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Abstract

In today’s data-driven society, the demand for secure, efficient, and decentralized

data storage and communication solutions has become increasingly critical. This

thesis explores the design and implementation of an end-to-end decentralized data

model that leverages IOTA Streams and Swarm Storage technologies.

The research begins by examining the limitations and challenges associated with

centralized data models, such as single points of failure, data breaches, and high main-

tenance costs. To overcome these challenges, a decentralized approach is proposed,

which combines the strengths of IOTA Streams and Swarm Storage.

IOTA Streams is a messaging and data transmission protocol that provides a se-

cure and tamper-proof communication layer. It allows for end-to-end encryption, data

integrity verification, and fine-grained access control. By utilizing IOTA Streams, the

proposed data model ensures the confidentiality and integrity of data throughout its

lifecycle.

Swarm Storage, on the other hand, offers a decentralized and fault-tolerant storage

infrastructure. It employs a distributed hash table (DHT) network to store and

retrieve data, enabling data redundancy, availability, and scalability. The integration

of Swarm Storage within the data model enhances data persistence and accessibility

in a decentralized manner.

The thesis presents the design and implementation details of the end-to-end decen-

tralized data model. It covers aspects such as data ingestion, transmission, storage,

retrieval, and access control. The model incorporates cryptographic techniques, con-

sensus mechanisms, and decentralized identifiers (DIDs) to establish a robust and

secure data ecosystem.

To evaluate the performance and effectiveness of the proposed data model, a series

of experiments and simulations are conducted. The experiments assess factors such as

data transfer speed, storage efficiency, fault tolerance, and resilience against attacks.

The results validate the feasibility and advantages of the end-to-end decentralized

data model based on IOTA Streams and Swarm Storage.

ix



In conclusion, this thesis demonstrates the potential of combining IOTA Streams

and Swarm Storage to achieve an end-to-end decentralized data model. The proposed

solution addresses the limitations of centralized data models and provides a secure,

efficient, and scalable alternative for storing and transmitting data in decentralized

environments. The findings of this research contribute to the field of decentralized

systems and can guide the development of future decentralized data solutions.
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Chapter 1

Introduction

In recent years, the proliferation of the Internet of Things (IoT) [2] devices has

generated an unprecedented amount of data that needs to be stored, transmitted,

and managed securely. Traditional centralized data models [3], characterized by their

reliance on single points of failure and vulnerability to data breaches, are ill-suited

to meet the demands of this data-intensive landscape. To address these challenges,

decentralized data models have emerged as promising alternatives, offering increased

security, efficiency, and scalability [4]. In this thesis, we explore the design and im-

plementation of an end-to-end decentralized data model that leverages IOTA Tangle,

IOTA Streams, and Swarm Storage, with a focus on IoT devices and data transfer.

The IOTA Tangle is a distributed ledger technology designed specifically for the

IoT ecosystem. Unlike traditional blockchain architectures, the IOTA Tangle em-

ploys a directed acyclic graph (DAG) structure, where each transaction confirms two

previous transactions, forming a web of interconnected transactions as shown in Fig-

ure 1.1. This unique structure enables high scalability and eliminates the need for

miners, resulting in feeless and lightweight transactions [5].

Figure 1.1: Directed Acyclic graph Tangle [1]

By integrating IOTA Tangle into our decentralized data model, we establish a

1
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reliable and tamper-proof transaction layer for IoT devices.

Building upon the IOTA Tangle, IOTA Streams provides a secure and decen-

tralized messaging and data transmission protocol. With IOTA Streams, data can

be securely shared between IoT devices, ensuring confidentiality, integrity, and fine-

grained access control. It enables end-to-end encryption, data authentication, and

granular permissions, allowing data owners to maintain control over their informa-

tion [6]. By incorporating IOTA Streams into our data model, we ensure that data

is securely transmitted and protected throughout its lifecycle.

While IOTA Streams addresses the communication aspect of our decentralized

data model, Swarm Storage serves as the decentralized storage infrastructure. Swarm

Storage utilizes a distributed hash table (DHT) network, where data is fragmented

and distributed across multiple nodes. This approach ensures data redundancy, avail-

ability, and scalability, eliminating the reliance on centralized servers. By leveraging

Swarm Storage, our data model achieves fault tolerance, improved data persistence,

and accessibility in a decentralized manner [7].

The convergence of IoT devices and decentralized data models presents unique

challenges in achieving secure and efficient data transfer. IoT devices are often

resource-constrained, operating with limited processing power and bandwidth. Ad-

ditionally, ensuring data privacy and security in a decentralized environment poses

significant technical hurdles [8]. Thus, this thesis aims to address these challenges by

proposing an end-to-end decentralized data model that optimizes data transfer for

IoT devices while maintaining robust security and privacy mechanisms.

In summary, this thesis explores the development of an end-to-end decentralized

data model, specifically tailored to the requirements of IoT devices and data transfer.

By incorporating the IOTA Tangle, IOTA Streams, and Swarm Storage, we aim

to establish a secure, scalable, and efficient solution for managing IoT data in a

decentralized manner. The subsequent chapters of this thesis delve into the design,

implementation, and evaluation of our proposed data model, shedding light on its

performance, advantages, and potential impact on the field of decentralized systems

and IoT data management.
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1.1 Motivation

The motivation behind this research stems from the pressing need for secure, ef-

ficient, and decentralized data management solutions in the context of IoT devices

and data transfer. As the number of IoT devices continues to soar and the volume

of generated data exponentially increases, traditional centralized data models strug-

gle to cope with the associated challenges and limitations [9]. This motivates the

exploration of decentralized alternatives that can address the shortcomings of cen-

tralized approaches and provide a more robust and scalable framework for IoT data

management.

One key motivation is the inherent vulnerabilities of centralized data models.

Centralized systems are susceptible to single points of failure, making them highly

fragile and prone to service disruptions. Moreover, the centralized storage of sen-

sitive data raises concerns about data privacy and security, as unauthorized access

or data breaches can have severe consequences [3]. These limitations undermine the

trustworthiness and reliability of centralized infrastructures, prompting the need for

decentralized data models that distribute data storage and management across a

network of participants.

Furthermore, the inefficiency of data transfer in centralized models poses signifi-

cant challenges in the IoT domain. IoT devices often operate with limited resources,

including processing power, bandwidth, and energy. The centralized approach re-

quires data to be transmitted to and from a central server, resulting in increased

latency, network congestion, and higher energy consumption. These inefficiencies

hinder real-time decision-making, delay critical actions, and hinder the scalability of

IoT deployments. Therefore, there is a need for decentralized data models that opti-

mize data transfer, minimize latency, and reduce the burden on resource-constrained

IoT devices.

The emergence of technologies such as IOTA Tangle, IOTA Streams, and Swarm

Storage provides a unique opportunity to address the aforementioned challenges.

IOTA Tangle offers a decentralized and scalable distributed ledger specifically de-

signed for the IoT ecosystem. Its feeless transactions, lightweight nature, and tamper-

proof characteristics make it an ideal foundation for decentralized data models. Ad-

ditionally, IOTA Streams provides a secure and granular data transmission protocol,
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ensuring data confidentiality, integrity, and access control. Combined with Swarm

Storage, which offers fault-tolerant and scalable decentralized storage, these tech-

nologies offer a comprehensive framework for developing an end-to-end decentralized

data model.

The potential benefits of such a decentralized data model are substantial. It can

enhance data privacy, security, and ownership, empowering individuals and organiza-

tions to retain control over their data in a trustless environment. The decentralized

nature of the model improves resilience against attacks, as there is no single point of

vulnerability. Furthermore, by optimizing data transfer for IoT devices, the proposed

model can improve overall system performance, reduce latency, and enable real-time

decision-making, ultimately unlocking the full potential of the IoT.

In conclusion, the motivation behind this research lies in the need to address

the limitations of centralized data models in the context of IoT devices and data

transfer. By leveraging technologies such as IOTA Tangle, IOTA Streams, and Swarm

Storage, we aim to develop an end-to-end decentralized data model that provides

secure, efficient, and scalable solutions for IoT data management. The outcomes

of this research have the potential to significantly impact the field of decentralized

systems, IoT deployments, and data management practices, paving the way for a

more trustworthy and resilient digital future.

