theorem can be provided for every level of the hierarchy: given a regular lan-

guage L, if we consider all DFAs recognizing L and having width equal to widthD(L),

is there a unique such DFA having the minimum number of states? In general, the

answer is ”no”, as showed in Example 5.9.
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The non-uniqueness can be explained as follows. If a DFA of width p recognizes

L, then Pref(L) can be partitioned into p sets, each of which consists of the (disjoint)

union of some pairwise comparable Iq’s. However, in general the partition into p sets is

not unique, so it may happen that two distinct partitions lead to two non-isomorphic

minimal DFAs with the same number of states. For example, in Figure 5.1, we see two

non-isomorphic DFAs (center and right) realizing the width of the language and with

the minimum number of states among all DFAs recognizing the same language and

realizing the width of the language: the chain partition {{0, 1, 4}, {2, 3, 5, 3′}} of the

DFA in the center induces the partition {ac∗∪{ε, e, h}, bc∗∪ac∗d∪{gd, ee, he, f, k, g}}

of Pref(L), whereas the chain partition {{0, 1, 3}, {2, 4, 5, 4′}} of the DFA on the right

induces the partition {ac∗ ∪ ac∗d ∪ {ε, gd, ee, he, f, k}, bc∗ ∪ {e, h, g}} of Pref(L).

This example shows that no uniqueness results can be ensured as long as partitions

are not fixed. But what happens if we fix a partition? As we will prove in this section,

once a partition is fixed, it is possible to prove a full Myhill-Nerode theorem, thereby

providing a DFA-free characterization of languages of width equal to p and a minimum

DFA for these languages. In particular, if p = 1, then the partition contains a single

set equal to Pref(L), and we retrieve a Myhill-Nerode theorem for Wheeler language

[5].

More formally, let D = (Q, s, δ, F ) be a DFA, and let {Qi | 1 ≤ i ≤ p} be a

≤D-chain partition of Q. For every i ∈ {1, . . . , p}, define:

Pref(L(D))i = {α ∈ Pref(L(D)) | δ(s, α) ∈ Qi}.

Then {Pref(L(D)i | 1 ≤ i ≤ p} is a partition of Pref(L(D)), and from now on we will

think of such a partition as fixed. We now consider the class of all DFAs accepting L

and inducing the considered partition.

Definition 5.33. Let D = (Q, s, δ, F ) be a DFA, and let P = {U1, . . . , Up} be a

partition of Pref(L(D)). We say that D is P-sortable if there exists a ≤D-chain

partition {Qi | 1 ≤ i ≤ p} such that for every i ∈ {1, . . . , p}:

Pref(L(D))i = Ui.

We wish to give a DFA-free characterization of languages L and partitions P of

Pref(L) for which there exists a P-sortable DFA. As in the Myhill-Nerode theorem,
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we aim to determine which properties an equivalence relation ∼ should satisfy to

ensure that a canonical construction provides a P-sortable DFA. First, L must be

regular, so ∼ is expected to be right-invariant. In order to develop some intuition on

the required properties, let us consider an equivalence relation which plays a key role

in the classical Myhill-Nerode theorem. Let D = (Q, s, δ, F ) be a P-sortable DFA,

and let ≡D be the equivalence relation on Pref(L(D)) defined by

α ≡D β ⇔ δ(s, α) = δ(s, β).

Notice that equivalent strings end up in the same element of P (P-consistency), and

since all states in each ≤D-chainQi are comparable, then each Iq must be convex in the

corresponding element of P (P-convexity). More formally we consider the following

definition, where, for every α ∈ Pref(L), we denote by Uα the unique element Ui of

P such that α ∈ Ui.

Definition 5.34. Let L ⊆ Σ∗ be a language, and let ∼ be an equivalence relation on

Pref(L). Let P = {U1, . . . , Up} be a partition of Pref(L).

1. We say that ∼ is P-consistent if for every α, β ∈ Pref(L), if α ∼ β, then

Uα = Uβ.

2. Assume that ∼ is P-consistent. We say that ∼ is P-convex if for every α ∈

Pref(L) we have that [α]∼ is a convex in (Uα,⪯).

As we now prove, these are exactly the required properties for a DFA-free char-

acterization.

Let L ⊆ Σ∗ be a language, and let ∼ be an equivalence relation on Pref(L). We

say that ∼ respects Pref(L) if:

(∀α, β ∈ Pref(L))(∀ϕ ∈ Σ∗)(α ∼ β ∧ αϕ ∈ Pref(L) → βϕ ∈ Pref(L)).

Now, let us define the right-invariant, P-consistent and P-convex refinements of an

equivalence relation ∼.

1. Assume that ∼ respects Pref(L). For every α, β ∈ Pref(L), define:

α ∼r β ⇐⇒ (∀ϕ ∈ Σ∗)(αϕ ∈ Pref(L) → αϕ ∼ βϕ).

We say that ∼r is the right-invariant refinement of ∼.
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2. Let P = {U1, . . . , Up} be a partition of Pref(L). For every α, β ∈ Pref(L),

define:

α ∼cs β ⇐⇒ (α ∼ β) ∧ (Uα = Uβ)

We say that ∼cs is the P-consistent refinement of ∼.

3. Let P = {U1, . . . , Up} be a partition of Pref(L). Assume that ∼ is P-consistent.

For every α, γ ∈ Pref(L), define:

α ∼cv γ ⇐⇒ (α ∼ γ)∧

∧ (∀β ∈ Pref(L))(((Uα = Uβ) ∧ (min{α, γ} ≺ β ≺ max{α, γ}) → α ∼ β).

We say that ∼cv is the P-convex refinement of ∼.

It is easy to check that ∼r is the coarsest right-invariant equivalence relation refining

∼, ∼cs is the coarsest P-consistent equivalence relation refining ∼ and ∼cv is the

coarsest P-convex equivalence relation refining ∼.

We wish to prove that any equivalence relation that respects Pref(L) admits a

coarsest refinement being P-consistent, P-convex and right-invariant at once, because

then we will be able to define an equivalence relation inducing the minimum (P-

sortable) DFA. We first prove that if we use the operators cv and r, in this order, over

a P-consistent and right-invariant equivalence relation we do not lose P-consistency,

nor right-invariance, and we gain P-convexity.

Lemma 5.35. Let L ⊆ Σ∗ be a language, and let P be a partition of Pref(L). If ∼ is

a P-consistent and right-invariant equivalence relation on Pref(L), then the relation

(∼cv)r is P-consistent, P-convex and right-invariant.

Proof. By definition (∼cv)r is a right-invariant refinement. Moreover, ∼cv and (∼cv)r

are P-consistent because they are refinements of the P-consistent equivalence relation

∼. Let us prove that (∼cv)r is P-convex. Assume that α, β, γ ∈ Pref(L) are such that

α(∼cv)rγ, α ≺ β ≺ γ and Uα = Uβ. Being (∼cv)r a P-consistent relation, we have

Uα = Uβ = Uγ. We must prove that α(∼cv)rβ. Fix ϕ ∈ Σ∗ such that αϕ ∈ Pref(L).

We must prove that αϕ ∼cv βϕ. Now, α(∼cv)rγ implies α ∼cv γ. Since α ≺ β ≺ γ

and Uα = Uβ = Uγ, then the P-convexity of ∼cv implies α ∼cv β. In particular,

α ∼ β. Since ∼ is right-invariant we have αϕ ∼ βϕ, and from the P-consistency of
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∼ we obtain Uαϕ = Uβϕ. Moreover, α(∼cv)rγ implies αϕ(∼cv)rγϕ by right-invariance,

so αϕ ∼cv γϕ. By P-convexity, from αϕ ∼cv γϕ, Uαϕ = Uβϕ and αϕ ≺ βϕ ≺ γϕ (since

α ≺ β ≺ γ) we conclude αϕ ∼cv βϕ.

Corollary 5.36. Let L ⊆ Σ∗ be a nonempty language, and let P be a partition of

Pref(L). Let ∼ be an equivalence relation that respects Pref(L). Then, there exists

a (unique) coarsest P-consistent, P-convex and right-invariant equivalence relation

refining ∼.

Proof. The equivalence relation (∼cs)r is P-consistent (because it is a refinement

of the P-consistent equivalence relation ∼cs) and right-invariant (by definition it is a

right-invariant refinement), so by Lemma 5.35 the equivalence relation (((∼cs)r)cv)r is

P-consistent, P-convex and right-invariant. Moreover, every P-consistent, P-convex

and right-invariant equivalence relation refining ∼ must also refine (((∼cs)r)cv)r, so

(((∼cs)r)cv)r is the coarsest P-consistent, P-convex and right-invariant equivalence

relation refining ∼.

Corollary 5.36 allows us to give the following definition.

Definition 5.37. Let L ⊆ Σ∗ be a language, and let P = {U1, . . . , Up} be a partition

of Pref(L). Denote by ≡PL the coarsest P-consistent, P-convex and right-invariant

equivalence relation refining the Myhill-Nerode equivalence ≡L.

In particular, since L is the union of some ≡L-classes, we also have that L is the

union of some ≡PL -classes.

Recall that, given a DFA D = (Q, s, δ, F ), the equivalence relation ≡D on Pref(L(D))

is the one such that:

α ≡D β ⇐⇒ δ(s, α) = δ(s, β).

Here are the key properties of ≡D, when D is a P-sortable DFA.

Lemma 5.38. Let D = (Q, s, δ, F ) be a P-sortable DFA, where P = {U1, . . . , Up} is

a partition of Pref(L) for L = L(D). Then, ≡D has finite index, it respects Pref(L),

it is right-invariant, P-consistent, P-convex, it refines ≡PL , and L is the union of

some ≡D-classes. In particular, ≡PL has finite index.
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Proof. The relation ≡D has index equal to |Q|. It respects Pref(L) because if α ≡D β

and ϕ ∈ Σ∗ satisfies αϕ ∈ Pref(L), then there exists γ with αϕγ ∈ L so δ(s, αϕγ) ∈

F . Since δ(s, α) = δ(s, β) we obtain δ(s, αϕγ) = δ(s, βϕγ) and so βϕγ ∈ L and

βϕ ∈ Pref(L) follows. Moreover, it is right-invariant because if α ≡D β and ϕ ∈ Σ∗

is such that αϕγ ∈ L, then βϕ ∈ Pref(L) and from δ(s, α) = δ(s, β) we obtain

δ(s, αϕ) = δ(s, βϕ).

For every α ∈ Pref(L) we have [α]≡D
= Iδ(s,α), which implies that ≡D is P-

consistent. Moreover, ≡D is P-convex, that is, for every α ∈ Pref(L) we have that

[α]≡D
= Iδ(s,α) is convex in Uα, because if u1, . . . , uk ∈ Q are such that Uα =

⋃k
i=1 Iui ,

then the ui’s must be pairwise ≤D-comparable, being in the same ≤D-chain. More-

over, ≡D refines ≡L, because α ≡D β implies that for every ϕ ∈ Σ∗ we have

δ(s, αϕ) = δ(s, βϕ) and so αϕ ∈ L iff βϕ ∈ L. Since ≡PL is the coarsest P-

consistent, P-convex and right-invariant equivalence relation refining ≡L, and ≡D

is a P-consistent, P-convex and right-invariant equivalence relation refining ≡L, we

conclude that ≡D also refines ≡PL , which in particular implies that L is the union of

some ≡D-classes. We know that ≡D has finite index, so ≡PL has finite index.

We can now explain how to canonically build a P-sortable DFA starting from an

equivalence relation.

Lemma 5.39. Let L ⊆ Σ∗ be a language, and let P = {U1, . . . , Up} be a partition

of Pref(L). Assume that L is the union of some classes of a P-consistent, P-convex,

right-invariant equivalence relation ∼ on Pref(L) of finite index. Then, L is recognized

by a P-sortable DFA D∼ = (Q∼, s∼, δ∼, F∼) such that:

1. |Q∼| is equal to the index of ∼;

2. ≡D∼ and ∼ are the same equivalence relation (in particular, |Q∼| is equal to

the index of ≡D∼).

Moreover, if B is a P-sortable DFA that recognizes L, then D≡B
is isomorphic to B.

Proof. Define the DFA D∼ = (Q∼, s∼, δ∼, F∼) as follows.

• Q∼ = {[α]∼ | α ∈ Pref(L)};

• s∼ = [ε]∼, where ε is the empty string;
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• δ∼([α]∼, a) = [αa]∼, for every α ∈ Σ∗ and a ∈ Σ such that αa ∈ Pref(L).

• F∼ = {[α]∼ | α ∈ L}.

Since ∼ is right-invariant, it has finite index and L is the union of some ∼-classes,

then D∼ is a well-defined DFA and:

α ∈ [β]∼ ⇐⇒ δ∼(s∼, α) = [β]∼. (5.6)

which implies that for every α ∈ Pref(L) it holds I[α]∼ = [α]∼, and so L(D∼) = L.

For every i ∈ {1, . . . , p}, define:

Qi = {[α]∼ | Uα = Ui}.

Notice that each Qi is well-defined because ∼ is P-consistent, and each Qi is a

≤D∼-chain because ∼ is P-convex. It follows that {Qi | 1 ≤ i ≤ p} is a ≤D∼-chain

partition of Q∼.

From Equation 5.6 we obtain:

Pref(L(D∼))i = {α ∈ Pref(L(D∼)) | δ∼(s∼, α) ∈ Qi}

= {α ∈ Pref(L(D∼)) | (∃[β]∼ ∈ Qi α ∈ [β]∼)}

= {α ∈ Pref(L(D∼)) | Uα = Ui} = Ui.

In other words, D∼ witnesses that L is recognized by a P-sortable DFA. Moreover:

1. The number of states of D∼ is clearly equal to the index of ∼.

2. By Equation 5.6:

α ≡D∼ β ⇐⇒ δ∼(s∼, α) = δ∼(s∼, β) ⇐⇒ [α]∼ = [β]∼ ⇐⇒ α ∼ β

so ≡D∼ and ∼ are the same equivalence relation.

Finally, suppose B is a P-sortable DFA that recognizes L. Notice that by Lemma

5.38 we have that ≡B is a P-consistent, P-convex, right-invariant equivalence relation

on Pref(L) of finite index such that L is the union of some ≡B-classes, so D≡B
is well-

defined. Call QB the set of states of B, and let ϕ : Q≡B
→ QB be the function sending

[α]≡B
into the state in QB reached by reading α. Notice that ϕ is well-defined because

by the definition of ≡B we obtain that all strings in [α]≡B
reach the same state of B.

It is easy to check that ϕ determines an isomorphism between D≡B
and B.
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We now have all the required definitions to state our Myhill-Nerode theorem,

which generalizes the one for Wheeler languages [4].

Theorem 5.40 (Convex Myhill-Nerode Theorem). Let L be a language. Let P be a

partition of Pref(L). The following are equivalent:

1. L is recognized by a P-sortable DFA.

2. ≡PL has finite index.

3. L is the union of some classes of a P-consistent, P-convex, right-invariant

equivalence relation on Pref(L) of finite index.

Moreover, if one of the above statements is true (and so all the above statements are

true), then there exists a unique minimum P-sortable DFA recognizing L (that is,

two P-sortable DFAs recognizing L having the minimum number of states must be

isomorphic).

Proof. (1) → (2) It follows from Lemma 5.38.

(2) → (3) The desired equivalence relation is simply ≡PL .

(3) → (1) It follows from Lemma 5.39.

Now, let us prove that the minimum DFA is D≡P
L

as defined in Lemma 5.39.

First, D≡P
L

is well-defined because ≡PL is P-consistent, P-convex and right-invariant

by definition; moreover, it has finite index and L is the union of some ≡PL -equivalence

classes by Lemma 5.38. Now, the number of states of D≡P
L

is equal to the index

of ≡PL , or equivalently, of ≡D
≡P
L

. On the other hand, let B be any P-sortable DFA

recognizing L non-isomorphic to D≡P
L

. Then ≡B is a refinement of ≡PL by Lemma

5.38, and it must be a strict refinement of ≡PL , otherwise D≡P
L

would be equal to

D≡B
, which by Lemma 5.39 is isomorphic to B, a contradiction. We conclude that

the index of ≡PL is smaller than the index of ≡B, so again by Lemma 5.39 the number

of states of D≡P
L

is smaller than the number of states of D≡B
and so of B.

Notice that for a language L Definition 5.33 implies that widthD(L) = p if and

only if (i) there exists a partition P of size p such that L is recognized by a P-sortable

DFA and (ii) for every partition P ′ of size less than p it holds that L is not recognized

by a P ′-sortable DFA. As a consequence, widthD(L) = p if and only if the minimum
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cardinality of a partition P of Pref(L) that satisfies any of the statements in Theorem

5.40 is equal to p.

5.8 Minimization of Wheeler DFAs

Definition 5.33 implies that a DFA is Wheeler if and only if it is {Pref(L)}-sortable.

From Theorem 5.40 we obtain that if L is a Wheeler language, there there exists

a unique state-minimal Wheeler DFA recognizing L — the minimum Wheeler DFA

recognizing L. The problem of minimizing the states a DFA D = (Q, s, δ, F ) is

a classical problem in automata theory that can be solved by means of Hopcroft’s

algorithm [73]. In this section, given a Wheeler DFA D = (Q, s, δ, F ), we want to

determine the minimum Wheeler DFA recognizing L(D).

Let us first revise Hopcroft’s algorithm. Let D = (Q, s, δ, F ) be a DFA. We will

now consider equivalence relations defined on Q, not on Pref(L(D)). We say that an

equivalence relation ∼ on Q is right-invariant if for every u, v ∈ Q such that u ∼ v

and for every a ∈ Σ, δ(u, a) is defined if and only if δ(v, a) is defined, and, if they are

defined, it holds δ(u, a) ∼ δ(v, a). As usual, we denote the equivalence class of v with

[v]∼.

Let D = (Q, s, δ, F ) be a DFA and let ∼ be a right-invariant equivalence relation

on Q, DefineD/∼ = (Q∼, δ∼, [s]∼, F∼), where Q∼ = {[u]∼ | u ∈ Q}, δ∼([u]∼, a) = [v]∼

if and only if δ(u, a) = v, and F∼ = {[u]∼ | u ∈ F}. A classic and simple result is that,

since ∼ is right-invariant, then D/∼ is a well-defined DFA such that L(A/∼) = L(A);

moreover, I[u]∼ =
⋃

u′∈[u]∼ Iu′ for every u ∈ Q [74].

Let D = (Q, s, δ, F ) be a DFA. Consider the right-invariant equivalence relation

≈D on Q such that for every u, v ∈ Q it holds u ≈D v if and only if for every α ∈ Σ∗

we have δ(u, α) ∈ F if and only if δ(v, α) ∈ F (the expression δ(u, α) ∈ F means

that the state δ(u, α) is defined and it is in F ). The equivalence relation ≈D can

be seen as a state equivalent of the Myhill-Nerode equivalence ≡L(D). Then, D/≈D

is the minimum DFA recognizing L(D) [74]. Given ≈D, the minimum DFA D/≈D

can be built in linear time, so the time required to compute the minimum DFA is

the time required to build ≈D. Hopcroft’s algorithm shows that ≈D can be built in

O(|δ| log |Q|) time.

Now, let D = (Q, s, δ, F ) be a Wheeler DFA, where Q = {u1, . . . , un} and u1 <
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u2 < · · · < un in the Wheeler order ≤. Consider the right-invariant equivalence

relation ≈c
D on Q that puts in the same equivalence classes exactly all states belonging

to the maximum runs of states ui, ui+1, . . . , ui+t for which ui ≈A ui+1 ≈A · · · ≈A ui+t.

Then, ≈c
D is right-invariant by the following lemma.

Lemma 5.41. Let D = (Q, s, δ, F ) be a Wheeler DFA, where Q = {u1, . . . , un} and

u1 < u2 < · · · < un in the Wheeler order ≤. Let α ∈ Σ∗ and 1 ≤ i < n be such that

δ(ui, α) and δ(ui+1, α) are both-defined and distinct. Then, there exists 1 ≤ j < n

such that uj = δ(ui, α) and uj+1 = δ(ui+1, α).

Proof. Without loss of generality, we can assume that α = a ∈ Σ is a character (the

claim will follow by extension).

Let 1 ≤ j, k ≤ n be such that uj = δ(ui, α) and uk = δ(ui, α). We must prove

that k = j + 1. We know that j ̸= k. If it were k < j, then by Axiom 2 and Remark

4.2 we would conclude i + 1 < i, a contradiction, so it must be j < k. Suppose for

the sake of contradiction that j + 1 < k. By Axiom 1, there exists 1 ≤ i′ ≤ n such

that uj+1 = δ(ui′ , a). By Axiom 2 and Remark 4.2 we would conclude i < i′ < i+ 1,

a contradiction.

Since ≈c
D is right-invariant, then D/≈c

D
is a well-defined DFA. It is easy to show

that D/≈c
D

is the minimum Wheeler DFA recognizing L(D), because by the proof

of Theorem 5.40 the minimum Wheeler DFA is D≡P
L

, with L = L(D) and P =

{Pref(L(D))}, and D/≈c
D

is isomorphic to D≡P
L

by construction. As a consequence,

we are only left with the problem of determining ≈c
D. Since ≈D can be computed in

O(|δ| log |Q|) time, we can also compute ≈c
D in O(|δ| log |Q|) time. In the remaining

of this section, we show that the properties of a Wheeler DFA allow computing ≈c
D

in O(|δ|) time, thus leading to the following theorem.

Theorem 5.42. Let D = (Q, s, δ, F ) be a Wheeler DFA. We can compute the mini-

mum Wheeler DFA recognizing L(D) in O(|δ|) time.

In order to prove the previous theorem, let us define the border graph of a WDFA:

Definition 5.43 (border graph). Let D = (Q, s, δ, F ) be a Wheeler DFA, where

Q = {u1, . . . , un} and u1 < u2 < · · · < un in the Wheeler order ≤. The border graph

of D is the (unlabeled) graph B(D) = (B,Z) where B = {(ui, ui+1) | 1 ≤ i < n} and

Z = {((ui, ui+1), (uj, uj+1)) ∈ B × B | ui = δ(uj, a) ∧ ui+1 = δ(uj+1, a), a ∈ Σ}.
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In other words, an edge of B(D) exists between borders (ui, ui+1) and (uj, uj+1)

whenever ui (respectively, ui+1) can be reached by uj (respectively, uj+1) by an edge

labeled with the same character a. Note that in this case it must necessarily be

a = maxλ(ui) = minλ(ui+1).

In general, B(D) may contain cycles. With the next lemma we put a bound to

the size of B(D), by showing that the maximum out-degree in the graph is at most

one.

Lemma 5.44. Let D = (Q, s, δ, F ) be a Wheeler DFA. Then, B(D) has at most

|Q|− 1 edges and |Q|− 1 vertices. Moreover, B(A) can be constructed in O(|δ|) time.

Proof. Clearly, |B| ≤ n − 1 since elements of B are pairs of adjacent (in Wheeler

order) states of D.

We now show that for every (ui, ui+1) ∈ B, there exists at most one (uj, uj+1) ∈ B

such that ((ui, ui+1), (uj, uj+1)) ∈ Z. Indeed, if ur, us ∈ Q are any states such that

ui = δ(ur, a) and ui+1 = δ(us, a), then from ui < ui+1 and from Axiom 2 it follows

ur < us, and (ur, us) ∈ B if and only if r is the largest integer such that ui = δ(ur, a),

s is the smallest integer such that ui+1 = δ(us, a), s = r+ 1 and maxλ(ur) = minλ(us).

In other words, |Z| ≤ |B| ≤ n− 1.

Finally, B(D) can be built in O(|δ|) time as follows. Consider the list u1 < · · · < un

of A’s states, sorted in Wheeler order. For each (ui, ui+1) and each letter a labeling a

transition leaving ui, let v = δ(ui, a) and v′ = δ(ui+1, a) (note that the outgoing edges

of each node can be sorted in linear time by their label to speed up this operation). If

both v and v′ exist and are distinct, they must indeed be adjacent in Wheeler order

by Lemma 5.41: v = uj and v′ = uj+1, for some 1 ≤ j < n. Then, insert in B(D) an

edge ((uj, uj+1), (ui, ui+1)).

We describe our minimization algorithm as Algorithm 1. In line 1 we compute

the border graph (B,Z) = B(D) of D. This is done in linear time, see Lemma

5.44. In Lines 3-5, we mark base-case nodes: for every pair of adjacent nodes, if

they are not both final/not final, or if their sets of outgoing labels are not equal

then they cannot be ≡c
D-equivalent. This step takes O(|δ|) time. In Line 7 we

perform a linear-time visit of B(D) starting from the nodes that have been marked

in Lines 3-5. During this visit, we mark every visited node. In Lines 7-9 we compute
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Algorithm 1 Input: A Wheeler DFA D = (Q, s, δ, F ), where Q = {u1, . . . , un} and

u1 < u2 < · · · < un in the Wheeler order ≤. Output: The minimum Wheeler DFA

recognizing L(D).

1: (B,Z)← border graph(D) ▷ Compute border graph B(D) of D
2: for i = 1, . . . , n− 1 do

3: if out(ui) ̸= out(ui+1) ∨ final(ui) ̸= final(ui+1) then

4: mark((ui, ui+1)) ▷ *Mark a ”base-case” node of B(D)
5: end if

6: end for

7: mark reachable(B,Z) ▷ Propagate ”base-case” marked nodes

8: for i = 1, . . . , n− 1 do

9: if not marked
(

(ui, ui+1)
)

then

10: make equivalent(ui, ui+1) ▷ Record that ui ≈c
D ui+1

11: end if

12: end for

13: return D/≈c

D
▷ Compute and return quotient automaton

the equivalence classes of ≡c
D. In Line 8, the predicate marked((ui, ui+1)) returns

true if and only if (ui, ui+1) ∈ B has been marked in the previous lines. Procedure

make equivalent(ui, ui+1) at Line 10 records that nodes ui, ui+1 belong to the same

equivalence class of ≈c
D. To conclude, at Line 13 we return the quotient automaton

D/≈c
D

, the minimum Wheeler DFA recognizing L(D). The Wheeler DFA D/≈c
D

can

be computed in O(|δ|) time by collapsing each equivalence class of ≈c
D (intervals in

Wheeler order).

In Figure 5.7 we pictorially show how Algorithm 1 minimizes a WDFA.

In order to prove Theorem 5.42, we are only left with showing that Algorithm 1

is correct. Our claim will follow if we prove that ui ̸≈D ui+1 if and only (ui, ui+1) is

marked in B(D).

(⇐) Suppose that (ui, ui+1) is marked. Then, by the definition of B(D) this

means that there exists a pair (uj, uj+1) (possibly, i = j) that was marked in Line 4

(in particular, uj ̸≈D uj+1) such that (ui, ui+1) is reachable from (uj, uj+1) in B(D).

In turn, by the definition of B(D) this implies that there exists a string α such

that δ(ui, α) = uj and δ(ui+1, α) = uj+1. Since ≈D is right-invariant, we conclude

ui ̸≈D ui+1.

(⇒) Conversely, suppose ui ̸≈D ui+1. Then, there must exist two states v, v′ such

that δ(ui, α) = v and δ(ui+1, α) = v′ for some string α, with either out(v) ̸= out(v′)

or final(v) ̸= final(v′) (in particular, v ̸= v′). Indeed, let α′ be a shortest string
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witnessing that ui ̸≈A ui+1. If δ(ui, α
′) and δ(ui+1, α

′) are both defined, let v =

δ(ui, α
′), v′ = δ(ui+1, α

′) and α = α′ (in this case final(v) ̸= final(v′)). If exactly

one between δ(ui, α
′) and δ(ui+1, α

′) is not defined, then α′ is not the empty string, so

we can write α′ = α′′a with α′′ ∈ Σ∗ and a ∈ Σ, where both δ(ui, α
′′) and δ(ui+1, α

′′)

are defined (by the minimality of α′), so let v = δ(ui, α
′′), v′ = δ(ui+1, α

′′) and α = α′′

(in this case out(v) ̸= out(v′)). From Lemma 5.41, v and v′ must be adjacent in

Wheeler order, i.e. v = uj and v′ = uj+1 for some 1 ≤ j < n. This implies that (i)

(uj, uj+1) is marked in Line 4 and (ii) (ui, ui+1) is reachable from (uj, uj+1) in B(A).

Finally, (i) and (ii) imply that (ui, ui+1) is marked during the visit of B(A) in Line 7.
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Figure 5.7: Top: a sorted WDFA A (node labels indicate the Wheeler order). Center : the border
graph B(A) built at Line 2 of Algorithm 1. Nodes marked at Line 4 of the algorithm are orange,
nodes marked at Line 7 are light blue. Bottom: the minimum WDFA recognizing L(A). Borders
not marked (colored) in B(A) have been collapsed.



Chapter 6

Co-lex Relations

In Chapter 4 we defined co-lex orders, and we showed how they can be used to index

and compress NFAs. If N is an NFA, then Theorem 4.47 requires having a co-lex

order on N , and the smaller its width, the better. As a consequence, we should

determine a co-lex order of minimum width on N . However, in Section 4.1, we saw

that determining width(≤N ) is NP-hard (but becomes a polynomial problem if N is

a DFA, see Corollary 4.17).

In this chapter, we show that we can overcome this limitation by switching from

co-lex order to co-lex relations. We will show that the problem of determining a

minimum-width co-lex relation of an NFA (i) can be solved in polynomial time and

(ii) leads to bounds at least as good as the one in Theorem 4.47.

Let us generalize the definition of co-lex order (Definition 4.1).

Definition 6.1. Let N = (Q, s, δ, F ) be an NFA. A co-lex relation on G is a reflexive

relation R ⊆ Q×Q that satisfies the following two axioms:

1. (Axiom 1) For every u, v ∈ Q such that u ̸= v, if (u, v) ∈ R, then maxλ(u) ⪯

minλ(v);

2. (Axiom 2) For every a ∈ Σ and u, v, u′, v′ ∈ Q such that u ̸= v, if u ∈ δ(u′, a),

v ∈ δ(v′, a) and (u, v) ∈ R, then (u′, v′) ∈ R.

A co-lex preorder is a co-lex relation that is also a preorder.

