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Abstract

Lee wave dissipation rates estimated from observations are two to three times lower

than those predicted by models. However, such models have assumed a constant

background current into which the waves propagate. To explore the impact of depth-

varying currents on lee waves, I have run idealized 2D numerical simulations with

sinusoidal bathymetry and linearly varying currents. For both bottom- and surface-

intensified currents, waves propagate to the surface when their frequency (Ω) remains

within the radiating range, f < Ω < N . In contrast, waves reach an evanescent

layer when their frequency is Doppler-shifted to the limits of the radiating range,

namely a dissipative layer when Ω = f or an internal reflective layer when Ω = N .

All simulations are time-dependent, with the generation of inertial oscillations and

interference patterns when reflection occurs. Furthermore, depth-varying currents

allow for energy exchanges, a dominant feature of wave energetics.
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Chapter 1

Introduction

Winds blowing over the ocean provide O(1TW) of power to geostrophic flow (Wunsch,

1998). This, energy is dissipated, leading to turbulence and mixing, with impacts on

the distribution of chemical and physical water properties throughout the ocean. Im-

portantly, the different processes leading to dissipation and their spatial distribution

are still poorly understood and under active research (Nikurashin and Ferrari , 2011;

Waterman et al., 2014; Klymak , 2018; Kunze and Lien, 2019; Shakespeare, 2020).

Among the main pathways under investigation is turbulence generated by waves

propagating in the ocean’s interior, known as internal gravity waves (Shakespeare

et al., 2021; Sun et al., 2022; Wu et al., 2023). This thesis explores this pathway by

contrasting the impacts of bottom and surface intensified currents on the propagation,

energetics and turbulence of topographically generated internal lee waves.

Lee waves are a type of internal wave generated by currents flowing over rough

bathymetry, lifting isopycnals (layers of constant density) upstream of an obstacle

and lowering them downstream, i.e. on the lee side (Legg , 2021). In an Eulerian frame

of reference, a frame fixed to bathymetry, they are stationary and propagate energy

upwards and downstream with regards to the current. At large amplitude, they

can become unstable, leading to wave breaking and turbulence. In turn, turbulence

erodes the density gradients which allows for mixing (Osborn, 1980). Several studies

predict that lee wave breaking is an important contributor to mixing in the water

column (Garrett and Kunze, 2007; Nikurashin and Ferrari , 2010a; Melet et al., 2014,

2015; Naveira Garabato et al., 2013; Waterman et al., 2013), which in turn contributes

to the global overturning circulation and large-scale climate by maintaining the deep
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ocean stratification (see e.g. Wunsch and Ferrari (2018) for a review). Considering

the influence of lee waves on climate, they should be adequately represented in

climate models. However, these use a 1◦ to 1/4◦ (≈ 111 km to ≈ 28 km) resolution

for oceanic components and the scale of lee wave, ranging from 100 m to 10 km, is

too small to be directly resolved (Melet et al., 2014). Therefore, a parametrization

is needed. Fieldwork in the Southern Ocean has found discrepancies between the

predicted and observed energy dissipation, with theory over-predicting dissipation

rates (e.g. Cusack et al. (2017)). As the required parametrization for lee waves is

based on theoretical estimates, the aforementioned discrepancies highlight the need

to better understand lee waves, supported by results from Waterman et al. (2013).

Studies using linear theory to predict lee wave generation and energy dissipation

estimate that they dissipate 0.2-0.75 TW of the deep ocean power input (Scott et al.,

2011; Nikurashin and Ferrari , 2011; Wright et al., 2014; Melet et al., 2014; Trossman

et al., 2016; Yang et al., 2018). Using numerical simulations, Nikurashin and Ferrari

(2011) estimate that 50% of the energy input into lee waves is dissipated within 1

km above bathymetry. Dissipation rates calculated from obervations show enhanced

values over rough bathymetry, as expected by linear theory (Waterman et al., 2013;

Sheen et al., 2013; Cusack et al., 2017; St. Laurent et al., 2012). However, these

predictions break down as discrepancies between the predicted and observed dissi-

pated energy were found when comparing observations to estimates from Nikurashin

and Ferrari (2011). Waterman et al. (2013) report that only 2-20% of the radiated

energy is dissipated within the first kilometre above topography, with the biggest

discrepancies in zones where the flow decreases with height.

Different hypotheses like topographic blocking, 3D effects of bathymetry and

interactions between waves and varying background currents could explain these

energy dissipation discrepancies (Nikurashin et al., 2014; Trossman et al., 2016; Zheng

and Nikurashin, 2019; Kunze and Lien, 2019). When applying non-linear theory,

which accounts for the effects of relatively tall topography on lee wave generation,

Sheen et al. (2013) calculate a lower dissipation rate than expected with only 10-30%

of predicted energy flux dissipating within 1 km of the seafloor. Flow blocking and

3D effects were numerically tested and resulted in a reduction of 35% of the energy

converted into lee-waves (Nikurashin et al., 2014). Overall, predicted dissipation
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rates from regions with tall topography and weak bottom current like the Indian

Ocean ridges were significantly reduced by 3D effects, whereas the Southern Ocean

is less affected because of the nature of its bathymetry. Recent work from Kunze

and Lien (2019) suggest that depth varying background currents should also be

considered because there is evidence of internal waves interacting with the current,

being advected and in some cases, dissipating energy away from their generation site

(Cusack et al., 2017; Zheng and Nikurashin, 2019). Furthermore, when lee waves

propagate into depth varying background currents, their frequency changes with

depth and wave energy is not conserved. For waves propagating into slowly varying,

inviscid and non-rotating background current, the conserved quantity is wave action:

A =
E

Ω
(1.1)

which relates the wave frequency, Ω to the wave energy E in a frame of reference

moving with the flow, i.e. a Lagrangian frame (Bretherton et al., 1968).

For lee waves, the Lagrangian wave frequency Ω = −kU(z) is set by the bathymetric

wave number k and the background current U(z). When lee waves propagate through

bottom intensified currents (BIC), their frequency is Doppler-shifted and decreases

with height. For wave action to be conserved, the wave energy varies proportionally

to changes of the wave frequency through an energy exchange with the background

current. In the case of BIC, a fraction of the wave energy is lost to the background flow,

which reduces the energy available for turbulence. This case has been theoretically

explored by Kunze and Lien (2019) and they suggest that this mechanism could

partially resolve the discrepancies between observations and theory and that it should

be taken into account in energy budgets.

Lee wave propagation through surface intensified currents (SIC) is explored by

Baker and Mashayek (2021). For this case, conservation of wave action states

that the wave will gain energy from the background flow as the wave propagates

upwards and the frequency increases with height. This theoretical study shows an

energy increase in the lee wave field. Lee wave theory was derived based on an

infinitely deep ocean, where surface reflection does not occur (Scorer , 1949; Bell ,

1975). However, work from Baker and Mashayek (2021) show that wave reflection at

3



the surface has the potential to increase vertical velocities, mixing and dissipation,

thus substantially modifying the lee wave field. The interaction of downward and

upward propagating waves complexifies the energetics of the current. As this study

was based on hydrostatic, linear theory and idealized bathymetry, velocity and

stratification profiles, questions remain on the applicability of these results to the

real ocean, leaving a gap for the integration of data-derived profiles and bathymetry

into numerical simulations. Furthermore, the case of internal reflective layers (IRL),

explained in detail in the Chapter 2, is not considered in Baker and Mashayek (2021).

A summary of wave propagation through constant and depth varying currents is

presented in figure 1.1. Two critical layers are illustrated in this figure: the dissipative

layer (DL), where the wave energy dissipates if the the Lagrangian frequency equals

the Coriolis parameter, f , and the internal reflective layer, where the wave energy

is reflected downwards if the wave frequency is Doppler-shifted to the Buoyancy

frequency, N . These critical layers are further explained in Chapter 2.

Figure 1.1: Lee wave propagation. (left) Propagation through a depth uniform current.
The Langrangian frequency stays constant with depth, no energy is exchanged with the
background current. (middle) Propagation through a bottom intensified current. The
Lagrangian wave frequency decreases with height and energy is lost to the background
current. It reaches a dissipative layer where its frequency equals the Coriolis frequency,
f . (right) Wave propagation through a surface intensified current. The Lagrangian wave
frequency increases with height and energy is gained from the background current. If
it reaches the buoyancy frequency, N , within the water column, the wave will reflect
downwards.
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1.1 Objectives

This Master’s thesis tested and extended the theory described by Kunze and Lien

(2019) and Baker and Mashayek (2021) by using a numerical model to calculate

the energy flux and dissipation to answer the following research questions: What

are the impacts of depth varying currents on oceanic lee wave energetics

and the energy available for turbulence? The goal is to quantify, map and

compare energy profiles, turbulence and dissipation arising from different currents to

assess the range of lee wave variability in the water column. This work gives insight

into ocean mixing, as part of the energy transferred to small turbulent scale will be

dissipated and part of it will be available for mixing. Identifying turbulent zones

with high dissipation rates will help to identify zones where mixing is high.

In this thesis, numerical results are compared to theoretical predictions. Chapter

2 presents the theoretical framework and predictions for linear lee wave theory. In

Chapter 3, the impacts of bottom intensified currents are explored and tested by

comparing theoretical predictions to numerical results from idealised 2D simulations.

Chapter 4 includes a similar analysis, but for surface intensified currents. Finally, in

Chapter 5, I present overall conclusions.
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Chapter 2

Theoretical framework

Aviation accidents caused by enhanced turbulence in the lee of mountains sparked

interest in stratified atmospheric flow over mountains and the internal oscillations

that result (Colson, 1952). Theoretical analysis and laboratory experiments from

Long (1953, 1954, 1955) investigate these atmospheric lee waves. Results from Long’s

experiments illustrate many physical aspects associated with a lee wave: an eddy,

wave reflection at the surface and energy dissipation caused by turbulence (Figure 2.1

a), Long (1953)). The circular streamline on the plot below the picture illustrates

the eddy, and the wave reflection is identifiable by the oscillating pattern in the

streamlines. The surface acts as a rigid lid, and upward propagating waves reflect

downwards. Finally, the energy dissipation caused by turbulence can be seen as the

second undulation after the obstacle is dampened. The general streamline pattern

illustrated in Long’s experiment can also be seen in Figure 2.1b). However, the depth

of the numerical simulation is bigger than the numerical tank, and the simulation

time is shorter than the time required for the wave energy to reach the surface. Thus,

reflection does not occur. Figure 2.1 provides visual insight on lee waves, but a

theoretical analysis is necessary to fully understand how energy propagates, how

instabilities develop, and how turbulence is generated.

2.1 Lee Wave Theory

Lee waves have been described using linear theory, valid when wave amplitudes

are small compared to horizontal scales. Here, the Navier-Stokes (NS) equations

are simplified by making the Boussinesq approximation. The continuity equation

6



(a) (b)

Figure 2.1: (a) Lee wave generated by stratified flow over an obstacle in an experimental
tank, from Long (1955) with streamline plot (bottom). (b) Numerical lee wave generated
by stratified flow over an idealized topography, and some characteristic parameters like the
length-scale L, the characteristic height h0, the propagation angle of the wave ϕ, and the
direction of the group velocity, i.e. is the speed at which the wave energy propagates in a
Lagrangian frame CgL, and an Eulerian frame of reference CgE .

and the three momentum equations have five unknowns: the velocity field (ut),

pressure (p), and density (ρ). The buoyancy equation, obtained by multiplying

the density-tendency equation by the ratio of the gravitational acceleration to the

background density, −g/ρ0, is used in combination with thermal winds to close the

problem. A vertically varying background current is accounted for by decomposing

the total current as:

ut =(u, v, w) = U(z)ˆ︁i+ u+ u′

=(U(z) + u+ u′, v + v′, w + w′) (2.1)

where U(z) is a constant background current, u = (u, v, w) is the residual horizontally-

averaged current current (RHAC), averaged in the x-direction, and u’ = (u′, v′, w′) are

the wave perturbations. The residual horizontally averaged current allows us to isolate

physical phenomenon such as the development of inertial oscillations in the water

column (Nikurashin and Ferrari , 2010a). Density and pressure are also decomposed

into a background component and a perturbation: ρ = ρ0 + ρy,z + ρ′, p = p+ p′. The

2D, non-hydrostatic, and Boussinesq governing equations are:

∂u′

∂x
+

∂w′

∂z
= 0 (2.2)
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∂

∂t
(u) + ut · ∇u+ fv =

−1

ρ0

∂p′

∂x
+ ν∇2u (2.3)

∂

∂t
(v) + ut · ∇v + fu =

−1

ρ0

∂p′

∂y
+ ν∇2v (2.4)

∂

∂t
(w) + ut · ∇w =

−1

ρ0

∂p′

∂z
+ b+ ν∇2w (2.5)

∂

∂t
(b) + ut∇b =κ∇2b (2.6)

where f is the Coriolis parameter, κ is the diffusivity, ν is the kinematic viscosity

and ν∇2u represents viscous effects. Buoyancy is b = −ρ′g/ρ0 and the buoyancy

frequency also name Brunt-Väisälä frequency, N is given by:

N2 = − g

ρ0

∂ρ

∂z
. (2.7)

The dispersion relation describes the relationship between the wave frequency and

wavenumbers. For a classic treatment of the steady lee wave problem, the equations

are assumed to be linear, i.e. the products of perturbations are negligible, inviscid,

and the background current is constant, see Bell (1975) for a detailed derivation.

Using these assumptions, the equations 2.3 to 2.6 can be simplified and combined to

obtain an expression for w′ alone. The expression is :

∂2

∂t2

(︃
∂2w′

∂x2
+

∂2w′

∂y2
+

∂2w′

∂z2

)︃
+ f 2∂

2w′

∂z2
+N2

(︃
∂2w′

∂x2
+

∂2w′

∂y2

)︃
= 0. (2.8)

The dispersion relation is obtained by substituting a wave-like solution of the form

w′ = w0 exp
i(kx+ly+mz−Ωt) (2.9)

into equation 2.8. The different variables are w0, the wave amplitude, k = 2π/L, the

x-direction horizontal wavenumber set by the topographic length L, l the y-direction

wavenumber, m the vertical wavenumber and Ω the Lagrangian wave frequency.

The y-derivatives and the horizontal wavenumber in the y-direction are null for a

two-dimensional system. The dispersion relation is then:

m2 =
k2(N2 − Ω2)

(Ω2 − f 2)
. (2.10)
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Equation 2.10 is highly simplified, making it easy to use and understand. However,

viscous and diffusive effects can be non-negligible (Shakespeare and Hogg , 2017; Kunze

and Lien, 2019; Gill , 2003). For a derivation of the steady lee wave dispersion relation

including energy dissipation see Baker and Mashayek (2021). For a non-hydrostatic

derivation that includes the effects of non-uniform stratification, a shear background

flow, and viscous and diffusive effects, see Sun et al. (2022). The wave frequency at

which an observer moving with the current would encounter peaks or troughs of the

wave, i.e. in a Lagrangian frame of reference, is Ω = ω − U(z)k, where ω is the wave

frequency in a frame of reference fix with topography (an Eulerian frame) (Bretherton

et al., 1968). Lee waves are steady, meaning that ω = 0 and have a stationary pattern

to an Eulerian observer (Legg , 2021). Thus, the Lagrangian frequency for lee waves

is Ω = −U(z)k. The latter is often referred to as the Doppler-shifted frequency.

