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ABSTRACT 

The Internet of Things (IoT) is the term used to describe the numerous physical 

objects/devices connected to the Internet and collecting and exchanging data globally. IoT 

devices are especially susceptible to network attacks, including but not limited to botnet 

attacks, spoofing attacks, and denial of service attacks. This thesis explores supervised and 

unsupervised learning approaches to compare two types of traffic flow exporters on 

different publicly available datasets. Evaluations and results show that it is possible to 

achieve high weighted average F1-scores for attack detection using off-the-shelf 

supervised learning algorithms and traffic flow features on IoT networks. 
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CHAPTER 1      INTRODUCTION 

 

The Internet of Things (IoT) is the network of physical items, or "things," embedded with sensors, 

software, and other technologies to communicate and exchange data with other devices and systems 

through the Internet. IoT device applications have grown so diverse that they now support more 

than half of the world's population. These devices help simplify people's lives more than ever. They 

can be monitored and managed from anywhere using smartphones and the Internet. Since these 

devices rely on the Internet, they generate significant network traffic that can occasionally cause 

disruptions in terms of network congestion. The capacity of online traffic surged as more IoT 

devices were linked to the Internet. Security vulnerabilities increase with the evolution of IoT 

devices as they lack the essential built-in security safeguards to counter threats, making them 

particularly vulnerable. These devices' limited environment and low computational capacity are the 

principal reasons, severely challenging their physical security. An IoT device's tampering, theft, or 

destruction are examples of physical attacks. IoT devices are especially susceptible to network 

attacks, including data theft, phishing, botnet attacks, spoofing, and denial of service attacks (DoS 

and DDoS attacks [13] [14]). These can result in significant data breaches and other cyber security 

risks like ransomware attacks. These make IoT devices more prone to threats to user security and 

privacy. Therefore, it is essential to safeguard user information by strengthening the network due 

to the rise in cyberattacks. 

 

Cybercriminals can use device vulnerabilities as a launchpad for their attacks, emphasizing 

security's influence from the planning stage. Attackers may exploit vulnerabilities to target IoT 

devices to launch more sophisticated security breaches or distribute malware throughout the 

network. IoT botnets can highlight the impact of device vulnerabilities and how cybercriminals 

have evolved to use them. Mirai, [22] one of the most well-known types of IoT botnet malware, 

made headlines in 2016 by bringing down significant websites in a distributed denial of service 

(DDoS) campaign involving thousands of compromised household IoT devices. The threats IoT 

devices bring to large corporations and smart cities have been the subject of a comprehensive 

investigation. Due to the widespread use of IoT, its inherent mobility, and standardization 

restrictions, advanced technologies that can automatically detect suspicious activity on IoT devices 

connected to local networks are required.  

 

Attack detection using conventional approaches and outdated data processing techniques has 

become ineffective because of the widespread use of IoT. Due to the increased size of network 

traffic, detecting attacks and malicious data in the preliminary stages is exceedingly challenging. 

Various datasets have been used in the literature, comprising different solutions to build detection 

strategies for malignant attacks on IoT devices.  

 

One of the methodologies is the implementation of Machine Learning Algorithms to detect attacks 

on IoT devices. Machine learning techniques make detecting network attacks more efficient since 

these algorithms automatically develop prediction models. In addition, it enables analyzing vast 

amounts of data and revealing hidden data patterns, useful for attack detection. 
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This thesis aims to apply machine learning to contrast two types of machine learning algorithms: 

supervised and unsupervised, for attack detection using two different feature sets obtained from two 

flow extractor tools. The features are extracted from the CICIoT2022 and Bot-IoT datasets, 

comprising various malicious and normal traffic captures. Before implementing machine learning 

algorithms on these datasets, the packet captures (pcap files) are converted into flow features using 

two independent flow extractor tools, Argus and Tranalyzer2. These flow exporters transform the 

packet data into flow data with relevant feature information, enabling better interpretation of flow 

data. The benign and attack data are combined as a single entity for both datasets following the 

extraction of flow features. Finally, supervised, and unsupervised machine learning algorithms are 

implemented, and results from the implementations are recorded.  

 

The proposed framework leverages three supervised learning algorithms and three unsupervised 

learning algorithms. The Supervised Learning algorithms chosen were Decision Trees, Support 

Vector Machines (SVM) and K-Nearest Neighbors (KNN), and the unsupervised learning 

algorithms were Local Outlier Factor (LOF), One-class SVM and Isolation Forest Algorithm. These 

proposed models were trained, tested, and evaluated on the datasets by calculating recall, precision, 

Receiver Operating Characteristic-Area Under Curve (ROC-AUC), and F1-score metrics. The 

findings are then compared and analyzed to see which machine learning algorithms detected and 

predicted the attacks the best. The main goal of this thesis is to detect the diverse types of attacks 

against IoT devices using ML algorithms and determine which algorithm is better for prediction.  

  

My proposed framework using these datasets with distinct flow characteristics will serve as a 

benchmark for future research. The new contributions of my thesis are as follows:  

• Contrasting supervised and unsupervised machine learning algorithms for attack detection   

• Investigating two distinct feature sets extracted from Argus and Tranalyzer2 to evaluate the 

machine learning model.  

• Benchmarking the Argus and Tranalyzer2 features on the two publicly available datasets, namely 

CIC IoT 2022 dataset and Bot-IoT dataset. 

 

The rest of the thesis is organized as follows. The relevant literature is summarized in Chapter 2. 

The proposed approach is introduced in Chapter 3, along with a discussion of the research 

methodologies. In Chapter 4, the experiments are described in detail, along with the findings. 

Finally, in Chapter 5, conclusions are drawn, and future research is discussed.
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CHAPTER 2       LITERATURE REVIEW 

This chapter provides a comprehensive assessment of the literature. The main objective of 

developing attack detection strategies for IoT devices is to detect attacks at an early stage 

and safeguard the devices due to the growing risk of attacks on IoT devices. Various 

authors have proposed several approaches for developing attack detection frameworks. I 

proposed a machine learning framework to detect IoT attacks for the purpose of my 

research. The following is a review of the studies done by researchers who created IoT 

frameworks using ML algorithms.   

2.1 Previous Works 

Because of their characteristics, ensuring the security of IoT networks remains a challenge 

for researchers, attributing to a range of diverse technologies, some of which need to be 

updated. Due to the unique characteristics of IoT, these technologies have typical privacy 

and security issues with data that must be addressed. While many scientists are striving to 

address various IoT security concerns, the security level of IoT devices currently needs to 

catch up to what users require [14]. Denial of service (DoS), distributed denial of service, 

botnet attacks, information theft, and eavesdropping attacks are known cyberattacks that 

can affect IoT networks. Such attacks frequently harm organizations using IoT networks 

because they make it difficult to maintain the system correctly by preventing device 

functionality.  

As the number of IoT devices grows, so does the threat level of cybersecurity 

vulnerabilities they expose. Because the Internet of Things devices are autonomous and do 

not need human intervention to operate effectively, early detection of vulnerabilities and 

threats on IoT devices is pivotal. As a result, suitable network security solutions for the IoT 

system must meet several criteria, such as fast detection of attacks and predicting results 

with high accuracy.  

I propose adopting machine learning algorithms to identify attacks in IoT devices. Several 

authors suggested employing machine learning algorithms for IoT attack detection 

problems. In addition, numerous studies have suggested that machine learning techniques 

like K-Nearest Neighbors, Decision Trees, Support Vector Machines (SVM), and Random 

Forest (RF) can help with attack detection tasks. Though the underlying goal of the research 

was to detect attacks, the results varied depending on the algorithms and methods used to 

solve the problem. 

Alsamiri et al. [1] proposed the use of Machine learning algorithms like K-Nearest 

Neighbours (KNN), AdaBoost, and Naïve Bayes (NB) to detect Cyber Attacks on IoT 

devices efficiently. They used the Bot-IoT dataset to detect attacks on IoT devices. Initially, 

they extracted the flow-based features from the raw packets using the CICFlowMeter 
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network traffic flow extractor. Once they extracted the flow features, they performed data 

preprocessing and divided the dataset into 80% training and 20% testing for further 

implementations. The primary goal of their research is to evaluate the performance of 

machine learning algorithms in detecting IoT attacks. In the next step, they used the 

Random Forest regressor algorithm to select the features that can help find a lightweight 

security solution for IoT devices. They selected only seven features for implementing ML 

algorithms in the feature selection step among the 84 features extracted from 

CICFlowMeter. The implementation step was then organized into three phases: applying 

the proposed algorithms on each attack in the dataset separately, applying the algorithms 

on the entire dataset with a set of features combining the best features for each attack and 

applying the algorithms on the entire dataset with the seven best features obtained in the 

feature selection step. To evaluate the results of implementation, F-measure was selected. 

Their evaluations show that K-NN outperformed the other algorithms with a higher F-

measure of 99%. 

 

Zeeshan et al. [2] proposed a solution for detecting DoS and DDoS attacks using UNSW-

NB15 and Bot-IoT Datasets. They propose a Protocol Based-Deep Intrusion Detection 

architecture (PB-DID), in which they created a dataset of packets from IoT network traffic 

by comparing features from the UNSWNB15 and Bot-IoT datasets based on flow and TCP. 

Their proposed architecture involves comparing features from the two datasets to 

determine similar features, features selection process, data pre-processing and training the 

model using an unsupervised Long-Short Term Memory (LSTM) deep learning model. As 

a result of determining similar features, they found twenty-nine features that are similar in 

both datasets. Further, for implementation, twenty-six features were selected from twenty-

nine features that contain maximum information on the packets like ipaddress and 

portaddress. Furthermore, they performed binary and multi-class classification on the 

datasets for evaluation. The results of evaluations show that their model achieved an 

accuracy of over 96.3% by covering both datasets. 

