
LATERAL GENE TRANSFER DETECTION USING MULTIPLE
AGREEMENT FORESTS

by

Kartik Kakadiya

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

July 2023

c⃝ Copyright by Kartik Kakadiya, 2023



To my family, the constant source of love and support that has fueled

my academic pursuit. This thesis is dedicated to you, for your

unwavering belief in my abilities and the sacrifices you have made.

Your presence in my life has been my greatest motivation.

Thank you.

ii



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Preliminaries and Related Work . . . . . . . . . . . . . . 8

2.1 Phylogenetic Trees and Agreement Forests . . . . . . . . . . . . . . . 8

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 3 Multifurcating LGT and Obligate LGT . . . . . . . . . . 16

3.1 LGT mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.1 Move Parent Node (MP) . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Move Parent with Maintain List (MPML) . . . . . . . . . . . 17
3.1.3 Move Individual Node (MI) . . . . . . . . . . . . . . . . . . . 18

3.2 Obligate LGT tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Naive approach . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Better approach . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 100% OLGT approach . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Handling Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 LGT Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.1 Enterobacteriaceae dataset results . . . . . . . . . . . . . . . . 30
4.1.2 Enterococcaceae dataset results . . . . . . . . . . . . . . . . . 33

4.2 Obligate LGT tracing results . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Better approach OLGT results . . . . . . . . . . . . . . . . . . 37
4.2.2 100% OLGT results . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.3 Clustering results . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iii



Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iv



List of Tables

1.1 Non-binary LGT tracing datasets . . . . . . . . . . . . . . . . . 4

1.2 Obligate LGT tracing datasets . . . . . . . . . . . . . . . . . . 5

1.3 Clustering dataset . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Move Parent Node method . . . . . . . . . . . . . . . . . . . . 17

3.2 Move Parent with Maintain List method . . . . . . . . . . . . . 17

3.3 Move Individual Node method . . . . . . . . . . . . . . . . . . 19

4.1 Better approach OLGT results . . . . . . . . . . . . . . . . . . 38

4.2 Clustering OLGT results . . . . . . . . . . . . . . . . . . . . . 41

v



List of Figures

2.1 For phylogenetic trees T1 and T2, (a, b) is a trivial sibling pair
since it is present in both trees; (d, e) is a sibling pair in T1 and
(c, e) is a sibling pair in T2. . . . . . . . . . . . . . . . . . . . . 8

2.2 For phylogenetic tree T and leaf subset W = {a, d}, T (W ) is
minimal subtree of T with leaf set W and T |W is tree generated
after applying forced contraction on T (W ). . . . . . . . . . . . 9

2.3 All MAFs of two phylogenetic trees (T1, T2). . . . . . . . . . . 11

2.4 A rSPR operation on the tree, T . . . . . . . . . . . . . . . . . 13

3.1 An example of non-binary LGT tracing. . . . . . . . . . . . . 18

3.2 An example of a tree pair over-counting OLGTs. . . . . . . . . 24

3.3 Two rooted binary phylogenetic trees T1 and T2 with cluster
points x1 and x2 respectively. . . . . . . . . . . . . . . . . . . 26

4.1 Relationship between the gene tree size and the rSPR distance
to the reference tree for 5 distinct required support values (En-
terobacteriaceae dataset). . . . . . . . . . . . . . . . . . . . . . 30

4.2 Heatmaps showing the Move parent node LGT count and the
Move individual node LGT count compared to actual rSPR
distance between the reference tree and a set of gene trees (En-
terobacteriaceae dataset). . . . . . . . . . . . . . . . . . . . . . 31

4.3 Average running time (log) required to trace LGT using the
Move parent node and the Move individual node methods with
5 distinct required support values (Enterobacteriaceae dataset). 32

4.4 Relationship between the gene tree size and the rSPR distance
to the reference tree for 5 distinct required support values (En-
terococcaceae dataset). . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Heatmaps showing the Move parent node LGT count and Move
individual node LGT count compared to actual rSPR distance
between the reference tree and a set of gene trees (Enterococ-
caceae dataset). . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vi



4.6 Average running time (log) required to trace LGT using the
Move parent node and the Move individual node methods with
5 distinct required support values (Enterococcaceae dataset). . 36

4.7 Distribution of trees, showing what percentage of the total
transfers are obligate for all possible binary tree pairs with 4 to
7 leaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.8 Distribution of trees showing how tree structure affects the
number of OLGT between tree pairs. . . . . . . . . . . . . . . 40

4.9 Running time comparison for tree pairs of enumerating MAFs
with clustering (also gluing) and without clustering. . . . . . . 41

vii



Abstract

Phylogenetic trees are used to illustrate evolutionary relationships between and among

species. However, lateral gene transfers (LGTs) can cause different evolutionary his-

tories for genes compared to the species. One method to identify possible LGT scenar-

ios uses mathematical models called maximum agreement forests (MAFs). Previous

MAF-based models require vast sequence data and cannot identify specific trans-

fers, such as antibiotic resistance origins. This study extends single MAF analysis

to identify particular LGT using several MAFs, focusing on transfers found in all

MAFs of two phylogenetic trees, called obligate transfers. We present a method for

enumerating all MAFs using modified branching rules and cluster reduction along

with a method for identifying obligate transfers without enumerating all MAFs. Our

findings through experiments suggest listing all MAFs is feasible for identifying obli-

gate transfers. Furthermore, we propose methods for tracing the LGT endpoints for

non-binary reference trees to improve running time by performing non-binary LGT

analysis.

The MAF-based method for identifying obligate transfers can also be used to find

x% common LGTs, in other words, transfers present in x% of total MAFs. We present

the results we achieved by applying these methods to a dataset constructed for 244

bacterial taxas and another dataset comprising 144 bacterial and archaeal genomes.

Our findings imply that listing all MAFs for identifying obligate transfers is a practical

approach. However, we should reduce the time required to enumerate all potential

MAFs in order to make the method plausible for large datasets. We employed non-

binary LGT tracing techniques on a dataset containing a set of 20 genomes each of

five species within the family Enterobacteriaceae, and the Enterococcaceae dataset

of 102 genomes. We show that since our techniques were successful in locating the

sources and destinations, performing non-binary LGT analysis to reduce execution

time is feasible.
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Chapter 1

Introduction

In evolutionary biology, phylogenetic trees play an important role because they serve

as the standard model for investigating and visualizing the evolutionary relationships

among a group of species such as bacteria based on different physical and genetic

traits such as DNA sequences [23]. Continuity of genetic traits throughout lineages

of phylogenetic trees occurs through vertical inheritance, which involves the trans-

mission of genetic information from parent species to their children. The evolution

and diversification of species are the result of changes in genetic information through

gene transmission or other external factors, called mutation. These mutations lead

to the emergence of new species over an extended period of time.

Additionally, due to reticulate evolutionary events such as lateral gene transfer,

recombination, hybridization, and incomplete lineage sorting, the evolutionary his-

tories of individual genes may vary from the overall history of species [17]. In this

thesis, we focus on lateral gene transfer (LGT), which is a process in which genes

get transferred between distantly related organisms. Although primarily impacting

prokaryotes, eukaryotes including plants and animals have been shown to be impacted

by lateral gene transfers [27]. Therefore, it is important to detect these LGT events

because these events make it difficult to study the vertical evolution of species and

because they can contribute to the emergence of disease-causing pathogens [33] and

antibiotic resistance traits [37].

To study and infer LGT events, a wide range of computational methods are used

in combination with genomic patterns. Genes obtained through LGTs might have

a different proportion of guanine (G) and cytosine (C) nucleotides in DNA or RNA

sequences than the recipient genome. Therefore, the GC content method evaluates

the proportion of guanine and cytosine across the genome to determine the pres-

ence of laterally transferred genes. Genomic G+C concentration varies significantly

among early-branching prokaryotic and eukaryotic species, suggesting that a variety

1
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of evolutionary processes were followed [16]. As per the sequence similarity method,

an uncharacteristically high degree of similarity between DNA sequences of species

located far apart in the tree can be used to identify LGTs.

Phylogenetic trees are often visualized as graphs and some graph theory algorithms

are employed to recognize the LGTs. Rooted trees represent the evolution of taxa

from an implied common ancestor, whereas unrooted trees are commonly represented

as graphs with every non-leaf node having degree more than or equal to three [42].

Comparing individual gene trees to a reference “species tree” and reconciling the

trees using a computation model called subtree prune and regraft (SPR) is one of

the methods for recognizing lateral gene transfers [21]. Finding maximum agreement

forests (MAFs) is one of the methods used for computing SPR distance for rooted

trees [1]. A collection of disjoint subtrees obtained by removing some set of edges from

a phylogenetic tree is called its forest. An agreement forest (AF) of two phylogenies

is a forest that can be obtained from both of them by removing a specific set of

edges. An agreement forest with the minimum number of subtrees is referred to as

a maximum agreement forest. While MAF-based algorithms can compute the SPR

distance for rooted trees efficiently, no MAF formulation exists for the unrooted trees

[42]. However, MAFs can be used to calculate TBR distance for unrooted phylogenetic

trees [1]. In this work, we employ methods for computing SPR distance that primarily

rely on finding MAFs for rooted phylogenetic trees. Therefore, the aforementioned

SPR technique can be referred to as rooted subtree prune and regraft (rSPR).

