
PROGRAMMABLE AND INTELLIGENT
ACCELERATOR-AWARE LOAD BALANCERS IN DATA

CENTERS

by

Hesam Tajbakhsh

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

December 2023

Dalhousie University is located in Mi’kma’ki, the
ancestral and unceded territory of the Mi’kmaq.

We are all Treaty people.

© Copyright by Hesam Tajbakhsh, 2023

I dedicate this thesis to my beloved wife, Sara, who has been my

unwavering source of support, encouragement, and inspiration

throughout this academic journey. Your love, patience, and belief in

me have been the driving force behind my success.

To my parents and my sister, thank you for your continuous

encouragement, understanding, and sacrifices. Your unwavering

support has been a constant source of strength.

This thesis is a tribute to all of you, as you have been my pillars of

strength, and I am forever grateful for your presence in my life.

ii

Table of Contents

List of Tables . vi

List of Figures . vii

Abstract . ix

List of Abbreviations . xi

Acknowledgements . xiv

Chapter 1 Introduction . 1

1.1 Overview . 1

1.2 Research Contributions . 4

1.3 Thesis Organization . 5

Chapter 2 Background and Motivation 6

2.1 Software-Defined Networking . 6

2.2 Programmable Switches in the Data Plane 7

2.3 Programmable accelerators . 8

2.3.1 SmartNICs . 9

2.4 Roofline Benchmark . 10

2.5 Load Balancing . 11

2.6 Reinforcement Learning . 11

Chapter 3 Related work . 13

3.1 In-network Load Balancing . 13

3.1.1 In-network Load Balancing without Machine Learning 13

3.1.2 In-network Load Balancing with Machine Learning 16

3.2 Task offloading to Programmbale Devices 18

3.2.1 Task Offloading to Accelerators 18

3.2.2 Task Offloading to Programmbale Switches 19

iii

Chapter 4 P4Mite . 21

4.1 Challanges in P4Mite’s Design . 22
4.1.1 Load Balancing in a Diverse Environment 22
4.1.2 Processing Large Number of Concurrent Flows 22

4.2 P4Mite’s Overview . 23
4.2.1 Prgrammable Switch . 24
4.2.2 Controller . 24
4.2.3 Server Agents . 25

4.3 P4Mite’s Data Plane Design . 25

4.4 P4Mite Implementation . 27
4.4.1 P4Mite Controller and Switch 27
4.4.2 P4Mite Agents . 27

4.5 P4Mite Evaluation . 28
4.5.1 Experimental Setup . 28
4.5.2 Microbenchmark . 29
4.5.3 Applications . 31
4.5.4 P4Mite vs. SmartNIC-based load balancer 34
4.5.5 P4Mite Resource Usage . 34

4.6 Major Conclusions of P4Mite . 36

Chapter 5 P4Hauler . 37

5.1 Challenges in P4Hauler ’s Design . 37
5.1.1 Awareness of Resources . 38
5.1.2 Hierarchical Design for Complex Policies 38
5.1.3 Memory Management . 38

5.2 P4Hauler ’s Overview . 39

5.3 P4Hauler ’s Agents . 40

5.4 P4Hauler ’s Infrastructure . 41
5.4.1 Handling Resources at the Switch 42
5.4.2 In-Network Load Balancing Policy Support 43
5.4.3 P4Hauler ’s Data Plane Layout 45

5.5 P4Hauler Management . 46

5.6 P4Hauler Implementation . 49
5.6.1 Prototype Implementation . 49
5.6.2 Simulation . 51

iv

5.7 P4Hauler Evaluation . 52
5.7.1 End-To-End Delay . 52
5.7.2 Flow Completion Time (FCT) 55
5.7.3 P4Hauler ’s Prototype Overheads 57
5.7.4 P4Hauler Comparison with the State-of-the-Art 58
5.7.5 Simulation Results . 60

5.8 P4Hauler vs. P4Mite . 63

5.9 Major Conclusions of P4Hauler . 64

Chapter 6 P4Wise . 66

6.1 Motivation . 66

6.2 Overview of P4Wise . 68

6.3 P4Wise’s Design . 69
6.3.1 Formal Problem Formulation 71
6.3.2 Initialization . 74
6.3.3 Load Balancing with P4Wise 74

6.4 P4Wise’s Implementation . 75

6.5 P4Wise’s Evaluation . 76
6.5.1 P4Wise Tuning . 76
6.5.2 P4Wise at Different Scales . 78
6.5.3 P4Wise vs. Supervised Learning 80

6.6 Major Conclusions of P4Wise . 81

Chapter 7 Conclusion and Future Work 83

7.1 Conclusions . 83

7.2 Future Work . 84

Bibliography . 86

Appendix A Simulator Validation . 97

Appendix B List of Publications from the Ph.D. thesis 99

v

List of Tables

2.1 Roofline’s Results. 11

3.1 In network load balancers without AI/ML 16

3.2 In-network load balancers utilizing AI/ML 18

4.1 Amount of resources used by P4Mite. 35

5.1 Example policies and computation requirements 44

5.2 List of Applications for P4Hauler assessment. 50

5.3 Resources usage of P4Hauler ’s switch 57

5.4 The performance comparison of different hardware targets. . . 59

6.1 initialized Q-Table . 74

vi

List of Figures

2.1 PISA Architecture. 7

2.2 P4 Program Architecture. 8

2.3 Two architectures for SmartNICs. 10

3.1 Using Hash for Indexing. 14

4.1 P4Mite overview. 24

4.2 P4Mite’s data plane layout. 26

4.3 Microbenchmarking results . 29

4.4 The 99th percentile latency for specific applications 32

4.5 P4Mite vs. SmartNIC-based Load balance 35

5.1 P4Hauler overview. 39

5.2 P4Hauler packet format. 41

5.3 Unrolling device state for policy computation. 44

5.4 An example of the round robin scheduler. 45

5.5 P4Hauler ’s data plane layout. 46

5.6 P4Hauler ’s API examples. 48

5.7 The 99th percentile E2E delay for different applications. . . . 53

5.8 Flow completion time for ML applications. 55

5.9 Flow completion time of different batch sizes. 56

5.10 Agent interval evaluation. 58

5.11 P4Hauler vs. Cheetah . 60

5.12 Average throughput of different policies. 61

5.13 Average throughput of different policies. 62

5.14 Variances of CPU utilization 63

vii

6.1 P4Wise overview. 68

6.2 Tuning utilization threshold for P4Wise. 77

6.3 Tuning Bellman equation’s parameters. 78

6.4 P4Wise’s outcome for 128 servers after training. 79

6.5 Balancing the load among 64 servers with P4Wise. 80

6.6 Balancing the load among 256 servers with P4Wise. 80

6.7 P4Wise’s outcome for 256 servers. 81

6.8 P4Wise vs. supervised learning approach. 82

viii

Abstract

The slowdown in CPU progress prompted system designers to incorporate diverse

programmable accelerators (e.g., graphics processing unit (GPU), smart network in-

terface card (SmartNIC) to address the insufficient computational capacity needed

for various components within computer systems. While these programmable accel-

erators enhance computational capabilities, they possess distinct architectures and

capacities compared to standard CPUs. Thus, it is essential to judiciously distribute

the computing tasks among servers and their accelerators to avoid performance degra-

dation. Software-defined networking is a paradigm that enables network programma-

bility for agile and efficient network management and operations. Programmable

hardware (e.g., switch) recently became a promising alternative for task distribution

decisions. A programmable switch can process packets in real-time at line rates (Tbps)

significantly faster than legacy server-based load balancers (LBs). Furthermore, such

in-network load balancers can reduce the delay in decision-making by cutting off the

latency for sending packets from the switch to load-balancing servers. There are

several load balancers deployed in programmable switches, but none incorporate the

capabilities of accelerators in their designs.

In this thesis, we propose the first in-network accelerator-aware load balancers for

performance improvement of machine learning applications in data centers. The first

load balancer is called P4Mite, which deploys agents in application processing servers

and accelerators to measure their capacity and shares these statuses with the switch.

It uses this information and load balancing policies (e.g., weighted round robin) to

dispatch loads among servers and their accelerators. However, P4Mite supports a

limited number of policies. Thus, we introduce P4Hauler , which provides a load-

balancing framework to support a wide range of policies. Within this framework,

we propose configurable building blocks that operators can dynamically select to

implement various policies on-the-fly without rebooting the switch and interrupting

its services. In addition to knowing the policies and statuses of accelerators, an LB

must be aware of traffic condition, which makes the LB operation tedious. Thus, we

ix

propose P4Wise, a learning-based LB, to select the most suitable distribution policy

automatically.

We implement a prototype of the proposed load balancer and deploy it on a testbed

consisting of a programmable switch (Intel Tofino), SmartNICs (Mellanox BlueField),

and legacy servers to demonstrate deployment feasibility and efficiency over existing

solutions. Then, we develop a realistic simulator to show the performance at scale.

Specifically, P4Hauler can handle 27% more load compared to traditional LBs using

only a single accelerator. In the case of hundreds of servers with multiple accelerators,

the performance improvement is proportional to the number of available accelerators.

Finally, P4Wise consistently selects appropriate weights with an accuracy of at least

90%. Furthermore, it responds to changes in the environment by adapting the load

balancing approach accordingly.

x

List of Abbreviations

AA Accelerator Aware

AD Anomaly Detection

AI Artificial Intelligence

ALU Arithmetic Logic Unit

API Application Programming Interface

ASIC Application Specific Integrated Circuit

CPU Central Processing Unit

DIP Direct IP

DL Deep Learning

DQN Deep Q-Learning

DRL Deep Reinforcement Learning

E2E End to End

ECMP Equal Cost Multi Path

FCT Flow Completion Time

FPGA Field Programmable Gate Array

GFLOP Giga Floating-point OPeration

GPU Graphics Processing Unit

IC Image Classification

IP Interner Protocol Address

JIQ Join the Idle Queue

JSQ Join the Shortest Queue

xi

KNN K-Nearest Neighbors

LB Load Balancer

LED Local Estimation Driven

LUR Least Utilized Resource

ML Machine Learning

MLP Multilayer Perceptron

NIC Network Interface Card

NLP Natural Language Processing

NN Neural Network

P4 Programming Protocol-independent Packet

Processors

PCC Per-Connection Consistency

PCIE Peripheral Component Interconnect Express

PDP Programmable Data Plane

PISA Protocol Independent Switch Architecture

Po2 Power-of-Two

PRT Prioritization

RA Resource Aware

RAM Random Memory Access

RDMA Remote Direct Memory Access

RL Reinforcement Learning

RPC Remote Procedure Call

RR Round Robin

xii

SDN Software Defined Networking

SoC System On a Chip

SRAM Static Random Memory Access

SSD Solid State Drive

TAN Tofino Native Architecture

TCAM Ternary Content Aaddressable Memory

TCP Transmission Control Protocol

TPU Tensor Processing Unit

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit Program

VIP Virtual IP

WCMP Weighted Cost Multi Path

WRR Weighted Round Robin

xiii

Acknowledgements

I would like to take this opportunity and convey my sincere gratitude to the individ-

uals and institutions who have played a crucial role in the completion of this thesis.

I express my sincere gratitude to my thesis advisor, Dr. Israat Haque, for her

invaluable guidance, expertise, and mentorship throughout this research journey. Her

insightful feedback and unwavering support have played a pivotal role in shaping this

study. Additionally, I extend my heartfelt thanks to Dr. Alberto E. Schaeffer-Filho

for his valuable assistance and insightful guidance.

I would like to acknowledge the participants of my study who generously con-

tributed their time and insights. Their willingness to be part of this research was

critical to its success. Specifically, I would like to thank Ricardo Parizotto, Carson

Kuzniar, Jack Zhao, Tong Xing, Dr. Miguel Neves, and Dr. Antonio Barbalace.

Your collective support, guidance, and encouragement have been essential in bring-

ing this thesis to completion. I am truly grateful for your kindness and assistance.

xiv

Chapter 1

Introduction

1.1 Overview

The deceleration in CPU advancements seen at the beginning of the 21st century

[1] pushed system designers to introduce various types of programmable accelerators

to cope with the lack of computation required for different components of computer

systems. SmartNICs, for example, are accelerators developed to operate on Gbps

communication links and alleviate the load from the CPUs. GPUs, programmable

SSD, and FPGA are other examples of programmable accelerators introduced to add

more resources alongside CPUs for graphical computations, storage, and miscella-

neous, respectively.

Although programmable accelerators add some computation power to the system,

they have different architectures than regular CPUs. For instance, designers use

wimpy ARM-based CPUs for embedded devices like SmartNICs. The reason is that

ARM architecture is more energy-efficient than x86 [2]. As a result, the performance

falls by running applications intended for regular servers on accelerators with diverse

architectures. Thus, it becomes crucial to distribute the workload effectively between

servers and their accelerators.

Load balancers (LBs) are utilized to enhance application performance by dis-

tributing packets across multiple devices [3]. Generally, load balancers employ poli-

cies such as Weighted Round Robin (WRR), Join-the-Shortest-Queue (JSQ), Join-

the-Idle-Queue (JIQ), Local-Estimation-Driven (LED) [4], to determine the packet’s

destination. Additionally, a policy must guarantee per-connection consistency, mean-

ing that the load balancer forwards all packets from a connection to the same end

server. Traditionally, these load balancers have been deployed on middleboxes.

Nevertheless, there has been a recent shift towards utilizing programmable data

plane (PDP) hardware as a promising alternative for load-balancing tasks and schedul-

ing decisions [5]. Instead of relying on a centralized solution running on a dedicated

1

2

server, deploying a load balancer within the network can yield quicker responses and

reduce flow completion time. Several existing studies deployed in the data plane

have specifically focused on developing load balancers that ensure per-connection

consistency while effectively dispatching packets to servers [6]. Recent solutions have

concentrated on increasing the capacity of switches to handle concurrent connections

[7] or optimizing resource usage, such as memory consumption [8]. However, the

current load balancers, including Tiara [9], Cheetah [10], SilkRoad [6], and Beamer

[11], lack visibility of accelerators. In other words, these load balancers consider an

accelerator to be equivalent to a server, which can lead to imbalances between servers

and their corresponding accelerators.

Furthermore, aside from the issue of limited visibility, current in-network load

balancers only enforce rigid, hard-coded policies within the switch source code, lacking

the ability to be dynamically modified. However, the effectiveness of different policies

varies depending on the characteristics of the applications [12]. For instance, an

application that heavily relies on computational resources may benefit from policies

prioritizing devices with powerful CPUs. Unfortunately, existing in-network load

balancers require network operators to manually configure the switch to apply a new

load-balancing policy and activate it for supporting a different application [13]. This

requires rebooting the switch and can lead to unexpected service interruptions.

This study introduces P4Mite, P4Hauler , and P4Wise, three load balancers

specifically designed to function on programmable switches, such as the Intel Tofino.

To be more specific, the functioning of all three load balancers relies on agents op-

erating on servers and accelerators. These agents gather statistics and transmit the

monitored resource statuses of these devices directly to the data plane in the switch.

The switch maintains a record of the current status of each resource and utilizes these

values to make decisions regarding the destination for incoming requests.

In the case of P4Mite, our focus is on SmartNICs, which are specialized network

interface cards (NICs) equipped with processors capable of processing packets either

on the network path or off the path. Many prominent vendors, including NVIDIA

and Broadcom, have developed a range of SmartNICs to augment the computational

capabilities of data center machines’ CPUs. Our objective is to assess the potential of

SmartNICs for processing CPU-intensive applications and explore how a load balancer

3

that is aware of these accelerators can optimize overall performance by efficiently

utilizing each available resource. In P4Mite, the agents reported whether a target

computing resource was available. However, for more intricate policies that involve

collecting multiple resources or performing computations within the switch, it is not

practical to store all potential outcomes due to memory limitations.

Once we show that distributing the load at the granularity of accelerators can

improve the performance, we extend and generalize the initial design and introduce

P4Hauler , which is both accelerator-aware and policy-agnostic, enabling dynamic pol-

icy updates without requiring a switch reboot, in the opposite of existing solutions.

Put differently, P4Mite, stands as an example of P4Hauler . P4Hauler ’s flexibility

allows it to adapt its operations according to varying network and application con-

ditions. It is worth mentioning that P4Mite and P4Hauler contribute to reducing

the CPU resource burden on servers in two ways: firstly, by offloading a portion of

the application load onto accelerators, and secondly, by ensuring that servers and

accelerators are not involved in load balancing operations. As a result, computing

resources can be freed up to handle application requests more efficiently.

Based on our observations in P4Hauler , we have found that there is not a single

policy that consistently delivers required performance in all network conditions (e.g.,

varying traffic rates, number of servers or accelerators). Specifically, in P4Hauler , net-

work administrators activate policies for a given application that remains unchanged

during its entire service time irrespective of network dynamics, which can adversely

impact the end-to-end latency and throughput. Furthermore, in the event of sub-

stantial deployment changes, such as modifications to the existing resources or the

addition of new resources, operators must update the policy configurations accord-

ingly. In order to tackle this challenge, we have adopted reinforcement learning (RL)

and introduced P4Wise. It is a hybrid system where the RL agents get trained in the

control plane interacting with the environment. In contrast, the data plane switch

gets configured with the chosen policy and its weights to distribute loads accordingly.

Thus, P4Wise makes decisions on behalf of the operator by continuously monitor-

ing resource usage and employs an RL algorithm to determine the most effective

load-balancing strategy based on the observed information.

We implemented prototypes of P4Mite, P4Hauler , and P4Wise on an Intel Tofino

4

[14] programmable switch. Our prototypes are publicly available at our Git repository

[15, 16]. The prototypes are deployable on data centers’ networks to distribute the

load among servers and their accelerators. Specifically, we evaluated the proposed

systems over popular machine learning applications (e.g., image processing or natural

language processing); however, our proposed load balancers can support any required

applications. The results reveal that P4Hauler can support significantly more load,

proportional to the number and capacity of the accelerators, compared to its coun-

terpart. For instance, P4Hauler can increase the maximum request rate by 27% and

reduce the flow completion time by 13% with only one wimpy additional accelerator

(SmartNIC). Furthermore, simulations with hundreds of servers, each with a couple

of SmartNICs, show that we can handle around 50% more loads. Furthermore, our

evaluation reveals that when appropriately configured, P4Wise consistently selects

the optimal load-balancing policy in different networking conditions. This implies

that not only does it exhibit similar performance enhancements to P4Hauler during

peak load conditions, but it also eliminates the need for network administrators to

continuously update policies when the system is not under high load.

1.2 Research Contributions

In this article, we contribute in the following ways:

• We introduce P4Mite, P4Hauler , and P4Wise, three systems designed for load

balancing in an environment comprising servers and hardware accelerators. At

the core of them lies a generalized switch that enables load balancing at an

accelerator-level granularity.

• We assess the potential of accelerators like SmartNICs in P4Mite for CPU-

intensive applications’ performance boosting using an in-network load balancer.

• In the generalized system, P4Hauler , we introduce an on-the-fly configurable

design, meaning the network operator can enable the appropriate load-balancing

mechanism according to running applications.

• We create prototypes of P4Mite and P4Hauler using a testbed that includes a

Tofino switch, traditional servers, and accelerators. Additionally, we assess the

5

performance of all systems and compare them with similar load balancers. To

promote reproducibility and further exploration, the source codes are available

in [15, 16].

• P4Mite’s quantitative results prove that the accelerators, like SmartNICs, have

considerable computing power, and the load balancer should utilize the capacity

wisely. Moreover, The evaluation results validate the superior performance of

P4Hauler ’s policies in terms of flow completion time and throughput, while also

ensuring per-connection consistency.

• Finally, P4Wise shows that learning-based policy selection effectively reacts to

dynamic network behaviours while balancing loads among various computing

resources.

1.3 Thesis Organization

The remaining chapters of the thesis are structured as follows: In Chapter 2, we

provide the background information and present relevant findings that conform to

the basis for our work. Subsequently, in Chapter 3, we examine related studies

and their connection to our research. Once we have acquired sufficient knowledge,

we proceed to elucidate the design, implementation, and experimental outcomes of

P4Mite in Chapter 4. Similarly, in Chapter 5, we elaborate on our extended load

balancer, P4Hauler , following the same structure. We present P4Wise in Chapter 6.

Finally, we engage in conclusions and future work of our research in Chapter 7.

Chapter 2

Background and Motivation

This section presents the necessary background to understand our contribution along

with the motivation for designing P4Mite, P4Hauler , and P4Wise.

2.1 Software-Defined Networking

Software-defined networking (SDN) is a new networking paradigm that introduces

flexibility, scalability, and adaptability to network infrastructure by separating the

control plane and data plane in network devices [17]. The control plane (or con-

troller) serves as the intelligence behind SDN, while the data plane executes simple

operations dictated by the controller. Specifically, the control plane assumes the role

of network observer, possessing comprehensive system-wide information. This van-

tage point empowers it to make informed decisions regarding traffic management in

the network. Conversely, the data plane, also referred to as the forwarding plane, per-

tains to the network devices under the controller’s jurisdiction, which are responsible

for the transmission of network traffic.

The key principle underlying the data plane is to ensure simplicity and speed.

Typically, the data plane resides within hardware components responsible for for-

warding packets, such as switches and routers, optimizing their performance [17, 18].

OpenFlow is the de facto protocol that enables communications between data and

control planes. OpenFlow has undergone thorough examination in academic research

and garnered substantial adoption within the industry [19]. OpenFlow 1.5 is the lat-

est version at the time of writing this thesis and includes support for dozens of actions

on network traffic, such as Output, Drop, and SetField. However, these actions are

not mandatory for packet processing [20]. Additionally, the specific set of actions

can vary between different OpenFlow versions, and there is potential for introducing

new actions in future releases. SDN has been successfully adopted both in wired

[21, 22, 23, 24, 25, 26, 27] and wireless [28, 29, 30, 31, 32, 33, 34] networking to offer

6

7

better performance, agility, and scalability.

2.2 Programmable Switches in the Data Plane

Traditional switches typically execute a predefined set of operations. With the in-

troduction of programmable switches, however, network owners can configure the

switches to perform various functions by utilizing domain-specific languages and run-

ning programs in the data plane model [35]. There are different programming models

for packet processing, such as data flow abstractions and the protocol independent

switch architecture (PISA) [36]. Compilers are responsible for generating compatible

programs for each mode. In this research, we employ the PISA architecture, as de-

picted in Figure 2.1. In this model, the switch parses incoming packets and applies a

series of operations based on match+action tables. These tables can be programmed

by the network owner to implement different functionalities.