 

Dwibedi et al. [3] proposed a paper that focuses on the contribution of data by analyzing 

three different IDS datasets, namely, UNSW-NB15, Bot-IoT, and CSE-CIC-IDS2018, 

employing various Machine Learning algorithms like Random Forest, Support Vector 

Machines, Keras, Deep Learning, and XGBoost. Their paper compares the performance of 

an ML-based IDS model by training it with each of the algorithms and analyzing how the 

choice of a dataset can impact the model's performance. Confusion Matrix, Precision and 

Recall were chosen as the evaluation metrics. They divided the datasets into 75% training 

and 25% testing. They used two scenarios for implementation and evaluation. The first 

scenario was to assess each dataset by training the model with each of the selected 

algorithms. A class of attacks is separated in the second scenario, and the model is trained 

with the remaining class. The evaluations determine whether the model can identify the 

attacks that are not trained. This methodology helped them understand whether the trained 

Machine Learning models could identify new attacks. Their evaluation shows that Random 
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Forest and SVM performed better than the XGBoost algorithm with high precision and a 

recall score of 100%. 

Das et al. [4] proposed a paper on a comprehensive analysis of the accuracies of Machine 

Learning algorithms for Network Intrusion Detection. The main goal of this thesis is to 

detect network intrusion with the highest accuracy and perform faster. Supervised 

machine-learning algorithms, namely Random Tree, Random Forest, Bayesian Networks, 

Naïve Bayes, K-Nearest Neighbors, C.45, Reduced Error Pruning Tree, Repeated 

incremental pruning to produce error reduction and Partial Decision Tree were 

implemented to analyze the Bot-IoT dataset and the UNSW-NB15 dataset. In addition, 

they conducted three experiments: Implementation of SL algorithms on the UNSW-NB15 

dataset to detect the anomaly and the type of anomaly, and Supervised Learning on the 

Bot-IoT dataset to detect the type of anomaly. Accuracy was chosen as the evaluation 

metric to evaluate the results of experiments. The evaluation results show that the best 

algorithm that does not compromise on accuracy is the Random Tree algorithm, with an 

accuracy of 96%. 

Leevy et al. [5] proposed an Easy-to-Classify Approach for the Bot-IoT Dataset. Their 

method uses a minimum number of dataset features with a simple ML algorithm for 

accurate classification. For this purpose, they used only 3 of the 29 features from the Bot-

IoT dataset and the Decision Tree classifier as their classification algorithm. To carry out 

their research goal, the performance of one-feature, two-feature, and three-feature Decision 

Tree models are evaluated to determine the minimum number of features for the correct 

classification. They ran stratified five-fold cross-validation ten times for one-feature, two-

feature, and three-feature Decision Tree models. With the F1 score as an additional metric, 

they used the AUC and Area Under Precision-Recall Curve (AUPRC) metrics to analyze 

the results. Their findings from the evaluation concluded that only the three-feature model 

has a higher AUC and AUPRC scores above 0.99. This model's F1 score is 100%. 

Krishnan et al. [6] proposed a paper on Attack detection on IoT networks using supervised 

machine learning algorithms. They used three supervised machine learning classifiers for 

predicting malicious and benign data in the network traffic data of IoT devices. The 

algorithms they chose were Random Forest regressor, Support Vector Classifier and 

Xtreme Gradient Boosting. The dataset used for performing the analysis was the IoTID20 

dataset. The dataset was split into 80% training and 20% testing. The feature selection 

methods applied were Sequential Backward Processing, Sequential Forward Processing 

and Recursive Feature Elimination. After pre-processing, a separate IoTID20 dataset with 

33 features was chosen for the experiment. According to their analysis, all three supervised 

feature selection methods predicted normal and anomalous traffic with high accuracy and, 

therefore, can be used to predict attacks on IoT devices. Recursive Feature Elimination 

resulted in better accuracy results for all three algorithms.  

5



Ahmad et al. [7] proposed Supervised Machine Learning Approaches for Attack Detection 

in the IoT Network. The NSL-KDD dataset detected unusual behaviours in IoT networks 

by applying various machine-learning algorithms. Training data consists of 125,973 data 

with 67,343 normal data and 58,630 anomalous data, and Testing data consists of 22,543 

data with 9710 normal data and 12,833 anomalous data with 41 features for testing and 

training data. Logistic Regression, K-Nearest Neighbor, Linear Support Vector Machine, 

SVM with RBF kernel, SVM with the polynomial kernel, SVM and logistic regression 

with stochastic gradient descent (hinge loss, log loss, Huber loss, and modified Huber loss 

function), Gaussian Naive Bayes, Bernoulli Naive Bayes, decision tree, random forest, and 

multilayer perceptron (MLP) classifier were the types of Machine learning algorithms 

used. Accuracy was chosen as the evaluation metric to determine the evaluation results.  

From their evaluations, stochastic gradient descent with log loss function has significantly 

less training time with an AUC value of 0.92 and an accuracy of 77.16%. Thus, they 

concluded that the random forest classifier and Stochastic Gradient Descent with log loss 

function perform better than the other classifiers for detecting malicious traffic. 

 

Rani et al. [8] proposed an efficient method using Random Forest Classifier for intrusion 

detection. Two datasets, namely NSL-KDD and KDDCUP99, were used to supply 

lightweight attack detection for IoT networks. The amount of data in KDDCUP was 

494,020; in NSL-KDD, the total data was 148,517. The attack classes were Denial of 

Services, Probe, User to Root and Remote to Local. Among 41 features, only ten key 

features were selected for training and testing. Therefore, a random Forest Classifier is 

used for training the model. Their proposed method provided a higher accuracy rate of 

99.9% and has the highest accuracy rate. In this approach, the features are manually chosen 

after analyzing different attacks and their characteristics depending upon the feature and 

the minimal features that were extracted. 

 

Ahmad et al. [9] proposed a paper on Intrusion detection on the Internet of Things using 

supervised machine learning based on application and transport layer features. The dataset 

used was the UNSW-NB15 dataset. The Intrusion detection system is built to prevent 

malicious traffic from entering the network. For the same, they proposed feature clusters 

in terms of Flow, Message Queuing Telemetry Transport and Transmission Control 

Protocol with features in the UNSW-NB15 dataset. The machine learning algorithms they 

adapted were Random Forest, Support Vector Machines and Artificial Neural Networks. 

Issues like imbalanced data, over-fitting, and the curse of dimensionality of the dataset 

were eliminated by data pre-processing to provide a consistent dataset for experimentation. 

After the feature selection and extraction process, 49 features were further reduced to 37 

features in Binary and Multi classification. Random Forest algorithm performed well, 

providing higher accuracy, followed by Support Vector Machines and Artificial Neural 

Networks. RF outperformed in cluster-based methodology by achieving 96.96% in flow 

features, 91.4% in TCP features and 97.54% in flow features and TCP clusters. 
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Saheed et al. [10] proposed a Machine Learning based Intrusion Detection System to detect 

attacks on IoT networks. The main aim of their project is to apply Machine Learning 

Supervised Algorithms based Intrusion Detection Systems for IoT networks. Feature 

scaling was done using the min-max concept. The dataset used was the UNSW-NB15 

dataset. The six Machine Learning algorithms adopted were Xtreme Gradient Boosting, 

Cat Boost, K-Nearest Neighbors, Support Vector Machines, Quadratic Discriminant 

Analysis, and Naïve Bayes classifiers. In addition, an unsupervised method, namely 

Principal component Analysis, was chosen for feature selection. For building the models, 

75% of the data was used as training data and 25% as testing data. The performance of 

their proposed model was evaluated in terms of accuracy, AUC, recall, precision, F1-score, 

kappa, and Mathew Correlation Coefficient. The accuracy of their proposed method PCA-

XgBoost gave the highest accuracy of 99.99% and F1-score of 100% of all other proposed 

methods. The PCA-Cat Boost also outperformed other proposed methods with an accuracy 

of 99.99% and an F1-score of 99.99%. 

Haji et al. [11] proposed a paper with a review of various machine learning techniques that 

are employed in attack detection and anomaly detection on IoT networks from 2019 to 

2021. In the detailed review, researchers used machine learning algorithms to detect attacks 

and anomalies on IoT networks. to conduct the experiments, they used various datasets like 

Bot-IoT, UNSW-NB15, NSL-KDD, IoT-23, and DS2OS. The researchers used and 

compared different ML algorithms on these datasets like Logistic Regression, Decision 

Trees, Random Forest, K-Nearest Neighbor, Support Vector Machines and Naïve Bayes 

algorithms. The review shows that the Random Forest (RF) algorithm yielded the best 

results with 99.34%, 99.5%, 99.4%, 99.9%, 99%, 99.5%, and 99.9% accuracy compared 

to the rest of the algorithms. Furthermore, Decision Trees and KNN perform better than 

other algorithms. 

Alasmary et al. [12] proposed a solution to detect Distributed Denial of Services attacks 

depending on the flow of traffic. The proposed solution consists of the IoT node detector, 

a classifier to monitor the outgoing traffic and the server detector, a classifier used by the 

IoT node if it is susceptible to a DDoS attack. To develop such a detector, they proposed 

the ShieldRNN approach for Recurrent Neural Network (RNN) and Long-Short Term 

Memory model (LSTM). The experiment was set to detect DDoS attacks like TCP SYN 

Flood, UDP Flood, TCP PSH and ACK flood, and ICMP flood. To launch attacks, they 

developed a tool that randomly launches attacks with random packets, with each attack 

with randomly generated IP addresses, source addresses and destination addresses. 

