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Abstract

Magnets with broken inversion symmetry possess a chiral interaction that leads to
twisting of the magnetic structures. The cubic B20 compounds which include MnSi
and FeGe are archetypal chiral magnets where twisting of the magnetization leads to
the formation of localized two-dimensional textures known as skyrmions. MnGe is a
much less understood member of the B20 family of chiral magnets, in part due to the
challenges in synthesizing this metastable material. It is unique as it is proposed to
host three-dimensional textures known as spin-hedgehogs.

While others have grown MnGe thin films on magnetic MnSi and FeGe template
layers, it is demonstrated in this thesis that a paramagnetic template layer of B20
CrSi serves as a good epitaxial seed layer from the nucleation and growth of B20
MnGe. Smooth, ultrathin CrSi films were produced Si(111) by applying a technique
developed for MnSi.

MnGe(111) thin films were grown with thickness ranging from 2nm to 40 nm, a
range that has not been explored in-depth in the literature. The films were char-
acterized using reflection high energy electron diffraction (RHEED), atomic force
microscopy (AFM), X-ray diffraction (XRD) and X-ray reflectometry (XRR). It was
found in this thesis that growth yielded single phase MnGe(111) films with roughness
less than 6 Å that are suitable for further characterization with polarized neutron
reflectometry (PNR) or synchrotron X-ray scattering.

Magnetometry measurements were conducted and reveal that the ground state
is a helical modulation which is distorted into a helicoidal state for field applied
along [11̄0] (in-plane), or a conical state for field applied along [111] (out-of-plane).
Magnetometry did not show evidence for a three-dimensional hedgehog state like
reported by others. Magnetotransport for out-of-plane fields indicates the presence
of an additional low-temperature phase which is not observed in the magnetometry.
The true nature of this state remains unknown, but it is proposed to be a topological
spin-hedgehog lattice, or a multi-domain helical state. Neutron or resonant X-ray
scattering experiments are necessary to determine the magnetic structure of this phase
and why it is not evidenced by magnetometry.
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Chapter 1

Introduction

With development in the complexity of electronic computing, there is demand for

improvement in data storage technology. The largest technology companies, Ama-

zon, Google, Facebook and Microsoft are estimated to store over 1 billion gigabytes

of information between them, and this figure will continue to rise exponentially as

technology takes on a larger role in our lives. However, fundamental material limi-

tations have caused a plateau in the improvement of the size and speed of memory

devices. In traditional magnetic storage, data is encoded in the magnetic domains of

a thin metallic film. The direction of the magnetization (up or down, for example)

represents two bits, and the energy cost of writing information is associated with the

energy required to flip the magnetization in one domain.

The field of spin-transport electronics, or spintronics, is an emerging field that

differs from traditional electronics in that it makes use of both the charge and spin

states of the electron to store information. The field began in the 1980’s with the

discovery of giant magnetoresistance (GMR) [1, 2], for which Albert Fert and Peter

Grünberg won the Nobel prize in 2007. GMR was first observed in Fe/Cr multilayers,

where a drastic change in the electrical resistance was observed when the spins in ad-

jacent ferromagnetic layers are aligned parallel or anti-parallel to one another. GMR

devices where the first generation of spintronic technology, and their incorporation

into read/write heads of magnetic hard drives is partially responsible for the swift

increase in information storage density over the past few decades.

Another effect in spintronics is spin transfer torque (STT). It was demonstrated if

a spin polarized current flows through a ferromagnetic material, it will drag domain

walls along with it [3, 4]. One particularly useful application of STT in informa-

tion storage is that it can induce a magnetization reveral on timescales less than

1 ns [5]. In contrast to the current densities of 109Am−2 needed to move ferro-

magnetic domain walls [6], it was shown that STT can be used to manipulate novel

1
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magnetic textures called skyrmions with less than 106Am−2 [7]. These novel textures

have been observed in a wide array of materials where inversion symmetry is broken.

Storage devices made from these materials, known as racetrack memory [8, 9], have

the potential to revolutionize data storage with increased information density, faster

read/write times, and lower power consumption. More recently, neuromorphic com-

puter architectures have been proposed to make use of topological magnetic states

like skyrmions or hedgehogs [10]. Furthermore, topologically trivial helical phases,

the ground state of many skyrmion materials, have been even been proposed for

spintronic applications [11, 12, 13].

To create these devices, the magnetic materials must be created and their mag-

netism must be well understood. This thesis reports on the synthesis and magnetic

characterization of the cubic helimagnet MnGe, a material whose magnetic structure

is not well understood, is currently under debate.

1.1 MnGe and other cubic helimagnets

MnGe is a cubic helical magnet which belongs to the group of compounds with struk-

turbericht designation B20 and space group P213. The crystal lattice can be thought

of as a distorted NaCl-type (rock salt) structure with the following basis:

(u, u, u) ; (1/2+u, 1/2−u,−u) ; (−u, 1/2+u, 1/2−u) ; (1/2−u,−u, 1/2+u) .

There are four Mn atoms and four Ge atoms in the unit cell, each specified by the

basis, with uMn = 0.136 and uGe = 0.846 at 200K [14, 15]. The B20 structure is chiral,

meaning it lacks inversion symmetry. The left- and right-handed crystal structures

are related by replacing u with 1− u. Its cubic lattice parameter is a = 4.79 Å [14].

The MnGe crystal structure is detailed in Figure 1.1. All crystal visualization in

this thesis used the VESTA software [16]. The Mn and Ge atoms comprise a helix

which winds around the [111] directions according to the chirality of the crystal. The

stacking of atoms along [111] can be described in terms of a quadruple layer (QL),

which has a thickness corresponding to the (111) plane spacing of 2.77 Å. A QL

consists of a dense layer of Mn atoms, followed by a sparse Ge layer, sparse Mn layer

and dense Ge layer. The stacking unit along [111] is comprised of twelve layers of

atoms, which can be described as ABC stacking of the QL.
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(a) (b) (c)
Mn 

Ge

[001]

[100]

[111]

[110]

1 QL

Figure 1.1: Illustration of the B20 crystal structure. (a) The primitive unit cell
of MnGe. (b) Several unit cells along the [001] direction to illustrate the chiral
crystal structure. (c) Illustration of the QL stacking sequence along [111]. One QL
is indicated and consists of two dense and two sparse atomic layers.

A magnetic helical phase is one where the magnetic moments lie in the plane and

ferromagnetically align within each layer. The helix is characterized by its propa-

gation wavevector Q around which successive planes of magnetization rotate. The

spatial period over which the magnetization completes one rotation in the plane is

the helical pitch (or helical wavelength), given by LD = 2π/Q. When a magnetic

field is applied perpindicular to the plane of the spins, they cant toward this field,

creating a conical phase. Bulk MnGe is a helimagnet with a helical pitch that is much

shorter than other B20 compounds. Below the ordering temperature of TN = 170K,

the helices align to the [100] orientations with a wavelength which varies from 3.8 nm

below 30K to 5.9 nm, just below TN [15, 17].

Possible magnetic configurations for B20 magnets are given by solutions to the

continuum model free energy determined by Bak and Jensen [18]. The minimum

model to describe thin film B20 compounds, including a uniaxial anisotropy due

epitaxial strain is:

w(M) = A(∇m̂)2 +D m̂ · (∇× m̂)−K(m̂ · n̂)2 − µ0H ·M− µ0

2
Hd ·M . (1.1)

The direction of the magnetization is given by m̂ = M/Msat whereMsat is the satura-

tion magnetization. The terms in Equation 1.1 represent different energy scales. The

first term is the exchange energy, which is of quantum mechanical origin, for which

the discrete Hamiltonian can be written as

Hex = −2JSi · Sj , (1.2)



4

which prefers the collinear alignment of neighbouring spins Si and Sj. This is typically

the dominant energy and its strength is related to exchange constant in the continuum

model (also known as the spin wave exchange stiffness), which is written A = JS2/a

for a simple cubic material. [19].

The second term is the due to the Dzyaloshinskii-Moriya interaction (DMI). This

interaction favours anti-parallel alignment of neighbouring spins,

HDM = Dij · (Si × Sj) , (1.3)

and its strength is given by the Dzyaloshinskii vector D. This vector is only nonzero

in materials which are non-centrosymmetric, e.g. B20 magnets. In some centrosym-

metric systems, a net DMI can be induced by breaking of inversion symmetry at

interfaces, such as metallic multilayers. The constant D for the continuum case is

proportional to the magnitude of Dij.

The third term in Equation 1.1 represents a uniaxial magnetocrystalline anisotropy,

with n̂ being a unit vector along the normal of the film. This creates an energetic

penalty for the magnetic moments to lie along or perpendicular to n̂. This is dic-

tated by the sign of the anisotropy constant K, which is positive when the spins are

favoured to point out of the plane of the film (easy axis), and negative when they

are favoured to point in the plane (easy plane). Cubic materials also have additional

cubic anisotropies. This includes a cubic magnetocrystalline anisotropy and a cubic

exchange anisotropy. In a cubic system, there are many equivalent directions (rather

than one for the uniaxial case) owing to the high symmetry of the lattice [19]. In thin

film B20 materials, cubic anisotropy is typically ignored since it is small compared to

the uniaxial anisotropy.

The final term is the Zeeman interaction, which couples the magnetic moments to

an external field H. There is also a contribution from the demagnetizing field, Hd,

which arises from the magnetization configuration [19]. This can be calculated by

considering the density of fictitious magnetic charges, ρm = ∇·M, as well as magnetic

surface charges, σm = M · n̂. For magnetic textures in which the moments lie in the

plane of the film, but vary along its depth (like a helical state), the contribution to the

demagnetizing field is entirely due to surface charges since magnetic volume charge

density is identically zero.
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The simplest solution to the Bak-Jensen functional in the absence of an external

field and anisotropy is a one-dimensional helical modulation of the magnetization,

given by

m̂ = (cosQz, sinQz, 0) . (1.4)

The helical phase consists of successive planes of ferromagnetically aligned moments,

which spiral around the helical wavevector Q. This is pictured in Figure 1.2(a). In

Equation 1.4, Q is represented as Qẑ. The pitch of the helix (helical wavelength)

is given by LD = 2π/Q. This is related to the exchange and DMI constants by

LD = 4πA/D.

(a)

Helical Helicoidal Conical Twisted ferromagnet

(b) (c) (d)

Figure 1.2: One-dimensional magnetic states in B20 thin film magnets. (a) A
helical phase described by Equation 1.4. (b) A distorted helix (helicoid) caused by
the application of a magnetic field perpindicular to the propagation vector. (c) A cone
phase, caused by the application of a magnetic field parallel to the helical propagation
vector. (d) A twisted ferromagnetic state comprised of uniform magnetization at the
centre of the film, with surface twists near the interfaces.

When a field is applied to the helical state along Q, the spins will cant out of the

plane to align with the field. This gives a conical modulation,

m̂ = (cosQz cosϑ, sinQz cosϑ, sinϑ) . (1.5)

The cone angle is ϑ, the angle between Q and the spins. It does not vary spatially.

The cone phase will continuously deform from into a field-induced ferromagnetic phase

with increasing field. This is a second-order transition and corresponds to the cone

angle varying continuously from ϑ = 0 to ϑ = π/2 with increasing field. Substituting
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Equation 1.5 into Equation 1.1 and minimizing for ϑ gives

ϑ = arcsin

(
2µ0HAMsat

D2

)
, (1.6)

where and the critical field for the ferromagnetic transition is µ0Hc = D2/2AMsat.

In bulk crystals, the application of a field perpindicular to Q will cause a reorien-

tation of Q to the direction of the applied field. For the case of a thin film, addition

of an easy plane anisotropy stabilizies state with the moments in-plane and the field

does not reorient the helix. Instead the helical state is distorted into a helicoid. The

solution to the magnetization is given in terms of elliptic integrals, which for small

fields which can be approximated by a Fourier expansion. [20]. The depth profile

M(z) of a helicoid is modulated by higher-order sinusoids. The magnetization of a

distorted helicoid can be modelled by [20, 21, 22]:

M(z) =M0 +M1 sin(Qz + ϕ0) +M2 cos
2(Qz + ϕ0) , (1.7)

where M0 = M2 = 0 corresponds to the pure helical state and ϕ0 is a phase offset.

In Reference [23], it was demonstrated for MnSi thin films using polarized neutron

reflectometry (PNR) and micromagnetic simulations that field-induced unwinding of

the helicoids occured in discrete steps. Finite size effects confine the wavelength and

lead to a quantization of the number of turns in the helicoid. It was shown for a

film with thickness 1.92 LD that the ground state was a helix with two turns. This

was deformed into a single-turn helicoid, and then into a twisted ferromagnetic state.

Instead of fully saturating at high fields, the sample enters a twisted ferromagnetic

state where the majority of the helical modulation is suppressed, except for small

twists which exist at the surfaces, stabilized by the DMI [23, 24]. The analytic form is

derived for the twisted ferromagnetic state in Reference [24]. Similar to Equation 1.4,

the magnetization is m̂ = (cosφ(z), sinφ(z), 0) where the azimuthal angle of the

magnetization is given by

φ(z) = 4 arctan
[(

2
√
H/Hc −

√
4H/Hc − 1

)
exp

(
−Qz

√
H/Hc

)]
. (1.8)

The twisted ferromagnetic state is represented in Figure 1.2(d). The magnetization is

almost completely uniform at the centre of the film, with the twisting occuring near

the surfaces.
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It is also possible to observe magnetic states which are characterized by multi-

ple wavevectors. Two relevant multi-Q states to this thesis are the skyrmion and

spin-hedgehog lattices. Magnetic skyrmions were first proposed by Bogdanov and

Yablonskii in 1989 [25], predicted to exist in cubic helimagnets by Rößler et al. in

2006 [26], and observed in bulk MnSi by Mühlbauer et al. in 2009 [27]. Skyrmions

are topologically nontrivial solitons which consist of region of twisting around an en-

ergy costly core in a ferromagnetic background. The DMI and exchange alone are

not sufficient to stabilize skyrmions. Additional interactions, such as magnetocrys-

talline anisotropy [25, 28] or spin-fluctuations [27] are required to favour skyrmions

over competing one-dimensional modulations. Finite size effects also contribute to

determining the spin structure [29, 30, 31]. Though inherently nonlinear, a crude

ansatz for a skyrmion lattice can be constructed as a superposition of coplanar helices,

propagating perpendicular to the applied field. They are effectively two-dimensional

modulations and exhibit a cylindrical-like symmetry.

The term spin-hedgehog lattice is used to explain the three-dimensional skyrmion

lattice structures reported in bulk MnGe [32, 33]. It can be described by the superpo-

sition of three orthogonal helices leading to a crystal of emergent magnetic monopoles

(hedgehogs) and anti-monopoles (anti-hedgehogs). The magnetization profile of the

cubic spin-hedgehog lattice state is given in Reference [34] as:

M(r) =
∑

i=1,2,3

ai cosqi · r+ bi sinqi · r , (1.9)

where:

q1 = (sinψ, 0, cosψ),

q2 = (−1
2
sinψ,

√
3
2
sinψ, cosψ),

q3 = (−1
2
sinψ, −

√
3
2
sinψ, cosψ),

a1 = (cosψ, 0, − sinψ),

a2 = (−1
2
cosψ,

√
3
2
cosψ, − sinψ),

a3 = (−1
2
cosψ, −

√
3
2
cosψ, − sinψ),

b1 = (0, 1, 0),

b2 = (−
√
3
2
, −1

2
, 0),

b3 = (
√
3
2
, −1

2
, 0).
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In this prescription, ψ is the angle between the three helices and the ⟨111⟩ direc-
tion. In bulk MnGe, the helices propagate along the ⟨100⟩ directions, so ψ = arccos

(
1/
√
3
)
≈ 54.7◦.

