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ABSTRACT 

RATIONALE: The current oscillometry acceptance criteria for measurement of respiratory 

impedance (Zrs) requires a minimum of three repeated measurements with a coefficient of 

variation (CV) of ≤ 10% in adults or ≤ 15% in young children at the lowest frequency resistance 

(R5). However, this acceptability criteria ignores all the other frequencies and the significant 

reactance (Xrs) component of Zrs. This thesis assessed novel algorithms that include variability 

in resistance (Rrs) and Xrs over a range of frequencies to improve the repeatability, efficiency, 

feasibility, and accuracy of oscillometry. It also explored if machine learning can be used to 

predict Chronic Obstructive Pulmonary Disease (COPD) severity using combinations of 

spirometry and oscillometry measures.  

METHODS: This thesis explored different automated weighted combination sums of Rrs or Zrs 

CVs across frequencies and sought the first three measurements out of all measurements with a 

CV ≤15% for young children and ≤10% for adults. Three different data sets were used, each 

including five to as many as 12 measurements per subject: 1) 550 five years old population 

representative children in Toronto (CHILD5Y), 2) 110 three to five years old children with 

wheeze (WESER) and 3) 818 adult clinic subjects with predominantly COPD (West Island 

Cohort, WIC). The repeatability, efficiency, and feasibility of the proposed Quality Control (QC) 

algorithm was first optimized using CHILD5Y and validated using WESER and WIC. 

Physiological variability and artifact distributions from CHILD5Y were also used to generate a 

computational model, which was employed to assess the accuracy of the proposed algorithm. 

Machine learning algorithms including Single Decision Tree, Bagged Decision Trees, Support 

Vector Machines and Gradient Boosting were assessed to predict COPD Assessment Test (CAT) 

scores based on oscillometry and spirometry inputs.  

RESULTS: It was found that using the proposed QC algorithm, Early, with an inverse frequency 

weighted sum of the Zrs outperformed current recommended criteria for CV, reducing the CV of 

the important outcome measures and achieving the best feasibility. Feasibility improved 

compared to no QC when restricting analysis to the first 5 measurements, from 64%, 61%, and 

49% to 85%, 80% and 81%, while using all available measurements with QC improved 

feasibility to 94%, 91% and 82% with CHILD5Y, WESER and WIC, respectively. Early also 

improved efficiency by reducing the number of required measurements from 5.4±1.7 to 3.7(0.9). 

Accuracy was maintained when applying the Early algorithm, resulting in comparable Root 

Mean Square Error (RMSE) to no QC and compared to QC method based on two standard 

deviations. Accuracy was also maintained for the important oscillometry measures R5-19 and 

AX. It was found that using machine learning with combined spirometry and oscillometry 

measures outperforms the use of spirometry or oscillometry measures separately.  

CONCLUSION: Optimizing an automated CV algorithm based on Zrs across frequencies 

provided improved repeatability, efficiency and feasibility, while maintaining the measurement 

accuracy. Additionally, machine-based algorithms using combinations of spirometry and 

oscillometry measures show potential for patient screening and monitoring. 
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GLOSSARY 

Measurement  One of three recordings, separated by a brief gab, with a standard duration 

of 16 seconds. 

Test A minimum of three repeated recordings. 

tremoflo  Software used to collect measurements, provided by Thorasys Medical 

Systems, Montreal, Canada. 

CV criteria / 

CV threshold 

Coefficient of Variation (CV) which is the ratio of Standard Deviation (SD) 

to the mean (𝜇), to be less than or equal to 15% for young children and 10% 

for adults. 

𝜻𝑹 A cost function that capture the variability between repeated oscillometry 

measurements using different combinations of resistance CVs at multiple 

frequencies.  

𝜻𝒁 A cost function that capture the variability between repeated oscillometry 

measurements using different combinations of impednace CVs at multiple 

frequencies. 

Repeatability  The short-term (within-test) variability, typically expressed as the CV [16]. 

Reproducibility  The long-term (between tests) variability [16]. 

Efficiency  The required number of measurements to pass the acceptability criteria, 

either the CV, 𝜁𝑅 or 𝜁𝑍 to be less than or equal to 15% for children and 10% 

for adults. 

Feasibility The percentage of subjects that were able to achieve valid data by obtaining 

a minimum of three repeated measurements with a CV, 𝜁𝑅 or 𝜁𝑍 less than or 

equal to 15% for children and 10% for adults. 

Accuracy  The percentage Root Mean Square Error (%RMSE) between true and 

predicted cost function Zrs(1/f), where true Zrs(1/f) is obtained using 𝑅𝑇 

and 𝑋𝑇 and predicted Zrs(1/f) is obtained using 𝑅𝑚 and 𝑋𝑚 either with no 

QC or after applying spectral QC. 

Outlier  A full measurement detected by the Grubb’s test when performed on a test. 

Quality 

Control (QC) 

Process comprising a series of activities required to meet the quality 

standards and verify the safety and effectiveness of a product. It aims to 

identify errors and addresses issues to ensure the production of high-quality 

products before reaching customers. [1], [2] 

Quality 

Assurance 

(QA) 

Pre-planned process comprising of a series of activities designed to prevent 

errors and defects in products and ensure compliance with the requirements. 

[1], [2]  
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CHAPTER 1: INTRODUCTION  

This chapter provides a broad review of the published literature relevant to this thesis. It 

begins with a brief overview of the respiratory system and its breathing mechanics. It then 

provides a general review of asthma and COPD and how they are diagnosed using spirometry; 

the current gold standard and most commonly performed Pulmonary Function Test (PFT). 

Finally, this chapter provides a thorough explanation of oscillometry, covering its principles, key 

measures, advantages and highlighting gaps in the current standards and Quality Control (QC) 

algorithms. 

1.1 Anatomy of the Lungs 

The respiratory system consists of the nose, pharynx (throat), larynx (voice box), trachea 

(windpipe), bronchi and lungs. Structurally, the lungs are a complex organ made up of thousands 

of tree-like branching airways. These airways start at the trachea and divide into a right and left 

primary bronchi. The airways continue to divide to form the secondary (lobar) bronchi, then a 

smaller bronchus called the tertiary (segmental) bronchi, followed by the bronchioles. The 

bronchioles then branch repeatedly, forming terminal bronchioles that subdivides into 

microscopic branches called the respiratory bronchioles which extends to alveolar ducts and 

sacs; where gas exchange takes place [3]–[5].  

To Add, the respiratory system can be divided into two major areas depending on its 

structure and function. Structurally, the respiratory system can be divided into upper and lower 

respiratory systems. The upper respiratory system includes the nose, nasal cavity and pharynx, 

whereas the lower respiratory system includes the larynx, trachea, bronchi and lungs. 

Functionally, the respiratory system can be divided into conducting and respiratory zones. The 
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conducting zone consists of a series of interconnecting tubes and cavities found within and 

outside the lungs, including the nose, nasal cavity, pharynx, larynx, trachea, bronchi, and 

terminal bronchioles. The main function of the conducting zone is to filter, warm, and moisten 

air before it is conducted into the lungs. On the other hand, the respiratory zone consists of tubes 

and tissues, including the respiratory bronchioles, alveolar ducts, alveolar sacs and alveoli 

located within the lungs that are directly involved in gas exchange [3], [5]. 

1.2 Breathing Mechanism 

When breathing, air flows into and out of the lungs because of alternating pressure 

differences created by the contraction and relaxation of respiratory muscles. These mechanics are 

often described using a simple mathematical model referred to as the Single-Compartment 

Model (SCM). In this model, a pipe is used to represent the resistance of the lungs (Rrs) and lung 

inertance (Irs), accounting for the energy required to accelerate air within the airways. On the 

other hand, a balloon is used to represent the lung elastance (Ers), which reflects the tissue and 

chest wall stiffness [6], [7]. This is illustrated in Equation (1): 

 

𝑃 = 𝑅𝑟𝑠𝑉̇ + 𝐸𝑟𝑠𝑉 + 𝐼𝑟𝑠𝑉̈                      (1) 
 
 

 

Where P represents the difference in pressure between the airway opening and the 

alveoli, whereas V represents the volume with its derivatives flow (𝑉̇) and acceleration (𝑉̈). Rrs 

represents the total respiratory resistance and is often considered composed of two main 

components: airway resistance (Raw) and tissue resistance (Rt) [6]. Raw is the dominant 

contributor to lung resistance and represents the viscous energy losses as air moves through the 
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airways. During laminar flow, Raw is inversely proportional to the fourth power of the airway 

diameter. Factors such as airway smooth muscle contraction, airway wall thickening, decreased 

parenchymal tethering, or excess mucus production can increase Raw and the pressure required 

to maintain the same airflow [6], [8]. In contrast, Rt is thought to account for about 20% of the 

total resistance in healthy individuals and represents the viscous losses or friction caused by the 

movement of lung tissue and the chest wall during breathing [9]. While Rt can change in disease, 

it usually has a very modest contribution to the changes in lung mechanics compared to Raw [6].  

Ers is the respiratory elastance or stiffness, the inverse of respiratory compliance (Crs), 

which provides an estimate of how easily the lungs and chest wall expand and contract in 

response to pressure changes [4], [6]. A decrease in Ers indicates reduced elastic recoil of the 

lungs, making exhalation more difficult. Conversely, an increase in Ers can be attributed to 

increased tissue stiffness or a loss in available volume for breathing. Irs corresponds to gas 

inertance and accounts for the energy required to accelerate the respiratory gases within the 

system. Since Ers and Rrs are key outcome measures in oscillometry, they will be discussed in 

more detail in section 1.4.2. 

1.3 Pulmonary Diseases 

 Pulmonary diseases are commonly classified as restrictive or obstructive diseases. 

Restrictive lung diseases are characterized by a decrease in lung volume and consequently an 

increase in Ers or stiffness and a decrease in Crs. This increase in lung stiffness restricts the 

lungs from expanding fully, making it difficult for individuals with restrictive lung diseases to 

fill their lungs with air [10]. Pulmonary fibrosis, interstitial lung disease and sarcoidosis are 

among the most common restrictive pulmonary diseases. Conversely, obstructive diseases are 

characterized by airflow limitation due to an excess in mucus production or narrowing of the 
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airways. As such, individuals with obstructive lung diseases have difficulty exhaling all the air 

from their lungs, which results in shortness of breath [10]. Examples of obstructive pulmonary 

diseases include; asthma, COPD and cystic fibrosis. While there are many respiratory diseases, 

the next two sections will only provide an overview of asthma and COPD as the analyzed data in 

this thesis comes from a cohort dominated by these two obstructive diseases. 

1.3.1 Asthma 

 Asthma is a chronic inflammatory disease that causes narrowing and inflammation of the 

bronchial tubes, limiting airflow and causing breathing difficulty. The lung airways contain 

mucus glands and are surrounded by muscles that are normally relaxed. In asthma, however, 

these muscles constrict, tighten and become inflamed when exposed to triggering factors such as 

allergens and pollen, while the mucus glands increase mucus production. These in turn result in 

narrowing of the airways and difficulty breathing. Some of the common symptoms of asthma 

include; chest tightness, shortness of breath, coughing and wheezing. [4], [9]  

In Canada, asthma is the third-most common chronic disease and the most common 

reason for children hospitalization. It affects more than 3.8 million Canadians, including 850 

thousand children under the age of 14. On average, there are over 300 Canadians that are 

diagnosed with asthma daily, and an estimate of 250 that tragically die from an asthma attack 

every year. While asthma cannot be cured, regular follow-ups, close monitoring, proper use of 

medication and avoiding triggering factors can help control the disease. [11], [12] 

1.3.2 COPD 

COPD is an inflammatory lung disease characterized by airflow limitations and persistent 

respiratory symptoms due to alveolar and airway abnormalities. It is typically caused by a 
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significant and/or long-term exposure to noxious particles or irritating gasses [9]. COPD consists 

of two major breathing diseases; chronic bronchitis, caused by excessive mucus release in the 

airways, and emphysema, caused by an increase in alveoli stiffness. Cigarette smoking is the 

most common risk factor for COPD, as smokers have a higher risk for lung function 

abnormalities. Other environmental exposures such as air pollution and biomass fuel exposure 

may also contribute to this disease. Hence, the long-term exposure to such risk factors may cause 

individuals to exhibit symptoms such as chronic cough, wheezing, difficulty breathing, and/or 

mucus production [13].  

Currently, COPD is the third leading cause of deaths worldwide, and Canada’s fourth 

leading cause of death, resulting in more than 3 million deaths in 2019 alone. Although COPD 

cannot be cured, Early diagnosis, close monitoring and the initiation of proper treatment is 

essential to reduce symptoms, slow the progression of the disease, and improve quality of life 

[14]. The severity of COPD is commonly classified using the Modified British Medical Research 

Council questionnaire (mMRC) and COPD Assessment Test (CAT). The mMRC questionnaire 

is used to assess the severity of COPD based on breathlessness, in which the patient selects a 

statement that best describes their breathlessness while performing daily life activities on a scale 

of zero to five, Figure 1[15]. On the contrary, the CAT test is an eight questions assessment with 

a total score of 40, and is designed to assess the impact of COPD on patients’ health status and 

life, Figure 2 [13] [13].  
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Please tick in the box that applies to you (one box only): 

I only get 

breathless 

with 

strenuous 

exercise.  

I get short of 

breath when 

hurrying on 

the level or 

walking up a 

slight hill. 

I walk slower 

than people of 

the level 

because of 

breathlessness

, or I have to 

stop for 

breath when 

walking on 

my own pace 

on the level. 

I stop for 

breath after 

walking about 

100 meters or 

after a few 

minutes on 

the level.  

I am too 

breathless to 

leave the 

house, or I am 

breathless 

when dressing 

or undressing.  

For each item below, place a mark (x) in the box that best describes you currently. 

I never cough. I cough all the time.   0 1 2 3 4 5 

I have no phlegm(mucus) in my 

chest. 

My chest is completely full of 

phlegm(mucus). 
 0 1 2 3 4 5 

My chest does not feel tight at all. My chest feels very tight.   0 1 2 3 4 5 

When I walk up a hill or one flight of 

stairs, I am not breathless.  

When I walk up a hill or one flight of 

stairs, I am very breathless.  

 

 
0 1 2 3 4 5 

I am not limited doing any activities 

at home. 

I am very limited doing activities at 

home.  

 

 
0 1 2 3 4 5 

I am confident leaving my home 

despite my lung condition. 

I am not at all confident leaving my 

home because of my lung condition. 

 

 
0 1 2 3 4 5 

I sleep soundly.  
I don’t sleep soundly because of my 

lung condition.  
 0 1 2 3 4 5 

I have lots of energy.  I have no energy at all.  0 1 2 3 4 5 

Score:  

Figure 2: CAT questionnaire used to assess COPD severity. (Reproduced with permission from 

[13]) 

Figure 1: mMRC questionnaire used to assess COPD severity. (Reproduced with permission 

from [13]) 
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1.4 Pulmonary Function Tests  

 Pulmonary Function Tests (PFTs) provide an objective measure of how well the lungs are 

ventilated by measuring the volume and flow associated with normal and forced breathing [16]. 

While there are various pulmonary function test measurements such as plethysmography and 

diffusion capacity, spirometry remains the most commonly used PFT clinically. Nevertheless, 

the focus of this thesis is the forced oscillation technique, also known as oscillometry. Hence, the 

following sections will provide an overview of spirometry and oscillometry, covering their 

advantages and shortcomings.  

1.4.1 Spirometry 

Spirometry is the current gold standard PFT and the most frequently performed and 

widely accepted measure of pulmonary function [10], [16], [17]. In spirometry, the patient is 

trained and instructed to take a deep breath, reaching total lung capacity, then forcefully exhale 

into the spirometer. Two main measures are recorded in this test; Forced Expiratory Volume 

(FEV-1), which is the amount of air one can forcibly exhale in one second, and the Forced Vital 

Capacity (FVC), which is the total amount of air exhaled during the Forced Expiratory Volume 

test. The ratio FEV1/FVC is used as a measure of lung function in healthy and diseased subjects, 

where airway obstruction is indicated by a reduction in FEV1/FVC ratio [10]. Spirometry has 

readily available normative values and is widely standardized and adopted, which is an 

advantage over the other PFTs [10], [16].  

Despite its sensitivity to pulmonary function changes, spirometry is highly effort 

dependent [17]. Consequently, reliable results can only be achieved with maneuver training and 

active patient cooperation. Resultantly, spirometry depends on the technician’s ability to 
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properly train and guide, and the patient’s ability to understand and correctly perform the test. In 

fact, it is estimated that about 10% of patients are unable to achieve reliable results even when 

trained and guided by an experienced respiratory technician [10]. This rate is even higher among 

seniors older than 80 years, preschool children younger than six years, and individuals with 

pulmonary diseases and cognitive limitations. Spirometry is also insensitive to changes in the 

small airways, which is where most lung diseases like asthma and COPD originate. As such, 

recent studies have suggested that spirometry could potentially mislead clinicians when used as 

the only tool in clinical decision making, as many patients with respiratory diseases have normal 

results [10], [17]. Given these limitations, it is of high importance to include other PFTs, such as 

oscillometry, in assessing, diagnosing, and monitoring pulmonary lung diseases.  