Wireshark is used to collect data for normal traffic and attack data. After data 

preprocessing, the dataset was divided into 90% training and 20% testing. To train the 

lightweight detector for the IoT node, they trained 12 different classifiers, four 

Feedforward Neural Networks classifiers (ANN) with a single hidden layer with sizes 3, 

5,10, and 20 neurons, one Logistic Regression (LR) classifier, three Random Forest 

classifiers with different numbers of trees, three SVM classifiers with three different 

kernels, namely linear, RBF, Polynomial with the third degree, and one Naïve Bayes 
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classifier. RandomForest classifiers achieved the best results compared to other classifiers 

when they were evaluated on the testing set with Accuracy and an F1-score of 100%. 

Additionally, they used two training and prediction strategies to train numerous RNN and 

LSTM models. Sequence-to-sequence training is the first technique in which the sequence 

model is trained to predict a label for each packet in the training sample. This methodology 

uses a majority voting method for prediction. Therefore, if most sequence packets are 

anticipated as attacks, the entire sequence will be predicted as attacks. If not, the final 

prediction is expected to be normal. As a result, they achieved the highest F1-score of 

values: 99.919%, 99.822%, 100%, 99.834%, 100%,100%, 100%, and 100% when they 

were tested on their dataset with the randomly generated list of sequence lengths: 26,57, 

77, 212, 329, 597, 643, and 877, respectively. They also set a baseline result for DDoS 

detection using ShieldRNN on the CIC-IoT2022 dataset. 

2.2 IoT Attacks Studied 

Based on the prior research examined, it is clear that various attacks were identified during 

the evaluation stages of the proposed architecture.  DoS and DDoS attacks are the most 

detected types of attacks. In my thesis, to be comparable with the previous studies I have 

also employed their IoT datasets. The attacks that were included in those datasets are listed 

below: 

• Denial of Services (DoS)

• Distributed Denial of Services (DDoS)

• Brute Force attack

• Scan attacks   and

• Theft attacks

2.3 IoT Vulnerabilities 

The IoT devices are vulnerable to attacks like DoS, DDoS and theft attacks given the 

reasons such as usage of default passwords and insecure network services. The 

vulnerabilities that make the attackers exploit them and launch attacks on IoT devices and 

networks are analyzed here. 

• DoS and DDoS attacks - The most common type of DDoS attacks is flooding the

target system. In these attacks, input is received that exploits vulnerabilities in the

target system and causes the system to crash or become very unstable, making it

impossible to access the system.

• Brute Force attacks - A brute-force attack is when an attacker tries a number of

different user credentials in an effort to guess the right ones. The majority of these

attacks are automated and use word lists of usernames and passwords.

• Scan attacks - Automated tools are usually used in scanning attacks to look for

open ports, vulnerabilities, and other bugs that could be used to obtain unlawful

access or launch an attack.
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• Theft attacks – This attack mainly includes gaining access to a user’s information 

by stealing the password information or security codes. Keylogging is one of the 

categories under theft attacks analyzed in my research. Keyloggers, often known as 

keystroke loggers, are devices that capture what users enter on a keyboard. Every 

keystroke made on the victim's device is recorded by keylogger software during a 

keylogger attack and is sent to the attacker. In the Bot-IoT dataset, they used log-

keys software to record the keystrokes on smartphones. 

 

2.4 SUMMARY 

The papers above discuss the works of various researchers who implemented Machine 

Learning algorithms for their research purposes. As mentioned in Chapter 1, my research 

goal is to detect attacks on IoT devices. For this purpose, I used two datasets comprising 

IoT attack packets, namely, the Bot-IoT dataset and the CIC-IoT2022 dataset, where the 

Bot-IoT dataset is used widely in literature, and the CIC-IoT2022 dataset, which is the 

most recently developed dataset. The papers [1],[2],[3],[4],[5], and [12] use the Bot-IoT 

dataset for the implementation of the author's proposed framework, and papers [1],[6], and 

[7] discuss the author's works on attack detection on IoT devices using different feature 

sets.   

 

The author's works address using Supervised and Unsupervised Machine Learning 

algorithms to build their models. However, compared to Unsupervised Learning 

algorithms, several authors implement Supervised Learning algorithms 

[1],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12] to build their models. However, none of their 

works discussed how implementing Supervised and Unsupervised ML algorithms on 

different datasets and feature sets results in the overall performance of their proposed 

frameworks. For implementing ML algorithms, the authors only used one feature set for a 

dataset. Also, their models only used part of the feature set by not removing the biased 

features, as features like ipaddress and portaddress [2] contain maximum information on 

the packets that may produce biased results in the evaluation. To evaluate their models, 

they used either F1- score or accuracy [2],[4],[6],[9],[7],[8],[12] as their evaluation metrics. 

However, accuracy is not a valid metric in imbalanced datasets since a valid metric must 

account for the proportion of data instances from various classes that are correctly 

categorized, and accuracy makes no distinction between the amount of correctly identified 

examples of different classes. Therefore, assessing the model's performance in terms of 

accuracy [38] could result in wrong conclusions and is considered a drawback.   

 

I proposed an IoT attack detection framework to overcome the existing solutions' 

drawbacks and make new contributions to the literature. My proposed framework uses two 

feature sets for the CIC-IoT 2022 and Bot-IoT datasets. They are used to build Machine 

Learning models for IoT attack detection and contrast the results of Supervised and 

Unsupervised Machine learning algorithms. Also, to prevent the models from producing 

biased results, I have removed features like ipaddress, port address, mac address, and seq 
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numbers which have maximum detail about the packets, while using the rest of the features 

extracted from the flow extractor tools. To assess the performance of my proposed 

framework, I used Weighted Average F1-score. The weighted average [37] is chosen if 

you have an imbalanced dataset but want to give more weight to classes with more 

examples. With weighted averaging, each class's contribution to the F1 average is weighted 

according to its size. The datasets used for my proposed framework have an unequal 

distribution of benign and attack packets making the datasets naturally imbalanced (a 

detailed description of the datasets is mentioned in Chapter 3). Therefore, I used Weighted 

Average F1-score to evaluate the algorithms and assess the model's performance.   

In contrast to existing solutions, my new contributions to the literature are: 

• Comparing the evaluations of flow extractors (Argus and Tranalyzer2).

• Using two feature sets to implement six different ML algorithms.

• Comparing the performance and evaluation results of Supervised and Unsupervised

Learning algorithms.

• Using Precision, Recall, Area Under the Curve (AUC-ROC) and Weighted Average F1-

score as an evaluation metric to evaluate my proposed framework.

The architecture of my proposed framework with the methodologies and the evaluation

results of my experiments will be discussed further in Chapters 3 and 4.
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CHAPTER 3     METHODOLOGY 

 

This chapter gives detailed information on the proposed framework and methodologies 

implemented. The main research goal of this thesis is to detect attacks on IoT network traffic by 

implementing Supervised and Unsupervised machine learning algorithms on flow data using two 

different feature sets. The proposed framework is comprised of three phases. The network traffic 

data comprising benign and attack packets from the CICIoT2022 and the Bot-IoT dataset was 

collected in Phase I. The data are initially presented as packet dumps (pcap files). In Phase II, the 

pcap files collected from Phase I are converted into flow features using Argus and Tranalyzer2 flow 

extractor tools. Once the flows are extracted, in Phase III, supervised and unsupervised ML 

algorithms are implemented, and the results of the evaluations are recorded. Figure 3.1 represents 

the architecture of the proposed framework. The rest of the chapter discusses in detail the 

methodologies used in the proposed framework. 

 

3.1 Phase I – Network Traffic 

In phase 1, the network traffic data from the CICIoT2022 [17] and Bot-IoT datasets are collected. 

For this purpose, datasets that comprise network traffic data generated from IoT devices are 

required. The datasets used for my research incorporate benign and attack traffic data regarding 

packet dumps. However, the CICIoT2022 dataset has more benign data than attack data, and the 

Bot-IoT dataset has more attack data, making the datasets divergent. 

 

3.1.1 CICIoT2022 dataset 

The University of New Brunswick generated this dataset in 2022 by collecting network traffic from 

IoT devices like cameras, home automation, and sensors with various protocols like IEEE 802.11, 

Zigbee-based, and Z-wave protocols. The traffic was generated by analyzing the different 

behaviours of the devices in different scenarios comprising benign and attack packets. The 

generated data were recorded using Wireshark [23] – a network protocol analyzer, and the output 

packet captures (pcap) were saved. 

 

In this dataset, the benign data were collected in five modes: Power, Idle, Interactions, Active and 

Scenarios. The attacks performed were Flooding and RTSP-Brute Force. The flooding attacks were 

further categorized as HTTP Flood, TCP Flood and UDP Flood. This imbalanced dataset has more 

benign flows of more than three million with attack flows of less than fifty thousand packets. 

