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Abstract 

The practice of harmonics forecasting plays an integral role in the development 

of mitigation devices aimed at lessening the adverse effects of harmonic disturbances in 

electrical systems. This doctoral research endeavours to contribute to this field by 

introducing a novel hybrid forecasting model capable of generating precise and reliable 

harmonics predictions for Renewable Energy Systems (RESs). To attain this objective, 

multi-layered Advanced Neural Networks (ANNs), the Adaptive Neuro Fuzzy 

Inference System (ANFIS), and the Long Short-Term Memory  (LSTM) network were 

harnessed to formulate eight innovative hybrid forecasting models, which are the 

integral components of this study. 

Within the scope of the research, three distinct ANN structures featuring three 

layers each—Cascaded Recurrent Neural Network with Local feedback (3LCRNNL), 

Cascaded Recurrent Neural Network with Global feedback (3LCRNNG), and Cascaded 

Recurrent Neural Network with Local and Global feedback (CRNNLG)—are combined 

with ANFIS to create the initial six hybrid forecasting models (Models 1-6). The 

integration of the ANFIS-LSTM techniques results in the formulation of two additional 

hybrid models (Models 7-8). 

In conjunction with these modelling efforts, two renewable generator models are 

employed to generate harmonics. The first model involves a grid-connected Double-Fed 

Induction Generator (DFIG) driven by a wind turbine and integrated with a Solar 

Photovoltaic (PV)-based power generator. The second generator model combines a 

Solar-PV generator with a wind turbine-linked Permanent Magnet Synchronous 

Generator (PMSG) interconnected to a shared grid. The harmonics generated by these 

generator models are utilized to construct comprehensive training and testing datasets 

that are subsequently employed to generate forecasts using the novel hybrid forecasting 

models proposed in this research. 

To rigorously evaluate the performance and effectiveness of these models, a 

systematic comparison is conducted against benchmark studies available in the 

literature. The findings highlight the exceptional performance consistency of model-8, 

which not only outperforms all of the other proposed models in the study, but also 

significantly surpasses the capabilities of existing techniques in the literature. Moreover, 

this study underscores the superiority of hybrid forecasting models over individual 

forecasting techniques typically used as benchmarks, thereby reaffirming the value of 

hybrid modelling in the context of harmonics forecasting for RESs. 
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Chapter 1:  Introduction 

1.1 Thesis Motivation  

The generation of electrical energy from renewable energy resources has 

significantly increased in recent decades, making it one of the most important research 

topics today. Solar and wind energy-based Renewable Energy Systems (RESs) are one 

of the most rapidly growing technologies for generating electric energy as a means of 

producing clean energy, meeting energy demands, and preserving rapidly depleting 

fossil fuel sources [1]. New ideas such as smart grids and microgrids have emerged as 

a result of the rising penetration of renewable/sustainable energy generation 

technologies on the Electrical Power System (EPS) [2]. The unpredictable and 

uncontrollable nature of these RESs in terms of power output is a fundamental challenge 

in achieving EPS stability, as it results in the deterioration of its power quality (PQ). 

RESs have different characteristics than conventional power sources, with the main 

ones being that they are less controllable, generate undesirable power flow patterns, and 

result in non-sinusoidal current and voltage waveforms.  

Furthermore, the grid integration of RESs involves various types of power 

electronics-based converters and inverters, which converts Direct Current (DC) to 

Alternating Current (AC) or vice versa for control and regulation. These electronic 

devices at their terminals produce both current and voltage harmonics, which are 

transferred to the remainder of the grid. The presence of harmonics could cause 

transformers to overheat, circuit breakers to trip, or protection devices to malfunction, 

resulting in a reduction in the life of connected equipment [3], [4], [5]. Therefore, 
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harmonics are one of the most important characteristics that must be kept to a minimum 

to secure network power quality, as per IEEE 519-2014 guidelines [6].  

For large-scale integration of renewable energy into a secure and efficient system, 

harmonics estimation is an important tool that could help reduce harmonics distortion. 

If an accurate estimation of harmonics could be made, it could lead to developing 

solutions that effectively reduce the impact of harmonics on the system. The next section 

will address the subject of harmonics estimation and its significance for harmonics 

mitigation.  

1.2 Significance of Harmonics Forecasting  

Harmonics are the integer multiples of fundamental frequencies and depict a 

distorted waveform. They have a significant impact on the power system and load as 

well as the operational efficiency and dependability of the protective relay [7], [8]. 

Power system losses rise dramatically when harmonics are present. Voltage 

disturbances originate from a harmonic voltage drop across system impedances, causing 

other linear loads to draw a harmonic current. Another major side-effect of harmonics 

is communications interferences [9].  

As a result, the harmonics problem necessitates much consideration for accurate 

prediction and reliable mitigation. In this context, many standards, guidelines, and 

suggestions have been implemented, including IEEE standard 519-2014 [6] and the IEC 

61000 family of standards [10], [11], [12]. To quantify the level of distortions contained 

in the original signal, some indices have been established, such as Total Harmonic 

Distortion (THD) and Total Demand Distortion (TDD), which are used for voltage and 

current harmonics [13]. For instance, voltage THD should be less than or equivalent to 
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a 5% limit in the Point of Common Coupling (PCC), as per IEEE 519-2014. In order to 

reduce harmonics, their forecasting is one of many techniques used to design harmonic 

mitigation devices. 

The term "harmonics forecasting" refers to the identification of frequency 

components in a signal, as well as the prediction of their amplitudes and phases. 

Harmonics prediction is critical for constructing harmonics mitigation devices and other 

controllers, since it allows identification of the harmonics components and their 

magnitudes. Harmonics forecasting should be rapid enough for real-time use, highly 

accurate for greater reliability, simple to apply in practice, and cost-effective. Because 

power systems are highly dynamic, network topologies and characteristics are 

constantly changing. As a result, harmonics prediction should be adaptive. It should also 

be resistant to noise and transients, which are common in measured data. 

In order to achieve harmonics forecasting, various techniques have been 

employed by different researchers. These techniques can be divided into parametric and 

non-parametric methods [14]. Non-parametric methods forecast the spectrum directly 

from the signal, usually in terms of the coefficients (i.e., amplitude) of a collection of 

known functions, referred to as the basis function. Depending on the approach utilized, 

the forecasted signal can be time-independent or time-dependent. Parametric methods 

represent the signal with an appropriate model and then estimate the model's parameters 

from the available data points. The predicted parameters are then applied to the chosen 

model to determine the signal's harmonic content.  

This thesis will adopt the parametric method, as the datapoints generated will 

adjust the model parameters to perform forecasts. Namely, the Adaptive Neuro Fuzzy 
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Inference System (ANFIS), three-layered cascaded and recurrent Artificial Neural 

Network (ANN) with local and global feedbacks, and Long Short-Term Memory 

(LSTM) network will be utilized to achieve harmonics forecasting. Additionally, eight 

hybrid forecasting models will be proposed in an effort to produce and further improve 

the forecasting accuracy of the results. 

Furthermore, the significance of this work extends beyond its immediate 

objectives and contributes to the broader context of harmonic mitigation within the 

realm of renewable energy systems. Harmonic mitigation is a critical aspect of power 

system engineering, aiming to minimize undesirable harmonic distortions in electrical 

waveforms. Standard techniques employed in harmonic mitigation include: 

1. Passive Filters: Passive filters, such as harmonic filters and tuned filters, are 

commonly used to absorb specific harmonic frequencies and prevent their 

propagation through the power system. 

2. Active Filters: Active filters dynamically adjust their characteristics to counteract 

harmonics in real-time, offering a more flexible and responsive solution compared 

to passive filters. 

3. Variable Frequency Drives (VFDs): VFDs are employed in motor control 

applications and can inadvertently introduce harmonics. Techniques such as 

multilevel inverter control are used to mitigate these harmonics. 

4. Transformers with Low Harmonic Content: Specialized transformers designed 

to minimize harmonic distortion in their output waveforms are utilized to mitigate 

harmonics in power distribution systems. 
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5. Power Factor Correction: Improving power factor through power factor 

correction devices can reduce harmonic distortions in the power system. 

The novel contribution of harmonic forecasting, as presented in this work, lies in 

its potential application as a predictive tool to enhance the effectiveness of these 

standard harmonic mitigation techniques. By forecasting the occurrence and 

characteristics of harmonics, power system operators can implement preemptive 

measures to mitigate harmonics before they significantly impact the system. The role of 

harmonic forecasting in the harmonic mitigation process can be outlined as follows: 

1. Proactive Planning: Harmonic forecasting provides insights into the expected 

harmonic content over time. This information allows for proactive planning, 

enabling the deployment of appropriate mitigation techniques in anticipation of 

periods with heightened harmonic levels. 

2. Optimized Resource Allocation: Armed with harmonic forecasts, operators can 

allocate resources more efficiently. For instance, they can optimize the 

deployment of active filters or switch between different mitigation strategies 

based on the predicted harmonic profile. 

3. Early Detection of Anomalies: Harmonic forecasting can serve as an early 

warning system by detecting deviations from expected harmonic patterns. This 

allows for timely investigation and intervention to address potential issues before 

they escalate. 

4. Integration with Smart Grids: Harmonic forecasting aligns with the goals of 

smart grid integration. By incorporating forecasting capabilities into control 
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systems, smart grids can dynamically adapt to changing harmonic conditions, 

enhancing overall system resilience. 

In summary, the incorporation of harmonic forecasting into the broader context 

of harmonic mitigation enhances the adaptability and efficiency of conventional 

mitigation techniques. This proactive approach aligns with the evolving landscape of 

smart grid technologies and contributes to the advancement of strategies aimed at 

ensuring the stability and reliability of power systems in the presence of harmonics. 

1.3 Thesis Aim 

Harmonics forecasting is crucial for predicting the future behavior of time series 

data marked by periodic patterns or harmonics. The importance of harmonics prediction 

in enhancing power quality within electrical systems has been well-documented through 

extensive research efforts. Researchers have also explored various methodologies to 

achieve precise predictions. This study's central objective revolves around pioneering a 

novel forecasting model characterized by accuracy and reliability for harmonics 

forecasting. 

To advance this goal, a two-fold hybrid renewable generator approach is 

implemented using real-world data as the input. The selection of these generators is 

grounded in the emphasis on harmonics forecasting within renewable energy systems. 

The initial hybrid model utilizes a Doubly-Fed Induction Generator (DFIG) operated by 

a wind turbine in conjunction with photovoltaic (PV) panels (Wind-DFIG-PV). The 

second model adopts a hybrid configuration incorporating both wind and PV systems, 

employing a Permanent Magnet Synchronous Generator (Wind-PMSG-PV). The 

primary intention in this context is to produce authentic output waveforms for voltage 
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and current that faithfully replicate real-world conditions. Subsequently, these output 

waveforms undergo analysis to extract harmonics data, which in turn forms the basis 

for forecasting within our innovative hybrid forecasting models.  

ANFIS, ANN, and LSTM techniques are chief among those used by researchers 

to produce harmonics forecasting. The aim of this work is to develop and evaluate a 

hybrid forecasting model that effectively captures complex harmonics patterns in time 

series data and provides accurate predictions. The research focuses on integrating a 

forecasting model that combines the strengths of ANFIS, ANN, and LSTM to improve 

the accuracy and robustness of harmonics forecasting. The integrated ANFIS-ANN and 

ANFIS-LSTM models are expected to effectively capture the complex harmonics 

patterns in time series data and provide accurate predictions. 

This thesis has the following objectives: 

1. Review and analyse ANFIS, ANN, and LSTM techniques: To do so, the thesis 

conducts a comprehensive literature review to understand the principles, 

capabilities, and limitations of ANFIS, ANN, LSTM, and other forecasting 

techniques in the context of time series forecasting and harmonics analysis. This 

review helps identify their respective strengths and weaknesses and provides 

insights into how they can be combined to create a hybrid model. 

2. Design and develop the hybrid forecasting model: Based on the insights from the 

literature review, the research proposes a hybrid model that integrates ANFIS, 

ANN, and LSTM in different combinations. The proposed models leverage the 

fuzzy logic-based inference capabilities of ANFIS to capture the nonlinear and 

complex relationships in harmonics patterns. Multi-layered ANN provides the 
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ability to learn and model the intricate dynamics of the data, while LSTM is 

proficient at capturing temporal dependencies and patterns in time series data. The 

thesis focuses on designing the architecture and structure of the hybrid models to 

harness the strengths of these methods. 

3. Data preprocessing and feature extraction: The thesis explores appropriate data 

preprocessing techniques for handling time series data with harmonics patterns. 

This may involve detrending and normalizing the data. Additionally, the research 

investigates feature extraction methods specifically tailored to capture the unique 

characteristics of harmonics patterns in the data. 

4. Integration and optimization of ANFIS, ANN and LSTM: The hybrid models 

integrate ANFIS-ANN and ANFIS-LSTM techniques. The research focuses on 

developing strategies to effectively combine the outputs of ANFIS, ANN, and 

LSTM in the prediction process. Furthermore, the K-Fold cross-validation 

technique is utilized to decrease the training error and improve forecasting 

efficiency.  

5. Evaluation and comparative analysis: The developed hybrid models are evaluated 

using simulations of RES generators based on real-world data (wind speed and 

solar irradiation) and extracting harmonics patterns. The research compares the 

performance of the hybrid models and forecasting techniques used by other 

authors in the literature to validate the results of the proposed models. The 

evaluation metrics Mean Absolute Error (MAE) and Root Mean Squared Error 

(RMSE) are employed to assess the effectiveness of the hybrid models. 
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By accomplishing these objectives, the research aims to contribute to the field of 

harmonics forecasting by developing a hybrid model that combines either ANFIS-ANN 

or ANFIS-LSTM techniques. The research findings will help enhance the understanding 

and application of hybrid models in harmonics forecasting and provide insights into the 

potential benefits of combining these techniques for improved accuracy and robustness. 

1.4 Thesis Outline  

Chapter 1 commences the research work by providing a comprehensive insight 

into the driving force behind this study, which centres around the concept of harmonics 

forecasting and its pivotal role in addressing harmonics issues. It delineates the 

objectives of the thesis and underscores its contributions. 

Chapter 2 provides an overview and conducts a review of the literature pertaining 

to the impact of harmonics, harmonics forecasting, and the methodologies involved. It 

also elucidates the permissible limits set by relevant standards to facilitate a better 

understanding of current and voltage harmonics. Additionally, it expounds upon the 

rationale behind employing a fusion of ANFIS-ANN and ANFIS-LSTM techniques for 

the creation of hybrid forecasting models. 

Chapter 3 explains the two hybrid generator models (Wind-DFIG-PV and Wind-

PMSG-PV) utilized in this study for harmonics generation based on real-world data. 

Additionally, it introduces forecasting techniques, namely ANFIS, ANN, and LSTM, 

followed by the presentation of eight novel hybrid models devised to enhance 

forecasting precision. Each proposed model comprises unique combinations of either 

ANFIS-ANN or ANFIS-LSTM components. The chapter also offers a concise overview 

of K-Fold cross-validation and its application. 
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Chapter 4 showcases the outcomes of the proposed harmonics forecasting 

models. It defines the forecasting methodology and introduces performance metrics 

against which the results derived from forecasting models are assessed and juxtaposed. 

Moreover, it conducts a comparative analysis between the proposed hybrid forecasting 

models and those employed by researchers in existing literature. This validation process 

not only authenticates the results but also underscores the advantages of employing the 

hybrid model. 

Chapter 5 offers some concluding remarks, summarises the thesis’ contributions, 

and provides recommendations for future research endeavours. 

1.5 Thesis Contribution 

This research makes a significant contribution by introducing eight innovative 

hybrid forecasting models. Among these models, six employ a synergistic combination 

of three distinct ANN architectures in conjunction with ANFIS, while two models 

integrate ANFIS-LSTM techniques. These models were developed within a MATLAB 

environment. 

To enhance adaptability and accuracy, the ANN architecture was designed using 

three different combinations of cascade and recurrent inputs. The utilization of 

hyperbolic tangent transfer functions assists in precise weight adjustment, and 

subtractive clustering is applied within ANFIS to capture the trends and impacts 

associated with input variations. The implementation of the K-Fold cross-validation 

technique further enhances the training process of these proposed hybrid models. 

In these models’ construction, three incorporate ANN and ANFIS in stages 1 and 

2, with the reverse configuration adopted for the remaining three models. Similarly, the 
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two ANFIS-LSTM hybrid models leverage LSTM in stage 1 and ANFIS in stage 2, and 

vice versa, creating a well-rounded set of forecasting models. 

Furthermore, this research conducts a comprehensive comparative analysis of the 

proposed hybrid models and those employed in the existing literature. This comparative 

study elucidates the advantages and benefits of utilizing hybrid forecasting models in 

the context of harmonics forecasting, ultimately contributing valuable insights to the 

field. 

1.6 List of Publications 

C1- Optimal Filter Placement and Sizing Using Ant Colony Optimization in 

Electrical Distribution System, 2017 IEEE Electrical Power and Energy Conference.  

C2- An Overview of Wind-Solar System Output Power, 2019 IEEE 32nd  Canadian 
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C3- An Overview of Active Power Filters for Harmonics Mitigation of Renewable 

Energies Resources, 2019 IEEE 10th Annual Information Technology, Electronics and 

Mobile Communication Conference (IEMCON). 

C4- A Proposed Adaptive Intelligent Controllers for Tidal Currents Turbine 

Driving DDPMSG for Improving the Output Power Generated, 2019 IEEE Electrical 

Power and Energy Conference. 

C5- A Proposed Adaptive Filter for Harmonic Mitigation Based on Adaptive Neuro 

Fuzzy Inference System Model for Hybrid Wind Solar Energy System, 2022 IEEE 35th 

Canadian Conference of Electrical and Computer Engineering (CCECE). 

C6- Harmonic Prediction and Mitigation Based on Adaptive Neuro Fuzzy 

Inference System Model Using Hybrid of Wind Solar Driven by DFIG, 2022 IEEE 13th 



12 

Annual Information Technology, Electronics and Mobile Communication Conference 

(IEMCON). 

J1- Harmonics forecasting of Wind and Solar Hybrid Model Driven by DFIG and 

PMSG using ANN and ANFIS; published in June 2023 in Journal of IEEE Access. 
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J3- Harmonics Forecasting of Renewable Energy System using Hybrid Model 
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Chapter 2:  Literature Survey 

2.1 Power Quality 

The phrase "power quality" has many definitions depending on the authors’ point 

of view [15, 16, 17]. Some publications associate power quality with voltage, current, 

supply, service, and consumption quality [15], while others [16] define power quality 

as a set of electrical boundaries that allow a piece of equipment to function as designed 

without suffering severe performance or life expectancy degradation. Still others define 

power quality as the system's reliability [17].  

In this thesis, power quality is defined as the monitoring, analysis, and 

improvement of a voltage, current, and frequency in order to maintain a sinusoidal 

waveform at rated values of magnitude and frequency, which allows all electrical 

devices on the network to operate properly. As per IEEE standard 1159, “[t]he term 

power quality refers to a wide variety of electromagnetic phenomena that characterize 

the voltage and current at a given time and at a given location on the power system” 

[18].  

The International Electrotechnical Commission (IEC) and the Institute for 

Electrical and Electronics Engineers (IEEE) produced important power quality issue 

classifications based on specific characteristics of electromagnetic phenomena. The IEC 

and IEEE standard 1159 have categorized the electromagnetic phenomena, as presented 

in Table 1 and Table 2, respectively [18]. One of the key reasons for the development 

of multiple categories of electromagnetic phenomena is that different solutions to power 

quality problems exist based on the specific variation that is of relevance. 
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To classify power quality issues, the duration of the occurrence as well as the size 

and frequency range of the signal waveforms are used [18]. Figure 1 presents an 

overview of power quality issues [16]. This thesis, however, focuses on the analysis and 

techniques of mitigating the power system harmonics, which is one of the main causes 

of the deterioration of power quality in Electrical Power Systems (EPSs) based on 

Renewable Energy Systems (RESs). 