1.4.2 Oscillometry  

While spirometry provides a measure of the maximum lung inflation (Total Lung 

Capacity) and maximum exhalation (Residual Volume), oscillometry measures the resistance 

(Rrs) and reactance (Xrs) of the respiratory system, usually at normal breathing volume  

[18][19][20]. In oscillometry, sound or pressure waves are generated and superimposed on the 

patient’s spontaneous tidal breathing at predetermined frequencies. The resultant changes in 

pressure and flow are then measured and used to estimate the mechanical properties of the 

respiratory system by calculating the respiratory impedance (Zrs) [19][21][22]. Standard 

oscillometry, sometimes referred to as spectral oscillometry, uses a periodic waveform that 

includes frequencies ranging from 4 - 8 Hz to 30 - 50 Hz depending on the device used. The 

focus is on lower frequencies in oscillometry as they provide more information about the small 

airways and the viscoelasticity of the respiratory system, while higher frequencies (> 50 Hz) 

reflect the acoustic instead of the tissue properties. However, frequencies below 4 Hz are too 
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close in range to the frequencies of the subject’s own breathing pressure and flow, which would 

interfere with the accuracy of oscillometry measurements. Using multiple frequencies 

simultaneously via the oscillometry waveform provides useful information about the mechanical 

properties of the respiratory system, including the lung periphery and regional inhomogeneity. 

This is because changes in the diameters of the large and small airways can affect impedance 

differently over the frequency range, and the elastic properties dominate the respiratory 

mechanics at the lower frequency range while inertive properties dominate the respiratory 

mechanics at the higher frequency range.  

1.4.2.1 Important Oscillometry Measures  

The respiratory impedance (Zrs), which represents the mechanical properties of the 

respiratory system, is defined as the ratio of the difference in pressure to the changes in flow at a 

particular oscillatory frequency [7][16]. Zrs is typically calculated using the windowed 

periodogram technique by applying Hanning windows with up to 95% overlap to obtain an 

estimate for each window. The Fast Fourier Transform (FFT) of each of the windowed pressure 

and flow signals from each window are divided to calculate the impedance as per Equation (2), 

which can provide estimates of impedance as a function of time from each window, or the 

impedance estimates from all windows are averaged to produce a single measure of the subject’s 

impedance. Since the pressure and flow are not measured at the airway opening, a correction 

particular to each device is applied so that the reported impedance is that of the subject [7].  

 

𝑍𝑟𝑠(𝑓) =  
𝑃(𝑓)

𝑉̇(𝑓)
                                    (2) 
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Zrs is represented using complex numbers; the real part is the portion accounting for the 

pressure response in-phase with flow, and is thus the respiratory system resistance, Rrs. While 

the imaginary part accounts for the reactive forces of the respiratory system and is the pressure 

response out-of-phase with flow, but in phase with volume changes, and is denoted reactance, 

Xrs.  

As mentioned earlier in section 1.2, Rrs assesses the dissipated mechanical energy 

required to move air through the airways and the resistance due to viscous or frictional 

deformations of the respiratory tissues caused by the lung and the chest wall. While Rrs is 

typically frequency-independent in healthy subjects, it becomes inversely dependent with 

frequency, largely attributed to the onset of heterogeneous airway narrowing throughout the 

airway tree [6]. The frequency dependence of resistance can be represented by taking the 

difference between the resistance at the low range of the oscillometry frequencies, Rrs at 5 Hz, 

and a higher frequency after which the frequency dependence in Rrs levels off, typically at 20 Hz 

although 19 Hz is also used, giving R5-20 or R5-19 (Figure 3) [7][23]. The R5-20 or R5-19 are 

sensitive to diseases that cause alterations to the structure and function of the lungs, such as 

mucus plugging, airway narrowing, or changes to lung tissue. This in turn contributes to the 

development of heterogeneity of airflow in the lungs, and hence R5-20 or R5-19 can be used as 

an predictor of treatment response and a marker for disease severity [24]. 
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Figure 3: An oscillogram depicting key oscillometry measures: Resistance (Rrs), Reactance 

(Xrs), Resistance at 5Hz (R5), difference between resistance at 5Hz and 19Hz (R5-19), and the 

area under the reactance curve (AX). The solid line is the average of 3 measurements, and is 

called a ‘test’ with standard error bars shown, while the thin lines represent the individual 

measurements (more details on the measurements are found in section 1.5.10) 

 

Other mechanisms can lead to frequency dependence, such as tissue viscoelasticity, upper 

airway shunting, or potentially time variation in mechanical elastance [25][26]. Frequency 

dependence from tissue viscoelasticity is observed at very low frequencies in healthy adults 0.1 

to 0.5 Hz, but potentially may impact higher frequencies in disease or may be a contributing 

factor in very small children or infants [27][28]. Frequency dependence from upper airway 

shunting arises at high respiratory system impedances, where some of the energy of the 

oscillations goes into the parallel impedance path of the soft tissues of the central or upper 

airways (cheeks). This is minimized by holding the cheeks during oscillometry measurement 

[20]. Time variation of mechanical properties is a novel discovery but is thought to largely occur 

at lower frequencies than the oscillometry range for adults [29].  
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On the other hand, Xrs is normally frequency dependent dominated by elastic properties 

from volume deformation at low frequencies and from inertive properties at the higher frequency 

range, which reflect the acceleration of the air column during oscillation [21][22]. While the 

elastic properties of the respiratory system are dominated by the very distensible and large 

available volume of the oscillations to the tissues of the airspaces, some of the elastic properties 

are from airway distensibility, chest wall, or can come from the upper airways. For example, not 

holding the cheeks lowers the stiffness of the upper airway compartment and some energy goes 

into the movement of these tissues, lowering the elastance of the respiratory system. On the other 

hand, the majority of the inertial properties arise from the motion of the air column in the larger 

airways, as the amplitude of air oscillation is much larger than any motion of the tissues during 

oscillation. As such, the differences in pressure phase arising from the flow and the elastic and 

inertive forces results in a negative Xrs at the lower frequencies and positive Xrs at the higher 

frequencies. This transition from elastic to inertial forces dominance is defined as the resonance 

frequency, where the impedance is only due to resistance.  

The resonance frequency typically ranges between 7-12 Hz in adults and is higher in 

children being inversely dependent on lung size (Figure 3) [21]. Low frequency Xrs reflects the 

elastic properties of the tissue observable by the oscillations. Any derecruitment of airways due 

to airway closure or narrowing is sufficient to obstruct the oscillations from the distal airspaces, 

increasing the elastance and resulting in a more negative Xrs. Also, while Xrs is very sensitive to 

changes in obstructive disease, Xrs does not well differentiate between restrictive or obstructive 

diseases, as they both result in more negative reactance due to increased stiffness [22]. The area 

of reactance (AX) is another important measure defined by the area under the reactance curve 

from the lowest frequency to the resonance frequency (Figure 3). Similar to Xrs at low 
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frequencies, AX largely reflects the elastic properties of the lungs, and indeed has the same units 

as elastance (kPa/l). AX has been found to be correlated with resistance at the lower frequencies 

in COPD and asthmatic children [6][21][22].  

1.5 Limitations And Current Quality Control Measures in Oscillometry 

An ideal pulmonary function test would be simple to perform, safe, repeatable, 

reproducible, and sensitive enough to distinguish between health and disease, as well as detect 

changes with growth [16]. Repeatability is the short-term (within-test) variability, which 

measures the consistency of the technical expertise of the patient, as well as the stability of the 

measuring instrument [16]. The repeatability of a test is typically expressed as the Coefficient of 

Variation (CV), which is the ratio of Standard Deviation (SD) to the mean (μ) [16][21][22]. On 

the other hand, reproducibility is the long-term (between tests) variability, which is influenced by 

the instrument’s stability and a patient’s ability to perform the required maneuvers consistently 

during each measurement session. Reproducibility can also be influenced by the technologist if 

performance is dependent on instruction, as well as the disease and biological variations in lung 

function [16]. While oscillometry is fast and easy to perform, like most measures of lung 

function it is affected by within- and between- test variability, and to obtain accurate measures of 

impedance, it requires quality control. Here, a test is the average from multiple measurements 

taken sequentially, typically a minimum of 3 measurements, and thus the within test variability is 

a short term assessment of variability, while between test variability is over a longer period such 

as days or weeks.  
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1.5.1  Quality Assurance and Quality Control 

Quality Assurance (QA) and Quality Control (QC) are inseparable parts of quality 

management that are often used interchangeably [30]. However, while these processes feature 

some overlap, they are separate and take place at different times. According to ISO 9000, a set of 

international standards developed by the International Organization for Standardization (ISO), 

QA aims to provide assurance that quality requirements will be fulfilled, while QC aims to 

actually fulfill quality requirements [1], [2]. ISO 9000 defines QA as “part of quality 

management focused on providing confidence that quality requirements will be fulfilled” and QC 

as “part of quality management focused on fulfilling quality requirements”[1], [2]. Hence, QA is 

a pre-planned process comprising a series of activities designed to prevent errors and defects in 

products and provide confidence that the requirements are satisfied [2]. QC, on the other hand, is 

the inspection stage of the QA process, comprising a series of activities required to meet the 

quality standards and verify the safety and effectiveness of a product. Hence, QC aims to identify 

errors and address issues to ensure the production of high-quality products before reaching 

customers [28]–[30]. While both QA and QC are critical to ensure reliable and accurate 

measurements in oscillometry, this thesis focuses on assessing and improving the current QC 

criteria.  

1.5.2 Standard Operating Procedures 

There are several QC strategies that are currently implemented for oscillometry to help 

reduce the impact of variability of impedance measurements and the influence of factors that 

may arise apart from the respiratory system mechanics. To help minimize variability in 

performing an oscillometry measurement, it is essential to provide a Standard Operating 
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Procedure (SOP) and ensure that operators are trained according to the SOP. The SOP which 

combines the manufacturer’s manual and standard guidelines that patients and operators need to 

follow to optimize repeatability of oscillometry measurements [20]. In brief, the operator 

conducting the test should explain the duration and number of replicates to be recorded. They 

should also describe the sensation caused by pressure oscillations and run trials before data 

acquisition [16]. During the test, patients should be instructed to sit upright with head in natural 

position and legs uncrossed, and to support their cheeks and mouth floor with the palm and 

fingers to minimize upper airway wall vibration [16][20]. Patients should also wear a nose clip, 

breathe calmly through a mouthpiece, and avoid swallowing with the tongue maintained forward 

[16][20]. Hence, the operator must be reliable, well-trained, and able to work under minimal 

supervision to ensure that they are capable of training patients and following this SOP. 

Implementing a SOP and providing hands-on training for operators can result in a significant 

improvement in repeatability, as demonstrated by Wu et al. [20].  

1.5.3 Calibration and Verification 

Since Zrs is measured using signals from a pressure transducer and a flowmeter at or near 

the mouthpiece, it is recommended to calibrate and periodically verify the calibration of these 

sensors. This includes static calibration to ensure correct gain and zero offset, while considering 

possible position or temperature drifts. Dynamic calibration during oscillatory stimuli should 

also be performed to compensate for the sensor’s frequency response and to ensure that the 

signals are unaffected by the mechanical vibrations caused by the oscillation frequencies. Yet, 

unlike static calibrations, dynamic calibrations are not periodically required as it mainly depends 

on the physical dimensions of sensors and tubing. It is also recommended that end users perform 

periodic verifications using test loads with an impedance magnitude higher than what is expected 
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for any given patient in which the oscillometry device is to be used, as the use of insufficient 

impedance may potentially lead to errors in measurement [21]. As such, test loads of ~15 ℎ𝑃𝑎 ∙

𝑠 ∙ 𝐿−1 and ~40 ℎ𝑃𝑎 ∙ 𝑠 ∙ 𝐿−1are recommended to be used for adult and children testing, 

respectively. While sensor calibration is usually performed by manufacturers, end users are also 

required to perform daily, or each day the device is used, verifications using the impedance test 

loads to ensure an acceptable tolerance of ≤ ±10% or ±0.1 ℎ𝑃𝑎 ∙ 𝑠 ∙ 𝐿−1, whichever is met first. 

Further technical requirements include a maximal dead space that is added by the device and 

filters, and a maximum resistance of the breathing pathway through the filter and oscillometry 

device. It is therefore recommended to use low-resistance filters of  < 1 ℎ𝑃𝑎 ∙ 𝑠 ∙ 𝐿−1 at ≤ 5𝐻𝑧 

and to compensate for the combined resistance of the filter and oscillometric system, with a total 

equipment resistance < 2 ℎ𝑃𝑎 ∙ 𝑠 ∙ 𝐿−1 at ≤ 5𝐻𝑧. The recommended dead space for 

oscillometric devices is the same as for lung volume with a value below 100mL, inclusive of the 

bacterial filter, for testing adults and below 70mL for testing preschool children. [21] 

1.5.4 Biological Verification  

In addition, Poorisrisak et al. demonstrated the utility of using biological verification to 

assess reproducibility of test measurements [31]. Biological calibration, commonly known as 

biological quality control, is an oscillometry test performed periodically with healthy non-

smoking personnel, typically in the pulmonary function laboratory. A confidence interval of Zrs 

is first obtained by collecting sufficient Zrs data (≥10 measurements) in a relatively short time-

interval (a few weeks). A subsequent measurement outside the confidence interval will thus 

indicate that the oscillometric system should be evaluated carefully. In fact, Wu et al. suggested 

that an “out of control” condition can be identified by one of the following situations: 1) four 
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consecutive measurements that exceeds the mean 1SD, 2) two consecutive measurements that 

exceeds the mean 2SD, 3) a measurement that exceeds the mean 3SD, or 4) 10 consecutive 

measurements that fall on the same side of the mean. As such, once an “out of control” condition 

is observed, the device should be carefully evaluated and not used for testing until it is verified 

[20][21].  

1.5.5 Acquisition Time 

The number and duration of the obtained measurements were shown to affect the 

repeatability of oscillometry. The European Respiratory Society (ERS) technical standards 

recommends performing a minimum of three 16-seconds measurements with a CV less than or 

equal to 15% for young children and 10% for adults [21]. The averaged measurements with 

acceptable CV are typically known as a successful test. It is also recommended that the data 

acquisition is preceded by 30 seconds of tidal volume monitoring to allow patients to achieve 

stable breathing patterns [21][32]. Nonetheless, Robinson et al. suggested that tidal volume 

monitoring before data collection has little effect on the repeatability and quality of the test, 

when compared to duration of data acquired [33].  

1.5.6 Coherence 

Current efforts to improve QC included the use of different artifact detection tests such as 

coherence, statistical filters, wavelet-based and supervised machine learning methods 

[34][35][36][37]. Coherence is a measure of how closely flow and pressure waves are related 

linearly at a given frequency [21][22]. It is similar to the linear correlation coefficient and is a 

number between zero and one that provides a causality index between the input and output 

signals that is reduced from one in the presence of noise or nonlinearity. Measurements with a 
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coherence of less than 0.90 or 0.95 in many fields are usually recommended to be discarded [16]. 

Yet, in some instances measurements with lower coherence can still provide accurate results with 

averaging. While lower than expected coherence may be indicative of artifact or noise, high 

values do not necessarily ensure the absence of contamination. This is because other inputs may 

be present in a given measurement, such as breathing with harmonics, potentially coherent with 

the oscillations of the test input signal. The use of coherence can also be limited by the different 

coherence calculation approaches, its dependence on windowing, and its reduced magnitude in 

disease [16][21][38]. Due to these limitations, coefficient of variation calculated over multiple 

measurements, further discussed later in this section, is now preferred as primary means of 

quality control in oscillometry [21].  

1.5.7 Manual Quality Control including Artifact Detection 

Manual artifact detection is also one of the first methods used for the detection and 

rejection of individual measurements or breaths within a measurement. This involves visually 

inspecting the pressure, flow, or volume signals to assess the quality of breathing or detect signs 

of persistent leaks that could corrupt the measurement throughout its duration. Additionally, 

shorter artifacts, like coughs, swallows, or brief breaks in the seal with the mouthpiece causing 

momentary leaks during measurement, are observed for potential identification and removal.  

Manual QC can also be performed by observing disturbances within the resistance and reactance 

time courses during measurement. Although, manual QC with training can be done, it is time 

consuming, subjective and may be susceptible to bias [21][33][37]. Therefore, interests have 

shifted towards the automation of artifact detection to provide faster, automated and objective 

methods to improve quality control in oscillometry. 
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1.5.8 Statistical Quality Control 

There are a few statistical quality control tests that have been introduced to exclude 

outlying data points within a measurement, such as the exclusion of values that exceed a specific 

SD threshold. The three and five SD (3SD and 5SD) described by Schweitzer et al. and the 

Brown et al., respectively, are the most common and broadly applied statistical filters 

[33][39][40]. The 3SD filter is typically applied three times across the entire segment of 

oscillometry measurement data to reject points where the Zrs, including the Rrs and Xrs, exceeds 

three times the SD (>3SD) from the mean Rrs and Xrs values [33][39]. Contrarily, the 5SD filter 

implemented by Brown et al included an initial rejection of points corresponding to negative Rrs 

values before rejecting any Rrs and Xrs values exceeding five times the SD from the mean Rrs 

and Xrs values [33][36]. However, the exclusion of individual data points likely results in an 

uneven data segmentation, thus may distort the relative contributions of inspiratory and 

expiratory portions of each breath and increasing within-session variability [33]. This limitation 

was later addressed by Robinson et al. by rejecting full breaths instead of individual data points. 

Partial or incomplete breaths at the beginning or end of recordings were also excluded to ensure 

a balance between the inspiratory and expiratory contributions of each breath. Hence, the use of 

complete breath filtering was shown to result in a lower within-session variability, when 

compared to either the 3SD or 5SD filtering approaches [33]. The Flow Shape Index Filter 

(FSIF) is one of the first attempts to provide an automated artifact detection technique. The FSIF 

works with the assumption that the pressure oscillations used are always fairly sinusoidal when 

free from contamination. Hence, the deviation of the shape of the flow signal from a pure 

sinusoidal wave could be used as an objective and unbiased criterion to eliminate artifacts [34]. 

Therefore, FSIF may have advantages over manual and statistical filtering as it can operate in 
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real time, without the need for post-processing, while maintaining satisfactory agreement with 

the repeatability. 