P
ro

g
ra

m
m

ab
le

 P
ar

se
r

P
ro

g
ra

m
m

ab
le

 D
ep

ar
se

r

Match+Action Pipeline

TCAM/SRAM ALUs

Figure 2.1: PISA Architecture.

Programming Protocol-independent Packet Processors or P4 is a domain-specific

language designed for data plane programming. P4 is also distributed as an open-

source and non-profit code supported by P4 Language Consortium. P4-14 and P4-16

are two versions introduced in 2014 and 2016, respectively. Given Figure 2.2 [37], the

P4 compiler generates the required Runtime file for the target control and data plane,

defining the pipeline. While the packets go through the pipeline, the program extracts

the headers of layers, applies match+action, and finally encapsulates the packets

for retransmitting. In this pipeline, the programmer can change the information of

packets to implement different protocols and applications.

8

Packet
Classifiesr

L3 Routing

L2 Forwarding

Access Control
List

P4 Program

Target Runtime
Control Plane

Target Data
Plane Code

P4 Compiler

Target APIs

Figure 2.2: P4 Program Architecture.

In P4Mite, P4Hauler , and P4Wise, we employ a programmable switch executing

an accelerator-aware load balancer inside the network getting updates from different

devices in the network. While the load balancer keeps the status of existing flows,

it dispatches the new requests to the best destination (e.g., fastest CPU). A pro-

grammable switch is a worthy option for deploying the load balancer because of three

reasons:

1. The ALU in the switch is capable of performing the load balancing duty effi-

ciently at the line rate of link (processing packets at Tbps).

2. The resource on the end servers will be free to process client’s requests instead

of involving in load balancing.

3. Our switch-based load balancers avoid sending too many requests to the end

servers by load balancing at a fine granularity.

2.3 Programmable accelerators

Programmable accelerators are reconfigurable devices employed in computer systems

to enhance the speed of specific tasks. Typically, these accelerators are connected to

the server’s CPU via Peripheral Component Interconnect Express (PCIE) slots [38].

Examples of such accelerators include SmartNICs, SSDs, and GPUs. Noteworthy

9

instances include Google’s AutoML, which utilizes Tensor Processing Units (TPUs)

[39], and Microsoft Azure’s machine learning services, which employ FPGAs [40].

Many accelerators possess their dedicated operating systems, such as Linux, as seen

in Mellanox BlueField SmartNIC and Broadcom Stingray [41, 42]. This character-

istic grants them programmability and accessibility through the standard TCP/IP

stack via IP over PCIE tunnelling [43]. Alternatively, some accelerators, lacking an

operating system, rely on their firmware to communicate over TCP/IP. The most

commonly used method to communicate with these non-TCP/IP-supported acceler-

ators, including GPUs and programmable SSDs, is Remote Direct Memory Access

(RDMA) [44].

Accelerators are frequently employed to offload applications or specific compo-

nents of applications, thereby enhancing their overall performance in comparison to

running them solely on a standard CPU [43, 45, 46, 47]. System designers offload dif-

ferent applications to programmable accelerators, including machine learning training

[39] and inference [48], databases [49], and web servers [50]. While accelerators offer

performance advantages for these applications, running them without proper consid-

eration for load offloading can result in performance degradation. To address this, it

is essential to design capability-aware load balancing for accelerators when utilizing

such computing resources, thus mitigating potential issues arising from inappropriate

load distribution.

2.3.1 SmartNICs

In this study, while our designs, which we will discuss later, are versatile and can

be applied to various accelerators, we have chosen to utilize a Mellanox SmartNIC

as an accelerator to assess our prototype. This section provides a brief introduction

to SmartNICs. Subsequently, in section 2.4, we will present some quantitative data

to demonstrate the impact of this type of accelerator on our research. Noteworthy

that by using an accelerator with limited resources, we stress our load balancers for

making decisions more frequently and observing more accurate outcomes.

Taking a look at Figure 2.3, we can observe two distinct architectures employed

in SmartNICs. The first architecture, depicted in 2.3a, positions the SmartNIC’s

processing unit directly on the networking path. In contrast, the second architecture,

10

HOST

CPU

SmartNIC

Processing Unit

PCIe bus

NIC

Accelerator

(a) On-path Architecture

HOST

CPU

SmartNIC

Processing Unit

PCIe bus

NIC

Accelerator

PCIe switch

(b) Off-path Architecture

Figure 2.3: Two architectures for SmartNICs.

illustrated in Figure 2.3b, places the processing unit off the path and establishes

communication with the NIC and host via the PCIE. Various options are available

for the SmartNIC’s processing unit, including off-the-shelf CPUs, FPGAs, and ASICs.

When it comes to general-purpose CPUs, the majority of them are ARM-based or

MIPS-based, which are comparatively less powerful than the x86 CPUs found in

hosts.

2.4 Roofline Benchmark

To reveal the computational capabilities of our SmartNIC, we utilized a tool called

roofline [51]). This tool evaluates the performance of the embedded CPU in com-

parison to the CPUs of the host by running a kernel module on each device. By

employing roofline tool, we can assess the CPU performance at various levels within

the memory hierarchy.

The results presented in Table 2.1 indicate the maximum number of floating-

point operations per second executed by each CPU, measured in Giga Floating-point

OPeration per second (GFLOP/s). It is observed that the host performs five times

as many floating-point operations compared to the SmartNIC’s CPU. In other words,

the SmartNIC has the potential to contribute an additional 20% of computational

power to the system. Based on these findings, we propose that P4Mite, P4Hauler ,

and P4Wise can effectively utilize a SmartNIC in situations where the associated host

is overwhelmeed. In short, we can enhance the performance by offloading a portion

of the workload to the SmartNIC.

11

Table 2.1: Roofline’s Results.

Device CPU Specifications GFLOP/s

Host (x86)
Intel(R) Xeon(R) Silver 4210R

with 10 cores @ 2.4GHz
91.0

SmartNIC (ARM)
Armv8 A72 CPU

with 16 cores @ 2.0GHz
17.6

2.5 Load Balancing

In today’s digital landscape, applications stand as the central driving force behind the

success of businesses and services, underlining the pivotal role of their performance.

As applications increase in complexity and usage, ensuring consistent and reliable

performance becomes a significant challenge. This is where load balancing steps

in as a vital strategy. Load balancing is a method utilized to distribute network

or application traffic across numerous servers, resources, or pathways [52, 53]. Its

core purpose is to wisely utilize the resources, enhance fault tolerance, and, most

significantly, elevate the overall performance and responsiveness of applications.

To achieve these objectives, both academia and industry have explored various

types of load balancers. Load balancers can function at different layers of the network

stack, such as L4 and L7 [54, 55], and they can be implemented as either software or

hardware solutions [56].

With the recent advancement of programmable switches, a growing trend is emerg-

ing, aiming to delegate load balancing tasks to the data plane. In the context of P4

and load balancing, an in-network load balancer functions directly within the network

infrastructure, efficiently distributing incoming traffic across multiple servers or path-

ways. It possesses the capability to make load balancing decisions based on various

factors, including source IP address, destination IP address, or application type. An

in-network load balancer implemented on P4 switch offers distinct advantages, such

as optimizing resource utilization and processing packets in real-time at the line rate.

2.6 Reinforcement Learning

Unlike supervised or unsupervised learning, which rely on the collection of labeled or

unlabeled data, respectively, Reinforcement Learning (RL) is a subfield of artificial

12

intelligence that an agent interacts with the environment. Its primary goal is to

achieve the maximum cumulative reward in an ever-changing environment[57].

RL excels in adapting to environmental dynamics, maintaining optimal strategies

through a series of interactions and trial-and-error processes. RL algorithms can

be usually categorized into two main approaches, model-based and model-free [58].

Model-based RL is an approach where the agent learns a model or representation of

the environment’s dynamics. This model is used to simulate and predict how the

environment will respond to different actions taken by the agent. In other words,

the agent builds an internal model of the world to estimate the consequences of its

actions. Probabilistic [59] and neural network-based [60] are two examples of model-

based RL. In contrast, model-free reinforcement learning comes into play when the

environment cannot be entirely modeled or predicted, as is the case with intricate and

unpredictable scenarios like load balancing. A few notable examples for model-free

RL are Q-Learning [61], Deep Q-Network DQN [62], and SARSA [63].

In the realm of Reinforcement Learning (RL), an agent engages with its environ-

ment, perceiving the current state and choosing actions based on a policy. Subsequent

to each action, the agent receives a reward, aiming to maximize its cumulative rewards

over time. In our specific context of load balancing tasks, the environment consti-

tutes the entire network system comprising interconnected elements. The learning

agent interacts with this system, dynamically evolving to optimize load balancing

among computing resources. The agent’s objective is to continually refine its de-

cisions, strategically adapting to the changing demands of the system, all with the

ultimate goal of achieving optimal load distribution.

Chapter 3

Related work

We divide this chapter into two sections. In the Section 3.1, we elaborate in-network

load balancers with and without using AI/ML, whereas Section 3.2 discusses task

offloading into programmable hardware.

3.1 In-network Load Balancing

Load balancing on programmable network devices is a crucial mechanism that en-

hances network performance and optimizes resource utilization. These devices, such

as programmable switches (e.g., Tofino switch) and SmartNICs (e.g., Bluefield and

Stingray) equipped with programming capabilities and allow for efficient distribution

of incoming traffic across multiple network paths or splitting the load among multiple

servers. By distributing load and traffic, load balancing prevents network congestion

and bottlenecks, ensuring that the system operates optimally. Programmable net-

work devices enable the flexibility to customize load-balancing algorithms according

to specific network requirements and adapt to changing conditions in real time. This

empowers network administrators to achieve efficient utilization of network resources,

maximize throughput, and provide a seamless experience for end-users.

For connection consistency on layer-4 load balancers, a hash derived from a 5-

tuple is stored in the load balancer as shown in Figure 3.1. The 5-tuple consists of

the source IP, source port, destination IP, destination port, and protocol type [64].

The hash also identifies an address revealing if a connection is using it for storing a

destination IP.

3.1.1 In-network Load Balancing without Machine Learning

In the last decade, various load balancers within the network have emerged as alter-

natives to traditional load balancers. Table 3.1 lists some well-known in-network load

balancers. In the table, RA and AA stand for Resource Awareness and Acceleraor

13

14

Hash Table

... ...

2 Device2_IP

... ...

N-1 Device1_IP

N ...

Packet Header

Src. IP, Src. Port

Dst. IP, Dst. Port

Protocol Number

Hash
(Index)

Bloom Filter
0
x x 1 ... 1 x

1 2 N-1

Computing Hash

Figure 3.1: Using Hash for Indexing.

Awareness, respectively. To address memory limitations posed by the 5-tuple, SilkRoad

[6] adopts a programmable switch and calculates a hash function to support plenty

of connections. Loom [65] employs a similar methodology, focusing on scaling per-

connection consistency with the aid of a programmable switch. It utilizes multiple

bloom filters to compress the connection states. Alternatively, Cheetah [10], a dif-

ferent in-network load balancer, stores information in the packet headers instead of

switches. It is important to note that these load balancers do not take accelerators

into account, resulting in load distribution at a per-server level.

Hsu et al. [66] propose an adaptive weighted traffic splitting mechanism that

dynamically adjusts the distribution of incoming traffic across multiple paths based

on network conditions. A programmed data plane monitors network metrics such as

link utilization and latency, and it calculates appropriate weights for each path to

optimize traffic distribution. The authors also introduce an adaptive algorithm that

continuously adapts the weights based on real-time measurements, ensuring efficient

utilization of available network resources.

In addressing the challenge of supporting a significantly large number of con-

nections, Tiara [9] adopted an innovative approach. To offload the load balancing

process, Tiara introduced a 3-tier method. In the first tier, an active switch known as

T-Switch utilizes Equal-Cost Multipath (ECMP) to distribute the load across Tiara

SmartNICs (T-NIC) located in the second tier. Tiara leverages the programmability

of SmartNICs for target server selection. In cases where a SmartNIC is not responsi-

ble for a particular connection, the packet is forwarded to the Tiara Server. The Tiara

15

Server, equipped with the ability to select the appropriate target server, then employs

the SmartNIC and switch to forward the packet accordingly. Although these load bal-

ancers can assign tasks at a finer granularity, such as per CPU core, they still rely on

the accelerators themselves, such as SmartNICs, to perform load-balancing decisions.

This dependence on accelerators for load-balancing decisions can result in the ineffi-

cient utilization of valuable computing resources. Therefore, an alternative approach

is necessary to optimize resource utilization and enhance overall performance.

Several resource-aware load balancers have been developed to optimize perfor-

mance and resource utilization. One example is CrossRSS [67], which incorporates

CPU-awareness into its stateful load balancing mechanism. In CrossRSS, the Smart-

NIC is responsible for computing the hash and selecting the appropriate core. Another

resource-aware load balancer is Charon [7], which adopts a passive approach by re-

ceiving updates from agents running on the server. Charon utilizes an FPGA-based

SmartNIC to select the most suitable server for load balancing. Like the last two

mentioned load balancers, SHELL [68] is another resource-aware load balancer that

employs the accelerators (i.e., SmartNICs) for load balancing instead of running the

application (or a part of them) on accelerators for performance enhancement

R2P2 [69] proposes a load balancer, which is deployable in our design, applying

join-bounded-shortest-queue (JBSQ) policy for Remote Procedure Calls (RPC) by

employing a Tofino switch. RachSched [5] also introduces a load balancer applying

two-layer schedulers on a programmable switch. After selecting the server in the

rack, the second layer picks the appropriate intra-server worker. Although we employ

a similar hierarchical design for load balancing, the second layer of our load balancer

offers reconfigurable policies for accelerator-aware decisions.

In the study conducted by Cui et al. [54], they evaluate the performance of an

ARM-based SoC SmartNIC in running a lightweight load balancer. The authors

provide insights into which load balancing tasks should be executed on the server and

which ones should be offloaded to SmartNICs. Notably, their findings demonstrate

the benefits of performing asymmetric and symmetric cryptography on the server and

SmartNIC, respectively, highlighting the optimal distribution of cryptographic tasks

between the server and the SmartNIC.

16

Table 3.1: In network load balancers without AI/ML

Load Balancer RA AA Deployment

SilkRoad [6] ✗ ✗ In a Programmable Switch
Loom [65] ✗ ✗ In a Programmable Switch

Cheetah [10] ✗ ✗ In a Programmable Switch
WCMP-based [66] ✗ ✗ In a Programmable Switch

Tiara [9] ✗ ✗ Switch+SmartNIC+Server
CrossRSS [67] ✓ ✗ In a SmartNIC
Charon [7] ✓ ✗ In a SmartNIC
SHELL [68] ✓ ✗ In a SmartNIC
R2P2 [69] ✓ ✗ In a Programmable Switch

RachSched [5] ✓ ✗ In a Programmable Switch

3.1.2 In-network Load Balancing with Machine Learning

Here, we study state-of-the-art regarding utilizing AI/ML for load balancing. Of-

floading applications on network devices, including AI/ML, is a challenging problem,

and we illustrate this difficulty and conducted research in this area in Section 3.2.

Table 3.2 lists a few load balancers that employed AI/ML for load balancing.

Learned Load Balancing (LLB) [70] is a technique that leverages neural networks to

optimize load distribution in a network. Rather than relying on traditional static

load balancing methods, LLB dynamically adapts and improves over time based on

real-time network conditions. By analyzing factors such as network traffic, server

capacity, and latency, the machine-learning model learns patterns and makes intel-

ligent decisions regarding load distribution. This approach enables load balancers

to optimize resource utilization, minimize congestion, and enhance overall network

performance. Learned load balancing offers a flexible and scalable solution that can

adapt to changing network dynamics, making it a valuable tool in modern network

management. Chang et al. adopt a SmartNIC to generate the weights as not only can

they execute inference, but due to hardware performance predictability, it is feasible

to estimate an upper bound for the latency for the load balancing process.

LBAS [71] presents a fast switch-based load balancer that considers the states of

application servers. Unlike previous load balancers that solely focus on distributing

incoming traffic, this load balancer considers the conditions of the servers to make

17

intelligent load-balancing decisions. By utilizing the controller in the network archi-

tecture, the load balancer can efficiently monitor the states of the application servers

quickly. This information is then used in a regression model to dynamically dis-

tribute the incoming traffic based on the current states of the servers, such as their

CPU utilization and response times. The load balancer aims to optimize the overall

performance of the system by effectively utilizing the available server resources and

preventing overload on any particular server.

Load balancing is further compounded by the dynamic nature of network traffic

and the growing diversity of workloads traversing the network. QCMP [72] is a

load balancing solution based on Reinforcement Learning. QCMP is integrated into

the data plane, allowing for rapid policy adjustments in response to fluctuations in

traffic. The implementation of QCMP utilizes P4 on a Tofino switch and employs

BMv2 within a simulation environment.

CrossBal [73] introduces a hybrid load balancing approach that leverages Deep

Reinforcement Learning (DRL) to prioritize optimizing high-impact elephant flows.

The DRL agent is designed to make effective use of network links while keeping

the action space minimal, enabling the agent to rapidly acquire load balancing skills.

Additionally, CrossBal maintains the ability to swiftly adapt to network modifications

by actively monitoring and switching routes in the data plane.

Lim et al. [74] addressed the challenge of efficiently distributing traffic in data

center networks with multi-rooted topologies to optimize bisection bandwidth. They

introduced a load-balancing approach called Reinforcement Weight-Cost Multipath

(RWCMP) that employs reinforcement learning to determine the ideal traffic split

ratios for egress ports and route multiple flows simultaneously.

Reinforcement learning (RL) models present a robust alternative to manually de-

signed heuristics within networked systems. However, they can exhibit unpredictable

behavior, raising safety concerns. In [75], Mao et al. tackled this issue by proposing

an approach that facilitates the safe deployment of RL models, enabling them to

adapt to dynamic conditions. In a practical application, they assessed this approach

within a real-world load balancing scenario. As a result, the load balancer was able

to efficiently respond to abrupt workload changes while maintaining response time

objectives.

18

Given that allocating resources across routes for cloud requests is a complex NP-

hard problem [52], machine learning methods offer an efficient approach to address

this issue. However, using supervised or unsupervised learning introduces a challenge

since they rely on pre-defined datasets that may not encompass all scenarios and

can be challenging to acquire. Therefore, reinforcement learning emerges as a more

suitable solution because it learns within the environment through trial-and-error

processes. However, none of the previous studies that utilize machine learning have

taken accelerator awareness into account for load balancing. As accelerator-aware

load balancing proved to be efficient, we consider developing an RL-based load bal-

ancer that is accelerate-aware while distributing load among computing resources,

i.e., making it programmable and intelligent.

Table 3.2: In-network load balancers utilizing AI/ML

Load Balancer RA AA Deployment

LLB [70] ✓ ✗ In a SmartNIC
LBAS [71] ✓ ✗ In a Programmable Switch
QCMP [72] ✓ ✗ In a Programmable Switch
CrossBal [73] ✓ ✗ In a Programmable Switch
RWCMP [74] ✓ ✗ Simulation

3.2 Task offloading to Programmbale Devices

Rather than load-balancing, researchers have explored the potential of offloading

various applications onto programmable devices. In the subsequent subsections, we

have organized the projects into two categories. In the first one, we elaborate on task

offloading to accelerators; then, we present task offloading to programmable switches.

3.2.1 Task Offloading to Accelerators

Numerous projects have studied the capabilities of SmartNICs to drive various ap-

plications. These endeavours encompass a wide range of domains. For instance,

authors in Xenic [76], and LineFS [77], have leveraged SmartNICs to enhance the

performance of distributed applications. Real-time analytics projects like iPipe [45]

have also benefited from SmartNICs. Furthermore, system designers have empow-

ered micro-services architectures by SmartNICs, exemplified by the work done in E3

19

[46]. SmartNICs have proven instrumental in accelerating machine learning and deep

learning applications as well, demonstrated by projects such as N3IC [78], Brain-

wave [40], and SpikeOffload [79]. Similarly, GPUs have been widely employed to

bolster the performance of learning-based applications [80]. In addition, TPUs and

programmable SSDs have found utility in the field of AutoML [39] and [81].

Although it may not be feasible in every instance, all the research projects men-

tioned have made modifications to a particular application to enhance its performance

on their SmartNICs. In some cases, there is a compromise between various param-

eters, such as in the case of N3IC [78], where reasonable latency is achieved at the

expense of accuracy.

Zhao et al. explored the potential of emerging SmartNICs for running security

applications, particularly those relying on cryptographic operations [82]. It high-

lights that SmartNICs can significantly benefit from architectural enhancements like

cryptographic instructions and hardware accelerators to match server performance

in crypto-workloads. However, data movement between the SmartNIC and crypto-

hardware cores can introduce overhead, especially for short-lived tasks. SmartNICs,

positioned closer to client devices than server CPUs, can accelerate crypto-based func-

tions, but the advantages may be diminished by data-intensiveness or the presence of

multiple no-ncrypto tasks in the application.

Xing et al. developed a framework that highlights the utilization of the Linux

network stack on both host and SmartNIC CPUs. Their research demonstrates how

the use of SmartNICs can impact critical performance metrics, including E2E latency,

throughput, and multi-core scalability. These effects are attributed to factors such as

the architecture of SmartNICs and their computational capabilities [47].

3.2.2 Task Offloading to Programmbale Switches

Lastly, programmable switches have served as versatile platforms facilitating a wide

array of network services and applications. Notable examples for the application

include NetCache [83] and NetGVT [84] supporting distributed applications, Net-

Pixel [85] enabling ML/DL tasks, PoirIoT [86, 87] fortifying security, and RedPlane

[88] ensuring fault tolerance. Focusing on machine learning, Parizotto et al. [89]

reviewed the completed projects in this domain in a systematic review. Collectively,

20

these projects highlight the diverse spectrum of applications and services that have

harnessed the capabilities of programmable switches.

Chapter 4

P4Mite

In this chapter, we introduce a cutting-edge load balancing system called P4Mite

that considers the presence of accelerators. To our knowledge, P4Mite is the first

load balancer that works at a per-accelerator granularity. In short, P4Mite effectively

combines mechanisms for load balancing between servers (referred to as inter-server

balancing) such as ECMP, connection ID hashing [64], and power-of-k -choices [90],

with a task distribution at the accelerator level within each server (known as intra-

server balancing). The latter involves intelligently distributing connections to the

CPU or available server accelerators like SmartNICs and GPUs, based on accurate

estimations of their respective loads.

An outstanding feature of P4Mite is its full deployability on programmable switches,

enabling it to handle massive connections with exceptional throughput and minimal

latency. This deployment flexibility takes advantage of the programmability inherent

in the switches, allowing P4Mite to adapt and scale effortlessly across diverse network

environments.