To have a vertically propagating wave solution, the vertical wavenumber, m, set

by equation 2.10, must be real (Gill , 2003). Thus, the lee wave frequency, Ω, is

bounded by the Coriolis parameter f , and the buoyancy frequency N : f < Ω < N .

When the wave propagates through a depth-varying current, U(z), its frequency

Ω = U(z)k can change to the point where it lies outside the radiating range. Then,

the wave becomes evanescent and can not propagate anymore.

The energy propagation speed is given by the group velocity Cg. In a Lagrangian

frame of reference, the group velocity for internal waves generated at a horizontal

boundary, such as lee waves, is given by the gradient of the Eulerian wave frequency

in wavenumber space:

CgL =

(︃
∂ω

∂k
,
∂ω

∂m

)︃
=

(︃−(N2 − U(z)2k2)(U(z)2k2 − f 2)

U(z)k2(N2 − f 2)
,
(N2 − U(z)2k2)1/2(U(z)2k2 − f 2)3/2

U(z)k2(N2 − f 2)

)︃
,

(2.11)

where the dispersion relation (equation 2.10) gives an expression for ω, using Ω =

ω−U(z)k. As stated earlier, the Eulerian lee wave frequency (ω) is null, but equation

2.11 shows that its derivatives are non-zero.

The direction in which the group velocity propagates is obtained by rearranging

9



equation 2.10 to get k/m, the ratio of the vertical length scale of the wave over the

horizontal length scale. The arctangent of this ratio gives the angle of propagation

to the horizontal, ϕ, which also represents the angle of lines of constant phase:

ϕ = arctan(k/m). (2.12)

Figure 2.1 b) illustrates these parameters.

When the wave propagates through a positively sheared background current, the

Lagrangian frequency will increase with height. The angle of wave propagation will

steepen (see equations 2.10 and 2.12), and the vertical group velocity accelerates

with height while the horizontal group velocity decelerates. When Ω ∼ N , the wave

has reached an internal reflective layer and reflects downward (Scorer , 1949; Teixeira

et al., 2013; Baker and Mashayek , 2021). The depth of this layer is also affected

by varying stratification as it changes the upper bound of the radiating regime, N .

Note that a part of the energy might cross this layer, a phenomenon called wave

transmission, while the rest is reflected downwards (Nault and Sutherland , 2007). For

waves propagating through a negatively sheared current where the velocity decreases

above bathymetry, the Lagrangian wave frequency decreases as the wave propagates

upwards and the angle to the horizontal gets smaller. The wave will encounter a

dissipative layer where its frequency reaches a near-inertial state, Ω ∼ f (Jones,

1967). Vertical wave shear will become large, dissipating the wave energy.

2.1.1 Ray Tracing

The evolution of the propagation angle of the wave to the horizontal as a function

of the Lagrangian wave frequency can be theoretically calculated using dispersion

relation (eq. 2.10) and equation 2.12 and is illustrated in Figure 2.2. As the propa-

gation angle of the lee wave changes, the path followed by the energy also changes.

Ray tracing treats wave energy as a particle moving along a ray, and it can be used

to predict the path followed by wave energy when propagating through a slowly

varying non-uniform background (Sutherland , 2010). For internal waves, in a frame

of reference fixed with topography, it is possible to combine the horizontal and

vertical group velocities to get the vertical over the horizontal particle displacement,

10



dz
dx
, i.e. the trajectory of the wave energy:

dz

dx
=

Cgz

Cgx + U(z)
, (2.13)

where the components of the group velocity are given in eq. 2.11. Ray-tracing predicts

that wave energy propagating through a surface-intensified current will reflect at an

internal reflective layer when its frequency matches the buoyancy frequency and that

wave energy propagating through a backing current will asymptotically approach

a layer when its frequency matches the Coriolis parameter. Ray tracing is based

on a slowly varying and hydrostatics approximation, which breaks down when m

approaches 0. However, mathematical treatment of the ray path equation allows

to estimate the trajectory near the level where m vanishes and gives an acceptable

qualitative image of wave reflection. For further information and detailed equations,

consult e.g. Gill (2003), Chapter 8 and Sutherland (2010), Chapters 3 and 6.
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Figure 2.2: Evolution of the wave angle to the horizontal as a function of the wave
frequency for a linear lee wave flowing over a sinusoidal topography with a length-scale
L = 1 km, a Coriolis parameter f = 1.2× 10−4 s−1, and a buoyancy frequency N = 10−3

s−1. As the wave frequency changes towards the Coriolis parameter, the angle to the
vertical reduces, and the wave becomes more and more horizontal. Contrarily, when the
frequency is Doppler shifted and approaches the buoyancy frequency, the vertical scale of
the wave dominates.
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2.1.2 Wave Velocity Predictions

For a depth uniform current, the vertical component of velocity of a wave generated

at an idealized bathymetry, wb, can be expressed as :

wb = −Ub · ∇h (2.14)

where Ub = (Ub, 0, 0) is the current velocity at the bathymetry, h = 0.5h0 cos(kx)

and h0 is amplitude the bathymetric bumps. Using the no-flux boundary condition,

the vertical velocity at the bottom of the domain is

wb = Ub
h0

2
k sin(kx)|z=0. (2.15)

Expressions for u and v are derived using the polarization relation:

ub =
h0

2
Ubm sin(kx+mz) (2.16)

vb =
f

Ωb

h0

2
Ubm sin(kx+mz). (2.17)

At the bathymetry, equation 2.15 shows that for a fixed value of h0 and bottom

velocity Ub, the vertical wave velocity depends on the horizontal wavenumber k,

meaning that larger vertical velocities are expected for larger wavenumbers. As k is

inversely proportional to bathymetric length scales, smaller length scales will generate

lee wave with faster upward velocity. Conversely, the magnitude of the horizontal

wave velocity ub depends only on m, which decreases as k increases. Therefore,

slower horizontal velocities are expected for wave generated over smaller bathymetric

scales.

For a wave propagating in a depth-varying current, the vertical wavenumber given

by equation 2.10 changes with height. The expression for vertical and horizontal

velocity profiles will change to:

wb = Ubkh0 sin(kx+m(z)z) (2.18)

and

ub = −Ubh0

(︃(︃
∂

∂z
m(z)

)︃
z +m(z)

)︃
sin(kx+m(z)z), (2.19)
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vb =
f

ωb

h0

2
Ub

(︃(︃
∂

∂z
m(z)

)︃
z +m(z)

)︃
sin(kx+m(z)z). (2.20)

The horizontal magnitude of the wave velocity is now depth-dependent.

2.2 Lee Wave Energetics

When lee waves propagate through a vertically sheared flow, their energy will not

be conserved. This can be seen by deriving the energy equation and allowing

perturbation in the presence of a sheared background current. The wave kinetic

energy (K) equation in an Eulerian frame of reference is obtained by taking the dot

product of the momentum equations (equations 2.3 to 2.5) and the wave velocity,

u′ = (u′, v′, w′), and multiplying by the background density ρ0. It is given by:

∂

∂t
K⏞⏟⏟⏞
1

+ ρ0u
′ ·
(︃

∂

∂t
u

)︃
⏞ ⏟⏟ ⏞

2

= −U
∂K

∂x⏞ ⏟⏟ ⏞
3

−u · ∇K⏞ ⏟⏟ ⏞
4

−u′∇K⏞ ⏟⏟ ⏞
5

− ρ0u
′w′dU

dz⏞ ⏟⏟ ⏞
6

−w′
(︃
u′ · ∂u

∂z

)︃
⏞ ⏟⏟ ⏞

7

−w′ρg⏞⏟⏟⏞
8

−∇(u′p)⏞ ⏟⏟ ⏞
9

+ ν∇2 (K)⏞ ⏟⏟ ⏞
10

− νρ0(∇u′)2⏞ ⏟⏟ ⏞
11

(2.21)

with K = 1
2
ρ0(u

′2 + v′2 + w′2). Equation 2.21 is similar to the one derived by

Nikurashin and Ferrari (2010a), with the exception that the geostrophic current,

i.e. the background current in our case, varies with depth. The terms in the kinetic

energy equation are: (1) the time derivative of the K, (2) the time variability of the

RHAC, (3) the advection of K by the background flow, (4) the advection of K by the

residual horizontally averaged flow, (5) the K advection by perturbations, (6) the

shear production from the prescribed background current, (7) the shear production

from the residual horizontally averaged currents (RHAC), (8) the potential to K

transfer, (9) the pressure work, (10) the viscous diffusion of K and finally, (11) is

the K dissipation. The advection and transport terms, 3, 4 and 5, arise from the

non-linear term in the momentum equation. The shear production terms 6 and

7 represent the wave energy exchange with the different current components, i.e.

background current and the residual horizontally averaged currents. The pressure

work term (9) comes from the pressure force and is also usually written ∇ ·up where
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we have taken advantage of the fact that ∇ · u = 0. Diffusion of kinetic energy (10)

represents the diffusion of kinetic energy due to the fluid’s viscosity. The dissipation

of K (11) is an energy sink and relates to ocean mixing through the Osborn relation.

For a detailed derivation of the energy equation, see appendix A.

2.3 Wave Action

As explicitly shown by the shear production terms in the energy equation, energy is

not conserved for waves propagating through a varying background current. The

conserved quantity is called wave action (eq. 1.1), A = E
Ω
, for inviscid and non-

rotating fluids. It describes wave-mean flow interactions (Bretherton et al., 1968) and

links the total energy density (E) to the frequency shift. Under conservation of wave

action, waves that propagate through depth-varying currents see their Lagrangian

frequency, Ω = −kU , being Doppler-shifted, and their total energy change, as it is

partially reabsorbed (enhanced) in a bottom (surface intensified) currents (Bretherton

et al., 1968). Looking at eq. 1.1, the energy will vary proportionally to the wave

frequency when conservation of wave action applies.

Some limitations regarding the applicability of conservation of wave action in the

ocean are that this theory was developed for an inviscid fluid, non-dispersive wave

packet in an unbounded domain. First, when considering a viscous fluid, part of the

total wave energy is dissipated by viscous forces and part of the energy is exchanged

with the background flow. Enhanced dissipation, caused by dissipative layers or the

steepening and breaking of the wave, may break the relationship between Ω and the

energy, thus breaking down the conservation of wave action. Second, is it hard to

keep track of wave packets when the wave is dispersive, i.e. when its phase speed

depends on the length scale of the wave, Cp =
ω
k
= f(k) where f(k) is a function

of the horizontal wavenumber. As conservation of wave action applies to a wave

packet, dispersion effects make it harder to use eq. 1.1 directly. Finally, assuming an

unbounded domain does not always hold for the real ocean. As waves propagate,

they can reach the surface or an internal reflective layer, which acts as a boundary,

and reflect downwards. This reflection could lead to vertical mode and interference,

complicating the interpretation of eq. 1.1.
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2.4 Wave Interactions

As the wave propagates through a depth-varying current, it will lose (gain) energy

to (from) the background through a momentum exchange (Bretherton et al., 1968).

Energy lost from the wave will be gained by the background current and lead to an

acceleration of the latter (Grimshaw , 1984). The opposite is also true; for the case

where the wave gains energy from the current, the latter loses some of its momentum.

Therefore, a bottom-intensified background current is expected to slow down as

lee waves are propagating upwards, and a surface-intensified current is expected to

accelerate. The trajectory of the wave energy has a horizontal component leading to

a lateral advection of kinetic energy. When reflection occurs, the wave will lose what

has been gained downstream of its upward trajectory. Depending on the background

current, reflected waves can superpose with upward propagating waves, generating

vertical modes and potentially modifying wave generation at the bathymetry (Zheng

and Nikurashin, 2019; Baker and Mashayek , 2021).

Lee wave breaking also influences the background conditions. The energy dis-

sipation can slows down the mean flow, and inertial oscillations, IO and other

higher-frequency internal waves can be generated (Nikurashin and Ferrari , 2010a).

2.5 Limits of Linear Theory

A limit of applicability of the linear theory is defined by the Lee-wave Froude number,

Frlee:

Frlee =
h0N

U
, (2.22)

where h0 represents the characteristic topographic height and N/U , the vertical scale

of the lee wave, calculated with the velocity U (m/s) and buoyancy frequency N

(s−1) at the ocean floor (Sutherland , 2010). The theoretical, critical value for which

linear theory can be applied is Frlee = 1, where topographic features are small enough

that the deepest currents can flow over the crest of the topography. The flow is

said to be supercritical when Frlee > 1 (Nikurashin et al., 2014). Then, topographic

blocking happens, and the lower layers of the flow get blocked by topography. This

stationary layer acts as a virtual seafloor, reduces the effective topographic scale
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generating lee waves, and the flow becomes non-linear. The effective topographic

height, heff = U/N , is the vertical scale, measured from the crest of the topography,

associated with potential energy equal to the flow kinetic energy (Winters and Armi ,

2012). In a supercritical regime, the waves generated directly above topography have

a large amplitude. They can rapidly become non-linear and break, dissipating energy

above their generation site.
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Chapter 3

Lee Waves in a Bottom-Intensified
Current

3.1 Introduction

The goal of this chapter is to examine lee wave propagation through a bottom-

intensified current (BIC) and compare numerical model outputs of energy exchange

and dissipation to theoretical energy predictions. To do so, a series of eight 2D

simulations using periodic bathymetry was run using the MITgcm numerical model

with the parameters presented in section 3.2 (Marshall et al., 1997). Horizontal wave

numbers, k, were varied between each simulation to test wave-mean flow interactions.

Eight values of k were selected to cover the lee wave radiating range given the chosen

buoyancy frequency and Coriolis parameter. This allows for a comparison of two

different regimes: the propagating regime, where the lee wave reaches the surface

and the dissipative regime, where the wave encounters a dissipating layer within the

water column. This variation of wave number also allows us to assess gradual changes

between lee waves generated over a range of length scales as k = 2π/L (as defined in

Chapter 2.1). Two additional simulations were run with a depth-uniform current to

compared lee wave propagation and highlight the impacts of depth-varying currents.

For the simulation’s nomenclature, the first three letters are the type of background

current, followed by a number corresponding to the topographic length scale in

kilometres, e.g. BIC5km corresponds to a bottom-intensified current simulations

where the length scale is 5km. For the depth-uniform simulations, the first letter,

“B”, relates to the type of current used in the chapter, the second and third indicate

17



the type of shear followed by the bathymetric scale, e.g. BNS5km corresponds to a

simulation associated with the bottom-intensified chapter (B), with a non-sheared

(NS) background current and a 5 km lengthscale (5km).

3.1.1 Expectations

Chapter 2 presented in detail linear lee wave theory and wave-mean flow interactions.

