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Abstract

In recent years, self-supervised learning has shown remarkable promise for expanding

the capabilities of deep-learning-based computer vision models. In many self-supervised

learning approaches, specifically those that employ a Siamese Network, data aug-

mentation is a core component of the algorithm. However, typically a standard

set of augmentations are employed without further investigation into improving the

augmentation strategy used. This thesis aims to address this issue by taking a

step forward to better understand the impact of data augmentation on cutting-edge

computer vision based self-supervised learning algorithms. Inspired by supervised

augmentation optimization approaches, this thesis explores the possibility of further

optimizing four SOTA self-supervised learning algorithms, BYOL, SwAV, NNCLR,

and SimSiam, by improving augmentation operators used in the pretext task. Using

a Genetic Algorithm, it was possible to learn augmentation policies which yielded

higher performance than the original augmentation policies for all four self-supervised

learning algorithms, on two datasets, SVHN and CIFAR-10. This thesis shows that

improving the augmentation policies used in computer vision based self-supervised

learning algorithms is a fruitful direction for further improving on the cutting-edge

performance yielded from this family of algorithms.

vii



Acknowledgements

First, I would like to acknowledge the support, supervision, and guidance provided by

Dr. Stan Matwin; I am forever grateful for the privilege of having his supervision. I also

would like to acknowledge the guidance provided by Dr. Zahra Sadeghi for this work;

the numerous discussions, collaborations, and critical feedback have greatly benefitted

my development as a student and researcher. I also would like to acknowledge Dr.

Michael McAllister for guiding me during a turbulent period of my studies and personal

life. Lastly, I would like to acknowledge all of my lab mates for their support and

friendship throughout my degree.

viii



Chapter 1

Introduction

Vision is one of the vessels in which biological life understands the world around

it; developing artificial intelligence techniques to leverage this powerful information

stream via images and videos i.e. Computer Vision, has proven extremely challenging

but astoundingly fruitful. Deep Learning has succeeded incredibly in complex and

prevalent computer vision problems, such as image classification, object detection,

visual tracking, semantic segmentation and image restoration [10]. However, much of

this success hinges on the availability of massive, annotated, datasets such as ImageNet

[18], which contains over 14 million labelled images. In many real-world problems,

obtaining labelled datasets of this scale is extremely difficult or unattainable. An

approach known as Self-Supervised Learning (SSL) has shown remarkable promise in

expanding the capabilities of deep-learning-based computer vision models by alleviating

the need for large labelled datasets.

The Siamese Network architecture [46] is a deep learning architecture which is core

to many of the successful SSL algorithms for computer vision. For SSL algorithms

which employ a siamese network, data augmentation, a method which uses one or

more techniques to enhance the size and quality of training datasets [72], is central to

the learning mechanism. Arguably, the most influential use of the siamese network for

SSL, SimCLR, was proposed by Chen et al. [12]. In this work, they introduce the

concept of employing data augmentation for forming the prediction task; specifically,

SimCLR learns by maximizing the agreement between two different augmentations

of the same image [12]. A core finding in the work presented by Chen et al. is that

the composition of augmentations is crucial to the success of SimCLR. They found a

particular combination of augmentations which proved to be most effective. Given

the impressive results and theory behind SimCLR, this combination of augmentations

has been used in many cutting-edge SSL techniques [79]. However, recently Cosentino

et al. [15] has shown that the choice of augmentation operators is an important

component which should be considered on a case to case basis. Therefore using only

the carefully selected augmentations initially found by chen et al. could produce

sub-optimal results. Inspired by the success of SSL for CV and the possibility of further

1
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improvement via the selection of augmentation operators, this work investigates if it is

possible to systematically improve the choice of augmentation operators used for four

state-of-the-art algorithms: SwAV [9], BYOL [1], NNCLR [22], and SimSiam [14].

The systematic selection of augmentation operators for deep learning algorithms is

a research area known as augmentation optimization. AutoAugment [16] was the first

augmentation optimization method, which applied reinforcement learning to optimize

the augmentations used for a supervised classification task. Many other researchers

built on the foundations provided in AutoAugment, such as improving the speed of the

approach [55], [32], employing a population-based method [37], and leveraging a random

search algorithm [17]. More recently, augmentation optimization has been employed for

graph-neural-network-based SSL [82] [43], [81]. For augmentation optimization with

image-based SSL methods, approaches such as manually choosing various combinations

of augmentations [79], or employing non-population-based augmentation optimization

algorithms [69] have been investigated. Although the current works investigating the

selection of augmentation operators in image-based SSL show promising results, there

is a lack of thorough evaluation of the many possible augmentation combinations.

This work proposes a novel framework for applying a Genetic Algorithm (GA)

to the problem of augmentation optimization in the self-supervised computer vision

domain. Therefore, the primary goal of this research is to understand if it is possible

to use a GA to optimize the augmentation operators in image-based SSL methods,

specifically those employing a siamese network. A core motivation behind employing

a GA is that it is a population-based method, and although it does produce higher

computational overhead, a large number of evaluations of augmentation combinations

are carried out. A secondary goal of this research is to deeply investigate the many

different augmentation combinations produced by the GA to understand if relationships

exist between specific augmentations and the outcome of the respective SSL algorithm.

This research investigates whether it is possible to improve the SSL algorithms SwAV

[9], BYOL [1], NNCLR [22], and SimSiam [14] by using a GA to optimize the choice

of augmentation operators, and additionally if it is possible to find any relationships

between the specific augmentations and algorithms being used.

Previous work in augmentation optimization for SSL for image-based approaches

is very limited, this work contributes the first evolutionary approach for augmentation

optimization in the SSL computer vision domain. The investigation of augmentation

optimization carried out by Reed et al. [69] and Yang et al. [81] apply a non-

population-based approach, which is less interpretable than the proposed work. This

work also contributes two metrics for measuring the impact that the augmentations
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have on the training process and employing them to reveal how specific augmentation

operators affect the SSL training process. Given the outcomes of the GA and metrics

to interpret the results, this work produces an analysis on the impact of augmentation

optimization on the SSL algorithms of interest.

This thesis touches on many different sub-fields of machine learning, including

self-supervised learning, evolutionary computation, and hyper-parameter optimization.

Additionally, several works in augmentation optimization inspire and guide the work

in this thesis. These topics are covered in Chapter 2. Combining all the mentioned

sub-fields of machine learning, the proposed GA requires a detailed explanation of its

components, including the genetic operators and other evolutionary components, the

self-supervised learning algorithms and baselines, and the augmentations used in said

algorithms in baselines. These components are discussed in detail in chapter 3. Many

discoveries related to the impact of augmentation policies on the four self-supervised

learning algorithms were made in the experiments carried out with the proposed

genetic algorithm. Overall, it is clear that the SSL algorithms can be further optimized

by changing only the augmentation policies. This finding is shown in chapter 4, where

the results of the experimentation as well as in-depth analysis can be found. Lastly,

many challenges exist in this work, which opens up several avenues of future works,

this is discussed in Chapter 5.



Chapter 2

Background and Related Work

2.1 Deep Learning and Self-Supervised Learning

Deep Learning (DL) is a massively popular area of machine learning and is a central

component of the proposed work. DL algorithms are based on the theory of Artificial

Neural Networks (ANN) [80]. Through the use of multiple processing layers and

back-propagation, DL discovers intricate structure within large datasets [53]. In many

real-world applications, many factors of variation influence data; DL can solve this

issue by learning representations expressed in terms of simpler representations [7].

Convolutional Neural Networks (CNNs) are a commonplace DL architecture inspired

by the biological visual perception mechanism present in living creatures [28]. CNNs

have been at the core of many significant breakthroughs in machine learning; some

prevalent models include AlexNet [49], VGGNet [73], and ResNet [35]. In most SSL

algorithms, CNNs are the backbone for learning representations [2]. This work employs

a relatively small and simple CNN for the investigated SSL algorithms.

CNNs are commonly used in image-based SSL algorithms. Specifically, they are

used when building a siamese neural network. A siamese neural network consists of

twin neural networks which accept two different inputs and are joined by an energy

function at the top of the neural networks. The parameters of the two networks are

tied to each other; this ensures that two very similar images cannot be mapped to

very different locations in the feature space [46]. Siamese networks maximize the

similarity between different augmentations of the same image. They have become a

common architecture in various unsupervised visual representation learning algorithms,

including many SSL algorithms [14]. The four algorithms which are investigated in

this work, SwAV [9], BYOL [1], NNCLR [22], and SimSiam [14] all employ a siamese

network or siamese network variant.

The history of DL began in 1943 when it was shown that neurons can be connected

together to build a Turing machine [3]. In 2012, Krizhevsky et al. [50] trained a deep

convolutional neural network, AlexNet, for the ImageNet ILSVRC-2012 contest, which

performed astoundingly well compared to the other proposed ML methods. Following

this early monumental finding in DL, great success has been found in applying DL

4
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to supervised, unsupervised, semi-supervised and reinforcement learning problems.

The initial DL breakthroughs were partly due to the massive amount of data curated

and labelled to train large deep neural networks. For example, the above-mentioned

famous computer vision data set, ImageNet, [18] contains over 14 million images.

However, in most real-world settings, a large amount of unlabelled data is very costly

to annotate. SSL tackles this issue by first learning implicit information from the data

without the need for human annotation which allows for massive unlabeled datasets

to be leveraged.

By learning structure within the data without human annotation, SSL can be

thought of as an unsupervised learning method [59]. Unsupervised learning refers to

all algorithms which employ unlabelled data to derive implicit information within the

dataset, SSL achieves this with representation learning. There has been a growing

interest in unsupervised learning for learning feature representations, SSL accounts for

a large body of this work, and there also exists a large variety of generative methods

which aim to solve this problem [2]. Generative methods aim to learn a function

that encodes an input to a reduced vector space and a decoder that reconstructs

the reduced vector back into the input space [56]. One type of generative method is

Auto-regressive models such as Pixel-CNN [78], and WaveNet [64]; these approaches

model images pixel-by-pixel and have the advantage of modelling context dependencies

within images [56]. Another famous generative method is the variational auto-encoder

[45], an approach which maps the input x to a reduced representation space and

subsequently reconstructs the input x′, the goal of the model is to minimize the

reconstruction error between x and x′. The above-mentioned generative methods

are widely known approaches which are similar to SSL in that they aim to leverage

implicit information within the dataset to learn a representation in an unsupervised

manner.

