

TOWARDS EXAMINING SUPERVISED AND UNSUPERVISED LEARNING FOR
IOT ATTACK DETECTION

by

Nevetha Govindaraju

Submitted in partial fulfilment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

April 2023

Dalhousie University is located in Mi’kma’ki, the
ancestral and unceded territory of the Mi’kmaq.

We are all Treaty people.

© Copyright by Nevetha Govindaraju, 2023

The thesis is dedicated to my family and to all people who have given me immense support

during these challenging times

ii

iii

TABLE OF CONTENTS

List of Tables …………………………………………………………………....... v

List of Figures ………………………………………………………………......... vi

Abstract ………………………………………………………………………....... viii

List of Abbreviations Used …………………………………………………........ ix

Acknowledgements …………………………………………………………........ xi

Chapter 1 Introduction ………………………………………………....... 1

Chapter 2 Literature Review …………………………………………...... 3

 2.1 Previous Works .. 3

 2.2 IoT Attacks Studied ... 8

 2.3 IoT Vulnerabilities ... 8

 2.4 Summary ... 9

Chapter 3 Methodology ………………………………………………....... 11

 3.1 Phase I – Network Traffic ………………………………. 11

3.1.1 CICIoT2022 dataset …………………………........ 11

3.1.2 Bot-IoT dataset ………………………………........ 13

 3.2 Phase II – Flow extractors …………………………………....... 14

3.2.1 Argus …………………………………………....... 14

3.2.2 Tranalyzer2 …………………………………….... 14

3.2.3 Number of flows extracted …………………….... 15

 3.3 Phase III – Machine Learning Algorithms …………………....... 18

3.3.1 Supervised Learning …………………………....... 18

3.3.1.1 Decision Trees ………………………...... 19

3.3.1.2 K-Nearest Neighbors ………………....... 19

3.3.1.3 Support Vector Machines …………......... 19

3.3.2 Unsupervised Learning …………………………... 20

3.3.2.1 Local Outlier Factor ………………......... 20

3.3.2.2 Isolation Forest ……………………........ 20

3.3.2.3 One-class SVM ……………………........ 21

 3.4 Summary ……………………………………………………...... 21

Chapter 4 Evaluation and Results ……………………………………...... 22

 4.1 Evaluation Metrics and Results ………………………………... 22

4.1.1 Results of CIC dataset binary classification…. 23

4.1.2 Results of Bot-IoT dataset binary classification ... 25

4.1.3 Results of CIC dataset multi-classification……… 27

iv

4.1.4 Results of Bot-IoT dataset multi-classification 29

4.1.5 CIC-IoT2022 Binary and Multi Tranalyzer2

results of Decision tree ..

32

 4.2 Visualization of Decision Trees ……………………………....... 33

 4.3 Results and Discussion ……………………………………........ 52

 4.4 Summary ……………………………………………………...... 53

Chapter 5 Conclusion and Future Work ……………………………....... 55

Appendix A …………………………………………………………………….... 57

Bibliography …………………………………………………………………....... 62

v

LIST OF TABLES

3.1 Number of Argus and Tranalyzer2 flows extracted for binary

classification from the CIC-IoT 2022 dataset …………………….

15

3.2 Number of Argus flows extracted for multi-classification from the

CIC-IoT 2022 dataset …………………………………………….

16

3.3 Number of Argus flows extracted for binary classification from

the Bot-IoT dataset ……………………………………………….

16

3.4 Number of Argus flows extracted for multi-classification from the

Bot-IoT dataset …………………………………………………...

17

3.5 Number of Tranalyzer2 flows extracted for Attack multi-

classification from the Bot-IoT dataset …………………………...

17

4.1 Results of Argus Binary classification …………………………… 23

4.2 Results of Tranalyzer2 Binary classification ……………………... 23

4.3 Argus Binary Classification results ………………………………. 24

4.4 Tranalyzer2 Binary Classification results ………………………... 25

4.5 Argus Binary Classification results for Supervised Learning ……. 25

4.6 Argus Binary Classification results for Unsupervised Learning …. 26

4.7 Argus Multi-Classification results for Supervised Learning ……... 27

4.8 Tranalyzer2 Multi-Classification results for Supervised Learning 28

4.9 Argus Multi-Classification results for Supervised Learning ……... 30

4.10 Tranalyzer2 Multi-Classification results for Supervised Learning 31

4.11 Tranalyzer2 Binary-Classification results for Supervised Learning 32

4.12 Tranalyzer2 Multi-Classification results for Supervised Learning 33

4.13 Weighted Average F1-Scores for the CICIoT2022 dataset …….. 53

4.14 Weighted Average F1-Scores for the Bot-IoT dataset …………… 54

vi

LIST OF FIGURES

3.1 Architecture of the proposed framework ………………………………. 12

3.2 Dataset representation of CIC-IoT2022 dataset ……………………….. 13

3.3 Dataset representation of Bot-IoT dataset ……………………………... 14

4.1 Mutual Information on Binary Argus Decision Tree Classification …... 34

4.2 Decision Tree visualization of Argus Binary Classification …………… 35

4.3 Mutual Information on Binary Tranalyzer2 Decision Tree Classification 36

4.4 Decision Tree visualization of Tranalyzer2 Binary Classification …….. 37

4.5 Mutual Information on Binary Argus Decision Tree Classification …… 38

4.6 Decision Tree visualization of Argus Binary Classification …………… 39

4.7 Mutual Information on Multi Argus Decision Tree Classification ……. 40

4.8 Decision Tree visualization of Argus Multi Classification ……………. 41

4.9 Mutual Information on Multi Tranalyzer2 Decision Tree Classification 42

4.10 Decision Tree visualization of Tranalyzer2 Multi Classification ……… 43

4.11 Mutual Information on Multi Argus Decision Tree Classification …….. 44

4.12 Decision tree Visualization of Multi Argus ……………………………. 45

4.13 Mutual Information on Multi Tranalyzer2 Decision Tree Classification 46

4.14 Decision tree Visualization of Multi Tranalyzer2 ……………………… 47

4.15 Mutual Information on Multi Tranalyzer2 Decision Tree Classification 48

vii

4.16 Decision tree Visualization of Multi Tranalyzer2 ……………………… 49

4.17 Mutual Information on Binary Tranalyzer2 Decision Tree

Classification …………………………………………………………...

50

4.18 Decision Tree Visualization of Binary Tranalyzer2 …………………… 51

viii

ABSTRACT

The Internet of Things (IoT) is the term used to describe the numerous physical

objects/devices connected to the Internet and collecting and exchanging data globally. IoT

devices are especially susceptible to network attacks, including but not limited to botnet

attacks, spoofing attacks, and denial of service attacks. This thesis explores supervised and

unsupervised learning approaches to compare two types of traffic flow exporters on

different publicly available datasets. Evaluations and results show that it is possible to

achieve high weighted average F1-scores for attack detection using off-the-shelf

supervised learning algorithms and traffic flow features on IoT networks.

ix

LIST OF ABBREVIATIONS USED

SL Supervised Learning

USL Unsupervised Learning

DT Decision Tree

KNN K-Nearest Neighbors

SVM Support Vector Machines

LOF Local Outlier Factor

1-SVM One-class Support Vector Machines

IF Isolation Forest

IoT Internet of Things

HTTP Hyper Text Transfer Protocol

DoS Denial of Service

DDoS Distributed Denial of Service

TCP Transmission Control Protocol

UDP User Datagram Protocol

RTSP Real Time Streaming Protocol

OS Operating System

ROC Receiver Operating Characteristic

AUC Area Under ROC Curve

ARP Address Resolution Protocol

ICMP Internet Control Message Protocol

ESP Encapsulating Security Payload

CSV Comma Separated Values

RAM Random Access Memory

PCAP Packet Captures

AUPRC Area Under Precision Recall Curve

MLP Multi-Layer Perceptron

LSTM Long Short Term Memory

DL Deep Learning

XGBoost Extreme Gradient Boosting

IDS Intrusion Detection System

PCA Principal Component Analysis

RNN Recurrent Neural Network

LR Logistic Regression

x

WAF1-Score Weighted Average F1-Score

T2 Tranalyzer2

xi

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Dr. Nur Zincir-Heywood and my

mentor Dr. Marwa Elsayed for their immense support and guidance during my Master’s

Degree journey. I would also like to thank my readers Dr. Srinivas Sampalli and Dr.

Malcolm Heywood for their timely review and constructive feedback on this work.

 This thesis is the result of hard work and commitment from my side and my family and

friends who have supported and encouraged me in this journey to study, develop, grow,

and succeed.

CHAPTER 1 INTRODUCTION

The Internet of Things (IoT) is the network of physical items, or "things," embedded with sensors,

software, and other technologies to communicate and exchange data with other devices and systems

through the Internet. IoT device applications have grown so diverse that they now support more

than half of the world's population. These devices help simplify people's lives more than ever. They

can be monitored and managed from anywhere using smartphones and the Internet. Since these

devices rely on the Internet, they generate significant network traffic that can occasionally cause

disruptions in terms of network congestion. The capacity of online traffic surged as more IoT

devices were linked to the Internet. Security vulnerabilities increase with the evolution of IoT

devices as they lack the essential built-in security safeguards to counter threats, making them

particularly vulnerable. These devices' limited environment and low computational capacity are the

principal reasons, severely challenging their physical security. An IoT device's tampering, theft, or

destruction are examples of physical attacks. IoT devices are especially susceptible to network

attacks, including data theft, phishing, botnet attacks, spoofing, and denial of service attacks (DoS

and DDoS attacks [13] [14]). These can result in significant data breaches and other cyber security

risks like ransomware attacks. These make IoT devices more prone to threats to user security and

privacy. Therefore, it is essential to safeguard user information by strengthening the network due

to the rise in cyberattacks.

Cybercriminals can use device vulnerabilities as a launchpad for their attacks, emphasizing

security's influence from the planning stage. Attackers may exploit vulnerabilities to target IoT

devices to launch more sophisticated security breaches or distribute malware throughout the

network. IoT botnets can highlight the impact of device vulnerabilities and how cybercriminals

have evolved to use them. Mirai, [22] one of the most well-known types of IoT botnet malware,

made headlines in 2016 by bringing down significant websites in a distributed denial of service

(DDoS) campaign involving thousands of compromised household IoT devices. The threats IoT

devices bring to large corporations and smart cities have been the subject of a comprehensive

investigation. Due to the widespread use of IoT, its inherent mobility, and standardization

restrictions, advanced technologies that can automatically detect suspicious activity on IoT devices

connected to local networks are required.

Attack detection using conventional approaches and outdated data processing techniques has

become ineffective because of the widespread use of IoT. Due to the increased size of network

traffic, detecting attacks and malicious data in the preliminary stages is exceedingly challenging.

Various datasets have been used in the literature, comprising different solutions to build detection

strategies for malignant attacks on IoT devices.

One of the methodologies is the implementation of Machine Learning Algorithms to detect attacks

on IoT devices. Machine learning techniques make detecting network attacks more efficient since

these algorithms automatically develop prediction models. In addition, it enables analyzing vast

amounts of data and revealing hidden data patterns, useful for attack detection.

1

This thesis aims to apply machine learning to contrast two types of machine learning algorithms:

supervised and unsupervised, for attack detection using two different feature sets obtained from two

flow extractor tools. The features are extracted from the CICIoT2022 and Bot-IoT datasets,

comprising various malicious and normal traffic captures. Before implementing machine learning

algorithms on these datasets, the packet captures (pcap files) are converted into flow features using

two independent flow extractor tools, Argus and Tranalyzer2. These flow exporters transform the

packet data into flow data with relevant feature information, enabling better interpretation of flow

data. The benign and attack data are combined as a single entity for both datasets following the

extraction of flow features. Finally, supervised, and unsupervised machine learning algorithms are

implemented, and results from the implementations are recorded.

The proposed framework leverages three supervised learning algorithms and three unsupervised

learning algorithms. The Supervised Learning algorithms chosen were Decision Trees, Support

Vector Machines (SVM) and K-Nearest Neighbors (KNN), and the unsupervised learning

algorithms were Local Outlier Factor (LOF), One-class SVM and Isolation Forest Algorithm. These

proposed models were trained, tested, and evaluated on the datasets by calculating recall, precision,

Receiver Operating Characteristic-Area Under Curve (ROC-AUC), and F1-score metrics. The

findings are then compared and analyzed to see which machine learning algorithms detected and

predicted the attacks the best. The main goal of this thesis is to detect the diverse types of attacks

against IoT devices using ML algorithms and determine which algorithm is better for prediction.

