
COMPREHENDING SOFTWARE BUGS LEVERAGING CODE
STRUCTURES WITH NEURAL LANGUAGE MODELS

by

Parvez Mahbub

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

August 2023

Dalhousie University is located in Mi’kma’ki,

the ancestral and unceded territory of the Mi’kmaq.

We are all Treaty people.

© Copyright by Parvez Mahbub, 2023

Fariha Islam Mouri.

Thank you for tolerating me when I was intolerable, loving me when I

was unlovable, and understanding me when I was incomprehensible.

ii

Contents

List of Tables . vi

List of Figures . vii

Abstract . viii

List of Abbreviations Used . ix

Acknowledgements . xi

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Our Contribution . 5

1.4 Related Publications . 6

1.5 Outline of the Thesis . 8

Chapter 2 Background . 9

2.1 Recurrent Neural Network . 9
2.1.1 Long Short-term Memory and Gated Recurrent Unit Models . 10
2.1.2 Attention Mechanism . 10

2.2 Transformers . 11

2.3 Neural Language Modeling . 11

2.4 Neural Machine Translation . 12

2.5 Embedding . 12
2.5.1 Word Embedding . 13
2.5.2 Positional Embedding . 13

2.6 Abstract Syntax Tree . 14

2.7 Structure-Based Traversal . 15

2.8 Summary . 15

iii

Chapter 3 Bugsplorer: Predicting Line-Level Defects by Capturing
Code Contexts with Hierarchical Transformers 17

3.1 Introduction . 17

3.2 Motivating Example . 20

3.3 Methodology . 22
3.3.1 Pre-processing and Tokenization 22
3.3.2 Token Embedding Generation 23
3.3.3 Line Embedding Generation 24
3.3.4 Line Classification . 25
3.3.5 Optimization . 26

3.4 Experiment . 27
3.4.1 Experimental Datasets . 28
3.4.2 Evaluation Metrics . 36
3.4.3 Experiment Design and Hyper-Parameters 38
3.4.4 Evaluating Bugsplorer . 39

3.5 Prototype . 48
3.5.1 Web-based Front End . 49
3.5.2 Application Server . 49
3.5.3 Defect Predictor . 50

3.6 Threats To Validity . 50

3.7 Manual Analysis . 51

3.8 Related Work . 54
3.8.1 Defect Prediction at Different Levels of Granularity 54
3.8.2 Machine Learning Approaches for Defect Prediction 54
3.8.3 Deep Learning Approaches for Defect Prediction 55
3.8.4 Line-Level Defect Prediction 55

3.9 Summary . 56

Chapter 4 Bugsplainer: Explaining Software Defects Leveraging Code
Structures in Neural Machine Translation 57

4.1 Introduction . 57

4.2 Motivating Example . 60

4.3 Methodology . 62
4.3.1 Extract Buggy and Bug-free AST Nodes from Commit 62
4.3.2 Generate diffSBT Sequence 62

iv

4.3.3 Train Bugsplainer . 65
4.3.4 Generate Explanation . 67

4.4 Experiment . 68
4.4.1 Dataset Construction . 69
4.4.2 Evaluation Metrics . 71
4.4.3 Evaluating Bugsplainer . 73

4.5 Prototype . 83
4.5.1 Components . 84
4.5.2 Working Modes . 87

4.6 Threats To Validity . 87

4.7 Related Work . 88
4.7.1 Explanation of Software Bugs 88
4.7.2 Translation of Source Code into Texts 89

4.8 Summary . 90

Chapter 5 Conclusion and Future Work 92

5.1 Conclusion . 92

5.2 Future Work . 93
5.2.1 Bugsplorer . 93
5.2.2 Bugsplainer . 93

Appendix A Complementary Materials 112

A.1 Published Papers . 112

A.2 Replication Packages . 112

A.3 Prototypes . 112

A.4 Demo Video . 112

Appendix B Copyright Release . 113

B.1 Bugsplainer in ICSE 2023 . 113

B.2 Defectors in MSR 2023 . 117

B.3 Bugsplainer Tool in ICSME 2023 . 121

v

List of Tables

3.1 Summary of the benchmark datasets 28

3.2 Description of the projects used in Defectors 31

3.3 Number of defective, defect-free, and total source code docu-
ments used in Defectors . 32

3.4 Performance metric scores of Bugsplorer 40

3.5 Effectiveness of Bi-directional Representation and Line-Level Op-
timization . 42

3.6 Performance of Bugsplorer with different transformer architectures 45

3.7 Examples of classification by Bugsplorer 53

4.1 Generated explanations for buggy code 61

4.2 Performance of Bugsplainer . 74

4.3 Performance of Bugsplainer by input length 75

4.4 Performance of Bugsplainer by the length of ground truth . . . 75

4.5 Role of structural information and discriminatory pre-training . 76

4.6 Comparison of Bugsplainer with existing baseline techniques (Us-
ing five random runs) . 78

4.7 Quality aspects of generated explanations 80

4.8 Comparison of Bugsplainer with baselines using developer study 81

vi

List of Figures

1.1 An example of defective code 3

2.1 An example of Abstract Syntax Tree 14

2.2 Structure-Based Traversal (SBT) – (a) an example tree, and
(b) corresponding SBT sequence 15

3.1 An example of defective code 18

3.2 Motivating example for Bugsplorer 21

3.3 Schematic diagram of Bugsplorer 22

3.4 An example of structural distance 23

3.5 Internal architecture of the line and line classifier 24

3.6 Automated metric scores of Bugsplorer 41

3.7 Effectiveness of Bidirectional Representation and Line-Level Op-
timization . 47

3.8 User Interface of the Prototype of Bugsplorer 49

4.1 A motivating example for Bugsplainer 61

4.2 Schematic diagram of Bugsplainer 63

4.3 An example of diffSBT sequence generation from commit diff . 65

4.4 Explanation generation for buggy code 68

4.5 Comparison of Bugsplainer with the baselines using Likert scores 82

4.6 User interface of BugsplainerWeb 84

vii

Abstract

Software bugs claim ≈ 50% of development time and cost the global economy bil-

lions of dollars every year. Unfortunately, despite the use of many software quality

assurance (SQA) practices in software development (e.g., code review, continuous

integration), defects may still exist in the official release of a software product. If

software defects can be predicted at the line level, that can help the developers prior-

itize SQA efforts for the vulnerable areas of a codebase and thus achieve a high-quality

software release. However, a defect prediction technique could be less helpful without

any meaningful explanation of the defect. In this thesis, we propose and evaluate

two novel techniques that support developers in identifying software defects at the

line level and provide natural language explanations for those defects. In our first

study, we propose – Bugsplorer – a novel deep-learning technique for line-level defect

prediction. It leverages a hierarchical structure of transformer models to represent

two types of code elements: code tokens and code lines. Our evaluation with five

performance metrics shows that Bugsplorer can predict defective lines with 26-72%

better accuracy than that of the state-of-the-art technique. It can also rank the first

20% defective lines within the top 1-3% vulnerable lines. In our second study, we

propose Bugsplainer – a transformer-based generative model that generates natu-

ral language explanations for software bugs by leveraging structural information and

buggy patterns from the source code. Our evaluation using three performance metrics

shows that Bugsplainer can generate understandable and good explanations according

to Google’s standard and can outperform multiple baselines from the literature. We

also conducted a developer study involving 20 participants where the explanations

from Bugsplainer were found to be more accurate, more precise, more concise and

more useful than the baselines. Given the empirical evidence, our techniques have

the potential to significantly reduce the SQA costs.

viii

List of Abbreviations Used

APE Absolute Positional Embedding.

AST Abstract Syntax Tree.

AuROC Area under the Receiver Operating Characteristic.

BLEU Bi-lingual Evaluation of Understudy.

BPE Byte-Pair Encoding.

BPTT Backpropagation Through Time.

CFG Control Flow Graph.

CNN Convolutional Neural Network.

DBN Deep Belief Network.

DFG Data Flow Graph.

DL Deep Learning.

FN False Negative.

FP False Positive.

FPR False-Positive Rate.

GRU Gated Recurrent Unit.

IFA Initial False Alarm.

IR Information Retrieval.

ITS Issue Tracking System.

ix

LIME Local Interpretable Model-agnostic Explanations.

LSTM Long Short-term Memory.

ML Machine Learning.

NLM Neural Language Modelling.

NLP Natural Language Processing.

NMT Neural Machine Translation.

PDG Program Dependency Graph.

PR Pull Request.

RNN Recurrent Neural Network.

ROC Receiver Operating Characteristic.

RPE Relative Positional Embedding.

SBT Structure-Based Traversal.

SQA Software Quality Assurance.

T5 Text-To-Text Transfer Transformer.

TN True Negative.

TNR True-Negative Rate.

TP True Positive.

TPR True-Positive Rate.

x

Acknowledgements

I would like to express my deepest gratitude and appreciation to the following indi-

viduals and groups who have played a pivotal role in shaping my academic journey

at Dalhousie University.

First and foremost, I am deeply grateful to my thesis supervisor, Dr. Masud

Rahman. His profound wisdom, expertise, and dedicated mentorship have been in-

valuable throughout this journey. His insightful feedback and constructive criticism

have helped me navigate through the complexities of my research.

I would also like to express my sincere gratitude to Dr. Tushar Sharma and Dr.

Srinivas Sampalli for their invaluable advisement and meticulous evaluation of my

thesis. Their scholarly perspectives and thoughtful input have elevated the quality

and rigor of my research, and I am truly appreciative of their time and expertise.

To my beloved family members, including my sister Farzana Tasnim Oishee, my

mother Mst. Khaleda Begum, my brother Arman Mahmud, and my father Md. Jalilur

Rahman, I extend my deepest affection. Their unwavering support, love, and belief

in my abilities have been the bedrock of my accomplishments, and I am profoundly

grateful for their presence in my life.

I would like to acknowledge the irreplaceable support and affinity of my precious

friends Naz Zarreen Oishie, Fariha Islam Mouri, and Sadia Mahjabin – You have loved

me beyond my utmost imagination and been there for me in my annihilating angst.

I would also like to thank Ohiduzzaman Shuvo, Sigma Jahan, Mahfujul Alam Antu,

Abu Sayed, Alamin Hossain, and Komol Hasan. Their friendship, encouragement,

and shared experiences have added vibrant colors to my academic journey, and I am

fortunate to have them by my side.

The collaborative efforts of the talented members of RAISELab, including Usmi

Mukherjee, Mehil B Shah, Asif Samir, and many others, deserve special recognition.

Their insightful discussions, intellectual contributions, and collective enthusiasm have

significantly enriched the development of my research. I extend my sincere gratitude

to each one of them.

xi

Furthermore, I would like to express my appreciation to Dalhousie University and

the Department of Computer Science for fostering an inspiring academic environ-

ment and providing the necessary resources for my research. Their commitment to

excellence and dedication to fostering intellectual growth have played a crucial role

in shaping the outcome of this thesis.

I would like to thank Metabob, our industry partner, for their generous supports

in terms of scholarships, computing resources and mentorship. During my internship

there, I have worked with quite a few passionate, joyous, and hardworking colleagues

and mentors including Ben Reaves, Avinash Gopal, Axel Lönnfors, and Massimiliano

Genta. There constant suggestions and counsel helped me take the quality of my

thesis to the next level.

Lastly, I extend my heartfelt thanks to all those who have supported me in various

ways throughout this research endeavor. Your encouragement, advice, and assistance

have been invaluable, and I am deeply grateful for your presence in my life.

xii

Chapter 1

Introduction

1.1 Motivation

A software bug (a.k.a. software defect) is an incorrect step, process, or data defini-

tion in a computer program that prevents the program from producing the correct

result [1]. Resolving software bugs has been one of the major tasks of software de-

velopment and maintenance [2]. According to several studies, it claims ≈ 50% of the

development time [3], consumes up to 40% of the total budget [4] and costs the global

economy billions of dollars each year [5], [6]. Software Quality Assurance (SQA) prac-

tices (e.g., code review, continuous integration) play a major role in preventing these

defects. However, despite using many SQA practices in the development phase, soft-

ware defects may still exist in the official release of a software product [7], [8]. A

recent study [9] suggests that only ≈ 3% lines of code from the whole release could

lead to most of the defects. Hence, prioritizing SQA efforts for the vulnerable areas

of the code is essential to ensure software quality. Nonetheless, even with a precise

defect prediction technique, it is the task of the developers to find the root cause of

the bugs in the source code and fix them. Reportedly, developers spend ≈ 50% of

their time comprehending software code during maintenance [10]. Thus, automated

identification of the vulnerable areas of the code with meaningful explanations of

potential defects could greatly benefit the developers in their tasks.

Defect prediction has been a popular research topic [11]–[14] that predicts defects

in software code. It helps prioritize the SQA efforts to highly suspicious areas of the

code [9], which could be helpful to improve the quality of a software product before

its release. Defects can be predicted at various abstraction levels of code such as

module [15], [16], file [17], [18], method [19], and line [9], [20], [21], where line-level

defect prediction provides the most fine-grained defect location. According to a recent

developer survey [9], line-level defect prediction would be more helpful for identify-

ing defective code than other abstraction levels (e.g., file-level). However, existing

1

2

techniques for line-level defect prediction [9], [20], [21] might fail to capture the local

context of a software defect and could be limited by the noise (e.g., repetitive key-

words, punctuation) in the source code document. As a result, these defect prediction

techniques might not be cost-effective when used in the real world [22].

While defect prediction techniques identify specific parts of the code as buggy,

they could only be more helpful with a meaningful explanation [23]. Developers are

thus generally responsible for understanding a bug from the identified code before

making any changes. Understanding bugs by looking at the code claims significant

debugging time. Unfortunately, neither many studies attempt to explain the bugs

in the source code to the developers, nor are they practical and scalable enough for

industry-wide use [23], [24]. Therefore, to prioritize or reduce SQA efforts, developers

need precise defect prediction (e.g., line-level) with meaningful, natural language

explanations about the defects.

1.2 Problem Statement

The majority of the works on defect prediction use Machine Learning (ML) or Deep

Learning (DL) based techniques [9], [20], [21], [25]–[29]. Recent approaches for line-

level defect prediction first train their ML models to predict the defective source

code documents [9], [20] or commits [21]. Then, if a file or commit is predicted as

defective, they identify the tokens in the file, which help explain the defects using

various techniques (e.g., attention mechanism [30]). Finally, they mark the code lines

from the source file as defective, containing many defect-explaining tokens. However,

such an approach poses two major challenges, as follows.

Existing models might not optimally represent code elements: In nat-

ural language texts, the semantics of a word is often determined by its context (e.g.,

surrounding words) [31]. Similarly, the surrounding tokens from both sides could

influence the meaning and intent of a code token. For example, Fig. 1.1 shows a

piece of defective code, where a code token – name str – contains an erroneous value

after the program execution. That is, inside the for loop, the variable name should be

concatenated (i.e., += operator) to name str instead of being assigned (i.e., = oper-

ator). Therefore, the code token name str is triggered to be buggy by another code

4

employ complex hand-crafted rules to detect the defects and vulnerabilities in source

code. Then, they use pre-defined message templates to explain the identified defects

and vulnerabilities. Unfortunately, their utility could be limited due to their high

false-positive results and the lack of actionable insights in their explanations [40]–[43].

In particular, their explanations are often too generic and unaware of the context due

to their pre-defined, templated nature [44]. Thung et al. [45] also suggest that static

analysis tools suffer from many false negative results, which could leave the software

systems vulnerable to defects.

Unlike traditional, rule-based approaches (e.g., static analysis tools), explaining

software defects can be viewed as a translation task, where the defective code is the

source language and the corresponding explanation is the target language. In recent

years, machine translation, especially Neural Machine Translation (NMT) [31], has

found numerous applications in several software engineering tasks including, but not

limited to, code summarization [46]–[48], code comment generation [49]–[52], commit

message generation [53]–[56], and automatic program repair [2], [57]–[59]. However,

explanation generation from the defective source code using NMT poses two major

challenges.

Understanding the structures of source code: Natural language is loosely

structured, which exhibits phenomena like ambiguity and word movement [31]. Word

movement is the appearance of words in a sentence in different orders but still being

grammatically correct. On the contrary, programming languages are more structured,

syntactically restricted, and less ambiguous [60]. From the two programs having the

same vocabulary, one could be buggy, and the other could be correct due to their

structural differences (e.g., Fig. 4.3b, 4.3c). Thus, capturing and understanding the

code structure is essential to explaining the defective code. Unfortunately, traditional

NMT-based techniques often treat source code as a sequence of tokens and thus might

fail to capture the structures of source code [61].

Understanding and detecting defective code patterns: From a high-level

perspective, NMT models translate words from the source language into words from

the target language. However, to generate explanations from the defective code,

the model must accurately reason about the bug from the defective code and its

5

structures. Such reasoning is non-trivial and warrants the model to be aware of

defective code patterns. Traditional NMT models might not be sufficient to tackle

all these challenges due to their simplified assumptions about sequential inputs and

outputs. According to Ray et al. [62], defective code is less repetitive than regular

code, which could exacerbate the above challenges.

As discussed above, the existing approaches for line-level defect prediction [9],

[20], [63] and explanation generation [35]–[39] might fall short. Thus, developers are

in dire need of tools and techniques that can accurately identify software defects

accompanied by meaningful explanations.

1.3 Our Contribution

In this thesis, we propose and evaluate two novel techniques that support developers

in identifying software defects at the line level and provide natural language explana-

tions for those defects. We analyze the structural aspect of source code and leverage

the contextual information from the code to predict the defective lines and generate

explanations for them.

In the first study, we propose – Bugsplorer – a novel deep-learning technique for

line-level defect prediction. It leverages a hierarchical structure of transformer models

to estimate the attention values for two levels of code elements: code tokens and code

lines. Bugsplorer can address the previously discussed challenges posed to line-level

defect prediction (see Section 1.2), which makes our work novel. First, unlike existing

techniques [9], [20], [21], Bugsplorer is directly trained for line-level defect prediction

and thus can better capture the local context of a defect. Second, unlike sequential

models used in several existing studies, Bugsplorer can learn the representation of a

code element by simultaneously capturing its context from both the left and the right

sides. Thus, our approach is better suited to predict line-level defects.

We train and evaluate Bugsplorer with two different benchmark datasets. The

first dataset [64] consists of ≈ 230K Python source code document from 24 GitHub

repositories. The second dataset [20] consists of 32 software releases that span nine

open-source Java software systems. We find that Bugsplorer can predict defective

code lines with 26-68% higher accuracy than the state-of-the-art technique [9]. It

can also reduce the effort in finding defective lines by 72-81%. We further show that

6

(a) optimizing deep learning models for line-level defect prediction and (b) generating

bidirectional representations of code elements (e.g., tokens and lines) can significantly

influence the performance of our technique.

In the second study, we propose – Bugsplainer – a novel transformer-based genera-

tive model that generates natural language explanations for software bugs by learning

from a large corpus of bug-fix commits (i.e., commits that correct bugs). Bugsplainer

can address the challenges posed to explanation generation (see Section 1.2), which

makes our work novel. First, Bugsplainer can leverage code structures in explanation

generation by applying structure-based traversal [47] to the defective code. Second,

we train Bugsplainer using both defective source code and its corrected version, which

helps the model understand and detect defective code patterns during its explanation

generation.

We train Bugsplainer with ≈ 150K bug-fix commits collected from GitHub and

evaluate using three different metrics – BLEU [65], Semantic Similarity [66] and Exact

Match. We find that the explanations from Bugsplainer are understandable and good

according to Google’s AutoML Translation Documentation1. We compare our tech-

nique with four appropriate baselines – pyflakes [39], CommitGen [53], NNGen [56],

and Fine-tuned CodeT5 [67]. Bugsplainer outperforms all four baselines in all metrics

by a statistically significant margin. One major strength of Bugsplainer is understand-

ing the structure of the code and buggy code patterns, where the baselines might be

falling short. To further evaluate our work, we conducted a developer study involving

20 developers from six countries, where the identities of both our tool and the base-

lines were kept hidden. The study result shows that explanations from Bugsplainer

are more accurate, more precise, more concise, and more useful compared to that of

the baselines.

1.4 Related Publications

Several parts of this thesis have been accepted and published at different confer-

ences. We provide the list of publications here. In each of these papers, I am the

primary author, and I conduct all the studies under the supervision of Dr. Masud

Rahman. While I wrote these papers, the co-authors took part in advising, editing,

1https://bit.ly/3wGpCIx

7

and reviewing the papers.

• Parvez Mahbub, Ohiduzzaman Shuvo, and M. Masudur Rahman. Explaining

Software Bugs Leveraging Code Structures in Neural Machine Translation. In

Proceeding of The 45th IEEE/ACM International Conference on Software En-

gineering (ICSE 2023), pp. 640-652, Melbourne, Australia, May 2023.

• Parvez Mahbub, Ohiduzzaman Shuvo, and M. Masudur Rahman. Defectors:

A Large, Diverse Python Dataset for Defect Prediction. In Proceeding of The

20th International Conference on Mining Software Repositories (MSR 2023),

pp. 393-397, Melbourne, Australia, May 2023.

• Parvez Mahbub, M. Masudur Rahman, Ohiduzzaman Shuvo, and Avinash Gopal.

Bugsplainer: Leveraging Code Structures to Explain Software Bugs with Neural

Machine Translation. In Proceeding of The 39th IEEE International Confer-

ence on Software Maintenance and Evolution (ICSME 2023), pp. 5, Bogota,

Columbia, October 2023 (to appear).

Based on this thesis work, two more papers are ready to be submitted to a major

software engineering conference.

• Parvez Mahbub, and M. Masudur Rahman. Predicting Line-Level Defects by

Capturing Code Contexts with Hierarchical Transformers. In Proceeding of

The 31st IEEE International Conference on Software Analysis, Evolution, and

Reengineering (SANER 2024), pp. 12, Rovaniemi, Finland, March 2024 (to be

submitted).

• Parvez Mahbub, and M. Masudur Rahman. Bugsplorer: Predicting Line-Level

Defects by Capturing Code Contexts with Hierarchical Transformers. In Pro-

ceeding of The 31st IEEE International Conference on Software Analysis, Evo-

lution, and Reengineering (SANER 2024), pp. 5, Rovaniemi, Finland, March

2024 (to be submitted).

