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Abstract

Visual formulations of reinforcement learning tasks are potentially challenging be-

cause (1) the state space is large and composed from pixels (so unlikely to be directly

correlated with actions), (2) the underlying task might be partially observable despite

the high dimensionality, and (3) rewards can be sparse, so do not necessarily discrim-

inate between useful and not useful decisions. In this thesis we compare the classic

deep Q-network (a temporal difference reinforcement learning approach) with tangled

program graphs (TPG) (a genetic programming approach) under complete and par-

tially observable visual reinforcement learning tasks from ViZDoom. We demonstrate

that TPG is particularly effective at imparting structure on the partially observable

task (resulting in a general policy for navigating a labyrinth), but is relatively poor at

solving a fully observable (aiming) task. Conversely, DQN is very effective when pre-

sented with the complete information aiming task, but is unable to discover general

solutions to the partially observable navigation task. We attribute these preferences

to the different approaches TPG and DQN assume for addressing representation/fea-

ture construction versus credit assignment.
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Glossary

FPS A first-person shooter is a type of game that is viewed from a first-person per-

spective. The player does not see their character’s body. Instead, they see their

character’s weapon and possibly their character’s arms holding the weapon.

Popular examples include Call of Duty, Overwatch, and Left 4 Dead. In con-

strast, a third-person shooter is a game wherein the player can see their entire

character. Popular examples include World of Warcraft, and Grand Theft Auto

V. “FPS” can also mean “frames per second”. This meaning of the acronym

will not be used in this document to avoid confusion.

GZDoom A similar source port to ZDoom, largely defined by the addition of OpenGL

support..

HP “Hit points”, sometimes called “Health points” are a quantification of a char-

acter’s vitality. Reducing a character’s hit points to zero means the character

dies (and despawns).

Map In the context of video games, the “map” is the space in which entities including

players and enemies exist. Typically “map” refers to the “game board”, usually

represented in 2D space from a top-down perspective, rather than what the

player sees on the screen.

SLADE3 Software used for both creating and editing ZDoom and GZDoom levels..

Spawn In the context of video games, “spawn” is a verb that refers to the instant an

entity appears on the map. This can be combined with other terms to create a

noun, such as “spawn location”, meaning the place on the map where something

has spawned. Another related term is “despawn”, which is when an entity is

removed from the game.

Tic “Tic” is another term for “frame”. “Tic-rate” means the same thing as frame

rate.

xiii



ZDoom A source port of the 1993 game Doom. It functions as the “underlying

engine” in the context of this research..
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Chapter 1

Introduction

Video games present a high-dimensional state space, creating a challenge for visual

reinforcement learning. The challenge comes from the need to create meaningful fea-

tures from the thousands of pixels present at each frame. Pixels in themselves are not

effective features as they do not individually capture properties that correlate with

measurable outcomes, i.e. decisions leading to actions. Instead, collections of pixels

need identifying that represent objects that are meaningful for the underlying appli-

cation. Deep learning (DL) represents one approach for developing low-dimensional

representations from a high-dimensional state space. DL achieves this for visual state

spaces using a combination of a convolution operator and bottleneck architecture,

thus forcing the network to find a low-dimensional embedding. It is through the

bottleneck architecture that it is able to find features that are useful for success in a

visual learning task. Given the ability to develop a low dimensional representation,

reinforcement learning approaches to gradient decent can then be applied (e.g. Q-

learning [25]) in conjunction with speedups such as ‘prioritized sweeping’ to accelerate

the credit assignment process relative to previously visited states. In this thesis we

will adopt the Deep Q-learning (DQN) framework [21], where this represents a well

known approach to deep reinforcement learning.

Now, consider approaching a high-dimensional space from the perspective of ge-

netic programming (GP). One approach might be to provide the GP approach with a

set of image processing operators to manipulate the original high-dimensional repre-

sentation. Strong typing can be used to relate different instructions to different data

types such that only high-dimensional data has image processing operators applied to

them, e.g. [26]. Conversely, once scalar operands appear, inequalities and/or arith-

metic can be applied in order to develop decisions relative to the low dimensional

features. The goal would be to discover a set of objects for summarizing the original

image content using a lower dimensional representation.

1
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In this research we adopt a different approach. The goal is to construct a model

incrementally where different programs index different subsets of the numerous pixels

given. Ideally, the combination of pixels indexed plus the feature construction within

a program does is sufficient for picking out the useful information; information that

contributes to solving the task at hand. Previous research under visual reinforcement

learning tasks has demonstrated that such an approach, when combined with the

ability to stitch multiple such programs together into a graph of programs (tangled

program graphs or TPG), is effective at building reinforcement learning agents under

multiple high dimensional task domains, e.g. Atari 2600 console [10, 12], ViZDoom

[13, 1], Dota2 [24].

A fully observable visual reinforcement learning task is a task wherein the player

has complete state information; all of the information required to solve the task, e.g.

chess or checkers. No information is hidden. In this thesis, we will be working with a

fully observable task from the ViZDoom suite of tasks called “Basic”. In this task, the

player spawns on one side of a rectangular room, and a monster spawns at a random

location along the wall on the opposite side of the room. In short, the player’s goal is

to shoot the monster. The monster itself is stationary, fully visible at all times, and

the locations where the monster may be are also visible at all times. Deep learning

frameworks, in theory, should be able to learn this type of task because it can find the

object (the monster) with the use of its convolution operator, i.e. the DL architecture

will learn a set of features that identify the monster independent of location. Genetic

programs may struggle with this sort of task because it needs to know which pixel

locations to index in order to locate the monster. Ideally, a GP solution would learn

to create a “letterbox”, a horizontal line of pixels spanning the width of the screen,

thus identifying every location the monster could possibly be. However, this means

that the monster has to appear in that line of pixels with equal probability. During

testing, we found the spawn locations of the monster were not following an equal, or

uniform, distribution, leading to further investigation. Discussion and results of this

investigation are discussed in Chapter 2.

In contrast, a partially observable task is a task wherein the player does not have

complete state information. For example, the task of escaping a maze is partially

observable: there is no clear path out of the maze from the starting state. The
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layout of the maze, the player’s current location, and the location of the exit, are

all considered “hidden” information. Furthermore, given a first-person point of view,

information available is ego-centric. The information the agent has is dependent upon

the direction it is facing, i.e. the agent experiences state through a limited field of

view relative to the structure of the environment.

In this work, we will be utilizing another ViZDoom task called “My Way Home”

in order to investigate the impact of partial observability on visual reinforcement

learning in a partially observable environment. In short, a player spawns at a ran-

dom location in a labyrinth, consisting of several rooms connected by corridors. The

player must navigate to a goal location in the maze to succeed. The labyrinth in

My Way Home is not stochastic; the layout of the maze, the relationship between

rooms, and the location of the goal is static. However, both our deep learning and

genetic programming approaches were not provided with memory, limiting them to

purely reactive behaviours (i.e. no concept of previous state). We have already seen

that agents with access to some form of long term memory are able to complete both

incomplete and complete information tasks [13] [1]. To what degree will these two

types of agents solve this task and solve it in a structured way? What about the

aforementioned fully observable task? What changes, if any, will we see? Expanding

on this idea, we will also measure the impact that a biased ViZDoom random number

generator has on the performance of these separate approaches to visual reinforce-

ment learning when faced with a uniformly distributed random number generator.

Specifically, this thesis poses the following hypothesis:

• Under the complete information task (Basic) we anticipate DQN performing

better than TPG. DQN was previously benchmarked under the Basic task and

found to be effective [27]. TPG has also been shown to be effective at the

Basic task [23], but only when subject to a training ‘curricula’ that exposed

TPG agents to a multitude of different tasks. We believe the diversity in task

exposure to have a significant impact on TPG’s ability to develop appropriate

behaviours, as without such exposure, effective indexing schemes will not be

promoted. Conversely, the convolution operation assumed by DQN effectively

represents an exhaustive search for objects in the visual space irrespective of

location. We anticipate biased and unbiased sampling of agent spawn points to
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improve the TPG results more significantly, but likely not to a level sufficient

to match that of DQN.

• Under the incomplete information task (My Way Home) we anticipate TPG

performing better than DQN. The basis for this hypothesis lies in the different

approaches for reward accumulation assumed by TPG and DQN. TPG attempts

to maximize the average sample returns as experienced across the entire task

episodes. Put another way, reward under TPG is only experienced after encoun-

tering a terminal condition, thus credit assignment is only performed relative to

the total episodic cost/performance. Conversely, DQN is based on Q-learning

(part of the temporal difference family of reinforcement learning algorithms),

thus credit assignment is performed per reward. The model at the end of the

episode is different from that at the start. This can result in rather more greedy

credit assignment behaviours. Under the My Way Home task this might mean

that DQN is very efficient at finding the most direct path to the terminal con-

dition, when the goal condition is visible. However, when the goal state is not

visible, some sort of search strategy will need to be assumed. TPG on the other

hand has to work harder to develop features that recognize the terminal con-

dition, but can construct simple navigation heuristics symbolically from small

subsets of features. We again anticipate biases in the sampling of agent spawn

points will have more impact on TPG performance than DQN.

This thesis develops the above evaluation in the following way: Chapter 3, the

genetic programming framework being utilized is explained. Chapter 2 provides nec-

essary background information regarding the ViZDoom framework and task scenarios.

There is also discussion about the problematic random number generator in ViZDoom

and the “fix” utilized in this research. In Chapter 4, experimental design and changes

made to the genetic programming framework assumed are both detailed. Chapter 5

provides results, analysis, and discussion of the experiments mentioned in the previous

chapter. Finally, Chapter 6 provides the conclusion.



Chapter 2

ViZDoom Background

2.1 ViZDoom Introduction

ViZDoom [27] is an artificial intelligence learning platform based on the 1993 first

person shooter computer game, Doom. The ViZDoom platform allows artificial in-

telligence agents to interact with the Doom environment by facilitating the transfer

of visual buffers (what a human player would see on a screen) from the Doom envi-

ronment to an agent, and facilitating the transfer of actions (akin to buttons on a

keyboard being pressed) from the agent to the Doom environment. A singular visual

buffer is equivalent to a frame, also called a tic. The terms “tic rate” and “frame rate”

are used interchangeably. ViZDoom comes with several tasks, or “mini-games”. Each

task is designed to teach the agent a certain behaviour. Examples of some of these

behaviours are dodging enemy fire, aiming and shooting at enemies, and conserving

ammo. The ViZDoom platform calls each iteration of a minigame an “episode”. The

end conditions for an episode vary from task to task. Common end conditions include:

• The player wins.

• The player dies.

• A fixed number of tics have passed (timeout).