1.5.9 Advanced Artifact Detection Techniques  

 Other artifact detection techniques examined the possibility of using the Short Time 

Fourier Transform (STFT) and Wavelet Transform (WT). STFT is a repeated application of the 

Fourier Transform (FT) in a sequential fixed time window for each frequency [35][41]. 

However, STFT imposes constraints on the representation estimate, as they require the signal to 

be stationary during a finite time interval and limits time-frequency resolution [41].  The discrete 

WT attempts to overcome some of these limitations by employing scaled length windows 

inversely with frequency, which may be better for nonstationary signals as it optimizes time 

frequency resolution in all frequency ranges [41]. Machine learning has also been attempted as 

an objective artifact detection tool that can be used alone or in combination with other artifact 

detection methods. Pham et al. has demonstrated the efficiency of using feature extraction 

models, as they provide a better or equivalent performance than an expert operator [37][42].  

All of these within measurement methods can be automated and some systems 

incorporate simple rejection methods such as the 3SD method, or removing negative resistance 

values which are obviously corrupted from a measurement. In addition to the published QC 

techniques, individual manufacturers have also implemented other techniques to improve quality 

control and automation of measurements, but these may not be fully described and thus may not 

be independently validated. Manual QC as described can be applied additionally to any 

automated within measurement QC approach. However, for acceptability of a test, that is form 

repeated measurements there is a proposed standard discussed in the next section.  
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1.5.10 ERS Technical Standards  

The ERS technical standards provide a standard method to help improve data quality 

using the CV between measurements, which can be applied after any manufacture-based 

approach to remove artifacts such as leaks and swallows. The ERS technical standards 

recommend recording three measurements with a CV in the low frequency resistance (typically 

R5) that is less than or equal to 10% in adults or 15% in young children [21]. Here, a 

measurement is defined as one of the three recordings, separated by a brief break, each lasting 

for a standard duration of 16 seconds. Introducing a short break between measurements is 

advised to address potential concerns like leaks, insufficient cheek support, misplaced nose clips, 

or improper posture. These issues may persist during a measurement, and the brief breaks offer a 

chance for necessary adjustments, enhancing the reliability of the measurements.  

While CV is provided for all recorded measurements to ensure that the CV is less than 

the required threshold, it is performed manually in some systems and often in post-hoc analyses. 

This is performed by removing measurements that cause the CV to be greater than 15%, which is 

time consuming and limits ease of measurement according to the ERS standard. Moreover, the 

ERS standard focuses on resistance at the lowest frequency while ignoring variability from other 

frequencies, and does not assess variability in reactance. The fact that the current standard 

ignores reactance is important as reactance becoming increasingly important clinically [21]. 

Indeed, recently, Hantos et al. demonstrated that the variability of the lowest oscillation 

frequency reactance (X5) can be larger than the variability of R5. As a result, Hantos et al. 

recommended that reactance should be incorporated in both short-term and follow-up 

reproducibility due to its clinical importance, specifically at the lowest frequency oscillations 

[43].  
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Additionally, while the technical standard is expert opinion, and based on measurements 

of variability, the rationale the taskforce used for the standardization of R5 for test acceptability 

was largely opinion based and was not validated. Recently however, Therkorn et al. identified 

three main factors that likely contributed to the standardization of R5: 1) resistance, unlike 

reactance, is independent of frequency in healthy subjects 2) R5 is thought to better represent the 

small airways 3) using R5 from whole breaths accounts for both inspiration and expiration 

resistance, making it easier to calculate and implement even with devices that lack explicit 

inspiration and expiration partitioning [44][45]. Also, while the use of CV of three measurements 

from multiple measurements as a measure of variability improves repeatability, and while it may 

be assumed that selecting repeatable measurements is more accurate, this has not been 

demonstrated. Therefore, this thesis will explore the use of CV across multiple frequencies and 

incorporate reactance to account for variability in the full impedance to develop and validate the 

accuracy and efficiency of a new automated QC algorithm. The hope is that this will point to a 

technique to be accepted and translated into the industry. 
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CHAPTER 2: OBJECTIVES AND HYPOTHESES 

The current ERS technical standards for acceptability are based on a CV obtained from 

resistance at 5 Hz. The Maksym lab has done some work exploring an automated algorithm 

based on the resistance measurements using multiple frequencies. Specifically, the Maksym lab 

explored an algorithm that examines all permutations of resistance measurements to obtain the 

first three measurements with an average CV at R5 and R11 to be less than or equal to 15%. 

While the resistance at 5 Hz (R5) is the standard measure to calculate and optimize the CV, this 

algorithm uses combinations of resistance at multiple frequencies to minimize the effect of 

breathing noise at 5 Hz. However, as mentioned, the use of resistance alone does not take into 

account the reactance, another important measure in oscillometry, which could result in poorer 

overall performance. Therefore, it is hypothesized that the use of impedance, which takes into 

account both resistance and reactance, can provide a better and more accurate tool for the 

calculation and optimization of CV, and potentially accuracy in estimating Zrs.  

Finally, in a previous course project the author carried out, it was demonstrated that 

machine learning can be used with oscillometry data to predict Patient Reported Outcomes 

(PRO), namely, to classify low and high values of the mMRC and CAT scores[46], [47]. The 

aim of this project was to determine the extent to which an objective measure, specifically 

spirometry and oscillometry, correlates with a subjective score. The goal was to investigate this 

relationship using machine learning, considering its potential to outperform traditional regression 

methods. However, it is important to note that this study does not seek to replace subjective 

PROs, as a strong correlation between spirometry, oscillometry, and PROs is not necessarily 

expected. Nevertheless, machine learning depends on the quality of the data on which it is 

trained and tested. Therefore, the implementation of the spectral oscillometry QC algorithm have 
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the potential to minimize the variability of the oscillometry signals and improve the performance 

of the previously developed algorithms. Hence, if possible, this thesis will test the hypothesis 

that either a higher model accuracy can be achieved with the same number of training samples, 

or the same accuracy can be achieved with a lower number of samples in the training data set. As 

such, this thesis has three main principal objectives:  

 

1) To extend the automated QC method using different combinations of resistance and 

impedance, including reactance over the range of frequencies, to improve the 

variability of spectral oscillometry. 

2) Next, a computational model will be developed to simulate time-varying resistance 

and reactance, which will be used to test and validate the accuracy of the spectral 

oscillometry QC algorithms developed by the Maksym lab. This will also help 

validate the accuracy of using the CV as a measure that reflects variability and 

quality of measurements. 

3) The last objective will focus on improving the performance of the previously 

developed machine learning model and, if possible, compare the performance of the 

developed ML models before and after applying QC. 

The first two objectives will improve repeatability and thus, the translation of 

oscillometry for clinical use and disease monitoring or effectiveness of therapy. On the other 

hand, the third objective aims to optimize the developed machine learning model used to classify 

the severity of COPD using the patient’s objective reported outcomes.  
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 CHAPTER 3: OPTIMIZING CV USING SPECTRAL QC  

This chapter presents the methods and results of the spectral QC algorithms aiming to 

improve the variability, feasibility, and efficiency in oscillometry. It also provides an overview 

of the development of a computational model to validate the accuracy of these algorithms, which 

has never been attempted before. There are three main algorithms, Early, Variant and LowestCV, 

which will be discussed in more details in the upcoming chapters. 

3.1 Methods 

3.1.1 Data Used for the Thesis 

As illustrated in Table 1, three data sets were used to develop and validate the 

performance of the spectral QC algorithms: CHILD5Y, WESER, and West Island Cohort (WIC). 

The CHILD5Y and WESER data sets were collected with informed consent, which was obtained 

in accordance with the approval of the research ethics board for the Hospital for Sick Children 

Toronto (REB # 1000060128 and #1000041089, respectively). Similarly, the WIC data set was 

collected with informed consent, approved by the McGill University Health Centre Research 

Ethics Board (MUHC-RI REB# 14-467-BMB). The measurements were collected using a 

commercially available device (Tremoflo C-100, Thorasys Medical Systems, Montreal, Canada) 

and the manufacturer’ software (tremoflo 1.0.43 build 44). CHILD5Y includes measurements 

from a group (n=550) of five years old healthy and asthmatic children in Toronto. This data set is 

excellent since performing an oscillometry test on children is more challenging and thus the data 

sets include several subjects with more than three repeated measurements. This makes it ideal for 

developing and evaluating the proposed QC algorithms. The data set contains an average of six 

measurements per subject, allowing for the study of different permutations of three 



 26 

measurements to meet the CV threshold. The WESER data set includes a group (n=110) of three 

to five years old children with wheeze that were admitted to emergency, with an average of eight 

measurements per subject. The data set also contains the notes from a well-trained operator who 

performed manual QC on the data set measurements, which will be compared to the performance 

of the developed spectral QC algorithms. The WIC data set contains 818 adult clinic data with an 

average of five measurements per subject. Approximately 80% of the WIC are COPD subjects, 

while the other 20% include normal and diseased subjects; mainly asthma, sarcoidosis, and 

interstitial lung disease. The algorithms were first developed and optimized using CHILD5Y and 

validated using the WESER and WIC. The CHILD5Y data set was finally employed to generate 

a computational model to assess the accuracy of the developed algorithms. 

 

Table 1: Demographics of data sets used to develop and validate the spectral QC algorithm. 

 CHILD5Y WIC WESER 

N 550 818 110 

AGE 5 45-90 3-5 

HEIGHT 111.1 ± 4.8 𝑐𝑚 165.6 ± 11.6 𝑐𝑚 105.5 ± 7.2 𝑐𝑚 
WEIGHT 19.3 ± 2.7 𝐾𝑔 78.6 ± 19.7 𝐾𝑔 17.8 ± 3.3 𝐾𝑔 

 

 

 

3.1.2 Early, Variant and LowestCV 

Unlike the standard way of calculating the CV, which uses the resistance at 5 Hz from all 

available measurements, the spectral QC algorithms proposed in this thesis calculate the 

variability using different combinations of resistance CVs, 𝜁𝑅, and impedance CVs, 𝜁𝑍, at 

different frequencies from a permutation of three measurements. Here, 𝜁𝑅 or 𝜁𝑍 will be used to 

calculate the within-test variability as summarized in Equations 3 and 4: 
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𝜁𝑅 =  
∑ 𝑊𝑖 ∙ 𝐶𝑉(𝑅𝑓𝑖)

𝑁𝑓

𝑖=1

∑ 𝑊𝑖
𝑁𝑓

𝑖=1

              (3) 

𝜁𝑍 =  
∑ 𝑊𝑖 ∙ 𝐶𝑉(|𝑍𝑓𝑖|)

𝑁𝑓

𝑖=1

∑ 𝑊𝑖
𝑁𝑓

𝑖=1

             (4) 

 

Where 𝜁𝑅 and 𝜁𝑍 are cost functions that capture the variability between repeated 

oscillometry measurements, 𝑅𝑓𝑖 and |𝑍𝑓𝑖| are the resistance and magnitude of impedance over 

the measured frequencies, 𝑁𝑓 is the number of measured frequencies, and 𝑊𝑖 is the weight at 

frequency 𝑖 which is used to attribute more importance to specific frequencies or correcting for 

an unevenly distributed frequency spectrum. As such, configuring 𝑊𝑖 can obtain an average over 

multiple Rrs or |Zrs| values or control the contribution of selected frequencies to the weighted 

average to obtain 𝜁𝑅 and 𝜁𝑍 that vary the contributions of the different variabilities (CV) at each 

frequency over the entire frequency spectrum. 

The Early algorithm looks at the combinations of three measurements from the first 3,4, 

5...N measurements to find the first three measurements with 𝜁𝑅 or 𝜁𝑍 less than or equal to 15% 

(Equation 3 and 4). Therefore, the Early algorithm is able to meet the threshold using fewer 

measurements, making it the fastest algorithm to perform and the most appropriate for clinical 

use. That is when using early, the operator can stop repeated measurements as soon as the 

desired CV condition is met. However, this algorithm is potentially more subjected to a learning 

effect, particularly in children, where the first measurement might be more commonly the least 

reliable. To address this concern, a Variant algorithm that follows the same steps as Early was 

investigated, but it modifies the approach by initiating the assessment of variabilities among any 

three measurements only after the first four measurements have been obtained. In contrast, the 
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LowestCV algorithm looks at the permutations from all available measurements in our data sets 

to find the lowest 𝜁𝑅 or 𝜁𝑍 possible of any three of the recorded measurements. Hence, the 

LowestCV algorithm will yield an equal or lower 𝜁𝑅  and 𝜁𝑍 compared to Early and Variant, as 

our data generally had more than the 3 or 4 measurements used by Early and Variant 

respectively. The LowestCV was calculated to demonstrate the lowest achievable 𝜁𝑅 or 𝜁𝑍 within 

the data sets, considering that the CHILD5Y and WESER data sets contained a larger number of 

measurements compared to what is typically available. It is not intended as a clinically 

applicable method as some subjects had many more measurements than needed to meet the CV 

criteria. There are four main performance measures that were studied to evaluate and compare 

the spectral QC algorithms to the current standards: 1) repeatability, 2) efficiency, 3) feasibility 

and 4) accuracy. These are each described in the sections below.  

3.1.3 Repeatability  

The repeatability of the spectral QC algorithms was evaluated using 𝜁𝑅 and 𝜁𝑍, the Root 

Mean Square (RMS) of 𝜁𝑅 and 𝜁𝑍, average SD(R5)/𝜇(|Z5|), SD(X5)/𝜇(|Z5|), SD(R5-19)𝜇/(|Z5|), 

and SD(AX). Since R5, X5, R5-19 and AX are the outcome measures of clinical interest, the 

variability of these measures were used as performance measures. However, the SD of R5, X5 

and R5-19 divided by the mean of |Z5| was used to allow for a direct comparison of the relative 

variability between these measures. Contrarily, since AX can have a mean close to zero, which 

results in high CV values, SD(AX), rather than CV(AX), was also used as an alternative measure 

to represent the variability of the measurements when using different Rrs and Zrs combinations. 

Furthermore, the RMS average of 𝜁𝑅 and 𝜁𝑍 provides a general guideline on how the CV changes 

across all frequencies. However, this is not an accurate representation of the overall performance, 
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as a lower CV of the cost function does not necessarily correspond to a good performance in 

terms of the other performance measures. Hence, the main focus of the analysis will be on the 

average SD(R5)/𝜇(|Z5|), SD(R5-19)/(|Z5|) and SD(AX), as it is felt that they give a very 

understandable representation of the overall performance. They also provide physicians with 

relatable information to the outcome measures to evaluate the repeatability of their repeated 

measurements of the mechanical properties of the respiratory system. Similarly, plots of CV(|Z|), 

SD(R)/𝜇(|Z|), SD(X)/𝜇(|Z|), as well as the actual Rrs and Xrs values, as a function of frequency, 

were also evaluated to study the variability before and after QC.  

3.1.4 Efficiency  

The second performance measure is the efficiency of data collection, which is defined 

here as the required number of measurements to pass the acceptability criteria, either the CV, 𝜁𝑅 

or 𝜁𝑍 to be less than or equal to 10% and 15% for adults and children, respectively. While the 

main focus is on improving the repeatability and reducing variability to meet the acceptability 

criteria defined by ERS, it is critical that the proposed QC algorithms does not improve 

repeatability at the cost of lowering the efficiency. Therefore, it is important to compare the 

efficiency before and after QC and validate that it was maintained, or better still improved, 

which plays a key role in implementing and adopting the proposed QC algorithms.   

3.1.5 Feasibility  

The third performance measure is feasibility, which is the percentage of subjects that were 

able to achieve valid data by obtaining a minimum of three repeated measurements with a CV, 

𝜁𝑅 or 𝜁𝑍 less than or equal to15% [21]. The feasibility of the proposed spectral QC algorithms 

and the ERS technical standards were compared using different combinations of R (𝜁𝑅) and |Z| 
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(𝜁𝑍). Seven different methods were compared to select a minimum of three valid and artifact-free 

measurements, where the CV, 𝜁𝑅 or 𝜁𝑍 for each patient test is calculated using: 1) the first three 

measurements and no QC, 2) the first four measurements and no QC, 3) the first five 

measurements and no QC, 4) all the available measurements and no QC, 5) a combination of 

three measurements from the first four, with QC, 6) a combination of three measurements from 

the first five, with QC and 7) a combination of three measurements from all the available 

measurements, with QC.  

The CHILD5Y data set contains a total of 3572 measurements from 550 patient tests, with 

885 user-excluded measurements and 589 tremoflo excluded measurements. The WIC contains a 

total of 9143 measurements from 818 patient tests, with 709 user-excluded measurements and 

1132 tremoflo excluded measurements. A measurement can be automatically excluded by the 

tremoflo software when it contains less than 10 seconds of valid recording. Although this can be 

due to early termination of the measurement during recording, it is usually from the rejection of 

negative Rrs values or Rrs values that are more than two SD from the mean, as can occur with 

artifacts such as coughs, brief tongue occlusions, or swallows during recording. User exclusion, 

on the other hand, is performed manually based on visual inspection and is usually done by a 

trained technician or clinician.  

The seven outlined methods used to assess the feasibility were performed after excluding 

tremoflo excluded measurements but included the user-excluded measurements. This was done 

to test algorithms under conditions that relied fully on algorithmic methods which is typical in 

clinical use and there were no notes available describing the rationale for any measurement 

exclusions in CHILD5Y and WIC. However, the WESER data set went through a careful 

overreading of the data by a well-trained operator who examined the pressure and flow tracing 
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for irregular shaped breaths, such as very large or very small breaths, or evidence of coughs, 

excluding measurements including notes. Thus, the WESER data was used to compare the 

effects of inclusion versus exclusion of manually rejected measurements. This analysis involved 

86 patient tests from the WESER data, as no manual QC was conducted on the remaining data. 