Table 1 – Principal Phenomena Causing Electromagnetic Disturbances, as 

Classified by the IEC [18] 

Group Examples 

Conducted low-frequency phenomena 

Harmonics, interharmonics 

Signal systems (power line carrier) 

Voltage fluctuations 

Voltage dips and interruptions 

Voltage imbalance 

Power-frequency variations 

Induced low-frequency voltages 

DC in AC networks 

Radiated low-frequency phenomena 
Magnetic fields 

Electric fields 

Conducted high-frequency phenomena 

Induced continuous wave (CW) voltages or currents 

Unidirectional transients 

Oscillatory transients 

Radiated high-frequency phenomena 

Magnetic fields 

Electric fields 

Electromagnetic fields 

Continuous waves 

Transients 

Electrostatic discharge phenomena (ESD) — 

Nuclear electromagnetic pulse (NEMP) — 
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Table 2 – Categories and Typical Characteristics of Power System 

Electromagnetic Phenomena, as Defined in IEEE Std 1159-2009 [18] 

Categories 

Typical 

Spectral 

Content 

Typical 

Duration 

Typical 

Voltage 

Magnitude 

1.0 Transients 
1.1 Impulsive 

1.1.1 Nanosecond 
1.1.2 Microsecond 
1.1.3 Millisecond 

1.2 Oscillatory 
1.2.1 Low frequency 
1.2.2 Medium frequency 
1.2.3 High frequency 

 

 

5 ns rise 
1 μs rise 

0.1 ms rise 

 

 

< 50 ns 
50 ns – 1 ms 

> 1 ms 

 

 

 

 

 

0–4 pua 
0–8 pu 
0–4 pu 

< 5 kHz 
5–500 kHz 
0.5–5 MHz 

0.3–50 ms 
20 μs 
5 μs 

2.0 Short-duration root-mean-square (RMS) 

variations 

2.1 Instantaneous 
2.1.1 Sag 
2.1.2 Swell 

2.2 Momentary 
2.2.1 Interruption 
2.2.2 Sag 
2.2.3 Swell 

2.3 Temporary 
2.3.1 Interruption 
2.3.2 Sag 
2.3.3 Swell 

 

 

 

0.5–30 cycles 

0.5–30 cycles 

 

 

0.1–0.9 pu 

1.1–1.8 pu 

0.5 cycles – 3 

s 30 cycles – 3 

s 30 cycles – 3 

s 

< 0.1 pu 
0.1–0.9 pu 

1.1–1.4 pu 

>3 s – 1 min 
>3 s – 1 min 
>3 s – 1 min 

< 0.1 pu 
0.1–0.9 pu 
1.1–1.2 pu 

3.0 Long-duration RMS variations 
3.1 Interrupted, sustained 
3.2 Undervoltages 
3.3 Overvoltages 

3.4 Current overload 

 

 

> 1  min 

> 1  min 
> 1 min 
> 1  min 

 

0.0 pu 

0.8–0.9 pu 

1.1–1.2 pu 

4.0 Imbalance 
4.1 Voltage 
4.2 Current 

 
 

steady state 

steady state 

 

0.5–2% 

1.0–30% 

5.0 Waveform distortion 
5.1 DC offset 
5.2 Harmonics 
5.3 Interharmonics 
5.4 Notching 
5.5 Noise 

 

 

0–9 kHz 
0–9 kHz 

 

Broadband 

 

steady state 

steady state 

steady state 

steady state 
steady state 

 

0–0.1% 

0–20% 
0–2% 

 

0–1% 

6.0 Voltage fluctuations < 25 Hz intermittent 
0.1–7% 

0.2–2 Pst b 

7.0 Power frequency variations  < 10 s ± 0.10 Hz 
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Figure 1: Power Quality Issues 

2.2 Harmonics 

2.2.1 Definition, Causes, and Impacts of Harmonics 

Harmonics, as defined in [15-19], are sinusoidal voltages or currents with 

frequencies that are integer multiples of the fundamental frequency (typically 50 Hz or 

60 Hz) at which the supply system is supposed to operate. The waveform distortion in 

currents or voltages generates harmonics. The nonlinear features of devices and loads 

on the power system inject harmonic currents and cause harmonic distortion. These 

currents generate nonlinear voltage dips across the system impedance, resulting in 

voltage distortion. 

In power systems, industrial nonlinear loads (e.g., drives, rectifiers, inverters), 

load-generating electric arcs (e.g., arc furnaces, welding machines, lighting), residential 

loads with switch-mode power supplies (e.g., television sets, computers), and 

fluorescent and energy-saving lamps are the main sources of harmonics [15], [19]. 

Additionally, harmonics have numerous negative consequences, including control 

device malfunction; additional losses in capacitors, transformers, and rotating machines; 
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additional noise from motors and other apparatuses; telephone interference; and the 

possibility of causing parallel and series resonance frequencies (due to the power factor 

correction capacitor and cable capacitance), resulting in voltage amplification even at a 

distance from the distorting load [15], [17], [20]. 

2.2.2 Interharmonics 

Interharmonics are voltages or currents with frequency components that are not 

integer multiples of the supply system's operating frequency. They take the form of 

individual frequencies or a broad spectrum. Interharmonics can be observed in all 

voltage classes of networks. Static frequency converters, cycloconverters, induction 

furnaces, and arcing devices, especially those whose operation is not synchronized with 

the power supply frequency, are the principal sources of interharmonic waveform 

distortion. Interharmonics' effects are not well understood [15-19] and so will not be 

considered here. The IEC categorizes background noise phenomena as interharmonic in 

IEC 61000-2-2:2002 [21], which is discussed separately as a unique electromagnetic 

phenomenon. 

2.2.3 Harmonics Distortion Sources in RESs 

Voltage source converters (VSCs) are used to integrate RESs to the grid. One of 

the major drawbacks of VSCs is that they increase the number of harmonics fed into the 

power system. Harmonics have an impact on the system's capacity to perform at its best 

by increasing power losses, creating device malfunctions, and producing undesirable 

tripping. These negative consequences affect electricity users and system operators. 

Researchers have devoted significant resources to finding ways to reduce the negative 
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impacts of harmonics on the power grid by creating mitigation strategies and upgrading 

equipment as needed [22-23]. 

2.2.4 Harmonics Analysis and Fourier Series 

Harmonically distorted waveforms that are periodic (i.e., identical from one cycle 

to the next) can be represented as a sum of pure sine waves, with each sinusoid's 

frequency being an integer multiple of the distorted wave's fundamental frequency. The 

harmonic (h) of the fundamental is the name given to this multiple. The process of 

estimating the magnitudes and phases of the fundamental and high-order harmonics of 

periodic waveforms is known as harmonic analysis. The series that results, which is 

known as the Fourier series, establishes a relationship between a time-domain function 

and a frequency-domain one [24]. 

The Fourier series is defined as the sum of sinusoids and contains only odd 

harmonics when both the positive and negative half cycles of a waveform have the same 

shape. Because most typical harmonic-producing devices appear the same in both 

polarities, this simplifies most power system analyses even further. Low-power 

electrical gadgets may experience interference, but the power system is normally 

unaffected. To express the Fourier series, a periodic function x(t) is defined as one in 

which x(t) = x(t+T). A trigonometric series of components can be used to depict this 

function, which includes a direct current (DC) component and additional element with 

frequencies that include the fundamental component and its integer multiple 

frequencies. This is the case when the following conditions known as Dirichlet 

requirements are met [19]: 
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- Over the period T, x(t) has a finite number of discontinuities if it is a discontinuous 

function. 

- Over the period T, x(t) has a finite mean value. 

- If there are a finite number of positive and negative maximum values for x(t), 

the trigonometric series f(t) has the following expression: 

𝑥(𝑡) =
𝑎0
2
+∑ [𝑎ℎ cos(ℎ𝜔𝑡) + 𝑏ℎ sin(ℎ𝜔𝑡)]

∞

ℎ=1
 (2.1) 

where 

𝜔 = 
2𝜋

𝑇
 , 

𝑎0 = amplitude of fundamental harmonic, and 

𝑎ℎ, 𝑏ℎ = Fourier coefficients. 

Harmonics can be divided into three broad types. The classification of harmonics 

can be stated as follows: f is the fundamental frequency, fh is the harmonic frequency, 

and h is the harmonic number. 

- Integer harmonics fh = hf, where h is an integer and h>1. 

- Inter harmonics fh = hf, where h is a non-integer number and h>1. 

- Subharmonics fh = hf, where h is a non-integer number and 0<h<1. 

A periodic distorted waveform can be decomposed into an infinite series, 

including a DC component, a fundamental component (50/60 Hz for power systems), 

and its integer multiples, known as harmonic components, using Fourier analysis. The 

harmonic number (h) usually refers to a harmonic component whose frequency is 

proportional to the fundamental frequency [25]. Equation 2.1 could be further simplified 

as follows [24], [26]: 
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𝑥(𝑡) = 𝑐0 +∑ 𝑐ℎ sin(ℎ𝜔𝑡 + 𝜙ℎ)]
∞

ℎ=1
 (2.2) 

 

where 

𝑐0 = 
𝑎0

2
 = magnitude of the DC component, 

𝑐ℎ = √𝑎ℎ2 + 𝑏ℎ
2
 = magnitude of nth harmonic component, and  

𝜙ℎ = 𝑡𝑎𝑛
−1 (

𝑎ℎ

𝑏ℎ
) = phase angle of the nth harmonic. 

Equation 2.2 could further be expressed in complex form as follows: 

𝑥(𝑡) =∑ 𝑐ℎ𝑒
𝑗ℎ𝜔𝑡

∞

ℎ=1
 (2.3) 

The fundamental component is the one with n = 1. The resultant waveform x(t) is 

determined by the magnitude and phase angle of each harmonic. Figure 2 depicts the 

Fourier series representation of a distorted signal:  

 
Figure 2: Fourier Series Representation 
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The top half of Figure 2 contains a plot of five signals, including a signal with a 

fundamental frequency (60Hz), along with four signals with different frequencies and 

amplitudes. The bottom half of Figure 2 shows the superimposed signal, where the 

effect of all signals is added to the fundamental signal.  

               Furthermore, Discrete Fourier Transform (DFT) establishes a relationship 

between the time domain and the frequency domain representation. Fast Fourier 

Transform (FFT) is a highly efficient numerical approach for implementation of DFT 

with computational techniques to reduce complexity [27]. The frequency spectrum of a 

discrete/sampled signal can be calculated as: 

𝑋(𝑘) =∑ 𝑥(𝑛)𝑒−𝑗2
𝑘
𝑁
𝑛

𝑁−1

𝑛=0
 (2.4) 

where 

 N = the number of samples over the period T,  

x(n) = the amplitude at each sample, and 

k = 0, 1, 2, ..., N-1. 

Each frequency here is also separated by 1/T, with the highest frequency 

component at k = N/2. An FFT plot depicting the frequency spectrum for signal x(t) is 

shown in Figure 3. As can be seen, FFT is applied to the superimposed signal in the 

bottom half of Figure 2, which results in the presentation of a frequency spectrum of 

x(t). 
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Figure 3: Fast Fourier Transform Depicting Frequency Spectrum 

2.2.5 Total Harmonic Distortion (THD) 

Total Harmonic Distortion (THD) is a measurement of the effective value of a 

distorted waveform's harmonic components. It is the harmonics' potential heating value 

in relation to the fundamental [17]. THD is calculated by dividing the Root-Mean-

Square (RMS) value of harmonics by the RMS value of the fundamental and 

multiplying by 100%, as indicated in Equation 2.5 [15], [26], [28]: 

𝑇𝐻𝐷(%) =
√∑ 𝑀ℎ

2ℎ𝑚𝑎𝑥
ℎ>1

𝑀1
 × 100 

(2.5) 

where  

𝑀ℎ = RMS value of harmonic component h of the quantity M. 

The voltage and current THD can be expressed as in Eqs. 2.6 and 2.7: 
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𝑇𝐻𝐷𝑉(%) =
√∑ 𝑉ℎ

2ℎ𝑚𝑎𝑥
ℎ>1

𝑉1
 × 100 

(2.6) 

𝑇𝐻𝐷𝐼(%) =
√∑ 𝐼ℎ

2ℎ𝑚𝑎𝑥
ℎ>1

𝐼1
 × 100 

(2.7) 

where 

𝑇𝐻𝐷𝑉 = THD for voltage expressed as the total of the squares of all harmonics 

generated by a single load divided by the nominal 50/60 Hz (𝑉1) waveform value. This 

amount depicts a relationship between the fundamental and distorted waveforms. 

𝑇𝐻𝐷𝐼 = THD for current is also referred to as Total Demand Distortion.  

𝑉1 = The load current measured at the fundamental frequency. 

𝐼1 = The load current measured at the fundamental frequency. 

Voltage harmonic distortion is most commonly described using the THD index. 

Harmonic voltages are virtually always based on the waveform's fundamental value at 

the time of sampling. The voltage THD is nearly always a useful value because 

fundamental voltage varies by only a few percentage points [15], [17]. 

2.2.6 Total Demand Distortion (TDD) 

The THD value can be used to describe current distortion levels, but it can be 

deceiving. A current with low amplitude may have a high THD that is not a substantial 

threat. One way to get around this problem is by referring to the THD as the fundamental 

of the peak demand load current rather than the fundamental of the current sample [15], 

[29]. This is called the Total Demand Distortion (TDD) and is expressed in Eq. 2.8: 
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𝑇𝐷𝐷(%) =
√∑ 𝐼ℎ

2ℎ𝑚𝑎𝑥
ℎ=2

𝐼𝐿
 × 100 

(2.8) 

𝐼𝐿  is the peak, or maximum, demand load current measured at the Point of 

Common Coupling (PCC) at the fundamental frequency component. It can be estimated 

as the average of the maximum demand current for the previous 12 months if there is 

already a load in the system. This calculation is as simple as averaging the peak demand 

readings over a 12-month period. However, for a new facility,  𝐼𝐿  must be calculated 

based on expected load profiles [15]. 

2.2.7 Individual Harmonic Distortion (IHD) 

Individual harmonic distortion (IHD) is the ratio of the individual harmonic's 

RMS value to the fundamental's RMS value. 

ℎ𝑁 =
𝑉𝑁
𝑉1
 𝑂𝑅 

𝐼𝑁
𝐼1

 (2.9) 

where ℎ𝑁 = the individual harmonic distortion of the Nth harmonic 

2.3 IEEE Standard 519-2014 for Voltage and Current Harmonics  

The IEEE 519 harmonics standards are the most widely utilized harmonics 

standards in the research community for power quality restrictions, as seen in Tables 1 

and 2. IEEE 519 specifies best practices and regulations for harmonics control in electric 

power systems. A THD of less than 5% is typically deemed acceptable [6]. For 

renewable energy, the THD should be as small as possible, as renewable resources are 

limited and our objective is to achieve the most efficient power system. As per standard 
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IEEE 519, the allowable limits for voltage and current harmonics are presented in Tables 

3, 4, and 5.  

Table 3: IEEE Std 519-2014 Voltage Distortion Limits [6] 

Bus Voltage V at PCC 

Individual  

Harmonics 

(%) 

Total Harmonics 

Distortion (THD) 

(%) 

V ≤ 1.0 kV 5.0 8.0 

1 kV < V ≤ 69 kV 3.0 5.0 

69 kV < V ≤ 161 kV 1.5 2.5 

161 kV < V 1.0 1.5a 

a High-voltage systems can have up to 2.0% THD due to an HVDC terminal whose 

effects will have attenuated at points in the network where future users may be 

connected. 

Table 4: IEEE Std 519-2014 Current Distortion Limits Rated 120V Through 

69kV [6] 

Maximum Harmonics Current Distortion in Percent of IL 

Individual Harmonics Order (Odd harmonics) a, b 

ISC/IL 3 ≤ h <11 11≤  h < 17 17 ≤ h < 

23 

23 ≤ h < 

35 

35 ≤ h ≤ 5

0 

TDD 

< 20c 4.0 2.0 1.5 0.6 0.3 5.0 

20 < 50 7.0 3.5 2.5 1.0 0.5 8.0 

50 < 100 10.0 4.5 4.0 1.5 0.7 12.0 

100 < 1000 12.0 5.5 5.0 2.0 1.0 15.0 

> 1000 15.0 7.0 6.0 2.5 1.4 20.0 
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Table 5: IEEE Std 519-2014 Current Distortion Limits Rated 69kV Through 

161kV [6] 

Maximum Harmonics Current Distortion in Percent of IL 

Individual Harmonics Order (Odd harmonics)a, b 

ISC/IL 3≤ h <11 11≤ h < 17 17≤ h < 

23 

23 ≤ h < 

35 

35≤ h ≤5

0 

TDD 

< 20 2.0 1.0 0.75 0.3 0.15 2.5 

20 < 50 3.5 1.75 1.25 0.5 0.25 4.0 

50 < 100 5.0 2.25 2.0 0.75 0.35 6.0 

100 < 1000 6.0 2.75 2.5 1.0 0.5 7.5 

> 1000 7.5 3.5 3.0 1.25 0.7 10.0 

a Even harmonics are limited to 25% of the odd harmonics limits above. 

b Current distortions that result in a DC offset, e.g., half-wave converters, are not 

allowed. 

c All power generation equipment is limited to these values of current distortion, 

regardless of actual Isc/IL. 

where 

Isc = maximum short-circuit current at PCC, and 

IL = maximum demand load current (fundamental frequency component) at the PCC 

under normal load operating conditions. 

2.4 Harmonics Mitigation and Rationale for Studying Harmonics 

Forecasting 

Traditionally, utility companies would know the precise industry of the customers 

responsible for the dominant harmonics sources. Based on this knowledge, the 

harmonics problems were compensated by employing a passive harmonics filter at the 

PCC of major distorting loads to ensure the effectiveness of the filters [30-32]. In recent 

years, however, the significant expansion of power electronics-based loads in power 

systems has fostered substantial distortion in power system signals. Nonlinear loads 

such as power electronics devices (e.g., cycloconverters) and arcing loads (e.g., welding 

machines and arc furnaces), which are frequently utilized in industry, are the main 
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generators of harmonics in EPSs [33]. Furthermore, the grid integration of renewable 

energy sources, which involves various types of power electronics-based converters, 

has also been found to increase the number of harmonics in the power system [34], [35]. 

Hence, in order to anticipate and mitigate problems caused by the existence of 

harmonics, utilities must be able to predict their expected impact in order to evaluate 

the compensation required and avoid the consequences caused by harmonics. In this 

regard, efforts have been made by authors to use harmonics forecasting to maintain 

power quality and ensure harmonics levels under acceptable limits [103].  

Pablo in [36] introduced a methodology for forecasting of voltage THD for low-

voltage (LV) busbars of residential distribution feeders based on data from a small 

number of smart meters. Using only the existing monitoring infrastructure required for 

demand response operation, the methodology gives important power quality indicators 

to system operators. Different voltage THD forecasting techniques, namely 

autoregressive and feed-forward ANNs, were utilized. The proposed methodology 

employs a small number of smart meters with sub-metering functionality to first 

anticipate demand disaggregation into linear and nonlinear loads and then predict the 

THD at various busses throughout the network. This technique allows additional 

features to be integrated into existing monitoring devices in order to forecast current or 

future harmonic distortion. It was demonstrated that a network of advanced smart meters 

with a minimal number of advanced smart meters is sufficient for accurate harmonic 

predictions [36].  

Ray, Puhan and Panda in [37] proposed a harmonics forecasting technique based 

on a Variable Leaky Least Mean Square (VLLMS) algorithm. The proposed method 
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used a leak compensation method to prevent parameter drift. In this procedure, the step 

size was also adjusted to improve the rate of convergence. A real-time power system 

was simulated utilizing various instances, demonstrating the superiority of the proposed 

method over other systems presented in the paper [37].  

In [38], Ivry examined the impact of uncertainty on harmonic prediction in a 

power system with numerous Voltage Source Converters (VSCs). The study focused on 

predicting harmonic distortion levels in numerous VSCs when some system or design 

parameters were only known within certain restrictions. The Univariate Dimension 

Reduction (UDR) method was used to forecast the level of harmonic distortion of the 

VSCs measured at the PCC to the grid. In predicting the THD at the PCC, the suggested 

prediction approach (UDR) ensured full interactions between the harmonic sources 

(VSCs) and the entire power system. The study found that electricity companies/design 

engineers can use the lower UDR to help them choose parameters [38]. 

In his research, Hussam [39] proposed the concept of adaptive filters that use real-

time harmonics prediction algorithms by applying LMS, Normalised LMS (NLMS) and 

Recursive Least Square (RLS) methods. The author showed that an active filter was 

able to mitigate the time delay produced by the harmonics information acquisition 

process. The LMS method was found to have a slow convergence rate and data-

dependent behaviour. In this work, a comparison of the LMS, NLMS, and RLS 

approaches was performed. A single load computer desktop was used to collect data for 

a fixed-point operation harmonics source. In terms of Mean Squared Error (MSE), the 

RLS and NLMS algorithms performed better than the LMS method [39]. 
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The THD of each load cannot be used to compute the THD of the current in a 

feeder. Depending on the phase angle, each harmonic order of current can range from 

cancellation to addition. A method for predicting current distortions of nonlinear loads 

operating simultaneously is proposed by Braga and Jota in [40]. This method makes use 

of a model that can forecast the amplitude and phase of current in non-linear loads. The 

experimental data in the study is used in a simplified practical technique that is carried 

out in the frequency domain. The model is based on an admittance matrix that is 

harmonically connected. Harmonics in static converters are analysed using these 

matrices. The research presented in this study is based on load tests using a Light 

Emitting Diode (LED) in conjunction with fluorescent bulbs. The model's predictions 

are compared against actual data. The suggested method can forecast the current 

waveform of nonlinear loads working simultaneously at different fundamental voltage 

levels, as evidenced by comparisons between measured and anticipated results. The 

model may be used to forecast the rms value of current THD, and magnitude and phase 

spectra of a practical power system with sufficient accuracy for expected operation 

conditions [40]. 

Dong, Zhang, and Li in [41] introduced a nonlinear load harmonic prediction 

approach based on the combination of Distribution Internet of Things (IoT) and deep 

learning networks to fulfil the demand for high accuracy for nonlinear load harmonic 

prediction and analysis in a distribution system. This method uses the harmonic 

coupling admittance matrix model based on measured data at the edge of Power 

Distribution IoT to realize the mathematical modelling of user-side load data and to 

solve the modelling problems caused by complex electrical structure and parameters. 
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This aim was accomplished with the support of the architecture of Power Distribution 

IoT based on nonlinear load harmonic prediction. Simultaneously, on the cloud side of 

the network, the Dynamic Time Wrapping – Long Short-Term Memory (DTW-LSTM) 

algorithm was used to build the load harmonic prediction and analysis model, which 

effectively reduced the number of load prediction models, ensured the prediction 

model's strong generalization ability, and realized the efficient analysis of nonlinear 

load harmonic in the distribution system. Finally, the high-efficiency performance of 

the suggested method for nonlinear load harmonic prediction was verified using the 

general dataset, demonstrating that the proposed method has clear advantages in 

processing accuracy and speed [41]. 