2.1.1 Task Scenarios

ViZDoom comes with eight “standard” tasks, each meant to train agents to perform

a particular skill. In this research, we will be focusing on two of these tasks: “Basic”

and “My Way Home” where these are representative of complete and incomplete

information tasks respectively.

5



6

Basic

The goal of Basic is to train an agent to be a fast and accurate shooter. At the start

of the task, the player Spawns in the center on one side of a rectangular room, and

a type of monster, known as a Cacodemon, spawns on the other side of the room,

facing the player. The monster’s spawn location along the y-axis is random, but it

always remains at the same position on the x-axis, maintaining a constant distance

from the player. The monster is unable to move. The player is able to move left and

right. Figure 2.1 shows what the player sees at the start of an episode. Figure 2.2

shows the top-down map view, illustrating where the player spawns and where the

Cacodemon can spawn.

The player is rewarded for shooting the monster quickly and conserving ammuni-

tion. The player starts with a reward of 0. One point is subtracted per tic and five

points are subtracted per bullet fired. If the player successfully shoots the monster,

106 points are awarded. The episode times out after 300 tics. Given the travel time

of the bullet, the highest possible score is 95 points. The lowest possible score is

-410. While the player is given a clip containing 50 ammo, it is impossible to unload

all of the ammo before the timeout occurs. Removing points for each bullet fired

incentivizes accuracy, while removing a point per elapsed tic incentivizes speed.

My Way Home

My Way Home is a navigation task. The map consists of eight rooms and ten hallways.

The goal of the task is to locate an armour pack as quickly as possible. The armour

pack is located at the end of the rightmost hallway. Figure 2.3 shows the armour pack

circled in white. The armour pack is always in the same location, however, the player

spawns in at one of 17 possible spawn locations. Each spawn location has a unique

identification number. The first possible location’s identification number is 10, and

the last location’s identification number is 26. The location is randomly selected.

The direction the player is facing is also randomly selected. Each room has a unique

pattern on the walls, while the hallways all share the same brick pattern on the walls,

floor and ceiling. The unique wall patterns should, in theory, help the player figure

out where they are on the map.
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Figure 2.1: Player point of view in the Basic task.

Figure 2.2: Top-down view of the Basic map, illustrating key areas on the x and y
axes.
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Figure 2.3: Top-down view of the My Way Home map. Each number represents one
possible spawn location. A compass is shown on the bottom right.

The player begins each episode with a score of 0, whereas 0.0001 points are re-

moved from the score for each tic that passes. This incentivizes speed. 1 point

is rewarded upon finding the armour. This incentivizes finding the armour pack.

The episode ends when the player finds the armour, or after 2100 tics have elapsed,

whichever comes first.

2.2 ViZDoom, ZDoom, WAD Files

In order to facilitate understanding of the random number generator issue (source

of a learning bias), we have to first unpack the intricacies of the ViZDoom platform

itself.

2.2.1 ZDoom/GZDoom

ZDoom is a source port for Doom, meaning a platform on which users can create their

own custom Doom levels. ZDoom supports modern hardware and modern operating

systems. For our purposes, we can consider GZDoom and ZDoom to be equivalent.

GZDoom simply provides OpenGL support.
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Figure 2.4: Player point of view in the My Way Home task at spawn location 14,
facing 0.25.

Figure 2.5: Player point of view in the My Way Home task at spawn location 27,
facing 0.75.
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Some definitions:

• ACS: ACS (Action Code Script) is a C-based scripting language. ZDoom pro-

vides its own custom implementation and compiler for ACS.

• Actor: Within a game environment, an actor is an entity that interacts with

the environment around it. All monsters and the player character are classified

as actors.

Custom games are facilitated through the creation of WAD files (or “Where’s All

the Data?”). WAD files contain several components; the components relevant to this

work are as follows:

• At least one Map Marker file: Map Marker files provide a visual representation

of what the map will look like when rendered. Walls, floors, ceilings, enemy

spawn points, player spawn points and item spawn points are all defined in this

file, as well as the textures those items will be rendered with.

• At least one ACS Script file to define the behaviour and resources of entities

on the map. This is typically limited to actors, but doesn’t have to be. The

following values must be defined within this file:

– Monster spawn points, spawn types, and spawn timing.

– Monster details, such as the monster’s aggression towards the player, ag-

gression towards other monsters, movement speed, hit points, weapons,

and available ammo, if applicable.

– The (x, y) spawn location of the player.

– The spawn angle of the player (which direction they’re facing).

– The player’s hit points, movement speed, weapons, and ammunition avail-

able.

– Other variables and logic can be programmed in this file as well if desired

by the programmer.
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2.3 ViZDoom

As stated in section 2.1 ViZDoom (Vi-ZDoom) is a platform that allows a client,

usually an agent, to communicate with the ZDoom environment. ViZDoom also

provides their own WAD files for defining task scenarios, as well as their own ACS

library on top of the custom ACS variant included with ZDoom. This creates some

confusion when trying to figure out where given functions are defined. For example,

both random() and Random() compile just fine. One accepts fixed-point values, while

the other will fail gracefully.

2.4 Problematic Random Number Generator in ViZDoom

It was anecdotally noticed several times during the course of ViZDoom research that

SBB and TPG agents seem to prefer one direction or another, even with the usage of

action programs. This apparent bias was most noticeable in “Basic”, where the agent

always seemed to move to the left, even when the monster spawned on the right. In

particular, the results in Figure 2.6 sparked both curiosity and concern. In order to

rule out an error in the implementation of action programs, the ViZDoom WAD files

were carefully analyzed using SLADE3, a well-known development environment for

ZDoom. SLADE3 is open source, and allows programmers to create every component

of a WAD file, including maps and scripts, and allows programmers to edit existing

WAD files. It also allows programmers to run ZDoom and play through their levels

to test them. The usage of SLADE3 was integral to this research, as it allowed for

the unpacking, editing, and analysis of the WAD files that come with ViZDoom,

without interacting with the ViZDoom client itself. It is important to note that

SLADE3 operates independently of the ViZDoom environment, but rather runs on

the underlying ZDoom engine.

Specifically, we wanted to test the distribution of spawn locations of the Cacode-

mon in “Basic”, as this was the task that appeared to have a bias. While some of the

ZDoom variant of ACS documentation is adequate, other portions of the documen-

tation are very poor. As such, even retrieving the (x, y) coordinates of the monster

spawn point was challenging, especially without the help of the ViZDoom client. The

ZDoom flavour of ACS does not directly support file I/O. With the help of SLADE3,
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Figure 2.6: A series of heatmap depicting the best score in each zone for several
experimental TPG runs. The x-axis of each heatmap represents the y-axis of the
Basic map from a top-down perspective. The y-axis represents the temporal element;
population evolution over time, with earlier populations at the top and later popu-
lations at the bottom. The experiment was ultimately abandoned, but the bias in
scoring remains clear.
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Figure 2.7: Execution parameters in SLADE3 required to store console output to a
file.

through a very roundabout method, the distribution of the numbers returned by the

random number generator could be tested. First, the desired value has to be logged

within the ACS script to the debug console. Then, the simulation has to be manu-

ally started with a console command in the execution parameters to tell the engine

to store the console output to a file. There is no documentation from SLADE3 or

ZDoom regarding storing the console output to a file. It does not use the standard

Linux/Windows redirection character (>). However, a useful post from an online

forum provided the necessary pointers.1 Figure 2.7 shows the execution option screen

in SLADE3 with the “Extra Parameters” field populated with the console command

required to store output to a file. +logfile is the command, D:\thesis-demo\ is

the path where we’d like to store the output file, and sample.txt is the name of the

output file, which can be changed as desired.

The ZDoom game engine has to operate at frame rate. Thus, only a finite number

of instructions can be performed per tic. It was empirically discovered that the game

1https://forum.zdoom.org/viewtopic.php?f=3&t=35956

https://forum.zdoom.org/viewtopic.php?f=3&t=35956
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engine’s limit was 5000 calls to the random number generator per tic, then a 1 tic

delay must be performed. This is reflected in the sample code provided in Listing 2.1.

1 #include "zcommon.acs"

2

3 int target_id = 10;

4

5 // Initialize the reward variable.

6 global int 0: reward;

7

8 // This script executes first.

9 script 1 OPEN

10 {

11 // The number of trials to run.

12 int trials = 10000000;

13

14 // How many random numbers we

15 // can generate in a tic.

16 int per_tic = 5000;

17

18 // Get the number of repetitions we’ll

19 // need in order to achieve the desired number of

20 // trials.

21 int repeat = trials / per_tic;

22

23 for(int j=0; j<repeat; j++)

24 {

25 delay (1);

26

27 for(int i=0; i<per_tic; i++ )

28 {

29

30 // Generate a random number between

31 // -161 and 224, the possible spawn

32 // loactions for the Cacodemon.

33 int r = random ( -161.0 ,224.0);

34

35 // Output the value to the console as

36 // a float.
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37 log(f:r);

38

39

40 // Generate a random number using the

41 // other random function.

42 //int r = Random (-161.0, 224.0);

43 //log(f:r);

44

45 }

46 }

47 // Exit the game.

48 Exit_Normal (0);

49 }

Listing 2.1: The ACS code used to generate values from the random number generator

so they can be analyzed.

A 10 million trial experiment was ultimately performed using Basic.WAD with

the SCRIPTS file edited as shown in Listing 2.1. The resulting data was stored and

analyzed with Python and Matplotlib. Figure 2.8 plots the resulting 10 million mon-

ster y-axis spawn points (−161, 224) as a histogram-frequency plot. It is apparent

that a uniform distribution is approximated; a far cry from what had been manually

observed in the ViZDoom environment. These results imply that the random number

generator provided by ZDoom is not causing monsters to be initialized with a strong

left of center bias. Both the random and Random functions were tested, and both

yielded similar results.

The next step was to test the random number generator again, but utilizing the

ViZDoom client, rather than testing with SLADE. Knowing that ViZDoom would

send a reward value, the ACS script was changed to store the y-coordinate of the

monster (under the Basic task environment) as the reward instead of the original

reward. This allowed for the seed counting experiment to be performed using Java.

The same experiment was performed on another computer with a new install of

Windows 10, the latest Python version of ViZDoom, installed using Pip, as per the

instructions to ensure that all bases were covered in regards to versioning. Figure 2.9

conclusively demonstrates a severe bias towards a particular spawn point, slightly left
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Figure 2.8: Basic spawn testing on Windows 10 with ZDoom only via SLADE 3.
Histogram reflects the spawn position as sampled over 10 million calls to the spawn
routine

of centre.