The effect of including or excluding user excluded data on this algorithmic approaches was also 

analyzed in the CHILD5Y and WIC data sets. Although the user-excluded measurements in the 

CHILD5Y and WIC data are not being performed by a well-trained operator, they were still used 

to represent a form of manual QC that is common in the clinical settings. 

3.1.6 Accuracy and Model Development  

Since accuracy in the presence of patient variability cannot be determined with measured 

data, the accuracy of the spectral QC algorithms was evaluated using a computational model. 

Instead of using values chosen from an arbitrary random distribution, it was decided to use the 

exact Rrs and Xrs values that were measured in CHILD5Y as the model values and distribution, 

to which was added artifacts and variability based on estimates of artifacts and variability as 

described later. To estimate as best as possible a group of ‘true’ values uncorrupted by artifacts, 

tremoflo and user-excluded measurements were excluded from all subjects in the CHILD5Y data 

set. Subjects with less than with five or more repeated measurements each including their 

expected measurement variability amongst the five. These five measurements were used as a 

simplified simulation of the true physiological variability and hence, used to model, and then to 

test the accuracy in estimating the true resistance (𝑅𝑇) and reactance (𝑋𝑇) values.  

Therefore, the simplified model consists of 209 subjects, each with five artifact free 

measurements, providing a useful range of normal physiological variabilities that mimics the 

variation in both impedance values and variation in values found in a group like the CHILD5Y. 
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Using the exact Rrs and Xrs values from CHILD5Y provided a simplified simulation while 

preserving the relationship between an individual’s Rrs and Xrs, which can become a challenge 

to model independently, and easiest to use existing real-world data. Additionally, the use of five 

measurements enabled the experimentation with different measurement permutations using the 

Early algorithm under realistic order of measurement conditions. This approach was also used to 

replicate a clinical scenario like the data from Dr. Ronald J. Dandurand clinic (WIC), where five 

measurements are a common measurement protocol. 

To model noise, this was taken from our measurements as well, where there were 

recognizable outliers in measurements that often could not be physiological, that is very unlikely 

to be produced by a change in lung mechanics, such as a measurement more than double the 

remaining measurements which appeared groups together. It’s not known the cause of these 

outlier measurements, and the individual measurements data do pass the device detection and 

rejection of any short within measurement artifacts such as might occur due to a cough, thus 

these outliers must arise from persistent deviations from the average behavior of a typical 

measurement with its expected variability. These potentially could arise from unobserved 

improper holding of the cheeks, missing nose-clip, improper posture, holding the tongue back 

narrowing the airway for an entire measurement, but the reasons are unknown. Given that there 

can bias the mean values, particularly if they produce outlying values of impedance, these 

measurements should ideally be detected and removed from the average of the test. Outlier 

measurements that occur but otherwise do not affect the mean values are here not taken to 

represent an issue harmful to accuracy. Random measurement noise such electrical transducer 

noise can also corrupt the measurements but these are quite small and are likely less problematic. 

Hence, to provide a more accurate simulation of clinical scenarios, it was decided to add outliers 
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based on our data and add these to the true values. The development of this outlier distribution 

and the methods used to introduce these outliers in the simulation is described in next 

subsections. Once outliers were introduced, the accuracy obtained before applying any QC 

algorithms was finally compared against the accuracy obtained after applying the proposed 

spectral QC algorithm. In this evaluation, accuracy was defined as the percent Root Mean Square 

Error (%RMSE), as elaborated in subsection 3.1.6.5. 

3.1.6.1 Generating the Outlier Distribution 

A distribution of outliers was estimated using data from the CHILD5Y subjects and was 

applied it to introduce outliers to the model of normal subject physiological variability. This 

would enable the assessment of the effects of the QC algorithms on accuracy by the difference 

with the true values. Thus, similar to the development of model of normal variability, a 

distribution of outliers was developed from the measured data. The outliers distribution was 

identified by applying a method known as the Grubbs test (described below) to all the collected 

measurements for each subject test in the CHILD5Y data set. This was done after including user- 

and tremoflo- excluded measurements as they provide more data points and realistic events for 

the Grubbs test. Here, an outlier is a full measurement detected after applying the Grubb’s test to 

repeated measurements.  

The Grubbs test is a statistical test designed to detect a single outlier from limited 

measures. It is based on the assumption that the data follows a normal distribution, but this can 

be difficult to assess for small number of samples, which is typically where the test is applied, 

and an approximately normal distribution is sufficient. The Grubbs test is also known as the 

maximum normed residual test and is defined by: 
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 𝐺 =
max |𝑌𝑖− 𝑌̅|

𝑠
                                 (5)   

Where 𝑌̅ and s represent the sample mean and standard deviation, respectively. The 

Grubbs test calculates a test statistic (G) that is the largest absolute deviation from the sample 

mean in units of the sample standard deviation. Thus, the test compares the difference between 

the suspected outlier and the sample mean to the sample standard deviation. If the calculated G 

value exceeds a critical value the suspected outlier is considered significant and can be removed 

from the data set [48][49]. The critical value is based on critical values of a t-distribution with N-

2 degrees of freedom where N is the number of values, and a significance value alpha such as 

alpha = 0.10 is chosen (described further below on page 36)  

Normality Test of CHILD5Y Data  

Since normality is desired to perform Grubb’s test, a normality test was first performed 

on the CHILD5Y data assessing the distributions Z(1/f) and log(Z(1/f)), since initial observation 

indicated the distribution of Z(1/f) could be more log-normally distributed. Z(1/f) is a weighted 

impedance cost function with an ability to identify and reduce the variability of impedance, as 

demonstrated in section 3.2. The CHILD5Y data set was visually compared to a normal and log-

normal distribution with the same means and standard deviations (Figure 4). The skewness and 

kurtosis were also computed since these should be zero for normally distributed data. 

Objectively, the normality of individual patient test measurements were also assessed using the 

Lilliefors test. The Lilliefors test is a variation of the Kolmogorov-Smirnov (K-S) test for 

normality. The test compares the Empirical Distribution Function (EDF) of the sample with the 

Cumulative Distribution Function (CDF) of the expected distribution. The maximum absolute 

difference (D) between the EDF and the CDF is then compared to a sample size adjusted critical 
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value [50]. The Lilliefors test is thought to yield the best results for small sampled data [51], and 

thus is suitable for CHILD5Y subjects, containing 4-12 measurements in each test. The Lilliefors 

test was applied using the MATLAB function lillietest on Z(1/f) and log (𝑍 (1
𝑓⁄ )) per subject, 

with parameter (‘Alpha’ = 0.1) for a 10% significance level.  

 

 
Figure 4:Probability distribution of a) Z(1/f) and b) log(Z(1/f)) from CHILD5Y(Blue) and a 

normal distribution with the same mean and SD obtained using the MATLAB function normrnd. 

 

 

Observation of the Z(1/f) distribution from the CHILD5Y data set demonstrated a closer 

resemblance to a log-normal distribution as shown in Figure 4. Indeed, the distribution of 

log(Z(1/f)) exhibited a skewness of 0.33 and a kurtosis of 3.8, indicating closer to normality than 

the unadjusted Z(1/f), which had a skewness of 1.6 and a kurtosis of 8.3. While the difference 

between the percentage of patient tests that passed the Lilliefors test using log(Z(1/f)) and Z(1/f) 

was small, 90% compared to 89%, these percentages were notably high. Taken together, it was 

decided it is better to choose log(Z(1/f)) with the Grubb's test for outlier detection. 
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Applying the Grubbs Test 

As mentioned earlier, an outlier is a full measurement that was detected and rejected by 

the Grubb’s test performed using the MATLAB function isoutlier with parameters (method = 

‘Grubbs’) and (‘threshold’ = 0.1) for a 10% significance level. A significance level, often 

denoted by alpha (𝛼), is the probability of rejecting the null hypothesis when it is actually true. In 

the Grubb’s test, the null hypothesis is that there are no outliers in the data set. Hence, a 

significance level of 10% means that there is a 10% change that a detected outlier is actually a 

false positive. While other confidence levels were analyzed, a 10% significance level was used 

as it is a common threshold and it provided a sufficient number of outliers to generate a better 

estimate of the artifact distribution. It was straightforward to apply the Grubbs test using the 

impedance rather than Rrs and Xrs independently, and easiest to use a composite measure of 

impedance across frequency, like the cost functions used previously in section 3.1.2, rather than 

detecting and modeling individual outliers at each frequency. A similar weighted impedance cost 

function was used, as illustrated in Equation (6), because of the ability to identify and reduce the 

variability of impedance using an inverse frequency weighted cost function, as demonstrated in 

section 3.2, and because of the variability in Zrs that is dominated at the lowest frequency. 

Thus, the use of 𝑍𝑜(1/f) simplified the detection of outliers to a single value for a 

measurement that considers both the resistance and reactance across multiple frequencies.  

 

𝑍𝑜(1/𝑓) =  
𝐶𝑉(|𝑍5|) +  

𝐶𝑉(|𝑍11|)
11 +

𝐶𝑉(|𝑍13|)
13 +

𝐶𝑉(|𝑍17|)
17 +

𝐶𝑉(|𝑍19|)
19

1 +  
1

11 +
1

13 +
1

17 +
1

19

          (6) 
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The Grubbs test was applied using all the collected measurements for each individual 

patient test (n=550) in CHILD5Y. Since the Grubbs test detects a single outlier at a time, the test 

was repeated for each patient until no more outliers were detected from that patient. This defined 

an outlier distribution specific to each subject. However, since a distribution was required to 

randomly add outliers across all subjects, the detected outliers were normalized to the test mean 

of the subject (𝜇𝑂𝑅). These normalized outliers were calculated using the remaining 

measurements after the rejection of the outlier detected by Grubbs test, yielding normalized Rrs 

(𝑅𝑛𝑜𝑟) and Xrs (𝑋𝑛𝑜𝑟) values at each frequency 𝑘. Figure 5 illustrates the probability distribution 

of the cost function 𝑍𝑜(1/f) before and after the detection and exclusion of outliers from all 

patients detected by Grubbs test, as well as the probability distribution of the detected 

normalized outliers. These results highlight the effectiveness of the Grubbs test in detecting 

outliers (𝑛𝐺𝑂= 105) that deviated from the test mean, resulting in shorter distribution tails after 

their removal. The presence of two peaks in Figure 5b reflects outliers below and above the 

mean values of the respective patient. Peaks at around 1.5 and 0.5 represent peaks in the 

distribution of outliers that were larger and smaller than the mean, respectively. Normalized 

outlier values greater than 1.5 or less than 0.5 indicate more extreme outlier values while values 

closer to zero come from patients who had narrower distributions for their non-outlier values, 

such that the prospective outlier was detected by the Grubb’s test. 
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Figure 5: Probability distribution of a) all collected measurements from the CHILD5Y data set, 

before and after the detection and rejection of outliers using the Grubbs test (n=100), and b) the 

detected outliers, normalized to the mean of each test after outlier 

 

3.1.6.2 Generating the True Impedance Values 

As introduced earlier, the mean Rrs and Xrs values were used from the five artifact-free 

measurements in each test from CHILD5Y (n = 209) to provide the true values for the model. 

Different amounts of randomly chosen outliers were then added as described in the next section, 

and this represented the simulated data with artifacts. The accuracy was then calculated from the 

%RMSE between the simulated data with noise added and the true values without noise. Each 

simulated test has a true Rrs (𝑅𝑇) and Xrs (𝑋𝑇) values which were taken to be the mean Rrs and 

Xrs values from the five artifact-free measurements. Hence, without outliers, the %RMSE value 

would be zero, which can never be the true accuracy of an oscillometry test from multiple 

individual measurements unless an infinite number of measurements was collected. This is 

because of the normal variation of human impedance which is largely from breathing. Therefore, 

using the mean of the five measurements as the truth leads to an artificially low estimate of the 

%RMSE which is not a realistic simulation of the real-world situation. To overcome this 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20 40

P
ro

b
ab

il
it

y

Z(1/f)
Z(1/f) before outlier exclusion
Z(1/f) after outlier exclusion

0

0.05

0.1

0.15

0.2

0.25

0 2 4

Normalized Outliers

b) a) 



 39 

limitation, it was decided to add some realistic noise to the modeled 𝑅𝑇 and 𝑋𝑇 that is meant to 

match the within test variability observed in CHILD5Y. To do that, the within test variability 

was first estimated in the modeled tests in both Rrs and Xrs, normalized to the mean impedance 

Zrs for each test. This would be from SD of the five artifact-free measurements from each test 

normalized to each respective mean Zrs within a test, at each frequency. This is because the 

variability of Rrs and Xrs tends to be very nearly proportional to the mean impedance [52], but is 

still different from subject to subject. Hence, this provided a distribution of normalized SD for 

the within test variability of Rrs (𝑅𝑣𝑤𝑝) and Xrs (𝑋𝑣𝑤𝑝) at each frequency k as illustrated in 

Equations 7 and 8 for Rrs and Xrs, respectively.  

 

𝑅𝑣𝑤𝑝(𝑘) =  
𝑆𝐷(𝑅𝑟𝑠(𝑘))

𝜇(|𝑍𝑟𝑠(𝑘)|)
                        (7) 

𝑋𝑣𝑤𝑝(𝑘) =  
𝑆𝐷(𝑋𝑟𝑠(𝑘))

𝜇(|𝑍𝑟𝑠(𝑘)|)
                         (8) 

 

With this, two randomly chosen values can be produced from a normal distribution with a 

mean of zero and SD of one, 𝑅𝑟𝑛 for Rrs and 𝑋𝑟𝑛for Xrs. It was decided that using a normal 

distribution is sufficient as this is just used as a random number generator to add the simulated 

variation based on the SD of the within test variability. Since only one random value was used, 

𝑅𝑟𝑛 for Rrs and one 𝑋𝑟𝑛 for Xrs, this was implemented similarly for all frequencies without 

adding additional noise across frequencies. Therefore, multiplying these random numbers by the 

normalized SD for the within test variability of Rrs and Xrs created noise across frequency for 

Rrs (𝑅𝑛) and Xrs (𝑋𝑛) and provided realistic sampling (Equations 9 and 10). 

 

𝑅𝑛(𝑘) =  𝑅𝑟𝑛𝑅𝑣𝑤𝑝(𝑘)                              (9) 



 40 

𝑋𝑛(𝑘) =  𝑋𝑟𝑛𝑋𝑣𝑤𝑝(𝑘)                               (10) 

 

This noise was then correctly re-scaled before finally adding it to 𝑅𝑇 and 𝑋𝑇 at frequency 𝑘 

as shown in Equations 11 and 12. This generated a modeled test resistance, 𝑅𝑚 and reactance 

𝑋𝑚, which is shifted either up or down according to a SD randomly chosen from a distribution of 

within patient variabilities defined by 𝑅𝑣𝑤𝑝 and 𝑋𝑣𝑤𝑝. As such, settings 𝑅𝑟𝑛 and 𝑋𝑟𝑛 to zero 

allow for the verification of the modeled patient tests by checking if they were reproducing 𝑅𝑇 

and 𝑋𝑇 obtained from the five artifact-free measurements. 

 

𝑅𝑚(𝑘) =  𝑅𝑇(𝑘) +  𝑅𝑇(𝑘) ∙ 𝑅𝑛(𝑘)        (11) 

𝑋𝑚(𝑘) =  𝑋𝑇(𝑘) +  𝑋𝑇(𝑘) ∙ 𝑋𝑛(𝑘)        (12) 

  

3.1.6.3 Combining Values and Generating the Model Data 

An outlier is introduced to a list of randomly selected patient tests from the developed model 

to represent artifacts as described by Equations 13 and 14,  

 

𝑅𝑜(𝑘) =  𝜇(𝑅𝑚(𝑘)) +  𝜇(𝑅𝑚(𝑘)) ∙ 𝑅𝑛𝑜𝑟(𝑘)        (13) 

𝑋𝑜(𝑘) =  𝜇(𝑋𝑚(𝑘)) +  𝜇(𝑋𝑚(𝑘)) ∙ 𝑋𝑛𝑜𝑟(𝑘)        (14) 

 

Where  𝑅𝑛𝑜𝑟 and 𝑋𝑛𝑜𝑟 are the normalized resistance and reactance values obtained from the 

artifact distributions in Figure 5. 𝑅𝑛𝑜𝑟 and 𝑋𝑛𝑜𝑟 were unnormalized to the mean values of each 

patient at each frequency 𝑘, by multiplication, and then added to the mean values 𝑅𝑚 and 𝑋𝑚 

giving 𝑅𝑜 and 𝑋𝑜 which are the resistance and reactance values of the introduced outliers. In the 
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CHILD5Y data set, 17% of the patient tests contain outliers, whereas 16% and 19% of the 

patient test contain outliers in WESER and WIC, respectively. To explore the accuracy over a 

wider range, outliers were introduced to 0-50% of patient tests. Two scenarios were modeled, 

where each represented a model patient test and contained a total of five measurements. The first 

scenario was an artifact free patient test, in which all the five measurements are obtained from 

𝑅𝑚 and 𝑋𝑚. In the second scenario, an outlier is introduced and thus, four artifact-free 

measurements are randomly selected from 𝑅𝑚 and 𝑋𝑚 to represent physiological variability, 

whereas the fifth measurement is replaced with an artifact represented by 𝑅𝑜 and 𝑋𝑜.  

3.1.6.4 Generating the Modeled Data for AX and R5-19 

The effect of the proposed spectral QC algorithm on the accuracy of outcome measures R5-

19 and AX was also studied. The same process was followed to model AX as shown in 

Equations 15 to 18 which are similar to the previous Equations for Rrs and Xrs (Equations 7 to 

14 described above). 

