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Abstract

Clustering is an unsupervised learning method that serves as a powerful tool for un-

covering hidden patterns and structures within complex datasets. In recent years,

the use of mixtures of multiple linear regression models in clustering has gained pop-

ularity due to its ability to account for underlying heterogeneity in the data and

provide a more representative interpretation of covariate effects. However, there is a

paucity of these models for data with multivariate responses, particularly when these

response variables are dependent. One approach that has been applied in the case

of multivariate response data is copula regression models. Copulas are joint distribu-

tion functions with uniform margins and can be seen as representing the dependence

structure of a random vector. In copula regression, a copula function is employed

to induce dependence between different response variables through the random error

term in the regression model. The concept behind using copula regression models

is that they allow us to capture complex dependencies among variables while still

maintaining flexibility and interpretability.

In this work, we propose a finite mixture of copula regression (CMixR) models for

clustering and interpreting covariate effects in heterogeneous multivariate continuous

response data. We present an Expectation Conditional Maximization algorithm for

estimation. The model performance is tested and compared to existing methods using

a simulation study and a data analysis on the morphological properties of purple rock

crabs. These results show an overall better clustering performance in comparison to

existing methods.

vii



Acknowledgements

I would like to express my gratefulness to all individuals who have played a pivotal

role in the successful completion of this thesis. First, I am deeply thankful to my

supervisor, Dr. Orla Murphy. Her unwavering support, guidance, and expertise have

been invaluable throughout this research journey. Weekly meetings with Dr.Murphy

to discuss areas for improvement and how to address them have generated tremendous

support in the process. Especially in the process of revising the paper, Dr.Murphy

took great pains to give professional guidance not only on the specific content of the

paper but also on the grammar and format of the paper. Second, I would like to

thank my co-supervisor, Dr. Paul McNicholas, for his important guidance during

the research. Third, I extend my sincerest appreciation to my family, who have

been a constant source of encouragement and support. Finally, I would express a

special thanks to the Natural Sciences and Engineering Research Council of Canada

(NSERC) for providing me with funding to conduct this research project.

viii



Chapter 1

Introduction

Clustering has been a popular topic in past decades due to its numerous applications

and benefits. In fields as diverse as biology, finance, marketing, and social sciences,

clustering plays a pivotal role. Biologists utilize it to categorize species based on

genetic similarities, while financial analysts employ it to identify distinct market seg-

ments. In marketing, clustering helps create targeted advertising campaigns, and

sociologists use it to understand community dynamics. Take the e-commerce indus-

try for example, businesses often collect data about their customers, including their

purchase history, browsing behavior, demographics, and more, and then clustering

can be used to divide customers into distinct groups based on their preferences. For

example, cluster 1 might represent budget-conscious shoppers who frequently pur-

chase discounted items, cluster 2 might represent high-value customers who make

large purchases and prefer premium products, and cluster 3 could include occasional

shoppers who only make purchases during seasonal sales. Therefore, by understand-

ing these customer segments, businesses can adjust their marketing strategies and

customize promotions to better meet the needs of each group. Ultimately, this will

increase customer satisfaction and revenue. A comprehensive review of clustering

applications can be found in the paper written by Saxena et al. (2017).

There are two main approaches used for clustering, one is distance-based and

the other is model-based. Distance-based clustering methods, like K-means and hi-

erarchical clustering, rely on measuring the similarity or dissimilarity between data

points using distance metrics. Distance-based clustering is widely used due to its rela-

tively straightforward implementation and computational efficiency. However, it may

struggle with non-spherical or irregularly shaped clusters and might be sensitive to

initializations. K-Means, in particular, is sensitive to the initial assignment of cluster

centres. Different initializations can lead to different clustering results, potentially

1
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resulting in sub-optimal solutions. Even though multiple initializations can help mit-

igate this issue, they do not necessarily eliminate it. Also, distance-based clustering

does not provide probabilistic assignments of data points to clusters, making it less

suitable for situations where overlapping clusters are present.

Model-based clustering operates within a probabilistic framework. It assumes that

the data is generated from a mixture of probability distributions, and each proba-

bility distribution represents a cluster. So, the clustering process involves estimating

the parameters of these distributions. By doing parameter estimation, model-based

clustering often provides more interpretable results because it is easier to describe

and understand the characteristics of each group. In addition, model-based cluster-

ing can capture clusters with different shapes, which makes them more suitable for

complex clusters. In contrast, distance-based clustering using Euclidean distance as

metrics assumes spherical clusters, so it is primarily expected to perform well when

the data within clusters follows a normal distribution. Furthermore, instead of as-

signing each point to a single cluster, model-based clustering calculates the likelihood

of a data point belonging to each cluster. This allows for a probabilistic interpreta-

tion of cluster membership, which can be valuable when data points have overlapping

characteristics. In short, model-based clustering offers flexibility when dealing with

complex cluster shapes and provides probabilistic cluster assignments. However, it

requires assumptions about data distributions and is thus sensitive to model mis-

specification. Also, like the distance-based method, the model-based method suffers

from initialization. Furthermore, the computational cost for model-based clustering

can be relatively high, as it involves estimating model parameters usually by opti-

mizing likelihood functions and potentially using multiple initializations, making it

computationally time-consuming.

In the context of regression, the clustering problem involves grouping similar data

points into distinct clusters based on their covariate values and corresponding re-

gression responses. The goal of traditional regression is usually to predict a response

value, but clustering within regression aims to identify clusters of data with similar re-

gression patterns. When data points are from different underlying regression models,

we can uncover these latent groups using a clustering analysis. So, if each cluster is

characterized by a unique regression model, this is called a finite mixture of regression
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models. In the clustering context, this model is important because it takes covariate

effects into account. Leisch (2004) proposed the famous framework, flexmix, to fit

finite mixture models and latent class regression. However, this existing method fo-

cuses on the univariate response variable. This model could be extended to use in

multivariate response cases but assumes the response variables are mutually indepen-

dent, which is often unsuitable. Therefore, finite mixtures of regression models with

dependent responses are needed.

Copula-based regression models consider the dependence structure between obser-

vations by inducing a copula through the random error term in the regression model.

As proposed by Pitt et al. (2006) and summarized by Kolev and Paiva (2009), cop-

ula regression could be a helpful tool when dealing with variables that have multiple

observations. For example, copula regression can be used in longitudinal data analy-

sis if repeated measurements on the same subject are correlated. Copula regression

is later developed by Masarotto and Varin (2012) to include correlated observations

collected sequentially in time and spatially correlated data. However, the traditional

copula regression model does not consider the potential heterogeneity in data induced

by latent groups. Also, the Gaussian copula marginal regression (gcmr) developed

by Masarotto and Varin (2012) is only applicable to a single response variable with

multiple observations, e.g., longitudinal data. It is worth noting that Bermúdez and

Karlis (2022) proposed a copula-based finite mixture of bivariate discrete distribu-

tions to analyze the counts of automobile insurance claims. However, this model has

not been flexibly extended to high-dimensional discrete cases and continuous cases.

To tackle the problem of adding flexibility to multivariate response regression mod-

els, we extract elements from both the mixture of regression models and the copula

regression and combine them to create a new model called the copula-based mix-

tures of regression (CMixR) model. The primary contribution of the CMixR model

is addressing the limitations of each approach and capitalizing on their respective

strengths. Consequently, the CMixR model offers significantly greater flexibility to

capture the dependence structure between correlated responses and enhanced perfor-

mance when compared to other existing methods.

The remainder of the thesis is organized as follows. In Chapter 2, basic ideas
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on copulas, finite mixture models, copula-based regression, and the Expectation-

Maximization (EM) algorithm are introduced. In Chapter 3, the CMixR model is

proposed with computational details on the Maximum Likelihood (ML) estimation

via the Expectation Conditional Maximization (ECM) algorithm. A simulation study

and a data analysis on purple rock crab has been conducted in Chapter 4. In Chapter

5, we discuss the results, conclude the work, and list several ideas for future work.



Chapter 2

Background

In Section 2.1, background knowledge of copulas is presented, including examples

and their usage in regression. Then, finite mixture models are introduced in Section

2.2 with an extension to mixtures of regression models. Section 2.3 provides com-

putational details on the EM algorithm and presents an example using a Gaussian

mixture model. Finally, Section 2.4 includes a discussion on clustering performance

assessment.

2.1 Copulas

A p-variate copula C : [0, 1]p → [0, 1] is a multivariate cumulative distribution func-

tion with uniform marginals. Sklar’s theorem (Sklar, 1959) states that any multivari-

ate distribution can be written in terms of its univariate marginal distributions and a

copula which describes the dependence structure between the variables. Consider the

continuous bivariate random vector (X, Y ) with joint cumulative distribution func-

tion (cdf) H(x, y) and corresponding marginal cdfs F (x) and G(y), then there exists

a copula C : [0, 1]2 → [0, 1], such that,

H(x, y) = C{F (x), G(y);θ} , x, y ∈ R , (2.1)

where θ is the parameter(s) in copula C. In this case, C is unique as X and Y are

continuous. Consequently, the probability density function (pdf) h of X and Y can

be derived in terms of the copula using chain rule viz.

h(x, y) =
∂2H(x, y)

∂x∂y

=
∂2C{F (x), G(y)}

∂x∂y

=
∂2C{F (x), G(y)}

∂F (x)∂G(y)

∂F (x)

∂x

∂G(y)

∂y

= c{F (x), G(y)}f(x)g(y) , (2.2)

5
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where c is the copula density function of the copula C and f(x) and g(y) are the

marginal pdfs of X and Y , respectively. Note that the density in (2.2) can be easily

extended to the multivariate case. Consider a p-dimensional random vector X =

(X1, X2, . . . , Xp) with continuous margins, its joint density function can be written

as:

h(x1, . . . , xp) = c{F1(x1), . . . , Fp(xp);θ}f1(x1) · · · fp(xp) , (2.3)

where fi(xi) for i = 1, . . . , p are the marginal densities for X1, . . . , Xp and c is the

copula density, which describes the multivariate dependence structure.

Kendall’s τ , proposed by Kendall (1938), is a common measure of rank correla-

tions for continuous variables. Let F be a continuous bivariate cdf and let (X1, X2),

(X ′
1, X

′
2) be independent random pairs with distribution F . A pair of data observa-

tions are considered concordant if both (X1−X ′
1) and (X2−X ′

2) have the same sign.

Conversely, if these differences have opposite signs, the pair is labelled discordant. In

cases where X1 = X ′
1, X2 = X ′

2, or both, we refer to the comparison as a tie. Note

that ties are not categorized as either concordant or discordant. Kendall’s τ is defined

as the probability of concordance minus the probability of discordance, i.e.,

τ = Pr((X1 −X ′
1)(X2 −X ′

2) > 0)− Pr((X1 −X ′
1)(X2 −X ′

2) < 0)

= 2Pr((X1 −X ′
1)(X2 −X ′

2) > 0)− 1

= 4

∫
FdF − 1 .

Kendall’s τ ranges from −1 to 1, measures the strength of the monotonic relationship

between variables and can be viewed as a quantitative summary of pairwise depen-

dence. A positive Kendall’s τ value indicates a positive association between the two

variables, while a negative value suggests a negative association. If Kendall’s τ is

0, it implies that there is no association between the two variables. In a bivariate

copula model for continuous variables, the dependence structure between the two

variables is determined by the copula parameters. Interestingly, for continuous vari-

ables, Kendall’s τ can be written as a function of the copula only. For many common

copula models, τ can be written explicitly in terms of the copula dependence param-

eter. Some relationships between Kendall’s τ and copula parameter θ are listed in

Table 2.1, all of which are available using the iTau function in the copula R package.

This property can be useful for simulations as the copula parameters can be chosen
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to correspond to the desired level of Kendall’s τ . This relationship has also been used

for moment-based estimation.

Table 2.1: Relationships between Kendall’s τ and the copula parameter θ for common
copula models (Joe, 1997). Note for the Frank copula, D(θ) =

∫ θ

0
x/θ

exp(x)−1
dx is the

Debye function.

Name Range of θ Kendall’s τ ∈ [−1, 1]

Gaussian θ ∈ (−1, 1) 2
π
arcsin θ

Clayton θ ∈ (0,∞) θ
θ+2

Gumbel θ ∈ (1,∞) 1− 1
θ

Frank θ ∈ (−∞,∞) 1− 4
θ
+ 4

θ
D(θ)

For the discrete margin case, the copula C for a random vector is no longer

unique and Sklar’s Equation (2.1) is satisfied by infinitely many copulas. Also, the

computational cost for discrete margins is quite high in even moderate dimensions.

For these reasons, we restrict ourselves to the continuous case in this thesis.

2.1.1 Examples of copulas

There are several families of copula models. Two common families which will be used

in this thesis are the elliptical and Archimedean copula families.

Elliptical copulas are based on elliptical distributions, such as the multivariate

Gaussian and multivariate Student t distributions, the explicit formula for Gaussian

copula is listed in Table 2.2. The Gaussian copula is a well-known member of this

family. For example, the two-dimensional Gaussian copula assumes the dependence

structure is captured by a correlation coefficient. Unlike the Gaussian copula, the

Student t copula is more robust to outliers as it allows for upper and lower tail

dependence. Plots of a random sample of size 500 from the Gaussian and the Student

t copula with Kendall’s τ value of 0.6 are shown in Figure 2.1. The difference in tail

dependence can be seen in the bottom left and top right corners of the plot.
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Figure 2.1: Samples of size 500 of from Clayton and Gumbel copula with τ = 0.6.