Finally, the findings of our second study (Bugsplainer) inspired another research

paper in a major software engineering conference where I am the second author.

8

• Ohiduzzaman Shuvo, Parvez Mahbub, and M. Masudur Rahman. Recommend-

ing Code Reviews Leveraging Code Changes with Structured Information Re-

trieval. In Proceeding of The 39th IEEE International Conference on Software

Maintenance and Evolution (ICSME 2023), pp. 12, Bogota, Columbia, October

2023 (To appear).

1.5 Outline of the Thesis

The thesis contains five chapters in total. To deal with software defects effectively

and efficiently, we conduct two independent but interrelated studies, and this section

outlines different chapters of the thesis.

• Chapter 2 discusses several background concepts (e.g., embedding, transformers,

neural language modeling and structure-based traversal) that are required to

follow the rest of the thesis.

• Chapter 3 discusses our first study that proposes Bugsplorer, a novel transformer-

based technique that predicts defects at the line level leveraging a hierarchical

structure of transformer models.

• Chapter 4 discusses our second study that proposes Bugsplainer, a novel

transformer-based generative model to generate natural language explanations

for software defects by leveraging the structural information of code.

• Chapter 5 concludes the thesis with a list of directions for future works.

Chapter 2

Background

In this chapter, we introduce the required terminologies and concepts to follow the

remainder of this thesis. Section 2.1 introduces the Recurrent Neural Network (RNN)

– a neural network architecture specialized in handling sequential data. Section 2.2

discusses transformer – another neural network architecture that achieves state-of-the-

art performance for many text-oriented tasks. Section 2.3 discusses Neural Language

Modelling (NLM) – a deep learning based approach to learn the probability distri-

bution of a textual corpus. Section 2.4 illustrates neural machine translation – a

deep neural network-based approach for automated translation. Section 2.5 describes

embedding – a process of translating high-dimensional numerical data into a low-

dimensional semantic representation. Section 2.6 introduces Abstract Syntax Tree

(AST) – an abstract representation of the source code structure. Section 2.7 defines

structure-based traversal that converts AST into a sequence of tokens preserving the

structural information. Finally, Section 2.8 summarizes this chapter.

2.1 Recurrent Neural Network

Recurrent Neural Network (RNN) is a class of artificial neural networks that can

process sequential or time series data. Unlike feed-forward neural networks, RNNs

have a cyclic (hence recurrent) structure that allows them to use their internal state

(a.k.a. memory) to store information from previous inputs and influence the current

output. This memory enables them to model temporal dynamics and sequential

dependencies in the data. RNNs are widely used for tasks such as natural language

processing [68], [69], speech recognition [70], [71], and machine translation [47], [53],

where the order and context of the input elements are essential. Several baselines in

our studies use RNNs as a part of their technique [9], [53].

One of the main characteristics of RNNs is that they share parameters across

9

10

different time steps, which reduces the number of parameters and improves gener-

alization. However, this also poses challenges for learning, as RNNs need to prop-

agate errors and gradients through time using an algorithm called Backpropagation

Through Time (BPTT). BPTT can suffer from two problems: exploding gradients

and vanishing gradients. Exploding gradients occur when the gradient becomes too

large and causes numerical instability or divergence. Vanishing gradients occur when

the gradient becomes too small and prevents effective learning or convergence.

2.1.1 Long Short-term Memory and Gated Recurrent Unit Models

Long Short-term Memory (LSTM) [72] and Gated Recurrent Unit (GRU) [73] are two

types of RNNs that can minimize the exploding and vanishing gradient problems by

using a gating mechanism that controls the information flow inside the network. The

main idea is to introduce some components that can learn to selectively remember

or forget the previous hidden state and update it with the current input. This way,

the network can preserve the long-term dependencies and avoid the gradient from

becoming too large or too small. In LSTM, these components are called the cell state

and the hidden state, whereas in GRU uses only the hidden state. Both LSTM and

GRU can handle long-term dependencies better than vanilla RNNs, but they are not

perfect solutions [33], [74], [75]. They still have limitations, such as difficulty mod-

elling very long sequences, computational complexity, and lack of interpretability [76].

Among the baselines of our studies, CommitGen [53] uses LSTM as a part of their

technique, where DeepLineDP [9] uses GRU.

2.1.2 Attention Mechanism

Attention [33], [74] solves the problems of LSTM and GRU by reducing the depen-

dency on the hidden state while encoding the entire input sequence. LSTM and GRU

use a gating mechanism to control the information flow inside the network and pre-

serve the long-term dependencies. However, they still need to rely on a single hidden

state to summarize the input sequence, which might not be sufficient for remembering

very long sequences and capturing the context and relevance of each input element.

Attention, on the other hand, allows the model to access all the input states and

estimates their importance for the current output. This way, attention can overcome

11

the challenges of a single hidden state during input encoding. Attention mechanisms

can be classified into different categories, such as self-attention [77], encoder-decoder

attention (a.k.a. cross-attention) [33], [78], global attention [33], [75], and local atten-

tion [75]. Attention mechanisms have been widely used for various tasks that involve

sequential data, such as machine translation [9], [47], [53], [75], natural language pro-

cessing [68], [69], speech recognition [70], [71], and computer vision [74]. Several base-

lines in our study [9], [53] use the attention mechanism as a part of their techniques.

2.2 Transformers

Transformers are neural network architecture that relies on self-attention to encode

and decode sequential data, such as natural language, source code or images. Trans-

formers were first introduced by Vaswani et al. [30] as a novel way to overcome

the limitations of RNNs, such as capturing long-range dependencies and paralleliz-

ing computation. Since then, transformers have achieved state-of-the-art results in

various Natural Language Processing (NLP) tasks, such as machine translation [79],

text summarization [80], question answering [81], [82], and natural language gener-

ation [67], [83], [84]. Our first study – Bugsplorer, uses two different transformer

models in a hierarchy to estimate attention values for two levels of code elements:

code token and code line. Our second study – Bugsplainer, uses a transformer model

to generate explanations for the defective lines.

2.3 Neural Language Modeling

A statistical language model is a probability distribution over sequences of words [85].

Given a sequence of words, say of length L, the model assigns a probability to the

whole sequence as follows.

P (W) = P (w1w2...wL) (2.1)

A language model attempts to predict how frequently a phrase occurs within the

natural use of a language. The estimation of the relative likelihood of different phrases

can be used in many natural language processing tasks, especially ones that generate

text as an output. For instance, language models can be used for code comment

generation by predicting a word wL given all the previous words in the comment

12

before it [47] as follows.

wL = arg max
wv∈V

P (wv|wL−1wL−2...w1) (2.2)

where wL is the predicted next word, V is the vocabulary of words, and wL−1, wL−2, ..., w1

are the previously predicted words for the same comment.

Neural language models use neural networks to capture the complex patterns

and dependencies of natural language. Unlike traditional statistical language models

(e.g., n-grams) that rely on counting word frequencies, neural language models learn

distributed representations of words and sentences (e.g., word embedding) and use

them to compute the probabilities of the next word, given the context [86]. Our first

study – Bugsplorer – uses neural language modelling to predict the probability of a

line being defective, given a source code document. Our second study – Bugsplainer

– uses neural language modelling to generate explanations for defective source code.

2.4 Neural Machine Translation

Neural Machine Translation (NMT) is a deep neural network-based approach for au-

tomated translation [78]. In recent years, NMT has achieved rapid progress and has

drawn the attention of both the research community and the practitioners. Generally,

an NMTmodel is composed of two different blocks: encoder and decoder. The encoder

accepts an input sequence and produces a numerical, intermediate representation of

the input using Neural Language Modeling. Then, this intermediate representation

is passed to the decoder. Based on this intermediate representation, the decoder

generates the target sequence, one token at a time. While generating each token, all

the previously generated tokens are also passed to the decoder. Such generation of

tokens is known as autoregressive process, where the current output is based on all

previously generated outputs [30]. In our second study, we use Transformer [30], [84],

the state-of-the-art NMT model, as a part of Bugsplainer, to generate explanations

for the defective source code.

2.5 Embedding

Embedding is a process of translating high-dimensional data (i.e., one-hot encoding)

into low-dimensional numerical representations that capture the semantics or features

13

of the data [31]. Embeddings make it easier for the machines to learn from large inputs

by reducing the dimensionality and enabling numerical similarity measures [31], [87].

Both Bugsplorer and Bugsplainer use word embedding and positional embedding to

represent the source code in our machine-learning models.

2.5.1 Word Embedding

Word embedding is a distributed representation of words in a vector space model

where semantically similar words appear close to each other [31], [88]. An embedding

function E : W → R
d takes an input word w in the domain W and produces its

vector representation in a d-dimensional vector space [89]. The vector is distributed

in the sense that a single value in the vector does not convey any meaning; rather,

the vector as a whole represents the semantics of the input word. Word embedding

has the potential to overcome many limitations of traditional vector representations,

such as the sparse representation problem or the vocabulary mismatch issue [31].

2.5.2 Positional Embedding

Positional embedding is a way of incorporating positional information of the input

into a model that uses self-attention, such as a transformer [30]. Without the po-

sitional information, the model cannot retain the order of the tokens in the input

text and treats them as a bag of tokens. Positional embedding can be learnt dur-

ing the training phase [90] or be predetermined (e.g., using sinusoidal functions) [30].

The most common forms of positional embedding are Absolute Positional Embedding

(APE) and Relative Positional Embedding (RPE). APE assigns a vector to each input

element based on its absolute position in the input sequence and combines it with the

input token embedding. RPE represents the positional difference between each pair

of tokens as a vector and incorporates it into the input embedding. RPE can capture

long-range dependencies and handle variable-length inputs [91]. Bugsplorer uses posi-

tional embedding to incorporate the positional information into the input embedding.

16

used to represent textual data numerically. Finally, we discussed structure-based

traversal that is used to represent AST into sequential data.

Chapter 3

Bugsplorer: Predicting Line-Level Defects by Capturing

Code Contexts with Hierarchical Transformers

Software defects consume 40% of the total budget in software development and cost

the global economy billions of dollars annually. Unfortunately, despite the use of

many Software Quality Assurance (SQA) practices in software development (e.g.,

code review, continuous integration), software defects may still exist in the public

release of a software product. Therefore, prioritizing SQA efforts for the vulnerable

areas of the codebase is essential to ensure the high quality of a software release. In

this chapter, we discuss our first study – Bugsplorer – a novel deep-learning technique

aiming to reduce SQA costs by ranking the defect-prone lines.

The rest of this chapter is organized as follows. Section 3.1 introduces the study

and highlights the novelty of our contribution. Section 3.2 illustrates the usefulness

of our technique with a motivating example. Section 3.3 presents our proposed tech-

nique for predicting line-level defects by capturing code context with hierarchical

transformers. Section 3.4 discusses our experimental design, datasets, and evaluation

results. Section 3.5 introduces a working prototype of our study. Section 3.6 identifies

possible threats to the validity of our work. Section 3.7 discusses our manual analysis

exploring the strengths and weaknesses of our technique. Section 3.8 discusses the

existing studies related to our research. Finally, Section 3.9 summarizes this study.

3.1 Introduction

A software bug (a.k.a. software defect) is an erroneous step, process, or data defini-

tion in a computer program that leads to unexpected program behaviours [1]. The

resolution of bugs has been one of the major tasks of software development and main-

tenance. According to several studies, it consumes up to 40% of the total budget [4]

and costs the global economy billions of dollars each year [3], [24]. Software Quality

Assurance (SQA) practices play a critical role in preventing these defects. However,

17

19

surrounding words) [31]. Similarly, the surrounding tokens from both sides could in-

fluence the meaning and intent of a code token. For example, Fig. 3.1 shows a piece

of defective code, where a code token – name str – contains an erroneous value after

the program execution. That is, inside the for loop, the variable name should be con-

catenated (i.e., += operator) to name str instead of being assigned (i.e., = operator).

Therefore, the code token name str is triggered to be buggy by another code token,

“=”, which appeared later. The intent of the token name str is also influenced by

the earlier tokens, such as the token for, by repeating the assignment multiple times.

Such a phenomenon indicates that we need information on the surrounding tokens

from both sides to represent a token optimally. However, the techniques used in ex-

isting study [9] (e.g., Recurrent Neural Network) can only focus on a single direction

(a.k.a. unidirectional), which could be either earlier tokens or later tokens. Then,

they concatenate two unidirectional representations of a token’s context to generate

a bidirectional representation. However, Reimers et al. [32] suggest that simple con-

catenation of two vectors might not produce an optimal representation for an input

(e.g., a token or line).

Existing models might fail to capture the local context of a defect:

During the training phase of the existing techniques [9], [20], [21], the attention val-

ues [33] or importance values [34] for the tokens are optimized for file-level defect

prediction. In other words, these values are optimized to predict whether the whole

file is defective or not. However, source code documents are often quite large, con-

taining thousands of tokens, which could make them noisy. Therefore, the attention

or importance values from existing models might fail to properly capture the local

context of a software defect since, in a codebase, only 0.03-2.9% lines could be defec-

tive [9]. Thus, relying on these attention or importance values might not be sufficient

to detect line-level defects accurately.

In this study, we propose – Bugsplorer – a novel deep-learning technique for line-

level defect prediction. It leverages two transformer models in a hierarchical structure

to estimate the attention values for two types of code elements: code tokens and code

lines. Our solution can address the above challenges, which makes our work novel.

20

First, unlike existing techniques [9], [20], [21], Bugsplorer is directly trained for line-

level defect prediction and thus can better capture the local context of a defect.

Second, unlike sequential models, Bugsplorer can learn the representation of a code

element by capturing its context from both earlier and later tokens simultaneously.

Thus, our approach is better suited to predict line-level defects.

We train and evaluate Bugsplorer with two different benchmark datasets. The

first dataset [64] consists of ≈ 230K Python source code documents from 24 GitHub

repositories. The second dataset [20] consists of 32 software releases that span nine

open-source Java software systems. We find that Bugsplorer can predict defective

code lines with 26-68% higher accuracy than that of the state-of-the-art technique.

It can also reduce the effort in finding defective lines by 72-81%. Using an ablation

study, we further show that (a) optimizing deep learning models for line-level defect

prediction and (b) generating bidirectional representations of code elements (e.g.,

tokens and lines) can significantly influence the performance of our technique.

We make the following contribution in this study.

(a) A novel technique – Bugsplorer, for line-level defect prediction leveraging hier-

archically structured transformers.

(b) A large benchmark dataset [64] to evaluate line-level defect prediction.

(c) A comprehensive evaluation and validation of the Bugsplorer technique in terms

of both classification performance and cost-effectiveness using two different

benchmark datasets of Python and Java software systems.

(d) A replication package (Appendix A.2) that includes our working prototype and

other configuration details for the replication or third-party reuse.

3.2 Motivating Example

To demonstrate the capability of our technique – Bugsplorer, let us consider the

example in Fig. 3.2. The code snippet is taken from the ray-project/ray repository

at GitHub1. The buggy code attempts to return the driver for the Amazon Kinesis

1https://bit.ly/3N1NSOf

25

each token in these three vectors. That is, we query the line with all individual tokens

in the line to find the most informative tokens. Then, during the back-propagation

phase, each token learns to attend to all other tokens to determine their relative

importance within the same line. We aimed to learn an optimized representation of

each source code token for the objective – line-level defect prediction. The encoder

stack outputs a matrix of shape (L, T, dmodel). This means, at this stage, we still have a

vector representation of size dmodel for every token in the file. Interestingly, the vector

representations at this stage know other tokens in the same line and their relative

importance in predicting defective lines. Now, to generate a vector representation

for each line, we pass the matrix of shape (L, T, dmodel) to a feed-forward network

to capture line-level representation, commonly known as the pooling layer. Unlike

most CNN models that use a fixed pooling method (e.g., max pooling or average

pooling), most transformer models (e.g., RoBERTa, T5) use a feed-forward network

as the pooling layer. This layer takes the vectors representing all tokens in a line

as input and produces a single vector representing the source code line. During the

training, this layer learns to extract important information to detect defective code

lines. Thus, for each file, the pooling layer outputs a matrix of shape (L, dmodel),

where each row is a vector representing the semantics of a line. This matrix is the

final output of our line encoder.

3.3.4 Line Classification

The line classifier (Fig. 3.3, Step D) accepts the vector representation of each line

and determines their defect-proneness. Fig. 3.5b illustrates a high-level overview of

our Line Classifier module. It starts with a positional embedding layer that adds the

positional information of each line to their line embedding. Similar to the positional

embedding in the standalone Embedding Layer (i.e., Fig. 3.3, Step B), the positional

embeddings of lines are also learned during the training phase. The positional em-

bedding layer is followed by the same encoder stack as the line encoder. The encoder

stack accepts the line embeddings as the input and outputs a new representation of

the source code lines. In particular, the encoder stack applies self-attention to the

whole source document. In this output, each line attends to every other line to deter-

mine their relative importance within the same document. Our goal was to find an

26

optimized representation of each line by capturing not only their local but also global

contexts. This encoder stack has the same structures and hyper-parameters as the line

encoder; thus, the details were skipped for brevity. Then, the output of the encoder

stack is passed to a feed-forward network via a dropout layer. This feed-forward net-

work outputs two values for each line indicating whether the line is defective or not.

Finally, we pass these values to a softmax layer, which performs a non-linear trans-

formation to ensure the sum of two corresponding values is always 1. The softmax

function is defined in Eq. 3.2. Finally, we have a matrix of shape (L, 2), indicating

the probability of each line being defect-free and defective. During the testing phase,

we use the output of the line classifier to compare with the ground truth.

3.3.5 Optimization

After every training run, we identify the number of mistakes the model made using

a loss function. Then, an optimizer algorithm identifies which nodes are responsible

for these mistakes and adjust their weight accordingly. The amount of adjustment is

dictated by a hyper-parameter named learning rate. We use cross-entropy loss [96]

and AdamW optimizer [97] (Fig. 3.3, Step E). The cross-entropy loss is defined as the

number of bits needed to express the difference between two probability distributions.

Mathematically, it is defined as

CE(x, y) =

∑︁

c∈C wc(yc · logxc + (1− yc) · log(1− xc))
∑︁

c∈C wc

(3.3)

Here, C is the set of classes, wc is the weight or relative importance of class c, and

x and y are two probability distributions. In our case, x and y represent prediction

and ground truth, respectively.

AdamW is an improvement over the more common Adam optimizer [98]. The

main difference between AdamW and Adam is how they implement regularization

(i.e., preventing the model from overfitting). AdamW enables a model to optimize

some parameters while keeping the others unchanged. Such optimization has been

shown to lead a model to faster convergence and improved generalization perfor-

mance [97].

We also use a linear scheduler to reduce the learning rate over time. The conver-

gence of deep-learning models depends heavily on the learning rate. A large learning

27

rate may prevent reaching the minimum loss, while a small one slows down the train-

ing. This is particularly challenging for large models with millions of parameters.

Therefore, it is a common practice to start with a moderately high learning rate

(e.g., 5× 10−4) so that the model starts to learn fast and then to reduce it over time

when the model reaches near the minimum loss value. Existing baseline models like

RoBERTa [90] and CodeT5 [67] also used a linear scheduler to reduce their learning

rate over time, which might justify our choice.

3.4 Experiment

We evaluate Bugsplorer with two large datasets based on 9 Java and 24 Python

projects. We examine its classification performance as well as its ability to rank the

defective lines higher. In particular, we use five appropriate metrics from the relevant

literature – AuROC [99], Balanced Accuracy [100], Recall@Top20%LOC [9], [20],

[21], Effort@Top20%Recall [9], [21], and Initial False Alarm [9], [20], [21]. We also

examine whether optimizing the model for line-level defect prediction can improve

its prediction accuracy. To place our work in the literature, we also compare our

work with the existing state-of-the-art technique for line-level defect prediction. In

our experiments, we thus answer four research questions as follows.

• RQ1: How does Bugsplorer perform at line-level defect prediction in terms of

classification performance and cost-effectiveness?

• RQ2: How do (a) the bidirectional representation of code elements (tokens and

lines) and (b) the optimization of the model to line-level defect prediction affect

Bugsplorer’s performance?

• RQ3: How does the choice of transformer architecture affect the performance

of Bugsplorer?

• RQ4: Can Bugsplorer outperform the existing state-of-the-art technique in

terms of classification performance and cost-effectiveness?

28

Table 3.1: Summary of the benchmark datasets

Dataset Defectors LineDP

Files 213,419 73,395

Defective Files 93,668 (44%) 4,092 (6%)

Defect-Free Files 119,751 (56%) 69,303 (94%)

Defective Lines in Defective Files 4% 0.34%

3.4.1 Experimental Datasets

To evaluate Bugsplorer, we use a benchmark dataset of Java software systems –

LineDP [20] and construct another dataset – Defectors [64] – with Python software

systems. These two datasets are large enough to facilitate a comprehensive evaluation

and diverse enough (e.g., 25 organizations, 18 domains, and two programming lan-

guages) to offer generalizability in findings. Table 3.1 provides the summary statistics

of our benchmark datasets.

LineDP is a large dataset for line-level defect prediction containing 32 software

releases from nine Java-based open-source software systems. Each release contains

731 – 8K files, 74K – 567K lines of code, and 58K – 621K code tokens. All bug reports

were retrieved from the JIRA Issue Tracking System (ITS) for each system. Then,

the authors collect the bug-fixing changes associated with each bug-reporting issue.

They also used the SZZ algorithm [101] to identify defect-inducing changes from the

bug-fixing changes. LeClair et al. [102] suggest that the training set should contain

instances older than the testing set for an unbiased evaluation. Thus, we keep the

last release for each software system (total of 9) for testing, the second last release for

each system (total of 9) for validation, and the remaining early releases (total of 14)

for training. This provides ≈ 19K files for training, ≈ 10K for validation, and ≈ 24K

for testing.

Defectors is another dataset for line-level defect prediction that we constructed to

achieve the generalizability of our work. Even though there exist several benchmark

datasets for defect prediction, they are limited by several aspects. First, the perfor-

mance of deep-learning models often scales with the size of their dataset [103], [104].