1.2 Contribution

This thesis makes several contributions to the field of decentralized data manage-

ment, specifically focusing on IoT devices and data transfer. The key contributions

of this research are as follows:

1. Development of an End-to-End Decentralized Data Model: The thesis

proposes a comprehensive end-to-end decentralized data model that addresses

the limitations of centralized approaches in the context of IoT devices and data

transfer. By integrating IOTA Tangle, IOTA Streams, and Swarm Storage, the

model establishes a secure, efficient, and scalable framework for managing IoT

data in a decentralized manner.
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2. Integration of IOTA Tangle for Transaction Layer: The research con-

tributes to the integration of IOTA Tangle, a distributed ledger technology, as

the transaction layer of the decentralized data model. This integration lever-

ages the unique properties of IOTA Tangle, such as its lightweight and feeless

nature, to provide a reliable and tamper-proof infrastructure for IoT device

transactions.

3. Utilization of IOTA Streams for Secure Data Transmission: The thesis

explores the utilization of IOTA Streams, a secure messaging and data trans-

mission protocol, within the decentralized data model. By incorporating IOTA

Streams, the model ensures end-to-end encryption, data integrity verification,

and fine-grained access control, thereby addressing data privacy and security

concerns in a decentralized environment.

4. Incorporation of Swarm Storage for Decentralized Data Storage: The

research contributes to the incorporation of Swarm Storage, a decentralized stor-

age infrastructure, into the proposed data model. By utilizing Swarm Storage’s

distributed hash table (DHT) network, the model achieves data redundancy,

availability, and scalability, eliminating the reliance on centralized servers and

enhancing fault tolerance and data persistence.

5. Design and Implementation of Data Ingestion and Retrieval Mech-

anisms: The thesis presents the design and implementation details of data

ingestion and retrieval mechanisms within the decentralized data model. These

mechanisms facilitate seamless and efficient data transfer between IoT devices

and the decentralized storage infrastructure, optimizing resource utilization and

reducing latency.

6. Evaluation of Performance and Effectiveness: The research conducts a

series of experiments and simulations to evaluate the performance and effective-

ness of the proposed data model. The evaluations assess factors such as data

transfer speed, storage efficiency, fault tolerance, and resilience against attacks,

providing insights into the advantages and limitations of the decentralized data

model in practical scenarios.
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7. Contribution to Decentralized Systems and IoT Data Management:

The findings of this research contribute to the broader field of decentralized

systems and IoT data management. The proposed data model presents a novel

approach for securely and efficiently managing IoT data in a decentralized man-

ner, addressing the challenges associated with centralized models. The research

outcomes can guide the development of future decentralized data solutions, im-

proving data privacy, security, and ownership in IoT ecosystems.

In conclusion, this thesis makes significant contributions by proposing an end-to-

end decentralized data model that leverages IOTA Tangle, IOTA Streams, and Swarm

Storage for IoT devices and data transfer. The integration of these technologies, along

with the design and implementation of data ingestion and retrieval mechanisms, offers

a secure, efficient, and scalable solution for decentralized data management. The

research findings contribute to the advancement of decentralized systems and IoT

data management practices, paving the way for a more trustworthy and resilient data

ecosystem.



Chapter 2

Background Knowledge and Literature Review

2.1 Decentralized Network

Decentralized networks have gained significant attention in recent years due to

the growing concerns over privacy, data ownership, and control in centralized social

networks. In a decentralized network, the system operates on independently run

servers rather than a centralized server owned by a single business. This approach

promotes user anatomy, and data privacy, and is resilient against censorship and a

single point of failure.

1. Decentralized Network Architecture: Research has explored various de-

centralized network architectures beyond blockchain, such as Directed Acyclic

Graphs (DAGs), Tangle, and Holochain. DAG-based architectures, exemplified

by IOTA’s Tangle, offer scalability and transaction parallelism, making them

suitable for IoT and microtransactions [10]. Holochain, on the other hand,

provides a scalable framework for decentralized applications with agent-centric

data models [11].

2. Consensus mechanism: Extensive research has been conducted on consensus

mechanisms to address the limitations of traditional PoW and PoS [12, 13]. Al-

ternative approaches, such as Delegated Proof-of-Stake (DPoS) [14, 15], Practi-

cal Byzantine Fault Tolerance (PBFT)[16], Directed Acyclic Graph(DAG) [12],

and Proof-of-Authority (PoA)[17], have been proposed to improve scalability,

energy efficiency, and transaction throughput in decentralized networks.

3. Scalability and Performance: Scalability and performance are still impor-

tant issues in blockchain networks; substantial research has been conducted

comparing various types of blockchain networks in terms of scalability problems

and performance features[18, 19]. Because of the vast number of participating

7
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nodes, public blockchains have scalability constraints[20, 19], but private[21]

and permissioned blockchains[22] have more scalability possibilities owing to

regulated network conditions. To achieve optimal scalability and performance

in blockchain networks, however, consensus algorithms, network architecture,

governance frameworks, and the deployment of appropriate scaling solutions

must all be carefully considered[18, 20, 19, 22, 21]. More research and develop-

ment are required to overcome scalability issues and increase the performance

of blockchain networks across various deployment options.

2.2 Blockchain Trilemma

The ”blockchain trilemma” is a concept that highlights the trade-offs between

three critical properties in blockchain networks: decentralization, scalability, and

security. The trilemma suggests that it is challenging to achieve high levels of all

three properties simultaneously. As a result, most blockchain networks prioritize two

of the three properties at the expense of the third as shown in Figure 2.1 [23]. For

example:

Figure 2.1: Blockchain Trilemma
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1. Decentralization: Refers to the distribution of control and decision-making

power across multiple nodes in the network. A highly decentralized blockchain

involves many participants (nodes) validating transactions, which enhances cen-

sorship resistance and resilience against attacks. However, achieving high de-

centralization can lead to increased network latency and reduced scalability.

2. Scalability: Refers to the ability of a blockchain network to process a large

number of transactions per second (TPS) efficiently. High scalability allows

the network to handle a growing number of users and transactions without

significant performance degradation. However, achieving high scalability can

often require compromising on decentralization or security.

3. Security: Refers to the resistance against attacks and malicious behavior on

the blockchain network. Robust security ensures that the transactions are im-

mutable and tamper-proof. However, enhancing security can sometimes lead to

reduced scalability and require additional computational resources.

IOTA and Swarm Storage combined aim to address the blockchain trilemma by of-

fering a decentralized, scalable, and secure solution for data management and com-

munication.

IOTA Tangle and Decentralization: IOTA Tangle, the underlying architec-

ture of IOTA, takes a different approach from traditional blockchain networks. It

utilizes a Directed Acyclic Graph (DAG) structure where each transaction confirms

two previous transactions, creating a web of interconnected transactions as shown

in Figure 1.1. This structure promotes a high level of decentralization because each

participant can directly validate transactions without relying on specialized miners.

By removing the need for miners and fees, IOTA Tangle achieves a high degree of

decentralization while remaining lightweight and efficient.

Swarm Storage and Scalability: Swarm storage complements the IOTA Tan-

gle’s decentralization by providing a scalable and distributed storage solution. Swarm

utilizes a Distributed Hash Table (DHT) network, where data is divided into smaller

chunks and distributed across multiple nodes in the network. This sharding approach

enables efficient data retrieval and storage, allowing Swarm to scale with the size of
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the network. As more nodes join the network, the storage capacity increases, ensuring

high scalability without compromising on decentralization.

End-to-End Encryption with IOTA Streams for Security: Data privacy

and security are critical in decentralized data models. IOTA Streams, a protocol built

on top of IOTA Tangle, offers end-to-end encryption and secure data communication.

It allows data publishers to encrypt messages and share them securely with autho-

rized subscribers. The integration of IOTA Streams with IOTA Tangle and Swarm

ensures that data remains encrypted, authenticated, and tamper-proof throughout

its lifecycle, providing robust security in a decentralized environment.

Conclusion: By combining IOTA Tangle’s decentralized architecture, Swarm

Storage’s scalable data management, and IOTA Streams secure communication, IOTA

and Swarm present a compelling solution to the blockchain trilemma. This end-to-

end decentralized data model offers high levels of decentralization, scalability, and

security, making it suitable for various applications, including Internet of Things

(IoT) devices, where data privacy, efficiency, and resilience are of utmost importance.

The convergence of these technologies paves the way for a new era of decentralized

systems that can efficiently handle massive amounts of data while preserving the

principles of trust and security in a decentralized network.