My proposed framework using these datasets with distinct flow characteristics will serve as a

benchmark for future research. The new contributions of my thesis are as follows:

• Contrasting supervised and unsupervised machine learning algorithms for attack detection

• Investigating two distinct feature sets extracted from Argus and Tranalyzer2 to evaluate the

machine learning model.

• Benchmarking the Argus and Tranalyzer2 features on the two publicly available datasets, namely

CIC IoT 2022 dataset and Bot-IoT dataset.

The rest of the thesis is organized as follows. The relevant literature is summarized in Chapter 2.

The proposed approach is introduced in Chapter 3, along with a discussion of the research

methodologies. In Chapter 4, the experiments are described in detail, along with the findings.

Finally, in Chapter 5, conclusions are drawn, and future research is discussed.

2

CHAPTER 2 LITERATURE REVIEW

This chapter provides a comprehensive assessment of the literature. The main objective of

developing attack detection strategies for IoT devices is to detect attacks at an early stage

and safeguard the devices due to the growing risk of attacks on IoT devices. Various

authors have proposed several approaches for developing attack detection frameworks. I

proposed a machine learning framework to detect IoT attacks for the purpose of my

research. The following is a review of the studies done by researchers who created IoT

frameworks using ML algorithms.

2.1 Previous Works

Because of their characteristics, ensuring the security of IoT networks remains a challenge

for researchers, attributing to a range of diverse technologies, some of which need to be

updated. Due to the unique characteristics of IoT, these technologies have typical privacy

and security issues with data that must be addressed. While many scientists are striving to

address various IoT security concerns, the security level of IoT devices currently needs to

catch up to what users require [14]. Denial of service (DoS), distributed denial of service,

botnet attacks, information theft, and eavesdropping attacks are known cyberattacks that

can affect IoT networks. Such attacks frequently harm organizations using IoT networks

because they make it difficult to maintain the system correctly by preventing device

functionality.

As the number of IoT devices grows, so does the threat level of cybersecurity

vulnerabilities they expose. Because the Internet of Things devices are autonomous and do

not need human intervention to operate effectively, early detection of vulnerabilities and

threats on IoT devices is pivotal. As a result, suitable network security solutions for the IoT

system must meet several criteria, such as fast detection of attacks and predicting results

with high accuracy.

I propose adopting machine learning algorithms to identify attacks in IoT devices. Several

authors suggested employing machine learning algorithms for IoT attack detection

problems. In addition, numerous studies have suggested that machine learning techniques

like K-Nearest Neighbors, Decision Trees, Support Vector Machines (SVM), and Random

Forest (RF) can help with attack detection tasks. Though the underlying goal of the research

was to detect attacks, the results varied depending on the algorithms and methods used to

solve the problem.

Alsamiri et al. [1] proposed the use of Machine learning algorithms like K-Nearest

Neighbours (KNN), AdaBoost, and Naïve Bayes (NB) to detect Cyber Attacks on IoT

devices efficiently. They used the Bot-IoT dataset to detect attacks on IoT devices. Initially,

they extracted the flow-based features from the raw packets using the CICFlowMeter

3

network traffic flow extractor. Once they extracted the flow features, they performed data

preprocessing and divided the dataset into 80% training and 20% testing for further

implementations. The primary goal of their research is to evaluate the performance of

machine learning algorithms in detecting IoT attacks. In the next step, they used the

Random Forest regressor algorithm to select the features that can help find a lightweight

security solution for IoT devices. They selected only seven features for implementing ML

algorithms in the feature selection step among the 84 features extracted from

CICFlowMeter. The implementation step was then organized into three phases: applying

the proposed algorithms on each attack in the dataset separately, applying the algorithms

on the entire dataset with a set of features combining the best features for each attack and

applying the algorithms on the entire dataset with the seven best features obtained in the

feature selection step. To evaluate the results of implementation, F-measure was selected.

Their evaluations show that K-NN outperformed the other algorithms with a higher F-

measure of 99%.

Zeeshan et al. [2] proposed a solution for detecting DoS and DDoS attacks using UNSW-

NB15 and Bot-IoT Datasets. They propose a Protocol Based-Deep Intrusion Detection

architecture (PB-DID), in which they created a dataset of packets from IoT network traffic

by comparing features from the UNSWNB15 and Bot-IoT datasets based on flow and TCP.

Their proposed architecture involves comparing features from the two datasets to

determine similar features, features selection process, data pre-processing and training the

model using an unsupervised Long-Short Term Memory (LSTM) deep learning model. As

a result of determining similar features, they found twenty-nine features that are similar in

both datasets. Further, for implementation, twenty-six features were selected from twenty-

nine features that contain maximum information on the packets like ipaddress and

portaddress. Furthermore, they performed binary and multi-class classification on the

datasets for evaluation. The results of evaluations show that their model achieved an

accuracy of over 96.3% by covering both datasets.

Dwibedi et al. [3] proposed a paper that focuses on the contribution of data by analyzing

three different IDS datasets, namely, UNSW-NB15, Bot-IoT, and CSE-CIC-IDS2018,

employing various Machine Learning algorithms like Random Forest, Support Vector

Machines, Keras, Deep Learning, and XGBoost. Their paper compares the performance of

an ML-based IDS model by training it with each of the algorithms and analyzing how the

choice of a dataset can impact the model's performance. Confusion Matrix, Precision and

Recall were chosen as the evaluation metrics. They divided the datasets into 75% training

and 25% testing. They used two scenarios for implementation and evaluation. The first

scenario was to assess each dataset by training the model with each of the selected

algorithms. A class of attacks is separated in the second scenario, and the model is trained

with the remaining class. The evaluations determine whether the model can identify the

attacks that are not trained. This methodology helped them understand whether the trained

Machine Learning models could identify new attacks. Their evaluation shows that Random

4

Forest and SVM performed better than the XGBoost algorithm with high precision and a

recall score of 100%.

Das et al. [4] proposed a paper on a comprehensive analysis of the accuracies of Machine

Learning algorithms for Network Intrusion Detection. The main goal of this thesis is to

detect network intrusion with the highest accuracy and perform faster. Supervised

machine-learning algorithms, namely Random Tree, Random Forest, Bayesian Networks,

Naïve Bayes, K-Nearest Neighbors, C.45, Reduced Error Pruning Tree, Repeated

incremental pruning to produce error reduction and Partial Decision Tree were

implemented to analyze the Bot-IoT dataset and the UNSW-NB15 dataset. In addition,

they conducted three experiments: Implementation of SL algorithms on the UNSW-NB15

dataset to detect the anomaly and the type of anomaly, and Supervised Learning on the

Bot-IoT dataset to detect the type of anomaly. Accuracy was chosen as the evaluation

metric to evaluate the results of experiments. The evaluation results show that the best

algorithm that does not compromise on accuracy is the Random Tree algorithm, with an

accuracy of 96%.

Leevy et al. [5] proposed an Easy-to-Classify Approach for the Bot-IoT Dataset. Their

method uses a minimum number of dataset features with a simple ML algorithm for

accurate classification. For this purpose, they used only 3 of the 29 features from the Bot-

IoT dataset and the Decision Tree classifier as their classification algorithm. To carry out

their research goal, the performance of one-feature, two-feature, and three-feature Decision

Tree models are evaluated to determine the minimum number of features for the correct

classification. They ran stratified five-fold cross-validation ten times for one-feature, two-

feature, and three-feature Decision Tree models. With the F1 score as an additional metric,

they used the AUC and Area Under Precision-Recall Curve (AUPRC) metrics to analyze

the results. Their findings from the evaluation concluded that only the three-feature model

has a higher AUC and AUPRC scores above 0.99. This model's F1 score is 100%.

Krishnan et al. [6] proposed a paper on Attack detection on IoT networks using supervised

machine learning algorithms. They used three supervised machine learning classifiers for

predicting malicious and benign data in the network traffic data of IoT devices. The

algorithms they chose were Random Forest regressor, Support Vector Classifier and

Xtreme Gradient Boosting. The dataset used for performing the analysis was the IoTID20

dataset. The dataset was split into 80% training and 20% testing. The feature selection

methods applied were Sequential Backward Processing, Sequential Forward Processing

and Recursive Feature Elimination. After pre-processing, a separate IoTID20 dataset with

33 features was chosen for the experiment. According to their analysis, all three supervised

feature selection methods predicted normal and anomalous traffic with high accuracy and,

therefore, can be used to predict attacks on IoT devices. Recursive Feature Elimination

resulted in better accuracy results for all three algorithms.

5

Ahmad et al. [7] proposed Supervised Machine Learning Approaches for Attack Detection

in the IoT Network. The NSL-KDD dataset detected unusual behaviours in IoT networks

by applying various machine-learning algorithms. Training data consists of 125,973 data

with 67,343 normal data and 58,630 anomalous data, and Testing data consists of 22,543

data with 9710 normal data and 12,833 anomalous data with 41 features for testing and

training data. Logistic Regression, K-Nearest Neighbor, Linear Support Vector Machine,

SVM with RBF kernel, SVM with the polynomial kernel, SVM and logistic regression

with stochastic gradient descent (hinge loss, log loss, Huber loss, and modified Huber loss

function), Gaussian Naive Bayes, Bernoulli Naive Bayes, decision tree, random forest, and

multilayer perceptron (MLP) classifier were the types of Machine learning algorithms

used. Accuracy was chosen as the evaluation metric to determine the evaluation results.

From their evaluations, stochastic gradient descent with log loss function has significantly

less training time with an AUC value of 0.92 and an accuracy of 77.16%. Thus, they

concluded that the random forest classifier and Stochastic Gradient Descent with log loss

function perform better than the other classifiers for detecting malicious traffic.

Rani et al. [8] proposed an efficient method using Random Forest Classifier for intrusion

detection. Two datasets, namely NSL-KDD and KDDCUP99, were used to supply

lightweight attack detection for IoT networks. The amount of data in KDDCUP was

494,020; in NSL-KDD, the total data was 148,517. The attack classes were Denial of

Services, Probe, User to Root and Remote to Local. Among 41 features, only ten key

features were selected for training and testing. Therefore, a random Forest Classifier is

used for training the model. Their proposed method provided a higher accuracy rate of

99.9% and has the highest accuracy rate. In this approach, the features are manually chosen

after analyzing different attacks and their characteristics depending upon the feature and

the minimal features that were extracted.

Ahmad et al. [9] proposed a paper on Intrusion detection on the Internet of Things using

supervised machine learning based on application and transport layer features. The dataset

used was the UNSW-NB15 dataset. The Intrusion detection system is built to prevent

malicious traffic from entering the network. For the same, they proposed feature clusters

in terms of Flow, Message Queuing Telemetry Transport and Transmission Control

Protocol with features in the UNSW-NB15 dataset. The machine learning algorithms they

adapted were Random Forest, Support Vector Machines and Artificial Neural Networks.

Issues like imbalanced data, over-fitting, and the curse of dimensionality of the dataset

were eliminated by data pre-processing to provide a consistent dataset for experimentation.

After the feature selection and extraction process, 49 features were further reduced to 37

features in Binary and Multi classification. Random Forest algorithm performed well,

providing higher accuracy, followed by Support Vector Machines and Artificial Neural

Networks. RF outperformed in cluster-based methodology by achieving 96.96% in flow

features, 91.4% in TCP features and 97.54% in flow features and TCP clusters.

6

Saheed et al. [10] proposed a Machine Learning based Intrusion Detection System to detect

attacks on IoT networks. The main aim of their project is to apply Machine Learning

Supervised Algorithms based Intrusion Detection Systems for IoT networks. Feature

scaling was done using the min-max concept. The dataset used was the UNSW-NB15

dataset. The six Machine Learning algorithms adopted were Xtreme Gradient Boosting,

Cat Boost, K-Nearest Neighbors, Support Vector Machines, Quadratic Discriminant

Analysis, and Naïve Bayes classifiers. In addition, an unsupervised method, namely

Principal component Analysis, was chosen for feature selection. For building the models,

75% of the data was used as training data and 25% as testing data. The performance of

their proposed model was evaluated in terms of accuracy, AUC, recall, precision, F1-score,

kappa, and Mathew Correlation Coefficient. The accuracy of their proposed method PCA-

XgBoost gave the highest accuracy of 99.99% and F1-score of 100% of all other proposed

methods. The PCA-Cat Boost also outperformed other proposed methods with an accuracy

of 99.99% and an F1-score of 99.99%.