Furthermore, P4Mite, like related work such as SildRoad [6], and Loop [65], places

significant emphasis on maintaining per-connection consistency (PCC) by carefully

managing a highly optimized connection table. This table keeps track of existing

connections, ensuring that each connection receives consistent treatment throughout

the load-balancing process.

In the following subsections, we will study the challenges that P4Mite faces in

Section 4.1. Next, we dig into P4Mite’s design, its data plane, and implementation

in Sections 4.2, 4.3, and 4.4, respectively. Afterward, we comprehensively assess our

prototype and report quantitative results in Section 4.5. Finally, we conclude and

summarize this chapter in Section 4.6.

21

22

4.1 Challanges in P4Mite’s Design

There are two challenges in designing P4Mite.

4.1.1 Load Balancing in a Diverse Environment

Typically, servers within a pool are expected to exhibit uniform characteristics [91,

92]. However, the accelerators present in these servers introduce heterogeneity into

the environment. In other words, CPUs within hosts and their accelerators like

SmartNICs and GPUs possess distinct architectures. Even two SmartNICs can yield

disparate outcomes due to their differing designs [47, 93]. Unfortunately, policies that

perform well in homogeneous setups often demonstrate subpar performance when

confronted with heterogeneity. To overcome this challenge, P4Mite takes a proactive

approach by monitoring all devices, including servers and accelerators, and gathering

relevant statistics such as CPU utilization and request processing latency. By analyz-

ing this information, P4Mite develops a comprehensive understanding of the status of

each device, enabling it to make informed decisions about the optimal destination for

dispatching requests. Furthermore, our policies can prioritize powerful resources (e.g.,

beefy host CPU), allowing them to handle a greater number of requests compared to

less capable resources (e.g., smartNIC CPU).

4.1.2 Processing Large Number of Concurrent Flows

Modern programmable switches face limitations in supporting numerous concurrent

flows due to their restricted memory capacity, typically around 50-100 MB SRAM [6].

Consequently, prior research has proposed alternative solutions such as hybrid load

balancer architectures, which involve hardware/software co-designs [9], or effective

compression techniques. These compression approaches aim to reduce memory usage

by storing connection hashes instead of the complete 5-tuple (source MAC, destination

MAC, source IP, destination IP, protocol) or utilizing indirect VIP-to-DIP mappings

[6]. In load balancing context, the VIP and DIP refer to Virtual IP and Direct IP,

respectively. These terms are commonly employed in load balancing solutions aimed

at distributing incoming packets or requests among multiple end hosts. To be more

precise, the VIP represents the IP address utilized by clients to send their requests,

23

whereas the DIP pertains to the address within the back-end network. It is the

responsibility of the load balancer to map the VIP to the appropriate DIP.

In the case of P4Mite, an additional level of complexity arises in mapping con-

nections to computing units rather than servers, requiring a more detailed and fine-

grained process. While P4Mite still relies on a connection table to maintain the

state of each connection, ensuring per-connection consistency (PCC), we minimize

the memory footprint through a combination of data compression techniques for ef-

ficient policy representation. Specifically, our system employs hashing and bitmaps

to store connection and accelerator states, respectively. Additionally, we utilize a

two-step process for VIP-to-DIP mapping, breaking it down into mapping a VIP

to a server code and then mapping the server code to a DIP. This indirect mapping

approach complements the technique described in [6], which also utilizes indirect map-

ping to reduce the size of the connection table. The performance of our compression

approach is thoroughly evaluated in Section 4.5.5, where we assess its effectiveness

and resource utilization.

4.2 P4Mite’s Overview

Figure 4.1 provides an overview of the architecture of P4Mite. The system comprises

a programmable switch, a controller, and a set of agents running on servers and accel-

erators. In P4Mite, the connection state is maintained at the programmable switch,

enabling stateful load-balancing. Furthermore, requests are forwarded exclusively

within the data plane, allowing advanced load-balancing policies while minimizing

any impact on flow performance.

Additionally, we assume that each server executes a specific application, which

aligns with the usual practices observed in contemporary data centers [94]. Hence, we

expect both processing unit, including the server CPU and the accelerator, run a single

application such as data analytics, VPN tunnelling, or machine learning inference. It

is worth noting that although the rack can accommodate multiple distinct services,

our focus remains on the dedicated ones.

24

Server

SmartNIC

P4Mite
Controller

Client
Requests

Switch

Forwarding

LB
management

CPU

Update

Balance
the load

P4Mite
Agent

P4Mite
Agent

P4Mite

Figure 4.1: P4Mite overview.

4.2.1 Prgrammable Switch

The core component of P4Mite is the programmable switch in data plane, which

seamlessly integrates with the TCP/IP network stack. It performs load balancing

at the transport layer, eliminating the need for any modifications on client-server

applications. It is important to note that while certain accelerators like FPGAs may

require the re-implementation of x86 applications (e.g., in VHDL) to run on their

specific hardware, this is not necessary for P4Mite.

Furthermore, in our system, each accelerator is assumed to have its network ad-

dress, and packet delivery to the appropriate accelerators is facilitated through PCIe

switching [95, 96, 97]. In certain scenarios, the accelerators may operate their own

operating systems [41, 42], allowing resources to be accessed via their respective IP

addresses over the network.

4.2.2 Controller

Rather than general controllers’ functionality in SDN, the role of the P4Mite con-

troller is to effectively enforce the intended load balancing policy on the switch by

installing the necessary forwarding rules. An example is to prioritize the CPU over

the SmartNIC when both have available resources. Additionally, the controller is

responsible for updating the switch configuration whenever changes occur within the

server pool, such as the addition/removal of servers or accelerators.

By entrusting all connection handling to the switch, we ensure that the controller

25

does not become a bottleneck in the system. Moreover, the controller operates in

a non-intrusive manner, allowing other protocols and network functions to function

without interference. Its sole focus lies in managing its state, and the load-balancing

structures within the data plane.

4.2.3 Server Agents

To facilitate its operations, P4Mite deploys an agent on each processing unit, whether

it be a CPU or an accelerator. These agents are responsible for measuring various

metrics at both the system and service levels, such as CPU utilization and request

processing latency. By collecting these statistics, the agents transmit the updates

to the programmable switch using a dedicated L4 port. Instead of embedding the

updates within response packets, we opt to use separate packets for updating due two

reasons:

1. If we use separate packets for updates, the servers and accelerators send the

response packets directly to clients without traversing the load balancer. This

bypassing of the load balancer leads to more efficient and streamlined commu-

nication.

2. Using separate packets allows the agents to update the switch more accurately.

In scenarios where numerous requests are overwhelming a particular resource,

the agents can immediately update the switch while the resource is still actively

processing operations. Otherwise, the switch must wait until finishing the tasks.

The agents send updates to the switch based on a threshold mechanism to mini-

mize the overhead. Put differently, the agents send an update packet only when the

threshold condition is triggered. Additionally, for the sake of simplicity, the agents

currently transmit a binary value (e.g., indicating busy or available) to the switch.

4.3 P4Mite’s Data Plane Design

Figure 4.2 illustrates the data plane layout of P4Mite at the programmable switch.

When a packet is received, the switch examines whether it originates from an agent

for updating accelerators’ statuses or a client has sent the packet. In the case of an

26

agent packet, it carries a key and a value indicating which entry in AccelState table

must be updated. The key represents a unique identifier for a server (S-code), while

the value is a bitmap that indicates the states of the server’s accelerators and CPUs

(shown by red dotted arrows). For example, a bitmap of ”10” signals that the CPU

is busy, but the first accelerator (e.g., SmartNIC) is available to handle new requests.

The length of the bitmap corresponds to the number of accelerators in a server plus

one, while the size of the register array is proportional to the number of servers in

the pool. By utilizing bitmaps and identifiers instead of actual IP addresses, we can

reduce memory usage in the switch. Additionally, both the server code and status

information are encapsulated within an update packet by a P4Mite agent.

Update
accelerator

state?

Pkt in
S-code

AccelState

Accel

S1 10

S2 00

S3 11

... ...

S-codehashs

ServerTable

0002

0003

...

S2

S1

...

... ... Get accel state

DIPS-code Accel

S1

S2

0X

S1 10
... ...

... ...
0X

DIP_1_CPU

DIP_1_SNIC

DIP_2_CPU

...

...

DIP table

Drop

Map
 packet
to an

output
port

Pkt out
Bloom
filter

Miss

Hit
DIPhashc

ConnTable

23A7

95BF

... ...

... ...

DIP_1_SNIC

DIP_2_CPUNo

Yes

Figure 4.2: P4Mite’s data plane layout.

On the other hand, when clients’ packets traverse the network, they pass through

a bloom filter that determines whether they belong to a new or already registered

connections. This bloom filter enables P4Mite to read and update the connection

status without involving the controller. While the possibility of false positives exists

due to hash collisions [98], their impact is negligible as long as the filter size is suffi-

ciently large. Alternative structures such as Cuckoo filters [99] can be implemented

for the future work.

If a packet originates from a new connection (bloom filter Miss), P4Mite computes

a hash using the five tuples extracted from the packet’s header to select the destination

server (ServerTable). It is important to note that any desired load balancing policies,

such as ECMP [100] or WCMP [101], can be implemented using the ServerTable.

Once the server decision is made, P4Mite consults the AccelState table to determine

the appropriate CPU or accelerator within the selected server.

After selecting a server, P4Mite retrieves the server’s and accelerators’ load state

and uses this information to make the final determination of the packet’s destination

27

(DIPTable). Each entry in the DIPTable can direct packets to a different accelerator,

allowing network operators to deploy various intra-server load balancing policies. We

explore the performance of different intra-server load-balancing policies in Section

4.5.3. To maintain per-connection consistency [6], P4Mite stores its load balancing

decisions, which include the connection state, in a connection table (ConnTable).

This ensures that all packets from a given connection are consistently delivered to

the same destination, even if the server pool or load balancing policy changes.

For subsequent packets from existing connections, the connection state table

(bloom filter Hit) can be directly matched, saving processing cycles in the network

device. Finally, when the switch sends the packets from servers to clients, it could

replace the associated DIP with the corresponding VIP. We have not shown it in

Figure 4.2 for the sake of simplicity.

4.4 P4Mite Implementation

In this section, we present our prototype implementation details for P4Mite. Our

source code is publicly available at [16] and can be used by other researchers.

4.4.1 P4Mite Controller and Switch

We have developed the P4Mite switch and its controller using a combination of P4-

16 and Python. The total codebase for both modules consists of approximately 350

lines. We employ an array of 50,000 registers, each containing a 16-bit index for the

ConnTable. To compute hashes, we utilize CRC16. Similarly, an array of registers

builds the ServerTable, with its size determined by the desired number of servers.

The server state, represented by AccelState, is retrieved as packet metadata and

used for matching in the DIPTable, which is a match+action table based on exact

matching. The switch utilizes standard IPv4 tables for packet forwarding. Lastly,

our code is targeted at the Tofino Native Architecture (TNA) model.

4.4.2 P4Mite Agents

We developed our agents using Python, comprising approximately 150 lines of code.

These agents utilize tcpdump to monitor the packets received and sent by the host and

28

measure the processing time as the decision metric. To ensure efficient processing, we

run tcpdump in “immediate-mode”, enabling the agents to analyze mirrored packets

in real time.

The structure of our agents is designed to be modular, allowing for easy extension

to monitor additional metrics such as CPU utilization (e.g., using top) or network

statistics (e.g., using iftop) in future work. Finally, our agents encapsulate all the

relevant information into UDP packets, which are then sent to the switch using a

predefined port for communication.

4.5 P4Mite Evaluation

Firstly, we provide an overview of the experimental setup in Section 4.5.1. Next, we

detail the experiments conducted to evaluate the performance of P4Mite and present

the corresponding results in Sections 4.5.2 and 4.5.3. Additionally, we compare our

solution to alternative load balancer designs in Section 4.5.4. Finally, we assess the

resource consumption of P4Mite in a real-world data center scenario in 4.5.5.

4.5.1 Experimental Setup

We conducted the experiments on a testbed comprising two hosts connected by a

Wedge 100BF-32X 32-port programmable switch equipped with a 3.2Tbps Tofino

ASIC [14]. Both hosts have identical specifications, featuring an Intel(R) Xeon(R)

Silver 4210R CPU @ 2.4GHz, with 10 cores and 32GB memory. One of the hosts

serves as the client, while the other runs server applications. The server host mounts

a dual-port SFP28, PCIe Gen3.0/4.0 x8, BlueField(R) G-Series SmartNIC, which

includes 16 cores, 16GB on-board DDR4 RAM, and enabled crypto accelerators.

In our experiments, we prioritized the host CPU for packet balancing and con-

figured its agent to provide reports based on a combination of thresholds and time

intervals, specifically designed for highly computation-intensive applications. This

configuration was necessary to address the significant performance gap between the

CPU and the SmartNIC in these scenarios, where a single request could overwhelm

the SmartNIC. In such cases, we configured the CPU agent to immediately send a

second load status report (within 5 milliseconds) upon triggering a threshold, to avoid

29

10 20 30 40 50
Request Rate (RPS)

0

500

1000

1500
P9

9
La

te
nc

y
(m

s) P4mite-300
P4mite-1000
P4mite-2000

(a) Evaluating request rate

1 5 9 13 17
Request Size (Gflop)

0

4000

8000

12000

P9
9

La
te

nc
y

(m
s) P4mite-300

P4mite-1000
P4mite-2000

(b) Evaluating request size

Figure 4.3: Microbenchmarking results

delays in receiving reports from the SmartNIC. It is important to note that the agent

adds approximately 5% load on the server’s CPU.

4.5.2 Microbenchmark

We conducted experiments using synthetic workloads to analyze the impact of request

rate and request size on the performance of P4Mite. For this purpose, we developed an

application capable of performing varying amounts of floating-point operations and

a client application capable of generating different numbers of requests per second

(RPS). Each request triggers a specific level of computation on the server, intended

to keep the server busy and overload its CPU usage. Figure 4.3 illustrates the results

obtained from the synthetic workloads. We performed two types of experiments using

micro-benchmarks. Firstly, we evaluated the behavior of our solution by varying the

request rate. Secondly, we assessed the behavior of our solution by varying the request

sizes. In both sets of experiments, we tested three different thresholds for the agents to

send a load report. We will now delve into a detailed discussion of these experiments.

Request Rate

Figure 4.3a depicts the results of the request rate evaluation for P4Mite. In this ex-

periment, we configured the client to trigger 2 GFlop on the server with each request,

while varying the request rate. On the server side, the agent used three different

30

thresholds to determine when to trigger the update in the switch to utilize the accel-

erator. We set three thresholds at 300ms, 1000ms, and 2000ms of processing time.

The corresponding results for each threshold are labeled as P4Mite-300, P4Mite-

1000, and P4Mite-2000, respectively. We gradually increased the request rate until

the server started dropping requests. In our experiments, the client considered a

packet lost if either the latency of a request was 10x higher than when the system

was not overloaded or if the server dropped the packet.

We observe that all scenarios exhibit similar behaviour up to a rate of 40 RPS,

considering the latency is smaller than the smallest threshold. However, at 45 RPS,

P4Mite-300 demonstrates the best performance since its agent is triggered earlier

compared to the other scenarios, allowing the switch to start sending requests to the

SmartNIC sooner. Similarly, P4Mite-1000 achieves lower latency than P4Mite-2000

due to the earlier triggering of the agent. In fact, for P4Mite-2000, the agent is

not triggered at all, resulting in a latency of approximately 1200ms. The maximum

increase in latency is observed in P4Mite-2000, as the server becomes overloaded,

causing multiple packets to wait in the queue for processing. The results highlight the

importance of selecting a suitable threshold for the agent to achieve more satisfactory

performance. It also provides evidence that when setting thresholds, it is crucial to

consider values that are lower than the latency of the server when it is overloaded.

Request Size

Figure 4.3b describes the behaviour of P4Mite as we vary the request size. In these

experiments, we fix the request rate at 5 RPS, and the request sizes range from 1

to 17 GFlop, maintaining the same configurations as in the experiments discussed in

previous paragraphs regarding request rate assessment.

We observed that as the amount of computation increases, the latency also in-

creases for all cases. For small request sizes, the differences between using various

thresholds in P4Mite are negligible. For example, when each request involves 2 Gflop

of computation, the latency is approximately 200ms across all scenarios. As we move

to larger request sizes, such as 4 Gflop, the server’s latency exceeds 300ms, trigger-

ing the agent in P4Mite-300. Similarly, at a request size of 8 Gflop, the agent in

P4Mite-1000 is triggered. Once the agent in P4Mite-1000 starts sending reports to

31

the switch, its behaviour becomes similar to P4Mite-300. However, since the server

is not overloaded at these sizes, these two scenarios perform poorly because some

requests are forwarded to the SmartNIC, even though the server could process them

faster.

Considering a server capacity of approximately 90 Gflops, a request rate of 5 RPS,

and a request size of 15 Gflop, the server’s usage reaches 75 Gflops. The remaining

capacity is allocated to operating system tasks and connection management. At this

point, the system starts to become overloaded, resulting in a latency of 1800ms. In

such circumstances, P4Mite-2000 outperforms the other scenarios significantly for

request sizes larger than 15 Gflop, as it leverages the SmartNIC when the server is

overloaded. Finally, we observe that with heavier requests, P4Mite also starts drop-

ping packets, since both the server and the SmartNIC become overloaded. However,

this behaviour is acceptable, as P4Mite can handle requests up to 18 GFlop before

dropping packets, while a server-only solution drops packets at 16 Gflop.

4.5.3 Applications

To conduct a more comprehensive evaluation, we analyzed P4Mite to achieve load

balancing in three real-world client-server applications. Two of these applications

involve the server executing inferences for machine learning tasks, specifically VGG16

and KNN. To implement VGG16, we utilized TensorFlow and TensorFlow Lite on

the CPU and SmartNIC, respectively. SmartNIC’s resource limitations prevented us

from running the TensorFlow framework on it. Additionally, we employed the scikit-

learn framework for K-nearest neighbours. As for the third application, the server

performed DNS resolutions using the DNSlib library for Python. For simplification,

all three applications operate on the UDP protocol, although P4Mite has the potential

to handle the TCP protocol.

We deployed each application independently using P4Mite. Additionally, we de-

ployed each application using Weighted Round Robin (WRR) and Equal Cost Multi-

Path (ECMP) to compare our approach with existing methods. By examining the

Roofline results, we observed that the server CPU has a capacity of 5x more than

the SmartNIC. As a result, we configured WRR to direct one-sixth of the requests to

the SmartNIC and five-sixths to the server. Considering the computational demands

32

of each application, we adjusted the request rate to reach the maximum system ca-

pacity. The combined maximum rates that the host and SmartNIC can handle are

2750, 70, and 24 RPS for DNS, VGG16, and KNN, respectively. For DNS servers,

which are not CPU-intensive, we utilized only one core from each resource, while for

the other applications, all cores were utilized. Furthermore, we set the thresholds for

DNS, VGG16, and KNN at 100ms, 150ms, and 300ms, respectively. These thresholds

were chosen to be 20-30% higher than the typical application delays. To evaluate

the performance, we conducted tests for a duration of 30 seconds and measured both

request loss and latency for each request. Figure 4.4 illustrates the 99th percentile

latency for each application. Similar to the approach used in the microbenchmarks,

we terminated the execution immediately upon detecting any packet loss.

40 60 80 100
Server load (%)

0
100
200
300
400

P9
9

la
te

nc
y

(m
s)

No Balancing P4mite ECMP WRR

(a) DNS

20 40 60 80 100
Server load (%)

0
250
500
750

1000
P9

9
la

te
nc

y
(m

s)
No Balancing P4mite ECMP WRR

(b) VGG16

20 40 60 80 100
Server load (%)

0
500

1000
1500
2000

P9
9

la
te

nc
y

(m
s)

No Balancing P4mite ECMP WRR

(c) KNN

Figure 4.4: The 99th percentile latency for specific applications

DNS Evaluation

Figure 4.4a presents the results for the DNS application. Given that DNS is not

CPU intensive, both server and SmartNIC have the same delay (around 3ms) when

their CPU is not under stress. The blue curve (no balancing) shows that the server

can handle requests up to 80% load. At higher loads, the server delay increases

drastically. Using P4Mite, the agent sends reports to the switch when the server

33

starts to get overloaded. Consequently, a portion of the load is forwarded to the

SmartNIC, increasing the maximum rate by approximately 20%. P4Mite not only

avoids overloading the server but also the offload of requests to the SmartNIC allows

more injunctions to be processed.

As such, one core of the SmartNIC’s wimpy processor can handle 20% more DNS

queries. Regarding ECMP, since it tries to split the requests between the server and

SmartNIC evenly, and considering that the SmartNIC’s computation power is one-

sixth of the server, the SmartNIC becomes quickly overloaded. Conversely, in the

weighted round-robin (RR), the switch dispatched 5/6 of the requests to the server

and the remaining to the SmartNIC, enabling it to run faster than both the baseline

and P4Mite for lower rates. However, as we reach 90%, WRR drops packets. P4Mite

beats WRR because it wisely balances the load, while WRR proactively distributes

the load. Nevertheless, WRR has better performance for less load because P4Mite

needs to wait for the server to get overloaded before switching is triggered.

VGG16 Evaluation

Figure 4.4b delivers VGG16’s results. Without stress, the hosts and the Smart-

NIC’s delays are 80ms and 120ms, respectively. Again, in the no balancing (baseline)

scenario, the host is capable of serving 80% of the load, and the latency rises expo-

nentially for higher loads. In P4Mite, the latency increases if the load becomes higher

than 80%; however, it is 50% less than baseline delay, and it can handle approximately

16% more load than the baseline.

Figure 4.4b also indicates that if we use ECMP, the system can handle only

30% load. We investigated these results and noticed that the SmartNIC becomes

fully utilized, causing packets to be dropped. Finally, considering WRR as the load

balance approach, we observe that it increases the latency compared to the baseline

when the load is less than 80%. This occurs because WRR always sends 1/6 of traffic

to the SmartNIC, which performs slower than the server. However, WRR enables the

application to go up to 90% load because the requests sent to the SmartNIC alleviate

the server.

34

KNN evaluation

Figure 4.4c presents the results for KNN, the most CPU-intensive application in our

evaluation. In this scenario, the baseline can handle 75% load until packets start

to be dropped. P4Mite improves the latency and maximum rate by 25% and 11%,

respectively, compared to the baseline. We could not get better results for KNN

because our SmartNIC is not powerful enough to process heavier requests within the

time constraints. We observe that ECMP handles at most 40% load, where 20%

load is forwarded to the SmartNIC. Also, the latency for ECMP is higher than other

approaches because the SmartNIC executes KNN requests far slower than the server.