2.3 Decentralized Storage

Decentralized storage is a potential approach for addressing the constraints and

risks of centralized storage structures. Significant research has been undertaken in

different decentralized storage technologies, such as Storj, IPFS, Swarm, Sia, and

Filecoin[15]. To provide secure, scalable, and robust storage solutions, these plat-

forms make use of blockchain technology, peer-to-peer networks, and unique storage

technologies. Researchers are working on solving difficulties in decentralized storage

systems such as performance optimization, data availability, and incentive mecha-

nisms. Decentralized storage improvements can pave the way for more secure and

dependable storage infrastructure in various sectors, including cloud storage, content

distribution, and decentralized apps[24].

1. Storj: According to (Wilkinson and Lowder, 2014)[25], it is time for cloud

storage solutions to evolve into real clouds, and blockchain enables this. Storj
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leverages the Ethereum blockchain to store metadata for each block, allowing

users to access their content in its entirety whenever required. Metadisk mon-

itors the network regularly to ensure that the files stored are accessible and

unaltered. If a node or audit is not accessible, a new node is used to save the

file. All files in Storj are broken into small portions before being transferred

across the network. This conceals crucial data by combining it with irrelevant

information.[24, 25]

The author of [24] presented Storj, a decentralized cloud storage platform based

on blockchain technology and peer-to-peer networks. The research assessed

Storj’s scalability, performance, and security, emphasizing its ability to deliver

safe and dependable storage at a reasonable cost when compared to established

cloud storage providers.

2. IPFS: The InterPlanetary File System (IPFS), a technology that allows for

decentralized and distributed file storage, was explained by the author [26].

The study looked into IPFS’s architecture and functionality, emphasizing its

potential for data deduplication, content-addressable storage, and peer-to-peer

file sharing[27]. The study also evaluated IPFS’s performance and scalability

in several use scenarios[26].

3. Sia: Author[24, 28] investigated Sia, a blockchain-based decentralized storage

platform. similar to Storj, where peers rent out their hardware capacity. Before

transmitting data to the network, it must be encrypted and digitally signed, and

a contract must be established between the client and hosts[28]. The research

analyzed Sia’s features, security measures, and storage economics, focusing on

its potential for cost-effective and dependable data storage. In addition, the

study assessed Sia’s performance and scalability in terms of file retrieval time

and network throughput.

4. Filecoin: The author examined Filecoin, a decentralized storage network, in

comparison to various storage systems[24]. FileCoin is another example of a

decentralized storage network. It works on top of IPFS and leverages Proof-

of-Spacetime and Proof-of-Replication to ensure that the client’s data is secure

over time[29]. Filecoin’s consensus process, data replication mechanisms, and
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economic incentives were all explored in the study. The study emphasized

Filecoin’s potential for scalable and secure storage, as well as its distinct market-

driven approach to incentivizing storage providers[24].

2.4 Decentralized Data Management

Blockchain technology, which was originally designed for cryptocurrencies such as

Bitcoin, has emerged as a promising alternative for decentralized data management.

It provides a safe, transparent, and tamper-proof means for storing and exchanging

data over a network of nodes. Blockchain technology can assist address difficulties

connected to data security, privacy, and interoperability in the context of data man-

agement, making it particularly useful for industries such as healthcare, supply chain

management, and finance.

1. Blockchain Technology in Healthcare - A Systematic Review: This sys-

tematic review investigates ongoing research on the use of blockchain technology

in healthcare. The authors highlight many blockchain use cases in healthcare,

including electronic health records, medical supply chain management, and clin-

ical trials. They do, however, emphasize the need for more study to better

comprehend, describe, and assess the usefulness of blockchain in healthcare[30].

2. Decentralized Clinical Trials: The Medical Product Development of the

Future. The potential of blockchain technology in decentralized clinical tri-

als is discussed in this article. It emphasizes the advantages of implementing

blockchain for clinical trial data administration, such as increased data security,

transparency, and traceability. The authors also underline the importance of

more studies to address the challenges and limitations of using blockchain in

clinical trials[31].

3. A Blockchain-Enabled Medical Supply Chain: This study suggests a med-

ical supply chain system based on blockchain technology. The authors want to

fill identified gaps in current evidence of blockchain deployment in medical sup-

ply chains by developing a robust, secure, and transparent method for handling

medicinal goods[31, 32].
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4. Decentralized Data Management in Healthcare Using Blockchain Tech-

nology: This article explores the possible benefits of employing blockchain tech-

nology in healthcare for decentralized data management. It goes through how

blockchain may increase data accuracy, security, and interoperability while also

lowering the expenses associated with traditional data management solutions.

The authors also emphasize the importance of more study and development to

fully realize the promise of blockchain in healthcare[30].

5. Blockchain for Decentralized Data Management: Opportunities and

Challenges: This research paper examines the advantages and disadvantages

of utilizing blockchain technology for decentralized data management. It em-

phasizes the benefits of blockchain, such as increased security, transparency,

and traceability, while also addressing the technological and legislative hurdles

that must be solved to fully use blockchain’s promise in many industries[33].

2.5 Integration of IOTA Technologies in IoT

The integration of IOTA technologies into the IoT (Internet of Things) has the

potential to change how devices connect and transact with one another completely.

IOTA is a distributed ledger system (DLT) developed primarily for Internet of Things

(IoT) environments. It employs a unique data structure, the Tangle, a directed acyclic

graph (DAG) that allows for feeless and scalable transactions[34].

Here are some ways IOTA technologies can be integrated into IoT:

1. Secure data transfer: IOTA’s Tangle can be used to securely transfer data

between IoT devices without the need for a centralized authority. This ensures

data integrity and prevents tampering[34, 35].

2. Micropayments: IOTA enables feeless transactions, making it suitable for

micropayments between IoT devices. This can be used to create new busi-

ness models, such as pay-per-use services or incentivizing data sharing between

devices[34].

3. Decentralized identity: IOTA’s Digital Identity framework can be used to
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create decentralized identities for IoT devices, ensuring secure and private com-

munication between them[35].

4. Data marketplace: IOTA can be used to create a decentralized data market-

place where IoT devices can sell their data to interested parties. This can help

monetize data generated by IoT devices and encourage data sharing[34, 36].

5. Smart contracts: IOTA is working on implementing smart contracts on its

platform, which can be used to automate processes and agreements between

IoT devices[34, 36].

6. Scalability: IOTA’s Tangle is designed to be highly scalable, making it suitable

for large-scale IoT networks with millions of devices[34, 35].

7. Energy efficiency: IOTA’s consensus mechanism, which is based on the Tan-

gle, is more energy-efficient than traditional blockchain-based systems, making

it more suitable for IoT devices with limited power resources[34, 37].

Overall, integrating IOTA technologies into IoT can lead to more secure, efficient,

and scalable networks, enabling new business models and use cases.

2.6 Iota Streams

The IOTA Streams framework is designed to provide a secure message verification

and protection protocol for data transmission over a transport layer.

The Channels protocol was developed to replace the previously used MAM li-

brary for data transmission using the Tangle as the primary transport mechanism.

The channels themselves may be configured in a variety of ways, with any arbitrary

combination of publishers and subscribers (although each channel can only be hosted

by a single author instance)[38].

2.6.1 Channels Protocol

The Channels protocol offers the high-level API tools required for authors and

subscribers to be created and communicate with the Tangle[38].
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Authors

A channel author is responsible for the creation of a new channel as well as the

configuration of the channel’s intended structure (i.e. single branch versus multi-

branch). A channel author will be able to restrict access to branches within a channel

structure, as well as accept and manage user subscription messages[38].

Subscribers

A channel subscriber is an individual who is not the author of a channel. A

subscriber can be created without author authorization, but to write to a branch

or process any private streams, they must subscribe to the channel and have the

author’s approval, and process that subscription. A subscriber may also connect with

a stream without completing a subscription process by using pre-shared keys instead

of a subscription[38].

Branching

Branches are defined as successive groupings of messages connected to the an-

nouncement message. For public and private streaming, these branches will normally

be created using either a signed packet message or a keyload message. A channel can

take one of two forms:

1. Single branch: a message sequence that is linear (akin to a MAM stream),

with each message connected to the one before it.

2. Multi-branch: a message sequencing that does not reliant on sequential mes-

sage linking.

When creating a channel, the author will choose whether to utilize single-branching

or multi-branching; this will instruct the Streams instance on how to handle sequenc-

ing. Subscribers will also be notified when they process the announcement message,

ensuring that their instances are in the correct sequencing order[38].

Keyloads

A keyload message is a control and access restriction message that allows the

author to state who should be allowed to decode any messages attached after it.
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When creating a keyload message, there are two approaches for specifying access:

1. Subscriber Public Keys: Public keys are masked and sent to the author to be

kept on their instance throughout the processing of subscription messages. By

providing that public key in the keyload message, the author may then signify

which of these users will be allowed to view subsequent messages.