Haji et al. [11] proposed a paper with a review of various machine learning techniques that

are employed in attack detection and anomaly detection on IoT networks from 2019 to

2021. In the detailed review, researchers used machine learning algorithms to detect attacks

and anomalies on IoT networks. to conduct the experiments, they used various datasets like

Bot-IoT, UNSW-NB15, NSL-KDD, IoT-23, and DS2OS. The researchers used and

compared different ML algorithms on these datasets like Logistic Regression, Decision

Trees, Random Forest, K-Nearest Neighbor, Support Vector Machines and Naïve Bayes

algorithms. The review shows that the Random Forest (RF) algorithm yielded the best

results with 99.34%, 99.5%, 99.4%, 99.9%, 99%, 99.5%, and 99.9% accuracy compared

to the rest of the algorithms. Furthermore, Decision Trees and KNN perform better than

other algorithms.

Alasmary et al. [12] proposed a solution to detect Distributed Denial of Services attacks

depending on the flow of traffic. The proposed solution consists of the IoT node detector,

a classifier to monitor the outgoing traffic and the server detector, a classifier used by the

IoT node if it is susceptible to a DDoS attack. To develop such a detector, they proposed

the ShieldRNN approach for Recurrent Neural Network (RNN) and Long-Short Term

Memory model (LSTM). The experiment was set to detect DDoS attacks like TCP SYN

Flood, UDP Flood, TCP PSH and ACK flood, and ICMP flood. To launch attacks, they

developed a tool that randomly launches attacks with random packets, with each attack

with randomly generated IP addresses, source addresses and destination addresses.

Wireshark is used to collect data for normal traffic and attack data. After data

preprocessing, the dataset was divided into 90% training and 20% testing. To train the

lightweight detector for the IoT node, they trained 12 different classifiers, four

Feedforward Neural Networks classifiers (ANN) with a single hidden layer with sizes 3,

5,10, and 20 neurons, one Logistic Regression (LR) classifier, three Random Forest

classifiers with different numbers of trees, three SVM classifiers with three different

kernels, namely linear, RBF, Polynomial with the third degree, and one Naïve Bayes

7

classifier. RandomForest classifiers achieved the best results compared to other classifiers

when they were evaluated on the testing set with Accuracy and an F1-score of 100%.

Additionally, they used two training and prediction strategies to train numerous RNN and

LSTM models. Sequence-to-sequence training is the first technique in which the sequence

model is trained to predict a label for each packet in the training sample. This methodology

uses a majority voting method for prediction. Therefore, if most sequence packets are

anticipated as attacks, the entire sequence will be predicted as attacks. If not, the final

prediction is expected to be normal. As a result, they achieved the highest F1-score of

values: 99.919%, 99.822%, 100%, 99.834%, 100%,100%, 100%, and 100% when they

were tested on their dataset with the randomly generated list of sequence lengths: 26,57,

77, 212, 329, 597, 643, and 877, respectively. They also set a baseline result for DDoS

detection using ShieldRNN on the CIC-IoT2022 dataset.

2.2 IoT Attacks Studied

Based on the prior research examined, it is clear that various attacks were identified during

the evaluation stages of the proposed architecture. DoS and DDoS attacks are the most

detected types of attacks. In my thesis, to be comparable with the previous studies I have

also employed their IoT datasets. The attacks that were included in those datasets are listed

below:

• Denial of Services (DoS)

• Distributed Denial of Services (DDoS)

• Brute Force attack

• Scan attacks and

• Theft attacks

2.3 IoT Vulnerabilities

The IoT devices are vulnerable to attacks like DoS, DDoS and theft attacks given the

reasons such as usage of default passwords and insecure network services. The

vulnerabilities that make the attackers exploit them and launch attacks on IoT devices and

networks are analyzed here.

• DoS and DDoS attacks - The most common type of DDoS attacks is flooding the

target system. In these attacks, input is received that exploits vulnerabilities in the

target system and causes the system to crash or become very unstable, making it

impossible to access the system.

• Brute Force attacks - A brute-force attack is when an attacker tries a number of

different user credentials in an effort to guess the right ones. The majority of these

attacks are automated and use word lists of usernames and passwords.

• Scan attacks - Automated tools are usually used in scanning attacks to look for

open ports, vulnerabilities, and other bugs that could be used to obtain unlawful

access or launch an attack.

8

• Theft attacks – This attack mainly includes gaining access to a user’s information

by stealing the password information or security codes. Keylogging is one of the

categories under theft attacks analyzed in my research. Keyloggers, often known as

keystroke loggers, are devices that capture what users enter on a keyboard. Every

keystroke made on the victim's device is recorded by keylogger software during a

keylogger attack and is sent to the attacker. In the Bot-IoT dataset, they used log-

keys software to record the keystrokes on smartphones.

2.4 SUMMARY

The papers above discuss the works of various researchers who implemented Machine

Learning algorithms for their research purposes. As mentioned in Chapter 1, my research

goal is to detect attacks on IoT devices. For this purpose, I used two datasets comprising

IoT attack packets, namely, the Bot-IoT dataset and the CIC-IoT2022 dataset, where the

Bot-IoT dataset is used widely in literature, and the CIC-IoT2022 dataset, which is the

most recently developed dataset. The papers [1],[2],[3],[4],[5], and [12] use the Bot-IoT

dataset for the implementation of the author's proposed framework, and papers [1],[6], and

[7] discuss the author's works on attack detection on IoT devices using different feature

sets.

The author's works address using Supervised and Unsupervised Machine Learning

algorithms to build their models. However, compared to Unsupervised Learning

algorithms, several authors implement Supervised Learning algorithms

[1],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12] to build their models. However, none of their

works discussed how implementing Supervised and Unsupervised ML algorithms on

different datasets and feature sets results in the overall performance of their proposed

frameworks. For implementing ML algorithms, the authors only used one feature set for a

dataset. Also, their models only used part of the feature set by not removing the biased

features, as features like ipaddress and portaddress [2] contain maximum information on

the packets that may produce biased results in the evaluation. To evaluate their models,

they used either F1- score or accuracy [2],[4],[6],[9],[7],[8],[12] as their evaluation metrics.

However, accuracy is not a valid metric in imbalanced datasets since a valid metric must

account for the proportion of data instances from various classes that are correctly

categorized, and accuracy makes no distinction between the amount of correctly identified

examples of different classes. Therefore, assessing the model's performance in terms of

accuracy [38] could result in wrong conclusions and is considered a drawback.

I proposed an IoT attack detection framework to overcome the existing solutions'

drawbacks and make new contributions to the literature. My proposed framework uses two

feature sets for the CIC-IoT 2022 and Bot-IoT datasets. They are used to build Machine

Learning models for IoT attack detection and contrast the results of Supervised and

Unsupervised Machine learning algorithms. Also, to prevent the models from producing

biased results, I have removed features like ipaddress, port address, mac address, and seq

9

numbers which have maximum detail about the packets, while using the rest of the features

extracted from the flow extractor tools. To assess the performance of my proposed

framework, I used Weighted Average F1-score. The weighted average [37] is chosen if

you have an imbalanced dataset but want to give more weight to classes with more

examples. With weighted averaging, each class's contribution to the F1 average is weighted

according to its size. The datasets used for my proposed framework have an unequal

distribution of benign and attack packets making the datasets naturally imbalanced (a

detailed description of the datasets is mentioned in Chapter 3). Therefore, I used Weighted

Average F1-score to evaluate the algorithms and assess the model's performance.

In contrast to existing solutions, my new contributions to the literature are:

• Comparing the evaluations of flow extractors (Argus and Tranalyzer2).

• Using two feature sets to implement six different ML algorithms.

• Comparing the performance and evaluation results of Supervised and Unsupervised

Learning algorithms.

• Using Precision, Recall, Area Under the Curve (AUC-ROC) and Weighted Average F1-

score as an evaluation metric to evaluate my proposed framework.

The architecture of my proposed framework with the methodologies and the evaluation

results of my experiments will be discussed further in Chapters 3 and 4.

10

CHAPTER 3 METHODOLOGY

This chapter gives detailed information on the proposed framework and methodologies

implemented. The main research goal of this thesis is to detect attacks on IoT network traffic by

implementing Supervised and Unsupervised machine learning algorithms on flow data using two

different feature sets. The proposed framework is comprised of three phases. The network traffic

data comprising benign and attack packets from the CICIoT2022 and the Bot-IoT dataset was

collected in Phase I. The data are initially presented as packet dumps (pcap files). In Phase II, the

pcap files collected from Phase I are converted into flow features using Argus and Tranalyzer2 flow

extractor tools. Once the flows are extracted, in Phase III, supervised and unsupervised ML

algorithms are implemented, and the results of the evaluations are recorded. Figure 3.1 represents

the architecture of the proposed framework. The rest of the chapter discusses in detail the

methodologies used in the proposed framework.

3.1 Phase I – Network Traffic

In phase 1, the network traffic data from the CICIoT2022 [17] and Bot-IoT datasets are collected.

For this purpose, datasets that comprise network traffic data generated from IoT devices are

required. The datasets used for my research incorporate benign and attack traffic data regarding

packet dumps. However, the CICIoT2022 dataset has more benign data than attack data, and the

Bot-IoT dataset has more attack data, making the datasets divergent.

3.1.1 CICIoT2022 dataset

The University of New Brunswick generated this dataset in 2022 by collecting network traffic from

IoT devices like cameras, home automation, and sensors with various protocols like IEEE 802.11,

Zigbee-based, and Z-wave protocols. The traffic was generated by analyzing the different

behaviours of the devices in different scenarios comprising benign and attack packets. The

generated data were recorded using Wireshark [23] – a network protocol analyzer, and the output

packet captures (pcap) were saved.

In this dataset, the benign data were collected in five modes: Power, Idle, Interactions, Active and

Scenarios. The attacks performed were Flooding and RTSP-Brute Force. The flooding attacks were

further categorized as HTTP Flood, TCP Flood and UDP Flood. This imbalanced dataset has more

benign flows of more than three million with attack flows of less than fifty thousand packets.

In Power mode, the network traffic data of the IoT devices were captured by powering on each

device individually and capturing the data. In Idle mode, the network traffic data was captured at a

specific time without human interactions or intervention. For Interactions, every relevant feature

on IoT devices has been extracted, and the related network activity and transmitted packets have

also been recorded. During Active mode, the network traffic data is recorded from human

interactions with the IoT devices. Various experiments were conducted on IoT devices, and the

relevant traffic data was recorded for scenarios.

11

Figure 3.1 Architecture of the proposed framework

12

For collecting the Attack data, the researchers performed flood and brute force attacks on the IoT

devices and captured the generated traffic. Flood attacks were classified as HTTP flood, TCP flood

and UDP flood. In addition, Hydra and Nmap were used to perform a Brute Force attack on IoT

devices. All these were analyzed with the help of a real-time network traffic analyzer tool, and all

the packet data was saved. Figure 3.3 shows the graphical representation of the CICIoT2022 dataset.

 Figure 3.3 Graphical representation of the CIC-IoT2022 dataset

3.1.2 Bot-IoT dataset

In the Cyber Range Lab of UNSW Canberra Cyber, a network environment was established to

create the Bot-IoT dataset. The environment simulated both botnet traffic and benign traffic. The

source files for the dataset are available in several forms, such as the original pcap files with more

than seventy-two million records with benign packets of less than ten thousand, the modified argus

files, and CSV files. To make handling the dataset easier, they extracted 5% of it using certain

MySQL queries. About 3 million records make up the extracted 5%. The files were divided based

on attack category and subcategory. For example, the DDoS and DoS attacks are further classified

according to the protocol employed in the dataset, including OS and Service Scan, Keylogging, and

Data Exfiltration attacks. The Bot-IoT dataset's raw network packets (Pcap files) were collected

using tshark [15], and Ostinato tool [18] and Node-red [19] were used to create simulated network

13

traffic (for non-IoT and IoT respectively). Figure 3.4 shows a graphical representation of the Bot-

IoT dataset.

 Figure 3.4 Graphical representation of Bot-IoT dataset

3.2 Phase II – Flow Extractors

Argus and Tranalyzer2, flow extractor tools, were used to convert the packet data collected from

the former phase into flow data and generate features for further experimentation. These flow

extractor tools help extract flows from the packets with relevant feature information, enabling better

interpretation of flow data.

3.2.1 Argus

Argus is a system for monitoring network traffic flow in both directions [20]. It offers details about

the state of the network flow. Argus, a network monitoring tool first released in 1993 and written

in C, supported dispersed network architecture. Argus uses its binary format for flow extraction and

supports many protocols, including TCP, ARP, ICMP, and ESP. However, Argus can only extract

the flows represented in binary format. So, for Argus, the packet data is initially converted to binary

format, and the flows are extracted. Then, the extracted data is converted from .txt to .csv to build

14

and evaluate the machine learning algorithms. Thirteen flow features were taken from Argus for

this study. After that, these features are utilized to examine how ML classifiers might employ them.