Remark 6.2. (1) Let u ∈ Q be a state with no incoming edges, and let v ∈ Q a state

with incoming edges. From Axiom 1, it follows (v, u) ̸∈ R. (2) If for distinct u, v ∈ Q

it holds (u, v) ∈ R and (v, u) ∈ R, then by Axiom 1 we obtain maxλ(u) ⪯ minλ(v) and

maxλ(v) ⪯ minλ(u), so λ(u) = λ(v) and |λ(u)| = |λ(v)| = 1.

Remark 6.3. Every NFA N = (Q, s, δ, F ) admits a co-lex relation. For example,

{(v, v) | v ∈ Q} and {(u, v) ∈ Q×Q | maxλ(u) ≺ minλ(v)}∪{(v, v) | v ∈ Q} are co-lex

relations on G.
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We saw that the key property for indexing is path coherence (Lemma 4.23). Let

us see how to generalize it to co-lex relations.

Lemma 6.4 (Path coherence). Let N = (Q, s, δ, F ) be an NFA, and let R be a co-lex

relation on N . Let α ∈ Σ∗, and let U ⊆ Q be R-convex. Then, the set U ′ of all states

in Q that can be reached from U by following edges whose labels, when concatenated,

yield α, is still R-convex (possibly U ′ is empty).

Proof. We proceed by induction on |α|. If |α| = 0, then α = ε and we are done.

Now assume |α| ≥ 1. We can write α = α′a, with α′ ∈ Σ∗, a ∈ Σ. Let u, v, z ∈ Q

such that u, z ∈ U ′ and (u, v), (v, z) ∈ R. We must prove that v ∈ U ′. If v = u or

v = z the conclusion follows, so we can assume v ̸= u and v ̸= z. By the inductive

hypothesis, the set U ′′ of all states in Q that can be reached from some state in U by

following edges whose labels, when concatenated, yield α′, is R-convex. In particular,

there exist u′, z′ ∈ U ′′ such that u ∈ δ(u′, a) and z ∈ δ(z′, a). Since a ∈ λ(u) ∩ λ(z)

and (u, v), (v, z) ∈ R, then λ(v) = {a} (otherwise by Axiom 1 we would obtain a

contradiction), so there exists v′ ∈ Q such that v ∈ δ(v′, a). From (u, v), (v, z) ∈ R

and Axiom 2 we obtain (u′, v′), (v′, z′) ∈ R; since u′, z′ ∈ U ′′ and U ′′ is R-convex, then

v′ ∈ U ′′, which implies v ∈ U ′.

We can already observe that switching from co-lex orders to co-lex relations sim-

plifies the algebraic structure. In general, the union of two co-lex orders is not a

co-lex order (see Figure 6.1). However, the union of two co-lex relations is always a

co-lex relation:

Lemma 6.5. Let N = (Q, s, δ, F ) be an NFA, and let R1, . . . , Rm be co-lex relations

on N . Then,
⋃m
i=1Ri is a co-lex relation on N .

Proof. First,
⋃m
i=1Ri is reflexive because each Ri is reflexive. Let us prove Axiom

1. Assume that (u, v) ∈
⋃m
i=1Ri, with u ̸= v. We must prove that maxλ(u) ⪯

minλ(v). Notice that it must be (u, v) ∈ Rj for some j, so the conclusion follows

from Axiom 1 applied to the co-lex relation Rj. Let us prove Axiom 2. Assume that

u ∈ δ(u′, a), v ∈ δ(v′, a) are such that u ̸= v and (u, v) ∈
⋃m
i=1Ri. We must prove that

(u′, v′) ∈
⋃m
i=1Ri. Notice that it must be (u, v) ∈ Rj for some j, so the conclusion

follows from Axiom 2 applied to the co-lex relation Rj.
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Figure 6.1: Left : Notice that {(0, 0), (1, 1), (2, 2), (1, 2)} and
{(0, 0), (1, 1), (2, 2), (2, 1)} are co-lex orders, but their union is not a co-lex or-
der (antisymmetry would be violated). In particular, the NFA does not admit the
maximum co-lex order. Right : A NFA that admits the maximum co-lex order, which
however is distinct from the maximum co-lex relation. Indeed, the maximum co-lex
order is {(0, 0), (1, 1)} and the maximum co-lex relation is {(0, 0), (1, 1), (0, 1), (1, 0)}.

We now prove that every co-lex relation is refined by a co-lex preorder, namely,

its transitive closure.

Lemma 6.6. Let N = (Q, s, δ, F ) be an NFA, and let R be a co-lex relation on N .

Then, Trans(R) is a co-lex preorder on N .

Proof. First, Trans(R) is reflexive because R is reflexive, and it is a preorder by

definition.

Let us prove Axiom 1. Assume that (u, v) ∈ Trans(R), with u ̸= v. We must

prove that maxλ(u) ⪯ minλ(v). Since (u, v) ∈ Trans(R), then there exist z1, . . . , zr ∈ Q

(r ≥ 0) such that (u, z1) ∈ R, (z1, z2) ∈ R, . . . , (zr, v) ∈ R and u ̸= z1, z1 ̸= z2, . . . ,

zr ̸= v. Then, Axiom 1 applied to R implies maxλ(u) ⪯ minλ(z1), maxλ(z1) ⪯ minλ(z2),

. . . , maxλ(zr) ⪯ minλ(v), so we conclude maxλ(u) ⪯ minλ(v).

Let us prove Axiom 2. Assume that u ∈ δ(u′, a), v ∈ δ(v′, a) are such that u ̸= v

and (u, v) ∈ Trans(R). We must prove that (u′, v′) ∈ Trans(R). Since (u, v) ∈

Trans(R), then like before there exist z1, . . . , zr ∈ Q (r ≥ 0) such that (u, z1) ∈ R,

(z1, z2) ∈ R, . . . , (zr, v) ∈ R and u ̸= z1, z1 ̸= z2, . . . , zr ̸= v, and it must be maxλ(u) ⪯

minλ(z1), maxλ(z1) ⪯ minλ(z2), . . . , maxλ(zr) ⪯ minλ(v). Since a ∈ λ(u) ∩ λ(v), we

conclude λ(z1) = · · · = λ(zr) = {a}. This implies that there exist z′1, . . . , z
′
r ∈ Q such

that z1 ∈ δ(z′1, a), . . . , zr ∈ δ(z′r, a). Then, Axiom 2 applied to R implies (u′, z′1) ∈ R,

(z′1, z
′
2) ∈ R, . . . , (z′r, v

′) ∈ R, so we conclude (u′, v′) ∈ Trans(R).
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Definition 6.7. Let N = (Q, s, δ, F ) be an NFA. Let R be a co-lex relation on N .

We say that R is maximum if it refines every co-lex relation R′ on N .

It is clear that if a maximum co-lex relation exists, then it is unique. The following

lemma shows that the maximum co-lex relation always exists. This is a crucial dis-

tinction between co-lex relations and co-lex orders: in general, the maximum co-lex

order - that is, a co-lex order refining every co-lex order - does not exist (see Figure

6.1), and this provides some intuition about why determining the minimum width p

of a co-lex order on an NFA is NP-hard.

Lemma 6.8. Every NFA N = (Q, s, δ, F ) admits the maximum co-lex relation (in

the following denoted by ≤N ). Moreover, ≤N is a co-lex preorder.

Proof. Let ≤N be the union of all co-lex relations on N . Notice that such a union

is nonempty by remark 6.3 and it is finite because the number of binary relations on

Q is finite. Moreover, ≤N is a co-lex relation by Lemma 6.5, and if for some co-lex

relation it holds (u, v) ∈ R, then by definition u ≤G v, so ≤N is the maximum co-lex

relation. Finally, Trans(≤N ) is a co-lex relation by Lemma 6.6, so the maximality of

≤N implies Trans(≤N ) =≤N , that is, ≤N is transitive.

Remark 6.9. Since ≤N refines every co-lex relation on N , then the width of ≤N is

smaller than or equal to the width of any co-lex relation on N .

Lemma 6.8 implies that the notion of maximum co-lex preorder (a co-lex preorder

refining every co-lex preorder) is pointless, because the maximum co-lex preorder

always exists and it is always equal to the maximum co-lex relation. If the maximum

co-lex relation is also antisymmetric, then it also the maximum co-lex order; however

in general the maximum co-lex order does not exist, or if it exists it can be distinct

from the maximum co-lex relation (and in this case the maximum co-lex relation is a

strict refinement of the maximum co-lex order), see Figure 6.1.

If D = (Q, s, δ, F ) is a DFA, then the notation ≤D looks ambiguous because it has

two possible meanings: it can refer to the maximum co-lex relation (Lemma 6.8) and

the maximum co-lex order (Lemma 4.9). Corollary 6.12 below shows that, in fact,

there is no ambiguity.

First, by following the proof of Lemma 4.19 verbatim, we obtain the following

result.
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Lemma 6.10. Let N = (Q, s, δ, F ) be an NFA and let R be a co-lex relation on N .

If (u, v) ∈ R, then (∀α ∈ Iu)(∀β ∈ Iv)({α, β} ̸⊆ Iu ∩ Iv =⇒ α ≺ β).

We immediately obtain the following corollaries.

Corollary 6.11. Let N = (Q, s, δ, F ) be an NFA and let R be a co-lex relation on

N . If (u, v) ∈ R and (v, u) ∈ R, then Iu = Iv. In particular, if ≤ is a co-lex preorder

on N and [u]≤ = [v]≤, then Iu = Iv.

Corollary 6.12. Let D = (Q, s, δ, F ) be a DFA. Then, the maximum co-lex relation

on D is equal to the maximum co-lex order on D.

Proof. By the previous discussion, we only have to show that the maximum co-lex

relation is antisymmetric. It will suffice to show that every co-lex relation R on D is

antisymmetric. Since D is a DFA, then for every u, v ∈ Q it holds Iu ∩ Iv = ∅, so the

conclusion follows from Corollary 6.11.

We now show that the maximum co-lex relation can be computed in O(|δ|2) time.

To this end, we need the characterization in Lemma 6.15. Since the maximum co-lex

relation is transitive, when indexing an NFA we can assume that we use a co-lex

preorder.

Definition 6.13. Let N = (Q, s, δ, F ) be an NFA, and let (u′, v′), (u, v) ∈ Q ×

Q be pairs of distinct states. We say that (u′, v′) precedes (u, v) if there exist

u1, . . . , ur, v1, . . . , vr ∈ Q (r ≥ 1) and a1, . . . , ar−1 ∈ Σ such that:

1. u1 = u′ and v1 = v′;

2. ur = u and vr = v;

3. ui ̸= vi for i = 1, . . . , r;

4. ui+1 ∈ δ(ui, ai), vi+1 ∈ δ(vi, ai) for i = 1, . . . , r − 1.

Remark 6.14. Notice that if u, v ∈ Q are distinct states, then (u, v) trivially precedes

(u, v) itself.
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Lemma 6.15. Let N = (Q, s, δ, F ) be an NFA, and let u, v ∈ Q be distinct states.

Then, there exists a co-lex relation containing (u, v) if and only if for all pairs (u′, v′)

preceding (u, v) it holds maxλ(u′) ⪯ minλ(v′). In this case, there exists the minimum

co-lex relation containing (u, v), that is, a co-lex relation containing (u, v) refined by

every co-lex relation containing (u, v).

Proof. (⇒) Let R be a co-lex relation containing (u, v). Assume that (u′, v′) precedes

(u, v). We must prove that maxλ(u′) ⪯ minλ(v′). Let u1, . . . , ur and v1, . . . , vr be states

like in Definition 6.13. From Axiom 2 it follows (ur−1, vr−1) ∈ R, then again by Axiom

2 we obtain (ur−2, vr−2) ∈ R, and so on, until we obtain (u′, v′) ∈ R. By Axiom 1 we

conclude maxλ(u′) ⪯ minλ(v′).

(⇐) Consider a stack that only contains (u, v) at the beginning. Now, process the

element in the stack as follows. Pick (u1, v1) in the stack, remove it from the stack

and add to the stack all the pairs (u′1, v
′
1) of distinct states that have not previously

been in the stack such that for some a ∈ Σ it holds u1 ∈ δ(u′1, a) and v1 ∈ δ(v′1, a).

Process all the elements in the stack until the stack gets empty (which at some point

happens because pairs of states are processed at most once), and let R be the reflexive

closure of the relation obtained by considering all pairs of states that at some point

have been in the stack. Let us prove that R is a co-lex order (and in particular

(u, v) ∈ R). It is immediate to show by induction that all elements that go into the

stack precede (u, v), so by our assumption, we have maxλ(u) ⪯ minλ(v), which proves

Axiom 1. Finally, Axiom 2 follows from the rule according to which elements are

added to the stack.

Lastly, if there exists a co-lex relation containing (u, v), then there exists the

minimum co-lex relation containing (u, v), which is simply the relation R built in (⇐):

indeed, all elements added to the stack must be in every co-lex relation containing

(u, v) by Axiom 2.

Corollary 6.16. Let N = (Q, s, δ, F ) be an NFA, and let u, v ∈ Q be distinct states.

Then:

u <N v ⇔ for all pairs (u′, v′) preceding (u, v) it holds maxλ(u′) ⪯ minλ(v′).

Proof. (⇒) Since (u, v) is contained in a co-lex relation on G (namely, ≤N ), the

conclusion follows from Lemma 6.15.
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(⇐) By Lemma 6.15 (u, v) is contained in a co-lex order on N , and so also in the

maximum co-lex order ≤N .

Theorem 6.17. Let N = (Q, s, δ, F ) be an NFA. Then, ≤N can be computed in

O(|δ|2) time.

Proof. Consider the graph G = (V , E), where V = {(u, v) ∈ Q × Q | u ̸= v} and

E = {((u′, v′), (u, v)) ∈ V | u ∈ δ(u′, a), v ∈ δ(v′, a) for some a ∈ Σ}. First, mark all

(u, v) ∈ V such that maxλ(u) ⪯ minλ(v) does not hold true (the property ”maxλ(u) ⪯

minλ(v)” can be checked in constant time because one only needs to compare the

largest element in λ(u) and the smallest element in λ(v)). Then, mark all nodes in

V reachable by a marked node. Notice that at the end a pair (u, v) is marked if and

only if there exists a pair (u′, v) preceding (u, v) for which maxλ(u) ⪯ minλ(v) does not

hold true, if and only if it holds u ̸<N v (by Corollary 6.16). As a consequence, ≤N

is the reflexive closure of the relation consisting of all non-marked nodes in V . Notice

that ≤N can be computed in O(|δ|2) time because |E| ≤ |δ|2 and states in V can be

marked by means of a graph traversal.

6.1 Quotienting a Preorder

Our aim is to build a quotient NFA that captures all information required for pattern

matching. Broadly speaking, we will construct the quotient NFA starting from a co-

lex preorder ≤ on N and considering the partial order (Q/≤,≤∼), see Section 2.3. In

this section, we present some preliminary results that will be useful in the following.

Lemma 6.18. Let (V,≤) be a preorder. Then, the width of the partial order (V/≤,≤∼

) is equal to the width of (V,≤).

Proof. Let m1 be the width of (V/≤,≤∼) and let m2 be the width of (V,≤). We

must prove that m1 = m2. On the one hand, if {Ui}
m1
i=1 is a ≤∼-chain decomposition

of V/≤, then {Vi}
m1
i=1 is a ≤-chain decomposition of V , where Vi is the union of all

elements of V being in some ∼≤-class of Ui. This proves that m2 ≤ m1. On the other

hand, if {Vi}
m2
i=1 is a ≤-chain decomposition of V , then {Ui}

m2
i=1 is a cover of V/≤,

where Ui = {[v]≤|v ∈ Vi}, and each Ui is a ≤∼ chain, so by extracting an arbitrary
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partition from the cover we obtain a ≤∼-chain decomposition of V/≤ of cardinality

at most m2. This proves that m1 ≤ m2.

Incidentally, Lemma 6.18 is the start point for proving a Dilworth theorem-like

for preorders. Dilworth theorem [45] states that the width of a partial order is equal

to the maximum size of an antichain. The same results holds true for preorders. This

results is likely to have been implicitly proved previously, but since we did not find a

statement for for preorders in the literature, we provide an explicit proof.

Theorem 6.19 (Dilworth theorem for preorders). Let (V,≤) be a preorder. Then,

the width of (V,≤) is equal to the maximum size of a ≤-antichain.

Proof. Consider the partial order (V/≤,≤∼). By Dilworth theorem for partial orders

[45], the width of (V/≤,≤∼) is equal to the the maximum size of a ≤∼-antichain in

V/≤. The theorem will follow if we prove that the width of (V/≤,≤∼) is equal to

the width of (V,≤), and the maximum size of a ≤∼-antichain in V/≤ is equal to the

maximum size of a ≤-antichain in V . The first statement is Lemma 6.18, so we only

have to prove the second statement.

Let M1 be the maximum size of an ≤∼-antichain in V/≤ and let M2 be the max-

imum size of a ≤-antichain in V . We must prove prove that M1 = M2. On the

one hand, if {[v1]≤, . . . , [vM1 ]≤} is a ≤∼-antichain in V/≤, then {v1, . . . , vM1} is a ≤-

antichain in V . This prove that M1 ≤ M2. On the other hand, if {v1, . . . , vM2} is

a ≤-antichain in V , then the elements of the antichain are in pairwise distinct ∼≤-

classes, so {[v1]≤, . . . , [vM2 ]≤} is a ≤∼-antichain in V/≤ and, in fact, it has cardinality

M2. This proves that M2 ≤M1.

Let us prove a simple result relating convexity and quotients: every convex set is

the union of some ∼≤-classes. This result is crucial for showing that without loss of

generality we can perform pattern matching on the quotient graph.

Lemma 6.20. Let (V,≤) be a preorder, and let U ⊆ V be ≤-convex. If v ∈ U , then

[v]∼ ⊆ U . In other words, every ≤-convex set is the union of some ∼≤-classes.

Proof. Assume that u ∈ [v]∼. We must prove that u ∈ U . We know that v ∈ U ,

v ≤ u and u ≤ v, so we conclude u ∈ U because U is ≤-convex.
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More generally, we can prove that there is a natural 1-1 correspondence between

≤-convex sets in V and ≤∼-convex sets in V/≤.

Lemma 6.21 (Correspondence theorem - convex sets). Let (V,≤) be a preorder. Let

U be the family of all ≤-convex sets in V , and let U≤ be the family of all ≤∼-convex

sets in V/≤. Define:

ϕ : U → U≤

U 7→ {[v]≤ | v ∈ U}.

Then, ϕ is a bijective function, with inverse:

ψ : U≤ → U

U≤ 7→ {v ∈ V | [v]≤ ∈ U≤}.

Proof. First, let us prove that ϕ and ψ are well-defined.

1. Let us prove that if U is ≤-convex, then U≤ = {[v]≤ | v ∈ U} is ≤∼-convex.

Assume that [u]≤, [v]≤, [z]≤ ∈ V/≤ satisfy [u]≤, [z]≤ ∈ U≤, [u]≤ ≤∼ [v]≤ and

[v]≤ ≤∼ [z]≤. We must prove that [v]≤ ∈ U≤. From [u]≤ ≤∼ [v]≤ and [v]≤ ≤∼

[z]≤ it follows u ≤ v and v ≤ z. Moreover, from [u]≤, [z]≤ ∈ U/≤ and Lemma

6.20 it follows u, z ∈ U . Since U is ≤-convex, we conclude v ∈ U , and so

[v]≤ ∈ U≤.

2. Let us prove that if U≤ is ≤∼-convex, then U = {v ∈ V |[v]≤ ∈ U∼} is ≤-convex.

Assume that u, v, z ∈ V satisfy u, z ∈ U , u ≤ v and v ≤ z. We must prove

that v ∈ U . From u ≤ v and v ≤ z it follows [u]≤ ≤∼ [v]≤ and [v]≤ ≤∼ [z]≤.

Moreover, from u, z ∈ U it follows [u]≤, [z]≤ ∈ U≤. Since U≤ is ≤∼-convex, we

conclude [v]≤ ∈ U≤, and so v ∈ U .

Now, we are only left with proving that ψ ◦ ϕ = idU and ϕ ◦ ψ = idU≤ . We have:

(ψ ◦ ϕ)(U) = ψ({[v]≤ | v ∈ U}) = {v′ ∈ U | [v′]≤ = [v]≤ for some v ∈ U} = U

where (⊆) in the last equality follows from Lemma 6.20. Finally:

(ϕ ◦ ψ)(U≤) = ϕ({v ∈ V | [v]≤ ∈ U≤}) = {[v′]≤ | [v′]≤ ∈ U≤} = U≤.
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6.2 The Quotient NFA

We can now define our quotient NFA.

Definition 6.22. Let N = (Q, s, δ, F ) be an NFA, and let ≤ be a co-lex preorder on

N . Define N /≤ = (Q/≤, s/≤, δ/≤, F/≤) by:

1. Q/≤ = {[v]≤ | v ∈ Q}.

2. s/≤ = {[s]≤}.

3. δ/≤([u]≤, a) = {[v]≤ | v′ ∈ δ(u′, a) ∈ E for some u′ ∈ [u]≤ and v′ ∈ [v]≤}.

4. F/≤ = {[v]≤ | v′ ∈ F for some v′ ∈ [v]≤}.

Remark 6.23. (1) Note that [s]≤ = {s} by Corollary 6.11 because there is a string

belonging only to Is, namely, the empy string. (2) If u, v ∈ Q are distinct states

such that [u]≤ = [v]≤, then λ(u) = λ(v) and |λ(u)| = |λ(v)| = 1 by Remark 6.2.

(3) If [u]≤ = [v]≤, then λ(u) = λ(v). Indeed, if u and v are distinct states, the

conclusion follows from the first point, otherwise the conclusion is trivial (in this case,

if [v]≤ = {v}, then λ(v) may have cardinality larger than one. (4) For every v ∈ Q,

it holds λ(v) = λ([v]≤), where λ(v) refers to N and λ([v]≤) refers to N /≤. Indeed,

if a ∈ Σ ∩ λ(v), then there exists u ∈ Q such that v ∈ δ(u, a), so [v]≤ ∈ δ/≤([u]≤, a)

and a ∈ λ([v]≤); conversely, if a ∈ Σ ∩ λ([v]≤), then there exist u′, v′ ∈ Q such that

v′ ∈ δ(u′, a) and [v′]≤ = [v]≤, so a ∈ λ(v′) and, by the second point, a ∈ λ(v).

Lemma 6.24. Let N = (Q, s, δ, F ) be an NFA, and let ≤ be a co-lex preorder on N .

1. For clarity, denote by Iα the set of all states reached by α on N starting from s,

and denote by I≤α the set of all states reached by α on N /≤ starting from s/≤.

For every α ∈ Σ∗ and for every v ∈ Q, it holds:

v ∈ Iα ⇐⇒ [v]≤ ∈ I≤α .

2. For clarity, denote by Iv the set of all strings that reach v on N , and denote by

I≤[v]≤ the set of all strings that reach [v]≤ on N /≤. For every v ∈ Q, it holds:

Iv = I≤[v]≤ .
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3. L(N /≤) = L(N ).

Proof. 1. (⇒) Assume that v ∈ Iα. We must prove that [v]≤ ∈ I≤α . We proceed by

induction on |α|. If |α| = 0, then α is the empty string ε, so it must be v = s,

and indeed [s]≤ ∈ I≤ε . Now assume that |α| ≥ 1. We can write α = α′a, with

α′ ∈ Σ∗ and a ∈ Σ. Since v ∈ Iα, then there exists u ∈ Iα′ such that v ∈ δ(u, a).

Hence [v]≤ ∈ δ/≤([u]≤, a), and by the inductive hypothesis [u]≤ ∈ I≤α′ , so we

conclude [v]≤ ∈ I≤α .

(⇐) Assume that [v]≤ ∈ I≤α . We must prove that v ∈ Iα. We proceed by

induction on |α|. If |α| = 0, then α is the empty string ε, so it must be

[v]≤ = {s}, hence v = s and indeed s ∈ Iε. Now assume that |α| ≥ 1. We

can write α = α′a, with α′ ∈ Σ∗ and a ∈ Σ. Since [v]≤ ∈ I≤α , then there

exists [u]≤ ∈ I≤α′ such that [v]≤ ∈ δ/≤([u]≤, a). Hence there exist u′ ∈ [u]≤ and

v′ ∈ [v]≤ such that v′ ∈ δ(u′, a). Since [u′]≤ = [u]≤ ∈ I≤α′ , by the inductive

hypothesis u′ ∈ Iα′ , so v′ ∈ Iα. Since [v′]≤ = [v]≤, then Corollary 6.11 implies

that Iv′ = Iv, hence we conclude v ∈ Iα.

2. By the first point, for every α ∈ Σ∗ we have:

α ∈ Iv ⇐⇒ v ∈ Iα ⇐⇒ [v]≤ ∈ I≤α ⇐⇒ α ∈ I≤[v]≤ .

3. For every α ∈ Σ∗, we have:

α ∈ L(N /≤) ⇐⇒ (∃[u]≤ ∈ F/≤)([u]≤ ∈ I≤α )

⇐⇒ (∃u ∈ F )(u ∈ Iα) ⇐⇒ α ∈ L(N )

where the second equivalence holds true because (⇐) if u ∈ F is such that

u ∈ Iα, then [u]≤ ∈ F/≤ and by the first point [u]≤ ∈ I≤α , and (⇒) if [u]≤ ∈ F/≤

is such that [u]≤ ∈ I≤α , then there exists u′ ∈ F such that u′ ∈ [u]≤, so [u′]≤ ∈ I≤α

and by the first point u′ ∈ Iα.

Let us prove that N /≤ enjoys a number of properties. (1) If a state of N /≤ has

been obtained by collapsing two or more states of N /≤, then that state has at most

one incoming edge in N /≤ (which is possibly a self-loop). (2) ≤∼ is a co-lex order

on N /≤. (3) The graph N /≤N
always admits the maximum co-lex order (recall that
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in general a graph does not admit the maximum co-lex order). More precisely, the

maximum co-lex order is ≤∼N (the partial order on Q/≤N
induced by ≤N ), which

is also the maximum co-lex relation on N /≤N
. Notice that N /≤N

is well-defined

because ≤N is a co-lex preorder by Lemma 6.8.

We prove the first property in Lemma 6.26. We need a preliminary result.

Lemma 6.25. Let N = (Q, s, δ, F ) be an NFA, and let ≤ be a co-lex preorder on N .

Assume that u, v ∈ Q are (non necessarily distinct) states such that [u]≤ = [v]≤ and

|[u]≤| = |[v]≤| ≥ 2. If u ∈ δ(u′, a), v ∈ δ(v′, a), then [u′]≤ = [v′]≤.

Proof. We distinguish two cases.

1. Assume that u ̸= v. From [u]≤ = [v]≤ we obtain u < v and v < u, hence Axiom

2 applied to u′, u, v′, v′, a implies u′ ≤ v′ and v′ ≤ u′, so [u′]≤ = [v′]≤.

2. Assume that u = v. Since |[u]≤| ≥ 2, then there exists z ∈ Q such that u ̸= z

and [u]≤ = [z]≤. From Remark 6.23, we know that λ(u) = λ(v) = λ(z) = {a},

so there exists z′ ∈ Q such that z ∈ δ(z′, a). From [u]≤ = [z]≤ we obtain

u < z and z < u, hence Axiom 2 applied to u′, u, z′, z, a implies u′ ≤ z′ and

z′ ≤ u′, and Axiom 2 applied to v′, v, z′, z, a implies v′ ≤ z′ and z′ ≤ v′. Hence,

[u′]≤ = [z′]≤ and [v′]≤ = [z′]≤, and so [u′]≤ = [v′]≤.

Lemma 6.26. Let N = (Q, s, δ, F ) be an NFA, and let ≤ be a co-lex preorder on N .

If [v]≤ ∈ Q/≤ is such that |[v]≤| ≥ 2, then there exists at most one edge entering [v]≤

in N /≤.

Proof. Since |[v]≤| ≥ 2, by Remark 6.23 we have |λ([v]≤)| = 1. If λ([v]≤) = {#},

then there is no edge entering [v]≤ in N /≤. Now, assume λ([v]≤) = {a}, with a ∈

Σ, and let [v]≤ ∈ δ/≤([v′]≤, a) ∩ δ/≤([v′1]≤, a). We must prove that [v′]≤ = [v′1]≤.

Since [v]≤ ∈ δ/≤([v′]≤, a) ∩ δ/≤([v′1]≤, a), then there exist u, u1, u
′, u′1 ∈ Q such that

[v]≤ = [u]≤ = [u1]≤, [v′]≤ = [u′]≤, [v′1]≤ = [u′1]≤, u ∈ δ(u′, a) and u1 ∈ δ(u′1, a). Since

[u]≤ = [u1]≤ and |[u]≤| = |[u1]≤| = |[v]≤| ≥ 2, then from Lemma 6.25 we obtain

[u′]≤ = [u′1]≤, so from [v′]≤ = [u′]≤ and [v′1]≤ = [u′1]≤ we conclude [v′]≤ = [v′1]≤.

Next, we prove that ≤∼ is a co-lex order on N /≤.
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Lemma 6.27. Let N = (Q, s, δ, F ) be an NFA, and let ≤ be a co-lex preorder on N .

Then, ≤∼ is a co-lex order on N /≤, and the width of ≤∼ is equal to the width of ≤.

Proof. Let us prove that ≤∼ is a co-lex order on N /≤. We know that ≤∼ is a partial

order, so we only have to prove that it satisfies Axiom 1 and Axiom 2.

Let us prove Axiom 1. Assume that [u]≤, [v]≤ ∈ Q/≤ satisfy [u]≤ <∼ [v]∼. We

must prove that maxλ([u]≤) ⪯ minλ(v]≤). By the definition of ≤∼ we have u < v, so

by Axiom 1 applied to ≤ we conclude maxλ(u) ⪯ minλ(v). The conclusion follows,

because by Remark 6.23 we have λ([u]≤) = λ(u) and λ([v]≤) = λ(v).