2. Pre-Shared Keys: A predefined key is distributed to end users through means

other than the subscription procedure described above. These keys can be

used to provide or restrict access to a stream without the requirement for a

subscription[38].

Sequencing

Sequencing is a technique integrated into streams that allows message IDs to be

created in sequence regardless of the structure of the channel. Messages are identified

by an indexation position within the Tangle and are generated using a combina-

tion of Application instance (channel identifier), Public key of the publisher, Previ-

ous message-id (the message is linked to), Branch number (identifier for the specific

branch), and Sequencing number (the publisher’s sequencing position).

As messages are posted to and received from the channel, the message identifica-

tion, branch, and sequencing numbers for each publishing party are updated in a local

state for user implementation. To stay in sync, user implementations can deduce and

search for the next message in the series.

1. Single Branch Sequencing: A single-branch implementation updates each

user’s sequencing state to the same state and increments the sequencing number

by one. To avoid out-of-sync parties, it is recommended that a single branch be

utilized with just one publisher.

2. Multi-Branch Sequencing: In a multi-branch system, a sequencing message

is transmitted in unison with every data message to allow users to determine

the right message-id of a sequenced message[38].
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2.7 Swarm

Swarm is an Ethereum-based decentralized storage and content delivery network.

It is considered as object storage system. It aims to build a censorship-resistant,

fault-tolerant, and self-sustaining infrastructure for peer-to-peer content hosting and

distribution[39]. Here are some important factors to consider while researching Swarm

storage:

1. Swarm Architecture: Swarm uses a distributed network of nodes known as

”swarm nodes” to store and share data. It employs a novel method known

as ”content-addressable chunking,” which divides data into smaller pieces and

provides each chunk a unique identity (content address). After that, the pieces

are saved and spread over the network[40, 41].

2. Chunk Retrieval and Incentives: To incentivize nodes to store and dis-

tribute content, Swarm employs a retrieval market model. Nodes are compen-

sated with digital currency for supplying chunks to consumers on demand. The

retrieval algorithm is based on proximity, which means that nodes closest to the

requesting node are preferred for content delivery[39, 42].

3. Redundancy and Fault Tolerance: Swarm enables data redundancy by

replicating chunks across several nodes. This redundancy enables fault toler-

ance, ensuring that data remains accessible even if some nodes fail or go down.

It also enables efficient retrieval via parallelization and load balancing[39, 43].

4. Security and Privacy: Swarm employs encryption methods to ensure the

integrity and confidentiality of data. Because chunks are encrypted and spread

over numerous nodes, malicious actors find it difficult to compromise the data.

Swarm also connects with the Ethereum blockchain, utilizing its security fea-

tures for authentication and access control[39, 43].

2.8 Literature Review on decentralized data models

Decentralized data models have emerged as a prominent topic of research be-

cause of their potential to improve data security, privacy, and control. They are
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distinguished by the absence of a centralized authority, enabling data to be stored,

processed, and managed across various network nodes[44].

Naz, M et al proposed a model using the Ethereum network and IPFS that achieves

security and access control by executing the access roles written in the smart contract

by the owner. Users are first authenticated through RSA signatures, then submit the

requested amount as a price for digital content, and are given incentives for registering

reviews about data[45].

In decentralized storage systems, end-to-end encryption is employed to remove

the risk of data loss associated with centralized data control. Storage providers must

demonstrate that they have maintained unmodified files in this network for this period

of time.

The survey paper focuses on providing an overview of blockchain-based storage

systems, comparing them to cloud-based storage networks, and evaluating the benefits

and drawbacks of blockchain-based storage. The authors surveyed all literature on

storage in which blockchain was utilized to overcome traditional difficulties. The

results and topics addressed have been compiled and tallied. Exploratory research

was carried out to evaluate the cutting-edge deployment of blockchain technology in

decentralized storage and concluded that Blockchain-based storage solutions address

various problems of traditional storage systems while also providing data privacy

and security. However, because of scalability, data analysis, and access difficulties,

blockchain-based storage is still in its early stages[46].

Exploratory technology study into IOTA sensor integration, utilizing IOTA as

the data layer, and produced a storage/visualization application. Sensors cannot

directly interface with the DLT since the IOTA protocol uses Proof of Work to send

and disseminate data over the network. We explored a methodology for sending

sensor data to the IOTA/Tangle network. A web application framework (Node.js

Express) running on a certain IP and port retrieves the data. When employing

HTTP, MQTT, and LPWAN, the server will listen for POST requests to an endpoint,

get the information, and then disseminate it on the Tangle using MAM. To better

control transaction issuance and resource use, authors examined a web application

that collects data from the XDK110 sensors and runs a MAM client to generate IOTA

bundles and broadcast them to the IOTA full node and suggested using the IOTA
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network as a distributed protocol for sensor data and visualizing all sensor data in

real-time. Anyone interested in the data may immediately check its integrity in the

Tangle. Because information could be entered into the distributed ledger without

fees and with low latency, the IOTA protocol proved to be promising as an IoT

data channel. IOTA can be used to create a decentralized data marketplace where

decentralized data can be exchanged for the IOTA value token. Although distributed

ledger technology has grown in popularity in recent years, typical blockchain systems

have limitations and as a solution, researchers demonstrated that a DAG-based DLT,

such as IOTA, has no such constraints[35].

IoT streaming devices create massive volumes of data, which are stored, processed,

analyzed for value generation, and accessed via centralized systems, technologies,

platforms, and services. The authors of this study developed a blockchain-based

solution for resource-constrained IoT streaming devices that ensures data privacy and

secrecy via a proxy re-encryption network. They demonstrated system schematics,

eleven algorithms, detailed implementation details, as well as security analysis. To

give users access to encrypted IoT data chunks, they deployed a proxy re-encryption

network and allowed multiple readings inside the same acceptance request[47].

One of the most popular implementations of this decentralized technology is de-

centralized storage networks. Clients can safely send files across a fully decentralized

network, eliminating the danger of data failures caused by centralized controls. This

study provides an in-depth examination of blockchain-based storage systems, com-

pares them to cloud-based storage networks, and explores future research options, and

concluded that Blockchain is a revolutionary technology that has the potential to alter

many industries. However, constraints and concerns with blockchain-based storage

systems, such as scalability issues, data analysis, and accessibility, remain contested;

it is thought that blockchain-based storage is still in the process of maturing[43].

Along with IoT, blockchain is revolutionizing the Internet by allowing the Trust-

less, Distributed, and Secure exchange of all value. The proposed approach stores the

data it gathers by issuing transactions in IOTA’s ledger, known as Tangle. A gossip

mechanism is used to broadcast these transactions over the IOTA network. The data

kept in the Tangle must be available only to those with the necessary authorization

so Masked Authenticated Messaging(MAM) a data communication protocol is used.
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In this paper, the authors present a distributed sensor node system that exchanges

data in an M2M way using the IOTA protocol, an innovative distributed ledger tech-

nology, and establishes a data monetization economy paradigm. In conclusion, the

study proposes a distributed sensor node system that securely gathers, stores, and

analyses field data using IOTA protocol characteristics. It is intended to be resilient,

flexible, and adaptable to any application domain[48].



Chapter 3

Methodology

This chapter outlines the research methodology employed in this study. This

research aims to design and implement an end-to-end decentralized data model using

Iota Streams and Swarm storage. The methodology is designed to answer the research

questions by integrating both theoretical and practical approaches.

3.1 Research Design

The research design for this study is a combination of exploratory and experi-

mental research. The exploratory aspect involves a comprehensive literature review

on decentralized data models, Iota Streams, and Swarm storage. The experimental

aspect involves the design, implementation, and testing of the proposed model.

Extensive research has been conducted on existing literature, including books,

peer-reviewed articles, white papers, and online resources, to gain a comprehensive

understanding of the current state of decentralized data models, Iota Streams, and

Swarm storage.

The practical implementation part of the study will involve the development of a

prototype model using Iota Streams and Swarm storage. This will provide first-hand

data transfer in the proposed model.

3.2 System Design

As we mentioned in the previous section, our research aims to establish an end-

to-end decentralized data model for IoT devices. The model aims to achieve secure,

efficient, and scalable data management in a decentralized network. The Research

follows a mixed-method approach, combining both the design and implementation of

the data model.