A detailed description of the Argus flow features is mentioned in the Appendix section of this thesis.

3.2.2 Tranalyzer2

Tranalyzer2 [21] is a flow-based traffic analyzer developed on a flexible plugin-based architecture

allowing efficient network traffic processing and analysis. It is a simple flow analyzer tool built in

C that includes troubleshooting plug-ins. Tranalyzer2 extracts 109 features for each network flow.

TShark [15] and Tranalyzer2 provide packet mode; however, Tranalyzer2 has a unique numerical

ID connecting every packet to its flow. Tranalyzer2, based on the libpcap library, accepts not only

IPv4/6 but also layer two and encapsulated packets such as MPLS, L2TP, and GRE from regular

pcap files or live interfaces. With the help of a straightforward API, it is a memory-effective flow

aggregator that makes it easier to create plug-ins. In addition, the output is accessible in text or

binary format for future post-processing. A detailed description of the Tranalyzer2 flow features is

mentioned in the Appendix section of this thesis.

3.2.3 Number of flows extracted

CIC-IoT2022 dataset – Binary classification of Argus and Tranalyzer2 flows

Class name Number of flows extracted

Benign 2499316

Attack 207723

Table 3.1 Number of Argus and Tranalyzer2 flows extracted for binary classification from the

CIC-IoT 2022 dataset.

CIC-IoT2022 dataset – Multi-classification of Argus and Tranalyzer2 flows

Class name Number of flows extracted

Benign 2499316

HTTP 171809

TCP 15794

15

Class name

Number of flows extracted

UDP 10629

RTSP

9491

 Table 3.2 Number of Argus flows extracted for multi-classification from the CIC-IoT 2022 dataset

Bot-IoT dataset – Binary classification of Argus flows

Class name

Number of flows extracted

Benign 477

Attack 15591796

 Table 3.3 Number of Argus flows extracted for binary classification from the Bot-IoT dataset

Bot-IoT dataset – Multi-classification of Argus flows

Class name

Number of flows extracted

Benign 477

UDP-DoS 5578193

UDP-DDoS 4016098

TCP-DDoS 3115880

TCP-DoS 2245684

OS-Fingerprint 398816

OS-Service Scan 112378

16

Class name Number of flows extracted

HTTP-DoS 69906

HTTP-DDoS 49856

Keylogging 3663

Theft 1322

 Table 3.4 Number of Argus flows extracted for multi-classification from the Bot-IoT dataset.

Bot-IoT dataset – Multi-classification of Tranalyzer2 flows (Attack multi-classification)

Class name Number of flows extracted

UDP-DoS 267063

UDP-DDoS 267441

TCP-DDoS 633998

TCP-DoS 558804

OS-Fingerprint 104028

OS-Service Scan 37679

HTTP-DoS 22189

HTTP-DDoS 20191

Keylogging 1574

Theft 411

Table 3.5 Number of Tranalyzer2 flows extracted for Attack multi-classification from the Bot-IoT

dataset.

17

Following the flow features extraction, Phase III discusses the implementation of ML algorithms

on the datasets using the flow features.

3.3 Phase III – Machine Learning Algorithms

Phase III is the essential phase of the proposed framework. Once the flow features are extracted,

the next step is implementing machine learning algorithms [25] on the datasets and evaluating the

models. Features, namely port address, IP address, mac address, and sequence numbers, are

considered potential biases during implementations.

So, these features are removed from the flow features before building the model. Once the features

are removed, the dataset is divided into 70% training and 30% testing. After completing the train

test split, the next step is to fit the model using Machine Learning Algorithms.

My proposed framework includes implementing three supervised and three unsupervised learning

algorithms: Decision Trees, Support Vector Machines, K-Nearest Neighbors, Local Outlier Factor,

Isolation Forest, and One-class SVM.

3.3.1 Supervised Learning

Supervised learning [32],[41] is a machine learning approach for problems with labelled examples,

where each data point has features and an associated label. Feature vectors (inputs) are converted

to labels (outputs) through supervised learning algorithms, which learn a function based on sample

input-output pairs. Training and testing are the two primary phases of supervised learning. Creating

a classification model is called the training phase. The testing phase employs the classifier created

in the initial phase to categorize examples not observed or trained. Supervised Learning algorithms

use labelled training data, which consists of a collection of training samples, to determine a

function. Each example in supervised learning consists of two elements: a desired output and an

input. A supervised learning algorithm evaluates training data to provide an inferred function that

may be used to map new data samples. The algorithm can accurately detect the class labels for

instances not observed in the ideal situation, which requires the learning algorithm to generate

reasonable conclusions from the training data to possible scenarios. The classifier for analyzing

network traffic is built using supervised learning (SL) algorithms. I performed binary classification

and multi-class classification in implementing the Supervised Learning algorithms.

Binary classification is when the classification is made between two classes: Benign and Attack

classes. Multi-class classification is when classification is performed to predict different classes.

For my research, I have performed multi-class classification among benign data and distinct kinds

of attack data: DoS attacks, DDoS attacks, OS and Service Scan, Keylogging, Data Exfiltration

attacks and Brute-Force attacks.

18

3.3.1.1 Decision Trees

The decision tree [26],[43] learning approach is most frequently employed in machine learning.

The goal of a decision tree is to build a model that predicts the value of a target variable based on

multiple input variables. Each inner (non-leaf) node is labelled with an input characteristic in a

decision tree or classification tree. For example, each possible value of the target feature is labelled

on the arcs that originate from a node with an input feature, or the arc may lead to a decision node

on a different input feature. In addition, each leaf of the tree has a class or probability distribution

across the classes labelled on it, indicating that the tree has classified the data set into a particular

class or probability distribution. In simple terms, decision trees are just a collection of if-else

statements. If the condition is satisfied, it determines whether to go on to the subsequent node

associated with that choice. It offers a top-down structure tree with an iterative splitting of the

training dataset.

The following chapter shows the visualization of the implemented decision tree model.

3.3.1.2 K-Nearest Neighbors

The K Nearest Neighbor algorithm [27],[44] stores all available scenarios and categorizes

additional data or instances based on a similarity measure. A data point is often categorized using

the classification of its neighbors. The outcome of the K-NN classification algorithm is a class

identification. The class of an object is determined by a majority vote of its neighbors, with the

object given to the class that is most prevalent among its k nearest neighbors (k is a positive integer).

When K = 1, an instance is just put in the class of the nearest neighbor. In K-NN classification, all

computation is postponed until after the function has been evaluated and the function is only locally

approximated. Since this technique relies on distance for classification, normalizing the training

data may improve its accuracy if the features reflect several tangible units or have significantly

different scales. The neighbors are chosen from a collection of known-class items. Although no

explicit training phase is needed, these known-class items can be viewed as the algorithm's training

set. The training examples are vectors with class labels in a multidimensional feature space. Only

the training samples' feature vectors and class labels are stored during the algorithm's training phase.

As determined by a distance function, the K-Nearest Neighbors of the case allocated to the class

share the most instances of it. Here, the number of neighbors' n' indicates the number of classes.

3.3.1.3 Support Vector Machines

In a high-dimensional space, SVM [28],[45] classifies data using a single or a collection of

hyperplanes. SVM attempts to lower the possibility of generalization errors when creating the

classifier. It is implemented when the primary hyperplane is chosen, which provides the most

significant distance between the nearest instances of the classes in the training dataset. Support

vector machines are supervised learning models with corresponding learning algorithms used in

machine learning to classify data. An SVM training method creates a model that classifies new

examples into one of two categories based on a series of training examples, each of which has been

marked as belonging to one of the two categories. SVM assigns training samples to spatial

19

coordinates to maximize the distance between the two categories. Then, based on which side of the

gap they fall, new samples are projected into that area and predicted to belong to a category.

There are several Kernels available for Support Vector Machines implementation. For my research,

I have used Linear Kernel to evaluate the model.

A detailed description of the algorithms can be found in [24] and [41].

3.3.2 Unsupervised Learning

Unsupervised learning [33],[46] is an algorithm that discovers patterns from unlabeled data. An

unsupervised learning algorithm attempts to resemble the input data during the training phase. It

uses the error in the output of its simulation to resolve itself (correct its weights and biases). Without

prior data training in contrast to supervised learning, the machine's objective in unsupervised

learning is to categorize unsorted data according to similarities, patterns, and differences. Unlike

supervised learning, unsupervised learning algorithms enable users to perform more complicated

analysis tasks.

3.3.2.1 Local Outlier Factor

The Local Outlier Factor (LOF) [29],[47] is based on the idea of a local density, in which locality

is determined by the distance between the nearest k neighbors, which is used to estimate the density.

A region of similar density and points with a significantly lower density than its neighbors can be

found by comparing the local densities of an object and its neighbors. It is the most popular and

commonly applied unsupervised learning algorithm. The concept of nearest neighbors is used to

calculate the anomaly or outlier score. The Local Outlier Factor algorithm calculates the local

density deviation of a particular data point concerning its neighbors. The samples with a

significantly lower density than their neighbors are regarded as outliers. LOF greater than one is

considered an anomaly, and a LOF approximately equal to one is considered normal.

3.3.2.2 Isolation Forest

The Isolation Forest algorithm (IF) [31], [48] is based on the idea that erroneous data points can be

easily distinguished from the rest of the sample. They are built using the decision trees algorithm.

Additionally, this model is unsupervised because there are no predefined labels present. Instead,

anomalies are defined as data points upon which Isolation Forests were developed. IF randomly

chooses an attribute, then chooses a split value between the minimum and maximum values

permitted for that characteristic to construct partitions on the sample that can be used to isolate a

data point. Isolation Forest uses binary trees to find anomalies. The algorithm's minimal memory

requirements and linear time complexity make it effective for handling large amounts of data. Data

points that require fewer splits to be isolated are given higher anomaly scores by Isolation Forest,

which divides the data space using orthogonal to the origin lines. An Isolation Forest processes data

randomly sub-sampled in a tree structure using randomly chosen features. For example, if it took

more branches to isolate the samples that travelled further into the tree, they are less likely to be

anomalies.

20

Similarly, samples with shorter branches show anomalies because the tree found it easier to

distinguish them from other data. An ensemble of many such trees may be used for better results

because a single isolation tree has a lot of expected variability in the isolation depths that it will

give to each observation. The final score is obtained by averaging the results (the isolation depths)

from many such trees.

3.3.2.3 One-class SVM

One-Class SVM (1-SVM) [30],[49] is an unsupervised learning algorithm that distinguishes test

samples from other classes. One-Class SVM and SVM are similar, but 1-SVM has just one class.

As a result, a boundary is determined based on the given data. 1-SVM is based on determining the

smallest hypersphere comprised of all the data points. The fundamental principle of 1-SVM is to

minimize the hypersphere of the single class of examples in the training data and to treat all other

samples as outliers or samples that do not fit the training data distribution. One-Class SVM, a class

offered by SK-learn, internally accomplishes the mathematical modelling of hypersphere

minimization by training on data samples. One-class SVMs do not require target labels throughout

the model training process, in contrast to conventional supervised SVMs. Instead, it learns the

boundary for the usual data points and recognizes the data outside the boundary as anomalies. In

simple terms, any new data that deviates from the range is categorized as an outlier.

A detailed description of the algorithms can be found in [24] and [46].

SUMMARY

This chapter discusses in detail the methodologies used in my proposed framework. The proposed

framework has three distinct phases. In phase I, the network traffic data is collected from the CIC-

IoT2022 and the Bot-IoT datasets following the extraction of flow features of packet data in phase

II. Once the dataset is processed, ML algorithms are implemented in them. Phase III discusses the

ML algorithms used for implementation. I used SL and USL algorithms for implementing the data.

In supervised learning algorithms, binary classification and multi-class classification techniques are

performed. The next step after the implementation of the models is experimentation and evaluation.

Chapter 4 discusses in detail the evaluation metrics used and the results of evaluations.

21

CHAPTER 4 EVALUATION AND RESULTS

Chapter 3 discussed the methodologies used to implement the proposed framework. This

chapter discusses in detail the results of implementation. As mentioned in the previous

chapter, six ML algorithms were used to evaluate the proposed framework using two

feature sets obtained from Argus and Tranalyzer2. The results from the CICIoT2022 and

Bot-IoT datasets are categorized based on the classification algorithms as Argus binary,

Argus Multi, Tranalyzer2 binary and Tranalyzer2 multi. The rest of the chapter discusses

the results and determines which algorithm outperformed with the highest evaluation score.

4.1 Evaluation Metrics and Results

All experiments are carried out on a Mac Book Air equipped with an M1 chip and 8GB of

RAM. The Evaluations of the implemented ML models are done using SKlearn metrics

[34] such as the F1-score [35], Precision, Recall, and Area under the Curve (ROC-AUC)

[36].