Finally, while WRR works poorly for loads below 70%, it can handle more load than

P4Mite. Our investigation shows that for a load of 90% and higher, requests are lost

for P4Mite because of request time expiration in the server, not because of packet

drop.

4.5.4 P4Mite vs. SmartNIC-based load balancer

As we mentioned before, we adopted P4-16 for P4Mite development. Using such

implementation leads P4Mite to operate at the line rate. For a better assessment, we

designed another experiment to compare P4Mite with other types of implementation.

From this perspective, we deployed another load balancer conducting on our Smart-

NIC. The new L4 load balancer executes on one core of the SmartNIC, as the other

15 cores should be available for request processing. The rest of the configuration for

the SmartNIC-based load balancer is similar to P4Mite. We indicate the comparison

between P4Mite and the SmartNIC-based load balancer in Figure 4.5. Since the re-

quests must go through the SmartNIC, the new load balancer is slower than P4Mite.

More importantly, the SmartNIC-based load balancer takes up to 700 RPS, and then

it starts dropping packets as one core can not manage more connections. On the

other side, P4Mite can handle up to 8k RPS without dropping packets.

4.5.5 P4Mite Resource Usage

At the final step of evaluation, we measured P4Mite’s resource usage when it was

running on the Tofino Switch. Our switch supports up to 256 servers with two

35

102 103 104

Request Rate (RPS)

0
20
40
60
80

P9
9

La
te

nc
y

(m
s)

P4Mite
SNIC-based

Figure 4.5: P4Mite vs. SmartNIC-based Load balance

Table 4.1: Amount of resources used by P4Mite.

Resource Usage %

SRAM 5.1%
TCAM 0.0%
VLIW Instructions 2.6%
Hash Bit 4.0%
Stats ALU 2.1%
Map RAM 5.6%
Exact Match Input Xbar 2.9%

accelerators on each. Table 4.1 lists the resource usage of P4Mite if it is holding

50k concurrent connections. This number is close to the limit of P4Mite, which it

supports by a single pipeline. P4Mite can serve more connections by using multiple

pipelines [6].

We observe that for every switch resource, P4Mite’s overhead is always less than

6%. P4Mite uses 5.1% of SRAM and 5.6% of Map RAM mainly due to the implemen-

tation of the bloom filters. More specifically, we see that the ConnTable dominates the

usage of these resources to store connection statuses. Because we use hash functions

to map packets to both the ServerTable and the ConnTable, the Hash Bit usage is

4.0%. The VLIW is used for writing values into packets; since P4Mite only writes

into packets their destination IPs, VLIW usage is only 2.6%. We are also using only

2.9% exact match input xbar to perform the exact match to get the accelerator state

and match the DIP table. The bloom filters also use 2.1% of stats ALU to update

the accelerator’s state or to store state about a new connection. Finally, P4Mite does

not use any TCAM, which is an expensive resource.

36

4.6 Major Conclusions of P4Mite

We have introduced P4Mite, an in-network tailored for the accelerators load balancer.

Unlike previous research that either neglects resource status or performs load balanc-

ing at the per-server level, our proposed design incorporates resource monitoring

agents that dynamically update the switch based on various metrics. Furthermore,

P4Mite offers the flexibility to implement a wide range of load-balancing policies.

In our prototype, we implemented the switch on a Tofino switch using P4-16. It

effectively balances the load between two resources with differing capacities: a server

and an SoC SmartNIC. Our experiments demonstrate that P4Mite wisely forwards

the requests to the more powerful resource, the server. However, if the server becomes

overloaded, the switch redirects a portion of the load to the less powerful resource, the

SoC SmartNIC. By effectively utilizing both resources, P4Mite significantly enhances

the performance of applications.

By considering three applications and utilizing synthetic workloads, we have demon-

strated that P4Mite can handle 10− 20% more load and process requests up to 50%

faster compared to the baseline. A key advantage of P4Mite is its ability to pre-

vent performance degradation even for low and medium loads, as it avoids relying

solely on less powerful resources when more capable ones are available. Furthermore,

our results indicate that P4Mite offers scalability without imposing significant re-

source requirements. This was highlighted through a comparison of P4Mite with a

SmartNIC-based load balancer, while also measuring the resource consumption within

the switch.

Chapter 5

P4Hauler

In this chapter, we present P4Hauler , an accelerator-aware policy-agnostic general-

ized load balancer deployed on a programmable switch (e.g., Intel Tofino), where

the network administrator can update policies on-the-fly without rebooting the pro-

grammable switch to adapt its operation to different network and application con-

ditions. Furthermore, similar to P4Mite, P4Hauler aids in reducing the load of the

servers’ CPU resources in two manners: first, accelerators can handle a portion of

the application load; secondly, the servers and accelerators are not involved in LB

operations, thereby relieving computing resources to execute application requests.

P4Hauler , like P4Mite, relies on agents running on servers and accelerators,

which collect statistics and send the monitored resource statuses of these devices

to the P4Hauler switch. However, in contrast to the P4Mite, which stores bitmaps,

P4Hauler keeps a measurement corresponding to the actual level of each resource

usage and uses these measurements to choose a destination for incoming requests.

Note P4Hauler can mimic P4Mite, where agents only reported whether a target

computing resource is available, i.e., P4Mite is an instance of P4Hauler . But keeping

meaningful resource values in the switch for more complex policies, which collect

multiple resources or perform the computation in the switch, requires storing all

possible outcomes and would exceed the switch memory capacity. Therefore, we

introduce a new generalized switch that can implement and compute different policies

on-the-fly, while efficiently utilizing constrained resources.

5.1 Challenges in P4Hauler ’s Design

To summarize, P4Mite’s challenges are also present in P4Hauler due to its fine-

grained load distribution functionality. In addition to the issues discussed in Section

4.1, there are further challenges in the design of P4Hauler , which are explained below:

37

38

5.1.1 Awareness of Resources

Each distributed application utilizes specific system resources such as CPU, memory,

or bandwidth to achieve the desired performance. Therefore, accurate information

about the status of these resources is crucial for load balancing in various policies. To

address this, P4Hauler adopts a provider-collector paradigm where servers provide

their resource utilization status to the switch (collector), enabling efficient decision-

making for load balancing.

5.1.2 Hierarchical Design for Complex Policies

To support a wide range of policies, such as selecting the least utilized computing re-

source from available server/accelerator pools, P4Hauler requires various operations.

However, switches have limited pipeline stages with a restricted number of Arithmetic

Logic Unit ALU operations per stage. Additionally, the switch programming model

lacks support for loops, necessitating the unrolling of computations and recircula-

tions/resubmissions for iterations, which affects throughput. To overcome these chal-

lenges, P4Hauler employs a hierarchical design that carefully unrolls computations

in two phases to fit within the available stages and computational capabilities. Like

P4Mite, P4Hauler first selects a server using a lightweight policy and then chooses

among the CPU or accelerators from the selected server.

5.1.3 Memory Management

Ensuring per-connection consistency in P4Hauler requires storing connection sta-

tuses, which becomes more demanding due to the granularity of computing resources.

However, programmable switches have limited memory capacity. To optimize mem-

ory usage, similar to P4Mite, P4Hauler utilizes hashing and bitmap techniques to

track connection statuses. Additionally, P4Hauler implements a quantization scheme

to reduce memory requirements by storing statistics in a compact format within the

switch.

39

5.2 P4Hauler ’s Overview

Figure 5.1 presents an overview of the architecture of P4Hauler . It comprises three

main components: (1) an SDN controller that enables network operators to specify

application-specific policies using a high-level API, (2) agents hosted on servers and

accelerators that monitor the resources of these devices and periodically transmit

this information to programmable switches (If accelerators cannot independently run

the agent, such as GPUs, the server’s agent monitors the accelerator.), and (3) a

programmable switch that incorporates the load balancer responsible for distributing

the workload among computing resources and maintaining connection statuses.

x86 Server

P4Hauler
Agent

H4uler
Agent

App

P4 Switch

Forwarding

P4Hauler

High-Level API

Monitoring

Clients

P4Hauler
Agent

App

Monitoring
Balance the

Load
Accelerator

P4Hauler Control

LB Parameters

Requests

Resource Report

DP Interface

CP Interface

1

3

2

Figure 5.1: P4Hauler overview.

In P4Hauler , network administrators can define the desired policy through a high-

level API, which the controller utilizes to configure the switch accordingly. Addition-

ally, agents collect resource utilization metrics associated with the selected policy and

share them with the P4Hauler ’s switch. These agents employ a customized protocol

header to transmit compressed resource statuses, minimizing the memory require-

ments at the switch. By leveraging the collected information and the configured pol-

icy, the switch efficiently distributes the workload among computing resources within

a chosen server. Moreover, the switch manages connection consistency using compact

data structures. We provide detailed explanations of each component’s design in the

subsequent subsections.

40

5.3 P4Hauler ’s Agents

It is crucial to carefully monitor accelerators’ resource utilizations due to their varied

architectures and capabilities. In this section, we present schemes for monitoring and

reporting resource utilization from agents, along with design optimizations to meet

the switch’s resource constraints, such as limited memory.

Each computing device capable of running applications in P4Hauler hosts an agent

responsible for monitoring metrics such as CPU load, CPU utilization, memory us-

age, and disk usage. For instance, memory-intensive applications like key-value store

databases and CPU-intensive tasks like neural network inferences require different

resource allocations. Therefore, the agents monitor various resource usage statuses

and periodically transmit this information to the switch for informed load balancing.

If an accelerator cannot independently run the agent (e.g., GPUs), the host’s agent

monitors the accelerator’s status.

One approach for reporting resource usage to the switch is using a predefined

threshold to indicate whether a resource is available or not [12]. However, this method

lacks granularity and fails to effectively utilize the target resource. Conversely, pro-

viding detailed usage information may overwhelm the switch’s limited memory and

communication channel. To address this, agents compress the usage measurements

using a quantization technique and encapsulate the information in a custom packet

header, which is appended after the Ethernet header (as shown in Figure 5.2). We

apply quantitative by removing the decimal part. This estimation will not affect

the decision making based on the quantized values since a minor change in the load

changes the utilization more than 1% in most cases. The status, on the other hand,

is reported to the switch periodically, and the reporting rate can be adjusted based

on the capabilities of each device. The custom packet header includes the following

fields: DID (unique identifier of an accelerator, such as GPU, SmartNIC, or server

CPU), CMP (value corresponding to computing resources, e.g., CPU or GPU load),

MEM (value corresponding to memory resources), and NET (value corresponding to net-

working resources, such as queue size). It is feasible to extend the header fields to

consider different resources as required by load-balancing policies.

Optimizing resource usage at the switch. Ideally, switches should collect

exact utilization measurements as 32-bit integers or 64-bit floating-point numbers

41

ETH DID MEM NETCMP

P4Hauler Agent header

L2 Forwarding GPU, NIC,
CPU, etc.

Figure 5.2: P4Hauler packet format.

measured by the agents and store them for further processing. However, it is im-

practical due to limited memory in switches and the incapability of floating-point

operations in programmable switches.

In the design of P4Hauler , we address this issue by converting floating-point

numbers to integers that the switch can process. Additionally, we store resource

statuses using 8-bit integers instead of the 32-bit integers. Specifically, we can present

a resource status as a number ranging from 0 to 100, and by using 8 bits, it fits the size

of the registers in the switch. This process of reducing the number of bits to represent

an integer is known as quantization [48], which reduces memory requirements at the

expense of accuracy. Quantization is widely used for data compression [48, 102],

making it suitable for the design of P4Hauler .

P4Hauler can perform quantization in two ways: either the agent collects statistics

and quantizes them, or the switch receives the exact measurements and performs

quantization. While both approaches are practical, the former is preferred as it is

easier to implement quantization on agents than the switch. Additionally, quantizing

at the agent level reduces the amount of data transmitted over the network and

alleviates computing burdens on the switch.

5.4 P4Hauler ’s Infrastructure

This section first discusses how the resource usage statuses from agents are stored

and updated in the switch data plane. Then, we explain how the switch uses that

status and different policy building blocks for load-balancing decisions. Finally, we

discuss how to support per-connection consistency.

42

5.4.1 Handling Resources at the Switch

The switch is at the heart of the P4Hauler system that can be dynamically config-

ured to support various policies. Briefly, the network administrator assigns on-the-fly

configurations to the switch’s functionality, and the switch splits the workload ac-

cording to this configuration. On the other hand, the switch saves the measurements,

computes the policy according to the resource updates, and simultaneously routes the

data connection packets. However, we face the following challenges in implementing

the policy computation.

Multiple arrays for servers and accelerators. The switch data plane exe-

cutes only one action on an array of registers per packet. Consequently, manipulating

the statuses of servers and accelerators in a single array upon receiving an update

is impossible. However, some policies, such as selecting the least utilized resource,

necessitate accessing and comparing multiple statuses. To address this, we store

the device statuses across D different register arrays. The switch dedicates the first

array to store the servers’ statuses while allocating the subsequent arrays for the ac-

celerators’. This division enables operating on each array within a single pipeline,

facilitating decision-making based on the desired server and its associated accelera-

tors. More specifically, the server’s state is read from the first array, and the status

of the first accelerator is retrieved from the following array, continuing this process

for subsequent accelerators.

However, if the value of D becomes large, it introduces a new challenge. The

switch programming model has limited stages (e.g., 12 in a Tofino 1 switch) and the

available ALU operations per stage. In some scenarios, load balancing may need to

be performed across numerous servers, potentially exceeding 1, 000, with each server

equipped with approximately 7 accelerators [103]. Consequently, reading the resource

status of each device would surpass the available ALU operations. To overcome this

constraint, we propose a hierarchical solution capable of handling a few thousand

servers (e.g., 1k − 10k), thereby minimizing the number of resource accesses within

the switch.

Our load balancer employs a computationally efficient policy to select a server

43

within the data center. Subsequently, another policy, which may involve more intri-

cate operations, determines the end destination among the CPU and available acceler-

ators on the chosen server, based on their respective resource availability. Considering

the presence of 7 accelerators per server, the second policy requires accessing 8 arrays

in total (D = 8), fitting within a single pipeline. However, implementing multiple

resource-aware policies, such as those considering CPU and memory, may necessitate

more ALU operations than can be accommodated within a single pipeline. In such

cases, packet resubmission would work, although it introduces additional processing

latency [104]. We intend to explore these design challenges further and investigate

potential mitigation strategies in our future work.

5.4.2 In-Network Load Balancing Policy Support

Implementing new policies by modifying the source code of monolithic P4 programs

can be challenging. In contrast, P4Hauler proposes a flexible switch architecture

comprising various building blocks that can be combined and configured to support

multiple policies. The key idea behind our approach is to identify common design

patterns and requirements among different policies, allowing us to reuse the build-

ing blocks across multiple scenarios. For instance, policies such as Least Utilized

Resource (LUR), Power-of-Two (Po2), and Join-the-Shortest-Queue (JSQ) follow a

similar procedure: (1) reading a set of monitored values (e.g., resource utilization,

number of connections, or queue size) and (2) selecting a device based on a compu-

tation performed using the read values. On the other hand, policies like Weighted

Round Robin (WRR) and Equal-Cost Multipath (ECMP) distribute the load based

on a specific distribution strategy.

Based on the above observations, we have identified two fundamental building

blocks, namely the minimum finder and the round-robin scheduler, which can be

employed to construct a wide range of policies. Some examples are provided in Table

5.1. The minimum finder manages a set of monitored variables obtained from the

devices and determines their minimum value. On the other hand, the round-robin

scheduler selects a destination based on a specified distribution function. In the

subsequent sections, we provide a detailed description of these building blocks.

• Minimum finder: The minimum finder block employs a series of if-else

44

Table 5.1: Example policies and computation requirements

Example Policy Requirement

Least utilized
resource (LUR)

Resource Info and
Compute Min

Least connections and
weighted least connections

Connections Info and
Compute min

Join the shortest queue (JSQ)
Queue Info and
Compute Min

Weighted Round Robin (WRR)
and Dynamic WRR

Resource Info and
Round Robin Scheduler

ECMP Scheduler

Device 0

Pk
t<

S
ID

=
1
>

Server ID, ResourceRegister

Update_device_statusAction

Server ID, ResourceRegister

Update_device_statusAction

Device 1

Server ID, ResourceRegister

Update_device_statusAction

Device N

...

...

...

Read

- Read
* Update*
- Write
- return value

- Read Value
- return value

Read
Compute

Policy

Compute
Policy

- Read Value
- return value

Storage (N register arrays) Switch operations

Figure 5.3: Unrolling device state for policy computation.

statements unrolled across the pipeline to perform comparisons. It reads the

state of each device and selects the one with the lowest utilization of a specific

resource. The number of variables within theminimum finder block corresponds

to the total number of devices (server + #accelerators). Figure 5.3 illustrates

an example of this block. If required by the policy, multiple minimum finder

blocks can be utilized, each operating on a distinct performance metric.

• Round-robin scheduler: The round-robin scheduler employs a ring buffer, as

depicted in Figure 5.4, to evenly distribute the workload. Each slot in the buffer

represents a destination device, and a pointer indicates the device to which the

request should be directed. The slots in the buffer can be configured statically

45

or dynamically to implement various policies. It is important to note that the

number of times a device appears in the ring buffer determines its weight in

the load-balancing process. For example, in Figure 5.4, the GPU’s weight is 4,

while the CPU and NIC each have a weight of 2. Consequently, an 8-sized ring

buffer is needed. In our implementation, we utilize a large array (e.g., 1024 or

2048) and allocate a portion of it based on the weight requirements.

It should be noted that the described components may not cover every conceivable

policies. Nonetheless, the P4Hauler design is flexible and allows for the inclusion of

additional blocks. For instance, to accommodate Po2 choices, a new component is

required to randomly select two resources and opt for the less utilized one.

Head Tail

pkt.dest = readRingBuffer(Pointer);
UpdatePointer();

NIC CPU CPU GPU GPU GPU
Ring

Buffer

0 1 2 3 4 5 6 7

Pointer

New
Request

NIC GPU

Figure 5.4: An example of the round robin scheduler.

The policy in the switch’s data plane may involve one or multiple building blocks,

which can be utilized based on the requirements of the application. The controller

is responsible for initializing and dynamically adjusting the parameters associated

with these blocks without rebooting the switch. Details regarding the configuration

of different blocks to support a range of policies are discussed in Section 5.5.

5.4.3 P4Hauler ’s Data Plane Layout

This section provides the data plane structure of P4Hauler , illustrated in Figure 5.5.

The data plane implementation of P4Hauler involves the utilization of one or more

building blocks to implement policies while maintaining connection status. Upon

receiving a packet, an ingress element in the data plane checks whether it intends to

update a resource usage in tables or establish a new connection.

For update packets, the switch modifies the identified accelerator’s resource value

in either the minimum finder block or the round-robin scheduler. The active pol-

icy is then computed based on the application requirements, considering the active

46

Ingress:
Update

Accelerator
State?

Pkt in No Miss

hashs S-code
.....

0002 S2
0003 S1

Round-Robin BlocksMinimum Finder Blocks

Yes

Select the final
destination based on the

active policy
Egress:

Map Packet
to an output

port

hashC DIP
.....

21A7 DIP_2_CPU

95BF DIP_1_SNIC

.....

Pkt out

ConnTable

ServerTable

Hit

D1 D2 ... Dm
2A FE B3

D2 Dm

RingBuffer

Bloom
Filter

Figure 5.5: P4Hauler ’s data plane layout.

policy configured in the switch. The computation can involve a minimum finder or

a round-robin scheduler, with the calculation unrolled across the pipeline. Once the

switch performs the computation for the policy, it stores the resulting destination in

persistent memory for future access by new requests.

For connection packets, however, the previously computed policy update value is

read from persistent memory. The switch loads the resulting destination as metadata

and forwards it to the connection table (ConnTable). The switch matches the packet

using a computed hash and reserves a cell in the connection table for the connection

destination. New connections add a new entry to the connection table while existing

connections are directed to the previously chosen destination, disregarding the pol-

icy metadata. Finally, the switch removes the cell entry when the last packet of a

connection is processed.

5.5 P4Hauler Management

Network operators can leverage P4Hauler to define load-balancing policies by utilizing

a few data plane building blocks that align with their desired policies. Furthermore,

operators are required to specify the target applications when the system caters to

multiple applications. To facilitate this process, P4Hauler offers a high-level control

plane API that can generate configuration files tailored to the target switch. It

is important to note that the format of the generated configuration files may vary

depending on the architecture of the programmable switch. Furthermore, we assume

the presence of a reliable controller and a stable connection between the controller

and the dataplane. This implies that in the event of a service interruption, the

administrator has the capability to modify the configuration in the dataplane.

47

de f P4Hauler API (app l i c a t i on , block , c o n f i g s) :

P4Hauler ’s controller analyzes the input parameters given to the API and gen-

erates the requisite directives or functions for configuring the switch. Among these

parameters, the application and block options dictate the chosen application and

the building blocks (either the minimum finder or the round-robin scheduler) that

the switch will utilize to enforce the policy. To illustrate, in order to activate the

least utilized CPU policy, the operator would supply a minimum finder and spec-

ify the monitoring of CPU utilization. Subsequently, the controller processes these

inputs and configures the switch with the appropriate functions. In cases where a

round-robin scheduler is designated, the configs parameter specifies the weights for

the scheduler.

Figure 5.6 provides two examples of policy distribution. The first example involves

application A, which utilizes the minimum finder block (identified as MF 1 in Figure

5.6). The policy mandates monitoring and recording CPU utilization. Similarly, the

second example pertains to application B, which requires a round-robin scheduler.

The configs argument includes a list of weights that the P4Hauler ’s switch stores

in the RingBuffer (designated as RR 1 in Figure 5.6). P4Hauler employs interfaces

like Python3 and the Barefoot runtime (bfrt) for Tofino switch to deploy various

components in the data plane. There is no necessity to create a new building block

for monitoring additional resources like memory or bandwidth. Instead, we can utilize

and enable multiple of the required building blocks, configuring each one to monitor

a specific resource for individual applications, as needed. Thus, in cases where we

need policies involve multiple resources (e.g., CPU and memory), we can use multiple

of the aforementioned building blocks while selecting a computing resource.

The operator can reconfigure the arrangement of building blocks and adjust their

configurations while the switch is operational. As a result, policies can be modified

on-the-fly in P4Hauler without the need to reboot the switch. In the following, we

demonstrate how the operator can configure the parameters of the building blocks in

the switch to implement the policies outlined in Table 5.1. For illustrative purposes,

we consider a scenario with a single server equipped with two SmartNICs.