The main theoretical predictions that we aim to examine are summarized hereafter:

1. For smaller values of k, bottom horizontal wave velocity u′
b and v′b are faster and

vertical wave velocity w′
b are slower compared predictions for larger values of k,

based on the polarisation relation presented in Chapter 2. In mathematical

terms, for k1 < k2: u
′
b,k1 > u′

b,k2, v
′
b,k1 > v′b,k2 and w′

b,k1 < w′
b,k2;

2. An exponential increase of the vertical wavenumberm associated with flattening

of the lines of constant phase as the wave energy propagates upwards and away

from its generation site, based on the dispersion relation;

3. An exponential decrease of the vertical group velocity CgL−v associated with a

flattening of the energy path with height as energy propagates upwards and

away from its generation site, based on the dispersion relation;

4. A decrease of the Doppler-shifted wave frequency with height with a dissipative

layer where the wave frequency matches the Coriolis parameter

5. Wave reflection from the surface leading to normal modes if the wave energy

propagates to the surface;

6. A larger fraction of kinetic energy dissipation for wave encountering lower

dissipative layers as less energy is lost to the background flow, leaving more

energy available for dissipation;

7. A modification of the background current because of wave-mean flow interac-

tions;

8. The generation of inertial oscillations (IO) ;

9. The generation of surface displacements by waves freely propagating through

the water column (de Marez et al., 2020).
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3.1.2 Energy Predictions for Bottom-Intensified Currents

Linear theory provides an equation for the rate of upward propagation of energy for

waves generated at a horizontal boundary in a rotating fluid, i.e. the rate of energy

input into the ocean at the bathymetry. Prediction 6 is specific to this chapter, and

numerical results will be compared to theoretical estimates developed by Kunze and

Lien (2019), who used the following expression to predict the energy flux cospectrum:

coS[wp](k) = Ubρ0

√︂
N2 − k2U2

b

√︂
k2U2

b − f 2S[h](k) (3.1)

where ρ0 is the background stratification, N2 the buoyancy frequency, Ub is the

current speed at the bathymetry, k is the horizontal wavenumber, f the Coriolis

parameter and S[h](k) topographic height spectrum. The numerical simulations

have sinusoidal topographies of amplitude h0 and lengthscale 2π/k. Thus the flux

cospectrum for each wavelength is determined using a spectrum given by :

S[h] = h2
0/k. (3.2)

Linear theory and wave action can be used to predict the energy available for

dissipation. The latter depends on the depth of the dissipative layer, as the wave will

exchange less (more) energy with the background flow if it reaches a deeper (shallower)

dissipative layer. If the total energy is considered the sum of that exchanged and

dissipated, energy losses to the current result in less energy available to dissipate.

Two adaptations of figure 6 from Kunze and Lien (2019) made with equation 3.1

using the parameter space of this thesis are presented in figure 3.1. Panel a) presents

the vertical energy flux for a k−2 topographic spectrum discussed in Kunze and Lien

(2019), and panel b) the energy flux for the uniform spectrum (without accounting

for topographic blocking). Predictions for our sinusoidal simulations are extracted

from b) by matching topographic lengthscales to the x-axis. On both panels, the

dissipative fraction (Fd, red line)is the largest for wavenumbers k < 10−4 m−1, as

their frequencies are smaller and closer to f . For wave numbers larger than k = 10−4

m−1, the energy lost to the background dominates as the wave propagates further into

the water column and thus has more time to exchange energy. For single wavelength

topographies, the energy flux increases with the wavenumber, meaning that more
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energy is transferred upwards for lee waves generated over small-scale bathymetry.

The energy flux increases until k ≈ 2.5× 10−3 m−1 after which it decreases abruptly.

3.2 Methods

3.2.1 Numerical Simulations

Eight BIC simulations were run using sinusoidal bathymetry of different length scales

illustrated in figure 3.2 alongside the background current and stratification profiles

used in this chapter. The length scales were chosen to cover the radiating range

f < Ωg < N where f = 10−5 s−1 and N = 10−3 s−1. The generation frequency, Ωb,

is the Lagrangian wave frequency generated by the current flowing at the bottom of

the domain. Simulations BIC1.4km to BIC7km are run with a horizontal resolution

of ∆x = 50 m and ∆t = 2 s, and simulations BIC13km to BIC72km were run with

∆x = 200 m and ∆t = 5 s. Different horizontal resolutions are used because of

the range of length scales, and the time steps were adjusted to ensure numerical

stability. The vertical resolution is uniform across all simulations with ∆z = 10

m. The horizontal eddy viscosity and diffusivity are set to 5× 10−2 m2/s and set

to 5 × 10−4 m2/s in the vertical. The background current is forced by adding a

body force of U(z)f to the y-direction momentum equation. All simulations are run

with a free surface upper boundary condition to allow for surface reflection of the

propagating waves.

Two additional depth-uniform current simulations were run to offer a comparison

point with BIC simulations. The chosen lengthscale are 5 km and 72 km. The

numerical set up is identical to the analogous BICs simulations. A detailed description

of the simulations is presented in Appendix B.

Predicted horizontal and vertical group velocities are calculated using equation

2.10 for the prescribed background-current profile. Then, equation 2.13 is integrated

numerically to obtain the theoretical ray path and propagation depth hp, i.e. the

depth of the dissipative layer. Where no dissipative layer exists, hp is the entire

domain depth. The time required for the wave energy to reach a dissipative layer or

the surface is defined as the propagating time, tp, and it was estimated by integrating
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(a)

(b)

Figure 3.1: Reproductions of Figure 6 from Kunze and Lien (2019), lee wave vertical
energy flux ⟨wp⟩ for lee waves propagating through negatively sheared flow from (a) a k−2

topographic height spectrum and (b) a uniform topographic spectrum with h0 = 50 m for
all wavenumbers. Here, topographic blocking is not taken into account. The total wave
energy (black) has been separated into a fraction of energy dissipated, Fd (red) and energy
lost to the background flow, Fe (blue). A bigger fraction of wave energy is available for
turbulence and mixing for lower values of horizontal wavenumber k than for higher values.
The Coriolis parameter is f = 10−5 s−1, N = 0.001 s−1 and Ub = 0.2 m/s.

21



Figure 3.2: a) to h) Bathymetry for each simulation, f) Background current profile and
g) Stratification profile.

the vertical group velocity Cgz over the propagating depth. An analysis time, ta

is set to 1.5tp for the simulations to be dynamically comparable. The theoretical

propagation time is infinite for simulations with a dissipative layer because the

vertical group velocity tends to zero near the dissipative layer. Thus, the actual

propagation time used to analyze the simulation corresponds to the time it takes

for the wave to reach a depth where its frequency equals 1.1f . This choice is

motivated by results from Garrett (2001), who defined the near-inertial band as 1.1f .

The background flow is prescribed over the whole domain and ramped up to the

desired value over 14 hours for simulation BIC1.4km and over 24 hours for the other

simulations to limit the numerical noise generated by a sudden simulation start-up.

The ramping-up forcing accelerates the background flow over four hours and stays

steady for the last 20 hours. However, since the propagation time of BIC1.4km is less

than 24 h, the ramping-up period was shortened for this simulation. Table 3.1 shows

the simulation parameters. The first five simulations, BIC1.4km to BIC13km, are

referred to as propagating simulations because the wave energy is free to propagate

through the depth of the domain. Simulations BIC32km to BIC72km are referred to

as dissipative simulations because of the presence of the dissipative layer.
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Table 3.1: Parameter of the sinusoidal simulations with a bottom-intensified current. The
Coriolis parameter is f = 10−5 s−1 and buoyancy frequency N = 10−3 s−1.

Length
scale

Horizontal
wavenumber

Generation
frequency

Propagation
depth

Propagation
time

Analysis
time

L k Ωb hp tp ta
km m−1 s−1 m h h

BIC1.4km 1.4 44.88× 10−4 8.98× 10−4 0 21 33
BIC3km 3 20.94× 10−4 4.18× 10−4 0 40 61
BIC5km 5 12.57× 10−4 2.51× 10−4 0 67 101
BIC7km 7 8.98× 10−4 1.79× 10−4 0 95 143
BIC13km 13 5.03× 10−4 0.97× 10−4 0 191 287
BIC32km 32 1.96× 10−4 0.38× 10−4 19 1005 1507
BIC56km 56 1.16× 10−4 0.23× 10−4 842 924 1386
BIC72km 72 0.87× 10−4 0.17× 10−4 1394 809 1213

3.2.2 Energy Calculations

First, horizontal averages of the currents are assumed to be associated with inertial

oscillations. The inertial component of the flow is calculated by subtracting the

prescribed background current profile from the model output and then horizontally

averaging:

(u, v, w) =
1

nx

nx∑︂
0

(u− U(z), v, w)δx, (3.3)

where nx is the number of grid points in the x-direction. The velocity perturbation

fields (u′, v′, w′) are:

u′ = u− U(z)− u, (3.4)

v′ = v − v, (3.5)

and

w′ = w − w. (3.6)

The density and pressure perturbations, (ρ′, p′), are calculated similarly, except

that there are no inertial profiles for these quantities. The energy budget is calculated

away from topography and the surface, from a depth of z = −2750 m to z = −250

m to exclude boundary phenomena. Horizontally, the energy budget is calculated

over the width of the simulation domain, i.e. two bathymetric length scales.
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3.2.3 Time Averaging

Although lee wave dynamics are often thought to be steady in time, wave reflection

and interactions of upwards and downwards propagating waves and the development

of inertial oscillations bring a time dependency to the model outputs. As mentioned

above, an analysis time of ta = 1.5tp is set to ensure dynamical similarity between

the simulations. Below, some results are presented at the analysis time. However,

quantitative results must be time-averaged to make a general statement about wave

dynamics due to the presence of time variability. Unless specified otherwise, model

results are averaged from the ramping-up time to the analysis time for simulations

BIC1.4km to BIC7km and over the last inertial period for simulations BIC13km to

BIC72km. These two different averaging windows are chosen because the analysis

time of the first four simulations is smaller than an inertial period. For the last four

simulations, since no total reflection is happening in the domain, time variability

mostly comes from inertial oscillations. Therefore, averaging over an inertial period

removes this time dependency. Only one inertial period is considered for the average

since the length of simulation SIC13km only allows for one complete inertial period.

3.3 Results

3.3.1 Wave Velocity Predictions

Lee wave bottom velocity predictions are made using equations 2.18 and 2.19. The

numerical magnitude is the maximum of the time and vertically averaged velocity

perturbation. The time average is described in section 3.2.3. The vertical average is

taken 50 m above bathymetry, from z = −2955 m to z = −2805 m. The numerical

model results are generally similar to the theoretical predictions for the vertical and

x-direction velocities, with values slightly higher than predicted (figure 3.3). For the

x-direction velocity, u′, and the vertical wave velocity, w′, the model wave velocities

are 1 to 2.5 times larger than theoretical values. For the y-direction velocities,

simulation BIC1.4km shows the most significant discrepancy as the model output is

14 times larger than predictions. The largest disparities for the x-direction velocity

predictions are also associated with smaller length scales. These differences are likely

caused by the time average, which does not cover an entire inertial period for these

simulations.
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The changes in the magnitude of the x-direction velocity as the topographic

scales vary are smaller than those for the y-direction and z-direction velocities.

When looking at theoretical velocities for waves produced over the largest scale

to the smallest scale, x-direction velocities range from u′
b,BIC72km = 0.01 m/s to

ub,BIC1.4km = 0.03 m/s, y-direction velocities range from vb,BIC72km = 1× 10−4 m/s

to v′b,BIC1.4km = 6 × 10−3 m/s and vertical velocities vary from w′
b,BIC72km = 0.02

m/s to w′
b,BIC1.4km = 4 × 10−4 m/s. These changes in magnitude can be seen in

figure 3.4 and 3.5 as the horizontal wavefield becomes darker for larger lengthscales

and lighter for the vertical velocity. The numerical model shows overall agreement

with the theoretical predictions as the magnitude of numerical velocities generally

agrees with theoretical predictions and follows the same spatial trends.

Figure 3.3: Bottom numerical velocities normalized by theoretical wave velocities for
the different BIC simulations. The left-most point is associated with BIC72km, and the
right-most point with BIC1.4km. The Coriolis parameter and buoyancy frequency are
normalised by the background current above bathymetry, Ub = 0.2 m/s.

3.3.2 Wave Field

The theoretical dissipative layer depth calculated using ray tracing is zd ≈ −19 m,

zd ≈ −842 m and zd ≈ −1394 m for simulations BIC32km, BIC56km and BIC72km,
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respectively, which fits with results as the wave velocities u′ and v′ abruptly decrease

above within 500 m of predicted level (figure 3.4, black dotted line, second and last

column). The lines of constant phase flatten and disappear. The impact of the

dissipative layer is also visible in the wave kinetic energy, where little to no energy

remains above the dissipative layer, marked by the greyed areas in figure 3.5). The

horizontal black line marks the theoretical dissipative layers, and the greyed zones

represent the numerical dissipative layer. The thickness of the dissipative layer is

further discussed in section 3.3.3.2. Above the dissipative layers, the wave field is

not fully evanescent, and some energy can still be seen. This is likely caused by the

multichromatic wave field generated by the development of inertial oscillations. The

proximity of the dissipative layer to the surface makes simulation BIC32km harder

to interpret as some energy is reflected downwards at the surface.

Theory predicts that the lines of the constant phase are perpendicular to the energy

path and flatten with height, illustrated by the coloured stripes on figure 3.4 for all

simulations, except for BIC32km. This trend is not evident for simulation BIC32km,

as the lines of constant phase are broken by two horizontal stripes presenting enhanced

y-direction wave speed at a depth of z = −2250 m to z = 2000 m and z = −1250 m

to z = −750 m. Wave-IO interactions cause the horizontal stripes and are further

discussed in the next section. For all the propagating simulations at the analysis

time, the energy has reflected from the surface and travelled down 700 m. Upward

and downward propagating wave interactions are only captured for this top layer.

This is identifiable by the checker-board pattern and breaking down of the phase

lines in this layer for simulation BIC1.4km to BIC13km.
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Figure 3.4: (Left) Wave velocity in the x-direction, u′ (m/s) for all simulations, (Right)
wave-velocity in the y-direction v′ (m/s) and energy path (black dotted line) at the analysis
time. The titles for the dissipative simulations (BIC32km to BIC72km) are red. The blue
and red strips illustrate the lines of constant phase of the wave. Simulations BIC32km to
BIC72km have a dissipative layer where the ray path (black dotted line on the right panels)
flattens. Above the critical layer, the wave velocities are smaller. In the propagating
domain, larger horizontal velocities are associated with smaller topographic wave numbers.
Across all wavenumbers, the variations in y-direction velocities are an order of magnitude
and the order of (mm/s) for x-direction velocities.
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Figure 3.5: Similar to figure 3.4, but for the wave kinetic energy density (J/m3) (first
and third columns) and the vertical velocity w′ (m/s) and energy path (black dotted line)
(second and last column). Simulations BIC32km to BIC72km (red titles) have a dissipative
layer where the ray path (black dotted line on the right panels and grey zone) flattens.
Most of the wave energy vanishes above this layer. The magnitude of the vertical wave
velocity decreases as the lengthscales increase.
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3.3.3 Energetics

The kinetic energy budget for all simulations from the ramping-up time to the

analysis time (BIC1.4km to BIC7km) or over the last inertial period (BIC13km

to BIC72km) is presented in figure 3.6. The most significant terms of the energy

budget, i.e. the wave K time derivative (blue line), the divergence of the energy flux

(black line), the background and inertial energy shear production (green solid and

dotted lines, respectively), and the buoyancy production (purple line), as well as the

K dissipation (cyan line), are plotted on figure 3.6. For clarity, the other terms in

equation 2.21 are not included in the figure as they are small. The budget residue is

calculated, time-averaged and normalized by the magnitude of the divergence of the

energy flux. A |10%| bound assesses whether a budget is closed. Table 3.2 presents

the normalized residue. All budgets are considered closed. The larger residue for

BIC56km is due to the growth of instabilities in the model, starting around 1200h.