Semi-supervised learning is a learning method which can be thought of as in between

supervised and unsupervised learning. Semi-supervised learning has components

similar to self-supervised learning. Semi-supervised methods typically utilize large

unlabeled data points combined with a small number of labelled data points [11]. Like

SSL, semi-supervised learning can leverage unlabelled data. However, how this is

accomplished is fundamentally different from SSL. Our method employs SSL to learn

information about a dataset without labels, then train on the downstream task, a

supervised classification task. Similarly, in semi-supervised learning, the labelled and

unlabelled data are drawn from the same distribution [85].

The training process of first pretraining a model using SSL then training on a
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downstream task is a form of transfer learning. Transfer Learning (TL) aims to improve

the performance of target learners on target domains by transferring knowledge from

different, but related source domains [85]. Theoretical and empirical evidence exists

that TL provides performance improvements and increases generalizability to target

tasks [85]. However, a clear drawback to this approach is that it requires large labelled

datasets for pretraining the models on the source domain, and these labels may not

be accurate in the target task [2]. SSL can be considered a form of transfer learning,

as labels are automatically generated and trained within the pretext task, and the

resultant representation is subsequently used for training in the downstream task [59].

The first SSL methods relied on auxiliary tasks to learn representations, these

methods work by using labels created automatically based on attributes present in

the dataset [2]. More recently, contrastive learning has been found to be exceptionally

useful in SSL; this method works by comparing similar inputs, known as positive

pairs, with dissimilar pairs, known as negative pairs [52]. SSL has two main phases,

first solving the pretext task and, subsequently, the downstream task. In the pretext

task, a neural network is trained on a task that borrows implicit or generated labels

from the data. The representation learned in the pretext task is then trained on the

downstream task; in computer vision, some common downstream tasks are image

classification, object detection and segmentation [41].

For SSL using auxiliary tasks, the model learns by obtaining supervision signals

in the data through a specified task, i.e. an auxiliary task [2]. Auxiliary tasks can

be designed for any data type, such as audio, text, image, and video [41]. This work

focuses on image-based self-supervised learning; several interesting auxiliary tasks

exist for this domain. Noroozi ( et al.) [63] proposed a popular technique in which

they train a CNN to solve jigsaw puzzles that are generated from unlabelled image

data points; this auxiliary task was found to produce learned features which capture

semantically relevant information. Zhang et al. [84] propose an auxiliary task where a

CNN learns to colourize greyscale images; this method utilizes unlabelled image data

and generates labels by converting RGB images to greyscale and employs the RGB

images as ground truth for colourizing the image data. Gidaris et al. [25] proposes a

rotation auxiliary task where a CNN is trained to predict how much an image has

been rotated; in this case, the images are rotated, and the labels are derived from

the ground truth non-rotated images. Many auxiliary tasks exist for self-supervised

learning, and the above three only serve as examples of what has been proposed.

On the other hand, contrastive learning aims to embed augmented versions of

the same sample (positive samples) close to each other while trying to push away
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embeddings from different samples (negative samples) [2]. Instead of deriving labels

from an auxiliary task in an SSL setting, contrastive learning methods learn a dis-

criminative model according to some notion of similarity using the unlabelled dataset

[52]. Memory banks are common in some of the earlier contrastive SSL methods. It

has been found that large negative sample sizes are required, leading to a significant

increase in mini-batch sizes. To address this, memory banks are proposed to store the

feature representations of large negative samples without increasing the mini-batch

size [2].

Memory banks were a prevelant feature in earlier SSL approaches. For example

the popular SSL algorithm PIRL [61] employs a memory bank and adopts the jigsaw

puzzle pretext task. The goal of PIRL is to encourage the image representations to be

invariant to the configuration of the generated jigsaw puzzle. Additionally, He et al.

[34] propose Momentum Contrast (MoCo); similar to PIRL, MoCo utilizes a memory

bank, but also employs a momentum encoder. MoCo formulates contrastive learning

as a dictionary look-up, hinged on the idea that a dictionary covering many negative

samples can be used to learn good features. Opting for a more simple algorithm than

MoCo and PIRL, the framework presented by Chen et al. [12] known as SimCLR

presented a method for contrastive learning which did not require any specialized

architectures or memory banks. Chen et al. found that signicantly increasing the

number of epochs and batch size greatly improved the performance of the algorithm.

After the release of SimCLR, Moco-V2 [13] showed that with simple modifications

to MoCo, using an MLP projection head and more data augmentation, considerable

improvements can be made, outperforming both SimCLR and MoCo.

This work focuses on four SSL algorithms that belong to the family of contrastive

algorithms or are related to contrastive learning, SwAV [9], BYOL [1], NNCLR [22],

and SimSiam [14]. The choice of these four algorithms is two-fold, first they are

superior to previous approaches such as SimCLR, MoCo or PIRL and secondly they

all share many key components of interest. In most cases, they opt for simplicity

and reduce the need for complex additions such as memory banks or momentum

encoders. All four algorithms share fundamental similarities in their architecture and

underlying methodology. Specifically, all algorithms employ a Siamese architecture at

their core. A common issue present in many algorithms employing Siamese networks

is solution collapse. Collapse occurs when the model maps every image to the same

point, maximizing similarity when comparing but not learning critical information

about the problem. This issue is acknowledged however tends to not be an issue

in practice. All four algorithms employ similar augmentation strategies which are
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influenced by Chen et al. and the augmentations used for SimCLR. The choice of

augmentations used for these approaches is not heavily investigated and therefore

the proposed work aims to look deeper into the choice of augmentations for BYOL,

SimSiam, NNCLR, and SwAV to understand better how they affect the performance

of the different algorithms.

The key idea of BYOL [1] is that from a given representation, called the target

representation; it is possible to train an enhanced representation, the online repre-

sentation. BYOL works iteratively, improving the learned representation by using a

slow-moving average of the online network as the target network [1]. BYOL does not

require negative samples and claims to be insensitive to batch sizes and the types of

augmentations used. In the proposed methodology of BYOL, collapse is not directly

prevented. However, it was found that the solutions do not tend to converge to a

collapsed state. BYOL’s ability to not require large batch sizes and negative samples,

as well as having a novel level of robustness to augmentations, made it an outstanding

algorithm at its release. It was shown that BYOL suffers a much smaller performance

drop than SimCLR when only using random crops. BYOL does not explicitly prevent

collapse; however, this issue is alleviated using a stop-gradient, a core component also

present in SimSiam [14].

SimSiam is an SSL method that opts for simplicity and highlights the significance

of the siamese network architecture for SSL methods. Chen et al. [14] show that the

shared weight configuration is vital to many core SSL algorithms, and a simple stop

gradient approach can be used to prevent collapse. The outcomes of the experiments

for SimSiam provided surprising evidence that meaningful representations can be

learned without using negative samples, large batches, and momentum encoders. The

first two were already unnecessary in the earlier work shown in BYOL. However,

the momentum encoder component (slow-moving average) was crucial to avoiding

collapsed solutions. The most remarkable discovery produced by the authors of

SimSiam could be that a simple stop gradient is all that is needed needed to train a

siamese architecture successfully.

Caron et al. [9] proposed a novel mechanism for self-supervised learning which

differs greatly from BYOL and SimSiam. BYOL and SimSiam learn by predicting the

”closeness” of two views of a sample; this is a core concept to siamese networks and

their impactful progress in representation learning at large. whereas SwAV learns by

computing a code from an augmented version of an image and then predicting this

code from other augmented versions of the same image [9]. By employing a siamese

architecture, SwAV, at its core, still aims to learn a robust latent representation
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of the problem. Using this alternate approach yields a breakthrough unfound by

BYOL and SimSiam, the ability to significantly reduce the number of pairwise feature

comparisons, reducing the computational requirements of the algorithm.

Compared to the other discussed SSL methods, Dwibedi et al. [22] introduced

a novel concept concerning the selection of positive pairs. Rather than deriving

positive samples for an image via augmentation, they show that using the image of the

interest’s nearest neighbours in the given data space can be used as positive samples.

Similar to SimSiam, NNCLR employs a straightforward architecture. The novelty

is in selecting positive samples from the given dataset rather than derivation from

augmentation. NNCLR samples positive samples by computing the nearest neighbours

of a given sample in the learned latent space of the dataset. This approach provides

more semantic class-wise variations rather than pre-defined transformations, which

tend to provide more geometric information [22].

All four algorithms share many similarities yet have differences which make the

comparisons of the effect of augmentation optimization interesting. SimSiam can

be thought of as the simplest version of these learning approaches using a siamese

architecture. BYOL adds a slight bit of complexity to the learning method by

employing a slow-moving average approach for the target component of the Siamese

network. Like SimSiam, NNCLR also opts for simplicity in its architecture. However,

it refrains from employing only augmentation to generate positive samples and instead

determine the nearest neighbours of a given image to select positive samples. SwAV

differs from all three methods because it utilizes a swapped prediction mechanism

for learning. All four algorithms have recently shown remarkable breakthroughs in

the self-supervised computer vision world, so they have been chosen as focal points

of the proposed work. With the exception of BYOL and its novel multi-cropping

augmentation, the authors of the four algorithms do not deeply explore the choice

of augmentation operators and default to those which tend to be used by other SSL

algorithms. Given the limited discussion on the effect of data augmentation, the

question of its impact on the different SSL algorithms remains.

2.2 Genetic Algorithms

Genetic Algorithms (GA) are population-based optimization algorithms inspired by

natural selection. One of the basic building blocks of a GA is the representation of

a solution, this is known as a chromosome and is encoded as a genotype. Different

encodings exist for building a GA, such as binary, permutation, value, or tree encoding
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[44]. The genotype must be decoded into its phenotype and evaluated using a defined

function, known as the fitness function. Given a fitness function and chromosome

representation, different biological operators can be applied to learn an optimal

configuration. Binary encodings are simple and easy to implement but are limited

to problems encoded as a binary string, permutation is limited to task ordering

problems, and tree encodings are challenging to design and are used primarily for

evolving programs [44]. For problems involving neural networks, a value-encoding

is commonly used. It has the double-edged sword of requiring to define custom

crossover and mutation methods, which allows for a higher degree of flexibility but

requires more thought for implementation [44]. In value-encodings, the gene or

chromosome is represented by a string of values; these values can be integers, real

numbers, characters or objects defined by the algorithm designer [51], [68]. For this

work, a value encoding was employed; due to the flexibility of the value encoding for

representing the augmentation policies, the details on the value-encoding can be found

in the methodology section.