Another graph-based method used for LGT analysis depends on constructing su-

pertrees from a collection of gene trees. Supertrees are generated by reconciling

numerous smaller, overlapping phylogenetic trees into a single structure, and the first

phylogeny of nearly all extant mammals, among other large-scale phylogenies, have

been represented using them [3]. Supertrees are a powerful technique for creating

comprehensive phylogenies of groups having hundreds of species because they may

indirectly combine multiple forms of phylogenetic information in a single tree [4].

Supertrees were used to perform phylogenetic analysis on 220,240 proteins from 144

sequenced prokaryotic genomes in [2]. The first supertree construction algorithm

based on SPR distance was presented and used to create a supertree from more than

40 thousand gene trees in [44].
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Often, it is difficult to generate strictly bifurcating phylogenetic trees in order to

use the aforementioned methods. Multifurcation refers to non-leaf vertices of phyloge-

netic trees having more than two children. A hard multifurcation is when more than

two offspring species simultaneously diverge from an ancestral species; in contrast, a

soft multifurcation is when there is ambiguity about the evolutionary relationships

between the distinct species due to a lack of information [28]. We typically assume

that all multifurcations in a phylogenetic tree are soft because simultaneous diver-

gence events are extremely rare [15, 19]. In phylogenetic trees, the support value of

an internal node indicates the degree of confidence or evidence supporting the bipar-

tition at that particular node. It describes how strong or well-supported the inferred

relationship is based on the information at hand and the methods used to build the

tree. The support value can be defined in several ways with different interpretations.

For example, the bootstrap support [14] of a given bifurcation is the proportion of

trees, constructed by resampling the original sequence alignment dataset multiple

times, that contains the bifurcation. The value of support ranges between 0 and 1.

The value 1 indicates that we are fully assured about the bifurcation at that node.

On the other hand, a 0 support value indicates that we do not have any evidence to

support the bifurcation at that node. While executing our proposed algorithms, we

use the required support threshold to help us avoid the identification of non-existent

gene transfers.

When multifurcating trees are forced to resolve into binary trees, evolutionary

relationships that are not supported by the original data are inferred, and it is possible

that meaningless reticulation events are also inferred [41]. This motivates developing

LGT analysis algorithms capable of operating on multifurcating trees. Whidden et

al. [41] presented an O(2.42k · n) algorithm capable of handling multifurcating trees

and was implemented by Lee [25]. Considering soft multifurcation, when dealing with

non-binary reference trees, different binary resolutions of the reference tree might be

possible for different gene trees. Consequently, it becomes challenging to pinpoint

the origins and destinations of LGT events in the reference tree, especially when an

LGT event involves a few children of a multifurcating node in the reference tree or

when a destination is only a small number of children of a multifurcating node in

the reference tree. To address the aforementioned problem, we present techniques
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for mapping lateral gene transfers involving multifurcating nodes in section 3.1. We

also mention the advantages and drawbacks of each method to help in selecting the

appropriate method based on requirements. We also employ these methods on the

Enterobacteriaceae dataset [18, 24] and the Enterococcaceae dataset [5, 24] and present

the results we obtained in section 4.1. Table 1.1 presents information about both the

datasets used for experiments.

Table 1.1: Non-binary LGT tracing datasets

Name Taxa (count) Description
Enterobacteriaceae
dataset

Citrobacter freundii (20)
Enterobacter cloacae (20)
Escherichia coli (20)
Klebsiella oxytoca (20)
Salmonella enterica (20)

A 100-taxon non-binary
reference tree dataset of
Gram-negative bacteria.

Enterococcaceae
dataset

Enterococcus faecium (100)
Enterococcus faecalis (1)
Enterococcus hirae (1)

A 102-taxon non-binary
reference tree dataset of
Gram-positive bacteria.

The emphasis of these MAF-based techniques for LGT tracing, however, has been

on tracing all possible LGT scenarios based on a single MAF of a tree pair for a set of

phylogenetic trees [40, 44, 35]. As a result, focusing on particular LGT occurrences,

such as the transmission of antibiotic resistance between two phylogenetic trees, has

not received much attention. Dempsey [12] formulated the core MAF problem that is

related and centered on identifying the edge set present in all MAFs. In contrast, in

this work, we concentrate on the edge set not present in any MAFs or, equivalently,

on the transfers present in all MAFs to focus on transfers involving a specific gene

of our interest, particularly antibiotic resistance genes. We define it as an obligate

lateral gene transfer (OLGT) if a lateral gene transfer event occurs in all potential

maximum agreement forests between a pair of trees. If the transfer event occurs in x%

of all MAFs, it can be referred to as x% common transfer. This is possible because

there can be multiple minimum LGT reconciliation scenarios based on each MAF.

Therefore, it is essential to aggregate information from all of them as a method to

study LGT.

Jordan Dempsey (personal communication, January 2023) suggested applying an

optimization technique called edge protection [39, 12], to quickly identify OLGTs.

The algorithms described in [43, 40] traverse through the edges of the phylogenetic
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trees while attempting to cut them to obtain an MAF. Edge protection safeguards

previously visited edges to prevent getting the same solution through different paths of

tree traversal. However, this technique can only be used to identify obligate transfers

and is unable to recognize 90% or 95% common transfers. Therefore, it is necessary to

identify all potential maximum agreement forests in order to identify the x% common

transfer between a reference tree and a gene tree. We first describe a basic approach

to list all possible MAFs between a pair of trees in section 3.2.1.

Computing rSPR distance or obtaining an MAF for a pair of phylogenetic trees

are NP-hard problems [8, 22, 11]. For example, our naive approach in section 3.2.1

has O(3k · n) running time complexity. As a result, several improvements have been

made to improve the running time by refraining from enumerating all possible MAFs

[40, 39]. Contrarily, as we focused on listing every possible MAF, we needed to figure

out which optimizations were still applicable. Therefore, an improved approach with

applicable optimizations is presented in section 3.2.2 to identify all possible MAFs.

We used this algorithm to extract all MAFs from the Aquificae dataset [44], and the

results are shown in section 4.2.1. We also present the implementation of the approach

Table 1.2: Obligate LGT tracing datasets

Name Taxa (count) Description
Aquificae dataset Alphaproteobacteria (15)

Betaproteobacteria (15)
Deltaproteobacteria (15)
Epsilonproteobacteria (14)
Gammaproteobacteria (13)
Bacilli (40)
Clostridia (34)
Actinobacteria (74)
Deferribacteres (2)
Thermotogae (11)
Aquificae (7)
Nitrospira (2)
Synergistetes (2)

A 244-taxon binary
reference tree dataset for
tracing obligate LGT via
enumerating all MAFs.

Tanglegrams dataset - All possible small 4-7
leaf tree structures
dataset for tracing
obligate LGT via edge
protection.
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based on the edge protection technique and the subsequent improvements in section

3.2.3 along with the results from applying it to all pairs of small 4-7 leaf trees that

are different when relabeled, called tanglegrams [29], in section 4.2.2. Information on

the datasets used for the experiments involving obligate LGT tracing is provided in

Table 1.2.

The processing of phylogenetic trees using clusters is one of the improvements

because it breaks them down into manageable smaller subtrees and reduces the ex-

perimental running time [26]. The identification of MAFs [39] and the construction

of supertrees [44] both used the cluster reduction technique. Therefore, cluster re-

duction is also necessary to reduce the time it takes to enumerate all MAFs between

two trees. Dempsey [12] mentioned that we can merge the MAFs from each individ-

ual cluster to obtain an overall MAF. For the purpose of obtaining all global MAFs,

we present an algorithm for gluing together MAFs of separate clusters in section

3.3. We applied the clustering and gluing technique for enumerating MAFs to the

144 prokaryotic genomes dataset [2] and the outcomes are presented in section 4.2.3.

Table 1.3 contains information about various taxas of the 144 prokaryotic genomes

dataset.

Table 1.3: Clustering dataset

Name Taxa (count) Description
144 prokaryotic
genomes dataset

Crenarchaeota (4)
Euryarchaeota (12)
Nanoarchaeota (1)
Aquificales (1)
Bacteroidetes (2)
Chlamydiales (7)
Chlorobi (1)
Cyanobacteria (8)
High G+C Firmicutes (12)
Low G+C Firmicutes (34)
Planctomycetes (1)
Proteobacteria (56)
Spirochaetales (3)
Thermotogales (1)
Thermus/Deinococcus (1)

A 144 genomes binary
reference tree and binary
gene trees dataset for
enumerating all MAFs
with clustering and
gluing.

