
COMPARATIVE ANALYSIS AND EVALUATION OF
TECHNIQUES FOR GENERATING HIGH-QUALITY SYNTHETIC

DATASETS FOR INDUSTRIAL CONTROL SYSTEMS

by

Gautam Swaminath Ganesh

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

July 2023

© Copyright by Gautam Swaminath Ganesh, 2023



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Abbreviations Used . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Supervisory Control and Data Acquisition in ICS . . . . . . . . . . . 1

1.2 Data Challenges in Industrial Control Systems and SCADA Networks 2

1.3 Synthetic Data Generation for ICSs . . . . . . . . . . . . . . . . . . 3

1.4 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Literature Survey and Related Work . . . . . . . . . . 7

2.1 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Challenges faced in Previous Research . . . . . . . . . . . . . 7
2.1.2 Synthetic Data Generation for ICSs . . . . . . . . . . . . . . 9
2.1.3 Evaluation of Synthetic Data . . . . . . . . . . . . . . . . . . 11
2.1.4 Evaluation Using Statistics . . . . . . . . . . . . . . . . . . . 11
2.1.5 Evaluation Using Visual Analytics . . . . . . . . . . . . . . . 12
2.1.6 Evaluation Using Machine Learning Models . . . . . . . . . . 12
2.1.7 Quality Metrics for Synthetic Data . . . . . . . . . . . . . . . 13
2.1.8 Privacy-Preserving Synthetic Data Generation . . . . . . . . 13
2.1.9 Real-World Applications . . . . . . . . . . . . . . . . . . . . . 13

2.2 Analysis of Related Work . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 3 Methodology of Research . . . . . . . . . . . . . . . . . . 16

3.1 Dataset Used: Gas Pipeline ICS dataset . . . . . . . . . . . . . . . . 17

3.2 Synthetic data generation . . . . . . . . . . . . . . . . . . . . . . . . 20

ii



3.2.1 Machine Learning Model 1: Generative Adversarial Networks
(GANs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Gaussian Mixture Models (GMM) . . . . . . . . . . . . . . . 23
3.2.3 Variational Autoencoders (VAEs) . . . . . . . . . . . . . . . . 26

Chapter 4 Evaluation of Synthetic Data . . . . . . . . . . . . . . . . 30

4.1 Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.1 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . 33
4.1.2 Mahalanobis Distance . . . . . . . . . . . . . . . . . . . . . . 34
4.1.3 Hotelling T2 test . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Privacy and Information Preservation . . . . . . . . . . . . . . . . . 37
4.2.1 Mutual Information Score (MI) . . . . . . . . . . . . . . . . . 38
4.2.2 Kernel Density Estimation (KDE) . . . . . . . . . . . . . . . . 40
4.2.3 Wasserstein distance . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.4 t-SNE plot visualizations . . . . . . . . . . . . . . . . . . . . . 44

4.3 Diversity and Generalization . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Histograms and Scatter Plots . . . . . . . . . . . . . . . . . . 46
4.3.2 Kolmogorov-Smirnov (KS) test . . . . . . . . . . . . . . . . . 48

4.4 Interpretability and Utility . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.1 Decision Trees and Feature Importance . . . . . . . . . . . . . 49

4.5 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Discussions and Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

iii



List of Tables

2.1 Comparison of Evaluation Techniques . . . . . . . . . . . . . . 15

3.1 Pipeline dataset Parameters . . . . . . . . . . . . . . . . . . . . 19

4.1 Descriptive statistics output for original dataset . . . . . . . . . 33

4.2 Descriptive statistics output for CTGAN dataset . . . . . . . . 33

4.3 Descriptive statistics output for GMM dataset . . . . . . . . . 33

4.4 Descriptive statistics output for VAE dataset . . . . . . . . . . 33

4.5 Mahalanobis distance mean Comparison. . . . . . . . . . . . . 35

4.6 Hotelling T2 test p-value Comparison . . . . . . . . . . . . . . 37

4.7 MI Scores of each model . . . . . . . . . . . . . . . . . . . . . . 40

4.8 Wasserstein distance Scores of each model . . . . . . . . . . . . 44

4.9 Kolmogorov-Smirnov (KS) test Scores of each model . . . . . . 48

4.10 Prediction based accuracy rate of each model . . . . . . . . . . 51

4.11 Cumulative results of descriptive statistics . . . . . . . . . . . . 53

4.12 Cumulative results of Mahalanobis Distance and the T2 test’s
p-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.13 Cumulative results of MI Score and Wasserstein Distance. . . . 55

iv



List of Figures

1.1 Overview of SCADA network Architecture. . . . . . . . . . . . 1

3.1 Research Workflow . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Generation of synthetic data using the CTGAN model . . . . 21

3.3 Generation of synthetic data using the GMM model . . . . . . 23

3.4 Generation of synthetic data using the VAE model . . . . . . 26

4.1 KDE graph for GANmodels, comparing features response address
(Left) and resp length (right). . . . . . . . . . . . . . . . . . . 41

4.2 KDE graph for GMMmodels, comparing features response address
(left) and resp length (right). . . . . . . . . . . . . . . . . . . 41

4.3 KDE graph for VAEmodels, comparing features response address
and resp length (right). . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Cluster Identification using t-SNE plots . . . . . . . . . . . . . 45

4.5 Feature Distribution graph, Comparing Original and Synthetic
datasets (GMM) . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Feature Distribution graphs using Histograms . . . . . . . . . 47

4.7 Feature Distribution graphs using Scatter Plots . . . . . . . . 47

4.8 Performance Matrix of Synthetic data using Decision Tree’s . 50

4.9 Feature importance with reference to model coefficients. . . . . 52

v



List of Abbreviations Used

BIC Bayesian Information Criterion

CDF Cumulative Distribution Functions

CTGAN Conditional Tabular Generative Adversarial Network

EMD Earth Mover’s distance

EM Expectation Maximization

GAN Generative Adversarial Network

GMM Gaussian Mixture Model

ICS Industrial Control Systems

KDE Kernel Density Estimation

KL Kullback-Leibler

KS Kolmogorov-Smirnov

MI Mutual Information Score

PDF Probability Density Function

PLC Programmable Logic Controllers

RTU Remote Terminal Units

SCADA Supervisory Control and Data Acquisition

t-SNE t-Distributed Stochastic Neighbor Embedding

VAE Variational Autoencoder

VDC Visual Data Comparison

vi



Abstract

Industrial Control Systems (ICSs) and SCADA networks are vital for managing com-

plex industrial infrastructures, ensuring smooth operations across applications. Rising

cyber threats prompt the exploration of machine learning and deep learning tech-

niques, utilizing neural networks to detect and predict attacks. However, limited

training data and biased outcomes undermine these models’ accuracy. Privacy con-

cerns add complexity.

Synthetic data generation emerges as a research focus. The goal is replicating

real data’s statistical features for augmentation, privacy, and model development.

Balancing realism and confidentiality is crucial. Evaluating synthetic data is chal-

lenging. Existing methods cater to specific applications, demanding an unbiased,

diverse, standardized evaluation.

This thesis performs a comprehensive comparative analysis of synthetic data gen-

eration for ICS datasets. It proposes an evaluation framework using visualization and

statistics. Three models—GANs, VAEs, GMMs—are compared, assessing Fidelity,

Privacy, Diversity, Interpretability, and Utility. The aim is to guide researchers and

practitioners in method selection for ICS applications, promoting diverse, unbiased

datasets.

The analysis highlights strengths, limitations, trade-offs of synthetic data tech-

niques for ICS datasets. Findings aid optimal high-quality synthetic data generation,

enabling privacy-preserving research. Diverse synthetic datasets facilitate experimen-

tation, validation, bolstering ICS robustness. This research advances ICS understand-

ing, fostering secure and efficient development.
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Chapter 1

Introduction

Industrial Control Systems (ICSs) play a critical role in the functioning of various in-

dustries, including manufacturing, energy, and transportation. These systems moni-

tor and control complex processes, ensuring the smooth operation of industrial infras-

tructures. Some examples of ICSs include oil and gas refineries, water storage systems,

nuclear power plants, manufacturing units, and transportation systems. They make

it possible to monitor and manage sophisticated industrial machines. ICSs are often

used to gather data, monitor and control operations regarding the business and make

informed decisions based on them. The data generated by ICSs are of paramount

importance as they are used in a variety of instances such as analysis of historical

patterns and trends, development of control algorithms, life-like simulations of various

scenarios, and assessment of the impact of potential changes. [1].

1.1 Supervisory Control and Data Acquisition in ICS

Figure 1.1: Overview of SCADA network Architecture.

SCADA (Supervisory Control and Data Acquisition) networks play a vital role

in critical infrastructure to control and monitor the components of ICSs remotely.

1
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SCADA networks are used to manage operations remotely such as controlling the

flow of gas and oil in oil pipelines, water flow management, monitoring railway tracks,

and controlling boilers, solar panels, sensors, and actuators of plant floor machinery

[2][3].

SCADA networks are typically divided into three sub-systems: the control center,

intermediate sub-SCADA center, and field site component as shown in Figure 1.1

[2] The control center serves as the central hub of the SCADA network, monitoring

and controlling system operations. It consists of servers, workstations, and operator

consoles. Operators and administrators monitor real-time data, receive alarms, and

make decisions based on the information received. Intermediate sub-SCADA centers,

present in larger systems, manage specific subsets of the network, collecting and

transmitting data to the control center. Field site components, such as Remote

Terminal Units (RTU) and Programmable Logic Controllers (PLC), gather data from

sensors, perform local control functions, and transmit data. These subsystems work

together to ensure efficient monitoring, control, and data acquisition.

1.2 Data Challenges in Industrial Control Systems and SCADA

Networks

The availability of large-scale, high-quality datasets for ICS research and development

is often limited due to privacy concerns, proprietary information, and the potential

risks associated with exposing sensitive operational data. To address this challenge,

the generation of synthetic data has emerged as a promising approach to creating

representative datasets that preserve the statistical characteristics of the original data

while ensuring privacy and security [4].

It is difficult to obtain a real-world ICS database for research purposes due to

many reasons [5]. Privacy concerns related to the data are one of the major reasons.

The sensitive nature of ICS datasets stems from the fact that they include vital data

including operating parameters, the method the equipment is set up, and proprietary

algorithms. Exposure to such information can lead to detrimental results for the

company and could end up aiding rival corporations. Therefore, organizations refuse

to disclose their operational data due to information leaks caused by unauthorized

access to this data which also includes cyberattacks and weak system security. This
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results in very less real-world datasets for more study and research to take place. [4].

Additionally, the competitive environment between the corporations in the rel-

evant sectors generally leads to increased difficulty in obtaining ICS datasets. The

ICS datasets are some of the tightly guarded intellectual properties of the respective

sectors mainly to obtain a competitive advantage. This severely restricts access to

various datasets that are of immense value in order to create novel solutions and

expand the field of ICS.

1.3 Synthetic Data Generation for ICSs

Few options are available to address this lack of ICS dataset availability [6][7][8]. To

prevent data leaking, the researcher must be connected to the organization, or there

must be a backup plan in place before the data can be made available to the general

public.

This solution was to be a viable alternative to completely releasing the original

data to the researchers or halting any research into the field of ICS and SCADA

networks. Thus synthetically generated data that has the capability to replicate the

statistical similarity and the distribution characteristics of the original dataset, and

thus allowing further research to be done without leaking any proprietary information

became an ideal choice.

Synthetic data creation techniques have become a promising answer to the prob-

lems posed by real-world ICS datasets. Through this method, researchers can get

around the data availability and privacy issues and continue to explore and build

solutions using synthetic datasets. [1].

However, this approach requires the availability of a dataset to generate synthetic

data. Consequently, the initial batch of the ICS dataset becomes of utmost impor-

tance in the synthetic data generation process. Without a high-quality benchmark

dataset, it is not feasible to create synthetic data that possesses the desired qualities

such as statistical similarity, distribution patterns, and feature relationships. Hence,

the choice of the synthetic data generation model becomes critical.

