
GENOME-SCALE METABOLIC MODEL RECONSTRUCTION AND
VALIDATION

by

Leila Rezaei

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

December 2023

© Copyright by Leila Rezaei, 2023

To my parents, Shahdokht and Alireza, and my siblings, Shahrokh,

Sharareh, Mohammadreza, Shiva, and Ali

ii

Table of Contents

List of Tables . vi

List of Figures . vii

Abstract . ix

Acknowledgements . x

Chapter 1 Introduction . 1

1.1 Technical definitions . 2
1.1.1 Genome-scale metabolic models 2
1.1.2 Flux Balance Analysis(FBA) 3
1.1.3 General model inconsistencies and gap-filling 5

1.2 Thesis objectives . 6
1.2.1 Objective 1: Genome-scale metabolic model reconstruction . . 6
1.2.2 Objective 2: Addressing gaps in the genome-scale metabolic

models . 6

Chapter 2 Literature Review . 8

2.1 Introduction . 8

2.2 Application of genome-scale metabolic models 9
2.2.1 Optimization of bioprocesses and production of chemicals . . . 9
2.2.2 Optimization of culture media 12
2.2.3 Study of human diseases and drug development 13
2.2.4 GEMs for non-conventional organisms 14
2.2.5 Thraustochytrid strain T18 (our case study organism) 15

2.3 Genome-scale metabolic model reconstruction approaches 16
2.3.1 Conventional approach . 16
2.3.2 Metabolic model reconstruction automated tools 17
2.3.3 Limitations of model reconstruction tools 19
2.3.4 Gap-filling in metabolic models 20
2.3.5 Current gap-filling tools . 21

Chapter 3 Genome-Scale Metabolic Model Reconstruction and Val-
idation for Thraustochytrid Strain T18 24

3.1 Introduction . 24

iii

3.2 Draft metabolic network . 25

3.3 Gap-filling of the metabolic model . 26
3.3.1 Growth on glucose . 26
3.3.2 Growth on xylose . 27
3.3.3 DHA production . 28

3.4 Topological validation . 31

3.5 Comparison of glucose and xylose metabolism 32

Chapter 4 Systematic Assessment of Current Gap-filling Tools . . 36

4.1 Introduction . 36

4.2 Materials and methods . 39
4.2.1 Qualitative analysis . 39
4.2.2 Quantitative analysis . 40
4.2.3 Effect of multiple artificial gaps in the models on tools perfor-

mance . 41

4.3 Results and discussion . 42
4.3.1 Characterization of tools . 42
4.3.2 Quantitative gap-filling performance of COBRApy, Meneco, and

CarveMe . 43
4.3.3 The relationship between models’ compartments and phyloge-

netic domain and gap-filling performance of COBRApy, Meneco,
and CarveMe . 44

4.3.4 A novel systematic framework for evaluating the performance
of gap-filling tools . 46

4.3.5 Effect of models’ size on performance of tools 48

4.4 Analysis of multiple gaps in each of the models 49

4.5 Discussion . 50

Chapter 5 A Novel Framework for Trimming and Ranking Reac-
tions for Filling Gaps in Genome-Scale Metabolic Mod-
els . 54

5.1 Introduction . 54

5.2 Theory . 58
5.2.1 Reaction metrics . 59
5.2.2 Metrics aggregation . 61

5.3 Methods . 63

iv

5.3.1 Implementation . 64
5.3.2 SBPRank performance analysis 64
5.3.3 The role of ranking in identifying essential reactions 65
5.3.4 The role of ranking in identifying artificially induced gaps . . 65
5.3.5 The role of ranking for real gaps (T18 as our case study) . . . 66

5.4 Results and discussion . 67
5.4.1 Ranking by heuristic weights 68
5.4.2 Variations in universal pool size with random artificial gaps . 71
5.4.3 Ranking results for T18 model 73

5.5 Alternative trimming methods . 74

Chapter 6 Conclusion . 77

Bibliography . 80

Appendix A Supplementary Information for Chapter 5 92

v

List of Tables

2.1 Application examples of genome-scale metabolic models (GEMs)
for various organisms. 12

2.2 Summary of available tools for model reconstruction. 19

2.3 Summary of the current gap-filling algorithms 23

4.1 Results for qualitative assessment, including each tool’s specific
features and our custom set of criteria 42

4.2 Number of models shared and distinct among COBRApy, Meneco,
and CarveMe across all 108 BiGG models 44

4.3 The relationship between the number of compartments and CO-
BRApy, Meneco, and CarveMe gap-filling performance across all
108 tested models . 45

4.4 The relationship between organisms’ phylogenetic domains of life
and COBRApy, Meneco, and CarveMe gap-filling performance
across all 108 tested models . 46

5.1 Variations in the optimized weights for proximity, similarity, and
betweenness from 10-100% of essential reaction arbitrarily cho-
sen for removal . 69

5.2 Variations in the heuristic weights for proximity, similarity, and
betweenness from 10-100% of essential reaction arbitrarily cho-
sen for removal . 71

vi

List of Figures

1.1 An overview of the Flux Balance Analysis (FBA) steps for a
small model including three metabolites 5

2.1 The revolution in the generation of genome-scale metabolic
models (GEMs) for Saccharomyces cerevisiae, one of the most
popular organisms in industrial biotechnology, from 2003 to 2021 11

2.2 The development of GEMs for various organisms with the in-
crease in availability of annotated genome sequences. 16

3.1 A gap in the histidine metabolism pathway of thraustochytrid
strain T18. 27

3.2 EC numbers related to D-xylose in the pentose and glucuronate
interconversions pathway for a variety of bacteria, yeast, and
mammalian genome-scale metabolic models (BiGG database),
as well as similarly previously reported thraustochytrids models
of Schizochytrium limacinum (SR21) and Aurantiochytrium T66. 29

3.3 Putative xylose metabolism through glycolysis, the pentose phos-
phate pathway, and the TCA cycle. 30

3.4 Distribution of percentage of blocked reactions for all 108 BiGG
models in comparison to the T18 model. 32

3.5 Distribution of total metabolite number for all 108 BiGG mod-
els in comparison to the T18 model. 33

3.6 Distribution of total reaction number for all 108 BiGG models
in comparison to the T18 model. 34

4.1 An example of a small toy model comprises 5 reactions, includ-
ing 2 exchange reactions and 3 internal reactions, featuring a
straightforward gap (involving the conversion of metabolite B
to C). 40

4.2 The distribution of the percentage of filled reactions for each
of the 108 BiGG models that was tested by using COBRApy,
Meneco, and CarveMe. 47

4.3 The effect of the model’s size on the gap-filling performance of
COBRApy, Meneco, and CarveMe. 49

vii

4.4 The comparison of tools performance with the increase in the
number of gaps in each of the applicable models in the tools
including 81 models for COBRApy, 102 models for Meneco,
and 62 models for CarveMe. 50

5.1 Variations in the percentage of ranked universal pool (ranked
by PCA) required to capture different percentages of essential
reactions from 10 to 100. 68

5.2 Comparison of optimized weights and PCA to identify the small-
est ranked universal pool required to identify various percent-
ages of essential reactions from 10 to 100. 70

5.3 Comparison of heuristic weights and PCA to identify the small-
est ranked universal pool required to identify various percent-
ages of essential reactions from 10 to 100. 71

5.4 Comparison of the heuristic weights and PCA to identify the
required ranked universal pool required to identify various per-
centages of random essential reactions from 10 to 100. 72

5.5 Comparison of changes in constructability of target metabolites
and Meneco tool implementation time with different percent-
ages of ranked universal pool size for genomic T18 model when
ranking by both PCA and heuristic weights. 75

5.6 Variations in constructability of target metabolites and Meneco
tool implementation time with different percentages of ranked
universal pool size for genomic T18 model. 76

viii

Abstract

Microorganisms play a fundamental role in production of valuable products. Com-
prehending the complex metabolism of microorganisms is essential for enhancing the
bioprocesses, leading to a profitable increase in both the quality and quantity of
products. The construction of genome-scale metabolic models enables us to explore
the metabolism of cells and their behaviour under different environmental condi-
tions. This thesis presents a comprehensive exploration of genome-scale metabolic
model for a recently sequenced microorganism, the thraustochytrid strain T18, with
a particular focus on variation in carbon source (glucose/xylose) in the culture media
and the investigation of the production of docosahexaenoic acid (DHA). The first
genome-scale metabolic model for T18 was constructed with 2252 reactions and 1952
metabolites. The analysis of T18 revealed that the fundamental difference between
growth on glucose and xylose was the utilization of cofactors such as NADPH and
NADH. Furthermore, we identified 148 reactions essential for growth on xylose that
were not required for growth on glucose. However, due to the broad incompleteness
of T18 genomic data, approximately 40 percent dead-end metabolites were present
in the model, and no amount of gap-filling was sufficient to simulate the production
of fatty acids such as DHA. Consequently, to identify the ideal tool for gap-filling in
our model, a comprehensive and systematic assessment of available gap-filling tools
was conducted. We developed our own straightforward evaluation framework, which
enabled us to demonstrate that gap-filling is primarily model-dependent. Even with
widely used tools like COBRApy, Meneco, and CarveMe, only about 50 percent of es-
sential reactions removed/gaps across all 108 published models available on the BiGG
database could be identified. Furthermore, we developed and successfully imple-
mented a novel ranking approach in the Python-based SBPRank package. SBPRank
incorporates network topology properties, including betweenness and proximity, as
well as phylogenetic information, similarity, to rank reactions for the gap-filling pro-
cess. Our innovative trimming approach efficiently narrows down a large pool of
reaction database to a smaller and more specific subset, significantly improving the
speed of the gap-filling process and enhancing model validity. The results indicate
that when 10-30 percent of reactions are missing from a model, searching the top
5 percent of the ranked universal pool can be sufficient for gap-filling. Moreover, in
cases with 10-85 percent of missing reactions, exploring only the top 20 percent of the
ranked universal pool can identify suitable reactions. This reduction in the size of the
universal database enables more manageable simulation times while still achieving
effective and accurate gap-filling results.

ix

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor,

Dr. Stanislav Sokolenko, for his unwavering support, invaluable guidance, and con-

stant encouragement throughout my PhD journey. His expertise, mentorship, and

dedication have been instrumental in shaping my research and academic growth.

I am also thankful to the members of my thesis committee, Dr. Suzanne M Budge,

and Dr. Wendy Gentleman, for their insightful feedback, and generous investment

of time in evaluating my work. Likewise, I am grateful to Dr. Brian Ingalls for the

time and effort he dedicated to reviewing and evaluating my work as the external

examiner for my thesis.

In addition, I would like to appreciate Dr. David Woodhall and Dr. Roberto

Armenta from Mara Renewables Corporation for provision of data and their collab-

orative efforts.

I extend my heartfelt appreciation to my labmates Michelle White, Theodore

Street, and Kathy Isaac for their valuable friendship and support. My gratitude

extends to Paula Colicchio and Julie O’Grady for their administrative support.

Finally, I would like to thank my friends, Jenna Choi and Aryan Samadi, for their

constant support, understanding and encouragement.

x

Chapter 1

Introduction

The manufacture of many of today’s complex molecules and simple chemicals re-

lies on microorganisms and regardless of the final product, the underlying goal in

all bioprocesses is to achieve high product quality and quantity while minimizing

cost[1]. Achieving this goal requires an in-depth understanding of cellular behaviour.

Metabolism, a complex network of chemical reactions inside cells, plays a key role

in investigating microorganisms’ behaviour and using them to our advantage. One

expression of this understanding is through the development of metabolic models,

which serve to incorporate available data into a single framework for the purpose of

describing and eventually evaluating cellular function. Such models can later be used

to guide process optimization. For instance, by identifying feeding supplements or

targets for genetic engineering, a large number of combinatorial gene alterations can

be tested. Furthermore, these models can offer the best metabolic pathways or routes

to achieve the metabolic goals.

Modern high-throughput techniques have enabled the detailed characterization

of whole-genome sequencing and annotation (genomics), the measurement of the

messenger RNA molecules that are synthesized under specific condition (transcrip-

tomics), the quantification protein abundance, interactions, and functional states

(proteomics) and the measurements of the presence and concentration of metabolites

(metabolomics), which referred together as omics data, in the study of living organ-

isms. Although the analysis of each of the mentioned data sets have been the center

of attention in recent decades, such lists only provide basic information and limited

1

2

insight into the cellular processes without additional biological context. Therefore,

the incorporation of omics data and creation of a single holistic model which represent

cells as a system and the relationship between various compartments rather than an

individual cellular component is essential.

1.1 Technical definitions

1.1.1 Genome-scale metabolic models

The reconstruction of Genome-Scale Metabolic Models (GEMs) has made it possible

to gain a comprehensive and holistic understanding of cell metabolism. A GEM

is a mathematical representation of the metabolism for an organism that relates

metabolites and reactions information within a cell. All the biochemical information

that is hypothesized to be present in the GEM of an organism is derived from the

annotated genome of the target organism. The information about metabolites and

reactions is then complied into a matrix known as stoichiometric or S matrix. The

S matrix presents the stoichiometric coefficient of every single metabolite in each

reaction, with each column and row representing a reaction and a metabolite of this

matrix, respectively. Furthermore, other types of reactions such as biomass reaction,

exchange reactions and transport reactions should be incorporated into the S matrix.

• Biomass reactions: An abstract reaction that is described in terms of major

groups of biomolecules including proteins, carbohydrates, lipids, DNA, RNA

and free fatty acids. The biomass, a generic term referring to cell growth, sums

the mole fraction of each precursor required to produce 1 gram of dry cell weight.

• Exchange reactions: A set of reactions defines the specific medium on which

the model organism grows. Exchange reactions are added to simulate the com-

pounds that should be taken up from the outside environment into the cell,

3

and those should be secreted from the cell (waste products). For example, up-

take of glucose or amino acids, and excretion of byproducts like lactate or CO2.

Exchange reactions typically involve passive or facilitated diffusion or active

transport processes. The directionality of the exchange depends on concentra-

tion gradients or active transport mechanisms.

• Transport reactions: A collection of reactions that transport metabolites into

the cell from extracellular space. For instance, transport of metabolites into or

out of organelles such as the mitochondria, endoplasmic reticulum, or nucleus.

Transport reactions often involve specific transport proteins or carriers that

facilitate the movement of metabolites across membranes. These carriers may

use energy (e.g., ATP) to actively transport metabolites against a concentration

gradient.

1.1.2 Flux Balance Analysis(FBA)

Flux balance analysis (FBA) is the most popular method for evaluating genome-

scale metabolic models[2]. In FBA, a flux balance is formulated around every single

metabolite hypothesised to be in the organism under steady state condition and a set

of constraints including mass and energy balance along with thermodynamic feasibil-

ity (such as directionality of reactions) are considered. In other words, the reactions

are simply assumed to be input and output fluxes, and there is no net accumulation

of metabolites in the cell other than generic cellular growth. Since most metabolites

participate in many metabolic reactions, the number of metabolites is smaller than

the number of reactions in a network[3, 4, 5]. This formulation results in a system of

linear equations that represent mass or energy balance around the chemical reactions

to be underdetermined since most metabolites participate in many metabolic reac-

tions, the number of metabolites is smaller than the number of reactions in a network.

4

Therefore, there is an infinite number of flux vectors that can satisfy the steady state

conservation of the mass equations[6]. Hence, to calculate the physiologically relevant

flux values, which often form the basis for cellular growth, an optimization problem

should be performed[7]. This optimization problem involves specifying an objective

function, typically the biomass reaction. Eventually, the solution to this optimization

problem is a feasible flux space that satisfies all the constraints and the calculated

flux vector support the optimal state[8]. It should be noted that steady state assump-

tion is acceptable due to the fact that metabolism is a rapid process in comparison

with the other cellular processes like cell division or regulation. The following linear

program can be used to represent the general FBA problem:

maxz =
n∑︂

j=1

cjνj (1.1)

subject to
n∑︂

j=1

sijνj = 0, i = 1, ...,m (1.2)

νj(LB) ≤ νj ≤ νj(UB), j = 1, ..., n (1.3)

where cj is the objective function coefficient of reaction flux νj defining the objective

function z as a linear combination of the reaction fluxes. Equation 2 represents

a system of linear equations where sij is stoichiometry coefficients of metabolite i

in reaction j, while Equation 3 specifies the upper (νj(UB)) and lower (νj(LB))

bounds on the flux variables. Also, m and n represents metabolites and reactions,

respectively. FBA simulations took the form as seen in Equations 1-3 where the flux

of the biomass reaction was selected as the objective[2, 5]. Furthermore, an overview

of the Flux Balance Analysis (FBA) steps is presented for an example involving only

three metabolites in Figure 1.1.

5

b1 v1

v2 v3

b3

b2A B

C

𝑑𝑑𝐴𝐴
𝑑𝑑𝑡𝑡

= −𝑣𝑣𝑣 − 𝑣𝑣𝑣 + 𝑏𝑏𝑏

𝑑𝑑𝐵𝐵
𝑑𝑑𝑡𝑡

= 𝑣𝑣𝑣 + 𝑣𝑣𝑣 − 𝑏𝑏𝑏

𝑑𝑑𝐶𝐶
𝑑𝑑𝑡𝑡

= 𝑣𝑣𝑣 − 𝑣𝑣𝑣 − 𝑏𝑏𝑏

Matrix notation

𝑑𝑑𝐴𝐴
𝑑𝑑𝑡𝑡
𝑑𝑑𝐵𝐵
𝑑𝑑𝑡𝑡
𝑑𝑑𝐶𝐶
𝑑𝑑𝑡𝑡

−1 −1 0 1 0 0
1 0 1 0 −1 0
0 1 −1 0 0 −1

𝑣𝑣1
𝑣𝑣𝑣
𝑣𝑣𝑣
𝑏𝑏𝑏
𝑏𝑏𝑏
𝑏𝑏𝑏

= .

Mass balance equations

S V.0 =
Steady state condition

S.V = 0

Thermodynamic
0 ≤ vi ≤ ∞

Capacity
ai ≤ vi ≤ bi

Constraints

Feasible solution space

Optimization
Maximize b2

Optimal solution

Figure 1.1: An overview of the Flux Balance Analysis (FBA) steps for a small model
including three metabolites. b1, b2, and b3 represent boundary/exchange reactions,
while v1, v2, and v3 denote internal reactions. The objective function is the maxi-
mization of b2.

1.1.3 General model inconsistencies and gap-filling

Although GEMs have established themselves as a valuable approach for comprehend-

ing cellular behaviour under particular conditions, they often contain gaps. Gaps

occur when a reaction that consumes or produces a metabolite is absent from the

model, resulting in dead-end metabolites and blocked reactions. The main reasons

for presence of gaps are incomplete genome annotation of the target organism, inaccu-

racies in genome annotation methods or the reaction produces or consumes a specific

metabolite has not been discovered yet[9, 10]. All of these factors can affect models’

performance and predictions. Since enzymes play a crucial role in the majority of re-

actions in a metabolic model, the correct prediction of enzymes allocated to genes in

a sequenced genome is of paramount importance for the model’s performance[11, 12].

Therefore, GEMs often require gap-filling to enhance their analysis and interpreta-

tion. Gap-filling involves identifying and addressing gaps in the metabolic network

6

by incorporating candidate reactions from biochemical databases that could complete

the metabolic network. This process can be tedious and time-consuming when done

manually, while automated methods have considerable limitations[13].

1.2 Thesis objectives

1.2.1 Objective 1: Genome-scale metabolic model reconstruction

The primary objective of this research project was to reconstruct a comprehensive

genome-scale metabolic model for the recently sequenced thraustochytrid strain (T18)

from local biotechnology company (Mara Renewables Corporation), which serves as

an important source for fatty acid production. This objective encompasses the fol-

lowing specific aims:

• Gather and assess all available data such as genomic and proteomic data for

T18, ensuring data quality and completeness.

• Generate a genome-scale metabolic model for T18 that accurately represents

the metabolic capabilities and constraints.

• Explore the metabolic capabilities of T18, including its pathways for utilizing

xylose as a low-cost carbon source, as well as its fatty acid synthesis pathways.

1.2.2 Objective 2: Addressing gaps in the genome-scale metabolic

models

The second objective of this thesis is to develop strategies and methodologies to

address the challenges and gaps encountered during the reconstruction of the genome-

scale metabolic model. This objective involves the following specific aims:

• Evaluate the performance of current gap-filling tools in order to identify the ideal

gap-filling tool, highlighting areas of uncertainty and potential inaccuracies and

7

limitations.

• Develop a framework to enhance the GEM’s accuracy and speeding up the gap-

filling process by narrowing down a large pool of reactions, a database, to a

smaller, specific, and relevant set that can be effectively utilized during gap-

filling. An approach that can especially be valuable for research on organisms

with limited available data, as they frequently have many gaps in their models.

In this thesis, we will delve into a comprehensive exploration of the genome-scale

metabolic model reconstruction and validation. The research objectives are organized

into distinct chapters, each contributing to a deeper understanding of the subject mat-

ter. Chapter 2 provides a thorough review of the relevant literature, establishing the

framework and context for our study. Chapter 3 outlines the process of genome-scale

metabolic reconstruction for thraustochytrid strain T18 including data collection,

analysis, and outcomes. Chapter 4 presents the results of our systematic assess-

ment of available gap-filling tools. In Chapter 5, we introduce our novel framework,

SBPRank, to estimate the required universal pool size to fill gaps in the metabolic

model. Finally, Chapter 6 summarizes the key findings, highlights the contributions

to the field, and suggests potential avenues for future research.

Chapter 2

Literature Review

2.1 Introduction

A genome scale metabolic model (GEM) is a computational representation of the

entire set of metabolic reactions that occur within an organism’s cell or a specific

cellular compartment[6, 14]. GEMs are constructed using genomic information and

biochemical knowledge for an organism and are amenable to simulation, enabling

the prediction of metabolic fluxes, thereby facilitating various systems-level studies

of complex metabolism. There has been significant progress in the development and

simulation of GEMs across a wide range of organisms including bacteria, archaea,

and eukaryotes[15, 16]. Gu et al.,[17] reported that GEMs for more than 6239 organ-

isms including 5897 for bacteria, 127 for archaea, and 215 for eukaryotes have been

constructed since the reconstruction of the first GEM for Haemophilus influenzae in

1999. The types and numbers of applications for GEMs have steadily grown over

the past two decades. These applications encompass discovering the physiology of

the organisms under different conditions and understanding of their metabolic path-

ways, metabolic engineering of organisms for production of chemicals, optimization of

industrial processes, studying human diseases and metabolic malfunctions, investigat-

ing metabolic interactions within microbial communities, and potential drug develop-

ments. In this chapter, we review the current landscape of reconstructed GEMs and

explore their diverse applications as well as the challenges and limitations associated

to GEMs.