 

In Power mode, the network traffic data of the IoT devices were captured by powering on each 

device individually and capturing the data. In Idle mode, the network traffic data was captured at a 

specific time without human interactions or intervention. For Interactions, every relevant feature 

on IoT devices has been extracted, and the related network activity and transmitted packets have 

also been recorded. During Active mode, the network traffic data is recorded from human 

interactions with the IoT devices. Various experiments were conducted on IoT devices, and the 

relevant traffic data was recorded for scenarios.  
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Figure 3.1 Architecture of the proposed framework 
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For collecting the Attack data, the researchers performed flood and brute force attacks on the IoT 

devices and captured the generated traffic. Flood attacks were classified as HTTP flood, TCP flood 

and UDP flood. In addition, Hydra and Nmap were used to perform a Brute Force attack on IoT 

devices. All these were analyzed with the help of a real-time network traffic analyzer tool, and all 

the packet data was saved. Figure 3.3 shows the graphical representation of the CICIoT2022 dataset. 

 

 

 

                                  Figure 3.3 Graphical representation of the CIC-IoT2022 dataset 

 

3.1.2 Bot-IoT dataset 

In the Cyber Range Lab of UNSW Canberra Cyber, a network environment was established to 

create the Bot-IoT dataset. The environment simulated both botnet traffic and benign traffic. The 

source files for the dataset are available in several forms, such as the original pcap files with more 

than seventy-two million records with benign packets of less than ten thousand, the modified argus 

files, and CSV files. To make handling the dataset easier, they extracted 5% of it using certain 

MySQL queries. About 3 million records make up the extracted 5%. The files were divided based 

on attack category and subcategory. For example, the DDoS and DoS attacks are further classified 

according to the protocol employed in the dataset, including OS and Service Scan, Keylogging, and 

Data Exfiltration attacks. The Bot-IoT dataset's raw network packets (Pcap files) were collected 

using tshark [15], and Ostinato tool [18] and Node-red [19] were used to create simulated network 

13



traffic (for non-IoT and IoT respectively). Figure 3.4 shows a graphical representation of the Bot-

IoT dataset. 

 

 

 

 

 

          

                                      Figure 3.4 Graphical representation of Bot-IoT dataset 

 

3.2 Phase II – Flow Extractors 

Argus and Tranalyzer2, flow extractor tools, were used to convert the packet data collected from 

the former phase into flow data and generate features for further experimentation. These flow 

extractor tools help extract flows from the packets with relevant feature information, enabling better 

interpretation of flow data. 

 

3.2.1 Argus 

Argus is a system for monitoring network traffic flow in both directions [20]. It offers details about 

the state of the network flow. Argus, a network monitoring tool first released in 1993 and written 

in C, supported dispersed network architecture. Argus uses its binary format for flow extraction and 

supports many protocols, including TCP, ARP, ICMP, and ESP. However, Argus can only extract 

the flows represented in binary format. So, for Argus, the packet data is initially converted to binary 

format, and the flows are extracted. Then, the extracted data is converted from .txt to .csv to build 
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and evaluate the machine learning algorithms. Thirteen flow features were taken from Argus for 

this study. After that, these features are utilized to examine how ML classifiers might employ them. 

A detailed description of the Argus flow features is mentioned in the Appendix section of this thesis. 

3.2.2 Tranalyzer2 

Tranalyzer2 [21] is a flow-based traffic analyzer developed on a flexible plugin-based architecture 

allowing efficient network traffic processing and analysis. It is a simple flow analyzer tool built in 

C that includes troubleshooting plug-ins. Tranalyzer2 extracts 109 features for each network flow. 

TShark [15] and Tranalyzer2 provide packet mode; however, Tranalyzer2 has a unique numerical 

ID connecting every packet to its flow. Tranalyzer2, based on the libpcap library, accepts not only 

IPv4/6 but also layer two and encapsulated packets such as MPLS, L2TP, and GRE from regular 

pcap files or live interfaces. With the help of a straightforward API, it is a memory-effective flow 

aggregator that makes it easier to create plug-ins. In addition, the output is accessible in text or 

binary format for future post-processing. A detailed description of the Tranalyzer2 flow features is 

mentioned in the Appendix section of this thesis.  

3.2.3 Number of flows extracted 

CIC-IoT2022 dataset – Binary classification of Argus and Tranalyzer2 flows 

Class name Number of flows extracted 

Benign 2499316 

Attack  207723 

Table 3.1 Number of Argus and Tranalyzer2 flows extracted for binary classification from the 

CIC-IoT 2022 dataset. 

CIC-IoT2022 dataset – Multi-classification of Argus and Tranalyzer2 flows 

Class name Number of flows extracted 

Benign 2499316 

HTTP 171809 

TCP 15794 

15



Class name 

 

Number of flows extracted 

UDP 10629 
 

RTSP 

 

9491 

 

 Table 3.2 Number of Argus flows extracted for multi-classification from the CIC-IoT 2022 dataset 

 

Bot-IoT dataset – Binary classification of Argus flows 

 

Class name 

 

Number of flows extracted 

Benign 477 

 

Attack 15591796 
 

     

      Table 3.3 Number of Argus flows extracted for binary classification from the Bot-IoT dataset 

 

Bot-IoT dataset – Multi-classification of Argus flows 

 

Class name 

 

Number of flows extracted 

Benign 477 

 

UDP-DoS   5578193 
 

UDP-DDoS    4016098 
 

TCP-DDoS       3115880 
 

TCP-DoS   2245684 
 

OS-Fingerprint 398816 
 

OS-Service Scan 112378 
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Class name Number of flows extracted 

HTTP-DoS 69906 

HTTP-DDoS 49856 

Keylogging  3663 

Theft    1322 

      Table 3.4 Number of Argus flows extracted for multi-classification from the Bot-IoT dataset. 

Bot-IoT dataset – Multi-classification of Tranalyzer2 flows (Attack multi-classification) 

Class name Number of flows extracted 

UDP-DoS  267063 

UDP-DDoS   267441 

TCP-DDoS      633998 

TCP-DoS  558804 

OS-Fingerprint 104028 

OS-Service Scan 37679 

HTTP-DoS 22189 

HTTP-DDoS 20191 

Keylogging  1574 

Theft    411 

Table 3.5 Number of Tranalyzer2 flows extracted for Attack multi-classification from the Bot-IoT 

dataset. 

17



 

Following the flow features extraction, Phase III discusses the implementation of ML algorithms 

on the datasets using the flow features. 

 

3.3 Phase III – Machine Learning Algorithms 

Phase III is the essential phase of the proposed framework. Once the flow features are extracted, 

the next step is implementing machine learning algorithms [25] on the datasets and evaluating the 

models. Features, namely port address, IP address, mac address, and sequence numbers, are 

considered potential biases during implementations.  

 

So, these features are removed from the flow features before building the model. Once the features 

are removed, the dataset is divided into 70% training and 30% testing. After completing the train 

test split, the next step is to fit the model using Machine Learning Algorithms.  

 

My proposed framework includes implementing three supervised and three unsupervised learning 

algorithms: Decision Trees, Support Vector Machines, K-Nearest Neighbors, Local Outlier Factor, 

Isolation Forest, and One-class SVM. 

 

3.3.1 Supervised Learning 

Supervised learning [32],[41] is a machine learning approach for problems with labelled examples, 

where each data point has features and an associated label. Feature vectors (inputs) are converted 

to labels (outputs) through supervised learning algorithms, which learn a function based on sample 

input-output pairs. Training and testing are the two primary phases of supervised learning. Creating 

a classification model is called the training phase. The testing phase employs the classifier created 

in the initial phase to categorize examples not observed or trained. Supervised Learning algorithms 

use labelled training data, which consists of a collection of training samples, to determine a 

function. Each example in supervised learning consists of two elements: a desired output and an 

input. A supervised learning algorithm evaluates training data to provide an inferred function that 

may be used to map new data samples. The algorithm can accurately detect the class labels for 

instances not observed in the ideal situation, which requires the learning algorithm to generate 

reasonable conclusions from the training data to possible scenarios. The classifier for analyzing 

network traffic is built using supervised learning (SL) algorithms. I performed binary classification 

and multi-class classification in implementing the Supervised Learning algorithms.   

 

Binary classification is when the classification is made between two classes: Benign and Attack 

classes. Multi-class classification is when classification is performed to predict different classes. 

For my research, I have performed multi-class classification among benign data and distinct kinds 

of attack data: DoS attacks, DDoS attacks, OS and Service Scan, Keylogging, Data Exfiltration 

attacks and Brute-Force attacks. 
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3.3.1.1 Decision Trees 

The decision tree [26],[43] learning approach is most frequently employed in machine learning. 

The goal of a decision tree is to build a model that predicts the value of a target variable based on 

multiple input variables.  Each inner (non-leaf) node is labelled with an input characteristic in a 

decision tree or classification tree. For example, each possible value of the target feature is labelled 

on the arcs that originate from a node with an input feature, or the arc may lead to a decision node 

on a different input feature. In addition, each leaf of the tree has a class or probability distribution 

across the classes labelled on it, indicating that the tree has classified the data set into a particular 

class or probability distribution. In simple terms, decision trees are just a collection of if-else 

statements. If the condition is satisfied, it determines whether to go on to the subsequent node 

associated with that choice. It offers a top-down structure tree with an iterative splitting of the 

training dataset.  

The following chapter shows the visualization of the implemented decision tree model. 

3.3.1.2 K-Nearest Neighbors 

The K Nearest Neighbor algorithm [27],[44] stores all available scenarios and categorizes 

additional data or instances based on a similarity measure. A data point is often categorized using 

the classification of its neighbors. The outcome of the K-NN classification algorithm is a class 

identification. The class of an object is determined by a majority vote of its neighbors, with the 

object given to the class that is most prevalent among its k nearest neighbors (k is a positive integer). 