Let us prove Axiom 2. Assume that [u]≤ ∈ δ/≤([u′]≤, a), [v]≤ ∈ δ/≤([v′]≤, a)

satisfy [u]≤ <∼ [v]≤. We must prove that [u′]≤ ≤∼ [v′]≤. Since [u]≤ ∈ δ/≤([u′]≤, a),

then there exist u′1, u1 ∈ Q such that u1 ∈ δ(u′1, a), [u′1]≤ = [u′]≤ and [u1]≤ = [u]≤.

Analogously, [v]≤ ∈ δ/≤([v′]≤, a) implies that there exist v′1, v1 ∈ Q such that v1 ∈

δ(v′1, a), [v′1]≤ = [v′]≤ and [v1]≤ = [v]≤. From [u]≤ <∼ [v]≤ we obtain u1 < v1, hence

by Axiom 2 applied to ≤ we conclude u′1 ≤ v′1, which implies [u′]≤ ≤∼ [v′]≤.

Lastly, ≤∼ and ≤ have the same width by Lemma 6.18.

Let us prove that ≤∼N is the maximum co-lex relation and the maximum co-lex

order on N /≤N
.

Lemma 6.28 (Correspondence theorem - co-lex relations). Let N = (Q, s, δ, F ) be

an NFA, and let ≤ be a co-lex preorder on N . Let C≤ the set of all co-lex relations

on N /≤, and let C be set of all co-lex relations R on N such that, if (u, v) ∈ R,

[u]≤ = [u′]≤ and [v]≤ = [v′]≤, then (u′, v′) ∈ R. Define:

ρ : C≤ → C

R≤ 7→ {(u, v) ∈ Q×Q | ([u]≤, [v]≤) ∈ R≤}

Then, ρ is a bijective function, with inverse:

σ : C → C≤

R 7→ {([u]≤, [v]≤) ∈ Q/≤ ×Q/≤ | (u, v) ∈ R}.

In particular, σ(≤) is equal to ≤∼.

Proof. First, let us prove that ρ and σ are well-defined.
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1. Let us prove that if R≤ is a co-lex relation on N /≤, then R = {(u, v) ∈ Q ×

Q | (u, v) ∈ R} is a co-lex relation on N which belongs to C. Clearly, R is

reflexive because R≤ is reflexive. Let us prove Axiom 1. Assume that (u, v) ∈ R,

with u ̸= v. We must prove that maxλ(u) ⪯ minλ(v). It must be ([u]≤, [v]≤) ∈

R. If [u]≤ ̸= [v]≤, then from Axiom 1 applied to R≤ we obtain maxλ([u]≤) ⪯

minλ([v]≤), and we conclude maxλ(u) ⪯ minλ(v) because λ(u) = λ([u]≤) and

λ(v) = λ([v]≤) by Remark 6.23. If [u]≤ = [v]≤, then again from Remark 6.23

we obtain λ(u) = λ(v) and |λ(u)| = |λ(v)| = 1, so again maxλ(u) ⪯ minλ(v). Let

us prove Axiom 2. Assume that u ∈ δ(u′, a), v ∈ δ(v′, a), with (u, v) ∈ R and

u ̸= v. We must prove that (u′, v′) ∈ R. We have [u]≤ ∈ δ/≤([u′]≤, a), [v]≤ ∈

δ/≤([v′]≤, a) and ([u]≤, [v]≤) ∈ R≤. If [u]≤ ̸= [v]≤, then from Axiom 2 applied

to R≤ we obtain ([u′]≤, [v′]≤) ∈ R≤, and so (u′, v′) ∈ R. If [u]≤ = [v]≤, then

we have |[u]≤| = |[v]≤| ≥ 2 (because u ̸= v), so by Lemma 6.26 we have

[u′]≤ = [v′]≤, hence trivially ([u′]≤, [v′]≤) ∈ R≤ and in particular (u′, v′) ∈ R.

Lastly, R belongs to C because if (u, v) ∈ R, [u]≤ = [u′]≤ and [v]≤ = [v′]≤, then

([u′]≤, [v′]≤) = ([u]≤, [v]≤) ∈ R≤ and so (u′, v′) ∈ R.

2. Let us prove that if R a co-lex relation in C, then R≤ = {([u]≤, [v]≤) ∈ Q/≤ ×

Q/≤ | (u, v) ∈ R} is a well-defined co-lex relation on N /≤. First, R≤ is well-

defined (that is, if [u′]≤ = [u]≤, [v′]≤ = [v]≤ and (u, v) ∈ R, then (u′, v′) ∈ R)

because R belongs to C. Clearly, R≤ is reflexive because R is reflexive. Let us

prove Axiom 1. Assume that ([u]≤, [v]≤) ∈ R≤, with [u]≤ ̸= [v]≤. We must prove

that maxλ([u]≤) ⪯ minλ([v]≤). It must be (u, v) ∈ R, with u ̸= v, so from Axiom

1 applied to R we obtain maxλ(u) ⪯ minλ(v), and we conclude maxλ([u]≤) ⪯

minλ([v]≤) because λ(u) = λ([u]≤) and λ(v) = λ([v]≤) by Remark 6.23. Let

us prove Axiom 2. Assume that [u]≤ ∈ δ/≤([u′]≤, a), [v]≤ ∈ δ/≤([v′]≤, a), with

([u]≤, [v]≤) ∈ R≤ and [u]≤ ̸= [v]≤. We must prove that ([u′]≤, [v′]≤) ∈ R≤. There

must exist u1, v1, u
′
1, v
′
1 ∈ Q such that [u1]≤ = [u]≤, [v1]≤ = [v]≤, [u′1]≤ = [u′]≤,

[v′1]≤ = [v′]≤, u1 ∈ δ(u′1, a), v1 ∈ δ(v′1, a). From ([u]≤, [v]≤) ∈ R≤, [u1]≤ = [u]≤

and [v1]≤ = [v]≤ it follows (u1, v1) ∈ R, where u1 ̸= v1 (because [u]≤ ̸= [v]≤).

From Axiom 2 applied to R we obtain (u′1, v
′
1) ∈ R, hence from [u′1]≤ = [u′]≤

and [v′1]≤ = [v′]≤ we conclude ([u′]≤, [v′]≤) ∈ R≤.
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Next, let us prove that σ ◦ ρ = idC≤ and ρ ◦ σ = idC. We have:

(σ ◦ ρ)(R≤) = σ({(u, v) ∈ Q×Q | ([u]≤, [v]≤) ∈ R≤}) =

= {([u]≤, [v]≤) ∈ Q/≤ ×Q/≤ | ([u]≤, [v]≤) ∈ R≤} = R≤

and:

(ρ ◦ σ)(R) = ρ({([u]≤, [v]≤) ∈ Q/≤ ×Q/≤ | (u, v) ∈ R}) =

= {(u, v) ∈ Q×Q | (u, v) ∈ R} = R.

Lastly, notice that ≤ belongs to C, because if u ≤ v, [u]≤ = [u′]≤ and [v]≤ = [v′]≤,

then u′ ≤ u ≤ v ≤ v′. By the definition of σ, we conclude that σ(≤) is equal to

≤∼.

Corollary 6.29. Let N = (Q, s, δ, F ) be an NFA. Then, ≤∼N is the maximum co-lex

relation and the maximum co-lex order on N /≤N
.

Proof. By Lemma 6.27 we know that ≤∼N is a co-lex order on N /≤N
, so we only

have to prove that ≤∼N is the maximum co-lex relation on N /≤N
. Let R≤N be a

co-lex relation on N /≤N
and assume that ([u]≤N

, [v]≤N
) ∈ R≤N . We must prove that

[u]≤N
≤∼N [v]≤N

. By Lemma 6.28 we know that R = ρ(R≤N ) is a co-lex relation on N ,

and (u, v) ∈ R. Since ≤N is the maximum co-lex relation on N , we obtain u ≤N v,

so we conclude [u]≤N
≤∼N [v]≤N

.

6.3 Pattern Matching

Corollary 6.29 ensures that N /≤N
always admits the maximum co-lex order (which

has minimum width), and it can be determined in polynomial time by Theorem

6.17. As a consequence, we have overcome the hardness of determining a co-lex order

of minimum width of an arbitrary graph if we show that we can answer pattern

matching queries on N by answering a query on N /≤N
. This is indeed the purpose

of the following lemma. Intuitively, if we start from a ≤N -convex set U of states in

N , we can obtain the ≤N -convex set of states that can be reached through a string

α by (1) passing to the quotient, (2) obtaining the ≤∼N -convex set of states that can

reached through α in N /≤N
, and (3) going back to N .
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U U≤

U U≤

ϕ

θα θ≤α

ψ

ϕ

ψ

Figure 6.2: Lemma 6.30

Lemma 6.30 (Correspondence theorem - path coherence). Let N = (Q, s, δ, F ) be

an NFA, and let ≤ be a co-lex preorder on N . Let α ∈ Σ∗. Let U be the family of all

≤-convex sets in Q, and let U≤ be the family of all ≤∼-convex sets in Q/≤. Let:

θα : U → U

be the function such that if U ∈ U , then θα(U) is the set of all states of N that

can be reached from U by following edges whose labels, when concatenated, yield α.

Moreover, let:

θ≤α : U≤ → U≤

be the function such that if U≤ ∈ U≤, then θ≤α (U≤) is the set of all states of N /≤ that

can be reached from U≤ by following edges whose labels, when concatenated, yield α.

Let ϕ and ψ be the functions defined in Lemma 6.21. Then (see Figure 6.2):

θα ◦ ψ = ψ ◦ θ≤α

ϕ ◦ θα = θ≤α ◦ ϕ.

Proof. First, the codomains of θα and θ≤α are correct by Lemma 6.4.

Let us prove the first equation. We proceed by induction on |α|. If |α| = 0, then

α = ε, so θα = idU , θ≤α = idU≤ and we conclude θα ◦ ψ = ψ = ψ ◦ θ≤α . Now, assume
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|α| ≥ 1. We can write α = α′a, with α′ ∈ Σ∗ and a ∈ Σ. By the inductive hypothesis,

θα′ ◦ ψ = ψ ◦ θ≤α′ . Moreover, notice that θα = θa ◦ θα′ and θ≤α = θ≤a ◦ θ≤α′ . Hence:

θα ◦ ψ = θa ◦ θα′ ◦ ψ = θa ◦ ψ ◦ θ≤α′

ψ ◦ θ≤α = ψ ◦ θ≤a ◦ θ≤α′

so the conclusion follows if we prove that:

θa ◦ ψ = ψ ◦ θ≤a .

Fix U≤ ∈ U≤. We have to prove that (θa ◦ ψ)(U≤) = (ψ ◦ θ≤a )(U≤). We will use that

ψ is the inverse of ϕ (Lemma 6.21).

(⊆) If v ∈ (θa ◦ ψ)(U≤), then there exists u ∈ ψ(U≤) such that v ∈ δ(u, a). In

particular, [u]≤ ∈ U≤ and [v]≤ ∈ δ/≤([u]≤, a), so [v]≤ ∈ θ≤a (U≤) and we conclude

v ∈ (ψ ◦ θ≤a )(U≤).

(⊇) If v ∈ (ψ ◦ θ≤a )(U≤), then [v]≤ ∈ θ≤a (U≤), so there exists [u]≤ ∈ U≤ such

that [v]≤ ∈ δ/≤([u]≤, a). In particular, there exist u′, v′ ∈ Q such that v′ ∈ δ(u′, a),

[u′]≤ = [u]≤ ∈ U≤ and [v′]≤ = [v]≤. This means that v′ ∈ (θa◦ψ)(U≤), and by Lemma

6.20 we conclude v ∈ (θa ◦ ψ)(U≤).

Let us prove the second equation. Since ψ is the inverse of ϕ (Lemma 6.21), then

from the first equation we obtain:

ϕ ◦ θα = ϕ ◦ θα ◦ ψ ◦ ϕ = ϕ ◦ ψ ◦ θ≤α ◦ ϕ = θ≤α ◦ ϕ.

Corollary 6.31. Let N = (Q, s, δ, F ) be an NFA, and let ≤ be a co-lex preorder on

N . Let α ∈ Σ∗.

1. Let T (α) and T≤(α) be the of all states reached by a path on N and N /≤,

respectively. Then, T (α) =
⋃

[u]≤∈T≤(α)[u]≤.

2. Let Iα and I≤α be the of all states reached by a path from the initial state on N

and N /≤, respectively. Then, Iα =
⋃

[u]≤∈I≤α [u]≤.

Here is our main result.
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Theorem 6.32. Let N = (Q, s, δ, F ) be an NFA on alphabet Σ of size σ = |Σ| ≤ eO(1),

where e = |δ| is the number of N -transitions and e≤ = |δ/≤N
|. Assume that we are

given a ≤N -chain partition {Qi | 1 ≤ i ≤ q}, where q is the width of ≤N . Then,

in expected time O(e≤ log log σ), we can build a data structure using e≤ log(qσ)(1 +

o(1)) + O(e≤) bits that, given a query string α ∈ Σm, answers the following queries

in O(m · q2 · log log(qσ)) time:

1. compute the set T (α) of all states reached by a path on N labeled α, represented

by means of q ranges on the chains in {Qi | 1 ≤ i ≤ q};

2. compute the set Iα of all states reached by a path labeled with α originating in

the source, represented by means of q ranges on the chains in {Qi | 1 ≤ i ≤ q}

and, in particular, decide whether α ∈ L(N ).

Moreover, ≤N and {Qi | 1 ≤ i ≤ q} can be built in O(e2 + |Q|5/2) time.

Proof. First, ≤N can be built in O(e2) time by Theorem 6.17, and then {Qi | 1 ≤

i ≤ q} can be built in |Q|5/2 time by Lemma 4.16. Build the NFA N /≤N
by a graph

traversal. By Lemma 6.27 we know that ≤∼N is a co-lex order on N /≤N
of width q.

Moreover, ≤∼N is the maximum co-lex order on N /≤N
by Corollary 6.29, and so it is

a co-lex order of minimum width. Hence, just build the data structure from Theorem

4.47 on N /≤N
. Corollary 6.31 ensures that querying N /≤N

is equivalent to querying

N .

Theorem 6.32 improves on Theorem 4.47 in several respects:

1. The data structure in Theorem 6.32 can be built in polynomial time, while the

data structure in Theorem 4.47 requires determining a minimum-width co-lex

order, which as we saw is a provably hard problem.

2. The parameter q in Theorem 6.32 is always smaller than or equal to the pa-

rameter p in Theorem 4.47, because the maximum co-lex relation on N refines

every co-lex order on N . Moreover, q can be arbitrarily smaller than p: for

every integer n there exists an NFA for which q = 1 and p = n (see Figure 6.3).

3. The bounds in Theorem 6.32 only depend on the graph e≤, which may be smaller

than than e. In other words, N /≤N
eliminates the unnecessary redundancy in

N to perform pattern matching.
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v1 v2 . . . vn

u1 u2

sstart

b
b b

b b
b

a
a

Figure 6.3: An NFA N = (Q, s, δ, F ) for which q = 1 and p = n. First, we have
≤N= {(s, z) | z ∈ Q}∪{(vi, vj) | 1 ≤ i, j ≤ n}∪{(u1, vi) | 1 ≤ i ≤ n}∪{(u2, vi) | 1 ≤
i ≤ n} ∪ {(ui, uj) | 1 ≤ i, j ≤ 2}, so q = 1. Second, let us prove that p ≥ n. Let ≤
be any co-lex order on N . We must prove that the width of ≤ is at least n. Notice
that for every 1 ≤ i < j ≤ n states vi and vj are not ≤-comparable, because Axiom
2 would imply both u1 < u2 and u2 < u1, which contradicts antisymmetry. Hence
{v1, . . . , vn} is a ≤-antichain and by Dilworth’s theorem we conclude that the width
of ≤ is at least n. In fact, a co-lex order of width n is {(s, z) | z ∈ Q}∪{(u1, vi) | 1 ≤
i ≤ n} ∪ {(u2, vi) | 1 ≤ i ≤ n} ∪ {(vi, vi) | 1 ≤ i ≤ n} ∪ {(ui, ui) | 1 ≤ i ≤ 2}.



Chapter 7

Building the Maximum Co-lex Order on DFAs

In Chapter 4, we proved that the maximum co-lex order ≤D on a DFA D = (Q, s, δ, F )

and a smallest ≤D-chain partition can be determined in O(|δ|2 + |Q|5/2) time (Lemma

4.15, Lemma 4.16, Corollary 4.17). In this chapter, we will improve the previous

bound. The whole chapter is devoted to proving the following theorem.

Theorem 7.1. Let D = (Q, s, δ, F ) be a DFA. Then, ≤D and a smallest ≤D-chain

partition can be determined in can be determined in O(|δ| + |Q|2) time.

We remark that there exists an alternative algorithm that determine ≤D and

a smallest ≤D-chain partition in O(|δ| log |Q|) time [12]. If the graph underlying

the DFA is sparse, then the algorithm in [12] improves Theorem 7.1. Since the

O(|δ| log |Q|) algorithm uses different techniques (it is obtained by adapting Paige

and Tarjan’s partition refinement algorithm [99]), we are left with the intriguing

open problem of determining whether, by possibly combining the ideas behind our

algorithm and the algorithm in [12], it is possible to determine ≤D and a smallest

≤D-chain partition in O(|δ|) time.

In this chapter and in Chapter 8, we use the lexicographic order ; moreover, if u is

a state, then Iu contains strings in Σω, and minu and maxu are the lexicographically

smallest and largest such strings (see Section 2.1 and Section 2.2). For example, in

Figure 7.1, we listed the minimum and the maximum string reaching each state of a

DFA.

In order to prove Theorem 7.1, we will need the notion of min/max partition. Let

D = (Q, s, δ, F ) be a DFA. Let Q′ ⊆ Q. Let A be the unique partition of Q′ and let

≤ be the unique total order on A such that, for every I, J ∈ A and for every u ∈ I

and v ∈ J , (i) if I = J , then minu = minv and (ii) if I < J , then minu ≺ minv. Then,

we say that (A,≤), or more simply A, is the min-partition of Q′. The max-partition

of Q′ is defined analogously. Now, consider the set Q′ × {min,max}, and define

ρ((u,min)) = minu and ρ((u,max)) = maxu for every u ∈ Q′. Let B be the unique
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#
i mini maxi
1 ##### . . . ##### . . .
2 a#### . . . a#### . . .
3 b#### . . . b#### . . .
4 c#### . . . c#### . . .
5 ca### . . . ccccc . . .
6 ab### . . . ac### . . .
7 cc### . . . ccccc . . .

Figure 7.1: A DFA D, with the minimum and maximum string reaching each state (we
assume # ≺ a ≺ b ≺ c). The min/max partition is given by {(1,min), (1,max)} <
{(2,min), (2,max)} < {(6,min)} < {(6,max)} < {(3,min), (3,max)} <
{(4,min), (4,max)} < {(5,min)} < {(7,min)} < {(5,max), (7,max)}, meaning that
min1 = max1 ≺ min2 = max2 ≺ min6 ≺ max6 ≺ min3 = max3 ≺ min4 = max4 ≺
min5 ≺ min7 ≺ max5 = max7.

partition of V ′ × {min,max} and let ≤ be the unique total order on B such that, for

every I, J ∈ B and for every x ∈ I and y ∈ J , (i) if I = J , then ρ(x) = ρ(y) and

(ii) if I < J , then ρ(x) ≺ ρ(y). Then, we say that (B,≤), or more simply B, is the

min/max-partition of Q′. See again Figure 7.1 for an example.

Kim et al. showed that, given a DFA D = (Q, s, δ, F ), it we have the min/max-

partition of Q, then we can build ≤D and a smallest ≤D-chain partition in O(|Q|) time

by means of a reduction to the interval partitioning problem [82]. As a consequence,

in order to prove Theorem 7.1, we only have to prove the following theorem.

Theorem 7.2. Let D = (Q, s, δ, F ) be a DFA. Then, the min/max-partition of Q can

be determined in O(|δ| + |Q|2) time.

In Chapter 4 we saw that the maximum co-lex order can be seen as a generalization

of the suffix array from strings to automata. As a consequence, the problem of building

the the min/max-partition can be attacked by generalizing some of the algorithms for

building a suffix array from strings to graphs. The impact of suffix arrays has led to a

big effort in the attempt to design efficient algorithms to construct suffix arrays, where

“efficient” refers to various metrics (worst-case running time, average running time,

space, performance on real data and so on); see [104] for a comprehensive survey on

the topic. Let us focus on worst-case running time. Manber and Myers build the suffix

array of a string of length n in O(n log n) by means of a prefix-doubling algorithm [88].

In 1997, Farach proposed a recursive algorithm to build the suffix tree of a string in
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linear time for integer alphabets [51]. In the following years, the recursive paradigm

of Farach’s algorithm was used to develop a multitude of linear-time algorithms for

building the suffix array [83, 80, 81, 94]. All these algorithms carefully exploit the

lexicographic structure of the suffixes of a string, recursively reducing the problem of

computing the suffix array of a string to the problem of computing the suffix array of

a smaller string (induced sorting). We will prove Thereom 7.2 by suitably generalizing

one of these algorithms, namely, Ko and Aluru’s algorithm [83].

Let D be a DFA. Note that the initial state s and the set F of final states play no

role in the definition of min/max partition. Moreover, here we are not interested in

the language recognized D, so it will be expedient to focus on the set E rather than

the transition function δ (see Section 2.2). As a consequence, in the remainder of the

chapter we will denote a DFA D by D = (Q,E), where Q is the set of states and E

is the set of edges.

In order to build the min/max partition of a DFA, we will first show how to build

the min partition and the max/partition; then, we will show how to jointly build

the min/max partition. To this end, let us define the min/max partition of pairs of

DFAs. Assume that we have two DFAs D1 = (Q1, E1) and D2 = (Q2, E2) on the

same alphabet (Σ,⪯), with Q1 ∩Q2 = ∅ (we allow D1 and D2 to possibly be the null

DFA, that is, the DFA without states). Let Q′1 ⊆ Q1, Q
′
2 ⊆ Q2, W = Q′1 ∪ Q

′
2, and

for every u ∈ W define ρ(u) = minu if u ∈ Q′1, and ρ(u) = maxu if u ∈ Q′2. Let A

be the unique partition of W and let ≤ be the unique total order on A such that, for

every I, J ∈ A and for every u ∈ I and u ∈ J , (i) if I = J , then ρ(u) = ρ(u) and

(ii) if I < J , then ρ(u) ≺ ρ(u). Then, we say that (A,≤), or more simply A, is the

min/max-partition of (Q′1, Q
′
2).

Notice that, in order to prove Theorem 7.2, we only have to prove the following

theorem.

Theorem 7.3. Let D1 = (Q1, E1) and D2 = (Q2, E2) be two DFAs on the same

alphabet (Σ,⪯), with Q1 ∩Q2 = ∅, such that |λ(u)| = 1 for every u ∈ Q1 ∪Q2. Then,

we can build the min/max partition of (Q1, Q2) in O((|Q1| + |Q2|)
2) time.

Indeed, we can prove Theorem 7.2 as follows. Let D = (Q,E) be a DFA. First,

let D1 = (Q1, E1) the DFA obtained by picking a copy of D and, for every u ∈ Q1

removing all edges entering u not labeled with minλ(u). Similarly, let D2 = (Q2, E2)
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the DFA obtained by picking a distinct copy of D and, for every u ∈ Q2 removing all

edges entering u not labeled with maxλ(u). Then, D1 and D2 are such that for every

u ∈ Q1 ∪ Q2 it holds |λ(u)| = 1. By Theorem 7.3, in O(|Q|2) time we can build the

min/max partition of (Q1, Q2), which by definition yields the min/max partition of

Q with respect to D. Then Theorem 7.2 follows, because we can build D1 and D2 in

O(|δ|) time.

We conclude that we are only left with proving Theorem 7.3. In view of the

statement of Theorem 7.3, in the remainder of the chapter we will implicitly assume

to consider only DFAs D = (Q,E) in which |λ(u)| = 1 for every u ∈ Q (that is, all

edges entering the same state have the same label). This implies that every state has

at most |Q| incoming edges, and so |E| ≤ |Q|2 (in particular, an O(|E|) algorithm is

also an O(|Q|2) algorithm).

7.1 Our Approach

Let D = (Q,E) be a DFA. We will first show how to build the min-partition of Q in

O(n2) time, where n = |Q| (Section 7.3); then, we will show how the algorithm can

be adapted so that Theorem 7.3 follows (Section 7.10).

In order to build a min-partition of Q, we will first classify all minima into

three categories (Section 7.2), so that we can split Q into three pairwise-disjoint

sets Q1, Q2, Q3. Then, we will show that in O(n2) time:

• we can compute Q1, Q2, Q3 (Section 7.4);

• we can define a DFA D̄ = (Q̄, Ē) having |Q3| states (Section 7.5);

• assuming that we have already determined the min-partition of Q̄, we can de-

termine the min-partition of Q (Section 7.6).

Analogously, in O(n2) time we can reduce the problem of determining the min-

partition of Q to the problem of determining the min-partition of the set of all states

of a DFA having |Q1| (not |Q3|) states (Sections 7.7, 7.8, 7.9). As a consequence,

since min{|Q1|, |Q3|} ≤ |Q|/2 = n/2, we obtain a recursive algorithm whose running

time is given by the recurrence:

T (n) = T (n/2) +O(n2)
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and we conclude that the running time of our algorithm is O(n2).

7.2 Classifying Strings

In [83], Ko and Aluru divide the suffixes of a string into two groups. Here we follow

an approach purely based on stringology, without fixing a string or a graph from the

start. We divide the strings of Σω into three groups, which we call group 1, group 2

and group 3 (Corollary 7.6 provides the intuition behind this choice).

Definition 7.4. Let α ∈ Σω. Let a ∈ Σ and α′ ∈ Σω such that α = aα′. Then, we

define τ(α) as follows:

1. τ(α) = 1 if α′ ≺ α.

2. τ(α) = 2 if α′ = α.

3. τ(α) = 3 if α ≺ α′.

We will constantly use the following characterization.

Lemma 7.5. Let α ∈ Σω. Let a ∈ Σ and α′ ∈ Σω such that α = aα′. Then:

1. τ(α) = 2 if and only if α′ = aω, if and only if α = aω.

2. τ(α) ̸= 2 if and only if α′ ̸= aω, if and only if α ̸= aω.

Assume that τ(α) ̸= 2. Then, there exist unique c ∈ Σ \ {a}, α′′ ∈ Σω and i ≥ 0 such

that α′ = aicα′′ (and so α = ai+1cα′′). Moreover:

1. τ(α) = 1 if and only if c ≺ a, if and only if α′ ≺ aω, if and only if α ≺ aω.

2. τ(α) = 3 if and only if a ≺ c, if and only if aω ≺ α′, if and only if aω ≺ α,

Proof. 1. Let us prove that τ(α) = 2 if and only if α′ = aω.

(⇐) If α′ = aω, we have α = aα′ = aaω = aω = α′, so τ(α) = 2.

(⇒) Assume that τ(α) = 2 and so α = α′. In order to prove that α′ = aω, it will

suffice to show that for every i ≥ 1 it holds α′ = aiα′. We proceed by induction

on i. Notice that α′ = α = aα′, which proves our claim for i = 1. Now, assume
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that i > 1. By the inductive hypothesis, we can assume α′ = ai−1α′. Hence,

α′ = α = aα′ = a(ai−1α′) = aiα′.

Let us prove that α′ = aω if and only if α = aω. We have α′ = aω if and only if

aα′ = aaω, if and only if α = aω.

2. It follows by negating the first point.

Now assume that τ(α) ̸= 2. Since α′ ̸= aω, then there exist unique c ∈ Σ \ {a},

α′′ ∈ Σω and i ≥ 0 such that α′ = aicα′′. Moreover:

1. We have τ(α) = 1 if and only if α′ ≺ α, if and only if α′ ≺ aα′, if and only if

aicα′′ ≺ a(aicα′′), if and only if aicα′′ ≺ ai(acα′′), if and only if cα′′ ≺ acα′′, if

and only if c ≺ a, if and only if aicα′′ ≺ aω, if and only if α′ ≺ aω, if and only

if aα′ ≺ aaω, if and only if α ≺ aω.

2. It follows by negating the previous points.

The following corollary will be a key ingredient in our recursive approach.

Corollary 7.6. Let α, β ∈ Σω. Let a, b ∈ Σ and α′, β′ ∈ Σω such that α = aα′ and

β = bβ′. Then:

1. If a = b and τ(α) = τ(β) = 2, then α = β.

2. If a = b and τ(α) < τ(β), then α ≺ β. Equivalently, if a = b and α ⪯ β, then

τ(α) ≤ τ(β).

Proof. 1. By Lemma 7.5 we have α = aω = bω = β.

2. Let us prove that, if a = b and τ(α) < τ(β), then α ≺ β. We distinguish three

cases.

(a) τ(α) = 1 and τ(β) = 2. Then by Lemma 7.5 we have α ≺ aω = bω = β.

(b) τ(α) = 2 and τ(β) = 3. Then by Lemma 7.5 we have α = aω = bω ≺ β.

(c) τ(α) = 1 and τ(β) = 3. Then by Lemma 7.5 we have α ≺ aω = bω ≺ β.

Lastly, if a = b and α ⪯ β, then τ(α) ≤ τ(β), because if it were τ(β) ≤ τ(α),

then we would conclude β ≺ α, a contradiction.
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i mini τ(i) (= τ(mini))
1 ##### . . . 2
2 a#### . . . 1
3 b#### . . . 1
4 c#### . . . 1
5 ca### . . . 1
6 ab### . . . 3
7 cc### . . . 1

Figure 7.2: The DFA from Figure 7.1, with the values mini’s and τ(i)’s.

7.3 Computing the min-partition

Let D = (Q,E) be a DFA. We will prove that we can compute the min-partition of

Q in O(|Q|2) time. In the following, for every u ∈ Q we define τ(u) = τ(minu) (see

Figure 7.2).

Let u ∈ Q, and let (ui)i≥1 be an occurrence of minu starting at u. It is immediate

to realize that (i) if τ(u) = 1, then λ(u2) ⪯ λ(u1), (ii) if τ(u) = 2, then λ(uk) = λ(u1)

for every k ≥ 1 and (iii) if τ(u) = 3, then λ(u1) ⪯ λ(u2).

