
ADDRESSING SUBJECTIVITY IN CODE SMELL DETECTION
BY LEVERAGING HUMAN FEEDBACK IN A

DEEP-LEARNING-BASED SOLUTION

by

Himesh Nandani

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

December 2023

© Copyright by Himesh Nandani, 2023

To my parents and my sister, for without whom, I would be nothing I

am today.

ii

Table of Contents

List of Tables . vi

List of Figures . vii

Abstract . viii

Acknowledgements . ix

Chapter 1 Introduction . 1

1.1 Code smells and their subjectivity . 1

1.2 Research gap . 2

1.3 Problem statement . 3

1.4 Research questions . 4

1.5 Proposed approach . 5

1.6 Research contributions . 6

1.7 Publications based on thesis . 7

Chapter 2 Background . 8

2.1 Code smells . 8

2.1.1 Implementation smells . 8

2.1.2 Design smells . 9

2.1.3 Architecture smells . 9

2.2 Code smell detection . 9

2.2.1 Metrics-based approaches . 10

2.2.2 Machine-learning-based approaches 11

2.2.3 Deep Learning-based approaches 11

2.3 Problems with machine learning and deep learning-based approaches 12

2.4 Available datasets for machine learning and deep learning-based ap-
proaches . 12

2.5 Human feedback in code smell detection 12

iii

Chapter 3 Building the Dataset - Focus on Subjective Smells . . 14

3.1 Overview . 14

3.2 Methods . 14
3.2.1 Downloading repositories . 15
3.2.2 Dividing the repositories into classes and methods 15
3.2.3 Analyzing repositories . 16
3.2.4 Tagman . 16
3.2.5 Manual annotation . 17

3.3 Dataset characteristics . 20

Chapter 4 Building the Deep Learning Models 22

4.1 Approach . 22
4.1.1 Code smells dataset . 22
4.1.2 Splitting the samples . 22
4.1.3 Filtering the snippets . 23
4.1.4 Tokenizing learning data . 23
4.1.5 Endoding the samples . 24

4.2 Architecture of deep learning models 25
4.2.1 Autoencoder with multilayer perceptron 25
4.2.2 Autoencoder with LSTM . 27
4.2.3 Autoencoders . 29

4.3 Results . 31

4.4 Discussion and selection of the best performing model 34

Chapter 5 The Controlled Experiment 35

5.1 Overview . 35

5.2 Methods . 36
5.2.1 A web-server . 36
5.2.2 TagCoder—an IntelliJ IDEA plugin 39

5.3 Experiment setup and design . 40
5.3.1 Participants . 40
5.3.2 Procedure . 41
5.3.3 Data collection procedure . 42

5.4 Results and discussion . 42
5.4.1 RQ-1: Whether and to what extent does user feedback im-

prove the accuracy of deep learning-based code smell detection? 43

iv

5.4.2 RQ-2: Whether and to what extent does user feedback in-
fluence the accuracy of dl-based detection for individual code
smells? . 47

5.4.3 RQ-3: Do feedback loops improve the accuracy of predicted
smells at the cost of subjectivity of the model? 49

5.5 Threats and validity . 51
5.5.1 Internal validity . 52
5.5.2 External Validity . 52
5.5.3 Conclusion validity . 53

Chapter 6 Conclusions . 54

6.1 Summary of contribution . 54

6.2 Limitations . 55

6.3 Directions of future research . 55
6.3.1 Language extension for the dataset 56
6.3.2 Increasing the number of annotations 56
6.3.3 Serverless architecture . 56
6.3.4 Publishing the created tool to the IDE marketplace 56
6.3.5 Replicating the experiment with more participants 56
6.3.6 Expanding the number and types of code smells 57

Bibliography . 58

Appendices . 64

Appendix A Complementary Materials 65

A.1 Replication Package . 65

v

List of Tables

3.1 Code quality metrics used for code smells and their low and high
thresholds for subjective snippet identification 19

3.2 Dataset metadata . 20

4.1 Dataset statistics . 23

4.2 Hyperparameters for the dl models 29

4.3 Classification results for each type of smell using CodeBERT
and CodeT5 with different classifiers. 32

5.1 Influence of the feedback on classifiers’ performance for the con-
sidered code smells individually 48

5.2 Krippendorff’s Alpha coefficient values 51

vi

List of Figures

3.1 Dataset construction process 15

3.2 Schema of the Dacos database 17

3.3 Annotation user interface of tagman 18

4.1 Building the Deep Learning Models 23

4.2 AutoEncoder with multilayer perceptron 26

4.3 Using Encoder of the Autoencoder for training the dense clas-
sifier and LSTM model . 28

5.1 Overview of the approach . 35

5.2 Interaction between TagCoder and local web server 37

5.3 User feedback collection using TagCoder 39

5.4 Before and after F1 scores for participants from experiment
group. MBefore = 0.78 (±0.1), MAfter = 0.88 (±0.06) 45

5.5 Before and after F1 scores for participants from control group.MBefore =
0.78 (±0.1), MAfter = 0.88 (±0.06) 46

vii

Abstract

Code smells, being inherently subjective, can vary based on individual software de-

velopers’ opinions and perspectives. Though many deep-learning-based models have

been proposed for code smell detection, they often overlook the importance of con-

sidering each developer’s subjective context, undermining the effectiveness of these

methods. In this thesis, we address this limitation by (a) constructing a manually

annotated dataset for three subjective code smells incorporating multiple annotations

for each sample, (b) developing three state-of-the-art deep learning models with differ-

ent architectures and comparing their performance on the dataset, and (c) conducting

an extensive experiment using the best-performing deep-learning model to evaluate

the impact of human feedback.

We start by building a dataset containing 10,267 annotations for 5,192 code snip-

pets, targeting three code smells at different granularity levels: multifaceted abstrac-

tion, complex method, and long parameter list. Additionally, we create a supplemen-

tary dataset comprising ‘definitely clean’ and ‘definitely smelly’ samples, identified

using the thresholds during dataset construction. To facilitate developers’ involve-

ment, we designed a plugin for IntelliJ IDEA and developed a container-based web

server to offer services of our baseline deep-learning model within the IDE. This setup

lets developers see code smells within the IDE and provide feedback (i.e., whether

a snippet has the identified smell and whether a snippet has a smell not identified

by our approach). In a controlled experiment, we collected feedback on code smells

from 14 participants in two rounds: one with our baseline model and the second

with a fine-tuned model. In the second round, we fine-tuned the model based on

the participants’ feedback and reevaluated the smell detection performance before

and after adjustment. The results demonstrate that such calibration improves the

smell detection model’s performance by 15.49% in the F1 score on average across the

experimental group participants. Notably, this improvement is achieved while main-

taining a low Krippendorff score, indicating that the smell detection model’s ability

is enhanced while considering the subjectivity of the feedback.

viii

Acknowledgements

I would like to express my deepest gratitude to Dalhousie University for providing

me with the opportunity to pursue the Masters in Science course.

I am incredibly thankful to my Thesis supervisor Dr. Tushar Sharma for his un-

wavering support, guidance, valuable insights, and his valuable comments and critics

throughout the course of this research. He taught me never to settle for anything less

than perfect. He is a patient and thoughtful mentor. Their expertise and encourage-

ment have been instrumental in shaping the direction of this thesis. I am proud to

be one of his students.

Special thanks to my friend, research paper co-author, and SMART Lab co-

member Mootez Saad, whose invaluable assistance has been crucial in making this

research possible. His support and collaboration have been immensely beneficial.

I extend my heartfelt thanks to all the participants who generously contributed

their time and efforts to provide feedback for the experiments conducted in this

thesis. Their valuable input has been crucial in validating and refining the proposed

approach.

I would also like to thank all the researchers, scholars, and developers in the

software engineering community whose work and publications have been a source of

knowledge and inspiration for this thesis.

Also, a big thank you to all my friends at the Dalhousie University. These years

and people I have met are an integral part of my life and my thesis.

Last but not the least, I would like to express my heartfelt and special thanks to

my parents Ila and Dinesh and my sister Sunisha who never stopped believing in me.

I would never have managed any of this without their love and encouragement.

- Himesh

ix

Chapter 1

Introduction

This chapter presents the context and background of the proposed research work. We

introduce concepts such as code smells, technical debt, and the relationship between

smells and technical debt. We present the problems with the current approaches in

detecting code smells using deep learning and how they miss the subjectivity of code

smells when trained on datasets created by multiple participants. We present an

overview of the proposed research and our contributions.

1.1 Code smells and their subjectivity

Software development is a complex and error-prone process that demands meticulous

attention to detail to produce high-quality code. As projects evolve, accommodating

changes becomes increasingly challenging.

Code smells are a set of recurring, indicative patterns in source code that signal

potential design or implementation problems. Code smells have been widely recog-

nized as a form of technical debt, representing violations of software design prin-

ciples [14, 25]. Fowler delineated a range of smells such as “Long Method”, “Large

Class”, and “Duplicated Code” [15]. These descriptions provided a shared vocabulary

for developers to communicate and identify problematic areas in their codebase.

class Organization {

public static boolean isSeniorEmployee(Employee emp){

if((emp.salary > 1000 && emp.salary < 5000)

||(emp.position.contains("senior") &&

emp.position.doesNotContain("junior")))

return true;

return false;

}

1

2

// 30 more methods

}

In the above code snippet, two code smells, namely complex conditional and in-

sufficient modularization, are evident. The “isSeniorEmployee” method in the Orga-

nization class exhibits a complex expression smell through its convoluted conditional

logic. This complexity arises from the compound logical expression combining salary

range checks and string containment evaluations in a single if statement. Such com-

plexity makes the code hard to read and maintain. Additionally, the snippet also

demonstrates insufficient modularization. Having too many methods, 30 in this case,

within the same file is considered a bad coding practice and indicates that this class

can further be modularized.

Technical debt refers to the cost of additional rework in software development

caused by choosing an easy or limited solution now instead of using a better ap-

proach that would take longer [65]. Technical debt accumulates interest over time,

making future changes more costly and complex. Code smells are intimately related

to technical debt. They are early indicators of this debt, signaling underlying issues

in the code that, if not addressed, can compound over time, leading to increased

maintenance costs, decreased code quality, and reduced software agility.

Code smells and manifestations of common programming issues provide valuable

insights into potential design flaws, maintainability problems, and other factors that

may lead to future complications. Detecting code smells early in the development

process enables developers to address them before the technical debt piles and code

becomes more erroneous and expensive to rectify.

1.2 Research gap

Traditional methods of code smell identification have historically relied on metrics

and heuristics-based analysis of source code [34,54]. However, these approaches often

produce a significant number of false positives because they are based on fixed rules

and do not consider the context and subjectivity involved in smell detection [54].

Code smells inherently possess a degree of subjectivity. Different developers, based

on their experiences, expertise, and contextual knowledge, may perceive and inter-

pret these smells differently. This subjectivity can lead to varying opinions on what

3

constitutes a code smell and how severe it is. For example, one developer might view

a particularly long method as a code smell indicating a need for refactoring, while

another might consider it acceptable due to the complexity of the task it performs.

This variation in perception complicates the process of accurately detecting and ad-

dressing code smells, as it relies heavily on individual judgment rather than strict,

objective criteria.

To tackle the challenge posed by the detection of code smells, the research com-

munity has proposed various machine learning (ml) and deep learning (dl)-based

approaches [9, 22, 28]. These methods attempt to leverage the power of data-driven

techniques to better detect the code smells.

However, one key limitation of applying dl approaches for code smell detection

lies in the reliance on code smell datasets to train the models. Existing code smell

datasets suffer from constraints such as limited size, lack of filtering for definitively

benign or smelly code snippets, and inadequate coverage of different types of smells.

This limitation can hinder the generalization and effectiveness of the trained models.

Moreover, when using a dl-based approach to detect code smells based on datasets

created by multiple participants, it can overlook the subjectivity inherent in identi-

fying smells at the individual developer or team level [37]. Different developers may

disagree about smells in the same code snippet, leading to discrepancies in the model’s

predictions. Consequently, a generic dl-based approach to detect code smells may

not be as effective when applied universally.

1.3 Problem statement

Within the domain of software engineering, code smell detection assumes a critical role

in ensuring the quality and sustainability of software systems. Despite numerous ef-

forts to employ machine learning models for identifying code smells, these approaches

often overlook the intrinsic subjectivity inherent in these smells. This oversight leads

to generalized predictions, disconnecting developers from their nuanced perspective

on these smells.

To address this issue, the proposed research seeks to create a personalized deep-

learning system that takes into account the unique perspectives of each developer,

4

thus accounting for the subjective nature of code smells. To achieve this, we pro-

pose harnessing human feedback on the outcomes of the deep learning model and

subsequently refining the model using the gathered feedback. We aim to establish a

robust framework that confronts the challenges of subjectivity, contributing to the

advancement of state-of-the-art in code smell detection.