When K = 1, an instance is just put in the class of the nearest neighbor. In K-NN classification, all 

computation is postponed until after the function has been evaluated and the function is only locally 

approximated. Since this technique relies on distance for classification, normalizing the training 

data may improve its accuracy if the features reflect several tangible units or have significantly 

different scales. The neighbors are chosen from a collection of known-class items. Although no 

explicit training phase is needed, these known-class items can be viewed as the algorithm's training 

set. The training examples are vectors with class labels in a multidimensional feature space. Only 

the training samples' feature vectors and class labels are stored during the algorithm's training phase. 

As determined by a distance function, the K-Nearest Neighbors of the case allocated to the class 

share the most instances of it. Here, the number of neighbors' n' indicates the number of classes.  

3.3.1.3 Support Vector Machines 

In a high-dimensional space, SVM [28],[45] classifies data using a single or a collection of 

hyperplanes. SVM attempts to lower the possibility of generalization errors when creating the 

classifier. It is implemented when the primary hyperplane is chosen, which provides the most 

significant distance between the nearest instances of the classes in the training dataset. Support 

vector machines are supervised learning models with corresponding learning algorithms used in 

machine learning to classify data. An SVM training method creates a model that classifies new 

examples into one of two categories based on a series of training examples, each of which has been 

marked as belonging to one of the two categories. SVM assigns training samples to spatial 
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coordinates to maximize the distance between the two categories. Then, based on which side of the 

gap they fall, new samples are projected into that area and predicted to belong to a category.   

There are several Kernels available for Support Vector Machines implementation. For my research, 

I have used Linear Kernel to evaluate the model. 

 

A detailed description of the algorithms can be found in [24] and [41]. 

 

3.3.2 Unsupervised Learning 

Unsupervised learning [33],[46] is an algorithm that discovers patterns from unlabeled data. An 

unsupervised learning algorithm attempts to resemble the input data during the training phase. It 

uses the error in the output of its simulation to resolve itself (correct its weights and biases). Without 

prior data training in contrast to supervised learning, the machine's objective in unsupervised 

learning is to categorize unsorted data according to similarities, patterns, and differences. Unlike 

supervised learning, unsupervised learning algorithms enable users to perform more complicated 

analysis tasks. 

 

3.3.2.1 Local Outlier Factor 

The Local Outlier Factor (LOF) [29],[47] is based on the idea of a local density, in which locality 

is determined by the distance between the nearest k neighbors, which is used to estimate the density. 

A region of similar density and points with a significantly lower density than its neighbors can be 

found by comparing the local densities of an object and its neighbors. It is the most popular and 

commonly applied unsupervised learning algorithm. The concept of nearest neighbors is used to 

calculate the anomaly or outlier score. The Local Outlier Factor algorithm calculates the local 

density deviation of a particular data point concerning its neighbors. The samples with a 

significantly lower density than their neighbors are regarded as outliers. LOF greater than one is 

considered an anomaly, and a LOF approximately equal to one is considered normal. 

 

3.3.2.2 Isolation Forest 

The Isolation Forest algorithm (IF) [31], [48] is based on the idea that erroneous data points can be 

easily distinguished from the rest of the sample. They are built using the decision trees algorithm. 

Additionally, this model is unsupervised because there are no predefined labels present. Instead, 

anomalies are defined as data points upon which Isolation Forests were developed. IF randomly 

chooses an attribute, then chooses a split value between the minimum and maximum values 

permitted for that characteristic to construct partitions on the sample that can be used to isolate a 

data point. Isolation Forest uses binary trees to find anomalies. The algorithm's minimal memory 

requirements and linear time complexity make it effective for handling large amounts of data. Data 

points that require fewer splits to be isolated are given higher anomaly scores by Isolation Forest, 

which divides the data space using orthogonal to the origin lines. An Isolation Forest processes data 

randomly sub-sampled in a tree structure using randomly chosen features. For example, if it took 

more branches to isolate the samples that travelled further into the tree, they are less likely to be 

anomalies. 
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Similarly, samples with shorter branches show anomalies because the tree found it easier to 

distinguish them from other data. An ensemble of many such trees may be used for better results 

because a single isolation tree has a lot of expected variability in the isolation depths that it will 

give to each observation. The final score is obtained by averaging the results (the isolation depths) 

from many such trees.  

 

3.3.2.3 One-class SVM 

One-Class SVM (1-SVM) [30],[49] is an unsupervised learning algorithm that distinguishes test 

samples from other classes. One-Class SVM and SVM are similar, but 1-SVM has just one class. 

As a result, a boundary is determined based on the given data. 1-SVM is based on determining the 

smallest hypersphere comprised of all the data points. The fundamental principle of 1-SVM is to 

minimize the hypersphere of the single class of examples in the training data and to treat all other 

samples as outliers or samples that do not fit the training data distribution. One-Class SVM, a class 

offered by SK-learn, internally accomplishes the mathematical modelling of hypersphere 

minimization by training on data samples. One-class SVMs do not require target labels throughout 

the model training process, in contrast to conventional supervised SVMs. Instead, it learns the 

boundary for the usual data points and recognizes the data outside the boundary as anomalies. In 

simple terms, any new data that deviates from the range is categorized as an outlier. 

A detailed description of the algorithms can be found in [24] and [46]. 

 

SUMMARY 

This chapter discusses in detail the methodologies used in my proposed framework. The proposed 

framework has three distinct phases. In phase I, the network traffic data is collected from the CIC-

IoT2022 and the Bot-IoT datasets following the extraction of flow features of packet data in phase 

II. Once the dataset is processed, ML algorithms are implemented in them. Phase III discusses the 

ML algorithms used for implementation. I used SL and USL algorithms for implementing the data. 

In supervised learning algorithms, binary classification and multi-class classification techniques are 

performed. The next step after the implementation of the models is experimentation and evaluation. 

Chapter 4 discusses in detail the evaluation metrics used and the results of evaluations. 
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CHAPTER 4     EVALUATION AND RESULTS 

 

Chapter 3 discussed the methodologies used to implement the proposed framework. This 

chapter discusses in detail the results of implementation. As mentioned in the previous 

chapter, six ML algorithms were used to evaluate the proposed framework using two 

feature sets obtained from Argus and Tranalyzer2. The results from the CICIoT2022 and 

Bot-IoT datasets are categorized based on the classification algorithms as Argus binary, 

Argus Multi, Tranalyzer2 binary and Tranalyzer2 multi. The rest of the chapter discusses 

the results and determines which algorithm outperformed with the highest evaluation score. 

 

4.1 Evaluation Metrics and Results 

All experiments are carried out on a Mac Book Air equipped with an M1 chip and 8GB of 

RAM. The Evaluations of the implemented ML models are done using SKlearn metrics 

[34] such as the F1-score [35], Precision, Recall, and Area under the Curve (ROC-AUC) 

[36]. 

Precision: 

It measures the ratio of correctly predicted malicious flows to the total number of malicious 

flows.  

                             Precision = True Positive / True Positive + False Positive 

Recall: 

It quantifies the ratio of attack instances correctly detected out of the total number of actual 

attacks. 

                             Recall = True Positive / True Positive + False Negative 

F1-score: 

It is the harmonic mean of Precision and Recall 

                             F1-Score = 2 * (Recall * Precision) / Recall + Precision 

ROC-AUC: 

It stands for the for the Area Under the Curve (AUC) of the Receiver Operating 

Characteristic (ROC) curve between the true positive rate (i.e., recall) against the false 

positive rate (FPR). It tells how much the model can distinguish between classes.  

 

Each experiment is evaluated using these metrics, and the predictions made are analyzed 

to determine which algorithm performed better. Weighted Average F1-Score [37] is used 

to determine the classifiers’ overall performance. As mentioned in the previous chapter, I 

have used two different feature sets to evaluate the algorithms.  

The results obtained from each experiment are as follows: 
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4.1.1 Results of CIC Dataset Binary Classification  

Supervised Learning: 

 

 Class Names Decision Tree K-Nearest  

Neighbor 

Support Vector 

Machines 

Precision Benign 0.99 0.96 0.92 

Attack 0.90 0.83 1.00 

Recall Benign 0.99 0.99 1.00 

Attack 0.88 0.55 0.00 

F1-score Benign 0.99 0.98 0.96 

Attack 0.89 0.66 0.00 

Weighted Average F1-score 0.98 0.95 0.89 

ROC-AUC 0.93 0.77 0.50 

 

                                      Table 4.1 Results of Argus Binary classification 

 

Table 4.1 displays the evaluation results of Argus Binary Classification for the CIC dataset. 

As mentioned in Chapter 3, in this dataset, the benign flows outnumber the attack flows, 

which resulted in the score variation between the classes. Therefore, I chose the Weighted 

Average F1-Score (WAF1-score) for an overall evaluation of the classifiers. According to 

the results of the evaluation, the Decision Tree algorithm outperforms KNN and SVM 

algorithms with the highest WAF1-score of 98%, and KNN outperforms SVM with a 

WAF1-score of 95% compared to SVM's 89% regardless of SVM having a higher precision 

score for attack class and recall score for benign class of 100%. 

 

 Class Names Decision Tree K-Nearest 

 Neighbor 

Support Vector 

Machines 

Precision Benign 1.00 1.00 1.00 

Attack 1.00 1.00 1.00 

Recall Benign 1.00 1.00 1.00 

Attack 1.00 1.00 1.00 

F1-score Benign 1.00 1.00 1.00 

Attack 1.00 1.00 1.00 

Weighted Average F1-score 1.00 1.00 1.00 

ROC-AUC 0.99 0.99 0.99 

                           Table 4.2 Results of Tranalyzer2 Binary classification 
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Table 4.2 displays the results of the binary classification of the CIC dataset using 

Tranalyzer2 flow features. Since tranalyzer2 features outnumber argus features (mentioned 

in Chapter 3), it resulted in better performance of the classifiers. As a result, all three 

classifiers performed better, with a higher average F1-score of 100%.   

