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Abstract

Forest fires are increasing in severity and frequency due to factors such as climate

change. Forest fire ignition prediction is important for safeguarding communities

and allocating firefighting resources effectively. Machine learning is a promising tool

to enhance forest fire prediction. However, progress in this field is hindered by a

scarcity of forest fire ignition datasets for simulation and training. Moreover, existing

platforms, such as the Canadian Wildland Fire Information System, underutilize

machine learning capabilities for forest fire ignition classification prediction.

To address the limitations in the availability of forest fire ignition datasets and

the untapped potential of machine learning within existing platforms, we propose

two novel frameworks. The first framework aims to generate comprehensive forest

fire ignition prediction datasets for diverse geographic regions. Leveraging R and

Python, we instantiate the framework by creating datasets for three fire-prone re-

gions in Canada using existing climate and ignition data. The second framework

incorporates federated machine learning and Internet of Things technologies to en-

able efficient and accurate forest fire ignition classification prediction. By deploying

distributed IoT weather stations in a fire-prone region, our federated system harnesses

data from multiple sources to enhance prediction capabilities.

To evaluate the effectiveness of the generated datasets, we assess various machine

learning models, including Random Forest, Support Vector Machine, and multiple

Recurrent Neural Network models. The instantiated datasets yield promising results,

achieving an F1-score of 0.85, an Area Under the Receiver Operating Characteristic

Curve of 0.95, and a Specificity of 0.89. Additionally, our federated machine learning

system achieves comparable prediction accuracy to the centralized system, using an

imbalanced dataset with 5,008,365 non-ignitions and 45,411 ignitions. Notably, the

federated system achieves superior spatial granularity in classifying forest fire igni-

tions. These results underscore the potential of our frameworks to enhance forest

fire prediction and management, paving the way for improved safety and resource

allocation in the face of the increased severity and frequency of forest fires.
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Glossary

AB Alberta is a Canadian province, situated between the provinces of Saskatchewan

and British Columbia. 23

BC British Columbia is the western most province of Canada. vii, 27, 29

CA The Central Aggregator in our proposed FL system uses simple averaging to

combine the weights of WS models during a round. vii, 5, 6, 47

CFFWI The Canadian Forest Fire Weather Index, is an empirical model developed

in 1987. This model generated calculations for each weather data collection

point, providing insights into various factors related to fire, such as ignition

ease, potential fuel consumption, effects of drought on forest fuels, fire spread

rate, and overall fuel availability. 9

CS The Central Server is the server were centralized classic machine learning occurs.

In our simulation the CS system results are compared to the FL system. 4, 7

CWFIS The Canadian Wildland Fire Information System is a platform developed

under the auspices of Natural Resources Canada to assist forest fire management

agencies and the public. 4–6, 8, 9, 11, 12, 20, 48

FF Forest fires are an uncontrolled burning of vegetation and trees. They are also

referred to as wildfires in some research. 1, 2, 4, 7–9, 12, 15, 19–22, 24, 32, 33,

44–47, 57, 59, 61

FL Federated Learning involves training individual clients on their respective datasets,

with only model updates shared and averaged to create a global model. 1, 4–7,

21, 46–51, 53–55, 57, 58, 60, 61

IoT The Internet of Things is a network of interconnected physical devices embedded

with sensors, software, and connectivity. ii, v, viii, 1, 4–8, 12, 20, 47–52, 58–61

x



KNN KNN stands for k-nearest neighbors. It is a machine learning model used for

classification and regression. In this model predictions are made based on how

similar a new sample is to k number of points in the training data set. 16

LSTM Long Short-Term Memory models are a type of recurrent neural network

(RNN). They selectively retain or forget data over sequences, enabling them to

capture temporal patterns and dependencies. 5, 17, 47, 54, 55, 58

MB Manitoba is a Canadian province, situated between the provinces of Ontario

and Saskatchewan. 23

ML Machine learning is a subsection of artificial intelligence that develops models

that enable computers to learn from data, identify patterns, and make predic-

tions. 1, 2, 4, 7, 8, 15, 20, 33, 34, 38, 46, 47, 57–61

NetCDF Network Common Data Form is a set of software libraries made up of

data formats that support the creation, access, and sharing of array-oriented

scientific data. In our case the form a container for multiple GeoTIFF files. vii,

24, 25, 27, 30

WGCFFDRS The Weather Guide for the Canadian Forest Fire Danger Rating

System is a guide on how to interpret and apply weather information in the

context of the Canadian forest fire danger rating system. 4, 11, 12

WS Weather Stations within this thesis are those described in [25], automatic sta-

tions capable of collecting weather information and reporting it to other devices

by radio, satellite, or internet. v, vii, viii, 1, 2, 4–7, 47–52, 54, 58, 60
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Chapter 1

Introduction

Forest fires (FF) are a natural phenomenon that play a vital role in the regeneration

process of healthy forests. However, when FF occur near human communities, they

can cause significant physical and economic damage. Therefore, it is crucial to predict

the combinations of conditions that can lead to a FF ignition in order to allocate

appropriate fire management resources and protect communities. The challenges

associated with this task are becoming increasingly complex as forest fires grow in size,

frequency, and severity, primarily due to the impacts of climate change. Given the

magnitude of this problem, extensive research into all potential solutions is necessary.

To contribute to ongoing research we present two frameworks. The first is for the

creation of FF ignition datasets suitable for training machine learning (ML) models.

The second is a framework for using Federated Learning (FL), a machine learning

method, with Internet of Things (IoT) technologies for classification prediction of FF

ignition or non-ignitions in specific geographic areas at a specific times.

1.1 Introduction to a Framework for Creating Forest Fire Ignition

Prediction Datasets

We begin by introducing the dataset aspect of this thesis. Publicly available datasets

that combine FF ignition data with weather data are sparse and cover limited geo-

graphic areas. For instance, Kaggle.com hosts 10 datasets, 7 with no description of

the geographic area they cover, and the remainder focused on Montesinho Park in

Portugal and the Amazon. Data collection methods are not consistently documented,

and sometimes not at all in the FF ignition prediction research we looked at. Hence,

a framework is needed that can be used to generate FF ignition prediction datasets.

Ideally, this framework is applicable across multiple regions with differing weather

features and FF ignition frequencies.

Satellite imagery and averaged numeric features from WS are the principal origins

1
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of data used to train FF ML models. Satellite images are able to capture the majority

of the earth’s surface but have a limited temporal resolution depending on their orbit.

WS are distributed unevenly, clustered close to inhabited areas or sparsely across more

remote regions. The temporal and spatial limitations of satellite and weather station

collection do not pose a problem for weather prediction, since a well developed and

validated model exists [10]. However, in the case of FF ignition prediction which is

spatially and temporally specific a general model is not optimal.

We present a framework that provides a general scheme to combine data collected

with independent sensing techniques and data derived from reanalysis of historic

weather data. The use of reanalysis data is a well accepted practice in extreme

weather event and climate research due to its finer temporal and spatial resolutions

as noted in Zou et al. [50]. This scheme can fill data holes, providing temporal and

spatial data that is more complete. Origins of the historic data include ground based

WS, weather balloons, aircraft, ships, and other sources [34]. Data formats from

these sources are inconsistent from region to region and time period to time period.

The benefit of using reanalysis data is that we are able to generate consistently

formatted data for times and geographical areas where data is missing. Ignition data

is especially difficult to find in a consistent format. This is due to how the ignition

data was collected, the year it was collected in, and the geographical reach of the

collecting agency. It is not a trivial task to combine ignition data from one region

with that of another, and then with weather data.

Our goal is to simplify the task of creating FF ignition datasets. This is done

through a framework and resultant instantiations representing multiple years of ground

based weather plus FF ignition data. Our proposed resolution is capable of capturing

local variations in temperature, precipitation, humidity, pressure, and FF ignition

data over large geographic areas. To benefit from the strengths of ML this data is

feature diverse and of a large enough volume that it is representative of a fire prone

regions over multiple years. The dataset contributions of this thesis are:

a) A framework for producing high temporal and spatial resolution FF datasets

in .csv format with rows representing specific locations and times. Every row

contains coordinates, feature values, and a binary column indicating whether an

ignition occurred for that location and time. The framework combines weather
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reanalysis data (explained in Section 3.2.1) with available ignition data (ex-

plained in Section 3.2.2). Provision is made within our framework for other

types of data such as proximity to human infrastructure and historical light-

ning data.

b) Instantiations of our framework resulting in three large datasets suitable for

simulating ground-based sensor data:

• A dataset with 19 weather features captured daily over 41 years, 2 spatial

features spanning 944,735 km2, and 5 FF ignition features at a spatial

resolution of 0.1◦ longitude by 0.1◦ latitude, presented in .csv table format

where each row represents a unique day and location.

• Two datasets, each with 19 weather features captured hourly over 41 years,

2 spatial features spanning 254,800 km2, and 1 FF ignition feature at a

spatial resolution of 0.25◦ longitude by 0.25◦ latitude, presented in .csv

table format where each row represents a unique day and location.

c) Using ML models, we test several fitness aspects of our datasets, including com-

pleteness, correctness, and format validity. Modeling the relationship between

weather data and ignition data, we show that the dataset is correct (it makes

sense spatially and chronologically), complete (models converge), is in a valid

format (can be read in a typical data processing scheme), and is acceptable (can

be used with multiple models).

d) We use the metrics F1-score, ROC-AUC, Sensitivity, and Specificity to represent

several ML models’ ability to correctly classify whether an ignition has occurred

within a geographic area during a given time interval. The models include bag

tree, boost tree, decision tree, logistic regression, multilayer perceptron, nearest

neighbor, random forest, and support vector machine (SVM).

e) We demonstrate the usefulness of combining weather reanalysis data with FF

ignition data by achieving ROC-AUC and F1-score values above 0.8.

The data framework created has been instantiated for validation, as described in

Section 3. Performance of the instantiated datasets has been examined using different
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ML models and found to perform with results comparable to past FF prediction

research, achieving an F1-score of 0.85, ROC-AUC of 0.95, and Specificity of 0.89.

1.2 Introduction to a Framework using Federated Learning for

IoT-based Forest Fire Prediction

We now introduce the FL aspect of this thesis. To contextualize the FL framework

we look at the Canadian Wildland Fire Information System (CWFIS), a dynamic

platform developed under the auspices of Natural Resources Canada to provide real-

time information on FF to fire management agencies and the public [26]. The system

continuously enhances its capabilities through the revision of fire weather models,

exploration of new methods, and the integration of advanced technologies such as

the introduction of MODIS [35] satellite data. However, the current system does not

primarily use machine learning (ML) for FF weather analysis and prediction.

TheWeather Guide for the Canadian Forest Fire Danger Rating System (WGCFF-

DRS) emphasizes the need for a larger network of fire WS to ensure reliable fire

weather forecasts [25]. While the number of fire WS used by the CWFIS has in-

creased since the 250 stations used in 1995 [26], the emerging impact of climate

change, including geographically specific weather phenomena like heat domes, high-

lights the continued need for an expanded and more geographically diverse network

of fire weather collection. The abundance of sensors, like IoT WS, presents an op-

portunity to address this challenge. By deploying a larger number of WS, it becomes

possible to significantly enhance the spatial coverage and resolution of fire weather

data collection, enhancing the overall effectiveness of platforms like the CWFIS.

ML is an increasingly explored approach in FF prediction, showing the potential

to surpass the predictive power of the empirical models used in the CWFIS [19].

One such approach is FL. FL enables training models on decentralized data without

requiring the transfer of data to a CS. The use of FL in FF management has not

received extensive research attention, despite its potential to reduce data transfer

communication cost within a collection system, and to enhance data sharing through

models among fire management agencies. This thesis offers a solution to the question:

Research Question: How can the integration of FL and IoT technologies
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enhance the capabilities of the CWFIS for efficient FF prediction and manage-

ment?

There is significant potential to enhance the accuracy of ignition classification predic-

tion models utilized in systems like the CWFIS by harnessing ML techniques, specifi-

cally FL, and integrating real-time data from sources such as IoT WSs. Additionally,

the creation of a ML model that is shareable at both national and global levels would

foster collaboration among various stakeholders engaged in FF prediction.

FL [29] offers several benefits that directly contribute to platforms like the CWFIS.

It is characterized by its efficiency, decentralization, and facilitation of collaboration.

This thesis introduces a framework that leverages FL to generate predictions using

decentralized IoT weather station data, thereby minimizing the need for extensive

data transfer and localizing predictions. Simultaneously, it constructs a general model

that is shareable with agencies that prefer not to share their data or opt to train a

pre-existing model based on local conditions.

Efficiencies provided by FL in the context of FF management manifest in several

ways. The framework presented in this thesis suggests the establishment of a network

of WS, where each station trains its own ML model, particularly a Long Short-Term

Memory LSTM model, and shares the model weights with a central aggregator (CA),

Fig. 1.1. The CA averages the weights and sends them back to the stations. This

approach eliminates the requirement for extensive data transfer, resulting in reduced

bandwidth usage, communication energy consumption, and latency. The output of

the framework, a general model for predicting FF ignition enhances data sharing

among fire management agencies, even those that wish to silo data. In addition

to a framework for FF prediction using FL, this thesis instantiates the framework,

demonstrating a possible use case. The FL contributions of this thesis are:

a) The thesis introduces a novel framework that combines FL with simulated

weather data collection from IoT devices, specifically WSs, whose output is

FF ignition classification prediction.

b) The framework is instantiated using a FF database from the fire prone Kelowna

region. The results of our framework instantiation demonstrate that the inte-

gration of IoT WSs in a FL system returns FF ignition classification prediction

results comparable to a CS machine learning system.
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Figure 1.1: The proposed federated system with WS predicting ignition or
non-ignition, and a CA that averages model weights.

c) We demonstrate that the communication energy required by a FL system for

FF ignition classification prediction can be less than a CS system in some cases.

d) We demonstrate improvement in spatial precision of FF ignition classification

prediction compared to a CS system.