𝐴𝑋𝑣𝑤𝑝 =  𝑆𝐷(𝐴𝑋)                                     (15) 

𝐴𝑋𝑛 =  𝐴𝑋𝑟𝑛𝐴𝑋𝑣𝑤𝑝                                    (16) 

𝐴𝑋𝑚 =  𝐴𝑋𝑇 +  𝐴𝑋𝑛                                   (17) 

𝐴𝑋𝑜 =  𝐴𝑋𝑚 +  𝐴𝑋𝑚 ∙ 𝐴𝑋𝑛𝑜𝑟                    (18) 

 

Where 𝐴𝑋𝑣𝑤𝑝 is the within patient test variability, 𝐴𝑋𝑛 is the normalized noise, 𝐴𝑋𝑚 is AX 

of the modeled patient test, and 𝐴𝑋𝑜 is the AX value of introduced outliers. As shown in 

Equation 15, SD of the multiple measurements was used instead of using a normalized SD to the 

mean, as the mean AX can be small and lead to large variability despite low absolute variability 
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which could lead to an artificially high variability. On the other hand, R5-19 is a difference 

between resistance values and was modeled by taking the difference between the modeled 

resistance values (𝑅𝑚 and 𝑅𝑜 ) at 5 and 19 Hz as illustrated in Equations 19 and 20. 

 

𝑅5 − 19𝑚 =  𝑅𝑚(5) −  𝑅𝑚(19)             (19) 

𝑅5 − 19𝑜 =  𝑅𝑜(5) −  𝑅𝑜(19)                (20) 

 

3.1.6.5 Analyzing Model Performance Using QC Algorithms 

As mentioned earlier, instead of calculating individual accuracies for the Rrs and Xrs at each 

frequency, the RMSE across all frequencies was provided to give a single metric of accuracy for 

a particular outcome variable. Therefore, the accuracy of the spectral QC algorithms from the 

modelling was assessed by calculating the %RMSE values of the mean and median true and 

predicted Zrs(1/f). Both the mean and the median were examined, since the median is thought to 

be a better representation of the accuracy as the modeled data is closer to a log normal 

distribution than it is to a normal distribution. This is illustrated in Equation 21, where 𝑍𝑇(1
𝑓⁄ ) 

is the true weighted impedance cost function value (truth) obtained using the mean of 𝑅𝑇 and 𝑋𝑇 

from the CHILD5Y data set, and 𝑍𝑃(1
𝑓⁄ ) is the predicted weighted impedance cost function 

values obtained using the mean of 𝑅𝑃 and 𝑋𝑃 either with no QC or after applying spectral QC. 

𝑅𝑃 and 𝑋𝑃 are the predicted resistance and reactance values, represented by 𝑅𝑚 and 𝑋𝑚 when no 

outliers are introduced and represented by both 𝑅𝑚 and 𝑋𝑚 as well as 𝑅𝑜 and 𝑋𝑜 when 

introducing outliers to modeled tests.  
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𝑀𝑒𝑑𝑖𝑎𝑛 %𝑅𝑀𝑆𝐸𝑍(1
𝑓⁄ ) =  𝑀𝑒𝑑(   √(

𝑍(1
𝑓⁄ )𝑇 −  𝑍 (1

𝑓⁄ )
𝑃

 

𝑍 (1
𝑓⁄ )

𝑇

 )

2

    × 100%  )         (21) 

 

The accuracy was also assessed for the key measures R5-19 and AX. However, since R5-19 

and AX can have values close to zero as described previously, and thus can lead to an artificially 

high %RMSE values, the actual RMSE values were used instead as illustrated in Equations 22 

and 22.  

 

𝑀𝑒𝑑𝑖𝑎𝑛 𝑅𝑀𝑆𝐸𝑅5−19 =    𝑀𝑒𝑑 (√((𝑅5 − 19𝑇) − (𝑅5 − 19𝑃) )2 )                             (22) 

𝑀𝑒𝑑𝑖𝑎𝑛 𝑅𝑀𝑆𝐸𝐴𝑋 =    𝑀𝑒𝑑(√(𝐴𝑋𝑇 −  𝐴𝑋𝑃)2  )                                                                 (23) 

 

Therefore, the accuracy obtained after applying the Early algorithm was compared to no QC 

using four different scenarios: 1) No QA – ALL, where the %RMSE is calculated using all 

modeled measurements before applying QC, 2) No QA- First 3, where the %RMSE is calculated 

using the first three modeled measurements before applying QC, 3) Early, where the %RMSE is 

calculated using the three selected measurements obtained after applying the Early QC 

algorithm, and 4) No QA- Stop After Meeting CV Criteria (SAMC), where the %RMSE is 

calculated using the first nth measurements required by the Early algorithm to meet the 

acceptability criteria (𝜁𝑅 and 𝜁𝑍 ≤ 15%). No QA-SAMC is used to replicate the most common 

clinical scenario in which operators stop collecting oscillometry measurements once the CV 

criteria is met. Finally, the accuracy of the Early algorithm was also compared to a common QC 

method of detecting and rejecting outliers based on two standard deviations (QA-2SD). 
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3.2 Results 

As discussed in subsection 3.1.2, the Early algorithm was identified as the most efficient and 

suitable method representative for the clinical setting due to its fast performance. Thus, a spectral 

QC algorithm was developed and optimized using the Early algorithm. The following 

subsections present the key results obtained from implementing this algorithm, focusing on the 

performance measures outlined in section 3.1. 

3.2.1 Repeatability  

There are many different combinations of Rrs and Zrs CVs, 𝜁𝑅 and 𝜁𝑍 respectively, that were 

investigated as illustrated in appendix A (Table A1). Here, 𝜁𝑅 (Equation 3) and 𝜁𝑍 (Equation 4) 

were used as cost functions that capture the variability between repeated oscillometry 

measurements using averages of resistance and impedance CVs over the measured frequencies. 

Hence, 𝜁𝑅 = 𝐶𝑉(𝑅5 + 𝑅11 + 𝑅19), for example, would represent the average resistance CVs at 

5, 11 and 19 Hz, whereas 𝜁𝑍 = 𝐶𝑉(|𝑍5| + |𝑍11| + |𝑍19|) would represent the average 

impedance CVs at 5, 11 and 19 Hz. The first approach was to analyze the variability using  𝜁𝑅 =

𝐶𝑉(𝑅5), which is the standard measure that is used to calculate and optimize the CV. Figure 6 

shows CV of impedances versus oscillation frequency. The graph demonstrates the impact of 

quality control measures on the variability of impedance before and after applying the proposed 

spectral QC algorithm. The data compares the CV before implementing QC from all obtained 

measurements (black solid line) and using the first three measurements (black dashed line) to the 

CV after applying the proposed QC algorithm, where each color represents the CV from 

combinations of Rrs from different frequencies.  
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Figure 6: A plot of the mean CV(Z) vs. frequencies from the CHILD 5Y data set before and after 

spectral QC using 𝜁𝑅 = CV(R5), CV(R5+R11), and CV(R5+R19), (Bars represent standard 

error). 

 

 

The use of 𝜁𝑅 = CV(R5) with the proposed spectral QC algorithm resulted in the lowest 

variability at 5 Hz but a relatively higher variability at all the higher frequencies. When adding 

R11 to optimize and minimize the average CV of R5 and R11 ( 𝜁𝑅 = CV(R5+R11)), the results 

tended to appear slightly improved at the higher frequencies but not significantly (p>0.05), at a 

cost of higher impedance CV at 5Hz, Figure 6. There was also higher variability assessed by the 

average normalized SD of R5 (P<0.05), R5-19 (p<0.05), X5 (p>0.05) and the average SD of 

AX(p>0.05) compared to the use of 𝜁𝑅 = CV(R5) as illustrated in Table 2. Important 

measurements from oscillometry include R19 or R20 due to the increased importance of R5-R20 

as an index of heterogeneity attributed to the small airways, and as a measure of early lung 

disease. Some oscillometry devices are also limited to maximum frequency values between 20 

and 40 Hz. Therefore, minimizing the variability using a cost function that included R5 and R19 

was also investigated. Using the average CV of R5 and R19 ( 𝜁𝑅 = CV(R5+R19)) maintained the 
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same variability at R5, R5-19, X5 and yielded a similar RMS Average CV(Z) (p>0.05) when 

compared to the standard R5, with a slightly higher variability at AX (p>0.05), but still lower 

than  𝜁𝑅 = CV(R5+R11) (Figure 6, Table 2). 

 

Table 2: Summary of key performance measured used to assess the different combinations of R 

and |Z| CVs, obtained for 𝜁𝑅 = CV of R5 alone, the average CV of R5 and R11, the average CV 

of R5 and R19, CV of |Z5| alone, the average CV of |Z5| and |Z19| and a weighted impedance 

(Z(1/F)). 

ζ𝑅 and ζZ  

RMS 

Average 

CV(|Z|) 

Average 

SD(R5)/ 

µ(|Z5|) 

Average 

SD(R5-19)/ 

µ(|Z5|) 

Average 

SD(X5)/ 

µ(|Z5|) 

Average 

SD(AX) 

CV(R5) 

No QA [First 3] 0.12 0.12 0.09 0.1 16.32 

No QA [All] 0.13 0.13 0.09 0.1 16.79 

Early  0.1 0.08 0.08 0.09 13.62 

Variant 0.09 0.07 0.07 0.08 12.95 

LowestCV 0.09 0.04 0.07 0.08 12.58 

CV(R5+R11) 

No QA [First 3] 0.12 0.12 0.09 0.1 16.32 

No QA [All] 0.13 0.13 0.09 0.1 16.79 

Early  0.1 0.09 0.08 0.09 14.02 

Variant 0.09 0.08 0.08 0.09 12.91 

LowestCV 0.07 0.05 0.07 0.08 11.75 

CV(R5+R19) 

No QA [First 3] 0.12 0.12 0.09 0.1 16.32 

No QA [All] 0.13 0.13 0.09 0.1 16.79 

Early  0.1 0.09 0.08 0.09 13.99 

Variant 0.09 0.08 0.08 0.09 13.29 

LowestCV 0.07 0.06 0.06 0.08 12.59 

CV(Z5) 

No QA [First 3] 0.12 0.12 0.09 0.1 16.32 

No QA [All] 0.13 0.13 0.09 0.1 16.79 

Early  0.1 0.08 0.08 0.08 12.64 

Variant 0.09 0.07 0.08 0.08 11.86 

LowestCV 0.09 0.05 0.07 0.07 11.35 

CV(Z5+Z19) 

No QA [First 3] 0.12 0.12 0.09 0.1 16.32 

No QA [All] 0.13 0.13 0.09 0.1 16.79 

Early  0.09 0.09 0.08 0.08 12.95 

Variant 0.09 0.08 0.08 0.08 12.16 

LowestCV 0.07 0.06 0.06 0.08 11.25 

Z(1/f) 
No QA [First 3] 0.12 0.12 0.09 0.1 16.32 

No QA [All] 0.13 0.13 0.09 0.1 16.79 
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Early  0.1 0.08 0.08 0.08 12.77 

Variant 0.09 0.07 0.08 0.08 11.93 

LowestCV 0.08 0.05 0.07 0.08 11.11 

 

 

Next, the performance of algorithms based on CVs of the Rrs were compared to 

algorithms based on CVs of |Zrs| using the same frequency combinations, as this included the 

variation of Xrs. Results were similar, with lower impedance and AX variabilities, assessed by 

CV(|Z|) and SD(AX), obtained using 𝜁𝑍 = CV(|Z5|) and 𝜁𝑍 = CV(|Z5|+|Z19|) compared to 𝜁𝑅 = 

CV(R5) and 𝜁𝑅 = CV(R5+R19), respectively (Figure 7). Although the use of 𝑅𝑟𝑠 based 

algorithms appeared to lead to lower variability at R5 and R5-19, which exclusively depend on 

Rrs, this was not significant (p>0.05). Interestingly, it was discovered that 𝜁𝑅 = CV(R5) or  𝜁𝑍 = 

CV(|Z5|) yielded the lowest variabilities in all of the key performance measures, highlighting the 

significant contribution of the lowest oscillation frequency (5Hz) to the variability of R5, R5-19, 

X5 and AX, which are principal outcome measures. Therefore, based on these results, different 

combinations of CVs based on Zrs were then investigated for their effect in decreasing the 

variability amongst R5, R5-19, X5 and AX with a focus on frequency dependent weights with 

strongly weighted |Z5| (𝜁𝑅 =  Z(1/f)). 
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Figure 7: A plot of the mean CV(|Z|) vs. frequencies from the CHILD 5Y data set before and 

after spectral QC using 𝜁𝑅 = CV(R5) and CV(R5+R19) , 𝜁𝑍 = CV(|Z5|) and CV(|Z5|+|Z19|), 

(Bars represent standard error). 

 

As illustrated in Appendix A, Table A1, multiple combinations of weighted |Zrs| CVs 

were investigated, contributing more weight and thus higher significance to 5Hz. Amongst the 

investigated combinations, good improvements were achieved in R5, R5-19, X5 and AX when 

using a 1/f weighted CVs of impedance  ζZ = Z(1/f). This is shown in Figure 3.5 which compares 

no QC to the standard R5 and two very good combinations based on CVs of Zrs, ζZ = |Z5|+|Z19| 

and ζZ = Z(1/f). The improved 1/f dependent cost function was also justified by the fact that the 

key outcome measure AX has an inverse correlation with the frequency of oscillation as 

demonstrated in the impedance versus frequency curve in Figure 8. This may also be useful due 

to the fact that in disease, resistance exhibits an inverse frequency dependence, thus weighting 

the cost function to minimize variability where the magnitudes of Resistance and Reactance are 

maximal appears to be useful for minimizing variability across frequencies. These mentioned 

relationships were used as a foundation to derive a novel cost function, ζZ = Z(1/f), which 

provided the best overall performance at the key outcome measures. ζZ = Z(1/f) provided a 
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significantly lower variability (p<0.05) at all the outcome measures compared to  ζZ = 

|Z5|+|Z19|, as more weight is assigned to the lowest frequency 5Hz. Nevertheless, while 

significant improvements were obtained for the RMS average CV(|Z|), SD(X5)/µ(|Z5|) and 

SD(AX) compared to the standard  ζR = R5 (p<0.05), no significant improvements (p>0.05) were 

achieved for SD(R5)/µ(|Z5|) and SD(R5-19)/µ(|Z5|).  

 

 

Figure 8: A plot of the mean CV(|Z|) vs. frequencies from the CHILD 5Y data set before and 

after spectral QC using 𝜁𝑅 = R5 and 𝜁𝑍 = |Z5|+|Z19|, and Z(1/f) , (Bars represent standard 

error). 

 

 

The effect of the different algorithms on mean Rrs and Xrs values across subjects was 

also examined. It was found that while the QC algorithms reduced the variability in individual 

subjects, this did not appear to affect the means across subjects (Figure 9). Specifically, Rrs was 

not altered (p > 0.05), and while the difference in Xrs is not visible, it nevertheless was 

significant (0.001<p<0.05). This significant difference in Xrs is likely due to the very large 

numbers of subject and in fact was well below group or individual variability. Overall, this 
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indicates, perhaps surprisingly, that while QC may be important for an individual, for large 

studies QC might have no effect on the mean values from oscillometry. This was also found 

using the WIC and WESER data sets, where  ζZ = Z(1/f) optimized the CV across all frequencies 

and in fact resulted in lower CVs compared to the manual QC from the WESER data set (Figure 

10), with minimal effect on the mean Rrs and Xrs values (Appendix A, Figures A1 and A2). 

However, QC did have substantial effects on individual outcomes despite the small change in 

means. The Early algorithm resulted in a change of more than one cmH2O/L/s in R5 for 48%, 

22% and 28% of subjects and a change of more than one cmH2O/L/s in X5 for 24%, 39% and 

20% of subjects in CHILD5Y, WIC and WESER, respectively.  

 

 
Figure 9: A plot of the mean resistances (top) and reactances (bottom) vs. frequency from the 

CHILD 5Y data set before and after spectral QC using 𝜁𝑍 = Z(1/f), (Bars represent standard 

error). 
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Figure 10: A plot of the mean CV(|Z|) vs. frequencies from the a) WIC and b) WESER data sets 

before and after spectral QC using 𝜁𝑍 = Z(1/f), (Bars represent standard error). 

 

 

3.2.2 Efficiency 

 Once the repeatability and variability were optimized using ζZ = Z(1/f), the efficiency 

was calculated and compared to no QC. It was found that the proposed spectral QC algorithm 

provided a significant (p<0.05) improvement in efficiency as it lowered the number of required 

measurements to meet the CV criteria from 5.4±1.7, 4.5±2.3, 8.8±3.6 to 3.7±0.9, 3.3±0.6 and 

3.2±0.4 in CHILD5Y, WIC, and WESER, respectively (Table 3). The proposed spectral QC 

algorithm also outperformed the manual QC performed by a well-trained operator, reducing the 

number of required measurements from 4.4±1.9 to 3.2±0.4 (p<0.05). 
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Table 3: The number of required measurements (mean(SD)) to achieve a CV ≤ 0.15 using 𝜁𝑍= 

Z(1/f) for CHILD5Y, WIC, and WESER data sets. 

 QA NO QA MANUAL 

QA 

CHILD5Y 3.7 (0.9) 5.4 (1.7) 3.8 (1.6) 

WIC 3.3 (0.6) 4.5 (2.3) 4.2 (1.7) 

WESER 3.2 (0.4) 8.8 (3.6) 4.4 (1.9) 

 

 

 

3.2.3 Feasibility  

Figure 11 illustrates the feasibility for selecting a minimum of three valid, artifact-free 

measurements, represented by the percentage feasibility using the seven distinct methods utilized 

for measurement selection. Each bar represents a different method for measurement selection, 

with the number of acceptable tests, achieving ζZ ≤ 15%, indicated on the top of each bar. To aid 

interpretation, three arbitrary reference lines were used to give acceptability thresholds for 50%, 

75%, and 90% or more of the subjects. Without applying any QC algorithms, there was an 

apparent slight decrease in feasibility in CHILD5Y with increasing number of measurements, 

possibly due to increasing probability of artifactual measurements (Figure 11). On the other 

hand, applying the proposed QC algorithm (Early) on more measurements demonstrated an 

increase in feasibility. This behaviour was comparable and consistent across all the investigated 

combinations of Rrs and |Zrs| CVs. 
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Figure 11: Percent feasibility achieved using 𝜁𝑅 = CV(R5), 𝜁𝑍 = CV(|Z5|), CV(|Z5|+|Z19|), and 

Z(1/f). Numbers on top of each bar represent the number of feasible tests.  