Looking at the ‘known ViZDoom issues’ on the GitHub repository, one user re-

ported an apparent bias in ViZDoom’s random number generator in 2017.2 It is

ultimately found that this is a Windows-only problem, but nothing seems to be done

about it. It is noted that the issue is not reproducible in Linux. To verify that this

is a Windows issue, the same experiment was executed on an Ubuntu VM, using the

Python version of ViZDoom. The results were a mostly uniform distribution, which

is shown in Figure 2.10.

To further verify this issue, similar testing was performed using a modified version

of the My Way Home WAD file. The file was modified in a similar fashion. Figures

2.11 and 2.13 illustrate the results of performing these tests on Windows. It is evident

that we have a very uneven distribution of values. Figures 2.12 and 2.14 show the

results of the same test performed on Ubuntu. For transparency, these two tests used

a much smaller sample size than the tests performed for Basic. The discrepancy in

2https://github.com/mwydmuch/ViZDoom/issues/170

https://github.com/mwydmuch/ViZDoom/issues/170
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Figure 2.9: Basic spawn testing on Windows 10 using the ViZDoom client. His-
togram reflects the spawn position as sampled over 10 million calls to the spawn
routine. Note the y-axis scale ×106
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Figure 2.10: Basic spawn testing on Ubuntu VM using the ViZDoom client. His-
togram reflects the spawn position as sampled over 6 million calls to the spawn routine

sample size was due the constraints on the available hardware at the time of testing.

This further solidifies the notion that the random number generator is only bro-

ken in Windows. The aforementioned GitHub post briefly brings up a theory that

re-building the ViZDoom environment fixes the problem. However, building the en-

vironment is not listed as a requirement for using ViZDoom on Windows. In fact, in

recent years, the Python distribution of ViZDoom has been added to ‘The Python

Package Index’ (PyPI), which allows Windows users to install a pre-built version of

ViZDoom using pip, a command line tool for simple installation of Python libraries.

Making ViZDoom easy to install is useful, but many users may then believe that a

library installed via pip is ready to use. If that is not the case for Windows users,

then it needs to be part of their installation tutorial.

Given this background, I set out to correct this issue myself. I developed a suffi-

ciently simple, but seemingly effective fix for the Basic scenario. Given the width of

the Cacodemon, there were effectively 11 slots on the map where it could spawn. I

created 11 different WAD files, each allowing the Cacodemon to spawn in only one

slot. Then, I used the random number generator in Java to randomly select one WAD
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Figure 2.11: Histogram depicting the frequency of room spawns with ViZDoom on
Windows for the My Way Home task.

Figure 2.12: Histogram depicting the frequency of room spawns with ViZDoom on
an Ubuntu VM for the My Way Home task.
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Figure 2.13: Polar histogram depicting the direction the players spawns facing in
the My Way Home Task, using Windows and ViZDoom.
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Figure 2.14: Polar histogram depicting the direction the players spawns facing in
the My Way Home Task, using an Ubuntu VM and ViZDoom.
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file to show to an agent per episode. This technique seemed to work, but was not

extensible to tasks like My Way Home, where the players spawns at a random angle

between 0 and 1. This technique wouldn’t work on tasks like Defend the Center,

either, where infinite monsters spawn at random points.

2.4.1 Correcting the Monster seeding under Windows 10

In order to facilitate the transfer and usage of a value from the ViZDoom client to

the ZDoom engine, both the WAD file and the client-side code have to be modified.

The WAD file must have a variable in which to hold the value, a subroutine in which

the value is set, and then that value has to be used. Modifications to basic.WAD

can be found in Algorithm 2.2. Scripts and functions that were unchanged have been

replaced with ‘...’ for readability while maintaining reproducibility.

1 #include "zcommon.acs"

2

3 int target_id = 10;

4

5 global int 0: reward;

6 global int 1:USER1;

7 global int 2:USER2;

8

9 script 1 OPEN

10 {

11 reward = 0;

12 USER1 = 0;

13 USER2 = ACS_ExecuteWithResult (5, 0, 0, 0);

14

15 SpawnTarget ();

16

17 }

18

19 int c =0;

20

21 script 2 ENTER

22 {

23 ...

24 }
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25

26 script 3 (void)

27 {

28 ...

29 }

30

31 script 4 (void)

32 {

33 ...

34 }

35

36 function void SpawnTarget(void)

37 {

38 Spawn("Cacodemon", 0.0, USER2 ,0.0, target_id ,128);

39

40 USER1 = GetActorY(target_id);

41

42 ...

43 }

44

45 script 5 (void)

46 {

47 SetResultValue(GetCVar("monsterspawn") + 0.01 - 0.01);

48 }

Listing 2.2: Modifications made to basic.WAD to allow intake of custom values from

ViZDoom client.

The following changes were made, reflected in Listing 2.2:

• The addition of two global variables on lines 6 and 7, USER1 and USER2. The

names of these variables must be as shown. USER1 is where we will store the

spawn location of the monster after it spawns. This allows us to verify that

our value was in fact used from the ViZDoom side. USER2 is where our custom

value will be stored.

• The addition of a script, starting on line 45, that takes the custom value from

the client and stores it in USER2.
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• Then, we have to call this script at the beginning of level execution. This

happens in the opening script, on line 13.

• Finally, we have to force the Cacodemon to spawn where we tell it to, on line

38. Then, on line 40, we get its y-position and set USER1 to that value. This

allows us to verify that the Cacodemon spawned where we told it to from the

client-side.

Next, we will discuss the code required on the VizDoom side, in both Python and

Java, in the interest of reproducibility.

1 # Set the minimum and maximum values for our

2 # random number generator.

3 min = -161

4 max = 224

5

6 # Generate random double value from -161 to 224

7 # with 5 decimal places.

8 rand_spawn = round(random.uniform(min , max), 5)

9

10 # Multiply by 65536 to convert to ZDoom floating point.

11 rand_spawn = rand_spawn * 65536;

12

13 # Create a string to hold our console command.

14 cmd = "set monsterspawn " + str(rand_spawn)

15

16 # Send the console command to the game.

17 game.send_game_command(cmd)

18

19 # Start a new episode.

20 game.new_episode ()

Listing 2.3: Python ViZDoom client-side code for setting a custom monster spawn

location in Basic

1 // Set the minimum and maximum values for our

2 // random number generator.

3 int min = -161;

4 int max = 224;
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5

6 // Create a new instance of a random number generator.

7 Random r = new Random ();

8

9 // Generate our random number.

10 float randSpawn = min + r.nextFloat () * (max - min);

11

12 // Multiply by 65536 to convert to ZDoom floating point.

13 randSpawn = randSpawn * 65536;

14

15 // Create a string to hold our console command.

16 String cmd = "set monsterspawn " + String.format("%.5f", a);

17

18 // Send the console command to the game.

19 game.sendGameCommand(cmd);

20

21 // Start a new episode.

22 game.newEpisode ();

Listing 2.4: Java ViZDoom client-side code for setting a custom monster spawn

location in Basic

The “key” to sending a value from the VizDoom client to the ZDoom engine lies

in the send game command function. The comments in Listings 2.3 and 2.4 describe

what each line of code is doing. In short, we use Python’s (Java’s) random number

generator to obtain a value that is much closer to truly random. Then, we build a

console command as a string. The command begins with the set command. The set

command takes two arguments. The first argument is an arbitrary variable name.

This variable name has to be the same as the string found on line 47 of Algorithm

2.2. As per good coding practices, descriptive variable names should be used where

possible.

This function is poorly explained in the ViZDoom documentation found on their

GitHub page. Figure 2.15 shows a screen shot from the ViZDoom GitHub docu-

mentation at the time of writing. There is no description of syntax, no list of ac-

cepted commands, no inputs or outputs. The ZDoom documentation linked to by

the ViZDoom documentation is more comprehensive, but at no point does it provide
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Figure 2.15: A screenshot of the VizDoom documentation provided for the
send game command at the time of writing

a complete list of valid console commands. At the very bottom of the CVAR page,

there is a brief mention of the set command, with no example usage provided. That

mention links to yet another page, that provides a list of console commands specific

to game customization. These console commands were not included on the ZDoom

page about console commands.

2.4.2 ViZDoom Environment Summary

The ViZDoom environment represents a very widely employed game engine for eval-

uating visual reinforcement learning algorithms under a first person perspective. On

the positive side, there are a wide range of opportunities for designing custom envi-

ronments, thus facilitating the development of experiments designed to test specific

properties of learning agents. On the other hand, we encountered biases in spawn

point generation that introduced corresponding biases into the behaviours of our

learning agents. We were, however, able to correct these limitations using some of

the tools provided for customizing the game engine.

This thesis will use two ‘standard’ task scenarios (Basic and My Way Home)

from the ViZDoom game engine as examples of complete and incomplete information

reinforcement learning tasks described under visual (first person) state. Previous

research using these task scenarios appears not to have recognized the biased nature

of entities reliant on a random number generator, such as spawn points, in part

because (1) independent testing of post training performance was not performed and

(2) the visual reinforcement learning agents appear to assume some form of deep
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reinforcement learning. As will later become apparent, this is a both a strength and

a weakness.



Chapter 3

Tangled Program Graphs and Deep Q-Networks

3.1 Genetic Programming

Genetic programming is a subtype of evolutionary algorithms [16]. Genetic programs

are built using assembly language.

In the book, A Field Guide to Genetic Programming, genetic programming is de-

fined as: “Genetic programming (GP) is an evolutionary computation (EC) technique

that automatically solves problems without requiring the user to know or specify the

form or structure of the solution in advance.” [22], note that “evolutionary com-

putation techniques” are also known as evolutionary algorithms. In this context, a

“program” is a series of assembly instructions. A main idea of genetic programming is

realized through the genetic programming cycle. The genetic programming cycle can

be viewed as a series of steps; Initialization, Evaluation, Selection, and Reproduction.

Figure 3.1 provides a visual flowchart of these steps.

First, during the initialization step, a group of randomly generated programs is

created. This group is called a population, and each program is called an “individ-

ual”. Unlike most machine learning approaches, this means that multiple candidate

solutions are maintained. A competition therefore takes place between the individ-

uals of the population for ‘survival’. As will become apparent, the concept of credit

assignment therefore acts both on individuals and the population as a whole.

Next, each program in the population is evaluated, using a fitness function. A

fitness function is a mathematical equation that quantifies how well an individual

performed at a task. For example, the fitness function for a team in a game of soccer

is, generally, how many times the ball went into the opponent’s net. The result of

the fitness function is known as a score. The score is saved with the individual.

Then, we decide which individuals to keep, and which individuals to delete from

the population, based on their score.

Following selection, we create new individuals, through reproduction. Two types

28
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Figure 3.1: An illustration of the genetic programming cycle.

of reproduction often seen are crossover and mutation. In crossover, two parent

individuals are selected, and parts of each parent program are randomly combined into

a new, child program. In mutation, one parent program is selected, then duplicated

to create a child program. Parts of the child program are then chosen at random,

and those chosen parts are changed at random.