This thesis presents the first work on summarizing information contained in mul-

tiple MAFs. For example, evaluating a reference tree compared to multiple gene trees
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or evaluating multiple MAFs of a pair of trees. We do not propose these methods for

actually converting one tree into the other, but rather for aggregating information for

objectives like evaluating highways of gene transfer [2]. To accomplish that, we list

every possible MAF between two phylogenetic trees. To reduce overall time complex-

ity, we apply some optimizations and improve branching scenarios. Additionally, we

used clustering and gluing techniques to reduce the experiment’s running time. Clus-

tering and gluing work with binary phylogenetic trees, and we intend to extend them

to non-binary trees in the future. The results we obtained on the 144 prokaryotic

genomes dataset and the Aquificae dataset indicate that we were able to significantly

reduce the running time compared to the naive approach. The first study on tracing

the sources and destinations of LGTs involving non-binary nodes is also presented

in this thesis. We can apply multifurcating LGT algorithms with a higher required

support threshold in addition to our techniques in order to reduce the running time

significantly.



Chapter 2

Preliminaries and Related Work

2.1 Phylogenetic Trees and Agreement Forests

Throughout this paper, we mostly use the definitions and notation from [26, 39, 41,

42, 12]. A phylogenetic X-tree T (X) can be described as a tree whose leaves are

bijectively labeled with members of the label set X. The leaf set of the phylogenetic

tree T (X) can be denoted as L(T ). The phylogenetic tree T (X) is referred to as a

rooted phylogenetic tree if it has a certain root node ρ; otherwise, it is known as an

unrooted phylogenetic tree. A rooted binary phylogenetic tree is a rooted phylogenetic

tree T in which each internal node has exactly two children. If some internal nodes

contain more than two children, it is called rooted multifurcating phylogenetic tree,

which can be denoted as Tm. As described in the Introduction, we assume that

Figure 2.1: For phylogenetic trees T1 and T2, (a, b) is a trivial sibling pair since it is
present in both trees; (d, e) is a sibling pair in T1 and (c, e) is a sibling pair in T2.

8
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multifurcations are soft and we can resolve them to construct fully binary trees. The

term “non-binary trees” can also be used to describe multifurcating trees. The root

node of these trees ρ is considered to be part of the label set X. These phylogenetic

trees can be represented as T = (V,E) where V is the vertex set and E is the edge

set.

For any node u, we can say that u is a descendant of some node v if and only if v

is on the path from u to the root of the tree. In this case, we can say v is an ancestor

node of u. A node’s depth is the number of its ancestors. The total number of nodes

in a tree is referred to as its tree size. For a phylogenetic tree T , if there exists a pair

of leaves (a, c) such that a and c have a common parent node, then (a, c) is called

a sibling pair or a cherry. If that sibling pair exists for a pair of trees (T1, T2), it is

called a trivial sibling pair or a trivial cherry of (T1, T2). Figure 2.1 shows a trivial

sibling pair and a couple of non-trivial sibling pairs for (T1, T2).

To define and find agreement forests we use an operation that cuts some edges of

the phylogenetic trees in order to achieve maximum consensus. For a phylogenetic

tree T , we can cut any edge e = (u, v) ∈ E, where u and v are the vertices, and

this operation can be denoted as T − {e}. Performing edge cuts may result in some

Figure 2.2: For phylogenetic tree T and leaf subset W = {a, d}, T (W ) is minimal sub-
tree of T with leaf set W and T |W is tree generated after applying forced contraction
on T (W ).
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internal nodes being left with only one child. If there exists an internal node v that

has only one child u, then we can remove v from the tree along with its incident

edges to its parent w and u, and connect the nodes u and w with a new edge (u,w).

This operation is called forced contraction of node v. For a set W ⊆ L(T ), the

minimal subtree of T that contains all elements of W can be denoted T (W ). The

tree generated after applying all forced contractions to T (W ) can be denoted as T |W .

Figure 2.2 shows a tree generated after applying forced contraction.

For a phylogenetic tree T = (V,E) and an edge set E ′ ⊆ E, a collection of subtrees,

also known as components, obtained by T −E ′ is called a forest F of T . Suppose, we

have a pair of rooted binary phylogenetic trees T1 and T2 with L(T1) = L(T2) = L(T )
as their leaf set. An agreement forest (AF) of these two trees can be described as a

set of binary trees F = {t1, t2, ..., tk}, where Lj := L(Tj) for j ∈ {1, 2, ..., k}, such
that the following conditions are satisfied:

1. L1,L2, ...,Lk partitions L(T ),

2. tj = T1|Lj
= T2|Lj

for all j ∈ {1, 2, ..., k},

3. For both i = 1 and i = 2 we have that {Ti(Lj) : j = 1, 2, ..., k} are edge-disjoint
subtrees of Ti [1].

Let Tm
1 and Tm

2 be two rooted multifurcating phylogenetic trees and let T1 and

T2 be one of the binary refinements of Tm
1 and Tm

2 , then an agreement forest F of

T1 and T2 can also be regarded as an agreement forest of Tm
1 and Tm

2 . An agreement

forest with the minimum number of components possible is called maximum agree-

ment forest (MAF). There can be multiple possible maximum agreement forests for

a pair of phylogenetic trees. All maximum agreement forests possible for two rooted

phylogenetic trees T1 and T2 are shown in Figure 2.3.

If there is a component ti with no incident edges in a forest F , it is referred to be

a singleton. We remove the parent edge of a leaf node to make it a singleton in the

forest F . For example, nodes a and e of the MAF F1 in Figure 2.3 are considered as

singletons. To contract a sibling pair (a, c) in forest F , we remove a and c from the

forest and relabel the parent node of the sibling pair with (a, c). If the parent node

of a subtree B in forest F lies on the path from node a to c, it is called a pendant

subtree of the pair (a, c).
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Figure 2.3: All MAFs of two phylogenetic trees (T1, T2). Component with node e is
present in all the MAFs, therefore there is an obligate lateral gene transfer.
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For some rooted tree T , a rooted subtree prune and regraft (rSPR) operation

involves cutting some edge (u, v), where v is the parent of u. It would result in two

subtrees of T , namely Tu and Tv. It then attaches the subtree Tu to a newly created

internal node v
′
between edge (x, y), where y is the parent of x. This would result in

adding two new edges (v
′
, y) and (x, v

′
) along with removing edge (x, y) from the edge

set E. Finally, we contract the node v since it would have been left with only one

child. This operation is illustrated in Figure 2.4. When dealing with multifurcating

trees, if node v still contains more than one child, it should not be contracted. For

two phylogenetic trees T1 and T2 with leaf set L(T1) = L(T2), the minimum number

of rSPR operations required to transform T1 into T2 is called their rSPR distance,

drSPR(T1, T2). The rSPR distance of the rooted phylogenetic trees (T1, T2) is one less

than the number of components in an MAF. Therefore, for an MAF F of (T1, T2),

drSPR(T1, T2) = |F| − 1 [8, 43].

Finally, we can formalize the concept of obligate lateral gene transfers. For a pair

of phylogenetic trees (T1, T2) with their leaf set L(T1) = L(T2), let there exist an edge

ei = (xi, yi) ∈ Ei, where yi is parent of xi, with the leaf set below ei be Ll(Ti) and

the leaf set above ei be Lu(Ti) and let node xi have ki child nodes with leaf set below

them be {Ll
0(Ti),Ll

1(Ti), ...,Ll
ki−1(Ti)} for i ∈ {1, 2}. The edge ei is a transfer edge

in an MAF F of (T1, T2), if and only if the following criteria are satisfied:

1. There does not exist a component of F that has some leaves of both Ll(Ti) and

Lu(Ti),

2. There exists a component of F that has some leaves of Ll
m(Ti) and Ll

n(Ti),

where m ̸= n and 0 ≤ m,n < ki.

If the edge ei is a transfer edge in all possible MAFs of (T1, T2), then it can be

referred to as an obligate lateral gene transfer edge of (T1, T2). Similarly, x% common

transfers can be defined with a slight change in the definition above, where the transfer

edge must be present in at least x% of all MAFs. In Figure 2.3, we have shown all

possible MAFs for two rooted phylogenetic trees T1 and T2. In that, we can see that

each MAF has node e as a separate component. Therefore, it can be concluded that

it is an obligate lateral gene transfer, and the parent edge of node e can be considered

as an OLGT edge. Similarly, MAFs F1, F2, and F3 each have an additional separate
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Figure 2.4: A rSPR operation on the tree, T . Prune operation creates trees Tu and
Tv. Regraft operation generates the resulting tree T ′.

component a, c, and b, respectively. Due to their presence in only one of the three

MAFs, they are all 33.33% common transfers.