Archimedean copulas are completely determined by a generator function, ϕ(t),

for t ∈ (0, 1]. Examples of Archimedean copulas include the Clayton, Gumbel, and

Frank copulas. As an example, the generator function for the Gumbel copula is ϕ(t) =

|ln(t)|θ+1. Different Archimedean copulas offer different types of tail dependence. For

example, Clayton copulas exhibit lower-tail dependence, while Gumbel copulas have

upper-tail dependence. On the other hand, Frank copulas exhibit no tail dependence.

We can adjust the strength and shape of the dependence by choosing an appropriate

value for the parameter. For example, the Clayton copula with parameter θ = 2

exhibits stronger lower-tail dependence than θ = 0.5. Plots of random samples of size

500 from the Clayton, Gumbel, and Frank copulas with Kendall’s τ value of 0.6 are

shown in Figure 2.2 and 2.3.
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Figure 2.2: Samples of size 500 of from Clayton and Gumbel copula with τ = 0.6.

Figure 2.3: Samples of size 500 of from Frank copula with τ = 0.6.

A summary of the bivariate Gaussian, Clayton, Gumbel, and Frank copulas, which

will be used in this thesis, can be found in Table 2.2. Only bivariate cases are shown

in the table, but these copulas can be generalized to the multivariate case as well.
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Table 2.2: Summary of bivariate copulas used in this thesis. Note for the Gaussian
copula, Φ−1 is the inverse CDF of a standard normal and Φθ is the joint CDF of a

bivariate normal distribution with mean vector zero and covariance matrix

1 θ

θ 1

.
Name C(u, v) Parameter

Gaussian Φθ {Φ−1(u),Φ−1(v)} θ ∈ (−1, 1)

Clayton {max(u−θ) + v−θ − 1, 0}−1
θ θ ∈ (0,∞)

Gumbel e−(| log u|θ+1+| log v|θ+1)1/(θ+1)
θ ∈ (1,∞)

Frank −θ−1 ln
(

1−e−θ−(1−e−θu)(1−e−θv)
1−e−θ

)
θ ∈ (−∞,∞)

2.1.2 Copula regression

As seen in the previous section, copulas can be a useful tool for dependence analysis.

In recent years, copulas have been applied to regression problems, yielding copula-

based regression models. One of the most popularly used models is the Gaussian

copula regression model, which was proposed by Pitt et al. (2006) and further devel-

oped by Masarotto and Varin (2012). Suppose there is a single dependent variable Y

with n correlated observations denoted as y = (y1, . . . , yn)
′, a case which, for exam-

ple, appears in longitudinal data. We denote the marginal cumulative distribution

of Yi by F (Yi|X) where X = (X1, . . . , XP )
′ is a P -dimensional vector of covariates.

Furthermore, assume F (Yi|X) is parameterized in terms of a location parameter µi,

which depends on covariates X through

g(µi) = X ′β , (2.4)

where g(·) is a suitable link function. For example, if F (Yi|X) is a normal distribution,

then

g(µi) = µi = β0 + β1X1 + · · ·+ βpXp . (2.5)

Therefore, the joint cdf is written as

F (y1, . . . , yn) = Φn(ϵ1, . . . , ϵn;R) , (2.6)
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where Φn(· ;R) is the n-dimensional multivariate standard normal cdf with correlation

matrix R and ϵi = Φ−1{F (Yi|X)} with Φ(·) denoting the univariate standard normal

cdf. Therefore, the Gaussian copula regression model assumes that

Yi = h(x, ϵi) = F−1{Φ(ϵi)|x} , for i = 1, . . . , n , (2.7)

where h(·) is a function of the regressors x and unobserved error term ϵi and ϵ =

(ϵ1, . . . , ϵn)
′ follows multivariate standard normal distribution with correlation matrix

R. Let Θ be the vector of all model parameters, including the Gaussian copula

correlation matrix R and marginal parameters. Therefore, the likelihood function for

Θ is

L(Θ; y1, . . . , yn) = ϕn(ϵ1, . . . , ϵn;R)
n∏

i=1

f(yi|x)
ϕ(ϵi)

. (2.8)

From here, parameters can be estimated by the EM algorithm as described in Section

2.3. A detailed explanation can be found in the work by Masarotto and Varin (2012).

In summary, the Gaussian copula regression model not only preserves the marginal

univariate distributions but also has correlated errors through a multivariate normal

distribution. However, the Gaussian copula regression model only deals with cor-

related observations from a single response variable and has yet to be extended to

multivariate responses.

2.2 The finite mixture model

The application of finite mixture models is gaining popularity because it enables

the utilization of conventional statistical methods to assess and evaluate clustering

across a wide range of scenarios (Kosmidis and Karlis, 2016). Consider a d dimension

random vector Y = (Y1, . . . , YD)
′ from a parametric finite mixture model, then the

probability density function is defined as

f(y;Θ,π) =
G∑

g=1

πgfg(y;Θg) , (2.9)

where π = (π1, . . . , πG)
′ are the mixing proportions such that πg ∈ (0, 1) for g =

1, . . . , G with
∑G

g=1 πg = 1, fg(y;Θg) is the gth component density,Θ = (Θ′
1, . . . ,Θ

′
G)

′

and each Θg is the vector of parameters in the gth component. The model shown

above is called a G-component finite mixture density (McLachlan and Chang, 2004).
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In this finite mixture modelling framework, we view each component as a cluster such

that each cluster g has its own distribution and corresponding density fg.

An example of a commonly used finite mixture model for continuous data is the

Gaussian mixture model (GMM), which replaces component densities fg(y;Θg) with

the multivariate normal density. The G-component GMM has a density in the form

f(y;Θ,π) =
G∑

g=1

πgϕ(y;µg,Σg) , (2.10)

where ϕ(y;µg,Σg) is the multivariate normal density of component g, with mean µg

and covariance matrix Σg. This Gaussian mixture model has a total of (G − 1) +

GD+GD(D+1)/2 parameters, in which G−1 are the component mixing proportion

π1, . . . , πG, GD are the mean vectors µ1, . . . ,µG, and GD(D + 1)/2 are used in co-

variance matrices Σ1, . . . ,ΣG. The choice of the multivariate normal distribution is

primarily based on convenience in estimation, as it has closed-form solutions shown

in Section 2.3.3. In addition, constraints have been considered on the covariance ma-

trix to reduce the number of free parameters. For example, parsimonious Gaussian

mixture models (PGMM) were proposed by McNicholas and Murphy (2008), which

is particularly effective for high dimensional situations. Compared with GMMs, the

number of covariance parameters in the PGMM family grows linearly with data di-

mension, which can make it more suitable for high-dimensional data modelling.

However, the resulting clusters by using the Gaussian mixture models are con-

strained to possess an elliptical shape. To add more flexibility, other variations from

the GMM have been proposed. For example, multivariate t distributions (Andrews

and McNicholas, 2011), multivariate skew-normal distribution (Frühwirth-Schnatter

and Pyne, 2010), multivariate normal inverse Gaussian distributions (Karlis and San-

tourian, 2009), etc. have been developed in order to deal with non-elliptically con-

toured distributions. From these studies, it is shown that using heavy-tailed and/or

skewed distributions creates more appropriate models for skewed-type data compared

to multivariate normal distributions. Even so, all of the above variations force the

data to follow the same margins and fail to capture extreme tail dependence as illus-

trated by Kosmidis and Karlis (2016).
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2.2.1 Mixtures of regression

Mixtures of regression, also known as finite mixtures of regression models, is a mod-

elling technique that combines both regression analysis and finite mixture modelling.

This method is used to capture heterogeneity in a dataset by assuming that the

data is generated from a mixture of several underlying sub-populations, and each

sub-population has its own regression relationship. Therefore, mixtures of regression

models are a powerful tool, which can be used to identify latent groups or clusters.

Bermúdez and Karlis (2022) proposed finite mixtures of regression models with bivari-

ate discrete responses to analyze the counts of automobile insurance claims. However,

their models for discrete response data have not been extended to higher dimensions

yet due to the high computational cost. An existing well-known framework for mix-

tures of regression is the flexmix R package created by Leisch (2004). The flexmix

package includes finite mixture models and latent class regression, which are modelled

as follows:

f(y|x,ϕ) =
G∑

g=1

πgfg(y|x,θg) ,

πg ∈ (0, 1) ,
G∑

g=1

πg = 1 . (2.11)

where y is the dependent variable with conditional density f , x is a vector of indepen-

dent variables, πg is the mixing proportion for component g, θg is a vector of param-

eters used for the gth component density function f , and ϕ = (π1, ..., πG,θ
′
1, ..,θ

′
G)

′

is the vector of all parameters. For example, if each component density fg follows the

normal distribution with mean β′
gx and variance σ2

g , then the model is a mixture of

standard linear regressions. This model can be written as:

f(y|x,ϕ) =
G∑

g=1

πgϕ(y|µg(x), σ
2
g) , (2.12)

where µg(x) = β′
gx. Also, if the component density fg is a member of the exponential

family, then the model is called the mixture of generalized linear models.
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The model in 2.11 can be extended to multivariate responses viz.

f(y|x,ϕ) =
G∑

g=1

πgfg(y|x,θg)

=
G∑

g=1

πg

D∏
d=1

fdg(yd|x,θdg) , (2.13)

where Y = (Y1, . . . , YD)
′ is D-dimensional response variable and fdg is the density for

dth response in gth component. However, even though the above model is extended

to multivariate responses, it assumes that response variables are mutually indepen-

dent. Thus, this model is restricted to correctly specifying the case of independent

multivariate responses only, which is not true in most situations.

2.3 Estimation by EM algorithm

The Expectation-Maximization (EM) algorithm is widely used for finding maximum

likelihood (ML) estimates of parameters in statistical models within the context of

incomplete or missing data in cases where there are no analytical solutions. The

EM algorithm is an iterative algorithm that alternates between two main steps: the

Expectation (E) step and the Maximization (M) step until convergence, at which point

the algorithm has found a local maximum of the likelihood function. The key idea

behind the EM algorithm is to iteratively refine parameter estimates by alternating

between estimating the missing or latent variables given the current model parameters

(the E-step) and optimizing the model parameters given the estimated latent variables

(the M-step).

Suppose the complete data set consists of x = (y, z), where y is the observed

data and z is the missing data. Denote the log-likelihood of the complete-data as

ℓc(θ;y, z) where θ is the vector of unknown parameters for which we aim to find the

ML estimates. In short, the steps of the EM algorithm can be summarized as

• E-step: evaluate Q(θ|θ̂(t)) = E[ℓc(θ;y, z)|y; θ̂(t)] .

• M-step: update θ̂(t+1) = argmaxθQ(θ|θ̂(t)) .

Note that the function Q(θ|θ̂(t)) created in the E-step is a minorizing function of

the observed log-likelihood at θ̂(t), which is later maximized in the M-step (Dempster
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et al., 1977). One powerful property of the EM algorithm is the ascent property,

written as

ℓ(θ̂(t+1)|y) = log p(y; θ̂(t+1)) ≥ log p(y; θ̂(t)) = ℓ(θ̂(t)|y) , (2.14)

i.e., the observed likelihood value is non-decreasing for each iteration of the EM. This

ascent property of the EM algorithm helps ensure that the algorithm converges to

a point with zero gradient with respect to the parameters. However, this does not

guarantee convergence to the global maximum of the likelihood function, as the EM

algorithm may get stuck at a critical point, either local maxima or saddle points.

Therefore, the results of the EM algorithm are sensitive to the choice of initial val-

ues. To overcome this issue, multiple initializations should be applied, which will be

discussed in the next section.

2.3.1 Initial values

In this thesis, the EM algorithm will be initialized at several randomly chosen starting

points to mitigate the sensitivity to initializations. The following is an example

initialization of the algorithm.

The starting values for component variables, z
(0)
ig , can be obtained by using a hard-

partitioning distance-based algorithm like K-means. Then, the gth mixing proportion

πg can be initialized as

π(0)
g =

∑n
i=1 ẑ

(0)
ig

n
, (2.15)

where n is the number of observations. Consequently, analytical solutions or a numer-

ical optimization method (optim function in R) can be used to obtain initializations

for each group of parameters in gth component, so that

θ(0)
g = argmaxθ

n∑
i=1

z
(0)
ig ℓc(θ;x,y) . (2.16)

After initializing all parameters in the model, we enter the 1st iteration of the EM

algorithm.
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2.3.2 Convergence Criterion

A common stopping criterion for the EM algorithm is a lack of progress of the log-

likelihood. I.e., the algorithm is stopped when

ℓ(t+1) − ℓ(t) < ϵ (2.17)

for some small ϵ, where ℓ(t) is the observed log-likelihood value at iteration t. Note

here, that the absolute value of the difference is not needed due to the ascent property.

So, the EM algorithm travels around the parameter space, evaluates the log-likelihood

value at the current point and then compares it with the previous point. However,

the progression of likelihood values is not a guaranteed outcome. For example, if

the EM path temporarily moves to a location where the log-likelihood function is

approximately flat but increases again later, the EM algorithm may stop early and

underestimate the value of maximum log-likelihood using this criterion (McNicholas

et al., 2010).

In order to overcome this problem, a convergence criterion based on Aitken’s

acceleration (Aitken, 1926) is used. Aitken’s acceleration is defined at iteration t by

a(t) =
ℓ(t+1) − ℓ(t)

ℓ(t) − ℓ(t−1)
, (2.18)

where ℓ(t+1), ℓ(t), ℓ(t−1) are the log-likelihood values from iterations t+ 1, t, and t− 1

respectively. So at iteration t + 1, we calculate the log-likelihood ℓ(t+1) and then

calculate the asymptotic estimate of the log-likelihood

ℓ(t+1)
∞ = ℓ(t) +

1

1− a(t)
(ℓ(t+1) − ℓ(t)) . (2.19)

If the stopping criterion 0 < ℓ
(t)
∞ − ℓ(t) < ϵ is satisfied, the algorithm will stop (Mc-

Nicholas et al., 2010). Convergence criteria based on Aitken’s acceleration will take

more iterations to stop but offer a more rigorous result.