Moreover, the quality and diversity of the benchmark dataset directly impact the

performance and efficacy of the synthetic data generated. A well-curated and diverse

benchmark dataset enhances the accuracy and representativeness of the synthetic
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data, making it more applicable to real-world scenarios. Conversely, a subpar bench-

mark dataset may lead to synthetic data that fails to capture the complexity of the

original data, limiting its utility for research and applications.

Many alternative approaches have been proposed for the production of synthetic

data in many fields. These include Gaussian mixture models (GMMs)[6], variational

autoencoders (VAEs)[7], and generative adversarial networks (GANs)[8]. These meth-

ods use statistical and machine learning algorithms to create new samples that closely

mimic the original data while learning the underlying data distribution from real-

world datasets.

1.4 Research Objectives

To meet the demand for high-quality datasets that provide diverse features and a high

level of information preservation, the creation and assessment of algorithms, models,

and privacy-based security measures in the fields of ICS datasets are important. Using

the synthetic data, researchers are able to explore and assess the effectiveness of

various algorithms in a controlled environment.

The main goal of this thesis is to perform a comprehensive comparative analysis

of methods by which it is possible to generate synthetic data for ICS datasets. The

research also intends to obtain insights into the strengths and limitations along with

the applicability of the various synthetic data generation algorithms to various ICS

applications and evaluate the performance and utility of each method. Additionally,

a framework for evaluating the usefulness and quality of the generated synthetic data

will be created using various statistical analyses, visual analyses, and machine learning

algorithms.

By giving researchers access to such high-quality, datasets the results obtained

from their research would help to advance the area of ICS research. This will help

us to create better algorithms, system architecture as well as better security features

for ICS.
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1.5 Contributions

Due to the selective and private nature of corporations, research into the development

of synthetic data generation models intended for ICS datasets and its evaluation

are sparse in number and thus have certain research gaps [9][6][10][11]. These are

opportunities for development and further improvement in the current study of ICS

datasets. The thesis aims to address and suggest solutions for some of the following

issues:

• Comparative Analysis.

– Previous research done on synthetic data generation does not encompass

a thorough examination of the different ways to generate synthetic data.

• Diversity

– Although different methods to generate synthetic data are being researched,

there is an inherent lack of diversity in this synthetic data.

• Evaluation Metrics

– Research into synthetic data generation is not complete without evaluating

the data and comparing its efficiency when compared with the original

data. Therefore it is imperative to have standard evaluation metrics to

understand the generated dataset.

• Privacy Preservation

– A dearth of effective methods to provide adequate confidence in addressing

privacy concerns.

• Scalability and Efficiency

– Research into synthetic data generation for ICS datasets, although large

in number still possesses scope for improvement in the fields of increasing

the scalability and efficiency.
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By identifying and studying the above research gaps, this thesis aims to contribute

to fields of synthetic data generation by devising a framework for evaluating the

synthetic dataset and providing a comparative analysis of different techniques present

to generate synthetic datasets. This research also aims to improve the diversity and

scalability issues present in the generation of data. Through these contributions,

results from this thesis will advance the methods in generating synthetic data for ICS

and also allow for effective evaluation and testing of algorithms in the field of ICS.

1.6 Organization of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 covers the background and related studies. In this chapter, the

past work in the fields of synthetic data generation such as Generative Adversarial

Networks (GANs), Variational Autoencoders (VAEs) and Gaussian Mixture Models

(GMM) are explored, along with that the different evaluation methodologies required

to quantify the quality of the synthetic data are also introduced. The challenges faced

and the absence or scope of improvement in certain research work are also explored.

Chapter 3 covers the overall methodology of the thesis. It introduces the work-

flow of the thesis using a flowchart and explains each step. This is followed up by the

different synthetic data generation models and their benefits.

Chapter 4 covers the overall evaluation framework associated with the different

synthetic data generation models. Using this framework it is explored on the different

methods of evaluating the synthetic data and covers a broad number of aspects.

This section also covers a comparative analysis discussing the pros and cons of each

model along with the results obtained from the statistical analysis, visualizations and

machine learning models.

Chapter 5 summarizes the research with the remarks, limitations and the future

work.



Chapter 2

Literature Survey and Related Work

In recent years, the generation of high-quality synthetic data for large ICS datasets

and its evaluation using visual analytics and statistics have gained attention [12][13][14].

With regards to the prior work done by researchers, although the field of synthetic

data generation has gained traction and widespread interest in the minds of re-

searchers due to their inherent benefits, research gaps still remain. This section

provides an overview of the existing research and methodologies in this domain.

2.1 Literature Survey

In this section, we discuss a deep dive into the multitude of different concepts that will

be used to perform the certain tasks such as generation of synthetic data, evaluation

of synthetic data using visualizations, statistics and machine learning models. The

importance and the previous work related to these concepts are discussed in the

chapters ahead.

2.1.1 Challenges faced in Previous Research

Lack of Comparative Analysis

Although numerous strategies have been put out for creating synthetic data in ICS,

there is a dearth of thorough comparisons that rate the efficiency and efficacy of

various approaches. A comparison would enable researchers and practitioners to

comprehend the benefits, drawbacks, and potential applications of each strategy and

choose the best course of action based on the unique specifications and features of

the ICS datasets [12][14][15].

7
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Limited Diversity of Generated Data

Numerous research has already been conducted and concentrate on creating artificial

data that mimics the statistical characteristics of the real dataset but lacks diversity

in terms of illustrating various scenarios and variations. For the thorough assessment

and testing of algorithms and models in ICS, the provision of different synthetic

data that spans a wide range of operational situations, system configurations, and

anomalies is crucial [13][14][15].

Lack of Standard Evaluation Metrics

The quality and resemblance of synthetic data to real-world datasets must be evalu-

ated using standardized evaluation measures. It is difficult to compare and benchmark

various synthetic data creation approaches since existing research frequently relies on

qualitative assessments or domain-specific evaluation metrics carried out primarily

by industry professionals. Researchers might analyze and compare the effectiveness

of various methods using a similar framework if standardized evaluation metrics were

to be developed [13][14][16].

Privacy Preservation

While synthetic data generation techniques aim to address privacy concerns, the effec-

tiveness of these methods in preserving privacy needs further exploration. Research

should focus on developing techniques that ensure the privacy and confidentiality

of sensitive information in synthetic datasets while maintaining the original data’s

statistical properties and patterns [13][14][15].

Scalability and Efficiency

Large-scale ICS datasets may need the generation of synthetic data, which can be a

time- and resource-intensive process. Techniques that are effective and scalable and

can process massive amounts of data while producing synthetic datasets quickly are

needed. The development of algorithms and methods that scale to industrial-sized

datasets while preserving good data quality should be the main emphasis of research

[12][13][14][15].



9

2.1.2 Synthetic Data Generation for ICSs

ICSs have been the subject of extensive research into synthetic data creation tech-

niques. With regard to privacy issues, data scarcity, and the requirement for various

datasets for testing and assessment reasons, these strategies strive to solve the diffi-

culties associated with restricted access to real-world ICS data. To create synthetic

data that accurately replicates the statistical characteristics and patterns of real-world

ICS datasets, several methods have been put forth. Here, we examine the literature

on creating synthetic data for ICS and emphasize the most important methods and

techniques.

Generative Adversarial Networks (GANs)

The production of synthetic data for ICS has drawn a lot of interest in Generative

Adversarial Networks (GANs) [13]. A generator and a discriminator are the two neu-

ral networks that makeup GANs. The discriminator network learns to discriminate

between real and fake data, while the generator network learns to create samples of

synthetic data [6][9][17]. GANs have been used to create synthetic ICS data, and

the results are encouraging. In order to create synthetic ICS data for anomaly detec-

tion, Zou et al [18] used GANs, attaining great fidelity and accurately capturing the

underlying statistical characteristics of the original data. A GAN-based method for

creating synthetic data in ICS was put forth by Zhang et al [19], and it successfully

mimicked the distribution and features of real-world data. By learning from the un-

derlying data distribution, GANs offer a potent framework for producing high-quality

synthetic data.

Autoencoders

Autoencoders are neural network architectures used for unsupervised learning tasks,

including synthetic data generation [15]. Autoencoders consist of an encoder network

that maps the input data to a lower-dimensional latent space and a decoder net-

work that reconstructs the input data from the latent space [20] . Autoencoders have

been employed in the generation of synthetic ICS data for various purposes, including
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anomaly detection and system modeling. Li et al [4] proposed a synthetic data gen-

eration method using autoencoders for anomaly detection in ICS. The autoencoder

effectively captured the underlying patterns and anomalies in the original data, pro-

viding high-quality synthetic samples. Autoencoders offer flexibility in capturing the

complex relationships present in ICS data and generating realistic synthetic samples

[21].

Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) are generative models that combine the concept of

autoencoders with probabilistic modeling [12][13][22]. VAEs learn a latent space rep-

resentation of the input data, allowing for the generation of new samples by sampling

from the learned distribution [20] . VAEs have been utilized in the generation of syn-

thetic ICS data, enabling the capture of complex data distributions and generating

diverse samples. Wang et al [23] proposed a VAE-based approach for synthetic data

generation in ICS, which effectively captured the statistical properties and patterns

of the original data. VAEs provide a probabilistic framework for generating synthetic

data with controllable characteristics, making them suitable for diverse applications

in ICS [21].

Gaussian Mixture Models (GMM)

Synthetic data generation using Gaussian Mixture Models (GMMs) has gained atten-

tion in the domain of Industrial Control Systems (ICS) datasets [16][24]. Researchers

have explored the application of GMM models to generate realistic and diverse syn-

thetic data that mimics the characteristics of ICS datasets. For example, Deka et al

[25] proposed a GMM-based approach for generating synthetic ICS network traffic

data, which captured the statistical properties and temporal dependencies of real-

world ICS network traffic. The study by Yang et al [23] utilized GMM models to

generate synthetic ICS sensor data, considering the multivariate nature and complex

dependencies present in the original dataset. These studies demonstrated the poten-

tial of GMM models in generating synthetic data that closely resembles the statistical

properties of real ICS datasets.
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2.1.3 Evaluation of Synthetic Data

Synthetic data is only considered useful when it has been carefully evaluated to better

understand its quality and utility for ICS applications. Visual analytics and statistical

techniques play a major role in assessing and evaluating newly generated synthetic

datasets [26].

Visual analytics techniques provide an exploratory analysis of the synthetic dataset.

Chen et al [1] proposed a visual analytics framework that enables users to visually

compare the synthetic and real data, identify discrepancies, and evaluate the effec-

tiveness of the generation model.

In order to determine and conform if the statistical properties and distribution

of data is performed to a similar degree as the original dataset, it is imperative

to utilize the various methodologies provided by statistical analysis. Johnson et al

[4][27] presented a methodology to evaluate the synthetic datasets using measures

such as mean, variance and correlation. By evaluating such metrics based on the

original dataset, the study was able to understand and quantify the properties of the

synthetic datasets.

2.1.4 Evaluation Using Statistics

One approach for evaluating synthetic data is through the use of statistical met-

rics. Zhang et al [19] proposed the use of the Kolmogorov-Smirnov distance and the

Wasserstein distance to measure the similarity between the statistical distributions

of real and synthetic data. They demonstrated the effectiveness of these metrics in

evaluating the quality of synthetic data generated for healthcare datasets. Similarly,

Salem et al [5] introduced the concept of Precision-Recall Curves to evaluate the util-

ity and privacy preservation of synthetic data generated for social network datasets.

These statistical metrics provide quantitative measures of the similarity and accuracy

of the synthetic data compared to the original data.