29

However, most of the existing datasets used in defect prediction might not be large

enough [93] (e.g., Kamei et al. [105], McIntosh et al. [106]). Second, these datasets

also suffer from the class imbalance problem containing only 5%-26% defective in-

stances [93], [105], [106]. Such an imbalance could lead to sub-optimal performance

with any deep-learning models. Third, these datasets were constructed either from a

small number of projects [106] or the projects from a single organization [93], [107].

Such a choice limits the capability of the models to generalize their performances

across different domains and organizations. Finally, most of the existing datasets are

constructed from Java-based software systems.

To mitigate the challenges with existing datasets and to achieve generalizability in

our findings, we constructed Defectors – a large-scale dataset containing both source

code and their defective lines from 24 popular Python projects across 18 domains

and 24 organizations. We carefully identify defective source code files and their code

changes, following five levels of noise filtration recommended in the literature [93],

[105], [106]. Our dataset contains ≈ 213K source code files (≈ 93K defective and

≈ 120K defect-free). We discuss our dataset construction process as follows.

Project Selection

Most of the existing datasets used in defect prediction are constructed using Java

projects. To diversify our datasets, we thus choose Python-based projects. Similar to

existing studies [93], we sort all the Python repositories on GitHub in descending order

using their star counts. Then, we manually investigate this ordered list of repositories

sequentially to find mature and high-quality repositories. We also wanted to ensure

that each repository contains sufficient bug-fix Pull Requests (PRs). The following

steps summarize our repository selection process2.

1. If a repository has less than 2000 PRs, we discard it considering it is not mature

enough.

2. From a mature repository, we identify all the bug-related labels (e.g., bug,

bugfix).

2Accessed: December 2, 2022

30

3. We find the PRs that contains one of these labels. We accept the repository

if the number of such PRs is more than 100. We find 11 repositories with

consistently labeled PRs.

4. If the number of bug-fix PRs is less than 100, we attempt to find the issues

(a.k.a. bugs reports). In particular, we search for issues associated with one of

these labels and have a linked pull request resolving the issue. If the number

of such issues is more than 100, then we accept the repository. We find 12

repositories with consistent labeling and linked bug-fix PRs.

5. If the number of both PRs and issues are less than 100, we look for other

consistent ways of labeling issues. In particular, we read the titles of the most

recent 200 PRs and look for any consistent patterns. We find that the titles

of bug-fix PRs from one project start with a specific keyword (i.e., fix). The

titles of bug-fix PRs from another project consistently contain issue IDs from

a different bug report management website. We accept these two projects for

having such consistent patterns of labeling bug-fix PRs.

Following the steps above, we investigated the first 100 repositories from the or-

dered list (based on descending star count). From there, we ended up with a total

of 25 projects from various organizations and domains. Later, in our quality filtra-

tion stage, we discard a repository for having only one bug-fix commit matching our

criteria (see Section 3.4.1, Bug Inducing Commit Filtration). Table 3.2 enlists the

remaining 24 projects along with their domain and bug report management system.

Table 3.3 contains the ratio of defective and defect-free code changes in the projects.

Bug Fixing Commit Collection

During project selection, we identified the bug report management system of each

repository. We collect the bug-fixing commits from the repositories using that infor-

mation. From the 11 projects where bug-fix PRs are labeled with appropriate labels,

we collect the labeled PRs. From the 12 projects where issue reports are labeled with

appropriate labels, we first collect the issues and then collect their associated PRs.

We collect ≈ 39K bug-fix PRs from the 23 projects using these two approaches. For

the remaining two projects, we use slightly different approaches. getsentry/sentry

31

Table 3.2: Description of the projects used in Defectors

Project Domain Bug Report
Management∗

Lightning-AI/lightning deep-learning labeled PR

ansible/ansible automation labeled PR

apache/airflow automation labeled issue

celery/celery task queue, messaging labeled PR

commaai/openpilot autonomous driving labeled PR

django/django web framework separate website

encode/django-rest-framework web framework labeled PR

explosion/spaCy natural language
processing

labeled PR

getredash/redash data science labeled PR

getsentry/sentry logging PR title

google/jax deep learning labeled issue

home-assistant/core internet of things labeled PR

huggingface/ transformers deep learning labeled issue

localstack/localstack cloud, serverless labeled issue

numpy/numpy data science labeled PR

pandas-dev/pandas data science labeled PR

psf/black development tool labeled issue

pypa/pipenv development tool labeled issue

python/cPython programming language labeled PR

python-poetry/poetry development tool labeled issue

ray-project/ray machine learning, deep
learning

labeled issue

scikit-learn/scikit-learn machine learning labeled issue

scrapy/scrapy crawling, scraping labeled issue

ultralytics/yolov5 deep learning, image
processing

labeled issue

Total 18 distinct domains

∗labeled PR = bug fixing PRs are uniquely labeled, labeled issue = bug reporting issues are
uniquely labeled, separate website = bug reports are managed in a separate website,

PR title = bug fixing PR titles have unique pattern

32

Table 3.3: Number of defective, defect-free, and total source code documents used in
Defectors

Project Defective Defect-free Total

Lightning-AI/lightning 5,369 (48%) 5,793 (52%) 11,162

ansible/ansible 15,225 (35%) 28,340 (65%) 43,565

apache/airflow 4,788 (48%) 5,166 (52%) 9,954

celery/celery 805 (23%) 2,674 (77%) 3,479

commaai/openpilot 695 (44%) 885 (56%) 1,580

django/django 5,309 (47%) 5,934 (53%) 11,243

encode/django-rest-framework 269 (67%) 134 (33%) 403

explosion/spaCy 1,224 (50%) 1,231 (50%) 2,455

getredash/redash 170 (24%) 550 (76%) 720

getsentry/sentry 13,791 (37%) 23,694 (63%) 37,485

google/jax 443 (61%) 283 (39%) 726

home-assistant/core 21,535 (60%) 14,413 (40%) 35,948

huggingface/ transformers 658 (36%) 1,187 (64%) 1,845

localstack/localstack 925 (51%) 879 (49%) 1,804

numpy/numpy 466 (47%) 527 (53%) 993

pandas-dev/pandas 7,816 (50%) 7,766 (50%) 15,582

psf/black 228 (41%) 328 (59%) 556

pypa/pipenv 60 (50%) 61 (50%) 121

python/cPython 1,769 (24%) 5,507 (76%) 7,276

python-poetry/poetry 1,283 (57%) 949 (43%) 2,232

ray-project/ray 7,405 (42%) 10,336 (58%) 17,741

scikit-learn/scikit-learn 2,565 (51%) 2,434 (49%) 4,999

scrapy/scrapy 221 (52%) 204 (48%) 425

ultralytics/yolov5 649 (58%) 476 (42%) 1,125

Total 93,668 (44%) 119,751 (56%) 213,419

∗The values in the Defective, Defect-free, and Total columns are before creating train, validation,
and test splits

adopts a pattern where all bug-fix PRs start with the keyword – fix. Therefore, we

collect the PRs with such a pattern. Finally, django/django uses a separate Issue

33

Tracking System (ITS) website3 to manage their issues. In GitHub, its PRs contain

corresponding issue IDs from the ITS. We first collect the closed bug reports from

the ITS and then capture the corresponding PRs from GitHub. Once we have the

bug-fix PRs, we collect their merge commits as the bug-fix commits. This way, we

collect ≈ 51K bug-fix commits from the 25 projects.

Bug Inducing Commit Collection

In this step, we capture the bug-inducing commits (i.e., changes introducing a bug)

from the bug-fix commits using the SZZ algorithm [101]. Most of the studies in

defect prediction [93], [106]–[109] use the SZZ algorithm to identify the bug-inducing

changes. We use an implementation of the SZZ algorithm by the PyDriller tool [110].

This implementation takes a bug-fix commit as the input and returns a list of commits

that modify the defective lines in the input commit.

Bug Inducing Commits Filtration

The SZZ algorithm provides a considerable amount of false positives, i.e., identifies

defect-free commits as defective commits [107]. Thus, we apply a series of filtration

inspired by the literature [93], [105], [106] to minimize the number of false positives.

Filtration Using the Number of Linked Bug Inducing Commits: SZZ often

links several bug-inducing commits to a single bug-fix commit. This suggests that a

bug could occur due to non-coherent changes in hundreds or even thousands of files,

which is impractical. Therefore, existing studies discard the bug-fix commits that are

linked to too many bug-inducing commits [93], [105], [106]. Let inducer-count be the

number of bug-inducing commits linked to a single bug-fix commit. Keshavarz et al.

[93] suggest using Equation 3.4 as a threshold.

thresh(X) = mean(X) + std(X) (3.4)

In this work, we use a threshold of 14, derived from the above equation, to filter out

the noisy bug-fix commits.

3https://code.djangoproject.com

34

Filtration Using the Number of Linked Bug-fix Commits: Let fixer-count

be the number of bug-fix commits linked to a single bug-inducing commit. If a bug-

inducing commit has a fixer-count greater than one, it suggests that the commit

induced multiple bugs in the project. Similar to inducer-count, we apply Equa-

tion 3.4 to fixer-count as well. Thus, we discard the bug-inducing commits with a

fixer-count higher than 7 – derived from the above equation.

Filtration Using the Size of Changed Code: If a commit changes a large

number of lines or files, it indicates that the commit might contain tangled changes.

During our manual analysis, we found several commits that modified even up to 1,000

files. Often these commits indicate some administrative tasks, such as merging several

related projects into a single repository. Therefore, existing studies [93], [106] filter

out the large commits. Similarly, we filter out the bug-inducing commits that have

more than 1000 changed lines or have touched more than 100 files.

Filtration Using the File Type: In this dataset, we focus specifically on Python

source code. Such a language constraint makes performing static analysis on source

code easy. It also helps us capture the structural information from source code (e.g.,

changed methods). Even though Python is the main language of all our projects,

they contain a small fraction of non-Python files (e.g., configuration files). Thus, we

filter out the commits that do not modify any Python file.

Filtration Using the Nature of Change: All the changes in a source code file

might not be bug-inducing. For instance, comments or code formatting changes

generally do not introduce new bugs. As done by existing studies [93], [108], [111], we

thus discard such trivial changes. Trivial changes do not modify the abstract syntax

tree (AST) of the source code. Therefore, to identify trivial changes, we compare the

AST of the source code before the commit to the AST after the commit. If both

ASTs are the same, the commit performs a trivial change and is thus discarded. Our

implementation of this filtration is tolerant of syntax errors. That is, if the source

code is not syntactically correct, our implementation will still generate partial AST

for comparison.

35

After completing all these filtrations, we find that one project, namely – freq-

trade/freqtrade, contains only one bug-fix commit. We thus discard the project and

keep the remaining 24 repositories in our dataset.

Collecting and Sampling Defect-free Commits

We collect all the commits within the date range of the defective (i.e., bug-inducing)

commits from the same project. Then, we separate the defective commits from the

defect-free commits using the commit hashes. In software projects, defect-free com-

mits often outnumber defective commits by a large margin. Therefore, we down-

sample the defect-free commits to ensure a near 1:1 class ratio. We sample defect-free

commits from each project with a 95% confidence level and a 5% margin of error.

If a sample size is less than the number of defective commits, then we increase the

sample size to achieve parity. Finally, we discard the defect-free commits that do not

modify any Python file.

Construction of Training and Testing Data

We formalize our dataset by targeting line-level defect prediction from source code

documents. Here, the input is the content of a file after the commit. If the commit is

defective, the output is the list of added (i.e., defective) line numbers. Otherwise, the

output is an empty list. We make train, validation, and test sets based on both ran-

dom and timewise splitting approaches. In the random setting, we order the commits

randomly and take 10,000 commits for testing, 10,000 for validation, and the remain-

ing for training. In the timewise setting, we order the commits ascendingly based on

their commit time. Then we take the last 10,000 commits for testing, the second last

10,000 for validation, and the remaining for training. This way, we train the model

with older data and keep the latest data for evaluation and testing. The training splits

maintain a near 1:1 ratio of defective and defect-free instances, whereas test and val-

idation splits maintain the original distribution. In particular, we found that ≈ 7%

files in the codebase are defective and ≈ 4% lines are defective in the defective files.

36

3.4.2 Evaluation Metrics

We evaluate Bugsplorer both as a classification and a retrieval technique. We use five

different performance metrics from the relevant literature [9], [20], [63] to evaluate

our technique. Among these metrics, AuROC and balanced accuracy evaluate the

classification performance, while recall@top20%LOC, effort@top20%recall, and initial

false alarm evaluate the cost-effectiveness of the technique.

Area under the Receiver Operating Characteristic

AuROC is a measurement of how well a model can discriminate between two classes.

The Receiver Operating Characteristic (ROC) curve is the ratio between the True-

Positive Rate (TPR) and the False-Positive Rate (FPR) [99]. AuROC is the area

under this curve. Mathematically, it is defined as

AuROC =

∫︂

1

t=0

TPR/FPR

=

∫︂

1

t=1

(︃

TP

TP + FN
/

FP

TN + FP

)︃ (3.5)

where t is the threshold to convert probability scores to binary classes, and TP , FN ,

TN and FP refer to True Positive, False Negative, True Negative, and False Positive

instances, respectively.

Balanced Accuracy

Traditional accuracy measure is often biased toward the majority class [9]. Balanced

accuracy mitigates this problem by putting equal weight on the True-Positive Rate

(TPR) and the True-Negative Rate (TNR) [100]. Mathematically, it is defined as

BA = (TPR + TNR) / 2

=

(︃

TP

TP + FN
+

TN

TN + FP

)︃

/ 2
(3.6)

Recall@Top20%LOC

This metric measures the ratio between the number of defective lines in the top 20%

suspicious lines (i.e., with high bug probability) and the total number of defective

lines [9]. A value of 1 for Recall@Top20%LOC means that all defective lines can

37

be found within the top 20% suspicious lines marked by a technique. Assuming all

defective lines are distributed naturally, a random guessing model will achieve a score

of 0.20 for this metric. A metric value higher than 0.20 indicates that one can find

more defective lines with less effort by ranking defective lines higher in the list of

suspicious lines. Mathematically it is defined as

R@20 =

∑︁N20

i=1
Q(i)

Ndefective

Q(i) =

⎧

⎨

⎩

1, if li is defective.

0, otherwise.

(3.7)

whereN20 is 20% of the total number of lines, Ndefective is the total number of defective

lines, and li is the line with ith highest probability of being defective.

Effort@Top20%Recall

This metric measures the ratio between the number of suspicious lines we have to

investigate to find 20% of the defective lines and the total number of ranked lines [9].

A value of 1 for Effort@Top20%Recall means that to find all defective lines, all the

lines from the codebase need to be investigated as ranked by a technique. Assuming

all defective lines are distributed naturally, a random guessing model will achieve a

0.20 score for this metric. A lower metric value indicates one needs to put less effort

into finding the defective lines. Mathematically it is defined as

E@20 =
NB20

N
(3.8)

where NB20 is the number of lines to inspect to find 20% of the defective lines and

N is the total number of ranked lines.

Initial False Alarm

The Initial False Alarm (IFA) metric is the ratio between the number of misclassifi-

cations before the first true-positive and the total number of instances. A lower value

of IFA indicates that we have to put less effort into finding the defective lines.

38

3.4.3 Experiment Design and Hyper-Parameters

Tokenizer: We use a Byte-Pair Encoding (BPE) tokenizer that is pre-trained on

GitHub CodeSearchNet [112] dataset. The dataset contains ≈ 6M code snippets ac-

companied by documentation. Since the tokenizer is trained on code corpus (versus

natural language corpus), it encodes source code with 33-50% shorter length, com-

pared to that of GPT2 [83] or RoBERTa [90] tokenizer.

Encoder: For the two encoder stack in Line Encoder and Line Classifier, we use

RoBERTa [90] transformer architecture. We empirically find that RoBERTa performs

better for our research problem compared to other similar models (see Section 3.4.4).

We initialize learnable parameters of the encoder stack of the Line Encoder using

CodeBERTa pre-trained model from huggingface4. Similar to our tokenizer, this

model too is pre-trained with the CodeSearchNet dataset. We initialize the learnable

parameters of our second network, the Line Classifier, from normally distributed

random values with mean = 0 and standard deviation = 0.02.

Hyper-Parameters: The hyper-parameters we have used in our experiment can

be divided into two categories as described below.

Bugsplorer-specific parameters: During our experimentations, we set the

maximum number of tokens in a line to 16 (i.e., T = 16) as the threshold, which

covers 90% lines in Defectors and 99% lines in the LineDP dataset. Therefore, the

possibility of data loss due to the truncation is very low, which might justify our

choice. We set the maximum number of lines in a file to 512 (i.e., L = 512) as the

threshold. While splitting large files into multiple parts, we use 64 lines of overlap

(i.e., NO = 64). We make our train-validation-test datasets at the file level; thus,

multiple splits of the same file reside in the same dataset. This way, we ensure that

the overlapping between the splits does not affect our evaluation.

RoBERTa-specific parameters: We use 6 layers in the encoder stack (i.e.,

N = 6) in both the line encoder and line classifier. In the embedding layer, line

4https://huggingface.co/huggingface/CodeBERTa-small-v1

39

encoder, and line classifier, we use hidden states of size 768 (i.e., dmodel = 768). We

use 12 attention heads to parallelize our training process. During the training, we

use the AdamW [97] optimizer with a learning rate of 5 × 10−5. These values are

inspired by state-of-the-art transformer models [67], [94], [113]. The detailed number

of parameters and configurations of different components in Bugsplorer can be found

in our replication package.

Hardware: Our experiments are run on two NVidia A100 GPUs with 40GB of

memory each. We use batches of 16 files in each step (i.e., 16 files × 512 lines ×

16 tokens = 131, 072 tokens). The average model training time is two days for the

Defectors dataset and one day for the LineDP dataset. The average evaluation time

is ≈ 12 minutes for the Defectors dataset (i.e., ≈ 72 milliseconds per file) and ≈ 25

minutes for the LineDP dataset (i.e., ≈ 62 milliseconds per file).

Computation of Evaluation Metrics: We compute the metric values by counting

all the lines from all the files. In other words, each line constitutes a sample in our

experiment. While computing the metric values, we discard the overlapping lines. In

particular, for each overlap of size NO = 64, we take NO/2 = 32 lines from the first

split and the next 32 lines from the next split. The number of lines in the test set is

≈ 5.6M in the random split of Defectors, ≈ 5.8M in the timewise split of Defectors,

and ≈ 4.5M in the LineDP dataset.

3.4.4 Evaluating Bugsplorer

Answering RQ1 – Performance of Bugsplorer

In this experiment, we evaluate Bugsplorer using five metrics in two different aspects

– classification and cost-effectiveness. Fig. 3.6 and Table 3.4 show the metric scores

from our experiment.

First, we explore the performance of Bugsplorer using the random split of the

Defectors dataset. For this dataset, Bugsplorer scores 0.77 for balanced accuracy

and 0.83 for AuROC. Such values indicate a very good capability of distinguishing

true positive instances (i.e., defective lines) from true negative instances (i.e., defect-

free lines). In the case of cost-effectiveness metrics, Bugsplorer achieves 0.69 for

40

Table 3.4: Performance metric scores of Bugsplorer

Metric Defectors
(Random Split)

Defectors
(Timewise
Split)

LineDP LineDP
(Cross-Project
Split)

BalAcc ↑ 0.769 0.784 0.901 0.872

AuROC ↑ 0.829 0.841 0.920 0.892

Recall@20% ↑ 0.690 0.754 0.985 0.871

Effort@20% ↓ 0.025 0.027 0.037 0.036

IFA ↓ 0.000 0.000 0.006 0.004
∗ Up arrow (↑) indicates higher is better and down arrow (↓) indicates lower is better.

recall@20%LOC, which means with the help of our technique, an SQA engineer can

find 69% defective lines by only investigating 20% lines of the codebase. Similarly,

Bugsplorer archives 0.025 for effort@20%recall, which means to find the first 20%

defective lines, an SQA engineer has to investigate only 2.5% lines from the codebase.

Finally, an Initial False Alarm (IFA) score of ≈ 0.00 indicates a very minimal effort

to find the defective lines.

Even though the random split of the Defectors dataset provides an overview of the

capabilities of our technique, in the real world, Bugsplorer is meant to be trained on

historical data and can predict future data [102]. The timewise split of the Defectors

dataset and the LineDP dataset evaluates Bugsplorer in such scenarios. While the

timewise split of the Defectors dataset evaluates Bugsplorer using the latest instances

from all projects, the LineDP dataset evaluates Bugsplorer using the latest data from

each project. Looking at the metric scores, we see Bugsplorer continues to perform

well in timewise settings as well, interestingly, even better in some cases. For balanced

accuracy, Bugsplorer achieves metric scores 0.78–0.90, and for AuROC, it achieves

0.84–0.92. Such scores indicate Bugsplorer also retains its capability of distinguishing

in cross-project settings. Bugsplorer is cost-effective in timewise setting as well. For

recall@20%LOC, it scores 0.99 for the LineDP dataset, which means Bugsplorer can

help find nearly all defective lines by investigating only 20% of the suspicious lines.

For the effort@20%recall metric, Bugsplorer scores 0.027–0.037, which means an SQA

engineer has to investigate only 2.7%–3.7% suspicious lines to find 20% of the defective

lines. Finally, an Initial False Alarm (IFA) score of ≈ 0.00 – 0.01 indicates very

42

Table 3.5: Effectiveness of Bi-directional Representation and Line-Level Optimization

Dataset Metric Bugsplorer BugsplorerFile DeepLineDP

Defectors
(Random
Split)

BA ↑ 0.769 0.603 0.610

AuROC ↑ 0.829 0.610 0.633

Recall@20% ↑ 0.690 0.320 0.324

Effort@20% ↓ 0.025 0.111 0.089

IFA ↓ 0.000 0.000 0.002

Defectors
(Timewise
Split)

BA ↑ 0.784 0.628 0.561

AuROC ↑ 0.841 0.630 0.518

Recall@20% ↑ 0.754 0.380 0.281

Effort@20% ↓ 0.027 0.085 0.105

IFA ↓ 0.000 0.000 0.000

LineDP

BA ↑ 0.901 0.605 0.538

AuROC ↑ 0.920 0.556 0.510

Recall@20% ↑ 0.985 0.251 0.224

Effort@20% ↓ 0.037 0.167 0.191

IFA ↓ 0.006 0.006 0.007

can significantly reduce costs even in cross-project settings.