Precision:

It measures the ratio of correctly predicted malicious flows to the total number of malicious

flows.

 Precision = True Positive / True Positive + False Positive

Recall:

It quantifies the ratio of attack instances correctly detected out of the total number of actual

attacks.

 Recall = True Positive / True Positive + False Negative

F1-score:

It is the harmonic mean of Precision and Recall

 F1-Score = 2 * (Recall * Precision) / Recall + Precision

ROC-AUC:

It stands for the for the Area Under the Curve (AUC) of the Receiver Operating

Characteristic (ROC) curve between the true positive rate (i.e., recall) against the false

positive rate (FPR). It tells how much the model can distinguish between classes.

Each experiment is evaluated using these metrics, and the predictions made are analyzed

to determine which algorithm performed better. Weighted Average F1-Score [37] is used

to determine the classifiers’ overall performance. As mentioned in the previous chapter, I

have used two different feature sets to evaluate the algorithms.

The results obtained from each experiment are as follows:

22

4.1.1 Results of CIC Dataset Binary Classification

Supervised Learning:

 Class Names Decision Tree K-Nearest

Neighbor

Support Vector

Machines

Precision Benign 0.99 0.96 0.92

Attack 0.90 0.83 1.00

Recall Benign 0.99 0.99 1.00

Attack 0.88 0.55 0.00

F1-score Benign 0.99 0.98 0.96

Attack 0.89 0.66 0.00

Weighted Average F1-score 0.98 0.95 0.89

ROC-AUC 0.93 0.77 0.50

 Table 4.1 Results of Argus Binary classification

Table 4.1 displays the evaluation results of Argus Binary Classification for the CIC dataset.

As mentioned in Chapter 3, in this dataset, the benign flows outnumber the attack flows,

which resulted in the score variation between the classes. Therefore, I chose the Weighted

Average F1-Score (WAF1-score) for an overall evaluation of the classifiers. According to

the results of the evaluation, the Decision Tree algorithm outperforms KNN and SVM

algorithms with the highest WAF1-score of 98%, and KNN outperforms SVM with a

WAF1-score of 95% compared to SVM's 89% regardless of SVM having a higher precision

score for attack class and recall score for benign class of 100%.

 Class Names Decision Tree K-Nearest

 Neighbor

Support Vector

Machines

Precision Benign 1.00 1.00 1.00

Attack 1.00 1.00 1.00

Recall Benign 1.00 1.00 1.00

Attack 1.00 1.00 1.00

F1-score Benign 1.00 1.00 1.00

Attack 1.00 1.00 1.00

Weighted Average F1-score 1.00 1.00 1.00

ROC-AUC 0.99 0.99 0.99

 Table 4.2 Results of Tranalyzer2 Binary classification

23

Table 4.2 displays the results of the binary classification of the CIC dataset using

Tranalyzer2 flow features. Since tranalyzer2 features outnumber argus features (mentioned

in Chapter 3), it resulted in better performance of the classifiers. As a result, all three

classifiers performed better, with a higher average F1-score of 100%.

Compared to the binary classification of the CIC dataset regarding flow extractor

performance, tranalyzer2 has better evaluation results than argus. However, the decision

tree has a consistent score in both cases.

Unsupervised Learning:

 Class Names Local Outlier

Factor

One-Class SVM Isolation

Forest

Precision Benign 0.92 0.92 0.93

Attack 0.06 0.05 0.10

Recall Benign 0.98 0.99 0.82

Attack 0.02 0.01 0.23

F1-score Benign 0.95 0.96 0.87

Attack 0.02 0.01 0.14

Weighted Average F1-score

0.88 0.88 0.82

ROC-AUC 0.49 0.49 0.52

 Table 4.3 Argus Binary Classification results

Table 4.3 displays the evaluation results obtained from unsupervised learning of the CIC

dataset using argus flow features. The results show that LOF and 1-SVM performed better

than IF, with a WAF1-score of 88%.

Table 4.4 displays the evaluation results of unsupervised learning of the CIC dataset using

tranalyzer2 flow features. It is evident from the results that One-class SVM has the highest

WAF1-score of 66% when compared to Local Outlier Factor and Isolation Forest

algorithms with WAF1-scores of 62% and 65%, respectively. The Benign class from argus

and tranalyzer2 flow features have consistent performance scores compared to the Attack

class. In both cases, One-class SVM’s performance is consistent with better performance

regarding WAF1-score. Comparing the overall binary classification results in terms of the

ML algorithms of the CIC dataset, SL algorithms have a better performance score than

USL algorithms.

24

Class Names Local Outlier

Factor

One-Class SVM Isolation

Forest

Precision Benign 0.74 0.76 0.76

Attack 0.06 0.13 0.17

Recall Benign 0.88 0.99 0.92

Attack 0.03 0.01 0.05

F1-score Benign 0.81 0.86 0.83

Attack 0.04 0.01 0.07

Weighted Average F1-score 0.62 0.66 0.65

ROC-AUC 0.45 0.49 0.48

Table 4.4 Tranalyzer2 Binary Classification results

Moreover, in terms of the flow extractor performance in the CIC dataset for binary

classification, tranalyzer2 outperforms argus in supervised learning, and argus has a better

weighted average F1-score than tranalyzer2.

4.1.2 Results of Bot-IoT Dataset Binary Classification

Supervised Learning:

Class Names Decision Tree K-Nearest

Neighbor

Support

Vector

Machines

Precision Benign 0.50 0.37 1.00

Attack 1.00 1.00 1.00

Recall Benign 0.52 0.57 0.08

Attack 1.00 1.00 1.00

F1-score Benign 0.51 0.45 0.15

Attack 1.00 1.00 1.00

Weighted Average F1-score 1.00 1.00 1.00

ROC-AUC 0.75 0.78 0.54

Table 4.5 Argus Binary Classification results for Supervised Learning

25

Results from Table 4.5 show that the weighted average F1-score for all three classifiers has

a higher score of 100%, given that the F1-scores for the attack class in all the classifiers

have a better performance score of 100% compared to the benign class.

Their performance dropped as they struggled to detect the least representative, benign

class.

Unsupervised Learning:

 Class Names Local Outlier

Factor

One-Class SVM Isolation

Forest

Precision Benign 0.00 0.00 0.00

Attack 1.00 1.00 1.00

Recall Benign 0.64 0.18 0.23

Attack 0.11 0.31 0.32

F1-score Benign 0.00 0.00 0.00

Attack 0.19 0.48 0.49

Weighted Average F1-score 0.19 0.48 0.49

ROC-AUC 0.37 0.24 0.27

 Table 4.6 Argus Binary Classification results for Unsupervised Learning

Table 4.6 shows that Isolation Forest has better evaluation results than One-class SVM and

Local Outlier Factor. LOF performs the worst with a low F1-score of 19%. However, all

three classifiers have a higher precision score of 100% in the attack class.

When comparing the Binary classification results of the two datasets, Supervised Learning

algorithms outperform Unsupervised Learning algorithms with a higher weighted average

F1-score of 100%.

26

4.1.3 Results of CIC Dataset Multi Classification

Supervised Learning:

 Class Names Decision Tree K-Nearest

 Neighbor

Support Vector

Machines

Precision Benign 0.99 0.97 0.92

HTTP 0.87 0.74 0.00

TCP 0.63 0.29 1.00

UDP 0.97 0.78 0.98

RTSP 0.34 0.25 0.00

Recall Benign 0.99 0.99 1.00

HTTP 0.87 0.68 0.00

TCP 0.51 0.04 0.01

UDP 0.91 0.20 0.01

RTSP 0.21 0.05 0.00

F1-score Benign 0.99 0.98 0.96

HTTP 0.87 0.71 0.00

TCP 0.56 0.06 0.02

UDP 0.94 0.32 0.03

RTSP 0.26 0.08 0.00

Weighted Average F1-score 0.98 0.95 0.89

ROC-AUC 0.83 0.66 0.50

 Table 4.7 Argus Multi-Classification results for Supervised Learning

Table 4.7 displays the multi-Class classification results of the argus flow feature from the

CIC dataset. The metrics used to evaluate the models are the same for both binary and

multi-classification. Given that the dataset is imbalanced (Chapter 3), the benign class has

high precision and recall scores compared to each score of the attack classes. Compared to

other classes, RTSP has a mediocre performance score. Regarding the WAF1-score, the

decision tree performs better, with a score of 98%, compared to K-NN and SVM, with 95%

and 88%, respectively. Nevertheless, when comparing KNN and SVM, K-NN has a

consistent performance compared to SVM, which performs poorly in some classes.

27

 Class Names Decision Tree K-Nearest

Neighbor

Support Vector

Machines

Precision Benign 1.00 1.00 1.00

HTTP 0.99 0.99 0.98

TCP 0.80 0.97 0.99

UDP 0.99 0.99 0.99

RTSP 1.00 1.00 1.00

Recall Benign 1.00 1.00 1.00

HTTP 0.99 1.00 1.00

TCP 0.81 0.75 0.51

UDP 0.99 0.88 0.98

RTSP 1.00 0.99 0.99

F1-score Benign 1.00 1.00 1.00

HTTP 0.99 0.99 0.99

TCP 0.81 0.84 0.68

UDP 0.99 0.99 0.99

RTSP 1.00 0.99 0.99

Weighted Average F1-score 1.00 1.00 0.99

ROC-AUC 0.98 0.97 0.95

 Table 4.8 Tranalyzer2 Multi-Classification results for Supervised Learning

Table 4.8 displays the evaluation results of multi-classification using tranalyzer2 flow

features. Regarding WAF1-score, DT and KNN have a higher score of 100% compared to

SVM, with a score of 99%. However, all three classifiers consistently perform in terms of

precision and recall of all the classes. From Tables 4.7 and 4.8, it is evident that the decision

tree has a better performance compared to the other classifiers. SVM's performance was

poor in some classes in argus multi-classification, but in tranalyzer2, all three classifiers'

performance is better than argus. Decision tree and k-nearest neighbors consistently

perform in terms of Precision and Recall in all the classes in both cases.

28

4.1.4 Results of Bot-IoT Dataset Multi Classification

Supervised Learning:

Class Names Decision Tree K-Nearest

Neighbor

Support Vector

Machines

Precision Benign 0.48 0.60 1.00

Theft 0.64 0.26 0.00

OS-Service

Scan

0.85 0.89 0.88

OS-

Fingerprint

 Scan

0.86 0.87 0.56

Keylogging 0.57 0.31 1.00

HTTP-DDoS 0.53 0.45 0.00

TCP-DDoS 0.73 0.73 0.88

UDP-DDoS 0.99 0.97 0.00

HTTP-DoS 0.61 0.59 0.51

TCP-DoS 0.94 0.93 0.50

UDP-DoS 0.92 0.91 0.58

Recall Benign 0.51 0.40 0.07

Theft 0.62 0.08 0.00

OS-Service

Scan

0.50 0.45 0.19

OS-

Fingerprint

Scan

0.92 0.91 0.02

Keylogging 0.40 0.08 0.01

HTTP-DDoS 0.18 0.17 0.00

TCP-DDoS 0.98 0.97 0.48

UDP-DDoS 0.89 0.87 0.00

HTTP-DoS 0.42 0.32 0.26

TCP-DoS 0.53 0.53 0.93

UDP-DoS 1.00 0.98 1.00

F1-score Benign 0.50 0.48 0.14

Theft 0.63 0.12 0.00

29

Class Names Decision Tree K-Nearest

Neighbor

Support Vector

Machines

OS-Service

Scan

0.63 0.60 0.31

OS-

Fingerprint

 Scan

0.89 0.89 0.03

Keylogging 0.47 0.13 0.02

HTTP-DDoS 0.27 0.25 0.00

TCP-DDoS 0.84 0.83 0.62

UDP-DDoS 0.94 0.92 0.00

HTTP-DoS 0.50 0.42 0.35

TCP-DoS 0.68 0.68 0.65

UDP-DoS 0.96 0.95 0.73

Weighted Average F1-score 0.88 0.87 0.48

ROC-AUC 0.81 0.75 0.60

 Table 4.9 Argus Multi-Classification results for Supervised Learning

Table 4.9 displays the results of the Bot-IoT dataset's Argus Multi-class Classification.

Compared to KNN and SVM results, decision tree performance is consistent in all classes.

In both decision tree and KNN classifiers, the UDP-DDoS class has the highest precision

and recall score, resulting in a higher F1 score. Compared to SVM, which performs poorly

in some classes, KNN's performance is consistent. Regarding WAF1-score, the decision

tree classifier performs better with a score of 88%.