21
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Figure 3.1: Overall Architectural Design of an end-to-end decentralized data model

3.2.1 Architectural Design

Figure 3.1 provides a comprehensive visual representation of our model, structured

around four central components: the IoT Device, Consumer Node, IoTA Tangle and

Streams module, and Swarm Storage module. These components, with their respec-

tive sub-modules and functionalities, form an integrated architecture ensuring efficient

data transfer, storage, and retrieval in a decentralized environment.

1. IoT Device: In the prototype, this device acts as a simulated sensor node. It

generates sensor data randomly, capturing the essence of real-world IoT devices.

This data is then channeled through IoTA Streams, replicating the pathway a

genuine sensor node would undertake.

2. IOTA Streams: A multifaceted module, the IOTA Streams is made up of

several key entities that ensure its smooth operation. These include Data Pub-

lishers, who are responsible for disseminating data, Subscribers, who receive this

data, Channels, which act as conduits for data flow, and additional features like

Branching, Keyloads, and sequencing. Each of these entities, as explained in
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Chapter 2.5.1, plays a critical role in ensuring secure and structured data trans-

mission.

3. Swarm Storage Network: For the prototype’s purpose, a bee node was em-

ployed as the storage medium within the Swarm network. This node liaises with

the IOTA Streams, enabling both data transmission and retrieval. Advanced

techniques, such as data chunking, are used for efficient data storage. Similarly,

specialized retrieval mechanisms are employed to fetch the data when required,

ensuring data integrity and speedy access.

4. Consumer Node: The endpoint of the architecture, this node, is equipped

with a software stack that facilitates the retrieval of stored data. Once fetched,

this data can be harnessed for diverse applications, depending on the end user’s

requirements. Whether it’s for analytics, monitoring, or any other application,

the Consumer Node is pivotal in making the stored data actionable.

Figure 3.2: Sample Use case for the model proposed

Figure 3.2 presents a practical use-case scenario illustrating the potential appli-

cations of our proposed decentralized data model. Let’s imagine a contemporary

hospital setting that leverages the advantages of this model:
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In this hospital, patients are equipped with IoT devices tailored to monitor vari-

ous vital statistics such as temperature, blood pressure, heart rate, and more. These

aren’t just ordinary devices; they are connected entities that can relay real-time health

metrics. Now, given the critical nature of these data points, their transmission must

be both secure and efficient. Utilizing the proposed model, as soon as a patient’s

IoT device captures health metrics, it initiates the data transfer process. Doctors or

medical staff, who are subscribed to receive this data, can access it almost instan-

taneously. This ensures that in critical situations, medical professionals can make

informed decisions swiftly, potentially saving lives.

Our system uses IOTA Streams, which have cryptographic integrity checks in

place. Any update in data would result in a new cryptographic signature, and in-

terested parties could verify the data’s integrity based on this new signature. Fur-

thermore, the model isn’t just about real-time data access. It also emphasizes data

permanence and security. The data, once sent, gets stored in a tamperproof decentral-

ized storage system. Given the sensitive nature of medical records and the increasing

risks of data breaches in the digital age, such a storage system ensures that patients’

health records are both accessible to authorized personnel and protected from any

malicious threats.

In essence, this hospital scenario is a glimpse into the future of healthcare –

where real-time data access complements robust data security, all powered by the

decentralized model we propose.

3.2.2 IOTA Streams Integration

Integrating IOTA Streams into the data model enables secure data communication

and encryption. Data is transferred and secured over an immutable distributed ledger

called Tangle.

IOTA Tangle is not designed to be a long-term storage solution, but rather a

secure and efficient transaction processing and data transfer network. So for long-

term storage, an additional layer of data storage often needs to be considered. So,

here we are using Swarm storage for the long-term persistence of data.

1. Message Structure: IOTA Streams utilizes a concept called ”Channels” to or-

ganize and structure the data being streamed. Each channel contains a sequence
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of ”Messages.” A Message consists of two main components: the ”Header” and

the ”Payload.”

• Header: Contains metadata and cryptographic information, including

encryption keys and access control policies, required for securely handling

the message.

• Payload: The actual data being transmitted within the message.

2. Access Control Policies: Access control policies in IOTA Streams are crucial

for managing data privacy and determining who can access and read the mes-

sages within a given channel. The Access control policies are typically defined

and enforced using cryptographic techniques.

• Signature-Based Access Control: Each channel participant can be

allocated unique cryptographic keys. Participants must sign messages in

the channel using their private keys before reading or publishing them,

and other participants can verify the signatures using the associated public

keys.

• Asymmetric Encryption: Asymmetric encryption can be used to en-

crypt the payload. Each participant has a distinct public-private key com-

bination, and only those who have the correct private key may decrypt

and read the payload.

• Role-Based Access Control: Channels can also specify certain roles

and the access rights that go with them. Participants can be allocated to

distinct roles, giving them fine-grained access control.

• Revocation Mechanism: If a participant’s access has to be revoked,

cryptographic key updates and re-encryption can be used to do it securely.

3. Encryption Methods: IOTA Streams employs various cryptographic tech-

niques to ensure data privacy and integrity:

• Asymmetric Encryption: For secure communication between partici-

pants and encrypting payload data.
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• Symmetric Encryption: Used for efficient bulk data encryption within

the channel.

• Digital Signatures: Used to verify the authenticity and integrity of mes-

sages and ensure they are from legitimate sources.

• Hash Functions: For ensuring data integrity and detecting any tamper-

ing with the messages.

Additionally, I’ve implemented sample code for the various types of communication

possible in channels in different scenarios. Where users may choose between single

and multiple publishers.

• Single Publisher:

1. Public Single Branch: The most straightforward application of Streams.

The author creates a public channel that anybody with the Announce

message link can read.

2. Private Single Branch: A private branch with restricted access. Sub-

scribers must correctly subscribe to have access to the messages published

by the Author.

3. Public Single Depth: A retrievable public index channel. The author

creates a public channel that anybody with the Announce message link

can read. Messages can be retrieved by subscribers by utilizing an anchor

message link and message number.

4. Private Single Depth: A private index retrievable channel with user

access restrictions. Subscribers must correctly subscribe to have access to

the messages published by the Author. Subscribers can retrieve commu-

nications once they have been authorized by utilizing an anchor message

link and message number.

• Multi Publisher:

1. Single Publisher per Branch: The author creates a channel in which

each subscriber is assigned their own branch to publish. This is accom-

plished by delivering a new Keyload to the channel for each new Subscriber,

to which they may then connect their messages.
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2. Multiple Publisher per Branch: The author creates a channel with

two subscribers in each of the two branches. Subscribers A and B post

their messages in branch A in alternating sequences, exhibiting the syn-

chronization between each publishing entity to maintain state. The same

is done in Branch B for Subscribers C and D.

• Mixed Access Multi Branch: A more advanced implementation of a Multi

Branch channel with a mix of private and public access. Three branches are

created, each with its own message chain and access limitations. Subscribers

are defined as follows:

1. Subscriber A: Has traditionally subscribed to and been allowed access

to branch A (but can also read public branch C).

2. Subscriber B: Can read from branch B using a Pre Shared Key (can also

read from public branch C).

3. Subscriber C: Is not properly subscribed and can only read from public

branch C.

3.2.3 Swarm Storage Integration

Integrating Swarm Storage as the underlying decentralized storage layer for the

data model provides distributed storage and increases the scalability of the data model

which in turn helps in offering enhanced data availability, redundancy, and access

control capabilities. I have configured and deployed a bee node in my implementation

of the data model which in turn helps ensure data redundancy by replicating chunks

across several nodes and the redundancy enables fault tolerance ensuring that data

remains accessible even if some nodes fail or go down.

Swarm employs encryption methods to ensure the integrity and confidentiality of

data.

3.2.4 Why IOTA Streams with Swarm?

IOTA Streams is a framework for publishing and consuming encrypted and au-

thenticated data streams on the IOTA Tangle. It provides a way to store, retrieve,
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and update data in a decentralized, immutable, and tamper-evident way. However,

it doesn’t specify a particular storage backend, which means that you can choose to

store the data on the IOTA Tangle or some other storage platform.

Swarm, on the other hand, is a decentralized storage platform that is designed to

provide distributed storage and retrieval of files and data objects. It is a peer-to-peer

network that allows users to store and retrieve data in a decentralized way, without

relying on any centralized servers or intermediaries. Thus, using IOTA Streams with

Swarm, one can take advantage of the benefits of both platforms and create a more

resilient and robust data storage and retrieval system.