Panoiu and Ghiormez in [42] presented a study on the modelling and prediction 

of the total harmonic distortion of current emerging in an electric arc furnace's medium 

voltage installation. ANFIS in MATLAB were used for modelling. According to the 

findings, ANFIS showed a good understanding of how to adjust the THD. As a result 

of the system's ability to read 800 data points, it was able to provide THD variations for 

another 400 samples with a very low error rate. The authors also attempted to train the 

system with different numbers of samples. However, the system failed to model 

appropriately when the number of samples used in training was less than the number 

used in testing [42]. 

Harmonics may cause damage to power system equipment, which is why it is 

critical for power system operators to understand harmonic behaviour. Harmonics, 

however, exhibit several complicated features, such as nonlinearity and abrupt changes. 

As a result, by using traditional methods for Mega Watt (MW) demand forecasting, it 
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is difficult to forecast them. The research carried out by Mori, Suga, et al. [43] presented 

a method for predicting power system harmonic voltages based on ANNs. In the 

research, harmonic dynamics were handled using recurrent neural networks, with the 

fifth harmonic voltage being predicted using four recurrent neural networks. In terms of 

accuracy and computational effort, the four models (Jordan, Elman, Noda, and Nagao) 

were then compared. The results suggest that Elman's approach is more effective than 

the other models, as demonstrated by the example [43]. 

Shengqing et al. [44] proposed the Hybrid Active Power Filter (HAPF) harmonics 

current prediction method based on the Empirical Mode Decomposition (EMD)-

Support Vector Regression (SVR) theory to solve microgrid power quality problems. 

This strategy first explores harmonic currents for each harmonic using EMD, and then 

predicts the next step of the harmonics current at different times using SVR's varied 

kernel functions. After that, the predicted value of each harmonic weighted summation 

is determined. The simulation results demonstrated the EMD decomposition for all 

harmonics. The authors concluded that by adopting this combination of EMD-SVR, the 

harmonics currents at the next time step could be accurately predicted, resulting in 

harmonics current minimum error compensation [44]. 

Kuyunani, Hasan, Shongwe, et al. [45] used the LSTM deep learning method in 

their paper. A total of 8,103 voltage harmonics measured at the Jeffreys Bay Wind Farm 

in Eastern Cape Province were employed in the study. The suggested model extracted 

key information from voltage harmonics signals in two steps, with the moving window 

segmentation being used to derive the mean voltage amplitude. The prediction of 

voltage harmonics generation using LSTM was based on the voltage properties 



32 

extracted. The proposed model only had one LSTM layer with 128 hidden neurons for 

simplicity. To train the model in MATLAB, the researchers used 8,103 computed 

sample mean values as expected data. With a low RMSE, the LSTM model was able to 

predict the next 3,800 sample mean values. The proposed model is thought to be a good 

contender for forecasting harmonics and hence assisting in the search for solutions to 

suppress them [45].  

Žnidarec [46] proposed long-term current harmonic distortion prediction models 

in order to monitor the effects of current harmonics generated by PV systems. In order 

to forecast current harmonics, the suggested models use a Multilayer Perceptron Neural 

Network (MLPNN), a form of ANN with input parameters that are straightforward to 

measure. The models were trained using data from a year of power quality 

measurements (1 January to 31 December 2018) at the PCC of the 10-kW PV system 

and the distribution network. Meteorological data (solar irradiance and ambient 

temperature) was also collected at the test location. In terms of the number of hidden 

layers and input parameters, six distinct models were constructed, tested, and verified. 

A three-phase, grid-tied, PV plant inverter was used with the MLPNN to predict the 5th, 

7th, 11th, and 13th. The results of the MLPNN model prediction demonstrate that 

adding the third input parameter (time of day) to the models improved performance to 

a small extent. Otherwise, no general conclusion was reached as to whether the MLPNN 

with one or two hidden layers performs better. When it comes to overall harmonic 

prediction performance, MLPNN 6 with three input parameters (solar irradiance, 

ambient temperature, and time of day) and two hidden layers achieved the best accuracy. 
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Hatata, Eladawy, et. al [79] combined a nonlinear autoregressive network with an 

exogenous inputs (NARX) network as a potential approach for predicting the load 

current harmonics induced in electric power systems. The suggested technology was 

used on a micro-grid at the Khalda – Main Razzak (MRZK) power station in west Egypt, 

which is a petroleum site. An Electrical Submersible Pump (ESP) that was powered by 

an induction motor and managed by a Variable Speed Drive (VSD) served as the test 

nonlinear load. The method for creating the suggested NARX network to simulate 

nonlinear loads and determine their THD of currents was described in the authors’ paper 

[79]. 

For the purpose of determining the genuine harmonic current of the load and the 

nonlinearity of each load, the planned network was tested using both simulated pure 

sinusoidal voltage waveform and standalone measured voltage. By comparing the 

suggested method with a Recurrent Neural Network (RNN)-based method, it was 

determined that the suggested NARX method was quicker and more accurate than the 

RNN-based technique. The tested load's real current and voltage waveforms were 

collected from the field measurement data of an ESP powered by a stand-alone 

generator and controlled by VSD, and the THD was assessed in relation to the output of 

the suggested NARX network. The results validated the precision and dependability of 

the suggested method by showing good performance for ESP current harmonic 

prediction.  

Pang and Li [80] developed a method of Stack Auto Encoder (SAE) Neural 

Network-based short-term harmonics forecasting and evaluation affected by electrified 

trains on the power grid. According to their findings, the goal of harmonics forecasting 
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was achieved and the harmonic value was measured using harmonic assessment 

techniques. The authors’ study offers a theoretical frame of reference for the harmonic 

analysis of the impact of the railroad, which can help enhance the power quality in a 

power network. 

Zavala et. al [81] provided a statistical framework for examining model 

behaviour, trend extraction, and forecasting based on Dynamic Harmonic Regression 

(DHR). Synthetic and observational data were both used to evaluate the model's 

performance. Wind power generation measurements were employed to test the practical 

applicability of this technique under diverse data gathering settings. The forecasting 

function of the DHR model was shown to be a useful tool that could compete with other 

techniques already in use, exhibiting a low error in forecasting data that could be 

decreased further by an appropriate selection of the moving window.  

Most authors in the reviewed literature are aware of the significance of harmonics 

forecasting in mitigating harmonics and improving power quality. Accordingly, they 

applied different techniques to achieve accurate harmonics forecasting. Some authors 

[36], [43] used these predictions to allow the system operators to understand the 

behaviour of harmonics, while others [40], [41] utilized the forecast results to monitor 

the impact of nonlinear loads of distribution networks. Harmonics forecasting was also 

utilized in the reviewed literature for parameters selection for control of VSCs [38] or 

design filters [39], [44].  Moreover, some authors presented a range of different 

forecasting techniques in order to accomplish better and more accurate forecasting 

results [37], [42], [45], [46]. A comparison showing the strengths and weaknesses of 

each method discussed is summarized in Table 6. 
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Table 6: Strengths and Weaknesses of Forecasting Models 

Method Strengths Weaknesses References 

Variable Leaky 

Least Mean 

Square 

(VLLMS)  

- Ability to track and adapt to 

changes in the underlying data 

distribution 

- Reduced sensitivity to 

initialization parameters 

- Limited robustness against outliers 

or non-stationary data 

- Requires careful tuning of 

hyperparameters 

[37] 

Univariate 

Dimension 

Reduction 

(UDR) 

- Capability to handle high-

dimensional and correlated time 

series data 

- Effective in capturing relevant 

features and reducing 

dimensionality 

- Limited interpretability compared to 

other methods 

- Complexity in determining the 

optimal number of principal 

components 

[38] 

Feed-forward 

Artificial Neural 

Networks 

(ANN)  

- Ability to capture nonlinear 

relationships and patterns in time 

series data 

- Flexible architecture that can 

handle various input features and 

time series characteristics 

- May suffer from overfitting if not 

properly regularized 

- Prone to sensitivity in parameter 

initialization and network 

architecture design 

[36], [43], 

[46] 

Least Mean 

Square (LMS) 

- Simplicity and ease of 

implementation 

- Low computational complexity 

- Slow convergence rate, especially in 

non-stationary or highly correlated 

data 

- Sensitivity to step size (learning 

rate) selection 

[39] 

Normalized 

LMS (NLMS) 

- Robustness against varying input 

signal power 

- Low computational complexity 

- Vulnerable to noise amplification 

- Requires careful tuning of the step 

size parameter 

[39] 

Recursive Least 

Square (RLS) 

- Enhanced adaptability and faster 

convergence compared to LMS 

methods 

- Robustness against noise and non-

stationary data 

- Higher computational complexity 

compared to LMS methods 

- Sensitivity to the selection of the 

forgetting factor and initial 

covariance matrix 

[39] 

Dynamic Time 

Wrapping – 

Long Short-

Term Memory 

(DTW-LSTM) 

algorithm 

- Ability to handle time series data 

with varying lengths and temporal 

alignments 

- Effective in capturing long-term 

dependencies and sequential 

patterns 

- Increased computational 

complexity compared to other 

methods 

- Requires careful tuning of 

hyperparameters, such as the number 

of LSTM layers, hidden units, and 

learning rate 

[41] 

Adaptive Neuro 

Fuzzy 

Interference 

Systems 

(ANFIS) 

- Ability to handle nonlinear 

relationships and uncertainty in 

time series data through fuzzy logic 

and inference mechanisms 

- Capability to adapt and learn from 

data to optimize the fuzzy model 

parameters 

- Complexity in designing and tuning 

the fuzzy inference system, including 

rule base construction and 

membership function design 

- Limited interpretability compared to 

other methods 

[42] 
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Support Vector 

Regression 

(SVR) method 

- Effective in handling high-

dimensional data and capturing 

nonlinear relationships 

- Good generalization capabilities 

- Sensitivity to parameter settings and 

kernel selection 

- Limited interpretability compared to 

other methods 

[44] 

Long Short-

Term Memory 

(LSTM) 

- Ability to model temporal 

dependencies and capture 

sequential patterns in time series 

data 

- Flexibility in handling various 

types of time series data and input 

features. 

 
 

- Suffers from vanishing/exploding 

gradient problems and long training 

times. 

- Prone to sensitivity in parameter 

initialization and network 

architecture design 

[45] 

Nonlinear 

Autoregressive 

Network with 

Exogenous 

Inputs (NARX) 

- Capability to capture nonlinear 

relationships and incorporate 

exogenous inputs in time series 

forecasting 

- Ability to handle time-delayed 

relationships 

- Complexity in determining the 

optimal network architecture and 

handling long input sequences 

- Prone to overfitting if not properly 

regularized 

[79] 

Stack Auto 

Encoder (SAE) 

- Effective in capturing hierarchical 

and abstract representations of time 

series data 

- Robustness against noise and 

missing data 

- Increased computational 

complexity due to the stacked 

architecture 

- Requires careful tuning of 

hyperparameters such as the number 

of layers and hidden units 

[80] 

Dynamic 

Harmonic 

Regression 

(DHR) 

- Capability to capture seasonal and 

harmonic components in time series 

data 

- Robustness against missing data 

and outliers 

- Limited ability to handle complex 

patterns and long-term dependencies 

- Complexity in determining the 

appropriate number of harmonic 

components and modelling their 

interactions 

[81] 

Furthermore, several efforts have been made by researchers to improve the 

forecasting accuracy by using hybrid forecasting models for harmonics forecasting in 

renewable energy systems [47-65] [105-120]. In continuation of the above works, the 

main goal of this research is to introduce novel hybrid forecasting model for precise and 

reliable harmonics forecasting. It has been observed that hybrid models perform better 

compared to traditional methods alone. The most prominent methods utilized in 

literature for forecasting are Artificial Neural Networks (ANNs), Adaptive Neuro Fuzzy 

Interference Systems (ANFIS), and Long-Short Term Memory (LSTM) networks. In 

order to forecast harmonics, several hybrid models will be introduced with different 
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combinations of cascaded and recurrent three-layered ANN with local and global 

feedbacks with ANFIS to achieve high accuracy and suitability for real-time 

applications. The advantage of employing a hybrid of ANN and ANFIS lies in the 

synergy of their strengths, which effectively mitigates each other's weaknesses. ANFIS 

contributes its expertise in handling nonlinear relationships and uncertainty in time 

series data through fuzzy logic and learning from data for fuzzy model optimization. 

Meanwhile, ANN brings its capability to capture intricate nonlinear patterns and adapt 

to various input features and time series characteristics. This hybridization can result in 

an efficient forecasting approach that leverages ANFIS's robustness and interpretability, 

along with ANN's modelling prowess, to address challenges such as overfitting, 

sensitivity to parameter initialization, and complex fuzzy inference system design. 

Consequently, such a hybrid will enhance forecast accuracy by accommodating a 

broader spectrum of data patterns and uncertainties while retaining some level of 

interpretability. 

A combination of LSTM and ANFIS will also be introduced and tested. The 

utilization of a hybrid model that combines the strengths of ANFIS and LSTM presents 

a distinct advantage by effectively compensating for each other's limitations. ANFIS 

excels in managing nonlinear relationships and handling uncertainty within time series 

data through its fuzzy logic-based adaptable parameter learning, while LSTM 

demonstrates expertise in modeling temporal dependencies and capturing sequential 

patterns across a range of time series data types. This hybridization is expected to 

enhance forecast accuracy by amalgamating the robustness and adaptability of ANFIS 

with the temporal modeling capabilities of LSTM, thus effectively addressing 
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challenges such as mitigating vanishing/exploding gradients, reducing protracted 

training times, alleviating sensitivity to parameter initialization and network 

architecture design, simplifying complex fuzzy system design intricacies, and 

enhancing interpretability. Consequently, this hybrid approach can optimize forecasting 

efficiency, offering a holistic solution capable of effectively accommodating diverse 

characteristics found within time series data, ultimately culminating in improved 

forecast accuracy. 

2.5 Rationale for Building a Hybrid Model Combining Multilayered-

ANN with ANFIS for Harmonics Forecasting 

Harmonics forecasting is an important task in various fields, most importantly for 

the improvement of power quality and grid integration of renewable energy generators. 

The objective is to predict the behaviour of harmonics components so they can serve as 

inputs for RES integration to the grid. To improve the accuracy and reliability of 

harmonics forecasting, a hybrid model that combines multilayered ANN with ANFIS 

and LSTM is considered here. This approach offers several benefits and provides a 

robust solution to harmonics forecasting problems. The rationale behind building such 

a hybrid model is discussed below. 

2.5.1 Complementary Strengths of ANN and ANFIS  

ANNs are powerful computational models capable of learning complex nonlinear 

relationships between inputs and outputs. They excel at recognizing patterns and 

capturing hidden dependencies in the data. ANNs can efficiently handle large volumes 

of training data and can generalize well to make predictions on unseen data. On the other 

hand, ANFIS combine the strengths of fuzzy logic and neural networks. They can model 
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fuzzy rules, linguistic variables, and expert knowledge to provide transparent and 

interpretable results. ANFIS can handle uncertain and imprecise data effectively and 

capture the nonlinear relationships present in the data. Thus, combining ANNs and 

ANFIS in a hybrid model can benefit from the complementary strengths of both 

techniques. ANNs can handle complex patterns and capture intricate nonlinear 

relationships, while ANFIS can incorporate expert knowledge and provide interpretable 

results. 

2.5.2 Capturing Nonlinearities and Complex Relationships  

Harmonics forecasting often involves dealing with nonlinearities and complex 

relationships between harmonics components and other variables. ANNs are well-suited 

for capturing such nonlinear relationships due to their ability to model complex 

functions. By training a multilayered ANN on a dataset containing harmonics 

measurements and other relevant variables, its capability to capture the intricate 

relationships between the variables and the harmonics behaviour can be exploited. 

ANFIS, with its fuzzy rule-based structure, can handle linguistic variables and 

expert knowledge effectively. By integrating ANFIS into the hybrid model, domain 

expertise and fuzzy logic-based rules can be incorporated, which can enhance the 

forecasting accuracy by capturing underlying linguistic patterns in the data. 

2.5.3 Improved Forecasting Accuracy and Robustness  

The combination of ANN and ANFIS in a hybrid model can lead to improved 

forecasting accuracy and robustness. ANNs can learn from historical data patterns and 
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make accurate predictions, while ANFIS can provide interpretability and handle 

uncertainties. The hybrid model can leverage the strength of both techniques, leading to 

more reliable and accurate harmonics forecast. 

2.5.4 Adaptability and Generalization  

The hybrid model can adapt to different datasets and generalize well to unseen 

data. ANNs are known for their ability to adapt to new patterns and data variations, 

enabling the model to capture changing harmonics behaviours over time. ANFIS can 

adapt its fuzzy rules and linguistic variables based on the input data, making the hybrid 

model adaptable to different operating conditions and system configurations. 

2.5.5  Model Transparency and Interpretability  

The transparency and interpretability of the hybrid model are crucial in harmonics 

forecasting applications. ANFIS, with its fuzzy rule-based structure, provides a 

transparent framework that allows experts to understand and interpret the model's 

decision-making process. This interpretability can aid in identifying the factors 

contributing to harmonics variations and assessing the model's reliability. 

2.5.6 Summary 

Table 7 presents a summary of the model components and their specific 

contributions to building a hybrid model based on combining multilayered ANN and 

ANFIS for harmonics forecasting. 

 



41 

Table 7: Rationale for ANN-ANFIS-Based Hybrid Model Summary 

Rationale ANN  ANFIS  

Nonlinear 

Relationship 

Capture 

ANNs excel at capturing complex 

nonlinear relationships between inputs and 

outputs. They can learn from historical data 

patterns and identify intricate 

dependencies. 

ANFIS combines fuzzy logic and neural networks, 

enabling it to model fuzzy rules and linguistic 

variables. It incorporates expert knowledge into the 

model, capturing underlying linguistic patterns and 

handling uncertainties effectively. 

Handling Large 

Volumes of Data 

ANNs can efficiently handle large volumes 

of training data. They can process and learn 

from extensive datasets, which is essential 

in harmonics forecasting tasks where 

significant amounts of data are involved. 

ANFIS can handle uncertain and imprecise data 

effectively. It can process data with varying degrees of 

uncertainty, providing robust predictions even in the 

presence of noise or incomplete information. 

Adaptability and 

Generalization 

ANNs are known for their adaptability to 

new patterns and variations in data. They 

can adjust their internal parameters and 

learn from evolving harmonics behaviours 

over time. 

ANFIS can adapt its fuzzy rules and linguistic 

variables based on the input data. It can adjust its 

structure to accommodate different operating 

conditions and system configurations, ensuring the 

model's adaptability and generalization capability. 

Interpretability ANN models typically lack interpretability 

and are often considered as "black boxes." 

The complex relationships they capture can 

be challenging to interpret. 

ANFIS provides transparency and interpretability by 

employing fuzzy rule-based structures. It incorporates 

expert knowledge and linguistic variables, allowing 

experts to understand and explain the decision-making 

process. The model's output can be easily explained 

using linguistic terms and fuzzy rules, making it more 

interpretable and explainable. 

Integration of 

Domain 

Knowledge 

ANN models rely primarily on data-driven 

learning and may not explicitly incorporate 

domain knowledge or expert insights. 

ANFIS can incorporate domain expertise and expert 

knowledge into the model by defining fuzzy rules and 

linguistic variables. This integration helps capture the 

underlying dynamics and linguistic patterns specific to 

harmonics forecasting, enhancing the accuracy and 

reliability of predictions. 

In conclusion, developing a hybrid model for harmonics forecasting that combines 

multilayered ANNs and ANFIS offers several benefits. The model may incorporate 

expert information, handle uncertainties, capture nonlinear relationships, and produce 

findings that are easy to understand. The hybrid model can improve accuracy, resilience, 

flexibility, and generalisation by taking advantage of the complimentary capabilities of 

both methodologies, which makes it an appealing option for harmonics forecasting 

applications. 
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2.6 Rationale for Building a Hybrid Model Combining LSTM with 

ANFIS for Harmonics Forecasting 

The benefits and capabilities of each technique are the foundation for why a 

hybrid model for harmonic forecasting integrating LSTM and ANFIS should be 

constructed. It is possible to increase the forecasting model's accuracy and robustness 

by combining these two approaches and taking advantage of their respective benefits. 

Aspects for considering the hybrid strategy are presented in the following sections. 

2.6.1 Capturing Temporal Dependencies  

LSTM is a powerful deep learning technique that excels in capturing long-term 

dependencies in time series data. It can effectively model the complex patterns and 

relationships within a sequence. By using LSTM, the hybrid model can leverage its 

ability to learn from historical harmonics data and capture the temporal dynamics of 

harmonics components. 

2.6.2 Fuzzy Logic-Based Reasoning  

ANFIS is a fuzzy logic-based inference system that can handle uncertain and 

imprecise information. It combines the advantages of fuzzy logic and neural networks 

to create a hybrid model that can reason with linguistic rules and make inference based 

on fuzzy logic principles. This makes ANFIS suitable for handling complex, nonlinear 

relationships and incorporating expert knowledge into the model. 
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2.6.3 Handling Nonlinearities  

Harmonics forecasting often involves dealing with nonlinear relationships 

between different variables and factors. LSTM, with its deep learning capabilities, can 

capture nonlinear patterns in the data. ANFIS, on the other hand, excels at modelling 

complex, nonlinear relationships through fuzzy inference. By combining these two 

techniques, the hybrid model can better handle the nonlinearities present in harmonic 

forecasting. 