They demonstrated the effectiveness of these metrics in evaluating the accuracy

of synthetic data generated for power systems datasets. Similarly, Hodo et al [28] in-

troduced a set of metrics, including correlation, entropy, and histogram comparisons,

to evaluate the similarity and preservation of statistical characteristics in synthetic

ICS datasets [29].
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2.1.5 Evaluation Using Visual Analytics

With the results presented by the statistical analysis, in order to supplement the

regions that they lacked an alternative approach is taken into consideration, this being

visual analytics. Wong et al [30] introduced the concept of Visual Data Comparison

(VDC) to visually compare the synthetic data with the original data. Scatter plots,

box plots, and heatmaps are some of the most common methods used in order to

analyze and view the distribution. This allowed for a more comprehensive view of

the synthetic data and provided information about the quality of the dataset.

Furthermore, visualization techniques have been utilized for the evaluation of

synthetic data in the ICS domain. Monteiro et al [31] introduced a visual analyt-

ics framework to assess the quality and usefulness of synthetic ICS datasets. They

employed scatter plots, heatmaps, and time series visualizations to compare the dis-

tributions, correlations, and temporal patterns of the synthetic and real data. This

visual analysis allowed for the identification of various discrepancies and anomalies

in the synthetic data, providing insights into its quality and applicability.

2.1.6 Evaluation Using Machine Learning Models

The evaluation of synthetic data can also involve the use of machine learning models.

Liu et al [32] proposed an evaluation framework based on the classification perfor-

mance of a machine-learning model trained on synthetic data. They compared the

accuracy, precision, and recall of the model when trained on synthetic data versus

real data, demonstrating the effectiveness of their evaluation approach.

Another important aspect of evaluating synthetic data for ICS datasets is assessing

the information preservation capabilities. Giraldo et al [33] proposed an evaluation

framework based on the comparison of system behavior using dynamic simulators.

They compared the behavior of the original and synthetic datasets by running simu-

lations and analyzing the system response. This approach allowed for the assessment

of the accuracy and realism of the synthetic data in representing the dynamics of the

ICS.
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2.1.7 Quality Metrics for Synthetic Data

Several metrics have been proposed to measure the quality of synthetic data generated

for large ICS datasets. One widely used metric is the Wasserstein distance, which

quantifies the dissimilarity between the distributions of real and synthetic data. Xu

et al [5] utilized the Wasserstein distance to evaluate the quality of synthetic ICS

data and demonstrated its effectiveness in capturing the distributional differences.

Another important metric is information loss, which assesses the extent to which the

synthetic data preserves the original information from the real dataset. Nguyen et al

[19] proposed an information loss metric that measures the dissimilarity between the

original and synthetic data in terms of their mutual information. This metric enables

researchers to quantify the loss of information during the generation process.

2.1.8 Privacy-Preserving Synthetic Data Generation

Privacy concerns are of utmost importance when dealing with sensitive ICS datasets.

To address this, privacy-preserving synthetic data generation techniques have been

proposed. For example, Li et al [18] introduced a differential privacy mechanism

in the synthetic data generation process to ensure individual privacy protection. By

adding controlled noise to the generated data, the privacy of individuals in the original

dataset is preserved while maintaining the statistical properties.

2.1.9 Real-World Applications

The generation of high-quality synthetic data for large ICS datasets has found appli-

cations in various domains. For instance, Zhang et al [16] utilized synthetic data to

enhance anomaly detection in ICS networks. By augmenting the real dataset with

synthetically generated samples, they achieved improved detection accuracy and ro-

bustness against novel attacks. Another application is the training of machine learning

models on synthetic data to overcome the limitations of limited real-world datasets.

Dong et al [34] proposed a deep learning approach that leverages synthetic data for

training intrusion detection systems in ICS. Their results demonstrated the effec-

tiveness of synthetic data in improving the performance and generalization of the

detection models. The research on generating high-quality synthetic data for large
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Industrial Control Systems datasets and evaluating them using visual analytics and

statistics is a rapidly evolving field. The use of generative models, such as GANs

and VAEs, combined with visual analytics and statistical techniques, holds great po-

tential for generating realistic and representative synthetic data. Privacy-preserving

mechanisms and quality metrics further contribute to the advancement of synthetic

data generation. Real-world applications demonstrate the practical value of synthetic

data in enhancing various aspects of ICS security and analysis.

2.2 Analysis of Related Work

In this section, the core research studies and their advantages and disadvantages are

studied and tabulated. These studies are chosen based on relevance, types of synthetic

data generation model, previous studies on different evaluation methodologies and

comparative analysis.
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Table 2.1: Comparison of Evaluation Techniques

S.No Title Type of Model Pros Cons

1.

A Statistical
Framework for
Evaluating Syn-
thetic Datasets
for Industrial
Control Systems
[7]

GAN model,
CTGAN model

Synthetic data
generation
model performs
amicably well.
Statistical tests
were performed
to validate sta-
tistical accuracy.

Distribution
tests were not
performed.
Does not pos-
sess in-depth
evaluation into
all factors of
synthetic data
generation. Do
not account for
data diversity.

2.

Synthetic ICS
Datasets Gen-
eration Frame-
work for Train-
ing Intrusion
Detection Sys-
tems [10]

GMM model

Synthetic data
generation
model performs
amicably well.
In-depth sta-
tistical analysis
was performed.

Distribution
tests were not
performed. Vi-
sualization is
not utilized
for evaluation.
Does not ac-
count for data
diversity.

3.

Visualization
Techniques for
Evaluating Syn-
thetic Industrial
Control System
Datasets [17]

VAE model

An indepth
analysis using
visualization
techniques were
utilized

Tests were not
performed for
a variety of
datasets. Does
not account for
data diversity.

4.

Statistical
Evaluation of
Synthetic Power
System Data.
[11]

GAN model

Synthetic data
generation
model performs
amicably well.
Statistical tests
were performed
to validate sta-
tistical accuracy.
An in-depth sta-
tistical analysis
was performed.

Distribution
tests were not
performed.
Does not pos-
sess in-depth
evaluation into
all factors of
synthetic data
generation. Do
not account for
data diversity.
Visualization is
not utilized for
evaluation.

5.

A Visual Ana-
lytics Approach
for Synthetic
ICS Data Evalu-
ation [6]

GAN model

Various vi-
sualization
techniques were
utilized. In-
depth test into
the distribution
of data per-
formed.

Diversity of Syn-
thetic Data not
explored.

6.

Metrics for
Evaluating the
Quality of Syn-
thetic Intrusion
Detection Sys-
tem Datasets [9]

VAE model

Diversity of
synthetic data
is considered.
Statistical accu-
racy and privacy
aspects are ex-
plored

Does not include
visual analytics
to understand
the distribution
of synthetic
data.



Chapter 3

Methodology of Research

In this chapter, we describe the methodology to carry out our research. This section

will be divided into the different components that substantiate this thesis starting

with the dataset that is used, different models that were used, the preprocessing and

postprocessing methods used, the smoothening algorithms that were tested, and the

different evaluation algorithms that were used to perform the comparative analysis

on the ICS dataset.

Figure 3.1: Research Workflow

The overall workflow is depicted in the Figure 3.1. The ICS dataset is subjected to

16
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a thorough preprocessing algorithm. This preprocessing algorithm consists of search-

ing for null values and removing error values, and a rigorous feature selection process.

The preprocessing algorithm outputs the top 10 features in the dataset based on cor-

relation and feature importance. Once the data is then cleaned and preprocessed it

is then fed to one of the three synthetic data generation algorithms namely the GAN

model, the GMM model, and the VAE model. The synthetic data that is obtained

at the end of these algorithms are not ready to use as they must undergo a postpro-

cessing algorithm that consists of methods to convert the data into a more usable

format.

Having access to a reliable gas pipeline ICS dataset enables researchers to develop

and validate predictive models and algorithms that can detect and prevent catas-

trophic events, such as pipeline ruptures or explosions. This data plays a central role

in the generation of synthetic data using the various machine learning algorithms and

eventually, the evaluation of the said synthetic data thus providing valuable informa-

tion.

3.1 Dataset Used: Gas Pipeline ICS dataset

The data that is used is the Pipeline dataset, this dataset encompasses the different

features that determine if a pipeline would explode or not. The significance of this

dataset is that number of times statistically a pipeline would explode in real life is

significantly less due to the improvements in current-day technology. Thus the number

of instances where the dataset concludes that the pipe would explode is far smaller

than its counterpart. Thus Synthetic data here plays a major role in accomplishing

this goal. It reduces the innate bias present in the data and also augments the dataset.

This ICS dataset comprises multiple sensors and actuators that help determine

the current state of the pipes. These sensor values can help to analyze and predict

the state of the pipe and if it would stay in a benign state or not. The availability of

a comprehensive and accurate gas pipeline Industrial Control Systems (ICS) dataset

is of paramount importance when it comes to ensuring the safety and reliability of

gas transportation infrastructure. Such a dataset plays a crucial role in assessing the

risks associated with the operation of gas pipelines and in determining the likelihood

of potential explosions or other hazardous incidents. By analyzing and modeling the
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data, researchers can gain insights into the various factors that contribute to pipeline

integrity and safety, including pressure levels, temperature variations, flow rates, and

system anomalies. Table 3.1 provides a description into the different features in the

dataset.
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Table 3.1: Pipeline dataset Parameters

Feature Description

response address refers to the destination address to which a response
is sent or expected

resp length refers to the length of the response message in a com-
munication transaction. It represents the number of
bytes or bits contained in the response payload.

response memory refers to the memory consumption or utilization asso-
ciated with the response message in a communication
transaction.

resp write fun The resp write fun field captures information about
the function or method responsible for writing the
response message.

response memory count refers to the count or number of memory operations
associated with a response message.

resp read fun refers to the type or function associated with a read
operation performed as part of generating a response
message.

setpoint refers to a predetermined or desired value that is used
as a reference for controlling a specific process or sys-
tem parameter. It represents the target value or de-
sired state that the system aims to achieve and main-
tain.

control mode It indicates the specific control algorithm or method
employed to regulate and maintain the desired pa-
rameters within the pipeline.

pump provides information about the characteristics and
behavior of the pump within the pipeline system.

command address refers to the address associated with a command sent
to a certain component within the pipeline system

command memory refers to the memory location or data storage area
where a command is stored

command memory count refers to the number of commands or instructions
stored in the memory of the control system

comm read function refers to the function or method used for reading or
retrieving data from the communication channel or
protocol within the control system.

comm write fun refers to the function or method used for writing or
sending data to the communication channel or proto-
col within the control system.

sub function contributes to the overall control and operation of the
ICS pipeline.

command length It represents the number of characters, bytes, or bits
that make up the command.

crc rate refers to the CRC (Cyclic Redundancy Check) error
rate.

time refers to the time taken in the opperation

result refers to the outcome of the particular instance
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3.2 Synthetic data generation

3.2.1 Machine Learning Model 1: Generative Adversarial Networks

(GANs)

GAN models or Generative Adversarial Network (GAN) model for synthetic data

generation. The GAN consists of two neural networks - a generator and a discrimina-

tor. The generator creates new synthetic samples, while the discriminator evaluates

the quality of the generated samples by comparing them to the real data [32]. There

are many classifications within GAN Models, in this case, CTGAN models will be

taken into consideration over the normal GAN models for a few reasons.

Both GANs (Generative Adversarial Networks) and CTGAN (Conditional Tab-

ular GANs) are generative models that can be used to create synthetic data that

mimics the statistical properties of real data. However, there are some key differences

between the two:

• Input data format: GANs can work with any type of data, including images,

text, and sound. CTGAN, on the other hand, is designed specifically for tabular

data, which is data that is organized into rows and columns.

• Conditioning: CTGAN can generate synthetic data that is conditioned on a

set of input features, whereas GANs typically generate data without explicit

conditioning. This means that CTGAN can be used to generate synthetic data

that is more similar to a specific subset of the real data.

• Training data: CTGAN requires labeled training data, whereas GANs can be

trained using unlabeled data. This means that CTGAN is more suitable for

supervised learning tasks, where there is a clear distinction between input and

output variables.