As a first step, let us prove that without loss of generality we can remove some

edges from Q without affecting the min/max-partition. This preprocessing will be

helpful in Lemma 7.26.

Definition 7.7. Let D = (Q,E) be a DFA. We say that N is trimmed if contains no

edge (u, v) ∈ E such that τ(v) = 1 and λ(v) ≺ λ(u).

In order to simplify the readability of our proofs, we will not directly remove some

edges from D = (Q,E), but we will first build a copy of D where every state u is a

mapped to a state u∗, and then we will trim the DFA. In this way, when we write

minu and minu∗ it will be always clear whether we refer to the original DFA or the

trimmed DFA. We will use the same convention in Section 7.5 when we define the

DFA D̄ = (Q̄, Ē) that we will use for the recursive step.

Lemma 7.8. Let D = (Q,E) be a DFA. Then, in O(|E|) time we can build a trimmed

DFA D∗ = (Q∗, E∗), with Q∗ = {u∗ | u ∈ Q}, such that for every u ∈ Q it holds

minu∗ = minu. In particular, τ(u∗) = τ(u) for every u ∈ Q.

Proof. Define λ(u∗) = λ(u) for every u∗ ∈ Q∗, F = {(u, v) ∈ E | τ(v) = 1, λ(v) ≺

λ(u)}, and E∗ = {(u∗, v∗) | (u, v) ∈ E \ F}. Essentially, we define D∗ by removing
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from D all edges that violate the definition of trimmed graph. Let us show that D∗

is still a DFA in which |λ(u∗)| = 1 for every u∗ ∈ Q∗.

1. All edges entering the same state in Q∗ have the same label by construction.

2. Every v∗ ∈ Q∗ has an incoming edge in D∗. Indeed, if τ(v) ̸= 1, then, if u ∈ Q

is any state such that (u, v) ∈ E, then (u, v) ̸∈ F and so (u∗, v∗) ∈ E∗. If

τ(v) = 1, then there exists u ∈ Q such that (u, v) ∈ E and λ(u) ⪯ λ(v), so

(u, v) ̸∈ F and (u∗, v∗) ∈ E∗.

3. D∗ is a DFA because it is essentially a subgraph of a DFA. More precisely,

assume that (u∗, v∗).(u∗, z∗) ∈ E∗ are such that λ(v∗) = λ(z∗). We must prove

that v∗ = z∗, or equivalently, v = z. From (u∗, v∗), (u∗, z∗) ∈ E∗ we obtain

(u, v), (u, z) ∈ E, so from λ(v) = λ(v∗) = λ(z∗) = λ(z) we obtain v = z because

D is a DFA.

Now, let us prove that for every u ∈ Q it holds minu∗ = minu. To this end we have

to prove that (i) minu ∈ Iu∗ and (ii) if α ∈ Iu∗ , then minu ⪯ α.

1. Let us prove that minu ∈ Iu∗ . To this end, it will suffice to prove that, if (ui)i≥1

is an occurrence of minu starting at u, then (u∗i )i≥1 is an occurrence of minu

starting at u∗. For every i ≥ 1, we have λ(u∗i ) = λ(ui) = minu[i]. We are

only left with showing that (u∗i+1, u
∗
i ) ∈ E∗ for every i ≥ 1. We know that

(ui+1, ui) ∈ E, so we only have to prove that (ui+1, ui) ̸∈ F . Assume that

τ(ui) = 1. We must prove that λ(ui+1) ⪯ λ(ui). Since (uj)j≥i is an occurrence

of minui starting at ui, this is equivalent to proving that minui [2] ⪯ minui [1],

which indeed follows from τ(ui) = 1.

2. Let us prove that if α ∈ Iu∗ , then α ∈ Iu (which implies minu ⪯ α). Let (v∗i )i≥1

be an occurrence of α starting at u∗. It will suffice to prove that (vi)i≥1 is an

occurrence of α starting at u. For every i ≥ 1 we have (vi+1, vi) ∈ E because

(v∗i+1, v
∗
i ) ∈ E, and λ(vi) = λ(vi) = α[i], so the conclusion follows.

In particular, τ(u∗) = τ(u) for every u ∈ Q, and D∗ = (Q∗, E∗) is a trimmed DFA.
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7.4 Classifying Minima

Let us first show how to compute all u ∈ Q such that τ(u) = 1.

Lemma 7.9. Let D = (Q,E) be a DFA, and let u, v ∈ Q.

1. If (u, v) ∈ E and λ(u) ≺ λ(v), then τ(v) = 1.

2. If (u, v) ∈ E, λ(u) = λ(v) and τ(u) = 1, then τ(v) = 1.

Proof. 1. Since λ(u) ≺ λ(v), we have minu ≺ λ(v)ω. Moreover, λ(v) minu ∈ Iv,

hence minv ⪯ λ(v) minu ≺ λ(v)λ(v)ω = λ(v)ω, so τ(v) = 1 by Lemma 7.5.

2. Since τ(u) = 1, then minu ≺ λ(u)ω by Lemma 7.5. From (u, v) ∈ E we obtain

λ(v) minu ∈ Iv, hence minv ⪯ λ(v) minu ≺ λ(v)λ(u)ω = λ(v)λ(v)ω = λ(v)ω, so

again by Lemma 7.5 we conclude τ(v) = 1.

Corollary 7.10. Let D = (Q,E) be a DFA, and let u ∈ Q. Then, τ(u) = 1 if and

only if there exist k ≥ 2 and z1, . . . , zk ∈ Q such that (i) (zi, zi+1) ∈ E for every

1 ≤ i ≤ k − 1, (ii) zk = u, (iii) λ(z1) ≺ λ(z2) and (iv) λ(z2) = λ(z3) = · · · = λ(zk).

Proof. (⇐) Let k ≥ 2 and z1, . . . , zk ∈ Q be such that (i) (zi, zi+1) ∈ E for every

1 ≤ i ≤ k−1, (ii) zk = u, (iii) λ(z1) ≺ λ(z2) and (iv) λ(z2) = λ(z3) = · · · = λ(zk). We

must prove that τ(u) = 1. Let us prove by induction that for every 2 ≤ i ≤ k it holds

τ(zi) = 1 (and in particular τ(u) = τ(zk) = 1). If i = 2, then from (z1, z2) ∈ E and

λ(z1) ≺ λ(z2) we obtain τ(z2) = 1 by Lemma 7.9. Now, assume that 3 ≤ i ≤ k. By the

inductive hypothesis, we have τ(zi−1) = 1. Since (zi−1, zi) ∈ E and λ(zi−1) = λ(zi),

then by Lemma 7.9 we conclude τ(zi) = 1.

(⇒) Assume that τ(u) = 1. Then, by Lemma 7.5 there exist c ∈ Σ \ {λ(u)},

γ′ ∈ Σω and j ≥ 1 such that minu = λ(u)jcγ′ and c ≺ λ(u). Let (ui)i≥1 be an

occurrence of minu starting at u. Then, (i) u = u1, (ii) (ui+1, ui) ∈ E for every

i ≥ 1, (iii) λ(ui) = λ(u) for 1 ≤ i ≤ j and (iv) λ(uj+1) = c. As a consequence, if

k = j + 1 and zi = uk+1−i for every 1 ≤ i ≤ k, then (i) (zi, zi+1) = (uk−i+1, uk−i) ∈ E

for every 1 ≤ i ≤ k − 1, (ii) zk = u1 = u, (iii) λ(z1) = λ(uk) = λ(uj+1) = c ≺

λ(u) = λ(uj) = λ(uk−1) = λ(z2) and (iv) λ(z2) = λ(z3) = · · · = λ(zk) because

λ(uj) = λ(uj−1) = · · · = λ(u1).
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Corollary 7.10 yields an algorithm to decide whether u ∈ Q is such that τ(u) = 1.

Corollary 7.11. Let D = (Q,E) be a DFA. We can determine all u ∈ Q such that

τ(u) = 1 in time O(|E|).

Proof. In our algorithm, we will mark exactly all states u such that τ(u) = 1 by

means of a traversal. We will use an (initially empty) queue. Initially, no state is

marked. First, process all edges (u, v) ∈ E and, if λ(u) ≺ λ(v) and v has not been

marked before, then mark v and add v to the queue. This step takes O(|E|) time.

Next, recursively pick an element u from the queue, and consider the unique v ∈ Q

such that (u, v) ∈ E and λ(u) = λ(v) (if it exists). If v has not been marked before,

then mark v and add v to the queue. This step also takes O(|E|) time because each

edge is considered at most once. At the end of the algorithm, by Corollary 7.10 a

state u has been marked if and only if τ(u) = 1.

Now, let us show how to determine all u ∈ Q such that τ(u) = 2. We can assume

that we have already determined all u ∈ Q such that τ(u) = 1.

Lemma 7.12. Let D = (Q,E) be a DFA, and let u ∈ Q such that τ(u) ̸= 1. Then,

we have τ(u) = 2 if and only if there exist k ≥ 2 and z1, . . . , zk ∈ Q such that (i)

(zi+1, zi) ∈ E for every 1 ≤ i ≤ k−1, (ii) z1 = u, (iii) zk = zj for some 1 ≤ j ≤ k−1

and (iv) λ(z1) = λ(z2) = · · · = λ(zk). In particular, such z1, . . . , zk ∈ Q must satisfy

τ(zi) = 2 for every 1 ≤ i ≤ k.

Proof. (⇐) Let k ≥ 2 and z1, . . . , zk ∈ Q such that (i) (zi+1, zi) ∈ E for every

1 ≤ i ≤ k − 1, (ii) z1 = u, (iii) zk = zi for some 1 ≤ j ≤ k − 1 and (iv) λ(z1) =

λ(z2) = · · · = λ(zk). We must prove that τ(u) = 2. Notice that it holds minu =

minz1 ⪯ λ(z1)λ(z2) . . . λ(zj−1) minzj = λ(u)j−1 minzj . Similarly, we have minzj ⪯

λ(zj)λ(zj+1) . . . λ(zk−1) minzk = λ(u)k−j minzj . Since minzj ⪯ λ(u)k−i minzj , then by

induction we obtain minzi ⪯ (λ(u)k−j)h minzi for every h ≥ 1, and so minzj ⪯ λ(u)ω.

As a consequence, minu ⪯ λ(u)j−1 minzj ⪯ λ(u)j−1λ(u)ω = λ(u)ω, and so τ(u) ⪯ 2

by Lemma 7.5. Since τ(u) ̸= 1, we conclude τ(u) = 2.

(⇒) Assume that τ(u) = 2. In particular, λ(u)ω ∈ Iu, so there exists an occurrence

(zi)i≥1 of λ(u)ω starting at u. This means that (i) (zi+1, zi) ∈ E for every i ≥ 1, (ii)

z1 = u and λ(zi) = λ(u) for every i ≥ 1. Since Q is finite, there exist 1 ≤ j < k such

that zj = zk. Then, k ≥ 2 and z1, . . . , zk ∈ Q have the desired properties.
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Now, let us prove that, if there exist z1, . . . , zk ∈ Q with the desired properties,

then τ(zi) = 2 for every 1 ≤ i ≤ k. Notice that it must be τ(zi) ̸= 1 for every

1 ≤ i ≤ k, because otherwise by Corollary 7.10 we would conclude τ(u) = 1. As a

consequence, it must be τ(zi) = 2 for every 1 ≤ i ≤ k by the characterization that

we have just proved.

Corollary 7.13. Let D = (Q,E) be a DFA. We can determine all u ∈ Q such that

τ(u) = 2 in time O(|E|).

Proof. By Corollary 7.11, we can assume that we have already computed all u ∈ Q

such that τ(u) = 1. In order to compute all u ∈ Q such that τ(u) = 2, we explore

D by using a breadth-first search algorithm, with the following modifications: (i) we

only start from states u ∈ Q such that τ(u) ̸= 1, (ii) we follow edges in a backward

fashion, not in a forward fashion and (iii) if we start from u ∈ Q, we explore the graph

by only following edges labeled λ(u) (that is, we first consider only all u′ ∈ Q such

that (u′, u) ∈ E and λ(u′) = λ(u), then we repeat this step in BFS fashion). Note

that during the search we can never encounter a state v such that τ(v) = 1, otherwise

by Corollary 7.10 we would obtain τ(u) = 1. During the search, we will infer the

value τ(v) for every state v that we encounter. Assume that we start the exploration

from state u ∈ Q. If during the exploration at u at some point we encounter a state

v for which we have already concluded that τ(v) = 3, then we do not consider the

edges entering v and we backtrack (because all the zi’s in the characterization of

Lemma 7.12 must satisfy τ(zi) = 2). If during the exploration at u at some point

we encounter a state v for which we have already concluded that τ(v) = 2, then

we backtrack straight to u and, by Lemma 7.12, we can also conclude that all z

that we encounter during the backtracking (including u) are such that τ(z) = 2. If

during the exploration of u at some point we encounter the same state twice, then we

backtrack straight to u and, by Lemma 7.12, we can also conclude that all z that we

encounter during the backtracking (including u) are such that τ(z) = 2. If during the

exploration of u we never encounter a state v for which we have already determined

τ(v) and we never encounter the same state twice (and so at some point we get stuck),

by Lemma 7.12 we can conclude that all v that we have encountered (including u)

are such that τ(v) = 3. The algorithm runs in O(|E|) time because we never follow

the same edge twice.
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From Corollary 7.11 and Corollary 7.13 we immediately obtain the following result.

Corollary 7.14. Let D = (Q,E) be a DFA. Then, in time O(|E|) we can compute

τ(u) for every u ∈ Q.

7.5 Recursive Step

Let us sketch the general idea to build a smaller DFA for the recursive step. We

consider each u ∈ Q such that τ(u) = 3, and we follow edges in a backward fashion,

aiming to determine a prefix of minu. As a consequence, we discard edges through

which no occurrence of minu can go, and by Corollary 7.6 we can restrict our attention

to the states v such that τ(v) is minimal. We proceed like this until we encounter

states v′ such that τ(v′) = 3.

Let us formalize our intuition. We will first present some properties that the

occurrences of a string minu must satisfy.

Lemma 7.15. Let D = (Q,E) be a DFA. Let u, v ∈ Q be such that minu = minv.

Let (ui)i≥1 be an occurrence of minu and let (vi)i≥1 be an occurrence of minv. Then:

1. λ(ui) = λ(vi) for every i ≥ 1.

2. minui = minvi for every i ≥ 1.

3. τ(ui) = τ(vi) for every i ≥ 1.

In particular, the previous results hold if u = v and (ui)i≥1 and (vi)i≥1 are two distinct

occurrences of minu.

Proof. 1. For every i ≥ 1 we have λ(ui) = minu[i] = minv[i] = λ(vi).

2. Fix i ≥ 1. We have minu[1, i − 1] minui = minu = minv = minv[1, i − 1] minvi

and so minui = minvi

3. Fix i ≥ 1. By the previous points we have minui = minvi and λ(ui) = λ(vi), so

by Corollary 7.6 we conclude that it must necessarily be τ(ui) = τ(vi).
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Lemma 7.16. Let D = (Q,E) be a DFA. Let u ∈ Q and let (ui)i≥1 an occurrence of

minu starting at u. Let k ≥ 1 be such that τ(u1) = τ(u2) = · · · = τ(uk−1) = τ(uk) ̸= 2.

Then, u1, . . . , uk are pairwise distinct. In particular, k ≤ |Q|.

Proof. We assume that τ(u1) = τ(u2) = · · · = τ(uk−1) = τ(uk) = 1, because the case

τ(u1) = τ(u2) = · · · = τ(uk−1) = τ(uk) = 3 is symmetrical. Notice that for every

1 ≤ l ≤ k we have that (ui)i≥l is an occurrence of minul starting at ul and τ(ul) = 1,

so λ(ul+1) ⪯ λ(ul). In particular, for every 1 ≤ r ≤ s ≤ k+ 1 we have λ(us) ⪯ λ(ur).

Suppose for sake of contradiction that there exist 1 ≤ i < j ≤ k such that

ui = uj. Then, minui = minui [1, j − i] minuj = minui [1, j − i] minui . By induction, we

obtain minui = (minui [1, j − i])t minui for every t ≥ 1, and so minui = (minui [1, j −

i])ω. For every 1 ≤ h ≤ j, we have λ(uj) ⪯ λ(uh) ⪯ λ(ui). Since ui = uj, then

λ(ui) = λ(uj), so λ(uh) = λ(ui) for every i ≤ h ≤ j, which implies minui [1, j − i] =

λ(ui)λ(ui+1) . . . λ(uj−1) = λ(ui)
j−i and so minui = (minui [1, j − i])ω = λ(ui)

ω. By

Lemma 7.5 we conclude τ(ui) = 2, a contradiction.

The previous results allow us to give the following definition.

Definition 7.17. Let D = (Q,E) be a DFA. Let u ∈ Q such that τ(u) = 3. Let ℓu

to be the smallest integer k ≥ 2 such that τ(uk) ≥ 2, where (ui)i≥1 is an occurrence

of minu starting at u.

Note that ℓu is well-defined, because (i) it cannot hold τ(uk) = 1 for every k ≥ 2

by Lemma 7.16 (indeed, if τ(u2) = 1, then (ui)i≥2 is an occurrence of minu2 starting

at u2, and by Lemma 7.16 there exists 2 ≤ k ≤ |Q| + 2 such that τ(uk) ̸= 1) and

(ii) ℓu does not depend on the choice of (ui)i≥1 by Lemma 7.15. In particular, it

must be ℓu ≤ |Q| + 1 because u1, u2, . . . , uℓu−1 are pairwise distinct (u1 is distinct

from u2, . . . , uℓu−1 because τ(u1) = 3 and τ(u2) = τ(u3) = . . . τ(uℓu−1) = 1 by the

minimality of ℓu).

Lemma 7.18. Let D = (Q,E) be a DFA. Let u ∈ Q such that τ(u) = 3. Then,

minu[i + 1] ⪯ minu[i] for every 2 ≤ i ≤ ℓu − 1. In particular, if 2 ≤ i ≤ j ≤ ℓu, then

minu[j] ⪯ minu[i].

Proof. Fix 2 ≤ i ≤ ℓu. By the definition of ℓu) we have τ(ui) = 1, so minu[i + 1] =

minui [2] ⪯ minui [1] = minu[i].
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If R ⊆ Q is a nonempty set of states such that for every u, v ∈ R it holds

λ(u) = λ(v), we define λ(R) = λ(u) = λ(v). If R ⊆ Q is a nonempty set of states

such that for every u, v ∈ R it holds τ(u) = τ(v), we define τ(R) = τ(u) = τ(v).

Let R ⊆ Q be a nonempty set of states. Let F(R) = arg minu∈R′ τ(u), where

R′ = arg minv∈R λ(v). Notice that F(R) is nonempty, and both λ(F(R)) and τ(F(R))

are well-defined. In other words, F(R) is obtained by first considering the subset

R′ ⊆ F(R) of all states v such that λ(v) is as small as possible, and then considering

the subset of R′ of all states v such that τ(v) is as small as possible. This is consistent

with our intuition on how we should be looking for a prefix of minu.

Define:

Gi(u) =







{u} if i = 1;

F({v′ ∈ Q | (∃v ∈ Gi−1(u))((v′, v) ∈ E)}) \
⋃i−1
j=2Gj(u) if 1 < i ≤ ℓu.

Notice that we also require that a states in Gi(u) has not been encountered before.

Intuitively, this does not affect our search for a prefix of minu because, if we met the

same state twice, then we would have a cycle where all edges are equally labeled

(because by Lemma 7.18 labels can only decrease), and since τ(Gi(u)) = 1 for every

2 ≤ i ≤ ℓu− 1, then no occurrence of the minimum can go through the cycle because

if we remove the cycle from the occurrence we obtain a smaller string by Lemma 7.5.

The following technical lemma is crucial to prove that our intuition is correct.

Lemma 7.19. Let D = (Q,E) be a DFA. Let u ∈ Q such that τ(u) = 3.

1. Gi(u) is well-defined and nonempty for every 1 ≤ i ≤ ℓu.

2. Let (ui)i≥1 be an occurrence of minu starting at u. Then, ui ∈ Gi(u) for every

1 ≤ i ≤ ℓu. In particular, τ(ui) = τ(Gi(u)) and minu[i] = λ(ui) = λ(Gi(u)) for

every 1 ≤ i ≤ ℓu.

3. For every 1 ≤ i ≤ ℓu and for every v ∈ Gi(u) there exists an occurrence of

minu[1, i− 1] starting at u and ending at v.

Proof. We proceed by induction on i ≥ 1. If i = 1, then Gi(u) = {u} is well-defined

and nonempty, and u1 = u ∈ Gi(u). Moreover, if v ∈ Gi(u), then v = u, and there

exists an occurrence of ε = min[1, 0] starting and ending at u. Now, assume that

2 ≤ i ≤ ℓu.
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First, notice that F({v′ ∈ Q | (∃v ∈ Gi−1(u))((v′, v) ∈ E)}) is well-defined and

nonempty. Indeed, by the inductive hypothesis Gi−1(u) is well-defined and nonempty,

so {v′ ∈ Q | (∃v ∈ Gi−1(u))((v′, v) ∈ E)} is nonempty because every state has an

incoming edge.

Let us prove that ui ∈ F({v′ ∈ Q | (∃v ∈ Gi−1(u))((v′, v) ∈ E)}). Let R = {v′ ∈

Q | (∃v ∈ Gi−1(u))((v′, v) ∈ E)} and R′ = arg minv∈R λ(v). We must prove that

ui ∈ arg minu∈R′ τ(u).

1. Let us prove that ui ∈ R. By the inductive hypothesis, we know that ui−1 ∈

Gi−1(u). We know that (ui, ui−1) ∈ E, so ui ∈ R.

2. Let us prove that ui ∈ R′. Let v′ ∈ R. We must prove that λ(ui) ⪯ λ(v′). Since

v′ ∈ R, there exists v ∈ Gi−1(u) such that (v′, v) ∈ E. From ui−1, v ∈ Gi−1(u) we

obtain λ(ui−1) = λ(v). By the inductive hypothesis, there exists an occurrence

of minu[1, i − 2] starting at u and ending at v, so there exists an occurrence

of minu[1, i − 2]λ(v) = minu[1, i − 2]λ(ui−1) = minu[1, i − 1] starting at u and

ending at v′. Since minu = minu[1, i − 1] minui , it must be minui ⪯ minv′ , and

in particular λ(ui) ⪯ λ(v′).

3. Let us prove that ui ∈ arg minu∈R′ τ(u). Let v′ ∈ R′. We must prove that

τ(ui) ≤ τ(v). In particular, v′ ∈ R, so as before we obtain minui ⪯ minv′ .

Moreover, from ui, v
′ ∈ R′ we obtain λ(ui) = λ(v′). From Corollary 7.6 we

conclude τ(ui) ≤ τ(v).

Let us prove that ui ̸∈
⋃i−1
j=2Gj(u). If i = ℓu, we have τ(ui) = τ(uℓu) ≥ 2

and the conclusion follows because τ(Gj(u)) = τ(uj) = 1 for every 2 ≤ j ≤ i − 1.

As a consequence, in the following we can assume 2 ≤ i ≤ ℓu − 1. In particular,

τ(ui) = 1, so by Lemma 7.5 there exists k ≥ 1, c ∈ Σ \ {λ(ui)} and γ′ ∈ Σω such

that minu = λ(u)kcγ′ and c ≺ λ(ui). Suppose for sake of contradiction that there

exists 2 ≤ j ≤ i − 1 ≤ ℓu − 2 such that ui ∈ Gj(u). We know that uj ∈ Gj(u),

and in particular, λ(ui) = λ(Gj(u)) = λ(uj). From Lemma 7.18 we obtain minu[i] ⪯

minu[h] ⪯ minu[j] for every j ≤ h ≤ i, or equivalently λ(ui) ⪯ λ(uh) ⪯ λ(uj) for

every j ≤ h ≤ i. Since λ(uj) = λ(ui), we conclude λ(uh) = λ(ui) for every j ≤ h ≤ i.

As a consequence, minu = minu[1, i − 1] minui = minu[1, j − 1] minu[j, i − 1] minui =

minu[1, j − 1]λ(ui)
i−jλ(ui)

kcγ′ = minu[1, j − 1]λ(ui)
k+i−jcγ′. On the other hand,
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since ui ∈ Gj(u) and j < i, by the inductive hypothesis there exists an occurrence

of minu[1, j − 1] starting at u and ending at ui, so minu[1, j − 1] minui ∈ Iu. As a

consequence, by the minimality of minu we obtain minu ⪯ minu[1, j − 1] minui , or

equivalently, minu[1, j − 1]λ(ui)
k+i−jcγ′ ⪯ minu[1, j − 1]λ(ui)

kcγ′. Since j < i, we

obtain λ(ui) ⪯ c, a contradiction.

Let us prove that Gi(u) is well-defined and nonempty, and ui ∈ Gi(u). This follows

from ui ∈ F({v′ ∈ Q | (∃v ∈ Gi−1(u))((v′, v) ∈ E)}) and ui ̸∈
⋃i−1
j=2Gj(u).

Lastly, let us prove that if v′ ∈ Gi(u), then there exists an occurrence of min[1, i−1]

starting at u and ending at v′. Since v′ ∈ Gi(u), then there exists v ∈ Gi−1(u) such

that (v′, v) ∈ E. In particular, λ(v) = λ(Gi−1(u)) = λ(ui−1). By the inductive

hypothesis, there exists an occurrence of minu[1, i− 2] starting at u and ending at v,

so there exists an occurrence of minu[1, i−2]λ(v) = minu[1, i−2]λ(ui−1) = minu[1, i−1]

starting at u and ending at v′.

Let u ∈ Q such that τ(u) = 3. We define:

• γu = minu[1, ℓu];

• tu = τ(Gℓu(u)) ∈ {2, 3}

Now, in order to define the smaller graph for the recursive step, we also need a

new alphabet (Σ′,⪯′), which must be defined consistently with the mutual ordering

of the minima. The next lemma yields all the information that we need.

Lemma 7.20. Let D = (Q,E) be a DFA. Let u, v ∈ Q such that τ(u) = τ(v) = 3.

Assume that one of the following statements is true:

1. γu is not a prefix of γv and γu ≺ γv.

2. γu = γv, tu = 2 and tv = 3.

3. γv is a strict prefix of γu.

Then, minu ≺ minv.

Equivalently, if minu ⪯ minv, then one the following is true: (i) γu is not a prefix

of γv and γu ≺ γv; (ii) γu = γv and tu ≤ tv; (iii) γv is a strict prefix of γu.



144

Proof. Let us prove that, if one of the three statements (1) - (3) is true, then minu ≺

minv.

1. If minu[1, ℓu] ≺ minv[1, ℓv] and minu[1, ℓu] is not a prefix of minv[1, ℓv], then

minu ≺ minv.

2. Assume that minu[1, ℓu] = minv[1, ℓv] (so in particular ℓu = ℓv), tu = 2 and

tv = 3. Let (ui)i≥1 be an occurrence of u, and let (vi)i≥1 be an occurrence of

v. It holds minu = minu[1, ℓu − 1] minuℓu and minv = minv[1, ℓv − 1] minvℓv .

Since minu[1, ℓu − 1] = minv[1, ℓv − 1], in order to prove that minu ≺ minv

we only have to show that minuℓu ≺ minvℓv . By Lemma 7.19 we have uℓu ∈

Gℓu(u) and vℓv ∈ Gℓv(v), so λ(uℓu) = minu[ℓu] = minv[ℓv] = λ(vℓv). Since

τ(uℓu) = τ(Gℓu(u)) = tu = 2 and τ(vℓv) = τ(Gℓv(v)) = tv = 3, we conclude

minuℓu ≺ minvℓv by Corollary 7.6.

3. Assume that γv is a strict prefix of γu (hence ℓv < ℓu). In particular, minu[1, ℓv] =

minv[1, ℓv], so similarly to the previous case we only have to prove that minuℓv ≺

minvℓv . Again, we obtain uℓv ∈ Gℓv(u), vℓv ∈ Gℓu(v), λ(uℓv) = λ(vℓv) and

τ(vℓv) = 3. Since ℓv < ℓu, the minimality of ℓu implies τ(uℓv) = τ(Gℓv(u)) = 1.

By Corollary 7.6 we conclude minuℓv ≺ minvℓv .

Now, let us prove that if minu ⪯ minv, then one the following is true: (i) γu is not a

prefix of γv and γu ≺ γv; (ii) γu = γv and tu ≤ tv; (iii) γv is a strict prefix of γu. If

this were not true, then one of the following would be true: (1) γv is not a prefix of

γu and γv ≺ γu; (2) γv = γu, tv = 2 and tu = 3; (3) γu is a strict prefix of γv. We

would then conclude minv ≺ minu, a contradiction.

Now, let Σ′ = {(γu, tu) | u ∈ Q, τ(u) = 3}, and let ⪯′ be the total order on Σ′

such that for every distinct (α, x), (β, y) ∈ Σ′, it holds (α, x) ≺′ (β, y) if and only if

one of the following is true:

1. α is not a prefix of β and α ≺ β.

2. α = β, x = 2 and y = 3.

3. β is a strict prefix of α.
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It is immediate to verify that ⪯′ is a total order: indeed, ⪯′ is obtained (i) by first

comparing the γu’s using the variant of the (total) lexicographic order on Σ∗ in which a

string is smaller than every strict prefix of it and (ii) if the γu’s are equal by comparing

the tu’s, which are elements in {2, 3}.

Starting from D = (Q,E), we define a new DFA D̄ = (Q̄, Ē) as follows:

• Q̄ = {ū | u ∈ Q, τ(u) = 3}.

• The new totally-ordered alphabet is (Σ′,⪯′).

• For every ū ∈ Q̄, we define λ(ū) = (γu, tu).

• Ē = {(v̄, v̄) | tv = 2} ∪ {(ū, v̄) | tv = 3, u ∈ Gℓv(v)}.