When ψ decreases, the helices are tilted toward the film normal. In this sense, ψ is

related to the strength of the uniaxial anisotropy. When ψ = 0, Equation 1.9 simply

describes a single helix with Q along [111].

A representation of the cubic spin-hedgehog lattice is given in Figure 1.9. The z-

component of the magnetization (coloured red and blue in the figure for positive

and negative, respectively) varies periodically in the z-direction. The hedgehogs

are singular regions where the magnetization reverses sign (meeting of blue and red

regions). The local field at these points behaves as an emergent magnetic monopole

or anti-monopole.

Figure 1.3: (a) Representation of the cubic spin-hedgehog lattice in MnGe. The
spin is coloured blue (red) if its z-component is positive (negative). The lattice is
comprised of chains of alternating hedgehogs and anti-hedgehogs. In this representa-
tion, the vertical direction is [111] and the three superposed helices lie along ⟨100⟩.
(b) A representation of one hedgehog. The dark sphere shows the location of the
Bloch point. (c) Two-dimensional slice of the hedgehog in (b). The colour again
represents the z-component of the spins. The magnetization around the Bloch point
behaves similarly to a gradient field near a saddle point. The configuration of an
anti-hedgehog is such that it will produce zero net magnetization when superposed
with the hedgehog.

1.2 Bulk and thin film MnGe

The equilibrium phase diagram of the binary Mn-Ge system does not include the B20

phase; it is a metastable phase [35]. Bulk MnGe powder was first synthesized in 1988
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at 1000 ◦C and high pressures exceeding 4GPa [14]. Upon further annealing at 600 ◦C

and ambient pressure, it was found to decompose into the orthorhombic ferromagnet

Mn11Ge8 and Ge. Reference [14] claims that MnGe is antiferromagnetic with a Néel

temperature of 197K. It is now known that MnGe is not antiferromagnetic, but a

short-period helimagnet. Further measurements of the magnetism in MnGe were not

reported until after the discovery of skyrmions in MnSi led to a drastic increase in

the number of published papers studying B20 compounds.

A large majority of the literature surrounding B20 MnGe has been published by

the group from RIKEN. Kanazawa et al. synthesized polycrystalline MnGe in 2011

and performed small-angle neutron scattering (SANS), observing an incommensurate

helical structure with a pitch that elongates from 3nm at 20K to 6 nm just below

the ordering temperature TN of 170K [17]. They also performed electrical resistivity

measurements and inferred a large topological Hall effect from the residual of fitting

the ordinary and anomalous Hall effects. The temperature dependence of the helical

wavelength was confirmed by Makarova et al. using neutron diffraction and the

magnetic moment was measured to be 2.3µB per Mn atom at 2K [15]. Refinement

of neutron diffraction patterns reported several acceptable magnetic configurations,

including single-Q and triple-Q structures [36]. The existence of a triple-Q phase was

claimed to be supported by the existence of a topological Hall effect.

Further SANS measurements by the RIKEN group observed a peak with wavevec-

tor perpindicular to the direction of an applied field, which was attributed to a multi-Q

ground state [37]. Based on their interpretation of the extracted topological Hall resis-

tivity, they argued that the cubic spin-hedgehog lattice was the most likely candidate

for the ground state, at zero and finite field.

Supporting evidence for this texture was obtained from Lorentz transmission elec-

tron microscopy (LTEM) in Reference [32]. Grains of the [001] orientation were

extracted from a polycrystalline sample by focused ion beam. Stripe contrasts were

observed along the [100] and [010] directions which disappeared above TN and were

attributed to the magnetic structure. At 30K under an applied field of 2.4T, densely-

packed spin spirals similar to those in Figure 1.3(a) were reported which has been

used (along with their extracted topological Hall effect) to confirm the presence of

the spin-hedgehog crystal [38, 39].
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There is controversy surrounding the presence of the spin-hedgehog state in MnGe.

The controversy arises from the difficulty in distinguishing the triple-Q state from a

multidomain single-Q helical state using SANS. Several studies have proposed a mul-

tidomain helical state [40, 41, 42, 43, 44] in MnGe, rather than the hedgehog lattice.

Analysis in Reference [42] of muon spin rotation data from 10K in Reference [45] was

consistent with helimagnetic order. This probe of the local structure is in disagree-

ment with the LTEM images in Reference [32].

In 2015, Viennios et al. reported a phase diagram of bulk MnGe based on magne-

tometry measurements [46]. They find helical, conical, and ferromagnetic phases as

expected by Equation 1.1 for a B20 magnet. They also report a pocket which they

label as the A phase that is in an analagous to the skyrmion phase pocket in the MnSi

phase diagram (near the ordering temperature, at finite fields). Their identification

of a helical phase at low temperatures and fields does not explain the topological Hall

effect measured by other groups. They also identify a second phase, the B phase,

but its origin is unknown. This paper suggests that the magnetism in MnGe is more

similar to other B20 materials, in contrast to those who claim its ground state is

the topological spin-hedgehog crystal and do not report an A phase pocket near the

ordering temperature.

Thin film MnGe was first grown using MBE on Si(111) substrates in 2013 [47].

To help nucleate the B20 phase, a template layer of MnSi was crystallized before

deposition of Mn and Ge. This produced single-orientation MnGe, although there

is evidence for secondary phases in the reported X-ray data. The films also appear

to have a high roughness based on the lack of Kiessig fringes. Reference [47] only

reported minimal information on the magnetic properties of their MnGe films, and

found the signal to be dominated by the 2 nm MnSi seed layer below its ordering

temperature of approximately 40K. The group from RIKEN also used a 2 nm MnSi

template to produce MnGe films with thicknesses 160 nm, 735 nm and 1.8 µm [34].

They used SANS to show that in the thick film (≈ bulk), the Q vectors pointed along

⟨100⟩. With decreasing film thickness and increasing uniaxial anisotropy, they found

that the Q vectors canted toward the film normal (described by ψ in Equation 1.9).

At 2K and zero field, the 160 nm film is in a triple-Q state. At 100K, there is a

reorientation of the helical wavevectors to the direction of the film normal (ψ = 0)
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and the magnetization is an out-of-plane helix. Whether the low-temperature state is

a hedgehog lattice or comprised of multiple helicoidal domains, SANS suggests that

helical and conical states exist above 100K for zero and finite fields, respectively.

Both References [34, 47] report an enhancement in the ordering temperature from

TN = 170K in bulk to approximately 200K in films with thicknesses ranging from

4.5 nm to 160 nm. More recently, the group from RIKEN have used thin films to

study the large anomalous and topological Hall signals [48, 49] in MnGe.

Spin-polarized scanning tunneling microscopy (SP-STM) was used by Repicky

et al. to measure the real-space magnetic textures on the (111) surface of MnGe.

Their 80 nm thick film was grown with MBE using a buffer layer of FeGe. At 5K

(within the triple-Q region in Reference [34]), stripe domains were observed, consistent

with a helix. The periodicity was measured to be 6 nm, much longer than the 3 nm

reported by others below 30K. Interestingly, multiple helical domains were imaged.

At some regions, three distinct orthogonal helices were observed. This configuration

would manifest as a triple-Q state in a SANS experiment. Furthermore, topological

defects were imaged, formed by the intersection of these stripe domains. These results

support the presence of a multidomain helioid state, rather than the hedgehog lattice.

The presence of disclinations would contribute to a topological Hall anomaly, but the

density of these defects observed in the SP-STM data likely cannot explain the size

of the Hall signal.

A wide range of theoretical works have calculated D [50, 51, 52, 53, 54] and

A [53] for MnGe or Mn1–xFexGe, but the values they obtain are not consistent. The

consensus is that the DMI alone is too weak to stabilize the tight pitch of the mag-

netic structure. A comprehensive theory on why this is the case has yet to emerge.

More work has gone into calculating the viability of the spin-hedgehog phase. One

poposal by Grytsiuk et al. is a novel topological chiral interaction which does not

exist in other B20 compounds, which favours non-collinear spin structures [55]. An-

other study claimed that the consideration of weak higher-order exchange interactions

would stabilize the hedgehog lattice over the helical state [56].

Recent numerical work by Rudderham et al. modelled the effect of uniaxial

anisotropy and finite-size effects on the formation of skyrmions in B20 thin films [31].

It was found that the stability of in-plane skyrmion lattices and/or in-plane helicoids
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was strongly dependent on film thickness for small values of anisotropy. This is an in-

teresting avenue for an experimental study in which the film thickness can be tailored

in search of skyrmion lattices with a specified number of layers, or helicoids with a

certain number of twists. The disappearance and reemergence of skyrmion states as a

function of film thickness can also be used to estimate the strength of the anisotropy

in the film.

1.3 Scope of this thesis

To date, all MnGe thin films have been grown using a ∼ 2 nm template of the mag-

netic B20’s MnSi or FeGe. This makes the measurement of the magnetic properties of

MnGe thin films difficult, since the observed signal will also contain the contribution

from the template. This exacerbated by the tight helical pitch which means that the

study of confinement effects predicted by Rudderham et al. occurs for thicknesses in

the range of 3 nm to 30 nm. Perhaps due to the necessity of a B20 seed layer (depo-

sition of Mn and Ge on Si(111) result in P63/mcm Mn5Ge3, shown in Figure 1.4),

for which magnetic compounds (MnSi, FeGe) are the most easily reproduced, there

have been no comprehensive reports on the magnetic properties for MnGe films with

thicknesses below 80 nm.

The aim of this thesis is to study MnGe thin films of thickness less than 40 nm, a

range where a magnetic template layer is not appropriate. A non-magnetic template

layer is used and represents the first growth of magnetically isolated MnGe thin films.

One may question the need for a non-magnetic template, if the properties of the

template can be measured and subtracted. The danger in such an approach for

MnGe is illustrated in Reference [22], which studied the impact of a ferromagnetic Fe

pinning layer below the FeGe helix using PNR. Isolated FeGe is subject to symmetric

boundary conditions at the top and bottom interfaces, resulting in a modulation which

was symmetric about the centre of the film. A Fe pinning layer breaks this symmetry

and leading to the exchange coupling of the spins at the bottom of the helix. The

helix was then able to be manipulated by this Fe layer. It is quite possible that the

properties of MnGe may be influenced by an underlying magnetic template layer.

Given that the magnetic structure of MnGe is not precisely known, the effect of this

interaction is impossible to disentangle. Furthermore, the triple-Q region observed in
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the 160 nm film by the RIKEN group occurs exclusively below 50K, approximately

the same window in which the MnSi template layer is magnetic (below ∼ 40K).

Understanding the origin of this phase necessitates the decoupling of the magnetism

of MnGe and MnSi.

The isostructural B20 compound CrSi was chosen to act as a template layer for the

growth of MnGe since it is known to be paramagnetic down to low temperature [57,

58]. Reference [59] reports an extremely weak ferromagnetic moment less than 0.04µB

per Cr atom below low 20K but it is difficult to rule out the presence of impurities in

their sample based on the available data. In addition to the trivial magnetic behaviour

of CrSi, the possible side products Cr and CrGe are also paramagnetic. This provides

an advantage to CrSi over FeSi (also paramagnetic), for example, which may produce

ferromagnetic Fe or FeGe as magnetic impurities.

The nucleation of CrSi was on Si substrates was investigated byWetzel et al. where

Cr overlayers were deposited and subsequently annealed. [60, 61] It was found that

epitaxial B20 CrSi formed below 400 ◦C, and above this temperature, hexagonal CrSi2

(space group P6222) formed. This was evidenced by low energy electron diffraction

(LEED) and X-ray photoelectron spectroscopy (XPS). The crystal structure of CrSi2

is shown in Figure 1.4.

Investigations into the nucleation of MnSi on Si(111) were performed by Higashi et

al. using STM. It was found that the B20 structure forms when Mn overlayers react

with the underlying substrate. If the Mn layer is too thick, the Si will leave behind

caves in the substrate which leads to a rough film. A similar behaviour was also

observed in Reference [62]. Higashi et al. found that the resultant film quality would

be drastically improved by depositing a stack which already contained the necessary

Si to form MnSi. When a stack consisting of 0.5 QL Si / 1 QL Mn / 0.5 QL Si was

deposited, the resulting 2 QL layer of MnSi was atomically flat. A small number of

holes were observed, but nearly the entire surface (98%) was covered. This recipe was

applied in this thesis to yield a 2 QL template of CrSi.

The scope of this thesis is twofold. Firstly, this work aims to synthesize B20 MnGe

films of thickness below 40 nm using a non-magnetic template layer. This will fill a

gap in the present literature. Secondly, this thesis aims to investigate the magnetic

properties of these films. The goal is to understand the influence of finite size effects
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Figure 1.4: (a) and (c) Crystal structure of hexagonal Mn5Ge3. (b) and (d) Crystal
structure of hexagonal CrSi2.

on MnGe, a system where the helical wavelength is substantially smaller than the

other B20 compounds.



Chapter 2

Experimental techniques

This chapter presents an overview of the experimental techniques used in this thesis.

The method used to grow the samples is introduced, as well as various diffraction and

reflectometry techniques used to characterize their structure. Finally, the techniques

used for magnetic characterization of the sampes are discussed.

2.1 Molecular beam epitaxy

The MnGe films studied in this thesis were grown using molecular beam epitaxy

(MBE). The term epitaxy, from the Greek words epi (upon) and taxis (arrangement)

refers to the growth of a crystalline overlayer, which shares a well-defined orienta-

tion with respect to the substrate crystal. During growth, the precursor elements

are deposited on the substrate at a rate sufficiciently low (typically 1 Åmin−1 to

100 Åmin−1) so as to allow the film to grow one atomic layer at a time, so long as the

film and substrate are lattice matched. There are three main modes of film growth,

dictated by the interaction between the precusror atoms and substrate, and the pre-

cursor self-interaction [63]. If the precursor atoms are more attracted to the substrate

than themselves, they will tend to wet the substrate and the film can grow layer-by

layer. This is Frank-Van der Merve growth. In the other extreme, Volmer-Weber

growth, the precusror atoms are strongly attracted to themselves which leads to the

nucleation of islands which only coalesce for large film thicknesses. The intermediate

case consists of a smooth wetting layer upon which islands nucleate above some criti-

cal thickness, known as Stranski-Krastanow growth. Each of these growth modes are

depicted in Figure 2.1.

Film growth by MBE occurs in an ultra high vacuum (UHV) environment, in

order to minimize time interval over which contaminant species will impinge on the

surface of the sample. To estimate the maximum allowable pressure for MBE growth,

consider a flux Φ = dNp / dS
′ dt consisting of dNp contaminant particles adsorbing on

15
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a sample area dS ′ in time dt. The particles which contribute to the flux have velocity v

and will be within a distance v dt of the surface, and come from a particular direction

within solid angle dΩ′. It is useful to consider an infinitesimal volume which forms

a slant cylinder with base area dS ′ and height v dt cos θ′, and integrate dΩ′ over all

of these cylinders. The number of particles in this volume depends on their volume

density np, and the probability of one particle having velocity between v and v + dv

is given by the Maxwell-Boltzmann distribution, f(v). This means that the total

number of particles within one slant cylinder with velocity v is given by:

dNp = np dV f(v) dv
dΩ′

4π
= np dS

′ v cos θ′ dt f(v) dv
sin θ′ dθ′ dϕ′

4π
. (2.1)

Integrating over all velocities and restricting the solid angle to account for contami-

nation which comes from above the sample, one obtains

Φ =

∫
dNp

dS ′ dt
= np

∫ ∞

0

dv vf(v)
1

4π

∫ π/2

0

dθ′ sin θ′ cos θ′
∫ 2π

0

dϕ′ =
1

4
np ⟨v⟩ , (2.2)

where ⟨v⟩ = (8kBT/πm)1/2 is the thermal velocity of the particles, with mass m at

temperature T . Substituting the equation of state for an ideal gas, one obtains an

estimate of the pressure:

p = Φ
√
2πmkBT . (2.3)

Consider CO, one of the most common contaminant species inside an MBE chamber,

which has mass of 4.65×10−27 kg and surface density of 2.33×1019m−2. Constraining

the monolayer arrival time to be longer than 1 hour (the timescale of MBE film

deposition), the criterion is obtained: p < 4.00× 10−8 Pa at 298K.