1.4 Research questions

This thesis aims to address the following research questions:

RQ1 Whether and to what extent does user feedback improve the accuracy of deep

learning-based code smell detection?

User feedback plays a crucial role in fine-tuning and refining dl models [60].

With this research question, we aim to validate that user feedback can enhance

the accuracy of dl-based code smell detection and to understand the extent to

which this improvement can be observed.

RQ2 Whether and to what extent does user feedback influence the accuracy of deep

learning-based detection for individual code smells?

Code smells exhibit distinct attributes that differentiate them from one another

due to the variations in their characteristics, patterns, and severity. With this

research question, we aim to examine whether the improvement in accuracy, if

any, through user feedback is consistent across all considered smells or if it varies

for each smell. Furthermore, we seek to quantify the extent of this variation to

understand the degree of improvement achieved.

RQ3 Do feedback loops improve the accuracy of predicted smells at the cost of the

subjectivity of the model?

Deep learning models typically rely on a large dataset to learn and generalize

patterns. However, during the fine-tuning process with extensive data, the

subjectivity of individual users can be lost, resulting in a more generalized

model that may not capture the unique perspectives and preferences of each

user.

5

The research question aims to validate that by leveraging user feedback, we can

achieve accuracy improvements in the models while ensuring that the subjectiv-

ity of each user for each code smell remains intact. By considering the specific

feedback provided by users, the models can be customized to better align with

their individual preferences, expertise, and contextual understanding.

1.5 Proposed approach

This thesis aims to fill the research gap in detecting code smells, keeping subjectivity

in mind by suggesting a three-phase approach.

First, we propose a manually annotated dataset of code smells called Dataset of

Code Smells (Dacos). We carefully filtered the code snippets to focus on potentially

subjective cases to create an effective dataset. We removed snippets that were either

definitely clean or smelly, allowing us to better utilize annotators’ efforts where they

are most needed. The dataset includes annotated code snippets for three specific code

smells: multifaceted abstraction [49,57], complex method [50], and long parameter list

[14]. Additionally, we provide the DacosX dataset, which contains a large number

of snippets that are either definitely clean or smelly. To facilitate the annotation

process, we developed a web application called Tagman, which allows annotators to

view one snippet at a time and indicate whether a smell is present in the code.

For the second step, we propose the creation of three state-of-the-art deep learn-

ing models with different architectures. These models are trained using the Dacos

dataset we created in the first phase. After training, we compare the performances of

these models to understand their strengths and weaknesses in code smell detection.

We then choose the best-performing model for the subsequent phase.

In the third phase, we propose a novel approach that leverages machine learning

techniques and a server-based architecture for code smell detection. This approach

consists of two key components: a server and an IntelliJ plugin called TagCoder.

The server component is developed as a Docker container using the Django frame-

work in Python. It serves as the core of our code smell detection system, responsible

for storing and processing the code metrics obtained from Designite, a code quality

analysis tool. The server exposes four endpoints to handle different functionalities:

6

accepting class and method metrics from Designite [45], receiving code snippets for

code smell prediction, collecting user feedback on the predicted smells, and trigger-

ing model retraining. By adopting a containerized architecture, we ensure minimal

dependencies and facilitate easy deployment and scalability of the server.

The TagCoder IntelliJ plugin provides a seamless user experience for code smell

detection within the ide. When a user opens a project in IntelliJ idea, TagCoder

automatically runs Designite in the background to analyze the project and sends the

results to the server. Subsequently, when a user opens a file in the ide, TagCoder

sends the corresponding class and method information to the server for code smell

prediction. The predictions received from the server are displayed in the gutter on

the left pane of the IntelliJ idea editor, allowing users to identify potential code

smells easily. Users can provide feedback on the predictions directly through the

plugin, and this feedback is sent back to the server for analysis and model refinement.

Additionally, TagCoder offers an option to explicitly trigger model retraining when

a sufficient amount of feedback has been accumulated.

Following the implementation of the proposed tools, we intend to collect user

feedback on code smell predictions. By gathering user feedback, we aim to refine

and fine-tune the selected best-performing model for each specific user. The collected

feedback will serve as valuable input to personalize the model’s predictions according

to the individual developer’s coding practices and preferences.

1.6 Research contributions

The main contributions of our research are as follows:

1. Development of a web-server-based approach for code smell detection, providing

a scalable and efficient solution for processing code metrics and predicting code

smells.

2. Design and implementation of TagCoder, an IntelliJ plugin that seamlessly inte-

grates code smell detection within the ide, allowing developers to conveniently

view and provide feedback on predicted code smells.

3. Complementary code smell dataset construction through the collection of user

7

feedback, addressing the limitations of existing datasets, and expanding the

coverage of actively researched smells.

4. Evaluation of the effectiveness of our approach in terms of code smell detec-

tion accuracy and usability, demonstrating its potential to improve software

maintainability and developer productivity.

1.7 Publications based on thesis

This research work has been the object of the following publications:

1. Nandani, H., Saad, M., & Sharma, T. (2023). DACOS—A Manually Anno-

tated Dataset of Code Smells. In Proceedings of the IEEE/ACM 20th Interna-

tional Conference on Mining Software Repositories (MSR), pp. 446-450. doi:

10.1109/MSR59073.2023.00067.

2. Nandani, H., Saad, M., & Sharma, T. (2023). Calibrating Deep Learning-based

Code Smell Detection using Human Feedback. In Proceedings of the 23rd IEEE

International Working Conference on Source Code Analysis and Manipulation

(SCAM 2023).

3. Nandani, H., Saad, M., & Sharma, T. (2023). Calibrating Deep Learning-based

Code Smell Detection using Human Feedback. Accepted at the Replication in

Software Engineering (ROSE) track at the 23rd IEEE International Conference

on Software Maintenance and Evolution (ICSME 2023). Won the best artifact

award.

Chapter 2

Background

This chapter presents the context of the research and literature relevant to this thesis.

It begins with a general introduction to code smells. Subsequently, we discuss related

work that is pertinent to the main research of this thesis. Specifically, we highlight a

gap in the literature regarding feedback learning for code smell detection.

2.1 Code smells

Code smells have garnered significant attention in software engineering research over

the years, with numerous studies focusing on their identification, detection, and mit-

igation. A code smell is a surface indication that usually corresponds to a deeper

problem in the system [14]. These smells serve as indicators of potential issues within

software systems, highlighting areas that might benefit from refactoring or restruc-

turing. Researchers have classified code smells into different categories based on the

scope of their impact and the nature of the underlying problems they signify. We

elaborate on the different categories of smells in the following sections.

2.1.1 Implementation smells

Implementation smells are typically confined to a limited scope, often affecting in-

dividual methods or code blocks. They often result from poor coding practices or

suboptimal implementation choices. “Complex method”, “long method” and ‘magic

number” are some examples of common implementation smells. Complex Method

indicates that a method has become excessively convoluted, making it hard to under-

stand, test, and maintain. It may involve intricate control flow, nested conditionals,

or excessive code duplication [15]. Similarly, long methods are characterized by an

excessive number of lines of code, making them difficult to comprehend and modify.

They can hinder code readability and increase the risk of introducing bugs [15]

8

9

2.1.2 Design smells

Design smells are certain structures in the design that indicate violations of fundamen-

tal design principles and negatively impact design quality [57]. They often indicate

violations of established design principles and can result in reduced maintainabil-

ity, flexibility, and understandability. Examples of design smell include “Insufficient

modularization” and “Multifaceted Abstraction”. Insufficient modularization arises

when an abstraction exists that has not been completely decomposed, and a further

decomposition could reduce its size, implementation complexity, or both [57]. Multi-

faceted Abstraction smell arises when an abstraction has more than one responsibility

assigned to it. It leads to confusion and complexity, making it harder to understand

and modify the code [57].

2.1.3 Architecture smells

Architecture smells refer to the issues that affect the overall structure and organi-

zation of a software system. Architecture smells highlight flaws in the architectural

granularity that can lead to reduced maintainability, extensibility, or scalability. An

example of architectural smell is “God Component” [53]. God component occurs

when a component is excessively large, either in terms of LOC or the number of

classes. It typically centralizes the functionality of the application, leading to a de-

sign where a single component manages multiple aspects of the system that could

be more effectively and safely handled by multiple smaller components. God com-

ponent code smell violates the Single Responsibility Principle (SRP), a core concept

in object-oriented programming. Another example of an architectural smell is “Scat-

tered Functionality”. This smell occurs when related functionality is spread across

multiple modules or components, making it challenging to identify and modify the

relevant code. It hampers the system’s comprehensibility and can impede future

enhancements [16].

2.2 Code smell detection

Code smell detection has been a topic of interest for a long time in the field of soft-

ware engineering [7, 21, 40]. As such, there have been many attempts to develop

10

effective techniques and tools for identifying and addressing code smells. Early re-

search in this area primarily focused on defining and cataloging specific code smells.

Rule-based approaches were commonly employed, where predefined patterns or anti-

patterns associated with code smells were checked against the source code. However,

with the increasing complexity of software systems, more advanced techniques have

been explored. These include static analysis-based approaches, machine learning-

based approaches, and hybrid methods combining both [6,20]. The following sections

provide a literature review of different approaches used in code smell detection.

2.2.1 Metrics-based approaches

Metrics-based approaches involve quantifying specific code characteristics or metrics

and using predefined thresholds or rules to identify potential code smells. These

approaches rely on analyzing code quality metrics such as cyclomatic complexity, lack

of cohesion in methods, and code duplication. Tools such as pmd [41], Designite [45],

and SonarQube [55] utilize metrics-based approaches by examining code metrics and

providing suggestions for refactoring. In such methods, the source code is processed to

create a code model, metrics capturing code characteristics are calculated, and then

these metrics are compared against predefined thresholds to detect code smells. For

example, the God class smell can be detected using metrics such as Weighted Methods

per Class (wmc), Access To Foreign Data (atfd), and Tight Class Cohesion (tcc)

[32] [61]. These metrics are compared against predefined thresholds and combined

using logical operators.

In addition to metrics-based approaches, another traditional approach for code

smell detection is rules-based detection. Rules-based smell detection methods define

specific rules or heuristics to identify code smells. These methods take the source

code model as input and, in some cases, additional software metrics. Code smells are

detected when the defined rules or heuristics are satisfied. By applying these rules,

potential issues can be identified and flagged as code smells. For instance, the cyclic

hierarchy smell can be detected by implementing a rule that examines whether a class

is referencing its subclasses [57]. When this condition is met, it indicates the presence

of a cyclic hierarchy smell. Rules or heuristics are often combined with metrics to

improve the effectiveness of smell detection.

11

2.2.2 Machine-learning-based approaches

Machine Learning for code smell detection has gained a lot of momentum in recent

years. Khomh et al. [22] use Bayesian Networks to predict blob, functional decom-

position, and spaghetti code in two open-source projects. Maiga et al. [30] proposed

SVMDetect, an approach to detect anti-patterns based on support vector machines.

It predicts functional decomposition, blob, swiss army knife and spaghetti code. They

have used Azureus, Xerces, and ArgoUML as the source code repositories. In a study

conducted by Saeys et al. [43], hybrid feature selection techniques such as recursive

feature selection with random forest and support vector machine were employed. The

performance measures of single and ensemble feature selection were compared, and it

was found that hybrid feature selection outperformed the other methods. Jiarpakdee

et al. [19] examined 12 feature selection techniques on 14 open-source datasets and

concluded that feature selection had an impact of up to 9% on prediction and that

wrapper methods were expensive to implement.

2.2.3 Deep Learning-based approaches

Deep learning approaches, particularly those utilizing recurrent neural networks (rnns)

such as lstms [18], are effective in capturing long-term dependencies in sequential

data. These methods have been applied to source code, either for improving semantic

representations [5] or for solving downstream tasks.

Alternative approaches to mining source code have employed cnns to learn fea-

tures from various representations of code. Li et al. [27] have used single-dimension

cnns to learn semantic and structural features of programs by working at the ast level

of granularity and combining the learned features with traditional hand-crafted fea-

tures to predict software defects. Their method, however, incorporates hand-crafted

features in the learning process and is not proven to yield transferable results. Simi-

larly, a one-dimensional cnn-based architecture has been used by Allamanis et al. [3]

to detect patterns in source code and identify “interesting” locations where atten-

tion should be focused. Similarly, Ren et al. [42] use a cnn-based neural network

to identify self-admitted technical debt. Sharma et al. [48] used cnns, rnns, and

Autoencoders (aes) to detect code smells without explicitly specifying code features.