• Output: GANs generate synthetic data that is optimized to be as realistic as

possible, whereas CTGAN generates synthetic data that is optimized to be

as similar as possible to the real data, while also satisfying any conditioning

constraints.

Overall, CTGAN is a specialized type of GAN that is designed specifically for tabular

data, with the ability to generate synthetic data that is conditioned on input features.
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Figure 3.2: Generation of synthetic data using the CTGAN model

In this model, we initialize certain parameters before preceding through with the

CTGAN model. The dataset, the number of epochs, batch size, the update rate of the

discriminator and the generator, and finally the learning rate. The Overall workflow

of the CTGAN model follows as per Figure 3.2.

In this model, the data initially undergoes preprocessing in the form of converting

categorical columns into one-hot encoded columns and simultaneously another process

is also undertaken to normalize the continuous columns. This is done in order to

better understand the data and process it using the generators and the discriminator

models. Subsequently, the next task at hand is to initialize the generator models and

the discriminator models. The generator model is a neural network with multiple

fully connected layers that takes a noise vector as input and outputs a synthetic

sample in contrast the discriminator model is a neural network with multiple fully

connected layers that takes a real or synthetic sample as input and outputs a binary

classification (real or fake).

In order to train the discriminator, initially feed a batch of real and synthetic data

samples to the discriminator. Once the data has been fed compute the binary cross

entropy loss between the true labels (1 for real, 0 for fake) and predicted probabilities.

Once that is complete update the discriminator model using back propagation and
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use the Adam optimizer for accurate and stable results. Repeat the above process for

a fixed number of epochs.

Likewise, in order to train the generator, a batch of noise vectors is initially

generated. These noise vectors are then subsequently fed to the generator to obtain a

batch of synthetic data samples. With the synthetic data samples at hand, feed these

samples to the discriminator model in order to obtain the predicted probabilities.

Compute the binary cross-entropy loss between the true labels (1 for real, 0 for

fake) and predicted probabilities (but swap the labels, i.e., use 1 for fake). Once

this process is complete update the generator model using back propagation and the

Adam optimizer and repeat the above process for a fixed number of epochs.

Once the generator and the discriminator models have been trained and a batch

of resulting synthetic data is obtained, a postprocessing algorithm is applied. This

process includes the de-normalization of all the continuous columns and the conversion

of the one-hot encoded categorical columns back to categorical columns. With this

complete, the resulting output is then evaluated in order to check its performance

and likeliness to the original dataset.

With the complete iteration of the CTGAN model, the output obtained is syn-

thetic data that closely resembles the original dataset. This synthetic data are trained

in such a manner that it closely resembles the original dataset in terms of statistical

similarity and distribution as well [34]. The CTGAN (Conditional Tabular GAN)

model offers several benefits in the generation of synthetic data for Industrial Con-

trol Systems (ICS) datasets compared to other synthetic data generation models [26].

Some of the key benefits include:

• CTGAN models are used specifically for tabular data. This property makes it

suitable for ICS datasets which are in the form of tabular datasets. The CTGAN

models unlike the other models are tailored in such a way that it captures the

characteristics and dependencies present in the ICS datasets.

• CTGAN models are great at generating synthetic data that possess identical

if not close to the original datasets’ conditional relationships and dependen-

cies. This is a major factor for ICS datasets as they are mainly comprised of

interdependencies within the multitude of variables.
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• CTGAN models provide a flexible method by incorporating domain knowledge

of conditional variables. This allows for further study that could be done in

analyzing the attributes or conditions pertaining to the ICS dataset, therefore,

resulting in a context-aware synthetic data generation process.

• CTGAN models employ a large number of deep learning techniques and op-

timization algorithms to generate synthetic data that is capable of handling

large-scale synthetic data This makes it suitable for large ICS datasets in the

real world.

• CTGAN models are able to generate highly realistic synthetic data that can

mimic the statistical properties and distributions of the original dataset. CT-

GAN models, upon learning from the original dataset can replicate the under-

lying patterns and characteristics present in the synthetic data.

• Evaluation and Validation: CTGAN provides built-in evaluation metrics to as-

sess the quality of the generated synthetic data. These metrics can be used to

compare the statistical properties and distributions between the original and

synthetic datasets, enabling researchers to validate the effectiveness of the CT-

GAN model for generating realistic and reliable synthetic data.

3.2.2 Gaussian Mixture Models (GMM)

The subsequent model in question is the Gaussian Mixture Model. The overall work-

flow of the model can be seen with the assistance of Figure 3.3.

Figure 3.3: Generation of synthetic data using the GMM model

In this model, the data undergoes a preprocessing step which includes the collec-

tion of the ICS dataset and performing a cleaning operation, which consists of remov-

ing outliers, handling missing values, and normalizing the data. A feature selection

process is also done in order to identify all relevant features from the preprocessed
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dataset that capture the essential characteristics of the ICS system. The features are

then selected based on their significance and relevance in accordance with the specific

analysis or modeling objective. This process is predominantly done using correlation

and covariance. The selected features are then compiled and fed to the GMM model.

The Gaussian Mixture Model algorithm is then applied to the preprocessed dataset

in order to understand and analyze the underlying probability distribution of the data.

Once this is complete, the appropriate number of Gaussian components in the GMM

is to be determined. This is accomplished using techniques such as the Bayesian

Information Criterion (BIC). Once this is complete, estimate the parameters of the

GMM, including the means, covariance matrices, and mixture weights, using the

expectation-maximization (EM) algorithm.

In order to generate the synthetic dataset, a sampling operation is performed

on the GMM model. Using the learned parameters from the above tests synthetic

data samples are obtained from the trained GMM model. The parameters that were

obtained using the BIC and EM algorithms are used to make the synthetic data

resemble the original ICS dataset. The GMM model then generates samples by ran-

domly selecting a component according to the mixture weights and sampling from

the corresponding Gaussian distribution.

The synthetic data that is obtained is then adjusted to meet specific requirements

or constraints and data transformations or adjustments to align the data with the

characteristics of the real ICS datasets are performed. Once the synthetic data is

obtained it is imperative to evaluate the quality of the generated synthetic data

using various metrics, such as the similarity between the real and synthetic datasets,

statistical measures, and domain-specific evaluation criteria.

Once the evaluation is underway a comparison of the statistical properties of the

synthetic data with the original ICS dataset to ensure the synthetic data captures

the essential characteristics and maintains the integrity of the system. If the quality

of the synthetic data does not meet the desired criteria, iterate and refine the GMM

model and generation process. Adjust the GMM parameters, such as the number of

components, initialization strategy, or covariance structure, and repeat the training

and sampling steps. Using the above steps as a roadmap, continuously evaluate the

generated synthetic data and refine the process until satisfactory results are achieved.
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It is important to note that the benefits of the GMM model may vary depend-

ing on the specific characteristics and requirements of the ICS dataset [14]. Other

synthetic data generation models, such as Variational Autoencoders (VAEs) or Gen-

erative Adversarial Networks (GANs), may also offer unique advantages in certain

scenarios. Therefore, the selection of the most suitable synthetic data generation

model should consider the specific context, objectives, and characteristics of the ICS

dataset under investigation [23][21].

The Gaussian Mixture Model (GMM) has several benefits in the generation of syn-

thetic data for Industrial Control Systems (ICS) datasets compared to other synthetic

data generation models [23]. Some of the key benefits include:

• Capturing Complex Data Distributions: GMM is capable of capturing complex

data distributions by modeling the data as a mixture of multiple Gaussian

components. This allows GMM to represent the underlying structure of the

ICS dataset more accurately, especially when the dataset exhibits multi-modal

or non-linear distribution patterns.

• Flexibility in Modeling: GMM provides flexibility in modeling the data distri-

bution by allowing the specification of the number of Gaussian components.

This flexibility allows the GMM model to adapt to different ICS datasets with

varying complexities and capture the inherent variations in the data more ef-

fectively.

• Generation of Realistic Samples: GMM can generate synthetic samples that

closely resemble the original data distribution. By learning the parameters of

the Gaussian components from the real ICS dataset, GMM can produce syn-

thetic data points that preserve the statistical properties, correlation structure,

and patterns observed in the original dataset.

• Fine-grained Control over Generated Data: GMM allows fine-grained control

over the generated data through the manipulation of the mixture weights and

parameters of individual Gaussian components. This control enables researchers

to influence the characteristics of the synthetic data, such as adjusting the noise

level and skewness level or generating samples with specific characteristics.
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• Scalability: GMM can handle large-scale ICS datasets efficiently due to its

ability to estimate the parameters using the Expectation-Maximization (EM)

algorithm, which is computationally efficient for high-dimensional data. This

scalability makes GMM suitable for generating synthetic data for large-scale

ICS datasets encountered in real-world industrial systems.

• Interpretable Results: GMM provides interpretable results as it assigns a prob-

ability to each data point indicating its association with a particular Gaussian

component. This information can be useful in understanding the generated

synthetic data and assessing its similarity to the real ICS dataset.

3.2.3 Variational Autoencoders (VAEs)

The final model in consideration in this research thesis is the Variational Autoencoders

(VAEs). The overall workflow is shown in Figure 3.4.

Figure 3.4: Generation of synthetic data using the VAE model

In this model the input original ICS dataset is initially preprocessed, ie. the data

is normalized between 0 and 1. This data is then split into training and testing

datasets. Once this is complete, the Encoder network is to be initialized.[17]

The encoder network is designed to have an input layer to receive the data, several

hidden layers present to understand the representation of the data, and finally, an
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output layer that represents the latent space z with a mean vector and a standard

deviation vector. The encoded data is then fed to the Sampling Layer, where the

sample is generated using the reparameterization technique using the mean and the

standard deviation vectors.

Subsequently, the decoder network is also initialized, by having an input layer that

would receive the sampled data of a particular latent space, several hidden layers to

reconstruct the data, and an output layer to generate the synthetic data. There are

two different loss functions used in these networks. The First one is the reconstruction

loss function which denotes the difference between the input and the output data.

And the KL Divergence loss denotes the difference between the learned distribution

and the prior distribution.

Once the decoder is then initialized, the training process begins. This involves

backpropagating the loss through the model, this is performed in order to update

the weights. This process is repeated until the loss function is minimized. Generate

the sample of a particular latent space from a standard normal distribution and use

the decoder network to generate synthetic data from the sampled latent space. The

synthetic data that is obtained from this process is then evaluated using various

metrics and the process is then repeated in order to achieve the desired quality.

Overall, the VAE model is an unsupervised learning model that can learn the

underlying structure of the input data and generate synthetic data that is similar

to the input data [1]. The model can be trained on a variety of input data types,

including images, audio, and text. The VAE (Variational Autoencoder) model offers

several benefits in the generation of synthetic data for Industrial Control Systems

(ICS) [3] datasets compared to other synthetic data generation models. Some of the

key benefits include:

• Latent Space Representation: VAEs learn a latent space representation of the

data, which allows for the continuous and structured generation of synthetic

samples. This means that the VAE can generate data points in a way that

smoothly interpolates between different samples, providing more diversity and

flexibility in the generated synthetic data.

• Probabilistic Generation: VAEs model the data distribution using probabilis-

tic techniques, allowing for the generation of synthetic data that captures the
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inherent uncertainty and variability present in the original ICS dataset. This

probabilistic framework enables more realistic and robust synthetic data gener-

ation.

• Encoder-Decoder Architecture: VAEs consist of an encoder network that maps

the original data into a lower-dimensional latent space, and a decoder network

that reconstructs the data from the latent space. This architecture enables

the VAE to capture the complex dependencies and patterns present in the ICS

dataset, resulting in more accurate and realistic synthetic data generation.

• Continuous and Disentangled Latent Representations: VAEs encourage disen-

tangled representations in the latent space, meaning that different dimensions

of the latent space capture independent and meaningful factors of variation in

the data. This property allows for better control over the generation process, as

specific features or attributes can be manipulated in the latent space to generate

synthetic samples with desired characteristics.