2.3.3 Example: The Gaussian mixture model

In this section, we will describe the use of the EM algorithm to estimate the popular

Gaussian mixture model in 2.10. First, we define latent variable zi = (zi1, . . . , ziG),

such that zig denotes the component membership, where zig = 1 if observation i
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belongs to component g, and zig = 0 otherwise. Therefore, the complete-data is

(y, z) with corresponding complete likelihood

Lc(ϕ|y, z) =
n∏

i=1

G∏
g=1

[πgϕg(y|µg,Σg)]
zig , (2.20)

where ϕ = (π1, . . . , πG,µ1, . . . ,µG,Σ1, . . . ,ΣG) is all the model parameters. Conse-

quently, the complete-data log-likelihood is given by

ℓc(ϕ|y) =
n∑

i=1

G∑
g=1

zig[log πg + log ϕg(y|µg,Σg)] . (2.21)

• In the E-step, the algorithm calculates the expected values of the latent vari-

ables, given the current estimates of the model parameters. At iteration t + 1,

ẑ
(t+1)
ig is calculated as

ẑ
(t+1)
ig = Ez|y[zig|yi, µ̂

(t)
g , Σ̂(t)

g ]

= P (zig = 1|yi, µ̂
(t)
g , Σ̂(t)

g )

=
P (zig = 1,yi|µ̂(t)

g , Σ̂
(t)
g )

P (yi|µ̂(t)
g , Σ̂

(t)
g )

=
P (yi|zig = 1, µ̂

(t)
g , Σ̂

(t)
g )P (zig = 1|µ̂(t)

g , Σ̂
(t)
g )

P (yi|µ̂(t)
g , Σ̂

(t)
g )

ẑ
(t+1)
ig =

ϕg(yi|µ̂(t)
g , Σ̂

(t)
g )π̂

(t)
g∑G

g=1 π̂
(t)
g ϕg(yi|µ̂(t)

g , Σ̂
(t)
g )

. (2.22)

It follows that the conditional expectation of the complete-data log-likelihood

is

Q(ϕ|ϕ̂(t)) =
n∑

i=1

G∑
g=1

ẑ
(t+1)
ig [log πg + log ϕg(y|µg,Σg)]

=
n∑

i=1

G∑
g=1

ẑ
(t+1)
ig [log πg −

p

2
log 2π − 1

2
log |Σg| −

1

2
tr{(yi − µg)(yi − µg)

′Σ−1
g }]

=
G∑

g=1

ng log πg −
np

2
log 2π − ng

2
log |Σg| −

ng

2
tr{SgΣ

−1
g } , (2.23)

where p is the dimension of the data vectors x1, . . . ,xn, ng =
∑n

i=1 ẑ
(t+1)
ig , and

Sg =
1

ng

n∑
i=1

ẑ
(t+1)
ig (yi − µg)(yi − µg)

′ .
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• In the M-step, the algorithm updates the estimates of the model parameters

by maximizing the expected complete likelihood from the E-step. Maximizing

Q(ϕ|ϕ̂(t)) with respect to πg,µg, and Σg gives us

π̂(t+1)
g =

ng

n
,

µ̂(t+1)
g =

1

ng

n∑
i=1

ẑ
(t+1)
ig yi ,

Σ̂(t+1)
g =

1

ng

n∑
i=1

ẑ
(t+1)
ig (yi − µ̂(t+1)

g )(yi − µ̂(t+1)
g )′ .

As described in detail above, the EM algorithm for the G-component Gaussian

mixture model alternates between the E and M-steps until convergence. A summary

of this EM algorithm is included in Algorithm 1.

Algorithm 1 EM Algorithm for Gaussian mixture model.

Initialize ẑ
(0)
ig , π̂

(0)
g , µ̂

(0)
g , and Σ̂

(0)
g

while convergence criterion is not met do

E-step: update ẑ
(t+1)
ig =

π̂
(t)
g ϕg(y;µ̂

(t)
g ,Σ̂

(t)
g )∑G

g=1 π̂
(t)
g ϕg(y;µ̂

(t)
g ,Σ̂

(t)
g )

M-step: update π̂
(t+1)
g = ng

n

update µ̂
(t+1)
g = 1

ng

∑n
i=1 ẑ

(t+1)
ig yi

update Σ̂
(t+1)
g = 1

ng

∑n
i=1 ẑ

(t+1)
ig (yi − µ̂

(t+1)
g )(yi − µ̂

(t+1)
g )′

check convergence criterion

end while

2.4 Performance Assessment

After clustering, the quality of the results should be assessed. Traditionally, if the

component memberships are known, the adjusted Rand index (ARI) and maximum

a posteriori (MAP) table are used. The ARI assesses the similarity between two

data partitions by comparing the agreement in the assignments of data points into

partitions. It is a correction of the Rand Index (RI) to account for chance agreement.

In our setting, we are using ARI to measure the performance of clustering results

with knowledge of the true classes. Consider two partitions U and V , where we
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suppose U is the partition formed by the true classes and V is the partition formed

by the clustering result. There are four categories of data point pairs:

A: Pairs of objects that are in the same class in U and in the same cluster in V .

B: Pairs of objects that are in the same class in U but different clusters in V .

C: Pairs of objects that are in the same cluster in V but different classes in U .

D: Pairs of objects that are in different classes in U and different clusters in V .

Therefore, the quantities A and D can be interpreted as agreements, and the quan-

tities B and C can be interpreted as disagreements. Then, the RI is calculated by

RI =
A+D

A+B + C +D
=

A+D

N
, (2.24)

where N = A+B + C +D is the total number of pairs.

To correct for chance agreements, the ARI was proposed by Hubert and Arabie

(1985) as

ARI =
RI− Expected RI

Maximum RI− Expected RI
, (2.25)

where the Maximum RI is 1 and the Expected RI is calculated as

Expected RI =
(A+B)(A+ C) + (C +D)(B +D)

N2
. (2.26)

Therefore, the ARI is calculated as

ARI =
RI− Expected RI

Maximum RI− Expected RI

=
A+D
N

− (A+B)(A+C)+(C+D)(B+D)
N2

1− (A+B)(A+C)+(C+D)(B+D)
N2

=
N(A+D)− [(A+B)(A+ C) + (C +D)(B +D)]

N2 − [(A+B)(A+ C) + (C +D)(B +D)]
. (2.27)

The ARI has a maximum value of 1, with higher values indicating better agreement

between partitions U and V . An ARI value of 1 indicates a perfect clustering result,

i.e., a perfect agreement between U and V , and the expected value of the ARI under

random cluster assignment is 0. If a negative ARI occurs, it indicates that the clus-

tering is even worse than random assignments. Note that the ARI has no well-defined

lower bound (McNicholas, 2016; Hubert and Arabie, 1985).
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Table 2.3: A sample MAP table, notations here follows the work by Hubert and
Arabie (1985).

U \V v1 v2 · · · vC Sums
u1 n11 n12 · · · n1C n1·
u2 n21 n22 · · · n2C n2·
...

...
...

...
...

uR nR1 nR2 · · · nRC nR·
Sums n·1 n·2 · · · n·C n·· = n

As for the MAP table, it directly gives the information for the clustering result.

Once the data with a total of n observations has been clustered, we can generate a

MAP table. A sample MAP table is shown in Table 2.3. Therefore, the values of

A,B,C, and D can be calculated as

A =
∑
i,j

(
nij

2

)
,

B =
∑
i

(
ni·

2

)
−
∑
i,j

(
nij

2

)
,

C =
∑
j

(
n·j

2

)
−
∑
i,j

(
nij

2

)
,

D = N − A−B − C =

(
n

2

)
− A−B − C .

Therefore, the MAP table and ARI value can be easily calculated after clustering

and used as a direct indicator for the clustering performance. There are alternative

measures available for evaluating clustering performance, such as the Silhouette co-

efficient (Rousseeuw, 1987), Calinski-Harabasz Index (Caliński and Harabasz, 1974)

and Davies-Bouldin Index (Davies and Bouldin, 1979). These measures can be used

when the true classes are unknown, but will not be required for this thesis work.

2.5 Summary

In this chapter, we presented the foundational knowledge of copulas, along with bi-

variate examples and their usage in regression analysis. Also, finite mixture models

with an extension to finite mixtures of regression models were introduced. The con-

ventional computational technique for handling finite mixture models, namely the

EM algorithm, was provided with an example of a Gaussian mixture model. In the
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end of this chapter, we discussed the methods for assessing clustering performance.

In the next chapter, the proposed methodology is introduced.



Chapter 3

Methodology

In this chapter, we propose a copula-based mixture of regression models to effectively

handle the multivariate response data by combining the strengths of both mixtures of

regression models and copula regression. To address the computational challenges in

the maximization step, we replace the originally considered EM algorithm with the

ECM algorithm. Furthermore in Section 3.2.1, we provide comprehensive computa-

tional details for ML estimation and explore model variations in Section 3.3.

3.1 Proposed model

The proposed model in this thesis extends the finite mixture model from Section 2.2 to

regression context, such that each marginal distribution can be defined by condition-

ing on a vector of covariates. Let Y = (Y1, . . . , YD)
′, a random vector of dimension

D ≥ 1, be the response variables of interest and X = (X1, . . . , XP )
′, where P ≥ 1,

be the vector of covariates. Suppose Y |X follows a finite mixture model of G com-

ponents, thus, the joint pdf of Y |X is defined as

f(y|x;Φ) =
G∑

g=1

πgfg(y|x;Θg) , (3.1)

where Φ = (π1, . . . , πG;Θ1, . . . ,ΘG)
′ are all parameters in the model, and πg ∈ (0, 1)

for g = 1, . . . , G are the mixing components defined such that
∑G

g=1 πg = 1. Each

component density fg(y|x) can be expressed in a copula framework using (2.3) viz.

fg(y|x;Θg) = cg{F1g(y1|x), . . . , FDg(yD|x);θg}f1g(y1|x;β1g) · · · fDg(yD|x;βDg) ,

(3.2)

where Θg is the vector of all parameters involved in the gth component, i.e., Θg =

(θ′
g,β

′
1g, . . . ,β

′
Dg)

′. Note in regression context, we assume each response variable Yd

given the covariates x in gth component has marginal density Fd(yd|x) parameterized

in terms of a parameter µdg, where µdg is a regression using covariates X through

22
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a suitable link function g(·), written as g(µdg) = X ′βdg. For example, the marginal

models are specified as

Ydg|X ∼ N(µdg, σdg) with µdg = X ′βdg ,

Ydg|X ∼ Gamma(Scale = µdg, Shape = σdg) with µdg = e−X′βdg .

Therefore, the complete joint distribution of Y |X in (3.1) is

f(y|x) =
G∑

g=1

πgfg(y|x) =
G∑

g=1

πgcg{F1g(y1|x), . . . , FDg(yD|x)}f1g(y1|x) · · · fDg(yD|x) .

(3.3)

The goal of this model is to cluster the observations by solving parameters in this

joint distribution. To achieve this goal, the algorithm for ML estimation described in

the following section will be used.

3.2 ML estimation via ECM algorithm

The parameters in this proposed model include the mixing proportion parameters

π = (π1, . . . , πG)
′, the copula parameters θ = (θ′

1, . . . ,θ
′
G)

′, and the marginal param-

eters β = (β′
1, . . . ,β

′
G)

′. Note that each βg = (β′
1g, . . . ,β

′
Dg)

′ for g = 1, . . . , G and

each βdg = (βdg0, βdg1, . . . , βdgP ) for d = 1, . . . , D. There are P + 1 parameters in

each regression coefficient vector βdg, as we have P covariates X = (X1, . . . , XP )
′.

To clarify the notation, a summary of all parameters is listed in the Tree Diagram

3.1. The initial goal is to find the maximum likelihood (ML) estimates for all param-

eters using the EM algorithm as described in Section 2.3. However, due to the high

computational cost in the maximization step, a variant of the EM algorithm called

the ECM algorithm is used instead (Meng and Rubin, 1993).

3.2.1 Computational details

Suppose we have n observations of Y = (Y1, . . . , YD)
′, where the ith observation is

labelled as Yi = (Y1i, . . . , YDi)
′. Using the density as written in Equation (3.3), the
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All parameters
Φ = (π′,Θ′)′

Proportion parameters
π = (π1, . . . , πG)

′
Joint density parameters

Θ = (β′,θ′)′

Marginal parameters
β = (β1, . . . ,βG)

′

βg = (β′
1g, . . . ,β

′
Dg)

′

for g = 1, . . . , G

βdg = (βdg0, βdg1 . . . , βdgP )
′

for d = 1, . . . , D

Copula parameters
θ = (θ1, . . . ,θG)

′

Figure 3.1: Notation for all parameters involved in the proposed model.

likelihood function of the observed data is

L(Φ|x, y) =
n∏

i=1

f(yi|xi;Φ)

=
n∏

i=1

G∑
g=1

πgcg{F1g(·;β1g), . . . , FDg(·;βDg);θg} f1g(·;β1g) · · · fDg(·;βDg) .

(3.4)

We introduce missing data by defining latent variables zi = (zi1, . . . , ziG), such

that zig denotes the gth component membership of observation i. So, zig = 1 if the ith

observation belongs to the gth component and zig = 0 otherwise. Thus, the likelihood

function of the complete data (i.e. the observed and missing data) can be written as:

Lc(Φ|x, y, z) =
n∏

i=1

G∏
g=1

[πgcg{F1g(·;β1g), . . . , FDg(·;βDg);θg} f1g(·;β1g) · · · fDg(·;βDg)]
zig .