It is illustrative to estimate the mean free path of the gas molecules inside an

MBE chamber. This is simply the ratio of the distance travelled and the number of

collisions in time interval dt. The distance travelled by one particle in dt is simply

⟨v⟩ dt. If the cross-sectional area of the particles is σ, the effective volume of the

interaction can be written in terms of their relative velocity as σ ⟨vrel⟩ dt. The square
of their relative velocity is given by ⟨(v1 − v2)

2⟩ = ⟨2v2 − v1 · v2⟩. If these particles

are in equilibrium, their velocities are uncorrelated and v1 · v2 = 0, meaning the

relative velocity is ⟨vrel⟩ =
√
2 ⟨v⟩. Knowing the interaction volume and the density

of particles, one obtains an estimate for the mean free path:

λMFP =
1√
2σnp

=
kBT√
2σp

. (2.4)
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The particles may be approximated as spherical by using σ = πd2k where dk is the

kinetic diameter (dk = 376 pm for CO) [64]. At 4.00× 10−8 Pa and 298K, the mean

free path is λMFP = 232 km, much larger than the size of the MBE chamber. It can

safely assumed that all particles travel undisturbed in ballistic trajectories.

A schematic of the MBE chamber used to grow the films studied in this thesis is

shown in Figure 2.1. The base pressure is less than 8 × 10−9 Pa and remains below

3×10−8 Pa during growth with the use of a liquid nitrogen cryoshroud. The substrate

wafers are placed in a sample holder and inserted into the sample manipulator for

the growth. The manipulator allows for azimuthal rotation of the substrate to ensure

uniform flux from the molecular beams, and includes a heater capable of reaching tem-

peratures in excess of 1000 ◦C. Cr and Mn are deposited using thermal effusion cells,

while Si and Ge evaporated by electron beam bombardment. The substrate is obsured

from molecular beams by shutters while the desired deposition rate is achieved. The

deposition rates of Si, Cr and Ge are measured using quartz crystal oscillator and

the Mn rate is found using a calibrated ionization gauge. The Mn flux is determined

by recording the pressure difference between gauges inside and outside the beam of

Mn atoms. During Mn deposition, the typical differential pressure is 5× 10−6 Pa. An

electron gun and fluorescence screen allow in-situ surface characterization, discussed

in Section 2.2.2.

2.2 Diffraction

2.2.1 X-ray diffraction

X-ray diffraction (XRD) is a workhorse technique for ex-situ characterization of the

structure of the MnGe films. X-rays are scattered from the electronic distribution

in the material which reveals information about the film structure and quality. Con-

sider an X-ray (which will described as a plane wave) of wavevector q incident on a

particular material, which scatters into wavevector q′. Fermi’s golden rule describes

the transition rate Γ(q,q′) per unit time for scattering between states q and q′ [65]:

Γ(q,q′) =
2π

ℏ
|⟨q|V |q′⟩|2δ(Eq′ − Eq) , (2.5)

where the Dirac delta function ensures conservation of energy, and the matrix ele-

ment is proportional the Fourier transform of the scattering potential V . A periodic
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Figure 2.1: (a) Schematic of the MBE chamber used to grow the films studied
in this thesis. Precursor atoms are evaporated via effusion cell or electron-beam
bombardment. Depositition rates are determined with a quartz oscillator or calibrated
ion gauge. The sample sits face-down in the manipulator. (b)-(d) Representation of
the three main modes of film growth. Growth time increases as each cartoon is viewed
top-to-bottom.

scattering potential yields V (R+x) = V (x), where R is a lattice vector and x resides

within the unit cell. This means that the matrix element in Equation 2.5 becomes:

⟨q|V |q′⟩ =
∑
R

exp (−i(q′ − q) ·R)

∫∫∫
unit cell

d3xV (x) exp (−i(q′ − q) · x) . (2.6)

The definition of the reciprocal lattice ensures that the first term in Equation 2.6 is

identically zero unless q′ −q is equal to a reciprocal lattice vector G. This yields the

Laue condition,

q′ − q = G , (2.7)

which ensures conservation of crystal momentum. This concept is easily demonstrated

with the Ewald sphere construction in Figure 2.2. A sphere of radius q is drawn with

the tip of the incident wavevector q placed at the origin. Only scattered wavevectors

q′ which lie on the sphere satisfy conservation of energy. At points on the Ewald

sphere where q′ touches a reciprocal lattice point, crystal momentum is conserved

and the scattering vector q′ − q is equal to a reciprocal lattice vector. Rotating the
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sphere about the origin of reciprocal space (which is equivalent to rotating the crystal

or X-ray source) will reveal all allowable reflections from the crystal; they are planes

corresponding to reciprocal lattice vectors that touch the surface of the sphere.

q q'-q=G

q'

2π/d

Ewald sphere

radius 2π/λ

(0,0,0)

(2,2,0)

(1,3,0)

(2,2,0)

Figure 2.2: Ewald sphere construction for X-ray diffraction. A representative recip-
rocal lattice is shown as grey dots. The wavevectors q = (0, 0, 0) and q′ = (2, 2, 0) are
noted. The scattering vector q′−q is equal to a reciprocal lattice vector G = (2, 2, 0)
and in this geometry, Bragg diffraction occurs for the (220) planes. Another valid
Bragg reflection in this geometry is from the (1̄30) planes.

Squaring both sides of Equation 2.7 gives q2 = q′2 − 2q′ · G + G2. Considering

elastic scattering (q′ = q) and substituting q = 2π/λ and G = 2πn/dh,k,ℓ, Bragg’s law

is obtained:

2dh,k,ℓ sin θ = nλ , (2.8)

where λ is the X-ray wavelength, dh,k,ℓ is the spacing between successive scatter-

ing planes and θ is the scattering angle. The geometry of Bragg’s law is shown in

Figure 2.3.

The X-rays are incident on the sample at an angle ω, and the angle between

incident X-rays and X-rays scattered into the detector is 2θ. When the sample angle

ω is fixed to be equal to θ, it is referred to as a θ−2θ measurement, where the scattering

vector remains parallel to the film normal. An XRD experiment is performed by

varying the scattering angle θ and monitoring the intensity of scattered X-rays at a
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detector angle 2θ with respect to the X-ray source. Peaks in a graph of intensity

versus 2θ identify plane spacings given by Equation 2.8.

XRD measurements were performed on a Siemens D500 diffractometer, depicted

in Figure 2.3. A source of nearly-monochromatic Cu Kα X-rays irradiates the sample

and is collimated with various slits. In the figure, S1 and S2 collimate the incident

beam. S3 is an anti-scatter slit. S4 and S5 are monochromator slits and M is the

monochromator. The slits yield an angular resolution of 0.02◦. This is the minimum

value of the full width at half maximum (FWHM) in ω that is observable due to

instrumental broadening. X-rays are produced from high-voltage electrons striking

a Cu anode. When the electrons that have been excited to the 2p orbital decay to

the 1s, Kα radiation is produced. The spin-orbit splitting of the 2p orbital into the

2p1/2 and 2p3/2 orbitals yields a doublet emission of Cu Kα1 = 1.540 562 Å, and Cu

Kα2 = 1.544 398 Å, where intensity ratio of Cu Kα1 to Cu Kα2 is approximately 2:1.

For each measurement, the sample was aligned to the Si subtrate by setting 2θ =

28.44◦ (corresponding to the Si(111) peak) and scanning ω while 2θ remains fixed.

In this measurement the scattering vector remains fixed in magnitude, while it scans

in a direction perpendicular to the film normal. This is known as a rocking curve

scan, which yields a peak in intensity as a function of ω. The difference between the

ω of maximum intensity and 2θ/2 is the offset which is applied to the sample for

the duration of the X-ray scan. A rocking curve is used to align the sample before a

θ− 2θ measurement to ensure that the crystallographic planes of interest are normal

to the scattering vector. By scanning both ω and 2θ, a reciprocal space map can

be constructed. This is a two-dimensional representation of reciprocal space; while a

θ − 2θ measurement scans qz, a reciprocal space map measures XRD in the qz − qx

plane. The relationship between instrument angles and reciprocal space vectors is

qx =
2π

λ
(cosω − cos(2θ − ω)) , (2.9)

qz =
2π

λ
(sinω + sin(2θ − ω)) . (2.10)

The location of the Si(111) peak for Cu Kα X-rays is (ω = 14.22◦, 2θ = 28.44◦)

which lies on the qx = 0 line. The Si(531) peak, on the other hand, is accessible at

(ω = 28.4◦, 2θ = 114.2◦). This technique is particularly useful for structural analysis

of epitaxial thin films, which only have a limited number of peaks visible in qz. In the
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case of epitaxial MnGe(111), only the (111) and (333) peaks are accessible by θ− 2θ

measurement. The presence of additional peaks such as the (112), (221) and (331)

reflections on a reciprocal space map were used to confirm the B20 structure.

ω
2θ

Source

S1
S2 S3

S4

M

S5

Detector

d

(b)(a)

θ

Figure 2.3: (a) Depiction of the diffractometer used for the structural analysis of the
MnGe films. The sample stage and detector rotate to vary the diffraction angle 2θ.
The X-ray beam is collimated onto the sample using two slits, S1 and S2. Diffracted
X-rays then travel through an antiscatter slit S3 (to limit stray X-rays from entering
the detector) and two monochromator slits, S4 and S5 as well as the monochromator
M . (b) Visual representation of Bragg’s law. For two scattered X-rays to be seen at
the detector, they must constructively interfere. Their path length difference can be
calculated using the red triangle, yielding Equation 2.8.

In Equation 2.6, the term in front of the integral is called the geometric structure

factor and determines the allowed scattering vectors q′ − q. The integral is called the

structure factor and describes contributions to the scattering due to the distribution of

scatters within the unit cell. The diffracted intensity is given by the square modulus

of this equation. Other factors such as the Lorentz polarization factor (related to

experimental geometry) and Debye-Waller factor (associated with thermal vibrations)

contribute corrections to the intensity. In this thesis, the main focus is on analyzing

the impact of the geometric structure factor to the XRD data.

For a sufficiently large crystal, the geometric structure factor is sharply peaked,

whereas for a finite film, this term gives rise to intensity fringes on either side of the

diffraction peak. A simple explanation for these Kiessig fringes is that plane waves

scattering off sucessive lattice planes will combine at the detector in a Fourier series,

whose profile will approach a Dirac delta function for many layers, and remaining

broad for thin films, with the presence of Gibbs oscillations. This is illustrated by
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calculating a simple model of the geometric structure factor. For N layers of lattice

planes with spacing dh,k,ℓ corresponding to the (hkℓ) reciprocal lattice vector, one can

write the peak instensity as proportional to:∣∣∣∣∣∑
R

exp (−iG ·R)

∣∣∣∣∣
2

=

∣∣∣∣∣
N∑

n=1

exp (−Gna)
∣∣∣∣∣
2

=
cos(4πNdh,k,ℓ sin θ/λ)− 1

cos(4πdh,k,ℓ sin θ/λ)− 1
, (2.11)

where a is the lattice parameter. By fitting Kiessig fringes of an XRD peak for N ,

the thickness df = Ndh,k,ℓ of the film can be estimated. For the MnGe thin films

studied, this approach was effective for film thicknesses below approximately 40 nm.

Above this thickness, the the fringe spacing diminishes until only a small shoulder on

the side of the MnGe(111) peak could be resolved.

It was found by Karhu [66] for the case of MnSi thin films, an analytic expression

for the Kiessig fringes which includes interfacial roughness was able to accurately

capture both the film thickness and amplitude of the fringes. This was derived in

Reference [67] using kinematical scattering theory. For a film with a mosaic structure

where there is incoherent scattering from various regions, the intensity is given by

I(G) =
|F |2
G2

[
2− 2 exp

(
−1

2
G2(σL

2 + σU
2 − 2rcσLσU)

)
cos(NGd)

]
, (2.12)

where σL (σU) is the roughness of the lower (upper) interface, F is the structure factor,

and rc is the correlation coefficient between the two interfaces. In the zero roughness

limit, this expression approaches Equation 2.11. Figure 2.4 depicts a representative

XRD peak for a 22.9 nm MnGe film. A simulation is given using both Equations 2.11

and 2.12.

2.2.2 Reflection high energy electron diffraction

Reflection high energy electron diffraction (RHEED) is the technique used for in-situ

characterization during the growth of the films. A beam of high energy (12 keV to

15 keV) electrons is focused onto the sample at low incident angle. The electrons

undergo diffraction at the sample and the diffraction pattern can be imaged on a

fluorescence screen. Due to this glancing incident angle, the RHEED beam only

penetrates the first few atomic layers [68, 69]. This makes RHEED extremely surface-

sensitive and it is an invaluable tool for monitoring the growth of epitaxial films.
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5 Å roughness
5 nm roughness

Figure 2.4: Simulation of the MnGe(111) X-ray peak for a film thickness of 20 nm.
The curve with open circles is generated with Equation 2.11 with no interface rough-
ness. The red (black) curve was generated with Equation 2.12 using an interfacial
roughness of 5 Å (5 nm). Diffuse scattering from the roughness diminishes the sharp
Kiessig fringes. For a sufficiently rough film, the fringes are completely washed out.

Diffraction in RHEED can again be understood by Equation 2.7 and the Ewald

sphere construction. For this case, the lattice in real space is effectively two-dimensional

and therefore the reciprocal space is a series of rods with very large extent in the qz

direction. The intersection between the Ewald sphere and reciprocal rods are points,

which satisfy the diffraction condition. Because of this geometry, the diffraction spots

lie on concentric circles, if the film is flat. The RHEED screen reveals the intensity

of diffracted electrons, and all information about their phase is lost. For this reason,

a RHEED pattern does not contain enough information to completely describe the

surface lattice that produced it. Analysis of RHEED is a game of pattern recognition:

the experimenter calculates a diffraction pattern based on a proposed surface lattice,

which is compared to the observed RHEED spots.
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Defects or features in the surface will have a notable impact on the resultant

RHEED pattern. Real crystals and films are not always ideal. It is uncommon for

heteroepitaxial structures to form a completely uniform overlayer and there will often

be small islands or domains of finite size. The size of these domains is typically

smaller than the coherence length of electron beam, allowing them to be imaged.

This broadens the horizontal extent of the reciprocal rods, leading to a broadening of

diffraction spots into streaks [68, 69]. The spacing between the islands determines the

thickness of the streaks, with larger domains yielding sharper streaks (or points). It

should be noted that if a film is composed of finitely sized domains, this does not imply

that it is polycrystalline. The diffraction in polycrystalline films will be averaged over

all possible orientations of the crystallites, resulting in concentric circles of intensity,

rather than distinct spots or streaks which lie on the Laue circles. Depictions of

various surfaces and their resultant RHEED patterns are shown in Figure 2.5. In this

work, RHEED of the MnGe predominantly featured spots and thin streaks, indicating

a relatively flat crystalline surface.