They showed that dl models can detect smells in direct and transfer learning contexts.

12

2.3 Problems with machine learning and deep learning-based

approaches

The main problem with ml-based methods for code smell detection is the high degree

of disagreement on what constitutes a code smell among developers [26]. Hence, if a

model performs well on a dataset annotated by a set of developers, it might perform

poorly when evaluated by another set of developers. This deficiency makes these

models unusable in real life within an industrial software development environment.

2.4 Available datasets for machine learning and deep learning-based

approaches

Software engineering literature offers a small number of manually annotated datasets

for code smells. Palomba et al. [39] offered a dataset “Landfill” containing annotations

for five types of code smells—divergent change, shotgun surgery, parallel inheritance,

blob, and feature envy. They offered annotations for 243 snippets. They also devel-

oped an online portal where contributors can annotate code for smells, However, as of

the time of writing this thesis (November 2023), the portal is not accessible. Madeyski

et al. [29] proposed mlcq— a code smell manually annotated dataset. The dataset

contains 14.7 thousand annotations for 4, 770 samples. The dataset considered four

smells—blob, data class, long method, and feature envy. Both of the datasets men-

tioned above do not consider the subjectiveness of a code snippet; hence, most of the

snippets might not add any new information for the machine-learning classifier when

used in training. Also, we chose the code smells that are not covered by any existing

code smell dataset and, hence complement the existing datasets. There are some

code smells datasets such as QScored [51]. Though the QScored dataset is large, the

samples are not manually annotated and hence lack the required capturing of context.

2.5 Human feedback in code smell detection

Feedback loops play a vital role in machine learning, enabling systems to continuously

learn and adapt based on previous outputs [60]. In the context of software engineering,

feedback loops have been widely explored for various purposes. Aguiar et al. [1]

13

present a use case for feedback learning in live programming, demonstrating how real-

time feedback can enhance the programming experience. Balzer’s work [8] focuses

on live coding and feedback learning, investigating how feedback loops can facilitate

code development and improve programming efficiency. Brun et al. [10] explore the

application of feedback loops in self-adaptive systems, where the system dynamically

adjusts its behavior in response to changing environments and emerging requirements.

Despite the existing literature on feedback loops in software engineering, to the

best of our knowledge, no previous work has specifically investigated the utilization

of human feedback for dl-based code smell detection. In our research, we propose

an approach that incorporates human feedback to enhance the performance of code

smell detection models.

Chapter 3

Building the Dataset - Focus on Subjective Smells

This chapter presents the dataset created for three subjective smells—Multifaceted

Abstraction, Long Parameter List, and Complex Method. First, we illustrate the

process of constructing the dataset in detail. The description includes Tagman, a

tool we developed to help us build the dataset. Finally, we provide details on the

characteristics of the created dataset.

3.1 Overview

Figure 3.1 provides an overview of the dataset construction process. In construct-

ing our code smell dataset, we perform several steps. First, we have utilized the

searchgithubrepo Python package [47], which leverages the GitHub GraphQL api

[38], to filter and download repositories based on criteria such as stars, lines of code,

recent activity, and code quality scores. Then, we split the repositories into methods

and classes using the CodeSplitJava tool [46]. Next, we analyzed code quality met-

rics and code smells using the DesigniteJava tool [52]. To streamline the annotation

process, we have developed the Tagman web-based tool for presenting code snippets

to annotators. The manual annotation process has been divided into two phases,

with the first phase used to identify potentially subjective snippets based on metric

thresholds. In the second phase, we presented the filtered snippets to annotators for

annotation.

3.2 Methods

In the following section, we provide detailed description of each part of the process

we followed in constructing our code smell dataset.

14

15

Figure 3.1: Dataset construction process

3.2.1 Downloading repositories

In step 1 from Figure 3.1, we perform the following tasks to identify and download

repositories.

• We use searchgithubrepo [47] python package, which in turn uses the GitHub

GraphQL api [38] to filter GitHub repositories.

• To identify high-quality Java repositories, we select repositories with more than

or equal to 13 thousand stars and more than ten thousand lines of code.

• Also, we discard the repositories that have not been modified in the last year.

• In addition, we use QScored [51] to filter out repositories based on their code

quality score. QScored assigns a weighted quality score based on the detected

smells at various granularities. We select repositories with a quality score of

less than ten (the higher the score, the poorer the quality).

• Finally, we obtained ten repositories after applying the filtering criteria. We

download the selected repositories.

3.2.2 Dividing the repositories into classes and methods

We need to split a repository into individual methods and classes so that Tagman can

show individual snippets individually to an annotator. We use CodeSplitJava [46]

in step 2 to split each repository into individual methods and classes.

16

3.2.3 Analyzing repositories

In step 3, we employ a metrics-based filtering process in phase 2 of manual annota-

tion. We use DesigniteJava [52] to compute code quality metrics. DesigniteJava

computes a variety of code quality metrics and detects smells; it has been used in var-

ious studies [2,11,36,53,58]. We elaborate on the process to filter out non-subjective

samples in the manual annotation step.

3.2.4 Tagman

Tagman is a web-based tool developed to streamline the code smell annotation pro-

cess in software engineering research. Intending to enhance the efficiency and accuracy

of code smell identification, Tagman offers a user-friendly interface for annotating

code snippets with various smells. The tool employs a combination of front-end and

back-end technologies to provide a seamless user experience.

The front end of Tagman is developed using Thymeleaf, a Java-based templating

engine, along with html and css. This combination enables the creation of a visually

appealing and interactive interface where users can easily navigate and annotate code

snippets. The back end of the tool is built on SpringBoot, a popular Java framework,

ensuring robustness and scalability. The data collected during the annotation process

is stored in a mysql database, facilitating efficient retrieval and analysis. The entity-

relationship diagram of Tagman is shown in figure 3.2.

To initiate the code smell annotation cycle, Tagman utilizes a csv file containing

the names and URLs of selected GitHub repositories. This file is uploaded to the

tool, enabling the back end to utilize a set of Python scripts. These scripts perform

several tasks, including downloading the GitHub repositories, splitting the code into

separate class and method files, and running DesigniteJava, a code analysis tool.

By leveraging these scripts, Tagman automates the initial stages of data collection

and prepares the tool for the annotation phase.

Once the data import process is complete, Tagman becomes ready to accept

annotations from users. The first step for users is to log in or sign up for the applica-

tion, providing a personalized experience and ensuring the security and privacy of user

data. After logging in, users are presented with detailed instructions that encompass

the definitions and characteristics of different code smells. These instructions serve

17

Figure 3.2: Schema of the Dacos database

as a reference guide to ensure a standardized and consistent annotation process.

With the instructions provided, users can proceed to annotate the presented code

snippets. Tagman presents users with code snippets extracted from the previously

downloaded GitHub repositories. Users can examine the code snippets and associate

them with appropriate code smells based on their understanding and expertise. This

process enables the collection of labeled data, which is valuable for training machine

learning models, conducting statistical analyses, and gaining insights into the preva-

lence and impact of different code smells.

Figure 3.3 shows a screenshot of the application showing a code snippet and an

option to annotate the snippet with a smell.

3.2.5 Manual annotation

We employ a snippet selection mechanism to identify potentially subjective snippets

w.r.t. a code smell. We do so to improve the effectiveness of the resultant dataset

18

Figure 3.3: Annotation user interface of tagman

by only including manual annotations for potentially subjective code snippets. Also,

such a strategy helps us better utilize the available annotators’ time. A potentially

subjective snippet is a code snippet that may get classified as benign or smelly based

on context. The rest of the snippets that are not identified as potentially subjective

snippets are either definitely clean or smelly snippets. For example, cyclomatic com-

plexity (cc) [33] is commonly used to detect complex method smell. A code snippet is

definitely benign if cc is very low (e.g., cc=1); similarly, a snippet is definitely smelly

if cc is very high for a method (e.g., cc=30). We divide our annotation process into

two phases. In the first phase, we show all snippets, i.e., without any filtering, to an-

notators to identify metrics thresholds to determine whether a snippet is potentially

subjective or not. The second phase uses the identified metrics thresholds and shows

the filtered code snippets to annotators.

Phase-1

In the first phase, we show code snippets without any filtering to annotators. Tag-

man presents one snippet at a time to the annotators and collects their response on

whether the shown snippet has a code smell or not. We show a code snippet to two

randomly chosen annotators and record their responses. The annotators recruited,

19

on a volunteer basis, for this phase were graduate students of Computer Science en-

rolled in a software engineering course (during summer 2022) that covered code smells

extensively. A total of 110 annotators participated in this phase.

We compute the minimum and maximum threshold for metrics that are used to

decide the presence of a code smell based on the collected responses in Phase 1. We

received a total of 17, 869 responses in this phase. We compute the lowest metric value

(tl) where the smell is identified, for each smell individually, to obtain the threshold

at the lower side. Similarly, we extract the highest metric value (th) where the smell is

not identified. Then, we compute the standard deviation (sd) of the metric value for

the samples where the smell is identified. Finally, we obtain the low threshold using

max(ml, tl - sd) and high threshold using min(mh, th + sd) for subjective snippet

identification. Here, ml and mh represent the lowest and highest possible values of a

metric. Table 3.1 summarizes the quality metrics corresponding to each code smell

and their thresholds for identifying subjective snippets. For instance, for cyclomatic

complexity metric, we obtain 4 and 7 from the above calculation after rounding the

values to the nearest integer.

Table 3.1: Code quality metrics used for code smells and their low and high thresholds
for subjective snippet identification

Code smells Code Quality Metric Metric Threshold

Complex method Cyclomatic complexity 4–7
Long parameter list Parameter count 3–6
Multifaceted abstraction Lack of cohesion among

methods (LCOM)
0.4–0.8

Phase-2

We configure our filtering mechanism based on the thresholds obtained from Phase 1

and invite annotators by advertising the link to Tagman installation on social media

platforms such as Twitter and LinkedIn. The invitation was open to all software

developers, software engineering students, and researchers who understand Java pro-

gramming language and at least basic object-oriented concepts. We kept the invita-

tion open for six weeks during Dec-Jan 2022-23. A total of 82 annotators participated

in this phase. Tagman showed snippets that have metric values falling between the

20

low and high thresholds (inclusive). We configured Tagman to get two annotations

for each sample to improve the reliability of the annotations.

3.3 Dataset characteristics

The dataset metadata, as shown in Table 3.2, provides an overview of the code smell

annotations and samples in our dataset. The Dacos subset comprises samples that

fell within the thresholds identified during phase 1, indicating that they were nei-

ther definitively classified as smelly nor clean. These samples were then annotated

by at least two users to determine their code smell status. After the completion of

phase 2, we received a total of 10, 267 annotations for 5, 192 samples from 86 anno-

tators. Specifically, for the Dacos subset, we collected annotations for three specific

code smells: Complex method, Long parameter list, and Multifaceted abstraction.

The Complex method code smell received 4, 349 annotations, corresponding to 2, 197

samples. The Long parameter list code smell was annotated 3, 221 times, represent-

ing 1, 634 samples. Similarly, the Multifaceted abstraction code smell received 2, 697

annotations, corresponding to 1, 361 samples. In total, the Dacos subset comprises

10, 267 annotations and 5, 192 samples.

Table 3.2: Dataset metadata

Dataset Code smell #Annotations #Samples

Complex method 4,349 2,197
Long parameter list 3,221 1,634DACOS

Multifaceted abstraction 2,697 1,361

Total 10,267 5,192

Complex method – 94,489
Long parameter list – 93,442DACOSX

Multifaceted abstraction – 19,674

Total – 207,605

On the other hand, the DacosX subset consists of samples that were identified

as definitely smelly or definitely clean based on the metric thresholds established

during phase 1. These samples did not require user annotation, as they were filtered

out using the predetermined method. The DacosX subset includes a larger number

21

of samples but lacks specific annotations for the code smells. The Complex method

code smell accounts for 94, 489 samples, the Long parameter list code smell has 93, 442

samples, and the Multifaceted abstraction code smell has 19, 674 samples. In total,

the DacosX subset consists of 207, 605 samples.

Chapter 4

Building the Deep Learning Models

This chapter explains the methods used to construct the three deep learning models

that were trained on the dataset we created. We present the architecture of the

models, the process of building and training them, and an analysis of the results of

each model considered. The analysis and comparison of these models help us select

the best-performing one, which will serve as the base model for the next part of our

approach - the controlled experiment.

4.1 Approach

Figure 4.1 presents an overview of the process used for training deep learning models.

We explain each part of the process below.

4.1.1 Code smells dataset

For the initial model training and evaluation, we leverage the dataset we curated

for code smell detection. The key advantage of using the dacos dataset is that it

collected annotations for non-trivial potentially subjective code snippets helping the

machine learning-based classifiers to learn to segregate smelly and benign snippets

with much more ease.