Activating ECMP: To implement the ECMP policy, we can utilize a round-

robin scheduler block and store equal weights in all cells in the RingBuffer. In this

48

 P1 = P4Hauler_API (application = A, block = MIN_FINDER_1, configs = "cpu");
 P2 = P4Hauler_API (application = B, block = ROUND_ROBIN_1, configs = list_of_addrs);

P4Hauler Controller

 table1 = bfrt.P4Hauler_switch.pipe.SwitchIngress.MF_1
 table1.entry_with_MF1_config(dst_port=<A's PORT>).push()

 table2 = bfrf.P4Hauler_switch_pipe.SwitchIngress.RR_1
 table2.entry_with_RR1_config(dst_port=<B's PORT>).push()

bfrt
python

MF_1 MF_2
P4Hauler

Data Plane
...... RR_2RR_1

Figure 5.6: P4Hauler ’s API examples.

case, all three computing resources, namely the server, SmartNIC1, and SmartNIC2,

will have equal weights, with Wserver = WSmartNIC1 = WSmartNIC2 = 1.

Activating WRR: Similar to ECMP, we can employ a round-robin scheduler

and assign weights based on the computational capacity of each computing resource.

In our initial investigation, we found that the server is 5x more powerful than the

SmartNIC. Therefore, we can assign a weight of Wserver = 5 and WSmartNIC1 =

WSmartNIC2 = 1.

Activating Dynamic WRR: Initially, we can begin with the weights we ex-

plained in Weighted Round Robin (WRR) policy. Subsequently, the switch can

update the weights of the monitored resources based on an update function. For

instance, we can set the weight to be inversely proportional to the CPU utilization

by using the following update function.

Weightd,t = Weightd,0 × (1− CPUd,t) (5.1)

Here Weightd,t is the weight assigned to the link connecting the switch to resource d

at time t and CPUd,t is the CPU utilization of resource d at the same time.

Activating Least Utilized Resource (LUR): The Least Utilized Resource

policy leverages theminimum finder block to determine a destination with the highest

availability of the selected resource (e.g., CPU, memory, or network usage). When

an update packet is received and processed in the switch pipeline, the designated

49

building block calculates the minimum value among the currently utilized resources

and retains it for new connections. For instance, if the server’s CPU is found to have

the least utilization, the load balancer forwards the new connections to it instead of

more utilized SmartNICs.

Activating Join the Shortest Queue (JSQ): The join-shortest queue policy

is a variant of the LUR policy, where we can use a minimum finder to keep the queue

sizes. Then, the policy picks the destination with the shortest queue.

Activating Prioritization (PRT): This policy prioritizes the fastest destination

in terms of processing the requests, and then proceeds to others in descending order

of their capabilities. With this mind, the fastest resource responds to the request

if it is available. For instance, PRT picks the CPU due to its superior computing

power compared to the SmartNICs. When the CPU is fully utilized, PRT forward

the requests to the SmartNIC, however reverts to the CPU as soon as it can handle

additional workloads.

5.6 P4Hauler Implementation

In this section, we will delve into the implementation details of P4Hauler . All ver-

sions of P4Hauler are accessible at [15]. Our development efforts include creating a

prototype using the Tofino switch and building a simulator to assess its correctness

at data center scales.

5.6.1 Prototype Implementation

The switch and controller implementations of P4Hauler are based on P4-16 and

Python3, respectively. We have mapped our P4 application to the Tofino Native

Architecture (TAN). The ConnTable, ServerTable, minimum finder, and round-robin

scheduler blocks utilize the available registers on the switch. The controller employs

Tofino’s API to configure the blocks in the data plane. Within the switch, the active

policy calculates the destination and stores it in a register, which the switch retrieves

when it receives a new connection. Additionally, the controller pushes the necessary

match-action rules to the data plane routing table.

The agent implementation of P4Hauler consists of approximately 250 lines of

Python3 code. It makes use of the psutil library to measure resource usage and the

50

scapy library to create the customized header displayed in Figure 5.2. The agents

measure and quantize the resource usage that the switch stores in registers.

Testbed setup. The testbed consists of a Wedge 100BF-32X programmable

switch with a 3.2Tbps Tofino ASIC [14], connecting two x86 machines. One of the

machines acts as the client, sending requests to the other machine, which functions

as the server. The server mounts an Intel(R) Xeon(R) Silver 4210R CPU running at

2.4GHz, with 10 cores and 32GB of memory. Additionally, the server is equipped with

an accelerator, a dual-port SFP28, PCIe Gen3.0/4.0 x8 BlueField(R) G-Series, which

features 16 cores, 16GB of on-board DDR4 RAM, and enabled crypto accelerators.

We used the same configuration for all experiments unless specified otherwise.

Policies and configuration. We have selected Weighted Round Robin (WRR)

with weights set to 5:1 and Least Utilized (LUR) with the least utilized CPU con-

figuration from Table 5.1. WRR and LUR employ the round-robin scheduler and

minimum finder as building blocks for their policies, and the assigned weight are

based on each resource capacity shown in Section 2.4. Additionally, we have consid-

ered Prioritization (PRT), the policy that we showed its potential for boosting the

performance in P4Mite (Section 4). In this proposed policy, when the CPU reaches

full utilization, available accelerators (e.g., a SmartNIC) are prioritized for load for-

warding.

In all three policies, agents from servers and accelerators share measurement up-

dates at a rate of 100 updates per second (the rationale behind this rate selection is

further explained in Section 5.7.3). Lastly, we have implemented the baseline policy

where the server solely processes all requests without utilizing any accelerators. In

scenarios involving multiple servers, the baseline can utilize an ECMP policy, which

does not incorporate any accelerators.

Table 5.2: List of Applications for P4Hauler assessment.

Application Method / Algorithm Dataset Framwork

Anomaly Detection MLP NN [48]. UNSW-NB15 [105] TensorFlow (TensorFlow lite)
Natural Language Processing BM25 [106] SciFact [107] Python3’s Library

Image Classification (Supervised) VGG16 [108] PetImages [109] TensorFlow (TensorFlow lite)
Image Classification (Unsupervised) KNN [110] MNIST [111] Scikit-Learn

Applications. For the evaluations of P4Hauler , we have utilized four ML/DL

applications, as listed in Table 5.2. The first application is an Anomaly Detection

51

(AD) system [48], which employs a multilayer perceptron neural network (MLP-NN)

to identify abnormal activities in networks. We have implemented the AD system

using network traffic from the UNSW-NB15 dataset [105] with the TensorFlow and

TensorFlow Lite frameworks. TensorFlow Lite is a version of TensorFlow designed

for resource-constrained devices such as the SmartNIC.

The second application is a natural language processing (NLP) system called

BM25 [106]. It consists of a collection of text-retrieval algorithms used for ranking

functions in search engines. We have employed the existing BM25 library in Python3

and applied the model on the SciFact dataset [107].

The third and fourth applications focus on image classification (IC) using super-

vised VGG16 [108] and unsupervised KNN [110] algorithms, respectively. VGG16

utilizes the PetImages dataset [109] with TensorFlow on the server and TensorFlow

Lite on the accelerator. On the other hand, KNN operates on the MNIST dataset

[111] using the Scikit-learn framework, both on the server and the accelerator.

5.6.2 Simulation

The simulation study aims to show the performance of P4Hauler on a large scale.

However, there is currently no available simulator that provides the necessary con-

figuration for a set of servers with accelerators. As a result, we have developed our

own simulator based on the specifications outlined in our testbed data. Each network

element is selected and configured in alignment with the testbed configuration. For a

comprehensive assessment of the simulator’s outcomes, please refer to Appendix A,

where we present evaluation results to verify the accuracy of the simulator. In partic-

ular, the network switch employs Equal-Cost Multipath (ECMP) for server selection

and then applies one of the policies extensively examined during our testbed evalu-

ation to distribute the workload between the CPU and accelerators. Our simulation

methodology heavily relies on the insights derived from the testbed’s findings, partic-

ularly in terms of the performance capabilities of servers and accelerators, which are

measured in requests per second (RPS). By meticulously accounting for the capaci-

ties of servers equipped with accelerators, we can evaluate the degree of performance

improvement achievable through the implementation of P4Hauler ’s policies on a data

center scale.

52

We assess three scenarios, each comprising 64, 128, and 256 servers, all equipped

with two SmartNICs, while using KNN as the application. This choice is based

on KNN’s ability to generate the most computationally demanding workload, repre-

senting the worst-case load scenario. Nevertheless, our simulator can accommodate

various load requirements as needed.

5.7 P4Hauler Evaluation

We conduct the evaluations of P4Hauler using the explained testbed and simulator.

The prototype implementation and assessment on a real testbed aim to showcase its

performance and feasibility for deployment. On the other hand, the simulation results

provide insights into the performance improvements achieved by P4Hauler at scale.

5.7.1 End-To-End Delay

In this section, we conduct a comparison of the 99th percentile (P99) end-to-end (E2E)

delay of applications using various policies supported by P4Hauler on our testbed.

For this assessment, the client transmit requests following a Poisson distribution at a

defined rate, and either the target server or the SmartNIC responds to these requests.

We increase the request rate for each application until packet drops are observed at

the end host, which can be either the server or SmartNIC. We also conduct each

experiment 20 times, each time for a duration of 30 seconds at each request rate.

Note that in our testbed, packets start dropping at the end host after 30 seconds due

to the request overloading the CPU and filling up the NIC’s buffer. We evaluate and

compare the performance of four chosen policies.

Anomaly Detection (AD)

AD, being the lightest application in terms of CPU demand, was restricted to uti-

lizing only one core from either the server or the SmartNIC to showcase the impact

on load balancing. This measure ensured that even the lightest application would

overload the computational resources during the experiment. Figure 5.7a illustrates

the 99th end-to-end (E2E) delay for AD. It observes that the baseline can handle up

to 1.1k requests per second (RPS) without experiencing performance degradation.

53

0.8k 1.2k 1.6k 2.0k
Rate (rps)

101

102
P9

9
D

el
ay

 (m
s)

Server-Only
LUR

PRT
WRR

(a) MLP NN

20 40 60 80
Rate (rps)

103

P9
9

D
el

ay
 (m

s)

Server-Only
LUR

PRT
WRR

(b) BM25

10 30 50 70
Rate (rps)

102

103

P9
9

D
el

ay
 (m

s)

Server-Only
LUR

PRT
WRR

(c) VGG16

4 8 12 16 20
Rate (rps)

102

103

104
P9

9
D

el
ay

 (m
s)

Server-Only
LUR

PRT
WRR

(d) KNN

Figure 5.7: The 99th percentile E2E delay for different applications.

However, beyond that threshold, the delay increases. Regarding LUR, the switch

directs requests to one computing target until the other target experiences reduced

utilization. Due to SmartNIC’s weaker processor compared to the server, the overall

end-to-end (E2E) performance is affected. Nevertheless, the workload distribution

between the server and accelerator compensates for the processing delay caused by

the NIC. Overall, LUR performs similarly or slightly better than the baseline for

higher rates. PRT assumes that the server possesses a powerful processor and pri-

oritizes this resource over the NIC, utilizing it only when the server’s CPU is fully

utilized. Consequently, PRT outperforms the other two policies, particularly at high

54

loads. Lastly, WRR surpasses the other policies by considering the capacity of both

targets while distributing loads. For example, the server can process five times more

than the NIC. However, as anticipated, all policies suffer significant delays at high

loads.

Natural Language Processing (NLP)

Figure 5.7b displays the end-to-end (E2E) delay for processing the NLP model BM25.

The baseline’s delay exhibits a linear increase of up to 55 requests per second (RPS),

beyond which the increase becomes exponential, indicating that the server becomes

overwhelmed. Compared to AD, the BM25 model requires more processing; thus

both LUR and WRR experience slightly higher delays at rates higher than 55 RPS.

However, the load distributions compensate for this delay. More specifically, WRR

outperforms LUR by dividing the load based on the capacity of each target. Lastly,

PRT performs similarly to the baseline up to a rate of 60 RPS, as it gives priority to

the server over the SmartNIC until the server becomes overwhelmed. Therefore, at

rates exceeding 60 RPS, we observe better performance from PRT compared to the

baseline.

Image classification using VGG16

Figure 5.7c depicts the end-to-end (E2E) delay for VGG16. Among the different poli-

cies, LUR exhibits the poorest performance. This can be attributed to the weaker

CPU of the SmartNIC compared to the server. By sending requests to the Smart-

NIC even when the server CPU can still handle packets, the overall system delay

increases compared to the policies that allocate accelerator resources more effectively.

Nevertheless, LUR can handle requests up to a rate of 70 RPS, offering an improve-

ment of approximately 27% over the baseline. For lower rates (up to 55 RPS), the

baseline and PRT are preferable options as they do not route requests to the accel-

erator, thereby avoiding any decrease in performance. However, at higher rates, the

baseline’s delay increases 10x compared to the delay at 55 RPS, which is deemed

unacceptable. Finally, WRR demonstrates superior performance at high rates due

to its load-balancing mechanism. By actively distributing the load, more resources

become available for the application, leading to improved performance.

55

40 50 60 70
Rate (rps)

15

20

25

30

Ti
m

e
(s

)
Server-Only
LUR
PRT
WRR

(a) VGG16

8 12 16 20
Rate (rps)

10

20

30

40

Ti
m

e
(s

)

Server-Only
LUR
PRT
WRR

(b) KNN

Figure 5.8: Flow completion time for ML applications.

Image classification using KNN

KNN stands out as the most computationally demanding application. We observe

that the baseline can handle KNN requests only up to a rate of 16 requests per

second (RPS). In contrast, the other policies available in P4Hauler demonstrate the

ability to handle up to 20 RPS, representing a 25% higher tolerance compared to

the baseline. Similar to the results observed for VGG16, LUR exhibits the poorest

end-to-end (E2E) delay for KNN. On the other hand, PRT performs comparably to

the baseline for low rates (less than 12 RPS) and outperforms WRR. However, as the

rate surpasses 16 RPS, WRR emerges as the most suitable policy.

5.7.2 Flow Completion Time (FCT)

This section presents the flow completion time of the above policies with the most

computing-intensive models, VGG16 and KNN, at various rates and loads.

Figure 5.8 displays the flow completion time (FCT) for VGG16 and KNN with a

total of 1000 and 250 requests, respectively. At low load, both WRR and PRT exhibit

comparable performance to the baseline. The reason is SmartNIC’s speed in the case

of WRR and the exclusion of SmartNIC usage in the case of PRT. Conversely, LUR

demonstrates a higher flow completion time under the same conditions. At high load,

specifically at rates of 65 RPS for VGG16 and 18 RPS for KNN, LUR surpasses the

56

400 600 800 1000
Total Number of Requests

5

10

15

20
Ti

m
e

(s
)

Server-Only
LUR

PRT
WRR

(a) VGG16, Rate: 60 RPS

400 600 800 1000
Total Number of Requests

5

10

15

20

Ti
m

e
(s

)

Server-Only
LUR

PRT
WRR

(b) VGG16, Rate: 70 RPS

100 150 200 250
Total Number of Requests

10

15

20

Ti
m

e
(s

)

Server-Only
LUR

PRT
WRR

(c) KNN, Rate: 16 RPS

100 150 200 250
Total Number of Requests

10

15

20

Ti
m

e
(s

)
Server-Only
LUR

PRT
WRR

(d) KNN, Rate: 20 RPS

Figure 5.9: Flow completion time of different batch sizes.

baseline and achieves performance similar to PRT. Finally, WRR exhibits the shortest

completion time across all scenarios.

We conducted additional experiments to compare the flow completion time (FCT)

of different policies in scenarios before and after the server CPU becomes overloaded

in the baseline solution. Taking VGG16 as an example, we observed in Figure 5.8a

that for 1000 requests, the baseline outperformed LUR at a rate of 60 RPS, while LUR

performed better than the baseline at 70 RPS. Based on this observation, we selected

these two rates and varied the total number of requests from 400 to 1000, presenting

the results in Figure 5.9a and Figure 5.9b. Figure 5.9a shows that LUR exhibited

57

a higher flow completion time compared to the baseline. This trend continued in

Figure 5.9b up to a batch size of 700. However, for batch sizes of 800 and 900, LUR

performed similarly to the baseline. Finally, with a batch size of 1000, LUR became

slightly faster than the baseline.

The same trend was observed for KNN, as depicted in Figure 5.9c and Figure 5.9d.

We conducted experiments at rates of 16 and 20 RPS, varying the batch size from

100 to 250 requests. Both figures indicate that WRR performed the best, followed

by PRT, in terms of flow completion time. Figure 5.9c shows that the baseline

outperformed LUR at a rate of 16 RPS. However, Figure 5.9d illustrates that LUR

only performed worse than the baseline for a batch size of 100 requests. For batch

sizes of 125 and 150, LUR handled the requests with a completion time similar to

the baseline. For larger batches, LUR outperformed the baseline, reducing the flow

completion time from 17.32 seconds to less than 15 seconds (approximately a 13.2%

decrease).

5.7.3 P4Hauler ’s Prototype Overheads

Table 5.3 presents the resource utilization percentages of our prototype on the Tofino

switch while handling up to 50,000 connections, with five accelerators at each server.

Bloom filter’s implementation consumes 5.5% of SRAM, while the connection table

utilizes 7.6% of Map RAM. Notably, P4Hauler does not employ the costly TCAM

memory resource. Additionally, we assessed the overhead introduced by the agents.

We observed that the agents incur more overhead when transmitting a greater number

of update packets to the switch. However, the observed overhead on the server’s

CPU was consistently less than 5%. To estimate the overhead on our accelerator,

specifically, the SmartNIC using VGG16 and the LUR policy, we deliberately selected

a computation-intensive application and the worst policy to represent the worst-case

scenario for the overhead measurement.

Table 5.3: Resources usage of P4Hauler ’s switch

Logical Table ID Map RAM Meter ALU SRAM

9.4% 7.6% 16.7% 5.5%

Figure 5.10 displays the delay and overhead on the SmartNIC’s CPU when the

58

client executes 50 RPS. It is evident that for a low update rate, the overhead is

negligible. However, the system response is slower due to the lack of granular sta-

tuses of the computing resources, resulting in increased end-to-end (E2E) delay. As

the number of updates per second (Update Rate) increases, the E2E delay decreases

exponentially initially and then linearly. However, the overhead escalates for high up-

date rates, specifically when sending more than 20 updates per second. In summary,

higher update rates lead to linear improvement in the delay but a sharp increase in

CPU overhead. Therefore, the operator should determine an optimal updating rate

for a given application. Based on these evaluations, we selected an update rate of 100

for our assessment, introducing a maximum overhead of 10%. For higher rates, the

overhead becomes excessively high (approximately 30%) without any improvement in

the delay.

0.66 1 2 5 10 20 100 200
Update Rate

0.0

2.5

5.0

7.5

10.0

P9
9

D
el

ay
 (s

)

99th Delay(s)

0

10

20

30

40

O
ve

rh
ea

d
on

 C
PU

 (%
)

Overhead (%)

Figure 5.10: Agent interval evaluation.

5.7.4 P4Hauler Comparison with the State-of-the-Art

In this subsection, we assess and contrast the effectiveness of P4Hauler in relation to

existing solutions, taking into account two separate viewpoints: (1) deploying a load

balancer on various hardware platforms, and (2) comparing with the state-of-the-

art in-network solutions. In this experiment, we modify the testbed’s environment

by employing a Tofino switch to distribute the workload across two servers, each

equipped with a Bluefield SmartNIC.

59

Impact of target hardware

We conduct a comparative analysis of P4Hauler against a load balancer operating on

either a SmartNIC or on a server. We implement a WRR policy, as it has demon-

strated optimal performance in prior evaluations at the rate of 20 RPS. To perform

load balancing, we employ Nginx1[112] and allocate a dedicated CPU core for this

purpose.

Table 5.4 displays the average and 99th percentile End-to-End (E2E) delays for

KNN requests, our most CPU-intensive workload, at a rate of 20 requests per second

(RPS). Our findings reveal a substantial performance advantage for P4Hauler as it

diminishes the 99th percentile E2E delays by approximately a factor of three.

This improvement arises from the fact that both the NIC and the server have

one fewer core available for processing incoming requests, with that core being tasked

with managing concurrent connections. In contrast, in P4Hauler , the switch con-

sistently processes traffic at the line rate while maintaining connection states within

efficient data structures. Simultaneously, all cores on the SmartNIC and the server

are available and engaged in request processing.

Table 5.4: The performance comparison of different hardware targets.

E2E Delay (ms) P4Hauler Server LB SmartNIC LB

Average 446.35 1871.58 1868.78
99th Percentile 1215.29 3707.79 3807.06

Comparison with in-network load balancers

In this evaluation, we incorporate existing in-network switch-based Load Balancers

such as Cheetah [10] and SilkRoad [6]. These systems deploy their LBs on a pro-

grammable Tofino switch to distribute the load among servers, without taking into

account the status of accelerators. However, our evaluation demonstrates that such

accelerator-agnostic solutions perform less effectively than P4Hauler , a LB that is

aware of accelerators. Specifically, we use KNN application with request rate ranging

from 20 to 40 for both P4Hauler and Cheetah.

1Nginx can efficiently distribute incoming network traffic or requests across multiple backend
servers.

60

Figure 5.11 presents a comparison of the 99th percentile E2E latency between

Cheetah and P4Hauler . As expected, Cheetah delivers comparable performance to

P4Hauler at low rates, which is below 30 RPS. However, Cheetah’s performance

degrades significantly at higher rates. At low rates, its server CPU can handle the

requests effectively, but as the load increases, the CPU becomes overwhelmed, leading

to performance degradation.

In contrast, P4Hauler , which is aware of the usage status of accelerators and

CPUs, efficiently distributes the load across these computing resources. However,

we do observe a slight decrease in P4Hauler ’s performance compared to Cheetah at

low rates, which can be attributed to the use of less powerful NIC processors in our

testbed. This trend significantly reverses at higher rates due to judicious utilization

of the computing resources according to their capacity. Specifically, at high loads,

the delay gap between P4Hauler and Cheetah is 2.5x, making the former a more

favorable solution.

20 24 28 32 36 40
Rate (rps)

1

3

5

P9
9

D
el

ay
 (s

)

P4Hauler Cheetah

Figure 5.11: P4Hauler vs. Cheetah

5.7.5 Simulation Results

In this section, we examine the scalability of P4Hauler by evaluating its performance

under high server quantities, specifically with 64, 128, and 256 servers, each equipped

with two SmartNICs. The reported results are based on an average of 1000 test

runs and align with the performance patterns observed in the testbed. This means

that the baseline policy is the least effective while the WRR policy proves to be the

most optimal, and this difference in performance becomes especially noticeable under

heavy workloads.