In phylogenetics, the Sackin index is a metric used to assess the balance of a
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phylogenetic tree. Using the Sackin index, we analyzed the impact of tree structures

on the number of obligate transfers between tree pairs. The depths of all the leaves

in the phylogenetic tree are added together in this metric. In comparison to a left- or

right-aligned tree, a more balanced tree has a lower Sackin index. For trees T1 and T2

presented in Figure 2.3, their Sackin indexes are 16 and 18 respectively. Therefore, we

can assume that the tree T1 is more balanced than T2. The combined average Sackin

index can be calculated by dividing the total Sackin index of a set of phylogenetic

trees by their average leaf count.

Understanding the algorithmic complexity in this work would benefit greatly from

the understanding of a couple more notions of algorithmic complexity. A given prob-

lem is fixed-parameter tractable (FPT) if it can be solved in O(f(k) · nc), where n is

the input size, c is a constant, and k is a fixed parameter value passed to the algo-

rithm along with input [13]. On the other hand, a k-approximation algorithm solves

a problem by producing a solution that is within a factor k of the optimal solution

[38].

2.2 Related Work

In recent years, graph theory-based techniques have received a lot of attention for

calculating rSPR distance and tracing lateral gene transfers. According to Bordewich

and Semple [8], calculating the rSPR distance between two rooted binary phylogenetic

trees is an NP-hard problem and it is fixed-parameter tractable in their rSPR distance.

Hickey et al. [22] identified that calculating SPR distance is NP-hard for unrooted

trees too. Collins [11] extended the FPT algorithm of the minimum rSPR distance

via MAFs for non-binary trees.

There exist a few approximation algorithms, such as the 3-approximation algo-

rithm put forth by Hein et al. [21] along with its NP-hardness proof. He claimed

that maximum agreement forests (MAFs) are useful for calculating SPR distances

for rooted trees. Allen and Steel [1] drew attention to the fact that the proof of the

aforementioned claim of [21] is incorrect. Bordewich and Semple [8] corrected the

claim by including the root of the trees ρ in the label set X. Bonet et al. [6] pre-

sented the first correct 5-approximation algorithm based on the flaws of [21] and [31].

He proved that the claims of 3-approximation algorithms of both [21] and [31] are
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incorrect. Bordewich et al. [7] were able to reduce the approximation ratio of 5 to 3

at the cost of an increased running time of O(n5). The running time was significantly

improved by Rodrigues et al. [32] to O(n2). Later, a linear time 3-approximation

algorithm was presented by Whidden and Zeh [43]. The approximation ratio of three

was enhanced to two in subsequent work [34, 10, 9].

The earliest fixed-parameter algorithm for computing rSPR distance between two

trees in O(4k · k5+n3) running time was presented by Bordewich et al. [7]. A param-

eterized algorithm with an O(4k · k5 + nO(1)) running time was presented by Hallett

and McCartin [20]. Later, Whidden and Zeh [43] used straightforward branching rules

and a “shifting lemma” proven by Bordewich et al. [7] to reach a substantially better

running time of O(3k · n). In [40], this approach was enhanced to achieve an even

better constraint of O(2.42k ·n). This improvement was made possible by recognizing

three different branching scenarios and applying a depth-bounded search technique.

In order to achieve O(2k · n) running time for calculating the rSPR distance between

two binary rooted trees, the algorithm presented in [40] was also modified employing

edge protection to ignore duplicate search branches [39]. In the same work, Whidden

also presented an O(2.42k ·n) running time algorithm for handling two multifurcating

trees. For the MAF problem on two unrooted multifurcating trees, Shi et al. [36]

presented a O(4k · n5) running time algorithm.

The computation of an MAF can be broken down into a number of smaller prob-

lems through a cluster reduction technique proposed by Linz and Semple [26], which

has proven to be very effective for lowering running times on biological datasets in

practice. The complex weighting technique of [26] was later modified by Whidden et

al. [44], and they reduced the time needed to compute such a cluster reduction from

the cubic scaling stated by [26] to linear in the size of the trees. The problem of find-

ing a core MAF was addressed by Dempsey [12] using the aforementioned branching

and clustering strategies along with enhancing certain branching conditions.



Chapter 3

Multifurcating LGT and Obligate LGT

3.1 LGT mapping

In this section, we turn our attention to mapping lateral gene transfers (LGTs) be-

tween a rooted multifurcating phylogenetic reference tree Tm and a set of rooted non-

binary gene trees. For non-binary trees, their MAFs are agreement forests of their

binary refinements which contain recently added internal nodes that are not present

in the original trees. As previously mentioned, the possibility of different binary

resolutions of the reference tree for different gene trees makes it challenging to map

sources and destinations of LGT events for these trees. Our techniques are necessary

to address the aforementioned problem of tracing LGTs for non-binary trees. LGT

tracing was handled for binary reference trees and non-binary gene trees previously,

by resolving multifurcations to create an internal node that contains the transferred

children and/or the sibling children of the transfer destination [25]. However, this

method may not work with a non-binary reference tree, because a multifurcation

may need to be resolved in different conflicting ways for two different gene trees.

Therefore, we offer three methods for mapping these types of transfers.

An example of a reference tree Tm is shown in Figure 3.1, which is used to trace

the LGT of multiple children of a multifurcating node. Our source node in this case

is a hypothetical parent node of f and g. We look at two scenarios for the destination

node. Node d is the first destination, and some hypothetical parent node of nodes

b and c is the second. Now, we go over the capabilities of our three approaches to

handle these types of LGTs, as well as discuss their benefits and drawbacks.

3.1.1 Move Parent Node (MP)

Move parent node method involves assigning the transfer to the parent node of the

multiple source child nodes that are involved in the transfer. As a result, we can

16
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map the transfer of several child nodes in one LGT move. Similar to this, if the

destination involves multiple nodes, we map it to the parent of those nodes. Instead

of transferring some of its children, this method is based on the hypothetical scenario

of moving the parent node. However, moving the parent node would result in moving

all children of the internal node. This comes with the disadvantage that we assign

the transfer to nodes that are not involved in the transfer. Compared to some of our

other methods discussed later, this technique is especially useful when we want to

record the number of transfers equal to the minimum as it does not overcount LGTs.

For the example mentioned in Figure 3.1, we show sources and destinations identified

via this method in Table 3.1.

Table 3.1: Move Parent Node method

Source Destination
w d
w u

3.1.2 Move Parent with Maintain List (MPML)

To address the issue with the Move parent node method, this method handles transfer

in the same manner as the Move parent node method described above with one minor

addition. We are moving the parent node, therefore we are unable to identify the

precise nodes involved in the transfer. To handle that, we keep a list of the nodes

involved in transfers at the source and destination in this method. We maintain

entries for the nodes involved in each transfer in this list, along with the transfer’s

source and destination. Although this method captures all the relevant information,

it is somewhat complex to analyze and visualize. We display the sources, destinations,

and node list in Table 3.2 for the example from Figure 3.1.

Table 3.2: Move Parent with Maintain List method

Source Destination List
w d (f, g),(d)
w u (f, g),(b, c)
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Figure 3.1: Tm is reference tree involved in the lateral gene transfer. Tm
1 shows

sources and destinations of transfers for the Move parent node, and Move parent
with maintain list methods. Tm

2 shows sources and destinations of transfers for the
Move individual node method.

3.1.3 Move Individual Node (MI)

To address the issue of moving nodes not involved in the transfer of the Move parent

node method and the issue of challenging to analyze of the Move parent with maintain

list method, the Move individual node method maps the transfer of each individual

source child to each individual destination child. The drawback of this approach is

that because we are treating each child separately, it might map a higher number of
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Table 3.3: Move Individual Node method

Case Source Destination
Case 1 f d
Case 1 g d
Case 2 f b
Case 2 f c
Case 2 g b
Case 2 g c

transfers than the actual number of LGTs. For the example from Figure 3.1, we show

the sources and destinations obtained via this method in Table 3.3.

In this section, we described three different approaches for mapping the LGTs

involving multifurcating nodes of non-binary trees. Any of the aforementioned ap-

proaches can be chosen depending on the requirements as well as the benefits and

drawbacks. In Section 4.1 we examine the difference between applying these methods

on the Enterobacteriaceae dataset and the Enterococcaceae dataset.

3.2 Obligate LGT tracing

We now concentrate on the methods of identifying obligate lateral gene transfers

(OLGTs) between a pair of rooted phylogenetic trees. In order to achieve that, we

need to find all possible maximum agreement forests (MAFs) between that pair of

trees. In order to enumerate all MAFs, we first present a naive approach that travels

through all execution paths possible for a sibling pair. After that, we will introduce

concepts of edge protection, edge replacement, and edge preference to further enhance

the performance of the algorithm. The algorithms presented in this section are heavily

inspired by the work presented in [40] and [12]. These algorithms are compatible with

rooted binary phylogenetic trees, although the current implementation [24] can also

handle non-binary gene trees. Lastly, we present a method based on edge protection

for tracing OLGTs without enumerating all MAFs.