Finally, the cycle begins again by evaluating our new population of programs.

3.2 Team-Based GP

Team-Based GP is a variant on the standard GP structure. First proposed in 1995,

Team-Based GP was based on the idea of a “team” of programs; grouping of in-

dividuals into a team [7]. With the introduction of teams of programs came two

questions:

• How do we fairly distribute a score across all members of a team (credit assign-

ment)?

• Similarly, how do we select programs for use in reproduction, given that their

score may not be representative of that program’s performance?
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To solve the problem of credit assignment, it was proposed that the term “individ-

ual” should refer to a team, rather than a singular program, and that teams would be

treated as individuals within the population. Scores were assigned to a team, instead

of being assigned to a single program. This removed the problem of figuring out how

to distribute a score across all team members [7].

There are two different ways to implement teams; a heterogeneous team and a

homogeneous team. In a heterogeneous team, each member of the team has its own

program. In a homogeneous team, every member of the team has the same program,

as in, a copy of the same program is made for each team member. It was found

that, in a game environment where the player had simultaneous control over several

player characters, homogeneous teams outperformed two sets of heterogeneous teams,

where each set had a different reproduction technique applied [7]. However, it was

later noted that, in regards to homogeneous teams, “...there is nothing to be gained

from the combination of the outputs of completely identical programs” [3]. Much of

the following work focused on the evolution of heterogeneous teams, despite the fact

that heterogeneous teams did not perform as well [7].

The next notable advancement in this area was the idea of deriving a single output

from a team of programs for use in classification and regression tasks. Some combi-

nation techniques proposed included averaging each of a team member’s outputs and

averaging the outputs but with a fitness-based weight value for each team member.

However, it was found that another combination technique, titled “Winner Take All”

(WTA) performed best on both classification and regression tasks with binary output

(0 and 1). In WTA, a singular program is chosen to provide an output for the entire

team, based on the program’s confidence in its prediction. Because of the binary

nature of the possible outputs, it was hypothesized that the closer a program’s out-

put value was to either 0 or 1, the more confident the program was in its prediction

[3]. WTA proved to be the best in an experiment where it was compared against

eight other combination techniques, with a training classification error of 0.02% and

a testing classification error of just 0.33% [3].
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3.2.1 Symbiotic Bid-Based GP

Another incremental improvement to the Team-Based GP framework, which was

later titled “Bid-Based GP” [18], was the conceptualization of “actions”. Actions

were needed in order to perform multi-class classification tasks (as opposed to a

binary classification task or a regression problem). Bid-Based GP implemented both

heterogeneous teams, the WTA combination technique, and actions. In order to

properly define actions, more descriptive terminology was defined with the invention

of Bid-Based GP:

• Learner: A member of a team.

• Bidding: the act of executing a learner’s program.

• Bid: the value produced by executing a learner’s program.

Actions came about because learners needed a way to translate their bid to a non-

numeric value. In the case of a multi-class classification task, that non-numeric value

is class label. At initialization, each learner is assigned a class label as their action.

During evaluation, each learner executes their bid program and produces a bid. The

learner with the highest bid is then allowed to suggest its assigned action. This action

can only be changed through mutation, during the reproduction phase. Bid-Based GP

was tested against three datasets. One dataset had three class labels, the second had

two class labels, and the third had five class labels. Bid-Based GP had an accuracy

rate of over 90% across all three datasets [18]. Bid-Based GP was further improved

upon into a framework called Symbiotic Bid-Based GP (SBB). SBB has been utilized

in several works, against game-playing tasks such as RoboCup Soccer and Rubik’s

cube solving, as well as other classification tasks [8] [9] [17] [18] [19] [5] [20] [6].

3.2.2 Tangled Program Graphs

Tangled Program Graphs was created from the addition of a significant feature to

the Bid-Based GP/SBB framework. A significant addition was made to the set of

suggestable actions; instead of an atomic action, learners are now able to point at

another team. This feature resulted in a framework that was fundamentally different

enough to warrant a new name; Tangled Program Graphs (TPG) [11].
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When a learner wins a bid, instead of returning an (atomic) action, some learners

are able to refer to another team in the population, akin to how a family physician will

refer a patient to a specialist physician when needed. When called upon by a learner,

the newly appointed team executes the bidding process again. If the resulting action

is a reference to yet another team, the process repeats, although cycles are prevented

in the code implementation. This structure naturally lends itself to a graphical visual

representation of teams and learners. Teams are represented by vertices and learners

are represented by edges.

Further terminology was established. A “root team” is defined as a team with an

in-degree of zero. Root teams are now considered individuals within a population, as

opposed to a “regular” team. This is the team where the bidding process begins.

Figure 3.2 shows a visualization of three individuals in a Bid-Based GP context,

while Figure 3.3 shows a visualization of a single individual in a TPG context, where

learners can refer to other teams as their action.

TPG was first tested against the Atari Learning Environment [2], a suite of soft-

ware used to train AIs on Atari video games using reinforcement learning. Their

goal of this experiment was to create multi-task agents; agents that were capable

of playing more than one game. TPG was tested against Centipede, Frostbite, Ms.

Pac-Man, Asteroids, Battle Zone and Zaxxon. The authors theorized that, because

learners could point to another team, “specialist” teams would emerge, teams that

were highly skilled at one task, or one scenario within a task, as well as multi-purpose,

“generalist” teams that are able to recognize when another team would be better

suited to solving the current problem.

3.3 Deep Q-Network

The Deep Q-Network (DQN) appeared in 2015 and represented a milestone in the ap-

plication of reinforcement learning to tasks described using high-dimensional (visual)

state spaces. Prior to DQN each application would need appropriate task specific

features to be designed by a human. DQN made use of a convolution neural network

bottleneck architecture to develop an application specific encoding of the original

state space without the intervention of a human. Competitive performance across a

suite of 49 Atari 2600 game titles was then demonstrated, where competitive implied
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Figure 3.2: Three example individuals in a Bid-Based GP framework.
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Figure 3.3: One example individual in the TPG framework.
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that in 50 percent of the game titles performance of a human player could be reached

(or bettered). Previous research with classical reinforcement learning methods was

unable to reach human levels of performance unless game specific features were first

provided [2].

DQN assumes a Q-learning formulation for a temporal difference error, or

Q(s, a)← Q(s, a) + α[r + γ
′

max
a

Q(s′, a′)−Q(s, a)] (3.1)

where r is the reward received on the transition between sequential states (a to a’ );

Q(s, a) is the value of action a under state s.

The neural network has to provide a Q-value for each action at each state using

its value function properties. However, as recognized by the original authors, several

important caveats preclude a direct implementation of equation 3.1. Specifically, the

correlation between state and therefore Q-values will introduce instabilities into gra-

dient based parameter optimization.1 In order to address this the authors introduced

several innovations, summarized as follows.

• frame skip: agent only experiences every k -th frame with the action choice

repeated over the k frames. The assumption being that there will be little if

any meaningful state change between the intervening frames.

• frame staking: Objects typically move in games whereas the decision making

agent is purely relative. In order to provide the agent with movement informa-

tion, 4 consecutive frames are superimposed to produce a single ‘stacked’ frame.

It is this that DQN receives as the input.

• experience replay: Rather than perform temporal difference on the sequence of

states directly (which are correlated), the learning agent chooses an action for

the current state and then performs weight updating relative to a history of

state (s′, s) and corresponding (a′, r, a) outcomes. DQN is parameterized with

1Correlated state and action in this case is synonymous with performing supervised learning on
a classification dataset that has not been stratified. Credit assignment might be performed relative
to a single class before encountering another. This potentially results in learning agents unable to
label anything other than a single class.
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a history of a million previous states from which only 32 are sampled for Q-

learning. It is unlikely that the 32 samples are correlated given the length of

the history.

• weight caches: Different parameterizations of the neural network weights are

employed for Q(s, a) versus Q(s′, a′). Specifically, Q(s, a) represents the incre-

mentally updated values whereas Q(s′, a′) is retained for C sequential batches

of updates. This represents another mechanism by which the DQN authors

attempt to improve the stability of the weight updating process.

In summary, DQN represent the first of a sequence of deep reinforcement learning

frameworks designed to make use of the convolutional neural bottleneck representa-

tion to address the feature construction challenge in high-dimensional state spaces.

We adopt it in this work as an example of a gradient approach to credit assignment

that is also provided as part of the ViZDoom game engine.

3.4 Summary

TPG will be assumed in this thesis as the one of two learning agents for evaluation

under visual reinforcement learning tasks. Unlike most neural approaches to rein-

forcement learning tasks, TPG experiences tasks episodically. This means that TPG

agents only undergo credit assignment after the episode’s terminal condition is en-

countered. Agents are then ranked relative to other agents from the same population.

TPG agents experience state by developing suitable indexing schemes for identifying

which pixels to explicitly sample state from. Moreover, Team composition is an emer-

gent process in which the topology of individual teams is explicitly unique. In short,

model building is very much a process of organizing programs to identify contexts for

either referencing other teams or choosing a particular action (from a task specific set

of actions). Conversely, neural networks typically assume a fixed topology (designed

by a human) and concentrate on optimizing a set of real-valued weights using some

form of gradient decent.

DQN on the other hand, uses a convolutional neural network with a bottle neck

architecture in order to develop an encoding of the original high-dimensional visual

state space. When combined with a fully connected hidden layer and an output layer
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with as many outputs as actions, then the Q-learning temporal difference method

can be applied. To do so, the DQN authors introduce several other innovations in

order to address the issue of correlated observations that lead to instabilities in weight

optimization.

Both TPG and DQN represent reactive agents, which is to say, they have no capac-

ity for learning how to represent the past.2 They also approach state representation

and credit assignment very differently. For these reasons we assume these as rep-

resentative examples of very different approaches to (visual) reinforcement learning

tasks.

2DQN uses a history of past states for weight updating, but cannot represent past states post
training.



Chapter 4

Empirical Methodology

4.1 Methods for Maximizing TPG Performance

In this thesis, we adopted several optimizations for TPG: Rampant mutation, Action

programs, SmallTPG, Phasic and Score maintenance. The underlying motivation be-

ing to reduce the complexity of TPG solutions as much as possible. These optimiza-

tions where previously evaluated under ViZDoom and simulated robot locomotion

tasks [1].

4.1.1 Rampant Mutation

Rampant mutation has been shown previously to simplify TPG solutions while main-

taining the same level of performance [1]. When using rampant mutation, child teams

are mutated mutationCount times as opposed to the typical single mutation. This

increases greater variability and therefore greater genetic diversity (the degree of neu-

trality in the representation space might of course limit the effectiveness of single and

multiple mutations). Through increasing genetic diversity, we anticipate being able

to decrease the likelihood of one familial line dominating the entire population. This

contributes positively to the development of multiple TPG species, thus decreasing

execution time. Naturally, the concept of diversity pertains to the representations as

opposed to guaranteeing behavioural differences.