8

9

2.2 Application of genome-scale metabolic models

2.2.1 Optimization of bioprocesses and production of chemicals

Microorganisms have been widely used in bioprocesses in recent years. Production

of a range of chemicals, fuels, pharmaceuticals, and food ingredients depends on or-

ganisms. Thus, studying organisms at the system-level to optimize organisms and

subsequently bioprocesses is beneficial. To be able to understand how metabolism

works and interpret cell’s behavior at system-level, omics data for the organism of

interest needs to be combined. Reconstructing and utilizing GEMs provides the re-

quired data integration framework for characterizing metabolism[18]. GEMs represent

the sum of all metabolic reactions that occur within the metabolism and provide a

comprehensive insight. Through constraint-based modeling approaches, GEMs elu-

cidate the complicated interplay of metabolic pathways and provide guidance for

rational design strategies. They achieve this by simulating the metabolic behavior

of microorganisms under various environmental conditions and genetic modifications,

allowing the identification of suboptimal pathways, essential enzymatic targets for ge-

netic manipulation, and potential metabolic bottlenecks which are the limiting steps

or reactions in metabolic pathways. This predictive capability significantly reduces

the time and resources required for bioproduction optimization[19, 20].

GEMs facilitate the identification of metabolic bottlenecks and potential targets,

as well as the prediction of an organism’s metabolic capabilities, particularly in path-

ways related to the synthesis of desired compounds. These predictions are founded on

numerous experimental data sources, including gene expression levels, protein abun-

dances, and metabolite concentrations[21]. GEMs provide a thorough foundation

for prediction by systematically integrating annotated metabolic reactions. These

models are employed to identify optimal metabolic engineering strategies for product

yield and assess the effects of genetic modifications on metabolism. Furthermore,

10

experimental validation of these predictions allows for iterative model refinement and

improvement[1, 22].

Moreover, GEMs also play a pivotal role in the industrial production of biofuels

and other valuable compounds. They enable the rapid exploration of metabolic path-

ways, providing comprehensive predictions of metabolites and facilitating the iden-

tification of potential targets for genetic manipulations that enhance product yields,

reduce by-product production, and maximize overall bioproduction efficiency[23, 24].

Additionally, metabolic engineering guided by genome-scale models is not limited

to increasing production yield but can also enhance product quality, strain viabil-

ity, and reduce waste production. These models are crucial for the development of

new microbial cell factories by predicting the behavior of genetically modified strains.

In summary, genome-scale metabolic models provide deep insights and optimization

strategies for industrial biological processes, making them indispensable tools for ef-

ficient and sustainable industrial production[25, 26].

Two of the most popular organisms, whose GEMs have undergone frequent up-

dates and extensive usage, are Escherichia coli and Saccharomyces cerevisiae. E. coli

is a gram-negative bacterium[27, 23, 28, 29]. Its genome sequence was released in

2000 and makes it possible to reconstruct the first GEM for strain K-12 MG1655

named iJE660. After that, iJR904 and AF1260 models were developed by adding

more information such as periplasmic space and thermodynamic constraints to en-

hance the predictive ability of the model[30]. E. coli metabolic models have been

the dominant standard model for a wide range of studies including the biofuels (e.g.,

ethanol), food and feed additives (e.g., lactic acid, amino acids, vanillin), and phar-

maceuticals (e.g., Hepatitis B virus Human)[31, 32]. Furthermore, the yeast, Sac-

charomyces cerevisiae, is the popular model for eukaryotic organisms. Saccharomyces

cerevisiae have been used for fermentation processes since the ancient times and its

application have been growing for the production pharmaceutical and biochemical

11

products[22, 33]. Since it has a high tolerance in harsh industrial situations, it has

been a standard organism in industrial biotechnology. For example, Saccharomyces

cerevisiae have been widely used for over production of bioethanol and various kinds

of recombinant proteins[34, 24]. The first GEM for Saccharomyces cerevisiae, IFF708,

was reconstructed in 2003 and since then it has been continuously updated and var-

ious models have been generated for that[35]. The latest comprehensive GEM for

Saccharomyces cerevisiae is Yeast 8. Figure 2.1 shows the evolution of models for

Saccharomyces cerevisiae. Besides these two organisms, wider range of organisms

Figure 2.1: The revolution in the generation of Genome-Scale Metabolic Models
(GEMs) for Saccharomyces cerevisiae, one of the most popular organisms in industrial
biotechnology, from 2003 to 2021. The GEMs shown in black represent the classical
models, while the ones in red are GEMs integrated with proteome constraints[36].

such as Bacillus subtilis, Zymomonas mobilis, Pichia pastoris, Chlamydomonas rein-

hardtii, Caenorhabditis elegans, C. glutamicum, and Aspergillus niger have gained

attention and the GEM for them have been constructed to design and optimize their

metabolic ability to produce valuable compounds such as recombinant proteins, bio-

fuels, amino acids, and organic acids, etc[37, 21]. Several studies have investigated

increase in the production of products such as lycopene, lactic acid, malic acid, poly-

lactic acid, isobutanol, lysine, hyaluronic acid, etc[38]. For example, by using iJE660a

model for E. coli, a triple knockout target was identified which showed a 40 percent

increase in lycopene production and using iJKO04 model showed an increase to 1.75

12

g/L in lactic acid production[39, 40] On a genetically modified parent strain that

exhibits enhanced productivity. Table 2.1 provides application examples of genome-

scale metabolic models (GEMs) for various organisms.

Table 2.1: Application examples of genome-scale metabolic models (GEMs) for vari-
ous organisms.
Organisms GEMs Products Results Reference
E. coli iJE660a Lycopene 40 percent improvement [39]
E. coli MBEL979 Lycopene 10.6-fold increase [41]
E. coli iJR904 Lactic acid Production up to 1.75 g/L [32]
E. coli MBEL979 Malic acid Production up to 9.25 g/L [42]
E. coli MBEL979 l-valine Production up to 7.55 g/L [43]
E. coli iAF1260 Taxadiene 12-fold improvement [44]
E. coli MBEL979 Polylactic acid Increase to 0.11 g/DCW [45]
E. coli iJO1366 Isobutanol Increase to 8.68 g/L [46]
E. coli iJO1366 Succinic acid Increase to 1.4 g/L [47]
E. coli iAF1260 Fatty acids Increase to 1.7 g/L [48]
E. coli iJO1366 AntiEpEX-scFv 2-fold improvement [49]
E. coli iML1515 Lysine Enhance to 193.6 g/L [50]
S. cerevisiae iFF708 Vanillin 2-fold enhance [31]
S. cerevisiae Yeast 8.0 7-dehydrocholesterol Enhance to 1328 mg/L [51]
B. thetaiotaomicron iKS1119 Butyrate 3.4-fold improvement [52]
B. subtilis iYO844 Poly-γ-glutamic Enhance to 43 g/L [53]
C. glutamicum iCW773 Hyaluronic Acid Enhance to 28.7 g/L [54]

2.2.2 Optimization of culture media

GEMs have also been widely used to design cell culture media by identifying limiting

nutrients and their appropriate concentrations in the media composition as well as

suggesting the appropriate additives for the culture media. Furthermore, GEMs are

used to investigate the growth of organism on cheaper feedstock such as hydrolysates,

lignocellulose to reduce the cost of industrial bioprocesses. For instance, in a study by

Huang et al., the GEM of CHO cells (CHO-K1) was employed, and the flux balance

analysis (FBA) was performed to predict cell’s behaviour and immunoglobulin (IgG)

production by identifying the limiting amino acids in the cell culture media. The

results of this study showed that an increased concentration of leucine and valine led

to a 33 percent increase in IgG productivity[55]. Tejera et al.,[56] reconstructed a

13

GEM for Campylobacter jejuni to understand its metabolism and to design and op-

timize the culture media for that. By the help of the model, they could discover that

Campylobacter jejuni is auxotrophic for methionine, niacinamide, and pantothenate.

Additionally, they could design a define media containing L-cysteine, L-serine, and

L-glutamine as additives and achieved 1.75-fold higher growth rate than the default

media (Brucella broth)[56]. In another study, the GEMs of the yeast Pichia pastoris

such as PpaMBEL1254 and iLC915 were utilized to investigate the production of

recombinant proteins by altering the oxygen and nitrogen uptake rates in the culture

media[57]. Moreover, the production of human IgG was investigated by addition of

11 wheat hydrolysate lots with different properties and qualities to the media of GS-

CHO cells. The results revealed the unique metabolic features like the serine and

glycine metabolism could be linked to improved cell growth. Also, the distribution of

the intracellular metabolic flux along with central metabolism was greatly influenced

by the catabolic pathways of amino acids provided by the wheat hydrolysates[58]. In

addition, the GEM for Yarrowia lipolytica[59] used to investigate the production of

microbial oil referred to as single-cell oil (SCO) from sugarcane bagasse hydrolysates

in order reduce the dependency on biodiesel and oleochemical production. The ob-

tained result was 45.15 g/L for SCO, representing the highest in lignocellulose-based

bioprocess[60]. Furthermore, a GEM of Geobacillus thermoglucosidasius(iGT736),

suitable as a biocatalyst in lignocellulosic bioprocesses, was used to investigate its

ability in production of a range of products such as ethanol and succinate[61].

2.2.3 Study of human diseases and drug development

Another significant application of GEMs is in the field of medicine and drug discov-

ery. These models are used to create context-specific versions, including cell-specific,

tissue-specific, disease-specific, and biomarker-specific models, which enable a wide

range of analyses such as the phenotype prediction, rewiring of a metabolic network

14

and the identification of drug targets and disease biomarkers. Two available models

used for the investigation of metabolic diseases, drug metabolism, and personalized

medicine are RECON1[62] and RECON3D[63]. RECON1 was the first GEM pub-

lished for human in 2007. It represents the human metabolic network and is based

on extensive curation of existing biochemical data. In addition, RECON3D is a more

recent GEM was published in 2018 containing more comprehensive information. It

includes multi-omics data, such as genomics, transcriptomics, and proteomics, provid-

ing a more holistic view of metabolism. RECON3D has been widely utilized in study

of host-microbe interactions, microbiome modeling, enabling a deeper understand-

ing of the human microbiome. Furthermore, context-specific GEMs are generated

to study a variety of cancers such as lung, breast, prostate, liver as well as chronic

diseases like obesity and non-alcoholic fatty liver disease (NAFLD).

2.2.4 GEMs for non-conventional organisms

Moreover, thanks to the significant advancements in sequencing technologies, our

knowledge of omics data from various organisms with industrial potential has been

continually expanding. Therefore, generation of GEMs for newly annotated organ-

isms (non-conventional organisms) has become possible. One example of high po-

tential microorganisms is the thraustochytrids (our case study organism), marine

unicellular protists, which have proven to be a great source for production of fatty

acids such as Omega-3 long chain and biofuels[25]. Additionally, Kluyveromyces lac-

tis can be utilized for the production of proteins for food and feed industry, as well

as pharmaceutical enzymes[21]. Moreover, Pichia pastoris has a tightly regulated

expression system and can produce pharmaceuticals and industrial enzymes, and

Hansenula polymorpha can produce heterologous proteins and can ferment ethanol

at high temperatures[21, 64].

15

2.2.5 Thraustochytrid strain T18 (our case study organism)

One example of a non-conventional microorganism with high industrial potential is

the thraustochytrid. Thraustochytrids are heterotrophic, oleaginous marine unicellu-

lar protists that were first described 80 years ago but have gained significant attention

in recent years[65, 66, 67]. They have demonstrated to be a valuable source for the

production of biofuels and lipids, including docosahexaenoic acid (DHA), eicosapen-

taenoic acid (EPA), carotenoids, and squalene. The high levels of DHA and EPA in

the total fatty acids produced by thraustochytrids make them ideal candidates for

the production of nutritional supplements[68, 69, 70]. They can be found in various

marine environments, ranging from tropical to Antarctic waters[71, 72]. However, our

case study, the thraustochytrid strain T18 was isolated from Atlantic Canadian waters

and is known for its remarkable biomass production, containing up to 82 percent total

fatty acids. T18 represents a valuable plant-based source for the production of fatty

acids, especially long-chain Omega-3s, which can significantly reduce the reliance on

animal-based production for these essential oils[25].

In conclusion, Genome-scale metabolic models (GEMs) are invaluable tools for

comprehending the intricate interplay of metabolic processes within an organism.

These models provide a comprehensive framework for simulating and analyzing metabolic

pathways, thereby aiding in various applications, from understanding cellular phys-

iology to biotechnological advancements[73, 17]. GEMs for various organisms have

been developed and their role in different bioprocesses have been established. Figure

2.2 represents the evolution of GEMs.

16

Figure 2.2: The development of GEMs for various organisms with the increase in
availability of annotated genome sequences. a) increase in the genome sequences
available in PATRIC database. b) development of GEMs and increase in GEMs size
for 108 well curated models in the BiGG database. c) The phylogenetic domain of
108 available GEMs in the BiGG database, the numbers show the number of GEMs
in each branch and categories with at least one GEM are bolded[74].

2.3 Genome-scale metabolic model reconstruction approaches

2.3.1 Conventional approach

The manual or conventional process for the reconstruction of genome-scale metabolic

models is a labor-intensive process that involves meticulous data collection, integra-

tion, and curation. The process typically begins by compiling comprehensive infor-

mation from genomic data, including gene annotations and genomic sequences of the

target organism and then extensive literature mining and database searches to iden-

tify metabolic reactions associated with the organism of interest. Determining the

17

reversibility and thermodynamic properties of reactions, as well as the subcellular lo-

calization of enzymes, becomes an arduous task, often requiring expert knowledge and

substantial time investment. Additionally, the manual reconstruction process involves

iterative refinement, as gaps and inconsistencies are identified and addressed through

a combination of experimental validation and expert curation. While this method

provides a high degree of control and accuracy, it is resource-intensive and may not

be feasible for less-studied or complex organisms, making it a time-consuming and

challenging endeavor in the field of systems biology and metabolic engineering.

2.3.2 Metabolic model reconstruction automated tools

Manual reconstruction of metabolic models is a time-consuming process that necessi-

tates the collection of information ranging from genome sequences to the reversibility

of reactions, thermodynamic data, and enzyme localization. With the growth in the

various applications of GEMs of organisms, numerous approaches have been developed

to automate and speed up the process of reconstruction and to identify and address is-

sues related to gaps. A prominent example of reconstruction tools is COBRA Toolbox

which focuses on the construction, analysis, and simulation of genome-scale metabolic

models of microorganisms and other cellular systems. It employs constraint-based

analysis like Flux Balance Analysis (FBA) and Flux Variability Analysis (FVA) to cal-

culate feasible metabolic flux distributions within the model. Flux Variability Anal-

ysis is a computational technique used for GEMs to explore the range of feasible flux

values through their metabolic network. FVA calculates the minimum and maximum

flux values for each reaction in the network while maintaining an optimal solution for

a specified objective function, often the biomass production rate. By identifying the

variability in reaction fluxes, FVA provides insights into the flexibility and robustness

of metabolic pathways. This information is valuable for understanding the poten-

tial metabolic capabilities of an organism, uncovering alternate routes for metabolite

18

production, and assessing the impact of genetic and environmental perturbations on

cellular metabolism. FVA plays a crucial role in enhancing the predictive and analyt-

ical capabilities of constraint-based metabolic models[75]. These techniques help in

predicting cellular growth rates, substrate utilization, and the production of various

metabolites under different conditions. COBRApy[75] is a Python-based library for

constraint-based modeling of metabolic networks and COBRA.jl[8] is an advanced,

high-efficiency, constraint-based modeling and analysis using the Julia programming

language. COBRApy and COBRA.jl foundation is the COBRA Toolbox. Similarly,

RAVEN, ModelSEED[76] , AuReMe[77] and Pathway tools[10] are other well-known

tools that have been developed for mainly draft model reconstruction. ModelSEED

is a web-based platform that automates the process of genome-scale metabolic model

reconstruction for microbes, microbial communities, and plants. It provides access to

a large database of annotated genomes and metabolic reactions, making it easier to

generate models for a wide range of microorganisms. ModelSEED also offers tools for

model validation and analysis. Pathway Tools is a versatile software platform that

allows for the reconstruction, visualization, and analysis of genome-scale metabolic

models. It provides a user-friendly interface and supports the integration of various

data sources to create detailed metabolic reconstructions. Pathway Tools is widely

used in academic and industrial research for its comprehensive capabilities[78]. The

RAVEN (Reconstruction, Analysis, and Visualization of Metabolic Networks) Tool-

box is a MATLAB-based tool for metabolic model reconstruction and analysis. It

provides a flexible framework for creating models, performing flux balance analysis

(FBA), and visualizing metabolic networks. RAVEN is particularly useful for re-

searchers who are comfortable with MATLAB programming. CarveMe[79] focuses on

creating context-specific metabolic models tailored to specific organisms, conditions,

or environments. It considers available genomic and experimental data, enabling re-

searchers to study the metabolic capabilities of an organism in a particular context.

19

CarveMe automates the process of filling gaps in metabolic models, which typically

occur due to missing or incomplete information in genome annotations. It suggests

potential reactions that can fill these gaps, enhancing the model’s completeness. Table

2.2 represent a complete list of available tools for model reconstruction.

Table 2.2: Summary of available tools for model reconstruction.
Tool Language Database for metabolic reactions Gap-filling Eukaryote reconstruction Reference
COBRA MATLAB Any reaction database Yes Yes [16]
COBRApy Python Any reaction database Yes Yes [75]
COBRA.jl Julia Any reaction database Yes Yes [8]
Model SEED Web, Python In-house reaction database Yes Yes (only plants) [76]
Pathway Tools Python Pathway/Genome Database (PGDB), MetaCyc Yes Yes [15]
RAVEN MATLAB KEGG, MetaCyc Yes Yes [80]
AuReMe Python KEGG, BiGG Models, MetaCyc Yes Yes [77]
CarveMe Python BiGG Models Yes No [79]
KBase Web KEGG, BiGG Models, MetaCyc Yes Yes (only plants) [11]
AutoKEGGRec MATLAB KEGG No No [81]
Mackinac Python Model SEED No Yes (only plants) [82]
FAME Python KEGG No No [83]

2.3.3 Limitations of model reconstruction tools

Although numerous frameworks have been established for model reconstruction and

data analysis, multiple challenges such as user-unfriendliness, difficulty to install,

limited operating system compatibilities and lack of interpretability still exist. Various

tools require their own input data format which might be non-standard format and

might output data in a format that is incompatible with other frameworks[9, 3].

For example, Pathway Tools is a software environment that supports the creation

and curation of GEMs as well as visualization of metabolic pathways in a model.

However, its unique input data format (protein gene database; PGDB) and the fact

that it is not a free software makes its utilization limited[78, 84]. Additionally, most of

the available methodologies have application for prokaryotic organisms. CarveMe is

a tool designed by to create GEMs for microbial communities and the created models

are ready to use for FBA analysis. The implementation of its own gap-filling algorithm

allows this tool to prioritize the incorporation of reactions into the model with higher

genetic evidence, however its specificity for prokaryotic organisms and limited number

20

of template models for gap-filling, limit its use in practice. Furthermore, ModelSEED

is another popular web resource for genome-scale reconstruction and analysis with

useful features like pathway visualization an integration with other available tools.

Nonetheless, it can only be used for prokaryotic microorganisms and plants since its

content is primarily derived from prokaryotic microorganisms and plants[76, 10].

2.3.4 Gap-filling in metabolic models

The accuracy of GEMs’ predictions and functionality largely depends on the quality

and completeness of genome annotations[11, 62]. Since the genome annotations are

not always complete, generated GEMs contain inaccuracies, missing information, or

gaps in knowledge that can affect further simulations of metabolic activities. The

incompleteness of genome annotation can either result from the lack of knowledge

about the genome of the organism or the due to the errors from genome anno-

tation tools[85, 86]. All the annotation tools rely on public databases, and since

some of the sequences in these databases are not experimentally characterized, ac-

curate annotation becomes challenging. Moreover, different tools use different an-

notation approaches, including sequence-based, structure-based, transcription-based,

and pangenome-based annotations, which can all yield diverse outcomes and perhaps

introduce errors[87]. Each annotation approach brings unique strengths and limi-

tations to the characterization of genes and proteins. Sequence-based annotation,

relying on the genetic code, may miss non-sequence-related functional information.

Structure-based annotation, leveraging three-dimensional protein structures, depends

on the availability and quality of experimental data. Transcription-based annotation,

derived from RNA expression data, offers insights into gene regulation but is context-

dependent. Pangenome-based annotation, considering the collective gene repertoire

of a species, captures variability but is influenced by criteria for inclusion/exclusion

21

and genome availability[87, 88]. The variability in annotations arises from differ-

ences in data quality, algorithmic approaches, and the inherent complexity of biolog-

ical systems. Challenges include data incompleteness, algorithmic nuances, context-

dependent expression levels, and the dynamic nature of biological functions[87, 89].

Other errors in annotation algorithms generally and most related to relativity of the

alignment threshold, namely low sensitivity, and specificity, which leads to incorrect

or inaccurate annotation[85, 90]. Gaps in the GEMs are the absence of reactions that

consume or produce a metabolite, which lead to dead-end metabolites and blocked

reactions in the model. As a result, the gap-filling process is necessary to improve

the analysis and interpretation of GEMs[91, 89]. Gap-filling involves identifying and

addressing gaps in the metabolic network by incorporating candidate reactions from

biochemical databases that could complete the metabolic network. Gap-filling can

be done manually which is a tedious and time-consuming task or via the current

automated tools[6, 15].

2.3.5 Current gap-filling tools

The past two decades have witnessed the development of several automated gap-

filling algorithms. These algorithms serve the crucial purpose of completing or re-

fining metabolic network models for various organisms. Among this array of algo-

rithms, we can categorize them into two broad classes based on their underlying

principles and methodologies. The first category comprises optimization-based algo-

rithms, such as BoostGAPFILL[92], OptFill[93], GLOBALFIT[29], COBRApy[75],

and Model SEED[76]. These algorithms utilize Mixed Integer-Linear Programming

(MILP) to identify the minimum number of reactions needed to resolve gaps in a

metabolic model. MILP is an extension of linear programming that allows for the in-

clusion of integer variables in the optimization problem. In the context of gap-filling,

MILP is used to identify a minimum set of reactions (integer variables) to add to

22

a metabolic network in order to resolve gaps, typically gaps in biomass production.

The objective is to minimize the number of added reactions while ensuring that the

modified network is capable of producing the necessary biomass. The inclusion of

integer variables allows for discrete decisions, such as whether to include or exclude

a particular reaction, making MILP suitable for problems involving binary choices.