GAs must first be initialized with a random population; the main objective of

population initialization is to produce a diverse population which covers the search

space as uniformly as possible [60]. A GA consists of three primary biological operators,

Selection, Crossover and Mutation [67]. Selection is the process of selecting individuals

based on their relative fitness. Crossover takes two or more parent solutions and

randomly combines them to produce one or more children. Mutation randomly alters

a solution’s contents, allowing for new solutions to be discovered.

When performing selection, individuals are probabilistically selected based on their

fitness; this allows the more fit individuals to have more children than the less fit

individuals [67]. There are many different well-researched methods of selection for GAs.

The most common selection methods are rank, tournament, Boltzmann, stochastic

universal sampling and roulette wheel [44]. Tournament selection works by selecting

k individuals and ranking them according to their relative fitness; this is repeated n

times for the entire population [36]. Stochastic Universal Sampling (SUS) is a Roulette

wheel selection variant that aims to reduce the issue of premature convergence [42].

Boltzmann Selection scales individuals’ fitness within a population according to the

Boltzmann distribution [6]. Roulette wheel selection works by selecting individuals

with probabilities proportionate to their fitness; it has been found that premature

convergence can be an issue with this approach [5]. Roulette wheel selection is shown

in equation 2.1. Roulette selection is simple to implement and depends upon variance

in the fitness function [44]. For these reasons, roulette wheel selection is used in this
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p(i) =
f(i)∑j−1
n f(j)

(2.1)

2.1: Equation for computing the probability of selection for an individual i, where n
is the population size, f()̇ is the fitness and p()̇ is the probability of selection [5]

work. A common addition to selection algorithms is to employ elitism. Elitism is

a strategy to reduce genetic drift by ensuring the most elite individuals are carried

through to the next generation indefinitely [21]. This work employs elitism to ensure

that the best-found solutions are carried over to the next generation.

In addition to selection, crossover is another core genetic operator in a GA.

Crossover operators combine the genetic information of two or more parent chromo-

somes to produce offspring [44]. One-point, two-point, k-point, and uniform crossover

operators are commonly used in GAs [75]. Additionally, partially matched (mapped)

crossover (PMX) [26] is a crossover method which performs better than most crossover

operators [44]. PMX works by having one parent donate part of its genetic material

r[38]. Regarding this work, an issue with the above-mentioned approaches, except

PMX, is that duplicate genes can occur in a chromosome following crossover. For

augmentation policies, it is essential to avoid duplication of augmentation operators.

This is because, in practice, augmentation policies are applied sequentially and do not

repeat operators. Due to the superior performance and avoidance of duplicate genes,

PMX was employed for the propsed GA in this work.

The proposed work formulates the chromosomes as a value-encoding. However,

it could be possible to formulate the problem as a permutation of augmentations.

In this configuration, the augmentations used would be fixed, and only the ordering

and intensity of the augmentations would be altered in the evolutionary process.

Many different methods for crossover in permutation-based genetic algorithms exist.

Some permutation-based genetic algorithms are Order crossover 1, Order crossover 2,

Cycle crossover, Partially-mapped crossover, One-point crossover, Two-point crossover,

Uniform crossover, Position based crossover and Best-order crossover [21]. Order

crossover 2 is a very intuitive crossover method; it produces a child individual from

two parents by randomly choosing n random points from one parent and copying them

in the offspring in the order imposed by the other parent [21]. Using a permutation-

based encoding would limit our ability to have relatively small-sized chromosomes

with diverse augmentation policies; this is the main reasoning behind employing a

value-encoding.
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The last of the three genetic operators is mutation. The mutation operator is

applied to an individual produced by the crossover operation; mutation is applied with

a probability of Pmut [4]. The mutation rate is typically set to a low value as, with a

high mutation rate, GAs convert to a primitive random search algorithm [60]. Some

standard mutation operators include Uniform, Non-uniform and Gaussian mutation

[60]. For value-encodings, mutation operators typically need to be defined by the

algorithm designer [44].

Mutation and crossover typically are applied with a predefined probability pmut,

pcx. To build on this, the Adaptive Genetic Algorithm (AGA) was proposed by

Srinivas et al. [76]. This approach adjusts the probability of mutation and crossover

according to the individual’s fitness. AGA ensures that High-fitness solutions are

protected, while non-performant solutions are heavily disrupted i.e. crossed over and

mutated [76]. For this reason, this work employs adaptive mutation and crossover

rates rather than the classical fixed mutation and crossover rates.

2.3 Hyper-Parameter Optimization

It has been shown that machines have superhuman performance on very well-defined

problems. However, due to the problems’ narrow nature, there is still a massive gap

between human and artificial intelligence. A key aspect of human intelligence is that

we can quickly generalize knowledge from a previously learned task or concept and

apply it to a new task or concept. Meta-Learning is the science of systematically

observing how different Machine Learning approaches perform on a wide range of

tasks and then learning from this experience to learn new tasks much faster [39].

Meta-Learning is interested in this by targeting the problem of learning to learn. The

problem of augmentation optimization can be thought of as learning to learn, in the

sense that we are learning which augmentations allow are most optimal for the learning

process.

Augmentation Optimization can be more formally defined as a hyper-parameter

optimization (HPO) problem. HPO is a subset of Meta-learning that aims to learn

which configurations work better on a particular data set. It aims to learn from

experience to design algorithms with optimal hyperparameters. In this formulation,

the augmentation strategy can be thought of as a hyperparameter which we are

optimizing. Defining an HPO problem consists of four main components: an estimator

with an objective function, a search space i.e. hyper-parameter space, an search

optimization method to find the hyper-parameter combinations and an evaluation
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function to measure how different hyper-parameter configurations affect the model

[80]. Many approaches exist to solve this problem, such as the exhaustive grid

search approach, random search method, Evolutionary approaches, reinforcement

learning, and hyper gradient approaches [8]. In the case of this work, we investigate

a small neural network with the four SSL algorithms, the search space is the set of

augmentations and their respective parameters, we employ a GA to optimize the

problem and utilize the performance of the SSL algorithms to measure how the different

hyper-parameters are affecting the algorithms.

Evolutionary algorithms and population-based methods are popular choices for

HPO because they can optimize many hyperparameters simultaneously in a manner

that is better than random search [8]. Some popular evolutionary algorithms for

HPO include evolutionary strategies, particle swarm optimization and GAs [8]. The

technique CMA-ES [30] is a population-based technique that evaluates a randomly

selected set of configurations, selects the best one, and then iteratively samples new

configurations around the current best until it converges. More recently, CMA-ES has

been returned to the light as a candidate for hyper-parameter optimization in deep

neural networks [29]. Lorenzo et al. [57] employ a PSO algorithm to produce DNNs

with a minimal topology to perform well on CIFAR-10.

For the purpose of HPO, GAs are easily implemented and do not require a good

initialization because the genetic operators lower the possibility of missing global

optima [80]. Reif et al. employs a GA to optimize the hyper-parameters of a support

vector machine. GAs can also be used to optimize the hyperparameters of RL

algorithms [71]. More recently, Yuan et al. [83] employs a tree-structured mutation

strategy for a GA to optimize the hyperparameters of a Graph Neural Network.

Another recent GA-based HPO for DL models is proposed by Erden et al. [23], who

employs a GA to optimize a DL for a time-series prediction task. The promising

results in the literature motivate the choice of a GA for HPO in this work.

DL can benefit significantly from HPO as the training pipeline has many different

hyper-parameters which can be optimized [80]. Koutsoukas et al. [47] investigate the

optimization of many different hyper-parameters in an ANN, such as the activation

function, dropout regularization, number of hidden layers and number of neurons for

modelling bioactivity data. Domhan et al. [20] propose a method that is agnostic

to the optimizer used. It speeds up the hyperparameter search for CNNs, including

learning rate, momentum, weight decay, number of pooling layers, learning weight

decay and hyperparameters specific to the convolutional layers. Soon et al. [74] employ

a Particle Swarm method to optimize the hyperparameters of a CNN. Overall, many
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attempts exist at optimizing different hyper-parameters for deep learning models, and

the use of a GA has been shown to be effective for this task, therefore the proposed

work employs a GA for the task of augmentation optimzation for computer vision

based self-supervised learning.

2.4 Learning augmentation strategies

Data augmentation has significantly increased performance in many deep learning

domains, especially computer vision. A problem with data augmentation is that the

specific augmentations and hyperparameters are manually selected. This manual

selection may lead to nonoptimal solutions. AutoAugment [16] was the first approach

to solve this issue by automatically searching for augmentation policies. AutoAugment

takes a reinforcement learning approach to find an optimal augmentation policy for

a given data set. Given a set of 16 different common augmentation strategies, five

strategies are selected to define a policy. Each augmentation additionally has an

intensity level associated with it. In this framework, the action space is formed by

selecting the different augmentation strategies and their respective intensities. The

reward signal is defined by the training outcome of the neural network given the chosen

policy. This approach was found to outperform manually selected augmentations.

It was identified by Ho et al. [37] that due to the need to train a neural network

at every step, AutoAugment was computationally infeasible to the ordinary user.

To target the computational infeasibility issue present in AutoAugment, Population-

Based Augmentation (PBA) was proposed. This approach significantly speeds up the

computation time while maintaining comparable results to AutoAugment; this is done

by learning a policy schedule rather than a fixed augmentation policy. By formulating

the augmentation policy search problem as a particular case of hyperparameter schedule

learning, the need to estimate the final performance of training a child model is avoided,

and therefore significant speedups are possible. Like PBA, Fast AutoAugment [55],

and Faster AutoAugment [32] are also proposed to accelerate the data augmentation

policy search. Also building on AutoAugment, RandAugment [17] employs a random

search technique which utilizes uniform sampling of different randomly generated data

augmentation policies.