4.1.2 Splitting the samples

For the classification task, we create a dataset containing both smelly and benign

samples for each code smell. We use a 70:30 split for training and testing. Table 4.1

illustrates statistics of the dataset.

22

23

Figure 4.1: Building the Deep Learning Models

Table 4.1: Dataset statistics

Code smells #Training
samples

#Test samples Total samples

Complex method 1,535 658 2,193
Long parameter list 1,137 487 1,624
Multifaceted abstraction 952 408 1,360

4.1.3 Filtering the snippets

Allamanis [4] shows that duplicate samples can lead to inflated and misleading re-

sults during testing. To avoid the issues potentially caused by duplicate samples, we

perform data de-duplication using a hash function to compute a unique hash value

for each code instance and by comparing the hash values to identify any duplicates.

4.1.4 Tokenizing learning data

To facilitate effective feature extraction for machine learning tasks, it is crucial to

present the input data in a format suitable for analysis. In the case of source code,

which is inherently text-based, it becomes necessary to convert it into a numerical

representation that can be effectively processed by machine learning algorithms. In

our approach, we employ the tokenizer associated with the respective code encoder

to accomplish this task. By applying the tokenizer, we were able to transform the

source code into a sequence of tokens, each representing a specific element or construct

within the code.

24

The tokenization process yields a collection of tokens for each code file, forming

the basis of our numerical representation. These tokens are subsequently converted

into NumPy arrays, a commonly used data structure in numerical computing. Before

further processing, we apply preprocessing and filtering techniques to ensure the qual-

ity and relevance of the data. Our preprocessing steps are kept minimal to preserve

the essential characteristics of the code snippets while removing any redundant or

extraneous information.

By converting the source code into a tokenized representation, organizing it into

NumPy arrays, and conducting necessary preprocessing and filtering steps, we effec-

tively transform the raw code data into a structured and suitable format for subse-

quent machine learning analysis.

4.1.5 Endoding the samples

To enable a deep learning model to leverage the contextual information present in

the code samples, we incorporate an embedding step in our approach. By embedding

the code samples, we facilitate the generation of meaningful context representations

for further processing.In this study, we leverage the transformers1 implementation of

two Large Language Models pre-trained on code—Codebert [12] and Codet5 [63].

CodeBERT is a bimodal pre-trained language model that has been specifically

designed to support various Natural Language-Programming Language (NL-PL) ap-

plications, including code search and code documentation generation [13]. It employs

a Multilayer Transformer architecture, which is widely used in large pre-trained mod-

els like BERT [59]. CodeBERT has been trained on a massive dataset comprising

over 6 million projects from GitHub, encompassing diverse programming languages

such as Java. To ensure its bimodal functionalities, CodeBERT has been trained

using a hybrid objective function based on replaced token detection, incorporating

both bimodal NL-PL data (consisting of source code paired with its corresponding

documentation) and unimodal data (including NL and PL sequences).

On the other hand, CodeT5 is a unified pre-trained encoder-decoder Transformer

model that capitalizes on the code semantics conveyed through developer-assigned

1https://github.com/huggingface/transformers

25

identifiers [64]. The architecture of CodeT5 is pre-trained with three distinct objec-

tive functions, namely Masked Span Prediction, Identifier Tagging, and Masked Iden-

tifier Prediction. These objectives serve as feedback signals to fine-tune the model

parameters and enhance the code understanding capabilities.

By incorporating code embedding techniques using CodeBERT and CodeT5, we

enable our models to grasp the nuances of the code samples and effectively utilize

the contextual information within them. This empowers the models to make more

informed predictions and enhances their overall performance in code smell detection

tasks. This data is then ready to be passed to the deep learning models.

4.2 Architecture of deep learning models

In this section, we describe the architecture of the deep learning models we used in

our experiment.

4.2.1 Autoencoder with multilayer perceptron

Figure 4.2 represents the architecture of the model. We divide the model into two

parts.

Our approach employs an Autoencoder, which belongs to a class of feed-forward

neural networks designed to reconstruct the input data. Autoencoders possess the

capability to compress the input data into a lower-dimensional representation, known

as the code, and subsequently reconstruct the output from this compressed represen-

tation. This process involves two key components: an encoder and a decoder.

The Input layer is the first layer of Autoencoder, configured to match the shape of

the input vectors. Following the input layer, we incorporate a Dense layer, which is

a type of neural network layer characterized by dense interconnections. Specifically,

each neuron in the Dense layer receives input from all neurons in the preceding layer.

The output of this Dense layer is a vector of dimensionality ‘m’. To enhance the

training stability and reduce the number of required epochs, we apply a normalization

layer known as Batch Normalization. This technique standardizes the inputs to a layer

for each mini-batch, contributing to the overall stability and efficiency of the training

process.

26

Figure 4.2: AutoEncoder with multilayer perceptron

Subsequently, we replicate these layers in reverse order to construct the decoder,

which is responsible for reconstructing the input data from the compressed represen-

tation. During training, we divide the code samples into batches of size 16, and the

model is trained using these batches over 200 epochs. It is important to note that

once the training of the Autoencoder is completed, we discard the decoder component

and retain only the encoder. The encoder is utilized to compress new instances of

input data into vectors output by the bottleneck layer.

To further analyze the compressed code representations, we pass the input of the

encoder to a multilayer perceptron model. Multilayer perceptron is a well-known

feed-forward neural network widely used in machine learning tasks. By feeding the

encoded input to this multilayer perceptron model, we aim to leverage its capability

for pattern recognition and classification. The multilayer perceptron model, with

its multiple layers of interconnected nodes, is adept at capturing and learning from

non-linear relationships in data.

In order to further analyze the compressed code representations, we utilize a mul-

tilayer perceptron model. A multilayer perceptron is a feed-forward neural network

that is widely used in various machine learning tasks. By feeding the encoded input

to this model, our aim is to take advantage of its capability for pattern recognition

27

and classification. The multilayer perceptron model is effective in capturing and

learning from non-linear relationships in the data, thanks to its multiple layers of

interconnected nodes.

Our approach combines the strengths of the Autoencoder and the multilayer per-

ceptron model to offer an effective framework for code smell detection. The Autoen-

coder learns to compress and reconstruct the input code, while the multilayer per-

ceptron model harnesses the encoded representations to perform classification tasks.

4.2.2 Autoencoder with LSTM

The architecture of our proposed Autoencoder with LSTM model is depicted in Fig-

ure 4.3. This hybrid model is inspired by state-of-the-art approaches in Autoencoder-

based architectures, customized to cater specifically to code smell detection.

The Autoencoder component of our model begins with an input layer that mir-

rors the shape of the input vectors. Subsequently, a Dense layer, characterized by

comprehensive interconnections between neurons, follows. Each neuron in the Dense

layer receives input from all neurons in the previous layer. This layer produces an

’m’-dimensional vector, which is then passed through a normalization layer. In our

case, we employ Batch Normalization, a widely adopted technique in deep learning,

to standardize the inputs for each mini-batch. This normalization step contributes

to training stability and reduces the number of required epochs to achieve optimal

performance. To construct the decoder, we replicate the layers in reverse order.

During training, we partition the code samples into batches of size 16, and the

entire model is trained using these batches for 200 epochs. Once the training of the

Autoencoder is completed, we discard the decoder component and retain only the

encoder. This encoder is responsible for compressing new instances of input data into

vectors that are output by the bottleneck layer.

Next, we introduce an LSTM model, which is a form of recurrent neural network

(RNN). LSTMs were introduced by Hochreiter and Schmidhuber in 1997 and have

gained significant popularity due to their ability to learn long-term dependencies.

LSTMs excel in capturing and retaining information over extended sequences, miti-

gating the challenges associated with the vanishing or exploding gradient problem.

In contrast to standard RNNs, LSTMs are explicitly designed to overcome the

28

Figure 4.3: Using Encoder of the Autoencoder for training the dense classifier and
LSTM model

issue of long-term dependency. They possess the capacity to retain relevant informa-

tion for prolonged periods without struggling to learn it. To leverage the strengths

of LSTMs for prediction, our model begins with an input layer followed by a bidi-

rectional layer. The bidirectional layer allows the input to flow in both directions,

enabling the model to incorporate information from both the past and future con-

text. Subsequently, we incorporate a dropout layer with a dropout rate of 0.2, which

aids in regularizing the model and preventing overfitting. Finally, a dense layer with

sigmoid activation is employed to generate predictions. The model is then trained on

the available data and becomes ready for prediction tasks.

Unlike standard RNNs, LSTMs are explicitly designed to solve the problem of

long-term dependency. They can retain relevant information for extended periods

without difficulty in learning it. To make the most of LSTMs for prediction, our

model starts with an input layer followed by a bidirectional layer. The bidirectional

layer allows the input to flow in both directions, incorporating information from both

the past and future context. We then add a dropout layer with a dropout rate of

0.2 to regularize the model and prevent overfitting. Finally, we employ a dense layer

with sigmoid activation to generate predictions. The model is trained on the data

available and becomes ready for prediction tasks.

Our model combines the power of Autoencoders and the temporal understanding

of LSTMs, making it a robust framework for code smell detection. The Autoencoder

29

compresses the input code effectively, while the LSTM model captures the temporal

dependencies within the compressed representations.

MSE =
1

N

N∑

i=1

(xi − x̂i)
2

By optimizing the network’s parameters to minimize this loss, the autoencoder

learns to encode and decode the input data effectively, capturing the most salient

features in the process.

4.2.3 Autoencoders

The architecture of autoencoders can vary in complexity, with simple models typi-

cally employing dense layers to compress the input by reducing the number of units

in intermediate hidden layers. Alternatively, compression can be achieved through

the imposition of sparsity constraints on the activated hidden units, which can be

accomplished using regularization techniques that introduce penalty terms in the loss

function.

Table 4.2 provides an overview of the hyperparameters used for the dl models,

including the Autoencoder. The hyperparameters include the number of encoder

and decoder layers (Autoencoder), the loss functions used (mse for the Autoencoder,

CrossEntropy for mlp and lstm), batch sizes (for all models), and the number of

epochs.

Table 4.2: Hyperparameters for the dl models

Hyperparameter Values

Encoder Layers (Autoencoder) 1,2
Decoder Layers (Autoencoder) 1,2
Loss functions MSE (AE), CrossEntropy (MLP, LSTM)
Batch Size (all) 32,64
Epochs (all) 5,10,15,20

During training, the autoencoder minimizes the reconstruction error between the

input and the output. We use the Mean Squared Error (mse) loss function. The mse

loss calculates the average squared difference between the input and reconstructed

output as shown in the following equation.

30

In the context of code smell detection, we construct simple sparse autoencoder

models using dense layers, where the number of units in the intermediate layers is

reduced and the loss function is penalized using L1-regularization [48]. The objective

is to train the model to learn encodings specifically for negative instances, i.e., clean

samples. Subsequently, the trained model is tested on both clean and smelly data.

Similar to the autoencoder, the vae consists of an encoder and a decoder. The

encoder transforms the input x into a latent representation z, while the decoder

reconstructs the original input data (x̂) based on this latent vector. The model’s

joint distribution is defined as follows:

pθ(x, z) = pθ(x|z) · pθ(z)

The encoder, denoted as qφ(z|x), where ϕ represents its parameters, produces esti-

mates of the mean and variance variables of a Gaussian distribution. Using these

estimated parameters, the vae generates a latent vector z by sampling from the

distribution. The decoder, denoted as pθ(x|z), then reconstructs the original input

by mapping the latent vector z to the output space. The decoder’s parameters are

represented as θ. The vae aims to find the maximum likelihood by optimizing the

following expression:

n∑

i=1

log pΘ(xi)

Where Θ represents the parameter of the encoder and decoder, and log pΘ(xi) can be

expressed as:

log pΘ(xi) = DKL (qΦ(z|xi)∥pΘ(z)) + L(Θ; Φ; xi)

Where DKL is the Kullback-Leibler divergence between the posterior and prior dis-

tributions L(Θ; Φ; xi) and is called the evidence variational lower bound (elbo). We

train a vae for each smell, similar to the two previous classifiers. Specifically, we

train the vae on the positive training samples. To perform the classification, we set

a threshold α: if the loss measured is greater than the threshold, then it is classified

as negative. The reason we do this is since the vae has been trained on one class,

it would have learned the salient features of that particular class, minimizing the

reconstruction error after epochs of training. Hence, a high loss entails that the vae

was exposed to an outlier, i.e., a sample from a different class. The value of α is

31

chosen after experimenting with multiple loss intervals with various steps, we report

the value that yielded the highest predictive performance.