 

Using the same ζZ = Z(1/f) weighting function across frequencies to minimize CV, no 

QC from all the selection methods resulted in a feasibility ranging between 60% and 70% for 

CHILD5Y and WIC, with lower feasibility ranging between 20% and 60% with WESER (Figure 

12). Interestingly, adding more measurements to WESER resulted in a more remarkable decrease 

in feasibility with no QC, decreasing from 60% using the first three measurements to 21% when 

using all measurements, likely due to the nature of this data set (see discussion, page 60). On the 

other hand, applying the proposed QC algorithm resulted in an average of 75% feasibility when 

only using the first four measurements across all the three data sets, outperforming the highest 

feasibility achieved with no QC. This feasibility is further improved, achieving 95% feasibility in 

CHILD5Y, 82% in WIC and 91% in WESER when using all the available measurements, which 

is higher than the 69%, 70% and 53% feasibility achieved with manual QC in CHILD5Y, WIC 

and WESER, respectively. 
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Figure 12: Percent feasibility achieved using 𝜁𝑍 = Z(1/f) in CHILD5Y, WIC and WESER 

compared to manual QC. Numbers on top of each bar represent the number of feasible tests. 

 

 

3.2.4 Accuracy  

 Both the mean and median %RMSE curves in Figure 13 demonstrated similar results, 

with the Early algorithm achieving higher accuracy than no QA when introducing outliers to 

more than 20% of modeled tests. There was no significant difference between Early and No QA-

All (p>0.05). However, a significant difference was observed between Early and No QA- SAMC 

(recall that SAMC is Stop After Meeting CV criteria) (p<0.05) when introducing outliers to more 

than 25% of modeled tests. A significant difference was also obtained between Early and No-

QA-First 3, (p<0.05) when introducing outliers to more than 10% of the modeled test.  
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Figure 13: Plot of a) median and b) mean % RMSE values calculated after introducing outliers 

to different percentages of the modeled tests. Error bars represent the standard error whereas 

the three vertical dashed lines represent the percentage of subject tests containing outliers in the 

WESER (16%), CHILD5Y (17%), and WIC (19%) data sets, serving as reference points.  

 

 

 

Figure 13 also compares the median and mean %RMSE obtained using a QC algorithm 

based on detecting and rejecting outliers that are 2 SDs from the mean. This technique is 

commonly used in most oscillometric software. For example, it is used in the tremoflo software 

(Thorasys) to reject outliers within a recorded measurement. However, it not used for within-test 

variability from multiple measurements. The comparison in Figure 13a shows that the %RMSE 

was low for both approaches, with no significant difference between the median %RMSE 
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obtained using Early and 2SD (P>0.05), regardless of the percentage of tests with introduced 

outliers. Similar results were obtained for the mean %RMSE in Figure 13b, with better accuracy 

(lower %RMSE) achieved using the Early algorithm compared to QA-2SD (p>0.05).  

Although not significantly different, the Early algorithm in Figures 13 (in blue) appeared 

to have slightly better performance when introducing outliers to more than 15% of modeled tests. 

Thus, the Early algorithm, on average, maintained or appeared to possibly enhance the accuracy, 

compared to no QA as observed in Figure 13, and performed well compared to an SD based 

approach especially when dealing with outliers. Overall, as the percentage of tests with 

introduced outliers increased, the Early algorithm generally maintained the accuracy of the data 

set. It should be noted that despite maintaining accuracy across subjects, the Early algorithm had 

substantial effects on individual subjects. As previously noted, it did not change the mean Rrs 

values in measured data but caused a small, significant decrease in Xrs (Figure 9 in section 

3.2.1). Similar results were also found using the modelled data. Specifically, the Early algorithm 

resulted in a change of more than one cmH2O/L/s in R5 for 42% of modeled subjects and a 

change of more than one cmH2O/L/s in X5 for 16% of modeled subjects. Similarly, when 

applied to the CHILD5Y data set, R5 changed by more than one cmH2O/L/s for 48% of subjects 

and more than one cmH2O/L/s in X5 for 24% of subjects.  

Finally, the median and mean RMSE before and after QC were compared for two key 

oscillometry outcome measures, R5-19 and AX. It was observed that No-QA and QA-2SD 

achieved comparable accuracy for R5-19 regardless of the percentage of subjects with introduced 

outliers (p>0.05) (Figure 14). Compared to the Early algorithm, No-QA and QA-2SD achieved a 

higher accuracy for R5-19 when introducing outliers to less than 30% of the modeled tests 

(p<0.05). However, the accuracy improvement for No QA-All and QA-2SD was not significant 
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when introducing outliers to 30% or more of the modeled tests (p>0.05). Moreover, the accuracy 

of the Early algorithm was comparable to No QA-First 3 and No QA-SAMC when introducing 

outliers to less than 25% of the modeled tests and was slightly improved when introducing 

outliers to more than 25% of the modeled tests (p>0.05). It was also observed that, on average, 

the mean and median RMSE values did not illustrate any differences in the accuracy of AX 

between the five different investigated methods; No QA-All, No QA-First 3, No QA-SAMC, 

QA-2SD and Early (Figure 15).  

 

 

 

 
Figure 14: Plot of a) median and b) mean RMSE of R5-19, calculated after introducing outliers 

to different percentages of the modeled tests. Bars represent standard error. 
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Figure 15: Plot of a) median and b) mean RMSE of AX, calculated after introducing outliers to 

different percentages of the modeled tests. Bars represent standard error. 
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proposed QC maintained the accuracy of the important and clinically significant oscillometry 

measures, R5-19 and AX.  

3.3.1 Repeatability  

It was found that using a weighted impedance cost function, ζZ =Z(1/f), performed better 

than the current ERS recommendation of R5 alone, improving the reported repeatability in both 

Rrs and Xrs at multiple frequencies. Similar to Therkon et al., it was found that optimizing the 

variability for a particular outcome measure yields the best variability for that very measure. For 

instance, Therkorn et al. found that optimizing the variability using CV(R5) improved the 

repeatability of R5. However, this was at the cost of a reduction in the repeatability of other key 

measures, including R19, R5-19, X5 and AX. Hence, Therkon et al. suggested that a variability 

criteria should be tailored to the oscillometric outcomes that are of most clinical interest [21]. 

Additionally, as emphasized by Hantos et al., X5 can exhibit greater variability than R5, 

highlighting the significance of incorporating the reactance in the repeatability assessment, 

specifically at the lowest frequency oscillations [43]. In our subjects, we found that using the 

weighted cost function provided improved (lowest) variability across frequencies, and thus it is 

not required to tailor criteria for particular oscillometric outcomes.   

The choice of utilizing ζZ =Z(1/f) to evaluate and optimize the within-test repeatability 

aims to follow these suggestions while also overcoming the limitations of using R5. In fact, 

using ζZ =Z(1/f) improved the repeatability across oscillating frequencies and in all important 

outcome measures, including R5, R5-19, X5 and AX. Repeatability was improved significantly 

for X5 and AX, likely due to the inclusion of Xrs in the  ζZ =Z(1/f), which cost functions based 

on Rrs alone do not have. Such improvements in repeatability are crucial, particularly in clinical 

settings where consistent and reliable measurements are vital for accurate diagnosis and 
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monitoring. Importantly, improvements in repeatability led to minimal changes in resistance and 

reactance means across subjects (p>0.05). These findings were consistent when ζZ = Z(1/f) was 

applied to WIC and WESER data sets. Improving the repeatability while introducing minimal 

changes to the mean values across subjects, as we found (section 3.2.1), implies that for clinical 

studies, (e.g. evaluating drug effectiveness or changes in treatment), that the number of required 

subjects is reduced to achieve the same statistical power when using this cost function approach 

to quality control, saving both time and costs. 

3.3.2 Efficiency  

The Early algorithm demonstrated a notable reduction in the number of measurements 

required to meet the acceptability criteria compared with protocols that conservatively collect 

additional measurements when the reported CV from all measurement is high. Specifically, when 

compared to no QC, the Early algorithm reduced the required measurements from 5.4±1.7 to 

3.7±0.9 (p<0.05). It also outperformed manual QC conducted by skilled operators, decreasing 

the required measurements by about 1.2 in CHILD5Y. These findings were consistent in 

WESER and WIC data sets. This can be useful in clinical and research settings as oscillometry 

devices can indicate when a test has achieved acceptable repeatability, hence eliminating the 

need for unnecessary additional measurements. Consequently, this allows for quicker 

assessments, shorter patient testing times, and improved patient flow.  

Similar to repeatability, improving the efficiency could also allow for more subjects to be 

included in a research trial, enhancing the statistical power of studies. Additionally, providing a 

method to reliably, and in an automated approach, indicates that the quality standards have been 

met could potentially save time as subjects would not have to be called back for repeated testing. 

The improved efficiency, however, is notable in WESER and CHILD5Y, where data is collected 
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meticulously, taking five measurements when possible and additional measurements in the 

presence of high variability. Yet, this improvement may not be evident in sites that only conduct 

three or four measurements and reject tests with a CV less than or equal to 15%, resulting in a 

small number of measurements at the cost of poor feasibility.  

3.3.3 Feasibility  

It was also found that feasibility using the Early algorithm was improved by 

approximately 20% compared to no QC when using any number of available measurements. 

Interestingly, increasing the number of measurements led to a decrease in feasibility with no QC 

(Figures 11 and 12). This is likely due to the increased presence of outliers or artifactual 

measurements in subjects that had many measurements, since these were the subjects that the 

operator observed to have larger variability and thus collected more measurements. This was 

mitigated by the use of the automated Early algorithm, where increasing the number of 

measurements resulted in a clear improvement in feasibility, achieving a feasibility that is greater 

than 90% when using ζZ =  𝑍(1/𝑓)  with more than five measurements.  

These findings were consistent with Harkness et al., as they found that using the current 

acceptability criteria, CV(R5) ≤ 15% for young children and ≤ 10% for adults, while including 

more measurements did not result in a significant improvement in feasibility. Yet, similar to the 

Early algorithm, taking more measurements increased the chance of finding three closest 

measurements with a CV below acceptability threshold, hence improving the feasibility. In fact, 

Harkness et al. demonstrated that a feasibility of more than 90% can be achieved with three 

closest measurements when a minimum of four, five and six measurements were collected for 

healthy, asthmatic and COPD subjects, respectively [53].  
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Moreover, the Early algorithm resulted in a minimum of a 10% increase in feasibility 

when compared to user exclusion as a form of manual QC in CHILD5Y and WIC data sets. 

However, it is important to note that no detailed information was provided about the operator's 

expertise, training, or the rationale for measurement exclusions. They were instructed to exclude 

measurement for observed artifacts such as cough, or deviations from the measurement protocol 

such as patient movement, and possibly unusual breathing patterns. While operator detected 

artifacts such as cough should be rejected, it may be possible that measurements that did not 

greatly impact the mean impedance values were rejected in some cases.  

Additionally, applying the proposed Early algorithm to the WESER data set resulted in a 

20% increase in feasibility when compared to the application of the manual QC, which was 

performed by a well-trained operator with documented justifications for excluded measurements. 

Here the rejection criteria included unusual breathing such as the presence of large breaths, 

which may not greatly affect the CV. This is a significant improvement in feasibility since the 

WESER data set consist of preschool children who had presented with wheeze, representing a 

challenging group with high variability. These results suggest that the Early algorithm can 

provide a more standardized and reliable approach to data quality control, even on more 

challenging subjects. Improving feasibility may also allow previously ineligible subjects who 

have difficulty obtaining successful tests, thus making oscillometry applicable to a broader 

population. 

3.3.4 Accuracy  

It was found that the Early algorithm outperformed No QA (All, First 3 and SAMC) 

when introducing outliers to over 20% of modeled tests, showcasing its effectiveness. No 

significant differences in accuracy were found between Early and No QA-All, which could be 
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attributed to the potential benefits of No QA-All’s usage of more data for mean estimation. 

Nevertheless, significant differences in accuracy were found between the Early algorithm and 

the No QA-SAMC and No QA-First 3 scenarios.  

The Early algorithm was also compared to a common method of detecting and rejecting 

outliers based on two standard deviations (QA-2SD). Although the Early algorithm reduced the 

%RMSE values when outliers were introduced to more than 18% of modeled data (p>0.05), 

there were no statistically significant differences in the %RMSE between Early and QA-2SD, 

regardless of the percentage of tests with introduced outliers. Nonetheless, ζZ =  𝑍(1/𝑓)  has 

several benefits over the simpler 2SD method. Specifically, ζZ =  𝑍(1/𝑓) is based on Zrs, which 

effectively incorporates the variability found in both Rrs and Xrs into a single measure. It also 

accounts for the variability across multiple frequencies, addressing a challenge faced when using 

the 2SD method as the current criteria emphasize low frequency, indeed only evaluating R5.  

The Early algorithm reduced the variability and maintained the accuracy but this perhaps 

surprisingly introduced a minimal change to the mean Rrs and Xrs values across subjects. This 

indicates that the algorithm decreased the reported Rrs and Xrs values for some subjects while it 

increased them for other. This is important to individual results. As described earlier in sections 

3.2.1 and 3.2.4, changes in Rrs and Xrs values were important for some subjects as 48% and 24% 

of subjects had a change that exceeded 1 cmH2O/L/s in R5 and X5 in CHILD5Y, respectively, 

where a change of more than 1 cm cmH2O/L/s is likely clinically meaningful. These results were 

consistent for the modeled data, with 42% and 16% of modeled subjects had a change that 

exceeded 1 cmH2O/L/s in R5 and X5, respectively. This value of 1 cmH2O/L/s is likely 

clinically meaningful, but was chosen in the absence of an established minimally important 

clinical difference (MICD) for normal oscillometry. Thus applying QC and in particular using 
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the utility of the Early algorithm in these subjects may be thus important, as such changes may 

be comparable to worsening or improvement of disease over time.  

3.3.4.1 R5-19 and AX 

The accuracy of the key oscillometry measures R5-19 and AX was also compared. The 

mean and median RMSE results for R5-19 were similar, likely due to the low variability in R5-

19 that is found in this modeled group, which is derived from CHILD5Y. With more challenging 

data, the accuracy of Early algorithm exceeds that of No QA- First 3 and No QA-SAMC, and 

lower differences in accuracy observed between the Early algorithm and No QA-All or QA-SD 

(Figure 13). This is likely due to the ability of the Early algorithm to try different permutations 

of available measurements to reduce the repeatability and hence, improving the chance of 

rejecting introduced outliers. The Early algorithm also demonstrated its ability to maintain the 

accuracy of AX compared to the other investigated methods. These results are important as R5-

19 and AX are increasingly being used to indicate respiratory health, particularly small airways 

diseases [6][21]. Thus, confidence in the accuracy of these measurement is important in clinical 

decision-making, research outcomes, and when handling complex clinical scenarios.  

3.3.4.2 The Computational Model 

This study is the first to implement a computational model that is specifically designed to 

rigorously assess the accuracy of a QC algorithm for oscillometry. Prior to this research, this gap 

in the literature meant that any proposed approach for improving QC could not be quantitatively 

evaluated for its impact on accuracy and possibly hindered the adoption of new methods, likely 

presenting a challenge to confidently make recommendations. Hence, the modelling approach 

and its evaluation here may mark a significant advance forward, as it provides a mechanism to 
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assess improvements to QC in oscillometry. Nevertheless, this computational model is a model 

and therefore is not a perfect representation, and while it has its strengths and limitations, it can 

act as a basis and encouragement for future work.  

The strengths of the computational model include the incorporation of the actual Rrs and 

Xrs values and the within-test variability obtained directly from the CHILD5Y subjects. This 

ensured that the computational model closely mimicked real-world values and their variation. 

Using the within-test variability observed in CHILD5Y also helped account for the inherent 

fluctuations that occur within a single testing session, which were considered to be either 

physiological or artifactual. To match clinical practice, the assessment of accuracy was restricted 

to five measurements per subject, matching current practice in Dr. Ronald J. Dandurand's clinic, 

where five measurements are always performed. The model included the incorporation of 

outliers based on outliers identified from measurements. This was to simulate artifactual 

changes, such as leaks or coughs or from any source that affected the impedance, apart from 

physiological variation. The outliers introduced in the model were detected using the Grubbs 

test, as it is thought to be superior to solely relying on the SD, since it features greater ability to 

account for specific statistical characteristics of the data. This may be especially useful when 

there are measurements that are significantly affected by leaks during a measurement, or factors 

acting to increase impedance such as obstruction by the tongue or swallowing.  

It relied on estimating the presence of outlier data with actual measurements that were not 

confirmed to be non-physiologically related to variability of lung mechanics. It might be useful 

to develop a model based on purposely introduced artifactual data, although this has its 

challenges in that this may not mimic real-world data well. In any case, the model here allowed 

us to directly apply known outlier changes in impedance using measured distribution of these 
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deviations. While these outliers might not encompass the full spectrum of potential artifacts, 

using the Grubbs test was an unbiased approach to identifying an outlier distribution that closely 

aligned with the statistical characteristics of the outliers in our data. However, it cannot be 

known whether artifactual or contaminated measurements that did not greatly affect the 

impedance were included in the physiological distribution of impedance, or similarly if some 

physiological variation was counted as part of the outlier distribution, but this small overlap is 

unlikely to impact our results.  