4.1.2 Action Programs

Canonical TPG assumed that actions were discrete and assigned randomly at learner

initialization. However, there is no reason why action ‘selection’ cannot also be per-

formed by a program. Thus, a learner is now defined by a bid program, action

program, and optionally a pointer to another team. An “action program” is similar

in structure to a bid program. It is a series of assembly instructions that have access

38
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to a set of program specific registers. We replace singular atomic actions with action

programs. The learner’s action is instead the values in the first A action program

registers, where A is the number of actions. This allows real-valued actions, (such

as moving a certain distance) as well as multiple actions simultaneously, which is

supported in ViZDoom. This means that a single learner is able to produce more

than one action, whereas previously, we needed at least one learner for every possible

atomic action. Action programs were previously shown to contribute significantly to

the simplification of TPG solutions [1].

Operationally, learner evaluation commences as described in Section 3.2.1. Thus,

for state s⃗t a winning learner is first identified following competition between the ‘bid

programs’ from each learner in the same team. Only if the bid program ‘wins’ does

evaluation move on to the corresponding learner’s action program. Such a program is

executed under the same state, resulting in values appearing in the action program’s

registers. For single action selection, the register with the maximum value identifies a

‘winning’ action. Under multi-action selection, a vector of actions is returned (values

in the first A registers), resulting in the simultaneous parameterization of multiple

actions.

4.1.3 SmallTPG

The “default” maximum number of learners per team is 12, with a minimum of 2.1

When using SmallTPG, we limit teams to a maximum of four learners. Champion

teams were anecdotally observed utilizing only a small fraction of their available graph

structures. This is taken to imply that teams fill out with ‘hitchhikers’ that never win

a round of bidding, hence we can save computation time by reducing the maximum

number of learners. This strategy was shown to reduce complexity without sacrificing

performance [1].

4.1.4 Phasic

Phasic implies that the learning process is divided into two phases. During the first

phase, learners are prohibited from evolving a pointer to another team as their action.

1Less than 2 learners per team results in a degenerate team, i.e. only defines one action/action
program for any state.



40

When combined with SmallTPG, the entire solution is limited to four learners. Ap-

plying this constraint on the learning process will force learners to first evolve effective

single team behaviours before pointing at another team. Ideally, after transitioning

to the second phase, during which team pointers are enabled, implies that the only

teams that a learner could possibly link up with are teams that consist solely of other

highly skilled learners. In Table 4.1 “phaseFlip” dictates the number of generations

before which we transition to the second phase of learning.

4.1.5 Score maintenance

In previous implementations of TPG, individuals that survived to the next generation

were able to keep the scores they earned during their birth generation, and were

judged on those scores thereafter. By doing so, computation time was reduced, since

a portion of the population did not need to execute more episodes. However, when a

task is partially observable or non-stationary this might imply that some individuals

simply “got lucky”. Because these individuals had high training scores, they stayed

in the population and continued to propagate their lackluster genes. During testing,

these individuals performed poorly when exposed to more scenarios. For this research,

we removed the speedup and forced individuals to repeatedly compete for their right

to reproduce, with the goal of weeding out lucky individuals while maintaining truly

skilled individuals that are able to demonstrate their skill repeatedly.

4.2 DQN Parameterization

DQN was utilized as a “black box” in this research. The example provided on the

ViZDoom Git repository was used as a base and modified as needed to serve the

correct task, as well as storing data in a familiar fashion. Parameters utilized are

exactly as they appear in the example. 2

4.3 Experimental Design

As previously described, a total of four learning experiments are assumed:

2https://github.com/Farama-Foundation/ViZDoom/blob/master/examples/python/

learning_pytorch.py

https://github.com/Farama-Foundation/ViZDoom/blob/master/examples/python/learning_pytorch.py
https://github.com/Farama-Foundation/ViZDoom/blob/master/examples/python/learning_pytorch.py
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Parameter Value Description
attempts 5 The number of episodes an individual

agent participated in each generation.
iterations 1000 The number of generations to perform.
mutationCount 5 The number of times to run the mutation

method for each individual being mutated.
mutateEvery -1 (not used) Only mutate individuals every

X generations.
actionMode AP Action programs (AP) or atomic actions

(AA).
teamPopSize 120 The number of individuals in the initial

population.
teamGap 50% The percentage of individuals that will be

kept during selection.
probLearnerDelete 70% The probability that a learner will be

deleted during reproduction.
probLearnerAdd 70% The probability that a learner will be

added to a team structure during repro-
duction.

maximumProgramSize 128 The maximum number of instructions al-
lowed in a bid program.

maximumActionProgramSize 128 The maximum number of instructions al-
lowed in an action program.

numberofActionRegisters 7 The number of registers available to an
agent to utilize during the execution of its
action program.

maximumTeamSize 4 The maximum number of learners per
team. (Known as small TPG)

minimumLearnersPerTeam 2 The minimum number of learners per
team.

phaseFlip 500 The number of generations to perform be-
fore “flipping” to the second phase.

Table 4.1: A description of the parameters required by our TPG implementation.
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Testing
Biased Uniform

Train Biased B, B B, U
Uniform U, B U, U

Table 4.2: Common training and Test Treatments for Basic and My Way Home as
used with both TPG and DQN learning agents

1. TPG and DQN trained on Basic (My Way Home) utilizing the original random

number generator.

2. TPG and DQN trained on Basic (My Way Home) utilizing an external, uniform

random number generator.

Following training, we assume eight testing scenarios:

1. TPG and DQN trained on Basic (My Way Home) utilizing the original ran-

dom number generator, tested on Basic (My Way Home) utilizing the original

random number generator.

2. TPG and DQN trained on Basic (My Way Home) utilizing the original ran-

dom number generator, tested on Basic (My Way Home) utilizing an external,

uniform random number generator.

3. TPG and DQN trained on Basic (My Way Home) utilizing an external, uni-

form random number generator, tested on Basic (My Way Home) utilizing the

original random number generator.

4. TPG and DQN trained on Basic (My Way Home) utilizing an external, uni-

form random number generator, tested on Basic (My Way Home) utilizing an

external, uniform random number generator.

This set of scenarios is more succinctly represented in Table 4.2.

4.3.1 TPG and Java

While TPG has a Python implementation, the Java version is the most familiar

implementation. This means that the Java version of ViZDoom is assumed for TPG
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Operating System CPU GPU
Computer 1 Windows 10 Intel i7-3770 NVIDIA GeForce GTX 550 Ti
Computer 2 Windows 10 Intel i7-4790K NVIDIA GeForce GTX 960
Computer 3 Windows 10 Intel i7-2600 NVIDIA GeForce GTX 1070

Table 4.3: A summary of the specifications of the computers utilized in this research.

experiments. In the interest of transparency, the Java version of ViZDoom was retired

and has not been updated since 2020 according to the commit history on the official

ViZDoom Git repository. However, this research began in 2020 and as such, the Java

version continued to be utilized for consistency.

TPG instances were initialized with a population of 120 root teams. Each instance

(of which there were four) lasted for 1,000 generations. Each team was given 5 episodes

of their respective task.

4.3.2 DQN and Python

The Python version of ViZDoom is currently supported and kept up to date.

4.3.3 Hardware and Software Specifications

A total of three computers were utilized for this research. Table 4.3 provides OS,

CPU and GPU specifications. Computer 2 was only utilized to gather data about the

ViZDoom random number generator (Section 2.4). Computer 2 was wiped clean and

loaded with a fresh installation of Windows 10 prior to the aforementioned experi-

ments. ViZDoom was installed via pip as per the instructions on the ViZDoom Git

repository. Comparison data obtained from a Linux operating system was obtained

via an Ubuntu virtual machine on Computer 3.

For the learning and testing experiments, Computer 2 was used for TPG with Java.

Computer 3 was used for DQN with Python. Corresponding versions of ViZDoom

were installed.
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Results

5.1 Measure the impact of spawn biases in ViZDoom

Learning agents in general are sensitive to biases in the environment [15], or “garbage

in, garbage out”. Moreover, learning agents will only experience a finite set of scenar-

ios during training. If those training scenarios are not representative of the underlying

task, then there will be a disconnect between performance of the agent under training

versus that observed under “test”, i.e. the agent fails to generalize to solve the task

as perceived by the user [4].

Our hypothesis is that irrespective of the type of visual reinforcement learning

agent, the ability to solve the underlying objective of the task (generalization) will

be heavily biased by the selection of spawn points. However, as demonstrated in

Section 2.4, selecting Windows versus Ubuntu as the operating system for performing

experiments with ViZDoom will completely change the behaviour of the spawn point.

Thus, a seemingly innocuous and unrelated decision regarding operating system will

have a profound impact on the quality of the resulting learning agents.

In order to investigate this hypothesis we assume two of the task environments

provided in the ViZDoom game engine: Basic and My Way Home. As previously

established (§2.1) we will use two tasks to investigate the impact of spawning biases

in ViZDoom:

• Basic: represents a simple scenario in which the environment consists of a

single rectangular room. The agent is spawned in the centre of one the two

longer walls. A single monster, the “Cacodemon” is spawned at a “random”

location on the opposite wall. The monster is stationary. The player can strafe

left, strafe right, or shoot. The goal of the task is shoot the monster as quickly

and as accurately as possible over an episode of 300 frames. An agent scores

+106 for shooting the monster, -5 for each bullet used and, -1 for each elapsed

44
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frame.

• My Way Home: requires the agent to navigate a multi-room (8 rooms con-

nected by several corridors, total of 17 possible spawn locations) scenario to

locate a green armour pack. The armour is always located in the same room,

but the agent is spawned in a “randomly” chosen spawn point with a “random”

orientation. The agent actions are turn left/ right and move forward. The total

episode length is 2,100 whereas the reward is +1 for finding the armour pack

and -0.0001 for each elapsed time frame.

In both cases we will assume agents that are purely reactive. This will make the

task of navigation particularly difficult. We naturally anticipate agents to be better

at navigating to the armour when they are initialized in rooms closer to the armour.

Further, we would expect a significant learning bias to appear if the agent does not

experience enough diversity in training cases, i.e. due to the broken random number

generator under ViZDoom installations performed on the Windows operating system.