(3.5)
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Therefore, the complete log-likelihood function is

ℓc(Φ|x, y, z)

=
n∑

i=1

G∑
g=1

zig log {πgcg{F1g(·;β1g), . . . , FDg(·;βDg);θg} f1g(·;β1g) · · · fDg(·;βDg)}

=
n∑

i=1

G∑
g=1

zig {log πg + log cg{F1g, . . . , FDg;θg}+ log f1g(·;β1g) + · · ·+ log fDg(·;βDg)}

=
n∑

i=1

G∑
g=1

zig

{
log πg + log cg{F1g, . . . , FDg;θg}+

D∑
d=1

log fdg(·;βdg)

}
. (3.6)

To maximize the complete log-likelihood function in (3.6), an ECM algorithm will

be performed. At the tth iteration of this algorithm:

• E-step: The expected value of the complete log-likelihood function is updated,

and the zigs are replaced by their expected values conditional on the observed

data and Φ̂(t) from the previous iteration. Therefore ẑ
(t+1)
ig is calculated as

ẑ
(t+1)
ig = Ez|x,y[zig|xi, yi, Φ̂

(t)]

= P (zig = 1|xi, yi, Φ̂
(t))

=
P (zig = 1,yi|xi, Φ̂

(t))

P (yi|xi, Φ̂(t))

=
P (yi|zig = 1,xi, Φ̂

(t))P (zig = 1|Φ̂(t))

P (yi|xi, Φ̂(t))

=
fg(yi|xi, Φ̂

(t)
g )π̂

(t)
g∑G

g=1 π̂
(t)
g fg(yi|xi, Φ̂

(t)
g )

=
π̂
(t)
g cg{F1g(·; β̂(t)

1g ), . . . , FDg(·; β̂(t)
Dg); θ̂

(t)
g } f1g(·; β̂(t)

1g ) · · · fDg(·; β̂(t)
Dg)∑G

g=1 π̂
(t)
g cg{F1g(·; β̂(t)

1g ), . . . , FDg(·; β̂(t)
Dg); θ̂

(t)
g } f1g(·; β̂(t)

1g ) · · · fDg(·; β̂(t)
Dg)

.

(3.7)

It follows that the conditional expectation of the complete log-likelihood is

Q(Φ|Φ̂(t)) =
n∑

i=1

G∑
g=1

ẑ
(t+1)
ig

{
log πg + log cg{F1g, . . . , FDg;θg}+

D∑
d=1

log fdg(·;βdg)

}
.

(3.8)

• M-step: Maximize Q(Φ|Φ̂(t)) with respect to πg, θg, and βg. In the M-step,

we note that the ẑigs are fixed and the Q(Φ|Φ̂(t)) function can be decomposed
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into two parts:
n∑

i=1

G∑
g=1

ẑ
(t+1)
ig log πg (3.9)

and

n∑
i=1

G∑
g=1

ẑ
(t+1)
ig

{
log cg{F1g, . . . , FDg;θg}+

D∑
d=1

log fdg(ydi|xi;βdg)

}
. (3.10)

The first part (3.9) includes proportion parameters π and the second part (3.10)

includes all other parameters involved in the model, thus we can maximize the

two parts separately as follows:

1. In M-step 1, the Equation (3.9) is maximized. In other words, we solve

π̂(t+1)
g = argmaxπg

n∑
i=1

G∑
g=1

ẑ
(t+1)
ig log πg

subject to the constraint
∑G

g=1 πg = 1. To perform constrained optimization,

Lagrange multipliers are used:

ℓ(Φ, λ) =
n∑

i=1

G∑
g=1

ẑ
(t+1)
ig log πg − λ

(
G∑

g=1

πg − 1

)
+ h(Φ) . (3.11)

Taking derivative of ℓ(Φ, λ) with respect with πg and setting it equal to zero

gives

∂ℓ

∂πg

=

(
n∑

i=1

ẑ
(t+1)
ig /πg

)
− λ = 0 (3.12)

and
∂ℓ

∂λ
=

G∑
g=1

πg − 1 = 0 . (3.13)

Therefore, from Equation (3.12), we have

∂ℓ

∂πg

∣∣∣∣
π̂
(t+1)
g

=

(
n∑

i=1

ẑ
(t+1)
ig /π̂(t+1)

g

)
− λ = 0 =⇒ π̂(t+1)

g =
1

λ

n∑
i=1

ẑ
(t+1)
ig , (3.14)

and from Equation (3.13), we have

∂ℓ

∂λ

∣∣∣∣
π̂
(t+1)
g

=
G∑

g=1

π̂(t+1)
g − 1 = 0 =⇒

G∑
g=1

π̂(t+1)
g = 1 . (3.15)



27

Therefore, substituting (3.14) into (3.15) gives

G∑
g=1

1

λ

n∑
i=1

ẑ
(t+1)
ig = 1 =⇒ λ =

G∑
g=1

n∑
i=1

ẑ
(t+1)
ig = n . (3.16)

Thus

π̂(t+1)
g =

1

λ

n∑
i=1

ẑ
(t+1)
ig =

∑n
i=1 ẑ

(t+1)
ig

n
. (3.17)

2. In M-step 2, the Equation (3.10) is maximized. In other words, we wish to solve

Θ̂(t+1)
g = argmaxΘg

n∑
i=1

G∑
g=1

ẑ
(t+1)
ig

[
log cg{F1g, . . . , FDg;θg}+

D∑
d=1

log fdg(·;βdg)

]
,

(3.18)

where Θg = (θg,β
′
1g, . . . ,β

′
Dg)

′. However, due to its high computational com-

plexity, solving this M-step 2 in a joint optimization is not ideal. Instead, the

ECM algorithm proposed by Meng and Rubin (1993) is employed as an alter-

native. In this approach, the M-step 2 is substituted with two CM steps for

enhanced efficiency.

• In CM-step 1, the marginal parameters β = (β′
1, . . .β

′
G)

′ are first estimated

given the current value of the copula parameter θ̂(t), i.e.,

β̂(t+1) = argmaxβ

n∑
i=1

G∑
g=1

ẑ
(t+1)
ig

[
log cg{F1g, . . . , FDg; θ̂

(t)
g }+

D∑
d=1

log fdg(·;βdg)

]
.

(3.19)

We can break down this maximization task into G independent maximizations

across components. Therefore for gth component:

β̂(t+1)
g = argmaxβg

n∑
i=1

ẑ
(t+1)
ig

[
log cg{F1g, . . . , FDg; θ̂

(t)
g }+

D∑
d=1

log fdg(·;βdg)

]
,

(3.20)

where β̂
(t+1)
g = (β̂

(t+1)
1g , . . . , β̂

(t+1)
Dg ). Therefore, we estimate D(P+1) parameters

in each ofG independent maximizations, as we have P covariates. Consequently,

there are GD(P +1) parameters get estimated in CM-step 1. Note that if there

are additional parameters involved in the marginal distribution but not related

to the regression, such as the standard deviation σdg in the normal marginal den-

sity, we will simultaneously estimate them along with Equation (3.20). In such
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cases, the total number of parameters estimated in CM-step 1 will beGD(P+2).

• In CM-step 2, we estimate the copula parameters θ = (θ′
1, . . .θ

′
G)

′ given the

updated values of marginal parameters β̂(t+1), calculated in CM-step 1. Since

the marginal part
∑D

d=1 log fd(·;βdg) in the Equation (3.20) does not incorporate

copula parameter θ, the conditional maximization step can be simplified to:

θ̂(t+1) = argmaxθ

n∑
i=1

G∑
g=1

ẑ
(t+1)
ig log cg{F1g(·; β̂(t+1)

1g ), . . . , FDg(·; β̂(t+1)
Dg );θg} .

(3.21)

Similarly, as in CM-step 1, this step can be broken down into G independent

maximizations across components:

θ̂(t+1)
g = argmaxθg

n∑
i=1

ẑ
(t+1)
ig log cg{F1g(·; β̂(t+1)

1g ), . . . , FDg(·; β̂(t+1)
Dg );θg} , (3.22)

for g = 1, . . . , G.

Unfortunately, the two CM-steps don’t have closed-form solutions, thus numerical

optimization methods are used. In this thesis, R function optim with BFGS method

is used to find the numerical solutions. After CM-step 2 is complete, the convergence

criteria based on Aitken’s acceleration (described in Section 2.3.2) will be checked. A

summary of this ECM algorithm is shown in Algorithm 2.

3.3 Model Variations

As seen from the joint distribution of Equation (3.3), component joint densities can

be decomposed into a copula function of the D marginal CDFs and a product of

the D marginal PDFs. Therefore, the proposed models may vary by copula func-

tions and/or marginal densities. By varying the copula functions, different types of

dependence structures are induced. For example, we can use a Gumbel copula in

cases where data exhibits upper tail dependence, or use a Clayton copula for cases of

lower tail dependence. For marginal distributions, we may use a normal distribution

for modelling symmetric margins or a Gamma distribution for skewed variables. A

summary of the variations considered in this thesis is listed below:
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Algorithm 2 ECM Algorithm.

Initialize z
(0)
ig , π

(0)
g , β

(0)
g , and θ

(0)
g

while convergence criterion is not met do

E-step: update ẑ
(t+1)
ig =

π̂
(t)
g fg(yi|xi,Θ̂

(t)
g )∑G

g=1 π̂
(t)
g fg(yi|xi,Θ̂

(t)
g )

M-step: update π̂
(t+1)
g =

∑n
i=1 ẑ

(t+1)
ig

n

CM-step 1: For g = 1, . . . , G, update

β̂
(t+1)
g = argmaxβg

∑n
i=1 ẑ

(t+1)
ig

[
log cg(·; θ̂(t)

g ) +
∑D

d=1 log fdg(·;βdg)
]

CM-step 2: For g = 1, . . . , G, update

θ̂
(t+1)
g = argmaxθg

∑n
i=1 ẑ

(t+1)
ig log cg{F1g(·; β̂(t+1)

1g ), . . . , FDg(·; β̂(t+1)
Dg );θg}

check convergence criterion

end while

• Copula functions:

1. Gaussian copula: elliptical shaped dependence without tail dependence.

2. Gumbel copula: upper tail dependence.

3. Clayton copula: lower tail dependence.

4. Frank copula: no tail dependence.

5. Independent copula: variables are mutually independent.

• Marginal distributions:

1. Normal distribution: Symmetric marginals.

2. Exponential distribution: Marginals with inverse growth.

3. Gamma distribution: Skewed-type marginals.

Therefore by the possible variations within the CMixR model, the proposed model

can be flexibly chosen to fit data with various marginals and different dependence

structures.

3.4 Summary

In this chapter, we proposed copula-based mixtures of regression models for ana-

lyzing multivariate response data. Specifically, the dependence structure among the
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response variables is captured using a copula. To address optimization difficulties

encountered in the maximization step, we employ an ECM algorithm to estimate the

model parameters. Detailed computational procedures are also provided. In the next

chapter, a simulation study for different models as listed in Section 3.3 as well as a

data analysis on purple rock crabs are conducted.



Chapter 4

Data Analyses

In this chapter, a simulation study for the CMixR model is conducted in Section 4.1,

with varying types of continuous margins and different types of copulas. Clustering

performance by the proposed CMixR method is compared with other existing methods

based on ARI values. In Section 4.2, the Leptograpsus variegatus crab data set is

analysed using the CMixR model.

4.1 Simulation Study

The objective of this simulation study is to evaluate the performance of the proposed

copula-based mixtures of regression (CMixR) models and compare it with other ex-

isting methods. We consider a total of 9 different scenarios as listed in Table 4.1 with

corresponding parameters specified in Table 4.2. For each scenario, a Monte Carlo

simulation with a total of 100 samples (M = 100) is generated. For each simulation

sample, we generate data of size n = 100 from two-component mixture models. The

simulation scenarios considered varied marginal distributions and dependence struc-

tures while assuming a prior knowledge of the number of clusters as 2. A comparison of

the proposed CMixR model with flexible Mixture Modeling (flexmix), parsimonious

Gaussian mixture models (pgmm), and mixture models for clustering and classification

(mixture) is conducted in this chapter. The accuracy of clustering results is evaluated

using the ARI value, as described in Section 2.4. To visually compare the clustering

performance of each method, boxplots of ARI values across samples are presented.

For the flexmix method, multiple initializations with randomly assigned clusters

are applied. The initial values chosen for the CMixR method are from the flexmix

results, which include the initial component memberships as well as the regression

coefficients. In order to clarify the notation used, Ydg represents the dth response

variable Yd in cluster g, βdg = (βdg0, βdg1, βdg2)
′ denotes the regression coefficients of

Yd|X in cluster g, and σdg refers to any additional parameter of Yd|X in cluster g, e.g,

31
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the standard deviation of a normal density. Notations here are the same as described

in tree diagram 3.1 in the previous chapter, with G = 2, D = 2, P = 2.

In case 1, Y1, Y2 have normal distributions as margins in both cluster 1 and clus-

ter 2 but with different parameters. The dependence structures are both set to be

the Gaussian copula but with different parameters. Under this setting, all methods

exhibit strong performance with a median ARI exceeding 0.95. This result is not

surprising as normal margins with a Gaussian copula form the multivariate normal

distribution, and therefore allow for effective clustering via Gaussian mixture models.

However, if the dependence structure is no longer elliptical, the Gaussian copula and

the Gaussian mixture model will be limited. To see the performance with a non-

elliptical dependence structure, copulas exhibiting tail dependence are employed in

the subsequent scenarios.

Figure 4.1: Boxplots of case 1: Y1, Y2 have normal margins with different parameters
and normal copula is used to model dependence structure in both clusters with dif-
ferent parameters.
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Table 4.2: Parameter values used for the 9 simulation scenarios.