2.6.4 Incorporating Domain Knowledge  

ANFIS allows the integration of expert knowledge in the form of linguistic rules. 

In the context of harmonics forecasting, domain experts may have insights and expertise 

that can contribute to accurate predictions. ANFIS can capture this expert knowledge 

and incorporate it into the forecasting process, complementing the data-driven approach 

of LSTM. 

2.6.5 Enhanced Interpretability  

ANFIS models are known for their interpretability. They provide linguistic rules 

that can be understood and analysed by domain experts. This can be particularly useful 

in harmonics forecasting, where stakeholders may require explanations or justifications 

for the predictions. The hybrid model can provide interpretable results while benefiting 

from the powerful predictive capabilities of LSTM. 
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2.6.6 Robustness and Generalization  

Combining different modelling techniques can enhance the robustness and 

generalization ability of the model. LSTM and ANFIS have different strengths and 

weaknesses, and by integrating them, the hybrid model can potentially overcome 

limitations and improve overall forecasting performance. 

2.6.7 Summary 

A description of the model elements and their individual contributions to 

developing a hybrid model based on fusing LSTM and ANFIS for harmonic forecasting 

can be found in Table 8. 

Table 8: Rationale for LSTM-ANFIS-Based Hybrid Model Summary 

Rationale LSTM ANFIS 

Complementary 

strengths 

Captures long-term dependencies and 

temporal patterns in sequential data. 

Handles linguistic variables and interprets 

complex nonlinear relationships in tabular 

data. 

Improved accuracy Enhances forecasting accuracy by leveraging 

LSTM's ability to capture temporal 

relationships. 

Incorporates tabular features and fuzzy logic 

to capture additional contextual information. 

Feature extraction and 

interpretation 

Automatically learns feature representations 

from harmonic time series. 

Utilizes tabular features directly and 

provides interpretability through fuzzy rules. 

Robustness to data 

characteristics 

Adapts to various data characteristics, such as 

seasonality and nonlinear trends. 

Models complex nonlinear relationships and 

adapts to linguistic variables in tabular data. 

Ensemble effect Harnesses ensemble benefits by combining 

LSTM with ANFIS for improved predictions. 

Reduces the risk of overfitting and increases 

robustness and generalization performance. 

Flexibility and 

customization 

Enables customization by adjusting LSTM 

and ANFIS weights based on their 

performance. 

Allows for customization according to 

specific harmonic forecasting requirements. 

It is worth noting that the success of a hybrid LSTM-ANFIS model for harmonics 

forecasting depends on the specific dataset, problem domain, and modelling approach. 

Careful experimentation, validation, and fine-tuning of the model will be essential to 
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achieve the desired forecasting accuracy and performance. As detailed above, 

combining LSTM and ANFIS in a hybrid model for harmonics forecasting provides 

complementary strengths, improved accuracy, feature extraction and interpretation 

capabilities, robustness to data characteristics, ensemble benefits, and customization 

flexibility. These justifications make the hybrid model an attractive choice for 

performing harmonics forecasting. 

2.7 Summary 

This chapter presented a definition of power quality and explained the relationship 

between power quality and harmonics. Various phenomena causing power quality 

issues were stated, as per IEC and IEEE 1159 standards. Harmonics, along with their 

causes and effects, were also discussed, showing how they degrade power quality and 

endanger the power system and other electrical equipment. For proper regulation of 

renewable energy provided by wind turbines and PV to the grid, modern EPS rely 

heavily on power electronic converters.  

In addition, this chapter reviewed the relevant literature and included some 

applicable standards, such as the IEEE 519 standard on harmonics limits and the IEEE 

1159 standard for categorizing power quality issues, to provide an understanding of 

harmonics generated by different harmonics sources. The literature review was 

conducted to highlight the importance of harmonics forecasting and its application to 

mitigate issues caused by harmonics. The review was followed by a detailed rationale 

explaining why ANFIS-ANN and ANFIS-LSTM-based hybrid models should be used.  
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Chapter 3:  Models and Harmonics Forecasting Techniques 

3.1 Overview 

This chapter discusses the models used in this thesis, including a modelling of 

wind speed and solar irradiation. As well, a brief explanation of ANN, ANFIS and 

LSTM will be provided, followed by an introduction of novel forecasting models 

adopted in this thesis to forecast harmonics. 

3.2 Generator Models  

3.2.1 Hybrid Wind-DFIG Solar Energy System  

The hybrid wind DFIG-PV generator model have been utilized in this work to 

produce the current and voltage waveforms. The inputs for generator model are known 

values of wind speed and solar irradiation as recorded by European Commission, Joint 

Research Centre (JRC) [66]. In this way the output produced by the generator model 

depicts the real-world scenario. The model was created by combining a DFIG model in 

MATLAB with a PV model so it could be fed into the common grid. The total capacity 

of the Wind-DFIG PV generator model is 3 MW, which includes a 1.5 MW Wind-DFIG 

generator and a 1.5 MW PV array. The hybrid Wind-DFIG-PV model contains 1.5 MW-

rated wind turbines using a wound rotor DFIG coupled with an AC/DC/AC IGBT-based 

PWM converter [83]. In this model, the wind speed signal is generated using a signal 

generator block. The values for wind speeds (m/s) are actual wind speed data recorded 

at Halifax, Nova Scotia, Canada, between June 1 and June 30, 2015 by the European 

Commission, Joint Research Centre (JRC) [66]. Additionally, the hybrid model consists 
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of a 1.5 MW-rated PV array containing 518 parallel strings. Each string has seven 

SunPower SPR-415E modules connected in series, and each solar cell capacity is 415 

Watts. Hence, the seven-cell series connected in a solar panel for a total of 518 panels 

make up the 1.5 MW capacity of the solar plant. The PV model’s input irradiance and 

temperature are generated from a signal generator block and are considered the real 

irradiance and temperature of Halifax as recorded on June 1-30, 2015 [66].  

The selection of a 1.5 MW power rating for both wind and photovoltaic (PV) 

power systems was driven by a combination of practical considerations and 

standardization within the context of the study. Choosing a consistent power rating, in 

this case, 1.5 MW, allows for a meaningful and fair comparative analysis between the 

wind power and PV power systems. Standardization is often employed in research to 

ensure that differences in outcomes can be attributed to the inherent characteristics of 

the systems being studied rather than variations in their capacities. Furthermore, A 1.5 

MW power rating aligns with the typical commercial scale for both wind turbines and 

PV arrays. This choice reflects a common capacity range seen in practical applications 

and facilitates the extrapolation of findings to real-world scenarios, enhancing the 

relevance of the study. Moreover, while larger power ratings might be found in certain 

installations, a 1.5 MW rating strikes a balance between being representative of 

commercial-scale systems and ensuring computational feasibility. It allows for a 

sufficiently detailed analysis without overwhelming computational resources. 

The output of generator model is connected to a grid is modelled as a typical 

distribution grid which exports power to a 120 kV, 60 Hz grid through a 25 kV feeder. 

As the inputs are supplied to the model, it was simulated for 30 days (June 1-30, 2015). 
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Results from this model are used to extract harmonics which are later divided into 

training and test datasets to be used as inputs for the forecasting models discussed in 

subsequent section in this chapter.   

3.2.2 Hybrid Wind-PMSG Solar Energy System 

Like the Wind-DFIG-PV model, the hybrid PMSG-PV model was created by 

merging the PMSG model available in the MATLAB file exchange [67] with the PV 

model to be interconnected to the common grid. The model contains 1.5 MW wind 

turbines directly coupled with a multipole PMSG without a gearbox. The same PV, wind 

speed and solar irradiance models are utilized, as explained in a previous section. The 

model was simulated for 30 working days (June 1-30, 20215). All of the mentioned days 

were working days. The results achieved are used as input data for forecasting models 

discussed later in this chapter. 

3.3 Artificial Neural Networks and Proposed Algorithm 

3.3.1 Introduction 

Artificial neural networks are based on how the human brain functions. The 

human brain's ability to remember, recall, correlate, interpret, recognize, and reason has 

made it appealing for researchers to create robots that mimic its performance in order to 

model, simulate, and perform a range of jobs. The human brain is made up of billions 

of neurons, defined as parallel computing elements. A network of axons, synapses, and 

dendrites connects them. As a result, the human brain resembles a large network of 

interconnected neurons. 
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McCulloch and Pitts were the first to describe a model of an artificial neuron 

that can mimic the behaviour of a biological neuron in [68]. An artificial neuron model 

in real life executes a sum of products ‘n’ of inputs denoted by ‘p’ and weights ‘w’ 

connected to them, as well as bias ‘b’. To generate the output, this sum is passed into a 

nonlinear transfer function ‘f(.)’. The weights ‘w’ and bias ‘b’ are variables that can be 

changed. Figure 4 shows a model of an artificial neuron [69]: 

 

Figure 4: Artificial Neuron Model [69] 

Mathematically, n is given by the following equations: 

 𝑛 =  𝑤1𝑝1 + 𝑤2𝑝2 +⋯+ 𝑤𝑅𝑝𝑅 + 𝑏 (3.1) 

 
𝑛 =  ∑𝑤𝑗𝑝𝑗 + 𝑏

𝑅

𝑗=1

 
(3.2) 

where R is the number of inputs. The neuron's output is given by: 

 𝑎 =  𝑓(𝑛) = 𝑓 (∑𝑤𝑗𝑝𝑗 + 𝑏

𝑅

𝑗=1

) (3.3) 

3.3.2 Single and Multilayered Feed-Forward Neural Network 

The Single-Layer Feed-Forward Neural Network (SLFNN), also known as the 

Single-Layer Perceptron (SLP), has only one level of neuron connectivity. It simply 

adjusts the weights ‘w’ to simulate the relationship between the input vector ‘p’ and the 
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output vector ‘a.’ A SLP can be made up of many neurons. Figure 5 depicts a simple 

SLP: 

 

Figure 5: Single-Layer Perceptron Network [69] 

The output vector can be determined using the following equation: 

 
𝑛𝑆 = ∑𝑤𝑆𝑗𝑝𝑗 + 𝑏𝑆

𝑅

𝑗=1

 
(3.4) 

 𝑎𝑆 =  𝑓(𝑛𝑆) = 𝑓 (∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆

𝑖=1

+ 𝑏𝑆) (3.5) 

where R is the number of inputs and S is the number of neurons. The above expression 

can be written in vector form as: 

 𝑎 = 𝑊𝑝 + 𝑏 (3.6) 

 

 

The input, weight, bias, and output matrices are given by: 

𝑝 =  [𝑝1… 𝑝𝑅], 𝑊 = [
1,1 ⋯ 𝑤1,𝑅
⋮ ⋱ ⋮
𝑤𝑆,1 ⋯ 𝑤𝑆,𝑅

], 𝑏 =  [𝑏1… 𝑏𝑆] & 𝑎 =  [𝑎1… 𝑎𝑆] 
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Multiple layers of neurons make up a Multi-Layer Feed-Forward Network, also 

known as a Multi-Layer Perceptron (MLP). The number of neurons in each layer can 

be the same or different. Between the input and output layers, there are one or more 

hidden layers. The activation functions and weight vectors of each layer can be the same 

or different. Every layer's output becomes an input for the following concealed layer 

until it reaches the output layer. An MLP network with two hidden layers is shown in 

Figure 6: 

 

Figure 6:  Multi-Layer Perceptron Network [69] 

If we let l denote the number of hidden layers and l = L for the output layer, the 

equations for the outputs of every hidden layer and the final output can be expressed by 

the following equations: 

Hidden layer 1 (l = 1): 

 𝑎1𝑆1 = 𝑓1(𝑛1𝑆1) = 𝑓1 (∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1) (3.7) 

Here, Sl denotes the number of neurons in layer l:  

Hidden layer 2 to output layer (l = 2 … L): 
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 𝑎𝑙𝑆𝑙 = 𝑓𝑙(𝑛𝑙𝑆𝑙) = 𝑓𝑙 (∑∑𝑤𝑖𝑗𝑎(𝑙−1)𝑗

𝑆𝑙−1

𝑗=1

𝑆𝑙

𝑖=1

+ 𝑏𝑙𝑆𝑙) (3.8) 

since in the above figure, L = 3: 

𝑎3𝑆3 = 𝑓3(𝑛3𝑆3) = 𝑓3 (∑∑𝑤𝑖𝑗𝑎2𝑗

𝑆2

𝑗=1

𝑆3

𝑖=1

+ 𝑏3𝑆3) (3.9) 

𝑎3𝑆3 = 𝑓3 (∑∑𝑤𝑖𝑗

𝑆2

𝑗=1

𝑓2 (∑∑𝑤𝑖𝑗𝑓1(∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆1

𝑖=1

 +  𝑏1𝑆1)

𝑆1

𝑗=1

𝑆2

𝑖=1

 + 𝑏2𝑆2)

𝑆3

𝑖=1

+ 𝑏3𝑆3) (3.10) 

3.3.3 Cascaded, Recurrent and Hybrid Neural Networks  

The Cascaded Neural Network (CNN) architecture is a type of MLP network in 

which each input and output of every hidden layer is cascaded to the next layer. Figure 

7 demonstrates a three-layered CNN:  

 

Figure 7: Three-Layered Cascaded Neural Network 

A Recurrent Neural Network (RNN) has a feedback loop from the output to the 

input, as well as the weights that go with it. Many different forms of RNNs that are 

utilized for prediction have been discussed in the literature. Local feedback and global 

feedback are the two main types of feedback pathways. The recurrent path within the 

hidden layer provides local feedback, whereas the network's output and input provide 

global feedback [70]. Both local and global RNNs are depicted in Figures 8 and 9: 
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Figure 8: Recurrent Neural Network with Local Feedback 

 

Figure 9: Recurrent Neural Network with Global Feedback 

Hybrid neural network architectures integrate CNN with recurrent networks. 

These networks have a cascaded input-output layer link as well as local or global 

feedback routes and have been discussed in the literature [70]. The purpose of this thesis 

is to introduce a hybrid architecture and apply it to forecast harmonics to procure 

accurate prediction results. The next section discusses the novel hybrid neural networks 

that are created and utilized in this thesis in a MATLAB environment.  

3.3.4 Three-Layered Recurrent Cascaded Neural Network with Local Feedback  

A hybrid three-layered recurrent neural network with cascaded inputs of local 

feedback is portrayed in Figure 10.  The equation evaluating and depicting the output 

of the network is expressed in Eq. 3.13. This multilayered-ANN ANFIS combination is 

called Three-layered Cascaded Neural Network with Recurrent Local feedback 

(3LCRNNL) [102-104]. Figure 10 below shows the 3LCRNNL feedback architecture. 



54 

 

Figure 10: Three-Layered Cascaded Recurrent Neural Network with 

Local Feedback 

The output equation of the 3LCRNNL is derived as follows: 

𝑎1𝑆1(𝑡) =  𝑓1(𝑛1𝑆1) = 𝑓1 (∑∑𝑤𝑖𝑗𝑝𝑗 + 

𝑅

𝑗=1

𝑆1

𝑖=1

∑∑𝑤𝑖𝑗𝑎1𝑗(𝑡 − 1)

𝑆1

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1) (3.11) 

𝑎2𝑆2 = 𝑓2(𝑛2𝑆2) = 𝑓2 (∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

+

𝑆2

𝑖=1

∑∑𝑤𝑖𝑗𝑎1𝑗

𝑆1

𝑗=1

 

𝑆2

𝑖=1

+∑∑𝑤𝑖𝑗𝑎2𝑗(𝑡 − 1)

𝑆2

𝑗=1

 

𝑆2

𝑖=1

+ 𝑏2𝑆2) (3.12) 

𝑎3𝑆3 = 𝑓3(𝑛3𝑆3) =  𝑓3(∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆3

𝑖=1

+ ∑∑𝑤𝑖𝑗𝑓1 (∑∑𝑤𝑖𝑗𝑝𝑗 + 

𝑅

𝑗=1

𝑆1

𝑖=1

∑∑𝑤𝑖𝑗𝑎1𝑗(𝑡 − 1)

𝑆2

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1)

𝑆1

𝑗=1

𝑆3

𝑖=1

+ ∑∑𝑤𝑖𝑗𝑓2 (∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

+

𝑆2

𝑖=1

∑∑𝑤𝑖𝑗𝑎1𝑗

𝑆1

𝑗=1

 

𝑆2

𝑖=1

+∑∑𝑤𝑖𝑗𝑎2𝑗(𝑡 − 1)

𝑆2

𝑗=1

 

𝑆2

𝑖=1

𝑆2

𝑗=1

𝑆3

𝑖=1

+ 𝑏2𝑆2) +∑∑𝑤𝑖𝑗𝑎3𝑗(𝑡 − 1)

𝑆3

𝑗=1

 

𝑆3

𝑖=1

+ 𝑏3𝑆3) 

(3.13) 

3.3.5 Three-Layered Cascaded Recurrent Neural Network with Global Feedback  

The second hybrid network combines the 3LCRNNG to create Three-layered 

Cascaded Neural Network with Recurrent Global feedback (3LCRNNG) [102], as 

shown in Figure 11. 
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Figure 11: Three-Layered Cascaded Recurrent Neural Network with 

Global Feedback (3LCRNNG) 

The output of 3LCRNNG is given as follows: 

𝑎1𝑆1(𝑡) =  𝑓1(𝑛1𝑆1) = 𝑓1 (∑∑𝑤𝑖𝑗𝑝𝑗 + 

𝑅

𝑗=1

𝑆1

𝑖=1

∑∑𝑤𝑖𝑗𝑎3𝑗(𝑡 − 1)

𝑆3

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1) (3.14) 

𝑎2𝑆2 = 𝑓2(𝑛2𝑆2) = 𝑓2 (∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆2

𝑖=1

+∑∑𝑤𝑖𝑗𝑎2𝑗

𝑆1

𝑗=1

 + 

𝑆2

𝑖=1

 𝑏2𝑆2) (3.15) 

𝑎3𝑆3 = 𝑓3(𝑛3𝑆3) =  𝑓3 (∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆3

𝑖=1

+∑∑𝑤𝑖𝑗𝑓1 (∑∑𝑤𝑖𝑗𝑝𝑗 + 

𝑅

𝑗=1

𝑆1

𝑖=1

∑∑𝑤𝑖𝑗𝑎2𝑗(𝑡 − 1)

𝑆3

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1)

𝑆1

𝑗=1

 

𝑆3

𝑖=1

+∑∑𝑤𝑖𝑗𝑓2 (∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆2

𝑖=1

+∑∑𝑤𝑖𝑗𝑎2𝑗

𝑆1

𝑗=1

 + 

𝑆2

𝑖=1

 𝑏2𝑆2)

𝑆2

𝑗=1

 

𝑆3

𝑖=1

 +  𝑏3𝑆3) 

(3.16) 

3.3.6 Three-Layered Cascaded Recurrent Neural Network with Local and Global 

Feedback  

In order to improve accuracy in network integration, the inputs are cascaded to the 

next layers and each layer also receives feedback from its output as well as from the 

output layer. Figure 12 shows the architecture of a Three-Layered Cascaded Recurrent 

Neural Network with Local and Global feedback (3LCRNNGL) [102]. 
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Figure 12: 3- Layered Cascaded Recurrent Neural Network with Local 

and Global Feedback (3LCRNNGL) 

The equation governing the output of 3LCRNNGL can be expressed as follows: 

𝑎1𝑆1(𝑡) =  𝑓1(𝑛1𝑆1) = 𝑓1 (∑∑𝑤𝑖𝑗𝑝𝑗 + 

𝑅

𝑗=1

∑∑𝑤𝑖𝑗𝑎1𝑗(𝑡 − 1)

𝑆1

𝑗=1

𝑆1

𝑖=1

𝑆1

𝑖=1

+∑∑𝑤𝑖𝑗𝑎3𝑗(𝑡 − 1)

𝑆3

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1) (3.17) 

𝑎2𝑆2 = 𝑓2(𝑛2𝑆2) = 𝑓2 (∑∑𝑤𝑖𝑗𝑝𝑗 +

𝑅

𝑗=1

𝑆2

𝑖=1

∑∑𝑤𝑖𝑗𝑎2𝑗

𝑆1

𝑗=1

 + 

𝑆2

𝑖=1

 ∑∑𝑤𝑖𝑗𝑎2𝑗(𝑡 − 1)

𝑆2

𝑗=1

𝑆2

𝑖=1

+ ∑∑𝑤𝑖𝑗𝑎3𝑗(𝑡 − 1)

𝑆3

𝑗=1

𝑆2

𝑖=1

+  𝑏2𝑆2) 

(3.18) 

𝑎3𝑆3 = 𝑓3(𝑛3𝑆3)

=  𝑓3

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 ∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

+

𝑆3

𝑖=1

∑∑𝑤𝑖𝑗𝑓1 (∑∑𝑤𝑖𝑗𝑝𝑗 + 

𝑅

𝑗=1

∑∑𝑤𝑖𝑗𝑎1𝑗(𝑡 − 1)

𝑆1

𝑗=1

𝑆1

𝑖=1

𝑆1

𝑖=1

+∑∑𝑤𝑖𝑗𝑎3𝑗(𝑡 − 1)

𝑆3

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1) +

𝑆1

𝑗=1

 

𝑆3

𝑖=1

∑∑𝑤𝑖𝑗𝑓2

(

 
 
 
 ∑∑𝑤𝑖𝑗𝑝𝑗 +

𝑅

=1

𝑆2

𝑖=1

∑∑𝑤𝑖𝑗𝑎2𝑗

𝑆1

𝑗=1

 + 

𝑆2

𝑖=1

 ∑∑𝑤𝑖𝑗𝑎2𝑗(𝑡 − 1)

𝑆2

𝑗=1

+ 

𝑆2

𝑖=1

∑∑𝑤𝑖𝑗𝑎3𝑗(𝑡 − 1)

𝑆3

𝑗=1

𝑆2

𝑖=1

+  𝑏2𝑆2
)

 
 
 
 𝑆2

𝑗=1

+ 

𝑆3

𝑖=1

 ∑∑𝑤𝑖𝑗𝑎3𝑗(𝑡 − 1)

𝑆3

𝑗=1

 

𝑆3

𝑖=1

+ 𝑏3𝑆3
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(3.19) 
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3.3.7 Network Training 

Neural network training is the process of altering network architecture and 

updating link weights and biases so that a network response can follow a specific 

behaviour. Various learning methods are utilized to accomplish this objective. A 

learning algorithm's goal is to reduce the error function by changing network parameters 

and using previous data as samples. When a solution is reached, the finalized parameters 

are stored, which means that network has learned how to respond to new information 

received for a particular application. In this thesis, the Levenberg-Marquardt Back 

Propagation (LMBP) algorithm is used to train the neural network architectures, due to 

its fast convergence and stability [71], [72]. 