A total of two “treatments” will be performed to reflect the original (biased) ran-

dom number generator versus fixed (uniform) random number generator as applied

during training versus test in Basic and My Way Home (Table 4.2). Moreover, we

consider two entirely unrelated learning agents: tangled program graphs (TPG) and

Deep Q-learning (DQN). As previously introduced, TPG is an emergent approach

to evolving graphs of teams of programs (§3.2.2). Conversely, DQN represents the

first example of (gradient based) reinforcement learning that was based on a deep

convolutional neural network architecture [21]. DQN demonstrated for the first time

that visual reinforcement learning tasks could be solved using video state informa-

tion alone. Since this initial result, DQN has been applied to many other visual

reinforcement learning tasks, including Basic in ViZDoom [27].

Naturally, TPG and DQN have no commonality with regards to representation,

credit assignment or cost function. The only common factor is state and actions that

the agent may assume under each task. As a consequence, any common properties

in the behaviours of the agents to solve under the different treatments must be due

to the configuration of the task, i.e. stochastic properties of the spawned monster

(under “Basic”) and initialization of the agent (under “My Way Home”). This leads
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Trained on Tested on Average High Low Median
Biased Biased 71.751 95 -400 95
Biased Uniform 41.23 95 -405 66
Uniform Biased 78.561 95 -320 95
Uniform Uniform 61.756 95 -340 71

Table 5.1: DQN Basic Testing - 1000 Episodes.

Trained on Tested on Average High Low Median
Biased Biased -42.3793 95.0 -410.0 94.0
Biased Uniform -165.5253 95.0 -410.0 -76.0
Uniform Biased -85.44717 95.0 -410.0 52.0
Uniform Uniform -132.415 95.0 -410.0 -39.0

Table 5.2: TPG Basic Testing - 100 Episodes, top 0.001% of teams

to the assessment of each type of learning agent under training and test conditions

that reflect both treatments, or a total of four experiments, Table 4.2.

In order to select TPG individuals to test, every team, from every generation, from

every run was sorted into a list by their average training score. Then, the top 0.001%

(between 40 and 50) of agents were used for testing. This process was repeated for

teams trained on the biased and uniform versions of My Way Home. TPG agents

were only tested on 100 episodes of each version of My Way Home, while each of the

two DQN agents were tested on 1000 episodes. This decision was made in the interest

of time; testing approximately 100 TPG individuals on 1000 episodes per individual

would simply take too long.

DQN trained on the biased Basic scenario was able to perform on the uniform

scenario, on average, almost equally as well a human player. The human player

average was 65.65 with a mean of 68. DQN trained on the biased scenario had an

Trained on Tested on Average High Low Median
Biased Biased -0.1759584 0.9396 -0.21 -0.21
Biased Uniform -0.0840731 0.9951 -0.21 -0.21
Uniform Biased -0.1720361 0.9351 -0.21 -0.21
Uniform Uniform -0.094625 0.9944 -0.21 -0.21

Table 5.3: DQN My Way Home Testing - 1000 Episodes.
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Trained on Tested on Average High Low Median
Biased Biased 0.579446357 0.9971 -0.21 0.9227
Biased Uniform 0.157993 0.9957 -0.21 -0.21
Uniform Biased 0.183844 0.9977 -0.21 -0.21
Uniform Uniform 0.56109 0.9967 -0.21 0.86729

Table 5.4: TPG My Way Home Testing - 100 Episodes, top 0.001% of teams.

Task Average Median Max Min
Basic 65.65 68 79 52
My Way Home 0.969085 0.97185 0.9895 0.9454

Table 5.5: A summary of scores obtained by a human player. The human player
received 20 episodes of each task, utilizing the uniform random number generator.
The human player was familiar with both tasks, but is not a skillful player of first
person shooter games. The key mapping was also changed from the default provided
with ViZDoom to conform with modern first person shooter standards; forward, left,
backwards, and right movement were mapped to WASD respectively, rather than
the arrow keys. Available actions were not changed (for instance, forward (W) and
backwards (S) were disabled when the human player was being Tested against the
Basic task).

average score of 41.23 and a median score of 66. TPG trained on the biased and

uniform scenarios was not able to perform as well as a human player. However, in

My Way Home, DQN did not perform as well as a human player.

5.2 Basic Results and Discussion

Given the width of the Cacodemon, there are effectively 11 “zones” in which it can

spawn. Each agent was tested on 100 episodes in each zone. The values in Figure

5.1 represent the mean of the 100 episodes. The left side of the figure represents the

left side of the map (which is why the Y-axis values appear reversed). It is evident

that TPG trained on the biased version of Basic is unable to score well on the right

side of the map. Interestingly, DQN trained on the biased version of Basic is able to

score highly on the right side of the map. This suggests that DQN has learned to

truly aim, while TPG has evolved a strategy that works, but, only in the scenario for

which it has been trained.
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Figure 5.1: This figure is a heatmap that relates the scores of each individual to the
location of the monster (“Y-spawn” denotes the Y-coordinate of where the monster
spawned, see Figure 2.2). Lighter colours indicate a higher score for that region. A
topdown view is depicted where the player spawns towards the bottom of the image
and the monster spawns along the top. TPG individuals are differentiated with an
identification number. Simply put, this number denotes the age of the team, as in,
Team 19201 was the 19,201st team created during that particular training execution.
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(a) DQN trained biased. (b) DQN trained uniform.

(c) TPG trained biased. (d) TPG trained uniform.

Figure 5.2: Spawn point 10: The paths taken from spawn point 10 by (a) DQN
trained biased (b) DQN trained uniform (c) TPG trained biased (d) TPG trained
uniform.

5.3 My Way Home Results and Discussion

To better understand and decompose the effect of the random number generator on

training and testing in My Way Home, individuals were tested at each of the spawn

points.

Each agent was given 100 episodes in each of the 17 spawn points on the My Way

Home map. At the start of each episode, the agent was spawned facing a uniformly

distributed random angle. These agents include the five best performers from TPG

trained on the biased scenario, the five best performers from TPG trained on the

uniform scenario, a DQN agent trained on the biased scenario, and a DQN agent
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(a) DQN trained biased. (b) DQN trained uniform.

(c) TPG trained biased. (d) TPG trained uniform.

Figure 5.3: Spawn point 11: The paths taken from spawn point 11 by (a) DQN
trained biased (b) DQN trained uniform (c) TPG trained biased (d) TPG trained
uniform.
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(a) DQN trained biased. (b) DQN trained uniform.

(c) TPG trained biased. (d) TPG trained uniform.

Figure 5.4: Spawn point 12: The paths taken from spawn point 12 by (a) DQN
trained biased (b) DQN trained uniform (c) TPG trained biased (d) TPG trained
uniform.



52

(a) DQN trained biased. (b) DQN trained uniform.

(c) TPG trained biased. (d) TPG trained uniform.

Figure 5.5: Spawn point 13: The paths taken from spawn point 13 by (a) DQN
trained biased (b) DQN trained uniform (c) TPG trained biased (d) TPG trained
uniform.
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(a) DQN trained biased. (b) DQN trained uniform.

(c) TPG trained biased. (d) TPG trained uniform.

Figure 5.6: Spawn point 14: The paths taken from spawn point 14 by (a) DQN
trained biased (b) DQN trained uniform (c) TPG trained biased (d) TPG trained
uniform.
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(a) DQN trained biased. (b) DQN trained uniform.

(c) TPG trained biased. (d) TPG trained uniform.

Figure 5.7: Spawn point 15: The paths taken from spawn point 15 by (a) DQN
trained biased (b) DQN trained uniform (c) TPG trained biased (d) TPG trained
uniform.
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(a) DQN trained biased. (b) DQN trained uniform.

(c) TPG trained biased. (d) TPG trained uniform.

Figure 5.8: Spawn point 16: The paths taken from spawn point 16 by (a) DQN
trained biased (b) DQN trained uniform (c) TPG trained biased (d) TPG trained
uniform.
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(a) DQN trained biased. (b) DQN trained uniform.

(c) TPG trained biased. (d) TPG trained uniform.

Figure 5.9: Spawn point 17: The paths taken from spawn point 17 by (a) DQN
trained biased (b) DQN trained uniform (c) TPG trained biased (d) TPG trained
uniform.
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(a) DQN trained biased. (b) DQN trained uniform.

(c) TPG trained biased. (d) TPG trained uniform.

Figure 5.10: Spawn point 18: The paths taken from spawn point 18 by (a) DQN
trained biased (b) DQN trained uniform (c) TPG trained biased (d) TPG trained
uniform.
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(a) DQN trained biased. (b) DQN trained uniform.

(c) TPG trained biased. (d) TPG trained uniform.

Figure 5.11: Spawn point 19: The paths taken from spawn point 19 by (a) DQN
trained biased (b) DQN trained uniform (c) TPG trained biased (d) TPG trained
uniform.
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(a) DQN trained biased. (b) DQN trained uniform.

(c) TPG trained biased. (d) TPG trained uniform.

Figure 5.12: Spawn point 20: The paths taken from spawn point 20 by (a) DQN
trained biased (b) DQN trained uniform (c) TPG trained biased (d) TPG trained
uniform.
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(a) DQN trained biased. (b) DQN trained uniform.

(c) TPG trained biased. (d) TPG trained uniform.

Figure 5.13: Spawn point 21: The paths taken from spawn point 21 by (a) DQN
trained biased (b) DQN trained uniform (c) TPG trained biased (d) TPG trained
uniform.
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(a) DQN trained biased. (b) DQN trained uniform.

(c) TPG trained biased. (d) TPG trained uniform.

Figure 5.14: Spawn point 22: The paths taken from spawn point 22 by (a) DQN
trained biased (b) DQN trained uniform (c) TPG trained biased (d) TPG trained
uniform.
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(a) DQN trained biased. (b) DQN trained uniform.

(c) TPG trained biased. (d) TPG trained uniform.

Figure 5.15: Spawn point 23: The paths taken from spawn point 23 by (a) DQN
trained biased (b) DQN trained uniform (c) TPG trained biased (d) TPG trained
uniform.
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(a) DQN trained biased. (b) DQN trained uniform.

(c) TPG trained biased. (d) TPG trained uniform.

Figure 5.16: Spawn point 24: The paths taken from spawn point 24 by (a) DQN
trained biased (b) DQN trained uniform (c) TPG trained biased (d) TPG trained
uniform.
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(a) DQN trained biased. (b) DQN trained uniform.

(c) TPG trained biased. (d) TPG trained uniform.

Figure 5.17: Spawn point 25: The paths taken from spawn point 25 by (a) DQN
trained biased (b) DQN trained uniform (c) TPG trained biased (d) TPG trained
uniform.
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(a) DQN trained biased. (b) DQN trained uniform.

(c) TPG trained biased. (d) TPG trained uniform.