Summary of RQ1: Bugsplorer shows promising results for line-level defect

prediction with a balanced accuracy up to 0.90 and an AuROC up to 0.92. It

can also rank the first 20% of the defective lines from the codebase within the

top 2-3% of its suspicious lines, which is promising.

Answering RQ2 – Effectiveness of Bi-directional Representation of Code

Contexts and Line-Level Optimization

In this experiment, we analyze the effectiveness of (a) generating bidirectional rep-

resentations of code elements (e.g., tokens and lines) instead of concatenating two

unidirectional representations and (b) line-level optimization during model train-

ing. To do so, we introduce a new variant of Bugsplorer – BugsplorerFile, which is

trained with the objective of file-level defect prediction. We compare (a) DeepLineDP

43

and BugsplorerFile to determine the effectiveness of bidirectional representation and

(b) BugsplorerFile and Bugsplorer to determine the effectiveness of line-level opti-

mization during model training. Table 3.5 shows the performances of Bugsplorer,

BugsplorerFile, and DeepLineDP. Fig. 3.7 illustrates their performances using box-

plots. Since, for certain metrics, increments are better, while for other decrements

are better, we use the terms better performance or worse performance during our dis-

cussion. We also mark them using up-arrow and down-arrow in Table 3.5 respectively.

BugsplorerFile uses a transformer model to encode source code elements (e.g.,

tokens or lines), where DeepLineDP [9] uses a Recurrent Neural Network (RNN)

model. Using a transformer model lets BugsplorerFile focus on surrounding tokens

from both sides of a token simultaneously, leading to bidirectional representations of

the lines. On the contrary, DeepLineDP generates two unidirectional representations

of each line (one is left to right, and the other is right to left) and then concate-

nates them to generate a representation of the lines. Therefore, any difference in the

performances of BugsplorerFile and DeepLineDP can be attributed to generating bidi-

rectional representations. While comparing the performance between BugsplorerFile

and DeepLineDP from Table 3.5, we see that in most cases, BugsplorerFile shows

better performance. For the timewise split of Defectors, BugsplorerFile shows 12-35%

better scores in balanced accuracy, AuROC, recall@20%LOC, and effort@20%recall

metrics. Similarly, for the LineDP dataset, BugsplorerFile shows 9-15% better perfor-

mance in all metrics. Finally, we see a mixed trend for the random split of Defectors.

DeepLineDP shows a 1-3% better performance for balanced accuracy, AuROC, and

recall@20%LOC metrics, which are marginally better. For the effort@20%recall met-

ric, DeepLineDP archives 24% better performance (actual metric score reduced by

only 0.022). Nonetheless, for the initial false alarm metric (lower is better), the score

of DeepLineDP increased from ≈ 0.0 to 0.002. This means to find the first defective

lines with DeepLineDP, one has to investigate 0.2% lines of the codebase, while the

amount is ≈ 0% for Bugsplorer. Given the evidence above, our choice of generating

bidirectional representation using a transformer network might be justified.

While BugsplorerFile is trained with a file-level defect prediction objective,

Bugsplorer is trained with a line-level defect prediction objective. Therefore, any dif-

ference in their performances can be attributed to their optimization level. Table 3.5

44

shows that Bugsplorer outperforms BugsplorerFile in nearly all metric scores across

all datasets. For balanced accuracy, Bugsplorer shows 25-49% better performance,

while for AuROC, the improvement is 33-65%. Such improvements imply that the

line-level optimization during model training (i.e., Bugsplorer) leads to better classi-

fication performance with a strong capability of discriminating between defective and

defect-free lines. In cost-effectiveness metrics, we see even bigger improvements. The

line-level optimization in defect prediction achieves 98-292% better scores in terms

of recall@20%LOC metric. Similarly, the effort@20%recall score is 68-78% better.

Finally, the initial false alarm score is the same for both variants across all datasets.

All these improvements in metric scores suggest that line-level optimization is a much

better choice than file-level optimization during model training, which justifies our

choice.

Summary of RQ2: Both the bi-directional representation of code elements

and the line-level defect prediction objective lead to better performance in our

technique. Given all the evidence above, our choices regarding token represen-

tation and model optimization might be justified.

Answering RQ3 – Impact of the Choice of Transformer Architecture on

Bugsplorer

In this experiment, we investigate how our choice of the transformer architecture in

the encoder stack affects the performance of Bugsplorer. In particular, we experi-

ment with three popular transformer-based encoder architectures – RoBERTa [90],

BERT [79], and T5 [84]. Among them, RoBERTa is the default choice of Bugsplorer.

We choose these three architectures because of their extensive use in the software

engineering domain and state-of-the-art performances with relevant benchmarks like

CodeSearchNet [112] and CodeXGLUE [114]. To initialize the learnable parameters

of Line Encoder (Section 3.3.3), we use CodeBERT [94] for BERT, CodeBERTa for

RoBERTa, CodeT5 [67] for T5. All of these models were pre-trained with the Code-

SearchNet dataset. The Line Encoder produces encoding for each line and passes

it to the Line Classifier to predict whether a line is defective or not. We initialize

the learnable parameters of Line Classifiers using normally distributed random values

45

Table 3.6: Performance of Bugsplorer with different transformer architectures

Dataset Metrics RoBERTa BERT T5

Defectors
(Random Split)

BA ↑ 0.769 0.769 0.709

AuROC ↑ 0.829 0.828 0.795

Recall@20% ↑ 0.690 0.690 0.572

Effort@20% ↓ 0.025 0.025 0.029

IFA ↓ 0.000 0.000 0.000

Defectors
(Timewise Split)

BA ↑ 0.784 0.778 0.710

AuROC ↑ 0.841 0.845 0.791

Recall@20% ↑ 0.754 0.754 0.577

Effort@20% ↓ 0.027 0.027 0.036

IFA ↓ 0.000 0.000 0.000

LineDP

BA ↑ 0.901 0.849 0.909

AuROC ↑ 0.920 0.897 0.914

Recall@20% ↑ 0.985 0.871 0.995

Effort@20% ↓ 0.037 0.037 0.034

IFA ↓ 0.006 0.006 0.006

in all variants. Note that even though a T5 model contains both an encoder and a

decoder, we use only the encoder part in our work. Table 3.6 shows the performance

of Bugsplorer with these three transformer architectures. Since, for some metrics,

increments are better while for other decrements are better, we use the terms better

performance or worse performance, respectively, in our discussion. We also mark

them using up-arrow and down-arrow in Table 3.6 respectively.

When comparing BERT with RoBERTa, there is no clear winner. In most cases,

they achieve nearly the same performance. Even when their scores differ, the differ-

ence is only marginal in a few cases. In particular, for the random split of Defec-

tors, both of them achieve the same scores for balanced accuracy, recall@20%LOC,

effort@20%recall, and initial false alarm metrics. Only for the AuROC metric,

RoBERTa shows 0.2% worse performance, which is marginal. For the timewise

split of Defectors, the performance of RoBERTa varies from 0.5% worse to 0.8%

better in balanced accuracy, AuROC, recall@20%LOC, and effort@20%recall met-

rics. For the initial false alarm metric, the score remains the same. For the LineDP

46

dataset, RoBERTa shows 2-12% better performance in balanced accuracy, AuROC,

and recall@20%LOC metrics. Both architectures achieve the same performance for

effort@20%recall and initial false alarm metrics. Considering the trend in these met-

ric scores, we see that the performance of RoBERTa is marginally better than that

of BERT. Since the RoBERTa model is a successor of the BERT model, such a trend

in their performances might be expected.

When comparing RoBERTa with T5, RoBERTa consistently performs better than

T5 for both of the Defectors datasets but shows dissimilar patterns for the LineDP

dataset. For the random split of Defectors, RoBERTa shows 4-17% better perfor-

mance in balanced accuracy, AuROC, recall@20%LOC, and effort@20%recall metrics.

For the timewise split of Defectors, RoBERTa consistently shows better performance

(6-34%) for balanced accuracy, AuROC, recall@20%LOC, and effort@20%recall met-

rics. However, for the LineDP dataset, we see some mixed trends. RoBERTa

shows 1% worse performance in balanced accuracy and recall@20%LOC metrics while

achieving 1% better performance for the AuROC metric. Nonetheless, for the ef-

fort@20%recall metric, RoBERTa shows 9% worse performance. Finally, for the ini-

tial false alarm, both of the architectures perform the same across all datasets. Thus,

T5 and RoBERTa show mixed performance trends in the LineDP dataset, whereas

T5 consistently performs worse in the Defectors dataset. Since T5 is designed for

both encoding and decoding, whereas RoBERTa is specialized for encoding, such

performance differences among them might be explainable.

Summary of RQ3: RoBERTa shows a mixed result when compared to T5,

and comparable performance when compared to BERT. Such findings indicate

that even though having two transformer models is essential in our technique,

the choice of their architecture does not consistently impact Bugsplorer. It

further confirms that the performance of Bugsplorer comes from its bidirectional

representation and line-level optimization.

Answering RQ4 – Comparison with the Existing Baseline Technique

In this research question, we compare Bugsplorer with the state-of-the-art tech-

nique for line-level defect prediction. In particular, we compare Bugsplorer with

48

for the initial false alarm metric, Bugsplorer shows 0-97% better performance. Thus,

Bugsplorer has significantly better classification capability than the baseline while

being more cost-effective at the same time.

Similar to Bugsplorer, DeepLineDP uses a hierarchical structure of neural net-

works. However, it uses two RNNs (inherently GRUs) to build the model, whereas

Bugsplorer uses two transformer networks based on the RoBERTa architecture [90].

Due to a sequential architecture like RNN, DeepLineDP can represent a line only uni-

directionally, either from left to right or right to left. Then it concatenates these two

representations to make a bidirectional representation. On the contrary, Bugsplorer

can directly make a bidirectional representation of a line via the Line Encoder (Sec-

tion 3.3.3). Furthermore, during the training phase, Bugsplorer is optimized for

line-level defect prediction, whereas DeepLineDP is optimized for file-level defect

prediction. Both of these novel contributions (i.e., bidirectional representation and

line-level optimization) are proven to be beneficial in RQ2. Thus, Bugsploer’s better

performance over DeepLineDP is explainable.

Summary of RQ4: Bugsplorer outperforms the state-of-the-art technique for

line-level defect prediction. Bugsplorer is 26-68% more accurate in predicting

the defective lines from source code. It can also reduce the effort in finding

defective lines by 72-81%

3.5 Prototype

In this section, we discuss our web-based prototype for the Bugsplorer technique. It

provides easy access to our technique to the end-users and provides various features

to find defective lines. Fig. 3.8 shows the user interface of our tool. The prototype

consists of three components, Web-based Front End, Application Server, and Defect

Predictor, described below.

50

First, it performs the pre-processing on the source code as outlined in Section 3.3.1.

During this pre-processing, the source code document is divided into lines, and each

line is divided into tokens. Then, each token is encoded (i.e., mapped) to an integer

value denoting that token. After the tokenization and encoding, it calls the appropri-

ate defect predictor based on the provided programming language name. The defect

predictor returns the probability of each source code line being defective. Based on

these probability values, the application server generates the ranked list of vulnerable

lines and returns them to the front end.

3.5.3 Defect Predictor

The defect predictor represents our Bugsplorer technique. It comes in two variants

– Python and Java. The application server is responsible for calling the appropriate

defect predictor based on the information provided by the front end. Both of these

defect predictors work the same way, but their underlying models are trained on two

different datasets. While the defect predictor for Python is trained on the Defec-

tors [64] dataset, the defect predictor for Java is trained on the LineDP dataset [20].

As described in the Methodology (Section 3.3), it comprises a hierarchical structure of

transformer networks containing Embedding, Line Encoder, and Line Classifier sub-

components. Using these sub-components, the defect predictor analyzes the defect-

proneness measure of each line from the source code document. These measures are

then captured by the application server and sent to the front end of the prototype.

3.6 Threats To Validity

Threats to internal validity relate to experimental errors and biases. Re-

implementation of the existing techniques could pose a threat. However, while im-

plementing the DeepLineDP technique [9], we use the replication package provided

by the authors. Possible errors in the implementation of our technique could also

pose a threat. To avoid such errors, we carefully developed the technique with several

rounds of revision followed by rigorous testing. Therefore, the threats to the internal

validity posed by Bugsplorer might be minimal.

51

Threats to construct validity are factors that may affect how well a test or

measure assesses what it is supposed to measure. We use five evaluation metrics

to evaluate Bugsplorer in both classification and cost-effectiveness aspects. Given

the severe class imbalance in datasets (less than 1% defective lines), we chose the

metrics that are minimally affected by class imbalance. Furthermore, these metrics

were also widely used by similar prior works [9], [20], [21]. The reliability of the

datasets used is another threat since some bug-fix commits might make additional

changes. To minimize the threat, we perform five levels of filtration suggested in

the literature [93], [105] to ensure good quality of the commits. Since Bugsplorer

only takes a single file as input, its capability of finding defects that span multiple

files (e.g., incorrect API use) might pose a threat. However, Bugsplorer learns to

predict defective lines based on previous mistakes. Thus, it could detect some of such

defects if the training dataset contains similar instances. In other words, even though

Bugsplorer accepts single-file input, it could identify defects related to external files.

Nonetheless, we acknowledge that our technique might be limited in this regard.

Threats to external validity relate to the generalizability of our technique. We

evaluate Bugsplorer using two datasets constructed from Python and Java software

systems. These datasets contain 33 software systems in total. Furthermore, the

software systems in the Python dataset – Defectors – are from 18 application domains

and 24 organizations. Thus, our evaluation using these large and diverse datasets

could mitigate the threats to external validity.

3.7 Manual Analysis

In this section, we perform a qualitative analysis to investigate in which scenarios

Bugsplorer shines and in which it struggles. In particular, we categorized the pre-

dictions as false positives, false negatives, true positives, and true negatives. Then,

we analyze 100 random samples from each category to find interesting patterns. We

summarize our findings below.

52

False Positives

The most common pattern in this category is the use of long comments that look

like code. In particular, more than half of our samples (52) have comments spanning

three or more lines. Example 1 in Table 3.7 shows such a case where an IPython

code example is added as a comment and spans eight lines. Embedding structural

information with the source code [19], [113] might mitigate such issues. Another

common pattern (Example 2) is the use of valid but rare syntax. Declaring a class

within a class is a valid but rarely used Python syntax. Therefore, Bugsplorer

might predict it as a defective line since it learns from common patterns in the

training data. In the future, training the model with code examples from the official

documentation of the programming language might mitigate the issue.

False Negatives

The most common pattern in the group is the code that depends on the environment.

It is hard to know whether such code is defective or not just by looking at the code

(a.k.a. extrinsic bug) [116]. Some common examples of such a pattern are reading

environment variables, reading a file, or programs concerning operating systems or

software versions (Example 3). Nearly one-fifth of our samples from this group (21)

follow this pattern.

True Positives

An interesting finding is that Bugsplorer cannot only find bugs in various program-

ming languages (e.g., Python or Java), but it also knows the common tools. For

instance, Example 4 shows a git command that uses the missing=print option, which

is added in version 2.22. Bugsplorer identifies the corresponding line as defective. The

fixed version of that code5 also reflects the issue. Another interesting finding is that

Bugsplorer is precise in identifying blocks of defective lines (Example 5). Bugsplorer

is good at identifying security vulnerabilities as well. Example 6 shows a case where

the password is hardcoded, whereas it should be read from some configuration file.

Bugsplorer was able to pinpoint the line containing this security vulnerability.

5https://bit.ly/3LnpaXj

53

Table 3.7: Examples of classification by Bugsplorer

Eg Category Code∗

1 FP 1 >>> from torch import Tensor

2 >>> class ExampleModule(DeviceDtypeModuleMixin):

3 ... def __init__(self , weight: Tensor): <---

4 ... super().__init__ ()

5 ... self.register_buffer(’weight ’, weight)

6 >>> _ = torch.manual_seed (0)

7 >>> module = ExampleModule(torch.rand(3, 4))

8 >>> module.weight #doctest: +ELLIPSIS

2 FP 1 class ApiKeyForm(forms.ModelForm):

2 allowed_origins = OriginsField(label=_(’Allowed Domains ’),

required=False ,

3 help_text=_(’Separate multiple entries with a newline.’))

4

5 class Meta: <---

6 model = ApiKey

7 fields = (’label ’, ’scopes ’)

3 FN 1 elif is_path:

2 if compat.PY2:

3 # Python 2

4 f = open(path_or_buf , mode) <---

5 elif encoding:

6 # Python 3 and encoding

7 f = open(path_or_buf , mode , encoding=encoding)

8 else:

9 # Python 3 and no explicit encoding

10

4 TP 1 # Now we need to find the missing filenames for the subpath we

want.

2 # Looking for this ’rev -list’ command in the git --help? Hah.

3 cmd = f"git -C {tmp_dir} rev -list --objects --all --missing=

print -- {subpath}" <---

4 ret = run_command(cmd , capture=True)

5 TP 1 try {

2 // delete done file

3 boolean deleted = operations.deleteFile(doneFileName); <---

4 log.trace("Done file: {} was deleted: {}", doneFileName ,

deleted); <---

5 if (! deleted) { <---

6 log.warn("Done file: " + doneFileName + " could not be

deleted"); <---

7 }

8 } catch (Exception e) {

9 handleException(e);

10 }

6 TP 1 properties.setProperty("user","cloud");

2 properties.setProperty("password","scape"); <---

∗A left arrow (<---) indicates the predicted buggy line.

54

True Negatives

Unfortunately, finding any pattern within this group is hard since it contains all the

correctly classified defect-free code.

3.8 Related Work

In this section, we discuss the related work on defect prediction from the following

four perspectives.

3.8.1 Defect Prediction at Different Levels of Granularity

Defect prediction has been a popular research topic for the last few decades. Defects

can be predicted at different granularity levels such as module [15], [16], file [18], [117],

method [19], [118], and commit [21], [63], [105], [106], [119]–[121]. Finding the actual

lines of code that contain defects still consumes significant effort from developers.

Two recent independent studies by Wan et al. [122] and Pornprasit et al. [9] showed

that practitioners could benefit from fine-grained defect prediction such as line-level

defect prediction. It can help developers focus their SQA efforts on the vulnerable

parts of the source code.

3.8.2 Machine Learning Approaches for Defect Prediction

Machine learning approaches for defect prediction primarily rely on different metric

scores to identify defective entities (e.g., file or commit). Kamei et al. [105] perform

a large-scale study on change-level defect prediction using six open-source and five

closed-source projects. They are the first to coin the phrase just-in-time (JIT) defect

prediction. They proposed a total of 14 metric scores to predict defects at the file level

with a logistic regression model. McIntosh et al. [106] conduct a time-series analysis

on JIT defect prediction using two rapidly evolving projects. They extract 17 code

properties and showed that the importance of these code properties in predicting the

defective commits change over time. Jiang et al. [109] attempt to personalize defect

prediction for different developers. They used bag-of-words and characteristics vector

(i.e., count of each node type in AST) to predict the defects at the file level. Even

55

though these works lay the ground for further defect prediction research, they are

often limited by their coarse granularity and mediocre performance.

3.8.3 Deep Learning Approaches for Defect Prediction

Previous deep learning-based defect prediction models used various architectures to

extract semantic and syntactic features from source code. Wang et al. [25] proposed

a Deep Belief Network (DBN) architecture that represents a source code document

using semantic features derived from the Abstract Syntax Tree (AST). Li et al. [26],

[27] proposed a Convolutional Neural Network (CNN) architecture that learns the

semantic and structural features of source code documents from the token sequences

and the AST, Program Dependency Graph (PDG) and Data Flow Graph (DFG).

Dam et al. [28] and Zou et al. [29] individually proposed a Long Short-term Memory

(LSTM) architecture that can learn the semantic and syntactic features of source

code documents from the token sequences and the CFG. However, these models only

predicted defects at the file level, which is too coarse-grained. In contrast, our deep

learning-based approach predicts defects at the line level and thus can identify defec-

tive lines of source code.

3.8.4 Line-Level Defect Prediction

Prior studies attempt to predict defects at the line level using various approaches, in-

cluding static analysis [35]–[39]. However, static analysis tools produce too many

false positive results [105] as well as false negative results [45]. In the last few

years, line-level defect prediction with an explainable model has been popular. Wat-

tanakriengkrai et al. [20] train a model to predict defects at the file level. Then, they

attempt to explain the predictions of the model using LIME [34]. LIME provides im-

portance values for each input (i.e., tokens), which, in turn, is used to find defective

lines containing highly important tokens. Later, Pornprasit et al. [21] adapted this

technique to identify defective lines from commit diffs. Recently, Pornprasit et al. [9]

proposed DeepLineDP that trains a Gated Recurrent Unit (GRU) model [73] with

attention mechanism [33] to predict defects at the file level. Then, they rank the lines

with highly attended tokens as the candidate defective lines. The core limitation of

56

these approaches is that their models learn with a file-level defect prediction objec-

tive. That is, these models originally learn to predict whether a file is defective or

not. Therefore, their attention or importance values might not be targeted towards

a buggy line and its surrounding lines but rather be scattered over the whole file. As

a result, when these values are later used to predict defects at the line level, their

performance could be sub-optimal. On the contrary, Bugsplorer directly learns to

predict defects at the line level and thus can focus on a finer-grained context of each

line.

3.9 Summary

To summarize, in this study, we propose a novel transformer-based technique to

predict defects at the line level. Our evaluation with five performance metrics shows

that Bugsplorer has a very good capability of predicting defective lines with 26-72%

better accuracy than the state-of-the-art technique. It can rank the first 20% defective

lines within the top 1-3% vulnerable lines of the codebase. Thus, Bugsplorer has the

potential to significantly reduce SQA costs by ranking defective lines higher. While

Bugsplorer identifies certain parts of the code as buggy, it could be less helpful without

any meaningful explanation [23]. Thus, in Chapter 4, we propose a novel technique

to generate natural language explanations for software defects by learning from a

large corpus of defect-fixing commits. Our evaluation using three performance metrics

shows that Bugsplainer can generate understandable and good explanations according

to Google’s standard and can outperform multiple baselines from the literature.