When the residue is calculated over the last inertial period before 1200h, it reduces

to 0.03%.

Table 3.2: Time averaged energy budget residue, normalized by the magnitude of the
energy flux divergence. The average is taken from the ramping-up time to the analysis time
(BIC1.4km to BIC7km) or over the last inertial period before the analysis time (BIC13km
to BIC72km).

BIC1.4km BIC3km BIC5km BIC7km BIC13km BIC32km BIC56km BIC72km
Residue 11.8% 7.53% 7.44% 5.53% 4.53% 3.57% 7.74% 2.06%

The background shear production term is negative for all simulations, consistent

with the theoretical predictions that lee waves lose energy to the background current.

The dominant term in each budget is the energy flux divergence, and its magnitude

decreases with the horizontal wave number. This reflects theoretical predictions of

energy flux (figure 3.1). The potential kinetic energy transfer term, −w′ρ′g, oscillates

in time and often changes sign. The time derivative of the wave kinetic energy

is also time-dependent, meaning that there is a net gain or loss of kinetic energy

from one time step to the other. The time derivative of kinetic energy and the

potential to kinetic energy transfer follow similar time patterns, often overlapping and

balancing each other out. The divergence of the energy flux and background shear
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production shows similar time variability but with opposite signs. The magnitude

of the shear production is closer to the magnitude of the flux divergence for the

propagating simulations, qualitatively showing a larger exchange fraction than

simulations BIC32km to BIC72km. On the other hand, the energy dissipation is

larger for the dissipative simulations. This was expected as theory predicts that

waves encountering dissipative layers deeper in the water column will lose less energy

to the sheared current, resulting in a larger fraction of energy left to dissipate. Wave-

IO interactions also cause enhanced dissipation as the inertial oscillations are fully

developed in these simulations. Finally, the budgets from the smaller length scale

simulations are more energetic than the larger ones, with energy term magnitude

ranging from ±0.15 W/m2 to ±0.002 W/m3.

3.3.3.1 Shear Production

Over time, the normalized integrated background shear production, −u′w′ dU
dz

is

negative for all simulations and averages from −0.0005 W/m2 for BIC72km to

−0.0304 W/m2 for BIC1.4km, consistent with theoretical expectations that the shear

production is an energy sink for the wave. The Hovmoller diagram of the horizontally

averaged shear production profiles shows energy loss to the background current (blue,

negative values) over the propagation depth (figure 3.7).

The energy lost from the wave represents a transfer of momentum to the background

current and will act to accelerate the latter. The percentage difference between

horizontally and time-averaged background current and the initial profile shows an

acceleration of the background current over most of the water column (figure 3.8).

The time average is taken over the last inertial oscillation to isolate the background

changes from the effects of the IO. Only simulations BIC13km to BIC72km are

shown, as the other simulations were not run long enough for IO to fully develop.

Simulations BIC13km to BIC72km normalized profiles are ≈ 2% larger than the

initial value, indicative of a background acceleration. The vertical variability of the

percentage difference profile shows the generation of horizontal jets in the water

column.
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Figure 3.6: Kinetic energy budget normalized by the length of the integration domain.
The complete simulated time series is presented in panels a) to e), and panels f) to h)
present the last inertial period. The vertical black line delimits the analysis time for each
simulation. The magnitude of the energy terms decrease as the bathymetric scale increases,
with energy peaks around ±0.15 (W/m2) for simulations BIC1.4km and BIC3km to ±0.002
W/m2 for BIC72km. The dominant terms in these budgets are the time derivative of
kinetic energy (blue), the buoyancy flux (purple), the shear production from the background
current (green) and the divergence of the energy flux (black). The shear production from
the RHAC (dotted green line) is large for simulation BIC32km (f). Energy dissipation
stands out in panels f), g) and h) (light blue and grey lines). This enhanced energy
dissipation is due to the dissipative layer, wave-mean flow and wave-wave interactions. Red
titles are associated with dissipative simulations.

3.3.3.2 Wave-Inertial Oscillation Interactions

As shown by Nikurashin and Ferrari (2010a), the breakup and dissipation of internal

waves trigger inertial oscillations, which we observe in this set of simulations. A

spectrum for the de-meaned horizontally averaged current perturbations, u for

simulation BIC32km is shown in figure 3.9 a). The power spectra were calculated
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Figure 3.7: Horizontally averaged shear production profiles in time. The horizontal
average is calculated over the width of the energy budget domain. The wave is losing
energy to the background current. After 50 h, vertical modes appear in the domain.

Figure 3.8: a) to d) Horizontally and time average difference percentage between the
background field and the initial background current. Simulations BIC1.4km to BIC7km are
not shown as they were not run long enough for near-inertial oscillations to fully develop
and be removed by time averaging.

by averaging together spectra calculated at each vertical point in the integration

domain. A total of 250 spectra are averages for each simulation. The inertial
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oscillations are well captured by the horizontal average of the velocity perturbation

field, with the dominant frequency being close to the Coriolis parameter (figure 3.9).

This phenomenon is observable in all simulations. For simulations that were run

for less than 174 h, i.e. the inertial period, IO is still triggered but has not fully

developed. Thus, they are not captured properly by the spectrum analysis. However,

when plotting the inertial components of the current, a good fit is observed between

inertial current magnitudes and periods. Inertial oscillations develop in all simulations,

which can be seen in the y-direction RHAC as the magnitude and time variability of

this component is similar for the BIC5km simulation to the BIC72km simulation

(figure3.9b). For clarity, only two simulations are presented because the results are

similar between all eight study cases.

(a) (b)

Figure 3.9: (a) x-direction RHAC, u, power spectrum for BIC32km. The Coriolis
frequency is f = 10−5 s−1, which corresponds to the largest peak of the spectra and is
marked by the vertical dashed line. (b) Magnitude of the RHAC averaged over the bottom
50 m above bathymetry for simulation BIC5km and BIC32km. An incomplete inertial
oscillation can be seen for simulation BIC5km. The magnitude of the oscillation changes
slightly with time for BIC32km.

With the total flow field separated in a linear background current, wave perturba-

tions and an inertial current, ut = U(z) + u′ + u, a production term associated with

the inertial component appears in the energy equation. At the analysis time, the

normalized integrated RHAC production is negative for all simulations. The RHAC

profiles are of the same order of magnitude as the background shear production

profiles (figure 3.10). They show positive and negative values, meaning lee wave both
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gains and loses energy from and to the inertial oscillations. RHAC shear production

is strong in areas associated with enhanced energy dissipation (see figure 3.11).

This is expected since energy dissipation acts to trigger inertial oscillations and the

horizontally-averaged residual current is mostly inertial.

Figure 3.10: Like figure 3.7, but for the inertial shear production. The values are of the
same order of magnitude as the background shear production and present vertical modes,
meaning that the lee waves both gain and lose energy from the inertial current.

Finally, the magnitude of the inertial current is relatively small compared to the

background current(figure 3.8 and 3.9). However, it is strong enough to accelerate

and decelerate the background flow. In turn, this affects the lee wave generation

frequency. The wave field is then composed of lee waves of different generation

frequencies with different propagation and dissipation depths. Table 3.3 compiles

the minimum and maximum vertically averaged current speed above bathymetry,

the wave generation frequency associated with these currents and the resulting

propagation depth. The vertical average is taken 50 m above bathymetry and the

time average over the periods presented in section 3.2.3. The theoretical depth range

of the dissipative layer presented in table 3.3 fits with the numerical depth of the

dissipative layer as highlighted by the greyed zones on figure 3.5.
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Table 3.3: Minimum and maximum values of the background current near bathymetry,
the generation frequency and propagation depth

Minimum
bottom
current

Maximum
bottom
current

Minimum
gener-
ation
frequency

Maximum
generation
frequency

Minimal
propa-
gation
depth

Maximal
propa-
gation
depth

Umin Umax Ωbmin

×104
Ωbmin

×104
hpmin hpmax

m/s m/s s−1 s−1 m m
BIC1.4km 0.17 0.20 ≈ 7.6 ≈ 8.98 0 0
BIC3km 0.18 0.19 ≈ 3.7 ≈ 3.98 0 0
BIC5km 0.18 0.21 ≈ 2.14 ≈ 2.64 0 0
BIC7km 0.18 0.22 ≈ 1.53 ≈ 1.06 0 0
BIC13km 0.17 0.22 ≈ 0.87 ≈ 0.30 0 0
BIC32km 0.17 0.22 ≈ 3.3 ≈ 0.43 ≈ −23 ≈ −16
BIC56km 0.16 0.24 ≈ 0.18 ≈ 0.27 ≈ −1067 ≈ −618
BIC72km 0.17 0.22 ≈ 0.15 ≈ 0.19 ≈ −1140 ≈ −1615

3.3.3.3 Energy Dissipation

Energy dissipation is seen in all simulations, particularly close to the surface for the

freely propagating simulations, BIC1.4km to BIC13km, and near the dissipative layer

for simulations BIC32km to BIC72km (figure 3.11). Simulation BIC56km shows

dissipation near the topography, and simulation BIC32km, in the middle of the

water column. The enhanced dissipation seen in the top 700m of figure 3.11 a) to

e) could be attributed to interactions between upward propagating and downward

reflected waves. For all these simulations, the analysis time is almost equal to the

time it takes for the wave to travel to the surface and back to a depth of z ≈ −700

m. Therefore, the analysis does not capture the interactions of downward and

upward propagating waves and their impact on energy dissipation below 700 m. As

expected for simulations BIC32km to BIC72km, energy dissipation is high below

the dissipative layer. A vertical spread of enhanced energy dissipation near the

predicted dissipative layer is illustrated by the red patches underneath the greyed

zones in figure 3.11. First, the time and spatial variations of the background current

due to the IO generate wave packets with a different generation frequency, thus

propagating to a different dissipative depth. Second, the lee waves become unstable

when they reach a near-inertial frequency. The near-inertial band is bounded by

frequency greater or equal to 10% of the Coriolis frequency following Garrett (2001).

With the 10% bound and the range of generation frequencies, the thickness of the
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dissipative layers spans from the depth at which the lee wave frequency equals 1.1f

to the dissipation depth of the highest generation frequency. This interval, shaded in

grey on figure 3.11, overlaps with the areas of enhanced dissipation. The dissipation

peaks in the middle of the water column for f) and near the bathymetry for g) fit

with zones of large vertical shear for the RHAC profile (see figure 3.8). The areas of

enhanced energy dissipation are similar to the zones of higher kinetic energy density

(see figure 3.5). The interaction of upward and downwards propagating waves causes

the vertical modes present in the top 700 m of the propagating simulation. Lastly,

when internal waves dissipate, they deposit their momentum. The force generated

will then act to slow down the background current. This forcing is opposite to the

background acceleration caused by the momentum gained from the shear production.

A deceleration of the background current shown in figure 3.8 c) from z = −2900 m

to z = −2700 m overlaps with the zone of enhanced dissipation on figure 3.11.

Figure 3.11: Energy dissipation profiles in time. The wave frequency is near-inertial in
the shaded areas where Ω ≤ 1.1f , and the depth of the dissipative layer is illustrated by
the coloured dot on the y-axis. Energy dissipation is high in the top 700m of the domain
for the freely propagating simulations (a to e). There is enhanced energy dissipation under
the dissipative layer in simulation BIC32km to BIC72km.

Predictions of the vertical distribution of energy dissipation were made for lee
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waves propagating through depth-uniform current and state that 50% of the energy

dissipation takes place in the layer 1000 m above bathymetry (Nikurashin and

Ferrari , 2010a). For the propagating simulations, most of the dissipation occurs

near bathymetry in the absence of wave reflection from the surface (figure 3.12).

For simulations with a dissipative layer, the theory predicts that most energy

dissipation will occur near the critical layer. However, enhanced dissipation is

seen in the middle band for BIC32km and near bathymetry for BIC56km, with

neither of these regions containing the simulation’s dissipative layer. This enhanced

dissipation also correlates to large inertial current shear. Finally, simulation BIC72km

shows enhanced dissipation in the middle band, which includes the dissipative layer.

When comparing the kinetic energy dissipation distribution, inertial oscillations

dominate the dissipative processes over dissipative layers for simulations BIC32km

and BIC56km. Dissipative fractions are ten to twenty times larger for the dissipative

simulations than the propagating ones (figure 3.12). The enlarged dissipative fractions

are due to IOs and the dissipative layer.

3.3.4 Comparison with Depth-Uniform Current

Two additional simulations were run with a depth-uniform current to compare

and evaluate the impacts of BICs. Simulations with lengthscales of 5 km and

72 km, respectively named BNS5km and BNS72km, were run. The numerical

setup is identical to the BIC simulations. The propagation time is tp = 17 h for

simulation NS5km. For the BNS72km simulation, tp = 433 h. The BIC simulation’s

analysis time is chosen to be the same for both the depth-uniform and depth-varying

current simulations. The 5 km simulations are time averaged over 101 h, and the

72 km simulations are averaged over the last inertial oscillation, from t = 925

h to t = 1100 h. Results are only shown for the kinetic energy and dissipation,

as the other energy terms follow similar patterns. First, depth-varying currents

slow down the vertical group velocity, as shown by the faster propagation time

for the depth-uniform simulations (based on equation 2.11). As expected, the

depth-uniform simulations K profiles show vertical modes since the analysis time

allows for approximately three reflective cycles for both lengthscales (figure 3.13).

Comparatively, BIC5km shows enhanced vertical variability due to wave reflection
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Figure 3.12: Distribution of the kinetic energy dissipation. Energy dissipation is
integrated in bins of 1000 m and normalized by the total K dissipation in the domain.
The dissipative fraction, i.e. the ratio of kinetic energy dissipation to energy flux into the
domain, is indicated for each simulation. Quantities are time-averaged from the ramping
up time to the propagation time for the propagating simulations and over the last inertial
oscillation before tp for the dissipative simulations.

in the top 700 m of the domain, which corresponds to the propagation depth at the

analysis time. Discrepancies between K density near bathymetry show that wave

reflection influences lee wave generation (figure 3.13a). For simulation BIC72km, K

is enhanced below the dissipative layer, illustrating energy accumulation caused by

the decrease of the vertical group velocity with height. Kinetic energy density is an

order of magnitude smaller above the dissipative layer, confirming the evanescent

field. This contrasts with the BNS72km simulation, which presents K throughout

the water column.