3.3 Implementation

In this section, we discuss how we implemented the proposed architecture, taking

into consideration the model’s two essential components, IOTA Streams and Swarm

Storage network. As shown in Figures 3.1 3.2, IoT devices run both the IoTA Tangle

network and swarm network codes, and in turn, these IoT devices communicate data

to IoTA Tangle using IoTA Streams which navigate and secure the data to Tangle,

from which we send the data to the Decentralized storage network Swarm (Bee node).

Figure 3.3: System Architectural Diagram of an end-to-end decentralized data model



29

3.3.1 IOTA Streams Implementation

• Setup: Install @iota/streams/node in the environment using npm to enable

the iota streams package to work in the code. Also, install ’crypto’ with npm

to generate the seed for our nodes.

COMMANDS: npm install @iota/streams/node , npm install @crypto

Figure 3.4: IoTA Streams package importing in code

Here, I used a public gateway node provided by the IOTA foundation to utilize

the IOTA tangle framework. Ideally, we can create our own private gateway

node to tangle to make it more secure and fast. So, I’ve used ”https://chrysalis-

nodes.iota.org/” as my node gateway.

Figure 3.5: IoTA Node Settings

• Data Streaming: Various steps need to be implemented in the tangle for Data

Streaming in IoTA Streams before the user may send actual data through.

First, we need to establish an Author and a new Channel here I used a public

single-branch channel model for which we will generate a new seed using the

crypto package and sha256 hash generator for the author and a new channel

address.

Figure 3.6: Creating New Seed
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Figure 3.7: Creating Author and Channel

The author then sends an announcement to the channel with an announcement

link which is a combination of the channel address and additional IDs that

subscribers will use to subscribe to the author’s channel.

Figure 3.8: Sending Announcement Link

Then we create a subscriber with a new seed using the same package that

we used to generate the author seed ’crypto’ and sha256. The subscriber will

then get an announcement that we sent in the above step from the author and

subscribe to the announcement link, for which the Subscription Link will be

created.

Figure 3.9: Creating Subscriber

Figure 3.10: Received announcement and Subscription Link

Now that the Author and Subscriber have been created and are ready for com-

munication, the Author will receive a subscription link for which the Author will

send a keyload message (A keyload message is a control and access restriction

message that allows the author to indicate who should be allowed to decode any
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messages attached after it. There are two methods for specifying access when

constructing a keyload message: subscriber public keys and pre-shared keys.)

Figure 3.11: Received Subscription link and send Keyload message

The subscriber will now synchronize the channel state and send a tagged packet,

resulting in the creation of a tagged packet link.

Figure 3.12: Synchronizing Channel State and Sending Tagged packet

When the Author retrieves new messages in the channel, the author will receive

a message link, which is a tagged packet link made up of tagged messages, which

can be transmitted with a public or masked payload.

Figure 3.13: Fetching New Messages from Channel

Following that, I experimented with sending multiple signed packets from the

subscriber, and the author will synchronize and fetch the messages.

Figure 3.14: Sync channel state and send multiple signed packets
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Figure 3.15: Fetching multiple new messages from Channel

3.3.2 Swarm Storage Implementation

In this part, we will discuss how we implemented the swarm storage network

shown in Figures 3.1 3.3 IoT devices use a software architecture that combines IoTA

Streams and Swarm Storage. IoTA Streams will interact with swarm storage.

• Setup: Using npm install commands, we first install the necessary swarm-

related dependency packages in our environment, such as @ethersphere/bee-js,

which will allow all of the methods and functions accessible in bee storage, also

known as swarm storage.

Figure 3.16: Bee Storage package importing in code

Ideally, we should construct our own bee node in the system and use its ad-

dress for communications and storage, but for prototype reasons, I utilized the

publicly existing bee node ”https://gateway.ethswarm.org”.

Figure 3.17: Bee node instance

• Data Storage: In both the author and subscriber code, we initialize the bee

instance. We declare get and set methods in beeStorageAdapter that employ

key and value pair encryption for uploading and downloading data.
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Figure 3.18: Bee Storage Adapter Module

• Integrating with Iota Streams As we discussed in section 3.3.1 IoTA imple-

mentation is when the subscriber syncs and sends a tagged packet that is when

we use the BeeStorage adapter function(Swarm) that we created to upload data

and download data to fetch the messages.

Figure 3.19: Bee Integration with IoTA Streams

The above implementations are done with a single author and subscriber to im-

plement the prototype with IoTA Streams and Swarm storage.

As stated in sections 3.2.2 and 3.3.1, IoTA Streams communicate between author

and subscriber using a method known as channels. I explored many sorts of stream

communications to look into new applications and other combinations of security

mechanisms as stated below.

• Single Publisher:

1. Public Single Branch: The most straightforward application of Streams.

The author creates a public channel that anybody with the Announce

message link can read.
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Figure 3.20: Public Single Branch Single Publisher Communication

2. Private Single Branch: A private branch with restricted access. Sub-

scribers must correctly subscribe to have access to the messages published

by the Author.

Figure 3.21: Private Single Branch Single Publisher Communication

3. Public Single Depth: A retrievable public index channel. The author

creates a public channel that anybody with the Announce message link

can read. Messages can be retrieved by subscribers by utilizing an anchor

message link and message number.

Figure 3.22: Public Single Depth Single Publisher Communication

4. Private Single Depth: A private index retrievable channel with user

access restrictions. Subscribers must correctly subscribe to have access to

the messages published by the Author. Subscribers can retrieve commu-

nications once they have been authorized by utilizing an anchor message

link and message number.
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Figure 3.23: Private Single Branch Single Publisher Communication

• Multi Publisher:

1. Single Publisher per Branch: The author creates a channel in which

each subscriber is assigned their own branch to publish. This is accom-

plished by delivering a new Keyload to the channel for each new Subscriber,

to which they may then connect their messages.

Figure 3.24: Private Multiple Branch Single Publisher per branch communication

2. Multiple Publisher per Branch: The author creates a channel with

two subscribers in each of the two branches. Subscribers A and B post

their messages in branch A in alternating sequences, exhibiting the syn-

chronization between each publishing entity to maintain state. The same

is done in Branch B for Subscribers C and D.
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Figure 3.25: Private Multiple Branch Multiple Publisher per branch communication

• Mixed Access Multi Branch: A more advanced implementation of a Multi

Branch channel with a mix of private and public access. Three branches are

created, each with its own message chain and access limitations. Subscribers

are defined as follows:

1. Subscriber A: Has traditionally subscribed to and been allowed access

to branch A (but can also read public branch C).

2. Subscriber B: Can read from branch B using a Pre Shared Key (can also

read from public branch C).

3. Subscriber C: Is not properly subscribed and can only read from public

branch C.

Figure 3.26: Mixed Multi Branch Single Publisher communication



Chapter 4

Experimental Results and Evaluation

4.1 Evaluation

The evaluation of the proposed end-to-end decentralized data model is a crucial

step to assess its performance, scalability, security, and practical applicability in real-

world scenarios. In this section, we present the evaluation methodology, experimental

setup, and results obtained during the evaluation process.

The central aim of the experimental setup was to evaluate the efficiency and

performance of the end-to-end decentralized data model leveraging Iota Streams and

Swarm Storage. Several key metrics were measured, including data latency, system

throughput, storage efficiency, and data integrity.

4.1.1 Data Latency

Understanding and minimizing data latency is of paramount importance in our

research. This latency has a direct influence on the system’s responsiveness, the re-

liability of data exchanges, and, ultimately, the user experience. In decentralized

architectures such as the one we’ve developed using IOTA Streams and Swarm Stor-

age, the efficacy of real-time data transfers becomes even more crucial. It’s not just

about speed; it’s about maintaining the robustness and integrity of the entire system.

Unoptimized latency can lead to bottlenecks, potential data losses, and reduced

trust in the system’s efficiency. Therefore, our meticulous approach to measuring

latency, down to the millisecond across a plethora of tests, is an essential step. This

ensures that our decentralized data model isn’t just theoretically sound but also

practically efficient, ready to meet the stringent requirements of contemporary de-

centralized applications.
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Complete Execution Time

In the entire operational sequence, the total execution time captures the period

from the initial establishment of an author to the final phases of data packet trans-

mission and subsequent retrieval. As elaborated in section 3.3.1, this encompasses

several integral steps: the initialization of the author, setting up the channel and sub-

scriber, the dispatch and reception of both the announcement and subscription links,

ensuring synchronization, and the successful transmission and subsequent retrieval of

data packets. Each of these stages is pivotal in comprehensively understanding the

data flow within the system.