Chapter 4

Bugsplainer: Explaining Software Defects Leveraging Code

Structures in Neural Machine Translation

Our first study in Chapter 3 proposes Bugsplorer that can predict defects at the line

level accurately and cost-effectively. However, these predictions could be less helpful

without any meaningful explanation about the defects [23]. In this study, we propose

Bugsplainer, a transformer-based generative model that generates natural language

explanations for software defects leveraging structural information and defective pat-

terns from the source code. Our evaluation using three performance metrics shows

that Bugsplainer can generate understandable and good explanations according to

Google’s standard and can outperform multiple baselines from the literature. We

also conducted a developer study involving 20 participants where the explanations

from Bugsplainer were found to be more accurate, more precise, more concise, and

more useful than the baselines.

The rest of this chapter is organized as follows. Section 4.1 introduces the study

by outlining current solution for the problem, addressing the gap in the literature, and

our contribution. Section 4.2 illustrates the usefulness of our technique with a moti-

vating example. Section 4.3 presents our proposed technique for explaining software

defects leveraging code structure in neural machine translation. Section 4.4 discusses

our experimental design, datasets, and evaluation results. Section 4.5 introduces a

working prototype of our study. Section 4.6 identifies possible threats to the validity

of our work. Section 4.7 discusses the existing studies related to our research. Finally,

Section 4.8 summarizes this study.

4.1 Introduction

A software bug is an incorrect step, process, or data definition in a computer program

that prevents the program from producing the correct result [1]. Bug resolution is one

of the major tasks of software development and maintenance. According to several

57

58

studies, it consumes up to 40% of the total budget [4] and costs the global economy

billions of dollars each year [3], [24].

When a defect prediction tool predicts a software bug, the assigned developer at-

tempts to understand the source code responsible for the bug and then corrects the

code. Over the last five decades, there have been numerous approaches to automati-

cally find the location of a bug [24], [123]. However, they often identify specific parts

of the code as buggy without offering any meaningful explanation [23]. Developers

are thus generally responsible for understanding a bug from the identified code before

making any changes. Understanding bugs by looking at the code claims significant

debugging time. Developers spend ≈ 50% of their time comprehending the code dur-

ing software maintenance [10]. However, neither many studies attempt to explain the

bugs in the source code to the developers, nor are they practical and scalable enough

for industry-wide use [23], [24].

Explaining a bug in the software code is essential to fix the bug, but a highly

challenging task. Many static analysis tools such as FindBugs [35], PMD, SonarLint,

PyLint, and pyflakes [39] employ complex hand-crafted rules to detect the bugs and

vulnerabilities in software code. They use pre-defined message templates to explain

the bugs and vulnerabilities upon detection. Unfortunately, their utility could be

limited due to their high false-positive results and the lack of actionable insights in

their explanations [40]–[42]. In particular, their explanations are often too generic

and unaware of the context due to their pre-defined, templated nature [44]. Thung

et al. [45] also suggest that static analysis tools suffer from a large number of false

negative results, which could leave the software systems vulnerable to bugs.

Unlike traditional, rule-based approaches (e.g., static analysis tools), explaining

software bugs can be viewed as a translation task, where the buggy code is the source

language and the corresponding explanation is the target language. In recent years,

machine translation, especially neural machine translation (NMT) [31], has found nu-

merous applications in several domains [79], [84]. NMT has also been used in different

software engineering tasks including, but not limited to, code summarization [46],

[47], code comment generation [124], [125], and commit message generation [53]–[56].

Traditional NMT models often consist of two items: encoder and decoder. The en-

coder first converts the words of the source language into an intermediate numeric

59

representation. Then the decoder generates the target words one by one using the

intermediate representation and previous words from the generated sequence [31].

However, explanation generation from the buggy source code using neural machine

translation poses two major challenges.

Understanding the structures of source code: Natural language is loosely

structured, which exhibits phenomena like ambiguity and word movement [31]. Word

movement is the appearance of words in a sentence in different orders but still being

grammatically correct. On the contrary, programming languages are more structured,

syntactically restricted, and less ambiguous [60]. From the two programs having the

same vocabulary, one could be buggy, and the other could be correct due to their

structural differences (e.g., 4.3b, 4.3c). Thus, capturing and understanding code

structures is essential to explaining the buggy code. Unfortunately, traditional NMT-

based techniques often treat source code as a sequence of tokens and thus might fail

to capture the structures of source code properly [61].

Understanding and detecting buggy code patterns: From a high-level per-

spective, NMT models translate words from the source language into words from the

target language. However, to generate explanations from the buggy code, the model

must accurately reason about the bug from the buggy code and its structures. Such

reasoning is non-trivial and warrants the model to know buggy code patterns. Tradi-

tional NMT models might not be sufficient to tackle all these challenges due to their

simplified assumptions about sequential inputs and outputs. According to Ray et al.

[62], buggy code is less repetitive (a.k.a. unnatural) than regular code, which could

exacerbate the above challenges.

In this study, we propose Bugsplainer, a novel transformer-based generative model

that generates natural language explanations for software bugs by learning from a

large corpus of bug-fix commits (i.e., commits that correct bugs). Our solution can

address the above challenges, which makes our work novel. First, Bugsplainer can

leverage code structures in explanation generation by applying structure-based traver-

sal [47] to the buggy code. Second, we train Bugsplainer using both buggy source

code and its corrected version, which helps the model to understand and detect buggy

code patterns during its explanation generation for the buggy code.

We train and evaluate Bugsplainer with ≈ 150K bug-fix commits collected from

60

GitHub using three different metrics – BLEU [65], Semantic Similarity [66] and Ex-

act Match. We find that the explanations from Bugsplainer are understandable and

good. We compare our technique with four appropriate baselines – pyflakes [39],

CommitGen [53], NNGen [56], and Fine-tuned CodeT5 [67]. Bugsplainer outper-

forms all four baselines in all metrics by a statistically significant margin. One major

strength of Bugsplainer is understanding the structure of the code and buggy code

patterns, where the baselines might be falling short. To further evaluate our work,

we conducted a developer study involving 20 developers from six countries, where the

identities of both our tool and the baselines were kept hidden. The study result shows

that explanations from Bugsplainer are more accurate, more precise, more concise,

and more useful compared to that of the baselines.

We thus make the following contributions in this study:

(a) A novel transformer-based technique, Bugsplainer, that can explain software

bugs by leveraging the structural information and buggy code patterns from

source code.

(b) A novel pre-training technique, namely – Discriminatory Pre-training, that is

shown to be effective in generating better explanations.

(c) A benchmark dataset containing ≈ 150K instances of buggy code, corrected

code, and corresponding explanations written by human developers. To the

best of our knowledge, this is the first benchmark of its kind.

(d) A comprehensive evaluation and validation of the Bugsplainer technique using

both popular performance metrics (e.g., BLEU score) and a developer study.

(e) A replication package that includes our working prototype, experimental

dataset, and other configuration details for the replication or third-party reuse1.

4.2 Motivating Example

To demonstrate the capability of our technique – Bugsplainer, let us consider the

example in Fig. 4.1. The code snippet is taken from beetbox/beets repository at

1https://bit.ly/3H7R1aI

62

expresses no unnecessary information. Moreover, we see that in the fixed version of the

code (Fig. 4.1), an if condition was used to check whether the HTML fragment exists

(i.e., lyrics were found) or not, which reflects the solution implied by our explanation.

4.3 Methodology

Fig. 4.2 shows the schematic diagram of our proposed technique – Bugsplainer –

for explaining software defects in natural language. We discuss different steps of our

technique in detail as follows.

4.3.1 Extract Buggy and Bug-free AST Nodes from Commit

First, we construct Abstract Syntax Trees (ASTs) of both buggy and bug-free code

using the information from a bug-fix commit. A bug-fix commit contains the bug-free

version of the code while being connected to its parent commit containing the buggy

version. From these two versions of the source code, we construct two different ASTs

– the buggy AST (Step 1a, Fig. 4.2) and the bug-free AST (Step 1b, Fig. 4.2). A

commit also references removed lines (i.e., buggy lines) and added lines (i.e., bug-fix

lines). Using these line numbers, we extract the buggy nodes from the buggy AST

(Step 2a, Fig. 4.2) and bug-free nodes from the bug-free AST (Step 2b, Fig. 4.2). If

a multi-line expression touches these line numbers, we extract the whole expression

node (Line 11, Algorithm 1). Besides the affected lines, the contextual information

(e.g., surrounding lines) often provides useful clues about why the code was changed.

Asaduzzaman et al. [126] suggest that three lines of code around a target line might

be sufficient to capture the contextual information. While extracting the buggy and

bug-free nodes, we thus also extract the nodes representing three lines above and

below the changed lines in the code.

4.3.2 Generate diffSBT Sequence

In this step, we convert the buggy and bug-free AST nodes into diffSBT sequences

(i.e., preserve structural information) using the diffSBT algorithm (Step 3, Fig. 4.2).

64

Algorithm 1 Generate diffSBT sequence from commit diff

1: function diffSBT(c) ▷ Generate diffSBT sequence for commit

2: buggyAST ← BuildAST(c.buggyCode)

3: bugfreeAST ← BuildAst(c.bugFreeCode)

4: buggyNodes ← Intersections(buggyAST, c.removed)

5: bugfreeNodes ← Intersections(bugfreeAST, c.added)

6: return SBT(buggyNodes) + ⟨/s⟩ + SBT(bugfreeNodes)

7: end function

8: function Intersections(r, ln)

9: nodes ← ϕ ▷ Initialize nodes with an empty list

10: for all n in r do ▷ Get intersections for all nodes in r

11: if IsInside(n, ln) or IsExpression(n) then

12: Append(nodes, n)

13: else if StartsInside(n, ln) then ▷ Keep n but prune the children outside ln

14: n.children ← IntersectingChildren(n, ln)

15: Append(nodes, n)

16: else if EndsInside(n, ln) then ▷ Node n starts before the ln. Return only the

children of n that intersect with ln.

17: children ← IntersectingChildren(n, ln)

18: Append(nodes, children)

19: end if

20: end for

21: return nodes

22: end function

23: function IntersectingChildren(r, ln)

24: children ← ϕ

25: for all n in r.children do

26: if HasIntersection(n, ln) then

27: node ← Intersections(ch, ln)

28: Append(children, node)

29: end if

30: end for

31: return children

32: end function

66

to its pre-train dataset (CodeSearchNet), this RoBERTa tokenizer has common code

elements in its vocabulary, which can reduce the length of tokenized code sequence by

30%-45% [67]. We use this tokenizer to tokenize and encode the inputs (e.g., diffSBT

sequence) and decode the outputs (e.g., commit message). In the following sections,

we describe the training phase in detail.

Discriminatory Pre-training

Pre-trained language models have been found to be effective in improving many natu-

ral language understanding tasks (e.g., news title generation, question-answering) [79],

[84]. During pre-training, a model acquires a general knowledge about a domain which

allows it to understand the input (e.g., text, image) [84]. In natural language process-

ing, pre-training is often performed in an unsupervised fashion (e.g., Word2Vec [127],

missing token prediction [79]). However, many domains also use supervised pre-

training (e.g., Multi-Task Learning [67], [84]). Bugsplainer uses both unsupervised

and supervised pre-training to equip the model with a comprehensive understanding

of the programming language and its bugs.

We use a pre-trained model – CodeT5 [67] – to perform our discriminatory pre-

training with buggy and bug-free code. CodeT5 is a transformer model based on

the Text to Text Transfer Transformer (T5) architecture [30], [84]. It has two ver-

sions – 60M parameters and 220M parameters. We use the 60M parameter version

for Bugsplainer, which is pre-trained on GitHub CodeSearchNet data [112] for three

unsupervised tasks. CodeSearchNet contains ≈ 6M methods written in popular pro-

gramming languages accompanied by natural language documentation. Thus, the

CodeT5 model has a significant understanding of programming and natural languages,

making it an ideal choice for our pre-training task.

The pre-training with the CodeSearchNet dataset provides the model with general

knowledge about programming and language syntax. However, to reason about a bug

in the source code, the model should be able to differentiate between buggy and bug-

free code. To equip the model with such a reasoning capability, we use diffSBT

sequences of both buggy and bug-free AST nodes (Step 4, Fig. 4.2). We pre-train

the Bugsplainer model to predict commit messages from the diffSBT sequences of the

67

buggy and bug-free code. We refer to this pre-training step as discriminatory pre-

training since Bugsplainer learns to discriminate between buggy and bug-free code.

The diffSBT sequences for the buggy and bug-free code are separated by a special

token (e.g., </s>). We hypothesize that the model can differentiate and attend to (i.e.,

selectively focus on) the changes in both sides of the separator token and generate

the commit message (a.k.a. bug explanation) accordingly. Our experimental result

reports the effectiveness of discriminatory pre-training in explaining software bugs

(see Section 4.4.3).

Fine-tuning

Once the discriminatory pre-training is complete, we also train Bugsplainer to gen-

erate explanations from only buggy code. We take diffSBT sequences of only buggy

code as the input and corresponding explanation (i.e., commit message) as the output.

We pass both input and output to the RoBERTa tokenizer. Then, we fine-tune our

pre-trained model from the previous phase to generate explanations from the diffSBT

sequence of buggy code (Step 5, Fig. 4.2). The output of the fine-tuning step is the

Bugsplainer model for bug explanation generation.

4.3.4 Generate Explanation

Once the training phase is complete, we test our model using the testing instances.

Fig. 4.4 shows how Bugsplainer generates an explanation from buggy code. During

the generation phase, Bugsplainer takes two inputs – the buggy code and the line

numbers within the code that need an explanation. From the buggy code, Bugsplainer

constructs the AST (Step 1, Fig. 4.4) and extracts the AST nodes that intersect with

the given line numbers (Step 2, Fig. 4.4). Subsequently, Bugsplainer converts the

intersecting nodes into a diffSBT sequence (Step 3, Fig. 4.4). Then, it tokenizes

the diffSBT sequence using the same RoBERTa tokenizer and passes the tokens to

the fine-tuned model (Step 4, Fig. 4.4). Finally, the fine-tuned model generates an

explanation for the buggy code.

69

• RQ3: Can Bugsplainer outperform the existing baseline techniques in terms of

automatic evaluation metrics?

• RQ4: How accurate, precise, concise, and useful are the explanations of

Bugsplainer compared to baselines?

4.4.1 Dataset Construction

To conduct our experiments, we curate a dataset of ≈ 150K bug-fix commits from

GitHub3 using its REST API4. We discuss different steps of our dataset construction

process as follows.

Repository Selection

First, we aim to find ≈ 10K Python repositories with high star counts to ensure high-

quality commits. We choose Python since it is the second most popular programming

language according to StackOverflow survey 20215 and the most wanted programming

language to work with6. As GitHub’s search API does not return more than 1K

results from a single query, we use small buckets of star counts to renew our query

contents. We found the 10,000th repository falls in the bucket of 300-399 stars. Thus,

we collect all the repositories with a star count of ≥ 300, leading us to a total of

10,154 repositories.

Collection of Bug-fix Commits

We collected all the commits from the above repositories, which led to a total of

≈ 11.8M commits. Then, we attempt to find the bug-fix commits from them. Similar

to previous studies [58], [128], we consider a commit as a bug-fix commit if it contains

either ‘fix’ or ‘solve’ in its commit message. This filtration step led us to ≈ 1.4M

bug-fix commits.

3Accessed: April 18, 2022
4https://docs.github.com/en/rest
5https://bit.ly/3cmooLv
6https://bit.ly/3PSFhLv

70

Filtration of Noisy Commits

To ensure the quality of the collected commits, we manually analyzed randomly

sampled 500 commits from the above commit collection. We found seven machine-

generated templates in the commit messages (e.g., ”Merge branch X to master”) that

can be easily detected using appropriate regular expressions (see replication package

for details). We remove these machine-generated templates from commit messages.

If a commit message contains only machine-generated texts, then the whole commit

is discarded from the dataset. We also note that Python repositories contain non-

Python files (e.g., configuration files) and test scripts in their commits, which are

out of the scope of this work. We thus keep the commits with at least one modified

Python file (excluding test scripts).

Vaswani et al. [30] report that the complexity of transformer models increases

quadratically with the length of input and output sequences. Therefore, we limit the

maximum length of both commit diff and commit message. In particular, we retain

such commits with ≤30 tokens in their commit message and ≤170 tokens in their

commit diff. These limits cover >85% of both commit messages and commit diffs

from the ≈ 1.4M bug-fix commits. Then, we remove commits with less than five

tokens in their messages to discard trivial commits. We also keep only the commits

with one diff hunk (i.e., change location) to avoid tangled commits (i.e., commits

doing more than one task). After performing all these noise filtration steps, we end

up with ≈ 180K bug-fix commits.

To determine the reliability of our constructed dataset, we performed a manual

analysis using 385 commits. We randomly sample these commits from ≈ 180K com-

mits above with a 95% confidence level and 5% error margin. We find that 92.1%

of these commits are bug-fix and 5.2% are style-fix, indicating a negligible amount

of noise (i.e., 2.7%) in our constructed dataset. Previous studies [58], [128] also use

datasets with similar amounts of noise. Furthermore, manually filtering ≈ 180K

commits was prohibitively costly or impractical, which possibly justifies our choice of

using the current version of the dataset.

71

Embedding Structural Information

We generate a diffSBT sequence for each commit as described in Section 4.3.2. We

first generate AST for both the buggy and bug-free code from the commit using the

ast parser of Python 37. After discarding syntactically incorrect programs, we find

≈ 150K diffSBT sequences.

Construction of Training and Testing Data

First, we randomly select 110K entries as the training dataset for both pre-training

and fine-tuning steps. Second, we randomly split the remaining 40K entries into four

sets that are allocated for validation and testing in both pre-training and fine-tuning

steps. Thus, the training data are shared by both pre-training and fine-tuning steps,

whereas the validation and testing data are not shared. Finally, we remove the part

of the diffSBT sequence corresponding to the fixed version of the source code from

the three fine-tuning splits (training, validation, and testing) since Bugsplainer aims

to generate an explanation from the buggy code only.

4.4.2 Evaluation Metrics

To evaluate the explanations generated by Bugsplainer, we use three different metrics

– BLEU score [65], Semantic Similarity [66], and Exact Match. Relevant studies [30],

[67], [78], [84] frequently used these metrics, which justifies our choice. They are

defined as follows.

Bi-lingual Evaluation of Understudy (BLEU)

BLEU score [65] is a widely used performance measure for NMT. It has been used in

software engineering context as well [47], [53]–[56], [61]. It calculates the similarity

between auto-generated and reference sequences in terms of their n-grams precision

as follows.

BLEU = BP · exp

(︄

N
∑︂

n=1

wn · log(pn)

)︄

(4.1)

Here, pn is the ratio of overlapping n-grams from both generated and reference se-

quences and the total number of n-grams in the generated sentence, and wn is the

7https://docs.python.org/3/library/ast.html

72

weight of the n-gram length. Following existing studies [47], [54], we use N = 4 and

wn = 0.25 for all n ∈ [1, N]. In other words, we compute the mean BLEU score for

all n-gram lengths. The brevity penalty, BP , lowers the BLEU score if the candidate

translation is too small. BP is defined as

BP =

⎧

⎨

⎩

1 if c > r

e1−r/c if c ≤ r
(4.2)

Here, c is the length of the candidate translation, and r is the length of the

reference sequence.

There exist several variations of the BLEU score. In our study, we use case-

insensitive BLEU score with add one smoothing [129], which aligns the most with

human judgement [54] among other variants of BLEU score.

Semantic Similarity

Although the BLEU score is widely adopted for evaluating machine translation, it

does not take the meaning of the text into account. Haque et al. [66] conduct a

human study to determine which metric better represents the perception of human

evaluators. They find that Sentence-BERT encoder [32] with cosine similarity has the

highest correlation with the human-evaluated similarity. Sentence-BERT provides a

fixed-length numeric representation for any given text. As suggested by Haque et al.

[66], we use stsb-roberta-large8 pre-trained model to generate the embedding for

the input text. We compute the Semantic Similarity as follows.

SemSim(ref, gen) = cos(sbert(ref), sbert(gen)) (4.3)

where sbert(x) is the numerical representation from Sentence-BERT for any input

text x, ref is the reference explanation, and gen is the generated explanation.

Exact Match

We also use the Exact Match metric to evaluate our explanation. As the name

suggests, Exact Match checks whether a generated explanation exactly matches the

corresponding reference explanation. It is analogous to string equality checks in many

programming languages, which are case-sensitive and space-sensitive.

8https://bit.ly/3dR9mxD

73

4.4.3 Evaluating Bugsplainer

Answering RQ1 – Performance of Bugsplainer

Table 4.2 shows the performance of Bugsplainer in terms of BLEU score, Semantic

Similarity, and Exact Match. We run Bugsplainer five times with random initial-

ization and report the average performance. The replication package contains the

detailed results from our five runs.

When the dataset is split randomly into training, validation, and testing sets,

Bugsplainer achieves a BLEU score of 33.15, which is considered as understandable to

good translation according to Google’s AutoML Translation documentation9. Expla-

nations from Bugsplainer also have an average of 55.76% Semantic Similarity, which

indicates a major semantic overlap with the explanations from developers. Finally,

22.37% of the explanations exactly match the reference explanations. To achieve an

Exact Match with the reference, an NMT model warrants a substantial knowledge

of the domain. All these statistics are highly promising and demonstrate the high

potential of our technique in explaining software bugs.

Allamanis [130] report that overlap between training and testing datasets might

lead to overestimating performance measurement. In our experiment design, we en-

sure no overlap between our training and testing datasets (see Section 4.4.1). How-

ever, we also use a pre-trained CodeT5 [67] model, which is pre-trained on millions

of code snippets from thousands of repositories in CodeSearchNet dataset [112]. As

a result, there might be an unavoidable overlap between pre-training and testing

datasets. To ensure a fair evaluation, we thus discard the testing instances from

CodeSearchNet repositories (≈ 14% instances) to avoid any possibility of overlap and

re-evaluate Bugsplainer. Table 4.2 shows that after discarding the overlapping repos-

itories, Bugsplainer demonstrates a marginal improvement both in BLEU score and

Semantic Similarity.