3.4 Adaptive Neuro Fuzzy Inference System (ANFIS) 

3.4.1 Introduction 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) was introduced in the 

early 1990s by Jang Roger, who proposed integrating Adaptive Neural Networks 

(ANNs) and fuzzy logic. Based on the Takagi–Sugeno Fuzzy Inference System, ANFIS 

combines ANN’s capability of self-learning with a fuzzy system’s logical inference 

ability, robustness, and ease in implementing the rule bases. The ANFIS systems are 

extremely effective and easy to implement, especially in cases of nonlinearity and 

uncertainty in the data [73].  

In the MATLAB environment, the toolbox function ANFIS is fed by a given set 

of input/output data on the basis of which it constructs a Fuzzy Inference System (FIS). 

The membership function parameters of this FIS are tuned using a combination of back 
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propagation algorithms with a least squares type of method. In this way, the fuzzy 

systems learn from the data modelled [74]. Additionally, a neural network-type structure 

is generated that maps inputs through associated parameters and input membership 

functions and outputs via associated parameters and output membership functions. In 

this way the input/output map is interpreted for further processing and prediction [102].  

3.4.2 ANFIS Structure and Working Principle 

The ANFIS structure consists of a fuzzy Sugeno model which is set in an 

adaptive system framework [73]. A typical fuzzy rule in a Sugeno fuzzy model has the 

following format: 

 𝑰𝑭 𝒙 𝒊𝒔 𝑨 𝒂𝒏𝒅 𝒚 𝒊𝒔 𝑩, 𝑻𝑯𝑬𝑵 𝒛 = 𝒇(𝒙, 𝒚) (3.20) 

where A and B are fuzzy sets and z = f (x, y) is a crisp function defining the output. The 

function f (x, y) is typically a polynomial, which describes the output based on the input 

variables x and y within the fuzzy region specified by the fuzzy sets of the rule. Figure 

13 shows a first-order Sugeno FIS containing two rules.  

 

Figure 13: First-Order Sugeno Fuzzy Inference System 

𝑹𝒖𝒍𝒆 𝟏: 𝑰𝑭 𝒙 𝒊𝒔 𝑨𝟏 𝒂𝒏𝒅 𝒚 𝒊𝒔 𝑩𝟏, 𝑻𝑯𝑬𝑵 𝒇𝟏 = 𝒑𝟏𝒙 + 𝒒𝟏𝒚 + 𝒓𝟏 

𝑹𝒖𝒍𝒆 𝟐: 𝑰𝑭 𝒙 𝒊𝒔 𝑨𝟐 𝒂𝒏𝒅 𝒚 𝒊𝒔 𝑩𝟐, 𝑻𝑯𝑬𝑵 𝒇𝟐 = 𝒑𝟐𝒙 + 𝒒𝟐𝒚 + 𝒓𝟐 

(3.21) 

where 

x, y = inputs, 
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A1, A2, B1, B2 = fuzzy sets,  

f1, f2, f = outputs within the fuzzy region specified by the fuzzy rule, and 

p1, p2, q1, q2, r1, r2 = design parameters that are determined during the training process. 

The Sugeno fuzzy model is set into a framework of adaptive networks that can 

compute gradient vectors systematically in order to facilitate the learning process. The 

output is derived using the fuzzy reasoning mechanism from a given input vector [x, y]. 

Typically, the product of membership grade in the premise part of the fuzzy rules 

determines the firing weights w1 and w2, and the output f is obtained by the weighted 

average of each rule’s output. Thus, the subsequent network architecture of ANFIS is 

shown in Figure 14, which consists of five layers. Each layer performs certain functions 

via nodes present in those layers. The circle indicates a fixed node, and a square 

indicates an adaptive node [97-98].  

 

Figure 14: ANFIS Architecture [74] 

The output layer has a single node. The final output is a summation of all 

incoming signals, expressed as follows:  

 𝑓 =∑�̅�𝑖𝑓𝑖
𝑖

=
∑ �̅�𝑖𝑓𝑖𝑖

∑ �̅�𝑖𝑖
 (3.22) 



60 

3.4.3 Learning Algorithm 

In the ANFIS structure, a hybrid learning approach is adopted that is a 

combination of back propagation and least square methods. The major advantage of 

using this hybrid learning algorithm is that it converges much faster by reducing search 

space dimensions compared to the typical backpropagation approach. The output of 

ANFIS expressed as an equation can be written as: 

 𝑓 =
𝑤1

𝑤1 + 𝑤2
𝑓1 +

𝑤2
𝑤1 + 𝑤2

𝑓2 (3.23) 

 𝑓 = �̅�1(𝑝1𝑥 + 𝑞1𝑦 + 𝑟1) + �̅�2(𝑝2𝑥 + 𝑞2𝑦 + 𝑟2) (3.24) 

𝑓 = (�̅�1𝑥)𝑝1 + (�̅�1𝑦)𝑞1 + (�̅�1)𝑟1 + (�̅�2𝑥)𝑝2 + (�̅�2𝑦)𝑞2 + (�̅�2)𝑟2 (3.25) 

where 

𝑝1, 𝑞1, 𝑟1, 𝑝2, 𝑞2, 𝑟2 = Consequent parameters.  

The parameters are updated in a forward backward pass method. The consequent 

parameters are determined with the least square technique in the forward pass of the 

hybrid learning, where the node outputs go forward until layer 4. The premise 

parameters are updated by gradient descent in the backward pass, where the error rates 

propagate backward, employing the backward propagation method [73], [74]. 

3.5 Long Short-Term Memory Network (LSTM) 

3.5.1 Introduction 

LSTM is a recurrent neural network architecture proposed by Hochreiter and 

Schmidhuber in [89]. The core idea behind LSTM is to have a memory cell that can 

store information for a long time and selectively decide which information to keep and 
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which to discard. LSTMs have been successfully applied to various tasks such as speech 

recognition, image captioning, natural language processing, and time series forecasting 

[90-93]. 

3.5.2 Architecture of LSTM 

Recurrent neural networks, which form the basis of LSTM networks, are 

effective because they can recognize long-term relationships. Small weights are 

frequently multiplied repeatedly through a few steps in an RNN, and as a result, the 

gradients asymptotically approach zero. The vanishing gradient problem is another 

name for this RNN flaw. Cells, the memory units that make up the LSTM network, are 

connected by layers. In these cells, data are present in both the cell state 𝑐𝑡 and the 

hidden state ht. This information is governed by gates through the sigmoid, with tanh 

acting as the activation function. Integers between 0 and 1 are commonly produced 

using the sigmoid function, with 0 denoting no information flowing through and 1 

denoting that this is the focus. LSTM networks can thus conditionally add or remove 

information from the cell state. 

In essence, the gates take the input, the hidden states from the previous time step 

(ℎ𝑡−1), and the current input (𝑥𝑡), and then multiply them pointwise by weight matrices 

(𝜔) and add bias (𝑏) to the result. The three primary gates are the forgetting gate, the 

input gate, and the output gate. The forgetting gate, which decides the data to be 

removed from a specific cell state, outputs a number between 0 and 1, with 0 denoting 

complete deletion and 1 denoting complete retention. Equation (3.26) expresses this 

process: 
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 𝑓𝑡 =  𝜎(𝜔𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3.26) 

The input gate which has a tanh activation layer that produces a vector of 

prospective candidates, is shown in the following equation: 

 𝑐�̂� =  𝑡𝑎𝑛ℎ(𝜔𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (3.27) 

The sigmoid layer can then construct the following update filter as a result: 

 𝑈𝑡 =  𝜎(𝜔𝑢[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑢)  (3.28) 

The previous cell state 𝑐𝑡−1 is then updated to: 

 𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑈𝑡 × 𝑐𝑡
∗  (3.29) 

The output gate, which filters the cell state going to the output, is the final step. 

It has a sigmoid layer and can be expressed as follows: 

 𝑂𝑡 =  𝜎(𝜔0[ℎ𝑡−1, 𝑥𝑡] + 𝑏0)  (3.30) 

The numbers are then scaled to fall between [-1, 1] by using the tanh function 

on the cell state 𝑐. According to the equation, the new hidden state is made by 

multiplying the scaled cell state by the filtered output and then being transferred to the 

next cell. 

 ℎ𝑡 = 𝑂𝑡 × tanh (𝑐𝑡)   (3.31) 
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3.6 Novel Hybrid Forecasting Models  

3.6.1 Introduction 

This thesis introduces eight hybrid models combining the three-layered ANN 

with ANFIS and LSTM with ANFIS. In order to achieve high accuracy, all of the 

combinations will be applied to forecasting, and the results will be presented and 

compared in the following chapters. This section will describe the concept design for 

eight novel hybrid models generated and implemented in the thesis. 

3.6.2 Model-1 – 3LCRNNL-ANFIS 

The three-layered CRNNL defined in section 3.3.4 is combined with ANFIS, as 

demonstrated in Figure 15. The input data matrix that is used to forecast harmonics 

employing 3LCRNNL is cascaded to the input of ANFIS model along with the 

forecasting results depicted by the ANN model. Figure 15 presents the concept design.  

 

 

Figure 15: 3LCRNNL-ANFIS Model 

3.6.3  Model-2 – 3LCRNNG-ANFIS 

The three-layered CRNNG defined in section 3.3.5 is combined with ANFIS. 

Figure 16 depicts the proposed model.   
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Figure 16: 3LCRNNG-ANFIS Model 

3.6.4 Model-3 – 3LCRNNGL-ANFIS 

This section presents a three-layered CRNNGL (section 3.3.4) combined with 

ANFIS. The design of the proposed hybrid model is presented in Figure 17.   

 

Figure 17: 3LCRNNGL-ANFIS Model 

3.6.5 Model 4 – ANFIS-3LCRNNL 

Similar to the above three proposed models, where ANFIS receives in its input the 

forecasting results from the three-layered ANN, model-4 swaps this combination. This 

section presents the ANFIS-3LCRNNL model where the input matrix goes to the 

ANFIS model to generate harmonic forecast and further cascades to the 3LCRNNL. 

The forecast received from ANFIS also serves as an input to the ANN model. The design 

of proposed hybrid model is presented in Figure 18. 
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Figure 18: ANFIS-3LCRNNL Model 

3.6.6 Model-5 – ANFIS-3LCRNNG Model 

This section proposes the ANFIS-3LCRNNG model design in Figure 19: 

 

Figure 19: ANFIS-3LCRNNG Model 

3.6.7 Model-6 – ANFIS-3LCRNNGL 

In this section, the ANFIS-3LCRNNGL concept design is proposed in Figure 20. 

 

Figure 20: ANFIS-3LCRNNGL Model 
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3.6.8 Model-7 – LSTM-ANFIS 

In this section, the ANFIS-LSTM concept design is proposed in Figure 21. 

 

Figure 21: LSTM-ANFIS Model 

3.6.9 Model-8 – ANFIS-LSTM 

In this section, the ANFIS-LSTM concept design is proposed in Figure 22. 

 

Figure 22: ANFIS-LSTM Model 

3.7 K-Fold Cross-Validation 

Cross-validation is a widely used technique for model evaluation. Its adaptation 

to time series data is crucial due to the sequential nature of such data. K-fold cross-

validation is a resampling method used to assess how well a model performs on a certain 

dataset. In this study, the dataset is divided into K-folds of equal size. The model is 

tested on the remaining fold after being verified on K-1 folds. Each fold serves as the 

validation set precisely once during the K-fold iteration of this process. The model's 
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overall performance is then evaluated by averaging the performance metrics received 

from each fold [99-101]. 

Time series forecasting seeks to make future value predictions using data from 

the past. Each observation in a time series data set is influenced by earlier observations 

due to its temporal dependencies. Applying cross-validation techniques presents 

specific issues because of this sequential nature. As a result, the typical cross-validation 

approach is inapplicable to time series data, since it implies that data points are 

independent and equally distributed. Due to the intrinsic temporal interdependence of 

time series, random data splitting or rearranging can cause information leakage and 

produce unduly optimistic performance predictions. A modified form of K-fold cross-

validation is thus utilized to overcome the difficulties presented by time series data. 

The main concept in a modified K-fold cross-validation approach is to maintain 

the data's temporal order during cross-validation. Utilizing an expanding window 

system that mimics a real-time forecasting scenario is one popular strategy. For time 

series data, the expanding window method is a K-fold cross-validation variant. The 

training data window is gradually expanded throughout each fold to ensure the model 

is trained on historical data before generating predictions for upcoming time steps. 

The following is an explanation of the algorithm used to perform expanding 

window cross-validation while training forecasting models on time series data: 

1. Set the initial training window size, denoted as W. 

2. Split the time series data into K folds. 

3. For each fold:  
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a. Train the model using the data from the start of the time series up to the 

end of the current fold.  

b. Make predictions for the next time step(s) using the trained model.  

c. Evaluate the performance of the model's predictions for the current fold.  

d. Slide the training window forward by one time step, incorporating the 

current fold's data. 

4. Repeat steps 3a to 3d for all K folds. 

5. Aggregate the performance metrics obtained from each fold to assess the overall 

model performance. 

3.8 Implementation of Hybrid Forecasting Models  

3.8.1 Data Generation from Generator Models 

To generate harmonics forecasting using the proposed hybrid models, the two 

generator models discussed in section 3.2 were simulated for 31 days. Real-time data 

for wind speed and solar irradiation in Halifax, Canada, was used, as recorded between 

June 1 and July 1, 2015 [66]. The generator models produced output voltage and current 

waveforms, from which harmonics were extracted using FFT. These harmonics data 

were further analyzed and stored for use as inputs for the forecasting models. The data 

for the first 30 days of the test period (June 1-30, 2015) were used for training and 

formed the training set, while the data for the final day of the test period (July 1, 2015) 

were used as the test set. 
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3.8.2 Selection of Inputs 

The selection of inputs is crucial for achieving accurate forecasting. Inputs should 

be carefully selected from the available data by analysing the trends for the target signal.  

To extract harmonics in this study, an FFT analysis was carried out on the data procured 

from the scope, with the MATLAB command line being used to extract harmonics 

information. The FFT window consisted of five cycles that extracted the samples from 

voltage and current waveforms. The FFT samples were extracted for 720 hours (30 

days). A total of 7200 samples were recorded, with 10 samples logged per hour for both 

current and voltage waveforms. 

The following harmonics parameters were extracted from the simulated signals, 

which, after statistical analysis (as detailed in Chapter 4), were selected as parameters 

to be forecasted for both voltage and current waveforms: 

1- Total Harmonic Distortion (THD) / Total Demand Distortion (TDD) 

2- Magnitude of 7th (h7) harmonic component. 

3- Magnitude of 11th (h11) harmonic component. 

4- Magnitude of 13th (h13) harmonic component. 

The 7th, 11th and 13th harmonics were forecasted because of their relatively high 

amplitudes compared to the others. A detailed statistical analysis is presented in Chapter 

4 to demonstrate their selection as forecasting parameters. Additionally, the forecasting 

models employed several parameters for input variables (predictors), which were used 

as inputs to produce a forecast. These variables are as follows: 

1- Wind speed 

2- Solar irradiation 
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3- One hour before the observation of the predicted parameter 

4-  One day before the observation of the predicted parameter 

5-  Two days before the observation of the predicted parameter. 

 

These inputs were found to best represent the inputs for the forecasting models. The 

selection of wind speed and solar irradiation was obvious, as the forecasted parameters 

(THD/TDD, 7th, 11th, or 13th harmonic) directly depend on the magnitude of wind speed 

and/or solar irradiation. As for the historical parameters, the one hour, one day, and two 

days before the observation of the predicted parameter have no dependencies on these 

inputs. Rather, they are related, as at these time intervals the conditions were observed 

to be similar. In order to illustrate the correlation, Figure 23 presents the plot for the 

voltage harmonics forecasting parameter: Total Harmonic Distortion (THD) for the 

Wind-DFIG-PV generator model.  
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Figure 23: Total Harmonic Distortion Curves for Wind-DFIG-PV model 

In Figure 23, the THD for day 5 is plotted against the THD value for one hour 

before, one day before, and two days before. The patterns appear to have a similar 

trajectory, so they are selected as inputs for the forecasting model. With the adopted 

training methodology, the weight adjustment should be able to train the network to 

produce accurate forecasts. 

In further analysing the inputs, we see that days 4 and 5 wind speed and solar 

irradiation are plotted against respective THD in Figures 24 and 25. It can be observed 

that the change in both wind speed and solar irradiation have a proportionate effect on 

THD.  For instance, in Figure 24, at hour 9, the solar irradiation and wind speed both 

start to increase, which also results in an increased THD.  

 
Figure 24: THD vs Wind Speed and Solar Irradiation for Wind-DFIG-PV 

(Day 5) 
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Figure 25: THD vs Wind Speed and Solar Irradiation for Wind-DFIG-PV 

(Day 4) 

As mentioned, the increment in THD can be observed with small increases in the 

magnitude of THD in Figure 24. Similarly, in Figure 25, which shows day 4 curves at 

time of 1 hour, the wind speed increases and then falls, resulting in a similar increment 

and dip in the THD curve. The same type of changes can be observed in the trajectory 

of THD with respective changes in wind speed and solar irradiation. Hence, these 

parameters are also selected as an input in the forecasting model in order to train it and 

adjust weights accordingly to produce an accurate forecast. 

3.8.3 Data Pre-processing 

In the data pre-processing step, all data points are normalized between values of 

0 and 1. This simplifies the calculations and uniformly presents the input parameters 
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under one scale. For ANN and ANFIS implementation, it is necessary to normalize data 

this way for better convergence. The following formula is used to normalize data: 

 𝑥𝑛𝑜𝑟𝑚 = 
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (3.32) 

where 

𝑥𝑛𝑜𝑟𝑚 is the normalised data point, 

𝑥 is the actual data point, 

𝑥𝑚𝑖𝑛 is the minimum data point in the series, and 

𝑥𝑚𝑎𝑥 is the maximum data point in the series. 

Data standardization is the process of transforming data into a common scale or 

format that involves rescaling the data to have zero mean and unit variance. In the 

context of LSTM models, data standardization is crucial to ensure optimal performance 

and convergence during training and prediction. Data standardization is done by 

subtracting the mean value of the data and dividing by the standard deviation, as 

explained in the following steps. 

1. Compute the mean (μ) of the data: Calculate the average of all data points in the 

dataset. 

2. Compute the standard deviation (σ) of the data: Calculate the square root of the 

average of the squared differences between each data point and the mean. 

3. Subtract the mean from each data point: For each data point (x), subtract the mean 

(μ) from it. 

4. Divide the mean-adjusted values by the standard deviation: Divide each mean-

adjusted data point by the standard deviation (σ). 

This can be represented by the formula: 
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 𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 = 
𝑥 − μ 

σ
 (3.33) 

where 

𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 = standardized dataset, 

𝑥 = data set, 

μ = mean value of the dataset, and 

σ = standard deviation of the dataset. 

Data standardization for LSTM is crucial for facilitating convergence, avoiding 

gradient-related issues, treating features equally, and improving the generalization and 

performance of the model. By standardizing the data, you ensure that the LSTM model 

can effectively learn and make accurate predictions on a wide range of inputs [99-101]. 

3.8.4 Network Training and Forecasting Methodology 

3.8.4.1 Application of Artificial Neural Networks 

The ANN models used in this thesis aim to predict the next-step harmonics. ANN 

uses previously observed harmonic patterns of simulated data for training and learning 

in order to provide forecasts. For the ANN to work well, however, there must be a strong 

correlation between the inputs and outputs. Additionally, in order to improve 

performance, the hidden layer and output layer weights must be carefully adjusted 

throughout the training phase [75]. Hence, determining the appropriate architecture—

specifically, the ideal number of hidden layers, the number of neurons in each layer, and 

the role of each layer's activation—is crucial for optimal performance [46]. 