By employing this approach, we leverage the capacity of autoencoders to capture

the underlying structure of the input code and learn representations that effectively

discriminate between clean and smelly samples.

4.3 Results

Table 4.3 provides an overview of the classification results obtained using the Codebert

and Codet5 encoders for initial representation generation and the corresponding clas-

sifiers. For each encoder, we experimented with three combinations of Autoencoder

(ae) and classifiers. The performance metrics of precision, recall, and F1-score are

reported for each combination.

Using CodeBERT as an encoder

The results obtained for each code smell detection task when we used Codebert as

an encoder are as follows. For the smell, the ae-mlp classifier achieved a precision

of 0.56, recall of 0.80, and an F1-score of 0.66. The ae-lstm classifier demonstrated

slightly better results with a precision of 0.70, recall of 0.73, and an F1-score of

0.71. However, the vae classifier outperformed both with a precision of 0.79, recall

of 0.91, and an F1-score of 0.85. These results indicate that the vae, leveraging the

latent space representation, captured the distinguishing features of the smell more

effectively.

For the complex method smell, the vae classifier achieved the best performance

among the three models with a precision of 0.80, recall of 0.99, and an F1-score of

0.89. This suggests that the vae, by leveraging the probabilistic modeling and the

threshold-based classification, effectively distinguished the complex method smell.

For the long parameter list smell, the ae-mlp classifier achieved a precision of

0.62, recall of 0.78, and an F1-score of 0.69. The ae-lstm classifier exhibited a

precision of 0.66, recall of 0.97, and an F1-score of 0.79. However, the vae classifier

achieved the best results with a precision of 0.81, recall of 0.90, and an F1-score of

0.85. The vae’s ability to capture the underlying probabilistic distribution of the

long parameter list smell seemed to contribute to its superior performance.

32

Encoder Model Metric
Complex

Method

Multifaceted

Abstraction

Long Parameter

List

CodeBERT

AE-MLP

Precision 0.60 0.56 0.62

Recall 0.75 0.80 0.78

F1 0.67 0.66 0.69

AE-LSTM

Precision 0.68 0.70 0.66

Recall 0.97 0.73 0.97

F1 0.79 0.71 0.79

VAE

Precision 0.80 0.79 0.81

Recall 0.99 0.91 0.90

F1 0.89 0.85 0.85

CodeT5

AE-MLP

Precision 0.69 0.60 0.60

Recall 0.64 0.72 0.72

F1 0.64 0.66 0.65

AE-LSTM

Precision 0.84 0.45 0.80

Recall 0.59 0.99 0.57

F1 0.64 0.62 0.67

VAE

Precision 0.76 0.77 0.83

Recall 0.80 0.89 0.79

F1 0.78 0.83 0.81

Table 4.3: Classification results for each type of smell using CodeBERT and
CodeT5 with different classifiers.

33

Overall, the vae consistently outperformed the ae-mlp and ae-lstm classifiers

across all three code smells. This can be attributed to the vae’s ability to model the

latent space and capture the underlying probabilistic distribution. Leveraging the

threshold-based classification, the vae effectively distinguished positive and negative

cases, resulting in higher precision and recall. In contrast, the ae-mlp and ae-lstm

classifiers demonstrated lower performance, potentially due to their limited capacity

to capture complex patterns and dependencies in the data.

Using CodeT5 as an encoder

When using Codet5 as an encoder, the results varied across different code smells.

For the smell, the Codet5 model achieved a precision of 0.60, recall of 0.72, and an

F1-score of 0.66 when using the ae-mlp model. When using the ae-lstm model, the

precision was 0.45, the recall was 0.99, and an F1-score was 0.62. For the vae model,

the precision was 0.77, the recall was 0.89, and the F1-score was 0.83.

For the complex method smell, the Codet5 model achieved a precision of 0.69,

recall of 0.64, and an F1-score of 0.64 when using the ae-mlp model. When using

the ae-lstm model, the precision was 0.84, the recall was 0.59, and the F1-score was

0.64. For the vae model, the precision was 0.76, the recall was 0.80, and the F1-score

was 0.78.

For the long parameter list smell, the Codet5 model achieved a precision of 0.60,

recall of 0.72, and an F1-score of 0.65 when using the ae-mlp model. When using

the ae-lstm model, the precision was 0.80, the recall was 0.57, and the F1-score was

0.67. For the vae model, the precision was 0.83, the recall was 0.79, and the F1-score

was 0.81.

Overall, while Codet5 exhibits varying performance across different code smells,

the vae consistently outperforms the ae-mlp and ae-lstm classifiers. However, the

performance of Codet5 as an encoder is inferior compared to Codebert. Codet5

shows lower recall scores for certain code smell types, indicating a higher rate of false

negatives. This implies that Codet5 has a more conservative approach to detecting

code smells and may miss instances of code smells.

34

4.4 Discussion and selection of the best performing model

The vae consistently outperformed the ae-mlp and ae-lstm classifiers across all

three code smells. This can be attributed to the vae’s ability to model the latent

space and capture the underlying probabilistic distribution. Leveraging the threshold-

based classification, the vae effectively distinguished positive and negative cases, re-

sulting in higher precision and recall. In contrast, the ae-mlp and ae-lstm classifiers

demonstrated lower performance, potentially due to their limited capacity to capture

complex patterns and dependencies in the data.

For Codet5 as well, vae consistently outperforms ae-mlp and ae-lstm across

all the code smells. However, the performance of Codet5 as an encoder is inferior

compared to CodeBERT. Codet5 shows lower recall scores for certain code smell

types, indicating a higher rate of false negatives. This implies that Codet5 has a

more conservative approach to detecting code smells and may miss instances of code

smells.

Based on the findings presented above, it is evident that the Variational Au-

toencoder (vae) consistently outperformed the other deep learning models in terms

of precision, recall, and F1-score. Therefore, we selected the vae as our choice of

the deep learning network for code smell detection. Additionally, we found that the

CodeBERT transformer yielded better results compared to CodeT5 across the dif-

ferent code smells. Hence, we decided to utilize the CodeBERT transformer as the

encoder for our vae-based code smell detection framework.

This combination of VAE and CodeBERT resulted in the highest F1 score,

and the system thus obtained demonstrated significant efficacy in detecting positive

samples of code smells. Based on these observations, we selected this combination as

the base model for our experiment.

Chapter 5

The Controlled Experiment

In this chapter, we outline the controlled experiment performed using the deep learn-

ing model we previously built. We first present the tools we created to conduct the

experiment. Then, we present the procedure for the experiment. Finally, we evalu-

ate the impact of fine-tuning the selected deep-learning model individually for each

participant using the feedback gathered from them.

5.1 Overview

In the last phase, we carry out an experiment to determine the most efficient model.

The main objective is to verify whether the inclusion of human feedback in the model’s

process enhances its accuracy in detecting code smells. This experimental setup

allows for a clear comparison before and after, enabling us to quantify the model’s

performance improvement resulting from the integration of human insights.

Figure 5.1 illustrates an overview of our experiment. For our controlled experi-

ment, we conducted our study with the participation of users who were divided into

two groups: the control group and the experiment group. In the initial phase, par-

ticipants from both groups are presented with code samples, where we utilize the

TagCoder plugin to capture their feedback.

In the second phase, we introduce a feedback loop for the experiment group. We

Figure 5.1: Overview of the approach

35

36

fine-tune the model using the user feedback captured from this group, tailoring the

model’s predictions according to their input. In contrast, the control group continues

to interact with the same base model as in the first phase, without any fine-tuning

based on user feedback. We then show predictions to both groups and collect and

compare their feedback.

5.2 Methods

In this section, we describe the tools and the protocol that we developed to capture

human feedback, and the results we obtained.

To conduct our experiment, we have developed two key software components—a

web server serving the model to perform inference and a plugin for popular IntelliJ

idea Integrated Development Environment (ide) for displaying classification results

and capturing developers’ feedback. In this section, we describe each software com-

ponent in detail.

5.2.1 A web-server

The primary objective of the web server is to support the inference from our dl

model that is decoupled from the user feedback collection system. We minimize

the dependencies required to run the server by encapsulating the server as a Docker

container.

For the implementation of the server, we utilize the Django framework, which is

based on the Python programming language. At the beginning of the experiment,

the server accepts method and class metrics generated by running DesigniteJava [45]

on the project. These metrics are stored in memory for subsequent processing. The

server receives requests along with required data (such as metrics) from the client (in

our case, our plugin for IntelliJ idea) and parses them based on predefined thresholds

from the considered dataset. These thresholds are mentioned in the table 3.1.

The server uses four endpoints to connect with the plugin mentioned in the fol-

lowing sections. The communication between the server and the plugin is shown in

figure 5.2. The server offers the following four endpoints:

• Metrics endpoint : This endpoint accepts a post request with two csv files—one

37

Figure 5.2: Interaction between TagCoder and local web server

containing class metrics and the other containing method metrics. These files

are generated by DesigniteJava and are recorded using our IntelliJ idea plugin.

• Prediction endpoint : A post endpoint that accepts a source code file, along

with a boolean value indicating whether it pertains to a class or a method. The

file is passed to the dl model for inference.

• Feedback endpoint : Another post endpoint that allows users to provide feed-

back on the model’s predictions for a specific file. When a user is presented

with a prediction, their feedback regarding the correctness (according to them)

of the prediction is collected through this endpoint. The endpoint records the

file and the user’s feedback. Once a preset number of feedback instances have

been collected, the model is fine-tuned.

• Fine-tuning endpoint : A get request that enables users to explicitly trigger

model fine-tuning whenever desired.

To simplify the deployment and setup process, we have also provided a Docker

script. This script automatically downloads all the necessary dependencies, including

Python and the required dl libraries, ensuring a streamlined deployment of the server.

38

To expedite request processing and reduce server load, we leverage the metrics

collected by DesigniteJava along with the rationale related to subjectivity earlier

established when constructing DACOS. We identify whether a method or a class is

definitely smelly based on metrics values higher than a threshold. Similarly, when the

web server receives a code snippet for prediction, we first look up the corresponding

metrics. Based on preset thresholds as used by Nandani et al. [35], we can quickly

identify whether the sample is definitively smelly or definitely benign. For instance, if

a method has eight parameters and the threshold for the “Parameter Count” metric

is set between two and four, lower and higher thresholds respectively, we can conclude

that the method exhibits the long parameter list code smell. If the sample falls within

the predefined threshold, we use the model to infer whether a smell is present or not

and return the inference back to the plugin. If not, we pass the sample to the dl

model for further analysis.

To simplify the deployment and setup process, we use a Docker script. This script

automatically downloads all the necessary dependencies, including Python and the

required dl libraries, ensuring a streamlined deployment of the server. We store the

user feedback for the presented code samples on a configurable volume within the

Docker container. This ensures that user feedback is not lost even if the container is

shut down or restarted.

Additionally, we have implemented a mechanism to fine-tune the model based on

the collected feedback. Once the number of feedback instances reaches a pre-defined,

but configurable, threshold (currently set to 50), the web server invokes fine-tuning the

model incorporating the new information. Although we have arbitrarily assigned this

number, it is configurable, allowing users to adapt the model fine-tuning frequency

to their specific needs.

We set up and configured the web server locally to avoid sending code snippets

to a third-party server configured outside of an organization boundary. However, due

to the flexibility of the containerized web server, one can choose to install it on their

local machine, a server within their organization, or on public cloud infrastructure.

39

5.2.2 TagCoder—an IntelliJ IDEA plugin

To enhance the usability and convenience of our code smell detection system, we de-

veloped TagCoder—a plugin for IntelliJ idea, a widely-used Integrated Development

Environment (ide) for software development, particularly in Java. The objective of

TagCoder is to provide users with a seamless experience in obtaining predicted code

smells for their code and offering a straightforward mechanism for providing feedback

on these predictions. When a user opens a project in the IDE, TagCoder automat-

ically runs DesigniteJava in the background to analyze the project. The obtained

results are then sent to our local web server, which serves as the core of our code

smell detection system.

Figure 5.3: User feedback collection using TagCoder

After the initial analysis, whenever the user opens a file within the ide, TagCoder

automatically sends the corresponding class and method information to the web server

for code smell prediction. The server processes the received code snippets and returns

the predictions back to the plugin.

The plugin then displays the predictions in the gutter on the left side pane of the

IntelliJ idea editor, allowing users to conveniently view the code smells associated

with specific classes and methods. This integration within the ide’s interface enables

40

users to easily identify potential code smells without disrupting their workflow.

TagCoder supports recording users’ feedback. Users can provide feedback on the

identified smells directly from the plugin. This feedback is captured by the plugin

and sent to the web server for documentation, analysis, and model refinement. This

iterative feedback loop helps improve the accuracy and reliability of the code smell

predictions over time.