In the real world, when adopting Bugsplainer for a new project, data from the

new project might not always be available to re-train Bugsplainer. Therefore, we in-

vestigate how the performance of Bugsplainer varies in a cross-project setting. That

9https://bit.ly/3wGpCIx

74

Table 4.2: Performance of Bugsplainer

Model Dataset BLEU Semantic
Similarity

Exact Match

Bugsplainer

Random split 33.15 55.76 22.37

No CodeSearchNet
Repository

34.53 56.67 19.55

Cross-project 17.16 44.98 07.15

Bugsplainer
220M

Random split 33.87 56.35 23.50

No CodeSearchNet
Repository

35.59 57.29 20.74

Cross-project 23.83 49.00 15.47

is, each of the training, validation, and testing datasets contains commits from mu-

tually exclusive projects. From Table 4.2, we see that even though the performance

of Bugsplainer decreases in a cross-project setting, it is still promising, especially in

terms of the Semantic Similarity metric. We see that the BLEU score decreases by

48% whereas the Semantic Similarity decreases by only 19%. That is, in the cross-

project setting, the generated explanations might express similar information but with

different words. To verify the case, we manually compare a sample of 385 explana-

tions from Bugsplainer (95% confidence level and 5% error margin) with the reference

explanations. We find that a substantial amount of generated explanations express

information either more precisely or with different phrases, which might cause the

BLEU score to be low. For instance, for a particular bug10, Bugsplainer generates

“Improve the message in IncompleteRead. init ”, whereas the reference is “fixing

incorrect message for IncompleteRead”. Even though the generated explanation is

accurate and more precise, it returns a BLEU score of only 11. Such a phenomenon

also explains the low BLEU score and comparatively high Semantic Similarity score

for the cross-project setting of Bugsplainer.

Recent studies suggest that increasing the model size can significantly improve

the performance of deep learning models [67], [84], [90]. We thus were interested

to see how the performance of Bugsplainer changes with an increased number of

parameters. For this experiment, we train a 220M parameter variant of Bugsplainer

10https://bit.ly/3RoSpsT

75

Table 4.3: Performance of Bugsplainer by input length

#Words BLEU Semantic Similarity Exact Match

< 50 32.05 54.90 17.84

50 ≤ # < 100 34.22 56.25 18.65

100 ≤ # < 150 34.72 56.99 21.10

150 ≤ # < 200 32.92 56.50 23.91

Table 4.4: Performance of Bugsplainer by the length of ground truth

#Words BLEU Semantic Similarity Exact Match

< 10 35.75 56.32 22.72

10 ≤ # < 20 27.70 53.16 8.93

20 ≤ # < 30 21.62 52.03 1.26

and call it Bugsplainer 220M. Both variants share the same architecture (i.e., T5) but

have different hyperparameters. The detailed hyperparameter values can be found in

the replication package. Table 4.2 also shows the performance of Bugsplainer 220M

in the random split and cross-project settings. We see improved performance in both

cases, which aligns with the existing findings [67], [84]. Interestingly, in cross-project

settings, Bugsplainer 220M achieves a big bump of ≈ 39% in BLEU score and ≈ 117%

in Exact Match. Such a finding suggests that Bugsplainer 220M can generalize the

acquired knowledge better across multiple projects than Bugsplainer.

Finally, we investigate how the performance of Bugsplainer is affected by the input

and output length. Table 4.3 shows the metric scores categorized by the number of

words in the input buggy code segments. The table shows no clear correlation between

the input length and the performance. With increasing input length, the performance

both increases and decreases. On the contrary, Table 4.4 shows that the performance

of Bugsplainer tends to decrease with increasing ground truth lengths. Interestingly,

the drop in Semantic Similarity is not as substantial as the BLEU score or Exact

Match score. This suggests that even with increasing output length, Bugsplainer can

provide semantically coherent explanations with the ground truth.

76

Summary of RQ1: Bugsplainer can generate bug explanations that are under-

standable and good according to Google’s standard. It shows promising results

not only in random split settings but also in cross-project settings. With a

higher number of parameters, Bugsplainer can better generalize the acquired

knowledge across multiple projects.

Table 4.5: Role of structural information and discriminatory pre-training

Model BLEU Semantic Similarity Exact Match

Bugsplainer 33.15 55.76 22.37

Bugsplainer without
structural information

30.78 53.74 15.42

Bugsplainer without
discriminatory pre-training

30.32 53.51 16.62

Answering RQ2 – Role of structural information and discriminatory

pre-training in Bugsplainer

In this experiment, we analyze the impact of structural information and discrim-

inatory pre-training on bug explanation generation. We remove one of these two

components from Bugsplainer and keep the rest as is. Such an experiment helps us

understand the contribution of individual components toward Bugsplainer. Table 4.5

shows the performance of Bugsplainer for these two particular cases.

To analyze the impact of structural information, we use raw commit diff as input

rather than diffSBT sequences. In the pre-train dataset, we keep the commit diff as

is, while in the fine-tuning dataset, we remove the added lines (i.e., bug-free lines)

from the commit diff. From Table 4.5, we see that the BLEU score of Bugsplainer

reduces by 7.15% due to the absence of structural information. Interestingly, the

Exact Match score also drops by 31.07%, which is significant. To analyze the impact

of discriminatory pre-training, we use only fine-tuning dataset and avoid the pre-

training step. In this experiment, we use the diffSBT sequences as input during the

fine-tuning step. From Table 4.5, we see that the BLEU score of Bugsplainer reduces

by 8.54% due to the absence of discriminatory pre-training. Interestingly, the Exact

77

Match score also drops by 25.70%, which is significant.

The significant performance drops due to the absence of structural information

and discriminatory pre-training indicate their essential roles in Bugsplainer. Our

technique also performs best when both items are incorporated.

Summary of RQ2: Both structural information and discriminatory pre-

training have a major contribution to the performance of Bugsplainer. Fur-

thermore, they are the most effective when they are used together.

Answering RQ3 – Comparison with existing baseline techniques

In this research question, we compare Bugsplainer with existing techniques from the

literature and investigate whether Bugsplainer can outperform them in terms of var-

ious evaluation metrics. To the best of our knowledge, there exists no work that

explains software bugs in natural language texts. Since the generation of commit

messages is similar to explanation generation, we use state-of-the-art commit mes-

sage generation techniques as our baseline. The main difference between commit

message generation and explanation generation is the former takes both buggy and

bug-free lines as input, whereas the latter takes only buggy lines as input. In par-

ticular, we compare Bugsplainer with three commit message generation techniques,

namely – CommitGen [53], NNGen [56], and Fine-tuned CodeT5 [67] and a static

analysis tool pyflakes [39]. None of these existing approaches for commit message gen-

eration learns to differentiate between buggy and bug-free code. Thus, our approach

has a better chance of generating meaningful explanations for the buggy code. We

do not use another state-of-the-art NMT-based technique, ATOM [55], since they do

not publish the code for a crucial part of their work due to commercial reasons [54].

As a result, ATOM cannot be evaluated using new datasets.

To generate error messages from pyflakes, a static analysis tool, we run pyflakes

on the whole buggy source code. Once we have the error messages, we keep only the

messages generated for the buggy lines. If we get multiple errors for the same data

point, we keep them all and report the one with the highest automatic metric score

(e.g., BLEU score).

CommitGen uses an NMT framework, namely nematus [131], which we use to

78

Table 4.6: Comparison of Bugsplainer with existing baseline techniques (Using five
random runs)

Technique BLEU Semantic Similarity Exact Match

pyflakes 0.49 5.68 0.00

CommitGen 9.94 35.39 1.04

NNGen 24.16 47.33 14.17

Fine-tuned CodeT5 26.19 54.52 8.85

Bugsplainer∗ 32.90 55.22 18.14

∗The scores differ from the earlier tables due to five random runs

replicate the technique. The authors also provide the values of all the important

parameters in their paper, which were carefully adopted in our replication.

According to a recent study [54], NNGen [56] is the state-of-the-art tool for gen-

erating commit messages. Being an IR-based technique, NNGen does not require any

training phase. It solely depends on the K-Nearest Neighbours algorithm. NNGen

first finds k most similar commit diffs from the training set using bag-of-words model

(i.e., term frequency) and cosine similarity measure. Since the authors do not provide

any details of their bag-of-words implementation, we use the CountVectorizer API

of the scikit-learn library in our replication. As suggested in the paper, we set the

value of k to 5. From the top-k commits, NNGen selects the message from the most

similar commit (using the BLEU score) as the final translation.

The fine-tuned CodeT5 model has the same architecture and the same hyper-

parameters as those of Bugsplainer. However, unlike Bugsplainer, it neither uses

the structural information from the source code nor performs any discriminatory

pre-training.

Table 4.6 compares Bugsplainer and four baselines in terms of BLEU score, Se-

mantic Similarity, and Exact Match. The results in the table are the mean of five

runs with different random initialization of the parameters. We see that Bugsplainer

outperforms all the baselines in terms of all three metrics. Only Fine-tuned CodeT5

is comparable with Bugsplainer. Therefore, we perform the Mann-Whitney U rank

test [132] to see whether their performances over the five runs differ significantly. We

found that Bugsplainer performs significantly higher than Fine-tuned CodeT5. That

is p-value = 0.008 < 0.05 and Cliff’s d = 1.0 (large) for all three metrics.

79

CommitGen relies on specific patterns in commit messages that might be gener-

ated by machines [56]. However, we removed auto-generated messages to ensure a

high-quality dataset (Section 4.4.1). CommitGen is also based on the LSTM architec-

ture that performs poorly with long inputs [30]. Thus, the low scores of CommitGen

are explainable.

According to Google’s AutoML Translation documentation, a BLEU score be-

tween 20 and 29 indicates that the gist of a generated message is clear but has

significant errors. NNGen reuses existing commit messages from the training set and

thus cannot analyze the dynamic behavior of software programs. Thus, such errors

in the translation are also explainable.

Thung et al. [45] report that static analysis tools produce a lot of false negatives.

This means they often do not produce any output for potentially buggy code. Our

experiment with pyflakes shows a similar result, generating error messages for only

7.70% cases. Therefore, its poor metric scores are also understandable.

Summary of RQ3: Bugsplainer outperforms all four baselines in terms of

three performance metrics. According to our statistical tests, our technique

outperforms the closest competitor – Fine-tuned CodeT5 – by a statistically

significant margin.

Answering RQ4 – Evaluation of Bugsplainer using a developer study

The metric-based evaluation demonstrates the benefit of our technique in generating

bug explanations. Nonetheless, to address the subjective nature of the task, we also

conduct a developer study that further demonstrates the benefit of Bugsplainer in

a practical setting. Given the reference explanations of a software bug (e.g., the

message of a bug-fix commit), we ask the developers to assess how accurate, precise,

concise, and useful the explanations are. During the study, we anonymize the model

names to avoid bias.

Study participants: The target population of our study is English-speaking

software engineers with experience in Python programming language. We invite our

participants in two ways. First, we contact software companies with a history of

participation in academic studies to contribute to this research. Second, we advertise

80

Table 4.7: Quality aspects of generated explanations

Quality Overview

Accurate It provides the same factual information as the reference.

Precise It can pinpoint the issue in the code.

Concise It is short and still conveys the whole message.

Useful The provided information has the potential to fix the bug.

the study on the authors’ social networks to reach potential participants and increase

the diversity of samples. As of August 31, 2022, we have received 20 responses

to our developer study. Existing studies [133], [134] on bug reproduction and bug

fixing conducted surveys with ≈ 20 participants to evaluate their tools or to validate

their hypothesis. Bug reproduction and fixing are closely related to our research.

Therefore, we believe that 20 participants might be sufficient to evaluate our tool and

its generated explanations with the acceptance of fellow researchers. The participants

have professional software development experience of 1 to 10 years and bug-fixing

experience of 1 to 7 years. All of them are familiar with Python programming language

as well. Such experience makes them suitable candidates for our study.

Study setup: In the developer study, each participant worked with 15 bug-fix

commits and spent 30 minutes on average. To select these examples for our developer

study, we apply random sampling without replacement to the testing set. To avoid

information overload, we take the examples that (1) do not have more than five

changed lines or more than 15 word-tokens in a single line within the commit diff,

and (2) do not require any project-specific knowledge to understand the bug. We

take the first 15 randomly sampled examples matching these two criteria.

We ask the participants to assess the accuracy, precision, conciseness, and useful-

ness of the explanations from Bugsplainer and baselines with respect to the reference

explanations. Table 4.7 provides our definitions for these aspects. The participants

assess these four aspects using a five-point Likert scale, where 1 indicates strongly

disagree, and 5 indicates strongly agree. Please note that we anonymize the model

names and do not show the participants which explanation comes from which model

to avoid any potential bias. We collect 300 data points (15 questions × 5 explanations

× 4 aspects) from each participant.

Our survey has been rigorously reviewed and approved by the Dalhousie University

81

Research Ethics Board (REB file #: 2022-5980).

Table 4.8: Comparison of Bugsplainer with baselines using developer study

Quality Model Mean Median Mode 2nd Mode

Accurate

pyflakes 1.841 1 1 3

CommitGen 2.176 2 1 2

NNGen 2.653 3 1 4

Fine-tuned CodeT5 2.842 3 4 3

Bugsplainer 4.074 4 5 4

Precise

pyflakes 1.768 1 1 3

CommitGen 1.884 2 1 2

NNGen 2.529 2 1 2

Fine-tuned CodeT5 2.772 3 4 2

Bugsplainer 3.891 4 4 5

Concise

pyflakes 2.182 2 1 4

CommitGen 2.350 2 1 2

NNGen 2.881 3 4 1

Fine-tuned CodeT5 3.044 3 4 3

Bugsplainer 3.974 4 4 5

Useful

pyflakes 1.724 1 1 3

CommitGen 1.960 2 1 2

NNGen 2.576 2 1 4

Fine-tuned CodeT5 2.728 3 4 1

Bugsplainer 3.923 4 4 5

Study result and discussion: Table 4.8 summarizes our findings from the de-

veloper study. We note that the participants find the explanations from Bugsplainer

to be the most accurate, most precise, most concise, and most useful. Based on the

median and mode values, we see that the participants agree the most with explana-

tions from Bugsplainer. Similar to our findings in RQ3, according to the develop-

ers, the closest competitor of Bugspaliner is Fine-tuned CodeT5. According to the

mode values, the developers agree with Fine-tuned CodeT5 in many cases. However,

looking at the 2nd mode values, we see that the developers also strongly noticeably

disagree with Fine-tuned CodeT5, making the mean agreement poor. We also per-

form the Wilcoxon Signed Rank test to check whether the developers’ agreement

82

Figure 4.5: Comparison of Bugsplainer with the baselines using Likert scores

with Bugsplainer is significantly higher than that of Fine-tuned CodeT5. For ac-

curacy, conciseness, precision, and usefulness, the p-values are 5.16e−23, 2.74e−17,

7.45e−18 and 2.63e−23 respectively; all are below the threshold of 0.05, which make

the differences significant.

Fig. 4.5 shows the distribution of participants’ agreement levels in different as-

pects. We see that the participants disagree with Bugsplainer very few times (highest

14% times in precision) with a substantial amount of agreement (highest 76% in

accuracy). The developers strongly disagree with pyflakes and CommitGen nearly

half the time. Such disagreement with pyflakes is explicable since it generates no

error message for 13 out of 15 cases. However, CommitGen, even after explaining

all cases, receives a high disagreement due to its generic and less informative ex-

planations. The IR-based approach NNGen receives a similar amount of agreement

83

to Fine-tuned CodeT5 but also much more disagreement. Being a retrieval-based

technique, NNGen cannot adapt to dynamic and unseen code segments. Therefore,

having a high disagreement in such cases might be explainable.

Summary of RQ4: Professional developers with bug-fixing experience find

the bug explanations from Bugsplainer to be accurate, precise, concise, and

useful. Their preference levels for Bugsplainer over other baseline techniques

are also significantly higher.

4.5 Prototype

In this section, we discuss BugsplainerWeb – a web-based prototype of our Bugsplainer

technique. It enables easy access to our technique to end-users and provides various

features to aid them in debugging. In particular, BugsplainerWeb provides the follow-

ing features to explain software defects to the developers.

(a) Given a code segment, Bugsplainer can generate succinct explanations for the

bug in the code.

(b) Provides three different variants of the explanation generation model –

Bugsplainer, Bugsplainer 220M, and Fine-tuned CodeT5, and can help devel-

opers understand bugs from different perspectives.

(c) Facilitates code changes on-the-fly and allows one to check how the changes in

the code affect the generated explanations.

(d) Provides two working modes – production and experimental, and allows a user

to compare Bugsplainer with human written explanations and reason about the

generated explanations.

Fig. 4.6 shows the user interface of our tool – BugsplainerWeb. It is composed of

four different components and has two different working modes. They are described

as follows.

85

Upon clicking, the front-end application sends a request containing the selected code

segment to the back-end server. Then, the back-end server generates and sends the

top three explanations against the code segment back to the front-end application.

Finally, the explanations are visualized to the user for review.

Code Editor

Fig. 4.6b shows the code editor of BugsplainerWeb. Once a file is chosen from the

selection panel, the code editor shows the contents of the file. From there, the user

can choose one or more lines of code for explanation. This choice works synchronously

with the selection panel. That is, choosing one or more lines in the code editor will

update the line numbers in the selection panel and vice versa. For the user’s conve-

nience, the code editor highlights previously explained code segments as well as the

current ones. Such highlighting not only prevents a user from generating duplicate

explanations but also helps her quickly track back to previously explained code seg-

ments. The user can also change the code on-the-fly and receive an explanation for

the change code. Comparing the explanations for different versions of the code can

help the user better understand the underlying bug.

Explanation Generator

In BugsplainerWeb, a back-end server is responsible for generating the explanations.

It provides two different HTTP APIs – to access the list of deep learning models and

to get explanations for a source code segment.

BugsplainerWeb offers three different deep learning models for explanation gen-

eration – Bugsplainer, Bugsplainer 220M, and Fine-tuned CodeT5. Among them,

Bugsplainer and Bugsplainer 220M use structural information (e.g., abstract syntax

tree) to generate the explanations. Therefore, they can explain a bug even if it lies

in the structure of the code. On the contrary, Fine-tuned CodeT5 treats the source

code as natural language text. Depending on the context, these different deep learn-

ing models can focus on various aspects of the bug in generating their explanations,

which can help the user understand a bug comprehensively.

The front-end application sends an HTTP request to the back-end explanation

86

generator upon clicking the Explain button in the selection panel. The request con-

tains the source code, starting and ending line numbers of the selected code segment,

and the name of the chosen deep learning model. If the selected model is either

Bugsplainer or Bugsplainer 220M, then the server captures the structural informa-

tion from the source code in an encoded form. First, it converts the whole source

code into an Abstract Syntax Tree (AST) and recursively prunes the AST nodes

that are not a part of the selected code segment. Second, the explanation generator

module converts the partial AST into a token sequence using an algorithm, namely

diffSBT. diffSBT captures structural information from the partial AST by traversing

the remaining nodes and edges.

Once the diffSBT sequence is generated from the selected code segment, they are

passed to the deep learning model. Then the model generates explanations for the

bug in the code with a confidence score. Finally, the back-end server returns the top

three explanations along with their confidence scores to the front-end application.

Explanation Visualizer

The Explanation Visualizer component (Fig. 4.6d) is responsible for visualizing the

explanations received from the back-end server in a user-friendly manner. It groups

all the received explanations based on the location of the source code segment. Since

there can be several explanations for the same code segment from different models,

it might get cluttered. As a solution, we keep all the explanations collapsed by

default. When the user hovers on (i.e., moves the cursor on) an explanation group

or corresponding source code segment, the explanations are shown along with their

confidence score.

To differentiate between different explanation groups, we color the groups cycli-

cally with six different colors. These colors contrast with each other and the back-

ground according to the Web Content Accessibility Guidelines (WCAG)11. We also

use a set of colors that color-blind persons can distinguish [135].

11https://www.w3.org/TR/WCAG

87

4.5.2 Working Modes

BugsplainerWeb can work in two different modes – production and experimental. A user

can choose either mode using a toggle button on the top right corner of the application

(Fig. 4.6). The production mode is the default mode where BugsplainerWeb delivers

automatically generated explanations for the buggy code as described in the above

sections.

In the experimental mode, instead of selecting a file from the machine’s file

system, the user can select a file from a pre-defined set provided by BugsplainerWeb.

Each file from the set has a pre-defined bug location with human-written explanations

associated with it. Upon selecting a file, along with the file contents, BugsplainerWeb

shows the corresponding human-written explanations. It also highlights the buggy

code segments connected to these human-written explanations. Then, the user can

generate explanations for any code segment and compare them against the human-

written explanations. Such comparison not only helps the user grow confidence in

BugsplainerWeb but also helps reason about why BugsplainerWeb explains a bug in a

certain way.

4.6 Threats To Validity

Threats of internal validity relate to experimental errors and biases. Re-

implementation of the existing baseline techniques could pose a threat. However,

our implementation of NNGen [56] is based on the well-known k-nearest neighbor

algorithm. CommitGen [53] uses a framework and reports all important hyperpa-

rameters. We use the same framework and the reported parameters for our imple-

mentation. For pyflakes [39], we use the officially provided package and follow the

official documentation. Fine-tuned CodeT5 adopts the same model architecture as

that of Bugsplainer. Thus, the threats related to replication might be mitigated. We

also repeat our experiments five times and compare the performance with that of

baselines to mitigate any bias due to random trials.

Threats to external validity relate to the generalizability of our work. Even

though Bugsplainer is evaluated using only Python code, the underlying algorithm

88

is language-agnostic and can be easily adapted to any traditional programming lan-

guage. The use of metric-based evaluation might also pose a threat to the real-world

usability of our approach [54], [66]. To mitigate this threat, we also conduct a de-

veloper study involving 20 participants from six different countries. As the developer

study suggests, our bug explanations were also found to be accurate and useful in

real-world scenarios.