In contrast, the second category uses likelihood-based algorithms, as showcased by

MIRAGE[94] and Pathway Tools[15]. These algorithms employ a different approach,

emphasizing the probabilistic aspect of gap-filling. They consider a range of crite-

ria, including genomic evidence and context, to determine the necessary reactions for

gap-filling. Notably, this approach is applicable to both prokaryotic and eukaryotic

organisms, underlining its versatility. Distinguished from these categories is Meneco,

a graph-based gap-filling method. Meneco takes a unique approach by examining the

topological structure of the metabolic model network. Meneco identify reactions for

gap-filling when all the required reactants are already present within the network.

This method is particularly valuable for comprehending the spatial relationships and

connections within the metabolic network[95]. The classification of the tools is also

determined by their specialization for either prokaryotic or eukaryotic organisms.

Understanding the distinction between prokaryotes and eukaryotes is paramount in

the realm of gap-filling software tools due to the profound biological differences be-

tween these two organism types. Prokaryotes, encompassing bacteria and archaea,

and eukaryotes, characterized by organisms with a true nucleus, exhibit variations in

metabolic pathways and functionalities. Consequently, gap-filling tools must account

for these biological distinctions to ensure the accurate prediction and completion of

missing reactions within the context of the specific organism being studied. Moreover,

the importance of considering the prokaryote-eukaryote dichotomy extends to the op-

timization and specialization of gap-filling tools. Each organism type may require

unique algorithms and databases for effective gap-filling, considering their diverse

23

metabolic networks. Tailoring tools to the specific needs of prokaryotic or eukaryotic

organisms enhances their efficiency and relevance, contributing to the accuracy of

completed metabolic models. Since gap-filling is a major challenge in metabolic mod-

elling, a range of tools have been developed to enhance the accuracy and completeness

of metabolic network models. The summary of the current gap-filling algorithms is

presented in Table 2.3. Organism specificity, user-unfriendliness, and the inability to

Table 2.3: Summary of the current gap-filling algorithms
Tool Universal reference database Language Target Organism Gap-filling approach Reference
Reconstructor Model SEED Python Prokaryotes pFBA based [96]
OptFill any database Python Only small models Optimization-based [93]
AuReMe KEGG, BiGG Models, MetaCyc Docker-image Prokaryotes & eukaryotes Topology-based [77]
CarveMe BiGG Python Prokaryotes Likelihood-based [79]
BoostGAPFILL BiGG MATLAB Prokaryotes Optimization-based [92]
Meneco MetaCyc Python Prokaryotes & eukaryotes Topology-based [95]
Pathway Tools MetaCyc Stand alone Prokaryotes & eukaryotes Likelihood-based [15]
GLOBALFIT BiGG R Prokaryotes Optimization-based [29]
FASTGAPFILL KEGG MATLAB Prokaryotes & eukaryotes Optimization-based [9]
COBRApy any database Python Prokaryotes & eukaryotes Optimization-based [75]
MIRAGE KEGG MATLAB Prokaryotes Likelihood-based [94]
Model SEED Its own database Python/web-based Prokaryotes & plants Optimization-based [76]

find gaps for models beyond their provided examples are some of the main limitations

of the current tools.

Chapter 3

Genome-Scale Metabolic Model Reconstruction and

Validation for Thraustochytrid Strain T18

3.1 Introduction

A genome-scale metabolic model of thraustochytrid strain T18 cells was developed to

predict cellular response to variation in carbon input (glucose/xylose) in the culture

media as well as investigate the formation of docosahexaenoic acid (DHA), seen as

one of the major T18 cellular products. Genomic and proteomic data provided by

Mara, combined with information from previously published models, enabled the

construction of a stoichiometry flux model with 2252 reactions (including transport

and exchange reactions) and 1952 metabolites. Flux balance analysis (FBA) identified

the fundamental difference between growth on glucose and xylose to be the utilization

of cofactors such as NADPH and NADH. Following extensive gap-filling, growth on

xylose resulted in an increased demand for both NADH and NADPH, which caused

pronounced changes to the overall flux distribution. Simulated knock-out experiments

identified 148 reactions essential for growth on xylose that were not required for

growth on glucose. If the gap-filling process is correct, our results suggest that mass

balance constraints identified through modelling may make it challenging to address

increasing NADH/NADPH demands in one or two targeted genetic modification.

However, it must be noted that major gaps in the genome annotation data made

reconstruction far more challenging than initially expected. Despite our best efforts to

identify and fill model gaps through iterative rounds of model refinement and manual

24

25

curation, we found significant evidence of multi-enzyme gaps, where true pathway

structure could only be guessed. Approximately 40 percent of metabolites included

in the model lacked consumption or production reactions, making them effective

“dead-ends”. Furthermore, no amount of gap-filling was sufficient to simulate the

production of fatty acids such as DHA, throwing into question the completeness of

the underlying data.

3.2 Draft metabolic network

Model reconstruction was initiated by extracting 970 unique enzymes (referred to by

their enzyme commission, EC, numbers) from both old and new genomic and pro-

teomic data. Extracted EC numbers were converted into metabolic reactions using

the BiGG modelling database. A number of databases were considered, but the use

of BiGG facilitated comparison to previously published genome-scale metabolic net-

works using a single resource with standard nomenclature[97]. Combining all putative

reactions linked to the identified EC numbers (and considering that a singe enzyme

is capable of catalyzing multiple reactions) resulted in a draft network consisted of

1812 intracellular reactions and 1557 metabolites, along with 253 transport and ex-

change reaction necessary to model metabolite flux into and out of the cell. A biomass

reaction (approximating the overall requirements for amino acids, nucleotides, carbo-

hydrates, lipids, etc.) was formulated based on previous modelling work on related

organisms of Schizochytrium limacinum (SR21)[98], Aurantiochytrium T66 [99] and

Oblongichytrium sp.RT2316-13 [100, 70]. Designing a series of experiments, such as

those based on 13C-glucose, and subsequently utilizing 13C NMR spectroscopy can

be advantageous for gaining insights into various metabolic pathways of T18.

26

3.3 Gap-filling of the metabolic model

3.3.1 Growth on glucose

Primary gap-filling was based on the assumption that the metabolic model should be

capable of simulating the production of all biomass precursors from the components

found in glucose-containing media that is capable of supporting cell growth. In short,

this was done by setting each of biomass components as the objective function of

model simulation in-turn. Setting each of the biomass model metabolites as the ob-

jective of the model simulation, mathematically, involves performing simulations with

the goal of maximizing the flux through each individual biomass metabolite. This

served to identify biomass precursors such as tryptophan, lysine, L-galactose, and

cholesterol as so-called “dead-end” metabolites (nodes in the overall metabolic model

with either no consumption or production pathways leading to them). Tracing up-

stream reactions and comparing related models suggested the inclusion of histidinol-

phosphatase (EC: 3.1.3.15), GDP mannose-phosphorylase (EC: 2.7.7.22), GDP-L-

galactose phosphorylase (EC: 2.7.7.69), diaminopimelate de-hydrogenase (EC: 1.4.1.16)

and phosphatidylcholine synthase (EC: 2.7.8.24). As illustrated in Figure 3.1, each

of the gaps above were relatively straightforward to identify as only a single en-

zyme was needed to restore function to an otherwise complete pathway. However,

this process was not sufficient for simulating growth. A survey of all published flux

models on BiGG suggested a number of highly conserved enzymes that were missing

from our draft model, such as, sphingomyelin synthase (EC: 2.7.8.27) and sterol O-

acyltransferase (EC: 2.3.1.26). In total, 27 additional reactions were needed for the

model to be able to produce biomass in the presence of glucose as the carbon source

in culture media. Unfortunately, the accuracy of multi-enzyme gap-filling cannot be

estimated at this time.

27

Figure 3.1: A gap in the histidine metabolism pathway of thraustochytrid strain T18.
The gap between L-Histidinol phosphate (hisp-c) and L-Histidinol (histd-c) is caused
by a lack of supporting information from annotated data (EC: 3.1.3.15), which breaks
the network’s connectivity and inhibits histidine synthesis.

3.3.2 Growth on xylose

The same process was repeated for growth on xylose as the primary carbon source.

As with glucose, xylose initially found to be insufficient to support growth. The only

firm evidence of enzymes for xylose metabolism were xylose isomerase (EC: 5.3.1.5),

converting D-xylose to D-xylulose, as well as D-xylose reductase (EC: 1.1.1.307) and

xylitol oxidase (EC: 1.1.3.41) in the pentose and glucuronate interconversions path-

way. However, no firm downstream reactions could be identified. A review of existing

28

models was conducted to determine common pathways for xylose metabolism (sum-

marized in Figure 3.2). In prokaryotes, D-xylose conversion was found to occur via

direct isomerization to D-xylulose catalysed by xylose isomerase, and in eukaryotes,

D-xylose is first reduced to xylitol by xylose reductase, and the resulting xylitol is

subsequently oxidized to D-xylulose by xylitol dehydrogenase. These findings were

further supported by a review of the literature Rodriguez et al.,[101] and Wittmann

et al.,[102]. Although no direct genomic evidence was found for the conversion of

xylitol to D-xylulose in T18 annotated data, the presence of several incomplete EC

numbers in the 1.1.1.- format and enzyme conservation in similar models suggested

the addition of D-xylulose reductase (EC: 1.1.1.9) and L-iditol 2-dehydrogenase (EC:

1.1.1.14). A schematic of xylose entry into TCA cycle following the aforementioned

additions is presented in Figure 3.3. Despite carbon entry into the TCA cycle, major

gaps remained in pathways corresponding to fatty acid biosynthesis (steroid biosyn-

thesis, glycerophospholipid, and biosynthesis of unsaturated fatty acids). Assuming

that T18 cells are capable of growing on xylose as a primary carbon source and that

their lipid profile remains consistent with growth on glucose, 16 more enzymes were

added to the draft model based on conservation to similar models. The engineered

T18 was experimentally confirmed to exhibit diauxic growth on glucose/xylose me-

dia. However, T18 did not demonstrate growth in media with only xylose as the sole

carbon source[25]. The growth response to xylose as the primary carbon source was

of interest to Mara and thereby one of our modeling objectives.

3.3.3 DHA production

Given the importance of omega-3 fatty acid production to the T18 cell culture pro-

cess, a third round of gap-filling was performed for docosahexaenoic acid (DHA)

biosynthesis. Despite evidence of enzymes involved in the elongation–desaturation

pathway (ECs: 1.1.1.211, 1.1.1.35, 1.3.1.38, 2.3.1.16, 3.1.2.2, 3.1.2.22, 4.2.1.17) as

29

Figure 3.2: EC numbers related to D-xylose in the pentose and glucuronate inter-
conversions pathway for a variety of bacteria, yeast, and mammalian genome-scale
metabolic models (BiGG database), as well as similarly previously reported thraus-
tochytrids models of Schizochytrium limacinum (SR21) and Aurantiochytrium T66.
The percentage of existence of each of the EC numbers in the xylose pathway for the
models is represented by different colours. All of the studied models contain xylose
isomerase (EC: 5.3.1.5) (purple). Green indicates enzymes present in 90 percent of
the models (ECs: 2.7.1.17, 5.1.3.1). Red indicates enzymes present in 60 percent of
the models (ECs: 1.1.1.307, 1.1.3.41). Blue indicates EC numbers found in 60 percent
of the models (as well as similar organisms to T18) (ECs: 1.1.1.9, 1.1.1.14). Pink
indicates enzymes precent of the models (ECs: 1.1.1.179, 1.1.1.11, 1.1.1.10, 1.1.1.12).

well as the polyketide synthase (PKS) pathway (ECs: 2.3.1.179, 1.1.1.100, 1.3.1.9,

among approximately 10 others), neither route could support flux distribution with

DHA production used as the objective function for model simulation. Semi-automated

analysis of flux maps and comparison of related models revealed multiple gaps in the

elongation-desaturation pathway that required the addition of 14 more ECs revolving

around sphingolipid, steroid, and glycerophospholipid biosynthesis (driven in part by

partial identification of ECs in the 1.1.1.-, 3.6.1.-, 4.1.1.-, and 4.2.1.- ranges). Our

semi-automated analysis primarily involves the utilization of pathway visualization

tools, namely Pathview[103], ,Escher[104] and PyGraphviz[105]. To address metabo-

lites that cannot be produced or consumed in the biomass reaction, we integrated

30

Figure 3.3: Putative xylose metabolism through glycolysis, the pentose phosphate
pathway, and the TCA cycle. D-xylose isomerase (XYLI1) converts D-xylose to
Dxylulose, and xylitol is produced as a by-product by xylose reductase (XYLR). Xy-
lulokinase (XYLK) catalyses the conversion of D-xylulose to xylulose-5-phosphate.
D-xylulose-5-phosphate, a pentose phosphate pathway intermediate, enters the pen-
tose phosphate pathway, glycolysis, and TCA cycle, where it produces Acetyl-CoA.

the capabilities of COBRApy[75] and PyGraphviz. This integration enabled the gen-

eration of graphs, allowing us to trace the pathways of each metabolite and under-

stand the relationships between our target metabolites and other reactants and prod-

ucts. Subsequently, we systematically examined each metabolite to identify dead-end

metabolites, which are metabolites solely produced or consumed in the model, leading

to blocked reactions. Following this identification, we filled the identified breaks and

gaps with appropriate reactions sourced from the KEGG/BiGG databases. However,

none of these additions were sufficient to enable DHA production. Analysis of the

PKS pathway yielded similar results, with hydrolase (EC: 4.2.1.46) and isomerase

(EC: 5.5.3.21) identified as the primary pathway gaps to be filled. However, these

additions were also insufficient to enable DHA production. Failure to simulate DHA

31

production suggests a generally broad level of uncertainty in the underlying genomic

data around the enzymatic pathways used for general fatty acid biosynthesis that

could not be resolved in the scope of this project. The annotated data does, however,

appear to agree with the general literature that the biosynthesis of polyunsaturated

fatty acids in thraustochytrids is primarily controlled by the action of a PKS enzy-

matic complex[100, 70].

3.4 Topological validation

In light of the gaps identified above, a general survey of model completeness was

conducted on all 108 prokaryote and eukaryote models found in the BiGG database.

Completeness was primarily judged based on the total number of dead-end metabo-

lites as a fraction of the overall number of reactions. The overall percentage of blocked

reactions in published models was found to vary from 0 to 75%, with a significant

mode at 40% (full distribution presented Figure 3.4). At 39%, the total fraction of

blocked metabolites for the T18 model fell slightly below the mode. These gaps are

typically shows up in the less central pathways. The central pathways of metabolism,

such as glycolysis or the citric acid cycle, are often well-studied and characterized.

Additionally, central metabolic pathways tend to be more evolutionarily conserved

across organisms. The conservation of these pathways may lead to more reliable

information, whereas less central pathways may vary more between organisms, con-

tributing to gaps in our model. Moreover, less central metabolism may involve more

complex or specialized pathways that are harder to study and model accurately. This

complexity could contribute to a higher likelihood of gaps. Similarly, the total number

of metabolites aligns closely with the distribution mode, as depicted in Figure 3.5,

while the total number of reactions slightly deviates below the mode, as illustrated

in Figure 3.6. Peaks in both figures signify the distribution patterns of prokaryote

and eukaryote GEMs. Despite the presence of significant gaps in pathways such as

32

fatty acid biosynthesis (detailed above), the generated T18 model was found to be

quite comparable to published models in terms of general model topology (struc-

ture). Nevertheless, the fact that 39% of the metabolites in the model do not have

either consumption or production reactions presents a significant limitation to the

level of detail that can be extracted from the overall modelling effort, especially when

combined with the specific gaps present in the xylose and fatty acid metabolism.

Figure 3.4: Distribution of percentage of blocked reactions for all 108 BiGG models
in comparison to the T18 model.

3.5 Comparison of glucose and xylose metabolism

A basic comparison of growth on glucose as the primary carbon source vs. xylose was

simulated by considering the total production of NADH, NADPH, ATP, Acetyl-CoA,

and CO2, as well as the consumption of O2 per uptake flux of carbon. Although the

33

Figure 3.5: Distribution of total metabolite number for all 108 BiGG models in
comparison to the T18 model.

overall metabolic model is premised on a balance around energetic species such as

NADH, NADPH, and ATP, it is nonetheless possible to tally all production reactions

and all consumption reactions to understand the difference that carbon source plays

on the overall flux distribution. When these values were evaluated for xylose and

glucose in the culture media, it was revealed that this ratio stayed relatively constant

for ATP, Acetyl-CoA, O2, and CO2. On the contrary, the ratios for total NADH

production per uptake flux of the carbon source and total NADPH production per

uptake flux of carbon source were 5 percent and 6 percent higher for xylose. Al-

though the increased need for NADH/NADPH is not particularly surprising given

the different degrees of reduction of xylose and glucose, a couple of basic observa-

tions do stand out. First, both NADH and NADPH production increased rather

34

Figure 3.6: Distribution of total reaction number for all 108 BiGG models in com-
parison to the T18 model.

than only one. This is significant because the overall flux model did not include a

conversion reaction between NADH and NADPH, meaning that mass constraints do

place a demand on both. Furthermore, even with relatively loose constraints, re-

ferring to constraints assigned solely through a comparison of the model with other

similar models, both NADH and NADPH fluxes were found to increase across a large

number of pathways. Simulated knock-out analysis revealed 501 essential internal

reactions (22.2 percent of total reactions) that were necessary for the consumption

of either carbon source. Growth on xylose alone required an additional 148 reactions

(6.5 percent of all reactions), whereas growth on glucose alone required just 24 addi-

tional reactions (1 percent of total reactions). Notably, growth on xylose required an

increased uptake of metabolites such as methionine and malate, although it is unclear

35

on whether these were symptoms of the model dealing with the increased demand for

NADH/NADPH. Taken together, these results suggest that mass balance constraints

may make it challenging to address increasing NADH/NADPH demands in one or

two targeted genetic modification; however, more detailed analysis is constrained by

overall model uncertainty.

Chapter 4

Systematic Assessment of Current Gap-filling Tools

4.1 Introduction

Genome-scale metabolic model (GEM) reconstruction for an organism typically be-

gins with annotated genomic data for the organism of interest[6, 7]. However, genomic

data may not always be complete, and genome annotation tools may not be able to

assign proper functional roles to some genes[11, 91, 106]. Even for E. coli, one the

most popular model organisms, around 30 percent of the protein encoding genes lack

a functional role. All the annotation tools rely on public databases, and since some

of the sequences in these databases are not experimentally characterized, accurate

annotation becomes challenging. Moreover, different tools use different annotation

approaches, including as sequence-based, structure-based, transcription-based, and

pangenome-based annotations, which can all yield diverse outcomes and may intro-

duce errors. Other errors in annotation algorithms generally and most related to

relativity of the alignment threshold, namely low sensitivity, and specificity, which

leads to incorrect or inaccurate annotation. Consequently, the transition from ge-

nomic data to enzymes and then to reactions often results in the presence of several

gaps in GEMs, referring to the absence of reactions that either consume or pro-

duce a metabolite, which leads to dead-end metabolites and blocked reactions in the

model[107, 15].

As a result, a gap-filling process is necessary to enhance the analysis and in-

terpretation of GEMs. Gap-filling involves identifying and addressing gaps in the

metabolic network by incorporating candidate reactions from biochemical databases

36

37

that can complete the metabolic network. This process can be performed manu-

ally, which is both time-consuming and tedious, or can be performed with the aid

of automated tools[10, 108, 109]. Several automated gap-filling algorithms have

been developed for various organisms over the past two decades. Some such as

BoostGAPFILL[92], OptFill[93] , GLOBALFIT[29][109], COBRApy[75], and Model

SEED[76] are optimization-based algorithms that solve Mixed Integer Linear Pro-

gramming (MILP) problem with the goal of determining the minimum number of

reactions required to resolve gaps in the model. The tools resolve the gaps by iden-

tifying and adding the most essential reactions to the model, which could involve

incorporating missing biochemical processes, enzyme-catalyzed reactions, or metabo-

lite conversions. The ultimate aim is to ensure that the model is accurate and func-

tionally complete. In contrast, others such as MIRAGE[94], Pathway Tools[15] rely

on likelihood-based algorithms that consider a set of criteria such as genomic evi-

dence to identify the necessary reactions to fill a potential gap for both prokaryotes

and eukaryotes. On the other hand, there are topology-based gap-filling approaches.

Topological gap-filling approaches in metabolic modeling involve strategies that lever-

age the network structure or topology of a metabolic model to identify and fill gaps in

its reactions. These methods capitalize on the connectivity and relationships between

metabolites and reactions within the network. One common approach is to prioritize

the addition of reactions that bridge gaps in the metabolic network, ensuring the for-

mation of a connected and functional pathway. Topological analysis, such as assessing

the betweenness centrality of metabolites or reactions, plays a crucial role in these

approaches, guiding the identification of key missing links. By exploiting the inherent

organization of the metabolic network, topological gap-filling approaches aim to en-

hance the accuracy and biological relevance of completed metabolic models. Meneco

is the only available topology-based gap-filling method that addresses gaps in the

38

model by examining the topology of the model network. It identifies and suggests

reactions for gap-filling when all required reactants are present within the network.

In other words, Its main emphasis lies in the identification of reactions or sequences

of reactions that disrupt the continuity of metabolites from the culture media (seeds)

to the biomass reaction (targets)[95].

These tools have the capability to execute a range of essential analyses, including

flux balance analysis, and demonstrate practicality across a wide array of organisms.

However, certain limitations, such as organism-specific applicability, lack of user-

friendliness, and the inability to identify gaps in models that extend beyond their

pre-established examples, have restricted their broader utility.

A systematic approach to assess the performance of gap-filling has not been de-

veloped thus far[10]. Due to the fact that gap-filling is still one of the main challenges

in genome-scale metabolic modelling, a practical assessment can provide valuable in-

sights to potential users, helping them determine which tool or combination of tools

can effectively be used to address gap-filling process for their GEM. In this study, we

developed an evaluation framework to assess the performance of available tools, with

the purpose of identifying the optimal gap-filling tool to fill the gaps in our model.

Among the various tools that were investigated, we concentrated on the most widely

used tools, ultimately selecting COBRApy, CarveMe, and Meneco for a comprehen-

sive evaluation of their effectiveness in gap-filling. It is crucial to emphasize that,

in this chapter of our study, the choice of tools for comparison was based solely on

their popularity, without taking into account any additional factors. COBRApy is

one of the most widely utilized frameworks in the field of metabolic modeling. It is

well-known for its ability to carry out fundamental analyses like Flux Balance Anal-

ysis (FBA), Flux Variability Analysis (FVA), and Dynamic Flux Balance Analysis

(dFBA), with over 1000 citations. In addition, It is a useful option for modeling

various organisms[75]. Next, CarveMe, with 387 citations, offers a wide application

39

for microbial species and communities. Both COBRApy and CarveMe employ an

optimization-based methodology for gap-filling[79]. In contrast, Meneco was chosen

because of its unique approach of gap identification. It is the only topology-based

gap-filling method that is currently available, and it fills in model’s gaps by looking

at the model network’s topology[95].