The surface structure of a crystal is often different from that of the bulk. The

surface atoms form bonds with their neighbours on the surface in a reconstruction:

the resulting dimers lower the symmetry of the surface and this is observable with

RHEED. For example, a clean Si(111) surface will undergo a (7 × 7) reconstruction

when heated in vacuum to sufficiently high temperature. The reconstructed surface

unit cell is larger than the bulk by a factor of 7 in both in-plane directions and

produces fractional-order diffraction spots between the spots owing to the bulk.

In the case of CrSi(111) on Si(111), the film is lattice matched to Si with a 30◦

rotation. The epitaxial relationship is:

CrSi[01̄1] ∥ Si[1̄1̄2]

CrSi[111] ∥ Si[111]

MnGe[01̄1] ∥ CrSi[01̄1]

MnGe[111] ∥ CrSi[111]

The surface of the CrSi/Si(111) system is shown in Figure 2.6. The surface unit cell

of CrSi(111) is
√
3 times larger than that of Si(111). Therefore the RHEED spot

separation for CrSi(111) is 3 times smaller than that of Si(111) for a beam along the
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Figure 2.5: (a) Ewald sphere construction for RHEED, depicting the intersections
of reciprocal rods which appear on a Laue circle, shown in blue. (b) Relation of the
film morphology to the resultant RHEED pattern. Flat films give sharp spots or
streaks which lie on the Laue circles. Rough films yield transmission spots, similar
to the case of XRD.

Si[11̄0] direction. When the beam is along Si[1̄1̄2], the periodicity is the same. This

is falsely referred to in the literature as a
√
3 × √

3 reconstruction, but there is no

reconstruction of the CrSi(111) surface. A sketch of the predicted RHEED pattern

for this sytem is also given in Figure 2.6, wherein the pattern consists of only integer

order diffraction spots for one orientation, and two fractional order spots between

each integer spot when the sample is rotated.
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Cr 

Si in CrSi

Si substrate

(a)

Beam along Si[110] Beam along Si[112](b)

Figure 2.6: (a) Representation of the epitaxial relationship of a pseudomorphic
(111)-oriented B20 film on Si(111). In this case, CrSi is shown. The surface unit cell
of CrSi (Si) is shown on the left (right). The surface unit cell of CrSi is

√
3 times

larger than that of Si, and rotated by 30◦. (b) Calculated RHEED pattern for this
system. The additional dim spots appear as fractional-order spots for sufficiently thin
layer of CrSi. For a thicker B20 film, the intensity appears similar for all the spots.

2.3 X-ray reflectometry

In XRD, the wavelength λ is on the order of the plane spacing dh,k,ℓ, which allows

for the identification of structures ranging from 1 Å to 9 Å at intermetiate to high

angles. As the scattering angle is decreased, larger-scale structures are being probed.

X-ray reflectometry (XRR) is a technique which uses grazing incidence angles and

is sensitive to interfacial spacing. XRR was used to determine the thickness and

roughness of the MnGe films.

Since q′ − q is much smaller than the G which give rise to Bragg diffraction, one

can employ a continuum model for XRR. The sample will appear as an ideal Drude

material due to the high frequency of the X-rays. This results in a complex index of
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refraction which is slightly less than unity [70]. This can be written as

n = 1− λ2

2π
rens(f

′ + if ′′) (2.13)

where ns is the scatterer number density, re = 2.82 fm is the Thomson scattering

length (the classical radius of the electron), and f ′ + if ′′ is the X-ray scattering

factor. The imaginary part of the refractive index describes the absorption of X-rays,

which is typically negligible for energies not near resonance. Cu Kα is sufficiently far

from any absorption edges for Mn and Ge. In the absence of absorption, the refractive

index may be approximated in terms of the effective density of electrons, ρe ≈ nef
′:

n = 1− λ2

2π
reρe . (2.14)

Below a critical angle θc, the incident X-rays undergo total external reflection [70].

This is related to the refractive index by cos θc = n, where θc is small. This is

approximately given by

θc = λ

√
reρe
π

, (2.15)

The quantity reρ is the scattering length density (SLD), which measures the effective

scattering ability of a material.

The X-rays incident on an interface are modelled as plane waves consisting of

an indicent, transmitted and reflected wave. By applying the appropriate boundary

conditions, the reflectivity can be related to the scattering wavevector as:

R =

∣∣∣∣∣qz −
√
qz2 − qc2

qz +
√
qz2 − qc2

∣∣∣∣∣
2

, (2.16)

which simplifies to R = (qc/2qz)
4 for wavevectors sufficiently far above the critical

wavevector qc. This is the Fresnel reflectivity for an infinite material. A sample Fresnel

reflectivity curve is given in Figure 2.7. Above the critical angle, the reflectivity is

unity as the X-rays are totally externally reflected. As 2θ increases, the reflectivity

drops drastically. The penetration depth of the X-rays is relatively small (typically no

more than 3 nm) below the critical angle, and sharply increases to several µm above

the critical angle.

For more complicated systems such as an MBE-grown thin film, interference be-

tween reflected X-rays from each layer will give rise to Kiessig fringes on the Fresnel
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Figure 2.7: Sample XRR curves. The dots show experimental data for a trilayer
consisting of 7.8 nm Mn/13.7 nm Ge/2.6 nm Si on a Si substrate. The red line is a
fit to this data using GenX. The grey line shows simulated Fresnel reflectivity from
an infinite Si substrate. The critical angle of the trilayer is larger than that of the Si
due to its larger scattering length density. The inset shows the calculated SLD as a
function of depth in the trilayer, in units of the Thomson radius per cubic angstrom.

reflectivity. Modelling these is best done numerically. Figure 2.7 shows an example

XRR curve for a 7.8 nm Mn/13.7 nm Ge/2.6 nm Si trilayer. Samples of this kind were

used to calibrate the MBE deposition rates. All XRD data shown in this thesis was

fit using the GenX software [71].

Measurements were taken with the same diffractometer used for XRD. The sample

was aligned by use of a rocking curve below the critical angle. This ensures that the

diffractometer scans reciprocal space normal to the surface of the sample, which may

not necessarily correspond directly to the Si(111) planes. If the substrate is miscut,

the surface will be a small angle misaligned relative to the planes. For the substrates

used in this thesis, the miscut is less than 0.5◦, per the manufacturer.



29

2.4 Magnetometry

The magnetic properties of select MnGe films were studied with a superconducting

quantum interference device (SQUID) magnetometer. This technique relies on Fara-

day’s induction law, and the Josephson effect. The former states that a time varying

magnetic flux ΦB will produce an electromotive force (EMF) ε in a conducting loop,

ε = −∂ΦB

∂t
. (2.17)

The Josephson effect is a phenonemon which causes a superconducting current to

flow across a thin insulating barrier separating two superconductors: a Josephson

junction [72]. For sufficiently low current, there will be no voltage across the junction

and above a particular critical current, the voltage will increase.

A SQUID magnetometer consists of several important parts. A superconducing

magnet is used to generate large magnetic fields and a superconducting decection coil

couples inductively to the sample, which is connected to the SQUID. When the sample

is oscillated through the pickup coil, its time-varying flux induces a supercurrent in the

wire to oppose the change. Since the flux inside a superconducting loop is quantized

by Φ0 = h/2e (where h is Planck’s constant and e is the elementary charge), the

induced supercurrent will vary to set the flux to the nearest integer multiple of the

flux quantum [73]. The SQUID is coupled to the pickup coil, so an identical current

flows trough the SQUID.

A SQUID consists of a closed superconducting loop inside of which there may

be one or several Josephson junctions bridging the path of the supercurrent [74]. A

bias current is applied such that small changes in flux will result in a large voltage

across the Josephson junctions. The SQUID in this configuration is therefore an

extremely sensitive flux-to-voltage transducer, with sensitivity set by Φ0 [72]. By

interpolating between flux quanta, this resolution can be improved further in data

processing. Because the SQUID resolution is in the fT range, whereas the Earth’s

magnetic field is on the order of 50µT (corresponding to hundreds of flux quanta over

the size of a SQUID sensor), the magnetometer includes a superconducting magnetic

shield to isolate the SQUID from the outside. In addition to its immense sensitivity,

a SQUID can be made to operate in magnetic fields as large as 7T.

The magnetometry measurements collected in this thesis used the reciprocating
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sample option (RSO) of a Quantum Design Magnetic Properties Measurement System

(MPMS) SQUID magnetometer, capable of magnetic fields up to 7T. In the RSO

mode, the sample is moved vertically about the centre of the detection coil, which is

configured as a second-order gadiometer. This gradiometer is only sensitive to the

second spatial derivative of the time-dependent flux, which eliminates many sources

of noise in the signal. Samples with total magnetic moment as low as 1× 10−11Am2

can be accurately measured by measuring the SQUID voltage versus sample position,

and modelling the sample as a perfect dipole. The coils in the second-order gadiome-

ter have longitudinal radius of r = 0.97 cm and the upper/lower loops are situated a

distance β = 1.519 cm from the two central loops. Given these parameters, the opti-

mal extent of a sample in the direction of the RSO mode oscillation is approximately

4mm so it can be treated as a point dipole.

A schematic of the setup is shown in Figure 2.8. The equation which describes

the voltage VRSO as a function of distance d produced by an ideal dipole traversing

through a second-order gradiometer is:

VRSO(d) = z0 + ℓd+ µη

[
2

(r2 + d2)3/2
− 1

(r2 + (d+ β)2)3/2
− 1

(r2 + (d− β)2)3/2

]
,

(2.18)

where d is the sample position with respect to the coil centre, µ is the dipole moment,

η is a sensitivity factor, and r and β are the coil radius and separation, respectively.

An electronic drift which is linear in position is parameterized by ℓ and z0 is a constant

voltage offset. A sample RSO curve and accompanying fit are given in Figure 2.9. It

is sometimes the case that significant time-dependent drift must also be subtracted.

This is also approximated as linear (d is sinusoidal in time) and subtracted before

fitting the voltage.

The samples were oriented such that the field was either parallel or perpindicular

to the plane of the film. When the field is applied along MnGe[111], this is referred

to as out-of-plane. There are two in-plane directions for a MnGe(111) film. These are

MnGe[01̄1] and MnGe[2̄11]. Because the magnetic anisotropy for a cubic material is

isotropic in the (111) plane, these directions should be equivalent. For consistency,

the field was always applied in the MnGe[01̄1] direction; this was chosen because it is

a higher symmetry direction. For the rest of this work, in-plane refers to MnGe[01̄1].
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Figure 2.8: Schematic of the 2nd order gradiometer in a SQUID magnetometer.
The sample oscillates inside the coils and induces an EMF which is only sensitve the
second order derivative in position. The sample is wedged into a plastic straw which
is uniform and so will not induce an EMF in the pickup coil. The coils are inductively
coupled to a SQUID.

The samples were cleaved into rectangular pieces with nominal dimensions 8mm×
4mm (for field to be applied in-plane), or 6mm × 4mm (for field to be applied

out-of-plane) and inserted into a plastic straw. Since the magetometer measures

the total moment of the sample µ, the magnetic signal at high fields is dominated

by the diamagnetic response of the substrate. To account for this, the magnetic

moment of the substrate was fit at high field (much larger than the critical field for

the transition to the field-induced ferromagnetic state) and the substrate susceptibility

χSi = ∂M/∂H was subtracted from the measured moment. The magnetization was

calculated by dividing the corrected moment by the film volume, Vf . The volume of

a sample of MnGe was determined by measuring its area with digital calipers and its

thickness using XRR.
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Figure 2.9: Sample SQUID RSO voltage curve with accompanying fit. The sample
moment from this particular curve was 1.5× 10−7Am2. The inset shows the form of
a voltage curve with significant time-dependent drift.

The diamagnetic susceptibility of Si is only weakly temperature-dependent. The

large saturation field of MnGe makes the subtraction of the Si susceptibility impos-

sible at low temperatures, since the film cannot be completely saturated and χSi

cannot be estimated. At higher temperatures, the magnetization more slowly ap-

proaches its saturation value. For consistency, the substrate susceptibility was taken

to be constant in temperature. A value of χSi was extracted from the M versus H

measurement at an intermediate temperature, which was used for all temperatures.

The diamagnetic subtraction is detailed in Figure 2.10. This procedure also includes

the assumption that MnGe has zero susceptibility χHF = 0 above the saturation field.

This is not necessarily correct for itinerant magnets, but the value is small for bulk

MnGe, χHF ≈ 6 kAm−1T−1 at 100K [17]. Previous studies on MnSi thin films found

a high-field susceptibility which was comparable to bulk MnSi, which was also small.
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Figure 2.10: Illustration of the procedure used to subtract the magnetic signal from
the Si substrate. The grey circles show the magnetic moment extracted from the
RSO voltage curves using Equation 2.18. A linear fit shown in red was applied to
the data above 6T. The slope of this line, −1.893× 10−8Am−1T−1, represents χSi.
The intercept, 2.48× 10−7Am2 represents the saturated moment of the MnGe film.
When χSiµ0H is subtracted, the data shown by black circles is obtained, which is the
moment of just the film. The remanent moment is unaffected by this subtraction.

The positive value of χHF leads to the magnitude of χSi being underestimated.

Measurement of the remanent magnetization is not affected by this subtraction. Fur-

thermore, the magnetization obtained from extrapolating the high-field data to zero

(the red line in Figure 2.10) is also insensitive to corrections involving χHF. Assuming

χSi is temperature-independent and neglecting χHF only amounts a correction of a

few percent in the magnetization.

The moment µ is extracted from the RSO voltage curves using Equation 2.18. The

fitting procedure is as follows: before the measurement, the sample is centred within

the coils by measuring VRSO for all d within the motor range of the magnetometer.
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It was checked that the sample did not move from this position over the course of all

measurements. For each RSO voltage curve, the position with respect to the centre of

the coils is fixed and Equation 2.18 is applied using a bounded least squares algorithm.

The initial moment is set around 5×10−8Am2 and the drift parameters are initialized

to zero, to avoid biasing the refinement. After a sussessful fit has been obtained, the

constraints are relaxed and the centre of the curve is allowed to move by at most

1mm to account for a shift due to thermal expansion or contraction in the apparatus.

The previous refined parameters are allowed to vary by a certain amount, typically

±10%. The parameters from the current fit of VRSO are then used to initialize the

fit of the next VRSO curve. At each field-temperature point, eight VRSO curves were

measured, fit and averaged. If the moment from one measurement is greater than 1.4

standard deviations from the mean, it is rejected in the average.

The method described here was proven to be significantly more accurate than

the automatic fitting performed by the MultiVu program which controls the mag-

netometer. The main improvement is restricting the sample location in the second

refinement, which is effective for the case where the VRSO signal is comparable to the

noise. This was particularly important for regions in theM(H) orM(T ) scans where

the total moment goes to zero. Since the Multivu program is specifically calibtrated

to each magnetometer, it was verified that calculated moments from VRSO exactly

reproduced those fitted by Multivu, except for a reduction in unphysical refined mo-

ments. A comparison of the two methods is given in Figure 2.11.

2.5 Magnetotransport

To complement the SQUID magnetometry measurements, electrical transport mea-

surements were conducted. This was accomplished by measuring the Hall effect in

various temperatures and magnetic fields. The Hall effect involves a transverse volt-

age that is created when a current-carying material is exposed to a magnetic field.