Figure 4.1: No of Packets vs Execution Time

From our illustration in 4.1, there’s a clear correlation between the increase in

packets and the total execution time of the program. As we dissect the graph, it

becomes evident that with an uptick in the number of packets, there’s a corresponding

linear growth in the execution time. The trend line in the graph initiates at 9 packets

and consistently grows linearly up to 99, within the range of 3 to 100 packets.

Turning our attention to the subsequent visualization below in 4.2, it offers a

detailed perspective on how packets are dispersed with respect to their processing

time. This particular bubble chart not only gives insights into individual packet
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timings but also accentuates the overarching trend. It provides a normalized trend

line that succinctly contrasts the number of packets with their associated processing

time, offering a holistic view of the system’s performance dynamics.

Figure 4.2: Distribution of Packets for each Time across Packets

Figure 4.3: Outliers showing the Average number of Packets transmitted per time interval

The above figure 4.3 explains the outliers in respective of showing an average

number of packets transmitted per time interval. As seen in the figure below the

average number of packets is 47.2 for which I have illustrated the top and bottom 3
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outliers showcasing how much difference in percentage of time with respective to an

average number of packets.

In our examinations, it became evident that the total execution time is not con-

sistent across varying scenarios—it is directly influenced by the intricacy of the tasks

being performed and the volume of data subjected to processing. The latency mani-

fested during these operations is more than just a time measure; it serves as a litmus

test for the adeptness of our decentralized framework. By analyzing this latency, we

can pinpoint potential areas of congestion or inefficiency that might hamper the sys-

tem’s optimal performance. This knowledge is instrumental in fine-tuning our model

to ensure seamless data exchanges and bolster overall system responsiveness.

Data Exchange - Sending and Retrieving packets

The sending and retrieval of packets are core operations in our decentralized data

model. We measured the latency of these operations for different numbers of packets

ranging from 3 to 100. From our observations, a clear pattern emerged. As delineated

in 4.4, there’s a proportional relationship between the volume of packets and the

time required for their transmission and retrieval. Simply put, the more packets

involved, the longer the duration. Such a correlation is logical, considering that with

an increase in packet numbers, the system is burdened with additional data that

needs meticulous processing and transfer. This underscores the inherent challenges

in managing voluminous data traffic in decentralized frameworks.

Figure 4.4: No.of Packets vs Time
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In the subsequent bubble chart presented below 4.5, a discernible pattern emerges

regarding the distribution of packets relative to the time taken for processing. The

data portrays a linear progression, signifying that as the volume of data escalates,

there is a proportional increase in the time required for its processing. Essentially, this

trend underscores a fundamental principle: larger datasets invariably necessitate more

processing time. This linearity accentuates the inherent relationship between data

volume and processing latency, a vital consideration when evaluating the efficiency

and scalability of decentralized systems.

Figure 4.5: Distribution of packets for each Time

In the subsequent section, we delve into anomalies or outliers concerning time

about the average packet count, as depicted below 4.6. Through our observations, a

particular discrepancy was noted. Specifically, when transmitting 80 packets, the time

taken was an astounding 69.5 percent above the average time needed for sending 47.2

packets. Contrastingly, there was a significant reduction, amounting to 68.2 percent

below the average, when the task involved transmitting just 15 packets.

These findings underscore a critical implication for applications that predomi-

nantly deal with low packet transmissions. Such applications stand to gain sub-

stantially from our model, benefiting from both speed and efficiency. Furthermore,

this model serves as an enabler, facilitating communication in a wholly decentralized

manner, especially in scenarios where lower packet counts are the norm.
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Figure 4.6: Explanation of Packets by Time

We also observed a nonlinear relationship between the number of packets and the

latency, which suggests that factors other than the sheer number of packets might

affect the latency. These could include network congestion, hardware limitations, or

the inherent computational complexity of the operations.

Below is a graph that 4.7 shows the difference in the time it took to execute all

the steps against the time took for only packet transfer. Execution Time in the below

graph includes the time it took to steps like creating of publisher, subscriber, channel,

access control policies, and processing of packets. Where as in Packet execution time

it only calculates the time it took for processing packets.
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Figure 4.7: Time for Complete execution and Packet execution

On average, latency using the Iota Streams and Swarm storage architecture was

the same as the typical centralized data models for low packet size transfers. This

indicates the proposed decentralized system’s capacity to deliver real-time or near

real-time data exchange, an imperative in today’s growing Internet of Things (IoT)

infrastructure.

4.1.2 System Throughput

System throughput refers to the measure of how many units of information the

system can process in a given amount of time. For our study, we observed the through-

put by sending varying quantities of packets through the system and assessing the

CPU usage and time taken to process these packets.

CPU Usage Analysis

To quantify the impact of our decentralized data model on the system resources,

we recorded the CPU usage in percentage terms for each instance of the packet

transmission.



44

Figure 4.8: CPU Usage vs Packets

Our observations from the above 4.8 suggest that with an increase in the number of

packets, CPU usage also increases. This is likely due to the additional computational

resources required to process a higher number of packets.

Figure 4.9: Explanation of CPU Usage by Packets

The insights provided by the above figure 4.9 allow for a deepened understanding

of the system’s behavior with respect to CPU usage as the number of packets handled
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increases. The comparative analysis between the actual average CPU usage for a

particular number of packets and the overall average CPU usage reveals intriguing

findings.

In one of our observations, we noticed that for a range of 15-20 packets, the CPU

usage averages around 0.37 percent. This is significantly lower - by 48.8 percent

than the average CPU usage of 0.723 percent. This indicates that handling fewer

packets (in this case, 15-20) considerably reduces the strain on CPU resources. Such

efficiency in CPU utilization, while processing lower packet ranges, can contribute

towards optimizing our system for scenarios where data loads are relatively smaller.

On the other hand, when the system deals with a heavier data load, specifically

in the 80-85 packets range, it results in a CPU usage of approximately 1.06 percent.

This is a substantial 46.6 percent higher than the overall average CPU usage of 0.723

percent. The increase in CPU usage under heavier load conditions demonstrates that

our system’s resource utilization scales with the number of packets processed, though

at an escalated rate compared to the average. Understanding this behavior is critical

when considering larger data transmissions or heavier workloads.

These observations become visually clear in the heatmap of CPU utilization

against packets, as depicted in the subsequent figure 4.10. This heatmap portrays an

evident progressive rise in CPU consumption as the size of the packet increases, un-

derscoring the correlation between packet size and resource utilization. Interestingly,

the CPU utilization seems to plateau in the 85-105 packet range, suggesting that the

system may reach a point of maximum resource usage under our tested conditions.

Further testing would be needed to confirm this.
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Figure 4.10: Heatmap of CPU Usage against packets

CPU User and System Usage Time

In addition to the overall CPU usage, we also measured the user and system CPU

usage in milliseconds.

The user CPU time represents the amount of time the CPU was busy execut-

ing code in user mode, which in our case is the processing of packets. The system

CPU time is the time the CPU was busy executing system-level operations, such as

managing memory or I/O operations.

The graph below 4.11 provides a detailed illustration of our model’s CPU utiliza-

tion, revealing insights into user and system usage. Interestingly, we observed that

the CPU system utilization is substantially lower compared to the user CPU usage.

This suggests that our model predominantly runs user-level applications, minimiz-

ing its impact on system-level operations. Thus, it effectively leverages its resources,

ensuring efficient performance. As workloads vary, continued observation of these
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trends is crucial for optimizing future performance.

Figure 4.11: CPU Usage in ms against Number of Packets

Figure 4.12, a bar diagram below, illustrates a direct relationship between system

CPU usage and the number of processed packets. As the packet count rises, system

CPU consumption similarly increases. This amplification in system CPU usage is

likely attributable to escalated system-level operations executed by the CPU, such

as memory management and I/O operations. Each additional packet necessitates

these operations, thereby driving up CPU consumption. This relationship not only

underscores the system’s scalability under increased loads but also helps in effective

resource management and system optimization during high-data traffic scenarios.
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Figure 4.12: CPU User Usage in ms against Number of Packets

The forthcoming bar diagram 4.13 highlights the correlation between system CPU

usage and the number of packets processed. It shows a clear upward trajectory,

indicating that an increase in the number of packets directly influences the rise in

system CPU usage. This surge is primarily attributable to the additional system-level

operations required by the CPU. As the packet count increases, the CPU must execute

more tasks such as memory management or I/O operations, leading to increased

resource usage. Understanding this trend is crucial. It serves as an indicator of

our system’s performance under varying workloads, contributing towards strategic

planning for future resource allocation and system optimization to ensure efficient

operation even under high data traffic scenarios.