4.2 Materials and methods

Our systematic assessment approach includes both qualitative and quantitative in-

vestigations for each of the 3 tools including COBRApy, CarveMe, and Meneco.

4.2.1 Qualitative analysis

For our qualitative analysis, we first established a set of criteria to compare and eval-

uate the performance of each tool, as shown in Table 1. We continued our qualitative

evaluation by building a small model to fully comprehend the stated concept behind

each tool’s approach, test each tool more quickly, and debug and troubleshoot more

easily. Evaluating the performance of tools with larger and complex models can be

challenging and may make it more difficult to identify the source of errors or problems.

Therefore,we generated a small model containing only 5 reactions, 2 exchange reac-

tions and 3 internal reactions as shown in Figure 4.1 to test the COBRApy, CarveMe,

and Meneco tools performance. This process involves removing the reaction that con-

verts metabolite B to C (a trivial gap), adding that single reaction to the universe

model, and investigating whether each tool could successfully identify the deleted

reaction to fill this gap.

40

Figure 4.1: An example of a small toy model comprises 5 reactions, including 2
exchange reactions and 3 internal reactions, featuring a straightforward gap (involving
the conversion of metabolite B to C). This small model is utilized to assess the
performance of COBRApy, Meneco, and CarveMe.

4.2.2 Quantitative analysis

The more the number of gaps in a model, the more challenging the gap-filling process

can become, and there is a higher likelihood of errors when using automated gap-

filling tools. In order to evaluate the performance of each of the tools, we considered

a straightforward analysis in a consistent condition to minimize the possibility of any

errors or problems. Our approach generally involved creation of artificial gaps/incon-

sistencies in a model and evaluate each tool’s ability in identifying these generated

gaps. To have same GEMs as input for all the three tools as well as a diverse set

of GEMs, we selected BiGG database as our case study. BiGG is a comprehensive

source containing 108 manually curated genome-scale metabolic models, including

both prokaryotic and eukaryotic models[87]. We began by identifying the essential

reactions for growth in each model. Essential reactions are those reactions that their

removal results in zero growth in FBA. The objective function for identifying essential

reactions in all of the models was the maximization of the biomass reaction (organ-

ism growth). Next, we introduced artificial gaps by randomly removing one essential

reaction from each model. The random removal of reactions was done without rep-

etition. Subsequently, each gap model along with a trivial universe, were used as

41

the main inputs for each of the three tools and their performance was assessed. The

trivial universe model, the required reference database for gap-filling, was generated

from the removed reaction (the artificial gap reaction) in each of the tested BiGG

models and only consists of that single reaction. This approach ensures the exclu-

sion of any potential errors coming from other reactions in a huge universe database,

which allow us to focus only on evaluating each tool’s performance. For COBRApy

we only needed to provide the gap model and the trivial universe whereas for Meneco

other inputs including a seed model (e.g., organism culture media), a target model

(e.g., biomass reaction), rather than the gap model and the trivial universe model

were required. Moreover, CarveMe only required the gap model as it utilizes its own

universal model for gap-filling. To be able to compare the performance of each of

the tools in identifying gap reactions in each model, we defined variables such as

model size (including the total number of reactions and metabolites), the number of

model compartments, and model phylogenetic domain, which encompass eukaryotes

and prokaryotes, as our variables for comparison of results.

4.2.3 Effect of multiple artificial gaps in the models on tools

performance

Given that GEMs typically contain numerous missing reactions/gaps, our next step of

the analysis involved generating multiple artificial gaps in each model to evaluate the

performance of tools in a more realistic scenario. To accomplish this goal, we created

random sets of removal of 1, 10, 50, and 100 percent from the essential reactions

in each model. We then evaluated and compared the performance of each tool by

calculating the average recovery percentage. The average recovery percentage was

determined by dividing the number of reactions identified by each tool to fill the gaps

in each model by the total number of reactions for each set in each model.

42

Table 4.1: Results for qualitative assessment, including each tool’s specific features
and our custom set of criteria
Category Criteria/features COBRApy Meneco CarveMe
Custom Test Criteria Gap fill arbitrary models Yes Yes Yes
Custom Test Criteria Gap fill a trivial model Yes Yes No
Custom Test Criteria Compile its own example Yes Yes Yes
Custom Test Criteria Gap fill a trivial gap in an existing model Yes Yes Yes
Tool Specification Features Take a universe (T) or provide its own(P) T T P
Tool Specification Features Gap fill eukaryotes Yes Yes No
Tool Specification Features Gap fill in a specific culture media No Yes Yes
Tool Specification Features Independent of a specific database Yes Yes No
Tool Specification Features Trimming reactions of an universal database No No No
Tool Specification Features Output format List of reactions List of reactions Gap-filled SBML model
Tool Specification Features Compartment dependency Yes No Yes

4.3 Results and discussion

4.3.1 Characterization of tools

We conducted a comprehensive assessment of three current gap-filling tools for genome-

scale metabolic models, employing both qualitative and quantitative analyses. To

achieve this objective, we initially defined a set of criteria for evaluating the perfor-

mance of each tool. Detailed results for these criteria, including each tool’s specific

features and our custom set of criteria, are presented in Table 4.1. The specific fea-

tures of the tools encompass characteristics that each tool claims to possess, such

as the capability to fill gaps in eukaryotic models, the requirement for specific cul-

ture media, or compartment dependency, refers to the influence of the number of

compartments. In contrast, custom test criteria denote uniquely defined and tailored

evaluation metrics established in this section of our analysis to gauge the effectiveness

and practicality of a tool. For instance, these criteria include the tool’s capacity to

fill gaps in any model irrespective of size or phylogenetic domain, or its proficiency

in compiling and running its own examples. All the three tools passed the custom

test criteria almost successfully. However, CarveMe stood out mainly for being prac-

tical only for models using metabolite and reaction IDs from the BiGG database.

CarveMe’s gap fill function requires the use of CarveMe’s own universe model, un-

like COBRApy and Meneco, which can function with a broader range of universe

43

models. Furthermore, COBRApy and Meneco can be practical for both prokaryotes

and eukaryotes, while CarveMe is only suitable for prokaryotes. In addition, while

COBRApy doesn’t require specific culture media as input for gap-filling, Meneco and

CarveMe rely on user-provided media information. One significant similarity and

weakness among all three tools is that none of them employ any trimming criteria

when selecting reactions from the universe model. Consequently, every reaction from

a large database is considered equally important during the identification of the most

suitable candidate reactions for gap-filling by each tool which increase the likelihood

of errors and the inclusion of incorrect reaction to the GEM.

4.3.2 Quantitative gap-filling performance of COBRApy, Meneco, and

CarveMe

For our systematic assessment, we chose the BiGG database as our case study, en-

compassing both prokaryotic and eukaryotic models. Our quantitative assessment

started by examining of all models(containing these two categories) across the three

selected tools. Additionally, we investigated the impact of model compartments and

the phylogenetic domains of models on the performance of the tools. The number

of prokaryotic and eukaryotic models that successfully worked, indicating that the

gap-filling produced results without any computational error, is presented for each

of the tools in Table 4.2. From the initially selected 108 BiGG models, 59 models

were common among COBRApy, Meneco, and CarveMe, all of which belonged to

the prokaryotic category. Nonetheless, there are differences among the tools as we

can see in Table 4.2. Specifically, 21 out of 108 models, 39 out of 108 models, and 3

out of 108 models were applicable to COBRApy, Meneco, and CarveMe, respectively.

It’s important to highlight that the decrease in the total number of models for each

tool stemmed from inaccuracies found in specific BiGG models. Some models lacked

clarity in their objective functions or had an unclear count of essential reactions for

44

growth, resulting in errors across all three tools when these inaccurate models were

used as input. Consequently, the definition of tools working for the models is that

the tool produced the output without encountering any errors.

Table 4.2: Number of models shared and distinct among COBRApy, Meneco, and
CarveMe across all 108 BiGG models

Models similarity COBRApy Meneco CarveMe
Same 59 59 59
Different 21 39 3

4.3.3 The relationship between models’ compartments and phylogenetic

domain and gap-filling performance of COBRApy, Meneco, and

CarveMe

Compartments represent different sub-cellular locations within a cell, such as the cy-

toplasm, mitochondria, or the extracellular space. With the increase in the number

of compartments in the GEM, the complexity of the model increases. More com-

partments mean more spatial and functional details, more reactions, and associated

constraints which can impact the computational demands of simulation and overall

performance of gap-filling tools. Locating the precise reaction to address a potential

gap within any of the compartments can be a challenging. Therefore, our other anal-

ysis was the exploration of the relationship between the number of compartments in

each model and the tools’ performance. The details of the model compartments and

their impact on gap-filling performance are presented in Table 4.3. The numbers in

the table represent the count of models that were applicable in COBRApy, Meneco,

and CarveMe, along with their corresponding compartments. As observed, the mod-

els were categorized into three main groups based on the number of compartments:

2, 3, and more than 4.

The majority of models with three compartments were the ones that worked in

45

Table 4.3: The relationship between the number of compartments and COBRApy,
Meneco, and CarveMe gap-filling performance across all 108 tested models

Number of Compartments COBRApy Meneco CarveMe
2 4 15 0
3 67 69 62
4+ 10 18 0

all three tested tools. This implies that the tools’ performance was better in iden-

tifying the removed essential reactions of models with three compartments, more so

than models with a higher number of compartments. For COBRApy, Meneco, and

CarveMe, the results across all 108 BiGG models were 67 out of 108, 69 out of 108,

and 69 out of 108 models with three compartments, respectively. When consider-

ing more complex models with a greater number of compartments, COBRApy and

Meneco successfully identified the removed essential reactions in 10 out of 108 and

18 out of 108 eukaryotic models, respectively. Moreover, zeros in CarveMe indicated

an empty set of models for that category. It is important to note that the number

and domain of tested models differed among the three tools. COBRApy was appli-

cable for total of 81 out of 108 models, Meneco to total of 102 out of 108 models,

encompassing both prokaryotes and eukaryotes, while CarveMe was applicable for to-

tal of 62 out of 108 models, exclusively including prokaryotic models. Consequently,

the number of compartments may not be the sole determining factor influencing the

tools’ performance. Furthermore, models with four or more compartment represented

eukaryotic organisms in our analysis. Table 4.4 provides the results for the influence

of the models’ phylogenetic domains on gap-filling performance. The majority of

models fall into the prokaryotic category, with CarveMe identified as exclusively ap-

plicable to prokaryotes, encompassing 62 out of the total 108 models. Conversely,

COBRApy and Meneco, with counts of 11 out of 108 and 17 out of 108 for eukaryotic

models, respectively, demonstrate applicability for both eukaryotic and prokaryotic

models. The numbers in the table signify the count of models that were applicable in

46

COBRApy, Meneco, and CarveMe, along with their respective phylogenetic domains.

Table 4.4: The relationship between organisms’ phylogenetic domains of life and
COBRApy, Meneco, and CarveMe gap-filling performance across all 108 tested models

Organisms Domain COBRApy Meneco CarveMe
Prokaryote 69 81 62
Eukaryote 11 17 0

4.3.4 A novel systematic framework for evaluating the performance of

gap-filling tools

The systematic approach comprises several steps. Firstly, we selected each model

from our sample case study, consisting of 108 BiGG models. Secondly, we introduced

a single gap (by removing one essential reaction) in each model, creating a reference

database of size one with the omitted essential reaction. Lastly, we tested whether

the tool could successfully identify this gap. This approach was repeated across all

108 BiGG models. A significant finding from our investigation, which consists of an

artificial gap creation in all BiGG models and subsequently evaluation of COBRApy,

Meneco, and CarveMe performance, is presented in Figure 4.2. Meneco was able to

provide results for 102 out of 108 models, while COBRApy was able to fill 81 of the

initial 108 models with artificial gaps. On the other hand, of the 108 models that we

originally selected for our investigation, CarveMe was only able to provide results for

62 of them, and those models were solely prokaryotes. It should be noted that the

reduction in the number of models for each of the tools resulted from inaccuracies in

certain BiGG models. Instances of unclear objective functions or an indistinct number

of essential reactions for growth were identified in some models, leading to errors in

all three tools when such inaccurate models were selected as input. Therefore, in

this context, it can be defined that COBRApy successfully produced output without

encountering any errors for 81 out of the total 108 models. The comparison of results

for COBRApy, Meneco, and CarveMe reveals that there is a mode at approximately

47

Figure 4.2: The distribution of the percentage of filled reactions for each of the 108
BiGG models that was tested by using COBRApy, Meneco, and CarveMe. First, the
set of essential reactions in each model was identified. Second, one essential reaction
was randomly removed from each of the models. Third, the gap model and trivial
universe were utilized as inputs in each of the tools, calculating the percentage of
reactions that each tool could identify to fill the gap in each model.

40-60 percent, indicating the percent of filled essential reactions in all of the tested

models. It should be noted that CarveMe utilizes its own universe model, a trimmed

version of the BiGG database specifically for prokaryotes. Most of the models in the

BiGG database are prokaryotes, which explains the clustering of similarities among

these prokaryotic models.

Although both COBRApy and Meneco are suitable for prokaryotic and eukaryotic

models, COBRApy performs better in identifying the gaps for more eukaryotic models

with being able to identify all the 100 percent of essential reactions removal for four

models across all the tested models. In fact, for four models, COBRApy achieved a

100 percent success rate, implying that it successfully identified all tested removed

essential reactions in these models, these models were eukaryotes. On the other hand,

Meneco visualizes the model as a graph and evaluates the connectivity of metabolites.

If an artificial gap does not break the network connectivity, Meneco may not be able

to identify it. Furthermore, gap-filled models by Meneco are not guaranteed to be

functional for advanced analyses such as Flux Balance Analysis (FBA) due to the fact

48

that Meneco’s gap-filling approach is not based on any mass balance or stoichiometry-

based constraints.

In conclusion, our investigation into the performance of each tool reveals that,

across all tested models, only approximately 50 percent of the removed essential

reactions could be identified by the tools. Afterwards, we continued the evaluation

of each tool’s performance concerning model size, specifically the total number of

reactions in a model, with the aim of determining whether it is a key factor influencing

the tools’ performance.

4.3.5 Effect of models’ size on performance of tools

A big model with more cellular processes compartmentalization, pathways, number of

reactions and metabolites can affect the performance of gap-filling tools and finding

all the gaps in all involved metabolic pathways could be more challenging. More-

over, gap-filling of larger models can be more computationally expensive, meaning

that the number of possible combinations of reactions that need to be considered

increases exponentially with the size of the model. This combinatorial explosion can

lead to a substantial increase in computational complexity. Furthermore, the search

space for potential reactions to fill gaps becomes larger in larger models, making it

computationally more challenging to explore and evaluate all possibilities. Thus, we

investigated the effect of model size on the performance of the three tools. Although

the results showed that the models’ size does not have a huge effect on performance

of the tools, there is significant pattern shared between the three tools represented

in Figure 4.3. There is a cluster of models characterized by approximately 2700 total

number of reactions. However, there is a distribution of points indicating that the

percentage of filled reactions by the tools varies across models of different sizes. Con-

sequently, the size of the models is not the sole factor influencing the performance of

the tools.

49

Figure 4.3: The effect of the model’s size on the gap-filling performance of COBRApy,
Meneco, and CarveMe.

4.4 Analysis of multiple gaps in each of the models

The idea of removing one reaction at a time to evaluate the performance of the

tools was the simplest possible approach to commence our analysis. However, as we

have observed, this approach could highlight a weakness in these tools, as it proves

impractical for identifying almost half of the essential reactions removed across all

the 108 tested models. In reality, most of GEMs contain several gaps and usually

resolving all the gaps can be more challenging. Moreover, the performance of gap-

filling tools can vary with the increasing number of gaps within a GEM. Therefore,

we continued our analysis of each tool’s performance with multiple artificial gaps

creation to gain deeper insights into the advantages and limitations of the three tools

gap-filling. Figure 4.4 provides an overview of how the tools’ performance changes as

the number of gaps in each model ranges from 1 to 100 percent. Commencing from 1

percent, which corresponds to one percent of the total essential reactions, either one

reaction or multiple reactions (distinct from the previous section, which involved the

removal of a single reaction), we progressed incrementally to 100 percent, signifying

the removal of all essential reactions. In the case of COBRApy, the average recovery

percentage remains relatively consistent over all applicable models, indicating that

its performance is not significantly affected by the number of gaps in the models. In

50

Figure 4.4: The comparison of tools performance with the increase in the number of
gaps in each of the applicable models in the tools including 81 models for COBRApy,
102 models for Meneco, and 62 models for CarveMe.

contrast, for CarveMe there is a decreasing trend in the average recovery percentage

with the increase in the number of gaps in the models. However, it should be noted

that CarveMe performs better in comparison with the other two tools when dealing

with prokaryotic models. It’s important to emphasize that the assessment of CarveMe

was limited to 62 prokaryotic models from the BiGG database, while COBRApy

and Meneco were evaluated across a broader spectrum, with 81 and 102 models,

respectively. For Meneco, there is noticeable decrease in performance as the number of

gaps increases. Meneco may not necessarily suggest all the reactions that are essential

for the growth of the organism if they are missing from the model. Its primary

focus is on identifying reactions or series of reactions that break the connectivity of

metabolites from the culture media (seeds) to the biomass reaction (targets).

4.5 Discussion

Gap-filling by COBRApy has not been systematically assessed to date. In the origi-

nal COBRApy paper, all the analysis including gap-filling in COBRApy is limited to

51

GEMs of Salmonella enterica Typhimurium LT2 and Escherichia coli K-12 MG1655

as case studies. The gap-filling was only validated by testing one typical example.

In this instance, the validation involved the removal of all reactions associated with

D-Fructose-6-phosphate as an essential metabolite. The tool successfully suggested

the missed reactions in response to this test scenario[75]. However, in the protocol

provided by Norsigian et al.,[97] for the creation of multi-strain prokaryotes, they

documented gap-filling failure by COBRApy. The report indicated that the tool did

not yield reasonable or reliable results. Additionally, the GitHub issue section of

the COBRApy package discusses optimization failure, a situation where the algo-

rithm cannot find a solution, in the context of gap-filling for a plant genome-scale

metabolic model using COBRApy. Similarly, CarveMe[79] has only been validated

for specific case studies, including bacterial models such as M. genitalium and R.

solanacearum. Overall, in four out of five models validated with the goal of growth

on minimal media, gap-filling was successful. It should be noted that CarveMe con-

siders a manually curated universal model generated from the BiGG database, which

may limit the tool’s validity for a range of organisms. In a recent study by Mendoza

et al.,[110], CarveMe underwent assessment for 29 genome-scale metabolic models

(GEMs) of bacterial organisms, encompassing species like Lactobacillus plantarum,

Bordetella pertussis, and Pseudomonas putida. The evaluation involved comparing

the gap-filling outcomes with those of other tools, focusing on the number of reac-

tions proposed to fill the gaps for organism growth. The findings highlighted that

CarveMe’s gap-filling performance is significantly influenced by media composition.

Additionally, the model included numerous reactions that require manual verification.

Furthermore, Meneco[95], has been validated for specific case studies including E. coli

models(iJR904, iAF1260, and iJO1366) and algal model of Ectocarpus siliculosus,

along with 10,800 degraded networks derived from them. Gap-filling was evaluated

based on the tool’s ability to restore reaction connectivity from seed metabolites (in

52

the growth medium) to target metabolites. The results for these models revealed that

with a 10 percent degradation rate, more than 95 percent of the reactions could be

identified in 82 percent of the tested networks. However, the authors emphasize that

Meneco cannot replace manual curation and should be used alongside stoichiometry-

based tools.

It should be noted that there has been no systematic assessment available specif-

ically for current gap-filling tools. However, a systematic assessment of automated

GEM reconstruction tools, which also discussed the gap-filling performance of the

tools, was conducted in a recent study by Mendoza et al.,[110]. In this study, 29

GEMs of bacterial organisms were used for assessment. In contrast, our systematic

framework utilizes a larger database, 108 models of BiGG database, including a range

of both prokaryote and eukaryote models.

In conclusion, we have developed a straightforward systematic assessment ap-

proach that can be applied and expanded for the evaluation of various gap-filling

tools. This framework gives user a comprehensive view of the performance of the

tools in practical scenarios. Gap-filling is still a major challenge in metabolic model-

ing and none of these tested tools consistently outperforms the others across all de-

fined features, the three of the selected tools showed some strengths and weaknesses

across all 108 tested models. However, utilizing each of the 3 tools can be valuable

for automated gap-filling, saving a substantial amount of time. Meneco serves as a

useful tool for initially visualizing the model as a graph and assessing metabolite con-

nectivity. However, it is important to note that the gap filled models by Meneco are

not guaranteed to be functional for advanced analyses such as Flux Balance Analysis

(FBA). COBRApy emerges as an indispensable tool, offering a comprehensive suite

of analyses on the gap-filled model. Its versatility extends across diverse organisms,

can be a reliable choice for working with various organisms. For scenarios involving

53

prokaryotic organisms that utilize BiGG identifiers, CarveMe stands out as a spe-

cialized option for gap-filling. It can be a suitable tool when focusing on bacteria or

archaea and employing BiGG nomenclature. By recognizing the specific strengths of

each tool, these recommendations aim to guide users in selecting the most suitable

gap-filling tool based on their organism type and identifier preferences. Given that

gap-filling remains a significant challenge in metabolic modeling, leveraging the ca-

pabilities of these tools in relevant scenarios can prove beneficial for addressing gaps

in a model.

Chapter 5

A Novel Framework for Trimming and Ranking Reactions for

Filling Gaps in Genome-Scale Metabolic Models

5.1 Introduction

Genome-scale metabolic models (GEMs) provide a comprehensive and quantitative

understanding of the metabolic pathways and reactions within organisms[18, 111].

GEMs have been widely generated and utilized to study a range of organism includ-

ing archaea, bacteria, and eukaryotes. Gu et al., [17] reported that GEMs for 6239

organisms with 5897 for bacteria, 127 for archaea, and 215 for eukaryotes have been

constructed both manually as well as by using automated GEM reconstruction tools.

For example, models of Methanosarcina acetivorans [112] to explore methanogen re-

search, Escherichia coli, Bacillus subtilis [111], Saccharomyces cerevisiae[35, 113] to

optimize the production of valuable compounds such as biofuels, amino acids, and or-

ganic acids, Mus musculus, Rattus norvegicus, Danio rerio, Drosophila melanogaster

to study human diseases and metabolic malfunctions[114], and microbial communities

to investigate human gut microbiome, have been constructed[77, 97].