As for the kinetic energy dissipation, the non-sheared simulations present enhanced

dissipation in the bottom 1000 m, and dissipation rates decrease with height (fig-

ure 3.13b). Dissipation is more evenly distributed over the water column for the

propagating BIC simulation, BIC5km. However, results are averaged over 1.5tp, and
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the downward reflected energy has only travelled 700 m. The topmost layer then

contains upward and downward propagating energy, which may bias the energy dissi-

pation percentage. The impact of the dissipative layer is evident for BIC72km, with

67.8% of the energy dissipating in the middle layer, which includes the dissipative

layer. Furthermore, energy dissipation is reduced in the top 1000 m, consistent with

the evanescent wave field. The dissipative fraction is more significant for the BNS5km

simulation than for the BIC5km one, likely caused by interactions of upward and

downward propagating waves. As for the larger scale simulations, the dissipative

fraction is larger for the BIC72km than for BNS72km, highlighting the impact of

the dissipative layer.

(a) (b)

Figure 3.13: a) Horizontally averaged kinetic energy profiles. The profiles time-averaged
over 101 h for the 5 km lengthscales simulations and over the last IO before the BIC72km
analysis time, i.e. from t = 925 h to t = 1100 h for the 72 km simulations. b) Vertical
distribution of energy dissipation. Energy dissipation is integrated in bins of 1000 m and
normalized by the total K dissipation in the domain.

3.3.5 Comparison with Kunze and Lien (2019)

Kunze and Lien (2019) inspired this thesis as one of our goals is to evaluate the

theoretical predictions presented in this paper. The idealized ocean conditions

underlying Kunze and Lien (2019) predictions are an infinitely deep ocean where

every lee wave generated propagates inviscidly, where energy is lost to the background
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by shear production until the wave reaches a dissipative layer, where the remaining

energy is dissipated (figure 3.14). However, the numerical setup used for the BIC

simulations differs from this idealized ocean. First, dissipation is allowed everywhere

in the water column. Second, not all waves reach a dissipative layer; some waves

reach the surface and reflect downwards. Finally, the energy equation 2.20 shows

that the energy budget includes more terms than the energy flux, exchange and

dissipation. One obvious example is inertial shear production, another exchange term

which has a magnitude similar to the shear production (as shown in figure 3.10).

(a) (b)

Figure 3.14: (a) World view from Kunze and Lien. (b) A more realistic world view
where the sea surface, marked by the dashed blue line and inverted triangle, can be situated
below or above the dissipative layer.

Dissipative and exchange fractions are calculated by Kunze and Lien (2019) based

on wave action, which states that the changes in energy with depth are proportional

to the wave action multiplied by the wave frequency :

A Ω(z) ∝ E.

Therefore, the exchange fraction, Fe, is defined as:

Fe =
E0 − Ef

E0

=
U0k − f

U0k
, (3.7)
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and the dissipative fraction, Fd, as:

Fd =
Ef

E0

=
f

U0k
(3.8)

where E0 is the energy flux above bathymetry, Ef the minimal energy available for

dissipation. If a wave propagates to the surface without encountering a dissipative

layer, the upper bound of the wave frequency becomes its value at the surface. A

modified exchange fraction, Fem, is then expressed as:

Fem =
U0k − Uz=0k

U0k
. (3.9)

Dissipative and exchange fractions are calculated from the model output and

compared to values predicted with the above-modified exchange fraction (figure 3.15).

Data is averaged from the ramping-up time to the propagation time to ensure that

no wave reflection is included in these calculations, as the modified exchange fraction

neglects it. The dissipative fraction is expected to be null for the propagating

simulations BIC1.4km to BIC13km, as no dissipative layer is encountered in the

water column.

Numerical results agree poorly with theoretical predictions with exchange and

dissipative fractions not adding up to and not matching the modified fractions

(figure 3.15). This is not surprising considering the idealized setup upon which

these theoretical predictions are based. The simulated exchange fraction is relatively

constant across length scales. It varies from 45% to 65%, which is lower than predicted

for the propagating simulations and higher than predictions for the dissipative ones.

The exchange fraction does not decrease significantly for the dissipative simulations.

However, the dissipation fraction is one order of magnitude larger for the dissipative

simulations than the others. This does not highlight the impact of the dissipative

layer, as simulations BIC32km and BIC72km showed enhanced dissipation below

the dissipative layer, where inertial shear production is large.

3.3.6 Sea Surface Anomaly

Lee waves propagating to the surface are expected to affect the sea surface level

and leave a trace with a horizontal lengthscale similar to the bathymetric scale.
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Figure 3.15: Comparison between theoretical and numerical exchange and dissipation
fractions. (Dotted lines) Theoretical exchange and dissipative fractions as predicted by the
modified Kunze and Lien (2019) equation (eq. 3.9) accounting for a finite depth ocean.
(Solid lines) Numerical exchange and dissipative fractions. The red markers mark the
dissipative simulations.

This is effectively the case for simulations BIC1.4km to BIC13km, as shown in

figure 3.16. The sea surface anomaly (SSA) generated by the waves is similar to

the bathymetry. Their amplitude is of the order of millimetres. For the waves

encountering a dissipative layer within the domain, there should be no traces at

the surface, as shown in figure 3.16. The proximity of the dissipative layer to the

surface for BIC32km could explain the irregular undulations. SSA profiles were

time-averaged.

3.4 Discussion

Ten idealized sinusoidal simulations were run to assess the impacts of bottom-

intensified current on lee wave energetics and energy dissipation. First, model outputs

from BIC simulations were compared to theoretical prediction for lee wave generation

and showed overall good agreement (figure 3.3). Snapshots of the wave field display

expected impacts of BIC, such as a flattening of the lee wave lines of constant phase

with height, wave reflection and interference patterns for the propagation simulations
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Figure 3.16: Sea surface anomalies. The profiles are irregular with rounded crests and
angular through. Propagating simulations, BIC1.4km to BIC13km, present a surface trace,
while dissipative simulations BIC32km to BIC72km do not.

and a dissipative layer where ray tracing predicted it (figure 3.4 and (figure 3.5)).

The energy budget has been calculated and closed with a residual smaller than

10% of the most significant energy term’s magnitude, the energy flux divergence. The

budget closure strengthens the calculations and the accuracy of each term. The larger

residue observed for BIC56km is explained by the growth of numerical instabilities

caused by small-scale phenomena not fully resolved at the scale of the simulation (see

figure 3.4g). The negative shear production showed that the wave loses energy to the

background flow (figure 3.7). The acceleration of the background current illustrates

that the energy lost by the wave represents a momentum gain for the background
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current (figure 3.8). Finally, the deceleration of the current in the bottom 250 m

of simulation BIC56km correlates with a zone of enhanced dissipation, which hints

that energy dissipation acts to slow down the background current. However, this

interaction competes with the acceleration caused by the shear production, making

it harder to quantify confidently.

The vertical distribution of kinetic energy dissipation is enhanced in the bottom

1000 m of the domain for the propagating simulations (figure B.2). For the dissipative

simulations, dissipation is not necessarily dominant at the dissipative layer. For

simulations BIC32km and BIC56km, enhanced dissipation zones correlate with

enhanced inertial activity zones. To compare energy dissipation rates, literature

often cites Nikurashin and Ferrari (2010b), who estimates that 50% of the lee wave

energy is dissipated in the bottom 1000 m of the domain. This estimate is based on 2-

D idealized sinusoidal simulations, combined with a depth-uniform current and a top

sponge layer to prevent surface reflections. When reflection is not considered, results

from the sheared propagating simulations agree with this prediction (figure B.2).

The differences between the energy distribution, the dissipation predicted using a

depth-uniform current and what has been calculated with these sheared simulations

highlight the importance of including depth-varying currents and letting the energy

propagate to the surface.

Two depth-uniform current simulations were run to compare energetics and dissi-

pation for waves propagating over a 5 km and a 72 km lengthscales, covering the

radiating regime and the dissipative regime. First, BIC acts to decelerate the vertical

group velocity speed with height, which leads to slower propagation time compared

to depth-uniform currents (based on equation 2.11). This alters the energy profiles

as vertical modes develop and interference between upwards propagating and down-

wards reflected waves interact (figure 3.13). For the dissipative regime, kinetic energy

accumulates under the dissipative layer as CgL−v decreases with height. This leads to

an enhanced area of energy dissipation where the dissipative layer is situated. Finally,

energy dissipation is enhanced near bathymetry for the depth-uniform simulations,

whereas the propagating simulation (BIC5km) presents a more evenly distributed

dissipation profile.
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Finally, model outputs do not agree with the Kunze and Lien (2019) predictions

(figure 3.15). Considering how idealized these predictions were, it is not surprising

that the numerical calculations differ. The energy equation and budget show the

importance of some energy terms that were neglected by Kunze and Lien (2019) in

the lee wave dynamics. For example, lee waves gain and lose energy to the inertial

shear production throughout the water column (figure 3.10). Overall, the energy

exchanged to the background current is relatively uniform between simulations,

whereas the dissipative fraction is larger for the dissipative simulations (figure 3.15).

One major challenge associated with this set of simulations is the range of bathy-

metric scales. First, the length scales vary from 1.25 km to 125 km over the radiating

domain. This affected the choice of horizontal resolution as the smaller length

scales have a higher resolution to ensure the relative smoothness of the numerical

bathymetry. The different lengthscales also introduce a time variability to the

problem, where each wave propagates at a different speed, raising questions about

the better analysis time. An analysis time of 1.5tp was chosen to ensure dynamic

consistency, and results were averaged over this period to smooth out the difference

between time steps. However, the dynamic consistency results in the analysis times

varying over two orders of magnitude, leading to the development of inertial oscil-

lations in the longest simulations. For the simulations run long enough for IO to

develop, averaging over the last inertial oscillation was chosen to remove inertial

effects. Lastly, simulations SIC1.4km was ramped up over 14h, while the others were

ramped up over 24h. Considering the analysis time, ramping up the simulation over

24 hours allows for a few hours of unforced data. As the research progressed, the

pertinence of looking at unforced data for the upward propagating phase arose. Thus,

simulation SIC1.4km was rerun with a ramping-up time of 14 h as a compromise on

damping the sudden effect of starting the simulations and having non-forced data

before the propagation time. The other simulations were not rerun due to time

constraints. Time variability was also significant for the depth-uniform simulations.

Results were averaged considering the analysis time of the BIC simulation, even if it

means that the simulations are not dynamically consistent. This choice was made to

limit the effects of the ramping-up period on wave dynamics, considering the short

propagation time of the BNS5km simulations.
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Further research could include more reflective periods and non-hydrostatic effects

as the smaller-scale simulations have a larger vertical scale.
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Chapter 4

Lee Waves in a Surface-Intensified
Current

4.1 Introduction

The goal of this chapter is to analyze the impacts of surface-intensified currents

(SICs) on lee wave propagation and energy dissipation using the non-hydrostatic

form of the MITgcm numerical model (Marshall et al., 1997). Numerical results

from eight 2D simulations with sinusoidal topographies, linear surface-intensified

current and constant stratification will be compared to theoretical predictions and

two depth-uniform current simulations, similar to Chapter 3. The name of each

simulation follows the nomenclature defined in Chapter 3.

4.1.1 Expectations

Chapter 2 presents linear wave theory in detail. Some aspects of linear theory and

prior work that will be validated in this chapter are:

1. For smaller values of k, bottom horizontal wave velocity u′
b and v′b are faster

and vertical wave velocity w′
b are slower compared to predictions for larger

values of k, based on the polarisation relation presented in Chapter 2. In

mathematical terms, for k1 < k2: u
′
b,k1 > u′

b,k2, v
′
b,k1 > v′b,k2 and w′

b,k1 < w′
b,k2;

2. Wave reflection at an internal reflective layer where the Lagrangian wave

frequency, Ω, matches the local buoyancy frequency, N , or at the surface, based

on ray tracing (Chapter 2.1.1);
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3. The generation of vertical modes and interference patterns as upward propa-

gating waves encounter downward propagating waves (Chapter 2.4);

4. The generation of inertial oscillations triggered by the interactions of wave

energy dissipation and the mean background flow (Nikurashin and Ferrari ,

2010a)

5. The generation of surface displacements by waves freely propagating through

the water column (de Marez et al., 2020).

4.2 Methods

4.2.1 Numerical Simulations

Eight simulations are run with a linear surface-intensified current using the non-

hydrostatic mode of MITgcm model since the lee wave vertical wave number decreases

exponentially as the wave propagates upwards, making it non-hydrostatic. Two

comparative depth-uniform simulations with lengthscales of 5 km and 72 km are ran,

similarly to Chapter 3. Figure 4.1 illustrates the different bathymetry, background

and stratification profiles used in this chapter. The numerical set up is identical to

Chapter 3 and presented in details in Appendix B.

In the case of SICs, the propagation depth, hp, corresponds to an internal reflective

layer (IRL) if the wave frequency is Doppler-shifted to the buoyancy frequency within

the water column. If the wave reaches the surface, the propagation depth is the

total depth of the domain. A reflection cycle is defined as the trajectory of a wave

packet from the bathymetry to the surface or an IRL and back to the ocean floor.

The time it takes to do so will be referred to as reflective time, tr = 2tp. Finally, the

analysis time, ta, is set to five reflection cycles for the simulations to be dynamically

comparable. Table 4.1 presents the simulation parameters. Simulations SIC1.4km

to SIC5km are referred to as the internally reflecting simulations because of the

presence of an IRL, and the last five, SIC7km to SIC72km, are referred to as the

surface reflecting simulations because the wave propagates freely to the surface. The

energy calculations are identical to Chapter 3, except that the equations adjusted

for non-hydrostatic physics.
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Figure 4.1: a) to h) Bathymetric profiles SIC1.4km to SIC75km, i) Background current
profile and j) Stratification profile.

The SIC simulations do not use a ramping-up scheme because the smaller-scale

simulation’s reflective time is only a few hours, and ramping up the model over

such time scales would be similar to a sudden start. A test was done for the larger

scale simulations, and the energy dynamics were similar with and without a ramping

up, giving us confidence in the model outputs. Finally, model outputs are printed

every five minutes for simulations SIC1.4km to SIC13km since the propagation time

is shorter for these simulations, and time variability would be missed otherwise.

For simulations SIC32km to SIC72km, outputs are printed every hour since the

propagation times are longer.

49



Table 4.1: Parameter of the sinusoidal simulations with a surface-intensified current. The
Coriolis parameter is f = 10−5 s−1 and buoyancy frequency N = 10−3 s−1. The analysis
time for simulations SIC1.4km to SIC13km is smaller than the inertial period tf = 174 h
(10440 min).

Length
scale

Horizontal
wavenumber

Generation fre-
quency

Propagation
depth

Propagation
time

Analysis
time

L k Ωb hp tp ta
km m−1 s−1 m min min

SIC1.4km 1.4 44.88× 10−4 8.98× 10−4 2910 75 745
SIC3km 3 20.94× 10−4 4.18× 10−4 1950 175 1765
SIC5km 5 12.57× 10−4 2.51× 10−4 760 250 2505
SIC7km 7 8.98× 10−4 1.79× 10−4 0 310 3060
SIC13km 13 5.03× 10−4 0.97× 10−4 0 525 5295
SIC32km 32 1.96× 10−4 0.38× 10−4 0 1310 13080
SIC56km 56 1.16× 10−4 0.23× 10−4 0 2510 2580
SIC72km 72 0.87× 10−4 0.17× 10−4 0 3570 35700

4.2.2 Time Averaging

The analysis time for this set of simulations was arbitrarily set to five reflective cycles.