Additionally, TagCoder offers an option to explicitly trigger model fine-tuning

when users feel that a sufficient amount of feedback has been accumulated. This

ensures that the model remains up-to-date and capable of capturing evolving code

smells as the project progresses.

Figure 5.3 provides a snapshot of the TagCoder plugin, showcasing the user inter-

face where code smell predictions are displayed in the gutter, along with the feedback

capture dialog. By integrating TagCoder into IntelliJ idea, we aim to streamline

the code smell detection process, providing developers with real-time insights into

potential code quality issues and facilitating their active participation in improving

the model’s accuracy.

5.3 Experiment setup and design

The third step of Figure 5.1 illustrates the approach to conducting our controlled

experiment. We elaborate on the experimental design and setup in the rest of the

section.

5.3.1 Participants

We recruited 14 participants who have a background in Computer Science and are en-

rolled in a graduate, post-graduate, or doctoral degree program. They were solicited

using a relevant internal mailing list. Participation was voluntary, but a small mon-

etary reward was offered at the end of the experiments to compensate for their time.

All participants were informed about the purpose of the study and were asked to

provide consent to record and publish the anonymous data. They were also informed

that all personal information (such as name and email) gathered will be confidential

and only the researchers involved in the study will have access to the personal data

41

collected. The experiment took place at Dalhousie University spanning two days in

May 2023.

5.3.2 Procedure

Before conducting the actual experiment, we performed a pilot study involving a

participant to get their feedback regarding the TagCoder plugin. We do so to minimize

any errors that could occur during the experimental procedure and get an estimate

of the needed time to perform the annotation of at least 50 code snippets in each

round. We then make necessary changes in the plugin as well as in the process based

on the feedback we received. We conducted a second round of validation with another

participant, however, we ignored the feedback this time as it was only related to one

concern which was the latency of the model’s inference (∼3s per sample).

During the experimentation days, each participant was randomly assigned to a

group (experimental or control) in a way that both groups have the same number of

participants. We provide the same computer for each participant with IntelliJ ide

and TagCoder plugin installed. The source code project that was imported into the

ide can be found in the replication package.

We then present the same source code to all the participants and ask them to

perform the following tasks:

• Open the ide and navigate to the “Tools” menu. In the menu, select the option

to analyze code using TagCoder.

• Open the source code files one by one. The methods and classes would have

the TagCoder icon in the gutter of the editor on the left.

• Assess the smells detected initially by the model by clicking on the TagCoder

icon. The plugin shows the kind of smell along with its description. They then

provide their feedback (i.e., agree or disagree with the detected smell) to the

model from the same dialog box.

For the experimental group, after annotating at least 50 samples in Round 1, the

model is fine-tuned. Upon fine-tuning the model, the web server notifies the plugin,

and the plugin shows a popup notification to inform the user about completing the

42

fine-tuning process. However, a participant can also manually trigger the model’s

fine-tuning using the option present in the menu bar. The participants in the control

group were presented with a modified version of the plugin. The modified plugin

looks and behaves the same as the one presented to those in the experimental group

except for a minor tweak-the model is not fine-tuned for the control group. Both the

group members were unaware of their group and the difference in the plugin. For

each session with a participant, we use a new copy of the original trained model and

ensure that the fine-tuned models are saved for individuals and are not reused.

In Round 2, we asked both groups to follow the same set of tasks mentioned

earlier. The end of this round marks the end of the session.

We conducted the experiments in succession; one participant after the other. For

each session with a participant, we use a new copy of the original trained model and

ensure that the fine-tuned models are saved for individuals and are not reused.

5.3.3 Data collection procedure

All participants were shown the same code repository1. On average, completing

both rounds took every participant approximately 48 minutes. The average number

of annotations collected per user was 101 over both rounds. We collected 1, 421

annotations from this experiment, where the number of annotations performed by

the control group ranged from 81 to 135. In contrast, the number for the experiment

group ranged from 73 to 135. For each participant, we store the model’s prediction

and their response and calculate a hash for the code snippet to identify it uniquely.

The reason we track the actual annotated code snippets is to measure the inter-rater

reliability later. The classification performance metrics were calculated based on our

received data by treating the participants’ responses as the ground truth.

5.4 Results and discussion

In this section, we illustrate the results of our experiments and discuss the implica-

tions.

1https://github.com/SMART-Dal/Tagman

43

5.4.1 RQ-1: Whether and to what extent does user feedback improve

the accuracy of deep learning-based code smell detection?

User feedback plays a crucial role in fine-tuning and refining dl models [60]. With

this research question we aim to validate that user feedback can enhance the accu-

racy of dl-based code smell detection and to understand the extent to which this

improvement can be observed.

Approach

During the experiment, the participants were given software samples and asked to

identify any code smells present. The experiment was conducted in two rounds. In

the first round, the initial model was used, and in the second round, the model was

retrained with additional data.

To evaluate the participant’s performance, the responses for each sample in both

rounds were curated. The user response was considered the ground truth, indicating

whether a software sample was a code smell or clean code.

The evaluation metrics used were Precision, Recall, and F1-score, which are com-

mon metrics in binary classification tasks:

• True Positive (TP): Instances where the model predicted a code smell, and the

user agreed with the prediction.

• False Negative (FN): Instances where the model predicted a sample as clean,

but the user disagreed and believed it was a code smell.

• False Positive (FP): Instances where the model predicted a sample as a code

smell, but the user disagreed and believed it was clean code.

• True Negative (TN): Instances where the model predicted a sample as clean,

and the user agreed with the prediction.

We then calculated the precision and recall for each participant from the experi-

ment and control group for the first and second rounds. The calculations of precision

and recall are as follows:

44

Precision quantifies the ratio of correctly identified positive samples (true posi-

tives) to the total number of positive predictions made by the classifier. It serves as

an indicator of the accuracy of positive predictions.

P =
TP

TP + FP

Recall measures the proportion of true positive predictions with respect to all

actual positive samples in the dataset. It assesses the ability of the classifier to

identify positive samples correctly.

R =
TP

TP + FN

Using these values, we calculated the F1-score of the participants before and after

retraining the model.

The F1 measure is the harmonic mean of precision and recall:

F1 = 2 ·
P ·R

R + R

It combines both precision and recall into a single metric that provides a balanced

assessment of the classifier’s performance

Results and Discussion

The difference in the F1 scores of participants in the control group and experiment

group are shown in figures 5.4 and 5.5.

45

Figure 5.4: Before and after F1 scores for participants from experiment group.
MBefore = 0.78 (±0.1), MAfter = 0.88 (±0.06)

In the control group, the participants’ total code sizes ranged from 81 to 135. The

initial F1 scores before the feedback loop ranged from 0.80 to 0.89. The feedback

loop for the control group was a placebo and did not fine-tune the algorithm. After

the feedback loop, the F1 scores showed slight variations, with values ranging from

0.82 to 0.90. The improvement in the F1 score ranged from 0.01 to 0.02.

For the experiment group, the participants’ total code sizes ranged from 73 to 135.

Before the user feedback loop, the F1 scores varied between 0.57 and 0.90. After the

feedback loop, the F1 scores improved and ranged from 0.81 to 0.97. This indicates

that the customization based on user feedback had a positive impact on code smell

detection performance in the experiment group.

The participant with code size 79 in the experiment group had the lowest initial

F1 score of 0.57, but after the user feedback loop, the F1 score improved significantly

to 0.81. This indicates that even participants who initially had lower code smell

detection performance were able to benefit from the customization based on user

feedback.

46

Figure 5.5: Before and after F1 scores for participants from control group.MBefore =
0.78 (±0.1), MAfter = 0.88 (±0.06)

We conduct statistical tests to determine the significance of the observed changes

in the F1-score for both groups. Given the size of each group, we use a Permutation

test for the parametric tests. We employ n = 5, 040 permutations, representing all

possible permutations, to ensure a robust analysis. The significance level is set at

α = 0.05 and we use SciPy ’s [62] implementation for each test.

First, we examine the changes within the experimental group. The F1-scores

obtained in Round 1 (p = 0.367) and Round 2 (p = 0.197) are found to follow a

normal distribution based on the Shapiro-Wilk test [44]. Additionally, they satisfy the

assumption of homoscedasticity, as determined by Levene’s non-parametric test [31]

(p = 0.718). Consequently, we perform a paired t-test to assess the significance

of the F1-score changes within the experimental group. The null hypothesis (H0)

states that there is no significant increase in F1-scores between the two rounds for

the experimental group. The test yields a p-value of 0.015 < α = 0.05, with a t-value

of −3.79. Therefore, we reject the null hypothesis, indicating a significant difference

in F1-scores between the rounds. In addition, Hedge’s g = 1.13 suggests a substantial

difference between the experimental group’s performance before and after introducing

human feedback. The effect size indicates that the introduction of human feedback

47

had a significant impact on the performance of the experimental group.

Furthermore, we explore the potential relationship between the number of an-

notations and the difference in F1-scores. We calculate Spearman’s coefficient [56],

resulting in ρ = −0.03 and p = 0.963. These findings indicate a negligible or near-

nonexistent relationship between the two variables.

Similarly, the distributions of F1 measures for the control group after each phase

were found to be normally distributed (p = 0.805 after Round 1 and p = 0.466 after

Round 2) and exhibited homoscedasticity (p = 0.6875). However, the paired t-test

yielded a p-value of 0.0625 > α with a t-value of −2.497. With the t-test results, we

cannot reject the null hypothesis of a significant F1-score change in the control group,

i.e., the change is not significant.

Our findings provide evidence that incorporating human feedback enhances the

performance of dl models for code smell detection, as shown by the significant im-

provement in F1-scores. The absence of a significant change in the control group

further supports the conclusion that the observed improvements in the experimental

group can be attributed to the incorporated feedback.

5.4.2 RQ-2: Whether and to what extent does user feedback influence

the accuracy of dl-based detection for individual code smells?

Code smells exhibit distinct attributes that differentiate them from one another due

to the variations in their characteristics, patterns, and severity. With this research

question, we aim to examine whether the improvement in accuracy, if any, through

user feedback is consistent across all considered smells or if it varies for each smell.

Furthermore, we seek to quantify the extent of this variation to understand the degree

of improvement achieved.

Approach

For this research question, the focus was on evaluating the performance of the model in

detecting specific code smells rather than aggregating the results per participant. The

goal was to assess how well the model identifies individual code smells and compare

its performance across different types of smells.

Similar to the previous research question, the responses for each sample were

48

curated, and the user response was considered the ground truth. The samples were

then divided based on each of the three smells we considered. For each specific code

smell, we calculate the following metrics: True Positive (TP), False Negative (FN),

False Positive (FP), and True Negative (TN), as in the previous research question.

After calculating the metrics for each specific smell, we proceed to compute Precision,

Recall, and F1-score individually for each one.

Results and discussion

Table 5.1 summarizes the impact of the user feedback on the performance metrics

for the complex method , long parameter list and smells. The findings demonstrate

the effectiveness of the feedback in enhancing the smell detection performance of the

trained model.

Table 5.1: Influence of the feedback on classifiers’ performance for the considered
code smells individually

Smell

Round 1 Round 2

Precision Recall F1 Precision Recall F1

Multifaceted Abstraction 0.91 0.88 0.88 0.93 ↑ 0.90 ↑ 0.91 ↑

Complex Method 0.86 0.77 0.81 0.86 − 0.81 ↑ 0.83 ↑

Long Parameter List 0.69 0.88 0.77 0.74 ↑ 0.95 ↑ 0.83 ↑

Before incorporating the feedback loop, the model achieved a precision of 0.91, a

recall of 0.88, and an F1-score of 0.88 for the code smell. Following the feedback

loop, there was a slight improvement across all metrics, with the precision increasing

to 0.93, recall to 0.90, and the F1-score to 0.91.

For the complex method code smell, the initial performance showed a precision

of 0.86, a recall of 0.77, and an F1-score of 0.81. In the second round, there was

a marginal enhancement in the recall and F1-score, while the precision remained

unchanged at 0.86.

Similarly, the model’s performance for the long parameter list smell demonstrated

49

a precision of 0.69, a recall of 0.88, and an F1-score of 0.77 for the base model. Sub-

sequently, introducing human feedback yielded significant improvements, with the

precision increasing to 0.74, recall to 0.95, and the F1-score to 0.83. The results

indicate that incorporating human feedback positively influenced the models’ code

smell detection capabilities. The inclusion of human feedback resulted in improved

F1 scores, indicating enhanced precision and recall tradeoffs in the models’ detec-

tion of code smells. Notably, the long parameter list code smell exhibited the most

substantial improvement, followed by and complex method . This suggests that the

effectiveness of the feedback loop may vary depending on the specific code smell being

detected.