• Ability to Learn Complex Distributions: VAEs are capable of learning complex

data distributions, including multimodal distributions, which are often encoun-

tered in ICS datasets. This capability ensures that the generated synthetic data

captures the diversity and variability of the original dataset, leading to more

accurate representations of real-world scenarios.

• Reconstruction-Based Evaluation: VAEs can be evaluated based on the quality

of the reconstructed data. By comparing the original and reconstructed samples,

researchers can assess the fidelity and accuracy of the VAE model in capturing

the characteristics of the ICS dataset. This evaluation provides insights into

the reliability and effectiveness of the VAE for synthetic data generation.

• Interpretable Latent Space: VAEs can provide interpretable representations in

the latent space, where each dimension corresponds to a meaningful attribute

or feature of the data. This interpretability facilitates better understanding and

analysis of the generated synthetic data, as researchers can examine and manip-

ulate specific dimensions to explore different aspects of the data distribution.
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With the generation of synthetic data using the three machine learning algorithms

namely CTGAN, GMM, and VAE models complete and usable synthetic data has

been generated, and a thorough evaluation process will now commence.



Chapter 4

Evaluation of Synthetic Data

One of the main objectives of this thesis is to establish a structured evaluation pattern

by which one could formulate and understand the statistical patterns and trends

along with an extensive evaluation of newly generated synthetic data and how well it

performs when compared with the original ICS datasets. Along with this, it is also

imperative to provide a comparative analysis of the different means of generating

synthetic data and displaying their characteristics using various means, namely using

Statistical analytics, Visual analytics, and Machine learning algorithms to provide an

in-depth view of the synthetic data.

Evaluating the quality of synthetic data is crucial to ensure its reliability, use-

fulness, and applicability in various domains and applications. When assessing the

quality of synthetic data, it is essential to consider multiple categories or criteria.

These categories provide a comprehensive framework for evaluating different aspects

of synthetic data and enable researchers and practitioners to make informed decisions.

In this section, we will discuss the key categories that one must check to evaluate the

quality of synthetic data.

• Fidelity: Fidelity refers to the degree to which the synthetic data accurately

represents the original dataset [24]. It involves assessing how well the statistical

properties, distributions, and relationships of the original data are preserved in

the synthetic data. Measures such as mean, variance, covariance, and higher-

order statistics can be used to compare the statistical properties between the

original and synthetic datasets. Additionally, visual inspection, hypothesis test-

ing, and domain experts’ judgment can provide insights into the fidelity of the

synthetic data.

• Privacy and Information Preservation: Privacy preservation is a critical con-

sideration when dealing with synthetic data, especially when the original data

30
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contains sensitive or personal information. Evaluating privacy preservation in-

volves assessing how well the synthetic data obscures or anonymizes personal

attributes or sensitive data [35]. Metrics such as k-anonymity, l-diversity, and

t-closeness can be used to measure the level of privacy protection provided by

synthetic data. Additionally, techniques such as differential privacy can be ap-

plied to ensure privacy guarantees. Using these methods we can also check if

sensitive and vital information is preserved in the newly generated synthetic

data.

• Diversity and Generalization: Diversity measures the variety and coverage of

the synthetic data across different attributes and feature combinations. It as-

sesses whether the synthetic data captures the inherent variability present in

the original dataset. Metrics such as entropy, distinctiveness, or clustering tech-

niques can be used to measure the diversity of the synthetic data [36]. A diverse

synthetic dataset ensures that it represents the full range of patterns and char-

acteristics present in the original data. Generalization assesses how well the

synthetic data generalize to unseen or out-of-sample data. It measures the ro-

bustness of the synthetic data generation method in capturing the underlying

patterns and characteristics of the original dataset. It is important to ensure

that the synthetic data accurately represents the real-world distribution of the

data to ensure reliable and robust generalization.

• Interpretability and Utility: Interpretability refers to the understandability and

transparency of the synthetic data generation process. It involves assessing

whether the synthetic data can be easily interpreted and analyzed by domain

experts [37]. Techniques such as feature importance ranking, feature engineer-

ing, or model interpretability methods can be applied to enhance the inter-

pretability of synthetic data. Utility refers to the usefulness and applicability

of synthetic data in specific tasks or applications. It involves assessing how well

the synthetic data performs in downstream tasks, such as predictive modeling,

classification, or clustering. The performance of models trained on synthetic

data can be compared to models trained on the original data to measure the

utility of the synthetic data.
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In this chapter, we will be exploring these subtopics in detail in order to determine

and understand their usage and explore the results of the synthetic data generated by

the various machine learning model namely the CTGAN, GMM, and VAE models.

4.1 Fidelity

Fidelity is a critical aspect when evaluating the quality of synthetic data. It refers to

the extent to which the synthetic data accurately represents the statistical properties,

distributions, and relationships present in the original dataset. In other words, fidelity

measures how well the synthetic data captures the essence of the original data [24].

To assess fidelity, various statistical measures and techniques can be employed.

Here are some key considerations when evaluating fidelity in synthetic data:

• Statistical Properties: Fidelity evaluation involves comparing the statistical

properties of the original and synthetic datasets. This includes measures such

as mean, variance, covariance, skewness, and kurtosis. Statistical tests, such as

t-tests, can be applied to determine if there are significant differences between

the statistical properties of the original and synthetic data [24]. A high degree

of similarity in statistical properties indicates a higher fidelity of the synthetic

data.

• Distribution Matching: Synthetic data should ideally replicate the distributions

observed in the original data. This includes capturing the shape, spread, and

tail behavior of the distributions. Visual inspection, kernel density estimation,

or quantile-quantile plots can be used to compare the distributions of original

and synthetic data [24]. Close alignment between the distributions indicates a

higher fidelity of the synthetic data.

It is important to note that achieving perfect fidelity between the synthetic and

original datasets may not always be feasible or necessary. The goal is to strike a

balance between fidelity and privacy protection. Synthetic data may intentionally

introduce some level of noise or perturbation to preserve privacy, which may result

in slight deviations from the original data. The level of fidelity required will depend

on the specific application and the trade-off between privacy and utility.
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Overall, fidelity assessment provides insights into the accuracy and reliability of

the synthetic data. By ensuring a high level of fidelity, researchers and practition-

ers can have confidence in using synthetic data for various analyses, modeling, and

decision-making processes.

4.1.1 Descriptive Statistics

One of the primary and important techniques that could be used to determine the

statistical properties is descriptive statistics. Descriptive statistics take into account

the mean, mode, range, variance, and standard deviation [12][29]. Using this it is

possible to determine whether the statistical properties possessed by the synthetic

data are close to the original dataset.

Table 4.1: Descriptive statistics output for original dataset

Para res add resp lgt res mem res wrt fun res mem cnt res rd fun setpoint ctrl md pump result

Count 97019 97019 97019 97019 97019 97019 97019 97019 97019 97019

Mean 3.719 26.29 216.65 9.298 16.737 2.44 24.16 0.899 0.056 0.36

Std 1.021 26.56 59.5 2.55 4.59 0.893 14.322 0.991 0.23 0.482

Table 4.2: Descriptive statistics output for CTGAN dataset

Para res add resp lgt res mem res wrt fun res mem cnt res rd fun setpoint ctrl md pump result

Count 97019 97019 97019 97019 97019 97019 97019 97019 97019 97019

Mean 1.14 48.77 66.48 2.88 5.15 1.98 39.77 0.97 0.953 0.053

Std 0.512 12.12 27.07 1.19 2.11 0.193 8.101 0.17 0.211 0.224

Table 4.3: Descriptive statistics output for GMM dataset

Para res add resp lgt res mem res wrt fun res mem cnt res rd fun setpoint ctrl md pump result

Count 97019 97019 97019 97019 97019 97019 97019 97019 97019 97019

Mean 3.714 26.29 216.4 9.286 16.71 2.34 24.26 0.899 0.033 0.37

Std 1.029 26.77 59.99 2.574 4.63 0.903 14.509 1.026 0.238 0.483

Table 4.4: Descriptive statistics output for VAE dataset

Para res add resp lgt res mem res wrt fun res mem cnt res rd fun setpoint ctrl md pump result

Count 97019 97019 97019 97019 97019 97019 97019 97019 97019 97019

Mean 3.196 40.73 185.2 7.621 14.24 2.649 34.318 0.589 0.0047 0.0053

Std 0.652 14.38 32.32 1.382 2.565 0.490 9.645 0.539 0.211 0.2249
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The results obtained from the descriptive analysis are displayed in the tables

above, representing the statistical quality and representation of the synthetic dataset.

These tables are interpreted as follows: If the statistical parameters generated by the

synthetic data generation model differ significantly from those of the original ICS

dataset, the synthetic data generation model in question is deemed unsuitable and

can be eliminated from further testing. On the other hand, if the synthetic data

generation model can generate these statistical parameters with an acceptable level

of similarity to the original ICS dataset, it can be considered a suitable model.

4.1.2 Mahalanobis Distance

From [12] Mahalanobis distance is a statistical measure that quantifies the distance

between a point and a distribution of points in a multivariate space. It considers

the correlations between variables, which makes it particularly useful when dealing

with datasets with multiple variables that are not necessarily independent The Maha-

lanobis distance is a normalized measure that considers the variances and covariances

of the variables in the dataset. It is essential in evaluating the similarity between

an observation and the distribution it belongs to. This test allows one to check the

authenticity of the synthetic dataset. Using this test it can be found whether the

dataset is from the same distribution or from a different one and also how different

the dataset is when compared with the original dataset.

The Mahalanobis distance calculation can be divided into three main steps. Ini-

tially, the data is preprocessed by centering and scaling it. This can be done by

subtracting the mean value from each variable and further dividing it by the stan-

dard deviation. This method ensures that all variables have been scaled and there are

no overrepresentations or dominance by variables with larger value ranges. THe next

step is the calculation of the covariance matrix in order to capture the relationships

and correlations between variables. If there are n variables, the covariance matrix

will be an n x n matrix. Once the covariance matrix is obtained, the Mahalanobis

distance can be calculated for a given observation. The formula for calculating the

Mahalanobis distance is:

Mahalanobis Distance =
√
(x− µ)⊤Σ−1(x− µ)
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x represents the vector of variables for the observation being evaluated. µ rep-

resents the vector of means of the reference distribution. −
∑

(−1) represents the

inverse of the covariance matrix of the reference distribution.

In simpler terms, the Mahalanobis distance is the Euclidean distance between the

centered and scaled observation and the centered and scaled reference distribution,

where the scaling is done using the covariance matrix [29].

Table 4.5: Mahalanobis distance mean Comparison.

Model Mahalanobis Distance Mean Standard deviation

Original 71.6008 61.567

GAN 43.598 28.625

GMM 72.606 62.353

VAE 59.472 43.776

From the table above, it is inferred that the smaller the difference between the

original dataset mean and the chosen synthetic data generation model, the greater the

similarity between the two datasets. The tables demonstrate that the GMM model

has the greatest similarity with the original dataset, followed by the VAE model and

the GAN model.

4.1.3 Hotelling T2 test

The Hotelling T2 test, also known as Hotelling’s T-squared test, is a multivariate

statistical test used to determine if there is a significant difference between the means

of two groups in a multivariate setting. It is an extension of the univariate two-sample

t-test to the multivariate case. In the multivariate setting, we have multiple variables

or features measured on each observation. The Hotelling T2 test takes into account

the covariance structure between these variables when comparing the means of two

groups.

The test evaluates whether the mean vectors of the two groups are significantly

different from each other in the multivariate space. It considers both the location

and spread of the data in multiple dimensions. The test calculates a T2 statistic,

which is a measure of the distance between the two mean vectors, taking into account
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the covariance structure [22][25][28]. The null hypothesis of the Hotelling T2 test is

that there is no difference between the means of the two groups. The alternative

hypothesis is that there is a significant difference between the means. The Hotelling

T2 test requires certain assumptions to be valid, including multivariate normality and

homogeneity of covariance matrices. Violations of these assumptions can affect the

accuracy of the test results.