Figure 5.18: Spawn point 26: The paths taken from spawn point 26 by (a) DQN
trained biased (b) DQN trained uniform (c) TPG trained biased (d) TPG trained
uniform.
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trained on the uniform scenario. The x-y coordinate of every agent, every frame, over

every episode, was recorded. Example paths can be seen in Figure 5.2 to Figure 5.18

on a room by room basis for both DQN and TPG champion agents. The area that

contains the spawn point is highlighted in a pale yellow colour. The armour pack is

marked with a solid green circle. 1

It is important to note that, following the example provided in the ViZDoom

documentation on GitHub, DQN models were trained with a frame skip of 12 2. In

ViZDoom, a “frame skip” is when an agent receives state information, sends an action,

and that action is repeated for a number of frames equal to the frame skip. Its purpose

is to decrease the number of frames an agent has to process, thus speeding up learning.

However, in testing, it was found that using a frame skip lead to visualizations of paths

that were not coherent. In order to capture the x-y position of the agent every frame,

the frame skip (post training) was set to 0, and the sending of actions and processing

of frames was handled manually; i.e. the DQN agent perceives state every 12 frames

in order to operate optimally, but information is collected every frame to record paths

more coherently. Every 12 frames, the agent was given the game state information,

and its action was then sent to the game engine for the next 12 frames. This resulted

in visualizations with discernible paths. Paths are temporally represented with a

gradient between red and blue, indicating the start and end of a path, respectively. 3

TPG has a clearly evident policy that relies on bouncing off of walls. DQN has

a policy that resembles meandering until line-of sight appears with the armour, after

which a direct path is taken.

In order to discuss the paths and policies displayed by the different agents, consider

spawn point 15. This point is furthest from the armour pack. Look at our champion

agent from TPG trained on the biased scenario, we have Figure 5.7(c). This agent

1The map image background used in Figures 5.2 through 5.18 was traced directly from the map
file included with the My Way Home WAD file. However, the walls in ZDoom have a hitbox that is
not directly viewable in the map file. This is why it appears that the agents never collide with the
wall; they are colliding with the wall’s hit box.

2A frame skip of 12 was likely selected for the example provided with the ViZDoom documentation
on GitHub because of the results found in the paper ViZDoom: A Doom-based AI Research Platform
for Visual Reinforcement Learning [14]. Their results, summarized in Figure 7 of their work, show
that a frame skip between 10 and 20 is optimal.

3A frame skip of 12 was likely selected for the example provided with the ViZDoom documentation
on GitHub because of the results found in the paper ViZDoom: A Doom-based AI Research Platform
for Visual Reinforcement Learning [14]. Their results, summarized in Figure 7 of their work, show
that a frame skip between 10 and 20 is optimal.
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visits nearly every room, seemingly every episode. Despite rarely spawning at this

point, the agent still manages to reach the armour pack 45 times out of 100 episodes.

Spawning at a random point with a uniform distribution during training clearly

gives agents a better idea of their goal and allows them to develop a more generalist

policy. Team 38985 reached the armour pack 96 times out of 100 episodes from spawn

point 15. The path team 38985 took from spawn point 15 to the armour pack are

seen in Figure 5.7(d).

The DQN agent trained on the biased scenario reached the armour pack 0 times

out of 100 episodes. Its paths are dense and erratic, shown in Figure 5.7(a).

The DQN agent trained on the uniform scenario reached the armour pack 1 time

out of 100 episodes. Similar to the DQN agent trained on the biased scenario, this

agent also wandered erratically, seemingly lost. These paths are visible in Figure

5.7(b).

Figures 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16,

5.17, and 5.18 illustrate the paths taken by all four agents from each different spawn

point. From this collection of figures, it is evident that all four agents have little

variation in their decision making from spawn point to spawn point. Patterns are

largely the same. Both TPG agents seem to have developed a “one size fits most”

policy. We hypothesize that this is a result of evolutionary computation maximizing

the average returns over multiple episodes during training. Conversely, DQN is par-

ticularly greedy in its reward function, with rooms enabling direct visual “sight” of

the goal state resulting in success. For the Basic task, a greedy reward formulation

is optimal, but not under My Way Home. This topic is discussed further in Section

5.3.1.

To better understand the pathfinding policies of different agents, a brief exper-

iment was performed where agents were spawned in a 1024x1024 room. The room

featured the same ceiling and floor texture as the My Way Home map, and the same

texture on the walls as the corridor sections in the My Way Home map. However,

no goal was spawned. Figure 5.19 exemplifies what the agent “sees” in this custom-

made scenario. Agents were spawned in the centre of the room, facing a uniformly

distributed random direction. Episodes concluded after 1000 tics, and agents were

tested on 100 episodes. The X-Y coordinate of each agent was recorded every tic.
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This allows us to better visualize each agent’s pathfinding policy. This is illustrated

in Figures 5.20, 5.21, 5.22, and 5.23. As in earlier path visualizations, the gradient

from red to blue represents the start and end of a path, respectively. It is now appar-

ent that the TPG agent has a more structured approach to room investigation when

the armour is not observed (most of the time). A circular orbiting policy appears in

which the underlying goal appears to be to:

1. Follow a slow continuous arc from the spawn location until a room wall is

encountered.

2. Orient itself to be parallel to the wall.

3. Commence another continuous arc leading away from the wall.

The final wall arc appears to either be of one of two types, shallow or tight

(biased spawn points, Figure 5.20) or always shallow (unbiased spawn points, Figure

5.21). Conversely, DQN without a visual cue demonstrates a meandering behaviour

throughout (Figures 5.22 and 5.23).

The empty room experiment utilized the corridor wall texture, as seen in Figure

5.19. However, to better visualize policies in different rooms, more empty rooms

were created. Each room has a different texture on the wall that corresponds with a

texture on the My Way Home map. For clarity, the results of these additional room

experiments have been overlaid on an image of the My Way Home map.

The resulting paths seen in Figure 5.24 demonstrate that Team 29199 reacts some-

what similarly to each wall texture it is faced with. The agent walks in circles, but

the radius of the circle changes depending on which wall texture it is presented with.

When looking at the wall from spawn points 10, 13, 17 and 20, the agent walks in

smaller circles than it does when it sees walls from the remaining spawn points.

In contrast, the TPG agent that was trained on the uniform version of My Way

Home has very similar policies when faced with different wall textures, with one large

exception: spawn point 24. There is an obvious discrepancy between how this agent

acts when facing the wall texture from spawn point 24. In short, the TPG agent

adopts a much more direct trajectory when responding to this wall texture. Figure

5.35 shows that this agent has a consistent and direct “plan” when it encounters this

wall texture in the context of the entire map. It is accustomed to approaching this
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Figure 5.19: The player’s point of view in the empty room experiment.
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Figure 5.20: The paths taken in an empty room by TPG Team 29199; trained on
the biased version of My Way Home.
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Figure 5.21: The paths taken in an empty room by TPG Team 38985; trained on
the uniform version of My Way Home.
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Figure 5.22: The paths taken in an empty room by the DQN agent that was trained
on the biased version of My Way Home.
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Figure 5.23: The paths taken in an empty room the DQN agents that was trained
on the uniform version of My Way Home.



74

Figure 5.24: TPG Trained Biased: The paths taken when spawned in the centre of
an empty room with the corresponding wall texture to the spawn point on the map.
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Figure 5.25: TPG Trained Uniform: The paths taken when spawned in the centre of
an empty room with the corresponding wall texture to the spawn point on the map.
Note that the ending points (blue) at spawn point 24 have been emphasized in post
for visibility.

wall texture while travelling in the 1.0 (“east”) direction. Hence, when in an empty

room with the spawn point 24 wall texture, it heads directly towards the wall because

it believes it is travelling “east”.

5.3.1 Discrepancy in DQN and TPG Performance

DQN’s shortcomings in the My Way Home task scenario are likely due to its greedy

credit assignment. As stated in Section 2.1.1, 0.0001 points are removed per elapsed

tic in My Way Home, with a 1 point reward for finding the armour pack. Given that

DQN makes adjustments with every incremental reward, until the armour pack is

found, every action simply leads to a worsening score. Compare Figures 5.12(a) and

5.12(b) to Figures 5.13(a), 5.13(b), 5.14(a), 5.14(b), 5.15(a), 5.15(b), 5.16(a), 5.16(b),
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Figure 5.26: A violin plot depicting the frequency of scores achieved at each spawn
point in the My Way Home task by the DQN trained on the biased version of My
Way Home.

5.17(a), 5.17(b), 5.18(a), and 5.18(b). Regardless of the scenario a DQN agent was

trained on, there is a clearly visible difference in the density of paths approaching the

armour pack. Both DQN agents perform best when they are close to the armour.

In contrast, TPG takes a more holistic approach to credit assignment. Reward has

no effect until after every individual in the TPG population has completed all of their

training episodes. This rewards TPG agents for maximizing the average returns across

entire episodes, all incremental rewards are ignored. DQN on the other hand, adopts

a Q-value approach to accumulating rewards. Simply put, policies are developed

that optimize reward accumulation between pairs of agent actions (hence also the

significance of proper parameterization for frame skipping). When visual line of sight

is established to the armour, particularly effective polices appear. When the armour

is not present, it is more difficult to discover useful intervening objectives.4

Figures 5.26, 5.27, 5.28, and 5.29 depict violin plots illustrating the distribution

of scores achieved by our four agents while being tested at each different spawn point.

The horizontal blue line marks (x = 0) and the horizontal green line marks (y = 0.79).

0.79 is the minimum score achievable while still being successful (0−(0.0001∗2100)+

1 = 0.79). -0.21 is the lowest possible score, indicating that the player was not able

to find the armour pack before its time expired. The highest score possible depends

on the spawn point, since spawn points further from the armour pack will obviously

require more travel time.

4Other gradient approaches can be effective, but more sophisticated credit assignment formula-
tions are also necessary.
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Figure 5.27: A violin plot depicting the frequency of scores achieved at each spawn
point in the My Way Home task by the DQN trained on the uniform version of My
Way Home.

Figure 5.28: A violin plot depicting the frequency of scores achieved at each spawn
point in the My Way Home task by TPG Team 29199, which was trained on the
biased version of My Way Home.

Figure 5.29: A violin plot depicting the frequency of scores achieved at each spawn
point in the My Way Home task by TPG Team 38985, which was trained on the
uniform version of My Way Home.
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Figure 5.30: A plot depicting the number of times the armour pack was reached
from each spawn point in the My Way Home task by the DQN trained on the biased
version of My Way Home.

Figure 5.31: A plot depicting the number of times the armour pack was reached
from each spawn point in the My Way Home task by the DQN trained on the uniform
version of My Way Home.

Figure 5.32: A plot depicting the number of times the armour pack was reached from
each spawn point in the My Way Home task by TPG Team 29199, which was trained
on the biased version of My Way Home.
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Figure 5.33: A plot depicting the number of times the armour pack was reached
from each spawn point in the My Way Home task by TPG Team 38985, which was
trained on the uniform version of My Way Home.