 Class Names Decision Tree K-Nearest Neighbor Support Vector

Machines

Precision Theft 0.92 0.65 0.00

OS-Service

Scan

0.98 0.86 0.43

OS-Fingerprint

 Scan

0.99 0.94 0.89

Keylogging 0.96 0.85 0.02

HTTP-DDoS 1.00 0.96 0.96

TCP-DDoS 1.00 0.61 0.55

30

Class Names Decision Tree K-Nearest Neighbor Support Vector

Machines

UDP-DDoS 1.00 0.56 0.86

HTTP-DoS 1.00 0.87 0.56

TCP-DoS 1.00 0.65 0.71

UDP-DoS 1.00 0.60 0.96

Recall Theft 0.94 0.58 0.08

OS-Service

Scan

0.97 0.84 0.57

OS-Fingerprint

 Scan

0.99 0.94 0.41

Keylogging 0.95 0.83 0.08

HTTP-DDoS 1.00 0.88 0.28

TCP-DDoS 1.00 0.81 0.92

UDP-DDoS 1.00 0.71 1.00

HTTP-DoS 1.00 0.98 0.19

TCP-DoS 1.00 0.42 0.23

UDP-DoS 1.00 0.43 0.83

F1-score Theft 0.93 0.62 0.01

OS-Service

 Scan

0.97 0.85 0.49

OS-Fingerprint

 Scan

0.99 0.94 0.57

Keylogging 0.95 0.84 0.04

HTTP-DDoS 1.00 0.92 0.43

TCP-DDoS 1.00 0.70 0.69

UDP-DDoS 1.00 0.62 0.93

HTTP-DoS 1.00 0.92 0.29

TCP-DoS 1.00 0.51 0.35

UDP-DoS 1.00 0.50 0.89

Weighted Average F1-score 1.00 0.63 0.63

ROC-AUC 0.99 0.85 0.71

 Table 4.10 Tranalyzer2 Multi-Classification results for Supervised Learning

31

Table 4.10 displays the results from Tranalyzer2 Multi-class classification of distinct

attacks. Compared to KNN and SVM classifiers, the decision tree classifier has higher

precision, recall, and F1-score. The majority of classes have a score of 100% in the decision

tree classifier and the highest weighted average F1 score of 100%.

The evaluation results from Tables 4.9 and 4.10 show that the decision tree classifier

outperforms k-nearest neighbors and support vector machines. Regarding flow extractor

performance, tranalyzer2 exceeds argus in the decision tree classifier and SVM.

Visualizing decision trees with Mutual Information Gain provides a better insight into the

evaluation results.

4.1.5 CICIoT2022 Binary and Multi Tranalyzer2 results of Decision Tree

 Class Names Decision Tree T2 Binary

Precision Benign 1.00

Attack 1.00

Recall Benign 1.00

Attack 1.00

F1-score Benign 1.00

Attack 1.00

Weighted Average F1-score 1.00

ROC-AUC 0.99

 Table 4.11 Tranalyzer2 Binary-Classification results for Supervised Learning.

Tables 4.11 and 4.12 display the binary and multi-classification results of the decision tree

classifier using the tranalyzer2 flow features after removing two potentially biased features,

namely DstPortClass and DstPortClassN. However, the results are similar to Tables 4.2

and 4.8, which present these features during evaluation.

32

Class Names Decision Tree T2 Multi

Precision Benign 1.00

HTTP 0.99

TCP 0.80

UDP 0.99

RTSP 1.00

Recall Benign 1.00

HTTP 0.99

TCP 0.81

UDP 0.99

RTSP 1.00

F1-score Benign 1.00

HTTP 0.99

TCP 0.81

UDP 0.99

RTSP 1.00

Weighted Average F1-score 1.00

ROC-AUC 0.98

Table 4.12 Tranalyzer2 Multi-Classification results for Supervised Learning

4.2 Visualization of Decision Trees:

The evaluation results show that Decision trees outperform the other implemented ML

algorithms with a better performance. So, I have visualized the Decision Tree to understand

the algorithm better, like which feature has a more significant contribution in identifying

attacks with the help of Mutual Information [42]. Here are the results of the visualization.

33

Binary classification results of the Argus flow features - CIC-IoT 2022 dataset:

Figure 4.1 represents the Mutual information (MI) of the Binary Argus Algorithm. The

features Avg_duration, Min_duration and Max_duration have the higher MI score when

compared to other features. Figure 4.2 is a Tree representation of the Binary Argus

classification. The Maximum depth of the tree is 82, and There are a total of 25447 leaf

nodes. Given that the depth of the tree is longer, for better visualization, I have set the

Maximum depth of the tree as 5. Class 0 represents the Benign class, and Class 1 represents

the Attack class.

Figure4.1 Mutual Information on Binary Argus Decision Tree Classification

34

Figure 4.2 Decision Tree visualization of Argus Binary Classification

35

Binary classification results of the Tranalyzer2 flow features - CIC-IoT 2022 dataset:

Figure 4.3 represents the MI for Decision Tree Classification for Binary Tranalyzer2. The

total number of features in tranalyzer2 exceeds 50, so I have selected the top 25 features

for representing Mutual Information. DstPortClass and DstPortClassN represent the traffic

classification based on port names and numbers. Therefore, they have a higher MI value

compared to other features. Figure 4.4 represents a decision tree visualization of Binary

Tranalyzer2. This tree has a Maximum Depth of 34 with 176 leaf nodes. Class 0 and Class

1 represent the Benign and Attack classes, respectively.

 Figure 4.3 Mutual Information on Binary Tranalyzer2 Decision Tree Classification

36

Figure 4.4 Decision Tree visualization of Tranalyzer2 Binary Classification

37

Binary classification results of the Argus flow features - Bot-IoT dataset:

Figure 4.5 is the MI representation of the Binary Argus classification of the Bot-IoT

dataset. Again, TCP protocol has the highest Information gain, with ARP protocol having

the lowest value. Figure 4.5 represents the DT visualization with a maximum depth of 35

with 307 leaf nodes, with Benign and Attack classes represented as Class 0 and Class 1.

Figure 4.5 Mutual Information on Binary Argus Decision Tree Classification

38

Figure 4.6 Decision Tree visualization of Argus Binary Classification

39

Multi-classification results of the Argus flow features - CIC-IoT dataset:

Figure 4.7 represents the mutual information on the Multi Argus Classification of the

CICIoT2022 dataset. The results are similar to the Binary Argus Classification of the CIC

dataset, as represented in Figure 4.1. The tree has a maximum depth of 34, with 31678 leaf

nodes. Figure 4.8 represents the DT visualization where Class 0 represents the Benign

class, Class 1 represents the HTTP attack and Class 3 represents the UDP Attack.

Figure 4.7 Mutual Information on Multi Argus Decision Tree Classification

40

Figure 4.8 Decision Tree visualization of Argus Multi Classification

41

Multi-classification results of the Tranalyzer2 flow features - CIC-IoT 2022 dataset:

Figure 4.9 is the MI representation of Multiclass classification on Tranalyzer2 features of

the CICIoT2022 dataset. The MI results of Binary and Multi classification for Tranalyzer2

on the CIC dataset are similar to DstPortClass, having the highest value among the features.

The tree has a maximum depth of 47, and the number of leaf nodes is 6172. Figure 4.10

represents the decision tree visualization where Class 0, 1, 2,3 and 4 represent the Benign

class, HTTP attack, TCP attack, UDP attack, and RTSP attack, respectively.

Figure 4.9 Mutual Information on Multi Tranalyzer2 Decision Tree Classification

42

Figure4.10 Decision Tree visualization of Tranalyzer2 Multi Classification

43

Multi-classification results of the Argus flow features - Bot-IoT dataset:

Figure 4.11 is the MI representation of Multiclass classification on Argus features of the

Bot-IoT dataset. The MI results of Binary and Multi classification for Argus on the CIC

dataset are similar to having Min_duration, Avg_duration and Max_duration having the

highest value among the features. The tree has a maximum depth of 77, and the number of

leaf nodes is 114312. Figure 4.12 represents the decision tree visualization where Class 2,

4, 7,8 and 10 represent OS-Service Scan, Keylogging, UDP-DDoS, HTTP-DoS, and UDP-

DoS attacks, respectively.

Figure 4.11 Mutual Information on Multi Argus Decision Tree Classification

44

Figure 4.12 Decision tree Visualization of Multi Argus

45

Multi-classification results of the Tranalyzer2 flow features - Bot-IoT dataset:

Figure 4.13 is the MI representation of the Multi Tranalyzer2 classification of the Bot-IoT

dataset. The SrcMac_DstMac_numP feature has the highest Information gain. Figure 4.14

represents the DT visualization. It has a maximum depth of 44 with 1439 leaf nodes. Class

2, 3, 5, 6, 7, 8, and 9 represent OS-Service Scan, OS-Fingerprint Scan, HTTP-DDoS, TCP-

DDoS, UDP-DDoS, HTTP-DoS and TCP-DoS Attacks, respectively.

Mutual Information:

 Figure 4.13 Mutual Information on Multi Tranalyzer2 Decision Tree Classification

46

Figure 4.14 Decision tree Visualization of Multi Tranalyzer2

47

Multi-classification results of the Tranalyzer2 flow features – CIC-IoT 2022 dataset

after removing the potentially biased features:

Figure 4.15 is the MI representation of Multiclass classification on Tranalyzer2 features of

the CICIoT2022 dataset after removing dstPortClass and dstPortclassN. The MI results of

Binary and Multi classification for Tranalyzer2 on the CIC dataset are similar (Figure 4.17)

to tcpWS, having the highest value among the features. The tree has a maximum depth of

47, and the number of leaf nodes is 6172. Figure 4.16 represents the decision tree

visualization where Class 0, 1, 2,3 and 4 represent the Benign class, HTTP attack, TCP

attack, UDP attack, and RTSP attack, respectively.

Mutual Information:

Figure 4.15 Mutual Information on Multi Tranalyzer2 Decision Tree Classification

48

Figure 4.16 Decision tree Visualization of Multi Tranalyzer2

49

Binary classification results of the Tranalyzer2 flow features - CIC-IoT 2022 dataset

after removing the biased features:

Figure 4.17 represents the MI for Decision Tree Classification for Binary Tranalyzer2. The

total number of features in tranalyzer2 exceeds 50, so I have selected the top 25 features

for representing Mutual Information. tcpWS has a higher MI value compared to other

features. Figure 4.18 represents a decision tree visualization of Binary Tranalyzer2. This

tree has a Maximum Depth of 34 with 176 leaf nodes. Class 0 and Class 1 represent the

Benign and Attack classes, respectively.

Mutual Information:

Figure 4.17 Mutual Information on Binary Tranalyzer2 Decision Tree Classification

50

Figure 4.18 Decision tree Visualization of Binary Tranalyzer2

51

4.3 Results and Discussion

I used the Weighted Average F1-score metric to evaluate the results of implementation.

Tables 4.1, 4.2, 4.7, and 4.8 display the Argus and Tranalyzer2 results of Supervised

Learning (binary and multi-classification) of the CICIoT2022 dataset. The DT algorithm

outperformed K-NN and SVM in all cases with the highest Weighted Average F1-score.

Furthermore, when comparing the results of Argus and Tranalyzer2, in the binary and

multi-classification of the models, Tranalyzer2 has the highest Precision and Recall scores

in both benign and attack classes. However, in Argus classification results, SVM performed

poorly, with a score of 0% in the attack classes. This indicates that SVM cannot identify

the true positives of the attack class because SVM will perform poorly when there are more

training data samples than features for each data point. In the CIC dataset, benign flows

outnumber attack flows significantly (Chapter 3), contributing to the model's poor

performance.

Tables 4.5, 4.9 and 4.10 display the Argus and Tranalyzer2 results of Supervised Learning

(binary and multi-classification) of the Bot-Iot dataset. The results show that the DT

algorithm outperforms K-NN and SVM with the highest evaluation scores. However,

compared to the CIC dataset, attack flows outnumber benign flows in the Bot-IoT dataset

(Chapter 3), contributing to the model's poor performance in the benign class.

Tables 4.3, 4.4 and 4.6 discuss Argus and Tranalyzer2 results of Unsupervised Learning of

the CICIoT2022 and Bot-IoT datasets. The results of the algorithms vary in each category.

For example, one-class SVM and Local Outlier Factor performed well in the CIC dataset,

and Isolation Forest outperformed LOF and one-class SVM in the Bot-IoT dataset.

However, the performance of 1-SVM is consistent with the highest score when using Argus

and Tranalyzer2 flow features in the CICIoT2022 dataset.