More recently, this idea of avoiding the requirement of estimating the final training

performance has been tackled using meta-learning approaches. Meta Approach to Data

Augmentation Optimization (MADAO) [33] optimizes the model and the augmentation

policy by formulating the problem as a bi-level optimization problem. MADAO
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provides a solution that is both computationally efficient and superior in model

performance. Similar to MADAO, You et al. [82] also optimize the augmentation

policy for graph SSL using a bi-level optimization strategy. From a self-supervised

perspective, a similar approach to MADAO, AutoSSL [43] is carried out for selecting

pre-text tasks for self-supervised learning of graph neural networks. AutoSSL explores

using meta-gradient descent and evolutionary strategies to learn SSL pre-text tasks

efficiently. In addition to AutoSSL, Yang et al. [81] also explored using adversarial

learning for optimizing augmentation policies for graph neural networks.

Although augmentation optimization is popular for graph-based SSL, for image-

based SSL methods it is a relatively unexplored area. Typically with image-based SSL,

the augmentation strategies are carefully selected and are heavily influenced by the

seminal work carried out by chen at al. [12]. Wang et al. [79] explore alternative aug-

mentations such as those explored in used in augmentation optimization methods such

as AutoAugment. This work explores the augmentation policies used in most existing

SSL methods, which they deem as weak augmentations, and strong augmentations,

which can be found in augmentation optimization methods such as AutoAugment.

Wang et al. find that it is possible to leverage the distributional divergence produced

by strong augmentations to improve the learned representation produced using con-

trastive learning. Additionally, Reed at al. [69] proposes SelfAugment, a method

which applies Fast AutoAugment and RandAugment to learn augmentation policies

for image-based contrastive SSL. Reed at al. employs the self-supervised rotation

auxiliary task to evaluate the learned representation in this work and shows that

using the rotation task is highly correlated to supervised evaluation methods such

as supervised fine-tuning. Due to the use of reinforcement learning, SelfAugment is

thought of as a black-box approach to augmentation optimization. Through the use of

a GA, the proposed approach aims to tackle the augmentation optimization problem

in a more interpretable manner. This is achieved through the expansive evaluation of

various augmentation configurations which is carried out in the evolution process of

the GA. Therefore SelfAugment is more computationally efficient than the proposed

GA, however this comes at the cost of a lower degree of interpretability. Overall, these

works provide promise in the ability to optimize the augmentation policy used in

image-based SSL algorithms, however, the use of a GA to do so has yet to be explored.
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Methodology

3.1 Genetic Data Augmentation Strategies

This work applies a Genetic algorithm to optimize the augmentation policies for four

cutting-edge SSL algorithms. To represent the augmentation policies as chromosomes,

we employ a value encoding. For the fitness function, we use a proxy function

that aims to gauge the impact of changing the augmentation policies for a given

SSL algorithm. Below, our formulation of the fitness function is elaborated. In

addition to the chromosome definition and fitness function, specialized mutation and

crossover methods were required to ensure that the chromosomes represented realistic

augmentation strategies. However, it was possible to employ standard selection

techniques for the GA. We experiment with two different modes of our GA, a single-

objective and a multi-objective mode. With single-objective, we choose one SSL

algorithm exclusively for the GA. With multi-objective, all four SSL algorithms are

evolved together.

Taking inspiration from AutoAugment [16] and the proceeding work in learning

augmentation policies, the proposed value encoding assumes a set of k augmen-

tations, A = {a1, a2, . . . , ak}. For each augmentation, ai an intensity value i can

be defined. Figure 3.1 visualizes how intensity can be thought of through the ex-

ample of the augmentation operator rotate. Given K augmentations, with an as-

signed intensity value i, in the single-objective mode, we represent a chromosome

as a list of two-tuples representing each augmentation, of length l where l ≤ K,

e.g. Ci = {(a1, i1), (a2, i2), . . . , (al, il)}. For the multi-objective mode, we represent

the chromosome as a two-tuple, containing the name of one of the four SSL algo-

rithms and then the augmentation policy, as defined for the single-objective mode,

e.g. Ci = (SwAV, {((a1, i1), (a2, i2), . . . , (al, il)}). When performing crossover and

mutation, We do not consider the order of augmentations as important. For the

multi-objective mode, we independently crossover and mutate the gene representing

the SSL algorithm and the augmentation strategy. To ensure a realistic augmentation

strategy without duplicate augmentations, each gene in a particular chromosome must

have a unique augmentation operator.

16
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Augmentation Intensity Range Type

HorizontalFlip 0.0, 1.0 float
VerticalFlip 0.0, 1.0 float
ShearX 0.0, 0.3 float
ShearY 0.0, 0.3 float
TranslateX 0, 14 int
TranslateY 0, 14 int
Rotate -30, 30 int
Color 0.1, 1.9 float
Solarize 0.0, 1.0 float
Contrast 0.1, 1.9 float
Sharpness 0.1, 1.9 float
Brightness 0.1, 1.9 float

Table 3.1: All augmentation operators used and the associated intensity ranges. This
set of operators is the same as AutoAugment [16].

Figure 3.1: Example of intensity values for the operator rotate.

the continuous ranges, whereas integer values are sampled from the respective ranges.

Once the population is initialized, the fitness of each individual must be computed.

The proposed fitness function aims to evaluate an augmentation policy for a specific

SSL algorithm by using the augmentation policy for training the model using the SSL

algorithm and then using the learned representation in a downstream supervised task.

The test accuracy in the downstream supervised task serves as the fitness. For this

training process, most of the hyperparameters used in the pretext task are the same



18

Figure 3.2: High-level overview of the proposed approach. In (a), the GA is shown,
with the fitness function elaborated on in (b). The fitness function is considered
the evaluation of the effect of a particular augmentation policy on the SSL training
process.

as those used in the original papers. The chromosome i.e. augmentation policy being

evaluated replaces the original augmentation policy and so this hyperparameter differs

from the original SSL algorithms. Additionally, we experiment with batch sizes of 32

and 256 and train for 10 epochs. For the downstream task, the hyperparameters are

fixed in all experiments, using a batch size of 32, 10 epochs, and an Adam optimizer

with a learning rate of 0.001, a weight decay value of 0.0005, and no augmentation

is used. In order to ensure that the results are related only to the changing of

augmentation policies and not randomness within the DL pipeline, we fix model

initialization and random shuffling of data for each chromosome evaluation during the

run of the GA.

Following the evaluation of the population, the genetic operators selection, crossover

and mutation must be applied. A large swath of possible selection methods exist for

the proposed GA, such as Roulette, tournament, and Rank [67]. Our approach opts

for a simple and common yet effective selection method, Roulette. In this approach,

every chromosome has an equal chance of being selected proportional to its fitness.

When choosing a crossover operation for the proposed GA, caution must be taken

to prevent the children’s chromosomes from having duplicated augmentations; partially

Mapped Crossover (PMX) [70] is employed to handle this issue. This method allows for

safely crossed-over chromosomes that do not contain duplicate genes. When performing

a crossover between two or more chromosomes, the mechanism for preventing duplicate

genes is based purely on the augmentation operator and not the intensity. When two

chromosomes are crossed over, the shared genes are completely copied, maintaining the

same intensity as the parent’s gene. When performing crossover for multi-objective,
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PMX is applied to the augmentation policy portion of the chromosome, but the SSL

gene is probabilistically swapped with the other chromosome.

For the mutation operator in the proposed GA, a custom mutation function was

created; we call this function MutGaussianChoice. With MutGaussianChoice, only

the intensities of the augmentation operators are mutated. It does so by probabilis-

tically mutating the augmentations intensity value within the acceptable range for

that specific augmentation. The intensity is increased or decreased incrementally by

the range of the intensity values divided by the increment value N , this increment is

calculated using eq. 3.1 where irange is the augmentation operators respective intensity

range from table 3.1. For the multi-objective mode, MutGaussianChoice is applied

to the augmentation policy portion of the chromosome, but for the SSL gene, the gene

is randomly mutated to a different SSL algorithm.

increment =
max(irange)−min(irange)

10
(3.1)

Inspired by Srinivas et al. [76] our method employs an adaptive rate for both

crossover and mutation operations. The adaptive crossover and mutation rates are

shown in equations 3.2 and 3.3. In these equations fmax and f̄ denote the maximum

fitness value and the average fitness value of the population, respectively, and f ′

denotes the larger fitness of the two chromosomes to be crossed or mutated.

pcx = (fmax − f ′)/(fmax − f̄), f ′ ≥ f̄

pcx = 1, f ′ < f̄
(3.2)

pmut = (fmax − f)/(fmax − f̄), f ′ ≥ f̄

pmut = 0.5, f < f̄
(3.3)

3.2 Self-Supervised Baselines, Evolutionary Self-Supervised Learning and

Further Optimization of Evolved Augmentations

This work aims to understand the impact which augmentation has on the pretext task

of four SOTA SSL algorithms. Using a GA to evolve augmentation policies, hundreds

of models are trained during one run of the algorithm. It is critically important to

provide baselines which are effective at showing how well the found results compare
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with the original approach. To provide baselines for the proposed GA, we use the

respective SSL algorithms with their original augmentation operators. To compare

the baseline with the proposed GA the downstream test accuracy is employed. A

key issue with comparing the outcome of the proposed GA with the SSL baselines

is that DL training procedures are inherently random. Therefore, extra precautions

must be taken to ensure that the results are not due to randomness in the training

pipeline. This was accomplished by controlling the random initialization and shuffling

of data with a fixed seed, ensuring that the only pipeline component that changes is

the augmentations itself.

For training both the baseline and evolved augmentation experiments, a small

and simple convolutional neural network was used as the backbone for both pre-

training and downstream classification. As pictured in 3.3, this network consisted of

3 convolutional blocks, each containing two convolutions with a kernel size of 3x3,

followed by ReLu activations and a max pool and batch normalization operation. This

backbone was used according to the specific algorithm for each SSL algorithm. For

each of the four algorithms, the convolutional blocks shown in Figure 3.3 were used as

the backbone, and the linear layers were replaced with the specific head for the SSL

algorithm. As visualized in Figure 3.4, SimSiam, BYOL, and NNCLR all employ a

prediction and projection head on top of the backbone shown in figure 3.3. SimSiam

employs a prediction and projection head consisting of two 2-layer linear layers [14].