As mentioned above, the developed computational model used Rrs and Xrs values 

directly from the CHILD5Y subjects, which allowed for a better representation of the actual 

physiological variations observed in impedance data. The inclusion of a sufficient number of 

subjects and measurements also helped capture a representative range of within-test variability. 

The proposed algorithm’s accuracy was also compared to other common QC methods as 

described above. This allowed for the evaluation of the algorithm's effectiveness within the 

context of established practices, further mitigating the potential impact of model simplification. 

 Moreover, the Grubbs test used to detect outliers assumes that the data follows an 

approximately normal distribution. Here we used log(Z(1/f)) in our CHILD data to address the 

normality of Z(1/f). Also using the impedance cost function rather than Rrs and Xrs at different 

frequency simplified and reduced the modeling complexity. It’s possible the use of Rrs and Xrs 

at different frequencies could offer a more detailed insight about artifacts, however, using 

log(Z(1/f)) highlighted the impedance data that have the most significant impact on the QC 

algorithm’s accuracy. Considering the computational efficiency and the overall goal of assessing 

the performance of the QC algorithm, this was believed to be a reasonable compromise that 

achieve these objectives effectively. 
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3.3.5 Strengths 

This study has several strengths that contribute to its significance and impact. One 

notable strength that distinguishes this study from related research in this field is the large 

number of subjects used to test the algorithm. The use of three distinct age and disease groups for 

validation greatly enhanced the study’s robustness and applicability, while also allowing for a 

broader exploration of potential clinical scenarios and variations that may impact the algorithm’s 

performance. This is significant, as it allows for a more comprehensive understanding of how the 

proposed algorithm performs across diverse patient profiles. In addition, including subjects from 

various age groups and with different underlying health conditions allowed the study to capture a 

wider spectrum of potential challenges and complexities that clinicians encounter in real-world 

practice. This not only strengthens the study's external validity, but also underscores its relevance 

to a wide range of clinical settings. Moreover, validating the proposed spectral QC algorithm 

against data obtained from multiple real-world sources such as CHILD5Y, WIC, and WESER 

contributed to the study's credibility. This validation also ensured that the algorithm's 

performance aligned with practical challenges faced by clinicians, strengthening their confidence 

in adopting the algorithm to enhance the accuracy of their diagnoses.  

3.4 Conclusion  

In conclusion, this study extended the current recommended QC approach from the CV 

of R5 ≤ 10% in adults or ≤15% in young children to a method based on Zrs that includes Rrs 

and Xrs across frequencies. The proposed spectral QC algorithm, Early, improved the 

repeatability by lowering CV of Zrs, and improved the efficiency by decreasing the required 

number of measurements to a achieve a valid test. It also improved the feasibility and maintained 
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the accuracy as evaluated by a computational model. This has the potential for more efficient 

clinical studies, and improved performance of oscillometry in research and clinical settings with 

the potential to improve the reliability of oscillometry measurements.  
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CHAPTER 4: USING PATIENT REPORTED OUTCOMES TO 

DETECT COPD SEVERITY  

While this thesis mainly investigates the improvement and automation of QC measures in 

oscillometry, the original goal here was to investigate whether improving the quality can 

improve the accuracy of predicting COPD severity using machine learning. As mentioned in 

sections 1.3.2 and 1.4, COPD is mainly diagnosed based on the spirometry measures FEV-1 and 

FVC [2,3], with its severity assessed using mMRC and CAT scores. Although spirometry 

measurements are possible in any healthcare setting, its efficiency mostly depends on the 

patient’s cooperation in completing the spirometry tests, which is more challenging for 

individuals with COPD. Similarly, one of the main limitations of using mMRC and CAT scores 

is their dependence on the patients’ subjective self-assessment. Therefore, while the use of 

mMRC and CAT scores can aid in diagnosis, understanding if they are related and can be used to 

predict COPD severity is also useful.    

Machine learning offers an objective method of classifying COPD severity and is becoming 

increasingly popular in medical applications. This chapter assesses if machine learning using 

combinations of objective lung function parameters from oscillometry and spirometry could be 

sensitive and predict severity of COPD by predicting the mMRC and CAT scores. As mentioned 

above, the original goal was to compare the classification performance of the developed models 

before and after applying QC. However, we had difficulties obtaining a new data set that would 

have been large enough to effectively test this hypothesis, as it was not compiled to a spreadsheet 

format from paper charts. Thus this was left for future work. This chapter explores if machine 

learning can be used to predict COPD severity using combinations of spirometry and 

oscillometry measures. 
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4.1 Methods 

4.1.1 Data Used 

In this project, a data set containing spirometry and oscillometry results from 300 COPD 

and 21 healthy subjects (n=321) was used. The data included the average measured and predicted 

values, normalized for the patients’ weight, gender, and age. It also included other important 

patient details such as age, sex, height, weight, smoking habits and PRO scores from both 

mMRC and CAT assessments for each subject. This data set was collected with informed 

consent, approved by the McGill University Health Centre Research Ethics Board (MUHC-RI 

REB# 14-467-BMB). The measurements were collected using a commercially available device 

(Tremoflo C-100, Thorasys Medical Systems, Montreal, Canada) and the manufacturer’ software 

(tremoflo 1.0.43 build 44). 

4.1.2 Machine Learning Training 

Milestone 1 

This project's first milestone began during a Biomedical Signal Analysis and Modelling 

course project, where machine learning models in MATLAB were trained to predict mMRC and 

CAT scores using spirometry and oscillometry measures. The aim was to compare the 

classification performance for COPD severity when training the machine learning models using 

combinations of either spirometry or oscillometry measures separately. Three MATLAB 

machine learning models were used in this milestone; Single Decision Tree (SDT), Bagged 

Decision Trees (BDT), and Support Vector Machine (SVM). SDT is a simple, but powerful 

model that mimics decision-making processes by starting at the top with a question and then, 
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depending on the answer (yes or no), following a path to another question until a final decision is 

eventually reached. These questions and decisions correspond to features that the decision tree 

model learns from historical data. Hence, a SDT model is easy to understand and interpret, 

making it great for tasks like binary classification. However, it can become overly complex if 

allowed to grow too deep, leading to overfitting [54][55]. The BDT model overcomes the 

limitation of SDT by averaging the results from multiple SDT models, each trained on a slightly 

different subset of the training data. This ensemble approach improves the model's overall 

robustness and reduces overfitting, making it a popular choice for many classification and 

regression tasks [54][55]. SVM is another powerful supervised machine learning algorithm used 

for classification and regression tasks. It works by finding the best possible decision boundary, 

often called a hyperplane, that separates different classes of data points with the maximum 

margin. This is done by identifying support vectors, which are data points closest to the 

boundary and are used in determining the optimal hyperplane's position [54][55].  

To address the limited number of training samples, the data set was categorized into low 

and high severity COPD classes based on specific thresholds. mMRC cutoff values of one and 

two and CAT cutoff values of 10 and 17 were employed for this categorization. Any values 

exceeding these thresholds were labeled as high severity COPD, while those falling below were 

labeled as low severity COPD (Figure 16). These thresholds are commonly used in clinical 

settings and were established following discussions with Dr.Ronald J. Dandurand. Dividing the 

samples into high and low severity based on a threshold simplified the task into a binary 

classification problem, enhancing the ability to effectively fine-tune the model. Next, the data set 

was randomly divided into training and testing sets, following the common practice of 80-20 

splits. This allocation reserved 80% of the data for model training, while the remaining 20% 
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were used for model testing and validation. The three machine learning models were then trained 

using different combinations of oscillometry and spirometry measures to predict the severity of 

COPD, with a focus on key predicted oscillometry measures including R5p, X5p, R5-19p, AXp, 

as well as the predicted spirometry measures FEV1p and FVCp. To reduce the random variation 

caused by the small number of samples, the models were trained using predicted values obtained 

from a larger and more representative data set described by Oostveen et al.[56]. 

 
Figure 16: Flowchart of methods used to train and evaluate the performance of the different 

machine learning models (SDT, BDT and SVM) in the first milestone. 

 

Milestone 2 

In this project’s second milestone, a group of Electrical and Computer Engineering 

(ECE) students who were tasked with advancing and refining the work initiated in the first 

milestone. Co-supervising the ECE students, they assessed the performance of the SVM and 
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Gradient Boosting (GB) models in Python, which was selected for its advanced capabilities in 

optimizing and fine-tuning parameters crucial for model training. While BDT creates multiple 

SDT models independently, GB model takes a different approach by building these trees 

sequentially in a process of optimization. This process continues iteratively, with each new tree 

focusing on correcting the mistakes of the previous ones. Hence, if tuned effectively, the GB 

model can yield an even better performance than BDT [54][55]. While the first milestone 

focused on training the models with spirometry or oscillometry measures separately, this 

milestone examined performance when combining the two measures, along with other 

demographics like height, age or weight. Additionally, one of the key objectives was to generate 

a Receiver Operator Characteristic (ROC) curve. An ROC curve is a graphical representation of 

the classification performance across various decision thresholds. It displays the trade-off 

between the true positive rate (sensitivity) and the false positive rate (1-specificity) as the 

threshold for classifying high and low severity COPD is varied. By demonstrating how the 

sensitivity and specificity change with different CAT thresholds, it helps determine how well the 

model can distinguish between high and low COPD severity. The area under the ROC curve 

(AUC) is another common metric used to quantify the overall performance of a classification 

model, with a higher AUC indicating better classification ability [54].  

In this milestone the data was divided into high and low severity COPD using CAT 

thresholds only. This is because CAT scores have a broader range of zero to 40, when compared 

to mMRC's range of zero to four, allowing for the generation of a more informative ROC curve. 

Similar to the first milestone, the data set was divided into training and testing sets using 80-20 

splits. However, this milestone maintained the ratio of healthy and COPD subjects in both the 

training and testing sets. This was achieved by first identifying the healthy and COPD subjects 
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and randomly dividing each of them into training and testing groups using the 80-20 splits. The 

training and testing sets from both the healthy and COPD groups were then combined, resulting 

in concatenated training and testing sets that maintained the ratio between healthy and COPD 

subjects (Figure 17). Using the training set, two machine learning models, SVM and GB, were 

trained to predict the severity of COPD using a mixture of oscillometry and spirometry 

measures, combined with demographics. Finally, ROC curves were generated after training the 

models using different randomizations of the training and testing sets for different CAT 

thresholds ranging between five and 20. This is because using CAT thresholds below five 

classified most of the data as high severity COPD, while thresholds above 20 classified most data 

as low severity COPD.  

 

 
Figure 17: Flowchart of methods used to train and evaluate the performance of the different 

machine learning models (SVM and GB) in the second milestone. 
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After identifying the best-performing model and the optimal CAT threshold, the final 

objective of this milestone was to explore the impact of adding different oscillometry measures 

to spirometry measures on the enhancement of COPD severity classification. This was done by 

first training the machine learning model using the predicted spirometry measures FEV1p and 

FEV1/FVCp and then systematically introducing one oscillometry measure at a time to observe 

whether there is any significant improvement in the accuracy. The focus was on the important 

predicted oscillometry measures R5p, X5p, R5-19p, and AXp. To prevent any potential sampling 

bias, the same training and testing sets were consistently employed throughout these trials, 

ensuring that performance differences were not due to the use of different samples. The machine 

learning model was trained and evaluated using the same methods outlined in Figure 17.  

4.1.3 Performance Outcomes  

The testing set, 20% of data, was used to evaluate the performance of the developed 

machine learning models. This evaluation was based on a confusion matrix, which is a 

fundamental tool for assessing the performance of classification algorithms [54]. The confusion 

matrix provides a summary of the classification results, highlighting four key metrics: 1) True 

Positives (TP), representing correctly predicted positive instances, 2) True Negatives (TN), 

representing correctly predicted negative instances, 3) False Positives (FP), representing actual 

negatives that were predicted as positives, and 4) False Negatives (FN), representing actual 

positives that were predicted as negatives. Other important measures include sensitivity, 

specificity and accuracy. Sensitivity is used to evaluate the model’s ability to predict true 

positives and is calculated by dividing the number of correctly predicted positives by the number 

of total actual positives (Equation 24).  
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
         (24) 

 

 

In contrast, specificity is used to evaluate the model’s ability to predict true negatives and is 

calculated by dividing the number of correctly predicted negatives by the number of total actual 

negatives (Equation 25). Classification accuracy, on the other hand, is the percentage of total 

correct predictions (Equation 26). Collectively, sensitivity, specificity and accuracy offer a 

comprehensive evaluation of the model’s classification performance. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
         (25) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
        (26) 

 

 

ROC was used to investigate the trade-off between sensitivity and specificity and to 

determine the optimal CAT threshold that resulted in the best classification performance. The 

ROC curve was generated using CAT thresholds ranging between five and 20 to minimize 

distribution bias, as described in the previous section. Finally, t-tests with 95% confidence levels 

were performed in Microsoft Excel to determine whether the inclusion of predicted oscillometry 

measures led to a statistically significant improvement in classification accuracy.  
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Results 

Milestone 1 

The SDT model was first trained using different combinations of spirometry measures 

and then compared the accuracy, sensitivity, specificity and the number of false negatives (FN) 

(Table 4). Results were comparable across all performance measures (p>0.05), with the highest 

performance achieved when using only the predicted FEV1 (FEV1p) measure, yielding 

65.2±6.6% accuracy, 74.2±8.1% sensitivity, 42.8±10.7% specificity, and 8±2 FN (Table 4). 

While high sensitivity was achieved with all combinations, ranging between 72% and 75%, 

specificity was relatively low, ranging between 41% and 43% 

 

Table 4: Mean (SD) classification accuracy, sensitivity, specificity and FN for SDT model when 

trained using combinations of spirometry measures. 

 
ACCURACY 

(%) 

SENSITIVITY 

(%) 

SPECIFICITY 

(%) 
FN 

FEV1p 65.2(6.6) 74.2(8.1) 42.8(10.7) 8(2) 

FEV1p + FVCp 63.7(5.8) 72.9(7.3) 41.3(11.4) 7(2) 

FEV1p + FEV1p/FVCp 64.1(6.6) 73(7.8) 42.6(14.4) 8(3) 

 

 

The SDT model’s performance was then compared to the classification performance of the 

BDT and SVM models when trained with the same spirometry measures. Compared to the SDT 

model, the BDT model increased the accuracy (p<0.05) and sensitivity (p<0.05), while 

maintaining the specificity (p>0.05) when training the model using the spirometry measures 

FEV1p and predicted FVC (FVCp). Similar results were achieved when training the BDT model 

using the spirometry measures FEV1p with FEV1p/FVCp, with an increase in accuracy 
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(p<0.05), sensitivity (p<0.05) and specificity (p<0.05). However, training the BDT model with 

only FEV1p resulted in comparable accuracy (p>0.05), sensitivity (p>0.05), specificity(p>0.05) 

and FN (p>0.05). The best overall classification performance achieved with the BDT model was 

using FEV1p and FEV1p/FVCp, with 68±6.4% accuracy, 76.7±7.5% sensitivity, 46.2±12.7% 

specificity and 8±3 FN. This is a significant improvement in all performance measures 

compared to the best performing combination achieved with SDT(Table 5). 

 

Table 5: Mean (SD) classification accuracy, sensitivity, specificity and FN for BDT model when 

trained using combinations of spirometry measures. 

 
ACCURACY 

(%) 

SENSITIVITY 

(%) 

SPECIFICITY 

(%) 
FN 

FEV1p 65.5(6.3) 73(7.4) 46.7(9.3) 9(3) 

FEV1p + FVCp 67.9(5.4) 78.7(6.3) 41(10.1) 8(2) 

FEV1p + FEV1p/FVCp 68(6.4) 76.7(7.5) 46.2(12.7) 8(3) 

 

 

The SVM model increased the accuracy (p>0.05) and sensitivity (p<0.05), but reduced 

the number of FN (p<0.05) for all combinations of spirometry measures, when compared to 

SDT. However, these improvements came at the cost of a significant reduction in the specificity 

(p<0.05) from around 41% using the SDT model to 15% using the SVM model (Table 6). The 

SVM model demonstrated similar increases in accuracy (p>0.05) and sensitivity (p<0.05), along 

with a decrease in FN (p<0.05) and specificity (p<0.05), when compared to the BDT model. 

Additionally, SVM results were comparable for accuracy (p>0.05), sensitivity (p>0.05), 

specificity (p>0.05) and FN (p>0.05) for all three combinations of spirometry measures (Table 

6). The best classification performance was achieved using FEV1p and FEV1p/FVCp, yielding 

69.1±7% accuracy, 88.9±6.9% sensitivity, 4±2 FN and a very low specificity of 19.5±10%.  
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Table 6: Mean (SD) classification accuracy, sensitivity, specificity and FN for SVM model when 

trained using combinations of spirometry measures. 

 
ACCURACY 

(%) 

SENSITIVITY 

(%) 

SPECIFICITY 

(%) 
FN 

FEV1p 67.6(5.6) 88.4(5.2) 15.3(5.6) 3(1) 

FEV1p + FVCp 66.7(6.2) 87.1(6) 15(10.4) 3(2) 

FEV1p + FEV1p/FVCp 69.1(7) 88.9(6.9) 19.5(10) 4(2) 

 

 

The SVM model achieved very high sensitivity, but a very low specificity. The BDT 

model, on the other hand, demonstrated a comparable accuracy to SVM with a better trade-off 

between sensitivity and specificity. As such, the BDT model was used in the second part of this 

milestone, aiming to assess whether the use of oscillometry measures would yield a better 

classification performance than spirometry measures. The BDT model was trained using many 

different combinations of oscillometry measures, with the three best performing combinations 

summarized in Table 7. The predicted oscillometry measures R5p, R5-19, X5p and AXp yielded 

the best classification performance with 67.4±3.9% accuracy, 79.5±7.4% sensitivity, 

38.4±11.7% specificity and 7±2 FN. This classification performance is comparable to all other 

oscillometry combinations (p>0.05) and the best performing spirometry combination FEVp and 

FEV1p/FVCp (p>0.05).  