This time is used to qualitatively compare snapshots of the simulations. To make

quantitative statements, a time average from the starting point of the simulation

until the analysis time is used for simulations SIC1.4km to SIC13km and over the

last inertial oscillation for simulations SIC32km to SIC72km.

4.3 Results

4.3.1 Wave Velocity Predictions

Theoretical lee wave bottom-velocity predictions are made using equations 2.18 to

2.20. To validate the model outputs and verify expectation 1, simulated values

are time-averaged and normalized by the predicted velocities (figure 4.2). For the

first series, results are averaged over the propagation time, tp. For the second

series, the time average is taken until the analysis time, ta. Numerical velocities are

averaged 50 m above bathymetry, to limit boundary effects. Simulated velocities

calculated over the propagation time generally follow the predicted velocity patterns

(expectation 1) with faster vertical velocities and slower horizontal velocities for waves

generated over a larger topographic scale. Numerical velocity magnitudes normalized

by the theoretical predictions are one to two and a half times larger than the linear
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predictions (figure 4.2). After five reflection cycles, differences between numerical

values and predictions are more significant, with one to eighteen times larger values.

The discrepancies result from a modification of the wave generation due to reflection

in the domain and interaction of upwards and downward propagating waves. They

are the largest for SIC3km.

Figure 4.2: Simulated velocity normalized by analytical velocity, (u′n, v
′
n, w

′
n), for the

different SIC simulations. The left-most point is associated with SIC72km, and the right-
most point is with SIC1.4km. The series associated with the solid line is averaged until the
propagation time tp, whereas those associated with the dotted line are averaged until the
analysis time ta. Limits of the radiating wavenumbers are marked with the dotted-dashed
lines. The Coriolis parameter and buoyancy frequency are normalized by the bottom
current velocity, Ub = 0.2 m/s.

4.3.2 Wave Field

Ray tracing predicts a reflection layer for simulations SIC1.4km to SIC5km at a

depth of z = −2910 m, z = −1950 m and z = −760 m, respectively (black dotted

line, figure 4.3). The internal reflective layer for the internally reflective simulations,

SIC1.4km to SIC5km, can be seen as wave velocity magnitudes decrease with height,

verifying expectation 2. Signs of resonance can be seen in simulation SIC3km,

where isopycnals displacements are very large and wave velocities are enhanced near
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bathymetry. The ρ0 = 1036.14 kg/m3 isopycnal displacement grows and moves

upstream over time (see figure 4.4). The displacement is reminiscent of a rotor

with the reverse flow (blue area) near the bathymetry on figure 4.4. Numerical

studies from Doyle and Durran (2002) and Grubǐsić and Stiperski (2009) showed the

formation of atmospheric rotors in free-slip numerical simulations, similar to what is

seen in simulation SIC3km.

Simulations SIC7km and SIC32km to SIC72km present vertical modes illustrated

by the checker-board pattern in figure 4.3, consistent with expectation 3. The distance

between the zero crossing of the vertical mode profiles stretches with height, which

is an impact of the positively sheared background current. As a lee wave propagates

upwards in a SIC, its vertical wave number m reduces with height, meaning that the

vertical scale of the wave increases, thus elongating the vertical modes. All surface

reflecting simulations except for SIC13km present an anti-node around z ≈ −2600

m and z ≈ −1200 m. Simulation SIC13km shows slightly enhanced velocities in the

bottom 400 m of the domain. Still, the other node from the vertical mode is absent,

which we take as a sign of destructive interference between downward reflected and

upward propagating waves. Kinetic energy fields are similar to the velocity fields,

with zones of enhanced energy corresponding to zones of enlarged wave velocities

(figure 4.5). As predicted, little energy is seen above the IRL for the simulations

SIC1.4km to SIC5km. Small-scale density anomalies in the density contours are seen

near bathymetry for these simulations, which is most likely a precursor for the grid

noise near bathymetry in g) and h). In the ocean, these instabilities’ growth lead to

wave breaking and turbulence near bathymetry. However, these simulations do not

resolve turbulence and tend to form grid scale noise when energy is not dissipated

sufficiently fast by the numerical and explicit viscosity.

4.3.3 Energetics

The internally reflective simulations, SIC1.4km to SIC5km, are highly non-hydrostatic,

and their residue is larger than our closure criteria of 10%. Therefore, a limited

analysis is presented hereafter. Amongst the hypotheses explaining the high residue

are that MITgcm is inaccurately resolving the non-hydrostatic pressure term and
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Figure 4.3: Horizontal velocity perturbation, u′ (m/s) (left) and v′ (m/s) (right) after
five reflection cycles. The blue box vertically delimits the integration domain used for the
energy budget. Reflective layers are expected for three simulations: SIC1.4km, SIC3km
and SIC5km at a depth of −2910 m, −1950 m and −760 m, respectively. The energy path,
calculated in an Eulerian frame of reference, is illustrated in the v′ panels (black dotted
line). Reflective simulations are identifiable by the blue subtitle.

that the analysis code used to calculate the energy terms is using a numerical scheme

with a lower precision than those used by MITgcm.
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Figure 4.4: Background current at ta. The ρ0 = 1035.14 kg/m3 isopycnal is plotted at
the propagation time and each reflective cycle until the analysis time (black and purple
lines).

There is an overall agreement between reflection period and time oscillations for

simulations SIC1.4km, SIC3km and SIC7km (figure 4.6, the vertical grey lines).

The dominant energy terms are the potential to kinetic energy transfer (purple),

the shear production term (green) and the time derivative of the kinetic energy

(blue). In contrast to the BIC simulations, the dissipation of kinetic energy is small

compared to the dominant terms, and the advection of kinetic energy is stands out

for simulations SIC3km, SIC13km and SIC72km. For clarity, figure 4.6 does not

show the non-dominant terms, except for the energy dissipation.

A spectral analysis was undertaken to investigate the simulation time dependency

by calculating the spectra of the de-meaned background shear production at each

grid point and averaging them together over the domain. The total number of

spectra averaged together ranges from 14,000 for simulation SIC1.4km to 180,000 for

simulation SIC72km, depending on the simulation resolution. Results for simulation

SIC7km are presented in figure 4.7 as an example. Appendix C presents the other

spectra. The periods associated with spectral peaks are shown in table 4.2, where

peaks are ordered from the highest frequency (peak no1) to the lowest (peak no3).

The frequencies were extracted by a visual analysis of the power spectra.
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Figure 4.5: As for figure 4.3 but for the wave kinetic energy density (J/m3) (left) and
vertical wave speed w′ (m/s) (right). Vertical modes have formed from interference between
upward and downward propagating waves.

Simulations SIC3km and SIC7km present a peak associated with the reflection

time, tr. As for simulation SIC1.4km, the period associated with the frequency

dominating the power spectra is between the reflection and Lagrangian wave frequency.

Surprisingly, simulations SIC5km and SIC13km present a peak close to the wave
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Figure 4.6: Kinetic energy budget normalized by the width of the integration domain.
The dominant terms in these budgets are the time derivative of kinetic energy (blue), the
available potential energy to kinetic energy transfer (purple), and the shear production
(green). The vertical dashed lines represent reflection cycles.

generation period, and SIC32km to SIC72km show a peak close to the first harmonic

of the Lagrangian wave frequency. Question remains about the origin of these

frequencies as they do not arise directly from the wave motion since Lee waves are

stationary in an Eulerian frame of reference, i.e. their frequency ω = 0.

The spectral analysis showed that the time variability is unique to each simulation.

The horizontal distance travelled by the wave energy over a reflection cycle was

calculated using ray tracing to identify possible interference effects near bathymetry.

The wave energy travelled approximately 0.51, 1.07, 1.17, 0.65, 0.15, 0.06, 0.14 and

0.26 times the horizontal length scale for SIC1.4km to SIC72km in one reflection

cycle. Simulations SIC7km and SIC32km to SIC72km showed similar wave fields and
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Figure 4.7: Background shear production spectra for SIC7km. The vertical grey dashed
line represents the wave generation frequency Ωb, the grey dotted line marks the first
harmonic of the wave 2Ω, and the black, vertical, dashed line is the reflection time.

Table 4.2: Background shear production oscillation periods. All periods are in hours.

Peak
no1

Peak
no2

Peak
no3

Lagrangian
wave gen-
eration
period

First
har-
monic
period

Reflective
time

Analysis
time

TL(z=h) 2TL(z=h) tr ta
SIC1.4km 2.1 - - 1.9 1.0 2.5 12
SIC3km 5.8 - - 4.2 2.1 5.8 29
SIC5km 6.9 13.9 - 6.9 3.5 8 41
SIC7km 7.2 10.2 25.5 9.7 4.8 10 50
SIC13km 10.8 29.0 - 18.9 9.4 17 80
SIC32km 21.8 72.7 - 43.2 22.4 43 218
SIC56km 38.0 139.3 - 77.6 38.8 83 418
SIC72km 49.6 198.3 - 99.7 49.7 119 595

vertical modes. However, the distance travelled by the reflected wave differs for each

simulation. There is no obvious link between the horizontal distance predicted by

ray tracing, reflection patterns and time variability. Finally, in contrast to the BIC

simulations, IO remains small even for simulations run long enough to resolve them.

Small-scale simulations are expected to be more energetic than larger-scale sim-

ulations, based on energy flux predictions from Chapter 2. Simulation SIC1.4km
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presents less energy than most other simulations, contradicting this prediction. How-

ever, the reflective layer is below the energy budget’s bottom boundary. Therefore,

little wave energy enters the integration domain. The magnitude of the energy terms

for simulation SIC3km is one order of magnitude larger than for the other simu-

lation, highlighting the importance of constructive interference within the domain.

For simulations SIC5km to SIC72km, the magnitude of the energy terms generally

decreases as the bathymetric length increases, as expected by theory.

4.3.3.1 Background Shear Production

The integrated background shear production is not strictly positive for simulations

SIC1.4km to SIC72km. For waves propagating through an infinitely deep water

column with surface-intensified currents, theory predicts an energy gain from the

background current. When wave reflection is considered, the shear production term

becomes a combination of upward and downward waves and the wave velocity can

be expressed as u′ = u′
up + u′

down, which introduces cross terms that influence the

shear production sign. Thus, energy gain or loss does not only depend on whether

the wave is upward or downward propagating. Consistent with figure 4.6, figure 4.8

shows that the background shear production oscillates between energy gain from

the background flow, i.e. positive values, and energy loss to the background current,

i.e. negative values, for all simulations with values generally decreasing towards the

surface. There is an energy gain at the beginning of all simulations (positive shear

production), after which the shear production oscillates in time and shows positive

interference (dark red zones) and negative interference (blue zones). The spectral

analysis revealed a time signature associated with the reflective time for simulation

SIC3km and SIC7km consistent with theoretical expectations, whereas the other

simulations present different periods.

4.3.3.2 Residual Horizontally-averaged Current

The vertical variability of the residual horizontally-averaged x-direction current, u,

profiles show that jets are being generated, similarly to Chapter 3 (figure 4.9). These

jets act to accelerate and decelerate the background current.
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Figure 4.8: Horizontally average shear production profiles. The horizontal average is
taken over the width of the budget. Red means energy gain and blue energy loss. There
are cycles of energy loss and energy gain. Horizontal black lines indicate IRL.

Figure 4.9: Time and horizontally-averaged residual current normalized by the prescribed
background current. Profiles are time averaged over the last inertial period.

Inertial oscillations are expected in all simulations based on results from Nikurashin

and Ferrari (2010a). The spectral analysis did not reveal the presence of inertial

oscillations in simulations SIC32km to SIC72km, contrary to what was seen for the
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BIC simulations in Chapter 3. Figure 4.10 presents a time series of the residual

horizontally-averaged x-direction current, u for all simulations. For simulations

SIC32km to SIC72km, inertial oscillations are identifiable by the time variability

between z = −2500 m and z = −1500 m, where the magnitude of the inertial current

is accelerated and decelerated on the time scale of the inertial oscillations, consistent

with expectation 4.

Figure 4.10: Time series of the x-direction RHAC, u. Red means that the velocity is
faster than the background current, and blue that the velocity is slower.

Considering the magnitude of the residual horizontally-averaged current compared

to the background current and the absence of a time signature in the energy budget,

IO are not a dominant physical phenomenon for surface-intensified simulations,

contrary to results from Chapter 3. Wave reflection and the jets generated are the

prevalent physical phenomena affecting the background current.

4.3.3.3 Energy Dissipation

Kinetic energy dissipation profiles are presented Figure 4.11. Each profile is horizon-

tally averaged over the width of the domain and time-averaged over the analysis time.

Simulation SIC3km shows the most energy dissipation, as expected, considering the
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resonance of this simulation. Vertical oscillations of the dissipation profiles do not

match the vertical modes observed in the wave field, and energy dissipation decreases

with height (figure 4.11 compared to figure 4.3). Enhanced dissipation is seen near

bathymetry and in the bottom 1000 m of the domain, which fits with areas of

enhanced kinetic energy and expectation 5. Without reflection, i.e. when numerical

results are averaged over tp, a minimum of ≈ 82% of the dissipation happens in the

bottom 1000 m of the domain (figure 4.12). After five reflection cycles, dissipation is

better distributed across the water column, but it remains largest below z = −2000

m, except for simulation SIC1.4km. However, the reflective layer for this simulation

is situated near the bathymetry and energy propagation from the model start up

could affect the vertical distribution. As for the dissipative fraction, all simulations

except for SIC1.4km present higher percentages of energy dissipation at the analysis

time, with interactions of upward and downward propagating waves enhancing energy

dissipation.

Figure 4.11: Energy dissipation profiles for the SIC simulations run with MITgcm. The
horizontal average is taken over the width of the domain and the time average over the
analysis time.
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Figure 4.12: Vertical distribution of the energy dissipation. Dissipation is integrated
in bins of 1000 m and normalised by the total energy dissipation in the domain. Data is
time averaged over the propagation time tp (blue shades), and the analysis time, ta (red
shades). The dissipative fraction is indicated above each bar.

4.3.4 Comparison with Depth-Uniform Currents

Two additional simulations were run with a depth-uniform current equal to Ub = 0.2

m/s to compare the kinetic energy profiles and energy dissipation distribution

with SIC simulations. Like Chapter 3, the chosen comparative lengthscales are 5

km and 72 km for the non-sheared simulations, respectively named SNS5km and

SNS72km, where the first S stands for “surface”, NS for “non-sheared” followed by

the lengthscale. Data is averaged over the SIC simulations’ analysis time. The 5

km lengthscales are averaged over 42 h and over 595 h for the 72 km lengthscales.

In contrast with BICs, the group velocity of waves propagating through the SICs

accelerates with height. With a propagation time of 17 h, approximately 1.24

reflection cycles have been completed for the SNS5km simulation compared to 5 for

the SIC5km simulation. For the SNS72km, approximately 0.7 of a reflection cycle has

been completed (tp = 433 h). The distance between the crests of the vertical mode is

constant for the SNS5km, in contrast with the SIC72km simulation, which presents a
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profile that stretches with height (figure 4.13a). Vertical modes are not fully formed

for the BNS72km since the wave energy has not completed an entire reflection cycle

at the analysis time. The reduction in kinetic energy with height and the absence

of vertical modes for SIC5km indicate destructive interference between upward and

downward propagating waves. Energy dissipation is enhanced near bathymetry for

all simulations, but the SIC simulations present significantly higher fractions in the

bottom layer (figure 4.13b) compared to the non-sheared simulations. Dissipative

fractions are larger for the surface-intensified simulations than the depth-uniform

ones.