The variation in performance after incorporating human feedback across different

code smells can be attributed to several factors. The number of training samples

for each smell influences the initial performance, with larger sample sizes potentially

resulting in higher performance. The complexity and characteristics of each smell

also play a role, with some smells being more straightforward to detect and classify

accurately. For example, detecting complex method smell is considerably more difficult

than long parameter list smell due to larger and more complex code snippets to

process. Due to the complexity, it requires a greater number of training samples to

learn to classify correctly.

5.4.3 RQ-3: Do feedback loops improve the accuracy of predicted

smells at the cost of subjectivity of the model?

Deep learning models typically rely on a large dataset to learn and generalize pat-

terns. However, during the fine-tuning process with extensive data, the subjectivity

of individual users can be lost, resulting in a more generalized model that may not

capture the unique perspectives and preferences of each user.

The research question aims to validate that by leveraging user feedback, we can

achieve accuracy improvements in the models while ensuring that the subjectivity of

each user for each code smell remains intact. By considering the specific feedback

provided by users, the models can be customized to better align with their individual

preferences, expertise, and contextual understanding.

50

Approach

The subjectivity of code smells lies in the fact that the threshold for a code snippet to

become smelly is different for every developer. Statistical coefficients like the Kappa-

Cohen score [23], Gwett’s AC1/AC2 [17], and Krippendorff’s Alpha [24] are used to

measure inter-annotator agreements.

While all these metrics can be used to measure inter-annotator agreements, the

Kappa-Cohen coefficient works best when used for comparison between two annota-

tors [4]. Moreover, Gwett’s AC1/AC2 and the Kappa-Cohen coefficient all possess a

significant bias when there are a large number of non-random missing values [23].

For this reason, we selected Krippendorff’s Alpha coefficient to measure the inter-

annotator agreement values. Krippendorff’s Alpha works well with any number of

annotators and can handle the missing data well [3]. The formula for Krippendorff’s

Alpha is given as:

Alpha = 1 −
Do

De

where Do is the observed disagreement and De is the expected disagreement.

We generated a matrix of all the samples annotated by two or more annotators

before and after fine-tuning the model. We then constructed a two-dimensional matrix

and passed it to the Krippendorff Python library.

Results and discussion

Table 5.2 presents the Krippendorff values before and after fine-tuning.

51

Table 5.2: Krippendorff’s Alpha coefficient values

Round Smell Alpha value

Round 1

Complex Method 0.44

Multifaceted Abstraction –

Long Parameter List 0.35

Overall 0.46

Round 2

Complex Method 0.51

Multifaceted Abstraction –

Long Parameter List 0.36

Overall 0.48

In Round 1, the complex method had an Alpha value of 0.44, while we did not

have enough samples with common annotations for . The long parameter list had an

Alpha value of 0.35. The overall Alpha value for Round 1 was 0.46. In Round 2, the

complex method had an Alpha value of 0.51, and the long parameter list had an Al-

pha value of 0.36. The overall Alpha value for Round 2 was 0.48. With these results,

it is reasonable to state that the subjectivity is not diluted in the updated models.

Despite the increase in the model’s performance, the continued presence of relatively

low Krippendorff’s alpha values indicates that the subjective nature and variabil-

ity among developers in their assessments of code smells persist. In addition, this

complements our insight for Research Question 2; the fact that certain smell models

showed more substantial improvements (long parameter list vs complex method) with

the consistent ranking of subjectivity, indicates that they have become more attuned

to the subjective assessments of developers for those specific smells.

5.5 Threats and validity

In this section, we address the potential threats to the validity of this thesis.

52

5.5.1 Internal validity

Internal validity threats concern the ability to conclude from our experimental results.

While building the dataset, in phase 2 of manual annotation, we invited volunteers

with at least a basic understanding of Java programming language and object orien-

tation concepts. We advertised the invitation on social media professional channels

(Twitter and LinkedIn). Given the anonymity of the exercise, we do not have any

mechanism to verify the assumption that the participants have sufficient knowledge

to attempt the annotations. However, we offered all the major participants (with at

least 50 annotations) to include them as contributors to the dataset; we perceive such

a measure would have motivated the annotators to perform the annotations to the

best of their abilities. Additionally, we configured Tagman to obtain two annotations

per sample so that we can reduce the likelihood of a random annotation.

While conducting the experiment, to address potential internal validity threats,

we employed random assignment of participants to the control and experimental

groups. This helps mitigate selection bias by ensuring that any differences in the

results between the groups are more likely due to the introduction of human feedback

rather than pre-existing differences. Additionally, we controlled for the potential

influence of maturation by limiting each experiment session to a maximum of 90

minutes. Moreover, to ensure the validity of the tools used to capture feedback, we

conducted a pilot study to validate their effectiveness and reliability. This helped

us to mitigate any potential biases or limitations associated with the data collection

instruments.

5.5.2 External Validity

External threats are concerned with the ability to generalize our results. The pro-

posed dataset is for snippets written in Java. However, our code annotation tool is

generic and it can be used to annotate snippets from any programming language.

Additionally, scripts used to generate individual snippets can be customized to use

any other external tool for splitting the code into methods and classes. Furthermore,

the thresholds used in the annotation process to filter snippets based on low and high

thresholds of a metric are configurable.

During the experiment, we provided detailed information about the participants’

53

characteristics, such as being graduate students enrolled in Master’s or Ph.D. pro-

grams in Computer Science, and the source of recruitment through the university’s

mailing lists. This helps readers assess the generalizability of the findings within the

target population. We also described the study setting, being conducted in a univer-

sity environment, and provided contextual information to aid readers in evaluating

the transferability of the findings to similar settings. In addition, the provision of a

replication package, including the data and code used in the study, contributes to the

external validity of the research.

5.5.3 Conclusion validity

To manage conclusion validity threats, we aimed for an adequate sample size and

performed statistical analysis using well-known statistical tests. By doing so, we

aimed to minimize the risk of concluding a false effect. We controlled the significance

level (alpha) to manage the risk of Type I errors. Furthermore, by achieving sufficient

statistical power, we aimed to mitigate Type II errors. Finally, to address potential

confounding variables, we employed randomization in the assignment of participants.

Chapter 6

Conclusions

This chapter summarizes the methodology, findings, and key contributions of the

thesis. In addition, we propose potential future works that might complement this

thesis for a better understanding of subjectivity in different code smells and their

detection.

6.1 Summary of contribution

Deep learning models tend to ignore the subjective nature of code smells, and they

fail to consider individual differences in how people perceive them. To improve the

accuracy of these models while still retaining the subjective aspect, it’s essential to

leverage human feedback. In this thesis, we present an approach to address this issue..

To address the problem of a lack of a sizable dataset, We offer Dacos—a manually

annotated code smell dataset containing 10, 267 annotations for 5, 192 subjective code

snippets. We also provide a large DacosX dataset containing definitely benign and

definitely smelly snippets in addition to those present in Dacos. We offer Tagman,

a code annotation application that can be reused in similar contexts.

We selected a relatively small set of code smells to consider in the dataset because

having more annotations for a smell is better than having a small number of annota-

tions per smell. Also, we chose a set of smells not covered by the existing code smells

dataset. We configured Tagman to obtain two annotations per sample.

Next, we present a comprehensive framework that addresses the issue of subjec-

tivity in code smell detection and enables personalized and accurate predictions. Our

approach combines deep learning techniques, user feedback, and a containerized de-

ployment architecture for a locally run web-server to address the subjectivity in the

smell detection We train a baseline dl model using the previously created dacos

dataset. We integrate our dl model into a Docker container behind a web server

to offer smell predictions and retrain the model quickly as and when required. Our

54

55

initial model predicts code smells that we show users in the IntelliJ idea environ-

ment with the help of our plugin TagCoder. TagCoder offers the smells to the users

and collects their feedback. We train the deployed dl model using the collected

user feedback. The fine-tuning allows the model to learn and adapt to individual

user preferences and enhances the accuracy of smell detection. Our experiments to

evaluate the proposed approach show that fine-tuning the dl model using collected

user feedback outperforms the base model for all the participants. Moreover, the

performance of the fine-tuned model is superior to the base model for all three smells

considered. This performance improvement is achieved for each participant while con-

sidering their feedback and maintaining the customization of the model’s behavior for

each participant.

6.2 Limitations

We configured Tagman to obtain two annotations per sample. Though it improves

the reliability of the dataset, one may argue that it may introduce a situation where

the annotations are contradictory.

Moreover, the experiment was conducted with 14 participants. The results can be

more grounded with a significantly larger pool of participants. The experiment was

also conducted with samples from the project using Java language. Replicating the

experiment with different languages could help discover the nuances of subjectivity

related to the semantics of the particular language.

The thesis also observed variations in performance improvements across different

code smells, suggesting that specific characteristics of code may influence the impact

of the feedback loop smells. This highlights the need for further investigation into

the factors contributing to these variations, potentially leading to more tailored and

effective code smell detection approaches.

6.3 Directions of future research

In this section, we present some ideas for direction towards future research using our

thesis as a base.

56

6.3.1 Language extension for the dataset

We have built the dataset using samples of Java language. However, Tagman is

entirely configurable, and it would be possible to extend it to use the platform for

collecting samples for other programming languages like Python or NodeJS.

6.3.2 Increasing the number of annotations

Increasing the number of annotations for each sample could help mitigate the scenario

where there are conflicting numbers of samples for annotations.

6.3.3 Serverless architecture

For the experiment, we have built a server that needs to be run on the local machine

to collect user feedback. This server requires a specific hardware configuration to

run effectively. Further research can be undertaken to create an approach that works

built into the ide that would not require a server to run. This would help increase

the number of participants as the hardware requirements would be lower.

6.3.4 Publishing the created tool to the IDE marketplace

Currently, the plugin created to capture user feedback has not been submitted to

the marketplace for the IntelliJ tool. Publishing the plugin to the marketplace for

different IDEs would allow more people to participate in the experiment.

6.3.5 Replicating the experiment with more participants

We conducted the experiment with 14 participants due to a lack of resources and

time. Replicating the experiment with a higher number of participants from varying

backgrounds could provide better insights into the findings of the experiment and

could highlight potential differences between people from varying educational and

professional backgrounds.

57

6.3.6 Expanding the number and types of code smells

Expanding the scope of the experiment to include a wider variety of code smells may

provide more comprehensive insights. By incorporating various kinds of smells, es-

pecially those that are not currently featured in the dataset, the experiment may

evaluate the model’s effectiveness across a broader spectrum of smells. This diversi-

fication in code smells would enable a more thorough understanding of the model’s

capabilities and limitations, and how they vary across different categories of code

smells.

Bibliography

[1] Ademar Aguiar, André Restivo, Filipe Figueiredo Correia, Hugo Sereno Ferreira,
and João Pedro Dias. Live software development: Tightening the feedback loops.
In Companion Proceedings of the 3rd International Conference on the Art, Sci-
ence, and Engineering of Programming, Programming ’19, New York, NY, USA,
2019. Association for Computing Machinery.

[2] Mamdouh Alenezi and Mohammad Zarour. An empirical study of bad smells
during software evolution using designite tool. i-Manager’s Journal on Software
Engineering, 12(4):12, 2018.

[3] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. Learning natural coding
conventions. In Proceedings of the 38th International Conference on Software
Engineering (ICSE), pages 378–389, 2016.

[4] Miltiadis Allamanis. The adverse effects of code duplication in machine learn-
ing models of code. In Proceedings of the 2019 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! 2019, page 143–153, New York, NY, USA, 2019. Association
for Computing Machinery.

[5] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning
distributed representations of code, 2018.

[6] Francesca Arcelli Fontana and Marco Zanoni. Code smell severity classification
using machine learning techniques. Knowledge-Based Systems, 128:43–58, 2017.

[7] Muhammad Ilyas Azeem, Fabio Palomba, Lin Shi, and Qing Wang. Machine
learning techniques for code smell detection: A systematic literature review and
meta-analysis. Information and Software Technology, 108:115–138, 2019.

[8] R. Balzer. A 15 year perspective on automatic programming. IEEE Transactions
on Software Engineering, SE-11(11):1257–1268, 1985.

[9] Antoine Barbez, Foutse Khomh, and Yann-Gaël Guéhéneuc. A machine-learning
based ensemble method for anti-patterns detection. Journal of Systems and
Software, 161:110486, 2020.

[10] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger
Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering
Self-Adaptive Systems through Feedback Loops, pages 48–70. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

58

59

[11] André Eposhi, Willian Oizumi, Alessandro Garcia, Leonardo Sousa, Roberto
Oliveira, and Anderson Oliveira. Removal of design problems through refac-
torings: Are we looking at the right symptoms? In 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC), pages 148–153,
2019.