However, direct translation of genomic data to GEMs may not always result in a

complete set of reactions due to the potential errors in the annotation algorithms or

inherent incompleteness of the genomic data [108, 109, 15]. Correct prediction of the

enzymes that are allocated to genes in a sequenced genome is vital in the performance

of model [115, 85]. Methods for genome annotation are unreliable and frequently fail

to designate to many genes their intended functions or do so incorrectly [86, 85]. The

54

55

errors in annotation algorithms come from errors in source database, relativity of the

alignment threshold, namely low sensitivity and specificity, which leads to incorrect or

inaccurate annotation[86, 91, 85, 106]. Consequently, GEMs typically contain gaps,

referring to the absence of reactions that consume or produce a metabolite, which

lead to dead-end metabolites and blocked reactions in the model, and even existing

GEMs of various organisms (e.g., Saccharomyces cerevisiae) have been consistently

updated multiple times since their initial reconstruction [35, 113].

Thus, a gap-filling process is necessary to enhance the analysis and interpreta-

tion of GEMs. The gap-filling process begins with the identification of gaps in the

metabolic network and then filling the gaps by candidate reactions from biochemical

databases that could complete the metabolic network[109]. This process is usually an

iterative process, with multiple rounds of candidate reaction proposals and evaluation,

to ensure that the metabolic network is complete and accurate. The ideal outcome

of gap-filling process is to identify the minimum number of reactions that are bio-

logically relevant to add to the draft model in order to make it functional, restoring

biomass production or the production of specific products. This process typically

involves combination of manual editing as well as the use of different semi-automated

tools[115, 107, 109].

Numerous tools and algorithms with diverse approaches, including topology-based,

optimization-based, and likelihood-based have been developed to accomplish the task

of gap-filling in metabolic networks. For instance, Meneco considers a topology-based

approach, focusing on the network connectivity and structure to identify missing

reactions[95]. On the other hand, several other tools like COBRApy[75], CarveMe[79],

OptFill[93], FastGapfill[9], GlobalFit[109], and ModelSEED[76] utilize an optimization-

based approach to complete metabolic networks, considering various constraints such

as thermodynamics, minimal culture medium and objectives like biomass production

or the production of specific products. The underlying goal of these tools is to identify

56

the minimal set of new reactions that need to be added to the initial draft model[6, 15].

In addition, tools such as Pathway Tools[15] and MIRAGE[94] use a likelihood-based

approach by incorporation of genomic data and calculation of probability-based score

for reactions to be add to the model. Orth and Palsson[108] reviewed the classic

approaches for gap-filling and Faria et al.[76] and Karp et al.[10] reviewed most of

the recent automated tools and their properties. In all of these mentioned tools the

suitable set of reactions for filling gaps are selected from a universal database.

Despite the importance of this universal database, its effect has been generally

unappreciated. A universal database serves as a comprehensive pool of biochemi-

cal reactions, compounds, and associated information that can be utilized in gap-

filling process. It has two significant impacts on the gap-filling process: speed and

model validity. Searching for the suitable set of reactions to add to the model can

be computationally expensive, especially in optimization-based approaches that use

Mixed-Integer Linear Programming (MILP). MILP problems are significantly more

challenging to solve which yields to a NP complexity problem. NP complexity, or

non-deterministic polynomial time complexity, is a classification of computational

problems that characterizes the efficiency of algorithms in solving them. Problems

categorized as NP (Non-deterministic Polynomial) are those for which a proposed so-

lution can be verified quickly, but finding a solution itself may require an exponential

amount of time. In other words, once a potential solution is provided, its correctness

can be checked in polynomial time, yet there is no known algorithm to efficiently find

a solution. NP-completeness is a subset of NP problems that are considered among

the most challenging; if a polynomial-time algorithm exists for any NP-complete prob-

lem, it implies polynomial-time solutions for all problems in NP. Furthermore, the

validity of the model can be compromised by the inclusion of incorrect reactions. A

larger database can introduce the possibility of including reactions that may not have

sufficient evidence for their presence. To illustrate this, several reaction IDs in BiGG

57

database, a repository of well-structured genome-scale metabolic models, do not cor-

respond to real reactions or lack clear reactants/products. Also, multiple reaction

IDs represent the same reaction. To eliminate these inconsistencies and enhance the

probability of selecting a reaction with certain level of biological relevance over an

alternative reaction with insufficient evidence, a trimming approach is needed.

Due to the mentioned issues the typical validation/reconstruction pipeline does

not include an explicit universal model selection step. We propose a novel ranking-

based approach which curate and reduce the size of the universal database with goal

of trimming out biologically implausible and irrelevant reactions. The reduction in

universal database size not only improves the efficiency of the gap-filling process but

also reduces simulation time. In this approach we build our ranking technique based

on three key metrics including similarity, betweenness, and proximity as filters to

the initial universal pool of reactions. We calculated the 3 metrics for each reaction

and through the combination of metrics we assigned a score to each reaction in the

universal pool. For validation of our approach, we applied it to 108 metabolic models

available on BiGG database. As a further evaluation of our approach, we tested it on

a non-classical newly annotated organism, thraustochytrid, marine unicellular protist,

strain T18 which have proven to be a valuable source for production of fatty acids,

such as omega-3 long-chain fatty acids as well as biofuels[67, 116]. Although pure

genomic data can provide limited information and insight into the cellular processes

and confirm the existence of pathways and reactions in the model, looking at the

organism as a whole connected network, rather than just a set of genes, improves the

characterization of enzymatic functions at the systematic level[117]. Thus, we gen-

erated a genome scale metabolic model for T18 to explore its capabilities. However,

due to the errors in its annotated data, its genome scale metabolic model contains a

significant number of gaps. We applied our methodology to estimate the necessary

size of the universal pool for gap filling and incorporated our ranking approach into

58

the SBPRank package developed in-house using Python. Given the pivotal role of a

universal database in gap-filling tools, our novel SBPRank package, a specific con-

tribution of this thesis, functions as a crucial pre-processing and trimming tool. It

aids in obtaining an appropriate universal database, setting the stage for its effective

utilization in the subsequent gap-filling process.

5.2 Theory

Selecting the appropriate set of reactions from a pool of thousands of possible reactions

to fill the gaps in a model is a challenging procedure that may lead to some model

inaccuracies. Consequently, it is necessary to establish a set of criteria to narrow

down the universal pool size to a smaller and more specific set of reactions. By the

calculation of a similarity metric, we incorporated the phylogenetic information as

a criterion when choosing reactions from a reference database. Evolutionary close

organisms are more likely to have similar reactions[118, 119]. Hence, employing a

similarity metric allows us to eliminate reactions of organisms that are evolutionarily

distant (positioned further away in the phylogenetic tree) from the model with the

gap. Instead, our focus shifts to harnessing reactions from closely related organisms.

Furthermore, we calculated the betweenness metric as our second criterion with

the goal of prioritizing reactions that are essential for maintaining connectivity of the

model, those nodes (e.g., metabolites/reactions) that their removal results in a higher

fragmentation of the model. Considering the betweenness metric also aligns with the

principle of Occam’s razor. The underlying idea is that if we can identify a single

reaction that can fill multiple gaps, it may not guarantee accuracy, but it adheres

to the general principle of simplicity[120]. By focusing on highly connected nodes,

we aim to keep the additions to the model minimal, thereby keeping things concise

and reducing complexity. Finally, we defined the proximity metric because missing

reactions are typically close to dead-end metabolites in the model. By incorporating

59

the proximity metric, we prioritize reactions that are closer to a dead-end metabolite

rather than those reactions that are too far away from it.

5.2.1 Reaction metrics

Similarity

Similarity metric was defined as the phylogenetic values ranging from 0 to 1, showing

the similarity between target model (a model with potential gaps) and every single

model in the universal database. It is the only metric calculated at the model level

in our approach, rather than reaction level. For calculating the similarity metric, we

compare metabolites in a model containing gaps with the metabolites of every single

model in the reference database. Subsequently, we calculate a ratio representing the

similarity between the models, the description of the algorithm we considered for

similarity calculation is detailed in [118]. Finally, we assign the calculated similarity

value to all the reactions in a model and then normalize the values. This allows

for a comparison of our metrics at the reaction level. Although there are different

techniques that use a variety of biological bases, including 16S rRNA or 18S rRNA,

a selection of conserved proteins, and the entire genome to obtain similarity between

organisms, for our study, we have selected a model-based method to limit our input

solely to the model itself[118, 121]. By doing so, our analysis remains focused on the

available model data, without requiring additional external information inclusion,

such as specific details about the 16S rRNA which might not be available for all

organisms. Thus, we calculated our similarity metric based on the comparison of

the presence or absence of metabolites between the two models. The methodology is

described in detail in[118].

60

Betweenness

Betweenness is defined as the fraction of shortest paths that pass-through a given

node (e.g., metabolites) in the network. The shortest path refers to the path of

reactions that connects two metabolites in the network with the least number of

steps. We chose betweenness in our study to identify and prioritize potential missing

key reactions that act as bottlenecks in the model[105].

B(i) =
∑︂
j ̸=i ̸=k

σjk(i)

σjk

(5.1)

σjk is the total number of shortest paths from node j to node k, and σjk(i) is the total

number of those paths that pass-through node i. A node with a higher betweenness

indicates that a greater number of reactions pass through that node. During the calcu-

lation of betweenness we excluded currency metabolites (e.g., NADH, NADPH, ATP,

etc.) as well as organic(e.g., adenine, guanine, cytosine, etc.), and inorganic(e.g.,

Na, K+, Ca2
+, etc.) metabolites. Currency metabolites, due to their involvement

in numerous cellular reactions, can exhibit high degrees of connectivity, potentially

overshadowing the roles of other metabolites. This exclusion allows for a more tar-

geted analysis, emphasizing the contributions of non-currency metabolites to specific

pathways and cellular processes. Additionally, it reduces computational complexity,

facilitating more manageable analyses. Betweenness was calculated for all metabo-

lites of each reaction, and a single betweenness value was assigned to each reaction in

each model by averaging all the metabolites betweenness values. Betweenness values

ranging from 0 to 1 with 0 being the low and 1 being the high value. We initially gen-

erated a connectivity matrix from all the metabolites within a model. Subsequently,

this matrix was transformed into a graph,with metabolites as nodes and reactions as

edges, and using the NetworkX package in Python, we computed the betweenness.

NetworkX is a Python package designed for the creation, manipulation, and analysis

61

of complex networks or graphs[105]. betweenness-centrality function for computing

betweenness. It is important to note that the betweenness measure was applied to

the models within the reference database.

Proximity

We calculated the proximity metric, which is the measurement of the distance be-

tween a node (e.g., metabolites) and all the other nodes in the model. We initially

determined the maximum possible number of steps (distance) from each dead-end

metabolite to all other metabolites in each model and then calculated the distance

ratio for each reaction (number of steps divided by max number of steps in each

model). It’s important to emphasize that proximity was calculated for the network

of the model with dead-end metabolites, where nodes represent metabolites, and

edges/steps represent reactions. Subsequently, we converted the distance ratio values

to the proximity metric ranging from 0 to 1. Reactions with values close to 0 indicate

worse proximity, meaning they are far away from a dead-end metabolite, while reac-

tions with values close to 1 indicate better proximity, suggesting that those reactions

have higher likelihood of being perfect matches to fill the gap hence yield a higher

score. Similar to the betweenness calculation, currency metabolites were not consid-

ered during the calculation of proximity[105]. It should be noted that proximity is

the only metric highly dependent on dead-end metabolites in the model containing

gaps.

5.2.2 Metrics aggregation

The metrics calculation process results in a series of values for every single reaction,

with one value per unique competitor model in the universal database. A single

putative reaction can have several different values because it may appear in multiple

models. Therefore, after the calculation of our three metrics for every single reaction

62

in each model, we normalized the values to a range from zero to one. We then selected

the maximum value for each reaction across all models. In order to rank the reactions,

we need to combine the three calculated metrics into a single score for each reaction.

Thus, we utilized Principal Component Analysis (PCA) and heuristic weights to find

the best possible combination of the three metric and determine the weight of each

metric for the final optimized combination.

Principal Component Analysis (PCA)

We employed PCA as an unbiased straightforward method, which enables us to un-

derstand the underlying structure of data and identify the most discriminative and

high-impact features. PCA is the most popular approach in analysing variance. Our

three metrics of similarity, betweenness, proximity can be correlated to varrying de-

gree. A high PCA score for a specific metric suggests that it plays a crucial role

in differentiating the data points and contributes substantially to the total variance

captured by the principal components. Therefore, by calculating the maximum PCA

score for each of the metrics of similarity, betweenness, and proximity, we ascertained

their relative importance with respect to the variance explained in the data and iden-

tified the linear combination among them. Thus, we calculated the maximum PCA

scores for each of the proximity, similarity, and betweenness metrics, and compared

the values for all reactions to identify which metric had the greatest impact (relative

importance among the three of them). Following that, we multiplied the optimal

combination of PCA scores to our data set for the three metrics and sorted the reac-

tions.

Heuristic weights

PCA provides a convenient way to combine the three metrics, especially in situations

where there is no information available about the number of gaps in the model. In

63

addition, to further enhance the results, we investigated a series of combination of

weights for the three metrics. We assigned weights (w1, w2, w3) to each metric using

the Cartesian product of these weights and identified the optimized weights. The

Cartesian product of the weights generates all possible combinations of weights, and

by testing different combinations, it is possible to identify the set of weights that

best accounts for the interactions between the three metrics. Subsequently, we used

these optimized weights as a means to derive the heuristic weights. Furthermore, we

employed the heuristic weights as our strategy to rank the universal pool of reactions.

By doing so, we were able to assess the influence of every single combinations of the

proximity, similarity, and betweenness when analyzing a range of essential reactions

as gaps in a model. To assess the impact of each ranking methodology on the identifi-

cation of essential reactions within the universal pool, as well as the proportion of the

universal pool size required to identify each of the essential reactions, we generated

samples of essential reactions ranging from 10 to 100 percent. We began by removing

10 percent of essential reactions from a model and utilized our SBPRank package to

determine the destination of these removed reactions within the universal pool. This

process was then iteratively extended to higher percentages of gap creation, reaching

up to 100 percent.

5.3 Methods

Our ranking approach requires a model with potential gaps, which we will refer to

as the target model, and a reference database which we will refer to as universal

database. Unlike other techniques, our universal database consists of a set of discrete

GEMs instead of a single model, which can be downloaded from BiGG database or

other repositories. The overall process involves comparing our target model to each of

the comparator models in the universal database one-by-one and generating a ranked

universal pool of reactions in which each reaction has a score. However, prior to

64

the score calculation we performed a pre-screening step in order to exclude repeated

reactions with multiple names and converted BiGG IDs to chemical reactions.

5.3.1 Implementation

SBPRank is our novel Python-based package aimed to narrow down the universal pool

size to a smaller and specific set of reactions and thus decrease the simulation time

and increase accuracy of the gap-filling process."SBP" in the name of our package is

derived from the terms similarity, betweenness, and proximity, while the term "Rank"

originates from the nature of our framework as a ranking/scoring approach. SBPRank

takes a target model, universal reference models, and blocked metabolites as inputs

and generates a set of ranked reactions with their computed scores as output. The

core of SBPRank involves three key steps:1) Calculation of similarity, betweenness

and proximity metrics, 2) Aggregation of the three metrics; and 3) Ranking the

reactions using PCA and heuristic weights. SBPRank is compatible with Python 3.7.

It requires the installation of COBRApy, NetworkX, NumPy, Pandas, Matplotlib, and

SciPy libraries. The core function of the SBPRank package is available at appendix

A.

5.3.2 SBPRank performance analysis

The primary objective of SBPRank as a ranking approach is to assign higher priority

to the reactions that belong to a particular model. Furthermore, metabolically es-

sential reactions are expected to receive higher rankings compared to less important

reactions within the model. Essential reactions refer to those reactions that their

removal from the model leads to zero growth in flux balance analysis (FBA). As a re-

sult, we would anticipate that the essential reactions within a model appear relatively

high, at the top of the list or as close to the top as possible, during the ranking pro-

cess. Therefore, our fundamental assessment involves identifying essential reactions

65

in a model in order to investigate the relationship between ranking and reaction es-

sentiality, as well as the relationship between ranking and simulated gaps in a model.

We used all the unique models available in the BiGG database (48 models including

both prokaryotic and eukaryotic models out of 108 excluding the multistrain mod-

els) and identified the essential reactions from each model. Among the 48 selected

models, each is unique to a specific organism. The term ’multi-strain models’ implies

the existence of multiple GEMs for a single organism, each corresponding to different

strains of that organism. For instance, Escherichia coli (E. coli) is associated with

several models, such as iECD1391, iB211397, iAPECO11312, and iECW1372, among

others. Furthermore, we measured the performance of our ranking algorithm by uni-

versal pool fraction and the percentage of universal pool reduction. For instance, if

the universal pool fraction is 10 percent, it signifies that all the missing reactions

can be located within the top 10 percent of the pool, enabling us to eliminate the

remaining 90 percent of the pool.

5.3.3 The role of ranking in identifying essential reactions

We tested each of the models individually as target models, while using the remaining

models as reference models in the rank reaction function in SBPRank to calculate the

proximity, similarity, and betweenness metrics. Moreover, we explored two strategies

for ranking, namely PCA, and heuristic weights (details in theory section 5.2.2).

5.3.4 The role of ranking in identifying artificially induced gaps

Gaps typically result from the absence of several essential reactions in a model rather

than the complete absence of all essential reactions. Thus, it is more practical to focus

on a fraction of reactions that are missing, which refer to as gaps. To investigate this

further, we created random samples of essential reactions for each model, ranging from

10 to 100 percent. Afterwards, we generated artificial gaps by deleting random sets

66

of essential reactions from each model. Similar to the first case study, we tested these

models individually as target models, with using the remaining models as reference

models in the rank reaction function in SBPRank as well as PCA and heuristic weights

to rank the reactions. The objective was to determine the required size of the ranked

universal pool to recover the artificial gaps.

5.3.5 The role of ranking for real gaps (T18 as our case study)

Genome-scale metabolic model generation for T18

We reconstructed a genome-scale metabolic model for T18 based on the available

genomic annotated data. The process of reconstruction began by identifying the EC

numbers of the reactions from genomic data. A total of 895 unique EC numbers

were extracted from T18 genomic data and the EC numbers were subsequently used

to infer the presence of metabolic reactions in the microorganism. This is achieved

by mapping the EC numbers to the corresponding reactions in a database of known

metabolic reactions. We used BiGG as a cross-referencing database to facilitate com-

parisons with published models[89]. The reaction information was then used to build

a metabolic network which included 1812 metabolic reactions and 1557 metabolites

present in the model. Moreover, we formulated and added a biomass reaction (approx-

imating the overall requirements for amino acids, nucleotides, carbohydrates, lipids,

etc.) based on previous modelling work on similar organisms of schizochytrium limac-

inum (SR21)[98] and Aurantiochytrium T66 [70]to the model. We performed primary

gap-filling based on the assumption that the metabolic model can simulate the pro-

duction of all biomass metabolites from the components found in glucose-containing

media. However, this process was not sufficient for simulating growth. We basically

assessed whether the model consistently predicts growth in the presence of glucose

and xylose in the culture media.

67

T18 model validation

We used the ranked reaction function in SBPRank to calculate the betweenness,

similarity, and proximity scores for T18 as the target model, with BiGG models as

universal database. After that, in order to investigate the model connectivity among

various automated tools, we chose Meneco. To determine the minimum universal pool

size required to construct all 42 target metabolites (biomass metabolites from T18

model) from the seeds metabolites (culture media metabolites), we divided the total

ranked universal pool size into percentages ranging from 1 to 100 and applied the

Meneco tool. Subsequently, we calculated both the simulation time and percentage

of the required universal pool.

5.4 Results and discussion

We successfully implemented our ranking approach in the SBPRank package. It takes

the input of target models, universal reference and blocked metabolites and generates

a set of ranked reactions with their computed scores as output. A significant finding

from analysis of various percentages of essential reactions by SBPRank as demon-

strated in Figure 5.1, is that a range of 10-40 percent of essential reactions can be

identified by only searching about 10 percent of the ranked universal pool. Moreover,

we observed an interesting trend in the proximity metric. When the number of essen-

tial reactions increases by over 30 percent, the impact of proximity metric becomes

less significant which is due to the fact that with the increase in the number of gaps

in the model, the overall network structure becomes more densely connected around

the gaps, bringing surrounding reactions closer to them. Although this situation

provides helpful context, it also diminishes the ability to differentiate and prioritize

reactions solely based on their proximity to the gaps. The results obtained by rank-

ing reactions through PCA as an unbiased method offer valuable insights into the

68

relationship among the three metrics (similarity, betweenness, and proximity). This

prompts further exploration into heuristic weights to identify optimal combinations

of metrics that enhance the overall performance of our framework.

Figure 5.1: Variations in the percentage of ranked universal pool (ranked by PCA)
required to capture different percentages of essential reactions from 10 to 100.

5.4.1 Ranking by heuristic weights

The results obtained from ranking by PCA were already promising. We gained infor-

mation about the underlying relationship between the three metrics and successfully

identified almost half of the essential reactions within just searching the top 10 per-

cent of the universal pool, resulting in a substantial 90 percent reduction in universal

size. However, to further enhance the performance of our framework, we investigated

heuristic weights as an alternative ranking strategy. As outlined in the methods, we

examined the effects of different combination of weights and assessed their impact

69

on the minimum required percentage of universal pool. The best outcome from the

combination of optimized weights is compared with PCA in Figure 5.2 and the varia-

tions in the combination of weights for proximity, similarity, and betweenness across

different percentages of essential reaction are presented in Table 5.1. As we can see

Table 5.1: Variations in the optimized weights for proximity, similarity, and between-
ness from 10-100% of essential reaction arbitrarily chosen for removal

Percent of Reactions Optimized Combination of Weights
Proximity Similarity Betweenness

10 0.85 0.05 0.05
15 0.85 0.05 0.05
20 0.75 0.05 0.20
25 0.75 0.05 0.20
30 0.05 0.90 0.05
35 0.10 0.80 0.10
40 0.10 0.85 0.05
45 0.10 0.85 0.05
50 0.10 0.85 0.05
55 0.20 0.55 0.25
60 0.05 0.60 0.35
65 0.05 0.60 0.35
70 0.10 0.60 0.30
75 0.10 0.60 0.30
80 0.15 0.55 0.30
85 0.15 0.55 0.30
90 0.25 0.20 0.55
95 0.25 0.20 0.55
100 0.25 0.20 0.55

in Table 5.1, with the increase in percent of essential reactions removed, the com-

bination of optimized weights of the three metrics that results in best performance

of our ranking framework changes. There has been an improvement in the overall

trend compared to Figure 5.1. Within the range of 10-85 percent, essential reactions

can be identified by searching only the top 20 percent of the ranked universal pool.

The results also show an agreement with the PCA results, mostly at 10-25 percent.