From the results of the visualization of decision trees, in most cases, Argus features like

Avg_duration, Min_duration, and Max_duration that contain information about the

duration of aggregated packets have the highest Mutual Information score compared to

other features. While in tranalyzer2, tcpWS (TCP Window Scale) has the highest Mutual

Information score contributing to identifying attacks when implementing ML algorithms.

Here is the summary of the results based on the Weighted Average F1-score for all

classifiers.

52

SUMMARY:

CICIoT2022 – Weighted Average F1-Score

(DT tranalyzer2 results of binary and multi-classification after excluding the dstportclass

and dstportclassN from the flow features)

Argus Tranalyzer2

DT-B 0.98 1.00

KNN-B 0.95 1.00

SVM-B 0.89 1.00

DT-M 0.98 1.00

KNN-M 0.95 1.00

SVM-M 0.89 0.99

LOF 0.88 0.62

IF 0.82 0.65

1-SVM 0.88 0.66

Table 4.13 Weighted Average F1-Scores for the CICIoT2022 dataset

Table 4.13 displays the weighted average F1-scores results of binary and multi-

classification of the CIC dataset. Although, in both cases (binary and multi-class), decision

trees outperform the other classifiers in SL with a higher score of 98% in argus binary and

multi-classification and 100% when using tranalyzer2 flow features, I-SVM and LOF

outperform the Isolation Forest algorithm with a higher evaluation score of 88% and when

using argus flow features 1-SVM outperforms LOF and IF with the highest score of 66%

when applied tranalyzer2 flow features. Regarding flow extractor performance, all three

supervised learning algorithms achieved a higher evaluation score of 100% when using

tranalyzer2 flow features. Comparatively, in unsupervised learning algorithms, the argus

flow feature dataset has a higher evaluation score of 88% than the tranalyzer2.

53

Bot-IoT – Weighted Average F1-Score

Argus Tranalyzer2

DT-B 1.00 -

KNN-B 1.00 -

SVM-B 1.00 -

DT-M 0.88 1.00

KNN-M 0.87 0.63

SVM-M 0.48 0.63

LOF 0.19 -

IF 0.49 -

1-SVM 0.48 -

Table 4.14 Weighted Average F1-Scores for the Bot-IoT dataset

Table 4.14 displays the Weighted Average F1-Scores for the Supervised and Unsupervised

Learning algorithms evaluated using the Bot-IoT dataset. The source files for the dataset

are available in various formats, including the original pcap files, the modified argus files,

and CSV files, as mentioned in Chapter 3. The modified argus files contain benign and

attack traffic data, whereas the original pcap files are divided into DoS and DDoS attack

classes. This situation prevents the tranalyzer2 flow extractor from being able to extract

benign features from the original pcap data. As a result, Tranalyzer2 is not used to

implement binary classification of the Bot-IoT dataset. However, using multi-

classification, evaluations are carried out by applying multi-classification to attack classes.

However, I used the modified argus files already available in binary format to implement

the binary classification of argus. The results suggest that all three classifiers attain a higher

performance score of 100% for binary classification employing argus flow characteristics.

However, DT outperformed the other classifiers in both cases for multi-classification

(using Argus and Tranalyzer2 flow features). Regarding Unsupervised Learning, the

Isolation Forest algorithm has better results than LOF and 1-SVM.

When comparing the overall performance of the ML Algorithms, the Decision Tree

Algorithm outperformed the K-Nearest Neighbors and Support Vector Machines

Algorithms and Unsupervised Learning algorithms.

The next chapter discusses the overall summary of this thesis and future works.

54

CONCLUSION AND FUTURE WORK

In my thesis, I used the approach of implementing Machine Learning Algorithms to detect

IoT device attacks. Finding publicly available datasets on IoT networks is the first step.

For this purpose, I used CIC-IoT2022 and Bot-IoT datasets. The next major step is to

extract the flow features for implementation from the datasets. Recent research has

suggested that Argus and Tranalyzer2 be used to extract flow features as both are recently

developed tools with extensive features for a straightforward interpretation of flow data.

Further, implementations are carried out using Supervised and Unsupervised Machine

Learning algorithms on the datasets. Decision tree, KNN, SVM, LOF, Isolation Forest, and

One-class SVM algorithms were used for implementation. My proposed framework using

these datasets with distinct flow characteristics will serve as a benchmark for future

research. From this lens, my new contributions are: (i) Employing supervised and

unsupervised machine learning algorithms with unique features for attack detection; (ii)

Using two distinct feature sets extracted from Argus and Tranalyzer2 to evaluate the

machine learning model; and (iii) Benchmarking the Argus and Tranalyzer2 features on

the two publicly available datasets, namely CIC-IoT 2022 dataset and Bot-IoT datasets.

The implementation results show that Decision Trees outperforms the KNN and SVM

algorithms in all cases, with the Decision Trees' average F1 score being 100% for binary

classification and multi-classification using Tranalyzer2 on both datasets. However, the

performance of One-Class SVM, Isolation Forest and the Local Outlier Factor algorithms

varied on the datasets used in this thesis and did not reach as high scores as the supervised

learning algorithms. Having a lower performance with unsupervised learning algorithms is

expected given that label information is not used while training these algorithms. Overall

results show that Decision Tree algorithms perform better than the others on all evaluations

including all datasets, binary, multi-class, Argus and Tranalyzer2 feature sets in this

research.

It should be noted there that all the algorithms were implemented off-the-shelf, I.e., using

default hyperparameter values provided in the machine learning libraries, in this thesis. But

it is known that hyper-parameter optimization could play a significant role in improving

performance. This might be one of the reasons why unsupervised learning algorithms did

not have a consistent performance on different evaluations. Future research will involve

hyperparameter tuning to examine the impact on the different machine learning models'

performance and studying further the complexity of the Decision Trees.

From the results of implementation, Supervised learning algorithms had higher evaluation

scores using T2 features, whereas the Unsupervised learning algorithms performed better

with Argus features.

55

Future research will involve investigating the results of the performance while integrating

the features of Argus and Tranalyzer2 flow exporters and studying the generalizability of

the solutions further. Moreover, to improve the proposed framework's performance, further

research would be beneficial in terms of different feature sets and other learning algorithms

such as Deep Neural Network, ensemble learning algorithms and studying explainable AI

models. Finally, the framework will be tested on other publicly available datasets,

including further attack and benign data.

56

APPENDIX A

Argus Flow description

Feature # Feature Names Feature Description

1 Proto Transaction protocols present in network flow

2 SrcAddr source IP address

3 Sport source port number

4 DstAddr destination IP address

5 Dport destination port number

6 Seq argus sequence number

7 StdDev standard deviation of aggregated records

8 Min minimum duration of aggregated records

9 Mean average duration of aggregated records

10 DstRate destination to source packets per second

11 SrcRate source to destination packets per second

12 Max maximum duration of aggregated records

Tranalyzer2 Flow description

Feature # Feature Names Feature Description

1 dir Flow direction

2 flowInd Flow index

3 flowStat Flow status and warnings

4 timeFirst Date time of first packet

5 timeLast Date time of last packet

6 duration Flow duration

7 numHdrDesc Number of different headers descriptions

8 numHdrs Number of headers (depth) in hdrDesc

9 hdrDesc Headers description

10 srcMac Mac source

11 dstMac Mac destination

12 ethType Ethernet type

13 ethVlanID VLAN IDs

57

Feature # Feature Names Feature Description

14 srcIP Source IP

15 srcIPCC Source IP country

16 srcIPOrg Source IP organisation

17 srcPort Source port

18 dstIP Destination IP address

19 dstIPCC Destination IP country

20 dstIPOrg Destination IP organization

21 dstPort Destination port

22 l4Proto Layer 4 protocol

23 macStat macRecorder status

24 macPairs Number of distinct source/destination MAC

addresses pairs

25 srcMac_dstMac_nu

mP

Source/destination MAC address, number of

packets of MAC address combination

26 srcMacLbl_dstMac

Lbl

Source/destination MAC label

27 dstPortClassN Port based classification of the destination port

number

28 dstPortClass Port based classification of the destination port

name

29 numPktsSnt Number of transmitted packets

30 numPktsRcvd Number of received packets

31 numBytesSnt Number of transmitted bytes

32 numBytesRcvd Number of received bytes

33 minPktSz Minimum layer 3 packet size

34 maxPktSz Maximum layer 3 packet size

35 avePktSize Average layer 3 packet size

36 stdPktSize Standard deviation layer 3 packet size

37 minIAT Minimum IAT

38 maxIAT Maximum IAT

39 aveIAT Average IAT

40 stdIAT Standard deviation IAT

41 pktps Sent packets per second

58

Feature # Feature Names Feature Description

42 bytps Sent bytes per second

43 pktAsm Packet stream asymmetry

44 bytAsm Byte stream asymmetry

45 tcpFStat tcpFlags status

46 ipMindIPID IP minimum delta IP ID

47 ipMaxdIPID IP maximum delta IP ID

48 ipMinTTL IP minimum TTL

49 ipMaxTTL IP maximum TTL

50 ipTTLChg IP TTL change count

51 ipToS IP Type of Service hex

52 ipFlags IP aggregated flags

53 ipOptCnt IP options count

54 ipOptCpCl_Num IP aggregated options, copy-class and number

55 ip6OptCntHH_D IPv6 Hop-by-Hop destination option counts

56 ip6OptHH_D IPv6 aggregated Hop-by-Hop destination options

57 tcpISeqN TCP initial sequence number

58 tcpPSeqCnt TCP packet seq count

59 tcpSeqSntBytes TCP sent seq diff bytes

60 tcpSeqFaultCnt TCP sequence number fault count

61 tcpPAckCnt TCP packet ACK count

62 tcpFlwLssAckRcv

dBytes

TCP flawless ACK received bytes

63 tcpAckFaultCnt TCP ACK number fault count

64 tcpBFlgtMx TCP Bytes in Flight MAX

65 tcpInitWinSz TCP initial effective window size

66 tcpAveWinSz TCP average effective window size

67 tcpMinWinSz TCP minimum effective window size

68 tcpMaxWinSz TCP maximum effective window size

69 tcpWinSzDwnCnt TCP effective window size change down count

70 tcpWinSzUpCnt TCP effective window size change up count

71 tcpWinSzChgDirC

nt

TCP effective window size direction change count

59

Feature # Feature Names Feature Description

72 tcpWinSzThRt TCP packet count ratio below window size

WINMIN threshold

73 tcpFlags TCP aggregated protocol flags (FINACK,

SYNACK, RSTACK, CWR, ECE, URG, ACK,

PSH, RST, SYN, FIN)

74 tcpAnomaly TCP aggregated header anomaly flags

75 tcpOptPktCnt TCP options packet count

76 tcpOptCnt TCP options count

77 tcpOptions TCP aggregated options

78 tcpMSS TCP maximum segment size

79 tcpWS TCP window scale

80 tcpMPTBF TCP MPTCP type bitfield

81 tcpMPF TCP MPTCP flags

82 tcpMPAID TCP MPTCP address ID

83 tcpMPdssF TCP MPTCP DSS flags

84 tcpTmS TCP time stamp

85 tcpTmER TCP time echo reply

86 tcpEcI TCP estimated counter increment

87 tcpUtm TCP estimated up time

88 tcpBtm TCP estimated boot time

89 tcpSSASAATrip TCP trip time (A: SYN, SYN-ACK, B: SYN-ACK,

ACK)

90 tcpRTTAckTripMi

n

TCP ACK trip min

91 tcpRTTAckTripMa

x

TCP ACK trip max

92 tcpRTTAckTripAv

e

TCP ACK trip average

93 tcpRTTAckTripJit

Ave

TCP ACK trip jitter average

94 tcpRTTSseqAA TCP round trip time (A: SYN, SYN-ACK, ACK, B:

ACK-ACK)

95 tcpRTTAckJitAve TCP ACK round trip average jitter

96 tcpStatesAFlags TCP state machine anomalies

60

Feature # Feature Names Feature Description

97 icmpStat ICMP Status

98 icmpTCcnt ICMP type code count

99 icmpBFTypH_Typ

L_Code

ICMP Aggregated type H (>128), L (<32) & code

bit field

100 icmpTmGtw ICMP time/gateway

101 icmpEchoSuccRati

o

ICMP Echo reply/request success ratio

102 icmpPFindex ICMP parent flowIndex

103 connSip Number of unique source IPs

104 connDip Number of unique destination IPs

105 connSipDip Number of connections between source and

destination IP

106 connSipDprt Number of connections between source IP and

destination port

107 connF The f-number: connSipDprt / connSip

[EXPERIMENTAL]

61

BIBLIOGRAPHY

[1] M. Anwer, S. Mahmood Khan, M. Umer Farooq and N. Waseemullah. Attack Detection
in IoT using Machine Learning. Engineering, Technology and Applied Science Research
Journal, Vol.11, No.3, June 2021, pages 7273-7278.