The performance of Bugsplainer might depend on the precision of defect predic-

tion tools (e.g., Bugsplorer). To minimize this dependency, Bugsplainer accepts a

range of lines containing both buggy lines and their surrounding lines as input during

explanation generation. However, we do not indicate which lines among them contain

a bug. Thus, precise localization of the bug either by developers or by existing tools

might not be necessary to generate explanations using our tool.

4.7 Related Work

4.7.1 Explanation of Software Bugs

Software claim 50% of development time and cost the global economy billions of dol-

lars every year [3], [24]. While there have been numerous approaches to finding or

repairing software bugs, neither many approaches attempt to explain the bugs in the

source code to the developers, nor are they practical and scalable enough for industry-

wide use [23], [24]. Several tools (e.g., FindBugs [35], PMD [36], SonarLint [37],

PyLint [38], and pyflakes [39]) attempt to explain bugs using static analysis. Un-

fortunately, their utility could be limited due to their high false-positive results and

lack of meaningful, actionable explanations [40]–[42]. Furthermore, their explana-

tions can be too generic and limited by their templated natures [44]. Recent studies

suggest complementing these messages with rule graphs [136], assertive error expla-

nation [40], and interactive feedback from developers [137]. However, static analysis

tools are always likely to be restricted to a fixed set of rules.

Besides the static analysis, there have been several attempts to explain a program’s

behaviors, failed tests, bug-fixing patches, undocumented code, and intelligent behav-

iors. Ko et al. [137] design an interrogative debugging system for the Alice program-

ming environment [138] where a novice learner can inquire why a program behaves

89

unexpectedly or why it does not show an expected behavior. Lim et al. [139] later

suggest that these why and why not questions are essential to improve a user’s un-

derstanding or perception of an intelligent system. Zhang et al. [140] explain a failed

test case by automatically performing failure-correcting edits (e.g., replacement of

identifiers’ values) and synthesizing a code comment from them. Tabaei Befrouei et

al. [141] use program execution traces to explain concurrency bugs. Later, Bragaglio

et al. [142] remove irrelevant information from the execution traces to understand the

cause of the unexpected behavior. Rahman et al. [143] also explain the quality con-

cerns of a piece of code using relevant comments mined from a popular programming

Q&A site – Stack Overflow. Liang et al. [144] investigate what should be included

in a patch explanation, such as expected program behaviors or a high-level summary

of code changes. Recently, Pornprasit et al. [145] also explained why the changed

code can be defect-prone by visualizing how specific local rules are satisfied by a

change. Although all these studies and approaches are relevant and are a source of

our inspiration, they might be restricted to only specific problem contexts (e.g., Alice

programming language [138], failed tests [140]) or certain types of bugs (e.g., concur-

rency bugs [141]). Besides, their explanation might not always contain what needs to

be done to correct the buggy code.

Unlike these traditional approaches, Bugsplainer is not restricted to any specific

context or bugs. Besides, it can generate explanations that resemble that of humans

and are accurate, precise, concise, and useful (see Section 4.4.3 for details).

4.7.2 Translation of Source Code into Texts

Our work is also related to code translation into natural language texts. Existing ap-

proaches translate code into the natural language to generate code comments, review

comments, and commit messages.

Earlier works on code comment generation utilize hand-crafted templates [146],

[147] and Information Retrieval (IR) [148], [149], while recent works more depend

on learning-based approaches [47], [61], [150]. Wei et al. [151] combine both IR and

NMT in comment generation. Recently, Mastropaolo et al. [152] used the Text-To-

Text Transfer Transformer (T5) to perform several tasks, including code comment

generation. Their comments explain what happens in the code rather than what

90

makes it buggy. On the contrary, Bugsplainer not only explains the buggy code but

also suggests useful information to correct the bug in the code (e.g., Table 4.1).

To generate code review comments, Tufano et al. [124] make use of the CodeT5 [67]

model with Stack Overflow data and fine-tune their model with pairs of function and

review comment pairs from GitHub. Later, Hong et al. [125] use Gestalt Pattern

Matching (GPM) to mine candidate review comments of similar methods from a

large corpus of source code repositories. However, both approaches treat source code

as regular texts (e.g., a sequence of tokens) overlooking the structures. On the other

hand, Bugsplainer leverages the structures of code through diffSBT sequences and

learns to differentiate between buggy and bug-free code as a part of explanation

generation.

To generate commit messages, several studies adopt an attention mechanism with

RNN [46], [53], [55], [153] and leverage structural information [55], [153]. Xu et al.

[153] jointly model the semantic representation and structural representation of code

changes where they substitute identifier names with placeholders in the code. While

they treat structure and semantics as different information, Bugsplainer embeds the

structural information within the code using diffSBT. Liu et al. [55] capture both

ASTs of code changes where they convert each AST into path sequence. However,

converting each change from the AST into its own path might lead to long, redundant

sequences, which could hurt the translation performance. Surprisingly, Liu et al. [56]

show that a simple IR-based approach, NNGen, has promising capability in commit

message generation due to its repetitive nature. NNGen is closely related to ours

due to their nature of translation. We thus compare Bugsplainer with them using

experiments, and the details can be found in Section 4.4.3.

4.8 Summary

While Section 3 predicts defects at the line level, this study – Bugsplainer – com-

plements the former with useful and precise explanations. Bugsplainer learns from

thousands of bug-fix commits and leverages structural information and defective pat-

terns from the source code to generate an explanation for a defect. Our evaluation

using three performance metrics shows that Bugsplainer can generate understand-

able and good explanations according to Google’s standard and outperform multiple

91

baselines from the literature. We also conducted a developer study involving 20 par-

ticipants where the explanations from Bugsplainer were found to be more accurate,

more precise, more concise, and more useful than the baselines.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Software defects not only claim precious development time but also cost billions of

dollars every year. Predicting these defects at the line level and explaining them to

the developers can significantly reduce the costs of software quality assurance. Un-

fortunately, existing techniques for line-level defect prediction might fail to capture

the local context of a software defect. Furthermore, explaining the root cause of

software defects is an open problem that warrants significant investigation. In this

thesis, we propose two novel tools to predict defects at the line level and explain their

root causes using natural language texts, respectively. Our first tool, Bugsplorer, is

a novel transformer-based technique that predicts defects at the line level. It lever-

ages a hierarchical structure of transformer networks to estimate the attention values

for two types of code elements: code tokens and code lines. We train and evaluate

Bugsplorer with two benchmark datasets and determine its classification performance

and cost-effectiveness. We find that Bugsplorer can predict defective code lines with

26-68% higher accuracy than that of the state-of-the-art model. It can also reduce

the effort in finding defective lines by 72-81%. Our second tool, Bugsplainer, is a

novel neural machine translation technique that generates explanations for defective

code segments. Our technique leverages both structural information and defective

code patterns from source code and employs neural machine translation with a trans-

former model to generate the explanations for defects. We evaluate Bugsplainer using

three metrics (i.e., BLEU score, Semantic Similarity, and Exact Match) where our

technique outperforms the baselines. We also conducted a developer study involving

20 participants, and our explanations were found to be more accurate and useful

compared to the baselines.

92

93

5.2 Future Work

There are several research avenues that can be pursued in the future. We discuss

possible future works from each of our studies as follows.

5.2.1 Bugsplorer

Code Structure: Our manual analysis with Bugsplorer reveals that embedding

structural information to the source code might prevent the model from being con-

fused with long comments resembling code. To enhance Bugsplorer’s robustness

against rarely used syntax, it can be trained on examples from the official docu-

mentation of programming languages.

Model Architecture: Experimenting with different model architectures is a cru-

cial aspect of future work. Currently, Bugsplorer uses RoBERTa [90] as its transformer

architecture, which limits the maximum number of lines in a source code document

(i.e., L = 512). However, newer transformer architectures like TransformerXL [91]

eliminate this limitation and can handle variable-length inputs. Another approach

worth considering is implementing the entire model using decoders (e.g., GPT) instead

of encoders. This would enable the model to predict defective lines autoregressively

(see Section 2.4) and handle inputs of any length. It provides more flexibility and

freedom for the model’s predictions.

5.2.2 Bugsplainer

Code Structure: Future works might investigate how to encode the structural

information from source code in a more compact and efficient format and how to

better leverage the structural differences between buggy and bug-free code. They

might also experiment with different types of structural information, such as Data

Flow Graph (DFG) [154], Control Flow Graph (CFG) [155], and Program Dependency

Graph (PDG) [156]. This might help us better understand the underlying semantics

of software bugs.

Transfer Learning: Another direction for future works could be transferring or

reusing the parameters learned by defect prediction for explanation generation. Our

94

experiments with Bugsplorer show that it can achieve reasonable performance with

the T5 encoder model (see Section 3.4.4, RQ3). Since Bugsplainer also uses the T5

architecture for explanation generation, these two techniques might be able to share

their knowledge.

Bibliography

[1] Institute of Electrical and Electronics Engineers, “IEEE Standard Glossary of

Software Engineering Terminology,” IEEE Std 610.12-1990, pp. 1–84, 1990.

[2] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code transformation

learning for automated program repair,” in Proceedings of the ACM/IEEE

42nd International Conference on Software Engineering, 2020, pp. 602–614.

[3] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen, Reversible

Debugging Software: Quantify the time and cost saved using reversible debug-

gers, 2013.

[4] R. Glass, “Frequently forgotten fundamental facts about software engineer-

ing,” IEEE Software, vol. 18, no. 3, pp. 112–111, 2001.

[5] S. Matteson, Report: Software failure caused $1.7 trillion in financial losses

in 2017, 2018. [Online]. Available: https://tek.io/2FBNlf2i (visited on

01/18/2022).

[6] F. Brandy, Cambridge University Study States Software Bugs Cost Economy

$312 Billion Per Year, 2013. [Online]. Available: https://goo.gl/okoj21

(visited on 01/18/2022).

[7] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Investigating code

review practices in defective files: An empirical study of the qt system,” in 2015

IEEE/ACM 12th Working Conference on Mining Software Repositories, IEEE,

2015, pp. 168–179.

[8] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Revisiting code

ownership and its relationship with software quality in the scope of modern

code review,” in Proceedings of the 38th international conference on software

engineering, 2016, pp. 1039–1050.

[9] C. Pornprasit and C. K. Tantithamthavorn, “DeepLineDP: Towards a deep

learning approach for line-level defect prediction,” IEEE Transactions on Soft-

ware Engineering, vol. 49, no. 1, pp. 84–98, 2022.

95

https://tek.io/2FBNlf2i
https://goo.gl/okoj21

96

[10] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional devel-

opers comprehend software?” In 2012 34th International Conference on Soft-

ware Engineering (ICSE), IEEE, 2012, pp. 255–265.

[11] S. Hosseini, B. Turhan, and D. Gunarathna, “A systematic literature review

and meta-analysis on cross project defect prediction,” IEEE Transactions on

Software Engineering, vol. 45, no. 2, pp. 111–147, 2017.

[12] J. Pachouly, S. Ahirrao, K. Kotecha, G. Selvachandran, and A. Abraham, “A

systematic literature review on software defect prediction using artificial intelli-

gence: Datasets, data validation methods, approaches, and tools,” Engineering

Applications of Artificial Intelligence, vol. 111, p. 104 773, 2022.

[13] Z. M. Zain, S. Sakri, and N. H. A. Ismail, “Application of deep learning in

software defect prediction: Systematic literature review and meta-analysis,”

Information and Software Technology, p. 107 175, 2023.

[14] Y. Zhao, K. Damevski, and H. Chen, “A systematic survey of just-in-time

software defect prediction,” ACM Computing Surveys, vol. 55, no. 10, pp. 1–

35, 2023.

[15] L. Gong, G. K. Rajbahadur, A. E. Hassan, and S. Jiang, “Revisiting the impact

of dependency network metrics on software defect prediction,” IEEE Transac-

tions on Software Engineering, vol. 48, no. 12, pp. 5030–5049, 2021.

[16] X. Yu, K. E. Bennin, J. Liu, J. W. Keung, X. Yin, and Z. Xu, “An empirical

study of learning to rank techniques for effort-aware defect prediction,” in

2019 IEEE 26th International Conference on Software Analysis, Evolution and

Reengineering (SANER), IEEE, 2019, pp. 298–309.

[17] J. Jiarpakdee, C. K. Tantithamthavorn, and J. Grundy, “Practitioners’ per-

ceptions of the goals and visual explanations of defect prediction models,” in

2021 IEEE/ACM 18th International Conference on Mining Software Reposi-

tories (MSR), IEEE, 2021, pp. 432–443.

[18] J. Chen et al., “Software visualization and deep transfer learning for effective

software defect prediction,” in Proceedings of the ACM/IEEE 42nd interna-

tional conference on software engineering, 2020, pp. 578–589.

97

[19] T. Shippey, D. Bowes, and T. Hall, “Automatically identifying code features

for software defect prediction: Using ast n-grams,” Information and Software

Technology, vol. 106, pp. 142–160, 2019.

[20] S. Wattanakriengkrai, P. Thongtanunam, C. Tantithamthavorn, H. Hata, and

K. Matsumoto, “Predicting defective lines using a model-agnostic technique,”

IEEE Transactions on Software Engineering, vol. 48, no. 5, pp. 1480–1496,

2020.

[21] C. Pornprasit and C. K. Tantithamthavorn, “JITLine: A simpler, better, faster,

finer-grained just-in-time defect prediction,” in 2021 IEEE/ACM 18th Inter-

national Conference on Mining Software Repositories (MSR), IEEE, 2021,

pp. 369–379.

[22] S. Herbold, “On the costs and profit of software defect prediction,” IEEE

Transactions on Software Engineering, vol. 47, no. 11, pp. 2617–2631, 2019.

[23] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on auto-

mated fault localization,” in Proceedings of the 25th International Symposium

on Software Testing and Analysis, 2016, pp. 165–176.

[24] W. Zou, D. Lo, Z. Chen, X. Xia, Y. Feng, and B. Xu, “How practitioners

perceive automated bug report management techniques,” IEEE Transactions

on Software Engineering, vol. 46, no. 8, pp. 836–862, 2018.

[25] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features for

defect prediction,” in Proceedings of the 38th International Conference on Soft-

ware Engineering, 2016, pp. 297–308.

[26] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction via convo-

lutional neural network,” in 2017 IEEE international conference on software

quality, reliability and security (QRS), IEEE, 2017, pp. 318–328.

[27] Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen, “Improving bug detec-

tion via context-based code representation learning and attention-based neu-

ral networks,” Proceedings of the ACM on Programming Languages, vol. 3,

no. OOPSLA, pp. 1–30, 2019.

98

[28] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose, “Auto-

matic feature learning for predicting vulnerable software components,” IEEE

Transactions on Software Engineering, vol. 47, no. 1, pp. 67–85, 2018.

[29] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “Vuldeepecker: A deep learning-

based system for multiclass vulnerability detection,” IEEE Transactions on

Dependable and Secure Computing, vol. 18, no. 5, pp. 2224–2236, 2019.

[30] A. Vaswani et al., “Attention is all you need,” Advances in neural information

processing systems, vol. 30, 2017.

[31] D. Jurafsky and J. H. Martin, “Vector semantics and embeddings,” in Speech

and Language Processing, 3rd ed. Prentice-Hall, Inc., 2022, pp. 1–17.

[32] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using

siamese bert-networks,” in Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th International Joint Con-

ference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 3982–

3992.

[33] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly

learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[34] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should I trust you?” Ex-

plaining the predictions of any classifier,” in Proceedings of the 22nd ACM

SIGKDD international conference on knowledge discovery and data mining,

2016, pp. 1135–1144.

[35] B. Pugh and A. Loskutov, FindBugs™ - Find Bugs in Java Programs, 2021.

[Online]. Available: http : / / findbugs . sourceforge . net/ (visited on

01/18/2022).

[36] PMD Team, PMD Source Code Analyzer, 2021. [Online]. Available: https:

//pmd.github.io/ (visited on 01/18/2022).

[37] SonarSource, SonarLint — Free and Open Source Code Quality & Security

IDE Extension, 2021. [Online]. Available: https://www.sonarlint.org/

(visited on 01/18/2022).

http://findbugs.sourceforge.net/
https://pmd.github.io/
https://pmd.github.io/
https://www.sonarlint.org/

99

[38] Python Code Quality Authority, Pylint - code analysis for Python, 2021. [On-

line]. Available: https://pylint.org/ (visited on 01/18/2022).

[39] A. Sottile, pyflakes: A simple program which checks Python source files for

errors, 2022. [Online]. Available: https://github.com/PyCQA/pyflakes

(visited on 01/18/2022).

[40] T. Barik, “How should static analysis tools explain anomalies to developers?”

In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, 2016, pp. 1118–1120.

[41] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t software

developers use static analysis tools to find bugs?” In 2013 35th International

Conference on Software Engineering (ICSE), IEEE, 2013, pp. 672–681.

[42] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou, “Evaluating

static analysis defect warnings on production software,” in Proceedings of the

7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software

tools and engineering, 2007, pp. 1–8.

[43] M. Yan, X. Zhang, L. Xu, H. Hu, S. Sun, and X. Xia, “Revisiting the correlation

between alerts and software defects: A case study on myfaces, camel, and cxf,”

in 2017 IEEE 41st Annual Computer Software and Applications Conference

(COMPSAC), IEEE, vol. 1, 2017, pp. 103–108.

[44] M. Nachtigall, M. Schlichtig, and E. Bodden, “A large-scale study of usability

criteria addressed by static analysis tools,” in Proceedings of the 31st ACM

SIGSOFT International Symposium on Software Testing and Analysis, 2022,

pp. 532–543.

[45] F. Thung, D. Lo, L. Jiang, F. Rahman, and P. T. Devanbu, “To what extent

could we detect field defects? an extended empirical study of false negatives in

static bug-finding tools,” Automated Software Engineering, vol. 22, pp. 561–

602, 2015.

[46] P. Loyola, E. Marrese-Taylor, J. Balazs, Y. Matsuo, and F. Satoh, “Content

aware source code change description generation,” in Proceedings of the 11th

International Conference on Natural Language Generation, 2018, pp. 119–128.

https://pylint.org/
https://github.com/PyCQA/pyflakes

100

[47] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation,” in

Proceedings of the 26th conference on program comprehension, 2018, pp. 200–

210.

[48] D. Gros, H. Sezhiyan, P. Devanbu, and Z. Yu, “Code to comment “trans-

lation”: Data, metrics, baselining & evaluation,” in 2020 35th IEEE/ACM

International Conference on Automated Software Engineering (ASE), IEEE,

2020, pp. 746–757.

[49] B. Wei, G. Li, X. Xia, Z. Fu, and Z. Jin, “Code generation as a dual

task of code summarization,” in Advances in Neural Information Process-

ing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,

E. Fox, and R. Garnett, Eds., vol. 32, Curran Associates, Inc., 2019. [On-

line]. Available: https://proceedings.neurips.cc/paper/2019/file/

e52ad5c9f751f599492b4f087ed7ecfc-Paper.pdf.

[50] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode compose:

Code generation using transformer,” in Proceedings of the 28th ACM Joint

Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering, 2020, pp. 1433–1443.

[51] J. Austin et al., “Program synthesis with large language models,” arXiv

preprint arXiv:2108.07732, 2021.

[52] M. Chen et al., “Evaluating large language models trained on code,” arXiv

preprint arXiv:2107.03374, 2021.

[53] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating commit mes-

sages from diffs using neural machine translation,” in 2017 32nd IEEE/ACM

International Conference on Automated Software Engineering (ASE), IEEE,

2017, pp. 135–146.

[54] W. Tao et al., “On the evaluation of commit message generation models: An ex-

perimental study,” in 2021 IEEE International Conference on Software Main-

tenance and Evolution (ICSME), IEEE, 2021, pp. 126–136.

[55] S. Liu, C. Gao, S. Chen, L. Y. Nie, and Y. Liu, “ATOM: Commit message gen-

eration based on abstract syntax tree and hybrid ranking,” IEEE Transactions

on Software Engineering, vol. 48, no. 5, pp. 1800–1817, 2020.

https://proceedings.neurips.cc/paper/2019/file/e52ad5c9f751f599492b4f087ed7ecfc-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e52ad5c9f751f599492b4f087ed7ecfc-Paper.pdf

101

[56] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-machine-

translation-based commit message generation: How far are we?” In Proceedings

of the 33rd ACM/IEEE International Conference on Automated Software En-

gineering, 2018, pp. 373–384.

[57] N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neural machine trans-

lation for automatic program repair,” in 2021 IEEE/ACM 43rd International

Conference on Software Engineering (ICSE), IEEE, 2021, pp. 1161–1173.

[58] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and D. Poshy-

vanyk, “An empirical study on learning bug-fixing patches in the wild via

neural machine translation,” ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 28, no. 4, pp. 1–29, 2019.

[59] Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk, and M.

Monperrus, “Sequencer: Sequence-to-sequence learning for end-to-end program

repair,” IEEE Transactions on Software Engineering, vol. 47, no. 9, pp. 1943–

1959, 2019.

[60] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey of machine

learning for big code and naturalness,” ACM Computing Surveys (CSUR),

vol. 51, no. 4, pp. 1–37, 2018.

[61] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source code

using a neural attention model,” in Proceedings of the 54th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), 2016,

pp. 2073–2083.

[62] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. Devanbu,

“On the “naturalness” of buggy code,” in Proceedings of the 38th International

Conference on Software Engineering, 2016, pp. 428–439.

[63] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “Deepjit: An end-

to-end deep learning framework for just-in-time defect prediction,” in 2019

IEEE/ACM 16th International Conference on Mining Software Repositories

(MSR), IEEE, 2019, pp. 34–45.

102

[64] P. Mahbub, O. Shuvo, and M. M. Rahman, “Defectors: A large, diverse python

dataset for defect prediction,” in Proceeding of The 20th International Con-

ference on Mining Software Repositories, 2023, pp. 393–397.

[65] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for au-

tomatic evaluation of machine translation,” in Proceedings of the 40th annual

meeting of the Association for Computational Linguistics, 2002, pp. 311–318.

[66] S. Haque, Z. Eberhart, A. Bansal, and C. McMillan, “Semantic similarity

metrics for evaluating source code summarization,” in Proceedings of the

30th IEEE/ACM International Conference on Program Comprehension, 2022,

pp. 36–47.