However, beyond 30 percent the two trends diverge significantly. Below 25 percent,

proximity emerges as the most effective metric, while beyond that point, there is a

70

Figure 5.2: Comparison of optimized weights and PCA to identify the smallest ranked
universal pool required to identify various percentages of essential reactions from 10
to 100.

drastic shift in the importance of metrics, with similarity becoming the most effective

metric. Eventually, at around 80 percent, betweenness replaces similarity in impor-

tance, as shown in Table 5.1. PCA serve as a useful approach, especially when there

is no initial information available regarding the number of gaps. However, if there is

evidence that the model contains many gaps, it would be much more reasonable to

implement the heuristic approach to gain better result. The optimal combination of

heuristic weights was categorized into three groups based on low, medium, and high

percentages of gaps in the model. These categories offer users flexibility in choosing

the best combination of weights depending on their preference for addressing a low to

high number of gaps in their model during the gap-filling process. In addition, these

results are summarized in Table 5.2 and Figure 5.3. For instance, when classifying

gaps into low, medium, and high percentages, with 10 to 30 percent considered low,

practical weight values could be 0.80 for proximity, 0.10 for similarity, and 0.10 for

betweenness. In the 30 to 50 percent gap range, practical weights might be 0.10 for

71

proximity, 0.60 for similarity, and 0.30 for betweenness. For gaps ranging from 55 to

100 percent, we tested with values of 0.10, 0.30, and 0.60 for proximity, similarity,

and betweenness, respectively. It’s important to note that users have the flexibility

to assign these values based on the specific nature of the models they are working

with.

Table 5.2: Variations in the heuristic weights for proximity, similarity, and between-
ness from 10-100% of essential reaction arbitrarily chosen for removal

Category of % Reactions Heuristic Weights
Proximity Similarity Betweenness

Low 0.80 0.10 0.10
Medium 0.10 0.60 0.30
High 0.10 0.30 0.60

Figure 5.3: Comparison of heuristic weights and PCA to identify the smallest ranked
universal pool required to identify various percentages of essential reactions from 10
to 100.

5.4.2 Variations in universal pool size with random artificial gaps

Since gaps often result from the absence of only a subset of essential reactions in the

model, addressing these sorts of gaps is more practical. Therefore, we calculated the

72

required universal pool for random sets of artificial gaps created from all essential re-

actions in each model, using both PCA and heuristic weights as our ranking methods.

Figure 5.4 presents the percentage of the ranked universal pool for different retrieval

percentages (10-100%) of random essential reactions using PCA and heuristic weights.

The result from this analysis is valuable since dealing with the complete absence of

all essential reactions can be much more challenging due our limited knowledge about

the precise number of gaps in models and may require substantial efforts. However,

focusing on a subset of missing reactions provides a more manageable scope for im-

provements. The results indicate similar trend to previous analysis. While random

Figure 5.4: Comparison of the heuristic weights and PCA to identify the required
ranked universal pool required to identify various percentages of random essential
reactions from 10 to 100.

reaction selection can be a challenging case, it is still possible to find 10-85 percent

of reactions by exploring only 20 percent of the ranked universal pool. In conclusion,

in cases where only 10-30 percent of reactions are missing from a model, realistically

occurring in gap-filling processes, we might only need to search 5 percent of the uni-

versal pool to find reactions. Furthermore, it should be highlighted that lack of 60

73

to 100 percent of essential reactions from a model indicates serious issues with the

model construction rather than merely several missing reactions that need to be filled

to model for completion.

5.4.3 Ranking results for T18 model

We were interested to identify the required universal pool size for filling the gaps in

T18 model. Hence, in the analysis of T18, we utilized both PCA and heuristic weights

for ranking. The required pool size was the same with either ranking method, and

the gaps were identified at around top 20 percent of the ranked universal pool as it

is shown in Figure 5.5. Then, we continued by the PCA ranking method, which is

the default ranking approach, in Figure 5.6. Meneco was used as the gap-filling tool

in this case. Meneco stands as the only graph-based gap-filling approach currently

available. It was selected to determine the required pool size for the T18 model based

on our extensive exploration of available gap-filling tools to address the gaps in T18

model, as discussed in chapter 3 and 4. Meneco showed to be the only gap-filling tool

that successfully worked for the gap-filling of the T18 model, as the newly annotated

microorganism. Notably, Meneco is the only tool specifically designed for identifying

gaps in newly-explored organisms with limited available information. Furthermore,

Meneco distinguishes itself as the fastest tool among all available gap-filling tools,

making it a valuable approach for analyzing larger models in terms of their overall

structure. A significant improvement was observed in 5 percent of the ranked uni-

versal pool, with 26 reconstructable targets out of a total of 42 target metabolites.

Ultimately, at 20 percent of the ranked universal pool, 41 targets were successfully

reconstructed. Furthermore, the simulation time decreased from 64.5 minutes when

considering 100 percent of the ranked universal pool to 1.5 minutes when focusing on

20 percent of the ranked universal pool. The simulation time is exclusively presented

in this section to offer insights when the precise number of gaps is unclear. T18 serves

74

as a realistic case study wherein the exact number of gaps was not known, unlike the

previous sections where we were aware of the gap count from the outset (artificial

gaps). Furthermore, it is important to note that the relationship between simulation

time and the percentage of the ranked universal pool is nonlinear. While Meneco

provides faster processing compared to other approaches and proves to be a practi-

cal tool when addressing numerous gaps that impact the overall connectivity of the

model, it is important to note that Meneco is not a constraint-based tool and does

not involve optimizations such as FBA. In contrast, other approaches that incorpo-

rate optimization techniques may result in significantly longer run times, potentially

extending to several days when considering the complete universal pool. Therefore, a

universal pool size reduction of 80 percent is necessary in order to practically employ

gap-filling techniques. This reduction in size allows for more manageable simulation

times while still achieving effective gap-filling results. In this study, simulations and

analyses were performed by AMD Ryzen 9 5900x processor using Linux operating

system.

5.5 Alternative trimming methods

Trimming of reference databases for filling gaps in genome-scale metabolic models is

a crucial step in ensuring the accuracy and reliability of the gap-filling process[122].

SBPRank stands out as the only fully automated approach capable of effectively trim-

ming the universal database for any organism type, considering three metrics. In some

studies, manual curation is employed for database refinement. For instance, CarveMe

manually curated the BiGG database to generate a universal database for bacte-

rial model gap-filling[79] and Reconstructor manually curate ModelSEED database

by removing all reactions that are unbalanced for bacterial model gap-filling[96]. An-

other study manually curated the MetaCyc database for gap-filling in Bifidobacterium

longum subsp. longum JCM 1217, revealing inaccuracies in reactions, such as the

75

Figure 5.5: Comparison of changes in constructability of target metabolites and
Meneco tool implementation time with different percentages of ranked universal pool
size for genomic T18 model when ranking by both PCA and heuristic weights.

absence of a suitable cytosolic-only electron transfer from NADPH to ferredoxin[10].

Similarly, a study by Latendresse et al.,[123] focused on the EcoCyc database, degrad-

ing it to EcoCyc-20.0-GEM to explore growth on glucose in a single case study. Some

approaches incorporate extra data, like genomic information, for database trimming,

a feature that may not be universally available. For example, Mirage is a genomic-

based algorithm that considers sequence-similarity searches and enzyme phylogenetic

profiles (based on comparing the presence and absence of enzymes) to trim the univer-

sal database across cyanobacteria species[94], while ModelSEED employs genomics

data for gap filling by integrating genomic information to identify candidate genes

for the reactions that need to be filled in a genome-scale metabolic model. This

process involves mapping between genes and reactions[76]. In conclusion, the typical

76

Figure 5.6: Variations in constructability of target metabolites and Meneco tool im-
plementation time with different percentages of ranked universal pool size for genomic
T18 model.

approach for trimming a universal database currently relies on manual curation, often

tailored to specific models of interest, or utilizes a single metric such as phylogenetic

or genetic information. SBPRank advances beyond these approaches by incorporating

three reasonable metrics.

Chapter 6

Conclusion

The primary objective of this thesis was to explore the application of the reconstruc-

tion of genome-scale metabolic model for a recently sequenced microorganism, the

thraustochytrid strain T18. Our goals included investigating its metabolic capabili-

ties for utilizing xylose as a cost-effective carbon source, comparing its behavior with

glucose consumption, and examining its fatty acid synthesis pathways. Although we

generated a GEM for strain T18 with 2252 reactions and 1952 metabolites, the overall

modeling effort was not entirely sufficient due to significant uncertainties and incom-

pleteness in the T18 genomic data. Incomplete annotations often resulted in multiple

gaps in the metabolic model. In the case of T18, despite our best efforts to identify

and fill model gaps through iterative rounds of model refinement and manual curation,

major gaps remained unsolved, and the true pathway structure could only be guessed.

Approximately 40 percent of metabolites included in the model lacked consumption

or production reactions. We have proposed potential solutions, including a plausible

xylose metabolism pathway, specific EC numbers, and associated reactions, which

could contribute to enhancing the data quality for T18. These suggestions, how-

ever, necessitate additional experimental validation for confirmation. Furthermore,

refining other aspects, such as precisely defining the composition of the biomass re-

action for T18 and obtaining a detailed profile of fatty acids production, holds the

potential to further elevate the model’s accuracy. To mitigate uncertainty in genomic

data, it is imperative to employ high-quality DNA extraction methods that guarantee

the purity and integrity of genetic material. Furthermore, the selection of sequencing

77

78

technologies should be meticulous, taking into account factors like accuracy, coverage,

and read length. Additionally, a comprehensive validation of genomic findings using

complementary experimental techniques, such as polymerase chain reaction (PCR) or

functional assays, is crucial to affirm the accuracy of the genomic data. As our second

objective, we conducted a comprehensive systematic assessment of the performance

of current gap-filling tools. We have introduced a novel and versatile framework de-

signed for the comprehensive assessment of gap-filling tools, with a specific focus on

evaluating popular tools including COBRApy, Meneco, and CarveMe. Through our

methodology, we scrutinized the effectiveness of these tools, revealing that gap-filling

remains a substantial challenge in metabolic modeling. Notably, across the extensive

BiGG database, COBRApy, CarveMe, and Meneco collectively addressed only half

of the tested gaps(essential reactions removal). Importantly, our framework possesses

a broad applicability, extending its use beyond the evaluated tools to assess other

biochemical databases like MetaCyc and ModelSEED. Furthermore, while our as-

sessment primarily centered on biological aspects of the models, there is potential for

incorporating additional variables that focus on mathematical aspects such as shadow

prices and condition numbers for a more comprehensive evaluation. For our final goal

in this thesis, we developed a novel ranking approach and successfully implemented

that in a Python-based SBPRank package. This framework takes target models, a

universal reference and blocked metabolites as inputs and generates a set of ranked

reactions with their computed scores as output. Our results, utilizing this approach

in identifying the missing reactions in a model indicate that searching only top 5

percent of the universal pool is sufficient to find reactions when only 10-30 percent

of reactions are missing from a model, realistically occurring in gap-filling processes.

Moreover, when 10-85 percent of reactions are missing from a model, exploring only

top 20 percent of the ranked universal pool is adequate for the gap-filling process.

79

Moreover, the utilization of SBPRank for trimming the universal database markedly

improves both simulation times and gap-filling results. The culmination of this thesis

provides a robust genome-scale metabolic modeling investigation with the focus on

non-conventional microorganisms with high industrial potentials, the thraustochytrid

strain T18. Additionally, it introduces a novel and practical strategy for assessing

gap-filling algorithms in addressing gaps and uncertainties. Furthermore, we pro-

pose a novel framework, SBPRank, that emphasizes the importance of the universal

database size in the gap-filling process, contributing to the advancement of metabolic

modeling techniques. This research represents a valuable contribution to the fields of

metabolic modelling and systems biology.

Bibliography

[1] Axel von Kamp, Sven Thiele, Oliver Hädicke, and Steffen Klamt. Use of cellnet-
analyzer in biotechnology and metabolic engineering. Journal of Biotechnology,
261:221–228, 11 2017.

[2] Adam M. Feist and Bernhard O. Palsson. The biomass objective function.
Current Opinion in Microbiology, 13:344–349, 6 2010.

[3] Leonid Chindelevitch, Jason Trigg, Aviv Regev, and Bonnie Berger. An ex-
act arithmetic toolbox for a consistent and reproducible structural analysis of
metabolic network models. Nature Communications, 5, 2014.

[4] Athanasios Antonakoudis, Rodrigo Barbosa, Pavlos Kotidis, and Cleo Kon-
toravdi. The era of big data : Genome-scale modelling meets machine learning.
Computational and Structural Biotechnology Journal, 18:3287–3300, 2020.

[5] Erwin P. Gianchandani, Arvind K. Chavali, and Jason A. Papin. The applica-
tion of flux balance analysis in systems biology. Wiley Interdisciplinary Reviews:
Systems Biology and Medicine, 2:372–382, 5 2010.

[6] Daniel A. Cuevas, Janaka Edirisinghe, Chris S. Henry, Ross Overbeek, Taylor G.
O’Connell, and Robert A. Edwards. From dna to fba: How to build your own
genome-scale metabolic model. Frontiers in Microbiology, 7:907, 6 2016.

[7] Karthik Raman and Nagasuma Chandra. Flux balance analysis of biological
systems: applications and challenges. Briefings in Bioinformatics, 10(4):435–
449, 03 2009.

[8] Laurent Heirendt, Ines Thiele, and Ronan M T Fleming. DistributedFBA.jl:
high-level, high-performance flux balance analysis in Julia. Bioinformatics,
33(9):1421–1423, 01 2017.

[9] Ines Thiele, Nikos Vlassis, and Ronan M.T. Fleming. No title. Bioinformatics,
30:2529–2531, 9 2014.

[10] Peter D. Karp, Daniel Weaver, and Mario Latendresse. How accurate is au-
tomated gap filling of metabolic models? BMC Systems Biology, 12:73, 12
2018.

[11] Matthew N. Benedict, Michael B. Mundy, Christopher S. Henry, Nicholas Chia,
and Nathan D. Price. Likelihood-based gene annotations for gap filling and
quality assessment in genome-scale metabolic models. PLoS Computational
Biology, 10, 2014.

80

81

[12] Jorge Fernandez de Cossio-Diaz, Kalet Leon, and Roberto Mulet. Characteriz-
ing steady states of genome-scale metabolic networks in continuous cell cultures.
PLoS Computational Biology, 13, 11 2017.

[13] Georgios Marinos, Christoph Kaleta, and Silvio Waschina. Defining the nutri-
tional input for genome-scale metabolic models: A roadmap. PLoS ONE, 15, 8
2020.

[14] Beom Gi Park, Minsuk Kim, Joonwon Kim, Heewang Yoo, and Byung-Gee Kim.
Systems biology for understanding and engineering of heterotrophic oleaginous
microorganisms. Biotechnology Journal, 12(1):1600104, 2017.

[15] Ines Thiele and Bernhard Ø Palsson. A protocol for generating a high-quality
genome-scale metabolic reconstruction. Nature Protocols 2010 5:1, 5:93–121, 1
2010.

[16] Scott A. Becker, Adam M. Feist, Monica L. Mo, Gregory Hannum, Bern-
hard Ø Palsson, and Markus J. Herrgard. Quantitative prediction of cellular
metabolism with constraint-based models: The cobra toolbox. Nature Protocols,
2:727–738, 3 2007.

[17] Changdai Gu, Gi Bae Kim, Won Jun Kim, Hyun Uk Kim, and Sang Yup Lee.
Current status and applications of genome-scale metabolic models. Genome
Biology, 20:1–18, 2019.

[18] Kate Campbell, Jianye Xia, and Jens Nielsen. The impact of systems biology
on bioprocessing. Trends in Biotechnology, 35:1156–1168, 12 2017.

[19] Darryl Joy, Kohei Yoneda, and Iwane Suzuki. Genetic modi fi cation of the
thraustochytrid aurantiochytrium sp . 18w-13a for cellobiose utilization by se-
cretory expression of β-glucosidase from aspergillus aculeatus. Algal Research,
40:101503, 2019.

[20] Xiao man Sun, Ying shuang Xu, and He Huang. Trends in biotechnology forum
lipid compounds. Trends in Biotechnology, 39:648–650, 2021.

[21] Ann Kathrin Löbs, Cory Schwartz, and Ian Wheeldon. Genome and metabolic
engineering in non-conventional yeasts: Current advances and applications.
Synthetic and Systems Biotechnology, 2:198–207, 2017.

[22] Thomas W. Jeffries. Engineering yeasts for xylose metabolism. Current Opinion
in Biotechnology, 17:320–326, 6 2006.

[23] Hang Zhou, Jing sheng Cheng, Benjamin L. Wang, Gerald R. Fink, and Gre-
gory Stephanopoulos. Xylose isomerase overexpression along with engineering
of the pentose phosphate pathway and evolutionary engineering enable rapid xy-
lose utilization and ethanol production by saccharomyces cerevisiae. Metabolic
Engineering, 14:611–622, 11 2012.

82

[24] Shalley Sharma and Anju Arora. Tracking strategic developments for conferring
xylose utilization/fermentation by saccharomyces cerevisiae. Annals of Micro-
biology 2020 70:1, 70:1–17, 8 2020.

[25] Alexandra Merkx-Jacques, Holly Rasmussen, Denise M Muise, Jeremy JR Ben-
jamin, Haila Kottwitz, Kaitlyn Tanner, Michael T Milway, Laura M Purdue,
Mark A Scaife, Roberto E Armenta, et al. Engineering xylose metabolism in
thraustochytrid t18. Biotechnology for biofuels, 11(1):1–18, 2018.

[26] Gregory L. Medlock and Jason A. Papin. Guiding the refinement of biochemical
knowledgebases with ensembles of metabolic networks and machine learning.
Cell Systems, 10:109–119.e3, 1 2020.

[27] Barbara Petschacher and Bernd Nidetzky. Altering the coenzyme preference of
xylose reductase to favor utilization of nadh enhances ethanol yield from xylose
in a metabolically engineered strain of saccharomyces cerevisiae. Microbial Cell
Factories 2008 7:1, 7:1–12, 3 2008.

[28] I Thiele, N Jamshidi, Rmt M T Fleming, and B Ø Palsson. Genome-scale re-
construction of escherichia coli’s transcriptional and translational machinery:
A knowledge base, its mathematical formulation, and its functional characteri-
zation. PLoS Comput Biol, 5:1000312, 2009.

[29] Daniel Hartleb, Florian Jarre, and Martin J Lercher. Improved metabolic mod-
els for e. coli and mycoplasma genitalium from globalfit, an algorithm that
simultaneously matches growth and non-growth data sets. PLoS computational
biology, 12(8):e1005036, 2016.

[30] Soo Yun Moon, Soon Ho Hong, Tae Yong Kim, and Sang Yup Lee. Metabolic
engineering of escherichia coli for the production of malic acid. Biochemical
Engineering Journal, 40(2):312–320, 2008.

[31] Ana Rita Brochado, Claudia Matos, Birger L Møller, Jørgen Hansen, Uffe H
Mortensen, and Kiran Raosaheb Patil. Improved vanillin production in baker’s
yeast through in silico design. Microbial cell factories, 9(1):1–15, 2010.

[32] Stephen S. Fong, Anthony P. Burgard, Christopher D. Herring, Eric M. Knight,
Frederick R. Blattner, Costas D. Maranas, and Bernhard O. Palsson. In silico
design and adaptive evolution of escherichia coli for production of lactic acid.
Biotechnology and Bioengineering, 91:643–648, 9 2005.

[33] Intawat Nookaew, Michael C Jewett, Asawin Meechai, Chinae Tham-
marongtham, Kobkul Laoteng, Supapon Cheevadhanarak, Jens Nielsen, and
Sakarindr Bhumiratana. The genome-scale metabolic model iin800 of saccha-
romyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC
Systems Biology 2008 2:1, 2:1–15, 8 2008.

83

[34] Kaisa Karhumaa, Bärbel Hahn-Hägerdal, and Marie-F Gorwa-Grauslund. In-
vestigation of limiting metabolic steps in the utilization of xylose by recombi-
nant saccharomyces cerevisiae using metabolic engineering. Yeast, 22(5):359–
368, 2005.

[35] Stefan Krahulec, Barbara Petschacher, Michael Wallner, Karin Longus, Mario
Klimacek, and Bernd Nidetzky. Fermentation of mixed glucose-xylose sub-
strates by engineered strains of saccharomyces cerevisiae: role of the coenzyme
specificity of xylose reductase, and effect of glucose on xylose utilization. Mi-
crobial cell factories, 9(1):1–14, 2010.

[36] Feng-Yan Bai, Da-Yong Han, Shou-Fu Duan, and Qi-Ming Wang. The ecology
and evolution of the baker’s yeast saccharomyces cerevisiae. Genes, 13(2):230,
2022.

[37] Andersen MR, Vongsangnak W, Panagiotou G, Salazar MP, Lehmann L, and
Nielsen J. A trispecies aspergillus microarray: comparative transcriptomics of
three aspergillus species. Proceedings of the National Academy of Sciences of
the United States of America, 105:4387–4392, 3 2008.

[38] Fangyu Cheng, Huimin Yu, and Gregory Stephanopoulos. Engineering
corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid.
Metabolic Engineering, 55:276–289, 2019.

[39] Hal Alper, Yong Su Jin, J. F. Moxley, and G. Stephanopoulos. Identifying gene
targets for the metabolic engineering of lycopene biosynthesis in escherichia coli.
Metabolic Engineering, 7:155–164, 5 2005.

[40] Yu Kyung Jung, Tae Yong Kim, Si Jae Park, and Sang Yup Lee. Metabolic en-
gineering of escherichia coli for the production of polylactic acid and its copoly-
mers. Biotechnology and bioengineering, 105(1):161–171, 2010.

[41] Hyung Seok Choi, Sang Yup Lee, Tae Yong Kim, and Han Min Woo. In silico
identification of gene amplification targets for improvement of lycopene produc-
tion. Applied and Environmental Microbiology, 76:3097–3105, 5 2010.

[42] Soo Yun Moon, Soon Ho Hong, Tae Yong Kim, and Sang Yup Lee. Metabolic
engineering of escherichia coli for the production of malic acid. Biochemical
Engineering Journal, 40:312–320, 6 2008.

[43] Hwan Park Jin, Ho Lee Kwang, Yong Kim Tae, and Yup Lee Sang. Metabolic
engineering of escherichia coli for the production of l-valine based on transcrip-
tome analysis and in silico gene knockout simulation. Proceedings of the National
Academy of Sciences of the United States of America, 104:7797–7802, 5 2007.

84

[44] Brett A. Boghigian, John Armando, Daniel Salas, and Blaine A. Pfeifer. Com-
putational identification of gene over-expression targets for metabolic engineer-
ing of taxadiene production. Applied Microbiology and Biotechnology, 93:2063–
2073, 3 2012.