(a) (b)

Figure 4.13: a) Kinetic energy density profiles of the SIC and non-sheared 5km and
72km simulations. The horizontal average is taken over the width of the domain and
time-averaged over the analysis time. b) Vertical distribution of the energy dissipation
integrated in bins of 1000 m. Data for both panels is averaged over one reflective cycle.

4.3.5 Sea Surface Anomalies

Lee waves propagating to the surface are expected to leave a trace with a horizon-

tal length scale similar to the bathymetric scale. In contrast, internally reflecting

waves are expected to be blocked at the IRL and leave no surface signature. Fig-

ure 4.14 shows no surface trace for simulation SIC1.4km and a trace for all the other

simulations, which partially fits with theoretical predictions.
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Figure 4.14: Sea surface anomaly for all SIC simulations. Profiles are averaged over
time until the analysis time. The surface trace is uniform in depth and similar to the
bathymetric length scale for simulations SIC5km to SIC72km.

4.4 Discussion

This section analyzes and compares simulation results from ten idealized lee wave

simulations to assess the impacts of surface-intensified current on energetics and

energy dissipation.

First, the model outputs are compared to theoretical predictions of bottom veloci-

ties. Simulated velocities vary from one to three times the predicted velocity before

wave reflection and vary from 1 to 18 times when averaged over five reflection cycles

(figure 4.2). Normalized velocity profiles show an acceleration near bathymetry,
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mostly due to vertical modes and the generation of jets within the water column,

explaining the discrepancies between theoretical and simulated results at the analysis

time. The wave field becomes evanescent slightly above the reflective layers for

simulations SIC1.4km to SIC5km, which indicates that the wave is partially reflected

downwards (figure 4.3). For the surface propagating simulations, all wave fields

except for SIC13km show checker-board patterns associated with vertical modes

caused by wave reflection. Wave kinetic energy is enhanced at the crest of the vertical

modes and generally decreases with height (figure 4.5).

As for the wave energetics, all the simulations are strongly time-varying (figure 4.6).

Spectral analysis of the shear production term did not reveal a correlation between

predicted time variability and known periods, such as the reflective and wave harmonic

periods (table 4.2). The horizontal distance travelled by the energy has been

calculated to find an explanation for the large-time oscillation associated with five

reflection cycles. However, after five reflection cycles, the wave energy does not align

with the crest of the bathymetry, where waves are generated, except for simulation

SIC3km, which shows resonance and isopycnal displacement reminescent of a rotor

(figure 4.4). Questions remain about the interaction of upward and downward

propagating waves and what drives the sign change of the energy terms. Inertial

oscillations are weaker in the SIC simulation than in the BIC ones (figure 4.10).

Wave reflection and interference dominate the wave field, and jets are generated in

the water column (figure 4.9).

The dominant terms in the energy budget are similar to those in Chapter 3 for the

BIC simulations. The advection of kinetic energy by the background flow stands out

in SIC3km and SIC13km. In contrast to the BIC simulations, the energy dissipation

term remains much smaller than the dominant terms. With time, the background

shear production and divergence of the energy flux changes sign, meaning that the

wave gains and loses energy to the background current and that the total energy in

the wave field increases and decreases. This is a result of wave reflection and wave

interactions.

Energy dissipation is enhanced near bathymetry for all simulations, with more than

80% of the dissipation happening in the bottom 1000 m of the domain (figure 4.12).
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After five reflection cycles, energy dissipation is distributed more evenly compared to

fractions calculated over the propagation time. However, dissipation near bathymetry

still dominates. Non-sheared simulations show a similar dissipation distribution

with enhanced values near bathymetry but with a lower fraction at shallower depths

compared to the SIC simulations (figure 4.13). As for the energy profiles, SIC5km

presents less energy than SNS5km, likely caused by destructive interference. One

reflection cycle has been completed for the SNS5km simulation. SNS5km simulations

present a uniform vertical profile, which contrast to the SIC72km simulations, where

the vertical mode is stretched with height. This illustrated the changes in the vertical

wave number expected for wave propagation trhough SIC. Vertical modes are better

defined in top half of the water column for SNS72km, which fits with the distance

travelled by the wave energy after 0.7 reflection cycle. Dissipative fractions are largest

for the SIC simulations after five reflection cycles compared to fractions averaged

over the propagation time, and compared the non-sheared dissipative fractions.

The surface-intensified simulations present similar challenges and caveats as the

BIC simulation since they share the same numerical setup. However, the dynamic

similarity is easier to obtain across simulations since the reflection time is shorter

than the time for the energy to reach dissipative layers. As for the non-hydrostatic

mode, we suspect that MITgcm is not precisely solving the pressure components,

affecting calculations. To ameliorate the accuracy of the model, it would be possible

to increase the spatial resolution or the number of iterations allowed for the model to

converge. However, time constraint limited the extent of numerical testing necessary

to fix this issue. Finally, some questions about time variability and interference such

as “what are the mechanism underlying wave reflection that are generating wave

harmonics?” remain unanswered.

66



Chapter 5

Conclusion

With recent studies highlighting the impacts of lee wave parametrization on global

models and theoretical predictions and in situ dissipation measurement not agreeing

(Melet et al., 2014; Cusack et al., 2017; Waterman et al., 2013), different hypotheses

explaining these discrepancies are under active research. Among these hypotheses is

the impact of depth-varying currents. Kunze and Lien (2019) theoretically explore

the effect of bottom intensified current on lee wave energetics. They showed that the

wave loses energy to a bottom-intensified background current, reducing the fraction

available for turbulence. Baker and Mashayek (2021) studies the effect of surface

intensified currents and surface reflection. They show that surface reflection can

modified wave generation and interactions of upward and downward propagating

wave can generate zones of enhanced dissipation. The thesis aimed to test Kunze

and Lien (2019)’s theory and extend it to positively sheared currents using numerical

modelling to answer the following research question: What are the impacts of

depth varying currents on lee wave energetics and the energy available

for turbulence?

Two groups of simulations were designed to answer the research question and

further investigate the impacts of depth-varying currents. Chapter 3 analyzes the

effects of bottom-intensified currents using results from eight idealized numerical

simulations paired with a linear current and a sinusoidal bathymetry. A comparison

between depth-uniform and bottom-intensified simulations is also presented. Similarly,

Chapter 4 explored the case of surface-intensified currents using the same numerical

setup as Chapter 3 but coupled with a surface-intensified current.
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First, shear production (−ρ0u
′w′ dU

dz
) calculations showed how energy was exchanged

as the waves propagated through bottom intensified (surface intensified) currents.

Chapter 4 showed that when surface or internal reflection occurs, it generates vertical

modes, and energy exchanges no longer depend uniquely on the sign of the background

shear because of vertical and lateral wave interactions. Results from BIC simulations

showed that the energy lost to the background flow acts to accelerate it. Furthermore,

the vertical structure generated by wave reflection causes jets in the background

current. Another impact of depth varying currents is the appearance of critical

layers: dissipative layers for BIC and internal reflective layers for SIC. Results from

Chapter 3 showed dissipative layers where the wave frequency becomes near-inertial

as predicted by ray tracing and linear theory. Results from the bottom-intensified

simulations show that these dissipative layers have a leading order impact on the

vertical distribution of energy dissipation. For the internal reflective layers, results

from Chapter 4 show evanescent fields where the wave frequency is larger than the

Buoyancy frequency.

In rotating flows, breaking waves deposit their momentum into the background flow,

which in turn acts to decelerate it and triggers near-inertial oscillations (Nikurashin

and Ferrari , 2010a). Near inertial oscillations interact with lee waves in different

ways. First, they accelerate and decelerate the background current, which changes

the generation frequency of the waves, making the field multi-chromatic. Chapter 3

shows that waves generated with a slightly slower background current will have a

smaller generation frequency and propagate further into the water column before

encountering a dissipative layer. Conversely, waves generated with a faster current

will dissipate lower into the water column. Near inertial oscillations are particularly

strong in areas of energy dissipation situated below dissipative layers. Results from

the SIC simulations of Chapter 4 show that in contrast with BIC simulations, IO

grows less rapidly and are less critical than wave reflection in SIC.

As for the energy available for turbulence, Kunze and Lien (2019) calculated

dissipative fractions using wave action. They assumed an inviscid and infinitely

deep ocean and restricted dissipation to the dissipative layer. In other words, the

energy flux is either exchanged with the background flow or dissipated, and waves

propagating further into the water column lose more energy, reducing the dissipative
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fraction. The work presented in Chapter 3 shows that the dissipative fraction is

more significant for simulations where a dissipative layer is reached lower into the

domain, in agreement with these predictions. However, the energy exchanged and

dissipated does not add to the energy flux and shows that other physical phenomena,

such as energy exchange with IO or kinetic to potential energy transfer, are at play.

Inertial oscillations can have a larger impact than dissipative layers on the vertical

distribution of the energy dissipation (figure 3.12). Therefore, the dissipative fraction

does not only include dissipation arising from the DL. Dissipative fractions were also

calculated for the SIC simulations and increase after five reflection cycles (figure

4.12), consistent with results from Baker and Mashayek (2021).

Comparison between BIC, SIC and depth-uniform currents show that energy dissi-

pation fractions in the bottom 1000 m of the domain are largest for SIC simulations

with values higher than 0.8 for all simulations. Depth uniform simulations also

show enhanced dissipation near bathymetry. BIC simulations present more evenly

distributed dissipative fractions. However, wave reflection is not accounted for since

the analysis is done over the propagation time. Dissipative layers and areas with

intense IO dictate the dissipation distribution. As a comparison, Nikurashin and

Ferrari (2010a) found that 50% of the energy dissipation happens in the 1000m

above bathymetry. However, this paper did not include depth-varying current or

surface reflection.

The simulations presented in Chapter 3 were run using the hydrostatic mode of

MITgcm and the non-hydrostatic mode for Chapter 4. The hydrostatic approximation

is considered sufficient for Chapter 3 because the vertical scale of the wave decreases

with height. However, the hydrostatic approximation starts to break down where

the bathymetric scale is similar to the domain depth. Exploring the non-hydrostatic

effects would be worthwhile for BIC in future work. As for the non-hydrostatic mode,

we suspect that MITgcm is not precisely solving the pressure components, affecting

calculations. Increasing the spatial resolution or the number of iterations allowed

for the model to converge could ameliorate the model’s accuracy, see Mayer and

Fringer (2021) for an analysis of the impacts of the non-hydrostatic equations on

numerical simulation results. Time constraints and computational power limited the

extent of solutions explored to set up the model better. However, the non-hydrostatic
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simulations present spatial patterns that fit with theoretical expectations. Therefore,

we are confident that the physics is realistically represented. The time variability of

the dynamics between simulations, especially for Chapter 3, presented a challenge.

For Chapter 3, an analysis time of 1.5 times the propagation time was set instead

of a shared analysis time for all simulations to ensure dynamic similarity between

simulations. Simulated results were time average to reduce the variability associated

with each time step and generalize results.

Results from Chapter 3 agree with theoretical expectations for the most part.

However, Chapter 4 has revealed numerous unanswered questions. What drives the

time dependency of the energy terms and the inversion of their signs? What causes

the interference patterns between upwards propagating and downwards reflected

waves? How can wave interference be accurately and universally described? To

answer these questions, a mathematical analysis of the problem under non-hydrostatic

conditions is required. Curious minds will find hints to answer these questions from

atmospheric literature, where impacts of background currents have been explored for

many years, for example, Grubǐsić and Stiperski (2009) or Doyle and Durran (2002).

For future work, it would be interesting to expand Thorpe (1992) and Thorpe

(1996) work on lee wave generated on a corrugated slope and verify its predictions

using a numerical model. Then, including sheared currents and assessing the impact

of the slope on lee wave propagation. Furthermore, it would be interesting to test

more realistic currents and bathymetry. The combination of a positively sheared

current underlying a zone of negative shear could be interesting as the wave will

gain energy until the shear becomes negative and might encounter a dissipative layer

within the negative shear. Zones of enhanced dissipation would likely be found in

these currents.

The impact of depth-varying current is significant on wave energy. It allows for

exchanges with the background flow and changes the vertical distribution of kinetic

energy and dissipation depending on the current type. This thesis shows that the

energy propagates away from the generation site, leading to interference between

waves. Energy dissipation is strongly affected by the presence of dissipative layers,

inertial oscillations, vertical modes, and wave interference, all of which can arise from
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sheared currents. Therefore, depth-varying currents should be taken into account

when developing a parameterization. However, further research is recommended to

generalize results from surface-intensified currents and the impact of wave reflection.
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Appendix A

Kinetic Energy Equation
Derivation

Here, we will derive the kinetic energy equation (eq. 2.21) presented in Chapter

2. We start with the 3D, non-hydrostatic, Boussinesq equation of motion, and the

continuity equation. The flow is separated in a background current oriented in the

x-direction U(z), the residual horizontally averaged current (RHAC), u = (u, v, w)

and the wave perturbations u′ = (u′, v′, w′). The total flow is written as:

ut = (u, v, w) = (U(z) + u+ u′, v + v, w + w). (A.1)

The momentum equations are :

∂

∂t
(U(z) + u+ u′) + ut · ∇(U(z) + u+ u′)− (v + v′)f

=
−1

ρ0

∂p

∂x
+ ν∇2(U(z) + u′ + u) (A.2)

∂

∂t
(v′ + v) + ut · ∇(v′ + v) + (U(z) + u+ u′)f

=
−1

ρ0

∂p

∂y
+ ν∇2(v′ + v) (A.3)

∂

∂t
(w′ + w) + ut · ∇(w′ + w) =

−1

ρ0

∂p

∂z
− ρg

ρ0
+ ν∇2(w′ + w) (A.4)

where f is the Coriolis parameter, p the pressure, and ν the molecular kinetic viscosity.

The above system of equation is multiplied by the background density, ρ0, and the

dot product is taken with the wave perturbation velocity to obtain the kinetic energy

equation:
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ρ0u
′
[︃
∂

∂t
(U(z) + u+ u′) + ut · ∇(U(z) + u+ u′)− (v + v′)f

=
−1

ρ0

∂p

∂x
+ ν∇2(U(z) + u′ + u)

]︃
(A.5)

ρ0v
′
[︃
∂

∂t
(v′ + v) + ut · ∇(v′ + v) + (U(z) + u+ u′)f

=
−1

ρ0

∂p

∂y
+ ν∇2(v′ + v)

]︃
(A.6)

ρ0w
′
[︃
∂

∂t
(w′) + ut · ∇(w′) =

−1

ρ0

∂p

∂z
− ρg

ρ0
+ ν∇2(w′)

]︃
(A.7)

To get the 2-D kinetic energy equation, the y-derivatives are neglected. The

equations are further simplified by assuming that w ≈ 0. Each term is expanded

and presented below.