Our contributions show that the utilization of a FL system within platforms like

the CWFIS improves the system’s capabilities, enabling the integration of real-time

data from IoT WSs and providing localized FF ignition classification predictions

comparable to a CS system. Using an imbalanced dataset with 5,008,365 non-ignitions

and 45,411 ignitions, our FL system yields promising results, achieving an accuracy

of approximately 0.76 and ROC-AUC of approximately 0.80.

1.3 Chapter Summary

In summary, this thesis introduces a data framework for developing forest fire igni-

tion datasets, and a framework for using FL with IoT technologies for classification

prediction of FF ignition or non-ignitions. Fig. 1.2 illustrates the overall thesis layout.

Chapter 2 provides an overview of relevant research from various fields. We ex-

amine academic papers that outline the goals and specifications of the CWFIS. We
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then explore the use of IoT in smart forests and weather data collection. Next we

look at papers proposing ML models for FF prediction, and finally we discuss aspects

of federated learning and their relevance to this domain.

Chapter 3 presents a framework for creating datasets suitable for FF prediction

research. We describe the methodology employed, and then explain the instantiation

of the framework used for testing in Chapter 4.

Chapter 4 employs a dataset generated using the framework from Chapter 3 to

evaluate the fitness of the models we presented in Chapter 2. First we provide details

on the specific models used, then outline the methodology for assessing their fitness,

and finally present the results of the evaluation.

Chapter 5 introduces a framework for applying FL to data collected from IoT

weather stations (WS). We describe the instantiation of the framework and the sim-

ulation conducted to assess the fitness of the federated learning system. Next we

provide an in-depth explanation of the methodology, and finally we compare the re-

sults of the simulation, specifically contrasting the outcomes of a central server (CS)

system with those of a FL system.

Chapter 6 concludes the thesis with a summary of the preceding chapters and

an examination of the challenges facing this work, as well as the future prospects of

utilizing federated learning and IoT for FF prediction.

Figure 1.2: Document outline.



Chapter 2

Background and Literature Survey

This chapter introduces background information from different domains that have

influenced this thesis. We first look at forest fires, then two papers produced as part

of the CWFIS, then IoT and the idea of the smart forest are touched on. Next, our

literature survey looks at papers from the last decade that have applied ML to the FF

prediction problem. Finally the paper that originally proposed federated learning, as

well as some recent FL research are looked at.

2.1 Forest Fires

As of 2021 approximately 362 million hectares (ha) of forest covered Canada, making

up 9% of the world’s total forested area. That same year Canada saw forest fires

consume 4,307,520, 1.19% of that [6]. Forest fires, the uncontrolled burning of forest

vegetation, are a positive part of healthy forest ecosystems when they consume dead

plant matter and return it to the soil. However, when they threaten human commu-

nities, either through direct flame or diminished air quality, forest fire management

agencies need to step in. The demand for intervention has seen a rapid increase in

2023 with the effects of climate change and extreme heat. When conditions are right,

such as low moisture levels in the ground level debris of a forest, ignitions caused by

lightning or humans are likely to grow beyond small sparks. The majority of fires

are started by humans (52.4%), but fires started by lightning (44.4%) make up the

majority of area burned (87.6%) per year [6].

2.2 Canadian Wildland Fire Information System

The CWFIS serves as a crucial platform that delivers data, analysis, and real-time in-

formation to fire management agencies and the public. It operates under the oversight

of the Government of Canada through Natural Resources Canada (NRCan), which

8
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is responsible for the management and conservation of the nation’s forests. NRCan’s

overarching goals include sustainable development and the well-being of Canadians,

encompassing the management and response to wildfires. Within this context, tools

for fire monitoring and prediction, such as the CWFIS, play a vital role.

The CWFIS facilitates the sharing of information between agencies and provides

valuable insights to users for fire risk assessment, aiding in prevention, resource al-

location, and understanding fire behavior. Its principal focus is on FF-related data

and interpretations, including fire danger ratings. These data and interpretations are

sourced from various channels, including satellites and weather stations.

Since its inception, the CWFIS has undergone significant advancements. Fire

management information systems have been employed in Canada since 1975, and

in 1994, a national-level system displaying fire weather maps for the entire country,

known as the CanFire System (now CWFIS), was established. The system consists

of various modules that automatically access national data and assess the fire envi-

ronment. While this paper focuses specifically on fire weather data acquisition and

fire weather modeling and forecasting, other modules, such as fire behavior modeling,

remain areas for future investigation.

In its original form in 1995, the CWFIS collected hourly weather data from ap-

proximately 250 weather stations across Canada, with precipitation data measured on

a daily basis. The station count has since grown to over 1200. The system employed

the Canadian Forest Fire Weather Index (CFFWI), an empirical model developed

in 1987. This model generated calculations for each weather data collection point,

providing insights into various factors related to fire, such as ignition ease, potential

fuel consumption, effects of drought on forest fuels, fire spread rate, and overall fuel

availability. The Fire Weather Index (FWI) served as a general indicator of fire inten-

sity and danger. The system’s outputs were utilized to create national maps, using

a grid cell size of 1000 meters for the most fire-prone regions, resulting in 35 million

cells each day.

There are six outputs of the FWI System. Three moisture codes and three numeric

ratings of relative potential for wildland fire as seen in Fig. 2.1. The FWI is a

combination of the moisture codes and numeric ratings, and is a general index of

fire danger. The CFFWI does not predict fire occurrence, the estimation of the
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likelihood and timing of forest fire igitions within a specific geographic area. Lawson

and Armitage [25] however say that conceptually occurrence prediction can happen

by applying the FWI value at a weather collection point source. For this reason we

look at the FWI as context for our ignition prediction model.

Figure 2.1: The structure of the Canadian Forest Fire Weather Index System.
(adapted from [25])

As input to the FWI system four weather elements, rain, temperature, relative

humidity, and wind speed, are collected manually or using automatic fire weather

stations. Data is transmitted by telephone lines, digital broadband, or radio and

satellite telemetry to a central network processing system. Hourly weather data is

collected from weather stations and the empirical model calculations are run once a

day to produce the six outputs of the FWI system. It is unclear from the literature

why the calculation output is daily instead of hourly. The cell resolution of the system

is 2 km with areas between weather stations using interpolated values [25].

This system is robust and has provided valuable outputs for decades. Lawson

and Armitage [25] however say that a much larger network of fire weather stations

is needed for accurate forecasting. Overview forecasts are unable to capture the fire

weather intricacies of individual points with rapidly changing terrains or unusual
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geographic and urban features. Reporting daily instead of a finer temporal resolution

means the system cannot respond to points where weather changes rapidly, specifically

wind.

The 1995 paper introducing the system expressed the belief that the CWFIS

would assist fire management agencies in developing cost-effective and environmen-

tally friendly strategies for forest protection. Since then, the CWFIS has evolved

into a globally respected platform, providing valuable data, analysis, and real-time

information to support fire management agencies and the public in their efforts to

understand and respond to forest fires. This platform has served as a prototype for

others across the globe and its methods appear in a diverse range of research.

The most recent version of the CWFIS includes the publication of the WGCFF-

DRS. This guide provides comprehensive instructions on the proper placement and

instrumentation of fire weather stations, as well as guidelines for conducting weather

observations. The introduction of the guide emphasizes the crucial role that weather

plays in the calculations of the Fire Weather Index (FWI) and the Canadian Forest

Fire Behavior Prediction (FBP) system, both of which are essential components of

the CWFIS. It also highlights the significance of weather factors that are not di-

rectly observable, such as the moisture content of debris on the forest floor. The

guide underscores the importance of fuel conditions in the initiation and spread of

wildfires.

While the Meteorological Service of Canada (MSC) provides mature weather ser-

vices, the guide acknowledges the challenges in obtaining accurate and timely fore-

casts for specific weather elements, particularly in rugged terrains. To address this,

the guide emphasizes the need for a specialized fire weather forecasting service and

a more extensive network of fire weather stations. This expanded network would

enable more detailed and precise spot forecasts tailored to specific locations, thus

enhancing the efficiency and effectiveness of fire management efforts. The guide sug-

gests that slope, elevation, and other measures of terrain could play a role in accurate

forecasting.

The current version of the CWFIS recognizes the critical role of weather in fire

danger rating and fire behavior prediction. The Weather Guide underscores the need

for accurate and timely weather forecasts, particularly for challenging terrains, and
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emphasizes the importance of a comprehensive network of fire weather stations to

support efficient and effective fire management practices.

2.3 IoT and Smart Forests

Considering the common definition of IoT as a network of physical devices with sen-

sors, software, and connectivity, the CWFIS has been utilizing IoT since its inception

in the form of automatic fire weather stations. A paper presented at the 1995 Sym-

posium on Geographic Information Systems outlined the CanFire System [26], which

described a network of 250 weather stations continuously collecting data and trans-

mitting it via satellite to a SPARC 10 Workstation located at the Northern Forestry

Centre in Edmonton, Alberta.

Recognizing the significance of accurate ground-based weather data collection,

the 2008 WGCFFDRS provides detailed specifications for locating and instrument-

ing fire weather stations. It highlights numerous benefits that automatic weather

stations bring to fire weather prediction. These solar-powered stations gather data

such as wind speed and direction, solar radiation, temperature, humidity, rainfall, and

fuel moisture measurements. The individual weather stations and a central server co-

ordinate the processing of data within a larger network.

The location and permanence of weather stations are of particular interest in this

discussion. While there are no strict rules for placement, weather values collected

within a 40 km range of a potential fire are highly reliable, whereas values beyond

160 km are considered completely unreliable. Additionally, non-permanent weather

stations play a role in the CWFIS. Quick-deploy automatic stations prove useful in

providing data from areas where prescribed burns are planned to prevent potential

fires. These stations supply data to central models before and for weeks after a burn.

In addition to weather stations providing data to the CWFIS, forests are increas-

ingly equipped with IoT devices [15]. These devices serve various purposes, such

as monitoring forest health and disease, tracking logging activities, and measuring

changes in forest structure. With the integration of inexpensive IoT devices that

collect data from the forest, there is great potential to enhance the power of FF

prediction models by leveraging this wealth of information.
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2.4 Data

2.4.1 Data Collection

Data collection can be divided into that using satellite imaging as source, that using

ground, water, and air based sensing, and research using pre-existing datasets.

Remote sensing primarily consists of satellite images, capturing a broad range of

the visible and non-visible spectrum, in particular mid-infared radiation that is useful

for detecting thermal anomalies. Burn scars are readily apparent within the visible

spectrum of these images and can be used to determine overall burned area. Remote

sensing can have line of sight problems as a result of cloud and smoke cover.

The satellite imaging most often used was from the moderate resolution imag-

ing spectroradiometer (MODIS) instruments located on two orbiting spacecraft and

made accessible through NASA curated websites like the Fire Information for Re-

source Management System (FIRMS). The entire earth surface is captured over one

to two days, in various spectral bands and spatial resolutions [35]. The spatial reso-

lution is finer than the data provided in our dataset, but the temporal resolution is

larger and can be affected by smoke, cloud cover, and time of day. Huot [18], while

noting some of these limitations like the conservative estimates of MODIS data due

to darkness and cloud cover, creates a useful dataset with multiple features that goes

beyond those available to ground based sensors.

Locally sensed data is collected using temperature, humidity, wind, and other sen-

sors, often combined into a single weather station at ground level. Balloons, buoys,

and ships collect data specific to their environment such as nitrogen content or water

salinity. Included in local sensing are cameras mounted in static positions or attached

to autonomous vehicles such as Unmanned Aerial Vehicles (UAV’s). These cameras

are capable of gathering the same specta as those found on satellites and are also

limited by line of sight.

Research that develops a ML model based on sensor data is typically engineering

based, either exploring optimal network configurations like Demin [12] and Singh [43],

or the creation of new hardware like Abid [2] and Nosouhi [38]. These test their so-

lutions using ML models for FF prediction but have moderate amounts of data for

training, sometimes self-gathered, that is not representative of the scale necessary for
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accurate ML modelled FF prediction.

Both local and remote sensing have limitations in geographic and time granu-

larity, remote sensing due to the satellite’s orbit, and local sensing due to physical

limitations of the environment. Local sensing is particularly susceptible to destructive

forces such as fire that may end its data gathering ability. In both satellite and sen-

sor based research historic fire data most often comes from a combination of satellite

data provided by systems like FIRMS and historical ground based observations. The

proportion is never explicitly listed in the papers we looked at. To this end it must

be acknowledged that ML models that claim to only use ground based sensors are

using some degree of data from satellites and vice versa.

Research that relies on pre-existing datasets is the most numerous, and predomi-

nantly tests the viability of using existing ML models for FF prediction. A few inves-

tigate deep learning (DL) and time-series models. Authors use the Montesinho Park

dataset from Portugal [14] [47] [37], data from the Punjab Forest Department [20],

the SaskFire dataset [24], and the Canada National Fire Database [27] [31]. Some

research also incorporates datasets from the University of California Irvine (UCI)

machine learning repository [48] and Kaggle [41].

The collection details of data within pre-existing datasets is seldom discussed in

the papers that use it, and surprisingly some research does not list collection methods

at all.

2.4.2 Data Preprocessing

A FF ignition dataset is comprised of ignition data indicating time and geographic

location of the ignition and features. Features in past papers range from the multi-

spectrum images of remote sensing [18] to locally sensed meteorological data [37].

Both of these require preprocessing to create useable data. Remote sensing conve-

niently provides spectrum data on different layers. Since the images captured are

limited in area, multiple images may need to be stitched together prior to sampling.