61

1.0k 2.0k 3.0k 4.0k 5.0k 6.0k 7.0k
Rate (rps)

102

103

Th
ro

ug
hp

ut
 (B

ps
)

64-Server
64-LUR
64-PRT
64-WR

128-Server
128-LUR
128-PRT
128-WRR

256-Server
256-LUR
256-PRT
256-WRR

Figure 5.12: Average throughput of different policies.

With the exception of LUR when employed with 64 servers, all policies demon-

strate similar levels of throughput performance up to a rate of 1.0k RPS. However,

as the workload surpasses this threshold, the baseline policy’s throughput starts to

decrease. This reduction can be attributed to the fact that, on average, servers begin

to receive requests at a rate close to their capacity, which is approximately 16 RPS

in line with our configuration (1.0k divided by 64 equals roughly 16 RPS).

In contrast, the LUR policy with 64servers not only surpasses the baseline but

also maintains its superior performance up to a rate of 1.6k RPS, after which its

throughput also begins to decline. As for the remaining two policies, PRT and WRR,

they consistently exhibit higher throughput performance across all tested rates, with

WRR consistently outperforming PRT.

A consistent performance trend is evident when considering 128 and 256 servers,

as illustrated in Figure 5.12. In these scenarios, LUR initially exhibits suboptimal

performance up to rates of 3.3k RPS and 6.6k RPS for 128 and 256 servers, respec-

tively. However, it gradually outperforms the baseline as the workload rates increase.

Simultaneously, the PRT and WRR policies prove to be the most efficient options for

managing heavier workloads, with WRR showing a slight performance advantage.

In Figure 5.13, we analyze the 99th percentile E2E delay of different policies, and

62

1.0k 2.0k 3.0k 4.0k 5.0k 6.0k 7.0k
Rate (rps)

0

2

4

6

8

P9
9

E2
E

D
el

ay
 (s

)

64-Server
64-LUR
64-PRT
64-WR

128-Server
128-LUR
128-PRT
128-WRR

256-Server
256-LUR
256-PRT
256-WRR

Figure 5.13: Average throughput of different policies.

consistently, P4Hauler ’s policies surpass the baseline. When considering a workload

of 1.0k RPS with 64 servers, P4Hauler impressively achieves swift responses, with the

WRR policy providing responses in under 1.5 seconds and the PRT policy within 2

seconds. In contrast, the baseline struggles, with request processing times averaging

around 2.7 seconds. As we increase the workload to 1.3k RPS and beyond, all of

P4Hauler ’s policies clearly outperform the baseline in terms of E2E delay.

This trend holds as we scale up to 128 and 256 servers. For instance, with 128

servers handling 2.0k RPS, the WRR policy exhibits exceptional performance, re-

sulting in an E2E delay of just 1.7 seconds, making it the top choice. The PRT

policy follows closely as the second-best option, while the baseline lags, offering the

worst E2E delay. Even at 3.3k RPS for 128 servers, WRR demonstrates impressive

resilience, underscoring its ability to efficiently handle high workloads. The same

pattern continues with 256 servers, where WRR can manage requests at rates of up

to 7.0k RPS, while the E2E delays for other policies increase to 5 seconds or more.

By analyzing Figure 5.14, which depicts the variances in CPU utilization across

devices, we can observe how evenly each policy distributes the load among the avail-

able devices. To evaluate this, we subjected the system to the rate of 1300 RPS for

the 64-server scenario and 2600 RPS for the 128-server. Note that we selected these

63

64 Servers 128 Servers

5

15

25

Va
ria

nc
es

 a
cr

os
s d

ev
ic

e
ut

ili
za

tio
n

(%
)

Server-Only LSU PRT WRR

Figure 5.14: Variances of CPU utilization

rates as they overwhelm all servers in the server-only policy. As shown in Figure 5.14,

the baseline policy, which utilizes ECMP for request dispatching, exhibits variances

of approximately 10%. In contrast, LUR demonstrates a narrower range of variances

as it aims to utilize the least utilized device among the selected server and its acceler-

ators. Furthermore, PRT displays the widest range of variances since it avoids using

the accelerators until the server reaches full utilization. Lastly, WRR showcases the

smallest range of variances, as the policy distributes the load based on the capacity

of each device.

5.8 P4Hauler vs. P4Mite

In this section, we aim to compare P4Hauler and P4Mite from various angles. Al-

though both perform load balancing at the granularity of accelerators, there are

several distinctions between them.

In terms of flexibility, P4Mite is a more lightweight switch-based load balancer

that only supports a fixed algorithm for load distribution. In contrast, P4Hauler offers

a wide range of policies, providing network administrators with a broader selection.

This flexibility represents a key advantage of P4Hauler over P4Mite.

64

Furthermore, P4Mite faces a limitation in executing policies that involve a signifi-

cant number of arithmetic operations, primarily due to the restricted resources avail-

able in the data plane. Typically, intricate operations are mapped to match+action

tables for offloading to the programmable switch, but when dealing with a multitude

of permutations, this approach can exceed the memory limit. In contrast, P4Hauler

proposes the use of programmable blocks that neatly integrate into the pipeline. Its

improved hierarchical design empowers it to handle complex policies effectively.

The last notable difference is in how these systems operate. In P4Mite, the agents

modify the switch’s status to enforce the desired policy. On the other hand, in

P4Hauler , the agents are solely responsible for gathering and transmitting measured

parameters to the switch. The decision-making process for load balancing is carried

out within a programmed block in the switch itself.

In summary, P4Mite is a lightweight load balancer that supports only a single

accelerator-aware algorithm. On the other hand, P4Hauler is a generalized load bal-

ancer that can accommodate various policies using the data plane building block, i.e.,

P4Hauler is policy agnostic. Also, it accommodates new policies on-the-fly without

interrupting the switch’s normal operation. Finally, P4Hauler can measure resource

usage at a fine granularity, which is missing in P4Mite. In fact, it is an instance

of the generalized P4Hauler . All these benefits of P4Hauler come at the price of a

slightly more resource demand compared to P4Mite. More specifically, we observed

that P4Hauler utilizes 16.7% of ALU and 7.6% of Map RAM, out of whole switch’s

capacity, while P4Mite needs 2.1% and 5.6% of respective resources at the same

circumstance. More details are available in Sections 4.5.5 and 5.7.3.

5.9 Major Conclusions of P4Hauler

In this chapter, we presented a framework called P4Hauler , which supports a wide

range of policies for load balancing at the per-accelerator level in data centers. Unlike

previous research, P4Hauler does not hardcode the policies in the switch, allowing

network administrators to switch between them dynamically. Similar to the design

of P4Mite, the agents in P4Hauler gather and transmit resource usage information

(such as CPU, Memory, and network bandwidth) to the switch, which stores this

information in memory. Additionally, the switch contains two kinds of configurable

65

blocks minimum finder block and the round-robin scheduler. Network administrators

can activate different policies by utilizing the information and the configurable blocks.

To implement P4Hauler , we created a prototype using P4-16 and Python3. The

prototype operates on a testbed that includes a Tofino switch and two servers each

with a SmartNIC. We assessed the prototype using various machine-learning applica-

tions to demonstrate the benefits of different policies. In other words, our examination

revealed that there is no single ideal policy for load balancing. For example, in our

setup, PRT demonstrates superior performance at lower rates, whereas WRR proves

to be the most effective at higher rates. It should be noted that based on factors such

as computing demand, incoming load, and accelerators’ capacity, a certain policy

outperformed others.

Chapter 6

P4Wise

In this chapter, we introduce P4Wise, a load balancer that leverages Reinforcement

Learning (RL) to achieve load balancing at the accelerator level. Its goal is to deter-

mine the most effective load balancing policies. Our previous research in P4Hauler

(Chapter 5) led us to a crucial realization: there is no universal policy suitable for

all networking conditions, e.g., change in applications, their traffic rates, number of

accelerators or servers, and their statuses. Instead, the ideal policy must adapt to

the system’s current state. To put it differently, any alteration in the system can ne-

cessitate an adjustment to the load balancing policy. We observed this phenomenon

when traffic rate changes in P4Hauler , necessitating the switch to different policies to

achieve optimal results. The complexity increases when significant changes occur in

the network environment, such as adding or removing devices or upgrading existing

ones. In such cases, the configurations, including assigned weights for WRR, must

also be updated based on the new device capacity. In summary, P4Wise employs

RL to tackle this challenge by dynamically monitoring the system’s environment and

continuously updating its policies and configurations as needed.

Just like P4Mite and P4Hauler , P4Wise depends on agents for gathering infor-

mation. While P4Mite and P4Hauler follow the execution of predefined policies, with

P4Mite using hard-coded policies and P4Hauler employing the configurable blocks

to activate policies, P4Wise takes a different approach. P4Wise dynamically selects

the optimal policy within the system based on the observed changes to achieve the

best performance.

6.1 Motivation

In a broader context, machine learning proves advantageous when confronting prob-

lems that entail the processing of vast datasets, making predictions or decisions, and

66

67

when it is challenging to explicitly program a solution due to the complexity or vari-

ability of the data. It is essential to carefully select the appropriate machine learning

approach and techniques tailored to the specific problem at hand.

We made some efforts to construct a dataset for load balancing within our simu-

lation, enabling the utilization of supervised learning techniques for load balancing.

As detailed in Section 5.7, our evaluation results highlight that either PRT or WRR

yield the most promising outcomes. Consequently, when creating the dataset, we en-

sured an equitable distribution of statistics for each policy to establish a well-balanced

dataset. Subsequently, we employed a multi-layer perceptron neural network compris-

ing three layers, each containing ten nodes. This model exhibited an impressive 97%

accuracy in predicting the correct weight for 128 servers equipped with one SmartNIC

on each.

However, the model’s performance diminishes when the rate undergoes changes.

For instance, substituting the SmartNIC with a 20% more powerful one led to a drop

in model accuracy to 80%. In another test scenario, where a second SmartNIC was

added to the system for each server, the accuracy deteriorated even further, reaching

66%. In this case, the model struggled to consistently select appropriate weights to

effectively utilize the second SmartNIC.

The above evaluation gives us the following concluding remarks. Both supervised

and unsupervised learning necessitate substantial data for model training. However,

regrettably, there is no publicly accessible dataset for load balancing. Crafting a

comprehensive dataset encompassing all possible combinations, including the number

of servers, accelerators, their capacities, and so forth, would be a tedious task. In

such cases of lack of appropriate datasets, we require an alternative of supervised and

unsupervised learning. Furthermore, if there is a dataset available for retraining the

supervised/unsupervised models, its utility comes with the requirement of redeploying

the model in the system after training.

Specifically, the above observation and challenges motivate us to employ rein-

forcement learning to tackle this load-balancing problem. Unlike supervised and un-

supervised learning, RL models do not require pre-training on all conceivable inputs.

Instead, they can adapt and refine their parameters through trial-and-error proce-

dures within the system. Furthermore, in response to system changes, RL models

68

can dynamically adjust their parameters to accommodate such alterations. More-

over, it is feasible to deploy RL-based systems in the data plane as demonstrated in

[72], which is not the case for deep neural networks. Integrating neural networks into

the data plane poses challenges, primarily stemming from the absence of floating-point

operations, necessitating the use of techniques such as binarization.

6.2 Overview of P4Wise

Figure 6.1 provides an overview of the P4Wise system. To enhance clarity, we have

omitted the depiction of accelerators for the servers (hosts) on the left side of the

figure. Just like in the case of P4Mite and P4Hauler , it is important to note that

each host can be equipped with one or multiple accelerators. Furthermore, the same

agents introduced for P4Hauler are responsible for monitoring both the servers and

their accelerator usage, as well as transmitting updates to the switch. For the sake

of simplicity, we assume that all servers possess uniform computing power. Similarly,

they are equipped with accelerators having similar capacities.

P4Wise Controller

Usage of Resouces

Weights for WRR

Forwarding

Clients

Host 1

....

Host N

High Level API

P4Wise Date Plane

1 2U W W'

Figure 6.1: P4Wise overview.

Two essential components of P4Hauler ’s data plane are necessary for P4Wise:

the data structure used for storing statuses and the round-robin scheduler. Con-

versely, P4Wise’s controller is responsible for executing the RL agent, which utilizes

69

Q-Learning approach to decide for load balancing. The RL agent relies on a set of

high-level APIs within the controller for communication with the data plane, and the

specific APIs used may vary depending on the switches in use. The agent uses these

APIs to retrieve information from the data plane, and push the next step action as

they are shown in two steps in Figure 6.1. Initially, the RL agent acquires resource

usage data and the active weights from the data plane (the solid blue arrows). This

data represents the current system status denoted as U and W . Using this informa-

tion, the RL agent first calculates the reward and then takes an action that generates

W ′, and applies the new weights to P4Wise’s switch through the APIs (the solid red

arrows). These weights determine the load balancing policy, and it is important to

note that varying these weights allows for the emulation of different policies. For

example, we can mimic the prioritization policy by assigning a weight of 0 to a par-

ticular device and other devices with non-zero weights. Several noteworthy works in

the same area, such as [70, 71], have adopted a similar approach to adjust the weights

and apply the optimal policy for load balancing in the system.

6.3 P4Wise’s Design

In this section, we present our Reinforcement Learning (RL) model designed to effi-

ciently allocate computational load across a network of servers and their respective

accelerators. Our primary focus is on formulating a model that strategically deter-

mines the optimal weights for the Weighted Round Robin (WRR) within the data

plane and changes the weights to emulate different policies (e.g., PRT with 6 : 0 or

WRR with 6 : 1 weights) due to the fact that we can mimic different policies by having

a WRR policy that gets updated weights from the RL model to switch between poli-

cies, similar to [70, 71]. This weight assignment aims to optimize End-to-End (E2E)

latency, particularly for compute-intensive applications, such as Machine Learning

(ML), Deep Learning (DL), web servers, and financial analytics, which tend to im-

pose significant computational demands.

Our approach involves enhancing the RL agent’s knowledge by incorporating in-

formation about various network resources and dynamically updating WRR weights.

This allows us to adapt the best weights for the chosen applications, ensuring that the

network resources are efficiently utilized. Note that our approach shares similarities

70

with standard RL-based load balancing methods as described in [70, 71, 73]. How-

ever, there are two key distinctions to consider. The first distinction is our emphasis

on accelerator-aware granularity. Unlike other approaches, which handle accelerators

similarly to legacy servers, our approach takes into account the specific characteristics

of accelerators. The second significant difference is in the primary objective of previ-

ous research. Previous studies employed RL for load balancing to distribute network

traffic across multiple paths. In contrast, our focus is on distributing CPU-intensive

applications across multiple computing resources, under the assumption that the net-

work is not the limiting factor in our system.

When dealing with a distinct application type that has specific resource require-

ments, such as memory or network bandwidth, it becomes necessary to make several

adjustments. These adjustments encompass revising the reward function, refining

the policy, and fine-tuning the model to determine the appropriate resource alloca-

tion weights for that particular application.

Finally, it is essential to ensure that P4Wise’s data plane load balancer, similar to

P4Mite and P4Hauler , maintains per-connection consistency for forwarded requests.

This means that all packets belonging to a specific request must be directed to the

same server. Any deviation from this rule can lead to system overloads caused by

retransmissions or error resolution. Additionally, P4Wise faces the challenge of effi-

ciently managing a substantial number of connections using the available resources,

such as programmable switches’ registers. To address these critical requirements, we

have employed the same techniques and approaches that have been established in the

state-of-the-art solutions, including using a bloom filter.

In the subsequent sections, we provide detailed explanations of various components

within our RL model. To simplify the discussion, we operate under the assumption

that our system comprises multiple servers with equivalent processing capabilities.

Each of these servers is equipped with a SmartNIC, and all the SmartNICs possess

identical processing capacities. It is worth noting that the server capacities differ

from those of the SmartNICs.

71

6.3.1 Formal Problem Formulation

State Space (S): States are the elements that encompass the characteristics of the

environment observed by the RL agent. Essentially, the agent sees these attributes

and based on this information takes actions to earn rewards. States can be presented

as an array of numerical value, a data structure, or various other forms. In our

context, we represent states of the system consisting of n resources (R) using two

vectors of numerical values as given below:

S = {U,W} (6.1)

Where:

U = [u1, u2, ..., un]

W = [w1, w2, ..., wn]

n ∈ R

0 <= ui <= 100

0 <= wi <= wmax

(6.2)

In the provided equations, resource utilization is represented as a value ranging

from 0 to 100, while the weights can take on any positive numerical values. Deter-

mining the maximum weight involves a trade-off: a wider range of allowable weights

provides greater precision in assigning them, but also introduces increased complex-

ity in the weight assignment process. Consequently, the P4Wise’s agent necessitates

more iterations for convergence.

Action Space (A): In the context of P4Wise, when the RL agent takes an ac-

tion, it means that it assigns weights to distribute the workload across all devices,

encompassing servers and their accelerators. The agent has the option to either gen-

erate weights for each end-host individually or incrementally update the weights until

reaching the optimal configuration. The first option involves using a weight vector

that enlarges the action space, resulting in an extended training period. Nevertheless,

we mitigate this by constraining the action space to three actions: 1) incrementing

accelerators’ weights by 1, 2) decrementing accelerators’ weights by 1, and 3) main-

taining the current weights. With this limited set of actions, the agent not only

72

explores fewer options during training but also retains the ability to apply a diverse

range of weights to the system.

Algorithm 1 Reward function

1: U,W ← read current state()

2: p99 lat← calculate lat(U,W)

3: avg util servers← calculate util servers(U)

4: if max(U) > 100 then

5: return −(max reward)

6: end if

7: if only cpus(U) & p99 lat < latency threshold then

8: return max reward

9: end if

10: if all devices(U) & p99 lat < latency threshold & avg util servers >

utilization threshold then

11: return max reward

12: end if

13: return −1

Reward Function (R): Algorithm 1 outlines the process for determining the

reward. It begins by reading the current state at line 1. Afterward, having the

utilization of resources and their weights, the agent calculates the 99th latency 1 and

average utilization of the hosts, at lines 2 and 3, respectively.

Following the described calculations, three conditions are checked to determine

whether a terminal state has been reached. In a terminal state, the agent has either

selected an incorrect set of weights resulting in system failure, or identified the optimal

weights that demonstrate the best performance. In non-terminal states, however, the

allocated weights do not excessively utilize resources, even though the E2E latency

is not optimized. The first if statement at line 4, assessing whether utilization has

exceeded 100%, signifies the identification of an incorrect set of weights, indicating

a potential system failure. On the other hand, the subsequent two if statements

1We use this approach in our simulator only. In a real implementation, the agents running on
the hosts and accelerators can measure the 99th latency, and send it along with other measurements
to the switch.

73

at lines 7 and 10 are examining the selection of optimal weights. The if statement

at line 7 assesses whether optimal latency is achieved by exclusively utilizing the

hosts. In the next if statement, at line 10, it determines if all resources are used,

the more powerful devices are not underutilized, as employing the wimpy devices

instead them causes severe performance degradation. This assessment is influenced

by our findings in P4Hauler , where prioritizing hosts was necessary if they possessed

sufficient capacity to manage the load. Finally, at the end of reward calculation, if

none of the conditions are triggered, it indicates that the agent has not reached a

terminal state, and it should continue its operation.

Policy (π): Algorithm 2 depicts the ϵ-greedy policy employed by the agent which

explores the environment with a probability of ϵ. As previously indicated, the agent

utilizes a Q-Learning approach for decision-making. Therefore, with high probability

at each step, it chooses the action with the maximum Q-Value, while with lower

probability, a random action should be selected for exploration. Keeping this in mind,

at lines 1 to 3, we initially retrieve the current state of the system, then obtain the

Q-Values corresponding to the current state, and finally generate a random number.

Subsequently, the if statement determines whether the action with the highest Q-

Value should be taken or a random one. If the random number is greater than ϵ the

algorithm returns the action with the highest Q-Value, otherwise a random action is

returned.

Algorithm 2 Policy π, A ϵ-greedy approach

1: U,W ← read current state()

2: Q V alues← Q Table read row(U,W)

3: rand← random()

4: if rand > ϵ then

5: return action with max Q V alue(Q V alues)

6: else

7: return random action(Q V alues)

8: end if

74

6.3.2 Initialization

In the initialization phase of P4Wise, two components are initialized. The first com-

ponent is the vector of weights, where prioritization is given to the servers (hosts) by

assigning the maximum weight to all of them and zero to accelerators. In essence,

P4Wise initiates load balancing by emulating PRT, with the understanding that

weights will be updated later.

The second component is the Q-Table, which presents the Q-Values of the three

actions at each step. It is crucial to emphasize that the availability of prioritized

devices is key for the agent’s decision-making process. Based on our assumption that

all servers have identical capacities and an equal weight is assigned to all servers, we

can understand the state of the system through the average utilization of servers.

Another critical factor is whether accelerators have been incorporated. If so, it is

imperative to ensure that the servers are not underutilized.

Given this consideration, as illustrated in Table 6.1, we partition the potential

range for average utilization into N sub-ranges with intervals of 100
N
. For each interval,

the accelerators may or may not be used, thereby doubling the total number of rows

to 2 × N . A larger value for N provides increased granularity at the expense of

expanding the Q-Table. Last but not least, all Q-Values are initialized to 0.

Table 6.1: initialized Q-Table

States Q-Values
Average Utilization Ranges Are the accelerators involved? Action 1 Action 2 Action 3

[0, 100
N
) No 0 0 0

[0, 100
N
) Yes 0 0 0

[100
N
, 2× 100

N
) No 0 0 0

[100
N
, 2× 100

N
) Yes 0 0 0

...
[(N − 1)× 100

N
, 100] No 0 0 0

[(N − 1)× 100
N
, 100] Yes 0 0 0

6.3.3 Load Balancing with P4Wise

Algorithm 3 outlines the load balancing procedure executed by P4Wise’s agent. At

lines 1 and 2, the Q-Table (QT) and the weights (W) are initialized. Following the

initialization, the agent commences the first loop, indicated by a while at line 3,

which actively observes the environment. Given the if in line 4, we detect the load

75

(i.e., applied rate) changes in the system, by monitoring the utilization, which starts

the load-balancing procedure in the system. By calculating the reward, we detect if

we need to adjust the weights. If so, the second while statement (line 6), is executed

by the agent until a terminal state is reached, which is either the optimal weight or

an incorrect weight. In this second loop, the agent initially selects an action (shown

as a) using the policy π (line 6). Subsequently, the new weights corresponding to

the chosen action are calculated (line 7). These new weights are then applied to the

system, and the new states, denoted as U ′,W ′, are collected from the environment

(line 8). The agent proceeds to calculate the reward in the new state (line 9). Finally,

the agent updates the Q-Table values using the Bellman Equation [61] to optimize

the Q-Values (line 10).