SimSiam is a simple approach which uses only the siamese architecture, this is not

the case for BYOL, NNCLR and SwAV. BYOL employs two 2-layer linear heads for

prediction and projection, and momentum encoders for both [1]. NNCLR employs a

2-layer prediction and 3-layer projection head and incorporates a memory bank [22].

Lastly, SwAV employs a 2-layer linear head, which then is passed into an additional

linear layer to produce prototypes for the swapped prediction problem [9].

In addition to sharing the same neural network backbone, the original SSL training

pipeline, including optimizer, loss function, and respective hyper-parameters with

the exception of the batch size was employed. With batch size, it was of interest

to understand its effect on the pretext task hence batch sizes of 32 and 256 were

experimented with. The choice of a batch size of 32 and 256 were made to compensate

for the small number of epochs used in the training process. This choice was also made

with the understanding that the SSL algorithms of interest do not necessitate large

epochs and large batch sizes [14], unlike earlier contrastive methods which greatly

benefitted from training with a large batch size and number of epochs [12]. For the

hyperparamaterization of the downstream task, a three-layer linear model with ReLu
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activations was added on top of the self-supervised pre-trained backbone as shown in

figure 3.3, and trained for 10 epochs using an Adam optimizer with a learning rate of

0.001 and weight decay of 0.0005, cross-entropy loss, and a batch size of 32.

Figure 3.3: Architecture of Network used for the downstream task. The backbone
(all convolutional layers leading up to the linear layers) is first pre-trained using one of
the four SSL algorithms then the linear head is added to the network for fine-tuning
on the downstream task.

Figure 3.4: Siamese Architecture. Shared parameter neural networks are fed into a
projection and prediction head.

Finally, this work is interested in exploring many different configurations of aug-

mentations in the pretext task of common SSL algorithms. In order to do so, two

relatively small yet very common image classification datasets were used, Street View

House Numbers (SVHN) and Canadian Institute For Advanced Research (CIFAR-10)

datasets. The CIFAR-10 dataset [48] is a popular coloured image dataset consisting of

10 classes airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. This

dataset consists of 60000 32x32 images and has predetermined a train test split with

50000 train images and 10000 test images. The test set consists of 1000 randomly

sampled instances from each class, and then the remaining 50000 are used for the

training set. In this work, we use this default train/test split. The classes in this
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dataset are mutually exclusive, and the creators took extra caution to ensure the simi-

lar classes, truck and automobile, contain no overlap. It is well known that ImageNet

[18] is a standard benchmark for Deep Learning-based image classification. Although

CIFAR-10 is considerably smaller and more straightforward, it embodies a similar

idea of colourful everyday objects. CIFAR-10 is more complicated and therefore more

challenging than the SVHN dataset. The SVHN Dataset [62] is an image dataset

of real-world images of house numbers taken from Google street view images. This

dataset is presented as a more challenging version of MNIST [19] consisting of 600,000

32x32 labelled digits cropped from street view images. The classification problem

posed in SVHN is significantly more challenging than MNIST as it is much more

varied due to being real-life house numbers. SVHN is a relatively simple, commonly

known CV benchmark that is a suitable level of difficulty for the problem we are

investigating.

3.2.1 Technical Components

The implementation of the proposed work relies on several different libraries. For

the deep learning components, such as model architectures, dataset loading, and

supervised training, PyTorch is used [65]. Building on PyTorch, the python library,

Lightly [77], implements cutting-edge SSL algorithms. This library was used for

implementing the four SSL algorithms in this research. To implement the GA in this

research, the python library Deap [24] was used. Experiments were carried out using

the Big Data GPU1 server which consists of a Intel i7-8700K processor which has 6

cores with 2 threads per core, a NVIDIA TITAN Xp GPU and a NVIDIA TITAN

RTX GPU.
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Results

When employing a GA to evolve augmentation strategies for the pretext task for

BYOL, SwAV, SimSiam, and NNCLR, thousands of models were trained using different

augmentation strategies. The experimentation of the proposed GA consisted of three

sets of experiments. First, experimentation with the single objective GA was carried

out using three random seeds for each dataset and batch size used in the pretext task.

Next, initial experiments for the multi-objective approach were carried out. In our

constrained setting, the multi-objective approach was found to be not very effective

and therefore was not thoroughly investigated. However, due to the promising results

of the single-objective approach further experimentation was carried out using more

random seeds. The experiment results were compared against self-supervised baselines

and were found to be statistically significant for the single objective approach. A key

visualization in this section is a 2x2 line plot shown in figures 4.1, 4.2 and 4.4. In

these plots, the x-axis shows the generation, and the y-axis shows the average of the

best fitness over all the seeds for each of the four algorithms. The best fitness at each

generation is extracted for each random seed experiment, and then the average overall

seeds are computed.

Several hyper-parameters were fixed for all above described experiments, these

experiments include the augmentation policy size, population size and number of

generations. The seminal strategy provided by Chen et al. [12], SimCLR, employed a

simple augmentation policy consisting of a random cropping, color jitter and Gaussian

blur. Influenced by this, we set the chromosome length k to three for all experiments.

In addition to the augmentation policy size, it is important to select an effective

population size N which balances computational feasibility and population diversity.

Given that a neural network must be trained in both the pretext and downstream

task to evaluate an individual, the population size was fixed to a size of 15. The size

of 15 allows for a fair amount of diversity in the different augmentation policies, and

allows for feasible compute times given the available computational resources.

This research employs a population size of 15, the choice of 15 was to limit the

number of evalautions required

23
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4.1 Initial Experiments, Single Objective Approach

In order to understand the effect of changing the augmentation operators in the pretext

task of the four algorithms, experimentation with the GA was carried out using multiple

random seeds using the single objective approach. For the four algorithms, BYOL,

SimSiam, SwAV, and NNCLR, two datasets, SVHN and CIFAR-10, and pretext batch

sizes of 32 and 256, 3 seeds were used to control all randomness in the deep learning

components of the algorithm. This randomness control approach ensures that the

differences in training outcomes are not due to randomnesses in the training pipeline,

such as model initialization or data shuffling.

For each SSL algorithm, batch size, and data set, the proposed algorithm was

employed with a population size of 15 and running for 10 generations. Running for 10

generations, with a population of 15, for two datasets and two different batch sizes

resulted in a total of 7200 different augmentation in competition with one another

over the 10 generations1.

In these experiments, it was found that we can consistently improve the SSL

algorithm’s performance by only changing the augmentations used for the pretext task.

Looking at figure 4.1, for both CIFAR-10 and SVHN, using a batch size of 32 and 256,

an overall monotonic trend of optimization was observed, showing that with multiple

random initializations, it is possible to improve the SSL algorithms by only changing

the augmentation operators in the pretext task. This plot shows that, on average,

with different random seeds, all four SSL algorithms can be improved by changing the

augmentation operators used. In table 4.2, we observe that NNCLR shows the most

negligible net improvement in accuracy over all the experiments, and BYOL shows the

most significant improvement. However, overall, the improvements are minimal. As

shown in figure 4.1; it is possible to produce small gains in performance by changing

the augmentation operators.

4.2 Initial Experiments, Multi-Objective Approach

In this work, the multi-objective GA was less extensively explored than the single-

objective GA. This was because the added complexity of optimizing both the algorithm

chosen and the augmentation policy with the multi-objective GA approach poses

considerable challenges, especially given the constrained setting used in this work. As

1Due to the nature of the GA, with individuals being carried over to the next generation, not all
7200 configurations are unique
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(a) CIFAR-10, BS 32 (b) CIFAR-10, BS 256

(c) SVHN, BS 32 (d) SVHN, BS 256

Figure 4.1: The average of the best-found fitness at each generation for three seeds
with the single-objective approach.

shown in table 4.3, a set of random seed experiments was run for the multi-objective

approach for the CIFAR-10 dataset, and only preliminary experiments were run for

SVHN. The hyperparameters used for the initial single-optimization experiments were

also used for the multi-objective experiments. Initial experiments showed that the

multi-objective approach could not consistently optimize the unique SSL algorithm’s

performance. Because the population consists of all four SSL algorithms, the elitism

mechanism does not preserve the best performance of all four algorithms, resulting in

non-monotonic optimization for the algorithms. Due to low population size, the average

best-found fitness tends to drop and increase, to the detriment of the optimization

process for the multi-objective GA; this can be visualized in figure 4.2. Given the

clear advantage of utilizing the single-objective approach, further investigation was

conducted for only the single-objective approach.
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Experiment Algorithm Net Improvement of Test Accuracy

bs=256, SVHN BYOL 0.250973
bs=32, SVHN BYOL 0.412313
bs=32, CIFAR-10 BYOL 0.336667
bs=256, CIFAR-10 BYOL 0.333333
bs=256, SVHN NNCLR 0.184388
bs=32, SVHN NNCLR 0.117804
bs=32, CIFAR-10 NNCLR 0.280000
bs=256, CIFAR-10 NNCLR 0.103333
bs=256, SVHN SimSiam 0.226644
bs=32, SVHN SimSiam 0.124206
bs=32, CIFAR-10 SimSiam 0.420000
bs=256, CIFAR-10 SimSiam 0.410000
bs=256, SVHN SwaV 0.047378
bs=32, SVHN SwaV 0.289387
bs=32, CIFAR-10 SwaV 0.426667
bs=256, CIFAR-10 SwaV 0.370000

Table 4.1: The overall improvement during the optimization process for the single
object GA

Algorithm Net Improvement of Test Accuracy

BYOL 0.333322
NNCLR 0.171381
SimSiam 0.295213
SwaV 0.283358

Table 4.2: Total net change in final test accuracy for the initial single-objective
approach, derived from 4.1

Experiment Algorithm Number of Seeds

bs=32, CIFAR-10 BYOL 8
bs=256, CIFAR-10 BYOL 8
bs=256, SVHN SwaV 1
bs=32, SVHN BYOL 1

Table 4.3: Number of seeds used for initial Multi-Objective GA experiments
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(a) CIFAR-10, BS 32 (b) CIFAR-10, BS 256

(c) SVHN, BS 32 (d) SVHN, BS 256

Figure 4.2: The average of the best-found fitness at each generation for multi-objective,
for experiments listed in 4.3

4.3 Expanding on the Initial Experiments for the Single-Objective

Approach

In order to further mitigate the bias due to randomness in the deep learning pipeline,

more seeds were used for the single objective approach. Table 4.5 lists the total

experiments. The training configuration remains the same for these experiments

as the two above settings; we rerun the GA with additional random seeds for each
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SSL algorithm. The number of seeds used for each experiment varies due to the

choice to prioritize the investigation of specific experiments more than others. For

example, those with a batch size of 256 have significantly more seeds than those with

a batch size of 32 due to time constraints and interest in the slightly larger batch

sizes. Overall, 52 new experiments were run, resulting in a total of 15000 different

augmentation configurations in competition with one another2. Overall, similar trends

are observed, adding more support to our initial finding that it is possible to improve

the performance of the SSL algorithms by changing the augmentation policy. The

best-found augmentation policies from these experiments can be visualized in figure

4.3 and the corresponding augmentation operators and intensity values are shown in

table 4.4.