Figure 4.13: CPU System Usage in ms against Number of Packets
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Figure 4.14: CPU System and User Usage in ms against Number of Packets

The data visualization provided above 4.14 represents a comprehensive view of

the CPU usage for both user-level tasks and system-level operations in relation to the

number of packets processed. The visualization includes trend lines that effectively

demonstrate the correlation between CPU utilization and packet count.

An observation from these trend lines is the ascending nature of CPU usage as

the number of packets escalates. However, it is noteworthy that the trend lines do

not encompass the range of 0-5 packets. This absence suggests that when the data

load is relatively low - that is when the data is transmitted in smaller packet sizes -

the system exhibits significantly low throughput.

Understanding these trends and behavior helps anticipate the system’s perfor-

mance under varying workloads. It offers insights that can guide system optimiza-

tions for different data transmission scenarios, ensuring that the system can maintain

an optimal balance between throughput and CPU utilization.

The table provided below 4.15 offers a comprehensive analysis of our data projec-

tions, utilizing the mean number of packets as a tool for an enhanced understanding

of CPU usage patterns. By identifying the top and bottom three outliers in the data

for CPU Usage in percent by packets, CPU User Usage, and CPU System Usage, we

gain a clearer perspective on the system’s behavior in extreme situations. The top

three outliers may suggest conditions of unusual stress or high load, causing a spike

in CPU usage. Conversely, the bottom three outliers could illustrate scenarios where

the system is under minimal load, resulting in low CPU usage.

By computing these outliers, we understand the system’s behavior under extreme
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conditions better. This, in turn, helps us refine our understanding of the model’s

performance characteristics. For example, the top three outliers indicate scenarios

where the system may have been under unusual stress or high loads, causing a sig-

nificant spike in CPU usage. On the other hand, the bottom three outliers might

represent scenarios where the system handled smaller loads with minimal CPU us-

age. The information derived from the outliers’ analysis provides valuable insights

into the robustness and resilience of the system.

Figure 4.15: Average packets against CPU Usage in percent, packets, CPU user, and
system usage

The data model showcased low latency and minimal resource consumption, indi-

cating its suitability for real-time data processing, but this measure is for very simple

application of sending simulated sensor data, performance can vary with different

types of applications and length of the messages.

We investigated the data model’s scalability by increasing the number of data

publishers and subscribers in the network. As illustrated in section 3.3.2 we have

implemented various types of communications possible with the model. The increase
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in network participants had a minimal impact on data retrieval times and transaction

throughput.

4.1.3 Data Integrity

Data integrity not only guarantees the trustworthiness of data over its entire life

cycle but also protects the data from external alterations or modifications. When op-

erating in a decentralized environment, where data is spread across numerous nodes,

the risks of inconsistencies and vulnerabilities become more pronounced. As there

isn’t a single centralized authority to oversee and validate every piece of data, the

importance of preserving integrity becomes paramount. Within our research frame-

work, our assessment of data integrity wasn’t just confined to Error detection and

understanding the aftermath, i.e., detecting errors once they have occurred. We also

delved deep into Error prevention(preemptive measures), aiming to prevent errors

before they could even manifest. This dual-pronged approach is crucial in ensuring

that data remains trustworthy and unaltered, no matter where it resides within the

decentralized network

Error Detection

Error detection refers to the process of identifying any discrepancies that may have

arisen post-data transmission. To test this aspect, we conducted numerous experi-

ments wherein we transmitted data packets through our system and then compared

the transmitted and received data.

For a comprehensive validation, we curated a wide range of test cases encom-

passing a diverse array of data types and structures. A crucial component of our

error detection strategy was the utilization of checksum or hash comparisons. This

involved creating a condensed representation or ’digest’ of the transmitted data and

comparing it with a similar ’digest’ of the received data. This procedure is highly

effective in verifying data integrity, as it can reveal even subtle alterations in the data

that might otherwise go unnoticed.
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Figure 4.16: A Hash of the payload on the tangle

(a) A Confirmation of message on the tangle (b) A Confirmation of Payload on the tangle

Figure 4.17: Data confirmation on IOTA Tangle

So, once the tangle transaction is approved, we can view the indexation payload

on the tangle gateway as shown above in Figure 4.17, which has a data hash that we

converted to text and cross-checked to see if there are any differences in the data that

we truly transmitted.

Figure 4.18: Hash to text Conversion of payload

After comparing figures 4.16 and 4.18 we can infer that the data transferred and
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hashed on the tangle are the same with extra padding for security purposes, and that

there is no loss or alteration in data, indicating data integrity.

Error Prevention

Error prevention focuses on strategies that help avoid any inconsistencies or errors

in the data in the first place. In our system, we employed mechanisms like data

validation before transmission and reliable error handling during data processing.

Error Simulation

Here, we intentionally introduced errors in the data transmission and assess if the

system can detect and handle them appropriately.

The screenshot below 4.19 depicts our validation code for the data and DateTime

fields.

Figure 4.19: Validation code snippet

We sent a dateTime value in a different format than what is expected and see if

the system identifies the error as shown in figure 4.20.

Figure 4.20: Modify the data payload

Added an extra field to the payload that our system isn’t expecting and check if

the program detects it and throws an error.
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Figure 4.21: Extra Field detection

We incorporated IOTA streams and Swarm storage in our model being decen-

tralized technologies they offer built-in security features that are incorporated into

our model, IOTA Streams security aspects to end-to-end encryption, forward secrecy,

Data confidentiality, and Data Integrity, Swarm offers storage level security like data

sharding, chunk encryption, data authentication, decentralization, incentive mecha-

nisms.



Chapter 5

Conclusion and Future Work

5.0.1 Limitations and Future Work:

While the evaluation yielded promising results, some limitations were observed.

Further research can explore optimizations for even higher performance, investigate

quantum-resistant cryptography for long-term security, and address interoperability

challenges with other decentralized technologies.

Overall, the evaluation process confirms the success of our proposed end-to-end

decentralized data model, offering a valuable contribution to the field of decentralized

data management. The data model’s robustness, efficiency, and versatility make it a

promising solution for a wide range of industries, revolutionizing how data is managed,

shared, and secured in decentralized networks.

5.0.2 Conclusion

In this thesis, we proposed and implemented an end-to-end decentralized data

model leveraging the power of IOTA Streams and Swarm storage. The main objec-

tive of the research was to design and evaluate a secure, efficient, and scalable data

management solution in a decentralized network. Throughout the study, we explored

the principles, features, and challenges of decentralized data management, blockchain

technologies, IOTA Streams, and Swarm storage.

The research findings demonstrate that the integration of IOTA Streams and

Swarm storage in the proposed data model presents a promising approach to decen-

tralized data management. The combination of IOTA Streams secure communication

layer and Swarm storage’s distributed storage capabilities empowers users with en-

hanced data privacy, tamper resistance, and availability. The architectural design of

the data model allows data publishers to securely share information with authorized

data subscribers, without the need for a central authority or intermediary.

55



56

Our implementation and performance evaluation revealed that the end-to-end de-

centralized data model showcases efficient data management capabilities with minimal

resource overhead. The model demonstrated competitive transaction throughput and

data retrieval time, making it a viable option for real-world decentralized applications

that require fast and secure data handling.

The combination of IOTA Streams data encryption and access control mecha-

nisms with Swarm storage’s decentralized data replication and retrieval methods of-

fers a robust and scalable solution for decentralized data management. However, we

acknowledge some limitations in our research. As with any emerging technology, the

implementation of IOTA Streams and Swarm storage may require additional testing

and optimization in complex and large-scale scenarios. Furthermore, the security of

the data model heavily relies on the strength of cryptographic algorithms, and ad-

vancements in quantum-resistant cryptography should be explored for long-term data

protection.

In conclusion, this thesis contributes to the growing body of knowledge in decen-

tralized data management and blockchain-based solutions. The end-to-end decen-

tralized data model using IOTA Streams and Swarm storage provides an innovative

and practical approach to secure and scalable data management in a decentralized

network. It offers significant potential for use in various domains, including supply

chain, IoT, finance, and identity management.

The research opens up avenues for future work, such as exploring integration with

other decentralized technologies, conducting more extensive performance evaluations,

and addressing challenges related to interoperability and regulatory compliance. As

the decentralized landscape evolves, the proposed data model can serve as a founda-

tion for further advancements in secure and decentralized data management solutions.

Overall, the results obtained from this research demonstrate the feasibility and

effectiveness of the proposed end-to-end decentralized data model, positioning it as a

valuable contribution to the field of decentralized data management and its potential

applications in a wide range of industries.
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