Compared to the binary classification of the CIC dataset regarding flow extractor 

performance, tranalyzer2 has better evaluation results than argus. However, the decision 

tree has a consistent score in both cases. 

 

Unsupervised Learning: 

 

 Class Names Local Outlier  

Factor 

One-Class SVM Isolation 

Forest 

Precision Benign 0.92 0.92 0.93 

Attack 0.06 0.05 0.10 

Recall Benign 0.98 0.99 0.82 

Attack 0.02 0.01 0.23 

F1-score Benign 0.95 0.96 0.87 

Attack 0.02 0.01 0.14 

 

Weighted Average F1-score 

0.88 0.88 0.82 

ROC-AUC 0.49 0.49 0.52 

 

                                           Table 4.3 Argus Binary Classification results 

 

Table 4.3 displays the evaluation results obtained from unsupervised learning of the CIC 

dataset using argus flow features. The results show that LOF and 1-SVM performed better 

than IF, with a WAF1-score of 88%. 

 

Table 4.4 displays the evaluation results of unsupervised learning of the CIC dataset using 

tranalyzer2 flow features. It is evident from the results that One-class SVM has the highest 

WAF1-score of 66% when compared to Local Outlier Factor and Isolation Forest 

algorithms with WAF1-scores of 62% and 65%, respectively.  The Benign class from argus 

and tranalyzer2 flow features have consistent performance scores compared to the Attack 

class. In both cases, One-class SVM’s performance is consistent with better performance 

regarding WAF1-score. Comparing the overall binary classification results in terms of the 

ML algorithms of the CIC dataset, SL algorithms have a better performance score than 

USL algorithms. 
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Class Names Local Outlier 

Factor 

One-Class SVM Isolation 

Forest 

Precision Benign 0.74 0.76 0.76 

Attack 0.06 0.13 0.17 

Recall Benign 0.88 0.99 0.92 

Attack 0.03 0.01 0.05 

F1-score Benign 0.81 0.86 0.83 

Attack 0.04 0.01 0.07 

Weighted Average F1-score 0.62 0.66 0.65 

ROC-AUC 0.45 0.49 0.48 

Table 4.4 Tranalyzer2 Binary Classification results 

Moreover, in terms of the flow extractor performance in the CIC dataset for binary 

classification, tranalyzer2 outperforms argus in supervised learning, and argus has a better 

weighted average F1-score than tranalyzer2. 

4.1.2 Results of Bot-IoT Dataset Binary Classification 

Supervised Learning: 

Class Names Decision Tree K-Nearest

Neighbor 

Support 

Vector 

Machines 

Precision Benign 0.50 0.37 1.00 

Attack 1.00 1.00 1.00 

Recall Benign 0.52 0.57 0.08 

Attack 1.00 1.00 1.00 

F1-score Benign 0.51 0.45 0.15 

Attack 1.00 1.00 1.00 

Weighted Average F1-score 1.00 1.00 1.00 

ROC-AUC 0.75 0.78 0.54 

Table 4.5 Argus Binary Classification results for Supervised Learning 
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Results from Table 4.5 show that the weighted average F1-score for all three classifiers has 

a higher score of 100%, given that the F1-scores for the attack class in all the classifiers 

have a better performance score of 100% compared to the benign class. 

Their performance dropped as they struggled to detect the least representative, benign 

class. 

 

Unsupervised Learning: 

 Class Names Local Outlier  

Factor 

One-Class SVM Isolation 

Forest 

Precision Benign 0.00 0.00 0.00 

Attack 1.00 1.00 1.00 

Recall Benign 0.64 0.18 0.23 

Attack 0.11 0.31 0.32 

F1-score Benign 0.00 0.00 0.00 

Attack 0.19 0.48 0.49 

Weighted Average F1-score 0.19 0.48 0.49 

ROC-AUC 0.37 0.24 0.27 

 

                   Table 4.6 Argus Binary Classification results for Unsupervised Learning 

 

Table 4.6 shows that Isolation Forest has better evaluation results than One-class SVM and 

Local Outlier Factor. LOF performs the worst with a low F1-score of 19%. However, all 

three classifiers have a higher precision score of 100% in the attack class.  

When comparing the Binary classification results of the two datasets, Supervised Learning 

algorithms outperform Unsupervised Learning algorithms with a higher weighted average 

F1-score of 100%.   
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4.1.3 Results of CIC Dataset Multi Classification  

Supervised Learning: 

  

  Class Names Decision Tree K-Nearest 

 Neighbor 

Support Vector 

Machines 

Precision Benign 0.99 0.97 0.92 

HTTP 0.87 0.74 0.00 

TCP 0.63 0.29 1.00 

UDP 0.97 0.78 0.98 

RTSP 0.34 0.25 0.00 

Recall Benign 0.99 0.99 1.00 

HTTP 0.87 0.68 0.00 

TCP 0.51 0.04 0.01 

UDP 0.91 0.20 0.01 

RTSP 0.21 0.05 0.00 

F1-score Benign 0.99 0.98 0.96 

HTTP 0.87 0.71 0.00 

TCP 0.56 0.06 0.02 

UDP 0.94 0.32 0.03 

RTSP 0.26 0.08 0.00 

Weighted Average F1-score 0.98 0.95 0.89 

ROC-AUC 0.83 0.66 0.50 

 

                                  Table 4.7 Argus Multi-Classification results for Supervised Learning 

 

Table 4.7 displays the multi-Class classification results of the argus flow feature from the 

CIC dataset. The metrics used to evaluate the models are the same for both binary and 

multi-classification. Given that the dataset is imbalanced (Chapter 3), the benign class has 

high precision and recall scores compared to each score of the attack classes. Compared to 

other classes, RTSP has a mediocre performance score. Regarding the WAF1-score, the 

decision tree performs better, with a score of 98%, compared to K-NN and SVM, with 95% 

and 88%, respectively. Nevertheless, when comparing KNN and SVM, K-NN has a 

consistent performance compared to SVM, which performs poorly in some classes. 
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 Class Names Decision Tree K-Nearest  

Neighbor 

Support Vector 

Machines 

Precision Benign 1.00 1.00 1.00 

HTTP 0.99 0.99 0.98 

TCP 0.80 0.97 0.99 

UDP 0.99 0.99 0.99 

RTSP 1.00 1.00 1.00 

Recall Benign 1.00 1.00 1.00 

HTTP 0.99 1.00 1.00 

TCP 0.81 0.75 0.51 

UDP 0.99 0.88 0.98 

RTSP 1.00 0.99 0.99 

F1-score Benign 1.00 1.00 1.00 

HTTP 0.99 0.99 0.99 

TCP 0.81 0.84 0.68 

UDP 0.99 0.99 0.99 

RTSP 1.00 0.99 0.99 

Weighted Average F1-score 1.00 1.00 0.99 

ROC-AUC 0.98 0.97 0.95 

 

        Table 4.8 Tranalyzer2 Multi-Classification results for Supervised Learning 

 

Table 4.8 displays the evaluation results of multi-classification using tranalyzer2 flow 

features. Regarding WAF1-score, DT and KNN have a higher score of 100% compared to 

SVM, with a score of 99%. However, all three classifiers consistently perform in terms of 

precision and recall of all the classes. From Tables 4.7 and 4.8, it is evident that the decision 

tree has a better performance compared to the other classifiers. SVM's performance was 

poor in some classes in argus multi-classification, but in tranalyzer2, all three classifiers' 

performance is better than argus. Decision tree and k-nearest neighbors consistently 

perform in terms of Precision and Recall in all the classes in both cases.   
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4.1.4 Results of Bot-IoT Dataset Multi Classification 

Supervised Learning: 

Class Names Decision Tree K-Nearest

Neighbor 

Support Vector 

Machines 

Precision Benign 0.48 0.60 1.00 

Theft 0.64 0.26 0.00 

OS-Service 

Scan 

0.85 0.89 0.88 

OS-

Fingerprint 

 Scan 

0.86 0.87 0.56 

Keylogging 0.57 0.31 1.00 

HTTP-DDoS 0.53 0.45 0.00 

TCP-DDoS 0.73 0.73 0.88 

UDP-DDoS 0.99 0.97 0.00 

HTTP-DoS 0.61 0.59 0.51 

TCP-DoS 0.94 0.93 0.50 

UDP-DoS 0.92 0.91 0.58 

Recall Benign 0.51 0.40 0.07 

Theft 0.62 0.08 0.00 

OS-Service 

Scan 

0.50 0.45 0.19 

OS-

Fingerprint 

Scan 

0.92 0.91 0.02 

Keylogging 0.40 0.08 0.01 

HTTP-DDoS 0.18 0.17 0.00 

TCP-DDoS 0.98 0.97 0.48 

UDP-DDoS 0.89 0.87 0.00 

HTTP-DoS 0.42 0.32 0.26 

TCP-DoS 0.53 0.53 0.93 

UDP-DoS 1.00 0.98 1.00 

F1-score Benign 0.50 0.48 0.14 

Theft 0.63 0.12 0.00 
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Class Names Decision Tree K-Nearest  

Neighbor 

Support Vector 

Machines 

OS-Service 

Scan 

0.63 0.60 0.31 

OS-

Fingerprint 

 Scan 

0.89 0.89 0.03 

Keylogging 0.47 0.13 0.02 

HTTP-DDoS 0.27 0.25 0.00 

TCP-DDoS 0.84 0.83 0.62 

UDP-DDoS 0.94 0.92 0.00 

HTTP-DoS 0.50 0.42 0.35 

TCP-DoS 0.68 0.68 0.65 

UDP-DoS 0.96 0.95 0.73 

Weighted Average F1-score 0.88 0.87 0.48 

ROC-AUC 0.81 0.75 0.60 

 

                        Table 4.9 Argus Multi-Classification results for Supervised Learning 

 

Table 4.9 displays the results of the Bot-IoT dataset's Argus Multi-class Classification. 