Dataset Algorithm aug1 op1 aug2 op2 aug3 op3

SVHN SwaV Color 1.48 TranslateX 3.00 ShearX 0.13
SVHN BYOL Sharpness 0.95 Contrast 1.28 Solarize 0.32
SVHN SimSiam Contrast 1.15 TranslateX 5.00 ShearY 0.12
SVHN NNCLR Color 0.90 ShearY 0.05 Solarize 0.32
CIFAR-10 NNCLR Sharpness 0.88 Contrast 1.18 ShearX 0.10
CIFAR-10 SwaV TranslateX 8.00 Brightness 0.69 Color 0.50
CIFAR-10 BYOL Contrast 0.97 Sharpness 0.34 Rotate -1.00
CIFAR-10 SimSiam TranslateX 8.00 VerticalFlip 0.64 Contrast 1.24

Table 4.4: Best found augmentations as shown in Figure 4.3

Figure 4.3: Visualization of best found operators

2Not all 15000 are unique augmentation operators.
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Experiment Algorithm Number of Seeds

bsize=256, data=SVHN SwaV 9
bsize=256, data=SVHN BYOL 10
bsize=256, data=SVHN SimSiam 7
bsize=256, data=SVHN NNCLR 9
bsize=32, data=SVHN SwaV 3
bsize=32, data=SVHN BYOL 4
bsize=32, data=SVHN SimSiam 3
bsize=32, data=SVHN NNCLR 3
bsize=32, data=CIFAR-10 NNCLR 4
bsize=32, data=CIFAR-10 SwaV 6
bsize=32, data=CIFAR-10 BYOL 6
bsize=32, data=CIFAR-10 SimSiam 4
bsize=256, data=CIFAR-10 SwaV 8
bsize=256, data=CIFAR-10 BYOL 8
bsize=256, data=CIFAR-10 SimSiam 8
bsize=256, data=CIFAR-10 NNCLR 8

Table 4.5: Number of seeds run for each experiment,

It was found that with a higher number of random seeds, an increase in all four

algorithms using a batch size of 32 and 256 for both CIFAR-10 and SVHN still occurred.

We observe a monotonic optimization trend for all experiments when looking at the

average best-found result. Similar to the initial experiments with fewer random seeds,

figure 4.4 shows that the solutions continue to improve throughout the evolutionary

process. In Figure, 4.5, the distribution of the best-found outcomes for the different

random seed experiments can be observed. These four plots show that the results

for all four algorithms are relatively similar. Only minor differences between the four

algorithms are observed. As shown in table 4.11, it is found that NNCLR remains the

lowest in terms of net improvement due to changing the augmentation policy. SimSiam

is found to be the best, and BYOL appears to have taken a hit to performance gains

with the introduction of more random seeds. This finding provides insight into the

genetic algorithm’s ability to improve the SSL algorithm’s performance.

In addition to monotonic improvement, it was possible to outperform the default

augmentations used in the four SSL algorithms. It was found in all cases that our

approach outperforms the use of the augmentations found in the original papers.

As shown in tables 4.6, 4.7, 4.8, 4.9, the single-objective GA is consistently able to

outperform the SSL baseline in all experiments. In order to ensure that overall, the

GA is consistently achieving better results than the baselines, statistical t-tests were
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(a) CIFAR-10, BS 32 (b) CIFAR-10, BS 256

(c) SVHN, BS 32 (d) SVHN, BS 256

Figure 4.4: The average of the best-found fitness for single-objective at each generation
for all seeds listed in table 4.5

algo BYOL NNCLR SimSiam SwaV

SSL (default) 82.21963 82.443056 82.304 80.836852
SSL (multi-objective) 83.53125 83.588333 83.6625 83.75375
SSL (single-objective) 84.031667 83.9 84.2325 83.821667

Table 4.6: Average best accuracy for CIFAR-10 with a batch size of 32 in the pretext
task. Results gathered from all experiments are listed in table 4.5.

run with acceptance values of 0.95 and 0.99 for comparison with the self-supervised

baselines 4.12. It can be observed that the out-performance of the self-supervised

baselines is statistically significant in all cases but SVHN with a batch size of 32,

showing that it is possible to outperform the original approaches by only changing

the augmentation policy.
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(a) CIFAR-10, BS 32 (b) CIFAR-10, BS 256

(c) SVHN, BS 32 (d) SVHN, BS 256

Figure 4.5: The distribution of best results in the final generation for all seeds as
listed in Table 4.5

4.4 Further Optimizing best-found augmentation policies

It was found that through evolution, relative improvements were possible by changing

only the augmentation policy. Given that the GA utilized a low number of epochs,

it was of interest to understand the behaviour of training the models for larger
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algo BYOL NNCLR SimSiam SwaV

SSL (default) 82.079417 82.183528 82.206167 82.847222
SSL (multi-objective) 83.735 83.82875 83.328571 83.525
SSL (single-objective) 83.9 83.9475 83.98375 84.2975

Table 4.7: Average best accuracy for CIFAR-10 with a batch size of 256 in the
pretext task. Results gathered from all experiments are listed in table 4.5.

algo BYOL NNCLR SimSiam SwaV

SSL (default) 90.966475 91.144594 91.059859 90.603726
SSL (multi-objective) N/A N/A N/A N/A
SSL (single-objective) 92.629264 92.478488 92.488732 92.447757

Table 4.8: Average best found accuracy for SVHN with a batch size of 32 in the
pretext task. Results gathered from all experiments are listed in table 4.5.

algo BYOL NNCLR SimSiam SwaV

SSL (default) 90.891087 91.007068 90.926667 90.779203
SSL (multi-objective) N/A N/A N/A N/A
SSL (single-objective) 93.010141 92.859643 92.908728 92.88696

Table 4.9: Average best found accuracy for SVHN with a batch size of 256 in the
pretext task. Results gathered from all experiments are listed in table 4.5.

numbers of epochs. To better understand this, we trained models using the best-found

augmentation policies for 50, 100, and 1000 epochs in the pretext task and 50 epochs

in the downstream task. Due to the results being statistically insignificant for SVHN

with a batch size of 32, this experiment was only carried out for CIFAR-10.

It was found that training for more epochs in the pretext task generally produces

better results; however, it is possible to degrade this result when training for over 100

epochs in the pretext task. As visualized in Figure 4.6, we see an exciting pattern

of improvement when using 50 or 100 epochs in the pretext task. However, this

improvement degrades when using the significantly larger 1000 epochs. This finding

suggests that training for too long and overfitting in the pretext task can lead to worse

results than fewer epochs in the pretext task. Additionally, when considering the

relative improvement from the initial results in the GA experiment, we see a similar

trend shown in figure 4.7, where the test accuracy is improved for 50 and 100 epochs.

However, for 1000 epochs, the results are consistently degraded.
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Experiment Algorithm Net improvement of test accuracy

bs=256, SVHN BYOL 0.245851
bs=32, SVHN BYOL 0.340927
bs=32, CIFAR-10 BYOL 0.288333
bs=256, CIFAR-10 BYOL 0.215000
bs=256, SVHN NNCLR 0.117377
bs=32, SVHN NNCLR 0.117804
bs=32, CIFAR-10 NNCLR 0.210000
bs=256, CIFAR-10 NNCLR 0.165000
bs=256, SVHN SimSiam 0.295790
bs=32, SVHN SimSiam 0.124206
bs=32, CIFAR-10 SimSiam 0.542500
bs=256, CIFAR-10 SimSiam 0.251250
bs=256, SVHN SwaV 0.104572
bs=32, SVHN SwaV 0.289387
bs=32, CIFAR-10 SwaV 0.290000
bs=256, CIFAR-10 SwaV 0.413750

Table 4.10: The overall improvement during the optimization process for the single
object GA

algorithm Net improvement of test accuracy

BYOL 0.272528
NNCLR 0.152545
SimSiam 0.303436
SwaV 0.274427

Table 4.11: Net change for each algorithm, derived from table 4.10

4.5 Augmentation Sensitivity and Importance

In order to understand how the different augmentations affect the outcome of the

self-supervised training process, we developed two metrics, Augmentation Sensitivity

and Importance. Both look at the training results produced from the GA experiments

to try to draw connections between final test accuracy and the different augmentations

used. Augmentation importance considers the top 50 augmentation strategies based

on the downstream test accuracy to determine how many different augmentation

operators occur in the best outcomes. Whereas, augmentation sensitivity considers all

augmentation strategies in the study and, for each augmentation operator, measures

the change in test accuracy that occurs when removing it from the augmentation
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batch size dataset Algorithm p-val 95% C.I. 99% C.I.

32 CIFAR-10 BYOL 1.512641e-06 True True
32 CIFAR-10 NNCLR 4.997037e-04 True True
32 CIFAR-10 SimSiam 4.478013e-05 True True
32 CIFAR-10 SwaV 7.108672e-08 True True
32 SVHN BYOL 1.121538e-02 True False
32 SVHN NNCLR 9.202957e-02 False False
32 SVHN SimSiam 1.135462e-01 False False
32 SVHN SwaV 6.275173e-02 False False
256 CIFAR-10 BYOL 2.668383e-09 True True
256 CIFAR-10 NNCLR 2.033618e-07 True True
256 CIFAR-10 SimSiam 2.775093e-08 True True
256 CIFAR-10 SwaV 1.132903e-09 True True
256 SVHN BYOL 3.205772e-10 True True
256 SVHN NNCLR 2.076243e-07 True True
256 SVHN SimSiam 9.571111e-06 True True
256 SVHN SwaV 4.653095e-07 True True

Table 4.12: T-Test results for all single-objective experiments. single-objective vs.
SSL baseline results

strategy.