[2] M. Zeeshan, Q. Riaz, M. A. Bilal, M. K. Shahzad, H. Jabeen, S. A. Hyder and A. Rahim.
Protocol-Based Deep Intrusion Detection for DoS and DDoS Attacks Using UNSW-NB15
and Bot-IoT Datasets. IEEE Access, vol. 10. 2022, pages 2269-2283.

[3] S. Dwibedi, M. Pujari and W. Sun. A Comparative Study on Contemporary Intrusion
Detection Datasets for Machine Learning Research, IEEE International Conference on
Intelligence and Security Informatics (ISI), Arlington, VA, USA, 2020, pages 1-6.

[4] A. Das, S.A. Ajila and C. H. Lung. A Comprehensive Analysis of Accuracies of
Machine Learning Algorithms for Network Intrusion Detection. International Conference
on Machine Learning for Networking, 2019, pages 40-57.

[5] J. L. Leevy, J. Hancock, T. M. Khoshgoftaar and J. M. Peterson. An Easy-to-Classify
Approach for the Bot-IoT Dataset. 2021 IEEE Third International Conference on
Cognitive Machine Intelligence (CogMI), Atlanta, GA, USA, 2021, pages 172-179.

[6] S. Krishnan, A. Neyaz and Q.Liu. IoT Network Attack Detection using Supervised
Machine Learning. International Journal of Artificial Intelligence and Expert Systems,
10(2), 2021, pages: 18-32.

[7] M. S. Ahmad and S. H. Shah. Supervised Machine Learning approaches for Attack
Detection in the IoT Network. Keshav Dahal, Debasis Giri, Dr. Sarmistha Neogy, Dr.
Subrata Dutta and Sanjay Kumar, editors, Internet of Things and Its Applications. Lecture
Notes in Electrical Engineering, vol 825. Springer, Singapore, 2022.

[8] D. Rani and N. C. Kaushal. Supervised Machine Learning Based Network Intrusion
Detection System for Internet of Things. 11th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), Kharagpur, India, 2020, pages
1-7.

[9] M. Ahmad, Q. Riaz, M. Zeeshan and H. Tahir. Intrusion Detection in Internet of Things
using Supervised Machine Learning based on Application and Transport Layer features
using UNSW-NB15 dataset. J Wireless Com Network, 2021.

62

[10] Y. K. Saheed, A. I. Abiodun, S. Misra, M. K. Holone, R. C. Palacios. A Machine
Learning-based Intrusion Detection for detecting Internet of Things network attacks.
Alexandria Engineering Journal, vol 61, Issue 12, 2022, pages 9395-9409.

[11] H. Tyagi and R. Kumar. Attack and Anomaly detection in IoT networks using
Supervised Machine Learning approaches. Revue d'Intelligence Artificielle, vol. 35, No. 1,
2021, pages 11-21.

[12] F. Alasmary, S. Alraddadi, S. Al-Ahmadi and J. Al-Muhtadi. ShieldRNN: A
Distributed Flow-Based DDoS Detection Solution for IoT Using Sequence Majority
Voting. IEEE Access, vol. 10, 2022, pages 88263-88275.

[13] Denial of Service Attack. https://en.wikipedia.org/wiki/Denial-of-service_attack,
2023, Accessed: Jan-2023.

[14] Distributed Denial of Service Attack. https://www.geeksforgeeks.org/what-is-
ddosdistributed-denial-of-service/, 2023, Accessed: Jan-2023.

[15] Tshark Tutorial. https://hackertarget.com/tshark-tutorial-and-filter-examples/, 2023,
Accessed: Jan-2023.

[16] Bot-IoT Dataset. https://research.unsw.edu.au/projects/bot-iot-dataset, 2022,
Accessed: July-2022.

[17] CIC IoT Dataset 2022. https://www.unb.ca/cic/datasets/iotdataset-2022.html, 2022,
Accessed: May-2022.

[18] Ostinato Tool. https://ostinato.org/, 2022, Accessed: July-2022.

[19] Node-RED tool. https://nodered.org/, 2022, Accessed: July-2022.

[20] Argus. https://openargus.org/, 2022, Accessed: June-2022.

[21] Tranalyzer2. https://tranalyzer.com/doc/gettingstarted, 2022, Accessed: August-2022.

[22] Mirai botnet attack. https://en.wikipedia.org/wiki/Mirai_(malware), 2023, Accessed:
March-2023.

[23] Wireshark. https://www.wireshark.org/docs/wsug_html_chunked/, 2022, Accessed:
May-2022.

63

https://en.wikipedia.org/wiki/Denial-of-service_attack
https://www.geeksforgeeks.org/what-is-ddosdistributed-denial-of-service/
https://www.geeksforgeeks.org/what-is-ddosdistributed-denial-of-service/
https://hackertarget.com/tshark-tutorial-and-filter-examples/
https://research.unsw.edu.au/projects/bot-iot-dataset
https://www.unb.ca/cic/datasets/iotdataset-2022.html
https://ostinato.org/
https://nodered.org/
https://openargus.org/
https://tranalyzer.com/doc/gettingstarted
https://en.wikipedia.org/wiki/Mirai_(malware
https://www.wireshark.org/docs/wsug_html_chunked/

[24] Machine Learning. https://www.goodreads.com/book/show/32505087-machine-
learning, 2023, Accessed March-2023.

[25] Machine Learning Algorithms. https://www.geeksforgeeks.org/machine-learning/,
2023, Accessed: Feb-2023.

[26] Decision Tree Algorithm. https://www.javatpoint.com/machine-learning-decision-
tree-classification-algorithm, 2022, Accessed: Sep-2022.

[27] K-Nearest Neighbors Algorithm. https://towardsdatascience.com/machine-learning-
basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761, 2022, Accessed: Sep-
2022.

[28] Support Vector Machines Algorithm. https://monkeylearn.com/blog/introduction-to-
support-vector-machines-svm/, 2022, Accessed: Sep-2022.

[29] Local Outlier Factor Algorithm. https://medium.com/@pramodch/understanding-lof-
local-outlier-factor-for-implementation-1f6d4ff13ab9, 2022, Accessed: Nov-2022.

[30] One-class SVM Algorithm. http://rvlasveld.github.io/blog/2013/07/12/introduction-
to-one-class-support-vector-machines/, 2022, Accessed: Nov-2022.

[31] Isolation Forest Algorithm. https://towardsdatascience.com/outlier-detection-with-
isolation-forest-3d190448d45e, 2022, Accessed: Nov-2022.

[32] Supervised Machine Learning Algorithms. https://www.ibm.com/topics/supervised-
learning, 2023, Accessed: Feb-2023.

[33] Unsupervised Machine Learning Algorithms.
https://www.javatpoint.com/unsupervised-machine-learning, 2023, Accessed: Feb-2023.

[34] Sklearn Metrics. https://scikit-learn.org/stable/modules/model_evaluation.html, 2022,
Accessed: Aug-2022.

[35] Precison, Recall and F1-score. https://towardsdatascience.com/precision-recall-and-
f1-score-of-multiclass-classification-learn-in-depth-6c194b217629, 2022, Accessed: Aug-
2022.

[36] ROC-AUC Curve. https://www.scikit-yb.org/en/latest/api/classifier/rocauc.html,
2022, Accessed: Oct-2022.

64

https://www.goodreads.com/book/show/32505087-machine-learning
https://www.goodreads.com/book/show/32505087-machine-learning
https://www.geeksforgeeks.org/machine-learning/
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/
https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/
https://medium.com/@pramodch/understanding-lof-local-outlier-factor-for-implementation-1f6d4ff13ab9
https://medium.com/@pramodch/understanding-lof-local-outlier-factor-for-implementation-1f6d4ff13ab9
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
https://towardsdatascience.com/outlier-detection-with-isolation-forest-3d190448d45e
https://towardsdatascience.com/outlier-detection-with-isolation-forest-3d190448d45e
https://www.ibm.com/topics/supervised-learning
https://www.ibm.com/topics/supervised-learning
https://www.javatpoint.com/unsupervised-machine-learning
https://scikit-learn.org/stable/modules/model_evaluation.html
https://towardsdatascience.com/precision-recall-and-f1-score-of-multiclass-classification-learn-in-depth-6c194b217629
https://towardsdatascience.com/precision-recall-and-f1-score-of-multiclass-classification-learn-in-depth-6c194b217629
https://www.scikit-yb.org/en/latest/api/classifier/rocauc.html

[37] Weighted Average F1-score. https://towardsdatascience.com/micro-macro-weighted-
averages-of-f1-score-clearly-explained-b603420b292f, 2022, Accessed: Sep-2022.

[38] Accuracy. https://medium.com/@KrishnaRaj_Parthasarathy/ml-classification-why-
accuracy-is-not-a-best-measure-for-assessing-ceeb964ae47c, 2023, Accessed: Mar-2022.

[39] Internet of Things. https://www.techtarget.com/iotagenda/definition/IoT-device,
2023, Accessed: Jan-2023.

[40] Attack Detection in IoT devices using ML.
https://www.hornetsecurity.com/en/security-information/the-importance-of-machine-
learning-in-cyber-security/, 2022, Accessed: June-2022.

[41] Supervised Learning. https://en.wikipedia.org/wiki/Supervised_learning, 2023,
Accessed: Feb-2023.

[42] Mutual Information. https://machinelearningmastery.com/feature-selection-with-
numerical-input-data/, 2023, Accessed: Feb-2023.

[43] Decision Trees. https://en.wikipedia.org/wiki/Decision_tree_learning, 2023,
Accessed: Feb-2023.

[44] K-Nearest Neighbors. https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm,
2023, Accessed: Feb-2023.

[45] Support Vector Machines. https://en.wikipedia.org/wiki/Support_vector_machine,
2023, Accessed: Feb-2023.

[46] Unsupervised Learning. https://en.wikipedia.org/wiki/Unsupervised_learning, 2023,
Accessed: Feb-2023.

[47] Local Outlier Factor. https://en.wikipedia.org/wiki/Local_outlier_factor, 2023,
Accessed: Feb-2023.

[48] Isolation Forest. https://en.wikipedia.org/wiki/Isolation_forest, 2023, Accessed: Feb-
2023.

[49] One-class SVM. https://en.wikipedia.org/wiki/One-class_classification, 2023,
Accessed: Feb-2023.

65

https://towardsdatascience.com/micro-macro-weighted-averages-of-f1-score-clearly-explained-b603420b292f
https://towardsdatascience.com/micro-macro-weighted-averages-of-f1-score-clearly-explained-b603420b292f
https://medium.com/@KrishnaRaj_Parthasarathy/ml-classification-why-accuracy-is-not-a-best-measure-for-assessing-ceeb964ae47c
https://medium.com/@KrishnaRaj_Parthasarathy/ml-classification-why-accuracy-is-not-a-best-measure-for-assessing-ceeb964ae47c
https://www.techtarget.com/iotagenda/definition/IoT-device
https://www.hornetsecurity.com/en/security-information/the-importance-of-machine-learning-in-cyber-security/
https://www.hornetsecurity.com/en/security-information/the-importance-of-machine-learning-in-cyber-security/
https://en.wikipedia.org/wiki/Supervised_learning
https://machinelearningmastery.com/feature-selection-with-numerical-input-data/
https://machinelearningmastery.com/feature-selection-with-numerical-input-data/
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Local_outlier_factor
https://en.wikipedia.org/wiki/Isolation_forest
https://en.wikipedia.org/wiki/One-class_classification

	Binder1.pdf
	BIBLIOGRAPHY-B-2
	[10] Y. K. Saheed, A. I. Abiodun, S. Misra, M. K. Holone, R. C. Palacios. A Machine Learning-based Intrusion Detection for detecting Internet of Things network attacks. Alexandria Engineering Journal, vol 61, Issue 12, 2022, pages 9395-9409.

	BIBLIOGRAPHY-B-2.pdf
	[10] Y. K. Saheed, A. I. Abiodun, S. Misra, M. K. Holone, R. C. Palacios. A Machine Learning-based Intrusion Detection for detecting Internet of Things network attacks. Alexandria Engineering Journal, vol 61, Issue 12, 2022, pages 9395-9409.

	BIBLIOGRAPHY-B-2.pdf
	[10] Y. K. Saheed, A. I. Abiodun, S. Misra, M. K. Holone, R. C. Palacios. A Machine Learning-based Intrusion Detection for detecting Internet of Things network attacks. Alexandria Engineering Journal, vol 61, Issue 12, 2022, pages 9395-9409.