To engineer a feature such as burn area the image processing necessary for edge

detection must be done. Unlike sensor data, prepossessing of satellite images is nec-

essary to turn it into usable geometric and numeric formats. The size of these images
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is large and more suited to single server processing than forms of distributed com-

puting. Some Research makes use of satellite obtained human-centric features like

proximity to roads, railways, and agriculture [30]. Static observable features like hu-

man infrastructure can be valuable for training but it is worth noting that though

human activity is responsible for approximately 52% of FF ignitions, the 44% started

by lightning are responsible for approximately 87% of the area burned every year [6].

Semi-static features like vegetation that impact both human and lightning caused

ignitions [28] may prove to be more useful than human infrastructure features, es-

pecially since existing vegetation datasets that preprocess images into geometry are

readily available. When existing datasets have been used an assumption of the fitness

of these are made. Some preprocessing is done, most often normalization, but seldom

reflect the uniquely unbalanced nature of FF ignition data. The use of synthetic

minority over-sampling technique (SMOTE) in some research is an exception [28].

Rows where data is missing are usually removed, with no attempts to generate re-

placements. Resolution does not come up, with most of the papers we looked at

relying on the highest resolution available. The spatial resolution in satellite images

maybe quite high and consistent, unlike locally sensed data where weather stations

are unevenly distributed with in-between data being generated by trusted forecasting

algorithms.

2.5 Machine Learning Models

For the purpose of our research, we define FF prediction as the classification of

whether an ignition will occur within a specified time increment in a defined geo-

graphic area. Previous studies that adopt this classification approach employ various

ML algorithms and metrics to model and assess the relationship between features and

historical ignition data. The models primarily fall into the categories of time-series

models, neural networks (NN), and the most prevalent category, decision trees. This

thesis primarily looks at the models found in Table 2.1.

To examine the presence of FF prediction in ML research we did a search on IEEE

Xplore using the term ’Forest Fire Prediction’ In total, 38 papers met this criteria

within the period from 2014 to 2022. A trend of increasing publications can be seen

in Fig. 2.2. In the following sections we look at these publications based on their
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approach to data, machine learning models used, and evaluation metrics used.

Table 2.1: Models used in this thesis. (in alphabetical order)

model description

Bag Tree Bagging stands for bootstrap aggregation. It is an ensemble of decision
trees where each tree generates a prediction using a subset of the total data
and all the predictions are averaged. [22]

Decision Tree A decsion tree model simply applies an if/then approach to the values in a
dataset, creating a binary tree of set depth. Many of the other models in
this chart are built off of different approaches to multiple decsion trees.

Multilayer
Perceptron
(MLP)

A feed forward neural network, the multilayer perceptron is made up of an
input layer, an output layer, and a least one hidden layer. To learn data,
flows in only one direction. Back propagation is used to adjust weights
between perceptrons based on the error between expected output and actual
output.

K Nearest
Neighbor
(KNN)

In this model predictions are made based on how similar a new sample is
to k number of points in the training data set.

Logistic
Regression

This model is considered the ’hello world’ of machine learning. An equation
is used to calculate the log odds probability that an observation containing
specific variable values will be 1, based on a probability threshold. [44]

Random
Forest (RF)

A Random Forest model combines multiple decision trees that each use a
sample data set made up of randomly chosen rows and features from the
original dataset. In the case of classification the majority vote from all the
trees is the prediction. [22]

Support
Vector
Machine
(SVM)

Support Vector Machine tries to find a hyperplane or line using a statistical
framework that best separates training data into two classes. New data is
assigned to one of the two classes depending on where it falls.

Long
Short-Term
Memory
(LSTM)

Long Short-Term Memory models are a type of recurrent neural network
(RNN). They selectively retain or forget data over sequences, enabling them
to capture temporal patterns and dependencies.

XGBoost tree A boosting model starts with a first model and then each subsequent model
is built to correct the errors of the previous model. This process continues
until the training data set is predicted correctly or the maximum number of
models is reached. [22] An extreme gradient boosted model assigns weights
to variables which are modified in each subsequent model.

Random Forest (RF) and Support Vector Machine (SVM) ML models have been

frequently employed in the literature we reviewed, appearing in 9 and 8 studies,

respectively. These models are well-suited for the classification task presented by FF

prediction and often serve as the initial choices tested before researchers explore more

complex decision tree-based models. For instance, some research progresses from RF

and SVM to gradient boosting classification [17], while some transitions from RF to

various complex boosted trees before attempting a shallow NN [16].
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In terms of NN models, we observed a lack of standardization in the literature we

surveyed. The recent increase in processing power provided by GPUs may partially

account for this. At a superficial level, NN models appear to be more suitable for the

FF prediction task, particularly in scenarios related to image analysis, such as con-

volutional NNs, or when large training sets are necessary to capture the infrequency

of FF events. Decision trees tend to experience efficiency challenges with increas-

ing input sizes. Recurrent NN models, such as LSTM, have shown promise in some

research [36] [31] [28] [27].

Overall, the existing literature reflects a diverse range of ML models and tech-

niques employed for FF prediction. While RF and SVM models are commonly used

as initial choices, the exploration of more sophisticated decision tree models and NN

architectures is becoming increasingly prevalent. The potential of recurrent NNs,

particularly LSTM, has shown promise in capturing temporal dependencies and im-

proving prediction accuracy. However, further research is necessary to establish stan-

dardization and identify the most effective models and approaches for FF prediction,

considering factors such as data characteristics, computational resources, and the

specific requirements of the prediction task.

2.5.1 Evaluation Metrics and Results

The goal of evaluation metrics are to measure how well predicted outcomes match

observed outcomes. The choice of metric is critical when considering highly unbal-

anced data like that for FF ignitions. If a region is divided into 2D grid cells and the

time for each cell is divided into increments such as hours the fitness of a ML model’s

ability to classify whether an ignition will happen can be measured based on counts

of the following:

• True Negative (TN) or True non-ignition — The correct classification

of a cell/time combination where no ignition takes place. A high number is

desirable.

• False Negative (FN) or False non-ignition — The incorrect classification

of a cell/time combination where an ignition does take place. The cell at the

time is thought to have no ignition when in fact it does. This is the most
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dangerous situation and the smallest number possible is desirable.

• True Positive (TP) or True ignition — The correct classification of a

cell/time combination where an ignition does take place. The ideal situation is

to identify every possible ignition.

• False Positive (FP) or False ignition — The incorrect classification of a

cell/time combination where no ignition takes place. The cell at the time is

thought to have an ignition when in fact there is none. This situation results

in misallocation of fire fighting resources so a lower number is desirable.

Table 2.2: Commonly used metrics to assess machine learning models.

metric description other

accuracy TP+TN
TP+TN+FP+FN

Ratio of predictions the model got
right. Doesn’t work well if data is un-
balanced.

precision TP
TP+FP

Ratio of positive predictions the model
got right. Doesn’t work well if data is
unbalanced.

recall TP
TP+FN

Ratio of true positive predictions the
model got right. The inclusion of FN
makes this good for forest fire predic-
tion and should be as high as possible.

F1-score 2× precision×recall
precision+recall

Better for classifying true negatives in
unbalanced data than accuracy is.

sensitivity TP
TP+FN

This is another name for recall. It is
plotted agains’t specificity in ROC.

specificity FP
FP+TN

This is the rate of false positives. Ide-
ally this is low in forest fire prediction.

ROC sensitivity
specificity

Gives the resulting curve when sensitiv-
ity and specificity are plotted agains’t
each other. To get a single value a spe-
cific sensitivity or specificity must be
chosen.

ROC-AUC sensitivity
specificity

Gives the area under the resulting
curve when sensitivity and specificity
are plotted agains’t each other. It gives
a single value.

Common metrics that use TP, FP, TN, and FN can be seen in Table 2.2. A common

measure, with the highest count in the FF research we looked at, was accuracy. Also
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high in the research was precision. A small proportion of the research we looked at

used Sensitivity and Specificity [37] [20] [23]. Approximately 50% of the research we

looked at used Recall and the area under the receiver operating characteristic curve

(ROC-AUC) which is a measure of the ratio Sensitivity/(1 - Specificity). Only four

of the papers we looked at used F1-score [28] [23] [19] [4].

Figure 2.2: The number of papers within our search parameter in IEEE Xplore by
year.

2.6 Federated Learning

Introduced in 2017 [29], federated learning involves training individual clients on their

respective datasets, with only model updates shared with the global model. The

privacy advantages of this approach have been extensively studied. While privacy

may not initially appear crucial for weather data, [33] in an upcoming publication

propose a multi-modal federated learning system for FF prediction, where models

trained on isolated data sources are utilized. In a previous work, [32] employed a

federated learning approach to predict FF probability and severity; however, unlike

our study, their work did not incorporate spatial or temporal input. Apart from

the aforementioned papers, FF prediction has limited representation in federated

learning research. Federated learning is more commonly employed in applications

where a generalized model is required, but data must remain local and secure, such
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Figure 2.3: The occurence of metrics in papers reviewed.

as in mobile devices and autonomous vehicles.

2.7 Research Gap and Motivation

Given the escalating severity of forest fires, the lengthening fire weather seasons,

and the heightened threat to communities, it is imperative for researchers to explore

all possible approaches to mitigate this hazard. The limited presence of federated

learning in FF prediction research is difficult to justify, considering its capability

to facilitate efficient data sharing and its potential to enhance spatial and temporal

predictions. Closing this research gap and harnessing the benefits of federated learn-

ing can significantly contribute to the advancement of FF prediction methods and

ultimately aid in effective fire management and prevention.

2.8 Chapter Summary

In this chapter, we have examined previous research from various domains that have

influenced the content of this thesis. Specifically, we have explored the CWFIS,

IoT technologies, and the concept of smart forests. Additionally, we have reviewed

relevant studies from the past decade that have applied ML techniques to address the

FF prediction problem. Moreover, we have studied the original paper that introduced
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Figure 2.4: The occurence of model types in papers reviewed.

the concept of FL, as well as recent advancements in FL research.

Moving forward, the subsequent chapter will delve into a comprehensive frame-

work designed to create datasets suitable for training ML models in FF ignition

prediction.



Chapter 3

Dataset Creation Framework

In this section, we present the dataset creation framework and provide a detailed de-

scription of its implementation. Specifically, we focus on instantiating the framework

to generate a dataset aimed at predicting forest fire FF ignitions in BC, Canada. To

assess the effectiveness of the framework, we develop a novel FF prediction dataset

and elaborate on the data sources utilized for its instantiation.

Algorithm 1 Aggregate
1: Create dataframe predictor features

2: for years = start year, start year + 1, . . . , end year

3: for day = 1, 2, . . . , total days

4: for location = 1, 2, . . . , total locations

5: for feature = 1, 2, . . . , total features

6: Get each geotif representing the feature and day

7: Turn each geotif into a vector

8: for vector element = 1, 2, . . . , total elements

9: Create temp row for vector element

10: end for

11: end for

12: Merge temp row for current location-date with predictor features

13: end for

14: end for

15: end for

16: Add ignition column to predictor features with default zero

17: Add fireID column to predictor features with default zero

18: Add fireCause column to predictor features with default empty string

19: ignitions = historic ignitions.shp

20: for ignition = 1, 2, . . . , total ignitions

21: if ignition.location = predictor features.location

22: if ignition.date = predictor features.date

23: Set ignition to 1

24: Set fireID to ignitions.fireID

25: Set fireCause to ignitions.fireCause

26: end if

27: end if

28: end for

29: Write out predictor features with ignitions.csv

22
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3.1 Framework

The framework begins with input from three sources as indicated by the top row of

Fig. 5.1. Weather (weather source) and ignition sources (ignition source) are expected

to have coordinate and date data, ignition data may also include how the ignition

was initiated (i.e. lightning), the resulting burn area, and the end date of the re-

sulting fire. Weather data typically includes air temperature, relative humidity, wind

direction, surface pressure, and precipitation. The temporal and spatial resolution of

these sources determine the resolution of the final dataset. Pseudocode for the trans-

formation of features into rows are shown in Algorithm 1, lines 1-15. Pseudocode for

the addition of ignitions to the rows is shown in Algorithm 1, lines 16-26. The third

input is a boundary (boundary source) of the area of interest.

Historical weather data is available from regional government agencies such as

Environment Canada and the American National and Oceanic Atmospheric Admin-

istration. Formats available include csv, GeoJSON, and GeoTIFF. The goal of our

framework is to use historic weather data that is available for all regions globally. Cli-

mate reanalysis data, where data is generated from existing climate models, provides

a reliable source that is well validated [10], available for many years, and provides

samples from all regions equally across the globe. Existing reanalysis models may be

directly incorporated into the framework. Due to its ease of use and previously men-

tioned validation we, however, chose to use the web dataset generation tool provided

in the Copernicus Project by the European Center for Medium Weather Forecasting

(ECMWF) [34].

Historical FF ignition data (ign src) is not consistently available. Some regions,

like BC, Canada, offer public datasets with igniton dates and times. Some regions

like Manitoba (MB), Canada do not. Some datasets have ignition dates recorded in

multiple formats. For instance the province of Alberta (AB), Canada, offers 4 datasets

each with a different time format and recording period [39]. This inconsistency can

be attributed to the recording of ignitions based on human memory and observation

prior to the use of satellite ignition spotting made available through systems like

Nasa’s FIRMS [35]. The largest database containing dates and times for ignitions is

the “Combined wildfire datasets for the United States and certain territories, 1878-

2019” available from U.S. Geological Survey [45]. To use past historical data from
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regions that include ignition dates but not times we randomly select times based on

the probability of ignition calculated from datasets that do have dates and times.