3.2.1 Naive approach

Theorem 3.2.1. For two rooted X-trees (T1, T2) and the parameter k, all possible

MAFs can be computed in O(3k · n) time.
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Proof. Let F1 and F2 be the forests of trees T1 and T2 respectively. For a singleton

node in a in F2, we must make it singleton in F1 as well in order to create an agreement

forest. According to Lemma 4.2 in [12], a trivial sibling pair (a, c) of (F1,F2) can

be contracted since they reside in the same connected component of every MAF.

Algorithm 1: Naive All MAFs Algorithm

Data: rooted X-trees (T1, T2), parameter k

Result: Sm, the set of all possible MAFs for (T1, T2)

1 Function MAF(F1, F2, k, Sm):
2 if k < 0 then

3 return;

4 while F2 has singletons or F1 has sibling pairs do

5 do

6 choose valid singleton a;

7 make a a singleton in F1;

8 while F2 has singletons ;

9 do

10 choose valid sibling pair (a, c);

11 if (a, c) is trivial sibling pair then

12 contract (a, c) in both F1 and F2;

13 else

14 if a and c are in separate components of F2 then

15 MAF(F1, F2//ea, k − 1, Sm);
16 MAF(F1, F2//ec, k − 1, Sm);
17 else

18 let B be a pendant subtree along the path from a to c in F2;

19 MAF(F1, F2//ea, k − 1, Sm);
20 MAF(F1, F2//eB, k − 1, Sm);
21 MAF(F1, F2//ec, k − 1, Sm);

22 while F1 has sibling pairs ;

23 if F1 = F2 then

24 Sm ← Sm ∪ (F1,F2);

25 Sm ← ∅;
26 MAF(T1, T2, k, Sm);
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According to Lemma 3.6 in [40], for a non-trivial sibling pair (a, c) of F1, if a and c

are present in the separate components of F2 and they are not singletons (case AC)

as well then an AF can be produced by cutting either ea or ec. However, if a and c are

present in the same connected component of F2 and B is a pendant subtree of a and

c (case ABC), an AF can be obtained by cutting either ea, eB or ec in accordance

with Lemma 3.7 in [40].

Based on the “shifting lemma” [7, 43], we can argue that an MAF can be obtained

by cutting either of the three edges. Therefore, we are able to list every potential

MAF in this situation because we are traversing through all three edges. For the

same reason, the algorithm would take O(3k ·n) as we make at most 3 recursive calls

up to depth k and each iteration would take O(n) time [40].

The Algorithm 1 displays the naive version of finding all maximum agreement

forests between a pair of phylogenetic trees in accordance with Theorem 3.2.1. In the

initial invocation of the MAF function, F1 = T1, F2 = T2, and Sm = ∅. In the end,

Sm will contain all possible MAFs between T1 and T2.

3.2.2 Better approach

In this approach, we make some improvements in the naive algorithm to avoid un-

necessary or repetitive calls to the recursive function and present the Algorithm 2.

The first of those improvements is the edge protection case first presented in section

6.3.2 of [39]. According to that, for a sibling pair (a, c) in F1, if a and c are present

in the same component then instead of performing cutting ea, eB or ec to produce

an AF, we should protect the ea after first two edge cut operations. The rationale

behind this is that the MAFs discovered by cutting ec before cutting ea would have

already been enumerated in the first recursive call that cuts ea first.

The second modification is the Depth rule presented in section 6.3.3 of [39]. Ac-

cording to it, if we have no protected edges, we select a sibling pair (a, c) for which a

has more depth in F1. In the case of multiple sibling pairs with the greatest depth,

we rely on the depth of a in F2. If there exists some protected edge ea and let z be

the parent node of the smallest subtree of F1 that contains ea, the sibling pair with

the maximum depth in that subtree should be chosen. The depth rule is crucial in

proving the improvement in running time through edge protection.
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Algorithm 2: Better All MAFs Algorithm

Data: rooted X-trees (T1, T2), parameter k

Result: Sm, the set of all possible MAFs for (T1, T2)

1 Function MAF(F1, F2, k, Sm):
2 if k < 0 then

3 return;

4 while F2 has singletons or F1 has sibling pairs do

5 do

6 choose valid singleton a;

7 make a a singleton in F1;

8 while F2 has singletons ;

9 do

10 choose valid sibling pair (a, c) by depth rule;

11 if (a, c) is trivial sibling pair then

12 contract (a, c) in both F1 and F2;

13 else

14 if a and c are in separate components of F2 then

15 MAF(F1, F2//ea, k − 1, Sm);
16 MAF(F1, F2//ec, k − 1, Sm);
17 else

18 if a and c has one pendant subtree B in F2 then

19 MAF(F1, F2//eB, k − 1, Sm);
20 MAF(F1, F2//ea, k − 1, Sm);
21 ReplaceAC operation;

22 else

23 MAF(F1, F2//ea, k − 1, Sm);
24 MAF(F1, F2//{eB1 , ..., eBm}, k −m, Sm);
25 protect edge ea;

26 MAF(F1, F2//ec, k − 1, Sm);

27 while F1 has sibling pairs ;

28 if F1 = F2 then

29 Sm ← Sm ∪ (F1,F2);

30 Sm ← ∅;
31 MAF(T1, T2, k, Sm);
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Lemma 4.6 in [12] states that for a sibling pair (a, c) in F1, if a and c are present

in the same component and have just one pendant subtree B (case AB) on the path

from a to c in F2, then instead of performing three edge cuts, there exists an MAF

that cuts ea if and only if there exists another MAF that cuts ec. Therefore, we can

execute the recursive function for the edge ea and then swap node c with node a

in the MAFs discovered by the edge ea recursive call to produce all the MAFs that

would have been enumerated by calling the recursive function that cuts edge ec. This

operation is called the ReplaceAC (RAC) operation. The ReplaceAC operation also

ensures that the recursive function that cuts edge ec gets called if node a is protected.

The running time of it depends on the number of MAFs enumerated in the first

operation and it should be analyzed in future work.

Another modification that we made for the experiments is that we preferred cut-

ting edge eB before cutting edge ea in the AB case. Then, we check whether eB

recursive call was able to discover any MAFs or not. We perform cut ea recursive call

and ReplceAC operation if and only if eB recursive call was able to find any MAFs.

We refer to this modification as a PreferB (PB) case.

3.2.3 100% OLGT approach

Algorithm 3: 100% OLGT Algorithm

Data: rooted X-trees (T1, T2), parameter k

Result: Eo, the set of obligate edges in T2

1 Function TraceOLGT(T1, T2, s, Eo):
2 for edge e in ET2 do

3 protect edge e;

4 find an MAF Fe of (T1, T2);

5 if |Fe| > s then

6 Eo ← Eo ∪ {e};

7 Eo ← ∅;
8 find an MAF F of (T1, T2);

9 s← |F|;
10 TraceOLGT(T1, T2, s, Eo);
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In this section, we discuss a slightly different approach that we used in exper-

iments for tracing obligate transfers without enumerating all MAFs. This method

was suggested by our fellow researcher Jordan Dempsey (personal communication,

January 2023). This method can only be used to trace obligate transfers present in

all MAFs, and it can not be used to trace the transfers present in 90% or 95% of the

MAFs. We have presented the implementation of the method in Algorithm 3.

Theorem 3.2.2. For two rooted X-trees (T1 = (VT1, ET1), T2 = (VT2, ET2)) and the

parameter k, all obligate LGTs can be traced in O(2.42k · n2) time.

Proof. According to [39], an MAF between two rooted X-trees can be computed in

Figure 3.2: The tree pair has rSPR distance 3 however, the algorithm 3 suggested 5
OLGT edges which are colored in T2.
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O(2.42k · n) time and in O(2k · n) time if both are binary trees. A rooted X-tree

with n leaves has O(n) edges. Therefore, we can argue that our Algorithm 3 can be

executed in O(2.42k · n2) time and O(2k · n2) respectively using algorithms presented

in [39].

While employing algorithm 3, we came across some pairs of trees that had a higher

OLGT count than their rSPR distance. The tree pairs are shown in Figure 3.2. This

was caused by the fact that the algorithm 3 treated the edges e1 and e2 of T2 as

OLGT edges even though all of their descendant edges are OLGT edges. Therefore,

we made some minor modifications to the previous algorithm to obtain the correct

OLGT edge count. The new algorithm 4, keeps track of whether or not all descendant

edges are OLGT and only performs an OLGT check on that edge if they are not. To

support the OLGT check of ancestral edges, it still maintains an OLGT status for

Algorithm 4: Fixed 100% OLGT Algorithm

Data: rooted X-trees (T1, T2), parameter k

Result: Eo, the set of obligate edges in T2

1 Function TraceOLGT(T1, T2, s, Eo, n):
2 is obligate = true;

3 for every child c of n do

4 e = (c, n);

5 if not TraceOLGT(T1, T2, s, Eo, c) then

6 protect edge e;

7 find an MAF Fe of (T1, T2);

8 if |Fe| > s then

9 Eo ← Eo ∪ {e};

10 else

11 is obligate = false;

12 return is obligate;

13 Eo ← ∅;
14 find an MAF F of (T1, T2);

15 s← |F|;
16 n← root of T2;
17 TraceOLGT(T1, T2, s, Eo, n);
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that edge. Therefore, by avoiding the OLGT check on unnecessary edges, we also

reduce the algorithm’s experimental running time.