[45] Yu Kyung Jung, Tae Yong Kim, Si Jae Park, and Sang Yup Lee. Metabolic en-
gineering of escherichia coli for the production of polylactic acid and its copoly-
mers. Biotechnology and Bioengineering, 105:161–171, 1 2010.

[46] Heiko Babel and Jens O Krömer. Evolutionary engineering of e. coli mg1655
for tolerance against isoprenol. Biotechnology for Biofuels, 13(1):1–13, 2020.

[47] Jing Wang, Baoyun Zhang, Jie Zhang, Honghui Wang, Minghui Zhao, Nan
Wang, Lichun Dong, Xiaohua Zhou, and Dan Wang. Enhanced succinic acid
production and magnesium utilization by overexpression of magnesium trans-
porter mgta in escherichia coli mutant. Bioresource technology, 170:125–131,
2014.

[48] Kuhn Ip, Neil Donoghue, Min Kyung Kim, and Desmond S Lun. Constraint-
based modeling of heterologous pathways: Application and experimental
demonstration for overproduction of fatty acids in escherichia coli. Biotech-
nology and bioengineering, 111(10):2056–2066, 2014.

[49] Mihir V. Shah, Hadi Nazem-Bokaee, James Antoney, Suk Woo Kang, Colin J.
Jackson, and Colin Scott. Improved production of the non-native cofactor f420
in escherichia coli. Scientific Reports 2021 11:1, 11:1–16, 11 2021.

[50] Chao Ye, Qiuling Luo, Liang Guo, Cong Gao, Nan Xu, Li Zhang, Liming
Liu, and Xiulai Chen. Improving lysine production through construction of an
escherichia coli enzyme-constrained model. Biotechnology and bioengineering,
117(11):3533–3544, 2020.

[51] Lisha Qu, Xiang Xiu, Guoyun Sun, Chenyang Zhang, Haiquan Yang, Yanfeng
Liu, Jianghua Li, Guocheng Du, Xueqin Lv, and Long Liu. Engineered yeast
for efficient de novo synthesis of 7-dehydrocholesterol. Biotechnology and Bio-
engineering, 119:1278–1289, 5 2022.

[52] Kangsan Kim, Donghui Choe, Yoseb Song, Minjeong Kang, Seung Goo Lee,
Dae Hee Lee, and Byung Kwan Cho. Engineering bacteroides thetaiotaomi-
cron to produce non-native butyrate based on a genome-scale metabolic model-
guided design. Metabolic Engineering, 68:174–186, 11 2021.

[53] Ilaria Massaiu, Lorenzo Pasotti, Nikolaus Sonnenschein, Erlinda Rama, Matteo
Cavaletti, Paolo Magni, Cinzia Calvio, and Markus J Herrgård. Integration
of enzymatic data in bacillus subtilis genome-scale metabolic model improves
phenotype predictions and enables in silico design of poly-γ-glutamic acid pro-
duction strains. Microbial cell factories, 18(1):1–20, 2019.

85

[54] Fangyu Cheng, Huimin Yu, and Gregory Stephanopoulos. Engineering
corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid.
Metabolic Engineering, 55:276–289, 9 2019.

[55] Zhuangrong Huang, Jianlin Xu, Andrew Yongky, Caitlin S. Morris, Ashli L.
Polanco, Michael Reily, Michael C. Borys, Zheng Jian Li, and Seongkyu Yoon.
Cho cell productivity improvement by genome-scale modeling and pathway
analysis: Application to feed supplements. Biochemical Engineering Journal,
160, 8 2020.

[56] Noemi Tejera, Lisa Crossman, Bruce Pearson, Emily Stoakes, Fauzy Nasher,
Bilal Djeghout, Mark Poolman, John Wain, and Dipali Singh. Genome-scale
metabolic model driven design of a defined medium for campylobacter jejuni
m1cam. Frontiers in Microbiology, 11, 6 2020.

[57] Iman Shahidi Pour Savizi, Tooba Soudi, and Seyed Abbas Shojaosadati. Sys-
tems biology approach in the formulation of chemically defined media for re-
combinant protein overproduction. Applied microbiology and biotechnology,
103:8315–8326, 2019.

[58] Hae Woo Lee, Andrew Christie, Jason A. Starkey, Erik K. Read, and Seongkyu
Yoon. Intracellular metabolic flux analysis of cho cells supplemented with wheat
hydrolysates for improved mab production and cell-growth. Journal of Chemical
Technology and Biotechnology, 90:291–302, 2 2015.

[59] Nicolas Loira, Thierry Dulermo, Jean marc Nicaud, and David James Sher-
man. A genome-scale metabolic model of the lipid-accumulating yeast yarrowia
lipolytica. BMC Systems Biology 2012 6:1, 6:1–9, 5 2012.

[60] Pornkamol Unrean, Sutamat Khajeeram, and Verawat Champreda. Combining
metabolic evolution and systematic fed-batch optimization for efficient single-
cell oil production from sugarcane bagasse. Renewable Energy, 111:295–306,
2017.

[61] Ahmad Ahmad, Hassan B. Hartman, S. Krishnakumar, David A. Fell, Mark G.
Poolman, and Shireesh Srivastava. A genome scale model of geobacillus ther-
moglucosidasius (c56-ys93) reveals its biotechnological potential on rice straw
hydrolysate. Journal of Biotechnology, 251:30–37, 6 2017.

[62] Natalie C. Duarte, Scott A. Becker, Neema Jamshidi, Ines Thiele, Monica L.
Mo, Thuy D. Vo, Rohith Srivas, and Bernhard Ø. Palsson. Global reconstruc-
tion of the human metabolic network based on genomic and bibliomic data.
Proceedings of the National Academy of Sciences, 104(6):1777–1782, 2007.

86

[63] Elizabeth Brunk, Swagatika Sahoo, Daniel C Zielinski, Ali Altunkaya, An-
dreas Dräger, Nathan Mih, Francesco Gatto, Avlant Nilsson, German Andres
Preciat Gonzalez, Maike Kathrin Aurich, et al. Recon3d enables a three-
dimensional view of gene variation in human metabolism. Nature biotechnology,
36(3):272–281, 2018.

[64] Justyna Nocon, Matthias G. Steiger, Martin Pfeffer, Seung Bum Sohn,
Tae Yong Kim, Michael Maurer, Hannes Rußmayer, Stefan Pflügl, Magnus Ask,
Christina Haberhauer-Troyer, Karin Ortmayr, Stephan Hann, Gunda Koel-
lensperger, Brigitte Gasser, Sang Yup Lee, and Diethard Mattanovich. Model
based engineering of pichia pastoris central metabolism enhances recombinant
protein production. Metabolic Engineering, 24:129–138, 7 2014.

[65] Xingyu Zhu, Siting Shuangfei Li, Liangxu Liu, Siting Shuangfei Li, Yanqing
Luo, Chuhan Lv, Boyu Wang, Christopher H.K. Cheng, Huapu Chen, Xuewei
Yang, Biosynthesis Pathway, Xingyu Zhu, Siting Shuangfei Li, Liangxu Liu,
Siting Shuangfei Li, Yanqing Luo, Chuhan Lv, Boyu Wang, Christopher H.K.
Cheng, Huapu Chen, and Xuewei Yang. Genome sequencing and analysis of
thraustochytriidae sp. szu445 provides novel insights into the polyunsaturated
fatty acid biosynthesis pathway. Marine Drugs, 18, 2020.

[66] Lu jing Ren Æ He, Huang Æ Ai hua Xiao, Æ Min Lian, Li jing Jin Æ Xiao-jun
Ji, Lu-Jing Jing Ren, He Huang, Ai-Hua Hua Xiao, Min Lian, Li-Jing Jing
Jin, Xiao-Jun Jun Ji, Lu jing Ren Æ He, Huang Æ Ai hua Xiao, Æ Min Lian,
Li jing Jin Æ Xiao-jun Ji, Lu-Jing Jing Ren, He Huang, Ai-Hua Hua Xiao, Min
Lian, Li-Jing Jing Jin, and Xiao-Jun Jun Ji. Enhanced docosahexaenoic acid
production by reinforcing acetyl-coa and nadph supply in schizochytrium sp .
hx-308. Bioprocess and Biosystems Engineering 2009 32:6, 32:837–843, 3 2009.

[67] Alok Patel, Stephan Liefeldt, Ulrika Rova, Paul Christakopoulos, and Leonidas
Matsakas. Co-production of dha and squalene by thraustochytrid from forest
biomass. Scientific Reports, 10(1):1992, 2020.

[68] Ikumi Endo, Takashi Watanabe, Tomofumi Miyamoto, Hatsumi Monjusho-
Goda, Junichiro Ohara, Masahiro Hayashi, Yoichiro Hama, Yohei Ishibashi,
Nozomu Okino, and Makoto Ito. C4-monomethylsterol β-glucoside and its syn-
thase in aurantiochytrium limacinum mh0186. Glycobiology, 7 2021.

[69] Kandasamy Ulaganathan, Sravanthi Goud, Madhavi Reddy, and Ulaganathan
Kayalvili. Genome engineering for breaking barriers in lignocellulosic bioethanol
production. Renewable and Sustainable Energy Reviews, 74:1080–1107, 2017.

[70] Vetle Simensen, André Voigt, and Eivind Almaas. High-quality genome-scale
metabolic model of aurantiochytrium sp. t66. Biotechnology and Bioengineering,
118:2105–2117, 5 2021.

87

[71] Sean M. Tibbetts, Mark A. Scaife, and Roberto E. Armenta. Apparent
digestibility of proximate nutrients, energy and fatty acids in nutritionally-
balanced diets with partial or complete replacement of dietary fish oil with
microbial oil from a novel schizochytrium sp. (t18) by juvenile atlantic salmon
(salmo salar l.). Aquaculture, 520:735003, 4 2020.

[72] Minmin Wei, Christopher C. Parrish, Nigel I. Guerra, Roberto E. Armenta,
and Stefanie M. Colombo. Extracted microbial oil from a novel schizochytrium
sp. (t18) as a sustainable high dha source for atlantic salmon feed: Impacts on
growth and tissue lipids. Aquaculture, 534:736249, 3 2021.

[73] Kangsan Kim, Donghui Choe, Yoseb Song, Minjeong Kang, Seung-Goo Lee,
Dae-Hee Lee, and Byung-Kwan Cho. Engineering bacteroides thetaiotaomi-
cron to produce non-native butyrate based on a genome-scale metabolic model-
guided design. Metabolic Engineering, 68:174–186, 2021.

[74] Xin Fang, Colton J Lloyd, and Bernhard O Palsson. Reconstructing organisms
in silico: genome-scale models and their emerging applications. Nature Reviews
Microbiology, 18(12):731–743, 2020.

[75] Ali Ebrahim, Joshua A. Lerman, Bernhard O. Palsson, and Daniel R. Hyduke.
Cobrapy: Constraints-based reconstruction and analysis for python. BMC Sys-
tems Biology, 7:1–6, 8 2013.

[76] José P. Faria, Miguel Rocha, Isabel Rocha, and Christopher S. Henry. Meth-
ods for automated genome-scale metabolic model reconstruction. Biochemical
Society Transactions, 46:931–936, 2018.

[77] Méziane Aite, Marie Chevallier, Clémence Frioux, Camille Trottier, Jeanne Got,
María Paz Cortés, Sebastián N. Mendoza, Grégory Carrier, Olivier Dameron,
Nicolas Guillaudeux, Mauricio Latorre, Nicolás Loira, Gabriel V. Markov,
Alejandro Maass, and Anne Siegel. Traceability, reproducibility and wiki-
exploration for “à-la-carte” reconstructions of genome-scale metabolic models.
PLoS Computational Biology, 14:1–25, 5 2018.

[78] Wai Kit Ong, Peter E Midford, and Peter D Karp. Taxonomic weighting im-
proves the accuracy of a gap-filling algorithm for metabolic models. Bioinfor-
matics, 36:1823–1830, 3 2020.

[79] Daniel Machado, Sergej Andrejev, Melanie Tramontano, and Kiran Raosaheb
Patil. Fast automated reconstruction of genome-scale metabolic models for
microbial species and communities. Nucleic Acids Research, 46:7542–7553, 9
2018.

88

[80] Hao Wang, Simonas Marcišauskas, Benjamín J Sánchez, Iván Domenzain,
Daniel Hermansson, Rasmus Agren, Jens Nielsen, and Eduard J Kerkhoven.
Raven 2.0: A versatile toolbox for metabolic network reconstruction and a case
study on streptomyces coelicolor. PLoS computational biology, 14(10):e1006541,
2018.

[81] Emil Karlsen, Christian Schulz, and Eivind Almaas. Automated generation of
genome-scale metabolic draft reconstructions based on kegg. BMC bioinformat-
ics, 19(1):1–11, 2018.

[82] Michael Mundy, Helena Mendes-Soares, and Nicholas Chia. Mackinac: a
bridge between modelseed and cobrapy to generate and analyze genome-scale
metabolic models. Bioinformatics, 33(15):2416–2418, 2017.

[83] Joost Boele, Brett G Olivier, and Bas Teusink. Fame, the flux analysis and
modeling environment. BMC systems biology, 6:1–5, 2012.

[84] Wheaton L. Schroeder and Rajib Saha. Optfill: A tool for infeasible cycle-free
gapfilling of stoichiometric metabolic models. iScience, 23:100783, 1 2020.

[85] Burkhard Rost. Enzyme function less conserved than anticipated. Journal of
Molecular Biology, 318:595–608, 2002.

[86] Girum Fitihamlak Ejigu and Jaehee Jung. Review on the computational genome
annotation of sequences obtained by next-generation sequencing, 9 2020.

[87] Norsigian CJ, Pusarla N, McConn JL, Yurkovich JT, Dräger A, Palsson BO,
and King Z. Bigg models 2020: multi-strain genome-scale models and expansion
across the phylogenetic tree. Nucleic acids research, 48:D402–D406, 1 2020.

[88] Eun-Youn Kim, Daniel Ashlock, and Sung Ho Yoon. Identification of criti-
cal connectors in the directed reaction-centric graphs of microbial metabolic
networks. BMC Bioinformatics, 20:328, 12 2019.

[89] Zachary A. King, Justin Lu, Andreas Dräger, Philip Miller, Stephen Federowicz,
Joshua A. Lerman, Ali Ebrahim, Bernhard O. Palsson, and Nathan E. Lewis.
Bigg models: A platform for integrating, standardizing and sharing genome-
scale models. Nucleic Acids Research, 44:D515–D522, 2016.

[90] Eddy J. Bautista, Joseph Zinski, Steven M. Szczepanek, Erik L. Johnson,
Edan R. Tulman, Wei Mei Ching, Steven J. Geary, and Ranjan Srivastava.
Semi-automated curation of metabolic models via flux balance analysis: A case
study with mycoplasma gallisepticum. PLoS Computational Biology, 9:1003208,
9 2013.

[91] M. L. Green and P. D. Karp. Genome annotation errors in pathway databases
due to semantic ambiguity in partial ec numbers. Nucleic Acids Research,
33:4035, 2005.

89

[92] Tolutola Oyetunde, Muhan Zhang, Yixin Chen, Yinjie Tang, and Cynthia
Lo. Boostgapfill: improving the fidelity of metabolic network reconstructions
through integrated constraint and pattern-based methods. Bioinformatics,
33(4):608–611, 2017.

[93] Wheaton L. Schroeder and Rajib Saha. Optfill: A tool for infeasible cycle-free
gapfilling of stoichiometric metabolic models. iScience, 23(1):100783, 2020.

[94] Edward Vitkin and Tomer Shlomi. Mirage: a functional genomics-based
approach for metabolic network model reconstruction and its application to
cyanobacteria networks. Genome biology, 13:R111, 2012.

[95] Sylvain Prigent, Clémence Frioux, Simon M. Dittami, Sven Thiele, Abdelhalim
Larhlimi, Guillaume Collet, Fabien Gutknecht, Jeanne Got, Damien Eveillard,
Jérémie Bourdon, Frédéric Plewniak, Thierry Tonon, and Anne Siegel. Meneco,
a topology-based gap-filling tool applicable to degraded genome-wide metabolic
networks. PLOS Computational Biology, 13:e1005276, 1 2017.

[96] Matthew L Jenior, Emma M Glass, and Jason A Papin. Reconstruc-
tor: a cobrapy compatible tool for automated genome-scale metabolic net-
work reconstruction with parsimonious flux-based gap-filling. Bioinformatics,
39(6):btad367, 2023.

[97] Charles J. Norsigian, Xin Fang, Yara Seif, Jonathan M. Monk, and Bernhard O.
Palsson. A workflow for generating multi-strain genome-scale metabolic models
of prokaryotes. Nature Protocols, 15:1–14, 2020.

[98] Chao Ye, Weihua Qiao, Xiaobin Yu, Xiaojun Ji, He Huang, Jackie L. Collier,
and Liming Liu. Reconstruction and analysis of the genome-scale metabolic
model of schizochytrium limacinum sr21 for docosahexaenoic acid production.
BMC Genomics, 16:1–11, 12 2015.

[99] Valcenir Júnior Mendes Furlan, Irineu Batista, Narcisa Bandarra, Rogério
Mendes, and Carlos Cardoso. Conditions for the production of carotenoids
by thraustochytrium sp. atcc 26185 and aurantiochytrium sp. atcc pra-276.
Journal of Aquatic Food Product Technology, 28:465–477, 5 2019.

[100] Dauenpen Meesapyodsuk and Xiao Qiu. Biosynthetic mechanism of very long
chain polyunsaturated fatty acids in thraustochytrium sp . Journal Lipid Re-
search, 57:1854–1864, 2016.

[101] Gabriel M. Rodriguez, Murtaza Shabbir Hussain, Lauren Gambill, Difeng Gao,
Allison Yaguchi, and Mark Blenner. Biotechnology for biofuels engineering xy-
lose utilization in yarrowia lipolytica by understanding its cryptic xylose path-
way. Biotechnology for Biofuels, 9:1–15, 7 2016.

90

[102] Nele Buschke, Judith Becker, Rudolf Schäfer, Patrick Kiefer, Rebekka
Biedendieck, and Christoph Wittmann. Systems metabolic engineering
of xylose-utilizing corynebacterium glutamicum for production of 1, 5-
diaminopentane. Biotechnology journal, 8(5):557–570, 2013.

[103] Weijun Luo and Cory Brouwer. Pathview: an r/bioconductor package for
pathway-based data integration and visualization. Bioinformatics, 29(14):1830–
1831, 2013.

[104] Zachary A King, Andreas Dräger, Ali Ebrahim, Nikolaus Sonnenschein,
Nathan E Lewis, and Bernhard O Palsson. Escher: a web application for build-
ing, sharing, and embedding data-rich visualizations of biological pathways.
PLoS computational biology, 11(8):e1004321, 2015.

[105] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network
structure, dynamics, and function using networkx. In Gaël Varoquaux, Travis
Vaught, and Jarrod Millman, editors, Proceedings of the 7th Python in Science
Conference, pages 11 – 15, Pasadena, CA USA, 2008.

[106] Alexandra M. Schnoes, Shoshana D. Brown, Igor Dodevski, and Patricia C.
Babbitt. Annotation error in public databases: Misannotation of molecular
function in enzyme superfamilies. PLoS Computational Biology, 5, 2009.

[107] Jeffrey D Orth, Ines Thiele, and Bernhard Ø Palsson. What is flux balance
analysis? Nature biotechnology, 28(3):245–248, 2010.

[108] Jeffrey D. Orth and Bernhard Palsson. Systematizing the generation of missing
metabolic knowledge. Biotechnology and Bioengineering, 107:403–412, 10 2010.

[109] Shu Pan and Jennifer L. Reed. Advances in gap-filling genome-scale metabolic
models and model-driven experiments lead to novel metabolic discoveries. Cur-
rent Opinion in Biotechnology, 51:103–108, 6 2018.

[110] Sebastián N. Mendoza, Brett G. Olivier, Douwe Molenaar, and Bas Teusink. A
systematic assessment of current genome-scale metabolic reconstruction tools.
Genome Biology, 20:1–20, 8 2019.

[111] Hugh M. Purdy and Jennifer L. Reed. Evaluating the capabilities of microbial
chemical production using genome-scale metabolic models. Current Opinion in
Systems Biology, 2:91–97, 2017.

[112] James G. Ferry. Methanosarcina acetivorans: A model for mechanistic under-
standing of aceticlastic and reverse methanogenesis. Frontiers in Microbiology,
11:1–12, 2020.

[113] Jiazhang Lian, Shekhar Mishra, and Huimin Zhao. Recent advances in
metabolic engineering of saccharomyces cerevisiae: New tools and their ap-
plications. Metabolic Engineering, 50:85–108, 2018.

91

[114] Hao Wang, Jonathan L. Robinson, Pinar Kocabas, Johan Gustafsson, Mihail
Anton, Pierre Etienne Cholley, Shan Huang, Johan Gobom, Thomas Svensson,
Mattias Uhlen, Henrik Zetterberg, and Jens Nielsen. Genome-scale metabolic
network reconstruction of model animals as a platform for translational re-
search. Proceedings of the National Academy of Sciences of the United States
of America, 118:e2102344118, 7 2021.

[115] Sjoerd Opdam, Anne Richelle, Benjamin Kellman, Shanzhong Li, Daniel C.
Zielinski, and Nathan E. Lewis. A systematic evaluation of methods for tailoring
genome-scale metabolic models. Cell Systems, 4:318–329.e6, 2017.

[116] Kenshi Watanabe, Charose Marie, Ting Perez, Tomoki Kitahori, Kosuke Hata,
Masato Aoi, Hirokazu Takahashi, Tetsushi Sakuma, Yoshiko Okamura, Yutaka
Nakashimada, Takashi Yamamoto, Keisuke Matsuyama, Shinzo Mayuzumi, and
Tsunehiro Aki. Improvement of fatty acid productivity of thraustochytrid , au-
rantiochytrium sp . by genome editing. Journal of Bioscience and Bioengineer-
ing, 131:373–380, 2021.

[117] Rosemary Braun. Systems analysis of high–throughput data. Advances in
experimental medicine and biology, 844:153, 2014.

[118] Daniel Gamermann, Arnaud Montagud, J. Alberto Conejero, Javier F.
Urchueguía, and Pedro Fernández de Córdoba. New approach for phylogenetic
tree recovery based on genome-scale metabolic networks. Journal of Computa-
tional Biology, 21:508–519, 7 2014.

[119] Daniel Gamermann, Arnau Montagud, J. Alberto Conejero, Pedro Fernández
de Córdoba, and Javier F. Urchueguía. Large scale evaluation of differences be-
tween network-based and pairwise sequence-alignment-based methods of den-
drogram reconstruction. PLoS ONE, 14:1–13, 2019.

[120] William H Jeeerys, James O Berger, and William H Jefferys. Sharpening ock-
ham’s razor on a bayesian strop key terms: Bayes’ theorem; ockham’s razor,
1991.