In this study, in order to improve the weight adjustment, the hyperbolic tangent 

transfer function was used for the hidden layers. By default, MATLAB employs the 



75 

sigmoid transfer function. For a complex and nonlinear dataset as utilized in this thesis, 

the selection of hyperbolic transfer function is more beneficial compared to the sigmoid 

function. To illustrate this point, Figure 26 superimposes the sigmoid function over the 

hyperbolic tangent function [84-88]. 

 

Figure 26: Superimposed Hyperbolic Function over Sigmoid Function 

Figure 26 establishes two features that differentiate the hyperbolic tangent 

function from the sigmoid function, as explained below: 

1- The sigmoid function has a substantially smaller slope than the hyperbolic tangent 

function. 

2- The sigmoid function always responds positively, but the hyperbolic tangent 

function responds negatively for negative input values and positively for positive 

input values. 
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The larger slope of the hyperbolic tangent function indicates that it has a stronger 

response to even modest changes in the input variable. As a result, it can provide a 

considerably more nonlinear response and can better distinguish between subtle 

variations in the input variable. For network nodes, it is also crucial that the sign of the 

response coincide with the sign of the input in the hyperbolic tangent transfer function. 

Normalizing and standardizing the data to the zero mean gives the value of a node's 

output some meaning. A node's average state is 0, the lowest response level is -1, and 

the highest response level is +1. With this structure, the inputs to the nodes of the first 

hidden layer are similarly zero when the input variables are nominally zero. 

Consequently, when applying a hyperbolic tangent transfer function, the outputs of such 

nodes are also zero, and the output layer's inputs and outputs are likewise all zero, as 

are those of the other hidden layers. In other words, the network already accurately 

predicts the nominal situation before any training even begins, and so only needs to be 

trained for deviation from the nominal case. 

          In contrast, a 0 input to a sigmoid transfer function results in an output response 

of 0.5, indicating that the network must additionally modify its initial weights in order 

to train the nominal case, reducing the effectiveness of training. The 3LCRNNL, 

3LCRNNG, and 3LCRNNGL ANN models and architecture used in this thesis employ 

the hyperbolic tangent transfer function in all their hidden layers. To increase the 

resilience of these models, linkages between inputs and outputs in various combinations 

are created, as discussed in section 3.5. 

As mentioned previously, the ANN models employ various parameters for input 

variables, including solar irradiation, wind speed, and historical values for the 
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forecasted parameter (i.e., one hour, one day and two days before). Additionally, the 

ANN models have a scaled conjugate gradient as an optimizer to reduce the error 

function (training), which was identified by trial and error. Based on conjugate 

directions, Moller [76] created the scaled conjugate gradient (SCG) algorithm. Unlike 

other conjugate gradient algorithms, which need a line search at each iteration, this 

technique utilizes a network training function called "trainscg" in MATLAB. This 

strategy changes bias and weight variables using the scaled conjugate gradient approach.  

If the weights, net input, and transfer functions contain derivatives, it can train any 

network. The quadratic approximation of the error function is used to determine the step 

size in the SCG algorithm, which further increases its robustness and independence from 

user-defined parameters [77]. 

3.8.4.2 Application of Adaptive Neuro Fuzzy Inference System 

ANFIS is a hybrid system that combines the advantages of both ANN and the 

fuzzy system [75]. As a result, ANFIS is more accurate at making predictions than 

ANN. In order to model data uncertainty, ANFIS essentially combines the learning 

capabilities of NNs with those of FIS, making it relatively easy to train an ANFIS model 

without the need for detailed subject-matter expertise. Furthermore, ANFIS has the 

benefit of utilizing both verbal and numerical information. Thus, the flexibility, 

nonlinearity, and quick learning of ANFIS are its benefits. 

However, the system becomes exceedingly challenging to execute when the 

number of inputs to the standard ANFIS’s fuzzy system rises. Additionally, the more 

inputs and membership functions are selected, the more training time is needed, and 

increases in the number of membership functions per input subsequently increases the 
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fuzzy rules. However, applying the ANFIS method for prediction, which is based on 

clustering, makes it simple to overcome these challenges. 

 Subtractive clustering is a prediction-making procedure that determines the 

number of clusters and their centre. It is also useful when data characteristics make 

clustering uncertain. The subtractive clustering method is an extension of the mountain 

clustering method proposed in [82]. In subtractive clustering, each data point is first 

evaluated as a prospective cluster centre candidate, after which each data point's 

potential is determined by calculating the density of the data points around it. This 

strategy is helpful in cases where it is unclear how many data distribution centres will 

be needed. 

The present thesis uses subtractive clustering. Because the approach is iterative, 

it assumes that any point could serve as the centre of a cluster, depending on where it is 

in relation to other data points. Subtractive clustering involves selecting the point with 

the best likelihood of being the cluster centre, then deleting every other point inside the 

first cluster centre’s radius (the radius being defined by the neighbourhoods of the 

centre). To find the next cluster’s centre, the potential of the other spots is recalculated. 

The calculation proceeds until all the data are contained within a cluster centre’s radius 

[78]. A step-by-step overview of the process is given below. 

1. Based on the density of nearby data points, determine the likelihood that each 

data point would define a cluster centre. Measure the density index 𝐷𝑖  corresponding to 

data 𝑥𝑖, as expressed in Equation 3.34. 
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𝐷𝑖 = ∑exp (−
‖𝑥𝑖 − 𝑥𝑗‖

2

(
𝑟𝑎
2⁄ )
2 )

𝑛

𝑗=1

 (3.34) 

where 𝑟𝑎 = positive number that represents the radius where all the data within it are 

considered neighbourhoods.  

2. Pick the data point that has the best chance of becoming the first cluster centre. 

Hence, the data point with the highest density measure is selected as the first centre 

cluster denoted xc1 and its density is Dc1. 

3. Eliminate all data points close to the first cluster centre. With the use of cluster 

influence range, the area is identified. 

4. Recalculate the density measurements for each data point xi and select the final 

point with the greatest potential to serve as the cluster centre expressed in Equation 3.35. 

 

𝐷𝑖
′ = 𝐷𝑖 − 𝐷𝑐𝑙exp (−

‖𝑥𝑖 − 𝑥𝑐1‖
2

(
𝑟𝑏
2⁄ )
2 ) (3.35) 

 

where 𝑟𝑏 = K𝑟𝑎 (K is a positive number, usually K = 1.5 [82]). All the points near the first 

cluster centre xc1 will have a low-density degree and thus will not be considered as the 

next cluster centres. Rather, the next cluster centre xc2 will be nominated after the density 

measure for each data point is recalculated. 
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5. Reiterate steps 3 and 4 until a cluster centre can affect all of the data. 

 For optimization purposes, the following parameters were changed to improve the 

performance: 

• Squash factor - Only find clusters that are far from each other. 

• Accept ratio - Only accept data points with a strong potential for being 

cluster centres. 

• Reject ratio - Reject data points if they do not have a strong potential for 

being cluster centres. 

In this thesis, the ANFIS is utilized using subtractive clustering, which is 

optimized by trial and error. The input parameters used in ANFIS are the same as those 

used for ANN.  

3.8.4.3 Application of Long Short-Term Memory Network 

The LSTM model employed within this study comprises five sequential input layers, each 

dedicated to an individual input. It also includes 100 LSTM layers, organized as 20 hidden 

layers per input, and further incorporates a fully connected layer and a regression layer serving 

as the output layer. The input layer's dimensions align with the number of inputs, which is set 

at five. This configuration facilitates the deployment of a cumulative total of 100 LSTM layers, 

employed to facilitate additive interactions and the acquisition of intricate enduring 

relationships within sequence and time series data. To adapt to varying input dimensions, the 

fully connected layer employs an 'auto' setting to automatically discern the number of inputs 

received from the LSTM layer, executing matrix multiplication and bias vector addition as part 

of its operations. The regression layer is responsible for training and computational tasks, 

ultimately yielding the network's output. Figure 27 presents a visual representation of the LSTM 

network and the architecture utilized in this study. 
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Figure 27: Structure of LSTM Model 

3.8.4.4 Application of K-Fold Cross-Validation 

K-fold cross-validation is applied on all the proposed models in order to improve 

training. The expanding window variation of K-fold is used. In this work, data for 30 

days (June 1-30, 2015) are used to train the networks using K-fold cross-validation with 

the value of K selected as 5. The application of K-fold is explained in following steps: 

1. The initial training window size is set to 25. 

2. The time series data are split into K (5) folds, as shown in Figure 28. The value 

of K is selected based on the tests performed by setting K between 5 and 10. With 

K equal to 5, the training error achieved remains almost the same with higher 

values of K. Also, with a high K, the computation time is much longer with no 

significant advantage. Hence K-5 was found to result in fewer training errors and 

shorter simulation time. 

3. For each fold:  
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a. The model is trained using the data from the start of the time series up to 

the end of the current fold.  

b. The next time step (day) is predicted using the trained model.  

c. The performance of the model is evaluated for the current fold.  

d. The training window is slid forward by one time step (day), incorporating 

the current fold's data. 

 

Figure 28: K-Fold Data Split Using Expanding Window for Time Series 

4. Steps 3a to 3d are repeated for all K (5) folds. 

5. The performance metrics obtained from each fold are aggregated to assess the 

overall model performance. Using this approach, all past data are assigned to the 

training set and successively consider each day as the test set. Using the 30-day 

length of the dataset and five folds, five distinct training and test divides are 

created, as illustrated in Figure 28. With this method, a variety of train/test splits 

are generated, and the error on each split is averaged to obtain a reliable prediction 

of the model error. In this way, the weights are adjusted to produce the most 
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accurate forecast and the model is trained and ready to be evaluated. The approach 

is presented in Figure 29. 

 

Figure 29: K-Fold Cross-Validation Methodology 

 

6. The final step is to forecast for day 31. The trained model with adjusted weights 

and an improved via K-fold technique is evaluated with test data to produce a 

forecast. Figure 30 summarizes the whole process from steps 1 to 6, which is 

adopted in this work to produce forecasting results using the proposed hybrid 

models. 

 

Figure 30: Forecasting Using K-Fold Cross-Validation for Model Training 

(for All Models) 
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3.8.4.5 Models 1-3: 3LCRNNL-ANFIS, 3LCRNNG-ANFIS, and 3LCRNNGL-

ANFIS 

The three-layered neural networks with cascaded inputs and recurrent feedbacks, 

as utilized in models 1-3, will have ten nodes in the first hidden layer and twenty nodes 

in the second hidden layer. The number of layers selected has been optimized to give 

the best performance. The optimization was conducted by applying the trial-and-error 

method, using different combinations of hidden and output layers in stage one with 

ANN. The training used scaled-conjugate gradient backpropagation due to its fast 

convergence with a large amount of data. As well, the hyperbolic tangent transfer 

function is used in the hidden layers to adjust weights in order to make the model 

synchronized with the input trends. To further improve adaptability, ANFIS is employed 

in the second stage of the hybrid models with subtractive clustering to make the 

comprehensive hybrid structure robust in order to generate accurate responses for 

forecasting.  

The input parameters used to generate forecasting in stage one of the hybrid 

models 1, 2, and 3 are wind speed, solar irradiation, and one hour/one day/two days 

before observation of the forecasted parameters (i.e., THD, h7, h11, and h13). After the 

network is trained using the K-fold technique and the data from the first 30 days, the 

31st day’s THD, h7, h11, and h13 for voltage and current are forecasted. Once ANN in 

the first stage of the models is trained, the results are forecasted.  

All five inputs are then fed to the ANFIS model in the second stage along with 

the sixth input, which are the forecasted results from stage one. This additional input 

from forecasting results from neural networks is expected to refine the final output. K-
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fold validation is used again for ANFIS training to reduce training error and produce 

the final forecasting results. 

3.8.4.6 Models 4-6: ANFIS-3LCRNNL, ANFIS-3LCRNNG, and ANFIS-

3LCRNNGL 

For the proposed hybrid models 4-6, ANFIS is used to forecast results for the 31st 

day in the first stage using the input variables wind speed, solar irradiation, and one 

hour/one day/two days before observation of the forecasted parameters (i.e., THD, h7, 

h11, and h13). The ANFIS results are fed into the neural networks along with the five 

inputs. Hence, the structure of ANN utilized in the second stage has 12 nodes in the first 

hidden layer and 24 nodes in the second. The scaled-conjugate gradient backpropagation 

method is used to train the ANNs and hyperbolic tangent is used as the transfer function 

to adjust weights in stage 2 for the proposed hybrid models 4-6. The K-fold technique 

is adopted in both stages to reduce training errors and improve the accuracy of the 

forecasting results.  

3.8.4.7 Models 7-8: LSTM-ANFIS and ANFIS-LSTM 

The proposed model-7 uses LSTM for forecasting in stage one and ANFIS in 

stage two. The five inputs are sent to the sequence input layer of LSTM. The LSTM 

model contains five input layers, 100 hidden layers in LSTM layer, one fully connected 

layer, and a regression layer as the output layer. K-fold validation is employed during 

training and the final forecast produced serves as input for stage two of hybrid model-

7. In stage two, ANFIS received input from LSTM model plus the five inputs used to 

predict the harmonics for day 31. The K-fold technique is utilized for ANFIS training, 
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along with subtractive clustering of the data. In this way, the ANFIS stage produces the 

final forecast for model-7.  

Model-8 utilizes the ANFIS model in stage one and the LSTM model in stage 

two. ANFIS produces forecasting results which are sent to the LSTM model. The LSTM 

network receives six inputs, including the five input parameters and another from the 

output of the ANFIS model. Hence, the LSTM network consists of six input layers, 120 

hidden layers in the LSTM layer, one fully connected layer, and a regression layer, all 

of which combine to produce the final output, which is the forecast for day 31.  

3.8.5 Evaluation of the Forecasting Models 

The forecasting models described in the previous sections are validated by 

statistically analysing the results. In the literature, several different methods are used to 

evaluate the accuracy. Some of these methods are used as a measure of accuracy in the 

present work and are elaborated below. The results from the literature will be used to 

compare and validate the findings in this thesis. 

3.8.5.1 Root Mean Squared Error (RMSE) 

The mean squared error minimizes the variance of the error distribution. With 

time step N, target sequence t, and forecast sequence f, the mean squared error can be 

calculated as: 

𝑀𝑆𝐸 =
1

𝑁
∑ 𝑒𝑖

2
𝑁

𝑖=1
= 
1

𝑁
∑ (𝑡𝑖 − 𝑓𝑖)

2
𝑁

𝑖=1
 (3.36) 

 

Similarly, the root mean squared error (RMSE) can be given as: 



87 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑡𝑖 − 𝑓𝑖)2

𝑁

𝑖=1
 (3.37) 

3.8.5.2 Mean Absolute Error (MAE) 

MAE measures the difference between the predicted power and the actual 

recorded power. With time step N, target sequence t, and forecast sequence f, the mean 

absolute error can be computed as: 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑓𝑖 − 𝑡𝑖|

𝑁

𝑖=1
 (3.38) 

3.8.6 Use of Software 

In this study, the generator models are taken from the MATLAB library and the 

neural network architecture figures are produced using MATLAB’s neural network 

toolbox. Furthermore, network training and results forecasting are performed using 

MATLAB script in conjunction with the neural network toolbox. For ANIS, the 

MATLAB ANFIS toolbar is used to generate the forecasts and Microsoft Excel is 

employed to generate all the graphs. 

3.8.7 Conclusion 

This chapter opened with a brief introduction of the generator models used in 

the thesis, followed by an explanation of the wind speed and solar irradiation blocks 

utilized as inputs to these models. An  overview of ANN was then presented, followed 

by a description of the three hybrid ANN models and their derived equations. ANN, 

ANFIS, and LSTM techniques were subsequently explained, along with the design 

concept of eight hybrid models that combined the ANFIS-ANN and ANFIS-LSTM 
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techniques. The closing portion of this chapter provided an overview of the 

implementation of several forecasting models and the methodology adopted here to 

utilize the data gathered from the simulation of generator models, aiming to improve 

model training using the K-fold cross-validation technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



89 

Chapter 4:  Results and Discussion 

4.1 Overview 

In this chapter, the simulation results of generator models are presented. From 

these models, the harmonics are extracted and data analysis is performed to identify the 

dominant harmonics. Furthermore, in order to validate forecasting results, the 

forecasting results are compared with forecasting techniques adopted in the literature, 

including [36], [43], and [46] for different types of ANN, [42] for ANFIS, and [41] and 

[45] for LSTM network approaches.  

Three neural networks are chosen from among the methods used in [36], [43] and 

[46] to accomplish the forecasting for this work. These networks are Cascaded 

Recurrent Neural Network with Local feedback (CRNNL), Cascaded Recurrent Neural 

Network with Global feedback (CRNNG), and Cascaded Recurrent Neural Network 

with Local and Global feedback (CRNNGL). In addition, the authors in [41] and [45] 

used the LSTM approach for prediction, whereas those in [42] used ANFIS. Later in the 

chapter, these five approaches are then employed to conduct a comparative analysis, in 

which the same data used in this thesis are utilized for all of the stated forecasting 

methods. Root mean squared error and mean absolute error are the indices used to 

compare the results. 

4.2 Generator Models 

The simulation of hybrid models with a total capacity of 3 MW (1.5 MW wind 

generator plus 1.5 MW PV array), as explained in the previous chapter, was performed 

to generate harmonics. To depict a real-world response, the actual wind speeds and solar 
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irradiance data were used as inputs for both hybrid models (Wind-DFIG-PV and Wind-

PMSG-PV). Figures 31 and 32 depict the generator models used in this thesis [67], [83]. 

The hybrid Wind-DFIG-PV model combines the individual Wind-DFIG model 

and PV model taken from the MATLAB library. The Wind-DFIG model contains 1.5 

MW wind turbines using a wound rotor DFIG coupled with an AC/DC/AC IGBT-based 

PWM converter. The stator winding is connected directly to the 60 Hz grid, while the 

rotor is fed at variable frequencies through the AC/DC/AC converter. For low and high 

wind speeds, the maximum extraction of energy is ensured by the optimization of the 

turbine speed. The wind speed signal in this model is generated by a signal generator 

block. 

Furthermore, the PV model consists of a 1.5 MW-rated PV array containing 518 

parallel strings. Each string has seven SunPower SPR-415E modules connected in 

series. The individual models for Wind-DFIG and PV were combined to be fed into the 

common grid. The grid is predefined in MATLAB and modelled as a typical distribution 

grid to add the effect of a nonlinear load. Thus, the grid acts as a nonlinear load and may 

have some impact on the output harmonics of the model. It is worth noting that any 

variations caused by the grid will not be considered in this work. The focus here is to 

simulate the harmonics that are generated by the generator model and study the effects 

of variations in the renewable sources (wind speed and solar irradiation).  

Similarly, the hybrid Wind-PMSG-PV model combines the individual Wind-

PMSG model and the PV model taken from the MATLAB library. The Wind-PMSG 

model contains 1.5 MW wind turbines directly coupled with a multipole PMSG without 

a gearbox. The grid connection is established via an AC/DC/AC converter consisting of 
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a diode rectifier, an internal DC-Link, and a PWM voltage-source inverter. This Wind-

PMSG model was combined with a PV model and commonly fed into the grid, as 

explained in the previous paragraph. Due to the huge size of the data, time-scaling has 

been performed to simulate 30 days of data training and generate and capture the 

harmonics. One sec in the simulation represents one hour in real time. For the 

simulation, there is a time step of five microseconds, which means that in one second, 

1/5e-6 = 200,000 steps are performed.   

 

Figure 31: Wind-DFIG-PV Model 

 

Figure 32: Wind-PMSG-PV Model 
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The models are taken from research in [67] and [83] and include detailed 

representations of power electronic IGBT converters. These models are well suited for 

observing harmonics and control system dynamic performance. To store and use the 

data for further analysis, all the data portraying variations in wind and solar parameters 

over 30 days (June 1-30, 2015) are split into datasets and the simulations are performed 

in sections. 

Figures 33 and 34 present a snapshot from the voltage waveform for a Wind-

DFIG-PV generator, with markers on phases 1, 2, and 3. The waveform which starts 

from 0 seconds is zoomed and snapped between 25 to 26 hours in order to visualize the 

presence of harmonics in the voltage waveform. The time frame of 25-26 hours is 

randomly selected to assess the condition of the output voltage waveform, as shown in 

Figures 33 and 34 below. 

 

Figure 33: Sample Voltage Waveform for Wind-DFIG-PV Model (Phases 1 and 

2) 
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Figure 34: Sample Voltage Waveform for Wind-DFIG-PV Model (Phases 1 and 

3) 

Figure 33 shows the measurement markers on phases 1 and 2, while Figure 34 

indicates the markers positioned at phases 1 and 3. The voltage value is displayed in the 

measurements window, where it can be observed that the voltages of all three phases 

are balanced. A 25 kV grid system is used for both generators. Figures 33 and 34 provide 

a profile of the output voltage, while Tables 9 and 10 later in this chapter present the 

amplitudes of individual harmonics and THD, as extracted from output waveforms. 

The presence of harmonics can be observed in Figures 33 and 34. To log data into 

the workspace, the MATLAB scope feature was used. Data was stored in format 

structure for further analysing. Figures 35 and 36 show a sample of the three-phase 

current waveform visualized between 15 and 16 hours to demonstrate the presence of 

harmonics in the current waveform generated for the Wind-DFIG-PV model. The 15- 

to 16-hour timeframe is randomly selected to assess the current and is different from the 
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25- to 26-hour timeframe selected to analyse the voltage. This random selection of 

different timeframes is performed to validate that the voltage and current signals are 

balanced. 