In the traditional geometry for a thin film, the field is applied out-of-plane and the

current is applied in-plane. The Hall voltage appears orthogonal to both the electric

and magnetic fields and (the ordinary Hall effect) can be explained simply by the

Lorentz force law:

F = e(v×B) , (2.19)
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Figure 2.11: Illustration of the algorithm used to fit SQUID magnetometry data.
The red line is the moment determined by Multivu, and the black circles were ob-
tained from the fitting procedure used in this thesis. The two values agree, except
for a reduction in unphysical noise.

which describes the force on a charged particle e with velocity v (collinear with the

current) inside the magnetic field B. This force causes the charge carriers to accu-

mulate on one side of the sample, inducing the transverse Hall voltage. The intrinsic

quantities which are typically reported are the longitudinal and Hall resistivities, ρxx

and ρyx, respectively. These appear as diagonal and off-diagonal elements in the re-

sistivity tensor defined from Ohm’s law, Eα = ραβJβ. The Hall effect in topological

magnets contains three contributions:

ρyx = ρOyx + ρAyx + ρTyx , (2.20)

where ρOyx is the ordinary Hall effect:

ρOyx = µ0R0H , (2.21)

and ρAyx and ρTyx are the anomalous and topological Hall effects, respectively. The

anomalous Hall effect occurs in magnetic materials and depends on the magnetiza-

tion. The topological Hall effect results from the magnetic field in real space that

an electron experiences while adiabatically following a magnetization texture with
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nontrivial topology. The presence of a topological Hall effect has been used to argue

for the presence of non-coplanar spin textures such as a skyrmion or spin-hedgehog

lattice in MnSi and MnGe. It has also been found that an additional contribution to

the Hall effect occurs from the conical phase in MnSi.

Complex modelling and fitting of the Hall resistivity has been done by some groups

but is outside the scope of this thesis. Instead, it is used to search for magnetic phase

transitions. Transport measurements were performed in a Quantum Design DynaCool

Physical Properties Measurement System (PPMS). The samples were cleaved into

rectangles of length 6mm and width less than 2mm. Constant current leads were wire

bonded to the short edges of the sample and transverse voltage leads were attached

to the long edges of the sample, halfway between the current leads.

The electric potential ϕ was calculated from Laplace’s equation ∇2ϕ = 0, with

fixed potential at the leads, and additional boundary conditions at the edges of the

film given by J · n̂ = 0, where n̂ is a unit vector normal to the sample surface.

Laplace’s equation was solved using the finite difference method for a rectangle with

a length-to-width ratio of 3:1. A plot of the solution is shown in Figure 2.12. It can

be seen that the current is extremely uniform over the majority of the sample. This

method of preparation is much simpler than photolithographic patterning that has

been employed by some, and there appears to be no loss in data quality.

Figure 2.12: Calculated electric field for the rectangular geometry used for transport
measurements, obtained by solution of Laplace’s equation. There are five constant
current leads bonded wire bonded to the edges of the sample. The colour map shows
the variation of the potential and the black lines are equipotential contours. In this
geometry, the current is extremely uniform.

The longitudinal resistivity is necessarily symmetric in the magnetic field, whereas



37

the Hall resistivity is necessarily antisymmetric. The observed data was properly

symmetrized prior to analysis, using the following relations:

ρxx(H) =
1

2
(ρxx(H) + ρxx(−H)) ; (2.22)

ρyx(H) =
1

2
(ρyx(H)− ρyx(−H)) . (2.23)

Due to limitations on number of simultaneous measurements in the PPMS, the longi-

tudinal resistivity was not measured during the experiment. It was instead extracted

from the transverse resistivity resulting from the small horizontal misalignment of the

voltage leads. This separation is on the order of 50µm and the uncertainty in this

measurement is as large as 10%. As a result, the longitudinal resistivities reported in

this thesis will be given as a ratio, either ρxx(T )/ρxx(T = 5K) or ρxx(H)/ρxx(H = 0).

The field and temperature dependence of the measured resistivity is assumed to be

unaffected by the calculation so meaningful analysis can still be extracted. If an

accurate measure of the longitudinal resistivity is required, i.e., for calculating the

Hall conductivity, σH = ρyx/(ρ
2
xx + ρ2yx), the voltage leads should be re-bonded to the

sample in a longitudinal configuration and the measurements repeated in a future

study.



Chapter 3

Structural characterization

In this chapter, the growth of the MnGe thin films is discussed. It is shown that B20

MnGe thin films can be stabilized atop a B20 CrSi template layer. A review of the

temperature and composition dependence on the structure is also presented. XRR

and XRD are used to investigate structure and quality of the films, which reveals that

they crystallize as single-phase MnGe, with interfacial roughness less than 6 Å.

3.1 Sample preparation

MnGe thin films were prepared on high resistivity (ρ >10 kΩ cm) Si(111) wafers. The

wafers were first ultrasonically degreased for 15 minutes in acetone and methanol,

followed by a rinse and overflow in de-ionized nanopure water. A 1:2:10 solution

of NH4OH, H2O2 and H2O was prepared at 70 ◦C and the wafer was soaked for 10

minutes, followed by another rinse in de-ionized nanopure water. The wafer was then

dried with nitrogen gas and immediately loaded into the MBE system and brought

to UHV over 3 hours. The wafer was then degassed for longer than 12 hours at a

temperature of approximately 570 ◦C. The SiO2 layer on the surface of the Si was

desorbed by rapidly flashing the substrate to 830 ◦C and holding for 1 hour. The

substrate was then allowed to cool to 640 ◦C at a rate of less than 1 ◦C s−1. At this

temperature, a 20 nm buffer layer of Si was deposited before the sample was cooled

to room temperature again at a rate of less than 1 ◦C s−1.

In-situ RHEED with an electron energy of 15 keV revealed a sharp (7x7) recon-

struction which is indicative of a flat surface. Complementary ex-situ atomic force

microscopy (AFM) images reveal that the surface is flat, with step heights of ap-

proximately 3 Å, which corresponds to the atomic spacing between Si(111) planes

of 3.14 Å. The terrace widths were approximately 150 nm, corresponding to a wafer

miscut of approximately 0.1◦. The root-mean-square (RMS) roughness was found to

be between 2 Å and 8 Å for each substate, measured over an area of 10 µm × 10 µm.

38
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(a) (c)

(b)

1 μm

150 nm

Figure 3.1: (a) and (b) RHEED patterns of a Si substrate showing a (7x7) recon-
struction. The electron energy was 15 keV. The beam is along ⟨110⟩ in (a) and ⟨112⟩
in (b). Kikuchi lines are visible in both orientations. (c) AFM image of the surface,
showing a surface with low roughness comprised of atomic-scale terraces. The inset
shows the terraces in greater detail.

The RHEED and AFM from the substrate are shown in Figure 3.1.

The CrSi template was grown using the method described by Higashi et al. for

MnSi. A 2 QL template of nominal thickness 5.3 Å was grown by depositing a stack

consisting of 0.5 QL Si / 1 QL Cr / 0.5 QL Si. The nominal thickness of 1 QL of Cr

is 1.4 Å and 1 QL of Si is 2.2 Å. The 2 QL stack was deposited at room temperature

and then heated under periodic RHEED observation to a temperature no greater than

400 ◦C, above which hexagonal CrSi2 is reported to form. Annealing times ranged

from 30 to 75 minutes. Figure 3.2 shows RHEED typical of a CrSi template. The

simulated patterns in Figure 2.6 are observed, indicating the formation of a thin, flat

layer of CrSi. Comparison of the observed and simulated RHEED patterns is the best

method of confirming that B20 CrSi has formed.

Though the expected RHEED pattern of CrSi2, (1 × 1)R30◦, is difficult to dis-

tinguish from CrSi, the epitaxy of CrSi2 is reported to be poor below an annealing

temperature of 1100 ◦C. When the CrSi stack was annealed above 400 ◦C, the qual-

ity of the RHEED pattern dropped considerably and transmission spots indicated a
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rough surface. The presence of a high-quality
√
3 × √

3 pseudo-reconstruction be-

low 400 ◦C provides strong evidence for the case that B20 CrSi has formed. To add

to this, AFM reveals that the surface is indeed extremely smooth, with roughness

commensurate to that of the substrate. No impurity crystallites are observed. In-

situ surface-sensitive techniques such as XPS or Auger electron spectroscopy (AES)

would be useful in further confirming the structure of the annealed CrSi (as in Ref-

erences [60, 61]), although production of a reference CrSi2 film may prove difficult.

This should be addressed in future studies.

(a) (c)

(b)

500 nm

Figure 3.2: (a) and (b) RHEED exhibiting
√
3 × √

3 pseudo-reconstruction of the
2 QL CrSi template. In (a), the arrows indicate dim diffraction streaks from the
larger periodicity of the CrSi overlayer relative to the substrate. (c) AFM image of
the CrSi template which shows low roughness, commensurate to the substrate.

The MnGe was grown using two methods. For the first samples, the Mn and Ge

were co-deposited at elevated temperatures. This method is molecular beam epitaxy,

where the structure is crystallized as the precursor elements are deposited. The rates

of Mn and Ge were matched to achieve the desired stoichiometric ratio. After the

desired thickness was deposited, the sample was cooled to below 75 ◦C at a rate of

less than 1 ◦C s−1, and a capping layer of amorphous Si or Ge was deposited with

thicknesses ranging from 8 to 20 nm.

It was found that room temperature deposition leads to smoother films, as evi-

denced by calibrations such as in Figure 2.7 or the CrSi template. To exploit this,

subsequent MnGe films were grown by co-deposition at a relatively cold temperature
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of approximately 100 ◦C. After the desired thickness was reached, the temperature

was then increased to 250 ◦C and held for 30 to 120 minutes. This technique is known

as solid phase epitaxy, where the film undergoes a transition from an amorphous

phase to a crystalline phase. The RHEED beam was periodically turned on to check

the progress of the annealing. The beam was not left on for extended periods of time,

as it will crack CO molecules in the chamber and lead to the deposition of reactive

C and O radicals on the surface of the sample. After the desired RHEED pattern

was achieved, the sample was allowed to cool to room temperature at a rate of less

than 1 ◦C s−1, after which an amorphous Si or Ge cap was deposited, with thickness

between 8 and 20 nm.

After crystallization, RHEED on the MnGe films showed streaks consistent with

a flat, highly crystalline surface. This agrees with AFM, which shows circular islands

that have coalesced to form a smooth film. Figure 3.3 depicts representative RHEED

and AFM images. The RHEED was found to be largely independent of thickness.

2 μm

(a)

(d) (e) (f)

(b) (c)

Figure 3.3: (a) and (b) RHEED from MnGe film after cooling to room temperature.
Sharp streaks indicate a flat crystalline surface. (c)-(f) AFM micrographs for MnGe
films of thickness (c) 11.6 nm (d) 29.4 nm, (e) 22.9 nm and (f) 18.4 nm. In each case,
the RMS roughness is between 3 and 6 Å. The scale bar and height colourmap apply
for all micrographs.
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3.2 Optimal growth conditions

The B20 crystal structure was realized in films grown by co-deposition at elevated tem-

perature, but with limited success. Figure 3.4 details XRD patterns from films which

were annealed at increasing temperatures, each for 60 minutes. At 250 ◦C, single-

phase MnGe formed, based on the absence of any peaks other than the MnGe(111)

peak near 2θ = 32.5◦. The nominal as-deposited thickness of the film was less than

20 nm, meaning that its MnGe(111) peak will resemble the peak shown in Figure 2.4.

The lack of distinct Kiessig fringes indicates that the MnGe layer has large roughness.

The shoulder on the right side of the peak may be attributed to a small amount of

CrSi, or MnSi.

250oC

325oC

400oC

MnGe(111) MnSi(111) MnSi(002) MnSi(210)

Figure 3.4: XRD of MnGe films co-deposited at elevated temperature. At 250 ◦C,
the film is predominantly (111) oriented MnGe, except for an additional shoulder on
the MnGe(111) peak indicated by the arrow, which my be due to either CrSi or MnSi.
As the growth temperature increases, textured MnSi forms due to the diffusion of Mn
into the substrate.
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At annealing temperatures of 325 ◦C and 400 ◦C, the intensity of the MnGe(111)

peak diminishes and gives way to multiple peaks corresponding to different orienta-

tions of MnSi. At 400 ◦C, the MnGe(111) peak is completely extinguished. This can

be explained by the diffusion of Mn into the Si substrate with increasing tempera-

ture. Above a critical temperature between 325 and 400 ◦C, the growth of MnGe is

inhibited by the reaction of deposited Mn with the substrate to primarily form MnSi,

or possibly MnSi1–xGex . In the growth of MnSi thin films, common impurity phases

include Mn5Si3 and MnSi1.7 and these were not observed.

The composition was also varied for a small number of samples. For these samples,

the Mn and Ge were co-deposited at 100 ◦C and the film was crystallized under peri-

odic RHEED observation at 250 ◦C. In films co-deposited with excess Ge, single-phase

MnGe formed with large roughness. Additionally, the Ge(111) peak near 2θ = 27◦

indicates that epitaxial Ge(111) is in coexistence with the MnGe. This is consistent

with the lack of equilibrium Ge-rich phases on the binary phase diagram [35]. In

samples with excess Mn, the impurity phase Mn5Ge3 formed. With increasing Mn

concentration, more Mn5Ge3 is formed compared to MnGe. When deposited atop the

CrSi template, this phase was observed up to the deposited Mn:Ge stoichiometry of

5:1, with no other Mn-rich germanides definitively identified.

Hexagonal Mn5Ge3(0001) on CrSi(111) has a lattice misfit of less than 10%. The

formation of only MnGe and Mn5Ge3 further illustrate the ability of the CrSi layer to

stabilize expitaxial phases. Mn-rich samples were grown with a Ge capping layer. As

evidenced by XRD patterns in Figure 3.5, ex-situ annealing at 250 ◦C for 60 minutes

allowed the Mn5Ge3 to react with the excess Ge, resulting in the conversion of nearly

all Mn5Ge3 into MnGe for stoichiometries sufficiently close to Mn1.0Ge1.0.

So far it has been shown that the formation of B20 MnGe is made possible by

the 2 QL CrSi template. For temperatures above 250 ◦C and Mn:Ge stoichiometries

above 1:1, the formation of single-phase MnGe is inhibited by Mn5Ge3 impurities.

A sample was grown to test whether the Mn5Ge3 impurity phase could be removed

by annealing without excess Ge. In Figure 3.6, it can be seen that this results in

a mixture of MnGe, MnSi and Mn5Ge3. This is somewhat expected based on the

data in Figures 3.4 and 3.5. Surprisingly, the epitaxy of the Mn5Ge3 is significantly

improved, with Kiessig fringes fit to Equation 2.12 yielding a Mn5Ge3 thickness of
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MnGe(111) MnSi(111)

Ge(111)

MnGe(111)

Si(111)

Mn5Ge3(0002)

As-grown

Annealed

Figure 3.5: XRD of non-stoichiometric MnGe films. The blue data represents an as-
grown Mn-rich film which exhibits both B20 MnGe and Mn5Ge3. The arrows indicate
the location of the first-order Kiessig fringes flanking the MnGe(111) peak. Upon ex-
situ annealing in excess Ge at 250 ◦C for 60 minutes, the red data is obtained, where
all the Mn5Ge3 has been converted to MnGe, at the cost of increased roughness. The
right inset shows the Ge(111) peak observed in films grown with excess Ge. The left
inset shows the RHEED pattern typical of a film contaminated with Mn5Ge3.