A boundary (bnd src) is necessary within the framework to provide limits for both

the weather data and the FF ignition data. Weather data can be available only in

rectangular image format which reflects its satellite imaging origin. Historical FF

ignition data is any FF data that has the start time (ignition) of a FF at a particular

location at anytime prior to the current moment. These may be human observed and

recorded or satellite imagery that contains ground level heat data. Human observation

and entry errors which place ignitions outside the requested region’s boundaries are

present in some of this data. For these reasons a boundary (boundary source) is

necessary to mask both weather sources and ignition sources as seen in box 1 of

Fig. 5.1. The process of masking involves generating a rectangular black and white

image where white represents the region of interest. The pixel value of weather data

represented as an image, such as temperature, is multiplied by the masking image

when converting image data to numeric data. Any data falling outside the region of

interest becomes 0 and data within retains its original value.

Once the input data has been masked, the weather data and the historical FF

ignition data are combined, as in box 2 of Fig. 5.1. A sample row demonstrating

this combination can be seen in Appendix B. During the combination pre-processing

may need to be done to align the formats of the two sources. For instance, reanal-

ysis data from the Copernicus Project is provided in Network Common Data Form

(NetCDF) and needs conversion from image to numerical data. This is done by read-

ing an image’s metadata containing unit information and sampling the pixel value at

a location. Date and time formats also need to be standardized. When instantiating

the framework we converted all temporal data to the 64-bit Network Time Protocol

(NTP) which writes date and time as seconds after 1900.

Our goal was to create datasets in the .csv format with a row for each location

and time. Every row contained coordinates, feature values, and a binary column

representing whether an ignition occurred for that location and time. This format is

represented in our framework diagram, Fig. 5.1, as ‘final data’.



25

3.2 Instatiation

To test our framework we instantiated it in several regions. In this thesis we describe

the instantiation of the region that covers the southern third of BC, Canada. The first

two rows of this instantiation can be seen in Appendix B. An initial ad hoc survey of

data sets showed that while weather data and wildfire ignition data was available as

far back as the late 19th and early 20th centuries for BC, reliable consistent time series

data was not available until after 1950. We chose to look for data available for a period

of 41 years, from 1980 to 2020. This time period contained a substantial number of

wildfires and was long enough to be representative of natural cycles like prevalence of

lightning strikes. Next we look at the specific data sources used when instantiating

the data collection framework. Finally we present the specifics of aggregating the

collected data.

Figure 3.1: Data collection framework diagram.

3.2.1 ERA5-Land Data

The principal data used to gather predictor features for this research was ERA5-

Land [34], represented in our data collection flow diagram, Fig. 3.2, as ‘weather

source’. ERA5-Land data is delivered as multi-layer NetCDF files containing gridded
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Figure 3.2: Instantiation of framework diagram.

data that is projected onto a regular longitude and latitude grid. A sample can be

seen in Fig. 3.3 The horizontal resolution is 0.1◦ x 0.1◦, or approximately 11 km2

depending on the longitude. Vertically, measurements extend from 2 m above the

earth’s surface to a soil depth of 289 cm. A temporal resolution of 1 hour is available

but we chose to only request measurements at 12 noon. This was to limit data points

and to follow the lead of the widely used Canadian Fire Weather Index (FWI).

Another way to limit data points requested from ERA5-Land was to limit the

months we looked at. An analysis of wildfire ignitions in BC revealed that less than

1% of ignitions occurred in the months from October to April. For this reason we

only requested reanalysis data from May through September.

Copernicus limits the number of downloadable data points per session. To meet

this limitation we downloaded and stored single years, May through September, from

1980 to 2020. The boundaries -139.1◦ west, -114.0◦ east, 60.0◦ north, and 48.5◦ south

were used. This area encompassed the complete province of BC with some buffer area
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Figure 3.3: A NetCDF plot representing temperature in Kelvin for BC on May 01,
2010. Areas over substantial bodies of water have been removed.

extending beyond the provincial boundary.

Our downloaded result was 41 files in the NetCDF format. Each file contained

3496 GeoTIFFs, image layers, with geographical information. Each layer represented

a feature on a single day of the year. For instance, temperature data for April 01,

1980 for our area of interest could be found on one layer. To use the layers within

the R language these were converted to the R internal format of spatraster as seen in

box 2 of Fig. 3.2.

3.2.2 Fire Incident Locations

The outcome features were obtained from fire incident locations provided by the gov-

ernment of BC [13], and represented in our data collection flow diagram, Fig. 3.2, as

’ignition source’. This dataset provided historical wildfire incident locations for BC

prior to the current fire season. All ignitions from various sources that are tracked

by the BC Wildfire Service are included. Data is presented in the commonly used
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GIS format .shp. It is unclear whether the incident locations are from ground obser-

vations or satellite. The presence of fire incident locations listed outside of provincial

boundaries indicates that there may be data entry errors or other collection prob-

lems that require correction. Fire ignition locations originating as far back as 1950

Figure 3.4: Number of ignitions by year, and cause for BC.

were available from this data. Some ignitions had locations outside of the provincial

boundaries. These made up approximately 0.2% of the entire dataset. We removed

these ignitions as well as any ignitions prior to 1980 and after 2020, represented in

box 1 of Fig. 3.2. Rows with not-a-number (NAN) information in the longitude,

latitude, ignition date, and ignition cause were also removed. This is represented in

box 4 of Fig. 3.2. After cleaning the downloaded fire ignitions dataset sample from

1980 through 2020 we performed an analysis using the R language’s internal summary

function. This function provides means and standard deviations for data columns.

Temporally the data shows a varied number of ignitions per year with the overall

mean being 1132 ignitions per year, with the max in one year being 2888 and the

min in one year being 213. As seen in Fig. 3.5 June and July have by far the most

ignitions. There is no discernible pattern in the number of ignitions per year with the

exception that there is an increase over the 41 year period looked at. If the number

of ignitions per year is separated by cause two different patterns emerge as seen in
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Figure 3.5: Number of ignitions by month.

Fig. 3.4. Person started ignitions appear to happen in continuous streaks, from 2000

to 2010 for instance. Lightning caused ignitions appear to happen cyclically. The

number rises and falls in a repeating pattern, with a complete cycle taking 8 years.

Over the 41 year period we looked at there are 8 cycles.

Spatially ignitions cluster in the lower third of British Columbia BC. This can

be seen in Fig. 3.6. When separated by cause, as seen in Fig. 3.7, human started

ignitions appear more dense in the western half of the lower mainland, and lightning

started ignitions appear more dense in the eastern half.

3.2.3 Boundary Data

To limit the two previous sets of data to within the provincial boundaries of BC, the

provincial outline provided by the Government of Canada was used [7]. This bound-

ary is represented in our flow diagram as ’boundary source’ in Fig. 3.2. Download

options chosen from the 2021 Census Boundary web page were: Language-english,

Type-cartographic boundaries, Administrative Boundaries-provinces/territories, and
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Figure 3.6: Heatmap of ignitions from 1980 to 2020.

Format-Shapefile.

The polygon for BC was extracted and converted to a black and white spatraster

object using the terra package in R, represented in box 2 of Fig. 3.2. The terra

package contains methods for spatial data analysis [1]. The spatraster was inverted

so that areas outside the region of interest were black and areas within the region of

interest were white, represented in box 3 of Fig. 3.2. The spatraster object was then

used to mask weather and fire data, represented in box 7 of Fig. 3.2.

3.2.4 Aggregation

We combined the ERA5-Land reanalysis data with the BC historical fire incident

locations data as seen in Algorithm 1. Feature GeoTIFFs contained in the NetCDF

files from Copernicus were turned into rows, where each row represented a location

and day. To these rows FF ignition data was then added. Columns, as seen in

Table 3.1 created were location, year, day of the year, land based weather features, a

binary indicator of ignition or no ignition, the resulting wildfire ID if applicable, and
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(a) Person started ignitions. (b) Lightning started ignitions.

Figure 3.7: Ignition density heatmaps from 1980-2020.

the ignition cause if applicable.

Table 3.1: Headings of dataset combining weather data and FF ignition data.

GridID Lon Lat Features 1, 2, 3,..., n. DOY Year FireID Ign Ttl Ign Ttl Person Ttl Lightning Ttl Unknown
- - - - - - - - - - - -

3.2.5 Final Datasets

Three datasets were produced over the course of this thesis. An overview can be seen

in Table 3.2. Features and summaries of the datasets can be seen in Appendix A, C,

D, E, F.

Table 3.2: Summary of Instantiated Datasets.

Dataset Location Total Rows Features Classes non-ignitions ignitions
High Prarie AB, Canada 79,387,152 25 1 79,369,847 17,305
Kelowna BC, Canada 68,437,200 25 1 68,385,282 51,918
Lower BC BC, Canada 25,728,210 23 1 25,662,473 65,737
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3.3 Chapter Summary

In this section, we have introduced a dataset creation framework and extensively

discussed its implementation. Our primary focus was on utilizing the framework

to generate a dataset specifically designed for predicting forest fire FF ignitions in

BC, Canada. Through this process, we successfully developed a novel FF prediction

dataset, and we provided comprehensive insights into the data sources employed

during its instantiation.

In the subsequent chapter, we will delve into the realm of machine learning models

and metrics, particularly in the context of FF prediction. We will explore various

machine learning algorithms and evaluation metrics, considering their applicability

and effectiveness in addressing the FF prediction challenge.



Chapter 4

Machine Learning Models & Metrics

This chapter focuses on evaluating the fitness of the dataset obtained through the

instantiation of the data collection framework by modeling it. The term “fitness” in

this context refers to the degree of suitability of the produced dataset for the spe-

cific task of FF ignition prediction. To achieve this objective, we train ML models

that have been previously utilized in FF prediction research using the collected data.

Subsequently, we employ established metrics from prior studies to assess the perfor-

mance of the trained models, thereby evaluating their effectiveness in predicting FF

ignition. Furthermore, we critically evaluate the suitability of these metrics them-

selves for effectively measuring the performance of the models in the context of FF

prediction.

Efficiently representing the relationships between features and targets is crucial in

data modeling. In our analysis, we focus on two key aspects: sampling and feature

correlation. We demonstrate that by sampling a region based on ignition frequency,

it is possible to significantly reduce the database size without disrupting the ratio

of ignition to non-ignition points. Additionally, by understanding the correlation

between features, redundant ones can be identified and eliminated. This approach

aims to achieve the most efficient representation of the data, using a model that yields

good results with the minimum number of features.

From a conceptual perspective, we illustrate in the following sections that our data

can be effectively modeled using this efficient approach. Moreover, from a practical

standpoint, the efficiencies gained through sampling and feature correlation demon-

strate that our data can be scaled and adapted to systems with limited processing

resources.

33
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4.1 Modelling Workflow

The R language and RStudio provide a comprehensive development environment, en-

compassing various libraries suitable for both ML model development and statistical

analysis. The active and supportive community surrounding R promotes result repro-

ducibility, facilitates collaboration, and ensures high code transparency. Therefore,

in this study, we chose to evaluate the instantiated dataset using R and implemented

the workflow depicted in Fig. 4.1. To leverage the advantages of R, we followed the

principles of the Tidyverse paradigm, which is a collection of R packages that offer

a consistent framework for tasks related to data manipulation, exploration, and vi-

sualization. Specifically, our workflow was based on the “Screening Many Models”

chapter of the book Tidy Modelling with R [21].

Initially, a random subset of years was selected from the dataset and loaded into

memory. Any non-feature columns were removed (Box 1 in Fig. 4.1). Subsequently,

this sample was divided into train and test sets using a 3:1 ratio (Box 2 in Fig. 4.1).

The training set consisted of data from 1981 to 2010, while the test set encompassed

the years 2011 to 2020. The training set underwent resampling with 5 repeats of

10-fold cross-validation. The data split for training, validation, and testing was ar-

bitrarily set at 70%, 15%, and 15%, respectively. The folds were stratified based on

the year (Box 4 in Fig. 4.1). To address the significant data imbalance between non-

ignition and ignition cells, the training set was downsampled prior to creating the

folds (Box 3 in Fig. 4.1). The evaluation of different downsampling ratios revealed

that the highest ROC-AUC and Recall values could be achieved by using a downsam-

pling ratio of 1:1. The results of downsampling ratios ranging from 1:1 to 5:1 were

considered.

Following the Tidyverse paradigm, separate recipes were created for each desired

model (Box 5 in Fig. 4.1). Additionally, preprocessing recipes were developed to

accommodate model-specific requirements, such as normalization (Box 6 in Fig. 4.1).

Each preprocessing recipe incorporated a function to remove highly correlated features

above a predetermined threshold of 0.7. Rows containing non-numeric values were

also eliminated. The model and preprocessing recipes were combined into Tidyverse

workflows (Box 7 in Fig. 4.1).

The models underwent tuning using a 10 x 10 grid, applying the same function
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Figure 4.1: Diagrammatic representation of the initial modelling flow.

to each workflow (Box 8 in Fig. 4.1). Once the optimal tuning parameters were

determined or the grid limit was reached, a final fit was performed on each workflow

(Box 9 in Fig.4.1). The models were then ranked based on specified metrics, and the

results of each ranking were plotted (Box 10 and 11 in Fig. 4.1).
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4.2 Model Results

Examining the model results for ROC-AUC in Fig. 4.2, it is evident that most models

cluster between the range of 0.76 and 0.82, with RF ranking first. However, Logistic

Regression ranks as the poorest performing model with a value of approximately 0.5.

This outcome could be attributed to the imbalance present in the test set and the

inadequate tuning of the prediction probability threshold for assigning outcomes to

classes.

Figure 4.2: ROC-AUC score of initial 8 models.

Considering Recall, RF also emerges as the top-performing model, as seen in

Fig. 4.3. Recall measures the number of correctly predicted true ignitions divided

by the sum of the total true ignitions and false non-ignitions. As false non-ignitions

pose the highest risk by potentially leading to unanticipated FF, this metric holds

significant importance in our research. The clustering of most models between ap-

proximately 0.67 and 0.72 suggests that additional preprocessing of the training data

or further model tuning is necessary. Both SVM and Logistic Regression exhibit poor

performance in terms of Recall. Potential reasons for SVM’s underperformance in-

clude inadequate hyperparameter tuning, inappropriate selection of the SVM kernel,

the large size of the dataset, or the impact of normalizing the training data. Inves-

tigating these factors is left for future work. Notably, both Logistic Regression and

SVM exhibit extremely large standard errors in the Recall metric, indicating that the



37

models do not converge into reliable models.