The presence of harmonics can also be observed in current and voltage 

waveforms. Figure 35 shows the markers in phases 1 and 2, while Figure 36 shows the 

markers in phases 1 and 3. The values of the current at the markers can be seen in the 

measurement window and appear to be equal. In proceeding further, our focus will 

remain on the single-phase voltage and current waveforms. All three-phase current 

waveforms are balanced, so an in-depth analysis and forecasting of single-phase current 

waveforms is sufficient to realize the overall impact. 

 

Figure 35: Sample Current Waveform for Wind-DFIG-PV Model (Phases 1 and 

2) 
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Figure 36: Sample Current Waveform for Wind-DFIG-PV (Phases 1 and 3) 

In order to extract harmonics, an FFT analysis was carried out on the data 

procured from the scope. The MATLAB command line was used to extract harmonic 

information. The employed FFT window consists of five cycles that extract the samples 

from voltage and current waveforms. The FFT samples were extracted for 720 hours 

(30 days), for a total of 7,200 samples, with 10 samples logged per hour for both current 

and voltage waveforms. The following harmonic parameters were extracted from the 

simulated signals: 

1- Total harmonic distortion for each sample. 

2- Magnitudes of 3rd, 5th, 7th, 9th, 11th and 13th harmonic component. 

4.3 Voltage Harmonics Results for Generator Models 

The total harmonic distortion extracted for both generator models is presented in 

Figures 37, 38, and 39, as shown below: 
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Figure 37: THD for Wind-DFIG-PV Model 

 

Figure 38: THD for Wind-DFIG-PV Model, Days 3 to 5 
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Figure 39: THD for Wind-PMSG-PV Model 

Figures 37 and 39 present the THD plot for all 30 days. Figure 38 shows the plot 

for days 3 to 5 in order to better visualize the plot. It should be noted that the high peaks 

are not spikes but are the resultant high THD. This can be caused by the nonlinear nature 

of the grid and variations in the input parameters of the generator, i.e., wind speed and 

solar irradiation. Tables 9 and 10 present the statistical parameters for the simulated 

data.  

Table 9: Statistical Parameters for Wind-DFIG-PV Generator Voltage 

Harmonics 

Wind-DFIG-PV Model Statistics  
THD h5 h7 h11 h13 

Mean 0.253% 3.670 V 3.792 V 7.276 V 9.988 V 

Median 0.247% 1.963 V 3.767 V 6.972 V 9.284 V 

Min 0.226% 0.027 V 0.025 V 0.173 V 0.054 V 

Max 0.30% 40.687 V 12.539 V 30.332 V 46.67 V 

Std. Deviation 0.029% 7.007 V 1.748 V 3.993 V 5.9 V 
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Table 10: Statistical Parameters for Wind-PMSG-PV Generator Voltage 

Harmonics 

Wind-PMSG-PV Model Statistics 
 THD h5 h7 h11 h13 

Mean 1.398% 3.422 V 5.978 V 8.362 V 14.879 V 

Median 1.397% 2.442 V 6.092 V 8.884 V 14.274 V 

Min 1.385% 0.007 V 0.261 V 0.099 V 0.437 V 

Max 1.492% 40.286 V 11.733 V 26.62 V 43.429 V 

Std. Deviation 0.005% 5.303 V 1.814 V 3.809 V 5.675 V 

 

The statistical indices show the distribution of simulated THD and 5th, 7th, 11th, 

and 13th harmonic amplitudes for the two generator models. It can be observed that the 

5th, 7th, 11th, and 13th harmonics denoted by h5, h7, h11, and h13, appear to be dominant 

as compared to the other harmonics. It also can be observed that the voltage harmonics 

presented have different ranges of values. For Wind-DFIG-PV, the THDV ranges 

between 0.226% and 0.30%, with a mean of 0.253%, a median of 0.247%, and a 

standard deviation of 0.029%. For Wind-PMSG-PV, the THDV ranges between 1.385% 

and 1.492%, with a mean of 1.398%, a median of 1.397%, and a standard deviation of 

0.005%. 

Furthermore, for the individual harmonics, harmonic h13 has the largest 

amplitude range (0.054V to 46.67V) for the Wind-DFIG-PV model, whereas it is 

0.437V to 43.429V for the Wind-PMSG-PV model with the highest mean, median, and 

standard deviation. It can also be concluded that h7, h11, and h13 are dominant 

harmonics for both generator models. The high standard deviation for THD, h7, h11, 

and h13 depicts the high dispersion of simulated data and these parameters will be 

forecasted. 



99 

4.4 Current Harmonics Results for Generator Models 

In this section, the current total demand distortion results will be presented for 

both generator models, as shown in Figures 40, 41, and 42: 

 
Figure 40: TDD for Wind-DFIG-PV Model 

 

Figure 41: TDD for Wind-DFIG-PV Model, Days 3 to 5 
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Figure 42: TDD for Wind-PMSG-PV Model 

Figures 40 and 42 present the TDD plot for all 30 days. Figure 41 shows a 

magnified version of the plot of days 3 to 5. The high peaks are the result of the nonlinear 

nature of the grid and the variations in wind speed and solar irradiation. To analyse the 

dominant harmonics for the current waveform, the statistical indices for the results are 

presented in Tables 11 and 12 below: 

Table 11: Statistical Parameters for Wind-DFIG-PV Generator Current 

Harmonics 

 
TDD h5 h7 h11 h13 

Mean 53.126% 0.309 A 0.230 A 0.029 A 0.323 A 

Median 51.091% 0.2 A 0.228 A 0.267 A 0.300 A 

Min 4.949% 0.003 A 0.002 A 0.006 A 0.003 A 

Max 100% 3.439 A 0.748 A 1.158 A 1.516 A 

Std. Deviation 20.706% 0.589 A 0.107 A 0.152 A 0.1913 A 
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Table 12: Statistical Parameters for Wind-PMSG-PV Generator Current 

Harmonics 

 TDD h5 h7 h11 h13 

Mean 46.325% 0.288 A 0.359 A 0.320 A 0.482 A 

Median 44.29% 0.205 A 0.367 A 0.339 A 0.463 A 

Min 2.865% 0.002 A 0.006 A 0.004 A 0.018 A 

Max 100% 3.421 A 0.703 A 1.021 A 1.406 A 

Std. Deviation 21.408% 0.446 A 0.109 A 0.146 A 0.183 A 

Tables 11 and 12 provide a summary of the current harmonics for the two models. 

As shown, the 5th, 7th, 11th, and 13th harmonics are dominant compared to the other 

harmonics. The spikes observed in Figures 39 and 40 indicate spikes in the current total 

harmonic distortion of the simulation of the generator model, caused by a sudden 

variation in input variables (i.e., solar irradiation and wind speed). For Wind-DFIG-PV, 

the current THD varies between 4.949% and 100% for the Wind-DFIG-PV model and 

2.865% and 100% for the Wind-PMSG-PV model. For the current waveform, h7, h11, 

and h13 are the dominant harmonics for both generators.   

4.5 Utilization of Artificial Neural Networks 

The authors in [36], [43], and [46] applied ANN models to forecast harmonics. 

Three neural networks are chosen from among the methods utilized in these papers to 

forecast and compare. The data used to forecast is the same 30-day data employed in 

this thesis, generated by the simulation of two hybrid models. The five inputs used are 

wind speed, solar irradiation, and one hour/one day/two days before the observation of 

the forecasted parameters. Each version of ANN has a first hidden layer with ten nodes 

and a second layer with twenty nodes.  



102 

4.6 Utilization of the Long Short-Term Memory Network 

The authors in [41] and [45] utilize the deep-learning LSTM method to forecast 

harmonics. The same simulated data and four inputs are used to generate forecasting for 

THD, h7, h11, and h13 for voltage and current for the two generator models. The LSTM 

utilized consists of five sequence input layers, 100 LSTM layers, one fully connected 

layer, and a regression layer as an output layer. Since there are five inputs, the size of 

the input layer is set to five. The 100 hidden layers of the LSTM layer are utilized to 

execute additive interactions and learn long-term relationships between sequence and 

time series data. The forecast is generated in MATLAB and presented in sections 4.8 

and 4.9 for further analysis and comparison with the hybrid models used in this thesis. 

4.7 Utilization of an Adaptive Neuro-Fuzzy Inference System 

The study in [42] employs ANFIS architecture to forecast voltage and current 

THD/TDD. In order to draw comparisons, ANFIS is utilized with the data used in this 

thesis with the five inputs delineated in previous sections. Subtractive clustering is used 

to optimize the training process. THD/TDD, h7, h11, and h13 are forecasted. The results 

produced from the ANFIS technique are presented in sections 4.8 and 4.9 to draw a 

comparison with the models proposed in this thesis.  
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4.8 Harmonics Forecasting Results and Analysis – Wind-DFIG-PV 

4.8.1 Voltage Harmonics 

The actual versus forecast curves for all eight proposed hybrid models for wind 

DFIG-PV are presented in Figures 43, 44, 45, and 46, along with the forecasting result 

curves of all the forecasting techniques found in the literature, i.e., ANN – CRNNL, 

ANN – CRNNG, ANN – CRNNGL LSTM, and ANFIS. A total of four harmonic 

variables are forecasted, namely, THD followed by the dominant individual harmonics 

7th (h7), 11th (h11), and 13th (h13).  

 

Figure 43: THDV – Actual vs Forecast curves for Wind-DFIG-PV 
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Figure 44: Voltage 7th Harmonic – Actual vs Forecast Curves for Wind-DFIG-PV 

 

Figure 45: Voltage 11th Harmonic – Actual vs Forecast Curves for Wind-DFIG-PV 
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Figure 46: Voltage 13th Harmonic – Actual vs Forecast Curves for Wind-DFIG-PV 

To further analyse the error profile and accuracy of these models and validate 

results, Table 13 presents the metrics calculated (RMSE and MAE) for the eight 

proposed models in this thesis and the forecasting techniques employed by other 

researchers in the literature. From Table 13, it can be observed that model-8 produces 

the best results with the lowest RMSE and MAE for THD (0.0287 and 0.0076), h7 

(0.0372 and 0.03), and h13 (0.0311 and 0.0250) forecast, while model-7 produces the 

second-best results for THD (0.0295 and 0.0077) and h13 (0.0318 and 0.0256), and 

model-2 for h7 (0.0383 and 0.0304), respectively. For h11, model-1 produces the best 

result with the lowest THD (0.0379) and MAE (0.0307), whereas model-8 produces the 

second-best results, with an RMSE of 0.0396 and a MAE of 0.0324. It is obvious, 

therefore, that model-8 is the most accurate forecasting model for all the voltage 
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harmonic forecasting parameters, as it produces the best performance for THD, h7, and 

h13 and the second-best results for h11.   

Table 13: Forecasting Results Comparison Voltage Harmonics – Wind-DFIG-PV 

Forecasting 
Models 

Voltage Harmonics 
Reference / 
Publication THD h7 h11 h13 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

Model-1 
(CRNNL-ANFIS) 

0.0301 0.0084 0.0404 0.0320 0.0379 0.0307 0.0341 0.0261 
Proposed 
Hybrid Model 

Model-2 
(CRNNG-ANFIS) 

0.0304 0.0093 0.0383 0.0304 0.0443 0.0367 0.0350 0.0272 
Proposed 
Hybrid Model 

Model-3 
(CRNNGL-ANFIS) 

0.0301 0.0089 0.0386 0.0311 0.0429 0.0336 0.0322 0.0262 
Proposed 
Hybrid Model 

Model-4 
(ANFIS-CRNNL) 

0.0304 0.0089 0.0413 0.0331 0.0415 0.0325 0.0353 0.0289 
Proposed 
Hybrid Model 

Model-5 
(ANFIS-CRNNG) 

0.0301 0.0088 0.0387 0.0308 0.0436 0.0348 0.0356 0.0277 
Proposed 
Hybrid Model 

Model-6 
(ANFIS-CRNNGL) 

0.0302 0.0087 0.0383 0.0305 0.0435 0.0356 0.0329 0.0265 
Proposed 
Hybrid Model 

Model-7 
(LSTM-ANFIS) 

0.0295 0.0077 0.0403 0.0328 0.0428 0.0346 0.0318 0.0256 
Proposed 
Hybrid Model 

Model-8 
(ANFIS-LSTM) 

0.0287 0.0076 0.0372 0.0300 0.0396 0.0324 0.0311 0.0250 
Proposed 
Hybrid Model 

LSTM 0.0305 0.0095 0.0459 0.0344 0.0470 0.0380 0.0368 0.0273 [41] & [45] 

ANFIS 0.0306 0.0099 0.0423 0.0342 0.0448 0.0371 0.0378 0.0297 [42] 

ANN – CRNNL 0.0310 0.0104 0.0427 0.0329 0.0489 0.0357 0.0396 0.0314 
[36], [43] & 
[46] 

ANN – CRNNG 0.0307 0.0101 0.0481 0.0368 0.0526 0.0417 0.0394 0.0296 
[36], [43] & 
[46] 

ANN – CRNNGL 0.0321 0.0121 0.0442 0.0360 0.0473 0.0370 0.0388 0.0294 
[36], [43] & 
[46] 

- Yellow Highlight denotes the best performing model 

- Blue Highlight denotes the second-best performing model 

Each forecasting parameter has its own dataset, and each harmonic parameter is 

forecasted separately. THD has its own training and testing dataset, with the forecasting 

model simulated to produce forecast results for THD. A 30-day dataset containing the 
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training parameters for THD are used to train the model and the model is tested to 

produce a THD forecast. The same process is repeated for h7, h11, and h13, but the data 

for each parameter are different. Still, in most cases, model-8 (ANFIS-LSTM) is the 

best. In those few cases when model-8 is not the best, it is second best. 

The results produced by forecasting techniques used in the literature are also 

presented in Table 13. By contrasting the results with CRNNL, CRNNG, CRNNGL, 

LSTM, and ANFIS, we can easily see the benefit of utilizing a hybrid technique. For 

THD and h13, LSTM produces the most accurate forecasting result (RMSE – 0.0301 

for THD and 0.0368 for h13) compared to all other forecasting techniques. Moreover, 

for h7 and h11, ANFIS appears to be the most accurate individual forecasting model, 

with an RMSE of 0.0423 for h7 and 0.0448 for h11, respectively. Even though LSTM 

and ANFIS perform best among the individual models tested, the results produced by 

the proposed hybrid models surpass the accuracy of any other individual model. 

Additionally, model-7 (LSTM-ANFIS) and model-8 (ANFIS-LSTM) manifest the best 

forecasting results, with model-8 performing best overall.  

The results indicate that the hybrid models proposed in this work produce better 

results than any of the individual forecasting models that were used by other authors in 

literature. Our analysis of the results clearly shows that model-8 performs the best 

among all tested models. Furthermore, LSTM (THD and h13) and ANFIS (h7 and h11) 

are shown to be better performing models among the individual forecasting techniques. 

Table 14 presents the percentage improvements offered by model-8 compared to the 

singular models in the literature, as tested in this thesis. The results validate the model-

8 approach and illustrate the benefit of utilizing a hybrid model over singular models. 
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Table 14: Best Forecasting Model for Voltage Harmonics – Wind-DFIG-PV 

Model / 
Forecasting 
Parameter 

RMSE 
RMSE 

(% Improvement) 

LSTM ANFIS CRNNL CRNNG CRNNGL 

Model-8 
(THD) 

0.0287 
0.0301 
(4.46%) 

0.0305 
(5.9%) 

0.0301 
(7.48%) 

0.0307 
(6.56%) 

0.0321 
(10.63%) 

Model-8 
(h7) 

0.0372 
0.0459 

(18.97%) 
0.0423 

(12.03%) 
0.0427 

(12.98%) 
0.0481 

(22.67%) 
0.0442 

(15.96%) 

Model-8 
(h11) 

0.0396 
0.0470 

(15.71%) 
0.0448 

(11.53%) 
0.0489 

(18.95%) 
0.0526 

(24.65%) 
0.0473 

(16.35%) 

Model-8 
(h13) 

0.0311 
0.0368 

(15.51%) 
0.0378 

(17.77%) 
0.0396 
(21.5%) 

0.0394 
(21.13%) 

0.388 
(19.91%) 

As shown in Table 14, model-8 offers improvements over all the individual 

models. For instance, for THD and h13, model-8 offer improvements of 4.46% and 

15.51% over LSTM forecasting, respectively. Similarly, for h7 and h11, model-8 offers 

12.03% and 11.53% improvements, respectively, over ANFIS, which is the best 

performing model for h7 and h11. Likewise, the percentage improvements 

demonstrated by model-8 over all the other models is evident and establishes the 

superiority of the proposed hybrid models over the forecasting techniques used in the 

literature. 

4.8.2 Current Harmonics 

This section presents the actual versus forecasted curves for the individual 

forecasting methods in the literature as well as the eight proposed hybrid models used 

to predict the TDD, h7, h11, and h13 harmonics. Figures 47, 48, 49, and 50 show the 

forecast curves, and Table 15 summarises the performance of each model. 
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Figure 47: TDD – Actual vs Forecast Curves for Wind-DFIG-PV 

 

Figure 48: Current 7th Harmonic – Actual vs Forecast Curves for Wind-DFIG-PV 



110 

 

Figure 49: Current 11th Harmonic – Actual vs Forecast Curves for Wind-DFIG-PV 

 

Figure 50: Current 13th Harmonic – Actual vs Forecast Curves for Wind-DFIG-PV 
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Model-8 fits the actual curve better than the other models for TDD and h7 

forecasts, as seen in Figures 48 and 50. Table 15 shows that model-8 has the lowest 

RMSE and MAE recorded for TDD (4.6585 and 2.6165) and h7 (8.2918 and 5.9852), 

respectively. Model-8 is also the second-best performing model for h11 and h13. Model-

6 produced the lowest RMSE and MAE (7.7588 and 6.1934, respectively) for h11, while 

model-7 had the lowest RMSE amd MAE for h11 (6.4145 and 5.2047, respectively). 

For individual models, LSTM produced the best results for all current harmonic 

forecasting parameters. Moreover, like the results in voltage harmonics, all the hybrid 

models outperformed the individual models in accuracy, with the exception of TDD, 

where LSTM, with an RMSE of 6.5412, produced better results than model-1 (RMSE 

– 6.922). Other than for this case, the results clearly showed the advantage of using 

hybrid techniques over individual methods.   
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Table 15: Forecasting Results Comparison of Current Harmonics – Wind-DFIG-

PV 

Forecasting 
Models 

Current Harmonics 
Reference / 
Publication 

TDD h7 h11 h13 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

Model-1 
(CRNNL-ANFIS) 

6.9220 5.1232 8.9658 6.9100 9.0882 7.5633 7.1648 5.8910 
Proposed 
Hybrid Model 

Model-2 
(CRNNG-ANFIS) 

6.1819 3.8005 9.3928 7.4610 8.7084 6.7708 7.5974 5.9389 
Proposed 
Hybrid Model 

Model-3 
(CRNNGL-ANFIS) 

6.0481 4.4844 8.7334 6.5946 9.1029 7.1864 6.8495 5.4993 
Proposed 
Hybrid Model 

Model-4 
(ANFIS-CRNNL) 

6.5231 4.0152 9.5348 7.1449 9.1466 7.4102 7.6811 6.0565 
Proposed 
Hybrid Model 

Model-5 
(ANFIS-CRNNG) 

5.6288 4.1031 9.3329 7.2471 8.6930 7.0459 7.3543 5.8698 
Proposed 
Hybrid Model 

Model-6 
(ANFIS-CRNNGL) 

5.2447 3.2106 8.9654 6.5784 7.7588 6.1934 7.1701 5.8538 
Proposed 
Hybrid Model 

Model-7 
(LSTM-ANFIS) 

5.0956 2.7589 8.9003 6.6133 8.8975 7.4692 6.4145 5.2047 
Proposed 
Hybrid Model 

Model-8 
(ANFIS-LSTM) 

4.6585 2.6165 8.2918 5.9852 8.4149 6.7443 6.5160 5.2834 
Proposed 
Hybrid Model 

LSTM 6.5412 4.1523 9.5897 7.3695 9.2142 7.5290 7.6975 5.8972 [41] & [45] 

ANFIS 7.2423 5.7811 9.9177 7.6614 9.5265 7.8082 8.3274 6.6013 [42] 

ANN – CRNNL 8.8514 5.7865 10.0224 7.7198 10.1251 8.1193 7.9709 6.2420 
[36], [43] & 
[46] 

ANN – CRNNG 7.0190 5.3318 9.8278 7.4801 10.0475 8.2530 9.0973 6.7163 
[36], [43] & 
[46] 

ANN - CRNNGL 7.1629 5.5188 9.7003 7.3899 10.4892 8.6382 8.1300 6.2536 
[36], [43] & 
[46] 

- Yellow Highlight denotes the best performing model 

- Blue Highlight denotes the second-best performing model 

As previously mentioned, each forecasting parameter is associated with a 

dedicated dataset, and the harmonic parameters are individually predicted. In most 

cases, model-8 (ANFIS-LSTM) emerges as the top-performing choice, but there are a 

few instances where a different model outperforms it. Nevertheless, it is important to 

note that even when model-8 is not the best-performing option, it consistently ranks as 
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the second-best choice. Further, it can be shown that after model-8, model-7 was proven 

to be effective with accurate forecasting results. Model-7 was the best performing model 

for h13 and the second-best for TDD. It was also significantly accurate for forecasting 

h7 and h11 compared to the other tested models.  