[67] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware Unified

Pre-trained Encoder-Decoder Models for Code Understanding and Genera-

tion,” in Proceedings of the 2021 Conference on Empirical Methods in Natural

Language Processing, 2021, pp. 8696–8708.

[68] Y. Ren et al., “Fastspeech: Fast, robust and controllable text to speech,” Ad-

vances in Neural Information Processing Systems, vol. 32, 2019.

[69] Y. Ren et al., “Fastspeech 2: Fast and high-quality end-to-end text to speech,”

in International Conference on Learning Representations, 2020.

[70] G. Saon, Z. Tüske, D. Bolanos, and B. Kingsbury, “Advancing rnn transducer

technology for speech recognition,” in ICASSP 2021-2021 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2021,

pp. 5654–5658.

[71] A. Amberkar, P. Awasarmol, G. Deshmukh, and P. Dave, “Speech recognition

using recurrent neural networks,” in 2018 international conference on current

trends towards converging technologies (ICCTCT), IEEE, 2018, pp. 1–4.

[72] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-

putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[73] K. Cho et al., “Learning phrase representations using rnn encoder-decoder for

statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

103

[74] K. Xu et al., “Show, attend and tell: Neural image caption generation with

visual attention,” in International conference on machine learning, PMLR,

2015, pp. 2048–2057.

[75] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to

attention-based neural machine translation,” arXiv preprint arXiv:1508.04025,

2015.

[76] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation

of gated recurrent neural networks on sequence modeling,” arXiv preprint

arXiv:1412.3555, 2014.

[77] Z. Lin et al., “A structured self-attentive sentence embedding,” arXiv preprint

arXiv:1703.03130, 2017.

[78] Y. Wu et al., “Google’s neural machine translation system: Bridging the gap

between human and machine translation,” arXiv preprint arXiv:1609.08144,

2016.

[79] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of

deep bidirectional transformers for language understanding,” arXiv preprint

arXiv:1810.04805, 2018.

[80] J. Zhang, Y. Zhao, M. Saleh, and P. Liu, “Pegasus: Pre-training with extracted

gap-sentences for abstractive summarization,” in International Conference on

Machine Learning, PMLR, 2020, pp. 11 328–11 339.

[81] Y. Lan and J. Jiang, “Query graph generation for answering multi-hop complex

questions from knowledge bases,” in Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics, 2020, pp. 969–974.

[82] A. Roberts, C. Raffel, and N. Shazeer, “How much knowledge can you pack

into the parameters of a language model?” arXiv preprint arXiv:2002.08910,

2020.

[83] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., “Lan-

guage models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8,

p. 9, 2019.

104

[84] C. Raffel et al., “Exploring the limits of transfer learning with a unified text-to-

text transformer,” The Journal of Machine Learning Research, vol. 21, no. 1,

pp. 5485–5551, 2020.

[85] U. Kamath, J. Liu, and J. Whitaker, Deep learning for NLP and speech recog-

nition. Springer, 2019, vol. 84.

[86] J. Ive, “Natural language processing: A machine learning perspective by yue

zhang and zhiyang teng,” Computational Linguistics, vol. 48, no. 1, pp. 233–

235, 2022.

[87] O. Levy, Y. Goldberg, and I. Dagan, “Improving distributional similarity with

lessons learned from word embeddings,” Transactions of the association for

computational linguistics, vol. 3, pp. 211–225, 2015.

[88] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the efficiency

of change metrics and static code attributes for defect prediction,” in Pro-

ceedings of the 30th international conference on Software engineering, 2008,

pp. 181–190.

[89] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep learning

met code search,” in Proceedings of the 2019 27th ACM Joint Meeting on Eu-

ropean Software Engineering Conference and Symposium on the Foundations

of Software Engineering, 2019, pp. 964–974.

[90] Y. Liu et al., “Roberta: A robustly optimized bert pretraining approach,”

arXiv preprint arXiv:1907.11692, 2019.

[91] Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. Le, and R. Salakhutdinov,

“Transformer-xl: Attentive language models beyond a fixed-length context,” in

Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, 2019, pp. 2978–2988.

[92] R. Harper, “Abstract syntax,” in Practical Foundations for Programming Lan-

guages, 2nd ed. Cambridge University Press, 2016, pp. 3–11. doi: 10.1017/

CBO9781316576892.003.

https://doi.org/10.1017/CBO9781316576892.003
https://doi.org/10.1017/CBO9781316576892.003

105

[93] H. Keshavarz and M. Nagappan, “Apachejit: A large dataset for just-in-time

defect prediction,” in Proceedings of the 19th International Conference on Min-

ing Software Repositories, 2022, pp. 191–195.

[94] Z. Feng et al., “CodeBERT: A Pre-Trained Model for Programming and Natu-

ral Languages,” in Findings of the Association for Computational Linguistics:

EMNLP 2020, 2020, pp. 1536–1547.

[95] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare

words with subword units,” in Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), 2016,

pp. 1715–1725.

[96] C. Dwork et al., “The mathematics of information coding, extraction, and

distribution,” The IMA Volumes in Mathematics and its applications, vol. 107,

p. 82, 1999.

[97] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv

preprint arXiv:1711.05101, 2017.

[98] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[99] C. Ferri, J. Hernández-Orallo, and R. Modroiu, “An experimental comparison

of performance measures for classification,” Pattern recognition letters, vol. 30,

no. 1, pp. 27–38, 2009.

[100] R. J. Urbanowicz and J. H. Moore, “Exstracs 2.0: Description and evaluation of

a scalable learning classifier system,” Evolutionary intelligence, vol. 8, pp. 89–

116, 2015.

[101] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce fixes?”

ACM sigsoft software engineering notes, vol. 30, no. 4, pp. 1–5, 2005.

[102] A. LeClair and C. McMillan, “Recommendations for datasets for source code

summarization,” in Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), 2019, pp. 3931–3937.

106

[103] X. Zhu, C. Vondrick, C. C. Fowlkes, and D. Ramanan, “Do we need more

training data?” International Journal of Computer Vision, vol. 119, no. 1,

pp. 76–92, 2016.

[104] A. N. Çayır and T. S. Navruz, “Effect of dataset size on deep learning in voice

recognition,” in 2021 3rd International Congress on Human-Computer Inter-

action, Optimization and Robotic Applications (HORA), IEEE, 2021, pp. 1–

5.

[105] Y. Kamei et al., “A large-scale empirical study of just-in-time quality assur-

ance,” IEEE Transactions on Software Engineering, vol. 39, no. 6, pp. 757–

773, 2012.

[106] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving target? a

longitudinal case study of just-in-time defect prediction,” in Proceedings of the

40th International Conference on Software Engineering, 2018, pp. 560–560.

[107] Y. Fan, X. Xia, D. A. Da Costa, D. Lo, A. E. Hassan, and S. Li, “The im-

pact of mislabeled changes by szz on just-in-time defect prediction,” IEEE

transactions on software engineering, vol. 47, no. 8, pp. 1559–1586, 2019.

[108] D. A. Da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho, and A. E.

Hassan, “A framework for evaluating the results of the szz approach for identi-

fying bug-introducing changes,” IEEE Transactions on Software Engineering,

vol. 43, no. 7, pp. 641–657, 2016.

[109] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in 2013

28th IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE), Ieee, 2013, pp. 279–289.

[110] D. Spadini, M. Aniche, and A. Bacchelli, “Pydriller: Python framework for

mining software repositories,” in Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering, 2018, pp. 908–911.

[111] S. Kim, T. Zimmermann, K. Pan, E. James Jr, et al., “Automatic identification

of bug-introducing changes,” in 21st IEEE/ACM international conference on

automated software engineering (ASE’06), IEEE, 2006, pp. 81–90.

107

[112] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt, “Code-

searchnet challenge: Evaluating the state of semantic code search,” arXiv

preprint arXiv:1909.09436, 2019.

[113] P. Mahbub, O. Shuvo, and M. M. Rahman, “Explaining software bugs lever-

aging code structures in neural machine translation,” in Proceedings of 2023

IEEE/ACM 45th International Conference on Software Engineering (ICSE),

IEEE, 2023, pp. 640–652.

[114] S. Lu et al., “Codexglue: A machine learning benchmark dataset for code

understanding and generation,” arXiv preprint arXiv:2102.04664, 2021.

[115] W. Pree, Design patterns for object-oriented software development. ACM

Press/Addison-Wesley Publishing Co., 1995.

[116] G. Rodriguez-Perez, M. Nagappan, and G. Robles, “Watch out for extrinsic

bugs! a case study of their impact in just-in-time bug prediction models on

the openstack project,” IEEE Transactions on Software Engineering, vol. 48,

no. 4, pp. 1400–1416, 2020.

[117] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, and A. E.

Hassan, “Revisiting common bug prediction findings using effort-aware mod-

els,” in 2010 IEEE international conference on software maintenance, IEEE,

2010, pp. 1–10.

[118] H. Hata, O. Mizuno, and T. Kikuno, “Bug prediction based on fine-grained

module histories,” in 2012 34th international conference on software engineer-

ing (ICSE), IEEE, 2012, pp. 200–210.

[119] L. Pascarella, F. Palomba, and A. Bacchelli, “Fine-grained just-in-time defect

prediction,” Journal of Systems and Software, vol. 150, pp. 22–36, 2019.

[120] Q. Huang, X. Xia, and D. Lo, “Revisiting supervised and unsupervised models

for effort-aware just-in-time defect prediction,” Empirical Software Engineer-

ing, vol. 24, no. 5, pp. 2823–2862, 2019.

[121] T. Hoang, H. J. Kang, D. Lo, and J. Lawall, “Cc2vec: Distributed representa-

tions of code changes,” in Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering, 2020, pp. 518–529.

108

[122] Z. Wan, X. Xia, A. E. Hassan, D. Lo, J. Yin, and X. Yang, “Perceptions, expec-

tations, and challenges in defect prediction,” IEEE Transactions on Software

Engineering, vol. 46, no. 11, pp. 1241–1266, 2018.

[123] M. M. Rahman, F. Khomh, S. Yeasmin, and C. K. Roy, “The forgotten role

of search queries in ir-based bug localization: An empirical study,” Empirical

Software Engineering, vol. 26, no. 6, p. 116, 2021.

[124] R. Tufano, L. Pascarella, M. Tufano, D. Poshyvanyk, and G. Bavota, “Towards

automating code review activities,” in 2021 IEEE/ACM 43rd International

Conference on Software Engineering (ICSE), IEEE, 2021, pp. 163–174.

[125] Y. Hong, C. Tantithamthavorn, P. Thongtanunam, and A. Aleti, “Com-

mentFinder: a simpler, faster, more accurate code review comments recommen-

dation,” in Proceedings of the 30th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering, 2022,

pp. 507–519.

[126] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and D. Hou, “Cscc: Simple,

efficient, context sensitive code completion,” in 2014 IEEE International Con-

ference on Software Maintenance and Evolution, IEEE, 2014, pp. 71–80.

[127] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[128] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history database

from version control and bug tracking systems,” in International Conference

on Software Maintenance, 2003. ICSM 2003. Proceedings., IEEE, 2003, pp. 23–

32.

[129] C.-Y. Lin and F. J. Och, “Automatic evaluation of machine translation quality

using longest common subsequence and skip-bigram statistics,” in Proceedings

of the 42nd Annual Meeting of the Association for Computational Linguistics

(ACL-04), 2004, pp. 605–612.

[130] M. Allamanis, “The adverse effects of code duplication in machine learning

models of code,” in Proceedings of the 2019 ACM SIGPLAN International

Symposium on New Ideas, New Paradigms, and Reflections on Programming

and Software, 2019, pp. 143–153.

109

[131] R. Sennrich et al., “Nematus: A toolkit for neural machine translation,” in

Proceedings of the Software Demonstrations of the 15th Conference of the Eu-

ropean Chapter of the Association for Computational Linguistics, 2017, pp. 65–

68.

[132] H. B. Mann and D. R. Whitney, “On a test of whether one of two random

variables is stochastically larger than the other,” The annals of mathematical

statistics, pp. 50–60, 1947.

[133] A. J. Ko and B. A. Myers, “Debugging reinvented: Asking and answering why

and why not questions about program behavior,” in Proceedings of the 30th

international conference on Software engineering, 2008, pp. 301–310.

[134] R. F. Silva, C. K. Roy, M. M. Rahman, K. A. Schneider, K. Paixao, and M.

de Almeida Maia, “Recommending comprehensive solutions for programming

tasks by mining crowd knowledge,” in 2019 IEEE/ACM 27th International

Conference on Program Comprehension (ICPC), IEEE, 2019, pp. 358–368.

[135] B. Wong, “Points of view: Color blindness,” Nature Methods, vol. 8, no. 6,

pp. 441–441, Jan. 2011, issn: 1548-7105. doi: 10.1038/nmeth.1618. [Online].

Available: https://doi.org/10.1038/nmeth.1618.

[136] L. N. Q. Do and E. Bodden, “Explaining static analysis with rule graphs,”

IEEE Transactions on Software Engineering, vol. 48, no. 2, pp. 678–690, 2020.

[137] A. J. Ko and B. A. Myers, “Designing the whyline: A debugging interface

for asking questions about program behavior,” in Proceedings of the SIGCHI

conference on Human factors in computing systems, 2004, pp. 151–158.

[138] C. M. University, Alice – Tell Stories. Build Games. Learn to Program. 2021.

[Online]. Available: https://www.alice.org/ (visited on 01/18/2022).

[139] B. Y. Lim, A. K. Dey, and D. Avrahami, “Why and why not explanations

improve the intelligibility of context-aware intelligent systems,” in Proceed-

ings of the SIGCHI conference on human factors in computing systems, 2009,

pp. 2119–2128.

https://doi.org/10.1038/nmeth.1618
https://doi.org/10.1038/nmeth.1618
https://www.alice.org/

110

[140] S. Zhang, C. Zhang, and M. D. Ernst, “Automated documentation inference

to explain failed tests,” in 2011 26th IEEE/ACM International Conference on

Automated Software Engineering (ASE 2011), IEEE, 2011, pp. 63–72.

[141] M. Tabaei Befrouei, C. Wang, and G. Weissenbacher, “Abstraction and mining

of traces to explain concurrency bugs,” Formal Methods in System Design,

vol. 49, pp. 1–32, 2016.

[142] M. Bragaglio, N. Donatelli, S. Germiniani, and G. Pravadelli, “System-level

bug explanation through program slicing and instruction clusterization,” in

2021 IFIP/IEEE 29th International Conference on Very Large Scale Integra-

tion (VLSI-SoC), IEEE, 2021, pp. 1–6.

[143] M. M. Rahman, C. K. Roy, and I. Keivanloo, “Recommending insightful com-

ments for source code using crowdsourced knowledge,” in 2015 IEEE 15th

International Working Conference on Source Code Analysis and Manipulation

(SCAM), IEEE, 2015, pp. 81–90.

[144] J. Liang, Y. Hou, S. Zhou, J. Chen, Y. Xiong, and G. Huang, “How to explain

a patch: An empirical study of patch explanations in open source projects,” in

2019 IEEE 30th International Symposium on Software Reliability Engineering

(ISSRE), IEEE, 2019, pp. 58–69.

[145] C. Pornprasit, C. Tantithamthavorn, J. Jiarpakdee, M. Fu, and P. Thongta-

nunam, “Pyexplainer: Explaining the predictions of just-in-time defect mod-

els,” in 2021 36th IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE), IEEE, 2021, pp. 407–418.

[146] P. W. McBurney and C. McMillan, “Automatic documentation generation via

source code summarization of method context,” in Proceedings of the 22nd

International Conference on Program Comprehension, 2014, pp. 279–290.

[147] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically detecting and

describing high level actions within methods,” in Proceedings of the 33rd In-

ternational Conference on Software Engineering, 2011, pp. 101–110.

[148] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of automated

text summarization techniques for summarizing source code,” in 2010 17th

Working Conference on Reverse Engineering, IEEE, 2010, pp. 35–44.

111

[149] E. Wong, J. Yang, and L. Tan, “Autocomment: Mining question and answer

sites for automatic comment generation,” in 2013 28th IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE), IEEE, 2013,

pp. 562–567.

[150] M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention network

for extreme summarization of source code,” in International conference on

machine learning, PMLR, 2016, pp. 2091–2100.

[151] B. Wei, Y. Li, G. Li, X. Xia, and Z. Jin, “Retrieve and refine: Exemplar-

based neural comment generation,” in Proceedings of the 35th IEEE/ACM

International Conference on Automated Software Engineering, 2020, pp. 349–

360.

[152] A. Mastropaolo et al., “Studying the usage of text-to-text transfer transformer

to support code-related tasks,” in 2021 IEEE/ACM 43rd International Con-

ference on Software Engineering (ICSE), IEEE, 2021, pp. 336–347.

[153] S. Xu, Y. Yao, F. Xu, T. Gu, H. Tong, and J. Lu, “Commit message genera-

tion for source code changes,” in Proceedings of the 28th International Joint

Conference on Artificial Intelligence, 2019, pp. 3975–3981.

[154] Kavi, Buckles, and Bhat, “A formal definition of data flow graph models,”

IEEE Transactions on computers, vol. 100, no. 11, pp. 940–948, 1986.

[155] F. E. Allen, “Control flow analysis,” ACM Sigplan Notices, vol. 5, no. 7, pp. 1–

19, 1970.

[156] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence

graph and its use in optimization,” ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

Appendix A

Complementary Materials

A.1 Published Papers

• Parvez Mahbub, Ohiduzzaman Shuvo, and M. Masudur Rahman. Explain-

ing Software Bugs Leveraging Code Structures in Neural Machine Translation.

In Proceeding of The 45th IEEE/ACM International Conference on Software

Engineering (ICSE 2023), pp. 12, Melbourne, Australia, May 2023 (To appear).

• Parvez Mahbub, Ohiduzzaman Shuvo, and M. Masudur Rahman. Defectors:

A Large, Diverse Python Dataset for Defect Prediction. In Proceeding of The

20th International Conference on Mining Software Repositories (MSR 2023),

pp. 5, Melbourne, Australia, May 2023 (To appear).

A.2 Replication Packages

Bugsplorer : https://github.com/parvezmrobin/bugsplorer-replication-package

Bugsplainer : https://github.com/parvezmrobin/bugsplainer-replication-package

A.3 Prototypes

Bugsplorer : https://github.com/parvezmrobin/bugsplorer-webapp

Bugsplainer : https://github.com/parvezmrobin/bugsplainer-webapp

A.4 Demo Video

Bugsplorer : https://youtu.be/mrp5W-WR5Jk

Bugsplainer : https://youtu.be/xga-ScvULpk

112

Appendix B

Copyright Release

B.1 Bugsplainer in ICSE 2023

Parvez Mahbub, Ohiduzzaman Shuvo, and M. Masudur Rahman. Explaining Software

Bugs Leveraging Code Structures in Neural Machine Translation. In Proceeding of

The 45th IEEE/ACM International Conference on Software Engineering (ICSE 2023),

pp. 640-652, Melbourne, Australia, May 2023.

Following is the copyright agreement with Institute of Electrical and Electronics

Engineers.

113

114

115

116

117

B.2 Defectors in MSR 2023

Parvez Mahbub, Ohiduzzaman Shuvo, and M. Masudur Rahman. Defectors: A Large,

Diverse Python Dataset for Defect Prediction. In Proceeding of The 20th Interna-

tional Conference on Mining Software Repositories (MSR 2023), pp. 393-397, Mel-

bourne, Australia, May 2023.

Following is the copyright agreement with Institute of Electrical and Electronics

Engineers.

118

119

120

121

B.3 Bugsplainer Tool in ICSME 2023

Parvez Mahbub, M. Masudur Rahman, Ohiduzzaman Shuvo, and Avinash Gopal.

Bugsplainer: Leveraging Code Structures to Explain Software Bugs with Neural Ma-

chine Translation. In Proceeding of The 39th IEEE International Conference on Soft-

ware Maintenance and Evolution (ICSME 2023), pp. 5, Bogota, Columbia, October

2023 (to appear).

Following is the copyright agreement with Institute of Electrical and Electronics

Engineers.

122

123

124

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations Used
	Acknowledgements
	Introduction
	Motivation
	Problem Statement
	Our Contribution
	Related Publications
	Outline of the Thesis

	Background
	Recurrent Neural Network
	Long Short-term Memory and Gated Recurrent Unit Models
	Attention Mechanism

	Transformers
	Neural Language Modeling
	Neural Machine Translation
	Embedding
	Word Embedding
	Positional Embedding

	Abstract Syntax Tree
	Structure-Based Traversal
	Summary

	Bugsplorer: Predicting Line-Level Defects by Capturing Code Contexts with Hierarchical Transformers
	Introduction
	Motivating Example
	Methodology
	Pre-processing and Tokenization
	Token Embedding Generation
	Line Embedding Generation
	Line Classification
	Optimization

	Experiment
	Experimental Datasets
	Evaluation Metrics
	Experiment Design and Hyper-Parameters
	Evaluating Bugsplorer

	Prototype
	Web-based Front End
	Application Server
	Defect Predictor

	Threats To Validity
	Manual Analysis
	Related Work
	Defect Prediction at Different Levels of Granularity
	Machine Learning Approaches for Defect Prediction
	Deep Learning Approaches for Defect Prediction
	Line-Level Defect Prediction

	Summary

	Bugsplainer: Explaining Software Defects Leveraging Code Structures in Neural Machine Translation
	Introduction
	Motivating Example
	Methodology
	Extract Buggy and Bug-free AST Nodes from Commit
	Generate diffSBT Sequence
	Train Bugsplainer
	Generate Explanation

	Experiment
	Dataset Construction
	Evaluation Metrics
	Evaluating Bugsplainer

	Prototype
	Components
	Working Modes

	Threats To Validity
	Related Work
	Explanation of Software Bugs
	Translation of Source Code into Texts

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work
	Bugsplorer
	Bugsplainer

	Complementary Materials
	Published Papers
	Replication Packages
	Prototypes
	Demo Video

	Copyright Release
	Bugsplainer in ICSE 2023
	Defectors in MSR 2023
	Bugsplainer Tool in ICSME 2023