The Sensitivity metric, which represents the proportion of correctly predicted

outcomes, exhibits similar results to both ROC-AUC and Recall, with RF ranking

first and SVM and Logistic Regression ranking last (with large standard errors), as

depicted in Fig.4.3.

Figure 4.3: Sensitivity (also Recall) score of initial 8 models.

Figure 4.4: Specificity score of initial 8 models.

The results for Specificity, as shown in Fig. 4.4, present a different perspective

compared to other metrics. KNN ranks the highest, closely followed by MLP and

RF. While reducing false non-ignitions is more crucial than reducing false ignition



38

predictions in terms of resource allocation, the choice of preferred models may vary

depending on the intended usage.

4.3 Sampling

Analysis of heat maps depicting historic BC FF ignition locations revealed that a

sample from the lower third of the province encompasses the majority of ignitions.

Gradually decreasing the latitude showed minimal changes in the ratio of ignitions

to non-ignitions, which can be attributed to the large number of samples utilized

(Fig. 4.5). The overall reduction in the ratio between latitudes of 50◦ and 60◦ was

approximately 0.005. Considering the negligible impact of latitude on the ignition

to non-ignition ratio, a sample for modeling was selected between longitude −115◦

and −124◦ and latitude 49◦ and 53◦ to reduce the volume of data. This reduction

was combined with the previously mentioned reductions in the years and months

sampled (Section 3.2.1), resulting in a reduction of 75,108,094 fire cells (ignition +

non-ignition) in the dataset (Table 4.1).

Figure 4.5: Ratio of non-ignition to ignition cells by latitude.

It has been demonstrated that highly imbalanced data, such as FF datasets, can

adversely affect the performance of ML models [49]. To evaluate the impact of down-

sampling, the initial ML modeling test bed was modified for a single RF model test

using integer ratios ranging from 1 to 5 in the R function step downsample. The

threshold for removing highly correlated features remained fixed at 0.6 for all runs.
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Table 4.1: Comparison of the size of the fire cell population (entire province) and
the fire cell sample (lower third of provincial mainland).

Boundaries min lon max lon max lat non-ignition ignition
Population −140◦ −113◦ 60◦ 100,740,455 95,819
Sample −124◦ −115◦ 53◦ 25,662,473 65,737
Difference 26◦ 2◦ 7◦ 75,077,982 30,112

The most effective downsampling ratio of non-ignition cells to ignition cells was

found to be 1:1 (Table 4.2). This yielded the correct identification of 12,061 true

ignitions in the test set, while 2,010 true ignitions were missed.

As anticipated, Recall, also known as Sensitivity, exhibited the same pattern and

was lowest when the downsampling ratio was 1:1. There was a consistent increase in

Recall and Sensitivity as the downsampling ratio increased. Conversely, Specificity

demonstrated a gradual decrease as the downsampling ratio increased. The ROC-

AUC value remained stable, resulting in a smooth curve as both Sensitivity increased

and Specificity decreased. F1-score proved to be the most suitable metric for assessing

the predictive power of the model with regards to non-ignitions (Fig. 4.7). Specificity

emerged as the most appropriate metric for evaluating correct and missed ignitions,

as shown in Table 4.2 and Fig. 4.6.

Table 4.2: Results of different ignition to non-ignition downsample ratios on RF
model performance. (Best result in bold)

downsample
non-ign to ign

F1-
Score

true non-ign
prediction

Specificity true ign false
non-ign

1:1 0.776 3,591,936 0.857 12061 2010

2:1 0.878 4,435,711 0.708 9967 4104
3:1 0.926 4,896,244 0.545 7669 6402
4:1 0.950 5,135,059 0.448 6304 7767
5:1 0.976 5,417,860 0.326 4591 9840

4.4 Feature Correlation

The calculation of feature correlation aims to assess the relationships between features

in a dataset. It helps identify redundant or highly correlated features, providing

insights into the statistical dependence between variables.

To estimate the correlation between pairs of features in our instantiated dataset,
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Figure 4.6: Specificity result for different downsample ratios compared to ratios of
overall ignitions.

Figure 4.7: F1-score result for different downsample ratios compared to ratios of
overall non-ignitions.

we utilized the Cor function in the R language. By conducting correlation tests using

both Pearson and Spearman Correlation Coefficients, we observed a high correlation

of 0.9917707 between Pearson and Spearman results, indicating the adequacy of using

Pearson correlation.

Fig. 4.8 presents a correlation matrix heatmap of all features in the novel dataset.

Notable observations include the high positive correlation between air temperature
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and dew point (d2m), as well as soil temperatures (stl) at various levels. Soil temper-

atures also exhibit positive correlations among themselves, as do soil moisture content

at different levels. Negative correlations can be observed between soil temperatures

and soil moisture content, as well as between evaporation and soil temperature.

To assess the impact of feature correlation on the dataset, we applied the

findCorrelation function in R to remove features based on arbitrarily chosen corre-

lation cutoff points. The function takes the mean absolute correlation of each variable

and removes the variable with the largest. Table 4.3 displays the remaining features

after adjusting the correlation cutoff. For instance, using a cutoff point of 0.9 re-

sulted in the removal of soil-temperature-level-2 (stl2), skin-temperature (skt), and

soil-water-value-level-1 (swvl1) features. The order of feature columns in the novel

dataset influenced which features were removed.

To evaluate the effect of altering the number of features used in training, we tested

different correlation cutoff points using the RF model. The downsample ratio for all

runs was set at 1:1, and the correlation cutoff for feature removal was incremented

by 0.1, ranging from 0.6 to 1.0. Table 4.4 presents the results of different correlation

cutoff points on the RF model’s performance.

Changing the correlation cutoff to remove highly correlated features had minimal

impact on the RF model’s outcome. There was a marginal improvement in the ratio

of correct to missed ignitions, as well as a slight increase in the ROC-AUC value when

no features were removed. These results contradict the expected outcome and may

be attributed to the use of an RF model. Exploring different models is recommended

for future research.

Fig. 4.9 and Fig. 4.10 display the changing rank of features in the feature impor-

tance plots for correlation cutoffs of 0.6 and 1.0, respectively. These plots measure

the relative importance of a feature across all the trees in an RF model by counting

the feature that maximizes the outcome value in each decision tree when used to

partition nodes.

When a correlation cutoff of 1.0 is used, where no highly correlated features are

removed, soil temperature at various levels and air temperature are the primary in-

fluences on the RF model’s outcome. However, when a correlation cutoff of 0.6 is

applied, resulting in the removal of nine features, the dew point (d2m), soil moisture
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evaporation (evabs), surface pressure (sp), and high vegetation coverage (lai hv) be-

come the key influences. Notably, the dew point remains when using a correlation

cutoff of 0.6 due to its column position in the data preceding the other four features.

The impact of different column arrangements on the removal of highly correlated

features could be explored in future studies.

Latitude does not exhibit high feature importance, potentially due to the sample

set’s selection from the overall population of ignitions in BC, as shown in Table 4.1.

Lowering the upper latitude boundary focused the sample on a region with consis-

tently high numbers of ignitions across all latitudes. If the entire set of available

latitudes had been considered, the feature importance of latitude would have been

greater due to the uneven distribution of ignitions in BC.

Given that the removal of highly correlated features had minimal impact on the

final model outcome, the decision on which key features to use could be based on

factors such as ease of deployment, power consumption, and robustness of sensors

used for data collection. Additionally, the required precision and size of floating-

point numbers for accurate results should be considered when selecting features.

In addition to gauging the effect of correlation on features, we compared the impact

of spatio-temporal features to weather features. Comparing the performance of the

model created with all features to the model using only weather features demonstrates

that temporal and spatial features do have an impact. Missed ignitions totaling 3228

occurred with no temporal or spatial features, as opposed to 2010 when all features

are used. The correct ignition prediction to missed ignition prediction ratio for all

features is 6.00, as opposed to only weather which gives a ratio of 3.366.

Surprisingly, the year, when combined with weather features, played a significant

role in reducing the number of missed ignitions. One possible explanation for this is

that the model identified a cyclical pattern over a number of years. The test-train

split for this experiment was based on years, with training taking place on years from

1981 to 2010, and testing taking place on years from 2011 to 2020. Future work could

try randomizing the years in the two sets.
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Figure 4.8: Heat map of Pearson Correlation matrix of all features in the novel
dataset. (Abbreviation descriptions can be found in Appendix A)

Figure 4.9: Feature importance for a RF model with correlation cutoff of 0.6.
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Table 4.3: Features remaining after correlation cutoff adjustment. (Abbreviations
found in Appendix A)

cutoff Features Remaining

0.6 lon, lat, u10, v10, d2m, evabs, lai hv, lai lv, src, sp, tp,
swvl4, d, y

0.7 lon, lat, u10, v10, d2m, evabs, lai hv, lai lv, src, stl4, sp, tp,
swvl4, d, y

0.8 lon, lat, u10, v10, d2m, evabs, lai hv, lai lv, src, stl4, sp, tp,
swvl3, swvl4, d, y

0.9 lon, lat, u10, v10, d2m, t2m, evabs, lai hv, lai lv, src, stl1,
stl3, stl4, sp, tp, swvl2, swvl3, swvl4, d, y

1.0 lon, lat, u10, v10, d2m, t2m, evabs, lai hv, lai lv, src, skt,
stl1, stl2, stl3, stl4, sp, tp, swvl1, swvl2, swvl3, swvl4, d, y

Table 4.4: Results of different correlation cutoff points on RF model performance.
(Best scores in bold)

correlation
cutoff

ROC-
AUC

Sens Spec true ign false
non-ign

0.6 0.817 0.621 0.857 12061 2010
0.7 0.815 0.615 0.860 12100 1971
0.8 0.817 0.627 0.857 12055 2016
0.9 0.829 0.632 0.870 12245 1826
1.0 0.830 0.638 0.869 12228 1843

4.5 Model Evaluation Metrics

Our model evaluation primarily relied on Sensitivity, Specificity, and ROC-AUC.

Additionally, we used true ignitions (TP) and false non-ignitions (FN) to illustrate

the impact of different hyperparameter values, as shown in Tables 4.3, 4.4, and 4.2.

We now provide justification for the selection of these metrics over others.

The purpose of evaluation metrics is to measure the alignment between predicted

outcomes and observed outcomes. Accuracy is a commonly used measure in ML-

based FF prediction, representing the ratio of correct predictions to the total number

of predictions. However, accuracy can be misleading when dealing with imbalanced

data, such as the instantiated dataset in this study, where the ratio of non-ignition

cells to ignition cells is approximately 0.004. A more appropriate approach involves

categorizing predictions into TP, FP, TN, and FN. In this study, TP refer to accu-

rate predictions of ignition cells, FP indicate non-ignition cells incorrectly identified
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Figure 4.10: Feature importance for a RF model with correlation cutoff of 1.0.

Table 4.5: Sample confusion matrix of observed versus predicted ignitions and
non-ignitions.

predicted non-ignition predicted ignition
observed non-ignition true negative false positive
observed ignition false negative true positive

as ignition cells, TN accurately identify non-ignition cells, and FN represent ignition

cells misclassified as non-ignition cells (see Table 4.5). An effective FF prediction

model strives for a high number of TP and the lowest possible number of FN since

misclassifying ignition cells as non-ignition cells poses significant risks to human and

forest safety. This true/false classification approach encompasses several metrics, as

outlined by Butcher et al. [5], which we employ in this study to evaluate model per-

formance. Sensitivity, also known as the true positive rate, measures the proportion

of correctly predicted ignitions. Specificity, also known as the true negative rate,

measures the proportion of correctly predicted non-ignitions. Recall is similar to

Sensitivity. Recall represents the ratio of correctly predicted ignitions to the sum of

correctly predicted ignitions and falsely predicted non-ignitions, providing a measure
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of accurately classified ignition instances.

While Sensitivity and Specificity offer insights into model accuracy, they rely on

the chosen cutoff value for the prediction probability of ignition or non-ignition. The

cutoff value is determined based on the information of interest. For instance, a model

emphasizing accurate true predictions would have a different cutoff value than a model

aiming to minimize false predictions. To address this issue, we employ the receiver

operating characteristic (ROC) curve [5]. The ROC curve is generated by plotting

the false positive rate (1-Specificity) against the true positive rate. This curve enables

the identification of the optimal cutoff value for the desired prediction information.

Additionally, the calculation of the area under the curve (AUC) is valuable. The

ROC-AUC takes into account all cutoff values, and a value close to 1 indicates a

well-fitting model to the data [5].

4.6 Chapter Summary

This chapter has centered on the evaluation of the dataset’s fitness, which was ob-

tained through the instantiation of the data collection framework, through the process

of modeling. We have trained ML models using the collected data and assessed their

performance using established metrics derived from previous studies.

In the subsequent chapter, we will present a comprehensive framework for FF

ignition prediction, employing FL. This FL framework consists of three key compo-

nents: data, a ML model, and a central server. To evaluate the effectiveness of this

framework, we will instantiate it and conduct simulations using a dataset created in

Chapter III using the aforementioned framework.



Chapter 5

Federated Learning Framework

In this chapter, we introduce a framework for predicting FF ignitions at specific

geographic locations and designated times. Building upon the insights gained from

previous chapters, we integrate our knowledge of FF data and ML models to develop

a FL system. We instantiate this framework and evaluate its performance through

simulations.