12.2 nm. Roughness between 1 nm and 2 nm could be reliablly fit to the data.

Mn and Ge were co-deposited at 100 ◦C, followed by a 60 minute anneal at 250 ◦C

where RHEED revealed a pattern typical of Mn5Ge3 (shown in Figure 3.5). After

second stage annealing to 325 ◦C, a pattern resembling those in Figure 3.3 emerged.

While the RHEED improved significantly, possibly indicating the Mn5Ge3 had been

converted to MnGe, XRD revealed that the film was actually mixed-phase.

These experiments illustrate that the substrate temperature needs to be main-

tained below 250 ◦C after the deposition of Mn and Ge, and that deviations from the

stoichiometric ratio will result in the nucleation of secondary phases.
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1 μm

12.2 nm

MnGe(111) MnSi(111) Mn5Ge3(0002)

Figure 3.6: XRD of Mn-rich MnGe film after two-stage annealing of 60 minutes
at 250 ◦C, then 325 ◦C. As expected, Mn diffusion into the substrate leads to a
MnSi(111) peak. The Mn5Ge3(0002) peak has sharp Kiessig fringes which are fit by
the red line using Equation 2.12. The inset shows the surface of a film predominantly
comprised of Mn5Ge3 as revealed by AFM. The surface of the film is very flat and
continuous, consistent with the Kiessig fringes commonly observed on Mn5Ge3(0002)
peaks.

3.3 Determination of film thickness and quality

The procedure detailed in Section 3.1 allowed for epitaxial MnGe films to be grown

for thicknesses between 2.5 nm and 41 nm. To prevent the formation of MnSi, the

annealing temperature was kept at or below 250 ◦C. To prevent the formation of

segregated Ge or Mn5Ge3, the deposition rates were re-calibrated using the trilayer in

Figure 2.7. It was found during calibrations that the flux of Mn as determined by the

ionization gauge (see Figure 2.1) was not linear in pressure. A different proportionality

constant between the pressure and Mn deposition rate is needed for each deposition

rate. The nominal Mn and Ge deposition rates of 2.97 Åmin−1 and 5.46 Åmin−1
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respectively, were used for every sample to ensure consistency among samples and

the calibration.

(b)(a)

Specular

Diffuse

Yoneda

Δω = 0.15o

Rocking curve

Figure 3.7: (a) XRR for the MnGe film with thickness of 9.1 nm (black circles), along
with diffuse reflectivity (grey circles). The inset shows reflectivity from a rocking curve
around 2θ = 2.3◦ (indicated by the blue arrow). The peaks in this rocking curve near
ω = ±1 are the Yoneda peaks, arising from anomalous surface reflectivity. The diffuse
reflectance was measured using an offset of ∆ω = 0.15◦, indicated by the grey arrow.
The specular reflectivity, the difference of the measured and diffuse reflectivity, is
given by the red circles. (b) Small-angle mapping of reciprocal space for a 6.1 nm
thick film. The Kiessig oscillations can be seen in the intense band at qx = 0. The
off-specular reflectivity is much smaller than the specular reflectivity. The region
outside the intensity cone is not accessible by the geometry of the diffractometer.

In a real sample, interfacial roughness and defects produce diffuse scattering,

which is measured by the detector during the measurement. Figure 3.7 depicts XRR

measurements for the MnGe film with a thickness of 9.1 nm. The Si cap was 20 nm

with 2.2 nm of SiO2 at surface. The diffuse reflectivity was measured by offsetting the

sample by ∆ω = 0.15◦. When the diffuse component to the measured reflectivity is

subtracted, there is little change to the the data. Inspection of the diffuse reflectance

shows that it is mostly comprised of short-period oscillations which correspond to

a large (∼ 20 nm) structure in real space: the Si cap, not the MnGe film. It also

can be seen from the reciprocal space map for the 6.1 nm film that the off-specular

components are small across a wide range of scattering vectors. This behaviour was
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observed in all samples. In the subsequent fits of XRR data, the diffuse component

to the specular intensity is neglected.

Representative XRR fits, along with the calculated SLD are given in Figure 3.8.

Each fit includes the Si substrate, CrSi template, MnGe film, Si capping layer, and

SiO2. For each layer, the bulk electron density was used. The density of MnGe was

only refined in cases necessary to achieve a good fit. In these cases, the need for a

refinement in density was obvious because the observed and calculated critical angle

(wavevector) did not match. The density was never refined more than a few percent.

The refined roughness of the substrate was in agreement with AFM discussed in

Section 3.1, typically ranging between 2 and 8 Å. The CrSi template is difficult to

resolve with XRR as its small extent in real space corresponds to extremely broad

Kiessig oscillations in q-space. The available X-ray flux from the diffractometer limits

the maximum scattering vector to approximately 5 nm−1. This only allows the first

order Kiessig fringe to be observed. It was found, however, that the addition of CrSi

into the model was necessary to achieve a satisfactory fit. The roughness of this layer

was constrained to be less than 1 Å due to its small thickness.

The refined MnGe thicknesses were within a few percent of the nominal thickness

calculated from the deposition of Mn and Ge. The roughnesses were also consistent

with AFM. Many samples exhibited roughness below 5 Å. In each sample measured,

the thickness of the cap matched the thickness recorded by the crystal oscillator to

within a few Å. Each fit required a native oxide of either SiO2 or GeO2, depending

on the capping layer. The thickness of this overlayer was found to consistently lie

between 1.6 and 2.8 nm, which is in agreement with previously reported thicknesses

determined by XPS.

The models determined by XRR were also tested by systematic fitting of the

MnGe(111) XRD peaks. A fit of XRR data is not necessarily unique, so agreement

between multiple fitting procedures will add additional confidence to the model. The

MnGe(111) peaks were observed near the bulk position of 2θ = 32.3◦. The mean

position was 2θ = 32.5◦, indicating that (111) plane spacing is smaller than bulk.

This peak is also in the vicinity of the Si(111) peak, which has immense intensity

compared to the film peaks. The tail from the Si(111) peak had to be subtracted to

fit the Kiessig fringes of the MnGe(111) peak.



48

(a)

(b)

(c)

(d)

Figure 3.8: Representative XRR fits of MnGe films. Thicknesses were found to be
(a) 22.9 nm, (b) 16.4 nm, (c) 9.1 nm, and (d) 4.6 nm. The inset in each gives the SLD.
Each fit includes the Si substrate, CrSi template, MnGe film, Si cap, and SiO2. For
(a)-(c) the Kiessig oscillations are clearly visible to high q, indicating low roughness.
In (d), the short period oscillatons correspond to the Si cap and the long period signal
is from the MnGe. This sample has a larger roughness, indicated by the extinction
of oscillations above q = 2nm−1.
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The natural lineshape of the Si peak is Lorentzian, which must be convolved with

Gaussian instrumental broadening. The result is a Voigt function, which has no closed

form expression and is often approximated as a pseudo Voigt function, which is just

the product of the two profiles. The lineshape of the Si(111) subsrate peaks was found

to be well described by Lorentzian. The peak is approximated to be Lorentzian, of

the form

L(2θ; γ) =
γ

π(γ2 + (2θ − 2θ0)2)
, (3.1)

where γ is the width and 2θ0 is the peak centre. The intensity of the Si(111) peak is

enough to saturate the detector on the diffractometer. An attenuator must be used

if the Si(111) peak is to be measured, but the intensity of the MnGe(111) peak is too

small to be seen with the attenuator. The attenuated and unattenuated data could

not be scaled in such a way that one Lorentzian fit could be applied to both regions

simultaneously. To ensure an accurate subtraction of the background intensity, the

Lorentzian profile of the Si(111) peak was approximated in the region where the

attenuator was not necessary, 2θ > 29◦.

Equation 3.1 may be expanded using the geometric series, yielding a function B

which approximates the background of the Si(111) peak asymptotically far away. A

blank Si wafer was measured with XRD and the background was fit to:

B(2θ) =
b2

(2θ)2
− b4

(2θ)4
+

b6
(2θ)6

− b8
(2θ)8

+
b10

(2θ)10
. (3.2)

This function was determined phenomenologically by adding terms to the series until

the data was fit in the range 29◦ ≤ 2θ ≤ 38◦ with deviations less than 10−3. The

refined parameters were:

b2 = −5.47 , b4 = −695.370 , b6 = −6698.685 , b8 = −37170.082 , b10 = 247.152 .

The background function was then appropriately scaled to match the background

observed on each MnGe(111) peak, and subtracted. The parameters bi remained

constant, whereas the scaling parameters where chosen to such that the first order

Kiessig fringes on either side of the main MnGe peak had the same intensity.

Representative XRD fits are given in Figure 3.9 and the background subtraction is

shown in the inset. Least squares fitting was attempted but it was found that fitting

by eye was able to produce better fits. The thicknesses determined by the separation
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of the Kiessig fringes were in excellent agreement with XRR, differing by less than

1 nm for all samples. The amplitude of the fringes was captured in general, but the

observed fringes are much broader than are captured in the model (Equation 2.12).

This broadening explains why the intensity minima are less sharp than in the fit.

To further confirm the B20 structure, reciprocal space maps were performed on

select films. The MnGe (112), (221) and (331) reflections were observed at their

expected positions. The epitaxial relationship of MnGe(111) on Si(111) (same as in

Figure 2.6) was also confirmed, by comparing the observed peaks from the substrate

and film. Peaks were found corresponding to both chiralities of MnGe, with an

approximately equal intensity ratio. This suggests that the MnGe films nucleate in

domains with equal amounts of left and right handedness, as has been observed with

films of other B20’s. Though there may be many structures with a similar out-of-plane

spacing to MnGe, only the B20 structure will account for every observed peak.

3.4 Measurement of the film strain

The out-of plane lattice parameter of the MnGe films was probed using XRD. For

each sample, the positions of the Si(111), MnGe(111), Si(333) and MnGe(333) peaks

was recorded. The substrate peaks can be used as internal references which are

independent of the alignment offset ∆ω. The separation between (333) peaks is much

larger than the (111) peaks, so no background subtraction is required. The substrate

peaks were fit with a doublet Lorentzian (Equation 3.1) and the film peaks were fit

according to Equation 2.12. The relative location of the film peaks to the subtrate

were recorded and used to find the plane spacing. This was transformed to an effective

cubic lattice parameter.

The out-of-plane lattice parameter versus film thickness is plotted in Figure 3.10.

The error bars are the difference between the values determined from using the (111)

and (333) peaks. The large uncertainty for small thicknesses originates from both

the small extent of the XRD peaks, especially MnGe(333), as well as the background

subtraction on MnGe(111). Also given is the behaviour from MnSi thin films from

Reference [62].

The behaviour in Figure 3.10 reveals that the out-of-plane lattice parameter is

smaller than bulk. This is unexpected based on the epitaxial relationship of MnGe
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(a)

(c)

(d)

(b)

Figure 3.9: Representative XRD fits of MnGe films. Thicknesses were found to
agree with XRR values of (a) 20.5 nm, (b) 16.4 nm, (c) 9.1 nm, and (d) 4.6 nm to
within less than 1 nm. The inset in (a) shows the background fit in grey for the
22.9 nm sample. The amplitude of the Kiessig fringes is captured in general by the
fit, but the observed fringes are broader than can be captured in the model.
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on Si(111), which indicates that pseudomorphic MnGe(111) should be under an in-

plane compressive strain. Assuming the Poisson ratio of MnGe behaves similarly to

other B20 compounds, this means that the out-of-plane lattice parameter should be

larger in thin films than in bulk. The strain of epitaxial MnGe films was measured

using TEM in the supplemental of Reference [34], where in-plane strain was found to

be tensile for the three films studied. MnSi thin films are expected to be under an

in-plane tensile strain and that is reflected in a decrease in the out-of-plane lattice

parameter in Figure 3.10. A similar unexpected behaviour was observed for MnSi films

on SiC(0001). While MnSi is supposed to be under compression, it was found that

the high temperatures necessary to stabilize the B20 structure resulted a dewetting

of the film, and produced a thermal residual in-plane tensile strain rather than the

compressive strain expected [75]. A similar scenario may be occuring here for MnGe

on Si(111).

The reciprocal space map of the MnGe(111) peak for the 29.4 nm sample in Fig-

ure 3.11 shows a large extent in qz due to finite size broadening. The peak also has

a relatively large extent in qx; approximately 1 nm−1. This broadening is not accom-

panied by broadening in the Si(531) peak (0.08 nm−1 width), or the XRR rocking

curves in Figure 3.10 which were consistently close to the diffractometer resolution

of 0.03 nm−1 (FWHM 0.02◦ in ω). The lack of broadening in the substrate and XRR

rocking curves indicates that there is no bending of the substrate detectable by X-rays

and the broadening on the MnGe(111) peak is due to the film. Since the FWHM of

the XRR rocking curve is low, this means that the undulation of the crystallographic

MnGe planes is larger than undulations in the surface morphology. The broadening

in qx may indicate that there is mosaicity in the film. A mosaic film is comprised of

many domains, each with their normal slightly misaligned with respect to the surface

of the substrate. The island structure of the films is displayed in Figure 3.3 and the

boundary between these domains is well defined. The coalescing of these island as

the B20 structure nucleates may cause a buckling or small corrugation in the film

leading into an increase in diffuse scattering in qx.
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Figure 3.10: Out-of-plane strain of MnGe films versus thickness. The black cir-
cles are the out-of-plane lattice parameters, as determined by XRD. The error bars
represent the difference of calculated lattice parameter between the (111) and (333)
peak, and the value is the average. The red squares are data for MnSi thin films in
Reference [62]. The inset shows the FWHM of the XRR rocking curve taken below
the critical angle θc.
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Figure 3.11: Reciprocal space mapping of the MnGe(111) peak for the 29.4 nm
sample. The colour map is the normalized X-ray intensity. Extent in qz is caused by
finite size broadening and Kiessig fringes are denoted by the arrows. The extent in
qx is surmised to be due to the island structure of the film. The inset shows a map
of the Si(531) peak, which only exhibits broadening in qz.



Chapter 4

Magnetic characterization with H in-plane

This chapter presents the first study of the magnetism of MnGe thin films with in-

plane fields. It was found that a large first-order-like jump in the magnetization

signaled the transition from a helicoid phase to a twisted ferromagnet. Analysis

of the temperature dependence of the magnetization provides evidence for thermal

induced unwinding of the helix. The chapter culminates in a magnetic phase diagram

of MnGe thin films for in-plane fields.

4.1 SQUID magnetometry

SQUID magnetometry measurements were performed on select samples. Three sam-

ples with thickness 22.9 nm, 16.4 nm and 9.1 nm and were chosen to allow for the study

of the thickness dependence of the magnetic properties. These samples also had XRR

fits with low residuals and low film roughness which are featured in Figure 3.8 (a)-(c).

The magnetization was measured in two types of measurements: at constant tem-

perature (M−H) and constant field (M−T ). When a phase change occurs, there are

features in the order parameter (in this case, the magnetization) and its derivatives.

These features are used to identify boundaries between magnetic phases. Isothermal

M−H curves are sensitive to phase that are mostly temperature-dependent (horizon-

tal on a magnetic phase diagram), and M − T curves are sensitive to field-dependent

transitions (vertical on a magnetic phase diagram). These scans are complementary

and allow the identification of any magnetic phase transition.