3.3 Handling Clusters

Linz and Semple [26] presented the idea of partitioning the input trees into smaller

subtrees and then solving the rSPR problem for individual clusters. This idea can be

used to solve the problem of enumerating all possible MAFs between a pair of rooted

binary phylogenetic trees. Lemmas 3.10 to 3.14 in [12] state that we can produce a

global MAF by gluing the MAFs of separate clusters. Here, we present Algorithm 5

that we implemented based on these lemmas.

Figure 3.3: Two rooted binary phylogenetic trees T1 and T2 with cluster points x1

and x2 respectively. The clusters are shown with different colors.

We begin by outlining a few definitions and notations that will be helpful in under-

standing the methods discussed in this section. For two rooted binary phylogenetic

trees T1 = (V1, E1) and T2 = (V2, E2) with their leaf set L(T1) = L(T2) = L(T ),
assume there exists nodes x1 ∈ V1 and x2 ∈ V2 such that L(Tx1) = L(Tx2) ̸= L(T ),
where L(Tx1) and L(Tx2) are the set of all leaves that has x1 and x2 as their common
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Algorithm 5: Merge MAFs Algorithm

Data: Maximum agreement forests (Fu, Fl)

Result: Fm, the merged MAF

1 Function MergeMAFs(Fu, Fl):

2 Fm ← Fu;

3 if lower cluster is a separate component cl in Fm then

4 remove cl from Fm;

5 add all components of Fl except separate ρ in Fm;

6 else

7 if Fu does not have cluster node then

8 if Fl has separate ρ component then

9 add all components of Fl except separate ρ in Fm;

10 else

11 find best node nu for Fl in Fm;

12 attach root component of Fl to nu;

13 add all the other components of Fl to Fm;

14 else

15 find the parent nc of cluster point for Fl in Fm;

16 if Fl has separate ρ component then

17 remove cluster child of nc;

18 contract node nc in Fm;

19 add all components of Fl except separate ρ in Fm;

20 else

21 replace cluster child of nc with root component of Fl;

22 add all the other components of Fl to Fm;

23 return Fm

ancestor, respectively, as described in Figure 3.3. Let Tx1 and Tx2 be the subtree of

each trees with x1 and x2 as the root node, respectively. The upper cluster (Tu1, Tu2)

can be obtained by replacing Txi in Ti with a new leaf node α for i ∈ {1, 2}. The

lower cluster (Tl1, Tl2) can be obtained by attaching separate root node(ρ) to Tx1 and

Tx2. The nodes x1 and x2 are called the cluster points.

While enumerating MAFs using Algorithm 2, we start with the lowest cluster and

move upwards. After enumerating all MAFs of the lower cluster, we select an MAF
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Fl and attach the component with the root node to the upper cluster before listing its

MAFs [39]. For an MAF Fu of the upper cluster, we can say that the lower cluster is

a separate component if there exists a component cl ∈ Fu with L(cl) ⊂ L(Tx), where

L(Tx) is the leaf set of the lower cluster. For an MAF Fu of the upper cluster, we

can say that Fu does not have cluster node if the parent of the cluster point x got

removed from Fu due to contraction.

The analysis of the merging algorithm for a pair of rooted binary phylogenetic

trees is out of the scope of this thesis still we present our limited analysis. A single

merge operation can be executed in O(log n) time if implemented carefully. From

Theorem 3.2.1, we can deduce that the upper bound of the enumerating MAFs is

O(3k · n). With the improvement presented in section 3.2.2 suggested in [39, 12]

and the RAB case in [12], the running time of O(2.42k · n+ |Sm|) is achieved, where
|Sm| is the number of MAFs to glue together. It is an open question whether |Sm| is
O(2.42k · n) or not, which would determine the running time here.
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Experiments

We now proceed to the experimental phase of our research on tracing lateral gene

transfers (LGTs), after outlining the theoretical framework and research methodology

in the previous chapters. We implemented all of the non-binary LGT tracing methods

and obligate LGT finding algorithms [24] discussed in Chapter 3 and employed them

on various datasets for LGT analysis. All the experiments were conducted on the

cloud resources provided by the Digital Research Alliance of Canada (the Alliance)

Federation. This cluster has 2 x AMD Rome 7532 @ 2.40 GHz 256M cache L3 CPU

specification. However, the running time of the experiments may vary depending on

the resources available at the time of execution.

4.1 LGT Mapping

The goal of experimenting with LGT mapping techniques presented in section 3.1 was

to utilize them to discover the real sources and destinations of LGTs involving non-

binary nodes. We used these techniques on two different datasets, the Enterobacteri-

aceae dataset [18, 24], and the Enterococcaceae datasets [5, 24], for the experiments.

Both of these datasets are multifurcating datasets, which means that in addition to

the gene trees, the reference tree is also a non-binary tree. Therefore, these datasets

were suitable for our non-binary LGT tracing methods. The primary distinction be-

tween the two families is that the Enterococcaceae family is Gram-positive while the

Enterobacteriaceae family is Gram-negative. Gram-positive bacteria lack the outer

membrane layer, which makes them less resistant to antibiotics than Gram-negative

ones [30].

For the Move parent node and the Move parent with maintain list methods, we

expected to achieve the same number of transfer counts, and for the Move individ-

ual node method, a slightly higher number of transfer counts. We also desired to

analyze the amount of time that would be required to compare tree pairs with a

29
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given rSPR distance, and we anticipated that this time would increase as the rSPR

distance increased. Hereby, we present the results gathered by applying our pro-

posed LGT mapping methods in section 3.1 on the Enterobacteriaceae dataset and

the Enterococcaceae dataset.

4.1.1 Enterobacteriaceae dataset results

The Enterobacteriaceae dataset [18, 24] is comprised of 7321 gene trees and a refer-

ence tree with 100 leaves. This dataset includes 20 genomes each of 5 different En-

terobacteriaceae family species, including Citrobacter freundii, Enterobacter cloacae,

Escherichia coli, Klebsiella oxytoca, and Salmonella enterica. This is a multifurcating

dataset, which suggests that the reference tree and many of the gene trees contain

multifurcating internal nodes. We experimented with 5 different required support

values that include 0, 0.5, 0.7, 0.9, and 1.0. In total, we have tested 36605 (7321 gene

trees with 5 different required support values) tree pairs. We assigned a maximum

time limit of 72 hours for the comparison of each individual tree pair. Out of 36605,

about 135 tree pairs failed to complete the comparison before the assigned time limit.

Figure 4.1: Relationship between the gene tree size and the rSPR distance to the
reference tree for 5 distinct required support values. The size of each circle indicates
the number of tree pairs that are there for a given gene tree size and rSPR distance.

The total number of nodes in the tree defines its tree size. For binary trees, the

number of leaves is often considered as the tree size, but for multifurcating trees, we

also take the number of internal nodes into account. The relationship between the

size of the gene trees and their rSPR distance to the reference tree for a given required
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support value is shown in Figure 4.1. For the required support values ranging between

0.0 and 1.0, the size of the reference tree varied between 170 (required support 1.0)

- 199 (required support 0.0) and the gene tree size varied between 6 and 199. For

the Enterobacteriaceae dataset, the rSPR distance ranged from 0 to 63 for a required

support value of 0.0 and from 0 to 17 for a value of 1.0. We can infer from the

plot in Figure 4.1 that as the gene tree size increases or the required support value

decreases, there is an increase in the rSPR distance between the reference tree and

the gene trees. Another noticeable outcome is the reduction in the overall gene tree

size as the required support value increases. This is because we contract nodes with

lower support values than the threshold. When using a higher required support

threshold, the rSPR distance decreased by more than what could be accounted for

the decreasing tree size i.e. the distances for required support higher than 0 are

below the distances for required support 0 in the figure. These outcomes emphasize

the importance of algorithms that can analyze multifurcating input trees because

non-binary LGT analysis would identify many more transfers based on unsupported

relationships. Furthermore, the considerable reduction in rSPR distance suggests that

multifurcating algorithms with a reasonable support threshold may be much faster

than binary algorithms even though the multifurcating algorithms are more complex.