5.1 Framework

Our FL framework is comprised of three essential components: data, a ML model,

and a CA. The components are represented in Fig. 5.1, with data represented in

box 1, the ML model in box 2, prediction in box 3 and the server in box 4. The

output prediction of box 3 we define as classifying an ignition or non-ignition leading

to a FF in a specific geographic area at a specific time. The local data/local model

combination are representative of the IoT WSs in Fig. 1.1 and can be duplicated as

required.

The processes within the framework are represented in Fig. 5.2. The data is

collected and stored locally (box 1, 2), where it is used to train (box 3), validate, and

test a local ML model. The local model weights are then shared with a CA (box 4,

5), which applies the FL averaging of weights (box 6) received from each local model

and redistributes them back to each respective local model (box 7, 8, 9). The local

models subsequently re-train (box 3) using the averaged weights provided by the CA.

The data primarily consists of weather-related information typically collected by

WSs, including temperature, wind speed and direction, and precipitation. The ML

model is constrained by the processing and memory capabilities of WSs. A suitable

ML model, such as LSTM, capable of capturing relationships in time series data, is

employed. The FL framework used in this proposal incorporates simple averaging

methods like federated averaging.

47
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Figure 5.1: A diagrammatic representation of the framework.

5.2 Instantiation Method

To evaluate the performance and effectiveness of integrating FL into platforms like

the CWFIS the proposed framework was implemented as a simulation. The objective

was to demonstrate the effectiveness of FL when applied to an IoT WS network,

as compared to an IoT WS network reporting to a single central server (CS). A

comparison of experiment setups is shown in Table 5.4. Key differences between

systems are:

• Each local model developed in the FL system used its own simulated IoT WS

data whereas the 24 simulated IoT WS data sets were averaged for the CS

system.

• Each model in the FL system trained for 3, 6, or 12 epochs per round depend-

ing on the experiment whereas the CS system trained for 100 epochs in all
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Figure 5.2: Main processes within the framework.

experiments.

• The FL system ran for 3 rounds in experiment 1, 2, and 3, and for 6 rounds in

experiment 4. The concept of rounds doesn’t apply to the CS system.

Weather data used was reanalysis data obtained from the EMWFC Copernicus project

[10]. Motivation and validation for using this type of data can be found in-depth

in [42]. The CS system dataset of 5,053,776 rows had 5,008,365 non-ignitions and

45,411 ignitions. This was evenly split among the 24 IoT WSs for the FL system

simulation. The ratio of non-ignitions to ignitions varied by station.

5.2.1 Federated Learning Simulation

For the FL system simulation, the fire-prone region surrounding Kelowna, British

Columbia was chosen. The region was divided into 24 cells, with 6 cells across and 4

cells in height as represented in Fig. 5.3.

Within each cell 12 data points (blue dots), obtained using reanalysis data, were

averaged to produce a simulated IoTWS (orange dots) located at the centre of the cell,
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Figure 5.3: Orange = IoT WSs, Blue = Weather Data, Red = CA / CS

Table 5.1: Ignitions in the simulated IoT WS training sets

latitude Station Ignition Count
51.75 1,239 1,090 1,036 993 503 142
51.00 1,583 2,919 2,391 1,705 885 852
50.25 1,434 1,964 2,960 1,217 1,090 646
49.50 1,664 1,499 2,914 1,313 1,543 1,103

longitude 121.625 120.625 119.625 118.625 117.625 116.625

Fig. 5.3. The IoT WSs communicate with the CA or CS (single red dot) depending

on the system. No communication is assumed between blue and orange dots, as the

thesis focuses mainly on the concept demonstration and evaluation of FL.

Simulated IoT WSs had hourly data from 1980 to 2020 containing the weather

features: wind direction and speed, dewpoint temperature, air temperature, sur-

face temperature, soil temperature at 4 depths, soil water level at 4 depths, surface

pressure, total daily precipitation, soil type, and 2 measures of vegetation coverage.

Ignition data from the Government of BC Historical Fire Incidents Location data

base was added to the weather features. This resulted in 24 databases, one in each

cell, as represented in box 1 of Fig. 5.4. We arbitrarily decided to use 5 days, 120



51

hours, as the length of our time series. The data format was changed from rows of

weather features and ignitions at a specific time and location, Table 5.2, to multi-

variate time-series data with each row representing a 120 continuous hours of data,

Table 5.3 represented in box 2 of Fig. 5.4. The number of ignitions in the training

sets of each of the simulated IoT WSs can be seen in Table 5.1. Each database

Table 5.2: Data as table of weather features and ignition class (0, 1).

Longitude Latitude Features 1, 2,..., N. Date Ign

Table 5.3: Time series data, N is current hour, N-K is K hours before N.

N - K ... N - 3 N - 2 N - 1 N Ign

was split into 3 sets. A training set using data from the years 1980-2000, a validation

set using data from the years 2001-2010, and a test set using data from the years

2011-2020. This is represented in box 3 of Fig. 5.4. The test and validation data were

normalized into a distribution centered around 0 with a standard deviation of 1, box

4 of Fig. 5.4.

Since LSTM models work well with sequential data, and are good at capturing

patterns over time such as that seen in weather we chose it as our key model. Its

robust implementation in Tensorflow also played a part in our choice. The model,

with layers as seen in Fig. 5.5, for each simulated IoT WS was trained on local weather

data within each cell to predict FF non-ignition/ignition as seen in box 8 of Fig. 5.4.

The model was evaluated by generating predictions 1 day from the last weather input.

This was done by offsetting the ignition data 24 hours into the future. To simulate

the 24 IoT WSs, one in each cell, maintaining communication with a CA the Flower

FL framework [3] was used. For multiple rounds, the simulated CA randomly selected

a specified number of simulated IoT WSs and requested their local model weights.

The memory available to our simulation machines limited us to 18. The simulated CA

then averaged the received weights using the Flower Frameworks built in federated

averaging [46]. The averaged weights were sent back to all 24 simulated IoT WSs

which updated their model weights. This is represented in boxes 9, 10, 11, 12, 13,

and 14 of Fig. 5.4.
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Figure 5.4: Main processes within the instantiation.

When the IoT WSs conducted their next round of local model training, they

initiated the process with the new averaged weights, as seen in box 8 of Fig. 5.4.

We repeated this cycle of local data collection, prediction, transmission of weights,

weight averaging, and local model retraining for 3 rounds. We stopped at 3 as no

appreciable improvement was seen.

After a round the local model was evaluated using its test dataset and the results

stored in a general database as seen in boxes 9 and 13 of Fig. 5.4. At the end of

the simulation the results from all IoT WSs were averaged and compared to the CS

system simulation.
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Table 5.4: Experiment control and federated setup comparison.

control exp 1 exp 2 exp 3 exp 4
system central FL FL FL FL

training epochs 100 3 6 12 6
rounds n/a 3 3 3 6
model LSTM LSTM LSTM LSTM LSTM

time series hours 120 120 120 120 120
total stns n/a 24 24 24 24

training stns/round n/a 18 18 18 18
eval stns/round n/a 18 18 18 18

Figure 5.5: The model layers used for all simulations.

5.2.2 CS Simulation

For the CS simulation, the same fire-prone region was chosen and divided in a similar

manner to the FL simulation. All of the datasets were combined as seen in boxes

1, 2, 3, and 4 of Fig. 5.6. The rows were converted to time series data. The time

series data was split into train, validate and test sets, with the the former two being

normalized. This can be seen in boxes 6, 7, 8, 9, and 10 of Fig. 5.6. A LSTM model

with the same structure as the FL version was trained and evaluated. The results

were stored in the general database with the results of the FL simulation. This last

set of processes is represented in boxes 11, 12, and 13 in Fig. 5.6.
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Figure 5.6: The processes for the CS system simulation.

5.3 Instantiation Results

This section presents the results of our simulation, where a FL system used 24 WSs

to develop a general model. As a control, we compare the simulation results with

those of a CS ML model using the same LSTM layer structure and data. Table

Table 5.5: Averaged results of 10 simulation runs. Federated results are an average
of 24 IoT WSs.

experiment control exp 1 exp 2 exp 3 exp 4
system type CS FL FL FL FL
accuracy 0.7568 0.7453 0.7629 0.7635 0.7603
recall 0.7156 0.6964 0.6892 0.6771 0.6688

ROC-AUC 0.8092 0.8025 0.8076 0.8001 0.7950
sensitivity, spec=0.5 0.9069 0.9014 0.9097 0.9032 0.8985
specificity, sens=0.5 0.8765 0.8699 0.8724 0.8651 0.8596

5.5 provides the averaged results of 10 simulation runs, showing the performance of

the FL system, which represents an average of 24 IoT WSs. Additionally, Table 5.6
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Table 5.6: A sample of station results from Experiment 2, averaged for 10
simulation runs over 6 epochs/round and 3 training rounds.

station metrics round 1 round 2 round 3
1 accuracy 0.7332614437 0.7725694279 0.7627701759

recall 0.7076401711 0.6565002998 0.6856438696
ROC-AUC 0.8003950790 0.8002735575 0.8083768368
sensitivity 0.8812384456 0.8991579413 0.9088108480
specificity 0.8877710253 0.8703366121 0.8753614545

- – – – –
8 accuracy 0.7302799463 0.7592176596 0.7686835304

recall 0.6688471794 0.6857015193 0.6610589847
ROC-AUC 0.7758552909 0.8028371831 0.7949320897
sensitivity 0.8586595178 0.8987488846 0.8924262747
specificity 0.8519785166 0.8705853124 0.8616769984

- – – – –
16 accuracy 0.7338614000 0.7467972338 0.7666684687

recall 0.6987206274 0.7209011217 0.6823112170
ROC-AUC 0.7946205338 0.8150785168 0.8073242505
sensitivity 0.8827701343 0.9156236947 0.9116604129
specificity 0.8719882634 0.8804704746 0.8709576428

- – – – –
24 accuracy 0.7272664383 0.7584168911 0.7622490898

recall 0.6810897514 0.6855311334 0.6852869391
ROC-AUC 0.7839112058 0.8038638175 0.8055695295
sensitivity 0.8754578680 0.9026251435 0.9053723961
specificity 0.8600174561 0.8725392699 0.8725088909

presents the averaged results for a sample of the 24 stations in Experiment 2 over 6

epochs per round for 3 training rounds.

The results from Experiment 1, 2, 3, and 4 (Table 5.5) indicate that the FL

system achieves comparable performance to the CS system. Metrics such as Accuracy,

ROC-AUC, Sensitivity, and Specificity show similar values between the two systems.

However, the Recall, which measures the proportion of correctly identified ignitions,

is slightly higher in the CS system. It is important to note that both systems perform

lower than the accuracy of 0.91 achieved by an LSTM model [27] and the recall of 0.97

achieved by a random forest model in previous research [16]. Sensitivity is typically

the same as Recall but the results we list are a point on the Sensitivity-Specificity

curve obtained when Specificity is 0.5.

Examining the results for individual stations in Experiment 2, (Table 5.6), we

observe improvements in most station models. However, Recall shows a decrease

as other metrics improve. For instance, station 16 demonstrates improvements in

Accuracy, ROC-AUC, and Sensitivity, but a decrease in Recall and Specificity.

In Experiment 3, where the number of training epochs was doubled from 6 to 12,

no significant improvements were observed. Instead, a slight reduction in all metrics

was observed (Table 5.5). Similarly, in Experiment 4, where the number of rounds
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was doubled from 3 to 6, no notable differences were observed compared to the other

experiments with only 3 rounds.

We provide communication energy formulas to estimate the data communicated

for one round of training in a FL system and a CS system. We consider a round to

be the reporting of weather data for a specified time and the subsequent re-training

of an existing model using that weather data plus historical data. In the case of a FL

system the reporting of model weights back to WSs is considered part of the round.

For the FL system, the formula is defined as the product of the number of IoT

WSs (S), the size of the model weights (WFL), the model reporting frequency between

each WS and the CA during a round (FFL), and the distance (Dst) from an IoT WS

to the CA. We square Dst given that received antenna power density is inversely

proportional to the square of the distance between a transmitter-receiver pair. We

multiply by a constant of proportionality (C) to resolve units.

1) EFL = SFL ×WFL × FFL ×
∑

(Dst
2)i=S

i × C

Similarly, for the CS system, the formula is determined by the number of IoT WSs

(SCS), the data size (DCS), the reporting frequency between model training rounds

(FCS), and the sum of squared distances from the IoT WSs to the CS:

2) ECS = SCS ×DCS × FCS ×
∑

(Dst
2)i=S

i × C

We consider an example with 24 IoT WSs using data (0.094kb/report/station) and

weight sizes (20kb/round/station) found in our simulation. For both FL and CS

systems WSs record 0.094kb/hour. Each FL system WS uses a single-layer LSTM

model with model weights of 20 kb, reporting to and receiving from from the CA once

per model training round. Each WS in the CS system reports every hour resulting in

a reporting frequency of 168 times (1 week) between model training rounds. Lowest

results are shown in bold.

• FL system: 24WS× 20kb× 2 = 960 kb×

∑
(Dst

2)i=S
i

• CS system: 24WS× 0.094kb× 168 = 379 kb×

∑
(Dst

2)i=S
i

Increasing the number of model training rounds from 168 to 336 (2 weeks) the data

communicated by the FL system remains 960 kb, while the data communicated by

the CS system increases to 758 kb.

• FL system: 24WS× 20kb× 2 = 960 kb×

∑
(Dst

2)i=S
i
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• CS system: 24WS× 0.094kb× 336 = 758 kb×

∑
(Dst

2)i=S
i

Decreasing the number of WS participating in model training within the FL system,

results in 18 WS, the data communicated is 720 kb, while the data communicated

by the CS system remains at 758 kb, as seen in Fig. 5.7. It is important to note

that considering the sum of square of distances between IoT WSs would lead to a

greater difference between the FL and CS systems, as the FL system would only sum

18 distances, while the CS system would sum 24.