Param Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9

β0,11 1 1 1 1 1 1 1 1 1

β1,11 2 1 1 1 1 2 1 1 1

β2,11 3 1 1 1 1 1 1 1 1

β0,12 3 2 2 2 2 -1 -1 1 2

β1,12 2 2 2 2 2 -1 -1 1 2

β2,12 1 2 2 2 2 -1 -1 1 2

β0,21 4 1 1 1 1 0.5 -0.2 1 1

β1,21 5 2 2 2 2 0.2 -0.2 2 2

β2,21 6 3 3 3 3 -0.2 -0.2 3 3

β0,22 6 2 2 2 2 1 0.5 1 2

β1,22 5 3 3 3 3 -0.5 0.5 2 3

β2,22 4 4 4 4 4 0 0 3 4

σ11 5 4 4 4 4 1 2 2 4

σ12 6 2 2 2 2 2 2 2 2

σ21 7 3 3 3 3 NA 6 1 3

σ22 8 1 1 1 1 NA 8 1 1

θ1 0.2 4 4 4 4 4 3 1 NA

θ2 0.6 10 10 10 10 8 4 20 NA

τ1 0.13 0.67 0.75 0.67 0.67 0.75 0.67 0 0

τ2 0.41 0.83 0.9 0.67 0.9 0.88 0.75 0.95 0
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In case 2, a lower tail dependence structure is imposed on Y1 and Y2 by using

the Clayton copula. From Figure 4.2, it is evident that CMixR outperforms other

methods and exhibits a narrower dispersion as well. Given that flexmix assumes

independence between the response variables Y1 and Y2, it is reasonable to anticipate

improved performance from CMixR, which accounts for the dependence structure.

It can be seen that pgmm shows greater variation in performance, which may be

due to this method being tailored for high-dimensional data. We only consider a 2-

dimensional response vector here, so it may not be a high enough dimension response

for good pgmm performance.

Figure 4.2: Boxplot of case 2: Y1, Y2 have normal margins with different parameters
in two clusters and Clayton copula is used to model dependence structure in both
clusters with different parameters.

In case 3, the Gumbel copula was employed to introduce an upper tail dependence

structure on Y1 and Y2. As shown in Figure 4.3, both CMixR and mixture yielded

highly comparable results with a median ARI of 1. However, CMixR exhibited a

slightly higher mean ARI of 0.983 compared to the mean ARI of 0.966 obtained by

mixture. At the same time, flexmix performs acceptably with a median ARI around

0.85, but much lower than the CMixR and mixture. Similar to case 2, pgmm has a
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median ARI value of around 0.83 but with a wide variation in performance.

Figure 4.3: Boxplot of case 3: Y1, Y2 have normal margins with different parameters
in two clusters and Gumbel copula is used to model dependence structure in both
clusters with different parameters.

In case 4, we investigate the impact of different dependence structures between

two clusters by using different types of copulas in two clusters. Copula C1 is set

to Clayton copula and copula C2 is set to Frank copula, while Y1, Y2 have normal

margins with different parameters. As can be seen from Figure 4.4, CMixR has the

overall best performance with a higher median ARI value. flexmix and mixture also

perform well with median ARI around 0.9. On the other hand, pgmm still has a wide

range of dispersion, similar to previous cases.
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Figure 4.4: Boxplot of case 4: Y1, Y2 have normal margins with different parameters
in two clusters. Cluster 1 has Clayton copula to model dependence structure, while
cluster 2 uses Frank copula.

Regarding case 5, the copula C1 remains as the Clayton copula as case 4, while the

copula C2 is replaced with the Frank copula. As shown in Figure 4.5, both CMixR and

mixture exhibit superior performance compared to the other two methods. When

comparing CMixR to mixture, it can be observed that they share an identical median

ARI of 0.960; however, CMixR achieves a higher mean ARI of 0.962 in contrast to a

mean ARI of 0.945 for mixture. At the same time, flexmix has a slightly lower ARI

with a median value of 0.921. Again, pgmm has a wide variation in performance.
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Figure 4.5: Boxplot of case 5: Y1, Y2 have normal margins with different parameters
in two clusters. Cluster 1 uses Clayton copula to model dependence structure, while
cluster 2 uses Gumbel copula.

To examine the impact of the marginal distributions, alternative distributions

other than the normal distribution are employed. In case 6, Y1 has a normal distri-

bution, while Y2 is generated from an exponential distribution. In case 7, Y1 is still

generated from a normal distribution, while Y2 is generated from a Gamma distri-

bution. Given that the pgmm and mixture are designed for parsimonious Gaussian

mixture models, we solely compare CMixR with flexmix. Notably, in both cases,

CMixR with non-normal margins exhibits slightly diminished performance compared

to previous scenarios; nevertheless, it still achieves an ARI of approximately 0.75

which is better than the ARI obtained by flexmix (less than 0.5).
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Figure 4.6: Boxplot of case 6: Y1 has normal margins with different parameters in
two clusters, Y2 has exponential margins with different parameters in two clusters,
and the Gumbel copula is used in both clusters.

Figure 4.7: Boxplot of case 7: Y1 has normal margins with different parameters in
two clusters, Y2 has Gamma margins with different parameters in two clusters, and
the Gumbel copula is used in both clusters.
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Case 8 is an interesting simulation setting because we set responses Y1 and Y2

to have the exactly same margins in both clusters 1 and 2. Specifically, we set

β11 = β12, σ11 = σ12 and β21 = β22, σ21 = σ22. Copula C1 is the independence copula,

which means that Y1 and Y2 are conditionally independent in cluster 1. Copula C2 is

Gumbel copula with parameter θ2 = 20, which means that Y1 and Y2 are dependent

with Kendall’s τ = 0.95 in cluster 2. This is the case when we expect the best

performance from CMixR. Results from Figure 4.8 show that CMixR has superior

performance and can be used to separate 2 clusters with hidden dependence in one

cluster. On the other hand, flexmix and pgmm yield ARIs around 0, meaning that

their results have approximately the same accuracy as randomly assigning clusters.

mixture has some ARI values above 0.5, but the median ARI is low and performance

is extremely widespread.

Figure 4.8: Boxplot of case 8: Independent Y1,Y2 with normal margins in cluster 1
and Y1,Y2 with normal margins and Gumbel copula in cluster 2. Moreover, the two
clusters have identical parameters for the margins.

In case 8, there is an ARI value of 0 for the CMixR method, indicating a need

for further investigation. From the residual dependence plot shown in Figure 4.9, it

can be seen that the dependence structures used to generate the clusters are mixed
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in the result. Considering that the flexmix method yielded unsatisfactory results

in this case (ARI ≈ 0) and serves to initialize CMixR, there is a suspicion that the

low ARI value in CMixR is a result of poor initialization. To check this conclusion,

multiple randomizations were used for the initial cluster assignment for this particular

simulated dataset to see if the ARI result improved. The highest ARI amongst all

the initializations was 0.845, which is significantly better than the ARI value of 0

based on the flexmix initialization. Therefore, alternative initialization methods are

needed to improve the performance of CMixR.

Figure 4.9: Plot for residual dependence structure of the case that CmixR performs
not well in case 8.

Concerning case 9, the margins are independently simulated such that they are

normal in both clusters. The Gumbel copula is used within CMixR to characterize the

dependence structure for estimation, allowing us to assess the applicability of CMixR

under conditions of independent dependence structure. This is the case flexmix

is designed for and we expect comparable performance from CMixR and flexmix.

From Figure 4.10, it can be seen that CMixR, flexmix, and mixture all provide

highly comparable results. To be more specific, all methods have a median ARI of
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0.96 but flexmix has a narrower spread than the other three methods.

Figure 4.10: Boxplot of case 9: Independent Y1,Y2 with normal margins of different
parameters in both clusters. Gumbel copula is used to model dependence structure
in both clusters.

In summary, the proposed CMixR model demonstrates a better performance com-

pared to the other three methods, especially when there exists a difference in the

dependence structures of the clusters. Next, we apply this approach to a data set.
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4.2 Crab data set

The famous crab data set, which is available in the R package MASS, is analyzed

here. These data represent the outcomes of 200 crabs of the species Leptograpsus

variegatus, with an equal distribution of 100 males and 100 females. A total of

five morphological measurements were recorded, namely frontal lobe size (FL), rear

width (RW), carapace length (CL), carapace width (CW), and body depth (BD). All

variables in this dataset are continuous and measured in millimetres (mm). Summary

statistics for all variables are shown in Table 4.3.

Following the approach employed by Dang et al. (2017), variables FL, RW, and

CW that reflect width measurements are taken to be the response variables, with

CL and BD as the covariates. Since the response variables under consideration are

size, width, and width, respectively, it seems reasonable to employ normal margins.

Histograms with density curves of these 3 response variables are shown in Figure 4.11.

There appears to be a bimodal distribution for Y2 and Y3, and thus the number of

components is set to be 2 in this thesis. Further investigation into determining the

optimal number of clusters is considered for future work. Since there is no obvious

tail dependence, we select the copula from the Gaussian copula and the Frank copula

based on their Bayesian Information Criterion (BIC) values. There are a total of 28

parameters considered in this model, the Frank copula gives BIC= 1194.7, which is

slightly less than BIC= 1194.9 for the Gaussian copula. Therefore, the Frank copula

is used as the dependence structure for our model.
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Table 4.3: Summary statistics for all variables: frontal lobe size (FL), rear width
(RW), carapace width (CW), carapace length (CL), and body depth (BD) measured
in mm. The first three are responses while the rest two are covariates.

Min. 1st Qu. Median Mean 3rd Qu. Max.

FL 7.20 12.90 15.55 15.58 18.05 23.10

RW 6.50 11.00 12.80 12.74 14.30 20.20

CW 17.10 31.50 36.80 36.41 42.00 54.60

CL 14.70 27.27 32.10 32.11 37.23 47.60

BD 6.10 11.40 13.90 14.03 16.60 21.60

Figure 4.11: Histograms with density curves of response variables Y1: frontal lobe
size (FL), Y2: rear width (RW), and Y3: carapace width (CW).

Table 4.4: MAP tables in order of using CMixR (ARI=0.83), flexmix (ARI=0.81),
mixture (ARI=0.72), and pgmm (ARI=0.77).

1 2
1 98 2
2 7 93

1 2
1 94 6
2 4 96

1 2
1 0 100
2 85 15

1 2
1 92 8
2 4 96
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The resulting ARI values and MAP tables using all four methods are displayed

in Table 4.4. Based on the ARI values, CMixR performs slightly better than other

methods. The covariate effects with standard errors are presented in Table 4.5, where

the standard errors are calculated by numerical differentiation. The Hessian matrix

of the observed log-likelihood at EM estimates, H(β̂), is numerically obtained us-

ing the R package numDeriv. The results reveal a positive relationship between the

covariate X1 (CL) and all response variables. Regarding covariate X2 (BD), it ex-

hibits a positive relationship with Y1 (FL) but a negative relationship with Y3 (CW).

Notably, the relationship between X2 and Y2 (RW) is interesting, as there is no signif-

icant relationship within cluster 1 and a slightly negative relationship within cluster

2, indicating a weak relationship between the body depth and the rear width of crabs.

Table 4.5: Regression results for the three responses, each Ydg follows normal distri-
bution with mean β0 + β0x1 + β0x2.

β0 (intercept) β1 (x1) β2 (x2)

Y11

1.33 0.12 0.73

(0.16) (0.02) (0.05)

Y12

0.26 0.19 0.67

(0.37) (0.06) (0.12)

Y21

2.80 0.26 0.06

(0.20) (0.03) (0.07)

Y22

0.67 0.43 -0.05

(0.23) (0.04) (0.01)

Y31

-0.14 1.52 -0.89

(0.25) (0.02) (0.03)

Y32

0.62 1.36 -0.55

(0.27) (0.04) (0.02)
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Note that the recorded ARI value uses the sexes of the crabs, male and female, as

the true clusters. This data set does include another factor variable called “species

colour” with blue and orange. In a study conducted by Dang et al. (2017), the

mixture approach selected 4 clusters, namely blue female, blue male, orange female,

and orange male, based on some model selection criteria. It was observed that the

ARI for the mixture approach increased to 0.78 when the number of clusters was

4 rather than being fixed at 2. However, in order to conduct a fair comparison, all

methods employed in this thesis are set to use a two-component mixture model. As

mentioned earlier, further investigation into model selection for the proposed CMixR

method is considered as future work. In general, the CMixR shows a competitive

outcome when the predetermined number of clusters is known.



Chapter 5

Discussion

Finite mixture models have been widely used across various disciplines such as biology,

economics, engineering, and environmental science. In addition to the conventional

Gaussian mixture models, extensions have been done in previous studies. For ex-

ample, in order to address the computational challenge arising from the quadratic

increase in the number of covariance parameters with data dimension, McNicholas

and Murphy (2008) proposed parsimonious Gaussian mixture models (PGMM) as a

means to have the number of covariance parameters increase linearly with dimension.

Leisch (2004) proposed a general framework for finite mixtures of regression models

to consider the covariate effects; however, it assumes that any multivariate response

variables are mutually independent. To consider dependent continuous responses as

well as the regression relationships, we applied the copula framework to the finite

mixtures of regression models and proposed the copula-based mixtures of regression

(CMixR) models.

The proposed CMixR models account for heterogeneous regression data with mul-

tivariate dependent response variables. These models are used to cluster observations

based on commonalities and can be used to interpret changes in covariate effects

across clusters. Due to the higher computational cost in the discrete case, we fo-

cused only on continuous response variables in this thesis. For continuous variables,

Sklar’s theorem states that the copula can fully describe the dependence structure

and is independent of the marginal distributions. Using a copula framework enables

us to capture a wide range of shapes for the dependence structure and have different

distributions as margins, yielding more flexible models. Estimation of the CMixR

model was conducted through an ECM algorithm, which was chosen to address the

computational challenges in the maximization step of the EM algorithm.