(a) rSPR distance vs. Move parent node
LGT count

(b) rSPR distance vs. Move individual
node LGT count

Figure 4.2: Heatmaps showing the Move parent node LGT count and the Move
individual node LGT count compared to actual rSPR distance between the reference
tree and a set of gene trees. These are combined results of tracing LGTs for 5 distinct
required support values (total 36470 tree pairs)
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In Figure 4.2, we present the transfer count results obtained after employing our

LGT tracing methods presented in section 3.1 on the Enterobacteriaceae dataset. For

the required support value of 0.0, the Move parent node transfer count ranged from

0 to 63, and for the required support value of 1.0, it ranged from 0 to 17. We can

infer from Figure 4.2a that the rSPR distance between tree pairs was identical to the

Move parent node LGT count as mentioned in 3.1.1. Nevertheless, as we trace each

child separately, Figure 4.2b shows that the Move individual node LGT count was

greater than the rSPR distance between tree pairs. The highest difference between

the Move individual node LGT count and the rSPR distance was 17. Since we are not

tracing any additional transfers, the Move parent node with maintain list produced

(a) Average move parent node method running time (log) for tree pairs
with different rSPR distance and required support values

(b) Average move individual node method running time (log) for tree
pairs with different rSPR distance and required support values

Figure 4.3: Average running time (log) required to trace LGT using the Move parent
node and the Move individual node methods with 5 distinct required support values.
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the same transfer count as the Move parent node method. These findings suggest that

moving individual nodes is a reasonable trade-off for simplifying processing, though

maintaining a list may be preferable if you require information about both the number

of transfers and their precise sources and destinations.

Figure 4.3 displays the average running time required to perform the LGT tracing

operation between tree pairs when applying our techniques. We expect all of our

methods to utilize roughly the same running time since they are only utilized for

mapping. Since the running time is exponential, we have kept a log of the actual

running time. For the Move parent node method, the maximum running time for

a single tree pair was 10 hours 56 minutes. When using the Move individual node

method, the same tree pair took 11 hours 06 minutes. For all of our methods, there

was very little difference in the amount of time required between the support threshold

of 0.9 and 1.0. The overall trend of the running time was that it increased as the

rSPR distance increased and the required support value decreased, as shown in both

sub-graphs of Figure 4.3. The fluctuations were caused by the number of tree pairs

that were available at that rSPR distance and required support level. According to

the results shown in Figure 4.3, non-binary LGT analysis is much quicker than binary

analysis because they have reduced distances. However, it is also possible that high

thresholds may miss some transfers.

4.1.2 Enterococcaceae dataset results

The Enterococcaceae dataset [5, 24] consists of 4516 gene trees and a reference tree

with 102 leaves. The dataset includes 100 genomes of the Enterococcus faecium species

along with one genome of each of the Enterococcus faecalis and the Enterococcus hirae

species of the Enterococcaceae family of bacterial organisms. The Enterococcaceae

dataset is also a multifurcating dataset, where both the reference tree and gene trees

are non-binary trees. In pre-processing, a total of 389 gene trees had to be removed

from the dataset since they contained the same genome more than once. We have

experimented with 4127 valid gene trees and 5 different required support values,

including 0, 0.5, 0.7, 0.9, and 1.0. We have examined 20635 tree pairs in total. Same

as the Enterobacteriaceae dataset, we set a maximum execution time of 72 hours for

each individual tree pair. About 2329 tree pairs out of 20635 were unable to finish
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Figure 4.4: Relationship between the gene tree size and the rSPR distance to the
reference tree for 5 distinct required support values. The size of each circle indicates
the number of tree pairs that are there for a given gene tree size and rSPR distance.

their execution within the allotted time frame.

Figure 4.4 illustrates the correlation between the gene tree size and its rSPR dis-

tance to the reference tree for a specific required support value. The rSPR distance

for the Enterococcaceae dataset ranged from 0 to 70 for the required support value of

0.0 and from 0 to 22 for the required support value of 1.0. Therefore, we can deduce

from Figure 4.4 that there is an increase in the rSPR distance between the reference

tree and the gene trees as gene tree size increases or required support values decrease.

When compared to the results from the Enterobacteriaceae dataset, we notice that the

tree pairs are not completely segregated for various support thresholds, which demon-

strates the wide variation in rSPR distance between the tree pairs in this dataset.

Additionally, even with a higher support threshold, we see that there are many more

tree pairs with higher rSPR distances, which indicates that we might not miss a lot

of transfers when applying the higher value of the support threshold. Therefore, it is

necessary to trace these transfers by applying multifurcating algorithms. Given that

the rSPR distance between the tree pairs decreases by more than can be explained

just by the reduced tree size as the support threshold increases, we expect a decrease

in the running time of multifurcating algorithms.

In Figure 4.5, we present the transfer count results obtained after employing our

LGT tracing methods presented in section 3.1 on the Enterococcaceae dataset. For

the required support value of 0.0, the Move parent node transfer count ranged from
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(a) rSPR distance vs. Move parent node
LGT count

(b) rSPR distance vs. Move individual
node LGT count

Figure 4.5: Heatmaps showing the Move parent node LGT count and Move individual
node LGT count compared to actual rSPR distance between the reference tree and a
set of gene trees. These are combined results of tracing LGT for 5 distinct required
support values (total 18306 tree pairs)

0 to 70, and for the required support value of 1.0, it ranged from 0 to 22. The Move

individual node transfer count ranged from 0 to 71 for the required support value

of 0.0, and from 0 to 67 for the required support value of 1.0. The rSPR distance

between tree pairs, as shown in Figure 4.5a, was equal to the Move parent node LGT

count. However, Figure 4.5b demonstrates that the Move individual node LGT count

was much higher than the rSPR distance between tree pairs. The highest difference

between the Move individual node LGT count and the rSPR distance was 59. The

Move parent node method and the Move parent node with maintain list both resulted

in the same number of transfers. The number of trees with a specific rSPR distance

from the reference tree is indicated by the color chart in the heatmaps. The heatmaps

show that there were fewer trees overall with higher rSPR distance, but the number

was still statistically significant. From Figure 4.5, we can infer that applying the Move

individual node method on the Enterococcaceae dataset might not be an appropriate

choice considering the substantial variations in the number of transfers. However,

the Move parent with maintain list method would be more suitable as it provides the

precise number of transfers in addition to the list of sources and destinations.

Figure 4.6 shows the average amount of time taken by our techniques to perform

LGT tracing between tree pairs. Same as previously described, we have taken a log
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of the actual running time. The maximum running time for a single tree pair was

approximately 71 hours for all our methods. The total running time for the entire

dataset using the Move parent node method was 72 days 5 hours, and 22 minutes,

and the total running time using the Move individual node method was 72 days

16 hours, and 35 minutes. As shown in both sub-graphs of Figure 4.6, when the

rSPR distance increased and the required support value decreased, the running time

generally increased. The fluctuations were caused by the number of tree pairs that

were available at that rSPR distance and required support level. We have fewer

fluctuations compared to the Enterobacteriaceae dataset, though, because the trees

were evenly distributed across the various rSPR distance levels. When using the Move

(a) Average move parent node method running time (log) for tree pairs
with different rSPR distance and required support values

(b) Average move individual node method running time (log) for tree
pairs with different rSPR distance and required support values

Figure 4.6: Average running time (log) required to trace LGT using the Move parent
node and the Move individual node methods with 5 distinct required support values.
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individual node method, we were not expecting the spike at rSPR distance 0, and

we believe the reason might be the availability of resources at the time of execution.

Similar to the Enterobacteriaceae dataset, non-binary LGT analysis is much faster

than binary LGT analysis. Therefore, it is beneficial to find a suitable threshold

support that does not miss a lot of transfers and accelerates the execution.

4.2 Obligate LGT tracing results

We now change our attention to evaluating the obligate lateral gene transfer (OLGT)

methods we described in section 3.2. The goal of these experiments was to identify

OLGTs by enumerating every possible MAF between a pair of trees. Along with

the impact of the PB case, which is mentioned in section 3.2.2, we also wanted to

determine the effects of the optimizations presented there on our results. When

compared to a naive approach, we expected that our optimizations would take much

less time to list all MAFs between a pair of rooted trees. We expected the algorithm

with PB case to enumerate a lesser number of MAFs than there actually are given

that we are not traversing some useful edges. However, the objective of it was to

determine if we could significantly reduce the running time or not. To determine the

total number of OLGT edges, the 100% OLGT approach was used as a benchmark.

Our primary goal with the merging cluster MAFs method was to determine

whether we could produce all global MAFs after performing the gluing operation.

Along with that, we were also interested in comparing the running times for cluster-

ing and gluing to the running times required when clustering is not used.

4.2.1 Better approach OLGT results

In this section, we present the results gathered by applying our proposed better

approach OLGT algorithm in section 3.2.2 on the Aquificae dataset [39]. The dataset

contained gene trees constructed over a set of 1251 different taxas of bacteria. The

Aquificae dataset contains 40631 gene trees and a reference tree with 244 leaves

and has been used previously to analyze “highways” of lateral gene transfer across

a diverse set of bacteria [39]. Our current implementation of the OLGT algorithm

requires a binary reference tree so we could not use the Enterobacteriaceae dataset

and the Enterococcaceae dataset. In order to evaluate the actual results, we applied
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various approaches to the dataset without using any clustering. We set a maximum

permitted time for the execution to 72 hours for individual tree pairs. In 40334 of

the 40631 tree pairs, the execution could be finished in the allotted time.