The test statistic follows Hotelling’s T-squared distribution under the null hy-

pothesis. Based on the calculated T2 statistic, along with the sample sizes and the

number of variables, p-values can be obtained to determine the significance of the

test. The Hotelling T2 test can also be applied to evaluate the quality and similarity

of synthetic data compared to the original data. In the context of synthetic data

evaluation, the Hotelling T2 test assesses whether the mean vectors of the synthetic

data and the original data are significantly different from each other in a multivari-

ate space. When evaluating synthetic data, the goal is to ensure that the synthetic

dataset captures the statistical properties and characteristics of the original dataset.

The Hotelling T2 test can help determine if the synthetic data closely approximates

the distribution of the original data by comparing their mean vectors.

The procedure for applying the Hotelling T2 test to synthetic data evaluation

involves the following steps. Prepare the synthetic dataset and the original dataset,

ensuring that they have the same number of variables or features. Calculate the mean

vector for both the synthetic data and the original data by taking the average values

of each variable across the respective datasets. Estimate the covariance matrices for

both datasets. The covariance matrix describes the relationships and dependencies

between the variables in the data. Compute the Hotelling T2 test statistic using the

mean vectors and covariance matrices of the synthetic and original datasets. The

test statistic quantifies the difference between the mean vectors, accounting for the

covariance structure. Evaluate the significance of the test statistic by comparing

it to the critical values from Hotelling’s T-squared distribution. Calculate the p-

value associated with the test statistic to determine whether the mean vectors of

the synthetic and original datasets are significantly different. If the p-value is below

a predetermined significance level (e.g., 0.05), it suggests that there is a significant
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difference between the synthetic and original datasets. On the other hand, a higher p-

value indicates that the synthetic data closely resembles the original data in terms of

their mean vectors. By applying the Hotelling T2 test, researchers and practitioners

can quantitatively assess the quality and similarity of synthetic data to the original

data. This evaluation method provides an objective measure of the extent to which

the synthetic data captures the statistical characteristics of the original data.

Table 4.6: Hotelling T2 test p-value Comparison

Model T2 test p-value

GAN 0.012

GMM 1.11e-16

VAE 4.66e-11

Similar to the Mahalanobis distance, the similarity between the synthetic dataset

in question and the original dataset is taken into consideration. As the p-value ap-

proaches 0, it can be seen that the datasets are from different distributions but pos-

sess similar statistical similarities. From the table above, it is evident that the GMM

model performs the best, followed by the VAE model and the GAN model.

4.2 Privacy and Information Preservation

Privacy and information preservation are crucial considerations when evaluating syn-

thetic data. The evaluation process should ensure that the generated synthetic data

preserves the privacy of individuals and does not disclose sensitive or personally iden-

tifiable information. Information preservation is an essential aspect of synthetic data

evaluation, ensuring that the synthesized data retains the important statistical and

structural properties of the original dataset [6]. The goal is to generate synthetic data

that captures the essential characteristics and patterns of the original data while

protecting sensitive information. Here are some techniques and considerations for

information preservation in synthetic data evaluation:

• Statistical Properties: The synthesized data should maintain key statistical
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properties of the original dataset, such as distributions, correlations, and sum-

mary statistics. This ensures that the synthetic data accurately represents the

underlying patterns and relationships present in the original data.

• Feature Preservation: It is important to preserve the essential features of the

original dataset in the synthetic data. Features that are highly relevant to the

analysis or modeling tasks should be accurately represented to maintain the

data’s utility and usefulness.

• Structural Integrity: The synthetic data should preserve the structural integrity

of the original dataset. This involves maintaining the overall data structure,

including hierarchical relationships, dependencies, or any other structural char-

acteristics that are important for the analysis.

• Data Completeness: The synthetic data should adequately cover the range of

values and patterns present in the original dataset. It should accurately repre-

sent the data’s diversity and variability to ensure comprehensive analysis and

modeling.

By focusing on information preservation during synthetic data evaluation, re-

searchers can ensure that the generated data maintains its integrity, relevance, and

usefulness. This facilitates reliable analysis, modeling, and decision-making processes

while protecting sensitive information and complying with privacy regulations.

4.2.1 Mutual Information Score (MI)

Mutual Information (MI) is a statistical measure used in synthetic data evaluation

to assess the amount of information shared between two variables or datasets. It

quantifies the degree of dependency or association between variables, indicating how

much knowledge of one variable can provide insights into the other.

In the context of synthetic data evaluation, MI is used to compare the information

content of the original dataset and the synthetic dataset. It helps to determine how

well the synthetic data captures the information present in the original data. A higher

MI score indicates a stronger relationship and greater similarity between the variables

or datasets being compared [27].
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The MI score is based on the concept of entropy, which measures the uncertainty

or randomness of a variable. By calculating the entropy of the original data and the

synthetic data separately and then comparing their joint entropy, the MI score can

be derived. The MI score can range from 0 to a maximum value, where 0 indicates

no relationship or information shared, and the maximum value represents a perfect

relationship.

In synthetic data evaluation, the MI score can be used to assess the fidelity and

information preservation of the synthetic data. A higher MI score suggests that the

synthetic data closely resembles the original data in terms of the underlying patterns,

dependencies, and information content. On the other hand, a lower MI score indicates

a potential loss of information or deviation from the original data’s characteristics.

Let’s consider two variables X and Y, where X represents the original dataset and

Y represents the synthetic dataset.

Calculate the individual entropies of X and Y:

Entropy of X : H(X) = −
∑

p(x) log p(x) , where p(x) is the probability distri-

bution of X. Entropy of Y : H(Y ) = −
∑

p(y) log p(y) , where p(y) is the probability

distribution of Y. Calculate the joint entropy of X and Y:

Joint Entropy of X and Y: H(X, Y) = −
∑∑

p(x, y) log p(x, y) is the joint prob-

ability distribution of X and Y. Compute the MI score using the formula:

MI(X, Y) = H(X) + H(Y) - H(X, Y) The MI score represents the reduction in

uncertainty or the amount of information gained about one variable by knowing the

other variable. A higher MI score indicates a stronger relationship or more shared

information between X and Y.

It’s important to note that the estimation of probabilities and the calculation of

entropy and joint entropy may vary depending on the specific data and the chosen

estimation method. Different techniques such as histogram-based estimation, kernel

density estimation, or nearest-neighbor methods can be employed to estimate the

probability distributions.

By comparing the MI score between the original dataset (X) and the synthetic

dataset (Y), researchers can assess the similarity in terms of the shared information

and evaluate the fidelity and information preservation of the synthetic data [27][31].

In this test we take the MI score difference ie. |MI(synthetic)−MI(Original)|. The
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absolute value derived from this expression denotes the level of information retention

that is present between the original dataset and the synthetic dataset generated by

the three different models The scores obtained for the respective models are as follows.

Table 4.7: MI Scores of each model

Model MI Score abs MI Score synthetic

Original —— 0.99

GAN 0.77 0.22

GMM 0.109 0.881

VAE 0.44 0.55

This test is a good indicator to check the similarity between the distributions.

The lower the MI score, the greater the information captured by the synthetic data.

From the table above, it can be observed that the GMM model has the lowest MI

score compared to the other synthetic datasets. This is followed by the VAE model

and the GAN model.

4.2.2 Kernel Density Estimation (KDE)

Kernel Density Estimation (KDE) is a non-parametric method used to estimate the

probability density function (PDF) of a random variable based on a given set of

observations. It is commonly employed in synthetic data evaluation to assess the

distributional similarity between the synthetic dataset and the original dataset [4].

The basic idea behind KDE is to represent the PDF as a weighted sum of kernel

functions centered at each observation. The kernel function is a smooth, symmetric,

and non-negative function that determines the shape of the estimated density

The KDE process involves the following steps. The choice of kernel function influ-

ences the smoothness and accuracy of the estimated density. The Gaussian kernel is

a popular choice due to its smoothness and mathematical properties. The bandwidth

parameter controls the width of the kernel function and affects the smoothness of the

estimated density. A small bandwidth leads to a more detailed density estimate but

may overfit the data, while a large bandwidth results in a smoother estimate but may

over smooth the data. Selecting an appropriate bandwidth is crucial to obtain an
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accurate density estimate. For each observation in the dataset, the kernel function is

centered at that point, and the density contribution is calculated. The contributions

from all observations are summed to obtain the overall density estimate. The result-

ing estimated density function represents an approximation of the underlying PDF.

It can be evaluated at any point to obtain the density value.

In the context of synthetic data evaluation, KDE can be used to estimate the PDF

of the original dataset and compare it with the PDF of the synthetic dataset. By

comparing the two density estimates, researchers can assess the similarity in terms of

shape, peaks, and overall distributional characteristics. If the synthetic data closely

matches the original data’s density, it indicates a higher level of fidelity and preserves

the statistical properties of the original dataset.

Figure 4.1: KDE graph for GAN models, comparing features response address (Left)
and resp length (right).

Figure 4.2: KDE graph for GMM models, comparing features response address (left)
and resp length (right).
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Figure 4.3: KDE graph for VAE models, comparing features response address and
resp length (right).

4.2.3 Wasserstein distance

The Wasserstein distance, also known as the Earth Mover’s distance (EMD), is a

metric used to quantify the difference between two probability distributions. It is often

employed in synthetic data evaluation to assess the similarity between the probability

distributions of the original and synthetic datasets [29][33].

Unlike other distance metrics that focus on comparing individual data points, the

Wasserstein distance considers the entire distribution and measures the minimum

cost of transforming one distribution into another. It accounts for the underlying

structure and shape of the distributions, making it suitable for capturing differences

in their probability density functions (PDFs).

The basic concept behind the Wasserstein distance involves considering the distri-

butions as ”piles of earth” and measuring the minimum amount of ”work” required

to transform one pile into the other. The work is calculated as the product of the

amount of earth moved and the distance it is moved. This distance can be defined

based on various metrics, such as the Euclidean distance or the Minkowski distance.

However, computing the Wasserstein distance can be computationally expensive,

especially for high-dimensional data or large datasets. Various algorithms, such as

the Kantorovich-Rubinstein duality or Sinkhorn algorithm, have been developed to

efficiently estimate the Wasserstein distance for practical applications.

In synthetic data evaluation, the Wasserstein distance can be used to compare

the distributions of individual variables or the joint distribution of multiple variables

between the original and synthetic datasets. By quantifying the dissimilarity, re-

searchers can assess the quality and fidelity of the synthetic data generation process.
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The mathematical working of the Wasserstein distance involves finding the optimal

transportation plan that minimizes the cost of transforming one distribution into

another. It considers the amount of mass being transported and the distance it needs

to be moved. The distance metric used to measure the transportation cost can vary,

but the most commonly used is the Euclidean distance.

Let’s consider two probability distributions, P and Q, with probability density

functions (PDFs) p(x) and q(x) respectively. The Wasserstein distance between P

and Q, denoted as W(P, Q), can be calculated using the following formula:

W (P,Q) = inf
(∫ ∫

∥x− y∥ · T (x, y) dx dy
)

where the infimum is taken over all possible transportation plans T(x, y) that

satisfy the following constraints:

Marginal constraints: The total amount of mass transported from each point in P

must equal the corresponding point in Q. This ensures that no mass is lost or gained

during the transportation process.

∫
T (x, y)dy = p(x) for all x

∫
T (x, y)dx = q(y) for all y

Non-negativity constraints: The transportation plan T (x, y) should be non-negative,

meaning that it cannot transport negative mass.

T (x, y) ≥ 0 for all x, y

The Wasserstein distance measures the minimum cost of transporting mass from

P to Q, where the cost is determined by the distance ∥x−y∥ multiplied by the amount

of mass being transported T (x, y). By finding the optimal transportation plan that

minimizes this cost, the Wasserstein distance provides a measure of dissimilarity

between the two distributions [29][8].