As illustrated in the simulation study, the dependence structure can be easily and
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flexibly modified by varying the selected copula. Additionally, a range of continu-

ous margin types can be employed, ranging from normal to gamma distributions.

Through performance assessments based on ARI values in the simulation study, it is

evident that the CMixR model exhibits similar or superior clustering performance in

all the considered simulation scenarios when compared to existing methods such as

flexmix, pgmm, and mixture. In the case of normal margins with normal copulas,

all methods exhibit strong performance, as they are all effective for clustering via

Gaussian mixture models. When the dependence is no longer normal, the CMixR

model exhibits its advantages and mixture is the only method that shows similar

performance. However, it is worth noting that pgmm shows a large variability in per-

formance, which may be due to the lower-dimensional response data in the simulation

study. One important advantage of the CMixR model is its ability to handle situations

where responses are dependent in certain clusters but independent in other clusters,

while the marginal distributions are identical for all clusters. In this situation, the

CMixR method is the only one that can be used.

Furthermore, when applied to real-world data of purple crabs with five morpho-

logical measurements, CMixR shows its effectiveness and applicability. Through the

exploratory data analysis, we determined the number of clusters as 2 and used normal

distributions as margins along with Frank copulas to capture the dependence struc-

ture. For the covariate effects, carapace length exhibits a positive relationship with

lobe size, rear width, and carapace width. Additionally, body depth demonstrates

a positive effect on lobe size but a negative effect on carapace width. Interestingly,

it yields a weak effect on rear width: no significant effect in cluster 1 while a slight

negative effect in cluster 2. To ensure a fair comparison of the clustering performance,

all methods were set to use a two-component mixture model without using any model

selection criteria. The CMixR method shows a slightly better performance in terms

of ARI when compared with flexmix, pgmm, and mixture. However, further inves-

tigation into model selection for the proposed CMixR method should be considered,

as discussed in the next section.
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5.1 Future work

There are many avenues for future research with this work. First, model selection

based on Akaike information criterion (AIC), Bayesian information criterion (BIC),

or another suitable criterion should be investigated. Model selection for the CMixR

would be used to determine the optimal number of clusters, and the most appropriate

marginal distributions for the response variables, and select an appropriate copula to

define the dependence structures. Second, rotational copulas as mentioned by Kos-

midis and Karlis (2016) could be introduced for non-elliptical dependence structure.

For example, the 180◦ rotated version of the Clayton copula exhibits upper-tail de-

pendence, rather than the standard lower-tail dependence. This would add flexibility

while restricting all dependence structures to the same family. Third, alternative

marginal distributions such as the Student t distribution and the beta distribution

could be implemented to enhance the flexibility of the current CMixR model. Fourth,

while continuous marginal distributions have been the focus of this thesis, there is a

need for further investigation of discrete and mixed-type response data. The bivari-

ate discrete Poisson case has been investigated by Bermúdez and Karlis (2022), but

more work needs to be done to extend their models to the computationally demand-

ing, high-dimensional discrete cases. Fifth, the proposed CMixR models incorporate

Archimedean copulas, such as the Clayton and Gumbel copulas, and may encounter

limitations when applied to high-dimensional data, as Archimedean copulas still rely

on a single parameter to determine all dependencies. Therefore, other more suitable

copulas like vine copula (Nagler et al., 2019) could be investigated. Finally, the num-

ber of parameters of the Gaussian copula increases quadratically with the dimension,

which poses challenges in high-dimensional cases. Restricted covariances, such as

those used by the PGMM could be explored for the CMixR model.
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Frühwirth-Schnatter, S. and Pyne, S. (2010). Bayesian inference for finite mixtures
of univariate and multivariate skew-normal and skew-t distributions. Biostatistics,
11(2):317–336.

Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of classification,
2:193–218.

Joe, H. (1997). Multivariate models and multivariate dependence concepts. CRC
press.

Karlis, D. and Santourian, A. (2009). Model-based clustering with non-elliptically
contoured distributions. Statistics and Computing, 19:73–83.

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2):81–93.

Kolev, N. and Paiva, D. (2009). Copula-based regression models: A survey. Journal
of statistical planning and inference, 139(11):3847–3856.

Kosmidis, I. and Karlis, D. (2016). Model-based clustering using copulas with appli-
cations. Statistics and computing, 26:1079–1099.

50



51

Leisch, F. (2004). Flexmix: A general framework for finite mixture models and latent
class regression in r. Journal of Statistical Software, 11(8):1–18.

Masarotto, G. and Varin, C. (2012). Gaussian copula marginal regression. Electronic
Journal of Statistics, 6:1517 – 1549.

McLachlan, G. and Chang, S. (2004). Mixture modelling for cluster analysis. Statis-
tical methods in medical research, 13(5):347–361.

McNicholas, P. D. (2016). Mixture model-based classification. CRC press.

McNicholas, P. D. and Murphy, T. B. (2008). Parsimonious gaussian mixture models.
Statistics and Computing, 18:285–296.

McNicholas, P. D., Murphy, T. B., McDaid, A. F., and Frost, D. (2010). Serial
and parallel implementations of model-based clustering via parsimonious gaussian
mixture models. Computational Statistics & Data Analysis, 54(3):711–723.

Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ecm
algorithm: A general framework. Biometrika, 80(2):267–278.

Nagler, T., Bumann, C., and Czado, C. (2019). Model selection in sparse high-
dimensional vine copula models with an application to portfolio risk. Journal of
Multivariate Analysis, 172:180–192.

Pitt, M., Chan, D., and Kohn, R. (2006). Efficient bayesian inference for gaussian
copula regression models. Biometrika, 93(3):537–554.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and val-
idation of cluster analysis. Journal of computational and applied mathematics,
20:53–65.

Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., Er, M. J.,
Ding, W., and Lin, C.-T. (2017). A review of clustering techniques and develop-
ments. Neurocomputing, 267:664–681.

Sklar, M. (1959). Fonctions de repartition an dimensions et leurs marges. Publ. inst.
statist. univ. Paris, 8:229–231.



Appendix A

R Code

A.1 Simulation Study

rm(list = ls())

require(copula)

require(flexmix)

require(mclust)

require(mixture)

require(pgmm)

# EM algorithm

## E-step

E_step=function(y, x, beta_mat, sigma_vec, theta_vec, pi_vec){

y1 = y[,1]; y2 = y[,2]

x1 = x[,1]; x2 = x[,2]

beta11 = beta_mat[,1] #beta for Y1, g=1

beta12 = beta_mat[,2] #beta for Y1, g=2

beta21 = beta_mat[,3] #beta for Y2, g=1

beta22 = beta_mat[,4] #beta for Y2, g=2

mu11 = beta11[1] + beta11[2]*x1 + beta11[3]*x2 #Y1, g=1

mu12 = beta12[1] + beta12[2]*x1 + beta12[3]*x2 #Y1, g=2

mu21 = beta21[1] + beta21[2]*x1 + beta21[3]*x2 #Y2, g=1

mu22 = beta22[1] + beta22[2]*x1 + beta22[3]*x2 #Y2, g=2

F11 = pnorm(y1, mean = mu11, sd = sigma_vec[1]) #Y1, g=1

F12 = pnorm(y1, mean = mu12, sd = sigma_vec[2]) #Y1, g=2

F21 = pnorm(y2, mean = mu21, sd = sigma_vec[3]) #Y2, g=1

52



53

F22 = pnorm(y2, mean = mu22, sd = sigma_vec[4]) #Y2, g=2

cop1 = gumbelCopula(theta_vec[1])

cop2 = gumbelCopula(theta_vec[2])

c1 = dCopula(cbind(F11,F21), cop1) #copula density of (Y1, Y2), g=1

c2 = dCopula(cbind(F12,F22), cop2) #copula density of (Y1, Y2), g=2

f11 = dnorm(y1, mean = mu11, sd = sigma_vec[1]) #marginal density of Y1, g=1

f12 = dnorm(y1, mean = mu12, sd = sigma_vec[2]) #marginal density of Y1, g=2

f21 = dnorm(y2, mean = mu21, sd = sigma_vec[3]) #marginal density of Y2, g=1

f22 = dnorm(y2, mean = mu22, sd = sigma_vec[4]) #marginal density of Y2, g=2

comp_dens1 = c1 * pi_vec[1] * f11 * f21

comp_dens2 = c2 * pi_vec[2] * f12 * f22

sum_dens = comp_dens1 + comp_dens2

z1.vec = comp_dens1 / sum_dens

z2.vec = comp_dens2 / sum_dens

zhat_mat = cbind(z1.vec,z2.vec)

return(zhat_mat)

}

## M-step1 for pi1 and pi2, returns pi_vec

M_step1 = function(zhat_mat){

n = nrow(zhat_mat)

sum_z1 = sum(zhat_mat[,1])

sum_z2 = sum(zhat_mat[,2])

pi1 = sum_z1/n

pi2 = sum_z2/n

pi_vec = c(pi1,pi2)

return(pi_vec)

}
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## M-step2: CM-step1 and CM-step2

optFunc = function(param_g, theta_g, zhat_g){

beta_1g = param_g[1:3]

beta_2g = param_g[4:6]

sigma_1g = param_g[7]

sigma_2g = param_g[8]

mu_1g = beta_1g[1] + beta_1g[2]*x1 + beta_1g[3]*x2

mu_2g = beta_2g[1] + beta_2g[2]*x1 + beta_2g[3]*x2

f1g = dnorm(y1, mean = mu_1g, sd = sigma_1g, log = TRUE)

f2g = dnorm(y2, mean = mu_2g, sd = sigma_2g, log = TRUE)

F1g = pnorm(y1, mean = mu_1g, sd = sigma_1g) #Y1

F2g = pnorm(y2, mean = mu_2g, sd = sigma_2g) #Y2

cop_g = gumbelCopula(theta_g)

logcg = dCopula(cbind(F1g,F2g), cop_g, log = TRUE)

zlog_cg_fg = zhat_g * (logcg + f1g + f2g)

arg = sum(zlog_cg_fg)

return(arg)

}

CM_step1 = function(y, x, zhat_mat, beta_mat_initial,

sigma_vec_initial, theta_vec){

y1 = y[,1]; y2 = y[,2]

x1 = x[,1]; x2 = x[,2]

beta_mat = matrix(NA, 3, 4)

sigma_vec = rep(NA, 4)

# g=1

init1 = c(beta_mat_initial[,1], beta_mat_initial[,3],

sigma_vec_initial[1], sigma_vec_initial[3])

res1 = optim(init1, optFunc, theta_g = theta_vec[1],

zhat_g=zhat_mat[,1], method = "L-BFGS-B",

lower = c(-Inf, -Inf, -Inf, -Inf, -Inf, -Inf,
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.Machine$double.eps, .Machine$double.eps),

upper = c(Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf),

control = list(fnscale = -1))

beta_mat[,1] = res1$par[1:3]

beta_mat[,3] = res1$par[4:6]

sigma_vec[1] = res1$par[7]

sigma_vec[3] = res1$par[8]

# g=2

init2 = c(beta_mat_initial[,2], beta_mat_initial[,4],

sigma_vec_initial[2], sigma_vec_initial[4])

res2 = optim(init2, optFunc, theta_g = theta_vec[2],

zhat_g=zhat_mat[,2], method = "L-BFGS-B",

lower = c(-Inf, -Inf, -Inf, -Inf, -Inf, -Inf,

.Machine$double.eps, .Machine$double.eps),

upper = c(Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf),

control = list(fnscale = -1))

beta_mat[,2] = res2$par[1:3]

beta_mat[,4] = res2$par[4:6]

sigma_vec[2] = res2$par[7]

sigma_vec[4] = res2$par[8]

return(list("beta_mat" = beta_mat, "sigma_vec" = sigma_vec))

}

optFunc2 = function(theta_g, F1g, F2g, zhat_g){

cop_g = gumbelCopula(theta_g)

logcg = dCopula(cbind(F1g,F2g), cop_g, log = TRUE)

zlogcg = zhat_g * logcg

arg = sum(zlogcg)

return(arg)

}
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CM_step2 = function(y, x, zhat_mat, beta_mat,

sigma_vec, theta_vec_initial){

y1 = y[,1]; y2 = y[,2]

x1 = x[,1]; x2 = x[,2]

beta11 = beta_mat[,1] #beta for Y1, g=1

beta12 = beta_mat[,2] #beta for Y1, g=2

beta21 = beta_mat[,3] #beta for Y2, g=1

beta22 = beta_mat[,4] #beta for Y2, g=2

mu11 = beta11[1] + beta11[2]*x1 + beta11[3]*x2 #Y1, g=1

mu12 = beta12[1] + beta12[2]*x1 + beta12[3]*x2 #Y1, g=2

mu21 = beta21[1] + beta21[2]*x1 + beta21[3]*x2 #Y2, g=1

mu22 = beta22[1] + beta22[2]*x1 + beta22[3]*x2 #Y2, g=2

F11 = pnorm(y1, mean = mu11, sd = sigma_vec[1]) #Y1, g=1

F12 = pnorm(y1, mean = mu12, sd = sigma_vec[2]) #Y1, g=2

F21 = pnorm(y2, mean = mu21, sd = sigma_vec[3]) #Y2, g=1

F22 = pnorm(y2, mean = mu22, sd = sigma_vec[4]) #Y2, g=2

theta_vec = rep(NA, 2)