Figures 5.30, 5.31, 5.32, and 5.33 allow us to compare and contrast how often an

agent was able to reach the armour pack from each room. This is a binary (yes/no)

function of measuring performance compared to examining the scores of each agent;

in other words, was the agent able to complete its given task? Each agent was given

100 episodes at each spawn point, where they spawned facing a uniformly distributed

random angle. Scores were still tracked, but these figures only depict the number

of times they were successful in reaching the armour. In Figure 5.30, it is evident

that the DQN agent trained with the biased RNG is able to reach the armour from

spawn point 24, spawn point 25, and spawn point 26 roughly half the time. This

is much better than its performance from other spawn points. The discrepancy in

performance is due to the bias in how this DQN agent was trained. The DQN agent

was most frequently spawned at spawn point 24 and therefore learned best how to

navigate to the armour from spawn point 24. As seen in Figure 2.3, in order to reach

the armour from spawn point 24, one has to navigate through spawn point 25 and

spawn point 26. Referring to Figure 5.16(a), it is clear that, while this agent sees

some success from this spawn point, it still frequently wanders off to parts of the map

that it rarely saw during training. Subsequently, the agent gets “lost” and is unable

to find its way. Unlike the DQN agent that was trained on the biased version of the

Basic task, this agent is unable to extrapolate the information it needs to find its way

back to the armour pack.

The performance of the DQN agent trained on the uniform version of My Way



80

Home does not show much improvement. However, we cannot attribute its perfor-

mance to not having been exposed to all of the spawn points equally. The spawn

points were selected randomly with a uniform distribution, so the agent had the op-

portunity to develop a more holistic policy. As discussed earlier, the greedy nature

of DQN’s weight adjustment method is a likely culprit. To reiterate, DQN adjusts

itself based on the current frame’s reward. In My Way Home, a positive reward is

only given upon reaching the armour; each frame gives a negative score to penalize

sluggishness. As such, DQN likely “focuses” its efforts on spawn points that are close

to the armour pack because it sees a positive reward sooner from those spawn points.

Looking at the TPG agent trained on the biased version of My Way Home, we

can see that, like both DQN agents, it gets better as it gets closer to the armour. In

contrast with the DQN agents, this TPG agent is able to reach the armour roughly

half the time, or more, from every spawn point, with the exception of spawn point 10.

This is an interesting result because the TPG agent saw spawn point 24 a severely

disproportionate number of times during training. Despite training with a disadvan-

tage, the agent was still able to develop a policy that allows it to see success relatively

frequently. Figure 5.20 allows us to see this policy in action, unobstructed by walls.

Its policy appears to rely on using the intersection with a wall as a guide to angle

itself in a particular direction, where it then navigates in a circular pattern until it

collides with another wall.

Interestingly, the TPG agent that was trained on the uniform version of My Way

Home struggles with the complement of the set of spawn points that TPG team 29199

excels at. Figure 5.34 provides a visualization of where TPG team 38985 is skilled

and where it is not. Spawn points 11, 20, 22, and 17 make up “the cross”, (due to

the cross shape made by the negative space). The cross is where team 38985 starts to

struggle. By no means does it perform poorly when spawning in this area, but there

is a marked decline seen in Figure 5.33 from earlier spawn points. There is another

plummet in performance starting at spawn point 23. Team 38985 gets worse as it

gets closer to the armour. This trend is interesting because the player has to navigate

through spawn points 23, 24, 25 and 26 in order to reach the armour from any other

spawn point on the map. Why is it not able to recognize where it is when spawning

at those points?
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Figure 5.34: The My Way Home map with portions highlighted to illustrate where
TPG team 38985 is successful and where it struggles. Areas highlighted in green are
the spawn points where this individual was able to score highly, while areas in red
show spawn points where this team scored relatively poorly.



82

Figure 5.35: An aggregation of the end of paths taken from each spawn point by
Team 38985.

One possible explanation is that the agent knows how to navigate the area high-

lighted in orange in Figure 5.34 when it approaches from one angle, but not every

angle. To better visualize the evidence that supports this theory, the rightmost por-

tion of all 17 path images has been compiled into a single image, Figure 5.35.

Team 38985 has clearly developed a policy where it is expecting to approach spawn

point 24 from the bottom of the corridor that contains spawn point 23. Because Team

38985 saw each spawn point uniformly during training, we can assume that it needed

to traverse through spawn point 23 in roughly 76% of the training scenarios it saw.

As such, it developed a policy that is very good at traversing through spawn point

23, but that policy is not as effective in the minority of cases where it starts in or

after spawn point 23.

5.3.2 TPG Agent Complexity

When examining TPG solution, there are certain properties we can examine to further

quantify the emergent process by which solutions are evolved. Continuing with the

two TPG individuals we have been analyzing, team 29199, trained on the biased

version of My Way Home, and team 38985, trained on the uniform version of My

Way Home.
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Team ID Division Product Sum Difference Conditional Total
29199 107 156 68 86 88 505
38985 288 189 215 174 105 971

Table 5.6: Bid Programs: Comparison of frequency of instruction types in the bid
programs of our TPG champion teams.

Team ID Division Product Sum Difference Conditional Total
29199 112 76 80 84 40 392
38985 53 53 62 58 54 280

Table 5.7: Action Programs: Comparison of frequency of instruction types in the
action programs of our TPG champion teams.

In Tables 5.6 and 5.7, we see an interesting discrepancy in the overall quantity

of instructions contained within each individual. Team 29199 has overall fewer bid

instructions, but more action instructions.

Figures 5.36 and 5.37 depict the visual representation of how a root team (green)

relate to learners (blue) and non-root teams (orange). Both of these structures are

noticeably smaller than solutions seen in previous research.

Team ID Visual Buffer Local Registers
29199 164 341
38985 365 606

Table 5.8: Bid Programs: Comparison of input sources in bid programs from the
TPG champion teams.
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Team ID Visual Buffer Local Registers
29199 116 276
38985 64 216

Table 5.9: Action Programs: Comparison of input sources in action programs from
the TPG champion teams.

Figure 5.36: A visualization of the learner-team structure that comprises team 29199.
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Figure 5.37: A visualization of the learner-team structure that comprises team 38985.



Chapter 6

Conclusion

Visual reinforcement learning problems are characterized by high dimensional state

spaces that are typically composed from pixels alone. This places a lot of emphasis on

the ability of a reinforcement learning framework to develop appropriate ‘embeddings’

(the deep learning approach) or perform feature construction using subsets of the

feature space (the tangled program graph approach). Moreover, the DQN approach

to credit assignment is based on the Q-learning formulation of temporal difference.

This implies that optimal policies may result when the Markov assumption holds

(complete information). Conversely, TPG may only perform credit assignment after

the terminal state is encountered (episodic accumulation of average returns). We

hypothesize that this will result in rather different learning biases when the agents

are exposed to visual reinforcement learning tasks with different properties.

Given the above background, this thesis evaluates DQN and TPG on two tasks

from the ViZDoom game engine that were chosen to exhibit complete information

(Basic) versus partial information (My Way Home). We are interested in identifying

to what degree DQN and TPG are able to develop effective solutions to each task.

As part of this study, we also uncovered operating systems specific biases in the

ViZDoom game engine itself. Specifically, under the Windows operating system, the

(pseudo) uniform random number generator for agent spawn point generation appears

to instead be a normal random number generator. This implies that most of the time

the opponent ‘monster’ in Basic is initialized to the left of the agent. Under the My

Way Home task the agent tends to be initialized in the top right hand side room of the

labyrinth. Conversely under the Linux operating system the ViZDoom game engine

does initialize spawn points using a uniform random number generator. Furthermore,

we proposed an effective workaround for replacing spawn point values with value from

an external uniform random generator. In this thesis we benchmark each learning

algorithm under both tasks with both the VizDoom random number generator and

86
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an external random number generator, resulting in four environments in total.

Under the Basic task DQN identified a strategy that was considerably more effec-

tive than that identified by TPG. Moreover, the DQN strategy was less sensitive to

the biased initialization of monsters. At some level this was anticipated given that the

Basic task is defined in terms of complete information. The Q-learning formulation

of DQN in combination with the known effectiveness of a convolutional deep neural

network architecture has been repeatedly shown to be particular effective under these

conditions. TPG on the other hand performed considerably worse on the Basic task.

Moreover, TPG was much more sensitive to the biased versus uniform sampling of

monster spawn states. We attribute this difference to the requirement for TPG to

learn how to index the state space in such a way that monsters could be detected

across the width of the visual frame. In the past TPG has been able to achieve this,

but only under training curricula that exposed TPG to the wide range of monster

start states for long enough to develop suitable indexing schemes [23].

In the case of the partially observable My Way Home labyrinth navigation task,

TPG was considerably more effective than DQN. Some of this we attribute to dif-

ferences in the approach to credit assignment. TPG ranks candidate solutions in

proportion to overall episodic performance whereas DQN attempts to develop a pol-

icy through maximizing the pairwise temporal difference in Q values. As such, with

the goal (terminal) state ‘in sight’ DQN will be very effective at moving the agent to

the goal. However, without any direct view to the goal state, DQN will at best find

a policy for avoiding the most negative immediate rewards; whereas under the My

Way Home task rewards are sparse, making it difficult for DQN to develop a general

approach to labyrinth navigation. Conversely, TPG sparsely indexes state, forming a

policy that defines navigation as a set of arcs that interact with the labyrinth in such

a way that systematic movement between rooms is possible. Moreover, for the most

part infinite cycles between the same rooms are also avoided. This points to on the

one hand to the capacity of TPG to compose strategies using symbolic expressions

based on a low number of pixels. On this other hand this reflects strategy discovery

for which a modular decomposition of the task is particularly appropriate. Finally,

this also reflects the bias of TPG towards accumulation of reward maximization over

an entire episode as opposed to greedy goal directed policy discovery.
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Future research could expand both the set of ViZDoom tasks evaluated and the

types of deep reinforcement learning algorithm employed. Examples might include

asynchronous advantage actor-critic (A3C) and/or Trust Region Policy Optimization

methods; both of which have demonstrated improved performance over the original

DQN approach to deep reinforcement learning. Other future work could include

an examination of the impact of the wall textures on agent performance in the My

Way Home task. To what degree are these reactive agents dependent on unique wall

textures? What happens if we replace the wall texture with something they have

never encountered before (such as a purely white or black wall), or replace all of

the wall textures with a texture that exists in the current map? Additional future

work may measure the importance of map geometry: will changing the width and or

height of each section of the My Way Home map impact the reactive agents? This

may provide insight as to how purely reactive these agents are, or if they have simply

developed a “script”, so to speak, that is effective at solving the maze.
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