[12] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT:
A pre-trained model for programming and natural languages. In Findings of
the Association for Computational Linguistics: EMNLP 2020, pages 1536–1547,
Online, November 2020. Association for Computational Linguistics.

[13] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A
pre-trained model for programming and natural languages, 2020.

[14] Martin Fowler. Refactoring: Improving the Design of Existing Programs.
Addison-Wesley Professional, 1 edition, 1999.

[15] Martin Fowler. Refactoring. Addison-Wesley Professional, 2018.

[16] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. To-
ward a catalogue of architectural bad smells. In Architectures for Adaptive Soft-
ware Systems: 5th International Conference on the Quality of Software Archi-
tectures, QoSA 2009, East Stroudsburg, PA, USA, June 24-26, 2009 Proceedings
5, pages 146–162. Springer, 2009.

[17] Kilem Li Gwet. Computing inter-rater reliability and its variance in the presence
of high agreement. British Journal of Mathematical and Statistical Psychology,
61(1):29–48, 2008.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[19] Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, and Christoph Treude. The
impact of automated feature selection techniques on the interpretation of defect
models. Empirical Software Engineering, 25(5):3590–3638, 2020.

[20] Amandeep Kaur, Sushma Jain, and Shivani Goel. A support vector machine
based approach for code smell detection. In 2017 International Conference on
Machine Learning and Data Science (MLDS), pages 9–14, 2017.

[21] Marouane Kessentini and Ali Ouni. Detecting android smells using multi-
objective genetic programming. In 2017 IEEE/ACM 4th International Confer-
ence on Mobile Software Engineering and Systems (MOBILESoft), pages 122–
132, 2017.

60

[22] Foutse Khomh, Stephane Vaucher, Yann-Gaël Guéhéneuc, and Houari Sahraoui.
Bdtex: A gqm-based bayesian approach for the detection of antipatterns. Journal
of Systems and Software, 84(4):559–572, 2011. The Ninth International Confer-
ence on Quality Software.

[23] Helena C Kraemer. Kappa coefficient. Wiley StatsRef: statistics reference online,
pages 1–4, 2014.

[24] Klaus Krippendorff. Computing krippendorff’s alpha-reliability. 2011.

[25] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. Technical debt: From
metaphor to theory and practice. IEEE Software, 29(6):18–21, 2012.

[26] Tomasz Lewowski and Lech Madeyski. How far are we from reproducible re-
search on code smell detection? a systematic literature review. Information and
Software Technology, 144:106783, 2022.

[27] H. Li, Z. Liu, H. Zhu, H. Wang, and Z. Yang. Cp-miner: A tool for finding
copy-paste and related bugs in operating system code. IEEE Transactions on
Software Engineering, 43(4):335–355, 2017.

[28] Hui Liu, Jiahao Jin, Zhifeng Xu, Yanzhen Zou, Yifan Bu, and Lu Zhang. Deep
learning based code smell detection. IEEE transactions on Software Engineering,
47(9):1811–1837, 2019.

[29] Lech Madeyski and Tomasz Lewowski. Mlcq: Industry-relevant code smell data
set. In Proceedings of the Evaluation and Assessment in Software Engineering,
EASE ’20, page 342–347, New York, NY, USA, 2020. Association for Computing
Machinery.

[30] Abdou Maiga, Nasir Ali, Neelesh Bhattacharya, Aminata Sabané, Yann-Gaël
Guéhéneuc, Giuliano Antoniol, and Esma Aı̈meur. Support vector machines for
anti-pattern detection. In 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pages 278–281, 2012.

[31] Benoit Mandelbrot. Contributions to probability and statistics: Essays in honor
of harold hotelling (ingram olkin, sudhist g. ghurye, wassily hoeffding, william g.
madow, and henry b. mann, eds.). SIAM Review, 3(1):80–80, 1961.

[32] Radu Marinescu. Measurement and quality in object-oriented design. In 21st
IEEE International Conference on Software Maintenance (ICSM’05), pages 701–
704. IEEE, 2005.

[33] T.J. McCabe. A complexity measure. IEEE Transactions on Software Engineer-
ing, SE-2(4):308–320, 1976.

[34] T Mens and T Tourwe. A survey of software refactoring. IEEE Trans. Softw.
Eng., 30(2):126–139, February 2004.

61

[35] Himesh Nandani, Mootez Saad, and Tushar Sharma. Dacos-a manually anno-
tated dataset of code smells. ArXiv, abs/2303.08729, 2023.

[36] Willian Oizumi, Leonardo Sousa, Anderson Oliveira, Luiz Carvalho, Alessandro
Garcia, Thelma Colanzi, and Roberto Oliveira. On the density and diversity
of degradation symptoms in refactored classes: A multi-case study. In 2019
IEEE 30th International Symposium on Software Reliability Engineering (IS-
SRE), pages 346–357. IEEE, 2019.

[37] Daniel Oliveira, Wesley K. G. Assunção, Alessandro Garcia, Baldoino Fonseca,
and Márcio Ribeiro. Developers’ perception matters: machine learning to detect
developer-sensitive smells. Empirical Software Engineering, 27(7), October 2022.

[38] Jeroen Ooms and Facebook, Inc. graphql: A GraphQL Query Parser,
2023. https://docs.ropensci.org/graphql/, https://graphql.org (upstream)
https://github.com/ropensci/graphql (devel).

[39] Fabio Palomba, Dario Di Nucci, Michele Tufano, Gabriele Bavota, Rocco Oliveto,
Denys Poshyvanyk, and Andrea De Lucia. Landfill: An open dataset of code
smells with public evaluation. In 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories, pages 482–485, 2015.

[40] Fabio Palomba, Dario Di Nucci, Michele Tufano, Gabriele Bavota, Rocco Oliveto,
Denys Poshyvanyk, and Andrea De Lucia. Landfill: An open dataset of code
smells with public evaluation. May 2015.

[41] PMD. PMD Source Code Analyzer. PMD, 2021.

[42] R. Ren, C. Nistor, L. Schumacher, and B. Meyer. Identifying self-admitted
technical debt: A machine learning approach. Empirical Software Engineering,
24(5):3204–3242, 2019.

[43] Yvan Saeys, Thomas Abeel, and Yves Van de Peer. Robust feature selection using
ensemble feature selection techniques. In Walter Daelemans, Bart Goethals,
and Katharina Morik, editors, Machine Learning and Knowledge Discovery in
Databases, pages 313–325, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[44] S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete
samples). Biometrika, 52(3/4):591–611, 1965.

[45] Tushar Sharma. Designite: A customizable tool for smell mining in c# reposi-
tories. 2017.

[46] Tushar Sharma. Codesplitjava, February 2019.
https://github.com/tushartushar/CodeSplitJava.

[47] Tushar Sharma. searchgithubrepo - search github repositories. https://github.
com/tushartushar/search-repo, 2022.

62

[48] Tushar Sharma, Vasiliki Efstathiou, Panos Louridas, and Diomidis Spinellis.
Code smell detection by deep direct-learning and transfer-learning. Journal of
Systems and Software, 176:110936, 2021.

[49] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. Does your config-
uration code smell? In Proceedings of the 13th International Conference on
Mining Software Repositories, MSR ’16, page 189–200, New York, NY, USA,
2016. Association for Computing Machinery.

[50] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. House of cards: Code
smells in open-source c# repositories. In 2017 ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM), pages
424–429, 2017.

[51] Tushar Sharma and Marouane Kessentini. Qscored: A large dataset of code
smells and quality metrics. In 2021 IEEE/ACM 18th International Conference
on Mining Software Repositories (MSR), pages 590–594, 2021.

[52] Tushar Sharma, Pratibha Mishra, and Rohit Tiwari. Designite - a software
design quality assessment tool. In 2016 IEEE/ACM 1st International Work-
shop on Bringing Architectural Design Thinking Into Developers’ Daily Activities
(BRIDGE), pages 1–4, 2016.

[53] Tushar Sharma, Paramvir Singh, and Diomidis Spinellis. An empirical inves-
tigation on the relationship between design and architecture smells. Empirical
Software Engineering, 25(5):4020–4068, 2020.

[54] Tushar Sharma and Diomidis Spinellis. A survey on software smells. Journal of
Systems and Software, 138:158 – 173, 2018.

[55] SonarSource. SonarQube. SonarSource, 2021.

[56] C. Spearman. The proof and measurement of association between two things.
The American Journal of Psychology, 100(3/4):441–471, 1987.

[57] Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. Refactoring
for software design smells: managing technical debt. Morgan Kaufmann, 2014.

[58] Anderson Uchôa, Caio Barbosa, Willian Oizumi, Publio Blenilio, Rafael Lima,
Alessandro Garcia, and Carla Bezerra. How does modern code review impact
software design degradation? an in-depth empirical study. In 2020 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME), pages
511–522, 2020.

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Proceedings of the 31st International Conference on Neural Information Pro-
cessing Systems, NIPS’17, page 6000–6010, Red Hook, NY, USA, 2017. Curran
Associates Inc.

63

[60] Jennifer Wortman Vaughan. Making better use of the crowd: How crowdsourcing
can advance machine learning research. Journal of Machine Learning Research,
18(193):1–46, 2018.

[61] Santiago A Vidal, Claudia Marcos, and J Andrés Dı́az-Pace. An approach to
prioritize code smells for refactoring. Automated Software Engineering, 23:501–
532, 2016.

[62] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.

[63] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. In Proceedings of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 8696–8708, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics.

[64] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5:
Identifier-aware unified pre-trained encoder-decoder models for code understand-
ing and generation. CoRR, abs/2109.00859, 2021.

[65] Jesse Yli-Huumo, Andrey Maglyas, and Kari Smolander. The sources and ap-
proaches to management of technical debt: A case study of two product lines
in a middle-size finnish software company. In Andreas Jedlitschka, Pasi Kuvaja,
Marco Kuhrmann, Tomi Männistö, Jürgen Münch, and Mikko Raatikainen, edi-
tors, Product-Focused Software Process Improvement, pages 93–107, Cham, 2014.
Springer International Publishing.

Appendices

64

Appendix A

Complementary Materials

This appendix presents the materials and tools used during this thesis.

A.1 Replication Package

The framework, tools, scripts, analysis, and generated anonymized data can be found

online at:

• https://github.com/SMART-Dal/DLFeedback

This repository contains all the code developed for this thesis. The repository

is divided into small projects. Each project focuses on a different aspect of

code smell detection used in the thesis. Each project contains a readme file for

instructions to setup the project.

• https://github.com/SMART-Dal/Tagman

This repository contains the code shown to all the users during both phases of

the controlled experiment.

• https://zenodo.org/record/7570428

This artefact contains the built dataset and instructions to replicate the dataset

construction process.

65

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Code smells and their subjectivity
	Research gap
	Problem statement
	Research questions
	Proposed approach
	Research contributions
	Publications based on thesis

	Background
	Code smells
	Implementation smells
	Design smells
	Architecture smells

	Code smell detection
	Metrics-based approaches
	Machine-learning-based approaches
	Deep Learning-based approaches

	Problems with machine learning and deep learning-based approaches
	Available datasets for machine learning and deep learning-based approaches
	Human feedback in code smell detection

	Building the Dataset - Focus on Subjective Smells
	Overview
	Methods
	Downloading repositories
	Dividing the repositories into classes and methods
	Analyzing repositories
	Tagman
	Manual annotation

	Dataset characteristics

	Building the Deep Learning Models
	Approach
	Code smells dataset
	Splitting the samples
	Filtering the snippets
	Tokenizing learning data
	Endoding the samples

	Architecture of deep learning models
	Autoencoder with multilayer perceptron
	Autoencoder with LSTM
	Autoencoders

	Results
	Discussion and selection of the best performing model

	The Controlled Experiment
	Overview
	Methods
	A web-server
	TagCoder—an IntelliJ IDEA plugin

	Experiment setup and design
	Participants
	Procedure
	Data collection procedure

	Results and discussion
	 RQ-1: Whether and to what extent does user feedback improve the accuracy of deep learning-based code smell detection?
	 RQ-2: Whether and to what extent does user feedback influence the accuracy of dl-based detection for individual code smells?
	 RQ-3: Do feedback loops improve the accuracy of predicted smells at the cost of subjectivity of the model?

	Threats and validity
	Internal validity
	External Validity
	Conclusion validity

	Conclusions
	Summary of contribution
	Limitations
	Directions of future research
	Language extension for the dataset
	Increasing the number of annotations
	Serverless architecture
	Publishing the created tool to the IDE marketplace
	Replicating the experiment with more participants
	Expanding the number and types of code smells

	Bibliography
	Appendices
	Complementary Materials
	Replication Package