# g=1

res1 = optim(theta_vec_initial[1], optFunc2, F1g = F11, F2g=F21,

zhat_g=zhat_mat[,1], method = "L-BFGS-B",

lower = 1 + .Machine$double.eps,

upper = Inf,

control = list(fnscale = -1))

theta_vec[1] = res1$par

# g=2

res2 = optim(theta_vec_initial[2], optFunc2, F1g = F12, F2g=F22,

zhat_g=zhat_mat[,2], method = "L-BFGS-B",
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lower = 1 + .Machine$double.eps,

upper = Inf,

control = list(fnscale = -1))

theta_vec[2] = res2$par

return(theta_vec)

}

loglik = function(y, x, pi_vec, beta_mat, sigma_vec, theta_vec){

y1 = y[,1]; y2 = y[,2]

x1 = x[,1]; x2 = x[,2]

beta11 = beta_mat[,1] #beta for Y1, g=1

beta12 = beta_mat[,2] #beta for Y1, g=2

beta21 = beta_mat[,3] #beta for Y2, g=1

beta22 = beta_mat[,4] #beta for Y2, g=2

mu11 = beta11[1] + beta11[2]*x1 + beta11[3]*x2 #mu for Y1, g=1

mu12 = beta12[1] + beta12[2]*x1 + beta12[3]*x2 #mu for Y1, g=2

mu21 = beta21[1] + beta21[2]*x1 + beta21[3]*x2 #mu for Y2, g=1

mu22 = beta22[1] + beta22[2]*x1 + beta22[3]*x2 #mu for Y2, g=2

F11 = pnorm(y1, mean = mu11, sd = sigma_vec[1]) #Y1, g=1

F12 = pnorm(y1, mean = mu12, sd = sigma_vec[2]) #Y1, g=2

F21 = pnorm(y2, mean = mu21, sd = sigma_vec[3]) #Y2, g=1

F22 = pnorm(y2, mean = mu22, sd = sigma_vec[4]) #Y2, g=2

cop1 = gumbelCopula(theta_vec[1])

cop2 = gumbelCopula(theta_vec[2])

c1 = dCopula(cbind(F11,F21), cop1)

c2 = dCopula(cbind(F12,F22), cop2)

comp1 = pi_vec[1] * c1 * dnorm(y1, mean = mu11, sd = sigma_vec[1])
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* dnorm(y2, mean = mu21, sd = sigma_vec[3])

comp2 = pi_vec[2] * c2 * dnorm(y1, mean = mu12, sd = sigma_vec[2])

* dnorm(y2, mean = mu22, sd = sigma_vec[4])

sum_comp = comp1 + comp2

loglik = sum(log(sum_comp))

return(loglik)

}

## MC simulation

set.seed(1)

n = 100

M = 100

max.iter = 1000

data = array(rep(NA, 100*4*M), dim=c(100, 4, M))

beta_mat_MC <- array(rep(NA, 3*4*M), dim=c(3, 4, M))

sigma_vec_MC <- matrix(rep(NA, M*4), nrow = M)

theta_vec_MC <- matrix(rep(NA, M*2), nrow = M)

pi_vec_MC <- matrix(rep(NA, M*2), nrow = M)

ARI_MC <- rep(NA, M)

MAP_MC <- array(rep(NA, 2*2*M), dim=c(2, 2, M))

ARI_MC_flex <- rep(NA, M)

MAP_MC_flex <- array(rep(NA, 2*2*M), dim=c(2, 2, M))

ARI_MC_mix <- rep(NA, M)

MAP_MC_mix <- array(rep(NA, 2*2*M), dim=c(2, 2, M))

ARI_MC_pgmm <- rep(NA, M)

MAP_MC_pgmm <- array(rep(NA, 2*2*M), dim=c(2, 2, M))

true_beta = c(1,1,1, 1,1,1, 1,2,3, 1,2,3)

true_sigma = c(2,2,1,1)

true_theta = c(1, 20)

# Data generation
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for (m in 1:M) {

x1 = runif(n, min = 0, max = 10)

x2 = runif(n, min = 1, max = 11)

mu11 = true_beta[1] + true_beta[2]*x1[1:(n/2)]

+ true_beta[3]*x2[1:(n/2)] #Y1, g=1

mu12 = true_beta[4] + true_beta[5]*x1[(n/2+1):n]

+ true_beta[6]*x2[(n/2+1):n] #Y1, g=2

mu21 = true_beta[7] + true_beta[8]*x1[1:(n/2)]

+ true_beta[9]*x2[1:(n/2)] #Y2, g=1

mu22 = true_beta[10] + true_beta[11]*x1[(n/2+1):n]

+ true_beta[12]*x2[(n/2+1):n] #Y2, g=2

cop1 <- rCopula(n/2, gumbelCopula(true_theta[1]))

cop2 <- rCopula(n/2, gumbelCopula(true_theta[2]))

y11 = qnorm(cop1[,1], mean = mu11, sd = true_sigma[1])

y12 = qnorm(cop2[,1], mean = mu12, sd = true_sigma[2])

y21 = qnorm(cop1[,2], mean = mu21, sd = true_sigma[3])

y22 = qnorm(cop2[,2], mean = mu22, sd = true_sigma[4])

y1 = c(y11,y12)

y2 = c(y21,y22)

x = cbind(x1,x2)

y = cbind(y1,y2)

data[,,m] = cbind(x1,x2,y1,y2)

}

for (m in 1:M) {

x = data[,,m][,1:2]

y = data[,,m][,3:4]

# Other methods: performance evaluation

flex.clust = stepFlexmix(~x[,1]+x[,2], k=2, nrep=10,

model=list(FLXMRglm(y[,1]~x[,1]+x[,2]),

FLXMRglm(y[,2]~x[,1]+x[,2])))

flex.clust = flex.clust@cluster
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pgmm.clust = pgmmEM(scale(cbind(x,y)),rG=2:2,zstart=1,loop=10, relax=TRUE)

pgmm.clust = pgmm.clust$map

mix.clust = pcm(cbind(y,x), G=2:2, pcmfamily = c(gpcm,ghpcm,vgpcm,tpcm,stpcm))

mix.clust = mix.clust$best_model$map

ARI_MC_flex[m] = adjustedRandIndex(c(rep(1,50),rep(2,50)),flex.clust)

ARI_MC_pgmm[m] = adjustedRandIndex(c(rep(1,50),rep(2,50)),pgmm.clust)

ARI_MC_mix[m] = adjustedRandIndex(c(rep(1,50),rep(2,50)),mix.clust)

MAP_MC_flex[,,m] = table(c(rep(1,50),rep(2,50)),flex.clust)

MAP_MC_pgmm[,,m] = table(c(rep(1,50),rep(2,50)),pgmm.clust)

MAP_MC_mix[,,m] = table(c(rep(1,50),rep(2,50)),mix.clust)

ll_vec = c(-Inf, rep(NA, max.iter-1))

aitken = rep(NA, max.iter)

# Initialization for CMixR

zhat_mat = cbind(flex.clust-1, 2-flex.clust)

beta_mat_initial = matrix(NA, 3, 4)

beta_mat_initial[,1] = flex.clust@components$Comp.1[[1]]@parameters$coef

beta_mat_initial[,2] = flex.clust@components$Comp.2[[1]]@parameters$coef

beta_mat_initial[,3] = flex.clust@components$Comp.1[[2]]@parameters$coef

beta_mat_initial[,4] = flex.clust@components$Comp.2[[2]]@parameters$coef

sigma_vec_initial = rep(NA, 4)

sigma_vec_initial[1] = flex.clust@components$Comp.1[[1]]@parameters$sigma

sigma_vec_initial[2] = flex.clust@components$Comp.2[[1]]@parameters$sigma

sigma_vec_initial[3] = flex.clust@components$Comp.1[[2]]@parameters$sigma

sigma_vec_initial[4] = flex.clust@components$Comp.2[[2]]@parameters$sigma

pi_vec = M_step1(zhat_mat)

cmstep1 = CM_step1(y, x, zhat_mat, beta_mat_initial = beta_mat_initial,

sigma_vec_initial = sigma_vec_initial, theta_vec = c(2,2))

beta_mat = cmstep1$beta_mat
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sigma_vec = cmstep1$sigma_vec

theta_vec = CM_step2(y, x, zhat_mat, beta_mat, sigma_vec,

theta_vec_initial=c(2,2))

for(i in 1:max.iter){

zhat_mat = E_step(y, x, beta_mat, sigma_vec, theta_vec, pi_vec)

pi_vec = M_step1(zhat_mat)

cmstep1 = CM_step1(y, x, zhat_mat, beta_mat_initial = beta_mat,

sigma_vec_initial = sigma_vec, theta_vec)

beta_mat = cmstep1$beta_mat

sigma_vec = cmstep1$sigma_vec

theta_vec = CM_step2(y, x, zhat_mat, beta_mat, sigma_vec,

theta_vec_initial=theta_vec)

ll_vec[i+1] = loglik(y, x, pi_vec, beta_mat, sigma_vec, theta_vec)

if(i>2){

aitken[i] = (ll_vec[i+1]-ll_vec[i])/(ll_vec[i]-ll_vec[i-1])

ll_inf = ll_vec[i]+(ll_vec[i+1]-ll_vec[i])/(1-aitken[i])

stop = ll_inf-ll_vec[i+1]

if(stop>0 & stop < 1e-6) {break}

}

}

beta_mat_MC[, , m] = beta_mat

sigma_vec_MC[m,] = sigma_vec

theta_vec_MC[m,] = theta_vec

pi_vec_MC[m,] = pi_vec

# Performance evaluation for CMixR

my.clust = rep(NA,n)

for (a in 1:n) {

if (zhat_mat[a,1] > zhat_mat[a,2]) {my.clust[a] = 1} else {my.clust[a] = 2}

}

ARI_MC[m] = adjustedRandIndex(c(rep(1,50),rep(2,50)),my.clust)
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MAP_MC[,,m] = table(c(rep(1,50),rep(2,50)),my.clust)

}

A.2 Crab data set

rm(list = ls())

library(flexmix)

library(mclust)

library(mixture)

library(pgmm)

library(copula)

library(MASS)

data("crabs")

y <- as.matrix(crabs[,c(4,5,7)])

x <- as.matrix(crabs[,c(6,8)])

class <- crabs$sex

par(mfrow = c(1, 3))

hist(y[,1], prob = TRUE, ylim = c(0,0.12), xlab = "Frontal Lobe Size (mm)",

main = "Density Plot of Y1: FL")

lines(density(y[,1]), col = 4, lwd = 2)

hist(y[,2], prob = TRUE, ylim = c(0,0.15), xlab = "Rear Width (mm)",

main = "Density Plot of Y2: RW")

lines(density(y[,2]), col = 4, lwd = 2)

hist(y[,3], prob = TRUE, ylim = c(0,0.05), xlab = "Carapace Width (mm)",
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main = "Density Plot of Y3: CW")

lines(density(y[,3]), col = 4, lwd = 2)

# EM algorithm

## E-step

E_step=function(y, x, beta_mat, sigma_vec, theta_vec, pi_vec){

y1 = y[,1]; y2 = y[,2]; y3 = y[,3]

x1 = x[,1]; x2 = x[,2]

beta11 = beta_mat[,1] #beta for Y1, g=1

beta12 = beta_mat[,2] #beta for Y1, g=2

beta21 = beta_mat[,3] #beta for Y2, g=1

beta22 = beta_mat[,4] #beta for Y2, g=2

beta31 = beta_mat[,5] #beta for Y3, g=1

beta32 = beta_mat[,6] #beta for Y3, g=2

mu11 = beta11[1] + beta11[2]*x1 + beta11[3]*x2 #Y1, g=1

mu12 = beta12[1] + beta12[2]*x1 + beta12[3]*x2 #Y1, g=2

mu21 = beta21[1] + beta21[2]*x1 + beta21[3]*x2 #Y2, g=1

mu22 = beta22[1] + beta22[2]*x1 + beta22[3]*x2 #Y2, g=2

mu31 = beta31[1] + beta31[2]*x1 + beta31[3]*x2 #Y3, g=1

mu32 = beta32[1] + beta32[2]*x1 + beta32[3]*x2 #Y3, g=2

F11 = pnorm(y1, mean = mu11, sd = sigma_vec[1]) #Y1, g=1

F12 = pnorm(y1, mean = mu12, sd = sigma_vec[2]) #Y1, g=2

F21 = pnorm(y2, mean = mu21, sd = sigma_vec[3]) #Y2, g=1

F22 = pnorm(y2, mean = mu22, sd = sigma_vec[4]) #Y2, g=2

F31 = pnorm(y3, mean = mu31, sd = sigma_vec[5]) #Y3, g=1

F32 = pnorm(y3, mean = mu32, sd = sigma_vec[6]) #Y3, g=2

cop1 = frankCopula(theta_vec[1], dim = 3)

cop2 = frankCopula(theta_vec[2], dim = 3)

c1 = dCopula(cbind(F11,F21,F31), cop1) #copula density of (Y1,Y2,Y3), g=1
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c2 = dCopula(cbind(F12,F22,F32), cop2) #copula density of (Y1,Y2,Y3), g=2

f11 = dnorm(y1, mean = mu11, sd = sigma_vec[1]) #marginal density of Y1, g=1

f12 = dnorm(y1, mean = mu12, sd = sigma_vec[2]) #marginal density of Y1, g=2

f21 = dnorm(y2, mean = mu21, sd = sigma_vec[3]) #marginal density of Y2, g=1

f22 = dnorm(y2, mean = mu22, sd = sigma_vec[4]) #marginal density of Y2, g=2

f31 = dnorm(y3, mean = mu31, sd = sigma_vec[5]) #marginal density of Y3, g=1

f32 = dnorm(y3, mean = mu32, sd = sigma_vec[6]) #marginal density of Y3, g=2

comp_dens1 = c1 * pi_vec[1] * f11 * f21 * f31

comp_dens2 = c2 * pi_vec[2] * f12 * f22 * f32

sum_dens = comp_dens1 + comp_dens2

z1.vec = comp_dens1 / sum_dens

z2.vec = comp_dens2 / sum_dens

zhat_mat = cbind(z1.vec,z2.vec)

return(zhat_mat)