Using this as the base the Wasserstein distance is measured between the original

dataset and the synthetic dataset. The results obtained are as follows: measure the

distance between two probability distributions

A low Wasserstein distance between the original and synthetic data indicates that

the synthetic data captures the same distribution as the original data.
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Table 4.8: Wasserstein distance Scores of each model

Model Wasserstein distance

GAN 0.534

GMM 0.106

VAE 0.371

This test provides us with a method to compare the probability distributions

of the two datasets. Therefore, the closer the distance between the two datasets,

the greater is the similarity between distributions and the relationship between each

feature. From the above table, it can be noted that the GMM model displays better

results than the VAE model and the GAN model.

4.2.4 t-SNE plot visualizations

t-SNE (t-Distributed Stochastic Neighbor Embedding) is a dimensionality reduction

technique commonly used for visualizing high-dimensional data in a lower-dimensional

space. It is often employed in synthetic data evaluation to examine the structure and

clustering patterns of the synthetic data in comparison to the original data [28].

The working of t-SNE involves transforming the high-dimensional data into a

two- or three-dimensional representation while preserving the local similarities be-

tween data points. It achieves this by modeling pairwise similarities using probability

distributions. The algorithm starts by computing pairwise similarities between the

high-dimensional data points using a Gaussian kernel. The similarities are then con-

verted into probabilities using a Student’s t-distribution.

The t-SNE algorithm iteratively maps the high-dimensional data points to the low-

dimensional space, aiming to minimize the divergence between the pairwise similarity

distributions of the high-dimensional data and the low-dimensional embeddings. The

mapping process is performed by optimizing the Kullback-Leibler (KL) divergence

between the two distributions.

This is a powerful visualization technique that enables the exploration and com-

parison of high-dimensional data in a lower-dimensional space. It provides a visual

representation of the structures and clustering patterns of the data. This can assist
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in determining the similarity and quality of synthetic data when compared with the

original data [28].

Figure 4.4: Cluster Identification using t-SNE plots

4.3 Diversity and Generalization

Evaluating the diversity of synthetic data is an essential aspect of assessing the qual-

ity and usefulness of generated synthetic datasets. Diversity refers to the extent

to which the synthetic data captures the variability and distribution of the original

data. A diverse synthetic dataset should accurately represent the different patterns,

relationships, and characteristics present in the original dataset [29].

Evaluating diversity is crucial because a lack of diversity in synthetic data can

lead to biased or incomplete representations, which may limit the effectiveness and

applicability of the generated data. Therefore, it is important to employ evaluation

measures and techniques that quantitatively assess the diversity of the synthetic data.

There are several approaches to evaluating the diversity of synthetic data. One

common method is to compare statistical properties between the original and syn-

thetic datasets. This can include analyzing summary statistics, distributional char-

acteristics, or correlations of relevant variables. If the synthetic data closely matches

these statistical properties, it indicates a higher level of Diversity [30].

Additionally, visualization techniques can be employed to visually inspect the di-

versity of the synthetic data. Scatter plots, histograms, or t-SNE plots can help

visualize the distribution and clustering patterns of the synthetic data in compari-

son to the original data. Visual assessments can provide valuable insights into the

diversity of the synthetic data and help identify any discrepancies or limitations.
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4.3.1 Histograms and Scatter Plots

In order to compare and visualize the distributions of particular features in the original

and synthetic datasets Histograms prove to be one of the most useful tools. Taking

a particular feature into consideration that belongs to both the original dataset and

the synthetic dataset when they are plotted, it becomes easier to identify and analyze

discrepancies or similarities between the two datasets.

Using this method, if the features of the synthetic dataset closely match that of the

original dataset, then it is likely that the synthetic dataset has a good representation

of the original data. Likewise, if there are a lot of discrepancies between the two

features on the histogram then the synthetic data does not capture the distribution

of the features correctly [30].

Histograms can also be used to identify any outliers in the synthetic data. If there

are large spikes or gaps in the histogram of the synthetic data, it could indicate the

presence of outliers that need to be investigated further.

Overall, histograms provide a quick and easy way to compare the distribution of a

feature between the original and synthetic data and can be a useful tool in synthetic

data analytics.

Figure 4.5: Feature Distribution graph, Comparing Original and Synthetic datasets
(GMM)

Similar to the histograms scatterplots are a useful visualization tool for synthetic

data analytics. They are used to plot the relationship between two variables in a
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Figure 4.6: Feature Distribution graphs using Histograms

Figure 4.7: Feature Distribution graphs using Scatter Plots

dataset. In the context of synthetic data analytics, scatterplots are used to visually

compare the distribution of variables in the original and synthetic datasets [7].

If the scatterplot shows a linear relationship between the variables in both datasets,

it suggests that the synthetic data is a good representation of the original data. How-

ever, if the scatterplot shows a nonlinear relationship or there are significant differ-

ences between the variables in the two datasets, it may indicate that the synthetic

data needs further refinement.

In addition to comparing the distribution of variables, scatterplots can also be

used to identify outliers in the synthetic dataset. Outliers are data points that deviate

significantly from the overall pattern of the data. If the scatterplot shows outliers in
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the synthetic dataset that were not present in the original data, it may indicate that

the synthetic data is not representative of the original data and needs to be refined

[38].

4.3.2 Kolmogorov-Smirnov (KS) test

The Kolmogorov-Smirnov test is a statistical test used to evaluate the similarity

between two probability distributions. In the context of synthetic data evaluation,

the Kolmogorov-Smirnov test can be employed to assess the similarity between the

distribution of the original dataset and the distribution of the synthetic dataset [27].

The test works by comparing the empirical cumulative distribution functions

(CDFs) of the two datasets. The empirical CDF represents the proportion of data

points in a dataset that are less than or equal to a given value. The Kolmogorov-

Smirnov test calculates the maximum absolute difference (D) between the two empir-

ical CDFs. This difference, also known as the Kolmogorov-Smirnov statistic, serves

as a measure of dissimilarity between the distributions.

To perform the Kolmogorov-Smirnov test, the null hypothesis is that the two

datasets are drawn from the same distribution. If the calculated Kolmogorov-Smirnov

statistic exceeds a critical value (typically obtained from statistical tables), the null

hypothesis is rejected, indicating that the two distributions significantly differ from

each other [26].

In the context of synthetic data evaluation, the Kolmogorov-Smirnov test can be

used to determine whether the distribution of the synthetic dataset matches that

of the original dataset. A smaller Kolmogorov-Smirnov statistic suggests a higher

similarity between the distributions, indicating that the synthetic data is more rep-

resentative of the original data. The results obtained ie. the corresponding p-value

to each synthetic data generation model is as follows:

Table 4.9: Kolmogorov-Smirnov (KS) test Scores of each model

Model Kolmogorov-Smirnov test p-value

GAN 0.12

GMM 3.1175 e-29

VAE 0.000521
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The KS test provides vital information for checking whether the two datasets in

consideration are part of a larger dataset. This test acts as a quality control metric

to prevent future machine learning model classifiers from being tricked by synthetic

data. It also allows us to analyze the similarity in distribution patterns. From the

results obtained, it can be inferred that the GMM model possesses the greatest result,

followed by the VAE model and the GAN model, respectively.

4.4 Interpretability and Utility

Evaluating the model interpretability and utility of synthetic data is crucial to as-

sess the effectiveness and practicality of using synthetic data in various applications.

Model interpretability refers to the ability to understand and interpret the inner

workings and decisions made by a model, while utility refers to the usefulness and

effectiveness of the synthetic data in achieving the intended goals [12][31].

In the context of synthetic data evaluation, model interpretability involves assess-

ing how well the synthetic data captures the underlying patterns, relationships, and

features present in the original data. It requires evaluating whether the synthetic data

retains the important characteristics of the original data, such as the distributional

properties, correlations between variables, and relevant patterns or trends. Various

techniques can be employed to assess interpretability, including visualizations, statis-

tical analysis, and comparison with domain knowledge.

On the other hand, evaluating the utility of synthetic data focuses on determining

the extent to which the synthetic data can effectively substitute the original data in

practical applications or analyses. This involves evaluating the performance of mod-

els or algorithms trained on the synthetic data and assessing their ability to achieve

the desired outcomes. Utility evaluation may involve comparing the performance of

models trained on the synthetic data with models trained on the original data, con-

sidering metrics such as accuracy, precision, recall, or any other relevant performance

measure [23].

4.4.1 Decision Trees and Feature Importance

Evaluating the model interpretability of synthetic data is essential to understand

the underlying patterns and decision-making processes of the generated data. One
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popular approach for assessing interpretability is through the use of decision trees.

Decision trees are hierarchical models that make decisions based on a sequence of

rules or conditions. They provide a transparent and intuitive representation of how

the input variables influence the output or target variable. When applied to synthetic

data evaluation, decision trees can reveal the important features and relationships

within the data, helping to understand how the synthetic data captures the patterns

present in the original data [13].

The use of decision trees for the model interpretability of synthetic data offers

several advantages. Decision trees provide a clear and transparent representation of

the decision-making process, making it easier to understand and interpret the gen-

erated data. They also allow for the identification of important features and their

relative importance, aiding in feature selection and dimensionality reduction. Fur-

thermore, decision trees can handle both numerical and categorical variables, making

them suitable for various types of data.

Figure 4.8: Performance Matrix of Synthetic data using Decision Tree’s

The second section of this test is performed to check if the original dataset and

the synthetic data are from the same distribution or not. This is done by merging the

two datasets and adding a target column to indicate if the corresponding instance is

from the original dataset or the synthetic dataset. The model’s capability to detect

if the instance is real or synthetic can determine if the dataset has been spliced from

one another ie. the lower the prediction accuracy greater the chance of datasets being

generated from different distributions [12]. The results are as follows:

This test is known as the ”adversarial test”. In this test, the synthetic data

is evaluated using a pre-trained classifier, and the objective is to see how well the
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Table 4.10: Prediction based accuracy rate of each model

Model Accuracy of the Decision tree

GAN 72%

GMM 46%

VAE 58%

classifier can distinguish between the synthetic and real data.

The significance of this test lies in its ability to measure the quality and realism

of the synthetic data. A good synthetic dataset should be indistinguishable from real

data, meaning that the classifier should perform poorly in distinguishing between the

two. If the classifier can easily differentiate between the synthetic and real data, it

indicates that the synthetic data lacks the necessary characteristics and statistical

properties of real data.

Having a lower accuracy (or higher misclassification rate) in the adversarial test

is actually desirable in this case. It means that the synthetic data is more realistic

and representative of the real data, as the classifier is finding it difficult to distinguish

between them. A lower accuracy suggests that the synthetic data is successfully

capturing the underlying patterns and statistical properties of the real data, making

it a useful and high-quality substitute for real data.

Therefore from the above table it can be inferred that the GMM model has the

greatest performance when compared to the VAE model and the GAN model respec-

tively.

The third section of this test is performed in order to determine the feature impor-

tance of each feature in the original dataset and the synthetic dataset and compare

them. Feature importance analysis provides insights into the relevance and contribu-

tion of individual input variables in the model’s decision-making process [12].

The process of evaluating model interpretability using feature importance typically

involves the following steps. The synthetic data is used to train a machine learning

model, such as a decision tree, random forest, or gradient boosting model. These

models are capable of capturing complex relationships between the input variables

and the target variable. After training the model, the feature importance is calculated

based on the model’s internal mechanisms. Various techniques can be employed to
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measure feature importance. In linear models or models with interpretable coefficients

(e.g., logistic regression), the magnitude of the coefficients can be used to assess

feature importance. Larger coefficients indicate greater importance.

Evaluating model interpretability using feature importance provides several bene-

fits. It allows researchers to understand the factors influencing the model’s predictions

and identify the most influential features in the synthetic data. This knowledge can

help detect potential biases, assess the generalizability of the synthetic data, and

guide further data generation or refinement efforts [12][31].

Figure 4.9: Feature importance with reference to model coefficients.