From these results, it may be concluded that all eight proposed models predicted 

current total harmonic distortion correctly and produced improved results in comparison 

to the individual models adopted in the literature, showing relatively low RMSE and 

MAE. Model-8 was the best performing model overall. To further analyse the results, 

Table 16 presents a percentage improvement of model-8 over individual methods. 

Table 16: Best Forecasting Model for Current Harmonics – Wind-DFIG-PV 

Model / 
Forecasting 
Parameter 

RMSE 
RMSE 

(% Improvement) 

LSTM ANFIS CRNNL CRNNG CRNNGL 

Model-8 
(TDD) 

4.6585 
6.5412 
(28.78%) 

7.2423 
(35.68%) 

8.8514 
(47.37%) 

7.019 
(33.63%) 

7.1629 
(34.96%) 

Model-8 
(h7) 

8.2918 
9.5897 
(13.53%) 

9.9177 
(16.39%) 

10.0224 
(17.27%) 

9.8278 
(15.63%) 

9.7003 
(14.52%) 

Model-8 
(h11) 

8.4149 
9.2142 
(8.67%) 

9.5265 
(11.67%) 

10.1251 
(16.89%) 

10.0475 
(16.25%) 

10.4892 
(19.78%) 

Model-8 
(h13) 

6.5160 
7.6975 
(15.35%) 

8.3274 
(21.75%) 

7.9709 
(18.25%) 

9.0973 
(28.37%) 

8.13 
(19.85%) 

Again, model-8 has been shown to produce superior results over all other models, 

and LSTM produces the best forecast compared to all individual models. At the same 

time, model-8 offers percentage improvements over LSTM forecasts of 28.78%, 

13.53%, 8.67%, and 15.35% for THD, h7, h11, and h13 respectively. Likewise, the 

superior performance of model-8 over all other models is evident, clearly showing that 

the proposed hybrid models are superior to the forecasting techniques used in the 

literature. 
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4.9 Harmonics Forecasting Results – Wind-PMSG-PV Model 

4.9.1 Voltage Harmonics 

 The actual versus predicted curves for all eight of the proposed hybrid models 

and the individual forecasting methods in the literature for the Wind-PMSG-PV 

generator model are shown in Figures 51, 52, 53, a nd 54 for Voltage Total Harmonic 

Distortion (THD) and 7th, 11th, and 13th voltage harmonics (h7, h11, and h13). The 

forecast results are followed by Table 17, in which the error profile for each forecast 

made for each variable is presented.  

 

Figure 51: THDV – Actual vs Forecast Curves Wind-PMSG-PV Model 
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Figure 52: Voltage 7th Harmonic – Actual vs Forecast Curves Wind-PMSG-PV 

 
Figure 53: Voltage 11th Harmonic – Actual vs Forecast Curves Wind-PMSG-PV 
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Figure 54: Voltage 13th Harmonic – Actual vs Forecast Curves Wind-PMSG-PV 

As previously elucidated, each forecasting parameter is linked to its distinct 

dataset, and the forecasting of harmonic parameters is carried out individually. Model-

8 (ANFIS-LSTM) typically exhibits superior performance across the majority of cases. 

Nonetheless, exceptions do occur, where an alternative model surpasses the 

performance even of model-8. It is noteworthy, however, that model-8 consistently 

maintains a commendable second-place ranking, irrespective of its relative 

performance. Table 17 shows that the overall performance of all hybrid models 

proposed in this thesis has surpassed the forecast produced by any other individual 

models adopted in the literature. 
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Table 17: Forecasting Results Comparison of Voltage Harmonics – Wind-PMSG-PV 

Forecasting 
Models 

Voltage Harmonics 
Reference / 
Publication 

THD h7 h11 h13 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

Model-1 
(CRNNL-ANFIS) 

0.00433 0.00175 0.01114 0.00867 0.00819 0.00576 0.00864 0.00678 
Proposed 
Hybrid Model 

Model-2 
(CRNNG-ANFIS) 

0.00435 0.00171 0.01114 0.00831 0.00817 0.00644 0.00726 0.00557 
Proposed 
Hybrid Model 

Model-3 
(CRNNGL-ANFIS) 

0.00426 0.00170 0.01071 0.00835 0.0075 0.00567 0.00870 0.00649 
Proposed 
Hybrid Model 

Model-4 
(ANFIS-CRNNL) 

0.00430 0.00185 0.01116 0.00827 0.00816 0.00618 0.00832 0.00622 
Proposed 
Hybrid Model 

Model-5 
(ANFIS-CRNNG) 

0.00432 0.00175 0.01128 0.00888 0.00790 0.00591 0.00809 0.00567 
Proposed 
Hybrid Model 

Model-6 
(ANFIS-CRNNGL) 

0.00429 0.00174 0.01155 0.00849 0.00819 0.00602 0.00843 0.00604 
Proposed 
Hybrid Model 

Model-7 
(LSTM-ANFIS) 

0.00422 0.00162 0.01018 0.00808 0.00798 0.00608 0.007 0.00521 
Proposed 
Hybrid Model 

Model-8 
(ANFIS-LSTM) 

0.00421 0.00156 0.0097 0.0075 0.00767 0.00568 0.00704 0.00556 
Proposed 
Hybrid Model 

LSTM 0.00436 0.00192 0.01314 0.01005 0.00956 0.00734 0.00910 0.00674 [41] & [45] 

ANFIS 0.00486 0.00247 0.01304 0.00962 0.00843 0.00630 0.00965 0.00742 [42] 

ANN – CRNNL 0.00473 0.00220 0.01462 0.01141 0.00914 0.00690 0.00874 0.00651 
[36], [43] & 
[46] 

ANN – CRNNG 0.00447 0.00198 0.01140 0.00894 0.00894 0.00701 0.00918 0.00673 
[36], [43] & 
[46] 

ANN – CRNNGL 0.00483 0.00238 0.01209 0.00916 0.00861 0.00667 0.00983 0.00744 
[36], [43] & 
[46] 

- Yellow Highlight denotes the best performing model 

- Blue Highlight denotes the second-best performing model 

It is obvious that model-8 is the best performing model. It uses ANFIS-LSTM, 

with the lowest RMSE and MAE (0.00421 and 0.00156 for THD, and 0.0097 and 0.0075 

for h7, respectively). Model-8 is the second-best performing model for h11 and h13 as 

well. Furthermore, model-8 outperforms all other models for h11, with an RMSE of 

0.0075 and a MAE of 0.00567. For h13, model-7 is the best-performing model with the 

fewest errors (RMSE – 0.007 and MAE – 0.00521). As for the individual models, for 
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THD the best performing model is LSTM, while for h7 the best-performing model is 

CRNNG, for h11 it is ANFIS, and for h13 it is CRNNL.  

From the results presented, it is apparent that all hybrid models perform better 

than any of the individual forecasting techniques. Besides model-8, the results produced 

by model-7 are also significant, ranking it second behind model-8 for THD and h7 on 

top of it being the best model for h13. Table 18 presents the percentage improvement of 

model-8 over the individual models.  

Table 18: Best Forecasting Model for Voltage Harmonics – Wind-PMSG-PV 

Model / 
Forecasting 
Parameter 

RMSE 
RMSE 

(% Improvement) 

LSTM ANFIS CRNNL CRNNG CRNNGL 

Model-8 
(THD) 

0.00421 
0.00436 
(3.39%) 

0.00486 
(13.41%) 

0.00473 
(10.99%) 

0.00447 
(5.93%) 

0.00483 
(12.95%) 

Model-8 
(h7) 

0.0097 
0.001314 
(26.18%) 

0.01304 
(25.59%) 

0.01462 
(33.64%) 

0.0114 
(14.9%) 

0.01209 
(19.75%) 

Model-8 
(h11) 

0.00767 
0.00956 
(19.76%) 

0.00843 
(8.97%) 

0.00914 
(16.06%) 

0.00894 
(14.13%) 

0.00861 
(10.87%) 

Model-8 
(h13) 

0.00704 
0.0091 
(22.58%) 

0.00965 
(27.02%) 

0.00874 
(19.4%) 

0.00918 
(23.27%) 

0.00983 
(28.3%) 

Table 18 shows the error outline and percentage improvement comparing the 

prediction of model-8 and individual models tested. For THD, model-8 offers a 3.39% 

improvement over LSTM, which is the best performing individual model. Similarly, for 

h7, the percentage improvement of model-8 is 14.9% in contrast with the CRNNG 

forecast. For h11, the results for model-8 delivers an 8.97% improvement over ANFIS. 

Finally, for h13 there is a 19.4% improvement compared to CRNNL.     

4.9.2 Current Harmonics 

The actual vs anticipated curves for the eight proposed hybrid models and five 

individual models adopted from the literature and used to predict the TDD, h7, h11, and 
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h13 for the Wind-PMSG-PV model current harmonics are presented in this section. The 

curves are contained in Figures 55, 56, 57, and 58, and the performance stats for 

forecasting are given in Table 19. 

 
Figure 55: TDD – Actual vs Forecast Curves Wind-PMSG-PV Model 
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Figure 56: Current 7th Harmonic – Actual vs Forecast Curves Wind-PMSG-PV 

 
Figure 57: Current 11th Harmonic – Actual vs Forecast Curves Wind-PMSG-PV 
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Figure 58: Current 13th Harmonic – Actual vs Forecast Curves Wind-PMSG-PV 

As previously explained, every forecasting parameter is associated with its own 

unique dataset, and the prediction of harmonics parameters is conducted separately. 

Model-8 (ANFIS-LSTM) typically demonstrates superior performance usually. 

Nevertheless, there are occasional exceptions where an alternative model outperforms 

it. However, even in those cases, model-8 consistently maintains a strong second-place 

position. 

As seen in Figures 58, 59, 60, and 61 and in Table 19, model-8 (ANFIS-LSTM) 

produces the best results, with the lowest RMSE for TDD (3.2011), h7 (1.5157), and 

h11 (7.2851) and the second-best results for h13 (6.334). Furthermore, model-6 is the 

best performing model for h13, with the lowest RMSE (6.3128). Among individual 
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models, LSTM produces the best results for TDD, with an RMSE of 3.907, while 

ANFIS produces the best results for h7 (11.1411) and h13 (7.9227) and CRNNGL for 

h11 (7.8883).  

Table 19: Forecasting Results Comparison of Current Harmonics – Wind-PMSG-PV 

Forecasting 
Models 

Current Harmonics 
Reference / 
Publication 

THD h7 h11 h13 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

Model-1 
(CRNNL-ANFIS) 

4.1810 2.8774 9.9493 7.5579 7.5972 5.7729 7.7737 5.6785 
Proposed 
Hybrid Model 

Model-2 
(CRNNG-ANFIS) 

4.0467 2.5420 10.0251 7.7102 7.5554 5.6338 7.3167 5.3258 
Proposed 
Hybrid Model 

Model-3 
(CRNNGL-ANFIS) 

4.0216 2.6187 9.9738 7.5416 7.6368 5.7169 6.9230 5.1626 
Proposed 
Hybrid Model 

Model-4 
(ANFIS-CRNNL) 

4.4713 2.9202 9.9783 7.6046 7.8226 5.7972 7.2860 5.4825 
Proposed 
Hybrid Model 

Model-5 
(ANFIS-CRNNG) 

4.4286 2.9518 10.6533 8.2755 7.8091 5.9181 7.4949 5.5060 
Proposed 
Hybrid Model 

Model-6 
(ANFIS-CRNNGL) 

4.4473 3.2956 9.9871 7.7436 7.4069 5.5623 6.3128 4.9119 
Proposed 
Hybrid Model 

Model-7 
(LSTM-ANFIS) 

3.2268 1.5521 10.2656 7.8567 7.6828 5.5971 7.0060 5.3960 
Proposed 
Hybrid Model 

Model-8 
(ANFIS-LSTM) 

3.2011 1.5157 9.5301 7.4151 7.2851 5.5141 6.3340 4.9965 
Proposed 
Hybrid Model 

LSTM 3.9070 2.1487 11.3811 8.2053 8.5276 6.2978 7.9486 5.8163 [41] & [45] 

ANFIS 4.7846 3.0990 11.1411 8.2681 8.2793 6.4015 7.9227 5.8418 [42] 

ANN – CRNNL 5.2654 3.4145 12.2311 8.9429 9.3007 7.2585 8.1233 6.1220 
[36], [43] & 
[46] 

ANN – CRNNG 6.1329 4.3554 12.0196 9.1486 8.3457 6.5548 8.1785 6.3640 
[36], [43] & 
[46] 

ANN – CRNNGL 4.8780 3.6053 11.5214 8.6189 7.8883 6.0364 7.9894 6.3652 
[36], [43] & 
[46] 

- Yellow Highlight denotes the best performing model 

- Blue Highlight denotes the second-best performing model 
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The results indicate that the performance of the proposed hybrid models surpasses 

that of any individual models. Model-8 again proves to be the best performing model in 

comparison to the other hybrid models. To further the analysis, Table 20 presents the 

percentage improvement of model-8 results over all the individual models. 

Table 20: Best Forecasting Model for Current Harmonics – Wind-PMSG-PV 

Model / 
Forecasting 
Parameter 

RMSE 
RMSE 

(% Improvement) 

LSTM ANFIS CRNNL CRNNG CRNNGL 

Model-8 
(TDD) 

3.2011 
3.907 
(18.07%) 

4.7846 
(33.1%) 

5.2654 
(39.21%) 

6.1329 
(47.8%) 

4.878 
(34.38%) 

Model-8 
(h7) 

9.5301 
11.3811 
(16.26%) 

11.1411 
(14.46%) 

12.2311 
(22.08%) 

12.0196 
(20.71%) 

11.5214 
(17.28%) 

Model-8 
(h11) 

7.2851 
8.5276 
(14.57%) 

8.2793 
(12.01%) 

9.3007 
(21.67%) 

8.3457 
(12.71%) 

7.8883 
(7.65%) 

Model-8 
(h13) 

6.334 
7.9486 
(20.31%) 

7.9227 
(20.05%) 

8.1233 
(22.03%) 

8.1785 
(22.55%) 

7.9894 
(20.72%) 

As shown in Table 20, the percentage improvement of model-8 over individual 

models is evident. Comparing model-8’s performance with that of the best performing 

individual model, for TDD, model-8 shows an 18.07% improvement over LSTM, while 

for h7 and h13, the percentage improvement is 14.46% and 20.05%, respectively, over 

ANFIS. For h11, model-8 displays 7.65% improved results over CRNNGL.  

4.9.3 Conclusion 

This chapter examined the harmonics analysis within the context of the 

simulated results generated by two generator models: Wind-DFIG-PV and Wind-

PMSG-PV. The results revealed variations in THD and TDD and identified the 

dominant harmonics as h7, h11, and h13 in voltage and current. Additionally, an 

extensive explanation of the forecasting methodology was provided. 
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Also in this chapter, the results obtained from the eight hybrid prediction models 

introduced in this thesis were presented. These results were subjected to validation 

through a comparison with the forecasting methods utilized by other researchers in the 

literature. Remarkably, all eight hybrid models proposed in this thesis surpassed the 

performance of individual models employed by the authors in [36], [41], [42], [43], [45], 

and [46] for predicting the same data and parameters, as evidenced by the reported 

outcomes. Model-8, which incorporates ANFIS-LSTM, emerged as the top-performing 

model among all those proposed. 

Furthermore, the analysis revealed that among the individual models, the ANFIS 

and LSTM methods consistently delivered forecasts with higher accuracy compared to 

other singular forecasting techniques. For the Wind-DFIG-PV generator, model-8 

demonstrated superior performance in predicting THD, TDD, voltage, and current 7th 

harmonic, as well as voltage 13th harmonic. As well, model-8 secured the second-best 

position in other cases, such as the voltage 11th harmonic and current 11th and 13th 

harmonics. In the Wind-PMSG-PV generator, model-8 outperformed in forecasting 

THD, TDD, voltage, and current 7th harmonic, along with current 11th harmonic, while 

ranking second-best in other scenarios, including voltage 11th and 13th harmonic and 

current 13th harmonic. 

Ensuring the trustworthiness of the results is paramount in any scientific study, 

and the validity and accuracy of the outcomes are rigorously scrutinized. To verify the 

credibility of the results obtained from models 1-8, especially considering the observed 

minor discrepancies and potential deviations from actual values in figures 52, 53, 54, 

56, 57 & 58, the results are compared with existing models in literature as benchmark. 
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This comparative analysis depicted in tables 17, 18, 19 & 20 serves as an additional 

layer of validation, ensuring consistency and reliability across different modelling 

approaches. The tables feature quantitative metrics, including Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE), employed for a precise evaluation of model 

accuracy. These metrics reveal notable distinctions in results generated by different 

models, underscoring the necessity for thorough scrutiny and enhancement. The 

identified elevated errors and deviations signal limitations in the current models, 

particularly evident in scenarios where the actual values experience abrupt increases or 

decreases. These limitations may emanate from the inherent complexities within power 

system dynamics or inconsistencies in input data such as wind speed and solar 

irradiation, elements intrinsic to the renewable energy system. 

In conclusion, the advantages of employing hybrid models over individual 

models are evident, as no individual model proved superior to the best-performing 

model among the eight hybrid models proposed. Furthermore, model-8 emerged as the 

most accurate and consistent choice when compared to all the hybrid models presented 

in this study. 
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Chapter 5:  Conclusions, and Future Works 

5.1 Conclusions 

In conclusion, renewable energy systems (RESs) harnessing solar and wind power 

represent rapidly advancing technologies for clean electricity generation. However, the 

integration of RESs with the grid often introduces voltage and current harmonics at the 

point of common coupling, thereby affecting the power quality of the system. Harmonic 

forecasting emerges as a valuable tool in designing harmonic mitigation solutions to 

mitigate these harmonics effectively. 

In this study, two hybrid generator models, Wind-DFIG-PV, and Wind-PMSG-

PV, were employed to simulate voltage and current waveforms and extract harmonics 

from real-world wind speed and solar irradiation data. The statistical analysis performed 

identified the dominant harmonics as the 7th, 11th, and 13th harmonics, denoted as h7, 

h11, and h13. We conducted forecasts for four voltage parameters (h7, h11, h13, and 

THD) and four current parameters (h7, h11, h13, and TDD) for both generator 

configurations, resulting in a total of sixteen forecasting cases. 

To produce these forecasts, eight novel hybrid forecasting models were proposed, 

each consisting of a two-stage process that combines different forecasting techniques. 

For example, models 1, 2, and 3 utilized a multilayered artificial neural network (ANN) 

in stage 1 (3LCRNNL, 3LCRNNG, or 3LCRNNGL) and an adaptive neuro-fuzzy 

inference system (ANFIS) in stage 2, whereas models 4, 5, and 6 employed the reverse 

combination. Model-7 and model-8 integrated long short-term memory (LSTM) and 

ANFIS models, with model-7 utilizing LSTM in stage 1 and ANFIS in stage 2, and 
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model-8 adopting the opposite sequence. Additionally, five individual models (ANN 

CRNNL, CRNNG, CRNNGL, ANFIS, and LSTM) were also tested; these were 

previously proposed by other researchers for forecasting the same data. 

The findings revealed that model-8 consistently outperformed all other hybrid and 

individual models, excelling in ten out of sixteen cases. In instances where model-8 was 

not the top performer, it consistently delivered second-best results. Furthermore, model-

8 was compared to all individual models, demonstrating its superiority in terms of the 

percentage improvement it offers over these techniques. 

It is worth noting that across all sixteen cases, the results produced by any of the 

eight proposed hybrid models consistently exhibited greater accuracy compared to any 

of the individual models. This underscores the effectiveness of employing hybrid 

models for harmonic forecasting in renewable energy systems, offering improved 

forecasting performance and enhanced grid power quality.  

5.2 Future Works 

In consideration of the objectives realized in this thesis, it is pertinent to 

underscore the successful development of hybrid forecasting models achieved by 

harmonizing the inherent capabilities of ANN, ANFIS, and LSTM techniques. The 

outcomes of this fusion have demonstrated their commendable nature, as elaborated 

upon in the preceding sections. Nevertheless, to catalyse further progress within this 

research domain, certain pivotal dimensions warrant our focused attention. 

One of the foremost limitations encountered in the present methodology centres 

on the omission of the grid's influential role—a dimension of profound significance in 

the context of power system forecasting. It is imperative that future research endeavours 
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prioritise the incorporation of grid-related dynamics as a primary focus. This objective 

may be realized through the development of MATLAB-based modelling approaches or 

by harnessing historical data sourced from authentic power systems. The integration of 

such considerations will enable these forecasting models to ascend to a heightened level 

of precision and applicability, adeptly accommodating the intricate nuances associated 

with the grid's impact on predictive accuracy. 

Furthermore, the pursuit of elevated forecasting precision should extend beyond 

the confines of the existing framework. It is a judicious course of action to embark on 

an exploration of alternative hybrid model compositions that encompass a broader 

spectrum of forecasting techniques, transcending the established triad of ANN, ANFIS, 

and LSTM. This innovative exploration holds the promise of uncovering novel 

synergies and methodological approaches, ultimately augmenting both the accuracy and 

versatility of hybrid forecasting models. Consequently, forthcoming research initiatives 

should maintain an unwavering commitment to the discovery of inventive hybrid model 

combinations, leveraging the strengths intrinsic to various forecasting techniques. In so 

doing, we stand poised to propel the frontiers of predictive accuracy within this dynamic 

and pivotal field of study. 
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