Note that for every v̄ ∈ Q̄ such that tv = 3 and for every u ∈ Gℓv(v) it holds

τ(u) = τ(Gℓv(v)) = tv = 3, so ū ∈ V̄ and (ū, v̄) ∈ E. Moreover, in D̄ = (Q̄, Ē), (i) all

edges entering the same state have the same label (by definition), (ii) every state has

at least one incoming edge (because if v̄ ∈ Q̄, then Gℓv(v) ̸= ∅ by Lemma 7.19) and

(iii) D̄ is a DFA (because if (ū, v̄), (ū, v̄′) ∈ Ē and λ(v̄) = λ(v̄′), then γv = γv′ and

tv = tv′ , so by the definition of Ē if tv = tv′ = 2 we immediately obtain v̄ = ū = v̄′,

and if tv = t
′
v = 3 we obtain u ∈ Gℓv(v) ∩Gℓv′

(v′); since by Lemma 7.19 there exist

two occurrences of minv[1, ℓv − 1] = γv[1, ℓv − 1] = γv′ [1, ℓv′ − 1] = minv′ [1, ℓv′ − 1]

starting at v and v′ and both ending at u, the determinism of D implies v = v′ and

so v̄ = v̄′).

Notice that if v̄ ∈ Q̄ is such that tv = 2, then Iv̄ contains exactly one string,

namely, λ(v̄)ω; in particular, minv̄ = maxv̄ = λ(v̄)ω.

When we implement D = (Q,E) and D̄ = (Q̄, Ē), we use integer alphabets

Σ = {0, 1, . . . , |Σ|−1} and Σ′ = {0, 1, . . . , |Σ′|−1}; in particular, we will not store Σ′

by means of pairs (γu, tu)’s, but we will remap Σ′ to an integer alphabet consistently

with the total order ⪯′ on Σ′, so that the mutual order of the minū’s is not affected.

Let us prove that we can use D̄ = (Q̄, Ē) for the recursive step. We will start with

some preliminary results.

Lemma 7.21. Let D = (Q,E) be a DFA. Let u, v ∈ Q be such that τ(u) = τ(v) = 3,

γu = γv and tu = tv = 2. Then, minu = minv.
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Proof. First, note that γu = γv implies ℓu = ℓv, and it is equivalent to minu[1, ℓu] =

minv[1, ℓv]. Now, let (ui)i≥1 be an occurrence of minu starting at u, and let (vi)i≥1

be an occurrence of minv starting at v. We have minu = minu[1, ℓu − 1] minuℓu and

minv = minv[1, ℓv − 1] minvℓv . Since minu[1, ℓu − 1] = minv[1, ℓv − 1], we only have to

show that minuℓu = minvℓv . Notice that λ(uℓu) = minu[ℓu] = minv[ℓv] = λ(vℓv), and by

Lemma 7.19 we have τ(uℓu) = τ(Gℓu(u)) = tu = 2 and τ(vℓv) = τ(Gℓv(v)) = tv = 2.

By Corollary 7.6 we conclude minuℓu = minvℓv .

Lemma 7.22. Let D = (Q,E) be a DFA. Let u ∈ Q, and let (ui)i≥1 be an occurrence

of minu starting at u. Then, exactly one of the following holds true:

1. There exists i0 ≥ 1 such that τ(ui) ̸= 2 for every 1 ≤ i < i0 and τ(ui) = 2 for

every i ≥ i0.

2. τ(ui) ̸= 2 for every i ≥ 1, and both τ(ui) = 1 and τ(ui) = 3 are true for

infinitely many i’s.

Proof. If τ(ui) ̸= 2 for every i ≥ 1, then both τ(ui) = 1 and τ(ui) = 3 are true

for infinitely many i’s, because otherwise we could choose j ≥ 1 such that either

τ(ui) = 1 for every i ≥ j or τ(ui) = 3 for every i ≥ j, and in both cases Lemma 7.16

leads to a contradiction, because (uj)j≥i is an occurrence of minuj starting at uj and

Q is a finite set.

Now, assume that there exists i0 ≥ 1 such that τ(ui0) = 2; without loss of gener-

ality, we can assume that i0 is the smallest integer with this property. We only have

to prove that if i ≥ i0, then τ(ui) = 2. Since τ(ui0) = 2, then minui0 = (λ(ui0))
ω

by Lemma 7.5. Since (uj)j≥i0 in an occurrence of minui0 starting at i0, then λ(uj) =

λ(ui0) for every j ≥ i0, so minui = (λ(ui))
ω for every i ≥ i0, (uj)j≥i being an oc-

currence of minui starting at ui. By Lemma 7.5, we conclude τ(ui) = 2 for every

i ≥ i0.

Crucially, the next lemma establishes a correspondence between minima of states

in D = (Q,E) and minima of states in D̄ = (Q̄, Ē).

Lemma 7.23. Let D = (Q,E) be a DFA. Let u ∈ Q such that τ(u) = 3. Let (ui)i≥1

be an occurrence of minu starting at u. Let (u′i)i≥1 be the infinite sequence of states

in Q obtained as follows. Consider L = {k ≥ 1 | τ(uk) = 3}, and for every i ≥ 1,
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let ji ≥ 1 be the ith smallest element of L, if it exists. For every i ≥ 1 such that ji is

defined, let u′i = uji, and if i ≥ 1 is such that ji is not defined (so L is a finite set),

let u′i = u′|L|. Then, (ū′i)i≥1 is an occurrence of minū starting at ū in D̄ = (Q̄, Ē).

Proof. First, notice that ū′i ∈ Q̄ for every i ≥ 1 because τ(u′i) = 3, and u′1 = u1 = u

(so ū′1 = ū1 = ū). Now, let us prove that (ū′i+1, ū
′
i) ∈ Ē for every i ≥ 1. Fix i ≥ 1.

We distinguish three cases.

1. ji and ji+1 are both defined. This means that τ(u′i) = τ(u′i+1) = 3, and τ(uk) ̸= 3

for every ji < k < ji+1. By Lemma 7.22, it must be τ(uk) = 1 for every

ji < k < ji+1. Since (uk)k≥ji is an occurrence of minu′i starting at u′i, by Lemma

7.19 we obtain tu′i
= 3 and u′i+1 ∈ Gℓu′

i

(u′i), so (ū′i+1, ū
′
i) ∈ Ē.

2. ji is defined and ji+1 is not defined. This means that i = |L|, τ(uj|L|
) = 3, and

by Lemma 7.22 there exists h > j|L| such that τ(uh) = 2 and τ(uk) = 1 for

every j|L| < k < h. Since (uk)k≥j|L|
is an occurrence of minu′

|L|
starting at u′|L|,

by Lemma 7.19 we obtain tu′
|L|

= 2, so (ū′i+1, ū
′
i) = (ū′|L|, ū

′
|L|) ∈ Ē.

3. ji and ji+1 are both non-defined. Then, by the previous case we conclude

(ū′i+1, ū
′
i) = (ū′|L|, ū

′
|L|) ∈ Ē.

We are left with proving that minū[i] = λ(ū′i) for every i ≥ 1. Let α ∈ (Σ′)ω be

such that α[i] = λ(ū′i) for every i ≥ 1. We have to prove that α = minū. Since

(ū′i+1, ū
′
i) ∈ Ē for every i ≥ 1, we have α ∈ Iū, and (ū′i)i≥1 is an occurrence of α

starting at ū. The conclusion follows if we prove that for every β ∈ Iū we have α ⪯′ β.

Fix β ∈ Iū; it will suffice to show that, for every k ≥ 1, if α[1, k−1] = β[1, k−1], then

α[k] ⪯′ β[k]. Fix k ≥ 1, and let (v̄i)i≥1 be an occurrence of β starting at ū. Notice

that for every 1 ≤ h ≤ k − 1 we have α[h] = β[h], or equivalently, λ(ū′h) = λ(v̄h),

or equivalently, γu′h = γvh (so ℓu′h = ℓvh) and tu′h
= tvh . Note that (v̄i+1, v̄i) ∈ Ē for

every i ≥ 1. We distinguish two cases:

1. There exists 1 ≤ h ≤ k − 1 such that tu′h
= tvh = 2. In this case, the

definition of u′h implies u′h = u′h+1 = u′h+2 = . . . , and in particular u′h = u′k.

Moreover, since tvh = 2 and (v̄i+1, v̄i) ∈ Ē, the definition of D̄ = (Q̄, Ē) implies

vh = vh+1 = vh+2 = . . . , and in particular vh = vk. We conclude α[k] = λ(u′k) =

λ(u′h) = λ(vh) = λ(vk) = β[k].
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2. For every 1 ≤ h ≤ k − 1 it holds tu′h
= tvh = 3. In this case, for every 1 ≤ h ≤

k−1 we have tvh = 3 and (v̄h+1, v̄h) ∈ Ē, so vh+1 ∈ Gℓvh
(vh) and by Lemma 7.19

there exists an occurrence of minvh [1, ℓvh −1] = γvh [1, ℓvh −1] = γu′h [1, ℓu′h −1] =

minu′h [1, ℓu′h − 1] starting at vh and ending at vh+1. As a consequence, there

is an occurrence of minu′1 [1, ℓu′1 − 1] minu′2 [1, ℓu′2 − 1] . . .minu′k−1
[1, ℓu′k−1

− 1] =

minu[1, jk−1] starting at u and ending at vk and so, if β′ = minu[1, jk−1] minvk ,

then β′ ∈ Iu. This implies minu ⪯ β′, so from minu = minu[1, jk − 1] minu′k we

obtain minu′k ⪯ minvk . By Lemma 7.20 and minu′k ⪯ minvk , we obtain that one

of the following statements must be true:

(a) γu′k is not a prefix of γvk , γvk is not a prefix of γu′k and γu′k ≺ γvk .

(b) γu′k = γvk and tu′k
≤ tvk .

(c) γvk is a strict prefix of γu′k .

In all three cases, we conclude (γu′k , tu′k) ⪯′ (γvk , tvk), or equivalently, λ(u′k) ⪯
′

λ(vk), or equivalently, α[k] ⪯′ β[k].

The following theorem shows that our reduction to D̄ = (Q̄, Ē) is correct.

Theorem 7.24. Let D = (Q,E) be a DFA. Let u, v ∈ Q be such that τ(u) = τ(v) = 3.

1. If minu = minv, then minū = minv̄.

2. If minu ≺ minv, then minū ≺
′ minv̄.

Proof. Let (ui)i≥1 be and occurrence of minu starting at u, and let (vi)i≥1 be and

occurrence of minv starting at v . Let (ū′i)i≥1 be the occurrence of minū defined by

means of (ui)i≥1 in Lemma 7.23, and let (v̄′i)i≥1 be the occurrence of minv̄ defined by

means of (vi)i≥1 in Lemma 7.23. Let L = {i ≥ 1 | τ(ui) = 3}, and let ji ≥ 1 be the

ith smallest element of L, if it exists. Moreover, let M = {i ≥ 1 | τ(vi) = 3}, and let

ki ≥ 1 be the ith smallest element of K, if it exists. Notice that j1 = k1 = 1.

In the rest of the proof, we say that an integer h ≥ 1 is nice if it satisfies the

following properties:

• j1, . . . , jh and k1, . . . , kh are all defined, and ji = ki for every 1 ≤ i ≤ h.
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• γu′i = γv′i for every 1 ≤ i ≤ h− 1.

Note the following properties:

• 1 is always nice because j1 = k1 = 1.

• If h is nice, than every 1 ≤ h′ ≤ h is nice. This implies that either every h ≥ 1

is nice, or there exists a unique h∗ ≥ 1 such that every h ≤ h∗ is nice and every

h > h∗ is not nice.

• If h is nice, γu′h = γv′h and tu′h
= tv′h

= 3, then h + 1 is nice. Indeed, γu′h = γv′h

implies ℓu′h = ℓv′h . Moreover, since (ui)i≥jh is an occurrence of minu′h starting

at u′h, then by the minimality of ℓu′h and Lemma 7.19 we have τ(ujh+i) =

τ(Gi+1(u
′
h)) = 1 for every 1 ≤ i ≤ ℓu′h − 2, and τ(ujh+ℓu′

h
−1) = τ(Gℓu′

h

(u′h)) =

tu′h
= 3, which implies that jh+1 is defined. Analogously, one obtains τ(ukh+i) =

1 for every 1 ≤ i ≤ ℓv′h − 2 and τ(vkh+ℓv′
h
−1) = 3, so kh+1 is defined and

jh+1 = kh+1, which implies that h+ 1 is nice.

• If h is nice, then tu′i
= tv′i

= 3 for every 1 ≤ i ≤ h − 1. Indeed, assume for

sake of contradiction that tu′l
= 2 for some 1 ≤ l ≤ h − 1 (the case tv′l

= 2

is analogous). Since (ui)i≥jl is an occurrence of minu′l starting at u′l, then by

Lemma 7.19 we have τ(ujl+i) = τ(Gi+1(u
′
l)) = 1 for every 1 ≤ i ≤ ℓu′l − 2, and

τ(ujl+ℓu′
l
−1) = τ(Gℓu′

l

(u′l)) = tu′l
= 2, which by Lemma 7.22 implies τ(ui) = 2

for every i ≥ jl + ℓu′l − 1. This implies that jl+1 is not defined, which is a

contradiction because 1 ≤ l ≤ h− 1.

Let us prove that, if h ≥ 1 is nice, then:

• minu[1, jh − 1] = minv[1, kh − 1].

• minū[1, h− 1] = minv̄[1, h− 1].

We will prove these two properties separately.

• Let us prove that minu[1, jh−1] = minv[1, jh−1]. Since h is nice, then for every

1 ≤ i ≤ h we have that ji and ki are defined, and ji = ki. As a consequence,

it will suffice to prove that minu[ji, ji+1 − 1] = minv[ki, ki+1 − 1] for every

1 ≤ i ≤ h−1. This is equivalent to proving that minu′i [1, ℓu′i−1] = minv′i [1, ℓv′i−1]

for every 1 ≤ i ≤ h− 1. This follows from γu′i = γv′i for every 1 ≤ i ≤ h− 1.
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• Let us prove that minū[1, h− 1] = minv̄[1, h− 1]. Fix 1 ≤ i ≤ h− 1. We must

prove that minū[i] = minv̄[i], or equivalently, λ(ū′i) = λ(v̄′i). This follows from

γ(u′i) = γ(v′i) and tu′i
= tv′i

.

We can now prove the two claims of the theorem. We will use that following

observation: if every h ≥ 1 is nice, then minu = minv and minū = minv̄, because

minu[1, jh − 1] = minv[1, kh − 1] and minū[1, h− 1] = minv̄[1, h− 1] for every h ≥ 1.

1. Assume that minu = minv; we must prove that minū = minv̄. If every h ≥ 1 is

nice, we are done, so we can assume that h∗ ≥ 1 is the largest nice integer. By

Lemma 7.15, we have τ(ui) = τ(vi) for every i ≥ 1, so L = M . In particular,

for every i ≥ 1 we have that ji is defined if and only if ki is defined and,

if so ji = ki. Since h∗ is nice, then jh∗ and kh∗ are defined, jh∗ = kh∗ and

minū[1, h
∗ − 1] = minv̄[1, h

∗ − 1]. We know that minū = minū[1, h
∗ − 1] minū′

h∗

and minv̄ = minv̄[1, h
∗−1] minv̄′

h∗
, so minū[1, h

∗−1] = minv̄[1, h
∗−1] implies that

in order to prove that minū = minv̄ we only have to prove that minū′
h∗

= minv̄′
h∗

.

By Lemma 7.15, we have minu′
h∗

= minv′
h∗

. Since τ(ui) = τ(vi) for every i ≥ 1,

(ui)i≥jh∗ is an occurrence of minu′
h∗

starting at u′h∗ and (vi)i≥jh∗ is an occurrence

of minv′
h∗

starting at v′h∗ , we obtain ℓu′
h∗

= ℓv′
h∗

. As a consequence, γu′
h∗

=

minu′
h∗

[1, ℓu′
h∗

] = minv′
h∗

[1, ℓv′
h∗

] = γv′
h∗

. In particular, it must be tu′
h∗

= tv′
h∗

, so

from γu′
h∗

= γ(v′h∗) we conclude λ(ū′h∗) = λ(v̄′h∗). Moreover, it must be tu′
h∗

=

tv′
h∗

= 2, otherwise we would conclude that h∗ + 1 is nice, which contradicts

the maximality of h∗. As a consequence, by the definition of D̄ = (Q̄, Ē) we

conclude that minū′
h∗

= (λ(ū′h∗))ω = λ(v̄′h∗))ω = minv̄′
h∗

.

2. Assume that minu ≺ minv; we must prove that minū ≺′ minv̄. Notice that it

cannot happen that every h ≥ 1 is nice, otherwise we would obtain minu =

minv, a contradiction. Let h∗ ≥ 1 be the biggest nice integer. In particular,

jh∗ and kh∗ are defined, jh∗ = kh∗ , minu[1, jh∗ − 1] = minv[1, kh∗ − 1] and

minū[1, h
∗ − 1] = minv̄[1, h

∗ − 1]. We know that minu = minu[1, jh∗ − 1] minu′
h∗

and minv = minv[1, kh∗ − 1] minv′
h∗

, so from minu ≺ minv we conclude minu′
h∗

≺

minv′
h∗

. Since minū = minū[1, h
∗ − 1] minū′

h∗
, minv̄ = minv̄[1, h

∗ − 1] minv̄′
h∗

and

minū[1, h
∗ − 1] = minv̄[1, h

∗ − 1], in order to prove that minū ≺′ minv̄ we only

have to prove that minū′
h∗

≺′ minv̄′
h∗

.
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Notice that it cannot be γu′
h∗

= γv′
h∗

and τ(u′h∗) = τ(v′h∗), because:

(a) If τ(u′h∗) = τ(v′h∗) = 2, then by Lemma 7.21 we would conclude minu′
h∗

=

minv′
h∗

, a contradiction.

(b) If τ(u′h∗) = τ(v′h∗) = 3, then h∗ + 1 would be a nice integer, which contra-

dicts the maximality of h∗.

From this observation, Lemma 7.20 and minu′
h∗

≺ minv′
h∗

we conclude that one

of the following must be true:

(a) γu′
h∗

is not a prefix of γv′
h∗

, γv′
h∗

is not a prefix of γu′
h∗

and γu′
h∗

≺ γv′
h∗

.

(b) γu′
h∗

= γv′
h∗

, tu′
h∗

= 2 and tv′
h∗

= 3.

(c) γu′
h∗

is a strict prefix of γv′
h∗

.

In all three cases we conclude (γu′
h∗
, tu′

h∗
) ≺′ (γv′

h∗
, tv′

h∗
), or equivalently, λ(ū′h∗) ≺′

λ(v̄′h∗), which implies minū′
h∗

≺′ minv̄′
h∗

.

Since ⪯ is a total order (so exactly one among minu ≺ minv, minu = minv and

minv ≺ minu holds true), from Theorem 7.24 we immediately obtain the following

result.

Corollary 7.25. Let D = (Q,E) be a DFA. Let u, v ∈ Q be such that τ(u) = τ(v) =

3.

1. It holds minu = minv if and only if minū = minv̄.

2. It holds minu ≺ minv if and only if minū ≺
′ minv̄.

In particular, if we have the min-partition of Q̄ (with respect to D̄), then we also have

the min-partition of {u ∈ Q | τ(u) = 3} (with respect to D).

Lastly, we show that our reduction to D̄ = (Q̄, Ē) can be computed within O(n2)

time.

Lemma 7.26. Let D = (Q,E) be a trimmed DFA. Then, we can build D̄ = (Q̄, Ē)

in O(|Q|2) time.
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Proof. The definition of D̄ implies that in order to build D̄ it is sufficient to compute

γu, tu and Gℓu(u) for every u ∈ Q such that τ(u) = 3; moreover, we also need

to compute the total order ⪯′, so that we can remap Σ′ to an integer alphabet

consistently with the total order ⪯′ on Σ′.

Fix u ∈ Q such that τ(u) = 3. For every 1 ≤ i ≤ ℓu − 1, let Ei(u) be the set

of all edges entering a state in Gi(u), and let mi(u) = |Ei(i)|. Note that since the

Gi(u)’s are pairwise distinct, then the Eu(i)’s are pairwise disjoint. Let us prove that
∑ℓu−1

i=1 mi(u) ∈ O(n). To this end, it will suffice to prove that for every v ∈ Q there

exist at most two edges in
⋃ℓu−1
i=1 Ei(u) whose start states are equal to v. Fix v ∈ Q,

and let 1 ≤ i ≤ ℓu − 1 be the smallest integer such that v is the first state of an

edge (v, v′) ∈ Ei(u) for some v′ ∈ Gi(u), if such a v′ exists. Notice that v′ is uniquely

determined because the value λ(z) does not depend on the choice of z ∈ Gi(u), and D

is a DFA. This means that (v, v′) ∈ Ei(u) is uniquely determined. In order to prove

our claim, it will suffice to show that if (v, v′′) ∈ Ej(u) for some i+1 ≤ j ≤ ℓu−1 and

v′′ ∈ Gj(u), then λ(v′′) = λ(v), because we will conclude that j and v′′ are uniquely

determined, since D is a DFA. Since v′ ∈ Gi(u) and (v, v′) ∈ Ei(u), by the definition

of Gi+1(u), we have λ(Gi+1(u)) ⪯ λ(v). Since 2 ≤ i + 1 ≤ j ≤ ℓu − 1, then by

Lemma 7.18 we obtain minu[j] ⪯ minu[i + 1], which by Lemma 7.19 is equivalent

to λ(Gj(u)) ⪯ λ(Gi+1(u)), and so we conclude λ(Gj(u)) ⪯ λ(v), or equivalently,

λ(v′′) ⪯ λ(v). Since v′′ ∈ Gj(u) and 2 ≤ j ≤ ℓu − 1, then τ(v′′) = τ(Gj(u)) = 1, so

from (v, v′′) ∈ E we conclude that it must be λ(v) ⪯ λ(v′′) because D is trimmed,

and so λ(v′′) = λ(v).

Let us show that in O(|Q|2) we can compute Gℓu(u), γu and tu for every u ∈ Q

such that τ(u) = 3. It will suffice to show that, for a fixed u ∈ Q such that τ(u) = 3,

we can compute Gℓu(u), γu and tu in O(|Q|) time.

Let us show how we recursively compute each set Gi(u), for 1 ≤ i ≤ ℓu. During

the algorithm, we will mark some states. Initially, no state is marked, and after step

i ≥ 1, a state of Q is marked if and only if it belongs to
⋃i−1
j=2Gj(u). If i = 1, we just

let G1(u) = {u}, and we define c1 = λ(u). Now, assume that i ≥ 2, and assume that

we have computed Gi−1(u). We first scan all edges in Ei−1(u) and we collect the set

Ri the set of all start states of these edges. Then, by scanning Ri, we first determine

ci = min{λ(v) | v ∈ Ri}, then we determine R′i = {v ∈ Ri | λ(v) = ci}. Next, we
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determine ti = min{τ(v) | v ∈ R′i} and R′′i = {v ∈ R′i | λ(v) = ti}. By checking which

states in R′′i are marked, we determine Gi(u). Finally, we mark all states in Gi(u).

We can perform all these steps in O(mi−1(u)) time, where the hidden constant in the

asymptotic notation does not depend on i. Now, we check whether ti ≥ 2. If ti ≥ 2,

then i = ℓu and we are done. Otherwise, we have i < ℓu and we proceed with step

i+ 1.

We conclude that we can determineGℓu(u) in time
∑ℓu−1

i=1 O(mi(u)) = O(
∑ℓu−1

i=1 mi(u)) =

O(n), where we have used that the hidden constant in O(mi(u)) does not depend on

i. In addition, we have γu = c1c2 . . . cℓu and tu = tℓu .

We are only left with showing how to compute ⪯′. Essentially, we only have to

radix sort the strings γ(u)’s by taking into account that ⪯′ is defined by considering

a slight variation of the lexicographic order. More precisely, we proceed as follows.

We know that |γ(u)| ≤ |Q|+ 1 for each u ∈ Q such that τ(u) = 3, so we first pad the

end of each γ(u) with a special character larger than all characters in the alphabet

until the length of each string is exactly |Q| + 1. Next, we consider two extra special

characters d2 and d3 such that d2 ≺
′ d3, and we append exactly one of this character

to each γ(u): we append d2 if tu = 2, and we append d3 if tu = 3. Now, we radix

sort the (modified) γ(u)’s in O(|Q|2) time, so obtaining ⪯′.

7.6 Merging

We want to determine the min-partition A of Q, assuming that we already have the

min-partition B of {u ∈ Q | τ(u) = 3}.

First, note that we can easily build the min-partition B′ of {u ∈ Q | τ(u) = 2}.

Indeed, if τ(u) = 2, then minu = λ(u)ω by Lemma 7.5. As a consequence, if τ(u) =

τ(v) = 2, then (i) minu = minv if and only if λ(u) = λ(v) and (ii) minu ≺ minv if and

only if λ(u) ≺ λ(v), so we can build B′ in O(|Q|) time by using counting sort.

For every c ∈ Σ and t ∈ {1, 2, 3}, let Qc,t = {v ∈ Q | λ(v) = c, τ(v) = t}.

Consider u, v ∈ Q: (i) if λ(u) ≺ λ(v), then minu ≺ minv and (ii) if λ(u) = λ(v) and

τ(u) < τ(v), then minu ≺ minv by Corollary 7.6. As a consequence, in order to build

A, we only have to build the min-partition Ac,t of Qc,t, for every c ∈ Σ and every

t ∈ {1, 2, 3}.
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A possible way to implement each Ac,t is by means of an array Ac,t storing the

elements of Qc,t, where we also use a special character to delimit the border between

consecutive elements of Ac,t.

It is immediate to build incrementally Ac,3 for every c ∈ Σ, from its smallest

element to its largest element. At the beginning, Ac,3 is empty for every c ∈ Σ. Then,

scan the elements I in B from smallest to largest, and add I to Ac,3, where c = λ(u)

for any u ∈ I (the definition of c does not depend on the choice of u). We scan B

only once, so this step takes O(|Q|) time. Analogously, we can build Ac,2 for every

c ∈ Σ by using B′.

We are only left with showing how to build Ac,1 for every c ∈ Σ. At the beginning,

each Ac,1 is empty, and we will build each Ac,1 from its smallest element to its largest

element. During this step of the algorithm, we will gradually mark the states u ∈ Q

such that τ(u) = 1. At the beginning of the step, no such state is marked, and at

the end of the step all these states will be marked. Let Σ = {c1, c2, . . . , cσ}, with

c1 ≺ c2 ≺ · · · ≺ cσ. Notice that it must be Qc1,1 = ∅, because if there existed

u ∈ Qc1,1, then it would be minu ≺ cω1 by Lemma 7.5 and so c1 would not be the

smallest character in Σ. Now, consider Qc1,2; we have already fully computed Ac1,2.

Process each I in Ac1,2 from smallest to largest, and for every ck ∈ Σ compute the

set Jk of all non-marked states v ∈ Q such that τ(v) = 1, λ(v) = ck, and (u, v) ∈ E

for some u ∈ I. Then, if Jk ̸= ∅ add Jk to Ack,1 and mark the states in Jk. After

processing the elements in Ac1,2, we process the element in Ac1,3, Ac2,1, Ac2,2, Ac2,3,

Ac3,1 and so on, in this order. Each Aci,t is processed from its (current) smallest

element to its (current) largest element. We never remove or modify elements in any

Ac,t, but we only add elements to the Ac,1’s. More precisely, when we process I in

Ac,t, for every ck ∈ Σ we compute the set Jk of all non-marked states v ∈ Q such that

τ(v) = 1, λ(v) = ck, and (u, v) ∈ E for some u ∈ I and, if Jk ̸= ∅, then we add Jk to

Ack,1 and we mark the states in Jk.

The following lemma shows that our approach is correct. Let us give some intu-

ition. A prefix of a min-partition C is a subset C ′ of C such that, if I, J ∈ C, I < J

and J ∈ C ′, then I ∈ C ′. Notice that every prefix of A is obtained by taking the

union of Ac1,2, Ac1,3, Ac2,1, Ac2,2, Ac2,3, Ac3,1, . . . in this order up to some element

Ac,t, where possibly we only pick a prefix of the last element Ac,t. Then, we will show
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that, when we process I in Ac,t, we have already built the prefix of A whose largest

element is I. This means that, for every v ∈ Jk and for any any occurrence (vi)i≥1 of

minv starting at v, it must hold that v2 is in I.

Lemma 7.27. Let D = (Q,E) be a DFA. If we know the min-partition of {u ∈

Q | τ(u) = 3}, then we can build the min-partition of Q in O(|E|) time.

Proof. We have seen that the algorithm correctly builds Ac,3 and Ac,2 for every c ∈ Σ.

Note that when the algorithm builds the Ac,1’s, it never modifies the Ac,2’s and the

Ac,3’s (because we only add elements to the Ac,1’s).

Let us prove that, when we consider I in Aci,t (and before computing the Jk’s),

then:

1. I is an element of A and we have already built the prefix of A whose largest

element is I.

2. every Ac,1 contains a prefix of Ac,1.

At the beginning of the algorithm we consider I in Ac1,t, with t ∈ {2, 3}, so our

claim is true because we have already built Ac1,2 and Ac1,3, and all the Ac,1’s are

empty.

Now, assume that our claim is true when we consider I ∈ Aci,t. We want to prove

that it is true when we process the next element (if it exists). When we consider I,

we compute the nonempty Jk’s, and we add each such Jk to Ack,1. We now want to

prove that Jk is correctly identified as the next element in Ack,1.

• First, let us prove that, if v1, v2 ∈ Jk, then minv1 = minv2 . Since v1, v2 ∈ Jk,

then there exist u1, u2 ∈ I such that (u1, v1), (u2, v2) ∈ E. Since by the inductive

hypothesis I is an element of A and we have already built the prefix of A whose

largest element is I and since v1 and v2 were not marked before, then it must

be minv1 = ck minu1 , minv2 = ck minu2 and minu1 = minu2 , so we conclude

minv1 = minv2 .

• We are only left with showing that if v1 ∈ Jk and v2 ∈ Qck,1 is not in some

element of Ack,1 after Jk is added to Ack,1, then minv1 ≺ minv2 . Let u1 ∈ I such

that (u1, u2) ∈ E; we have shown that minv1 = ck minu1 . The definition of v2
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implies that minv2 = ck minu2 for some u2 that we have not processed yet. Since

by the inductive hypothesis I is an element of A and we have already built the

prefix of A whose largest element is I, then it must be minu1 ≺ minu2 , and we

conclude minv1 ≺ minv2 .