4.5 Comparative Analysis

Using the results obtained in the above section, a comparative analysis report is

formed. This section of the thesis contains a comprehensive analysis of the results

obtained above and revisiting and explaining the significance of each subsection. The

evaluation is divided into four subsections as per the suggested evaluation framework

under the subheadings of Fidelity, Privacy and Information Preservation, Diversity

and Generalization, and finally Interpretability and Utility.
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Through the above subsections, each topic is explored along with the correspond-

ing test being either statistics, visualization, or machine learning oriented. In this

section, we aim to draw inferences with respect to the results obtained.

To begin with fidelity, initially, a descriptive statistics methodology is employed to

provide a detailed statistical analysis of the various elements the synthetic data that

has been generated is to follow. The results obtained from each dataset are displayed

and compared.

Table 4.11: Cumulative results of descriptive statistics

Type of Dataset Parameter response address resp length response memory resp write fun response memory count resp read fun setpoint control mode pump result

Original data

Count 97019 97019 97019 97019 97019 97019 97019 97019 97019 97019
GAN data

GMM data

VAE data

Original data

Mean

3.719 26.29 216.65 9.29 16.73 2.44 24.16 0.899 0.056 0.36

GAN data 1.14 48.77 66.48 2.88 5.15 1.98 39.77 0.97 0.953 0.053

GMM data 3.714 26.29 216.4 9.286 16.71 2.34 24.26 0.899 0.033 0.37

VAE data 3.196 40.73 185.2 7.621 14.24 2.649 34.318 0.589 0.047 0.63

Original data

Std

1.021 26.56 59.5 2.55 4.59 0.893 14.32 0.991 0.23 0.482

GAN data 0.512 12.12 27.07 1.19 2.11 0.193 8.101 0.17 0.211 0.224

GMM data 1.029 26.77 59.99 2.574 4.63 0.903 14.509 1.026 0.238 0.483

VAE data 0.652 14.38 32.32 1.382 2.565 0.490 9.645 0.539 0.211 0.2249

Using the Discriptive Statistics alone it is evident that the GMM model generated

the synthetic data that is most alike to the original dataset. This test mainly handles

the primary statistical features that the model is trained to replicate. The Synthetic

Data Generation Model is expected to generate data that is capable of substituting

the original data, thus the primary function of replicating or producing results close

to that of the original data is paramount. Supplementing the results of the descriptive

statistics methodology tests to provide additional information on the fidelity of the

synthetic data are depicted in Tab.13.

Table 4.12: Cumulative results of Mahalanobis Distance and the T2 test’s p-value

Model Mahalanobis Distance Mean Standard deviation Tˆ2 test p-value

Original 71.6008 61.567 ——————–

GAN 43.598 28.625 0.012

GMM 72.606 62.353 1.11e-16

VAE 59.472 43.776 4.66e-11

The Mahalanobis Distance depicts the overall distance between two datasets, as

per the tests definition the closer the mean distance to the original data the more

significant the similarity. And to supplement the result of this test, a T2 test is also
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performed where the p-value is taken into consideration. The null hypothesis taken

into consideration when performing the T2 test is that the two datasets are from the

same distribution for p-value approaches 1. Thus using the scores of this test it can

be seen that the GMM model possesses a p-value that is closest to 0, followed by

the VAE model and then the GAN Model. This pattern is similarly replicated in the

results of the Mahalanobis Distance measurements as well.

Next, the evaluation procedure that analyses Privacy and information Preserva-

tion is performed using the help of the MI score and the Wasserstein Distance. The

MI Score in particular is useful when it comes to comparing the information content

of the original dataset and the synthetic dataset. It helps to determine how well the

synthetic data captures the information present in the original data. A higher MI

score indicates a stronger relationship and greater similarity between the variables or

datasets being compared. The Wasserstein Distance is often employed in synthetic

data evaluation to assess the similarity between the probability distributions of the

original and synthetic datasets. The MI score and the Wasserstein Distance show a

similar performance trend when it comes to the synthetic datasets. In these tests,

the results on Tab 4.12 are the absolute differences between the scores for the orig-

inal and the synthetic dataset. The GMM model possesses the greatest information

preservation capabilities and also displays the greatest similarity when it comes to

the distribution of the dataset. This information preservation capability is further

explored when considering the KDE plots that can determine how the synthetic data

is distributed when compared with the original data. The results of the KDE test can

be seen in Fig 4.1,4.2 and 4.3. The distribution characteristics shown by the GMM

model are very similar to the original data, this could mean that the data has fulfilled

one of the main purposes of generating synthetic data ie. to substitute the original

data. The VAE model generates synthetic data that follows a similar pattern to that

of the original model where it imitates the peaks and lulls but also provides a diverse

take on the dataset, meaning that the dataset contains a variety of use case scenarios

that would be present in a controlled environment such as the original dataset. On

the other hand, the GAN models result is not as what is expected as it produces a

diverse dataset that does not have a lot of similarity with the original dataset.

Continuing on with Diversity and Generalization, this is explored in depth with
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Table 4.13: Cumulative results of MI Score and Wasserstein Distance.

Model MI Score Difference Wasserstein distance Difference

GAN 0.77 0.534

GMM 0.109 0.106

VAE 0.44 0.371

the assistance of Histogram plots, Scatter plots, and the KDE plot from the previous

section Fig 4.1-3, Fig 4.5-7. The results obtained from these plots display a con-

tinuing pattern of GMM imitating the original dataset with the greatest likeliness,

with the VAE model displaying variety and diversity but also maintaining a similar

pattern, while the GAN models fall behind these models in this regard. To provide

conclusive evidence of the above result, a Kolmogorov-Smirnov test is also performed.

The Kolmogorov-Smirnov test can be used to determine whether the distribution of

the synthetic dataset matches that of the original dataset. A smaller Kolmogorov-

Smirnov statistic suggests a higher similarity between the distributions, indicating

that the synthetic data is more representative of the original data. The results of this

test can be seen in Tab 4.9.

The need for diversity is a growing need in the current day society where ICS

datasets are of immense value and use. Real-time data lacks adverse case scenarios,

where the ICS detects the signals present during the other end of the spectrum. This

case scenario is least explored and not anticipated as much, therefore in accordance

with the original data, the VAE Model would perform the best with regards to diver-

sity while also having a good performance when it comes to predictive analysis. This

can be seen in the previous subsection where interpretability and utility are discussed.

In this case, the experiments performed are by training the model on a predic-

tive algorithm to determine its usability and performance. The models that have

been trained on a decision tree are evaluated based on their predictive performance.

Another version of the test is also performed to test the predictive capability of the

model when trained on a dataset that possesses the combined result of the original

dataset and the synthetic dataset of the respective model. The results proved conclu-

sive as the GMM model performs the best with very high accuracy and performance,

followed by the VAE model and GAN model respectively which could be seen in
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Fig.13. The second test also proved insightful as could be seen in Tab.11. The next

test performed is to analyze the feature importance and if the weights assigned to

each feature per model is similar or not. This can be done using a Python extension

and the results can be seen in Fig.14. The feature importance values although not

the same in nature, still do follow a similar pattern as above.

4.6 Discussions and Remarks

Different methods of generating high quality synthetic data for Industrial Control

Systems (ICS) (GAN, VAE and the GMM models) was evaluated using visual an-

alytics and statistical techniques. This research aimed on addressing a few factors

such as the need for realistic and diverse datasets, datasets that have high levels of

information preservation, and a suitable framework for evaluating the generated syn-

thetic data. This thesis used a comprehensive comparative analysis to determine the

best method.

An evaluation framework allowing us to quantify the similarity between synthetic

and real datasets, measure data fidelity, evaluate information preservation, and assess

the diversity and representativeness of the synthetic data was developed. We gained a

deeper understanding of the characteristics of the synthetic data and made informed

decisions regarding its suitability for different research and application contexts. The

evaluation framework developed in this research facilitated the assessment of the

synthetic data quality from various perspectives. The fields that have the highest need

for synthetic data are evaluated based on their preference. Fidelity measures such

as the Mahalanobis distance and the T2 test allowed for quantification of similarity

between the original dataset and the synthetic dataset. Information preservation

metrics such as the MI score and the KDE plots provided an accurate representation

of the dataset’s capability to preserve the essential information in the synthetic data.

t-SNE plot visualizations aids in evaluating their interpretability and utility with

machine learning techniques.

Through our comparative analysis, we evaluated three prominent techniques for

generating synthetic data: Generative Adversarial Networks (GANs), Variational Au-

toencoders (VAEs), and Gaussian Mixture Model (GMM). Each technique was as-

sessed in terms of its effectiveness, performance, and applicability to ICS applications.
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Our findings indicate that the Gaussian Mixture Model (GMM) outperformed the

other techniques in terms of fidelity and performance. It demonstrated the highest

ability to capture the statistical properties and patterns of real-world ICS datasets,

making it the ideal choice for generating high-quality synthetic data in ICS.

One of the major research goals this thesis set out to achieve was to identify a

synthetic data generation model that could aid researchers overcome the limitations

of privacy and provide synthetic data that is identical to the original dataset. From

the comparative analysis it can be seen that the GMM model excels in replicating

and generating synthetic data that is extremely close to the original dataset over its

competitors. The GMM model demonstrated a strong performance in capturing the

statistical analysis properties of the original data, thus making it the ideal candidate

in order to fulfil the primary study objective. The research also identified research

gaps and challenges in the domain of generation and evaluation of synthetic data for

ICS datasets and the need for further exploration of privacy and such information

preservation techniques, capabilities in capturing dependencies and also addressing

concerns regarding utility and scalability.

Information preservation is a key component of synthetic data generation. It

is important for the synthetic data to preserve the characteristics as much possible

from the original dataset. However, it is also important to have the capability to

manipulate the synthetic data generation in such a way that it also involves improving

adverse case scenarios to the dataset in question. This will enable to decrease the

bias involved in prediction or analysis of synthetic data. In this case the VAE model

excels in preserving the data and as well as generating a diverse dataset followed

by the GAN models. Thus, this thesis provides valuable insights and aims to be a

foundation to generate high-quality synthetic data for ICS datasets and provide an

evaluation framework that is freely customizable to the user’s everyday needs and

also contributes to the advancements in these areas.
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Conclusion

In conclusion, through the comparative analysis of the three models the GAN, VAE,

and the GMM models, it was observed that the CTGAN model performs well in

enabling fine-grained control over the data generation. However, it is seen that the

model requires further fine-tuning to be a suitable substitute for the original dataset

or to create highly diverse datasets that could serve as an unbiased class of data. The

outcomes of this thesis contribute to the advancement of the field of ICS research along

with providing valuable insights into the strengths and weaknesses of the generation

of synthetic data. Researchers can leverage this knowledge to select the right methods

based on their needs and application processes. The availability of such high-quality

datasets will assist people in future endeavors as high-quality sensor datasets will be

readily available for research purposes and not be inhibited due to privacy concerns.

This would also enable the development of algorithms tailored for ICS datasets and

also improve the system designs and enhanced security mechanisms of the ICS.

5.1 Future Work

It is worth noting that this research is not without limitations. While our evalua-

tion framework provided a comprehensive analysis, there may be additional factors

or metrics that could be considered in future studies. Furthermore, the choice of syn-

thetic data generation technique may vary depending on the specific characteristics

of the ICS dataset and the research objectives.

It is also recommended to work on other forms of synthetic datasets as these

SCADA-based networks are popular in not only GAS pipeline datasets but also in

water and natural gas as well. This indicates that the evaluation framework can be

applied to a wide variety of datasets to check its integrity and usefulness. It is also

imperative to explore Transformer based models, diffusion models and other such

hybrid models to diversify the evaluation result. Continual evaluation of the ICS

58
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datasets and improvement of the framework is paramount for success to address the

future challenges experienced in the various synthetic data generation models.

Thus, this thesis provides valuable insights and aims to be a solid foundation

to generate high-quality synthetic data for ICS datasets and provide an evaluation

framework that is freely customizable to the user’s everyday needs and also contributes

to the advancements in these areas.
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