Algorithm 3 Load Balancing with P4Wise

1: initialize QT

2: initialize W

3: while True do

4: if change state() then

5: while ! final state(U,W) do

6: a = π(U, W)

7: W = update weight(W, action)

8: U ′, W ′ = apply the weights(W)

9: r = calculate reward(U ′, W ′)

10: QT (U,W, a) = QT (U,W, a)+α[r+γ max(QT (U ′,W ′))−QT (U,W, a)]

11: U, W = U ′, W ′

12: end while

13: end if

14: end while

6.4 P4Wise’s Implementation

We have developed a proof of concept prototype for the P4Wise controller in Python,

consisting of approximately 100 lines of code. This prototype is accessible to the

public via the link provided in [113]. The controller exhibits the capability to collect

76

data from either the testbed shown in Section 5.6.1 or the simulated environment

introduced in Section 5.6.2. Subsequently, it can apply weight adjustments to the

system. In the following section, we will conduct a performance evaluation of P4Wise

within our simulator to assess its scalability and effectiveness.

In the following experiments, we consider 64, 128, or 256 servers, and two Smart-

NICs on each server, unless specified otherwise. The computing capacities of the

CPUs and SmartNICs are in line with our testbed’s devices.

6.5 P4Wise’s Evaluation

We initiate this section by conducting a series of experiments aimed at identifying

the optimal parameters for fine-tuning our model in subsection 6.5.1. Certain param-

eters, such as α and γ, as well as thresholds for latency and utilization, need to be

determined. Once the optimal model is identified, we proceed to evaluate P4Wise’s

trained model at various scales compared to P4Hauler in subsection 6.5.2. Finally,

in subsection 6.5.3, we compare P4Wise with a supervised learning approach.

6.5.1 P4Wise Tuning

We divide this subsection into two main parts. In the first part, we concentrate on

tuning the parameters in the reward function, while in the second part, we explore

the environment to determine the optimal values for α and γ in Bellman equation.

Regarding the policy π, we set ϵ to 0.1, indicating that it selects the action with the

highest Q-Value in 90%, while in 10% of situations, the agent explores the environment

through a randomly chosen action. A high value for ϵ leads to a drop in performance

during inference as it generates random actions. However, it is necessary to have such

exploration during training for the agent.

Tuning the Reward Function

Two thresholds in the reward function need to be determined: latency threshold and

utilization threshold. According to the evaluation of P4Hauler in 5.7, we observed

that the system’s 99th percentile E2E latency is consistently less than 1 second for

KNN in the best policy (PRT or WRR). Consequently, we consider this value as the

77

maximum acceptable E2E latency in the reward function.

To identify the optimal value for utilization threshold, we conducted an experi-

ment with 128 servers, considering three threshold values as illustrated in Figure 6.2.

Instead of P4Wise’s agent, which utilizes Q-Learning, the agent in this experiment

only switches between PRT and WRR policies. The goal is to find out at which

threshold we should change the policy. With utilization threshold = 50%, P4Wise

responds too quickly, changing the policy once the servers’ utilization reaches 50%,

leading to higher 99th percentile rates at around 1.3K requests per second (RPS).

Conversely, for utilization threshold = 70%, which implies continuing to use the

server up to 70% utilization, it exhibits sub-optimal performance with rates ranging

from 1.6K to 1.7K RPS, but eventually shifts to appropriate weight settings at higher

rates. The threshold value utilization threshold = 60%, however, demonstrates the

best performance, responding to system conditions optimally at rates around 1.4K to

1.5K RPS. Furthermore, at this utilization, the 99th percentile E2E latency reaches to

1s as well. We adopted utilization threshold = 60% for all subsequent experiments

in this section.

The final parameter to set in the reward function is max reward, which we have

considered as 10 in our experiments. Since we receive a −1 reward in each step, any

number greater than 1 will suffice for this parameter. It just needs to show whether we

reach a terminal state. Put differently, the agent should receive significant rewards

or penalties in terminal states based on the outcomes, while encountering minor

punishments in intermediate states.

1.0K 1.2K 1.4K 1.6K 1.8K 2.0K
Rate (rps)

0.4

0.8

1.2

1.6

2.0

P9
9

D
el

ay
 (s

)

utilization_threshold = 50%
utilization_threshold = 60%
utilization_threshold = 70%

Figure 6.2: Tuning utilization threshold for P4Wise.

78

Tuning Bellman Equation’s Parameters

There are two parameters in the Bellman equation, and both can take values between

0 and 1. The first one is α or the learning rate, where a smaller value for α adds

more granularity at the expense of requiring more time for training. The second

parameter is γ or the discount rate, indicating the importance of the next state in

the learning process.

In our experiments, P4Wise converges with different values for the mentioned

parameters when setting a coarse value for γ. However, the number of iterations

required for convergence may vary. Figure 6.3 illustrates the sum of the 100 most

recent actions for different values. Given that we consider a maximum reward of 10,

the summation can reach up to 100× 10 = 1000. Based on our observations, P4Wise

converges gradually with α = 0.3, while with α = 0.5, the system converges at a

faster rate. In the remainder of the manuscript, we consider α = γ = 0.5.

300 600 900
Iteration

0

200

400

600

800

1000

Su
m

 o
f 1

00
re

ce
nt

 re
w

ar
ds

=0.3, =0.9
=0.5, =0.5

=0.5, =0.7
=0.5, =0.9

Figure 6.3: Tuning Bellman equation’s parameters.

6.5.2 P4Wise at Different Scales

In this subsection, we evaluate the trained P4Wise’s agent with the specified param-

eters for 128 servers and two SmartNICs on each, across different scales. We vary

the number of servers, and for each evaluation, we compare P4Wise with P4Hauler ’s

best policies.

79

900 1300 1700 2100 2500
Rate (RPS)

0

25

50

75

100

W
ei

gh
ts

 U
sa

ge
 (%

)

Weights 6:1 Weight 6:0

80

85

90

95

100

A
cc

ur
ac

y
(%

)

Accuracy

Figure 6.4: P4Wise’s outcome for 128 servers after training.

Figure 6.4 depicts the performance of P4Wise’s agent with the specified param-

eters after training. On the plot’s weights usage axis, we observe the percentage

of weight usage between 6 : 1 and 6 : 0 for various rates, while the secondary axis

displays the accuracy of correct weight selection by P4Wise. We assume that 6 : 0

is the correct weight for rates less than 1.4 RPS, and 6 : 1 for higher rates. With

this consideration, at the turning point of 1.4k RPS, P4Wise’s accuracy is 90%. For

other points, the accuracy of correct weight selection is above 90%. It is important

to highlight that various other weights were tested during training; however, none of

them yielded promising results.

Figure 6.5 provides the 99th percentile delay and throughput for a data center

with 64 servers. As anticipated, P4Wise exhibits a 99th percentile delay that closely

resembles the optimal policy, PRT, at lower rates (below 700 RPS), and converges

toward the behavior of WRR at higher rates (above 700 RPS).

The same pattern is observed at various rates for a system with 256 servers,

as depicted in Figure 6.6. Up to a rate of 3.0K RPS, P4Wise’s 99th latency and

throughput closely match those of P4Hauler ’s PRT policy. Beyond this point, P4Wise

adjusts its weight to mimic P4Hauler ’s WRR policy for higher rates, and it achieves

comparable performance as well.

Figure 6.7 presents the chosen weights and the accuracy of weight selection for

P4Wise in 256-server scenario. The observed weights align with our findings in Figure

6.6. Up to a rate of 3k RPS, the weights align with PRT with an accuracy of 95%.

However, at higher rates, 6 : 1 is applied.

80

0.2K 0.7K 1.2K 1.7K
Rate (rps)

102

103

P9
9

D
el

ay
 (s

)

64-PRT 64-WRR 64-P4Wise

0.2K 0.7K 1.2K 1.7K
Rate (rps)

102

103

Th
ro

ug
hp

ut
 (B

ps
)

Figure 6.5: Balancing the load among 64 servers with P4Wise.

1.0K 3.0K 5.0K 7.0K
Rate (rps)

102

103

P9
9

D
el

ay
 (s

)

256-PRT 256-WRR 256-P4Wise

1.0K 3.0K 5.0K 7.0K
Rate (rps)

103

Th
ro

ug
hp

ut
 (B

ps
)

Figure 6.6: Balancing the load among 256 servers with P4Wise.

6.5.3 P4Wise vs. Supervised Learning

One of the advantages of P4Wise mentioned in section 6.1 is its capability to operate

in an online manner. In other words, P4Wise can actively assess the reward of actions

81

1800 2600 3400 4200 5000
Rate (RPS)

0

25

50

75

100

W
ei

gh
ts

 U
sa

ge
 (%

)

Weight 6:1 Weight 6:0

80

85

90

95

100

A
cc

ur
ac

y
(%

)

Accuracy

Figure 6.7: P4Wise’s outcome for 256 servers.

to verify their correctness. In such a scenario, P4Wise can dynamically respond to

changes in the environment. In contrast, a supervised learning solution necessitates

data collection, training, and model redeployment. In this experiment, as illustrated

in Figure 6.8, we consider 128 servers, each equipped with one SmartNIC. After

data collection, we trained a neural network with three 10-node layers to choose

among a few predefined weights. The accuracy of the neural network in this setup is

approximately 97%. On the other hand, we employed P4Wise in an online manner,

and the accuracy of P4Wise with this configuration exceeds 90%. At time = T ,

we added a second SmartNIC to all servers, and we observed that the accuracy

of the supervised learning model dropped to 65%. Nevertheless, P4Wise requires

approximately 250 iterations according to Figure 6.3 when we reset P4Wise’s Q-

Table and initiate training. After the required time, P4Wise reaches to more than

90% accuracy.

6.6 Major Conclusions of P4Wise

Based on our observations in the P4Hauler section, we recognized that there is no

single ideal policy that consistently delivers promising results across all network sce-

narios. Specifically, we observed that network administrators must adapt and activate

different policies based on the prevailing system load. With this in mind, we intro-

duce P4Wise in this section, which leverages a Reinforcement Learning approach to

determine the optimal weights that mimic the most effective policy for the current

system conditions.

82

0 T T + t
Time

20

60

100

A
cc

ur
ac

y
(%

) t

Neural Network P4Wise (RL)

Figure 6.8: P4Wise vs. supervised learning approach.

Within P4Wise’s data plane, we integrate two components inherited from P4Hauler :

a round-robin scheduler and a data structure that stores information on resource uti-

lization measured by agents on servers and their accelerators. Additionally, a crucial

RL agent operates within P4Wise, responsible for selecting the best weights. This

RL agent utilizes available APIs to retrieve information from the data plane and uses

it for training the RL model. The RL model follows a trial-and-error approach to

discover the most suitable weights for the system.

To evaluate the performance of P4Wise, we have implemented a proof-of-concept

implementation in Python, which operates within our simulator. Once P4Wise is

properly fine-tuned, for different scales, it can intelligently apply the appropriate

policy and adapt its weights for the specific system condition without experiencing

the same performance degradation as P4Hauler under similar conditions. According

to our quantitative results, P4Wise consistently selects the appropriate weights with

an accuracy of at least 90%. Furthermore, not only is P4Wise effective at different

scales but it can also dynamically respond to changes in the environment by adapting

its load balancing approach accordingly.

Chapter 7

Conclusion and Future Work

In the subsequent chapter, we draw our research to a conclusion by considering the

findings of P4Hauler , P4Mite, and P4Wise. Following that, we delve into several

potential avenues for future work based on the limitations identified in the current

study.

7.1 Conclusions

Although network speed and data raised exponentially in the recent decade, CPU

enhancement reached a plateau. With these in mind, system designers introduced

accelerators to bring more computational power for bearing massive data. Load

balancers are a possible solution to split the computation among the CPUs and the

accelerators. However, accelerators have different architectures making load balancing

challenging.

In our work, first, we evaluated the possibility of using a programmable switch,

like Tofino, for per-accelerator load balancing in P4Mite. Considering the accelerator

capacity, we observe promising results in the initial implementation. For instance,

the accelerator’s computational power is one-fifth of CPU’s in our testbed, and by

using P4Mite, the system can handle up to 20% load and processes requests 50%

faster. P4Mite achieves the improvements while using negligible resources in the

programmable switch according to our evaluation.

Seeing favourable outcomes, we extended the load balancer and introduced P4Hauler ,

which supports a few well-known policies and is on-the-fly configurable. That is to

say that, in contrast to other in-network load balancers, the system admin can switch

between the policies without rebooting the switch. The data plane is also extend-

able to support additional policies by implementing other programmable blocks if

required. Through quantitative evaluations of four different applications in terms of

their computational demands, we discovered that there is no universally ideal policy

83

84

for all scenarios. Instead, the choice of policy should be based on the application’s de-

mand and the applied load to the system. This observation motivated us to develop

P4Wise, a reinforcement learning-based hybrid in-network load balancer. P4Wise

retains all functionality of P4Hauler and includes a learning module in the control

plane to learn network dynamics and on-the-fly switch between load balancing policies

within the lifetime of running applications.

7.2 Future Work

This section summarizes all possible future extensions of the proposed thesis work.

Utilizing other accelerators. Although 20% improvement is satisfactory due to

the utilized accelerator’s computation capability, we could improve the performance

even more by forwarding a portion of the load into other accelerators like the GPU.

From the design perspective, P4Hauler and P4Mite supports other accelerators, as-

signing a flow or request to them. From the implementation on the testbed, however,

the use case applications must be able to operate on GPU as well. By utilizing more

accelerators, the overall performance will improve, specifically for adopting GPU for

machine learning and deep learning applications.

Policies and applications. The current two building blocks of P4Hauler can

support a set of load-balancing policies but cannot cover all possible ones, e.g., power-

of-two choices. Thus, another possible extension is to explore other applications and

suitable policies for them. For example, we plan to accommodate video streaming ap-

plications (e.g., Zoom or Teams). Also, if we want to support applications demanding

microseconds latency deadline, we have to extend the current design of P4Hauler .

Performance metrics and workload. The chosen ML applications are computation-

intensive rather than bandwidth-heavy; thus, in future, we can think of such appli-

cations. Also, we can measure the performance of load balancers in terms of their

operation time while considering mixed or skewed loads for various types of applica-

tions.

Exploring rewards functions and RL algorithms. P4Wise deploys a simple

reward function and policy. Though both work sufficiently for the current load bal-

ancing problem, it is worth exploring other reward functions and algorithms to see

85

if we can find a combination of reward function and policy that offers the best per-

formance. Also, we can consider deploying different RL algorithms. We will explore

such an avenue in future.

Bibliography

[1] John Shalf. The future of computing beyond Moore’s law. Philosophical Trans-
actions of the Royal Society A, 378(2166):20190061, 2020.

[2] Rafael Vidal Aroca and Luiz Marcos Garcia Gonçalves. Towards green data
centers: A comparison of x86 and arm architectures power efficiency. Journal
of Parallel and Distributed Computing, 72(12):1770–1780, 2012.

[3] James McCauley, Aurojit Panda, Arvind Krishnamurthy, and Scott Shenker.
Thoughts on load distribution and the role of programmable switches. ACM
SIGCOMM Computer Communication Review, 49(1):18–23, 2019.

[4] Xingyu Zhou, Ness Shroff, and Adam Wierman. Asymptotically optimal load
balancing in large-scale heterogeneous systems with multiple dispatchers. Per-
formance Evaluation, 145:102146, 2021.

[5] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu, Christos Kozyrakis, Ion
Stoica, and Xin Jin. RackSched: A Microsecond-scale scheduler for RackSched
computers. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 1225–1240, 2020.

[6] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu.
Silkroad: Making stateful layer-4 load balancing fast and cheap using switching
ASICs. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, pages 15–28, 2017.

[7] Carmine Rizzi, Zhiyuan Yao, Yoann Desmouceaux, Mark Townsley, and
Thomas Heide Clausen. Charon: Load-aware load-balancing in P4, 2021.

[8] Gal Mendelson, Shay Vargaftik, Dean H Lorenz, Kathy Barabash, Isaac
Keslassy, and Ariel Orda. Load balancing with jet: just enough tracking for
connection consistency. In Proceedings of the 17th International Conference on
emerging Networking EXperiments and Technologies, pages 191–204, 2021.

[9] Chaoliang Zeng, Layong Luo, Zilong Wang, Luyang Li, Wenchen Han, Nan
Chen, Lebing Wan, Lichao Liu, Zhipeng Ding, Xiongfei Geng, et al. Tiara:
A scalable and efficient hardware acceleration architecture for stateful layer-4
load balancing. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), 2022.

[10] Tom Barbette, Chen Tang, Haoran Yao, Dejan Kostić, Gerald Q. Maguire Jr.,
Panagiotis Papadimitratos, and Marco Chiesa. A high-speed load-balancer de-
sign with guaranteed per-connection-consistency. In 17th USENIX Symposium

86

87

on Networked Systems Design and Implementation (NSDI 20), pages 667–683,
2020.

[11] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin Raiciu.
Stateless datacenter load-balancing with beamer. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18), pages 125–139,
2018.

[12] Hesam Tajbakhsh, Ricardo Parizotto, Miguel Neves, Alberto Schaeffer-Filho,
and Israat Haque. Accelerator-aware in-network load balancing for improved
application performance. In 2022 IFIP Networking Conference (IFIP Network-
ing), pages 1–9, 2022.

[13] David Hancock and Jacobus Van der Merwe. Hyper4: Using P4 to virtualize
the programmable data plane. In Proceedings of the 12th International on
Conference on emerging Networking EXperiments and Technologies, pages 35–
49, 2016.

[14] Intel. Explore the Power of Intel® Programmable Ethernet Switch Products.
Intel, 2023 (accessed December 1, 2023). https://www.intel.com/content/

www/us/en/products/network-io/programmable-ethernet-switch.html.

[15] Tajbakhsh Hesam. P4Hauler. https://github.com/PINetDalhousie/

P4Hauler/, 2022.

[16] Tajbakhsh Hesam. P4Mite. https://github.com/PINetDalhousie/p4mite,
2022.

[17] Nick McKeown. Software-defined networking. INFOCOM keynote talk,
17(2):30–32, 2009.

[18] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve
Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined network-
ing: A comprehensive survey. Proceedings of the IEEE, 103(1):14–76, 2014.

[19] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: en-
abling innovation in campus networks. ACM SIGCOMM computer communi-
cation review, 38(2):69–74, 2008.

[20] Cavium. OpenFlow Switch Specification. Open Networking Foundation, 2023
(accessed December 1, 2023). https://opennetworking.org/wp-content/

uploads/2014/10/openflow-switch-v1.5.1.pdf.

[21] Mohamad Darianian, Carey Williamson, and Israat Haque. Experimental eval-
uation of two openflow controllers. In 2017 IEEE 25th International Conference
on Network Protocols (ICNP). IEEE, 2017.

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://github.com/PINetDalhousie/P4Hauler/
https://github.com/PINetDalhousie/P4Hauler/
https://github.com/PINetDalhousie/p4mite
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf

88

[22] Fangye Tang, Meysam Shojaee, and Israat Haque. Ace: an accurate and cost-
effective measurement system in sdn, 2021.

[23] Meysam Shojaee, Miguel C. Neves, and Israat Haque. Safeguard: Conges-
tion and memory-aware failure recovery in SD-WAN. In 16th International
Conference on Network and Service Management, CNSM 2020, Izmir, Turkey,
November 2-6, 2020, pages 1–7. IEEE, 2020.

[24] Udaya Lekhala and Israat Haque. Piqos: A programmable and intelligent qos
framework. In IEEE INFOCOM 2019 - IEEE Conference on Computer Com-
munications Workshops, INFOCOM Workshops 2019, Paris, France, April 29
- May 2, 2019, pages 234–239. IEEE, 2019.

[25] Fangye Tang and Israat Haque. Remon: A resilient flow monitoring framework.
In Network Traffic Measurement and Analysis Conference, TMA 2019, Paris,
France, June 19-21, 2019, pages 137–144. IEEE, 2019.

[26] M. A. Moyeen, Fangye Tang, Dipon Saha, and Israat Haque. SD-FAST: A
packet rerouting architecture in SDN. In 15th International Conference on
Network and Service Management, CNSM 2019, Halifax, NS, Canada, October
21-25, 2019, pages 1–7. IEEE, 2019.

[27] Israat Haque and M. A. Moyeen. Revive: A reliable software defined data plane
failure recovery scheme. In Stefano Salsano, Roberto Riggio, Toufik Ahmed,
Taghrid Samak, and Carlos Raniery Paula dos Santos, editors, 14th Interna-
tional Conference on Network and Service Management, CNSM 2018, Rome,
Italy, November 5-9, 2018, pages 268–274. IEEE Computer Society, 2018.

[28] I. Haque and N. Abu-Ghazaleh. Wireless software defined networking: a survey
and taxonomy. IEEE Communications Surveys and Tutorials, 18(4):2713–2737,
May 2016.

[29] Vinay Kolar, Israat T. Haque, Vikram P. Munishwar, and Nael B. Abu-
Ghazaleh. Ctcv: Coordinated transport of correlated videos in smart cam-
era networks. In 24th International Conference on Network Protocols (ICNP).
IEEE, 2016.

[30] Israat Haque, Mohammed Nurujjaman, Janelle Harms, and Nael Abu-ghazaleh.
SDSense: An agile and flexible SDN-based framework for wireless sensor net-
works. The IEEE Transactions on Vehicular Technology, 68(2):1866 – 1876,
February 2019.

[31] Hossein Ghannadrezaii, Jean-François Bousquet, and Israat Haque. Cross-layer
design for software-defined underwater acoustic networking. In IEEE OCEANS.
IEEE, 2019.

89

[32] Dipon Saha, Meysam Shojaee, Michael Baddeley, and Israat Haque. An Energy-
Aware SDN/NFV architecture for the internet of things. In IFIP Networking
2020 Conference (IFIP Networking 2020), Paris, France, June 2020.

[33] Israat Haque and Dipon Saha. SoftIoT: A resource-aware sdn/nfv-based iot
network. The Elsevier Journal of Network and Computer Applications, 193,
Nov 2021.

[34] M. Kulkarni, M. Baddeley, and I. Haque. Embedded vs. external controllers in
software-defined iot networks. In 2021 IEEE 7th International Conference on
Network Softwarization (NetSoft), 2021.