• FL system: 18WS× 20kb× 2 = 720 kb×

∑
(Dst

2)i=S
i

• CS system: 24WS× 0.094kb× 336 = 758 kb×

∑
(Dst

2)i=S
i

These results highlight that initially, the FL system requires greater communication

energy due to the larger size of the model weights. However, by decreasing the number

of WS involved in training within the FL system or increasing the time between

training rounds, Fig. 5.7, the FL system uses less communication energy than the CS

system. Additionally, the FL system’s ability to evaluate incoming data immediately

allows for faster predictions of ignition or non-ignition compared to the CS system,

which must first receive transmitted data before making evaluations.

Figure 5.7: Data communicated by FL and CS systems for one round.

5.4 Chapter Summary

In this chapter, we have introduced a FL framework. Building upon the knowledge

gained from previous chapters, we integrated our understanding of FF data and ML

models to develop a FL system. We instantiated this framework and evaluated its

performance through simulations.
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The simulations showcased the utilization of IoT data obtained from simulated

weather stations in ML models, specifically focusing on the implementation of a LSTM

model. This LSTMmodel was integrated into the FL framework. Altering the number

of epochs and rounds in the FL system had minimal impact on the results. While the

performance of the FL system was comparable to the CS system, the overall results

were lower than what has been observed in previous research [16] [27]. Despite this,

the positive impact of integrating FL into platforms like the CWFIS was seen in the

spatial accuracy improvements of the FL system over the CS system. Based on the

comparable results between systems, we can say that the FL system predicted FF

ignitions at a spatial granularity 24 times higher in our simulation. In contrast, the

CS system relied on aggregated data from multiple WSs, losing spatial granularity

in the process. Additionally, the communication energy (EFL) required in the FL

system was initially higher due to the larger size of the model weights (WFL), but

if the time between model training is increased or the number of participating WSs

(SFL) was reduced, the communication energy (ECS) in the CS system exceeded that

of the FL system.

In the final chapter, we will examine the contributions of this thesis, propose

potential avenues for future work, and provide a summary of the contributions from

this research.



Chapter 6

Conclusion

This thesis makes several significant contributions to the field of forest fire prediction

and management.

Firstly, we propose a comprehensive framework for producing high-resolution FF

datasets in a standardized .csv format. The framework combines weather reanalysis

data with available ignition data and provides provisions for incorporating additional

data types such as proximity to human infrastructure and historical lightning data.

This framework enables the generation of datasets that represent specific locations

and times, including coordinates, feature values, and a binary column indicating the

occurrence of an ignition.

Secondly, we instantiate our framework and create three large datasets suitable

for simulating IoT weather station data. These datasets vary in temporal and spatial

resolutions, incorporating weather features captured daily or hourly over 41 years,

along with spatial and FF ignition features. The datasets are formatted in .csv

tables, with each row representing a unique day and location.

Thirdly, we evaluate the fitness of these datasets by testing their completeness,

correctness, and format validity. By modeling the relationship between weather data

and FF ignition data, we demonstrate that the datasets exhibit spatial and temporal

coherence, converge in models, adhere to a valid format for standard data processing,

and are suitable for use with multiple ML models.

Fourthly, we employ various machine learning models to assess the performance

of the datasets in classifying FF ignitions. Using metrics such as F1-score, ROC-

AUC, Sensitivity, and Specificity, we evaluate the models’ ability to correctly identify

ignitions within a given geographic area and time interval. The tested models include

Bag Tree, Boost Tree, Decision Tree, Logistic Regression, Multilayer Perceptron,

Nearest Neighbor, Random Forest, and Support Vector Machine.

We demonstrate the practical value of integrating weather reanalysis data with

59
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FF ignition data by achieving ROC-AUC and F1-score values above 0.8. This high-

lights the effectiveness of combining these datasets and underscores the potential for

enhanced FF prediction accuracy.

FInally, we introduce a novel framework that combines FL with simulated data

collection from IoT devices, specifically WSs. Through the instantiation of this frame-

work as a simulation using a database from the Kelowna region, we evaluate its ef-

fectiveness and applicability within a localized and representative context. The sim-

ulation demonstrated that utilizing data gathered through IoT WSs in ML models,

specifically LSTM, can yield comparable prediction outcomes to a CS model trained

on aggregated data. In addition, the spatial granularity of the FF ignition classifica-

tion predictions is higher in the FL system by the nature of each WS maintaining its

own model.

Furthermore, the FL system demonstrated advantages in terms of communication

energy and latency. By distributing the model training process among individual

WSs, the FL system reduces the amount of data transferred, resulting in lower com-

munication energy. Additionally, each WS can evaluate data promptly, leading to

reduced latency compared to the CS system.

While our thesis presents valuable frameworks and methodologies for forest fire

prediction and management, there are potential limitations and areas that warrant

further investigation.

Firstly, one potential concern lies in the generalizability of the two frameworks we

have developed. These frameworks have been instantiated and evaluated in a specific

geographic region, which may limit their applicability to other regions with different

environmental and fire conditions.

Secondly, the choice of machine learning models utilized in the FL simulation

could be subject to further investigation. While we have employed various models, it

is essential to explore other models that may be better suited to the specific problem

of forest fire prediction. Exploring alternative models could potentially enhance the

accuracy and efficiency of the prediction system.

Additionally, expanding the data collection methods beyond IoT weather stations

could be beneficial. While weather stations provide valuable data, incorporating

other data collection techniques, such as unmanned aerial vehicles (UAVs), could offer
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broader coverage, especially in large remote regions where access may be limited.

In summary, this thesis contributes a comprehensive framework for generating

FF datasets, instantiated datasets suitable for machine learning, an evaluation of

dataset fitness and model performance, and a novel framework integrating FL and

IoT technologies.

Our federated learning framework affirms the potential of ML, FL, and IoT in

enhancing FF prediction capabilities within platforms like the CWFIS. The study

contributes to the understanding and mitigation of the growing threat posed by FF.

By exploring technologies and frameworks such as FL and IoT, fire management

agencies can leverage the power of historical and real-time data as well as ML to

make informed decisions and effectively respond to FF risks.
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Appendix A

Lower BC Dataset Feature Descriptions

Table A.1: Description of features in the NetCDF downloaded from ECMWF.

Feature Unit Description
lon degrees Upper left hand corner longitude of a cell.
lat degrees Upper left hand corner latitude of a cell.
u10 m/s Eastward component of wind at 10m above the earth’s surface.
v10 m/s Northward component of wind at 10m above the earth’s surface.
d2m Kelvin (K) The dewpoint temperature at 2m above the earth’s surface. It is a measure of

humidity.
t2m Kelvin (K) Air temperature at 2m above the earth’s surface.
evabs m of water The amount of water evaporation from bare soil.
lai hv m2/m2 One-half of the total green leaf area per unit horizontal ground surface area for

high vegetation.
lai lv m2/m2 One-half of the total green leaf area per unit horizontal ground surface area for

low vegetation.
src m of water The skin reservoir content is the amount of water in the vegetation canopy and/or

in a thin layer on the soil.
skt Kelvin (K) Skin temperature is the temperature at the earth’s surface.
stl1 Kelvin (K) Temperature of the soil in layer 1 (0 -7 cm) of the ECMWF Integrated Forecasting

System.
stl2 Kelvin (K) Temperature of the soil in layer 2 (7 -28 cm) of the ECMWF Integrated Forecasting

System.
stl3 Kelvin (K) Temperature of the soil in layer 3 (28 -100 cm) of the ECMWF Integrated Fore-

casting System.
stl4 Kelvin (K) Temperature of the soil in layer 1 (100 -289 cm) of the ECMWF Integrated Fore-

casting System.
sp Pa Surface pressure (force per unit area)is the atmospheric pressure at the earth’s

surface.
tp m Total precipitation.

swvl1 m3/m3 Volume of water in soil layer 1 (0 -7 cm) of the ECMWF Integrated Forecasting
System.

swvl2 m3/m3 Volume of water in soil layer 1 (7 -28 cm) of the ECMWF Integrated Forecasting
System.

swvl3 m3/m3 Volume of water in soil layer 1 (28-100 cm) of the ECMWF Integrated Forecasting
System.

swvl4 m3/m3 Volume of water in soil layer 1 (100 -289 cm) of the ECMWF Integrated Forecasting
System.

d day The day of the year for the given year.
y year The year.

ignition boolean 1 if any ignition occured in the cell on the day, otherwise 0.
ttl ign integer Total ignitions in the cell on the day.
person integer Total ignitions started by persons on the day.
ligtning integer Total ignitions started by lightning of the day.
unknown integer Total ignitions with unknown origin on the day.
fire id character All fire ID’s for the cell on the day.

Features in output order. For more information see Muñoz [34]
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Appendix B

Lower BC Dataset Instantiation Example

Table B.1: Column headings and 2 rows of BC dataset.

gridID lon lat u10 v10 d2m

1 -139 60 -0.70801 -0.75784 267.618

2 -138.9 60 -0.61414 -0.81431 266.942

t2m evabs lai hv lai lv src skt

268.8362 0 4.44E-16 0 0.00019 268.5468

268.2463 0 4.44E-16 0 0.000193 268.0623

stl1 stl2 stl3 stl4 sp tp

263.3696 263.2085 262.6628 262.1564 84669.66 0.011862

262.676 262.5093 261.9791 261.3105 83623.83 0.011453

swvl1 swvl2 swvl3 swvl4 d y

0.586042 0.583066 0.179998 0.342602 122 1980

0.370822 0.376846 0.188451 0.360737 122 1980

ignition ttl ign fire id person lightning unknown

0 0 0 0 0 0

0 0 0 0 0 0
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Appendix C

Kelowna Dataset Features

Table C.1: Description of features for Kelowna Dataset.

Feature Unit Description
date seconds Time passed since 1900 in seconds.
lon degrees Upper left hand corner longitude of a cell.
lat degrees Upper left hand corner latitude of a cell.
u10 m/s Eastward component of wind at 10m above the earth’s surface.
v10 m/s Northward component of wind at 10m above the earth’s surface.
d2m Kelvin (K) The dewpoint temperature at 2m above the earth’s surface. It is a measure

of humidity.
t2m Kelvin (K) Air temperature at 2m above the earth’s surface.
e m of water The amount of water that has evaporated from the earth’s surface.
cvh m2/m2 One-half of the total green leaf area per unit horizontal ground surface area

for high vegetation.
cvl m2/m2 One-half of the total green leaf area per unit horizontal ground surface area

for low vegetation.
slt integer The soil type based on texture. 1: Coarse, 2: Medium, 3: Medium fine, 4:

Fine, 5: Very fine, 6: Organic, 7: Tropical organic. Zero is a non-land point.
skt Kelvin (K) Skin temperature is the temperature at the earth’s surface.
stl1 Kelvin (K) Temperature of the soil in layer 1 (0 -7 cm) of the ECMWF Integrated

Forecasting System.
stl2 Kelvin (K) Temperature of the soil in layer 2 (7 -28 cm) of the ECMWF Integrated

Forecasting System.
stl3 Kelvin (K) Temperature of the soil in layer 3 (28 -100 cm) of the ECMWF Integrated

Forecasting System.
stl4 Kelvin (K) Temperature of the soil in layer 1 (100 -289 cm) of the ECMWF Integrated

Forecasting System.
sp Pa Surface pressure (force per unit area)is the atmospheric pressure at the

earth’s surface.
tp m Total precipitation.
swvl1 m3/m3 Volume of water in soil layer 1 (0 -7 cm) of the ECMWF Integrated Fore-

casting System.
swvl2 m3/m3 Volume of water in soil layer 1 (7 -28 cm) of the ECMWF Integrated Fore-

casting System.
swvl3 m3/m3 Volume of water in soil layer 1 (28-100 cm) of the ECMWF Integrated Fore-

casting System.
swvl4 m3/m3 Volume of water in soil layer 1 (100 -289 cm) of the ECMWF Integrated

Forecasting System.
ignition boolean 1 if ignition occurred in the cell on the day.
month integer The month of the year for the given year.
day integer The day of the month.
hour integer The hour for the given day.
year integer The year.
doy integer The day of the year for the given year.
year year The year.
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Appendix D

Kelowna Dataset Summary

Table D.1: Summary of Kelowna features values.

features min max range mean sd
date 3.23E+08 1.60E+09 1.28E+09 9.64E+08 3.73E+08
lon -122 -116 6 -119 1.802776
lat 49 52 3 50.5 0.935414
u10 -7.05325 8.853455 15.90671 0.346685 1.144646
v10 -7.30391 9.983047 17.28696 0.400354 1.153399
d2m 234.8329 296.2841 61.45123 275.4998 5.214091
t2m 238.0774 310.1319 72.05443 282.0397 7.303597
e -0.00073 8.10E-05 0.000816 -7.47E-05 9.62E-05

cvh 0.156647 0.999878 0.843231 0.878662 0.15677
cvl 3.06E-05 0.622479 0.622448 0.10449 0.131285
skt 233.5343 315.5637 82.02937 280.8523 8.187633
stl1 247.226 307.8882 60.6622 280.752 6.315398
stl2 256.7656 299.6206 42.85498 280.4581 5.40597
stl3 270.6714 293.3479 22.67651 279.7688 4.591183
stl4 272.2055 288.9502 16.74467 278.4565 3.946321
slt 1 2 1 1.859107 0.347912
sp 75566.63 96598.5 21031.87 86133.18 2971.832
tp -8.67E-19 0.012767 0.012767 0.000105 0.000292

swvl1 0.030548 0.457254 0.426705 0.316099 0.069188
swvl2 0.075025 0.453682 0.378657 0.315822 0.063187
swvl3 0.100568 0.453829 0.353261 0.315199 0.055933
swvl4 0.211334 0.437897 0.226563 0.351139 0.040686
month 4 10 6 7.009346 1.99764
day 1 31 30 15.78972 8.827405
hour 0 23 23 11.5 6.922187

ignition 0 1 1 0.000759 0.027533
year 1980 2020 40 2000 11.83216
doy 91 305 214 197.7683 61.77739
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Appendix E

High Prairie Dataset Features

Table E.1: Description of features for High Prairie Dataset.