Now, let us prove that, if after considering I in Aci,t, the next element to be considered

is not in Aci,t, then the construction of Ac1,t is complete. If t ∈ {2, 3} then the

conclusion is immediate because Aci,2 and Aci,3 had already been fully built. Now

assume that t = 1. Suppose for sake of contradiction that there exists v ∈ Qci,1 which

has not been added to some element in Aci,1. Without loss of generality, we choose

v such that minv is as small as possible. Since τ(v) = 1, then there exists u ∈ Q

such that (u, v) ∈ E and minu ≺ minv (and so λ(u) ⪯ λ(v) = ci). If λ(u) ≺ ci, then

we immediately obtain that u has already been processed (because we have already

built the prefix of A whose largest element is I) and so v should have already been

processed when u was processed, a contradiction. If λ(u) = ci, then by Corollary 7.6

we have τ(u) ≤ τ(v), so τ(u) = 1 and u ∈ Qci,1; the minimality of v implies that u

was previously added to some element of Aci,1 and so v should have been processed,

again a contradiction.

As a consequence, when we process the next element after I in Aci,t, then our

claim will be true (independently of whether the next element is in Aci,t or not). In

particular, if there is no next element, we conclude that all Ac,1’s have been built,

Lastly, we can build each Ac,1 in O(|E|) time, because we only need to scan each

state and each edge once.

7.7 The Complementary Case

We have shown that in O(n2) time we can reduce the problem of determining the min-

partition of Q to the problem of determining the min-partition of the set of all states

of a DFA having |{u ∈ Q | τ(u) = 3}| states. Now, we must show that (similarly)

in O(n2) time we can reduce the problem of determining the min-partition of Q to

the problem of determining the min-partition of the set of all states of a DFA having

|{u ∈ Q | τ(u) = 1}| states. The merging step will be more complex, because the
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order in which we will process the Ac,t will be from largest to smallest (Acσ ,2, Acσ ,1,

Acσ−1,3, Acσ−1,2, Acσ−1,1, Acσ−2,3 and so on) so we will need to update some elements

of some Ac,t’s to include the information about minima that we may infer at a later

stage of the algorithm.

We use the same notation that we used in the previous sections (with a comple-

mentary meaning) so that it will be easy to follow our argument.

7.8 The Complementary Case: the Recursive Step

For every u ∈ Q such that τ(u) = 1, let ℓu be the smallest integer k ≥ 2 such that

τ(uk) ≤ 2, where (ui)i≥1 is an occurrence of minu starting at u. For every 1 ≤ i ≤ ℓu,

we can define each Gi(u) as we did before; now, it will be τ(Gi(u)) = 3 for every

2 ≤ i ≤ ℓu − 1. In fact, when we explore the DFA starting from u in a backward

fashion and we (implicitly) build a prefix of minu, at each step it is still true that

we must consider the states with minimum value λ(v) and, among those, the states

with minimum value τ(v). This time, there is no chance that we include in Gi(u)

a state already included before: at every step, λ(Gi(u)) can only increase (because

τ(Gi(u)) = 3), so if there were a cycle, then all edges of the cycles would have the same

label and by Lemma 7.12 we would conclude τ(Gi(u)) ≤ 2 for some 2 ≤ i ≤ ℓu − 1,

a contradiction. The γu’s and the tu’s are defined as before, and Lemma 7.20 still

implies that Σ′ and ⪯′ must be defined as before. When we define D̄ = (Q̄, Ē), we

define Q̄ = {ū | τ(u) = 1} and we define Ē as before. It is easy to check that we can

build D̄ in O(|Q|2) time as before, and if we have the min-partition of Q̄ (with respect

to D̄), then we also have the min-partition of {u ∈ Q | τ(u) = 1} (with respect to D̄).

7.9 The Complementary Case: Merging

Let u ∈ Q such that τ(u) = 3. By Lemma 7.5, there exist k ≥ 1, c ∈ Σ and γ′ ∈ Σω

such that minu = λ(u)kcγ′ and λ(u) ≺ c. Then, we define ψ(u) = k.

In the following, we will often use the following observation. Let v ∈ Q such

that τ(v) = 3. Let u ∈ Q such that (u, v) ∈ E and minv = λ(v) minu. Then, (i)

λ(v) ⪯ λ(u) and (ii) if λ(v) = λ(u), then τ(u) = 3 and ψ(v) = ψ(u) + 1.

Note that, if u, v ∈ Q are such that τ(u) = τ(v) = 3, λ(u) = λ(v) and ψ(u) ̸= ψ(v),
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then minu ≺ minv if and only if ψ(v) < ψ(u).

It is easy to compute all ψ(u)’s in O(|E|) time. Start from each u ∈ Q such that

τ(u) = 3, and explore the DFA in a backward fashion by only following edges labeled

λ(u), until either we encounter a state for which we have already determined ψ(u), or

we cannot explore the graph any longer. For all the states u′ that we encounter it must

be τ(u′) = 3 (otherwise it would be τ(u) ̸= 3), and if we cannot explore any longer

from some u′ that we encounter, it must be ψ(u′) = 1. We cannot encounter the

same state twice because D is a DFA, and we cannot have cycles otherwise it would

be τ(u) ̸= 3 by Lemma 7.12. As a consequence, we have built a tree (where the root

u has no outgoing edges), and computing the ψ(u)’s is equivalent to computing the

height of each state.

Let us show how we can use the ψ(u)’s to determine the min-partition A of Q,

assuming that we already have the min-partition B of {u ∈ Q | τ(u) = 1}. As

before we have the min-partition B′ of {u ∈ Q | τ(u) = 2}. For every c ∈ Σ and for

every t ∈ {1, 2, 3}, we define Qc,t, Ac,t and Ac,t as before, and our problem reduces to

compute each Ac,t.

By using B and B′, we can compute the Ac,1’s and the Ac,2’s as before, so the

challenging part is to compute the Ac,3’s. Let Σ = {c1, c2, . . . , cσ}, with c1 ≺ c2 ≺

· · · ≺ cσ. During the algorithm, we will assign a number ψ(I) ≥ 1 to every element

I being in some Ac,3 at some point.

Notice that Acσ ,3 must be empty because otherwise we would conclude that cσ is

not largest character. This suggest that this time the order in which we process the

Ac,t’s must be Acσ ,2, Acσ ,1, Acσ−1,3, Acσ−1,2, Acσ−1,1, Acσ−2,3 and so on. Moreover, we

will build each Ac,t incrementally from its largest element to its smallest element (so

we will consider suffixes of min-partitions, not prefixes). This time we will not mark

states, but we will mark entries of the Ac,t’s to indicate that a state has been removed

from an element in Ac,t. Intuitively, this time we need to remove states because it will

be true that when we process I in Aci,t then we have already built the suffix (not the

prefix) of A whose largest element is I, but we are now building A from its largest

element to its smallest element, so a state reached by an edge leaving a state u in I

may also be reached by an edge leaving a state u′ that we have not processed, and

for which it holds minu′ ≺ minu.
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Assume that we process I in Aci,t. Note that if v ∈ Q is such that τ(v) = 3,

λ(v) = ck, and (u, v) ∈ E for some u ∈ I, then it must be k ≤ i otherwise τ(v) = 1;

if I is an element in the Ac,1’s or in the Ac,2’s, it must always be k < i because, if

it were k = i, then we would conclude τ(v) ̸= 3. For every k ≤ i, define ψI,k = 1

if k < i, and ψI,k = ψ(I) + 1 if k = i. We compute the set Jk of all states v ∈ Q

such that τ(v) = 3, λ(v) = ck, ψ(v) = ψI,k and (u, v) ∈ E for some u ∈ I and, if

Jk ̸= ∅, then (i) we mark the entries of Ack,3 containing an element in Jk and (ii)

we add Jk to Ack,3, letting ψ(Jk) = ψI,k. We assume that we maintain an additional

array that for every state in {u ∈ Q | τ(u) = 3} already occurring in some Ac,3 stores

its (unique) current position, so that operation (i) can be performed in constant time

without affecting the running time of the algorithm (which is still O(|E|)).

Notice that at any time the following will be true in each Ac,3: (a) if K is in

Ac,3, then ψ(K) ≥ 1; (b) if Ac,3 is nonempty, then the first K that we have added

is such that ψ(K) = 1; (c) If K ′ has been added to Ac,3 immediately after K, then

ψ(K) ≤ ψ(K ′) ≤ ψ(K) + 1; (d) If v ∈ K for some K in Ac,3, then ψ(v) = ψ(K).

Let us prove that, when we consider I in Aci,t (and before computing the Jk’s),

then I is an element of A and we have already built the suffix of A whose largest

element is I.

At the beginning of the algorithm we consider I in Acσ ,t, with t ∈ {1, 2}, so our

claim is true because we have already built Acσ ,2 and Acσ ,1.

Now, assume that our claim is true when we consider I in Aci,t. Let us prove that

we can consider the next element I ′ in Ac′i,t′ (if it exists), then I ′ is an element of A

and we have already built the suffix of A whose largest element is I ′. Notice that

either i′ = i or i′ = i− 1.

1. Assume that i′ = i and t′ = t. If t′ = t ̸= 3 we are done because we have already

built the Ac,2’s and the Ac,1’s. Now assume that t′ = t = 3. This implies that

ψ(I) + 1 ≤ ψ(I ′) ≤ ψ(I).

(a) Suppose that ψ(I ′) = ψ(I). First, let us prove that, if v1, v2 ∈ I ′, then

minv1 = minv2 . Let u1, u2 ∈ Q be such that (u1, v1), (u2, v2) ∈ E, minv1 =

ci minu1 and minv2 = ci minu2 . Since τ(v) = 3 we obtain that either (i)

ci ≺ λ(u1), or (ii) λ(u1) = ci, τ(u1) = 3 and ψ(u1) = ψ(I ′)− 1 = ψ(I)− 1.

In both cases, we conclude that u1 is an element K of the suffix of A whose
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largest element is I, which by the inductive hypothesis has been correctly

built, and so v1 is added to an element of Aci,t; v1 is never removed from

this element otherwise in Iv1 there would be a string smaller that minv1 .

As a consequence, it must also be u2 ∈ K, so by the inductive hypothesis

minu1 = minu2 and we conclude minv1 = minv2 .

We are only left with proving that, if v1 is neither in I ′, nor in the suffix

of A whose largest element is I, and if v2 ∈ I ′, then minv1 ≺ minv2 . The

conclusion is immediate if τ(vi) ̸= 3, so we can assume τ(vi) = 3. It

cannot be ci = λ(v2) ≺ λ(v1) otherwise v1 would be in the suffix of A

whose largest element is I. Since τ(vi) = 3, it cannot be λ(v1) = ci and

ψ(v1) < ψ(I), otherwise again v1 would be in the suffix of A whose largest

element is I. As a consequence, it must λ(v1) ⪯ ci and, if λ(v1) = ci,

then ψ(I ′) = ψ(I) ≤ ψ(v1). If λ(v1) ≺ ci, or λ(v1) = ci and ψ(I ′) <

ψ(v1), we immediately conclude minv1 ≺ minv2 . Hence, we can assume

λ(v1) = ci, τ(v1) = 3 and ψ(v1) = ψ(I ′). Let u1, u2 ∈ Q be such that

(u1, v1), (u2, v2) ∈ E, minv1 = ci minu1 and minv2 = ci minu2 . As before,

we must have already considered u1 and u2, but since v1 is not in I ′, by

construction it must be minu1 ≺ minu2 and so we conclude minv1 ≺ minv2 .

(b) Suppose that ψ(I ′) = ψ(I) + 1. Arguing as we did above we infer that all

v ∈ Vci,3 such that ψ(v) = ψ(I) are already in some element of the suffix

of A whose largest element is I. By using this information, the same proof

of the previous case shows that I ′ is correct.

2. Assume that i′ = i and t′ ≤ 2. Since we have already built the Ac,2’s and the

Ac,1’s, we only have to prove that, if t = 3, then all v ∈ Qci,3 are already in

some element of the suffix of A whose largest element is I. Assume for sake

of contradiction that this is not true for some v ∈ Qci,3, and choose v such

that ψ(v) is as small as possible. By arguing as before, we conclude (by the

minimality of ψ(v)) that v must be in some Aci,3; but since t′ ≤ 2, we conclude

that v must be in some element of the suffix of A whose largest element is I, a

contradiction.

3. Assume that i′ = i− 1 and t′ = 3. In particular, ψ(I ′) = 1. As in the previous
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case, we obtain that if t = 3, then all v ∈ Qci,3 are already in some element of the

suffix of A whose largest element is I. Moreover, Aci,2 and Aci,1 must necessarily

empty because we have already built them, and I ′ is not contained in any of

them. First, let us prove that, if v1, v2 ∈ I ′, then minv1 = minv2 . Let u1, u2 ∈ Q

be such that (u1, v1), (u2, v2) ∈ E, minv1 = ci−1 minu1 and minv2 = ci−1 minu2 .

Since τ(v) = 3 we obtain that either (i) ci−1 ≺ λ(u1), or (ii) λ(u1) = ci−1,

τ(u1) = 3 and ψ(u1) = ψ(I ′) − 1. However, case (ii) cannot occur because

ψ(I ′) = 1, so it must be ci−1 ≺ λ(u1), and we conclude that u1 is an element K

of the suffix of A whose largest element is I. As before, we conclude that also

u2 is in K, minu1 = minu2 and minv1 = minv2 .

We are only left with proving that, if v1 is neither in I ′, nor in the suffix of A

whose largest element is I, and if v2 ∈ I ′, then minv1 ≺ minv2 . The conclusion is

immediate if τ(vi) ̸= 3, so we can assume τ(vi) = 3. It cannot be ci−1 = λ(v2) ≺

λ(v1) otherwise v1 would be in the suffix of A whose largest element is I. It

cannot be λ(v1) = ci−1 and ψ(v1) < ψ(I ′), because ψ(I ′) = 1. As a consequence,

it must hold λ(v1) ⪯ ci−1 and, if λ(v1) = ci−1, then 1 = ψ(I ′) ≤ ψ(v1). If

λ(v1) ≺ ci−1, or λ(v1) = ci−1 and 1 = ψ(I ′) < ψ(v1), we immediately conclude

minv1 ≺ minv2 . Hence, we can assume λ(v1) = ci−1, τ(v1) = 3 and ψ(v1) =

ψ(I ′) = 1. Let u1, u2 ∈ Q be such that (u1, v1), (u2, v2) ∈ E, minv1 = ci−1 minu1

and minv2 = ci−1 minu2 . As before, we must have already considered u1 and u2,

but since v1 is not in I ′, by construction it must be minu1 ≺ minu2 and so we

conclude minv1 ≺ minv2 .

4. Assume that i′ = i − 1 and t′ ≤ 2. As before, we obtain that if t = 3, then all

v ∈ Vci,3 are already in some element of the suffix of A whose largest element is

I. Moreover, Aci,2 and Aci,1 must necessarily be empty because we have already

built them, and I ′ is not contained in any of them. Since we have already built

Aci−1,2 and Aci−1,1, we only have to prove that Aci−1,3 is empty. If it were not

empty, in particular there would exists v ∈ Vci−1,3 with ψ(v) = 1. If u ∈ Q is

such that (u, v) ∈ E and minv = ci−1 minu, then we conclude that it must be

ci−1 = λ(v) ≺ λ(u). Then, u must be in some element of the the suffix of A

whose largest element is I, so v would be in some element of Aci−1,3; but this is

a contradiction, because t′ ≤ 2.
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Lastly, if after considering I in Aci,t there is no element I ′ to consider, we can

check that every v ∈ Q is in some element of the suffix of A whose largest element is

I (and so have built A). Indeed, assume for the sake of contradiction that this is not

true. Consider the set S of all states v that do not satisfy these properties (it must

be τ(v) = 3); let S ′ ⊆ S be the set of all states v in S for which λ(v) is maximal, and

let S ′′ ⊆ S ′ be the set of all states v in S ′ for which ψ(v) is minimal. Pick any v ∈ S ′′,

and let u ∈ Q be such that (u, v) ∈ E and minv = λ(v) minu. As before, we obtain

that u must be in some element of the suffix of A whose largest element is I, so v

should be in some Ac,3 and there would be an element I ′ to consider, a contradiction.

7.10 The Final Algorithm

In the previous sections, given a DFA D = (Q,E), we have shown how to build the

min-partition of Q in O(n2) time. It is easy to check that, in O(n2) time, we can also

build the max-partition of Q. Indeed, we can build the max-partition of Q by simply

considering the transpose total order ⪯∗ of ⪯ (the one for which a ⪯∗ b if and only if

b ⪯ a) and building the min-partition. As a consequence, the algorithm to build the

max-partition is entirely symmetrical to the algorithm to build the min-partition.

We are now ready to prove Theorem 7.3. Let D1 = (Q1, E1) and D2 = (Q2, E2)

be two DFAs on the same alphabet (Σ,⪯), with Q1 ∩ Q2 = ∅. We must prove

that we can build the min/max partition of (Q1, Q2) in O((|Q1| + |Q2|)
2) time. We

compute τ(minu) for every u ∈ Q1 and we compute τ(maxu) for every u ∈ Q2. If

the number of values equal to 3 is smaller than the number of values equal to 1, then

(in time O(|Q1|
2 + |Q2|

2) = O((|Q1| + |Q2|)
2)) we build the DFAs D̄1 = (Q̄1, Ē1)

and D̄2 = (Q̄2, Ē2) as defined before, where Q̄1 = {ū | u ∈ Q1, τ(minu) = 3} and

Q̄2 = {ū | u ∈ Q2, τ(maxu) = 3}, otherwise we consider the complementary case

(which is symmetrical). When building D̄1 = (Q̄1, Ē1) and D̄2 = (Q̄2, Ē2), we define

a unique alphabet (Σ′,⪯′) obtained by jointly sorting the (γminu , tminu)’s and the

(γmaxu , tmaxu)’s, which is possible because Lemma 7.20 also applies to maxima. Note

that |Q̄1| + |Q̄2| ≤ (|Q1| + |Q2|)/2.

Assume that we have recursively obtained the min/max-partition of (Q̄1, Q̄2) with

respect to D̄1 and D̄2. This yields the min/max-partition of ({u ∈ Q1 | τ(minu) =

3}, {u ∈ Q2 | τ(maxu) = 3}). Then, we can build the min/max-partition of (Q1, Q2)
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by jointly applying the merging step, which is possible because both the merging step

for minima and the merging step for maxima require to build the Ac,1’s by processing

Ac1,2Ac1,3, Ac2,1, Ac2,2, Ac2,3, Ac3,1 and so on in this order.

Since we obtain the same recursion as before, we conclude that we can compute

the min/max partition of (Q1, Q2) in O((|Q1| + |Q2|)
2) time.



Chapter 8

Matching Statistics

In Chapter 4 we showed that the co-lex orders can be as a generalization of suffix

arrays from strings to automata. The suffix array of a string was introduced in 1990 by

Manber and Myers [88] as a replacement of the suffix tree of a string, a data structure

introduced by Weiner in 1973 [118]. Suffix arrays do not have the full functionality

of suffix trees, but they are more space-efficient, both in theory and in practice. The

natural question is whether it is possible to extend the suffix tree from strings to

automata. The “suffix tree” of an automaton is expected to store all the paths of

the automaton, so it is not clear how the suffix tree should be defined. Notably,

in this chapter we provide a first step towards extending suffix tree functionality to

automata.

The suffix array of a string can be augmented with some additional data structures

— notably, the longest common prefix (LCP) array — so that it is possible to retrieve

the full functionalities of a suffix tree [1]. All these components can be successfully

compressed, leading to the so-called compressed suffix trees [108]. As a consequence,

we may define the suffix tree of an automaton by extending the each component

from strings to automata. We have already extended the suffix array from strings

to automata, so here we will focus on introducing a notion of longest common prefix

(LCP) array automata. As a first step, we consider Wheeler DFAs, thus we will define

the LCP array of a Wheeler DFA (Definition 8.3).

A typical problem that can be efficiently solved by using the suffix tree of a string

is the problem of computing matching statistics. Indeed, in bioinformatics we are

not only interested in exact pattern matching, but also in a myriad of variations

of the pattern matching problem [71], and matching statistics were introduced to

solve the approximate pattern matching problem [31]. In particular, Ohlebusch et al.

[98] proposed a time- and space-efficient algorithm for computing matching statistics

that relies on some components of a compressed suffix tree, notably, the suffix array

164
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and the LCP array. As a consequence, we can use matching statistics to test our

definition of LCP array for Wheeler DFAs. In fact, we will show that the LCP array

of a Wheeler DFA allows efficiently computing matching statistics on a Wheeler DFA

(Theorem 8.1).

We have seen that the compressed suffix tree of a string contains a compressed

version of the LCP array. Storing explicitly the LCP array of a string would require

too much space; as expected, the same is true for the LCP array of a Wheeler DFA.

We will show that it is possible to sample some entries of the LCP array of a Wheeler

DFA in such a way that it is possible to quickly retrieve each entry, thus providing a

space-time tradeoff (Theorem 8.5), which in particular applies to matching statistics

(Theorem 8.6). We also show that our space-time tradeoff improves the navigation

of variable-order de Bruijm graphs [20], which are used in bioformatics for Eulerian

sequence assembly [75, 101] (Theorem 8.8).

8.1 Matching Statistics on Strings

The matching statistics of a pattern π = π[1..m] with respect to a string S = S[1, n]

are defined as follows. Assume that S[n] = $ ̸∈ Σ, where $ ≺ a for every a ∈ Σ.

Determining the matching statistics of π with respect to S means determining, for

1 ≤ i ≤ m, (i) the longest prefix π′ of π[i..m] which occurs in S, and (ii) the interval

corresponding to the set of all strings starting with π′ in the list of all lexicographically

sorted suffixes. We can describe (i) and (ii) by means of three values: the length ℓi

of π′, and the endpoints li and ri of the interval considered in (ii). For example, let

S = mississippi$ (see Figure 8.1), and π = stpissi. For i = 1, we have π′ = s, so

ℓ1 = 1 and [l1, r1] = [9, 12] (suffixes starting with s). For i = 2, we have π′ = ε, so

ℓ2 = 0 and [l2, r2] = [1, n] = [1, 12] (all suffixes start with the empty string). For

i = 3, we have π′ = pi, so ℓ3 = 2, and [l3, r3] = [7, 7] (suffixes starting with pi). For

i = 4, we have π′ = issi, so ℓ4 = 4, and [l4, r4] = [4, 5] (suffixes starting with issi).

One can proceed analogously for i = 5, 6, 7.

Let us show how to find the matching statistics of a pattern π with respect to a

string S. We describe an algorithm by Ohlebusch et al. [98] based on the backward

search (see Chapter 3). The algorithms computes the matching statistics using a

number of iterations linear in the length m of the pattern. We start from the end of
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i Sorted suffixes LCPS SAS
1 $ 12
2 i$ 0 11
3 ippi$ 1 8
4 issippi$ 1 5
5 ississippi$ 4 2
6 mississippi$ 0 1
7 pi$ 0 10
8 ppi$ 1 9
9 sippi$ 0 7
10 sissippi$ 2 4
11 ssippi$ 1 6
12 ssissippi$ 3 3

Figure 8.1: The sorted suffixes of “mississippi$” and the arrays LCPS and SAS. We
assume that $ is the smallest character.

π, and we use the backward search (starting from the interval [1, n] which corresponds

to the set of suffixes prefixed by the empty string) to find the interval of all occurrences

of the last character of π in S (if any). Then, starting from the new interval, we use

the backward search to find all the occurrences of the suffix of length 2 of π in S (if

any), and so on. At some point, it may happen that for some i ≤ m + 1 we have

that π[i..m] occurs in S, but the next application of the backward search returns the

empty interval, so that π[i−1..m] does not occur in S (the case i = m+1 corresponds

to the initial setting when π[i..m] is the empty string). We distinguish two cases:

• (Case 1) If li = 1 and ri = n, this means that all suffixes of S are prefixed by

π[i..m]. This may happen in particular if i = m+ 1, because then π[i..m] is the

empty string: this means that the first backward search has been unsuccessful.

We immediately conclude that character π[i−1] does not occur in S, so ℓi−1 = 0

and [li−1, ri−1] = [1, n] (because all suffixes start with the empty string). In

this case, in the following iterations of the algorithm, we can simply discard

π[i − 1,m]: when for i′ ≤ i − 2 we will be searching for the longest prefix of

π[i′,m] occurring in S, it will suffice to search for the longest prefix of π[i′, i−2]

occurring in S.

• (Case 2) If li > 1 or ri < n, this means that the number of suffixes of S starting

with π[i..m] is less than n. Now, every suffix starting with π[i..m] also starts
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with π[i..m− 1]. If the number of suffixes starting with π[i..m− 1] is equal to

the number of suffixes starting with π[i..m], then also π[i− 1..m− 1] does not

occur in S. More in general, for j ≤ m−1 we can have that π[i−1..j] occurs in

S only if the number of suffixes starting with π[i..j] is larger than the number of

suffixes starting with π[i..m]. Since we are interested in maximal matches, we

want j to be as large as possible: we will show later how to compute the largest

integer j such that the number of suffixes starting with π[i..j] is larger than the

number of suffixes starting with π[i..m]. Notice that j always exists, because

all n suffixes start with the empty string, but less than n suffixes start with

π[i..m]. After determining j we discard π[j+1..m] (so in the following iterations

of the algorithm we will simply consider π[1..j]), and we recursively apply the

backward search starting from the interval associated with the occurrences of

π[i..j] — we will also see how to compute this interval.

Let us apply the above algorithm to T = mississippi$ and π = stpissi. We start

with the interval [1, n] = [1, 12], corresponding to the empty pattern, and character

π[7] = i. A backward step yields the interval [l7, r7] = [2, 5] (suffixes starting with

i), so ℓ7 = 1. Now, we apply a backward step from [2, 5] and π[6] = s, obtaining

[l6, r6] = [9, 10] (suffixes starting with si), so ℓ6 = 2. Again, we apply a backward

step from [9, 10] and π[5] = s, obtaining [l5, r5] = [11, 12] (suffixes starting with ssi),

so ℓ5 = 3. Again, we apply a backward step from [11, 12] and π[4] = i, obtaining

[l4, r4] = [4, 5] (suffixes starting with issi), so ℓ4 = 4. We now apply a backward step

from [4, 5] and π[3] = p, and we obtain the empty interval. This means that no suffix

starts with pissi. Notice in Figure 8.1 that the number of suffixes starting with issi

is equal to the number of suffixes starting with iss or is, but the number of suffixes

starting with i is bigger. As a consequence, we consider the interval of all suffixes

starting with i — which is [2, 5] — and we apply a backward step with π[3] = p.

This time the backward step is successful, and we obtain [l3, r3] = [7, 7] (suffixes

starting with pi), and ℓ3 = 2. We now apply a backward step from [7, 7] and π[2] = t,

obtaining the empty interval. This means that no suffix starts with tpi. Notice in

Figure 8.1 that the number of suffixes starting with p is bigger than the number of

suffixes starting with pi. The corresponding interval is [7, 8], but a backward step

with π[2] = t is still unsuccessful (so no suffix starts with tp). The number of suffixes
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starting with p is smaller than the number of suffixes starting with the empty string

(which is equal to n = 12), so we apply a backward step with [1, 12] and π[2] = t.

Since the backward step is still unsuccessful, we conclude that π[2] = t does not occur

in S, so [l2, r2] = [1, n] = [1, 12] and ℓ2 = 0. Finally, we start again from the whole

interval [1, 12], and a backward step with π[1] = s returns [l1, r1] = [9, 12] (suffixes

starting with s), so ℓ1 = 1.

It is easy to see that the number of iterations is linear in m. Indeed, every time we

apply a backward step, either we move to the left across π to compute a new matching

statistic, or we increase by at least 1 the length of the suffix of π which is forever

discarded. This implies that the number of iterations is bounded by 2|π| = 2m.

We are only left with showing (i) how to compute j and (ii) the interval of all

suffixes starting with π[i..j] in Case 2 of the algorithm. To this end, we introduce the

longest common prefix (LCP) array LCPS = LCPS[2, n] of S. We define LCPS[i] to

be the length of the longest common prefix of the (i− 1)-st lexicographically smallest

suffix of S and the i-th lexicographically smallest suffix of S. In Figure 8.1 we have

LCPS[5] = 4 because the fourth lexicographically smallest suffix of S is issippi$, the

fifth lexicographically smallest suffix of S is ississippi$, and the longest common

prefix of issippi$ and ississippi$ is issi, which has length 4. Remember that in the

example the backward search starting from [4, 5] (suffixes starting with issi) and p

was unsuccessful, so computing j means determining the longest prefix of issi such

that the the number of suffixes starting with such a prefix is bigger than 2. This

is easy to compute by using the LCP array: the longest such prefix is the one of

length max{LCPS[4], LCPS[6]} = max{1, 0} = 1, so that the desired prefix is i. As a

consequence, we are only left with showing how to compute the interval of all suffixes

starting with the prefix i — which is [2, 5]. Notice that in order to compute this

interval, it is enough to expand the interval [4, 6] in both directions as long as the

LCP value does not go below 1. Since LCPS[4] = 1, LCPS[3] = 1, and LCPS[2] = 0,

and we already know that LCPS[6] = 0, we conclude that the desired interval is [2, 5].

In other words, given a position t, we must be able to compute the biggest integer

k less than t such that LCPS[k] < LCPS[t], and the smallest integer k bigger than

t such that LCPS[k] < LCPS[t] (in our case, t = 4). These queries are called PSV

(”previous smaller value”) and NSV (”next smaller value”) queries. The LCP array
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Figure 8.2: A Wheeler DFA. States are numbered according to their positions in the
Wheeler order.

can be augmented in such a way that PSV and NSV queries can be solved efficiently:

different space-time trade-offs are possible, we refer the reader to [98] for details.