}

## M-step1 for pi1 and pi2, returns pi_vec

M_step1 = function(zhat_mat){

n = nrow(zhat_mat)

sum_z1 = sum(zhat_mat[,1])

sum_z2 = sum(zhat_mat[,2])

pi1 = sum_z1/n

pi2 = sum_z2/n

pi_vec = c(pi1,pi2)

return(pi_vec)

}

optFunc = function(param_g, theta_g, zhat_g, y1, y2, y3, x1, x2){

beta_1g = param_g[1:3]

beta_2g = param_g[4:6]
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beta_3g = param_g[7:9]

sigma_1g = param_g[10]

sigma_2g = param_g[11]

sigma_3g = param_g[12]

mu_1g = beta_1g[1] + beta_1g[2]*x1 + beta_1g[3]*x2

mu_2g = beta_2g[1] + beta_2g[2]*x1 + beta_2g[3]*x2

mu_3g = beta_3g[1] + beta_3g[2]*x1 + beta_3g[3]*x2

f1g = dnorm(y1, mean = mu_1g, sd = sigma_1g, log = TRUE)

f2g = dnorm(y2, mean = mu_2g, sd = sigma_2g, log = TRUE)

f3g = dnorm(y3, mean = mu_3g, sd = sigma_3g, log = TRUE)

F1g = pnorm(y1, mean = mu_1g, sd = sigma_1g) #Y1

F2g = pnorm(y2, mean = mu_2g, sd = sigma_2g) #Y2

F3g = pnorm(y3, mean = mu_3g, sd = sigma_3g) #Y2

cop_g = frankCopula(theta_g, dim = 3)

logcg = dCopula(cbind(F1g,F2g,F3g), cop_g, log = TRUE)

zlog_cg_fg = zhat_g * (logcg + f1g + f2g + f3g)

arg = sum(zlog_cg_fg)

return(arg)

}

## M-step2: CM-step1 and CM-step2

CM_step1 = function(y, x, zhat_mat, beta_mat_initial,

sigma_vec_initial, theta_vec){

y1 = y[,1]; y2 = y[,2]; y3 = y[,3]

x1 = x[,1]; x2 = x[,2]

beta_mat = matrix(NA, 3, 6)

sigma_vec = rep(NA, 6)

# g=1
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init1 = c(beta_mat_initial[,1], beta_mat_initial[,3], beta_mat_initial[,5],

sigma_vec_initial[1], sigma_vec_initial[3], sigma_vec_initial[5])

res1 = optim(init1, optFunc, theta_g = theta_vec[1], zhat_g=zhat_mat[,1],

y1=y1, y2=y2, y3=y3, x1=x1, x2=x2, method = "L-BFGS-B",

lower = c(-Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf,

.Machine$double.eps, .Machine$double.eps,

.Machine$double.eps),

upper = c( Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf,

Inf, Inf, Inf),

control = list(fnscale = -1))

beta_mat[,1] = res1$par[1:3]

beta_mat[,3] = res1$par[4:6]

beta_mat[,5] = res1$par[7:9]

sigma_vec[1] = res1$par[10]

sigma_vec[3] = res1$par[11]

sigma_vec[5] = res1$par[12]

# g=2

init2 = c(beta_mat_initial[,2], beta_mat_initial[,4], beta_mat_initial[,6],

sigma_vec_initial[2], sigma_vec_initial[4], sigma_vec_initial[6])

res2 = optim(init2, optFunc, theta_g = theta_vec[2], zhat_g=zhat_mat[,2],

y1=y1, y2=y2, y3=y3, x1=x1, x2=x2, method = "L-BFGS-B",

lower = c(-Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf,

-Inf,.Machine$double.eps,

.Machine$double.eps, .Machine$double.eps),

upper = c( Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf,

Inf, Inf, Inf, Inf),

control = list(fnscale = -1))

beta_mat[,2] = res2$par[1:3]

beta_mat[,4] = res2$par[4:6]

beta_mat[,6] = res2$par[7:9]

sigma_vec[2] = res2$par[10]
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sigma_vec[4] = res2$par[11]

sigma_vec[6] = res1$par[12]

return(list("beta_mat" = beta_mat, "sigma_vec" = sigma_vec))

}

optFunc2 = function(theta_g, F1g, F2g, F3g, zhat_g){

cop_g = frankCopula(theta_g, dim = 3)

logcg = dCopula(cbind(F1g,F2g,F3g), cop_g, log = TRUE)

zlogcg = zhat_g * logcg

arg = sum(zlogcg)

return(arg)

}

CM_step2 = function(y, x, zhat_mat, beta_mat, sigma_vec, theta_vec_initial){

y1 = y[,1]; y2 = y[,2]; y3 = y[,3]

x1 = x[,1]; x2 = x[,2]

beta11 = beta_mat[,1] #beta for Y1, g=1

beta12 = beta_mat[,2] #beta for Y1, g=2

beta21 = beta_mat[,3] #beta for Y2, g=1

beta22 = beta_mat[,4] #beta for Y2, g=2

beta31 = beta_mat[,5] #beta for Y3, g=1

beta32 = beta_mat[,6] #beta for Y3, g=2

mu11 = beta11[1] + beta11[2]*x1 + beta11[3]*x2 #Y1, g=1

mu12 = beta12[1] + beta12[2]*x1 + beta12[3]*x2 #Y1, g=2

mu21 = beta21[1] + beta21[2]*x1 + beta21[3]*x2 #Y2, g=1

mu22 = beta22[1] + beta22[2]*x1 + beta22[3]*x2 #Y2, g=2

mu31 = beta31[1] + beta31[2]*x1 + beta31[3]*x2 #Y3, g=1

mu32 = beta32[1] + beta32[2]*x1 + beta32[3]*x2 #Y3, g=2
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F11 = pnorm(y1, mean = mu11, sd = sigma_vec[1]) #Y1, g=1

F12 = pnorm(y1, mean = mu12, sd = sigma_vec[2]) #Y1, g=2

F21 = pnorm(y2, mean = mu21, sd = sigma_vec[3]) #Y2, g=1

F22 = pnorm(y2, mean = mu22, sd = sigma_vec[4]) #Y2, g=2

F31 = pnorm(y3, mean = mu31, sd = sigma_vec[5]) #Y3, g=1

F32 = pnorm(y3, mean = mu32, sd = sigma_vec[6]) #Y3, g=2

theta_vec = rep(NA, 2)

# g=1

res1 = optim(theta_vec_initial[1], optFunc2, F1g=F11, F2g=F21, F3g=F31,

zhat_g=zhat_mat[,1], method = "L-BFGS-B",

lower = .Machine$double.eps,

upper = Inf,

control = list(fnscale = -1))

theta_vec[1] = res1$par

# g=2

res2 = optim(theta_vec_initial[2], optFunc2, F1g=F12, F2g=F22, F3g=F32,

zhat_g=zhat_mat[,2], method = "L-BFGS-B",

lower = .Machine$double.eps,

upper = Inf,

control = list(fnscale = -1))

theta_vec[2] = res2$par

return(theta_vec)

}

loglik = function(y, x, pi_vec, beta_mat, sigma_vec, theta_vec){

y1 = y[,1]; y2 = y[,2]; y3 = y[,3]

x1 = x[,1]; x2 = x[,2]

beta11 = beta_mat[,1] #beta for Y1, g=1
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beta12 = beta_mat[,2] #beta for Y1, g=2

beta21 = beta_mat[,3] #beta for Y2, g=1

beta22 = beta_mat[,4] #beta for Y2, g=2

beta31 = beta_mat[,5] #beta for Y3, g=1

beta32 = beta_mat[,6] #beta for Y3, g=2

mu11 = beta11[1] + beta11[2]*x1 + beta11[3]*x2 #Y1, g=1

mu12 = beta12[1] + beta12[2]*x1 + beta12[3]*x2 #Y1, g=2

mu21 = beta21[1] + beta21[2]*x1 + beta21[3]*x2 #Y2, g=1

mu22 = beta22[1] + beta22[2]*x1 + beta22[3]*x2 #Y2, g=2

mu31 = beta31[1] + beta31[2]*x1 + beta31[3]*x2 #Y3, g=1

mu32 = beta32[1] + beta32[2]*x1 + beta32[3]*x2 #Y3, g=2

F11 = pnorm(y1, mean = mu11, sd = sigma_vec[1]) #Y1, g=1

F12 = pnorm(y1, mean = mu12, sd = sigma_vec[2]) #Y1, g=2

F21 = pnorm(y2, mean = mu21, sd = sigma_vec[3]) #Y2, g=1

F22 = pnorm(y2, mean = mu22, sd = sigma_vec[4]) #Y2, g=2

F31 = pnorm(y3, mean = mu31, sd = sigma_vec[5]) #Y3, g=1

F32 = pnorm(y3, mean = mu32, sd = sigma_vec[6]) #Y3, g=2

cop1 = frankCopula(theta_vec[1], dim = 3)

cop2 = frankCopula(theta_vec[2], dim = 3)

c1 = dCopula(cbind(F11,F21,F31), cop1) # copula density of (Y1,Y2,Y3), g=1

c2 = dCopula(cbind(F12,F22,F32), cop2) # copula density of (Y1,Y2,Y3), g=2

comp1 = pi_vec[1] * c1 * dnorm(y1, mean = mu11, sd = sigma_vec[1])

* dnorm(y2, mean = mu21, sd = sigma_vec[3])

* dnorm(y3, mean = mu31, sd = sigma_vec[5])

comp2 = pi_vec[2] * c2 * dnorm(y1, mean = mu12, sd = sigma_vec[2])

* dnorm(y2, mean = mu22, sd = sigma_vec[4])

* dnorm(y3, mean = mu32, sd = sigma_vec[6])

sum_comp = comp1 + comp2
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loglik = sum(log(sum_comp))

return(loglik)

}

## EM algorithm

max.iter = 1000

ll_vec = c(-Inf, rep(NA, max.iter-1))

aitken = rep(NA, max.iter)

beta_mat=matrix(1, nrow=3,ncol=6)

sigma_vec=rep_len(2,6)

theta_vec=rep_len(0.1,2)

y.kmeans <- kmeans(cbind(y,x), 2, iter.max = 100, nstart = 30)

y.kmeans.cluster <- y.kmeans$cluster

zhat_mat = cbind(y.kmeans.cluster-1, 2-y.kmeans.cluster)

pi_vec = M_step1(zhat_mat)

cmstep1 = CM_step1(y, x, zhat_mat, beta_mat_initial = beta_mat,

sigma_vec_initial = sigma_vec, theta_vec = theta_vec)

beta_mat = cmstep1$beta_mat

sigma_vec = cmstep1$sigma_vec

theta_vec = CM_step2(y, x, zhat_mat, beta_mat, sigma_vec,

theta_vec_initial=theta_vec)

for(i in 1:max.iter){

zhat_mat = E_step(y, x, beta_mat, sigma_vec, theta_vec, pi_vec)

pi_vec = M_step1(zhat_mat)

cmstep1 = CM_step1(y, x, zhat_mat, beta_mat_initial = beta_mat,

sigma_vec_initial = sigma_vec, theta_vec)
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beta_mat = cmstep1$beta_mat

sigma_vec = cmstep1$sigma_vec

theta_vec = CM_step2(y, x, zhat_mat, beta_mat, sigma_vec,

theta_vec_initial = theta_vec)

ll_vec[i+1] = loglik(y, x, pi_vec, beta_mat, sigma_vec, theta_vec)

if(i>2){

aitken[i] = (ll_vec[i+1]-ll_vec[i])/(ll_vec[i]-ll_vec[i-1])

ll_inf = ll_vec[i]+(ll_vec[i+1]-ll_vec[i])/(1-aitken[i])

stop = ll_inf-ll_vec[i+1]

if(stop>0 & stop < 1e-6) {break}

}

}

# Performance evaluation

my.clust = rep(NA,200)

for (a in 1:200) {

if (zhat_mat[a,1] > zhat_mat[a,2]) {my.clust[a] = 1} else {my.clust[a] = 2}

}

ARI = adjustedRandIndex(as.numeric(class),my.clust)

MAP = table(as.numeric(class),my.clust)

flex.clust = stepFlexmix(~x[,1]+x[,2], k = 2, nrep = 10,

model = list(FLXMRglm(y[,1]~x[,1]+x[,2]),

FLXMRglm(y[,2]~x[,1]+x[,2]),

FLXMRglm(y[,3]~x[,1]+x[,2])))

flex.clust = flex.clust@cluster

ARI_flex = adjustedRandIndex(as.numeric(class), flex.clust)

MAP_flex = table(as.numeric(class), flex.clust)

pgmm.clust = pgmmEM(scale(cbind(x,y)), rG=2:2, zstart=1, loop=10, relax = TRUE)

pgmm.clust = pgmm.clust$map
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MAP_pgmm = table(as.numeric(class), pgmm.clust)

ARI_pgmm = adjustedRandIndex(as.numeric(class), pgmm.clust)

gmm.clust = Mclust(cbind(y,x), 2)

gmm.clust = gmm.clust$classification

ARI_mclust = adjustedRandIndex(as.numeric(class), gmm.clust)

MAP_mclust = table(as.numeric(class), gmm.clust)

mix.zhat = pcm(cbind(y,x), G=2:2)

mix.zhat = mix.zhat$best_model$map

ARI_mix = adjustedRandIndex(as.numeric(class), mix.clust)

MAP_mix = table(as.numeric(class), mix.clust)
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