Feature Unit Description
date seconds Time passed since 1900 in seconds.
lon degrees Upper left hand corner longitude of a cell.
lat degrees Upper left hand corner latitude of a cell.
u10 m/s Eastward component of wind at 10m above the earth’s surface.
v10 m/s Northward component of wind at 10m above the earth’s surface.
d2m Kelvin (K) The dewpoint temperature at 2m above the earth’s surface. It is a measure of

humidity.
t2m Kelvin (K) Air temperature at 2m above the earth’s surface.
e m of water The amount of water that has evaporated from the earth’s surface.
cvh m2/m2 One-half of the total green leaf area per unit horizontal ground surface area for

high vegetation.
cvl m2/m2 One-half of the total green leaf area per unit horizontal ground surface area for

low vegetation.
slt integer The soil type based on texture. 1: Coarse, 2: Medium, 3: Medium fine, 4: Fine,

5: Very fine, 6: Organic, 7: Tropical organic. Zero is a non-land point.
skt Kelvin (K) Skin temperature is the temperature at the earth’s surface.
stl1 Kelvin (K) Temperature of the soil in layer 1 (0 -7 cm) of the ECMWF Integrated Forecasting

System.
stl2 Kelvin (K) Temperature of the soil in layer 2 (7 -28 cm) of the ECMWF Integrated Forecasting

System.
stl3 Kelvin (K) Temperature of the soil in layer 3 (28 -100 cm) of the ECMWF Integrated Fore-

casting System.
stl4 Kelvin (K) Temperature of the soil in layer 1 (100 -289 cm) of the ECMWF Integrated Fore-

casting System.
sp Pa Surface pressure (force per unit area)is the atmospheric pressure at the earth’s

surface.
tp m Total precipitation.
swvl1 m3/m3 Volume of water in soil layer 1 (0 -7 cm) of the ECMWF Integrated Forecasting

System.
swvl2 m3/m3 Volume of water in soil layer 1 (7 -28 cm) of the ECMWF Integrated Forecasting

System.
swvl3 m3/m3 Volume of water in soil layer 1 (28-100 cm) of the ECMWF Integrated Forecasting

System.
swvl4 m3/m3 Volume of water in soil layer 1 (100 -289 cm) of the ECMWF Integrated Forecasting

System.
ignition boolean 1 if ignition occurred in the cell on the day.
month integer The month of the year for the given year.
day integer The day of the month.
hour integer The hour for the given day.
year integer The year.
doy integer The day of the year for the given year.
year year The year.
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Appendix F

High Prairie Dataset Summary

Table F.1: Summary of High Prairie features values.

features min max range mean sd
lon -117.5 -114.5 3 -116 0.935414
lat 50.5 57.5 7 54 2.09165
u10 -10.1597 14.99162 25.15137 0.757982 2.245168
v10 -13.5863 11.39349 24.9798 0.296311 1.826674
d2m 233.2032 297.2014 63.99825 275.7906 6.69871
t2m 236.9807 309.4077 72.427 282.2494 7.799168
e -0.00099 9.46E-05 0.001087 -8.70E-05 0.000107

cvh 0 1 1 0.867875 0.212209
cvl 0 0.752797 0.752797 0.111972 0.187168
skt 231.6383 312.5334 80.89516 282.0122 8.284807
stl1 251.701 305.6262 53.92522 281.7348 6.587747
stl2 260.2542 300.6533 40.39917 281.2484 5.725052
stl3 265.9739 299.9766 34.00269 279.7083 5.119141
stl4 271.281 299.2822 28.00122 277.7643 4.092277
slt 0 6 6 2.756003 1.461605
sp 73894.63 99497.06 25602.44 90064.24 5074.583
tp -8.67E-19 0.019022 0.019022 9.32E-05 0.00032

swvl1 0.016958 0.777129 0.760171 0.368325 0.10626
swvl2 0.02402 0.769423 0.745403 0.364521 0.103622
swvl3 0.030157 0.765159 0.735002 0.358088 0.100677
swvl4 0.033157 0.749084 0.715927 0.368113 0.089542
month 4 10 6 7.009346 1.99764
day 1 31 30 15.78972 8.827405
hour 0 23 23 11.5 6.922187
date 2.60E+08 1.54E+09 1.28E+09 9.01E+08 3.73E+08
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Appendix G

Additional Federated Learning Simulation Results

Table G.1: Experiment 2 averaged results for 10 simulation runs
of stations 1-7 over 6 epochs/round and 3 training rounds.

station metrics round 1 round 2 round 3
1 accuracy 0.7332614437 0.7725694279 0.7627701759

recall 0.7076401711 0.6565002998 0.6856438696
ROC-AUC 0.800395079 0.8002735575 0.8083768368
sensitivity 0.8812384456 0.8991579413 0.908810848
specificity 0.8877710253 0.8703366121 0.8753614545

2 accuracy 0.7310531395 0.7612825572 0.758407943
recall 0.7047800081 0.6892268717 0.6979562789

ROC-AUC 0.7986696448 0.8085339963 0.8106391057
sensitivity 0.88059026 0.9055766761 0.9109632447
specificity 0.8854282073 0.8782616854 0.8785534054

3 accuracy 0.7330729195 0.7665400604 0.7572401389
recall 0.6799926673 0.6869918803 0.6975288838

ROC-AUC 0.7876956207 0.8129883409 0.810118027
sensitivity 0.8728222932 0.9144201974 0.9114248902
specificity 0.8690363254 0.8788161278 0.8758484945

4 accuracy 0.734152548 0.7623437524 0.7599593912
recall 0.7137335539 0.6928947389 0.7057330779

ROC-AUC 0.804886654 0.8123638391 0.817211645
sensitivity 0.8992598727 0.917368418 0.9218985013
specificity 0.8796337247 0.8751379073 0.8784800087

5 accuracy 0.7304916581 0.7579173843 0.7575701773
recall 0.6963113811 0.6894470851 0.7089839379

ROC-AUC 0.794596937 0.8088807133 0.8204431633
sensitivity 0.8842121098 0.9132533802 0.9218148887
specificity 0.8751309514 0.8745869531 0.8845589757

6 accuracy 0.7279448748 0.7637396827 0.7593261674
recall 0.7242937684 0.6813206226 0.682821326

ROC-AUC 0.81111269 0.8076593131 0.803650409
sensitivity 0.898022604 0.909957625 0.9072210416
specificity 0.9008772016 0.8737037703 0.8673094064

7 accuracy 0.7303542164 0.7573645115 0.7608072907
recall 0.6846199963 0.6645293662 0.6696588844

ROC-AUC 0.7866151333 0.7921017494 0.7974703312
sensitivity 0.8686082893 0.8910831894 0.8987133503
specificity 0.8702003029 0.860175584 0.8615770936
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Table G.2: Experiment 2 averaged results for 10 simulation runs
of stations 8-16 for 6 epochs/round and 3 training rounds.

station metrics round 1 round 2 round 3
8 accuracy 0.7302799463 0.7592176596 0.7686835304

recall 0.6688471794 0.6857015193 0.6610589847
ROC-AUC 0.7758552909 0.8028371831 0.7949320897
sensitivity 0.8586595178 0.8987488846 0.8924262747
specificity 0.8519785166 0.8705853124 0.8616769984

9 accuracy 0.7287706137 0.7618014887 0.7598144487
recall 0.7316322724 0.701682955 0.7113870904

ROC-AUC 0.8060334524 0.8122168556 0.8147493899
sensitivity 0.8957654834 0.9115092307 0.9155808985
specificity 0.8867778381 0.8778053671 0.8805415183

10 accuracy 0.7314224044 0.7684105294 0.7661349944
recall 0.7122083505 0.6859012587 0.6880258322

ROC-AUC 0.8002511395 0.8116816112 0.8096043042
sensitivity 0.8897481693 0.9156114459 0.9149315868
specificity 0.8801637292 0.8761543887 0.873326557

11 accuracy 0.7337158248 0.771158857 0.7636989951
recall 0.695121944 0.6754873225 0.7044605613

ROC-AUC 0.7941710576 0.8058642319 0.8179849982
sensitivity 0.8873599246 0.9103493861 0.9235332906
specificity 0.8685419708 0.8691948567 0.8809468647

12 accuracy 0.7338454723 0.7565850094 0.7601981078
recall 0.7009063482 0.7116314098 0.7038411754

ROC-AUC 0.7961192012 0.8142135665 0.8109873704
sensitivity 0.885196352 0.912386708 0.9117824861
specificity 0.8737771273 0.8818725422 0.8775584613

13 accuracy 0.7301744297 0.7678371891 0.7594654229
recall 0.6661127284 0.6494219601 0.6720616553

ROC-AUC 0.7766267508 0.7895726636 0.7957060933
sensitivity 0.8584537655 0.884031795 0.8901734087
specificity 0.8585466743 0.8600533456 0.8662120567

14 accuracy 0.7288438678 0.7589759297 0.7617309615
recall 0.6788483709 0.6777713961 0.6853819713

ROC-AUC 0.7814488709 0.7997958991 0.806437254
sensitivity 0.8611430228 0.8991639482 0.9088167697
specificity 0.8650394306 0.8656944103 0.8693955317

15 accuracy 0.7350347102 0.758596162 0.76620958
recall 0.6996739626 0.6918180519 0.6806008369

ROC-AUC 0.7936375737 0.805972139 0.8048596904
sensitivity 0.8891942263 0.9095896151 0.9097578004
specificity 0.8647495329 0.8686992129 0.867823258

16 accuracy 0.7338614 0.7467972338 0.7666684687
recall 0.6987206274 0.7209011217 0.682311217

ROC-AUC 0.7946205338 0.8150785168 0.8073242505
sensitivity 0.8827701343 0.9156236947 0.9116604129
specificity 0.8719882634 0.8804704746 0.8709576428
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Table G.3: Experiment 2 averaged results for 10 simulation runs
of stations 17-24 for 6 epochs/round and 3 training rounds.

station metrics round 1 round 2 round 3
17 accuracy 0.7283976227 0.7435438275 0.764784847

recall 0.7076677307 0.7211501598 0.6838886312
ROC-AUC 0.7993539497 0.8120397568 0.807003711
sensitivity 0.8898562342 0.9119488835 0.912733904
specificity 0.8751517758 0.8802803636 0.8707591976

18 accuracy 0.7293542283 0.7631184816 0.7651801194
recall 0.6794812083 0.6939255476 0.6889054775

ROC-AUC 0.782495984 0.8099408388 0.8079333901
sensitivity 0.8764579637 0.9144350171 0.9101427708
specificity 0.8569584319 0.8722616315 0.8721143944

19 accuracy 0.735018803 0.765894711 0.7634030183
recall 0.6956500014 0.7010546497 0.7032562693

ROC-AUC 0.7940578991 0.8159252405 0.8146331906
sensitivity 0.894655731 0.921380622 0.9201093713
specificity 0.8668829004 0.8794662271 0.876892474

20 accuracy 0.7269577725 0.7539568841 0.7569432457
recall 0.7122351357 0.7147129377 0.7048777209

ROC-AUC 0.7988006813 0.8164231181 0.8126553827
sensitivity 0.8855092355 0.9174641172 0.9158027636
specificity 0.8794394135 0.8822716971 0.8779936433

21 accuracy 0.7294230163 0.7621243 0.7673267424
recall 0.6941831633 0.6829207912 0.6720297039

ROC-AUC 0.788244307 0.8036134392 0.8007042706
sensitivity 0.8831683099 0.9079826772 0.9053630431
specificity 0.8572983742 0.8666282967 0.8652688464

22 accuracy 0.7307400227 0.766682165 0.762263453
recall 0.7192639351 0.7008954201 0.7081656218

ROC-AUC 0.8021932244 0.8155358945 0.8170255125
sensitivity 0.8935020089 0.9190010684 0.9202990234
specificity 0.8775195956 0.8820375204 0.8809944451

23 accuracy 0.7340665119 0.7578043714 0.7672001521
recall 0.6953368698 0.6913209483 0.6698507965

ROC-AUC 0.7904948848 0.8066573292 0.8013328811
sensitivity 0.8781191622 0.9072734714 0.9042940338
specificity 0.868536268 0.8752961382 0.8692044516

24 accuracy 0.7272664383 0.7584168911 0.7622490898
recall 0.6810897514 0.6855311334 0.6852869391

ROC-AUC 0.7839112058 0.8038638175 0.8055695295
sensitivity 0.875457868 0.9026251435 0.9053723961
specificity 0.8600174561 0.8725392699 0.8725088909



Appendix H

Data Usage

Muñoz Sabater, J., (2019, 2021) [34] was downloaded from the Copernicus Climate

Change Service (C3S) Climate Data Store. Our results contain modified Copernicus

Climate Change Service information from 2020. We have reduced the number of fea-

tures contained in the information, the geographic area represented, and the number

of years available. Neither the European Commission nor ECMWF is responsible

for any use that may be made of the Copernicus information or data it contains.

Acknowledged as per [11].

The Fire Incident Locations - Historical data set was downloaded from the British

Columbia Data Catalogue and is used under the Open Government License [40].

The 2021 Census Boundary file was downloaded from Statistics Canada and is used

under the Statistics Canada Open Licence. Source: Statistics Canada, 2021 Census

Boundary file, 27.09.2022. Reproduced and distributed on an ”as is” basis with the

permission of Statistics Canada.

BC Wildfire Service weather station data was downloaded from the Pacific Climate

Impacts Consortium [8] and is modified and presented here under their terms of

use [9].
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