Firstly, representative M −H curves are presented. The sample was field cooled

at 7T to the desired temperature. The moment was measured as the applied field was

cycled to −7T, then back to 7T, after which the temperature was changed and the

loop was repeated. Figure 4.1 depictsM−H loops for the 22.9 nm sample. The curves

are all qualitatively similar across the three samples. At low fields, there is a region

where the magnetization increases linearly. This is followed by a sharp increase in

55
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the magnetization, until it flattens off to its saturation value. At lower temperatures,

the magnetization does not completely reach its saturation value at 7T. The curves

also exhibit hysteresis which vanishes above approximately 50K, likely due in part to

the fact that the film is not completely saturating.

(b)(a)

20K

(d)
140K

(e)
180K

(c)

80K

Figure 4.1: (a) Representative M −H loops for the 22.9 nm sample across the tem-
perature range measured. (b)-(e) Selected curves to show the temperature evolution.
Significant hysteresis is present for temperatures less than 50K. The arrows in (b)
indicate whether the field is increasing or decreasing. Above 50K, the two branches
lie on top of each other.

The one remarkable feature in all M − H curves is the dramatic increase in the

magnetization at intermediate fields. To align with the convention used for MnSi thin

films, this first-order-like jump in the magnetization is said to occur at a field Hα.

This is srongly indicitive of a phase transition. To characterize this transition, it is

instructive to plot the static magnetic susceptibility by differentiating the magnetiza-

tion as a function of applied field. Figure 4.2 depicts a series of curves detailing the

evolution of the susceptibility with temperature. The large peak in the susceptibility

marks the location of a phase transition at Hα. The value of Hα at each temperature

was extracted by fitting the peak with a Gaussian and recording the field of maximum

susceptibility.

It is useful to compare the observed behaviour to previous work on MnSi thin

films, as well as theoretical calculations. It was found in MnSi that for in-plane fields,
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190K

170K

150K

130K

110K

90K

70K

50K

30K

10K

Figure 4.2: Magnetic susceptibility versus (a) decreasing fields and (b) increasing
fields for the 22.9 nm sample. The susceptibility was calculated by taking the deriva-
tive of the M − H curves for each branch separately. The dotted line is a guide to
the eye which tracks the position of the transition at Hα.

ground state is a helical state with propagation vector Q that points out of plane.

This is referred to as a Qz state. At 5K, PNR studies showed that the Qz helicoid

persists until it saturates [76, 77]. Above approximately 10K, the helicoid transitions

into a broadly stable skyrmion lattice phase [75, 77] above a field between 200mT

and 500mT, which is evidenced by a peak in the susceptibility. Upon exiting this

phase, the in-plane magnetization increases drastically as the film transitions into

a mostly saturated structure. It was found that instead of fully saturating at high

fields, the sample enters a twisted ferromagnetic state. In the preceeding discussion,

when saturation is mentioned, it is assumed to be the twisted ferromagnetic state.

In MnSi, peaks in the susceptibility are observed upon entering and exiting the
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skyrmion phase. They are also observed during the discrete unwinding of the heli-

coid [23] and upon entering the twisted ferromagentic state. In Figure 4.2, only one

peak is seen in dM/dH . This is similar to MnSi at 5K where only the helicoid state

is observed.

Micromagnetic simulations were performed by C. D. Rudderham to help under-

stand the origin of the single peak in the susceptibility. The same framework as in

Reference [31] was used. The result of the calculation is reproduced in this thesis with

permission. Three phases were considered: a one-turn helicoid, a two turn helicoid,

and the twisted ferromagnetic state. The film thickness was 2.0LD. The magnetiza-

tion of these phases versus field is given in Figure 4.3. The energy of each phase was

also calculated. To model the behaviour at finite temperature, the magnetization was

given a Boltzmann weight according to its energy and the average in-plane magne-

tization of the sample is given in the figure. The thermal energy in the Boltzmann

weight was chosen empirically.

The calculated M −H curve qualitatively reproduces those in Figure 4.1. There

is a flat region, followed by a sharp increase as the twisted ferromagnetic state is

energetically preferred. This is reflected as the sharp peak in the susceptibility, much

like those in Figure 4.2. Also captured in this calculation is the small feature in

the susceptibility (seen in Reference [28] for MnSi thin films) where there the heli-

coid winding number changes. Such a feature is not observed in the M − H data

presented for MnGe thin films and it is unclear why this is the case. Nonetheless,

this simulation implies, along with comparison to MnSi, that MnGe transitions from

a helicoid directly into a twisted ferromagnetic state. There is no evidence for an

in-plane skyrmion phase in the magnetometry.

The field at which the sample enters the twisted ferromagnetic phase was not

reliably determinable by a minimum in d2M/dH2 . Instead, this field was estimated to

be the location of the knee in theM−H loop, Hk2 . The inflection point corresponding

to the field Hα was linearly extrapolated to the point where it reached the saturation

magnetization (see Figure 4.4). This method allows for a consistent identification of

Hk2 despite the broad, rounded behaviour of M as the film saturates. There is also

a knee in the curve where the sample exits the linear region. This was determined

in a similar way and is labelled as Hk1 . The last feature occured exclusively at low
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(a) (b)

Figure 4.3: Micromagnetic simulation of the helicoid to twisted ferromagnet tran-
sition. The model contains a one-turn helicoid, a two turn helicoid, and the twisted
ferromagnetic state. (a) The magnetization of each phase versus field, and the thermal
obtained by weighting the energy of each phase by a Boltzmann factor. The temper-
ature was chosen empirically. (b) The susceptibility versus applied field, which shows
a large peak where the film transitions from a helicoid to the twisted ferromagnet.
A smaller feature in the susceptibility is seen when the film discretely changes from
a two turn helicoid to a one turn helicoid, which washes out at higher temperatures.
The data in this figure is courtesy of C. D. Rudderham.

temperatures. Above Hα, the susceptibility drops sharply. Below 100K, there was

a shoulder which broadened the peak. The location of the shoulder was determined

qualitatively and is labelled as Hs.

The magnetizationMsat in the saturated (twisted ferromagnetic) state was recorded

for the appropriate temperatures (where saturation was reached) and are shown in

Figure 4.5. The value decreases monotonocally with temperature. At 70K, this was

374 kAm−1, 368 kAm−1 and 351 kAm−1 for the 22.9 nm, 9.1 nm and 16.4 nm samples,

respectively. These magnetizations were converted into the moment per Mn atom af-

ter scaling by the bulk number density of Mn atoms. At 70K, the measured moment

of approximately 1µB per Mn atom is in rough agreement to the value of 1.4µB per

Mn atom at 100K reported for bulk[17]. For the 160 nm film in Reference [34], this

was reported to be 1µB per Mn atom at 100K, in excellent agreement with the value

reported here. The in-plane remanent magnetization of the MnGe films was found
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Hk1

Hk2

Hα
Hα

Hs

120K

50K

Figure 4.4: Determination of fields Hk1 and Hk2 in M −H curves. The data shown
is from the 22.9 nm sample, measured at a temperature of 120K. The linear region
and saturation magnetization are extrapolated to the line of maximum slope, fit at
Hα. The inset shows the suscebility at 50K. The transition Hα is easily identified by
the peak. The location of the shoulder Hs is also indicated.

to be small, but finite. This is in contrast to the out-of-plane remanence which was

below the detection limits of the SQUID magnetometer. A similar behaviour was ob-

served in MnSi thin films and is consistent with a helix that points out of the plane.

In thin films which exhibit a Qz helical phase, the remanent in-plane magneti-

zation varies due to finite size effects. The magnetic moments lie in the plane and

ferromagnetically align within each layer, spiraling around Q throughout the depth

of the film. When the film thickness is an integer multiple of the helical pitch, the

total magnetization will sum to zero. The in-plane magnetization should then vary
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μ
B

Figure 4.5: Temperature dependence of the saturation magnetization. Filled (un-
filled) circles are the magnetization measured in-plane (out-of-plane). Values are
given only for temperatures where the film saturated.

according to the film thickness as [62]:

Mrem

Msat

∝ 1

Msatdf

∫ df/2

−df/2

dz Msat cos(Qz) =
sin(Qdf/2)

Qdf/2
. (4.1)

The ratio of the remanent magnetization to the magnetization at µ0H = 7T is shown

in Figure 4.6. The ratio is large at lower temperatures, since M(7T) is less than the

manetization of the twisted ferromagnetic phase for temperatures less than 100K.

The temperature at which the ratio drops is commensurate with the disappearance of

hysteresis in theM−T curves, and flattening of the magnetization after a well-defined

Hk2 . For a helix which is elongating with temperature (Q decreases), Equation 4.1

predicts that the ratio will oscillate in temperature, with an amplitude which increases

with increasing temperature; as the helix is composed of fewer turns and there is less

cancellation of the net moment.
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9.1 nm

22.9 nm

Figure 4.6: The ratio of the remanent magnetization to the magnetization at
µ0H = 7T for the 22.9 nm and 9.1 nm samples. The filled (unfilled) circles rep-
resent data obtained with decreasing (increasing) fields. The inset illustrates the
remanent magnetization with M −H loops obtained at T = 10K.

This analysis is complicated by the measurement of the remanence as a func-

tion of temperature, which mostly gave an unreliable near-zero moment, where VRSO

was comprised of noise significantly offset from the established centre, likely due to

small deformations and inhomogeneities in the straw. Inspection of VRSO for each

of these points confirmed that no moment could be confidently extracted. Despite

multiple attempts at measuring Mrem versus temperature, only one successful curve

was recorded (shown in the inset of Figure 4.8). This was obtained by field cooling

the 22.9 nm sample at 10mT before the field was lowered to zero and the magneti-

zation was measured on warming. The unreliablility in determining Mrem versus T

is in contrast to the remanent magnetization that is systematically observed on the

M −H curves, as seen in the inset of Figure 4.6.
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This behaviour may be due to the relaxation of the helical domains into random

orientations at remanence. In MnSi thin films, a glassy behaviour was observed [62].

The temperature dependence of the remanent magnetization was similar to that in

Figure 4.8; a linear decrease which reaches zero at the expected ordering temperature.

It was demonstrated that this was due in part to the presence of chiral domains. The

interface between the domains gives rise to magnetic frustration due to competing

windings of adjacent helices of opposite chirality. Given that the MnGe films are

also expected to crystalize with equal numbers of left and right handed crystal ori-

entations, the relaxation of the helices at the domain interfaces can explain why no

magnetization is observed in the absence of a field.

To remove the cancellation effects of possible helical domains, M − T measure-

ments were also performed in static magnetic fields. To facilitate comparison between

different applied fields, the static susceptibility is shown in Figure 4.7. The curves

have a similar shape: the magnetization is relatively small for low temperatures, and

it increases with increasing temperature until the film passes into the twisted ferro-

magnetic state at temperature which corresponds to Hα. This is different from the

ferromagnetic-like behaviour of the M − T curves for MnSi thin films. One reason

for this could be the strength of the helical winding. In MnSi films, the helix ap-

pears to be relatively soft, as a small field will easily induce a magnetization. For

MnGe, the magnetization is much more tightly coiled until the temperature is high

enough to unwind the helix. This change in behaviour could be due to the increase in

thermal fluctuations, or a temperature-induced elongation of the helical pitch, which

drives the effective interaction toward that of MnSi. Due to the relatively long he-

lical pitch of MnSi and FeGe, the angle between successive planes of spins is small

(≈ 7◦ and 1◦, respectively) and the system is ferromagnetic-like. The short pitch of

MnGe means that this angle could be as large as 32◦, and it is antiferromagnetic-like,

which may explain why the susceptibility versus temperature is peaked near TN like

an antiferromagnet.

In these curves, there are also shoulders which appear at fields lower than 500mT,

occuring at temperatures labelled Ts. These features in the temperature-dependent

susceptibility are not observed in the field-dependent susceptibility. The fact that

these features appear only for low fields means that they may be caused by domains,
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Tα~TN

Ts

Tα

Ts

Figure 4.7: Field-normalizedM/µ0H-T curves for the 16.4 nm sample. The magne-
tization is small at low temperatures, which suggests that the helix of MnGe is rigid,
which softens as temperature is increased. The best estimate of the ordering temper-
ature comes from analysis of these curves for very low fields for Hα. The shoulders
at fields below 500mT are denoted by Ts.

some of which require more thermal energy to overcome their local environment and

align to the relatively weak field.

These features could also possibly be attributed to the helical unwinding that was

not observed in Figure 4.6. Based on Equation 4.1, a peak should be observed in

the magnetization when Q changes by approximately 2π/df . The data for µ0H =

10mT exhibits three such peaks. This means that the change in helical wavevector

can be estimated as ∆Q = 3(2π/16.4 nm) = 1.05 nm−1. In Reference [34], it is

interpreted from SANS data that Q elongates from 2.7 nm−1 at 2K to 4.7 nm−1 at

205K in a 160 nm film, which corresponds to ∆Q = 0.99 nm−1. The agreement

between these two values suggests that Ts are due to discrete unwinding of the helix.

This discrete behaviour is not expected from the thicker film in Reference [34] since
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the field is applied out-of plane. Finite size effects are not relevant in this geometry

which explains why a continuous change in Q is reported. It is unknown why this

effect is not observed in theM−H data as predicted in Reference [28] and Figure 4.3.

A direct method of measuring the configuration of the helix, such as PNR, would be

required to resolve this issue.

180K
170K
160K

190K
200K

(a) (b)

Hα

TN = 206K

TN = 204K

Figure 4.8: (a) Illustration of the disappearance of Hα in the 9.1 nm sample at
temperatures near 200K. (b) Susceptibility obtained from M −T curves at low field,
illustrating a peak near the ordering temperature. Filled (unfilled) circles are data
from the 22.9 nm (16.4 nm) sample at 10mT (100mT). The inset is the remanent
magnetization for the 22.9 nm sample.

The ordering temperature TN of the MnGe films is difficult to systematically deter-

mine from the magnetometry data, although there are two ways in which an estimate

can be obtained. The first is by recording the position of the maximum of the M −T

curve for sufficiently low fields. This is the temperature Tα. The field must be finite

though, as measurements of the temperature-dependent remanent magnetization are

not appropriate for the reasons discussed previously. This is the method that has

been used in the literature and it agrees with the disappearence of magnetic order

according to neutron diffraction and SANS [15, 17, 34, 47].

For the three samples studied, Tα was consistently found to be approximately

205K, which migrates to lower temperatures above µ0H = 100mT. Estimates of TN

using this method are therefore only appropriate below µ0H = 100mT. The second
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method involves analysis of the M − H curves. The transition field Hα was found

to disappear in the vicinity of 200K (see Figure 4.8). This is consistent with the

transition to a paramagnetic state and agrees with the M − T curves.

The interesting fields from the M − H and M − T curves were combined to

create a magnetic phase diagram for the films studied. This phase diagram is shown

in Figure 4.9 and includes three main regions. Below Hk1 , MnGe films are in a Qz

helicoidal state. Above, Hk2 , the twisted ferromagnetic state is realized. Nominally at

Hα, the system transitions from the Qz helicoid into a twisted ferromagnet. The field-

extent of this transition is given by Hk2 −Hk1 and is also noted on the diagram. This

is denoted as the transition region, where the helicoid is in the process of unwinding

into the ferromagnetic phase.
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Twisted ferromagnetTransition region

Qz helicoid
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Figure 4.9: Magnetic phase diagram for in-plane fields. Closed circles are points
measured at increasing fields and open circles are for decreasing fields. (a) Transitions
for the 22.9 nm sample. Below Hk1 , the film is in a Qz helicoid phase. Above Hk2 ,
the film is a twisted ferromagnet. The transition between these phases is nominally
Hα but the width of the transition Hk2 −Hk1 is shown in red. (b) The temperature
dependence of Hα for the three thicknesses measured. (c) The temperature depen-
dence of Hk1 and Hk2 for the three thicknesses measured.