8.2 The LCP Array and Matching Statistics for Wheeler DFAs

In the following, we fix a Wheeler DFA D = (Q, δ, s, F ), where we assume Q =

{u1, . . . , un}, with u1 < u2 < · · · < un in the Wheeler order (in particular, u1 coincides

with the initial state s). See Figure 8.2 for an example. Given a string π ∈ Σ∗, if

we start from the whole set of states and repeatedly apply the forward search (see

Section 4.4) we reach the set of all states ui for which there exists α ∈ Iui prefixed

by πR; this is an interval with respect to the Wheeler order: in the following we call

this interval T (π).

In view of Section 3.4, the problem of matching statistics will be defined in a

symmetrical way on Wheeler DFAs. Given a pattern π = π[1..m], for every 1 ≤ i ≤ m

we want to determine (i) the longest suffix π′ of π[1..i] which occurs in the Wheeler

DFA D (that is, that can be read somewhere on D by concatenating edges), and (ii)

the endpoints of the interval T (π′).

We will prove the following theorem.
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Theorem 8.1. We can augment the compact representation of a Wheeler DFA D

with O(n log n) bits, where n is the number of states, in such a way that we can

compute the matching statistics of a pattern of length m with respect to the Wheeler

DFA in O(m log n) time.

Broadly speaking, we can apply the same idea of the algorithm for strings, but

in a symmetrical way. We start from the beginning of π (not from the end of π),

and initially we consider the whole set of states. We repeatedly apply the forward

search (not the backward search), until the forward search returns the empty interval

for some i ≥ 0. This means that π[1..i + 1] does not occur in D. Then, if T (π[1..i])

is the whole set of states, we conclude that the character π[i + 1] labels no edge in

the graph. Otherwise, we must find the smallest j such that T (π[1..i]) is strictly

contained in T (π[j..i]) (that is, we must determine the longest suffix π[j..i] of π[1..i]

which reaches more states than π[1..i]). Then we must determine the endpoints of

the interval T (π[j..i]) so that we can go on with the forward search.

The challenge now is to find a way to solve the same subproblems that we identified

in Case 2 of the algorithm for strings. In other words, we must find a way to determine

j and find the endpoints of the interval T (π[j..i]). We will show that the solution is

not as simple as the one for the algorithm on strings. In particular, we need to define

a longest common prefix array of Wheeler DFAs. To this end, let us start with a

variant of Corollary 4.10 for Wheeler DFAs, bearing in mind that we consider infinite

string sorted in lexicographic order (see Section 2.1 and Section 2.2).

Lemma 8.2. Let i, j ∈ [1, n], with i < j. Let α ∈ Iui and β ∈ Iuj . Then, α ⪯ β.

Proof. Let f1, f2, . . . in [1, n] be such that (i) f1 = i, (ii) ufk ∈ δ(ufk+1
, α[k]) for

every k ≥ 1. Analogously, let g1, g2, . . . in [1, n] be such that (i) g1 = j, (ii) ugk ∈

δ(ugk+1
, β[k]) for every k ≥ 1. Since f1 < i < j = g1, from Axiom 1 we obtain

α[1] ⪯ maxλ(uf1 ) ⪯ minλ(ug1 ) ⪯ β[1]. If α[1] ≺ β[1], we immediately conclude that

α ≺ β. If α[1] = β[1], then from uf1 ∈ δ(uf2 , α[1]), ug1 ∈ δ(ug2 , β[1]), f1 < g1

and Axiom 2 we conclude f2 < g2. Analogously, from Axiom 1 we obtain α[2] ⪯

maxλ(uf2 ) ⪯ minλ(ug2 ) ⪯ β[2]. If α[2] ≺ β[2], we immediately conclude that α ≺ β,

otherwise by proceeding as before we obtain f3 < g3. By arguing inductively, either

at some point we conclude α ≺ β, or it must be α[k] = β[k] for every k ≥ 1 and so

α = β.
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Lemma 8.2 implies that:

min1 ⪯ max1 ⪯ min2 ⪯ max2 ⪯ · · · ⪯ maxn−1 ⪯ minn ⪯ maxn.

This suggests to generalize the LCP array as follows. Given α, β ∈ Σ∗ ∪ Σω, let

lcp(α, β) be the length of the longest common prefix of α and β (if α = β ∈ Σω,

define lcp(α, β) = ∞).

Definition 8.3. The longest common prefix (LCP) array of a Wheeler DFA D is the

array LCPD = LCPD[2, 2n] which contains the following 2n − 1 values as follows in

this order: lcp(min1,max1), lcp(max1,min2), lcp(min2,max2), . . . , lcp(maxn−1,minn),

lcp(minn,maxn).

From the above characterization of mini and maxi, one can prove that for every

entry either LCPD[i] = ∞ or LCPD[i] < 3n (it follows from Fine and Wilf Theorem

[59, 89]), and one can design a polynomial time algorithm to compute LCPD, but we

will not pursue this further here. In particular, each entry of LCPD can be stored by

using O(log n) bits, and so LCPD can be stored by using O(n log n) bits.

Unfortunately, the array LCPD alone is not sufficient for computing matching

statistics. Assume that T (π) = {ur, ur+1, . . . , us−1, us}, and that when we apply the

forward search by adding a character c, we obtain T (πc) = ∅. We must then de-

termine the largest suffix π′ of T (π) such that T (π) is strictly contained in T (π′).

Suppose that every string in Iur is prefixed by πR, and every string in Ius is pre-

fixed by πR. In particular, both minr and maxs are prefixed by πR. In this case,

we can proceed like in the algorithm for strings: the desired suffix π′ is the one

having length max{lcp(maxr−1,minr), lcp(maxs,mins+1)}, which can be determined

using LCPD. However, in general, even if some string in Iur must be prefixed by πR,

the string minr need not be prefixed by πR, and similarly maxs need not be prefixed

by πR. The worst-case scenario occurs when r = s. Consider Figure 8.2, and assume

that π = heba. Then, we have r = s = 3 (note that abeh### . . . is a string in Iu3

prefixed by πR). However, both min3 = abdg### . . . , and max3 = acei### . . . ,

are not prefixed by πR. Notice that lcp(max2,min3) = 3 and lcp(max3,min4) = 3,

but π′ is not the suffix of length 3 of π. Indeed, since min3 is only prefixed by the

prefix of πR of length 2, and max3 is only prefixed by the prefix of πR of length 1, we
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conclude that it must be |π′| = 2. In general, the desired suffix π′ is the one having

length |π′| given by:

max
{

min{lcp(maxr−1,minr),lcp(minr, π
R)},min{lcp(πR,maxs),lcp(maxs,mins+1)}

}

.

(8.1)

The above formula shows that, in order to compute π′, in addition to LCPD it suffices

to know the values lcp(minr, π
R) and lcp(πR,maxs) (π′ is a suffix of π, so it is deter-

mined by its length). We now show how our algorithm can efficiently maintain the

current pattern π, the set T (π) = {ur, ur+1, . . . , us−1, us} and the values lcp(minr, π
R)

and lcp(πR,maxs) during the computation of the matching statistics. We assume that

the input DFA is encoded with the rank/select data structures supporting the execu-

tion of a step of forward search in O(log log |Σ|) time (the encoding is simply a special

case of Theorem 4.47, see [61] for details). In addition, we will use the following result.

Lemma 8.4. Let A[1, n] be a sequence of values over an ordered alphabet Σ. Consider

the following queries: (i) given i, j ∈ [1..n], compute the minimum value in S[i..j],

and (ii) given t ∈ [1..n] and c ∈ Σ, determine the biggest k < t (or the smallest k > t)

such that A[k] < c. Then, A can be augumented with a data structure of 2n+o(n) bits

such that query (i) can be answered in constant time and query (ii) can be answered

in O(log n) time.

Proof. There exists a data structure of 2n + o(n) bits that allows to solve range

minimum queries in constant time [60], so using A we can solve queries (i) in constant

time. Now, let us show how to solve queries (ii). Let f1 be the answer of query (i) on

input i = ⌈t/2⌉ and j = t− 1. If f1 < c, then we must keep searching in the interval

[⌈t/2⌉, t− 1], otherwise, we must keep searching in the interval [1, ⌈t/2⌉− 1]. In other

words, we can answer a query (ii) by means of a binary search on [1, t − 1], which

takes O(log t) (and so O(log n)) time.

Notice that query (ii) can be seen as a variant of PSV and NSV queries. In

the following, we assume that the array LCPD has been augmented with the data

structure of Lemma 8.4.

At the beginning we have π = ε, so T (ε) = {1, 2, . . . , n} and trivially lcp(minr, π
R) =

lcp(πR,maxs) = 0. At each iteration we perform a step of forward search computing
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T (πc) given T (π); then we distinguish two cases according to whether T (πc) is empty

or not.

Case 1. T (πc) = {ur′ , ur′+1, . . . , us′−1, us′} is not empty. In that case πc will be-

come the pattern at the next iteration. Since we already have T (πc) we are left

with the task of computing lcp(minr′ , cπ
R) and lcp(cπR,maxs′). We only show how

to compute lcp(minr′ , cπ
R), the latter computation being analogous. Let k be the

smallest integer in [1, n] such that (uk, ur′) ∈ E. Notice that we can easily com-

pute k by means of standard rank/select operations on the compact data structure

used to encode D. Since ur′ ∈ T (πc), it must be k ≤ s. Moreover, the char-

acterization of minr′ that we described above implies that minr′ = cmink, hence

lcp(minr′ , cπ
R) = lcp(cmink, cπ

R) = 1 + lcp(mink, π
R). To compute lcp(mink, π

R) we

distinguish two subcases:

a) k > r, hence r < k ≤ s. Since ur, us ∈ T (π), there exist α ∈ Iur and β ∈ Ius

both prefixed by πR. But α ⪯ maxr ⪯ mink ⪯ mins ⪯ β, so mink is also

prefixed by πR, and we conclude lcp(mink, π
R) = |π|.

b) k ≤ r. In this case, we have mink ⪯ maxk ⪯ mink+1 ≺ maxk+1 ⪯ · · · ⪯ minr ≺

πR, and therefore lcp(mink, π
R) is equal to

min{lcp(mink,maxk), lcp(maxk,mink+1), lcp(mink+1,maxk+1), . . . , lcp(minr, π
R)}.

With the above formula we can compute lcp(mink, π
R) using query (i) of Lemma 8.4

over the range LCPD[2k, 2r − 1] and the value lcp(minr, π
R).

Case 2. T (πc) is empty. In this case at the next iteration the pattern will be largest

suffix π′ of π such that T (π) is strictly contained in T (π′) = {ur′′ , . . . , us′′}. We

compute |π′| using (8.1); if |π′| > lcp(minr, π
R) we set r′′ = r, otherwise we apply

query (ii) of Lemma 8.4 to find the rightmost entry r′′ in LCPD[2, 2r−1] smaller than

|π′|. Computing s′′ is analogous.

Given T (π′) = {ur′′ , ur′′+1, . . . , us′′−1, us′′}, where r′′ ≤ r, s ≤ s′′, and at least one

inequality is strict, we want to compute lcp(minr′′ , (π
′)R) and lcp((π′)R,maxs′′). We

only consider lcp(minr′′ , (π
′)R), the latter computation being analogous. We distin-

guish two subcases:

a) r′′ = r. Then lcp(minr′′ , (π
′)R) = lcp(minr, (π

′)R) = min{lcp(minr, π
R), |π′|}.
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b) r′′ < r. In particular, since ur′′ is the left endpoint of T (π′) and |T (π′)| ≥ 2,

one can prove like in Case 1a) that maxr′′ is prefixed by (π′)R. We immediately

conclude that lcp(minr′′ , (π
′)R) = min{lcp(minr′′ ,maxr′′), |π

′|}, which can be

immediately computed since lcp(minr′′ ,maxr′′) is a value stored in LCPD.

8.3 A Space-Time Trade-Off for the LCP Array

Theorem 8.1 states that, in order to efficiently compute matching statistics, we need

to augment the compact representation of a Wheeler DFA with the LCP array, which

requires O(n log n) bits. One drawback is that storing the LCP array often requires

less space. In a DFA, the number e of edges is at most σn, so from Theorem 4.47

we obtain that storing a Wheeler DFA requires O(e log σ) = O(nσ log σ) bits. If the

alphabet is small — that is, if σ log σ = o(log n) — then the number of required bits

is o(n log n); if σ = O(1), then the number of required bits is O(n). The latter case

is especially relevant in practice, because de Bruijn graphs [21] are the prototypes of

Wheeler graphs, and in bioinformatics de Bruijn graphs are defined over the constant-

size alphabet Σ = {A,C,G, T}.

Let us show that we can sample entries of the LCP array in such a way that, by

storing only a linear number of additional bits on top of the Wheeler graph, we can

compute each entry of the LCP array in logarithmic time, thus providing a space-time

trade-off. More precisely:

Theorem 8.5. We can augment the compact representation of a Wheeler DFA A

with O(n) bits (O(n log log σ) bits, respectively), where n is the number of states and

σ is the size of the alphabet, in such a way that we can compute each entry of the

LCP array of A in O(log n log log σ) time (O(log n) time, respectively).

From Theorem 8.1 and Theorem 8.5 we obtain the following space-time tradeoff

for computing matching statistics.

Theorem 8.6. We can augment the compact representation of a Wheeler DFA A with

O(n log log σ) bits, where n is the number of states and σ is the size of the alphabet,

in such a way that we can compute the matching statistics of a pattern of length m

with respect to the Wheeler DFA in O(m log2 n) time.
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Proof. Let us recall how the bounds in Theorem 8.1 are obtained. The space bound

is O(n log n) bits because we need to store LCPD. We also store a data structure to

solve range minimum queries on LCPD, which only takes O(n) bits. The time bound

O(m log n) follows from performing O(m) steps to compute all matching statistics. In

each of these O(m) steps, we may need to perform a binary search on LCPD. In each

step of the binary search, we need to solve a range minimum query once and we need

to access LCPD once, so the binary search takes O(log n) time per step. By Theorem

8.5, if we store only O(n log log σ) bits, we can access LCPD in O(log n) time, so the

time for the binary search becomes O(log2 n) per step and Theorem 8.6 follows.

In the remainder of the section we prove Theorem 8.5. The sampling mechanism

is obtained by conveniently defining an auxiliary graph from the entries of the LCP

array.

Let G = (V,H) be a finite (unlabeled) directed graph such that every node has

at most one incoming edge. For every v ∈ V and for every i ≥ 0, there exists at

most one node v′ ∈ V such that there exists a directed path from v′ to v having i

edges; if v′ exists, we denote it by v(i). Fix a parameter h ≥ 1. Let us prove that

there exists V (h) ⊆ V such that (i) |V (h)| ≤ |V |
h

and (ii) for every v ∈ V there

exists 0 ≤ i ≤ 2h − 2 such that v(i) is defined and either v(i) ∈ V (h) or v(i) has

no incoming edges or v(i) = v(j) for some 0 ≤ j < i. We build V (h) incrementally

following Algorithm 2. Let us prove that, at the end of the algorithm, properties

(i) and (ii) are true. For every v ∈ V (h), define Sv = {v, v(1), v(2), . . . , v(h − 1)},

which is possible because by construction if v ∈ V (h), then v(i) is defined for every

0 ≤ i ≤ h − 1. It must be v(i) ̸= v(j) for 0 ≤ i < j ≤ h − 1, so |Sv| = h.

If v, v′ ∈ V (h) and v ̸= v′, then by construction Sv and Sv′ are disjoint. As a

consequence, |V | ≥
∑

v∈V (h) |Sv| =
∑

v∈V (h) h = h|Vh| and so |Vh| ≤
|V |
h

, which proves

property (i). Let us prove property (ii). Pick v ∈ V ; we must prove that there exists

0 ≤ i ≤ 2h−2 such that v(i) is defined and either v(i) ∈ V (h) or v(i) has no incoming

edges or v(i) = v(j) for some 0 ≤ j < i. We distinguish three cases:

1. there exists i with 1 ≤ i ≤ h − 1 such that v(i − 1) is defined but v(i) is not

defined. Then, v(i− 1) has no incoming edges.

2. there exist i, j with 0 ≤ j < i ≤ h − 1 such that v(j) and v(i) are defined and
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Algorithm 2 Building V (h)

V (h)← ∅
U ← ∅
while there exists v ∈ V such that (a) v(i) is defined for 0 ≤ i ≤ h − 1, (b) v(i) ̸= v(j) for 0 ≤ j < i ≤ h − 1, (c)

v(i) ̸∈ U for 0 ≤ i ≤ h− 1 do

Pick such a v, add v(h− 1) to V (h) and add v(i) to U for every 0 ≤ i ≤ h− 1

end while

v(i) = v(j). In this case, the conclusion is immediate.

3. v(i) is defined for every 0 ≤ i ≤ h and v(i) ̸= v(j) for 0 ≤ j < i ≤ h− 1. Since

Algorithm 2 has terminated, then there exists 0 ≤ j ≤ h−1 such that v(j) ∈ U .

The construction of U implies that there exists v′ ∈ V and 0 ≤ j′ ≤ h− 1 such

that v(j) = v′(j′) and v′(h− 1) ∈ V (h). As a consequence v(h− 1 + j − j′) =

v(j)(h− 1 − j′) = (v′(j′))(h− 1 − j′) = v′(h− 1) ∈ V (h). Since j ≤ h− 1 and

j′ ≥ 0, we conclude h− 1 + j − j′ ≤ 2h− 2 and we are done.

Now, let us prove Theorem 8.5. For every 2 ≤ i ≤ j ≤ 2n, let RMQLCPD
(i, j)

be the position of a minimum in LCPD[i, j] (a range minimum query); we can store

a data structure of O(n) bits that solves queries RMQLCPD
(i, j) without accessing

LCPD [60]. Moreover, for every 1 ≤ i ≤ n, let pmin(i) be the smallest 1 ≤ i′ ≤ n

such that ui ∈ δ(ui′ ,minλ(ui)) and let pmax(i) be the largest 1 ≤ i′′ ≤ n such that

ui ∈ δ(ui′′ ,maxλ(ui)). The compact data structure storing the Wheeler DFA allows

computing pmin(i) and pmax(i) in O(log log σ) time, for every 1 ≤ i ≤ n.

Consider the entry LCPD[2i − 1] = lcp(maxi−1,mini), for 2 ≤ i ≤ n, and assume

that LCPD[2i− 1] ≥ 1. Let k = pmax(i− 1) and k′ = pmin(i). Since LCPD[2i− 1] ≥ 1,

then there exists a ∈ Σ such that maxi−1 = amaxk and mini−1 = amink′ . In

particular, (uk, ui−1, a) ∈ E and (uk′ , ui, a) ∈ E, so from Axiom 2 we obtain k < k′.

Moreover, we have LCPD[2i − 1] = lcp(maxi−1,mini) = lcp(amaxk, amink′) = 1 +

lcp(maxk,mink′). Notice that:

lcp(maxk,mink′) = min{lcp(maxk,mink+1), lcp(mink+1,maxk+1), . . . ,

= lcp(mink′−1,maxk′−1), lcp(maxk′−1,mink′)} =

= min{LCPD[2k + 1], LCPD[2k + 2], . . . , LCPD[2k′ − 2], LCPD[2k′ − 1]}.

Let j = RMQLCPD
(2k+1, 2k′−1). Then, LCPD[j] = min{LCPD[2k+1], LCPD[2k+

2], . . . , LCPD[2k′−2], LCPD[2k′−1]}, so LCPD[2i−1] = 1+LCPD[j] (we assume t+∞ =
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Figure 8.3: (a) A Wheeler DFA. States are numbered according to the Wheeler order.
(b) The array LCPD, and the values needed to compute G = (V,H). We assume that
a range minimum query returns the largest position of a minimum value. (c) The
graph G = (V,H), with V (⌈log n⌉) = V (4) = {v24, v32} (yellow states). (d) The data
structures that we store.
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Algorithm 3 Input: h ∈ [2, 2n]. Output: LCPD[h].

procedure main function(h)

Initialize a global bit array D[2, 2n] to zero ▷ D[2, 2n] marks the entries already considered

return lcp(h)

end procedure

procedure lcp(h)

D[h]← 1

if C[h] = 1 then ▷ The desired value has been sampled

return LCP
∗
A[rank(C, h)]

else if h is odd then

i← ⌈h/2⌉
if maxλ(ui−1)

≺ minλ(ui)
then

return 0

else

k ← pmax(i− 1)

k′ ← pmin(i)

j ← RMQLCPD
(2k + 1, 2k′ − 1)

if D[j] = 1 then ▷ We have already considered this entry before, so there is a cycle

return ∞
else

return 1 + lcp(j)

end if

end if

else

i← h/2

if minλ(ui)
≺ maxλ(ui)

then

return 0

else

k ← pmin(i)

k′ ← pmax(i)

j ← RMQLCPD
(2k, 2k′)

if D[j] = 1 then ▷ We have already considered this entry before, so there is a cycle

return ∞
else

return 1 + lcp(j)

end if

end if

end if

end procedure

∞ for every t ≥ 0), and we have reduced the problem of computing LCPD[2i− 1] to

the problem of computing LCPD[j]. In the following, let R(2i − 1) = j. Given

2 ≤ i ≤ n, we can compute j = R(2i − 1) in O(log log σ) time, because we can

compute k = pmax(i− 1) and k′ = pmin(i) in O(log log σ) time and we can compute j
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in O(1) time by means of a range minimum query.

We proceed analogously with the entries LCPD[2i] = lcp(mini,maxi), for 1 ≤ i ≤ n

(assuming that LCPD[2i] ≥ 1). Let k = pmin(i) and k′ = pmax(i); by the definitions of

pmin and pmax it must be k ≤ k′. Hence, LCPD[2i] = 1+ lcp(mink,maxk′) and similarly

lcp(mink,maxk′) = min{LCPD[2k], LCPD[2k + 1], . . . , LCPD[2k′ − 1], LCPD[2k′]}. Let

j = RMQLCPD
(2k, 2k′). In the following, let R(2i) = j. Given 1 ≤ i ≤ n, we can

compute j = R(2i) in O(log log σ) time. See Figure 8.3 for an example.

Now, consider the (unlabeled) directed graph G = (V,H) defined as follows. Let

V be a set of 2n − 1 nodes v2, v3, . . . , v2n. Moreover, vi ∈ V has no incoming

edge in G if R(i) is not defined, which happens if LCPD[i] = 0 (and so i is odd and

λ(ui−1) ̸= λ(ui)); vi ∈ V has exactly one incoming edge if R(i) is defined, namely,

(vR(i), vi). Note that v2i has an incoming edge for every 1 ≤ i ≤ n. Let h ≥ 1 be a

parameter. We know that there exists V (h) ⊆ V such that (i) |V (h)| ≤ |V |
h

and (ii)

for every vi ∈ V there exists 0 ≤ k ≤ 2h − 2 such that vi(k) is defined and either

vi(k) ∈ V (h) or vi(k) has no incoming edges or vi(k) = vi(l) for some 0 ≤ l < k.

Notice that if vi(k) = vi(l) for some 0 ≤ l < k, then LCPD[i] = ∞ (because there is

a cycle and so vi(k
′) is defined for every k′ ≥ 0). Let n′ = |V (h)|, and let LCP∗A[1, n′]

an array storing the value LCPD[i] for each vi ∈ V (h), sorted by increasing i. Since

n′ ≤ |V |
h

= 2n−1
h

, storing LCP∗A[1, n′] takes n′O(log n) = O(n logn
h

) bits. We store a

bitvector C[2, 2n] such that C[i] = 1 if and only if vi ∈ V (h) for every 2 ≤ i ≤ 2n; we

augment C with o(n) bits so that it supports rank queries in O(1) time. For every

2 ≤ i ≤ 2n, in O(1) time we can check whether LCPD[i] has been stored in LCP∗A by

checking whether C[i] = 1, and if C[i] = 1 it must be LCPD[i] = LCP∗A[rank(C, i)].

From our discussion, it follows that Algorithm 3 correctly computes LCPD[i] for

every 2 ≤ i ≤ n. Property (ii) ensures that the function lcp is called at most h

times. Every call requires O(log log σ) time, so the running time of our algorithm is

O(h log log σ) (the initialization of D[2, 2n] in Algorithm 3 can be simulated in O(1)

time [95]). We conclude that we store O(n + n logn
h

) bits, and in O(h log log σ) time

we can compute LCPD[i] for every 2 ≤ i ≤ n.

By choosing h = ⌈ logn
log log σ

⌉, we conclude that our data structure can be stored

using O(n log log σ) bits and it allows to compute LCPD[i] for every 2 ≤ i ≤ n in

O(log n) time. By choosing h = ⌈log n⌉ we conclude that our data structure can
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be stored using O(n) bits and it allows to compute LCPD[i] for every 2 ≤ i ≤ n in

O(log n log log σ) time, thus proving Theorem 8.5.

8.4 An Application: Variable-order de Bruijn Graphs

Let us show an application of our sampling mechanism for the LCP array (Theorem

8.5). Let k ≥ 0 be a parameter, and let S be a set of strings on the alphabet

Σ = {A,C,G, T} (in this application we always assume σ = O(1)). The k-th order

de Bruijn graph of S is defined as follows. The set of nodes is the set of all strings

of Σ of length k that occur as a substring of some string in S. There is an edge from

node α to node β labeled c ∈ Σ if and only if (i) the suffix of α of length k − 1 is

equal to the prefix of β of length k − 1 and (ii) the last character of β is c. If some

node α has no incoming edges, then we add nodes $iαk−i for 1 ≤ i ≤ k, where αj is

the prefix of α of length j and $ is a special character, and we add edges as above;

see Figure 8.4 for an example.

Wheeler DFAs are a generalization of de Bruijn graphs (we do not need to define

an initial state and a set of final states, because here we are not interested in studying

the applications of de Bruijn graphs and Wheeler automata to automata theory); the

Wheeler order is the one such that node α comes before node β if and only if the string

αR is lexicographically smaller than the string βR [61]. In particular, the compact

representation of a Wheeler graph is a generalization of the BOSS representation of

a de Bruijn graph [21], and our results on the LCP array also apply to a de Bruijn

graph.

Notice that, in a k-th order de Bruijn graph G, all strings that can be read from

node α by following edges in a backward fashion start with αR (as usual, we assume

that node $$$ has a self-loop labeled $). As a consequence, it holds LCPG[2i] ≥ k for

every 1 ≤ i ≤ n and LCPG[2i − 1] ≤ k − 1 for every 2 ≤ i ≤ n (so any value in an

odd entry is smaller than any value in an even entry).

Many assemblers [11, 100, 84, 113] consider all k-mers occurring in a set of reads

and build a k-th order de Bruijn graph (on the alphabet Σ = {A,C,G, T}) to perform

Eulerian sequence assembly [75, 101]. However, the choice of the parameter k impacts

the assembly quality, so some assemblers try several choices for k [11, 100], which

slows down the process because several de Bruijn graphs need to be built. In [20]
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(a)

i Node LCPG[i] k k′ R(i)
1 $$$
2 CGA 0 - - -
3 $TA 1 9 9 9
4 GAC 0 - - -
5 TAC 2 3 3 3
6 GTC 1 4 11 9
7 ACG 0 - - -
8 TCG 2 6 6 6
9 $$T 0 - - -
10 ACT 1 2 4 4
11 CGT 1 6 7 7

(b)

v9

v3

v6

v5

v8

v4 v10

v7 v11

v2

(c)

i C[i] LCP
∗
G

1 1
2 0 2
3 1 1
4 0 1
5 0
6 0
7 0
8 1
9 0
10 1
11 1

(d)

Figure 8.4: The 3-rd order de Bruijn graph for the set S =
{CGAC,GACG,GACT, TACG,GTCG,ACGA,ACGT, TCGA,CGTC} from
[20]. We proceed like in Figure 8.3 (now we only consider odd entries of LCPG, and
h = ⌈log k⌉ = 2).

it was shown that the k-order de Bruijn graph of S can be used to implicitly store

the k′-th order de Bruijn graph of S for every k′ ≤ k, thus leading to a variable-

order de Bruijn graph. The challenge is to navigate this implicit representation (that

is, how to follow edges in a forward or backward fashion). In [20], it was shown

that the navigation is possible by storing or by simulating an array LCPG which

can be seen as a simplification of the LCP array of the Wheeler graph G. More

precisely, the navigation of a variable-order de Bruijn graph is possible by storing or

by simulating the values in the odd entries of the LCP array. Formally, we define

LCPG[i] = LCPG[2i−1] for every 2 ≤ i ≤ n; see Figure 8.4. Note that LCPG[i] ≤ k−1

for every 2 ≤ i ≤ n, so LCPG can be stored by using O(n log k) bits. Notice that

Theorem 8.5 also applies to LCPG[i] (we do not need to store values in the even entries

because a value in an odd entry is smaller than a value in an even entry, so even entries

are never selected in the sampling process when answering a range minimum query
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on LCPG). Then, we have the following result (see [20]; we assume σ = O(1)).

Theorem 8.7. 1. We can augment the BOSS representation of a k-th order de

Bruijn graph with O(n log k) bits, where n is the number of nodes, so that the

underlying variable-order de Bruijn graph can be navigated in O(log k) time per

visited node.

2. We can augment the BOSS representation of a k-th order de Bruijn graph with

O(n) bits, where n is the number of nodes, so that the underlying variable-order

de Bruijn graph can be navigated in O(k log n) time per visited node.

Essentially, the first solution in Theorem 8.7 explicitly stores LCPG, while the

second solution in Theorem 8.7 computes the entries of LCPG by exploiting the BOSS

representation. In general, a big k (close to the size of the reads) allows to retrieve

the expressive power on an overlap graph [44], so in Theorem 8.7 we cannot assume

that k is small. On the one hand, the space required for the first solution can be

too large, because a de Bruijn graph can be stored by using only O(n) bits. On the

other hand, the time bound in the second solution increases substantially. We can

now improve the second solution by providing a data structure that achieves the best

of both worlds.

Theorem 8.8. We can augment the BOSS representation of a k-th order de Bruijn

graph with O(n) bits, where n is the number of nodes, so that the underlying variable-

order de Bruijn graph can be navigated in O(log k log n) time per visited node.

As in the proof of Theorem 8.5, we can conveniently sample some entries of LCPG.

However, we can now choose a better parameter h ≥ 1 in our sampling process.