 

Table 7: Mean (SD) classification accuracy, sensitivity, specificity and FN for BDT model when 

trained using combinations of oscillometry measures. 

 
ACCURACY 

(%) 

SENSITIVITY 

(%) 

SPECIFICITY 

(%) 
FN 

R5p + X5p 66.8(4.4) 77.1(7.5) 41.7(12.9) 8(2) 

R5p + X5p + AXp 65.7(5) 76.3(7.7) 39.9(12.1) 7(2) 

R5p + R5-19 + X5p + AXp 67.4(3.9) 79.5(7.4) 38.4(11.7) 7(2) 
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The last step of this milestone was to examine how different CAT and mMRC cutoff 

thresholds influence the classification performance. Interestingly, there was a clear trade-off 

between sensitivity and specificity when changing the cutoff threshold. For example, using a 

CAT threshold of 10 or an mMRC threshold of one resulted in high sensitivity above 70% at a 

cost of low specificity below 47% (Table 8). On the other hand, using a CAT threshold of 17 and 

mMRC threshold of two yielded higher specificity values, above 68%, at a cost of a low 

sensitivity below 41%.  

 

Table 8: Mean (SD) classification accuracy, sensitivity, specificity and FN for SVM model when 

trained using combinations of spirometry (FEV1p and FEV1p/FVCp) and oscillometry (R5p, 

X5p and AX) measure and a) CAT threshold of 10, b) CAT threshold of 17, c) mMRC threshold 

of one and d) mMRC threshold of two. 

CUTOFF 

THRESHOLD 
COMBINATIONS 

ACCURACY 

(%) 

SENSITIVITY 

(%) 

SPECIFICITY 

(%) 
FN 

A) CAT 10 
FEV1p + FEV1p/FVCp 68(6.4) 76.7(7.5) 46.2(12.7) 8(3) 

R5p +R5-19p + X5p + AXp 67.4(3.9) 79.5(7.4) 38.4(11.7) 7(2) 

B) CAT 17 
FEV1p + FEV1p/FVCp 59(7.2) 27.9(9.2) 76.2(10) 32(5) 

R5p +R5-19p + X5p + AXp 58(6.2) 23.3(9.8) 77.5(7.8) 32(3) 

C) mMRC 1 
FEV1p + FEV1p/FVCp 62.8(6.1) 73.1(7.6) 40.7(12.2) 8(3) 

R5p +R5-19p + X5p + AXp 67.7(6) 82(4.9) 37.2(12.5) 7(2) 

D) mMRC 2 
FEV1p + FEV1p/FVCp 56.7(5.1) 40.8(10) 68.2(7.3) 26(3) 

R5p +R5-19p + X5p + AXp 56.3(5) 37.8(10.4) 69.7(5.8) 26(3) 

 

Milestone 2 

The first aim of milestone two was to assess whether combining spirometry and 

oscillometry measures and adding demographics can improve the classification performance. 

Resultantly, two machine learning models were trained in Python, GB and SVM, and compared 

their classification performance to results obtained from milestone one (Table 9). Combining 
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spirometry and oscillometry measures and adding demographics demonstrated an improvement 

in accuracy, from 67.5±5% using BDT with spirometry measures and 68.8±5% using BDT with 

oscillometry measures to 76.6±5% (p<0.05) and 73.5±6% (p<0.05) using GB and SVM, 

respectively. Sensitivity was also improved, with lower FN and comparable specificity. The GB 

and SVM models were comparable, with the best classification performance obtained using the 

GB model, achieving 76.6±5% accuracy, 88.0±5% sensitivity, 46.9±10% specificity and 5±2% 

FN.  

 

Table 9: Mean (SD) classification accuracy, sensitivity, specificity and FN for BDT model 

trained in MATLAB using spirometry and oscillometry measures separately, as well as the GB 

and SVM models trained in Python using combined spirometry and oscillometry measures with 

demographics.  

 

 

The second aim of this milestone was to generate an ROC curve to find the optimal CAT 

threshold value with the best trade-off between sensitivity and specificity (Figure 18, Table 10). 

The best classification performance and balance of sensitivity and specificity was at a cluster of 

CAT thresholds ranging between eight and 10. Interestingly, a CAT threshold of 10, often used 

in clinical settings, corresponded with a good sensitivity of 88.0 ±5%, but a low specificity of 

46.9±10%. In comparison, a CAT threshold of nine improved the sensitivity to 90.4 ±4% 

COMBINATIONS 

 

MODEL ACCURACY 

(%) 

SENSITIVITY 

(%) 

SPECIFICITY 

(%) 

FN 

FEV1p + FEV1p/FVCp BDT - 

MATLAB 

67.5(5) 78(6) 43.8(11) 8(2) 

R5p +R5-19p + X5p + 

AXp 

BDT - 

MATLAB 

68.8(5) 82.5(6) 38(11) 7(2) 

FVCp + FEV1p + R5p + 

X5p + AXp + HEIGHT + 

AGE + SMOKING 

YEARS 

GB - 

Python 

76.6(5) 88.0(5) 46.9(10) 5(2) 

SVM - 

Python 

73.5(6) 85.5(6) 44.0(11) 6(2) 
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(p<0.05) and specificity to 51.0±12% (p<0.05), making it a potentially optimal threshold value 

with the best trade-off between sensitivity and specificity. Using CAT thresholds below eight 

resulted in very high sensitivity at a cost of low specificity, while CAT thresholds greater than 15 

resulted in very high specificity at a cost of low sensitivity. 

 

Table 10: Mean (SD) TP, FP, TN, and FN using GB model with CAT threshold of 9, 10 and 17 

 

 

 

 

 

Figure 18: ROC curve obtained by training the GB model using different CAT thresholds 

ranging between 5 and 20. CAT thresholds of 9, 10 and 17 are highlighted in green, yellow and 

red, respectively.  
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Since the combination of oscillometry and spirometry measures improved the 

classification performance, the last aim of this milestone was to identify which oscillometry 

measure led to a significant improvement in accuracy. As such, changes in accuracy were 

evaluated after introducing oscillometry measures, one measure at a time, to the spirometry 

measures FEV1p and FEV1p/FVCp (Figure 19). While adding R5 to the spirometry measures 

reduced the accuracy (p>0.05), the oscillometry measures X5p, R5-19 and AXp all resulted in a 

significant increase in accuracy (p<0.05). Nevertheless, X5p, R5-19 and AXp resulted in 

comparable classification accuracy when added to the spirometry measures FEV1p and 

FEV1p/FVC (p>0.05), with the highest accuracy of 75.5 ± 6% achieved using X5p.  

 

 

Figure 19: Mean ± SD classification accuracy when adding different oscillometry measures to 

the spirometry measures FEV1p and FEV1p/FVCp.  
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Given that X5p demonstrated the highest accuracy, it was then evaluated if adding R5-19 

or AXp can further improve the classification accuracy. Interestingly, adding R5-19 to FEV1p, 

FEV1p/FVCp and X5p resulted in a modest improvement in accuracy from 75.5 ± 6% to 76.3± 

6% (p>0.05) (Figure 20). Similarly, adding AXp resulted in a comparable accuracy of 75.8±6% 

(p>0.05), adding no additional significance to the machine learning algorithm. 

 

 
Figure 20: Mean ± SD classification accuracy when adding oscillometry measures R5-19 and 

AXp to combination containing FEV1p, FEV1p/FVCp and X5p.  

 

Discussion  
  

 The objective of this study was to assess if machine learning using combinations of lung 

function parameters from oscillometry and spirometry could be sensitive and predict severity of 

COPD by predicting the mMRC and CAT scores. The principle findings are as follows: 1) 
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using spirometry or oscillometry measures separately, 2) combining spirometry and oscillometry 

measures and incorporating demographics improved the classification performance, and 3) a 

CAT threshold ranging between eight and 10 demonstrated the best trade-off between sensitivity 

and specificity.  

It was found that the SDT, BDT and SVM models achieved comparable results when trained 

with spirometry or oscillometry measures separately. The best classification performance was 

achieved using the SVM model when trained with the spirometry measures FEVp and 

FEV1p/FVCp and oscillometry measures R5p, R5-19, X5p and AXp, yielding comparable 

accuracies of 69.1±7% and 67.4±3.9%, respectively. Combining spirometry and oscillometry 

measures and adding demographics such as height, age and smoking years improved the 

classification performance, achieving 76.6±5% accuracy. Sensitivity and specificity also 

increased, with a lower number of FN. Although small, these improvements are statistically 

significant (p<0.05) and can be important, given the noisy nature of this group.  

It was also found that a region on the ROC for CAT thresholds from eight to 10 had high 

sensitivity and good specificity, implying some robustness in performance in this range. 

Interestingly, it was found that a CAT of 10, the GOLD Guideline recommended cut point to 

distinguish between Grades A and B, and C and D in the GOLD classification of COPD, 

achieved very good classification performance and balance between sensitivity and specificity. 

The best classification performance and balance between sensitivity and specificity was obtained 

using a CAT of 9, achieving 90.4 ±4% sensitivity, 51.0±12% specificity and 5±2 FNs. However, 

using CAT thresholds below eight resulted in very high sensitivity at a cost of low specificity, 

while CAT thresholds greater than 15 resulted in very high specificity at a cost of low sensitivity. 

This is likely because a CAT threshold below eight or greater than 15 can result in a biased 
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distribution of the healthy and diseased subjects, resulting in a slight improvement in TP or TN 

rates at a cost of higher FP and FN rates.  

High sensitivity models provide no information on the classification of low severity COPD 

patients and hence, are useful for ruling out high severity COPD when a patient test negative, 

while high specificity models are useful in ruling in high severity COPD when a patient test 

positive. To add, FNs are obtained because of the misclassification of high severity COPD as 

low, which may lead to deleterious effects on the patients’ health. As such, a CAT threshold of 

nine provides a classification model with high accuracy, sensitivity and specificity and a low FN, 

which can help provide an accurate assessment for disease status. It was found that balancing 

healthy subjects in both training and testing sets as illustrated in Figure 17 played an important 

role in improving the classification performance. Balancing healthy subjects in both training and 

testing sets can reduce potential biases that can arise when for example most of the healthy 

subjects are included in either the training or testing sets.  

Conclusion 

In conclusion, this study explored if simple machine learning algorithms could predict high 

or low severity patient reported outcomes using spirometry and oscillometry measures. While 

using oscillometry and spirometry measures separately resulted in comparable accuracy, 

sensitivity, and specificity, combining the two measures resulted in an improved overall 

classification performance; indicating that machine-based algorithms using combinations of 

spirometry and oscillometry measures show potential for patient screening and monitoring. 

Interestingly this also implies that the CAT has good physiological correspondence to lung 

function measures near CAT = nine and 10, when including multiple lung function 

measurements. 
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CHAPTER 5: THESIS CONCLUSIONS 

 

The first objective of this thesis was to develop an improved version of the current ERS 

QC recommendations that incorporates both Rrs and Xrs across frequencies. Results 

demonstrated that the Early algorithm using a weighted impedance cost function (ζZ =Z(1/f)) was 

more robust and consistently performed better when dealing with challenging data containing 

artifacts and outliers, improving the repeatability, efficiency, and feasibility, while maintaining 

the accuracy. The assessment of accuracy, which was this thesis’ second objective, was done 

using a computational model generated from physiological and artifact distributions. This is 

important as prior methods did not assess accuracy nor include any model assessments. The 

computational model used in this study created distributions of impedances with added 

artifactual data that were similar to observed data, both on mean and individual values. While the 

model provided a mean to assess accuracy, some assumptions were included in the model’s 

development and hence may limit its interpretation. This may include the assumption of 

normality for repeated individual measures, which is needed for the Grubbs test. It may also 

include the use of the Grubbs test to identify artifactual data and to generate ‘noise’ and separate 

it from what was identified as signal. Future work could include purposely adding artifactual 

measures and testing the QC algorithm on individual measurements. This could be similar to the 

approach of Bhatawadekar et al. [41], who developed a wavelet-based filtering approach to 

remove artifacts within individual measurements using subjects trained to produce real-world 

artifacts, such as leaks or swallows. Future work could also evaluate the Early algorithm on 

patients with different or more severe diseases, as the type of artifacts may influence the 

computation modelling. Additionally, this work was based on the same acceptability threshold 

used for R5: 15% for young children and 10% for adults. These thresholds, which were based on 
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the ERS standards, are expert opinion-based, rather than evidence-based. Hence, future work 

should investigate whether this acceptability threshold is optimal when using the proposed cost 

function, Z(1/f), which incorporates Rrs and Xrs across multiple frequencies. This could be 

addressed using computational modelling, as employed in this study, with sufficiently varied 

data sets across multiple subjects with differing respiratory diseases. 

The third objective of this thesis was to assess whether combining spirometry and 

oscillometry measures and adding demographics can improve the classification performance. It 

was found that combining spirometry and oscillometry measures with demographics resulted in 

an improved overall classification performance. It was also found that the CAT has good 

physiological correspondence to lung function measures near CAT = nine and 10, when 

including multiple lung function measurements. These results indicate that machine-based 

algorithms using combinations of spirometry and oscillometry measures show potential for 

patient screening and monitoring. The hope was to evaluate if applying the Early algorithm can 

improve the classification performance. However, obtaining sufficient data with both CAT and 

multiple measures of oscillometry took longer than the duration of the thesis, making it 

important that future research obtains this data to meet this objective. Additionally, the accuracy 

achieved using the different machine learning models was limited to no more than 80%, likely 

due to the limitations of the small data set (n=321). This could also be near the maximally 

achievable accuracy using this data set. An attempt to minimize variability amongst the small 

sample size was by using predicted measures that reduce variation due to impedance and 

spirometry dependence on age, height and sex. CAT thresholds were also used instead of 

attempting to predict exact CAT scores, simplifying the task into a binary classification problem. 

Nonetheless, future work should aim to improve the performance using a larger data set, which 
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could also improve the data set’s power in training and testing the machine learning models. 

Moreover, the SDT, BDT and SVM models were used in MATLAB to predict COPD severity 

when using spirometry and oscillometry measures separately, while used the GB mad SVM 

models in Python after combining spirometry and oscillometry measures with demographics. 

Hence, future work should use the same models and environment to re-evaluate whether 

combining spirometry and oscillometry measures outperforms spirometry and oscillometry 

separately.   

 

Contributions From Thesis  
 

1. A. Abufardeh, T. Schuessler, P. Subbarao, R. Dai, M. Reyna-Vargas, R. J. Dandurand 

and G. Maksym, “Improving Quality Control in Oscillometry: Repeatability, 

Efficiency and Accuracy,” ATS International Conference 2022, May 2022. Abstract 

was accepted and presented at the ATS 2022 conference. It was also nominated for 

the 10th annual CTS Research Poster Competition, May 2022.  

2. A. Abufardeh, R. J. Dandurand and G. Maksym, “Machine Learning Using 
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APPENDIX A: SUPPLEMENTARY RESULTS  
 

Table A1: List of weights used to generate the different combinations of R and Z CVs (𝜁) to 

investigate and optimize the performance of the proposed spectral QC algorithm. 

Combination 
of R or Z 

Weight (w) at used frequencies (Hz) 
5 11 13 17 19 23 29 31 37 

R 1 0 0 0 0 0 0 0 0 

Z 1 0 0 0 0 0 0 0 0 

R 0 1 0 0 0 0 0 0 0 

Z 0 1 0 0 0 0 0 0 0 

R 0 0 0 0 1 0 0 0 0 

Z 0 0 0 0 1 0 0 0 0 

R 1 1 0 0 0 0 0 0 0 

Z 1 1 0 0 0 0 0 0 0 

R 1 0 0 0 1 0 0 0 0 

Z 1 0 0 0 1 0 0 0 0 

R 1 1 0 0 1 0 0 0 0 

Z 1 1 0 0 1 0 0 0 0 

Z 1 0 0 1 0 1 0 0 0 

Z 1 1 1 1 1 1 1 1 1 

Z 1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

Z 3 0.5 0 1 0 1 0 0 0 

Z 3 0.5 0 0.75 0 0.75 0 0 0 

Z 3 0.5 0 0.25 0 1 0 0 0 

Z 3 0.75 0 0.5 0 0.75 0 0 0 

Z 3 0.5 0 0.5 0 0.75 0 0 0 

Z 3 0.5 0 0.125 0 1 0 0 0 

Z 3 0.5 0 0.125 0 0.75 0 0 0 

Z 3 0.5 0 0.25 0 0.75 0 0 0 

Z 3 0.5 0 0.5 0 0.5 0 0 0 

Z 2 0.5 0.25 0.125 1 0 0 0 0 

Z 1 0.33 0.33 0.33 1 0 0 0 0 

Z 3 0.5 0.25 0.125 2 0 0 0 0 

Z 2 0.5 0.25 0.125 2 0 0 0 0 

Z 2 0.33 0.15 0.05 1 0 0 0 0 

Z 2 0 0 0 1 0 0 0 0 

Z 3 0.5 0.25 0.125 1 0 0 0 0 

Z 2 0.75 0.25 0.125 1 0 0 0 0 

Z 1 0.091 0.077 0.059 0.053 0.043 0.034 0.032 0.027 

Z 1 0.091 0.077 0.059 0.053 0 0 0 0 
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 Figure A1: A plot of the mean resistances (top) and reactances (bottom) vs. frequency from the 

WIC data set before and after spectral QC using 𝜁 = Z(1/f), (Bars represent standard error). 

 

Figure A2: A plot of the mean resistances (top) and reactances (bottom) vs. frequency from the 

WESER data set before and after spectral QC using 𝜁 = Z(1/f), (Bars represent standard error). 
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