A.1 Time Derivative

The time derivative term,

ρ0u
′ · ∂ut

∂t
, (A.8)

is expanded, and simplified by assuming that the background current is steady in

time:

ρ0u
′ · ∂ut

∂t
= ρ0

(︃
�
����

u′∂U(z)

∂t
+ u′∂u

′

∂t
+ u′∂u

∂t
+ v′

∂v′

∂t
+ w′∂v

∂t
+ w′∂w

′

∂z

)︃
.

By applying the chain rule to the time derivative of the wave perturbation, the

wave velocity can be brought inside the derivative. This yields the time derivative of

the wave kinetic energy (A.9a), where K = 1/2ρ0(u
′2 + v′2 +w′2). The RHAC terms

are joined together to form the time variability of the RHAC term (A.9b):

ρ0u
′ · ∂ut

∂t
=

∂

∂t

1

2
ρ0(u

′2 + v′2 + w′2) + ρ0u
′ ·
(︃
∂u

∂t
+

∂v

∂t

)︃
=

∂

∂t
K⏞⏟⏟⏞

A.9a

+ ρ0u
′ ·
(︃
∂u

∂t

)︃
⏞ ⏟⏟ ⏞

A.9b

. (A.9)
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A.2 Advection Term

The advection term from the momentum equations is

ρ0u
′ · (ut · ∇ut). (A.10)

First, we will expand ρ0u
′ · (ut · ∇ut) and the equation is simplified considering that

the background current is a fuction of z, U(z) = f(z), and that the RHAC present

no variability in the x-direction (∂u/∂x = 0)

ut · ∇ut =

u′ρ0

(︃
(U(z) + u+ u′)

∂(���U(z) + �u+ u′)

∂x
+ (w′)

∂(U(z) + u+ u′)

∂z

)︃
+v′ρ0

(︃
(U(z) + u+ u′)

∂(�v + v′)

∂x
+ (w′)

∂(v + v′)

∂z

)︃
+w′ρ0

(︃
(U(z) + u+ u′)

∂(w′)

∂x
+ (w′)

∂(w′)

∂z

)︃
. (A.11)

To ease physical interpretation, equation A.11 will be separated into three groups.

The first group contains terms that include the background current. The second

group contains expressions that include the RHAC. Lastly, the third group contains

terms comprised of the wave perturbations. The following sections present the

expansion of each group.

A.2.1 Background Current Terms

All the terms from equation A.11 that include the background current are collected:

ρ0u
′
(︃
U(z)

∂u′

∂x
+ w′dU(z)

dz

)︃
+ρ0v

′
(︃
U(z)

∂v′

∂x

)︃
+ρ0w

′
(︃
U(z)

∂w′

∂x

)︃
.

By applying the chain rule to the derivative of the wave velocity, we get the
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advection of kinetic energy from the background current,

ρ0

(︃
u′U(z)

∂u′

∂x
+ v′U(z)

∂v′

∂x
+ w′U(z)

∂w′

∂x

)︃
=

U(z)
∂

∂x
K. (A.12)

The remaining term is the shear production term,

ρ0u
′w′dU(z)

dz
. (A.13)

A.2.2 Residual Horizontally-Averaged Current terms

The RHAC term is:

ρ0

[︃
u′(u)

∂u′

∂x
+ u′(w′)

∂(u+ u′)

∂z

+v′(u)
∂v′

∂x
+ v′(w′)

∂(v + v′)

∂z

+w′(u)
∂w′

∂x
+ w′(w′)

∂(w′)

∂z

]︃
.

Similar to the advection of kinetic energy from the background current (eq. A.12),

the advection of the kinetic energy from the RHAC is obtained by applying the chain

rule to terms including the derivative of the wave perturbation:

ρ0

(︃
u′u

∂u′

∂x
+ v′u

∂v′

∂x
+ w′u

∂w′

∂x

)︃
=

u
∂K

∂x
. (A.14)

The shear production from the RHAC is comprised of the terms that include the

vertical derivative of the RHAC terms,

ρ0

(︃
u′w′∂u

∂z
+ v′w′∂v

∂z

)︃
=

ρ0w
′(u′ · ∂

∂z
u). (A.15)
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A.2.3 Turbulent Transport of Kinetic energy

Lastly, advections terms comprised of the wave velocity are group together to form

the turbulent transport of kinetic energy by applying the chain rule,

ρ0(u
′u′∂u

′

∂x
+ u′w′∂u

′

∂z
+ v′u′∂v

′

∂x
+ v′w′∂v

′

∂z
+ w′u′∂w

′

∂x
+ w′w′∂w

′

∂z
) =

ρ0(u
′1

2

∂u′2

∂x
+ w′1

2

∂u′2

∂z
+ u′1

2

∂v′2

∂x
+ w′1

2

∂v′2

∂z
+ u′1

2

∂w′2

∂x
+ w′1

2

∂w′2

∂z
) =

u′∂K

∂x
+ w′∂K

∂z
=

u′ · ∇K. (A.16)

A.3 Coriolis Terms

Terms that include the Coriolis parameter are collected from equations A.5 to A.7:

−ρ0(u
′(v + v′)f + v′(U(z) + u+ u′)f).

In the numerical model, the background current is imposed as a body force equal

to U(z)f in the y-direction momentum equation. This body force allows for a

geostrophic balance in a two-dimensional system. As for the terms including the

RHAC, it is assumed they are negligeable.

A.4 Transfer of Kinetic Energy to Potential

Energy

In the kinetic energy equation (eq. A.5 to A.7), the buoyancy term from the z-

direction momentum equation, (ρ′g)/ρ0, in eq. A.4, becomes the transfer of kinetic

energy to potential energy term, also referred to as the buoyancy production,

w′ρ0

(︃−ρ′g

ρ0

)︃
= −ρ′gw′. (A.17)
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A.5 Energy Flux Divergence

The energy flux divergence arise from the pressure term in the momentum equations.

The continuity equation (eq. 2.2) can be used to bring the velocity perturbation

inside the derivative:

− u′ · ∇p

=−∇ · (u′p). (A.18)

A.6 Dissipation term

To facilitate physical interpretation, the dissipative term from the energy equation,

i.e. νu′ · ∇2ut, is expanded and simplified assuming that the second derivative of

the background current and RHAC is small, i.e. ∇2U(z) ≈ 0 and ∇2u ≈ 0:

ρ0νu
′ · ∇2u′ =

ρ0ν

[︃
u′ ∂

∂x

∂

∂x
u′ + u′ ∂

∂z

∂

∂z
u′ + v′

∂

∂x

∂

∂x
v′ + v′

∂

∂z

∂

∂z
v′ + w′ ∂

∂x

∂

∂x
w′ + w′ ∂

∂z

∂

∂z
w′
]︃
.

Then the chain rule is applied to each term to form the viscous diffusion of the
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kinetic energy (A.19a) and the dissipation of the kinetic energy (A.19b):

ρ0νu
′ · ∇2u′ =

=ρ0ν

[︄
∂

∂x

(︃
u′∂u

′

∂x

)︃
−

(︃
∂u′

∂x

)︃2

+
∂

∂z

(︃
u′∂u

′

∂z

)︃
−
(︃
∂u′

∂z

)︃2

+
∂

∂x

(︃
v′
∂v′

∂x

)︃
−

(︃
∂v′

∂x

)︃2

+
∂

∂z

(︃
v′
∂v′

∂z

)︃
−
(︃
∂v′

∂z

)︃2

+
∂

∂x

(︃
w′∂w

′

∂x

)︃
−

(︃
∂w′

∂x

)︃2

+
∂

∂z

(︃
w′∂w

′

∂z

)︃
−
(︃
∂w′

∂z

)︃2
]︄

=ρ0ν

[︄
∂

∂x

(︃
∂

∂x

1

2
u′2

)︃
+

∂

∂z

(︃
∂

∂z

1

2
u′2

)︃
−
(︃
∂u′

∂x

)︃2

−
(︃
∂u′

∂z

)︃2

+
∂

∂x

(︃
∂

∂x

1

2
v′2

)︃
+

∂

∂z

(︃
∂

∂z

1

2
v′2

)︃
−
(︃
∂v′

∂x

)︃2

−
(︃
∂v′

∂z

)︃2

+
∂

∂x

(︃
∂

∂x

1

2
w′2

)︃
+

∂

∂z

(︃
∂

∂z

1

2
w′2

)︃
−

(︃
∂w′

∂x

)︃2

−
(︃
∂w′

∂z

)︃2
]︄

=ρ0ν

[︃
∂2

∂x2

(︃
1

2
(u′2 + v′2 + w′2)

)︃
+

∂2

∂z2

(︃
1

2
(u′2 + v′2 + w′2)

)︃
−(∇u′)2 − (∇v′)2 − (∇w′)2

]︁
=ν

[︃
∂2

∂x2
(K) +

∂2

∂z2
(K)− ρ0(∇u′)2

]︃
= ν∇2 (K)⏞ ⏟⏟ ⏞

A.19a

− νρ0(∇u′)2⏞ ⏟⏟ ⏞
A.19b

. (A.19)

Note that the energy disispation (A.19b) is a positive definite quantity multiplied

by -1, thus an energy sink.
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A.7 The Kinetic Energy Equation

The full 3-D kinetic equation can be rewrite using the different expression presented

above as

∂

∂t
K⏞⏟⏟⏞
1

+ ρ0u
′ ·
(︃

∂

∂t
u

)︃
⏞ ⏟⏟ ⏞

2

= −U(z)
∂K

∂x⏞ ⏟⏟ ⏞
3

−u · ∇K⏞ ⏟⏟ ⏞
4

−u′∇K⏞ ⏟⏟ ⏞
5

− ρ0u
′w′dU(z)

dz⏞ ⏟⏟ ⏞
6

(A.20)

−ρ0w
′
(︃
u′ · ∂u

∂z

)︃
⏞ ⏟⏟ ⏞

7

−w′ρg⏞⏟⏟⏞
8

−∇(u′p)⏞ ⏟⏟ ⏞
9

+ ν∇2 (K)⏞ ⏟⏟ ⏞
10

− νρ0(∇u′)2⏞ ⏟⏟ ⏞
11

, (A.21)

where the different terms are:

1. Time derivative of K;

2. Time dependency of RHAC;

3. Advection of K from background current;

4. Advection of K from RHAC;

5. Advection of K from wave velocities;

6. Shear production from the background current;

7. Shear production from the RHAC;

8. Energy transfer from K to available potential energy (buoyancy production);

9. Pressure work;

10. Viscous diffusion of K;

11. Viscous dissipation of K.
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Appendix B

Detailed Simulation Set Up and
Parameters

The numerical model set up is presented below for each simulation group, the BIC,

SIC and Line W simulations.

B.1 Bottom-Intensified Simulations

The simulation set up for the BIC simulations (Chapter 3) is:

1. Bathymetry: Idealized sinusoidal

2. Stratification: Constant;

3. Shear: Linear;

4. Current profile: U(z) = −5× 10−5z + 0.05 (m/s);

5. Bottom current velocity: Ub = 0.2 m/s;

6. Topographic height: h0 = 50 m;

7. Boundary condition: free-slip condition;

8. Equation type: hydrostatic equations;

9. Boundary conditions: Free surface, horizontally periodic.

The following table present in details the parameters used for each simulation.

80



Table B.1: Bottom intensified simulation resolution and parameters

Horizontal
resolution

Vertical res-
olution

Time
step

CFL condition Horizontal
eddy
kinetic
viscosity

Vertical
eddy
kinetic
viscosity

Horizontal
eddy
diffusivity

Vertical
eddy
diffusivity

∆x ∆z ∆t - νh νv κh κh
m m s - m2/s m2/s m2/s m2/s

BIC1.4km 50 10 2 0.008 5× 10−2 5× 10−4 5× 10−2 5× 10−4

BIC3km 50 10 2 0.008 5× 10−2 5× 10−4 5× 10−2 5× 10−4

BIC5km 50 10 2 0.008 5× 10−2 5× 10−4 5× 10−2 5× 10−4

BNS5km 50 10 2 0.008 5× 10−2 5× 10−4 5× 10−2 5× 10−4

BIC7km 50 10 2 0.008 5× 10−2 5× 10−4 5× 10−2 5× 10−4

BIC13km 200 10 10 0.01 5× 10−2 5× 10−4 5× 10−2 5× 10−4

BIC32km 200 10 10 0.01 5× 10−2 5× 10−4 5× 10−2 5× 10−4

BIC56km 200 10 10 0.01 5× 10−2 5× 10−4 5× 10−2 5× 10−4

BIC72km 200 10 10 0.01 5× 10−2 5× 10−4 5× 10−2 5× 10−4

BNS72km 200 10 10 0.01 5× 10−2 5× 10−4 5× 10−2 5× 10−4
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B.2 Surface-Intensified Simulations

The simulation set up for the SIC simulations (Chapter 4) is:

1. Bathymetry: Idealized sinusoidal

2. Stratification: Constant;

3. Shear: Linear;

4. Current profile: U(z) = 2.6× 10−5z + 1 (m/s);

5. Bottom current velocity: Ub = 0.2 m/s;

6. Topographic height: h0 = 50 m;

7. Boundary condition: free-slip condition;

8. Equation type: non-hydrostatic equations;

9. Boundary conditions: Free surface, horizontally periodic.
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Table B.2: Surface intensified simulation resolution and parameters

Horizontal
resolution

Vertical res-
olution

Time
step

CFL condition Horizontal
eddy vis-
cosity

Vertical
eddy
kinetic
viscosity

Horizontal
eddy
diffusivity

Vertical
eddy
diffusivity

∆x ∆z ∆t - νh νv κh κh
m m s - m2/s m2/s m2/s m2/s

SIC1.4km 50 10 2 0.008 5× 10−2 5× 10−4 5× 10−2 5× 10−4

SIC3km 50 10 2 0.008 5× 10−2 5× 10−4 5× 10−2 5× 10−4

SIC5km 50 10 2 0.008 5× 10−2 5× 10−4 5× 10−2 5× 10−4

SNS5km 50 10 2 0.008 5× 10−2 5× 10−4 5× 10−2 5× 10−4

SIC7km 50 10 2 0.008 5× 10−2 5× 10−4 5× 10−2 5× 10−4

SIC13km 200 10 10 0.01 5× 10−2 5× 10−4 5× 10−2 5× 10−4

SIC32km 200 10 10 0.01 5× 10−2 5× 10−4 5× 10−2 5× 10−4

SIC56km 200 10 10 0.01 5× 10−2 5× 10−4 5× 10−2 5× 10−4

SIC72km 200 10 10 0.01 5× 10−2 5× 10−4 5× 10−2 5× 10−4

SNS72km 200 10 10 0.01 5× 10−2 5× 10−4 5× 10−2 5× 10−4
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Appendix C

SIC: Shear production spectra

Below are the spectra for simulations SIC1.4km to SIC72km. The spectra are

calculated at each point of the integration domain and averaged together. The

number of spectra ranges from 14000 to 180000. The mean has been remove before

performing the spectral analysis. The spectra are calculated over the analysis time.
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure C.0: Background shear production spectra. All simulations show similar patterns
with three dominant frequencies. The vertical grey dashed line represent the wave generation
first harmonic, 2Ωb. The reflective period is marked by the dashed, black line and the wave
generation frequency is marked by the dotted grey line.
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