4.5.1 Augmentation Sensitivity

In order to find the most influential augmentation operators, we analyze the chro-

mosome sets which produced the highest classification accuracy. We investigate the

contribution of each operator with the best accuracy in the downstream task. For

this purpose, we run an ablation study to measure the difference in performance in

the absence of each operator. Augmentation sensitivity, as shown in algorithm 1,

is proposed to understand the effect of changing augmentations used in the pretext

task. This method aims to understand how sensitive the SSL algorithm is to a

given augmentation operator. In order to measure this, we consider the resultant

accuracy of augmentation policies that include a given operator and compare it to

all other augmentation policies which contain all the same operators but the one

of interest. Then we obtain the difference between the average performance of this

set and the performance of the original chromosome: OS(ai) = performance(ai) -

average(performance(ak)) for all k.

In figure 4.8, it is observed that the SSL algorithms are sensitive to specific
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Algorithm 1 Computing Sensitivity

aug ← Augmentation of interest
C ←Set of all Chromosomes
Caug ←Subset of chromosomes in C that contain augmentation aug
Sensitivity ← 0
for ci in Caug do

AvgSimAcc← 0
TotalSimilarChromos← 0
for cj in C do

NumEqualAugs← 0
for augi in ci.augmentations do

NumEqualAugs← NumEqualAugs+ 1
end for
if aug not in cj.augmentations and NumEqualAugs ≡ ci.length −1 then

AvgSimAcc← AvgSimAcc+ cj.accuracy
TotalSimilarChromos← TotalSimilarChromos + 1

end if
AvgSimAcc← AvgSimAcc÷ TotalSimilarChromos
Sensitivity ← Sensitivity + |ci.accuracy −AvgSimAcc|

end for
end for
Sensitivity ← Sensitivity ÷ Caug.length

S(aug) =

∑NCaug
i=1 |Acc(Caugi)− AvgSimAcc(Caugi, aug)|

NCaug
(4.1)

4.1: Equation for Augmentation Sensitivity, where aug is the augmentation of
interest in the sensitivity computation, Caug is the set of chromosomes containing
augmentation aug, NCaug is the number of chromosomes in Caug, Acc(Ci) is the
downstream accuracy of the chromosome Ci, and AvgSimAcc(Ci, aug) is the average
downstream accuracy of all the chromosomes that contain all of the same augmentations
as Ci except the augmentation aug.
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(a) BS 32, 10 epochs (b) BS 32, 50 epochs

(c) BS 256, 10 epochs (d) BS 256, 50 epochs

Figure 4.6: Result of training models for more epochs. The X-axis on each plot
represents the number of SSL pretext task epochs the models were trained for, and
the Y-axis is the final test score. The top row of plots represents the best-found
augmentation being trained using a pretext task batch size of 32 for 10 and 50
epochs in the downstream task. The bottom row of plots represents the best-found
augmentation being trained using a pretext task batch size of 256 for 10 and 50 epochs
in the downstream task.

augmentation operators; however, each algorithm is sensitive to different augmentation

operators. For example, SimSiam appears to be consistently sensitive to the translateX

augmentation. SwAV has a relatively high sensitivity to contrast in all but the

experiment using a batch size of 32 and the SVHN dataset. BYOL consistently has

a varied range of sensitivities to the different augmentation operators, yet in each

experiment setting, the algorithm is most sensitive to different augmentation operators.

Lastly, with NNCLR we see that the experiments using CIFAR-10 are most sensitive

to shearX, and for SVHN, the augmentations are not as consistent as CIFAR-10, yet

colour is relatively high for both batch sizes.
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(a) BS 32, CIFAR-10 (b) BS 256, CIFAR-10

Figure 4.7: Relative improvement in test accuracy resultant of training models for
more epochs in both the pretext and downstream task. The X-axis represents the
different SSL algorithms, the hue represents the number of epochs used for the pretext
task (50, 100, or 1000), and the y-axis represents the relative improvement in the
initial accuracy of the augmentation policy.

When considering the sums of sensitivities for the two batch sizes and data sets

them up as shown in Figure 4.9 (a), it is clear to see specific augmentations to

which the SSL algorithms are sensitive. It is found that overall, the algorithms are

most sensitive to contrast and sharpness and least sensitive to translateY. Both flip

operations have the second and third lowest overall sensitivity values, meaning that

none of the algorithms appear overly sensitive to the flip operation. ShearY, translateX,

color, brightness, shearX, rotate, and solarize all have a medium sensitivity value.

These findings could suggest that all four SSL algorithms are more sensitive to the

augmentations that are non-geometric transforms, contrast, and sharpness and are

less sensitive to the geometric transforms, horizontal and vertical flip.

4.5.2 Augmentation Importance

To compute augmentation importance, we calculate the number of times each aug-

mentation operator is present in the top 50 chromosomes from all the generations

(based on test accuracies). The computation of Augmentation Importance is shown

in algorithm 2. Augmentation Importance can be defined as the number of times

a specific augmentation appears in the top 50 chromosomes. This metric allows us

to understand how different augmentations impact the top chromosomes. For each

algorithm and training setting, it can be visualized that specific augmentations are
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(a) CIFAR-10, BS32 (b) CIFAR-10, BS256

(c) svhn, BS32 (d) svhn, BS256

Figure 4.8: Augmentation sensitivity
,

(a) Sensitivity (b) Importance

Figure 4.9: Global View of Augmentation sensitivity and importance
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dominantly important in the top 50 augmentation policies. As shown in figure 4.10,

the augmentation importance for all experiments displays a skewed distribution. This

finding shows that in all cases, one or several augmentations dominate, while others

are uncommon or not even present in the top 50 augmentation policies.

Adduitionally, it was found that certain augmentation operators are prevalent

within all experimental settings, whereas others were not. In Figure 4.9 (b), it can

be observed that shearX is prevalent in all experiments, and horizontal flip and

translateY are found to be not prevalent. Solarize, color and rotate have relatively

similar importance distributions for all experiments. Both shear operations appear to

have high importance. Contrast, solarize, color, rotate, sharpness, and brightness do

not show high similarity when comparing at the algorithm level. Both flip operations

have globally low importance. It appears that translateX is a vital augmentation, but

translateY is not. Overall, it is possible to observe that there is agreement among the

four algorithms for the different augmentation’s importance values.

Algorithm 2 Computing Augmentation Importance

aug ←Augmentation of interest
C ←Set of all Chromosomes
N ← Number of chromosomes to consider
Importance← 0
C ← sorted(C)
for ci in C[: N ] do

if aug in ci.augmentations then
Importance← Importance+ 1

end if
end for

4.6 Loss Analysis

In order to understand the impact of the different SSL algorithms and the resultant

representations used as the initialization point for the supervised downstream task,

the loss of the downstream task was investigated. At the most basic level, the loss

curves were analyzed to understand the learning process of the different algorithms.

Overall, it was found that there are differences between the two batch sizes, 32 and

256, for the learning process in the downstream task. In figure 4.11, we observe that

the smaller batch size results in all four SSL algorithms converge to similar solutions

in the downstream task. With the larger batch size, there is more variation in the

downstream optimization task optimization process between the four algorithms.
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(a) CIFAR-10, BS32 (b) CIFAR-10, BS256

(c) svhn, BS32 (d) svhn, BS256

Figure 4.10: Augmentation Importance

In addition to interpreting the downstream loss curves, we employed a strategy

for analyzing the loss of the resultant downstream models, known as loss landscape

analysis. Loss landscape analysis aims to provide a deeper understanding of the

optimized model parameters and their context in their respective parameter space

by slightly perturbing the model parameters around the optimized parameterization.

This method provides a landscape of the loss function for the given parameter space,

allowing for insights into how convex or chaotic the loss space around the solution is.

Producing a loss landscape for a given model architecture, problem i.e. dataset and

loss function is not a trivial task; many different approaches exist. This work opts to

employ a filter normalization approach presented by Li et al. [54] to visualize the loss

landscape.

The filter normalization loss landscape visualization accurately captures the local

sharpness and flatness of minimizers. Understanding the local geometry of the loss
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(a) CIFAR-10, BS=32 (b) SVHN, BS=32

(c) CIFAR-10, BS=256 (d) SVHN, BS=256

Figure 4.11: Downstream loss curves for the best-found solutions in the GA optimiza-
tion process.

landscape is essential for understanding the behaviour of the loss function in the prob-

lems at hand. As discussed in [54], a vital component of the filter-wise normalization

technique is a random vector technique used by [27], [40]. In this technique, two

random vectors δ and η are sampled from a random Gaussian distribution, and a

center point θ∗, where θ∗ is the optimized parameter configuration. Then a 2d contour

is generated by plotting the function4.2. The critical component of this approach,

which differs from earlier random vector approaches, is that the sampled directions

are filter-wise normalized. The random vectors are scaled to the filters within the

CNN to ensure that the area covered by the random vectors is not too small or too

large for the set of parameters.