[121] Ziheng Yang. User guide paml : Phylogenetic analysis by maximum likelihood.
Molecular Biology and Evolution, 4:1–70, 2007.

[122] David B. Bernstein, Snorre Sulheim, Eivind Almaas, and Daniel Segrè. Address-
ing uncertainty in genome-scale metabolic model reconstruction and analysis,
12 2021.

[123] Mario Latendresse and Peter D Karp. Evaluation of reaction gap-filling accuracy
by randomization. BMC bioinformatics, 19:1–13, 2018.

Appendix A

Supplementary Information for Chapter 5

-*- coding: utf-8 -*-

"""

@author: Leila Rezaei

"""

from cobra.io import read_sbml_model, write_sbml_model

from biggmodeldata import metabolites as m

import cobra

import glob

import json

from cobra import Model, Reaction, Metabolite

import pickle

from collections import defaultdict

import csv

import random

import pathlib

from pathlib import Path

import os

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

import pathlib

import matplotlib.pyplot as plt

92

93

import math

import re

import pandas as pd

import numpy as np

from .sbprank import rank_reactions as _rank_reactions

""" Unpack COBRA model into stoichiometric tuples. """

def _unpack(model):

coefficients = []

for r in model.reactions:

for m, c in r.metabolites.items():

coefficients.append((r.id, m.id, c))

return coefficients

def rank_reactions(model, target, blocked):

Converting models

model = _unpack(model)

target = _unpack(target)

scores = _rank_reactions(target, model, blocked)

return pd.DataFrame.from_dict(scores, orient = "index")

94

"""The main function in sbprank package that score reactions"""

def reactions_score(target, reference_universal, blocked = None,

gap_percentage = None, threshold = 100):

exclude_list = m.helpers()

a = read_sbml_model(target)

ref_models_name = []

for filename in os.listdir(reference_universal):

ref_models_name.append(filename)

if blocked == None:

blocked_reactions = cobra.flux_analysis.find_blocked_reactions(a)

d = set()

for r in blocked_reactions:

mets = a.reactions.get_by_id(r).metabolites

for met in mets:

d.add(met.id)

else:

d = []

filepath = os.path.join(blocked,'sample_blocked.csv')

with open(filepath,'r',newline = '') as csvfile:

for row in csv.reader(csvfile):

d.append(row[0])

print(d)

dead_end = []

95

for dd in d:

if dd not in exclude_list:

dead_end.append(dd)

for model in ref_models_name:

filepath = os.path.join(reference_universal,model)

r_to_df = {}

b = read_sbml_model(filepath)

target_metabolites = set([mc.id for mc in b.metabolites])

blocked = [ma for ma in dead_end if ma in target_metabolites]

df = rank_reactions(b, a, blocked)

r_to_df[model] = df

nnew_path = os.getcwd()

new_dir_name = os.path.join(nnew_path,'metrics_calulation_result')

new_dir = pathlib.Path(new_dir_name)

new_dir.mkdir(parents = True, exist_ok = True)

with open(new_dir/f'{model}.pkl', 'wb') as f:

pickle.dump(r_to_df, f)

def filter_reactions(new_df):

reactionlist = list(new_df.index)

empty = []

for rec in reactionlist:

if not r.reactants(rec) and not r.products(rec):

empty.append(rec)

for item in empty:

reactionlist.remove(item)

pattern = "^EX_"

96

remove_list = []

for item in reactionlist:

if re.match(pattern,item):

remove_list.append(item)

pattern = "^DM_"

remove_list2 = []

for item in reactionlist:

if re.match(pattern,item):

remove_list2.append(item)

pattern = "^SK_"

remove_list3 = []

for item in reactionlist:

if re.match(pattern,item):

remove_list3.append(item)

pattern = "^BIOMASS_"

remove_list4 = []

for item in reactionlist:

if re.match(pattern,item):

remove_list4.append(item)

97

remove_list5 = [x for x in reactionlist if x.endswith('_ST')]

remove_list6 = [x for x in reactionlist if x.endswith('_copy1')]

remove_list7 = [x for x in reactionlist if x.endswith('_copy2')]

remove_lst = remove_list + remove_list2 + remove_list3

+remove_list4 + remove_list5 + remove_list6 + remove_list7

for indexx in new_df.index:

if indexx in remove_lst:

new_df = new_df.drop(indexx)

return(new_df)

df_lst = []

files = Path(new_dir).glob('*')

for file in files:

df_lst.append(file)

#print(df_lst)

dfs = []

for p in df_lst:

#print(p)

with open(p, 'rb') as f:

df = pickle.load(f)

dfs.append(df)

#df_final = df.dropna()

values = []

for i in range(len(dfs)):

for k,v in dfs[i].items():

98

values.append(v)

v_final = []

for i in range(len(values)):

for k,v in values[i].items():

v_final.append(v)

resultt = pd.concat([f for f in v_final], axis=1)

result = filter_reactions(resultt)

n=float('NaN')

#betweenness calculation

b2 = result['betweenness']

b2[b2 > 100] = n

makh = (max(b2.max())-min(b2.min()))

sor = b2-min(b2.min())

nrmb = sor/makh

qub= nrmb.quantile([.9, .95, 0.99, 1], axis=1)

bett = np.transpose(qub)

bet = bett.dropna()

betsort = bet[1].sort_values(ascending = False)

#betsort.index.get_loc('FBA')

#similarity calculation

ss = result['similarity']

ss[ss >100] = n

makhss = (max(ss.max())-min(ss.min()))

99

sorss = ss-min(ss.min())

nrmss = sorss/makhss

quss= nrmss.quantile([.9, .95, 0.99, 1], axis=1)

simm = np.transpose(quss)

sim = simm.dropna()

simsort = sim[1].sort_values(ascending = False)

#simsort.index.get_loc('FBA')

#distance calculation

s2 = result['distance']

s2[s2 >100] = n

#maxmdis = (s2/s2.max())

makhc = (max(s2.max())-min(s2.min()))

#d = ts2-ts2.min()

sord = (max(s2.max())-s2)

f = sord/makhc

g= f.quantile([.9, .95, 0.99, 1], axis=1)

diss = np.transpose(g)

dis = diss.dropna()

#dissort.index.get_loc('FBA')

dissort = dis[1].sort_values(ascending = False)

#return(dissort,simsort,betsort)

if gap_percentage == None:

final_df= pd.concat([dissort,simsort,betsort], axis=1)

100

cols = []

count = 1

for column in final_df.columns:

if column == 1:

cols.append(f'1_{count}')

count+=1

continue

cols.append(column)

final_df.columns = cols

#pca analysis

dfss_final= final_df.dropna()

df_st = StandardScaler().fit_transform(dfss_final)

pca_out = PCA().fit(df_st)

pca_out.explained_variance_ratio_

pca_scores = PCA().fit_transform(df_st)

#maximum_scores = np.max(pca_scores, axis=0)

newdf = pd.DataFrame(pca_scores, columns=dfss_final.columns,

index=dfss_final.index)

maxvals = []

minvals = []

for col in newdf.columns:

clo1 = newdf[col]

numlist = []

for k,v in clo1.items():

numlist.append(clo1[k])

101

positive = [i for i in numlist if i >0]

negative = [i for i in numlist if i <0]

if max(positive) > abs(min(negative)):

maxvals.append(max(positive))

else:

maxvals.append(abs(min(negative)))

minvals.append(min(negative))

#print(minvals)

new_df= pd.concat([dfss_final['1_1']*maxvals[0],dfss_final['1_2']

*maxvals[1],dfss_final['1_3']*maxvals[2]], axis=1)

elif gap_percentage <= 25:

weights = [0.8, 0.1, 0.1]

elif 30 <= gap_percentage <= 50:

weights = [0.1, 0.8, 0.1]

elif 55 <= gap_percentage <= 85:

weights = [0.1, 0.6, 0.3]

else:

weights = [0.1, 0.3, 0.6]

#def final(dissort,simsort,betsort,weights):

final_df= pd.concat([dissort,simsort,betsort], axis=1)

cols = []

count = 1

for column in final_df.columns:

if column == 1:

cols.append(f'1_{count}')

count+=1

102

continue

cols.append(column)

final_df.columns = cols

w_distance = weights[0]

w_similarity = weights[1]

w_betweenness = weights[2]

dfss_final= final_df.dropna()

new_df= sum([dfss_final['1_1']*w_distance,dfss_final['1_2']*w_similarity,

dfss_final['1_3']*w_betweenness])

new_df_sort = new_df.sort_values(ascending = False)

new_df = pd.DataFrame(new_df_sort)

new_df_size = len(new_df)

top_percent = int(threshold * new_df_size)

top_list = new_df.head(top_percent).index.tolist()

from biggmodeldata import reactions as r

#from biggmodeldata import metabolites as m

model = Model("ranked_universal")

for rid in top_list:

print(rid)

reaction= Reaction(rid)

reaction.lower_bound= -1000.0

eqs=(r.reactants(rid)+r.products(rid))

#print(eqs)

eqs1= dict((y,x) for x,y in eqs)

#print(eqs1.keys())

#print(eqs1)

103

metabolites=[Metabolite(key,compartment= 'c') for key in eqs1]

model.add_metabolites(metabolites)

metabolites={Metabolite(key):eqs1[key] for key in eqs1}

print(metabolites)

reaction.add_metabolites(metabolites)

model.add_reactions([reaction])

unused = cobra.manipulation.prune_unused_reactions(model)

ids = [rr.id for rr in unused[1]]

for i in ids:

ii = model.reactions.get_by_id(i)

model.remove_reactions(ii)

write_sbml_model(model, 'ranked_universal.xml')

#return(new_df)

return(model)

-*- coding: utf-8 -*-

"""

@author: Leila Rezaei

"""

import cobra

from cobra.io import read_sbml_model, write_sbml_model

import pandas as pd

import numpy as np

import pickle

import glob

104

import random

import matplotlib.pyplot as plt

import plotnine

from plotnine import *

#Example code for plots in chapter 5

df_lst = []

for filename in glob.iglob('*.pkl',recursive=True):

df_lst.append(filename)

dfs = []

for p in df_lst:

print(p)

with open(p, 'rb') as f:

df = pickle.load(f)

dfs.append(df)

r_to_n = {}

for d in dfs:

r_to_n.update(d)

df_lst = []

for filename in glob.iglob('*.pkl',recursive=True):

df_lst.append(filename)

dfs = []

for p in df_lst:

print(p)

105

with open(p, 'rb') as f:

df = pickle.load(f)

dfs.append(df)

r_to_n2 = {}

for d in dfs:

r_to_n2.update(d)

comb = {}

for key in r_to_n.keys():

comb[key] = (r_to_n[key],r_to_n2[key])

Prepare the data for the boxplot

box_data = []

labels = []

for key, (list1, list2) in comb.items():

box_data.extend([list1, list2])

labels.extend([f'{key}_pca', f'{key}_w'])

Create the boxplot

plt.figure(figsize=(12, 6))

sns.boxplot(data=box_data)

plt.xticks(range(len(labels)), labels)

plt.xlabel('Percent of reactions')

plt.ylabel('Percentage of universal pool')

plt.title('Boxplot for comparison of PCA & weighted average')

106

plt.show()

#Plotting by ggplot2

lst1 = r_to_n[10]

x = np.array(["PCA"])

name= np.repeat(x, [183], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst1})

lst2 = r_to_n2[10]

x = np.array(["Heuristic weights"])

name= np.repeat(x, [75], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst2})

result = pd.concat([df1, df2], axis=0)

x = np.array(['10'])

name= np.repeat(x, [258], axis=0)

result['Percent of essential reactions'] = name

lst1 = r_to_n[15]

x = np.array(["PCA"])

name= np.repeat(x, [185], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst1})

107

lst2 = r_to_n2[15]

x = np.array(["Heuristic weights"])

name= np.repeat(x, [75], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst2})

result2 = pd.concat([df1, df2], axis=0)

x = np.array(['15'])

name= np.repeat(x, [260], axis=0)

result2['Percent of essential reactions'] = name

lst1 = r_to_n[20]

x = np.array(["PCA"])

name= np.repeat(x, [183], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst1})

lst2 = r_to_n2[20]

x = np.array(["Heuristic weights"])

name= np.repeat(x, [97], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst2})

result3 = pd.concat([df1, df2], axis=0)

x = np.array(['20'])

name= np.repeat(x, [280], axis=0)

result3['Percent of essential reactions'] = name

108

#result13 = pd.concat([result, result2], axis=0)

lst1 = r_to_n[25]

x = np.array(["PCA"])

name= np.repeat(x, [185], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst1})

lst2 = r_to_n2[25]

x = np.array(["Heuristic weights"])

name= np.repeat(x, [97], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst2})

result4 = pd.concat([df1, df2], axis=0)

x = np.array(['25'])

name= np.repeat(x, [282], axis=0)

result4['Percent of essential reactions'] = name

lst1 = r_to_n[30]

x = np.array(["PCA"])

name= np.repeat(x, [234], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst1})

lst2 = r_to_n2[30]

x = np.array(["Heuristic weights"])

name= np.repeat(x, [250], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

109

'% of the ranked universal pool':lst2})

result5 = pd.concat([df1, df2], axis=0)

x = np.array(['30'])

name= np.repeat(x, [484], axis=0)

result5['Percent of essential reactions'] = name

#result4 = pd.concat([result13, result2], axis=0)

lst1 = r_to_n[35]

x = np.array(["PCA"])

name= np.repeat(x, [210], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst1})

lst2 = r_to_n2[35]

x = np.array(["Heuristic weights"])

name= np.repeat(x, [286], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst2})

result6 = pd.concat([df1, df2], axis=0)

x = np.array(['35'])

name= np.repeat(x, [496], axis=0)

result6['Percent of essential reactions'] = name

lst1 = r_to_n[40]

x = np.array(["PCA"])

name= np.repeat(x, [183], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

110

'% of the ranked universal pool':lst1})

lst2 = r_to_n2[40]

x = np.array(["Heuristic weights"])

name= np.repeat(x, [250], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst2})

result7 = pd.concat([df1, df2], axis=0)

x = np.array(['40'])

name= np.repeat(x, [433], axis=0)

result7['Percent of essential reactions'] = name

#result5 = pd.concat([result4, result2], axis=0)

lst1 = r_to_n[45]

x = np.array(["PCA"])

name= np.repeat(x, [185], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst1})

lst2 = r_to_n2[45]

x = np.array(["Heuristic weights"])

name= np.repeat(x, [266], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst2})

result8 = pd.concat([df1, df2], axis=0)

x = np.array(['45'])

111

name= np.repeat(x, [451], axis=0)

result8['Percent of essential reactions'] = name

lst1 = r_to_n[50]

x = np.array(["PCA"])

name= np.repeat(x, [191], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst1})

lst2 = r_to_n2[50]

x = np.array(["Heuristic weights"])

name= np.repeat(x, [179], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst2})

result9 = pd.concat([df1, df2], axis=0)

x = np.array(['50'])

name= np.repeat(x, [370], axis=0)

result9['Percent of essential reactions'] = name

#result6 = pd.concat([result5, result2], axis=0)

lst1 = r_to_n[55]

x = np.array(["PCA"])

name= np.repeat(x, [163], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst1})

lst2 = r_to_n2[55]

x = np.array(["Heuristic weights"])

112

name= np.repeat(x, [191], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst2})

result10 = pd.concat([df1, df2], axis=0)

x = np.array(['55'])

name= np.repeat(x, [354], axis=0)

result10['Percent of essential reactions'] = name

lst1 = r_to_n[60]

x = np.array(["PCA"])

name= np.repeat(x, [163], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst1})

lst2 = r_to_n2[60]

x = np.array(["Heuristic weights"])

name= np.repeat(x, [198], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst2})

result11 = pd.concat([df1, df2], axis=0)

x = np.array(['60'])

name= np.repeat(x, [361], axis=0)

result11['Percent of essential reactions'] = name

lst1 = r_to_n[65]

113

x = np.array(["PCA"])

name= np.repeat(x, [167], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst1})

lst2 = r_to_n2[65]

x = np.array(["Heuristic weights"])

name= np.repeat(x, [206], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst2})

result12 = pd.concat([df1, df2], axis=0)

x = np.array(['65'])

name= np.repeat(x, [373], axis=0)

result12['Percent of essential reactions'] = name

lst1 = r_to_n[70]

x = np.array(["PCA"])

name= np.repeat(x, [167], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst1})

lst2 = r_to_n2[70]

x = np.array(["Heuristic weights"])

name= np.repeat(x, [206], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst2})

114

result13 = pd.concat([df1, df2], axis=0)

x = np.array(['70'])

name= np.repeat(x, [373], axis=0)

result13['Percent of essential reactions'] = name

lst1 = r_to_n[75]

x = np.array(["PCA"])

name= np.repeat(x, [167], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst1})

lst2 = r_to_n2[75]

x = np.array(["Heuristic weights"])

name= np.repeat(x, [206], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst2})

result14 = pd.concat([df1, df2], axis=0)

x = np.array(['75'])

name= np.repeat(x, [373], axis=0)

result14['Percent of essential reactions'] = name

lst1 = r_to_n[80]

x = np.array(["PCA"])

name= np.repeat(x, [167], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

115

'% of the ranked universal pool':lst1})

lst2 = r_to_n2[80]

x = np.array(["Heuristic weights"])

name= np.repeat(x, [206], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst2})

result15 = pd.concat([df1, df2], axis=0)

x = np.array(['80'])

name= np.repeat(x, [373], axis=0)

result15['Percent of essential reactions'] = name

lst1 = r_to_n[85]

x = np.array(["PCA"])

name= np.repeat(x, [167], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst1})

lst2 = r_to_n2[85]

x = np.array(["Heuristic weights"])

name= np.repeat(x, [234], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst2})

result16 = pd.concat([df1, df2], axis=0)

x = np.array(['85'])

116

name= np.repeat(x, [401], axis=0)

result16['Percent of essential reactions'] = name

lst1 = r_to_n[90]

x = np.array(["PCA"])

name= np.repeat(x, [183], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst1})

lst2 = r_to_n2[90]

x = np.array(["Heuristic weights"])

name= np.repeat(x, [234], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst2})

result17 = pd.concat([df1, df2], axis=0)

x = np.array(['90'])

name= np.repeat(x, [417], axis=0)

result17['Percent of essential reactions'] = name

lst1 = r_to_n[95]

x = np.array(["PCA"])

name= np.repeat(x, [183], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst1})

lst2 = r_to_n2[95]

117

x = np.array(["Heuristic weights"])

name= np.repeat(x, [189], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst2})

result18 = pd.concat([df1, df2], axis=0)

x = np.array(['95'])

name= np.repeat(x, [372], axis=0)

result18['Percent of essential reactions'] = name

lst1 = r_to_n[100]

x = np.array(["PCA"])

name= np.repeat(x, [183], axis=0)

df1 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst1})

lst2 = r_to_n2[100]

x = np.array(["Heuristic weights"])

name= np.repeat(x, [160], axis=0)

df2 = pd.DataFrame({'Ranking method':name,

'% of the ranked universal pool':lst2})

result19 = pd.concat([df1, df2], axis=0)

x = np.array(['100'])

name= np.repeat(x, [343], axis=0)

result19['Percent of essential reactions'] = name

118

resulttotal = pd.concat([result, result2, result3,

result4, result5, result6,

result7, result8, result9, result10,

result11, result12, result13, result14,

result15, result16, result17,

result18,result19], axis=0)

x_labels = [str(x) for x in range(10, 101, 5)]

x_labels.remove('100')

x_labels.append('100')

resulttotal['Percent of essential reactions'] = \

pd.Categorical(resulttotal['Percent of essential reactions'], \

categories=x_labels, ordered=True)

p10 = (

ggplot(resulttotal, aes("Percent of essential reactions",

"% of the ranked universal pool",

fill="Ranking method"))+ geom_boxplot()

+ xlab("Percent of essential reactions")

+ ylab("% of the ranked universal pool")

+ scale_y_continuous(breaks=np.arange(0, 70, 5),

limits=[0, 70])

+ ggtitle("Comparison of PCA & Heuristic weights")

+ theme(

119

legend_direction="horizontal",

legend_box_spacing=0.4,

axis_line=element_line(size=1, colour="black"),

panel_grid_major=element_line(colour="#d3d3d3"),

panel_grid_minor=element_blank(),

panel_border=element_blank(),

panel_background=element_blank(),

plot_title=element_text(size=15, family="Tahoma",

face="bold"),

text=element_text(family="Tahoma", size=11),

axis_text_x=element_text(colour="black", size=11),

axis_text_y=element_text(colour="black", size=11),

)

+ scale_fill_brewer(type="qual", palette="Set2")

)

p10

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Technical definitions
	Genome-scale metabolic models
	Flux Balance Analysis(FBA)
	General model inconsistencies and gap-filling

	Thesis objectives
	Objective 1: Genome-scale metabolic model reconstruction
	Objective 2: Addressing gaps in the genome-scale metabolic models

	Literature Review
	Introduction
	Application of genome-scale metabolic models
	Optimization of bioprocesses and production of chemicals
	Optimization of culture media
	Study of human diseases and drug development
	GEMs for non-conventional organisms
	Thraustochytrid strain T18 (our case study organism)

	Genome-scale metabolic model reconstruction approaches
	Conventional approach
	Metabolic model reconstruction automated tools
	Limitations of model reconstruction tools
	Gap-filling in metabolic models
	Current gap-filling tools

	Genome-Scale Metabolic Model Reconstruction and Validation for Thraustochytrid Strain T18
	Introduction
	Draft metabolic network
	Gap-filling of the metabolic model
	Growth on glucose
	Growth on xylose
	DHA production

	Topological validation
	Comparison of glucose and xylose metabolism

	Systematic Assessment of Current Gap-filling Tools
	Introduction
	Materials and methods
	Qualitative analysis
	Quantitative analysis
	Effect of multiple artificial gaps in the models on tools performance

	Results and discussion
	Characterization of tools
	Quantitative gap-filling performance of COBRApy, Meneco, and CarveMe
	The relationship between models’ compartments and phylogenetic domain and gap-filling performance of COBRApy, Meneco, and CarveMe
	A novel systematic framework for evaluating the performance of gap-filling tools
	Effect of models’ size on performance of tools

	Analysis of multiple gaps in each of the models
	Discussion

	A Novel Framework for Trimming and Ranking Reactions for Filling Gaps in Genome-Scale Metabolic Models
	Introduction
	Theory
	Reaction metrics
	Metrics aggregation

	Methods
	Implementation
	SBPRank performance analysis
	The role of ranking in identifying essential reactions
	The role of ranking in identifying artificially induced gaps
	The role of ranking for real gaps (T18 as our case study)

	Results and discussion
	Ranking by heuristic weights
	Variations in universal pool size with random artificial gaps
	Ranking results for T18 model

	Alternative trimming methods

	Conclusion
	Bibliography
	Supplementary Information for Chapter 5