Table 4.1: Better approach OLGT results

Optimizations Number of MAFs (average) Running time
Naive approach 9.251971 56h47m
Better approach 9.251971 44h08m

Better approach (PB case) 9.058754 42h35m
All optimizations approach 1.101899 1h16m

Table 4.1 shows the results that we were able to obtain using 4 different approaches

for enumerating MAFs. Both the naive approach presented in section 3.2.1 and the

better approach presented in section 3.2.2 enumerated every possible MAF as ex-

pected, though the better approach with the PB case enumerated 3% fewer MAFs,

as we might miss traversing some necessary branches. Additionally, we used the all

optimizations algorithm described in [39, 41] for calculating the rSPR distance via ef-

fectively generating MAFs. The average number of MAFs produced by this algorithm

was slightly more than one. For a single tree pair, there were anywhere between 1 and

3240 MAFs. For our better approach, the running time has significantly improved

because it took us about 22% less time to list every MAF. However, we were unable to

make significant progress with the PB case. As expected, all optimizations algorithm

was much faster than other approaches. The table suggests that enumerating all

MAFs would require significantly more time than computing the rSPR distance be-

tween them. However, these are two different problems, and listing all MAFs requires

traversing through a lot more branches. Therefore, the branching scenarios should

be enhanced to enumerate all MAFs more efficiently in the future. In addition, we

would like to extend future experiments with this dataset for our clustering-based

approach.

4.2.2 100% OLGT results

In this section, we present the results gathered after applying our 100% OLGT ap-

proach presented in section 3.2.3 on the binary tree tanglegrams dataset [29]. We

intended to thoroughly compare all pairs of small trees to examine the effect of tree
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Figure 4.7: Distribution of trees, showing what percentage of the total transfers are
obligate for all possible binary tree pairs with 4 to 7 leaves.

structures on the number of obligate LGTs between tree pairs. Some tree pairs have

the same AFs because the trees are identical except for relabeling the leaves in both

trees in the same way, such as by swapping the labels of two leaves. Tanglegrams

generalize this concept to include only one tree pair for each such pair of trees that

can be relabeled. This greatly reduces the number of tree pairs that must be eval-

uated, enabling us to examine all pairs of rooted tanglegrams with 4-7 leaves. This

dataset is comparatively small when compared to others that we used in this study,

but allows for exhaustively comparing all pairs of small trees to examine the impact

of tree structure on LGT analysis. A total of 27231 tree pairs were available for our

experiments. The rSPR distance between tree pairs ranged from 0 to 5.

Figure 4.7 shows the result that we obtained regarding the proportion of obligate

LGTs among all LGTs between tree pairs. The number of tree density distributions

for different leaf counts is shown in the figure. The maximum number of obligate

transfers we found for a tree pair was 4, and the rSPR distance between those tree

pairs was between 4 and 5. Out of 27231 tree pairs, 5900 tree pairs had all of their

transfers OLGT, while 11214 tree pairs had none. We can infer from the graph that

a majority of the trees either had no obligate transfers or all of their transfers were

obligate. Several tree pairs had multiple obligate transfers, indicating that small tree

pairs of random trees frequently contain such transfers. This does not necessarily

mean that biological datasets will have obligate transfers, but it does imply that it is

something that should be examined.
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Figure 4.8: Distribution of trees showing how tree structure affects the number of
OLGT between tree pairs.

We used the combined average Sackin index method to analyze the relationship

between the structure of the tree pair and the number of OLGT. The Sackin index

value for the seven-leaf trees ranged from 20 to 24. A more balanced tree is indicated

by a lower value, and left- or right-aligned trees are indicated by higher values of the

Sackin index. From Figure 4.8, we observe that the average obligate LGT count is

higher in trees with a combined average Sackin index that is either too low or too

high. Therefore, we can say that generally more balanced or more one-sidedly aligned

trees tend to have a higher number of obligate transfers. Although we were unable

to determine the exact reason, their tree structure’s symmetry may be the reason for

this behavior.

4.2.3 Clustering results

In this section, we present the results gathered after applying our proposed merging

cluster MAFs method in section 3.3 on the 144 prokaryotic genomes dataset [2] con-

taining binary rooted tree pairs. This dataset was chosen for the experiments because

our algorithm does not currently support gluing operations for multifurcating trees.

The protein tree data set consists of 22,437 trees constructed from a set of proteins

from 4 to 144 microbial genomes [2]. We employed our clustering with merging algo-

rithm along with the better approach OLGT algorithm presented in section 3.2.2. To

compare the results, we also employed the better OLGT approach without clustering.

Table 4.2 displays the average number of MAFs we enumerated for the dataset
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Table 4.2: Clustering OLGT results

Optimizations Number of MAFs (average)
Better approach 14.963104

Better approach (PB case) 14.919852
Clustering approach 14.963104

while employing the better OLGT approach (with or without the PB case), and while

using clustering and gluing with the same approach. As expected, we were able to

produce all global MAFs after gluing together the MAFs of individual clusters. The

OLGT approach (with the PB case) enumerated slightly fewer MAFs. The number of

MAFs varied between 1 to as high as 3645 for a single tree pair. The average number

of MAFs between tree pairs may vary in different datasets. As a result, gluing MAFs

while using clustering might require more time. However, we observed that using the

clustering and gluing approach to enumerate all MAFs is beneficial for this dataset.

Figure 4.9: Running time comparison for tree pairs of enumerating MAFs with clus-
tering (also gluing) and without clustering.

Our primary objective for this experiment was to analyze the improvements in

the running time when using clustering and gluing to find MAFs. For almost all

tree pairs, the clustering and gluing approach utilized less time than one without

clustering, according to Figure 4.9. We can therefore infer that using clustering and

gluing is a better method for enumerating all potential MAFs for the 144 prokaryotic

genome dataset. Different datasets may require more time for clustering and gluing

depending on the number of clusters and MAFs between each tree pair. When tree

pairs have fewer MAFs, we expect to get better timing results compared to the method

that does not use clustering.
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Conclusion

In this thesis, our primary objective was to develop some techniques for the lateral

gene transfer (LGT) analysis of phylogenetic trees and apply them to real-world

bacterial datasets to analyze LGT events involving antibiotic resistance. First, we

developed a few methods for tracing LGT events involving some children of non-binary

nodes of a reference tree. To help others choose methods based on their requirements,

we also listed the advantages and disadvantages of each method. These techniques

were applied to the Enterobacteriaceae dataset and the Enterococcaceae dataset for

LGT tracing and we were able to achieve the desired outcomes. The Move parent node

method resulted in achieving the precise number of transfers. The Move individual

node method, however, performed better for the Enterobacteriaceae dataset when

compared to the Enterococcaceae dataset because the number of transfers varied less.

Therefore, we suggested employing the Move parent node with maintain list method

to obtain an accurate count of transfers with their sources and destinations for the

Enterococcaceae dataset. In future work, we should apply these methods to synthetic

datasets using evolution simulators to analyze how well they recognize transfers.

After that, we shifted our attention to tracing the obligate lateral gene transfers

(OLGT) between a pair of phylogenetic trees. Two different strategies were developed

for that, one based on creating all MAFs and the other based on edge protection. We

used the tangle-grams dataset with 4 to 7 leaves to analyze the edge protection-based

approach for tracing OLGTs. We observed that obligate transfers are more common

in usually more balanced or one-sidedly aligned trees and overall are common in

random tree pairs with a small number of leaves. The MAF-based approach was

made possible by advancements in [39, 12] to prevent traversing unnecessary edges

of phylogenetic trees in order to enumerate MAFs. The method was employed on

the Aquificae dataset and was able to enumerate all MAFs in less amount of time

than the naive approach. As the problem of enumerating all MAFs differs from the

42
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work in [12] of identifying the edge set present in all MAFs, we cannot apply all

of their optimizations. The running time of our approach depends on the number

of enumerated MAFs. Therefore, a part of our future work will be to analyze the

running time of this algorithm. Additionally, we like to reduce the running time in

the future by enhancing branching scenarios. In addition to that, we intend to apply

these methods to bacterial datasets to study LGTs involving antibiotic resistance.

To make improvements in the experimental running time of the algorithm used to

enumerate all potential MAFs, we combined it with the clustering strategy mentioned

in [26, 12]. We developed a technique to combine MAFs from different clusters to

produce global MAFs. We applied this approach to the 144 prokaryotic genomes

dataset and noticed a substantial decrease in overall running time. The time needed

depends on the rSPR algorithm and the number of MAFs present for a pair of trees,

and we need to determine in the future whether gluing that depends on the number

of MAFs will eventually require a longer time than the rSPR method or not. As our

current method of gluing MAFs only works with binary trees, future work for this

will include extending this method to glue MAFs of non-binary trees.
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