[35] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: Programming protocol-independent packet processors. SIG-
COMM Comput. Commun. Rev., page 87–95, 2014.

[36] Oliver Michel, Roberto Bifulco, Gábor Rétvári, and Stefan Schmid. The pro-
grammable data plane: Abstractions, architectures, algorithms, and applica-
tions. ACM Computing Surveys (CSUR), pages 1–36, 2021.

[37] Calin Cascaval and Dan Daly. P4 architectures. https://opennetworking.

org/wp-content/uploads/2020/12/p4-ws-2017-p4-architectures.pdf,
2022.

[38] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and Andrew W Moore. Understanding pcie performance for end
host networking. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, pages 327–341, 2018.

[39] Google. Google AutoML. [n.d.] AutoML: Train high-quality custom machine
learning models with minimal effort and machine learning expertise. https:

//cloud.google.com/automl/.

[40] Microsoft. Microsoft Brainwave. [n.d.]. Brainwave: a deep learning platform
for real-time ai serving in the cloud. https://www.microsoft.com/en-us/

research/project/project-brainwave/.

[41] Mellanox. BlueField SmartNIC for Ethernet High Performance Ethernet Net-
work Adapter Cards. Intel, 2023 (accessed December 1, 2023). https:

//network.nvidia.com/files/doc-2020/pb-bluefield-smart-nic.pdf.

[42] Broadcom. Stingray PS225. Broadcom, 2023 (accessed December 1, 2023).
https://docs.broadcom.com/doc/PS225-PB.

[43] Maroun Tork, Lina Maudlej, and Mark Silberstein. Lynx: A smartnic-driven
accelerator-centric architecture for network servers. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 117–131, 2020.

https://opennetworking.org/wp-content/uploads/2020/12/p4-ws-2017-p4-architectures.pdf
https://opennetworking.org/wp-content/uploads/2020/12/p4-ws-2017-p4-architectures.pdf
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://www.microsoft.com/en-us/research/project/project-brainwave/
https://www.microsoft.com/en-us/research/project/project-brainwave/
https://network.nvidia.com/files/doc-2020/pb-bluefield-smart-nic.pdf
https://network.nvidia.com/files/doc-2020/pb-bluefield-smart-nic.pdf
https://docs.broadcom.com/doc/PS225-PB

90

[44] Siyuan Wang, Chang Lou, Rong Chen, and Haibo Chen. Fast and concurrent
RDF queries using RDMA-assisted GPU graph exploration. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages 651–664, 2018.

[45] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Peter, and
Karan Gupta. Offloading distributed applications onto smartnics using iPipe.
In Proceedings of the ACM Special Interest Group on Data Communication,
SIGCOMM ’19, page 318–333, New York, NY, USA, 2019. Association for
Computing Machinery.

[46] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. E3: Energy-efficient microservices on smartnic-accelerated
servers. In 2019 USENIX Annual Technical Conference (USENIX ATC
19), pages 363–378, 2019.

[47] Tong Xing, Hesam Tajbakhsh, Israat Haque, Michio Honda, and Antonio Bar-
balace. Towards portable end-to-end network performance characterization of
smartnics. In Proceedings of the 13th ACM SIGOPS Asia-Pacific Workshop on
Systems, pages 46–52, 2022.

[48] Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad Malekzadeh,
Gianni Antichi, Paolo Costa, Hamed Haddadi, and Roberto Bifulco. Re-
architecting traffic analysis with neural network interface cards. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
22), pages 513–533, 2022.

[49] Sebastian Breß, Max Heimel, Norbert Siegmund, Ladjel Bellatreche, and Gunter
Saake. GPU-accelerated database systems: Survey and open challenges. In
Transactions on Large-Scale Data-and Knowledge-Centered Systems XV, pages
1–35. Springer, 2014.

[50] Xiao Wang, Haidong Yi, Jia Wang, Zhandong Liu, Yanbin Yin, and Han Zhang.
GDASC: a GPU parallel-based web server for detecting hidden batch factors.
Bioinformatics, 36(14):4211–4213, 2020.

[51] Yu Jung Lo, Samuel Williams, Brian Van Straalen, Terry J. Ligocki, Matthew J.
Cordery, Nicholas J. Wright, Mary W. Hall, and Leonid Oliker. Roofline model
toolkit: A practical tool for architectural and program analysis. In Stephen A.
Jarvis, Steven A. Wright, and Simon D. Hammond, editors, High Performance
Computing Systems. Performance Modeling, Benchmarking, and Simulation,
pages 129–148, 2015.

[52] Sambit Kumar Mishra, Bibhudatta Sahoo, and Priti Paramita Parida. Load
balancing in cloud computing: a big picture. Journal of King Saud University-
Computer and Information Sciences, 32(2):149–158, 2020.

91

[53] Jiao Zhang, F Richard Yu, Shuo Wang, Tao Huang, Zengyi Liu, and Yunjie
Liu. Load balancing in data center networks: A survey. IEEE Communications
Surveys & Tutorials, 20(3):2324–2352, 2018.

[54] Tianyi Cui, Wei Zhang, Kaiyuan Zhang, and Arvind Krishnamurthy. Offloading
load balancers onto smartnics. In Proceedings of the 12th ACM SIGOPS Asia-
Pacific Workshop on Systems, pages 56–62, 2021.

[55] S Rajagopalan. An overview of layer 4 and layer 7 load balancing. Computer
Networks, Big Data and IoT: Proceedings of ICCBI 2020, pages 663–672, 2021.

[56] Nisha Nimse. An introduction to dedicated server
load balancing. https://www.linkedin.com/pulse/

introduction-dedicated-server-load-balancing-nisha-nimse, 2023
(accessed December 1, 2023).

[57] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

[58] Elisha Odemakinde. Model-based and model-free reinforce-
ment learning: Pytennis case study. https://neptune.ai/blog/

model-based-and-model-free-reinforcement-learning-pytennis-case-study,
2023 (accessed December 1, 2023).

[59] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep
reinforcement learning in a handful of trials using probabilistic dynamics mod-
els. Advances in neural information processing systems, 31, 2018.

[60] Chao Ma, Stephan Wojtowytsch, Lei Wu, et al. Towards a mathematical un-
derstanding of neural network-based machine learning: what we know and what
we don’t. arXiv preprint arXiv:2009.10713, 2020.

[61] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,
8:279–292, 1992.

[62] Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical
analysis of deep q-learning. In Learning for dynamics and control, pages 486–
489. PMLR, 2020.

[63] Zhi-xiong Xu, Lei Cao, Xi-liang Chen, Chen-xi Li, Yong-liang Zhang, and Jun
Lai. Deep reinforcement learning with sarsa and q-learning: A hybrid ap-
proach. IEICE TRANSACTIONS on Information and Systems, 101(9):2315–
2322, 2018.

[64] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A fast and reliable software network load balancer.
In 13th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 16), pages 523–535, 2016.

https://www.linkedin.com/pulse/introduction-dedicated-server-load-balancing-nisha-nimse
https://www.linkedin.com/pulse/introduction-dedicated-server-load-balancing-nisha-nimse
https://neptune.ai/blog/model-based-and-model-free-reinforcement-learning-pytennis-case-study
https://neptune.ai/blog/model-based-and-model-free-reinforcement-learning-pytennis-case-study

92

[65] Jiao Zhang, Yuxuan Gao, Shubo Wen, Tian Pan, and Tao Huang. Loom:
Switch-based cloud load balancer with compressed states. In 2021 IEEE 29th
International Conference on Network Protocols (ICNP), pages 1–11. IEEE,
2021.

[66] Kuo-Feng Hsu, Praveen Tammana, Ryan Beckett, Ang Chen, Jennifer Rexford,
and David Walker. Adaptive weighted traffic splitting in programmable data
planes. In Proceedings of the Symposium on SDN Research, pages 103–109,
2020.

[67] Tom Barbette, Marco Chiesa, Gerald Q. Maguire, and Dejan Kostić. State-
less cpu-aware datacenter load-balancing. In Proceedings of the 16th Inter-
national Conference on Emerging Networking EXperiments and Technologies,
page 548–549, 2020.

[68] Benôıt Pit-Claudel, Yoann Desmouceaux, Pierre Pfister, Mark Townsley, and
Thomas Clausen. Stateless load-aware load balancing in p4. In 2018 IEEE 26th
International Conference on Network Protocols (ICNP), pages 418–423. IEEE,
2018.

[69] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard
Bugnion. R2P2: Making RPC first-class datacenter citizens. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages 863–880, 2019.

[70] Brian Chang, Aditya Akella, Loris D’Antoni, and Kausik Subramanian. Learned
load balancing. In 24th International Conference on Distributed Computing and
Networking, pages 177–187, 2023.

[71] Jiao Zhang, Shubo Wen, Jinsheng Zhang, Hua Chai, Tian Pan, Tao Huang,
Linquan Zhang, Yunjie Liu, and F Richard Yu. Fast switch-based load balancer
considering application server states. IEEE/ACM Transactions on Networking,
28(3):1391–1404, 2020.

[72] Changgang Zheng, Benjamin Rienecker, and Noa Zilberman. Qcmp: Load
balancing via in-network reinforcement learning. In Proceedings of the 2nd
ACM SIGCOMM Workshop on Future of Internet Routing & Addressing, pages
35–40, 2023.

[73] Bruno Coelho and Alberto Schaeffer-Filho. Crossbal: Data and control plane
cooperation for efficient and scalable network load balancing. In 2023 19th
International Conference on Network and Service Management (CNSM). IEEE,
2023.

[74] Jiyoon Lim, Jae-Hyoung Yoo, and James Won-Ki Hong. Reinforcement learning
based load balancing for data center networks. In 2021 IEEE 7th International
Conference on Network Softwarization (NetSoft), pages 151–155. IEEE, 2021.

93

[75] Hongzi Mao, Malte Schwarzkopf, Hao He, and Mohammad Alizadeh. Towards
safe online reinforcement learning in computer systems. In NeurIPS Machine
Learning for Systems Workshop, 2019.

[76] Henry N Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind Krishna-
murthy. Xenic: Smartnic-accelerated distributed transactions. In Proceedings of
the ACM SIGOPS 28th Symposium on Operating Systems Principles CD-ROM,
pages 740–755, 2021.

[77] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini, Dejan
Kostić, Youngjin Kwon, Simon Peter, and Emmett Witchel. LineFS: Efficient
SmartNIC offload of a distributed file system with pipeline parallelism. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Prin-
ciples, pages 756–771, 2021.

[78] Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad Malekzadeh,
Gianni Antichi, Paolo Costa, Hamed Haddadi, and Roberto Bifulco. Re-
architecting traffic analysis with neural network interface cards. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
22), pages 513–533, Renton, WA, April 2022. USENIX Association.

[79] Diman Zad Tootaghaj, Anu Mercian, Vivek Adarsh, Mehrnaz Sharifian, and
Puneet Sharma. SmartNICs at edge for transient compute elasticity. In Pro-
ceedings of the 3rd International Workshop on Distributed Machine Learning,
pages 9–15, 2022.

[80] Chris McClanahan. History and evolution of gpu architecture. A Survey Paper,
9:1–7, 2010.

[81] Jaeyoung Do, Ivan Luiz Picoli, David Lomet, and Philippe Bonnet. Better
database cost/performance via batched i/o on programmable ssd. The VLDB
Journal, pages 403–424, 2021.

[82] Jack Zhao, Miguel Neves, and Israat Haque. On the (dis) advantages of pro-
grammable nics for network security services. In 2023 IFIP Networking Con-
ference (IFIP Networking), pages 1–9. IEEE, 2023.

[83] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. Netcache: Balancing key-value stores with
fast in-network caching. In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 121–136, 2017.

[84] Ricardo Parizotto, Braulio Mello, Israat Haque, and Alberto Schaeffer-Filho.
NetGVT: offloading global virtual time computation to programmable switches.
In Proceedings of the Symposium on SDN Research, pages 16–24, 2022.

94

[85] Hisham Siddique, Miguel Neves, Carson Kuzniar, and Israat Haque. Towards
network-accelerated ml-based distributed computer vision systems. In 2021
IEEE 27th International Conference on Parallel and Distributed Systems (IC-
PADS), pages 122–129. IEEE, 2021.

[86] Carson Kuzniar, Miguel Neves, Vladimir Gurevich, and Israat Haque. IoT
device fingerprinting on commodity switches. In NOMS 2022-2022 IEEE/IFIP
Network Operations and Management Symposium, pages 1–9. IEEE, 2022.

[87] Carson Kuzniar, Miguel Neves, and Israat Haque. Poster: Accelerating en-
crypted data stores using programmable switches. In 2020 IEEE 28th Interna-
tional Conference on Network Protocols (ICNP), pages 1–2. IEEE, 2020.

[88] Daehyeok Kim, Jacob Nelson, Dan RK Ports, Vyas Sekar, and Srinivasan Se-
shan. Redplane: Enabling fault-tolerant stateful in-switch applications. In
Proceedings of the 2021 ACM SIGCOMM 2021 Conference, pages 223–244,
2021.

[89] Ricardo Parizotto, Bruno Loureiro Coelho, Diego Cardoso Nunes, Israat Haque,
and Alberto Schaeffer-Filho. Offloading machine learning to programmable data
planes: A systematic survey. ACM Computing Surveys, 2023.

[90] Michael Mitzenmacher. The power of two choices in randomized load balanc-
ing. IEEE Transactions on Parallel and Distributed Systems, 12(10):1094–1104,
2001.

[91] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. The data-
center as a computer: Designing warehouse-scale machines. Synthesis Lectures
on Computer Architecture, pages i–189, 2018.

[92] Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang, Fan Yang, Lidong Zhou,
Mao Yang, Francis C.M. Lau, Yuqi Wang, Yifan Xiong, and Bin Wang. HiveD:
Sharing a GPU cluster for deep learning with guarantees. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20), pages
515–532, 2020.

[93] Sean Choi, Muhammad Shahbaz, Balaji Prabhakar, and Mendel Rosenblum. λ-
nic: Interactive serverless compute on programmable smartnics. In 2020 IEEE
40th International Conference on Distributed Computing Systems (ICDCS),
pages 67–77, 2020.

[94] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril,
Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro,
et al. Applied machine learning at facebook: A datacenter infrastructure per-
spective. In 2018 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), pages 620–629, 2018.

95

[95] Broadcom. Braodcom. [n.d.]. PCI Express switches. https://www.broadcom.
com/products/pcie-switches-bridges/pcie-switches.

[96] Arrow. PCIE Switches — Arrow Electronics. https://www.arrow.com/en/

categories/electronic-switches/pci/pci-express-switches.

[97] Mellanox. Mellanox. [n.d.].ConnectX®-5 EN Card. https://network.

nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf.

[98] Saar Cohen and Yossi Matias. Spectral bloom filters. In Proceedings of the
2003 ACM SIGMOD international conference on Management of data, pages
241–252, 2003.

[99] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.
Cuckoo filter: Practically better than bloom. In Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and Tech-
nologies, pages 75–88, 2014.

[100] Christian Hopps et al. Analysis of an equal-cost multi-path algorithm. Technical
report, RFC 2992, Internet Engineering Task Force, 2000.

[101] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon Poutievski, Ar-
jun Singh, and Amin Vahdat. Wcmp: Weighted cost multipathing for improved
fairness in data centers. In Proceedings of the Ninth European Conference on
Computer Systems, 2014.

[102] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng, Jian-
qiang Huang, and Xian-sheng Hua. Quantization networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7308–7316, 2019.

[103] Debobroto Das Robin and Javed I Khan. CLB: Coarse-grained precision traffic-
aware weighted cost multipath load balancing on pisa. IEEE Transactions on
Network and Service Management, 2022.

[104] Dingming Wu, Ang Chen, TS Eugene Ng, Guohui Wang, and Haiyong Wang.
Accelerated service chaining on a single switch ASIC. In Proceedings of the 18th
ACM Workshop on Hot Topics in Networks, pages 141–149, 2019.

[105] Nour Moustafa and Jill Slay. UNSW-NB15: a comprehensive data set for net-
work intrusion detection systems (UNSW-NB15 network data set). In 2015
military communications and information systems conference (MilCIS), pages
1–6. IEEE, 2015.

[106] Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance frame-
work: Bm25 and beyond. Foundations and Trends® in Information Retrieval,
3(4):333–389, 2009.

https://www.broadcom.com/products/pcie-switches-bridges/pcie-switches
https://www.broadcom.com/products/pcie-switches-bridges/pcie-switches
https://www.arrow.com/en/categories/electronic-switches/pci/pci-express-switches
https://www.arrow.com/en/categories/electronic-switches/pci/pci-express-switches
https://network.nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://network.nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf

96

[107] David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu Wang, Madeleine van Zuylen,
Arman Cohan, and Hannaneh Hajishirzi. Fact or fiction: Verifying scientific
claims. In EMNLP, 2020.

[108] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[109] Jeremy Elson, John R Douceur, Jon Howell, and Jared Saul. Asirra: a captcha
that exploits interest-aligned manual image categorization. CCS, 7:366–374,
2007.

[110] Gongde Guo, Hui Wang, David Bell, Yaxin Bi, and Kieran Greer. KNN model-
based approach in classification. In OTM Confederated International Confer-
ences” On the Move to Meaningful Internet Systems”, pages 986–996. Springer,
2003.

[111] Li Deng. The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[112] Nginx. https://nginx.org/. Accessed: December 1, 2023.

[113] Tajbakhsh Hesam. P4Wise. https://github.com/PINetDalhousie/P4Wise,
2022.

https://nginx.org/
https://github.com/PINetDalhousie/P4Wise

Appendix A

Simulator Validation

This appendix offers a direct comparison of the outcomes derived from our actual

test environment and those generated by our simulation. This comparative analysis

aims to enhance the authenticity and trustworthiness of our simulation methodology,

demonstrating its consistency with real-world performance attributes. In Figures

A.1, A.2, A.3, and A.4, we can discern the throughput and E2E delay data from both

our physical test setup and the simulator, revealing a striking resemblance with only

minor disparities.

2 4 6 8 10 12 14 16
Rate (rps)

5

10

Th
ro

ug
hp

ut
 (B

ps
)

Simulated Throughput
Obtained Throughput

1000

2000

P9
9

E2
E

D
el

ay
 (m

s)

Simulated E2E Delay
Obtained E2E Delay

Figure A.1: Server-only’s results on the testbed and simulator

2 4 6 8 10 12 14 16 18 20
Rate (rps)

1

2

Th
ro

ug
hp

ut
 (B

ps
)

Simulated Throughput
Obtained Throughput

2000

4000

6000

P9
9

E2
E

D
el

ay
 (m

s)

Simulated E2E Delay
Obtained E2E Delay

Figure A.2: LUR’s results on the testbed and simulator

97

98

2 4 6 8 10 12 14 16 18 20
Rate (rps)

5

10

Th
ro

ug
hp

ut
 (B

ps
)

Simulated Throughput
Obtained Throughput

0

2000

4000

P9
9

E2
E

D
el

ay
 (m

s)

Simulated E2E Delay
Obtained E2E Delay

Figure A.3: PRT’s results on the testbed and simulator

2 4 6 8 10 12 14 16 18 20
Rate (rps)

2

4

6

Th
ro

ug
hp

ut
 (B

ps
)

Simulated Throughput
Testbed Throughput

1000

2000

P9
9

E2
E

D
el

ay
 (m

s)
Simulated E2E Delay
Testbed E2E Delay

Figure A.4: WRR’s results on the testbed and simulator

Appendix B

List of Publications from the Ph.D. thesis

1. Xing T, Tajbakhsh H, Haque I, Honda M, Barbalace A. Towards portable

end-to-end network performance characterization of smartnics. InProceedings

of the 13th ACM SIGOPS Asia-Pacific Workshop on Systems 2022 Aug 23 (pp.

46-52).

2. Tajbakhsh H, Parizotto R, Neves M, Schaeffer-Filho A, Haque I. Accelerator-

aware in-network load balancing for improved application performance. In2022

IFIP Networking Conference (IFIP Networking) 2022 Jun 13 (pp. 1-9). IEEE.

3. Tajbakhsh H, Parizotto R, Schaeffer-Filho A, Haque I. P4Hauler: an Accelerator-

aware In-network Load Balancer for Applications Performance Boosting. IEEE

Transactions on Cloud Computing. 2023 Dec.

99

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations
	Acknowledgements
	Introduction
	Overview
	Research Contributions
	Thesis Organization

	Background and Motivation
	Software-Defined Networking
	Programmable Switches in the Data Plane
	Programmable accelerators
	SmartNICs

	Roofline Benchmark
	Load Balancing
	Reinforcement Learning

	Related work
	In-network Load Balancing
	In-network Load Balancing without Machine Learning
	In-network Load Balancing with Machine Learning

	Task offloading to Programmbale Devices
	Task Offloading to Accelerators
	Task Offloading to Programmbale Switches

	P4Mite
	Challanges in P4Mite's Design
	Load Balancing in a Diverse Environment
	Processing Large Number of Concurrent Flows

	P4Mite's Overview
	Prgrammable Switch
	Controller
	Server Agents

	P4Mite's Data Plane Design
	P4Mite Implementation
	P4Mite Controller and Switch
	P4Mite Agents

	P4Mite Evaluation
	Experimental Setup
	Microbenchmark
	Applications
	P4Mite vs. SmartNIC-based load balancer
	P4Mite Resource Usage

	Major Conclusions of P4Mite

	P4Hauler
	Challenges in P4Hauler's Design
	Awareness of Resources
	Hierarchical Design for Complex Policies
	Memory Management

	P4Hauler's Overview
	P4Hauler's Agents
	P4Hauler's Infrastructure
	Handling Resources at the Switch
	In-Network Load Balancing Policy Support
	P4Hauler's Data Plane Layout

	P4Hauler Management
	P4Hauler Implementation
	Prototype Implementation
	Simulation

	P4Hauler Evaluation
	End-To-End Delay
	Flow Completion Time (FCT)
	P4Hauler's Prototype Overheads
	P4Hauler Comparison with the State-of-the-Art
	Simulation Results

	P4Hauler vs. P4Mite
	Major Conclusions of P4Hauler

	P4Wise
	Motivation
	Overview of P4Wise
	P4Wise's Design
	Formal Problem Formulation
	Initialization
	Load Balancing with P4Wise

	P4Wise's Implementation
	P4Wise's Evaluation
	P4Wise Tuning
	P4Wise at Different Scales
	P4Wise vs. Supervised Learning

	Major Conclusions of P4Wise

	Conclusion and Future Work
	Conclusions
	Future Work

	Bibliography
	Simulator Validation
	List of Publications from the Ph.D. thesis