Compared to KNN and SVM results, decision tree performance is consistent in all classes. 

In both decision tree and KNN classifiers, the UDP-DDoS class has the highest precision 

and recall score, resulting in a higher F1 score. Compared to SVM, which performs poorly 

in some classes, KNN's performance is consistent. Regarding WAF1-score, the decision 

tree classifier performs better with a score of 88%. 

 

 Class Names Decision Tree K-Nearest Neighbor Support Vector  

Machines 

Precision Theft 0.92 0.65 0.00 

OS-Service 

Scan 

0.98 0.86 0.43 

OS-Fingerprint 

 Scan 

0.99 0.94 0.89 

Keylogging 0.96 0.85 0.02 

HTTP-DDoS 1.00 0.96 0.96 

TCP-DDoS 1.00 0.61 0.55 
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Class Names Decision Tree K-Nearest Neighbor Support Vector  

Machines 

UDP-DDoS 1.00 0.56 0.86 

HTTP-DoS 1.00 0.87 0.56 

TCP-DoS 1.00 0.65 0.71 

UDP-DoS 1.00 0.60 0.96 

Recall Theft 0.94 0.58 0.08 

OS-Service  

Scan 

0.97 0.84 0.57 

OS-Fingerprint 

 Scan 

0.99 0.94 0.41 

Keylogging 0.95 0.83 0.08 

HTTP-DDoS 1.00 0.88 0.28 

TCP-DDoS 1.00 0.81 0.92 

UDP-DDoS 1.00 0.71 1.00 

HTTP-DoS 1.00 0.98 0.19 

TCP-DoS 1.00 0.42 0.23 

UDP-DoS 1.00 0.43 0.83 

F1-score Theft 0.93 0.62 0.01 

OS-Service 

 Scan 

0.97 0.85 0.49 

OS-Fingerprint 

 Scan 

0.99 0.94 0.57 

Keylogging 0.95 0.84 0.04 

HTTP-DDoS 1.00 0.92 0.43 

TCP-DDoS 1.00 0.70 0.69 

UDP-DDoS 1.00 0.62 0.93 

HTTP-DoS 1.00 0.92 0.29 

TCP-DoS 1.00 0.51 0.35 

UDP-DoS 1.00 0.50 0.89 

Weighted Average F1-score 1.00 0.63 0.63 

ROC-AUC 0.99 0.85 0.71 

 

               Table 4.10 Tranalyzer2 Multi-Classification results for Supervised Learning 
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Table 4.10 displays the results from Tranalyzer2 Multi-class classification of distinct 

attacks. Compared to KNN and SVM classifiers, the decision tree classifier has higher 

precision, recall, and F1-score. The majority of classes have a score of 100% in the decision 

tree classifier and the highest weighted average F1 score of 100%.  

The evaluation results from Tables 4.9 and 4.10 show that the decision tree classifier 

outperforms k-nearest neighbors and support vector machines. Regarding flow extractor 

performance, tranalyzer2 exceeds argus in the decision tree classifier and SVM. 

Visualizing decision trees with Mutual Information Gain provides a better insight into the 

evaluation results. 

 

4.1.5 CICIoT2022 Binary and Multi Tranalyzer2 results of Decision Tree 

 

 Class Names Decision Tree T2 Binary 

Precision Benign 1.00 

Attack 1.00 

Recall Benign 1.00 

Attack 1.00 

F1-score Benign 1.00 

Attack 1.00 

Weighted Average F1-score 1.00 

ROC-AUC 0.99 

          

        Table 4.11 Tranalyzer2 Binary-Classification results for Supervised Learning. 

 

Tables 4.11 and 4.12 display the binary and multi-classification results of the decision tree 

classifier using the tranalyzer2 flow features after removing two potentially biased features, 

namely DstPortClass and DstPortClassN. However, the results are similar to Tables 4.2 

and 4.8, which present these features during evaluation. 
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Class Names Decision Tree T2 Multi 

Precision Benign 1.00 

HTTP 0.99 

TCP 0.80 

UDP 0.99 

RTSP 1.00 

Recall Benign 1.00 

HTTP 0.99 

TCP 0.81 

UDP 0.99 

RTSP 1.00 

F1-score Benign 1.00 

HTTP 0.99 

TCP 0.81 

UDP 0.99 

RTSP 1.00 

Weighted Average F1-score 1.00 

ROC-AUC 0.98 

Table 4.12 Tranalyzer2 Multi-Classification results for Supervised Learning 

4.2 Visualization of Decision Trees: 

The evaluation results show that Decision trees outperform the other implemented ML 

algorithms with a better performance. So, I have visualized the Decision Tree to understand 

the algorithm better, like which feature has a more significant contribution in identifying 

attacks with the help of Mutual Information [42]. Here are the results of the visualization. 
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Binary classification results of the Argus flow features - CIC-IoT 2022 dataset: 

Figure 4.1 represents the Mutual information (MI) of the Binary Argus Algorithm. The 

features Avg_duration, Min_duration and Max_duration have the higher MI score when 

compared to other features. Figure 4.2 is a Tree representation of the Binary Argus 

classification. The Maximum depth of the tree is 82, and There are a total of 25447 leaf 

nodes. Given that the depth of the tree is longer, for better visualization, I have set the 

Maximum depth of the tree as 5. Class 0 represents the Benign class, and Class 1 represents 

the Attack class. 

Figure4.1 Mutual Information on Binary Argus Decision Tree Classification 
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Figure 4.2 Decision Tree visualization of Argus Binary Classification 
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Binary classification results of the Tranalyzer2 flow features - CIC-IoT 2022 dataset: 

Figure 4.3 represents the MI for Decision Tree Classification for Binary Tranalyzer2. The 

total number of features in tranalyzer2 exceeds 50, so I have selected the top 25 features 

for representing Mutual Information. DstPortClass and DstPortClassN represent the traffic 

classification based on port names and numbers. Therefore, they have a higher MI value 

compared to other features. Figure 4.4 represents a decision tree visualization of Binary 

Tranalyzer2. This tree has a Maximum Depth of 34 with 176 leaf nodes. Class 0 and Class 

1 represent the Benign and Attack classes, respectively. 

 Figure 4.3 Mutual Information on Binary Tranalyzer2 Decision Tree Classification 
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Figure 4.4 Decision Tree visualization of Tranalyzer2 Binary Classification 
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Binary classification results of the Argus flow features - Bot-IoT dataset: 

Figure 4.5 is the MI representation of the Binary Argus classification of the Bot-IoT 

dataset. Again, TCP protocol has the highest Information gain, with ARP protocol having 

the lowest value. Figure 4.5 represents the DT visualization with a maximum depth of 35 

with 307 leaf nodes, with Benign and Attack classes represented as Class 0 and Class 1. 

Figure 4.5 Mutual Information on Binary Argus Decision Tree Classification 
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Figure 4.6 Decision Tree visualization of Argus Binary Classification 
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Multi-classification results of the Argus flow features - CIC-IoT dataset: 

Figure 4.7 represents the mutual information on the Multi Argus Classification of the 

CICIoT2022 dataset. The results are similar to the Binary Argus Classification of the CIC 

dataset, as represented in Figure 4.1. The tree has a maximum depth of 34, with 31678 leaf 

nodes. Figure 4.8 represents the DT visualization where Class 0 represents the Benign 

class, Class 1 represents the HTTP attack and Class 3 represents the UDP Attack. 

Figure 4.7 Mutual Information on Multi Argus Decision Tree Classification 
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Figure 4.8 Decision Tree visualization of Argus Multi Classification 
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Multi-classification results of the Tranalyzer2 flow features - CIC-IoT 2022 dataset: 

Figure 4.9 is the MI representation of Multiclass classification on Tranalyzer2 features of 

the CICIoT2022 dataset. The MI results of Binary and Multi classification for Tranalyzer2 

on the CIC dataset are similar to DstPortClass, having the highest value among the features. 

The tree has a maximum depth of 47, and the number of leaf nodes is 6172. Figure 4.10 

represents the decision tree visualization where Class 0, 1, 2,3 and 4 represent the Benign 

class, HTTP attack, TCP attack, UDP attack, and RTSP attack, respectively. 

Figure 4.9 Mutual Information on Multi Tranalyzer2 Decision Tree Classification 
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Figure4.10 Decision Tree visualization of Tranalyzer2 Multi Classification 
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Multi-classification results of the Argus flow features - Bot-IoT dataset: 

Figure 4.11 is the MI representation of Multiclass classification on Argus features of the 

Bot-IoT dataset. The MI results of Binary and Multi classification for Argus on the CIC 

dataset are similar to having Min_duration, Avg_duration and Max_duration having the 

highest value among the features. The tree has a maximum depth of 77, and the number of 

leaf nodes is 114312. Figure 4.12 represents the decision tree visualization where Class 2, 

4, 7,8 and 10 represent OS-Service Scan, Keylogging, UDP-DDoS, HTTP-DoS, and UDP-

DoS attacks, respectively. 