Indeed, each entry of LCPG can be stored by using O(log k) bits (not O(log n) bits),

so if we choose h = ⌈log k⌉, we conclude that we can augment the BOSS representation

of a de Bruijn graph with O(n) bits such that for every 2 ≤ i ≤ n we can compute

LCPG[i] in O(log k) time.

The first solution in Theorem 8.7 consists in storing a wavelet tree on LCPG,

which requires O(n log k) bits and allows to navigate the graph in O(log k) time

per visited node. The second solution in Theorem 8.7 does not store LCPG at all;

whenever needed, an entry of LCPG is computed in O(k) time by exploiting the
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BOSS representation of the de Bruijn graph. The second solution only stores a data

structures of O(n) bits to solve range minimum queries. The details can be found in

[20]. Essentially, the time bound O(k log n) comes from performing binary searches

on LCPG while explicitly computing an entry of LCPG at each step in O(k) time.

However, we have seen that, while staying within the O(n) space bound, we can

augment the BOSS representation so that we can compute the entries of LCPG in

O(log k) time, so the time bound O(k log n) becomes O(log k log n), which implies

Theorem 8.8.



Chapter 9

Conclusion

In the previous chapter, we mentioned some open problems. For example, in Chapter

7 we described a recursive algorithm for building the maximum co-lex order more

efficiently, but we still do not know whether is possible to reach linear time. It looks

even more challenging to understand whether the maximum co-lex relation can be

determined in subquadratic time (see Theorem 6.17). From a theoretical perspective,

we do not whether the Hasse automaton can be effectively built (see Section 5.4),

and we do not know whether the paradigm that we presented in this thesis can be

extended to other formalisms (such as ω-regular languages and tree languages). Our

results can also have didactic implications: Chapter 3 suggests that the Burrows-

Wheeler Transform of a string can be introduced more naturally if one interprets a

string as a graph.

In the next sections, we briefly sketch how our results can find applications in

different areas, and we outline some partial results. We remark that before the PhD

defense the results sketched in Section 9.1 were accepted for publication [37].

9.1 Generalized Automata

In his monumental work [47] on automata theory (which dates back to 1974), Eilen-

berg proposed a natural generalization of NFAs where edges can be labeled not only

with characters but with (possibly empty) finite strings, the so-called generalized

non-deterministic finite automata (GNFAs), which can represent regular languages

more concisely than classical automata. The problem of studying the notion of deter-

minism in the setting of generalized automata was approached by Giammaresi and

Montalbano [64, 63], who defined generalized deterministic finite automata (GDFAs)

who showed that there can exist two or more non-isomorphic state-minimal GDFAs

recognizing a given regular language. The non-uniqueness of a state-minimal GDFA

seems to imply a major difference in the behavior of generalized automata compared

184
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to conventional automata, so it looks like there is no hope of deriving a structural

result like the Myhill-Nerode theorem in the model of the generalized automata. We

have some results showing that, in fact, the lack of uniqueness can be explained by

introducing a set of strings W . Once we fix a language L and a set W , we can re-

trieve a full Myhill-Nerode theorem; in particular, our results contain the textbook

Myhill-Nerode theorem as a degenerate case, because W must necessarily be equal to

Pref(L) if we consider conventional automata. The set W is also the starting point

for extending the results in Chapter 4 (Suffix array, Burrows-Wheeler Transform and

FM-index) from conventional automata to generalized automata. In fact, generalized

automata also play a role in data compression. It is common to consider edge-labeled

graphs where one compresses unary paths in the graph to save space and the path is

replaced by a single edge labeled with the concatenation of all labels. For example,

some common data structures that are stored using this mechanism are Patricia trees,

suffix trees and pangenomes [96, 8, 93].

9.2 Suffix Trees of Automata

In Chapter 8, we presented some results that go in the direction of extending the full

functionality of suffix trees to automata. To this end, we are expected to face three

challenges:

1. We need to extend the results from Wheeler DFAs to arbitrary automata (all

results in Chapter 8 only apply to Wheeler DFAs)

2. We need to improve running times (the algorithm for finding matching statis-

tics on Wheeler DFA is less efficient than the algorithm for finding matching

statistics with respect to a string).

3. We need to support all suffix trees query (finding matching statistics on Wheeler

DFAs only requires supporting the parent operation in a suffix tree, but a fully-

functional suffix tree should also support other operations such as child, suffix

link, Weiner link and so on [96]).

We have some preliminary results. In Theorem 8.1, we saw that we can find matching

statistics on a Wheeler DFA in O(m log n) time, where n is the number of states and



186

m is the length of the pattern. Our results show that, in fact, it is possible to find

matching statistics on arbitrary Wheeler NFAs in O(m log log σ) time, where σ is

the size of the alphabet. In particular, we can extend the notion of LCP array to

arbitrary Wheeler NFAs. We believe that, by suitably defining the LCP array for

an arbitrary NFA, it is possible to compute matching statistics on arbitrary NFAs

within the same time bound of Theorem 4.47. This is similar to what happens on

strings: the suffix array of a string supports exact pattern matching, and the suffix

trees of a string supports several variants of the pattern matching problems (including

computing matching statistics) as efficiently as exact pattern matching.

9.3 Regular Expressions

The class of Wheeler languages admits a number of remarkable properties: (i) non-

determinism and determinism have the same expressive power, (ii) every Wheeler

language is recognized by a minimum DFA and (iii) there exists an algebraic charac-

terization of Wheeler languages in terms of convex equivalence relations [5]. However,

we still do not have a characterization in terms of regular expressions: in other words,

we do not have a Kleene theorem for Wheeler languages [74]. The main challenge

seems to be that Wheeler languages are not closed under concatenation due to their

co-lexicographic structure [5]. More generally, we do not know how to define regular

expressions for each level of the hierarchy of regular languages that we introduced

in this thesis. Since our hierarchy captures all regular languages (and we saw in the

introduction that in the literature there are only few parameterizations of the class

of regular languages), a characterization in terms of regular expressions could shed

new light on the generalized star-height problem, which is probably the most famous

open problem in formal language theory.



Appendix A

Partitions and Orders

This chapter is devoted to the proof of Theorem 5.14 and to other useful properties of

entangled convex sets. All these results follow from general results valid for arbitrary

total orders and partitions. From now on, we fix a total order (Z,≤) and a finite

partition P = {P1, . . . , Pm} of Z. We first give a notion of entanglement, with respect

to P , for subsets X ⊆ Z. The main result of this section, Theorem A.5, states that

there always exists a finite, ordered partition V of Z composed of entangled convex

sets.

It is convenient to think of the elements of P as letters of an alphabet, forming

finite or infinite strings while labelling element of Z. A finite string P1 . . . Pk ∈ P∗ is

said to be generated by X ⊆ Z, if there exists a sequence x1 ≤ · · · ≤ xk of elements

in X such that xj ∈ Pj, for all j = 1, . . . , k. We also say that P1 . . . Pk occurs in X

at x1, . . . , xk. Similarly, an infinite string P1 . . . Pk · · · ∈ Pω is generated by X ⊆ Z

if there exists a monotone sequence (xi)i∈N of elements in X such that xj ∈ Pj, for

all j ∈ N. Notice that if X is a finite set, then there exists an index i0 such that for

every i ≥ i0 it holds Pi = Pi0 . We can now re-state the notion of entanglement in

this, more general, context.

Definition A.1. Let (Z,≤) be a total order, let P be a partition of Z, and let X ⊆ Z.

1. We define PX = {P ∈ P : P ∩X ̸= ∅}.

2. If P ′ = {P1, . . . , Pm} ⊆ P , we say that P ′ is entangled in X if the infinite string

(P1 . . . Pm)ω is generated by X.

3. We say that X is entangled if PX is entangled in X.

The property of X being entangled is captured by the occurrence of an infinite

string (P1 . . . Pm)ω. In fact, as proved in the following lemma, finding (P1 . . . Pm)k for

arbitrarily big k is sufficient to guarantee the existence of (P1 . . . Pm)ω.
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Lemma A.2. Let (Z,≤) be a total order, let P be a partition of Z, let X ⊆ Z, and

let P ′ = {P1, . . . , Pm} ⊆ P. The following are equivalent:

1. For every k ∈ N, the string (P1 . . . Pm)k is generated by X.

2. (P1 . . . Pm)ω is generated by X.

Proof. The nontrivial implication is (1) ⇒ (2). If m = 1, then by choosing k = 1 we

obtain that there exists x ∈ X such that x ∈ P1, so (P1)
ω occurs in X, as witnessed

by the monotone sequence (xi)i∈N such that xi = x for every i ∈ N. Thus, in the

following we can assume m ≥ 2. This implies that for every k, if (P1 . . . Pm)k occurs

in X at x1, x2, . . . , xmk
, then x1 < x2 < · · · < xmk

, that is, the inequalities are

strict. If (1) holds, we prove that we can find an infinite family (Yi)i≥1 of pairwise

disjoint subsets of X, each containing an occurrence of (P1 . . . Pm), such that for

every pair of distinct integers i, j it holds either Yi < Yj (that is, each element in Yi

is smaller than each element in Yj) or Yj < Yi. This will imply (2), because if the set

{i ≥ 1|(∀j > i)(Yi < Yj)} is infinite, then (2) is witnessed by an increasing sequence,

and if {i ≥ 1|(∀j > i)(Yi < Yj)} is finite, then (2) is witnessed by a decreasing

sequence.

Let us show a recursive construction of (Yi)i≥1. We say that ⟨X1, X2⟩ is a split of X

if {X1, X2} is a partition of X and X1 < X2. Given a split ⟨X1, X2⟩ of X, we claim

that (1) must hold for either X1 or X2 (or both). In fact, reasoning by contradiction,

assume there exists k̄ such that the string (P1 . . . Pm)k̄ is neither generated by X1 nor

by X2. This promptly leads to a contradiction, since (P1 . . . Pm)2k̄ is generated by X

and hence,if (P1 . . . Pm)k̄ is not generated by X1, then it must be generated by X2.

Now consider an occurrence of (P1 . . . Pm)2 generated by X and a split ⟨X1, X2⟩ such

that (P1 . . . Pm) is generated by X1 and (P1 . . . Pm) is generated by X2. Now, if (1)

holds for X1, then define Y1 = X2 and repeat the construction using X1 instead of X.

If (1) holds for X2, then define Y1 = X1 and repeat the construction using X2 instead

of X. We can then recursively define a family (Yi)i≥1 with the desired properties.

We now introduce the notion of an entangled convex decomposition, whose aim is

to identify entangled regions of (Z,≤) with respect to a partition P .

Definition A.3. Let (Z,≤) be a total order and let P be a partition of Z. We say

that a partition V of Z is an entangled, convex decomposition of P in (Z,≤) (e.c.
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decomposition, for short) if all the elements of V are entangled (w.r.t. the partition

P) convex sets in (Z,≤).

Example A.4. Consider the total order (Z,≤), where Z is the set of all integers

and ≤ is the usual order on Z. Let P = {P1, P2, P3} be the partition of Z defined as

follows:

P1 = {n ≤ 0 : n is odd} ∪ {n > 0 : n ≡ 1 mod 3}

P2 = {n ≤ 0 : n is even} ∪ {n > 0 : n ≡ 2 mod 3},

P3 = {n > 0 : n ≡ 0 mod 3}

The partition P generates the following trace over Z:

. . . P1P2P1P2 . . . P1P2P1P2P3P1P2P3 . . .

Now define V = {V1, V2}, where V1 = {n ∈ Z : n ≤ 0}, V2 = {n ∈ Z : n > 0}. It

is immediate to check that V is an e.c. decomposition of P in (Z,≤). More trivially,

even V ′ = {Z} is an e.c. decomposition of P in (Z,≤).

Below we prove that if P is a finite partition, then there always exists a finite e.c.

decomposition of P .

Theorem A.5. Let (Z,≤) be a total order, and let P = {P1, . . . , Pm} be a finite

partition of Z. Then, P admits a finite e.c. decomposition in (Z,≤).

Proof. We proceed by induction on m = |P|. If m = 1, then P = {Z}, so {Z} is

an e.c. decomposition of P in (Z,≤). Assume m ≥ 2 and notice that we may also

assume that the sequence (P1 . . . Pm)ω is not generated by Z, otherwise the partition

V = {Z} is a finite e.c. decomposition of P in (Z,≤) and we are done. Since

(P1 . . . Pm)ω is not generated by Z, for any permutation π of the set {1, . . . ,m} the

sequence (Pπ(1), . . . , Pπ(m))
ω is not generated by Z and therefore, by Lemma A.2, for

any π there exists an integer sπ such that (Pπ(1), . . . , Pπ(m))
sπ is not generated by Z.

Using this property we prove that there exists a finite partition V of Z into convex

sets such that for every V ∈ V and every π, the string (Pπ(1), . . . , Pπ(m))
2 does not

occur in V .

Consider Algorithm 4. The algorithm starts with V = {Z} and recursively parti-

tions a V in V into two nonempty convex sets as long as (Pπ(1), . . . , Pπ(m))
2 occurs in
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Algorithm 4
1: V ← {Z}; ▷ initialise the partition

2: for π permutation of {1, . . . ,m} do
3: while exists an element in V generating (Pπ(1) . . . Pπ(m))

2 do

4: let V ∈ V generating (Pπ(1) . . . Pπ(m))
2;

5: V ← V \ V ;

6: let α1 < · · · < αm < α′
1 < · · · < α′

m in V be such that αj , α
′
j ∈ Pπ(j), for j = 1, . . . ,m;

7: V ← V ∪ {{α ∈ V | α ≤ αm}, {α ∈ V | α > αm}};
8: end while

9: end for

10: return V

V . Notice that the algorithm ends after at most
∑

π sπ iterations, returning a finite

partition V of Z into convex sets.

Now fix V ∈ V and consider the partition P|V = {P ∩ V | P ∈ P ∧ P ∩ V ̸= ∅} =

{P ∩ V | P ∈ PV } of V , where PV is as in Def. A.1 and |P|V | ≤ m. To complete the

proof it will be enough to prove that P|V admits a finite e.c. decomposition in (V,≤)

because then a finite e.c. decomposition of P in (Z,≤) can be obtained by merging

all the decompositions of P|V , for V ∈ V .

If |P|V | < m, then P|V admits an e.c. decomposition by inductive hypothesis.

Otherwise, |P|V | = m, say P|V = {P ′1, . . . , P
′
m}. By construction, we know that for

any permutation π of {1, . . . ,m} the string (P ′π(1), . . . , P
′
π(m))

2 does not occur in V .

Example A.6 below may help with an intuition for the rest of the argument. Let k ≥ 1

be the number of distinct permutations π of {1, . . . ,m} such that (P ′π(1), . . . , P
′
π(m))

occurs in V . We proceed by induction on k. If k = 1, then each set P ′j is convex and

trivially entangled, so {P ′j | 1 ≤ j ≤ m} is an e.c. decomposition of P|V in (V,≤).

Now assume k ≥ 2 and fix a permutation π such that (P ′π(1), . . . , P
′
π(m)) occurs in V .

Define:

V1 = {α ∈ V | ∃ α1, . . . , αm with α ≤ α1 < · · · < αm and αi ∈ P ′π(i) }

and V2 = V \ V1. Let us prove that V1 and V2 are nonempty. Just observe that if

α1, . . . , αm is a witness for (P ′π(1), . . . , P
′
π(m)) in V , then α1 ∈ V1. Moreover, αm ∈

V \V1 = V2, otherwise, since m > 1 and P ′π(1) ̸= P ′π(m), the sequence (P ′π(1), . . . , P
′
π(m))

2

would occur in V . The previous observation implies also that (P ′π(1), . . . , P
′
π(m)) does

not occur in V1, nor in V2. Moreover V1 and V2 are clearly convex. To conclude

it will suffice to prove that the Vi-partition P|Vi = {P ∩ Vi | P ∈ P|V , P ∩ Vi ̸=
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∅} admits a finite e.c. decomposition in (Vi,≤), for i = 1, 2. For any given i, if

|P|Vi | < m, we conclude by the inductive hypothesis on m. If, instead, |P|Vi | = m, say

P|Vi = {P ′′1 , . . . , P
′′
m}, we use the inductive hypothesis on k: the number of distinct

permutations π′ of {1, . . . ,m} such that (P ′′π′(1), . . . , P
′′
π′(m)) occurs in Vi is less than

k, since (P ′π(1), . . . , P
′
π(m)) occurs in V while (P ′′π(1), . . . , P

′′
π(m)) does not occur in Vi.

Example A.6. We give an example of the final part of the construction described

in Theorem A.5. Suppose P|V = {P ′1, P
′
2, P

′
3} leaves the following trace over (V,≤):

(P ′1P
′
2)
ω(P ′3P

′
2)
ω(P ′1)

ω(P ′2)
ω

Notice that, as assumed in the last part of the above proof, for any permutation π of

{1, 2, 3} the sequence (P ′π(1)P
′
π(2)P

′
π(3))

2 does not appear in V ; however, the sequence

(P ′π(1)P
′
π(2)P

′
π(3)) appears in V for π = id. If we fix π = id and consider the sets V1, V2

as in the above proof, then the partition P|V leaves the following traces on the sets

V1, V2:

(P ′1P
′
2)
ω and (P ′3P

′
2)
ω(P ′1)

ω(P ′2)
ω,

respectively. Notice that P ′3 does not appear in V1, while the sequence (P ′1P
′
2P
′
3) does

not appear in V2, so that the inductive hypothesis can be applied.

We say that an e.c. decomposition of P in (Z,≤) is a minimum-size e.c. decompo-

sition if it has minimum cardinality. As shown in the following remark, minimum-size

e.c. decompositions ensure additional interesting properties.

Remark A.7. Let (Z,≤) be a total order, let P be a finite partition of Z, and let

V = {V1, . . . , Vr} be a minimum-size e.c. decomposition of P in (Z,≤), where V1 <

· · · < Vr. Then, for every 1 ≤ i < r, we have PVi ̸⊆ PVi+1
, where PVi = {P ∈

P | P ∩ Vi ̸= ∅} (see Definition A.1). In fact, if this were not the case, V ′ =

{V1, . . . , Vi−1, Vi ∪ Vi+1, . . . Vr} would be a smaller size e.c. decomposition of P in

(Z,≤). Similarly, for every 1 < i ≤ r, it must be PVi ̸⊆ PVi−1
. In conclusion, for

every i = 1, . . . , r, there exist Ri ∈ PVi \PVi+1
and Li ∈ PVi \PVi−1

, where we assume

V0 = Vr+1 = ∅.

In general, a minimum-size e.c. decomposition is not unique.
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Example A.8. Let us show that even in the special case when (Z,≤) = (Pref(L(D)),⪯

) and P = {Iu | u ∈ Q} we can have more than one minimum-size e.c. decomposition.

Consider the DFA D in Figure A.1. Notice that in every e.c. decomposition of

D one element is {ε}, because I0 = {ε}. Moreover, every e.c. decomposition of D

must have cardinality at least three, because, since 1 <D 3, states 1 and 3 are not

entangled. It is easy to check that:

V = {{ε}, {ac∗ ∪ bc∗}, {[b(c+ d)∗ \ bc∗] ∪ f(c+ d)∗ ∪ gd∗}}

and:

V ′ = {{ε}, {ac∗ ∪ b(c+ d)∗ ∪ [f(c+ d)∗ \ fd∗]}, {fd∗ ∪ gd∗}}

are two distinct minimum-size e.c. decompositions of D.

0

start

1
2 3ab, f g

c
c, d d

Figure A.1: An automaton D admitting two distinct minimum-size e.c. decomposi-
tions.

We need the following lemmas on entangled convex sets in Section 5.4. Assume

that (Z,≤) is a total order and P is a partition of Z.

Lemma A.9. Let V be a minimum-size e.c. decomposition of P. Assume that V ∈ V

is such that there exist C1 < · · · < Cn entangled convex sets with V ⊆
⋃n
i=1Ci. Then,

for all P ∈ P it holds:

∀i ∈ {1, . . . , n}(Ci ∩ P ̸= ∅) → V ∩ P ̸= ∅.

Proof. If Cj ⊆ V for some j, then V ∩ P ̸= ∅ since V ∩ P ⊇ Cj ∩ P ̸= ∅. Otherwise,

consider the smallest i such that Ci ∩ V ̸= ∅. Since C1 < · · · < Cn, V is convex and
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V does not contain any Cj, it must be V ⊆ Ci ∪ Ci+1, (where we assume Ci+1 = ∅ if

i = n). Let V = {V1, . . . , Vr} with V1 < · · · < Vr. For all j = 1, . . . , r, consider the

elements Rj ∈ PVj \ PVj+1
and Lj ∈ PVj \ PVj−1

(where we assume V0 = Vr+1 = ∅), as

in Remark A.7 . Let s be such that V = Vs. We distinguish three cases.

1. Vs ∩ Ci+1 = ∅. In this case, it must be Vs ⊆ Ci. Let Vs−h, Vs−h+1, . . . , Vs,

. . . , Vs+k−1, Vs+k (h, k ≥ 0) be all the elements of V contained in Ci. Since

V1 < · · · < Vr , we conclude:

Vs−h ∪ · · · ∪ Vs ∪ · · · ∪ Vs+k ⊆ Ci ⊆ Vs−h−1 ∪ Vs−h ∪ · · · ∪ Vs ∪ · · · ∪ Vs+k ∪ Vs+k+1.

We know that Ls−h, . . . , Ls, Rs, . . . Rs+k occur in Vs−h ∪ · · · ∪ Vs+k, so they also

occur in Ci. Moreover, we also know that P occurs in Ci. Since Ci is entangled,

there exists a sequence αs−h ≤ · · · ≤ αs ≤ β ≤ γs ≤ · · · ≤ γs+k of elements in

Ci witnessing that the ordered sequence Ls−h, . . . , Ls, P, Rs, . . . Rs+k occurs in

Ci; it follows that Ls−h, . . . , Ls, P, Rs, . . . Rs+k occurs in Vs−h−1 ∪ Vs−h ∪ · · · ∪

Vs ∪ · · · ∪ Vs+k ∪ Vs+k+1 as well. Since Ls−h does not occur in Vs−h−1, then the

ordered sequence Ls−h+1, . . . , Ls, P, Rs, . . . Rs+k occurs in Vs−h ∪ · · · ∪ Vs ∪ · · · ∪

Vs+k ∪ Vs+k+1. Now, Ls−h+1 does not occur in Vs−h, so the ordered sequence

Ls−h+2, . . . , Ls, P, Rs, . . . Rs+k occurs in Vs−h+1 ∪ · · · ∪ Vs ∪ · · · ∪ Vs+k ∪ Vs+k+1.

Proceeding in this way, we obtain that the sequence P,Rs, . . . Rs+k occurs in

this order in Vs ∪ · · · ∪ Vs+k ∪ Vs+k+1. Now suppose for sake of a contradiction

that P does not occur in Vs. As before we obtain that Rs, . . . Rs+k occurs in

this order in Vs+1 ∪ · · · ∪ Vs+k ∪ Vs+k+1, Rs+1, . . . Rs+k occurs in this order in

Vs+2 ∪ · · · ∪ Vs+k ∪ Vs+k+1, and so on. We finally conclude that Rs+k occurs in

Vs+k+1, a contradiction.

2. Vs ∩ Ci = ∅. In this case, it must be Vs ⊆ Ci+1 and one concludes as in the

previous case.

3. Vs ∩ Ci ̸= ∅ and Vs ∩ Ci+1 ̸= ∅. In this case, let Vs−h, . . . , Vs−1 (h ≥ 0) be all

elements of V contained in Ci, and let Vs+1, . . . , Vs+k (k ≥ 0) be all elements of

V contained in Ci+1. As before:

Vs−h ∪ · · · ∪ Vs−1 ⊆ Ci ⊆ Vs−h−1 ∪ Vs−h ∪ · · · ∪ Vs−1 ∪ Vs



194

and:

Vs+1 ∪ · · · ∪ Vs+k ⊆ Ci+1 ⊆ Vs ∪ Vs+1 ∪ · · · ∪ Vs+k ∪ Vs+k+1.

Now, assume by contradiction that P does not occur in Vs. First, let us prove

that Ls does not occur in Ci. Suppose by contradiction that Ls occurs in Ci.

We know that Ls−h, . . . , Ls−1 occurs in Ci, and we also know that P occurs in

Ci. Since Ci is entangled, then Ls−h, . . . , Ls−1, Ls, P should occur in this order

in Ci and so also in Vs−h−1 ∪ Vs−h ∪ · · · ∪ Vs−1 ∪ Vs; however, reasoning as in

case 1, this would imply that P occurs in Vs, a contradiction. Analogously, one

shows that Rs does not occur in Ci+1.

Since Rs and Ls occur in Vs, then there exists a monotone sequence in Vs whose

trace consists of alternating values of Rs and Ls. But Vs ⊆ Ci ∪ Ci+1 and

Ci ≺ Ci+1, so the monotone sequence is definitely contained in Ci or Ci+1. In

the first case we would obtain that Ls occurs in Ci, and in the second case we

would obtain that Rs occurs in Ci+1, so in both cases we reach a contradiction.

Lemma A.10. Let C ⊆ Z be an entangled convex set and consider any pair of

convex sets C1, C2 such that C = C1 ∪ C2. Then, there exists i ∈ {1, 2} such that Ci

is entangled and PCi
= PC.

Proof. Let (zi)i≥1 be a monotone sequence witnessing the entanglement of C. Then,

infinitely many zj’s appear in either C1 or C2 (or both). In the former case C1 is

entangled: since C1 is convex, if j0 ≥ 1 is such that zj0 ∈ C1, then the subsequence

(zj)j≥j0 is in C1 and, clearly, we have PC1 = PC . In the latter case, analogously, C2

is entangled and PC2 = PC .

Lemma A.11. Let C1, C2 ⊆ Z be entangled convex sets. Then, at least one the

following holds true:

1. C1 \ C2 is entangled and convex and PC1\C2 = PC1;

2. C2 \ C1 is entangled and convex and PC2\C1 = PC2;

3. C1 ∪ C2 is entangled and convex and PC1∪C2 = PC1 or PC1∪C2 = PC2.
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Proof. If C1 ∩ C2 = ∅, (1) and (2) hold. If C2 ⊆ C1 or C1 ⊆ C2, (3) holds. In the

remaining cases observe that C1 \C2, C2 \C1, C1 ∩C2 and C1 ∪C2 are convex. Since

C1 = (C1\C2)∪(C1∩C2) and C2 = (C2\C1)∪(C1∩C2), by Lemma A.10 we conclude

that at least one the following holds true:

1. C1 \C2 is entangled and convex and PC1\C2 = PC1 , or C2 \C1 is entangled and

convex and PC2\C1 = PC2 ;

2. the intersection C1 ∩ C2 is entangled and convex and PC1∩C2 = PC1 = PC2 .

In the first case we are done, while in the second case we have PC1∩C2 = PC1 = PC2 =

PC1 ∪PC2 = PC1∪C2 . Since C1 ∩C2 ⊆ C1 ∪C2 and C1 ∩C2 is entangled, we conclude

that C1 ∪ C2 is entangled.

Lemma A.12. Let C1, . . . , Cn ⊆ Z be entangled convex sets. Then, there exist m ≤ n

pairwise disjoint, entangled convex sets C ′1, . . . , C
′
m ⊆ Z, such that:

• C ′1 < · · · < C ′m and
⋃n
i=1Ci =

⋃m
i=1C

′
i;

• if P ∈ P occurs in all Ci’s, then it occurs in all C ′i’s as well.

Proof. We can suppose without loss of generality that the Ci’s are non-empty and we

proceed by induction on the number of intersections r = |{(i, j)|i < j∧Ci∩Cj ̸= ∅}|.

If r = 0, then the Ci’s are pairwise disjoint and, since they are convex, they are

comparable. Hence, it is sufficient to take C ′1, . . . , C
′
n as the permutation of the Ci’s

such that C ′1 < · · · < C ′n.

Now assume r ≥ 1 and let, without loss of generality, C1 ∩ C2 ̸= ∅. We now

produce a new sequence of at most n entangled convex sets to which we can apply

the inductive hypothesis. By Lemma A.11 at least one among C1 \ C2, C2 \ C1 and

C1 ∪ C2, is an entangled convex set. If C1 ∪ C2 is an entangled convex set, then let

C1 ∪ C2, C3, . . . , Cn be the new sequence. Otherwise, if C1 \ C2 (the case C2 \ C1

analogous) is entangled, let the new sequence be C1 \ C2, C2, C3, . . . , Cn. In both

cases the number of intersections decreases: this is clear in the first case, while in the

second case C1 \ C2 ⊆ C1 and (C1 \ C2) ∩ C2 = ∅.

In all the above cases Lemma A.11 implies that if a P ∈ P occurs in all Ci’s,

then it occurs in all elements of the new family and we can conclude by the inductive

hypothesis.
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Below we prove a fairly intuitive result on the intersection of convex sets.

Lemma A.13. Let (Z,≤) be a total order. If C1, . . . , Cn ⊆ Z are non-empty, convex

sets such that Ci ∩ Cj ̸= ∅ for all i, j ∈ {1, . . . , n}, then
⋂n
i=1Ci ̸= ∅.

Proof. We proceed by induction on n. Cases n = 1, 2 are trivial, so assume n ≥ 3.

For every i ∈ {1, . . . , n}, the set:

⋂

k∈{1,...,n}
k ̸=i

Ck

is nonempty by the inductive hypothesis, so we can pick an element di. If for some

distinct i and j we have di = dj, then such an element witnesses that
⋂n
i=1Ci ̸= ∅.

Otherwise, assume without loss of generality that d1 < · · · < dn. Fix any integer j

such that 1 < j < n, and let us prove that dj witnesses that
⋂n
i=1Ci ̸= ∅. We only

have to prove that dj ∈ Cj. This follows from d1, dn ∈ Cj and the fact that Cj is

convex.
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[90] Tomás Masopust and Markus Krötzsch. Partially ordered automata and piece-
wise testability. Log. Methods Comput. Sci., 17(2), 2021.

[91] Robert McNaughton and Saymour A. Papert. Counter-Free Automata. The
MIT Press, USA, 1971.

[92] Robert McNaughton and Seymour A Papert. Counter-Free Automata (MIT
research monograph no. 65). The MIT Press, 1971.
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