As with the experiments for further optimization, the loss landscape analysis was

only carried out using the models resultant from training with CIFAR-10. For all four

SSL algorithms, NNCLR, BYOL, SimSiam, and SwAV, and the two batch sizes 32
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f(α, β) = L(θ ∗+αδ + βη) (4.2)

4.2: Random direction function[54], where α, and β are the respective lengths
of random vectors δ and η. Used by [27], [40] and adapted by [54] with a filter
normalization component.

and 256, we use the filter normalization technique with a α and β both set to 10 and

a sample size of 50 resulting in a 50x50 loss landscape. It was found that changing the

batch size in the pretext task while fixing the batch size in the downstream task results

in visually discernible differences in sharpness in all four SSL algorithms. Li et al. [54]

found that with the filter normalization method, it was possible to visualize how batch

size impacts minima sharpness; large batches were found to produce visually sharper

minima. Remarkably, in all four SSL algorithms, we notice a difference in sharpness

when training with a batch size of 32 and 256 in the pretext task and keeping a fixed

batch size of 32 in the downstream task. As visualized in Figure 4.12, we observe that

BYOL, NNCLR, and SimSiam all have converged to sharp minima in the downstream

task when using a batch size of 256 in the pretext task and a visibly flatter minimum

when using a batch size of 32 in the pretext task, the opposite result is observed in

SwAV.
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(a) BYOL, BS=32 (b) BYOL, BS=256

(c) NNCLR, BS=32 (d) NNCLR, BS=256

(e) SimSiam, BS=32 (f) SimSiam, BS=256

(g) SwAV, BS=32 (h) SwAV, BS=256

Figure 4.12: Comparing the loss landscape of the downstream models, using SSL
methods with a batch size of 32 (left column) and batch size of 256 (right column).
The smaller batch size in the SSL pretraining leads to a less sharp minimization in
the downstream task.



Chapter 5

Challenges and Future Work

Several challenges were faced while carrying out the experimentation for this thesis.

Most notably, using a GA for the optimization of a deep learning training pipeline

is inherently problematic due to the costly nature of training deep neural networks.

To reduce the computational requirements of the algorithm, a relatively small neural

network, a low number of epochs, a low population size, and a small number of

generations were used. At the cost of performance, reducing these components lessens

computational requirements in both time and space. The cost of performance due to

low population size was especially detrimental for the multi-objective GA, which failed

due to its inability to maintain the best-found augmentation policies. This finding

could be attributed to the small population size; the loss of a single chromosome

containing a specific SSL gene greatly impacted the SSL’s average best test accuracy.

With a larger population size, it may be possible to maintain better augmentation

policies across all four algorithms. Additionally, with both single-objective and multi-

objective, the design choice to only mutate the intensities was to limit the impact

mutation can have on the population. It maybe possible that with a larger population

size and higher number of elite individuals, also mutating the augmentation operator

could lead to more diversity within the population. Given the constraints of this

thesis, the increase in population size for both the single-objective and multi-objective

approach is left for future work.

For the single-objective GA, it was possible to monotonically improve the test

accuracy for all four algorithms. However, the experiments were run for 10 generations

regardless of the trend of optimization; this means that the best possible accuracy was

not found. The best possible accuracy for the given hyper-parameter configuration

could be found if the experiments were run until the test accuracy no longer improved,

this is left as an avenue for future work. Additionally, given the reduced parametrization

of the deep learning pipeline the final test accuracies found are far from state-of-the-art.

It may be possible in future work to improve on the state-of-the-art by applying the

single-objective GA to a deep learning pipeline that employs a more significant number

of epochs and a larger deep neural architecture. The increase in architecture size

44
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and training time increases the amount of compute resources required but provides

the potential for being on par with or surpassing state-of-the-art. In addition to the

hyperparameters for the deep neural network, an area of interest for future work would

be to increase the population size and number of generations the single-objective GA

is run for. By running larger-scale experiments with larger neural networks, longer

epochs, for more generations, and larger population sizes, state-of-the-art results may

be possible.

In addition to increasing the population size and number of generations, paral-

lelization of the GA could be another avenue of improvement. A GA is well suited to

parallelization because it is a population-based approach, and all solution candidates

can be evaluated simultaneously [31]. The problem present in this thesis is slightly

more complicated as the fitness function relies on GPU computation, so the paralleliza-

tion of solution fitness evaluation requires multiple CPUs and GPUs. For example, if

we want four workers in a parallelized version of the proposed algorithm, four CPUs

and four GPUs would be required. The proposed algorithm’s parallelization could

yield significant computation time improvements if the overhead is sufficiently low.

Another challenge faced with this work is the ill-defined nature of measuring

the goodness of a representation learned in a self-supervised manner. To measure

the fitness of the learned representations, the proposed method uses a downstream

classification task with the same dataset used in the pretext task of the SSL algorithm.

This measurement allows us to understand the transferability of the learned represen-

tation, from the implicitly labelled pretext task to the explicitly labelled downstream

classification task. However many different downstream tasks exist for measuring the

goodness of the learned representation. One task is known as linear probing, in this

method, the learned representation is frozen and a linear layer is trained on top to

perform the classification task. A variant of the linear probing method would be to

take a semi-supervised approach where a small set of labelled data is used to fine-tune

the learned representation from the SSL task. Both of the described methods are

introduced in the seminal work produced by Chen et al. [12]. It is possible that a

method such as linear probing could provide a better fitness measurement, and is left

as an area for future investigation.

An additional shortcoming is using only three augmentation operators. Cosentino

et al. [15] showed empirically and theoretically that the larger the augmentation policy,

the better the result will be. Additionally, many works in augmentation optimization

including AutoAugment [43] employ an augmentation policy with five augmentation

operators. The choice of an augmentation policy with three operators was to reflect
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the design choices made by the seminal work in the SimCLR approach. However, it

is possible that with increasing the number of augmentation operators, the resultant

policies would be more effective and facilitate higher performance in the SSL training

process. The exploration of using larger augmentation policies with the proposed GA

is an area of future work, which could lead to better augmentation policies.

In addition to improving the Multi and Single Objective GAs through more-

extensive experiments, it may be possible to derive deeper insights from the data

produced from the experiments in this thesis. As mentioned in chapter 4, 15000

chromosomes representing augmentation policies were recorded during the many

single-objective Genetic Algorithm experiments. These results can be considered a

meta-dataset, including the SSL algorithm name, dataset name, the three augmentation

operators, respective intensities, and the resultant downstream test accuracy. This

thesis designed two metrics for investigating this dataset, augmentation sensitivity

and importance; however, it would be possible to dive deeper into these results using

other methods. One possible method could be to fit a model to this data and then

use explainability methods such as SHAP [66], or LIME [58] to explain the model and

gain deeper insight into the relationship between the augmentations, datasets, and

SSL algorithms.

Overall, many different challenges exist in this thesis which open up avenues

for future work. A clear direction for future work is using a deep learning pipeline

with larger batch sizes, neural networks, and epochs, as well as running the GA for

more generations and with a higher population size. However, the increase in these

hyperparameters leads to larger computational requirements in both time and space,

the parallelization of the GA could significantly aid in handling this issue. In addition

to larger-scale algorithms, the outcome of the proposed GA could be improved by

using a different downstream task such as linear probing. Another area of potential

improvement with the proposed GA is the number of augmentations used. In addition

to improvements to the algorithm, it is also possible to gain insights from the results

derived from the GA experiments using more complex explainability methods.



Chapter 6

Conclusion

Self-supervised learning for computer vision has proven to be an groundbreaking

approach for training neural networks with large unlabelled datasets. Many of these

algorithms leverage data augmentaiton as a core component of the algrothm, therefore

it is of great importance that the selected augmentation operators are optimal for the

given task. Motivated by this point, the proposed work aimed to improve and gain

a deeper understanding of the augmentation operators used for four prevalent SSL

algorithms: SwAV, BYOL, NNCLR, and SimSiam. It was found that the proposed

GA was able to successfully optimize the augmentation policy used in the pretext task

of the SSL algorithms, consistently outperforming the augmentations which were used

in the original papers for the four algorithms. Due to the population-based nature of

the proposed GA, we were not only able to optimize the SSL algorithms augmentation

policy but also were able to reveal the extent to which the algorithms are impacted

by the choice of augmentation operators used for the pretext task. It was found that

specific augmentation operators can have varying effects depending on the dataset

and SSL algorithm being used.

To design the GA, we define a chromosome representation for the augmentation

policy to represent the hyper-parameter optimization problem, including three augmen-

tations operators per chromosome. Crossover, selection, and mutation were performed

on these augmentation policies to efficiently explore a diverse set of augmentation

policies. In order to avoid results due to randomness within the system, such as model

initialization, random splitting, and shuffling of the data, the experiments were carried

out for multiple random seeds, and the observations made afterward looked at the

entirety of the experiments.

Four sub-experiments were defined to understand the effect of changing augmenta-

tion operators in the SSL pretext tasks, one for each batch size, 32 and 256, and two

datasets, SVHN and CIFAR-10. For all settings, it was found that it was possible to

outperform the default augmentations used in the original SSL algorithms. Although

these findings are well below SOTA, it was found that relative improvement is possible

by just changing the augmentation operators. When running for many different
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random seeds, it is found that this is consistently the case. These findings show that

it may be possible to produce test results on par with the SOTA baseline results with

a more efficient optimization process. Additionally, when training for longer epochs in

both the pretext and downstream tasks, it is possible to improve the downstream test

accuracy.

To further analyze the results of the experiments, two metrics were proposed:

augmentation sensitivity and importance. Augmentation sensitivity allows for the

visualization that the different SSL algorithms and dataset configurations are sensitive

to the presence of different augmentation operators in the pretext task. Overall, when

looking at the sensitivities for each SSL algorithm over all experiments, there are

trends of the algorithms being dominantly sensitive to specific augmentation operators.

Similar results were found with Augmentation importance. Specific augmentations

are significant for the resultant downstream test accuracy. Additionally, at the global

level, augmentation operators consistently yield higher downstream test accuracy for

the different SSL algorithms.

Self-supervised learning for computer vision provides hope for alleviating the need

for massive labelled datasets and data Augmentation serves as a core component for

many of the existing methods. This thesis highlighted how the choice of augmentation

policies for the pretext task affects the performance of SSL algorithms. In a constrained

setting, improving the classification performance for all four SSL algorithms on two

common benchmark datasets was possible. To our knowledge, this thesis is the first

attempt at employing a GA to optimize the augmentation policies in contrastive

SSL algorithms. Although the results presented in this thesis do not compete with

SOTA results, it is clear that in a very constrained setting, it is possible to achieve

statistically significant improvement by only changing the augmentations in the pretext

task. Albeit small, this thesis takes the first step toward employing a GA-based, method

for improving the augmentation policies used in SOTA SSL algorithms.
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[5] Thomas Bäck, David B Fogel, and Zbigniew Michalewicz. Handbook of evolu-
tionary computation. Release, 97(1):B1, 1997.
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