Chapter 5

Magnetic characterization with H out-of-plane

This chapter reports on the magnetic response of MnGe thin films to an out-of-plane

field. The magnetometry indicates a trivial conical phase which saturates into a

ferromagnetic state. The transport measurements, on the other hand, reveal a state

that is more complex than observed in the magnetometry.

5.1 SQUID magnetometry

SQUID magnetometry was also performed on the three samples with the field applied

out of the plane. Again, data from the three samples was qualitatively similar and

measurements presented here are representative of all three samples. Isothermal

M −H loops, and M − T curves were recorded. For M −H curves sample was field

cooled at 7T to the desired temperature. The out-of-plane moment was measured

as the applied field was cycled to −7T, then back to 7T. It was found that the

field at which the magnetization reaches its saturation value is much larger than

for in-plane fields. For this reason, the magnetometry is most meaningful at higher

temperatures, where this field is reduced. The low-temperature magnetization is

still of interest, since the proposed triple-Q hedgehog state is said to occur at lower

temperatures. The predicted phase boundary between the triple-Q and single-Q state

occurs for fields less than 5T for a 160 nm film. Evidence of a phase transition from

the proposed triple-Q state to a single-Q should be accessible in the mangetometry.

It is again worth comparing with MnSi thin films, for which it was found that the

ground state was a helicoid with Q along [111]. The application of a field parallel

to [111] causes the spins to cant out of plane to align with the field and the system

continuously evolves into the conical state. No evidence for an out-of-plane skyrmion

phase found, due to the strong hard-axis anisotropy.

Representative M − H curves for the 22.9 nm sample are shown in Figure 5.1.

The curves have a linear region that flattens off after saturation, consistent with

68



69

MnSi thin films [28]. While the in-plane remanent magnetization was small, it is zero

for these curves, for M − H loops measured at temperatures where the saturation

field is low enough to be reached with the 7T magnet. At low temperatures where

saturation is not reached, a small residual moment is found below 40K. Although it

is not clear what is the magnetic texture that is giving rise to this feature, a remanent

out-of-plane moment is not expected from a Qz helical state. For in-plane fields, the

hysteresis disappeared at approximately the same temperature at which Hk2 became

well-defined. Here, this happens at a lower temperature. The field at which the

cone phase saturates is Hc. Below 120K, this field was found to be greater than the

maximum field of 7T, as evidenced by the lack of a knee in the M −H curves.

Interestingly, the plots of M versus H do not show any features other than Hc.

A similar behaviour is actually reported in the magnetometry of the purported spin-

hedgehog hosting 160 nm MnGe film (shown in the supplemental of Reference [34]).

Modelling the magnetization versus field of a spin-hedgehog lattice is beyond the

scope of this thesis, and is not found in the literature, although some papers have

constructed a model of the spin structure from neutron diffraction data [36]. One must

remark, however, that it seems unusual that the unwinding of a topologically non-

trivial lattice of emergent monopoles and anti-monopoles into a topologically trivial

conical state will occur with no signature in the magnetization. Simultaneous analysis

of complementary techniques would be required to confirm the presence of this exotic

state. Nonetheless, the magnetometry collected for this thesis does not suggest the

presence of a phase transition. This will be further discussed in Section 5.2.

The saturation field Hc was determined from fitting the minimum of d2M/dH2 .

An illustration of this procedure is given in Figure 5.2. The differences between the

M −H loops for in-plane and out-of-plane fields are also detailed in Figure 5.2. As

expected, the magnetization flattens off to the same value in both orientations. It was

found that Hc was systematically larger than Hk2 , which is consistent with an out-

of-plane hard-axis anisotropy. This was found with MnSi thin films under in-plane

tensile strain, which is likely the case for these MnGe samples.

Interestingly, M − T curves for out-of-plane field have a similar form to those for

in-plane fields. The magnetization is small at low temperatures and there is a peak at

the temperature at which the film exits the conical phase, Tc. There are no features
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(a) (b)

Figure 5.1: Representative M − H loops at (a) low temperatures, and (b) high
temperatures. Measurements shown for the 22.9 nm sample with field applied in-
plane. There is hysteresis present at low temperatures. The arrows in (a) indicate
whether the field is increasing or decreasing. Above 60K, the two branches lie on top
of each other.

at low temperatures, which is in agreement with theM versus H loops. Furthermore,

Tc and Hc are in agreement between isothermal and isomagnetic measurements.

5.2 Magnetotransport

The longitudinal and Hall resistivities were measured for out-of-plane fields for the

22.9 nm and 16.4 nm samples. The resistivity of the substrate was substantially larger

than that of the film, so this technique only (to good approximation) probes the film.

Electronic transport in a magnetic material is strongly influenced by its magnetic

phase. In the same way that features in the magnetization can be used to detect

magnetic phase transitions, the resistivity can also be used. The ρ − H loops were
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Hα

Hk2
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Figure 5.2: Determination of out-of-plane saturation field Hc. (a) A representative
magnetization curve is at 160K is shown in black (grey) circles for the magnetic field
out-of-plane (in-plane). The transitions are labelled. The second derivative of the
out-of-plane magnetization d2M/dH2 is shown in (b). The red line is a Gaussian fit
used to find the minimum.

recorded by field cooling the sample at 14T and cycling the field to −14T, and back.

The data was symmetrized according to Equations 2.22 and 2.23. For the ρ − T

measurement, the sample was field cooled at 14T and the resistivity was measured

at zero field on warming. The sample was then field cooled at −14T and the zero

field resistivity was again measured on warming. These two curves were used for

symmetrization. Like magnetometry, the behaviour of the resistivity was qualitatively

similar in the two samples measured.

Figure 5.4 shows the longitudinal and Hall resistivity as a function of temperature

for the 22.9 nm sample. The longitudinal resistivity is presented as ρrelxx = ρxx(T )/ρxx(T = 5K)

for reasons discussed in Section 2.5.
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Tc

Figure 5.3: Field-normalized M/µ0H-T curves for the 9.1 nm sample. The field is
applied parallel to the [111] direction. The peak in the magnetization corresponds to
the film entering a field-induced ferromagnetic phase from the cone phase.

The residual resistivity ratio (RRR) is commonly used in the literature as a mea-

sure of the defect scattering in the sample. It was found for the 22.9 nm and 16.4 nm

samples that the RRR was 4.9 and 6.9, respectively. The RRR for the MnGe single

crystal in and thin film in References [39] and [49] were approximately 14 and 47,

respectively. The MnGe films are likely to have an equal amount of opposite chiral

domains, as has been seen with other B20 thin films. The fact that Reference [49]

reports a higher RRR for a film (which was shown with TEM to exhibit chiral do-

mains) than for a single crystal likely rules out these domains as a cause for the low

RRR observed. The defects evidenced by the RRR may be caused by a deviation in

the Mn:Ge stoichiometry. If the Mn:Ge ratio is different from 1:1, this would mani-

fest in deviations in the electron density determined from XRR (which deviated from
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the bulk value in some samples). The stoichiometry can be estimated from the re-

fined XRR densities, but this is difficult to decouple from the effect of strain-induced

changes in the unit cell volume. The in-plane strain could not be determined by XRD

and require TEM meeasurements. A future study should measure the composition of

the films to ascertain the origin of the low RRR.

TQ

TN

Figure 5.4: Longitudinal resistivity ratio (black circles; left axis) and its derivative
(grey circles; right axis) versus temperature for the 22.9 nm sample. The red curve is
a power law fit fit used to extrapolate to T = 0K. The derivative has two features:
one at 63K labelled TQ, and another at the ordering temperature TN of 205K.

The temperature dependence of the longitudinal resistivity ratio is given in Fig-

ure 5.4. There is a feature in the resistivity ratio at T = 205K, which is in excellent

agreement with the ordering temperature TN = 206K as estimated by magnetometry.

There is an additional broad peak which occurs at T = 63K, which is labelled as TQ.

At temperatures below approximately 50K, a power law of the form

ρxx(T )/ρxx(T = 5K) = κ0T
κ + 1 , (5.1)

was fit to the data. The exponent was found to be κ = 2.16 for the 22.9 nm sample

and κ = 2.14 for the 16.4 nm sample. This indicates that MnGe thin films exhibit
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Fermi liquid-like behaviour, which is characterized by an exponent κ = 2.

(a) (b)

Figure 5.5: (a) Transverse and (b) longitudinal resistivity versus field for the 16.4 nm
sample. Hysteresis is evident in all temperatures presented here, despite the cone
saturation field Hc being reached. Curves in (b) are offset by 0.05 for clarity. The
arrows indicate whether the field is increasing or decreasing.

(a) (b)

Figure 5.6: (a) Transverse and (b) longitudinal resistivity versus field for the 16.4 nm
sample. At the high temperatures shown here, there is no hysteresis or features other
than Hc. The T = 240K curve is taken above the ordering temperature and exhibits
behaviour characteristic to the resistivity of a paramagnet, and does not exhibit Hc.
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Representative ρ versus H curves are shown in Figures 5.5 and 5.6 for the 16.4 nm

sample. There is significant hysteresis exhibited below T = 60K. This is contrary to

the lack of hysteresis found in magnetometry for out-of-plane fields. Anomalies in the

Hall resistivity have been used to infer the presence of a topological spin-hedgehog

phase despite trivial magnetometry curves in Reference [34]. This Hall resistivity is

also much larger than what was found for MnSi thin films (on the order of tens of

nΩ cm) which was attributed to the cone phase [78].

Hc

HQ1

HQ2

HQ3

HQ4

Figure 5.7: Derivative of the Hall resistivity versus magnetic field for the 16.4 nm
sample. Various phase boundaries are indicated by the black dots and the dashed
lines are a guide to the eye. The cone to ferromagnetic transition Hc was determined
from minima in d2ρyx/dH

2 and the four HQ transitions were found from peaks in
dρyx/dH . The HQ were grouped according to the similar form of their peaks in
dρyx/dH .

The derivative of the resistivity was used to search for magnetic phase transitions.

A minimum in the second derivative d2ρyx/dH
2 was used to determine the saturation

field Hc, in a similar fashion to the magnetometry curves. Unlike the magnetometry,
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interesting features appeared in derivatives of the Hall resistivity. These only occured

in the increasing branches of ρyx. Plots of dρyx/dH for the 16.4 nm sample are given

in Figure 5.7. Apart from Hc, several sets of peaks were found. These are labelled

HQ1 , HQ2 , HQ3 and HQ4 since they coincide with the phase boundary that is claimed

in References [34, 48] to be a triple-Q hedgehog lattice.

The evolution of these critical fields with temperature is annotated on the figure.

The form of the phase boundary HQ1 is similar to what has been previously reported

for MnGe thin films, but the additional transitions observed have not been reported

in the literature. The presence of HQ2 , HQ3 and HQ4 may indicate a partitioning of

the disputed low-field, low-temperature phase which only occurs for very thin films,

like those studied in this thesis.

The magnetic phase transitions detected by SQUID magnetometry and magne-

toresistivity have been summarized into a phase diagram for out-of-plane fields in

Figure 5.8. The pocket below HQ1 is comparable to the pocket attributed to the

spin-hedgehog lattice in References [34, 48], although this region has also been in-

terepreted as a multi-domain helicoid state in multiple studies [40, 41, 42, 43, 44].

The measurements performed for this thesis have not directly probed the magnetic

structure of this phase and it is therefore impossible to conclude which of these inter-

pretations is correct. This pocket will be labelled as the Q-phase and future studies

should determine the origin of the observed anomalies in the Hall resistivity, as well

as an explanation for the lack of such anomalies in the magnetometry data. The

region between HQ1 and Hc is inferred to be a conical phase upon comparison to the

literature for both MnGe and other B20 compounds.
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Field-induced ferromagnet

Conical

Q-phase

Hc

HQ1

HQ4

HQ2

HQ3

Figure 5.8: Magnetic phase diagram for out-of-plane fields. Transitions shown here
are for the 16.4 nm sample. The filled circles are determined from the Hall resistivity
and the unfilled circles are from magnetometry. The field-induced ferromagnet phase
is separated from the single-Q conical phase by the transition Hc. The various HQ

transitions separate the conical phase from the Q-phase. The Q-phase may be either
a spin-hedgehog lattice, or multi-domain helicoid phase.



Chapter 6

Conclusion

A novel approach was taken to fabricate epitaxial MnGe thin films on a non-magnetic

template layer of B20 CrSi. In-situ RHEED and ex-situ AFM reveal that the 5 Å

template crystallizes in a uniform layer with high coverage and a roughness commen-

surate to the Si(111) substrate. Low-temperature (100 ◦C) co-deposition of Mn and

Ge at stoichiometric ratios, followed by annealing to 250 ◦C was found to give the

best epitaxy. The MnGe films exhibited interfacial roughnesses of less than 5 Å in

some samples found by ex-situ XRR across a wide range of film thicknesses.

Though the films exhibit low interfacial roughness, steps should be taken to im-

prove the RRR. It has been demonstrated that Mn-rich impurity phases can be an-

nealed out in the presence of excess Ge, so it may be possible to improve the RRR

with a different annealing procedure.

The first study of the magnetism of MnGe(111) thin films with an in-plane ap-

plied field was conducted. SQUID magnetometry data suggests that a helicoid phase

transitions into a twisted ferromagnetic state, evidenced by an abrupt first-order-like

jump in the magnetization. The static susceptibility exhibits a large peak at this

magnetic fields corresponding to this transition. The lack of any other peaks in the

susceptibility versus field rules out the possibility of an in-plane skyrmion phase for

film thicknesses of 22.9 nm, 16.4 nm and 9.1 nm.

Since the literature suggests that skyrmions may be suppressed for certain film

thicknesses (depending on the helical pitch), further magnetometry measurements

should be performed. A comprehensive analysis of the magnetism over many film

thicknesses is needed to definitively conclude whether or not in-plane skyrmions can

exist in MnGe thin films. To augment this analysis, future studies should aim to mea-

sure the pitch of the helix using PNR, and its temperature dependence. Oscillations

in low field M −T measurements should be compared to micromagnetic modelling to

support the hypothesis that these are due to temperature-driven helical unwinding.
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This modelling will be much easier to perform once PNR measurements have been

completed, which will enable a determination of the exchange and DMI in this mate-

rial. The lack of a field-driven helical unwinding, like seen in MnSi films should also

be addressed.

Out-of-plane magnetometry revealed only the transition from a conical phase to

a field-polarized ferromagnet. There was no evidence for an out-of-plane skyrmion

phase, or a triple-Q state at low temperature. Transport measurements, on the other

hand, reveal an additional low-temperature transition. The location of this transition

on the magnetic phase diagram is in agreement with the proposed spin-hedgehog

phase reported by Kanazawa et al for a thicker MnGe film. This work identifies the

phase boundary, but does not report on its magnetic structure. The study of this

phase is an interesting avenue for future experiments.

The films show a reduction in the saturation magnetization relative to bulk. Strain

and film composition could be responsible for this. Measurements of the film com-

position should be performed and correlated with RRR from transport and electron

densities obtained from the reflectometry critical angle. Both strain and film stoi-

chiometry affect the electronic structure, which would impact both the exchange and

DMI, and so could impact the helical wavelength.

Subsequent studies can build upon these results and, the growth recipe may also be

repurposed in an attempt to stabilize other metastable B20 structures. The behaviour

of MnGe thin films has been shown to be vastly different from MnSi, which begs for

further investigation into the applicability of the model used to describe B20 chiral

magnets.
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