Figure 4.11 Mutual Information on Multi Argus Decision Tree Classification 
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Figure 4.12 Decision tree Visualization of Multi Argus 
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Multi-classification results of the Tranalyzer2 flow features - Bot-IoT dataset: 

Figure 4.13 is the MI representation of the Multi Tranalyzer2 classification of the Bot-IoT 

dataset. The SrcMac_DstMac_numP feature has the highest Information gain. Figure 4.14 

represents the DT visualization. It has a maximum depth of 44 with 1439 leaf nodes. Class 

2, 3, 5, 6, 7, 8, and 9 represent OS-Service Scan, OS-Fingerprint Scan, HTTP-DDoS, TCP-

DDoS, UDP-DDoS, HTTP-DoS and TCP-DoS Attacks, respectively. 

Mutual Information: 

         Figure 4.13 Mutual Information on Multi Tranalyzer2 Decision Tree Classification 
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Figure 4.14 Decision tree Visualization of Multi Tranalyzer2 
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Multi-classification results of the Tranalyzer2 flow features – CIC-IoT 2022 dataset 

after removing the potentially biased features: 

Figure 4.15 is the MI representation of Multiclass classification on Tranalyzer2 features of 

the CICIoT2022 dataset after removing dstPortClass and dstPortclassN. The MI results of 

Binary and Multi classification for Tranalyzer2 on the CIC dataset are similar (Figure 4.17) 

to tcpWS, having the highest value among the features. The tree has a maximum depth of 

47, and the number of leaf nodes is 6172. Figure 4.16 represents the decision tree 

visualization where Class 0, 1, 2,3 and 4 represent the Benign class, HTTP attack, TCP 

attack, UDP attack, and RTSP attack, respectively. 

Mutual Information: 

Figure 4.15 Mutual Information on Multi Tranalyzer2 Decision Tree Classification 
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Figure 4.16 Decision tree Visualization of Multi Tranalyzer2 
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Binary classification results of the Tranalyzer2 flow features - CIC-IoT 2022 dataset 

after removing the biased features: 

Figure 4.17 represents the MI for Decision Tree Classification for Binary Tranalyzer2. The 

total number of features in tranalyzer2 exceeds 50, so I have selected the top 25 features 

for representing Mutual Information. tcpWS has a higher MI value compared to other 

features. Figure 4.18 represents a decision tree visualization of Binary Tranalyzer2. This 

tree has a Maximum Depth of 34 with 176 leaf nodes. Class 0 and Class 1 represent the 

Benign and Attack classes, respectively. 

Mutual Information: 

Figure 4.17 Mutual Information on Binary Tranalyzer2 Decision Tree Classification 
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Figure 4.18 Decision tree Visualization of Binary Tranalyzer2 
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4.3 Results and Discussion 

I used the Weighted Average F1-score metric to evaluate the results of implementation. 

Tables 4.1, 4.2, 4.7, and 4.8 display the Argus and Tranalyzer2 results of Supervised 

Learning (binary and multi-classification) of the CICIoT2022 dataset. The DT algorithm 

outperformed K-NN and SVM in all cases with the highest Weighted Average F1-score. 

Furthermore, when comparing the results of Argus and Tranalyzer2, in the binary and 

multi-classification of the models, Tranalyzer2 has the highest Precision and Recall scores 

in both benign and attack classes. However, in Argus classification results, SVM performed 

poorly, with a score of 0% in the attack classes. This indicates that SVM cannot identify 

the true positives of the attack class because SVM will perform poorly when there are more 

training data samples than features for each data point. In the CIC dataset, benign flows 

outnumber attack flows significantly (Chapter 3), contributing to the model's poor 

performance. 

Tables 4.5, 4.9 and 4.10 display the Argus and Tranalyzer2 results of Supervised Learning 

(binary and multi-classification) of the Bot-Iot dataset. The results show that the DT 

algorithm outperforms K-NN and SVM with the highest evaluation scores. However, 

compared to the CIC dataset, attack flows outnumber benign flows in the Bot-IoT dataset 

(Chapter 3), contributing to the model's poor performance in the benign class. 

Tables 4.3, 4.4 and 4.6 discuss Argus and Tranalyzer2 results of Unsupervised Learning of 

the CICIoT2022 and Bot-IoT datasets. The results of the algorithms vary in each category. 

For example, one-class SVM and Local Outlier Factor performed well in the CIC dataset, 

and Isolation Forest outperformed LOF and one-class SVM in the Bot-IoT dataset. 

However, the performance of 1-SVM is consistent with the highest score when using Argus 

and Tranalyzer2 flow features in the CICIoT2022 dataset.  

From the results of the visualization of decision trees, in most cases, Argus features like 

Avg_duration, Min_duration, and Max_duration that contain information about the 

duration of aggregated packets have the highest Mutual Information score compared to 

other features. While in tranalyzer2, tcpWS (TCP Window Scale) has the highest Mutual 

Information score contributing to identifying attacks when implementing ML algorithms. 

Here is the summary of the results based on the Weighted Average F1-score for all 

classifiers. 
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SUMMARY: 

CICIoT2022 – Weighted Average F1-Score 

(DT tranalyzer2 results of binary and multi-classification after excluding the dstportclass 

and dstportclassN from the flow features) 

Argus Tranalyzer2 

DT-B 0.98 1.00 

KNN-B 0.95 1.00 

SVM-B 0.89 1.00 

DT-M 0.98 1.00 

KNN-M 0.95 1.00 

SVM-M 0.89 0.99 

LOF 0.88 0.62 

IF 0.82 0.65 

1-SVM 0.88 0.66 

Table 4.13 Weighted Average F1-Scores for the CICIoT2022 dataset 

Table 4.13 displays the weighted average F1-scores results of binary and multi-

classification of the CIC dataset. Although, in both cases (binary and multi-class), decision 

trees outperform the other classifiers in SL with a higher score of 98% in argus binary and 

multi-classification and 100% when using tranalyzer2 flow features, I-SVM and LOF 

outperform the Isolation Forest algorithm with a higher evaluation score of 88% and when 

using argus flow features 1-SVM outperforms LOF and IF with the highest score of 66% 

when applied tranalyzer2 flow features. Regarding flow extractor performance, all three 

supervised learning algorithms achieved a higher evaluation score of 100% when using 

tranalyzer2 flow features. Comparatively, in unsupervised learning algorithms, the argus 

flow feature dataset has a higher evaluation score of 88% than the tranalyzer2. 
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Bot-IoT – Weighted Average F1-Score 

Argus Tranalyzer2 

DT-B 1.00 - 

KNN-B 1.00 - 

SVM-B 1.00 - 

DT-M 0.88 1.00 

KNN-M 0.87 0.63 

SVM-M 0.48 0.63 

LOF 0.19 - 

IF 0.49 - 

1-SVM 0.48 - 

Table 4.14 Weighted Average F1-Scores for the Bot-IoT dataset 

Table 4.14 displays the Weighted Average F1-Scores for the Supervised and Unsupervised 

Learning algorithms evaluated using the Bot-IoT dataset. The source files for the dataset 

are available in various formats, including the original pcap files, the modified argus files, 

and CSV files, as mentioned in Chapter 3. The modified argus files contain benign and 

attack traffic data, whereas the original pcap files are divided into DoS and DDoS attack 

classes. This situation prevents the tranalyzer2 flow extractor from being able to extract 

benign features from the original pcap data. As a result, Tranalyzer2 is not used to 

implement binary classification of the Bot-IoT dataset. However, using multi-

classification, evaluations are carried out by applying multi-classification to attack classes. 

However, I used the modified argus files already available in binary format to implement 

the binary classification of argus. The results suggest that all three classifiers attain a higher 

performance score of 100% for binary classification employing argus flow characteristics. 

However, DT outperformed the other classifiers in both cases for multi-classification 

(using Argus and Tranalyzer2 flow features). Regarding Unsupervised Learning, the 

Isolation Forest algorithm has better results than LOF and 1-SVM. 

When comparing the overall performance of the ML Algorithms, the Decision Tree 

Algorithm outperformed the K-Nearest Neighbors and Support Vector Machines 

Algorithms and Unsupervised Learning algorithms.  

The next chapter discusses the overall summary of this thesis and future works. 
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CONCLUSION AND FUTURE WORK 

In my thesis, I used the approach of implementing Machine Learning Algorithms to detect 

IoT device attacks. Finding publicly available datasets on IoT networks is the first step. 

For this purpose, I used CIC-IoT2022 and Bot-IoT datasets. The next major step is to 

extract the flow features for implementation from the datasets. Recent research has 

suggested that Argus and Tranalyzer2 be used to extract flow features as both are recently 

developed tools with extensive features for a straightforward interpretation of flow data. 

Further, implementations are carried out using Supervised and Unsupervised Machine 

Learning algorithms on the datasets. Decision tree, KNN, SVM, LOF, Isolation Forest, and 

One-class SVM algorithms were used for implementation. My proposed framework using 

these datasets with distinct flow characteristics will serve as a benchmark for future 

research. From this lens, my new contributions are: (i) Employing supervised and 

unsupervised machine learning algorithms with unique features for attack detection; (ii) 

Using two distinct feature sets extracted from Argus and Tranalyzer2 to evaluate the 

machine learning model; and (iii) Benchmarking the Argus and Tranalyzer2 features on 

the two publicly available datasets, namely CIC-IoT 2022 dataset and Bot-IoT datasets.  

The implementation results show that Decision Trees outperforms the KNN and SVM 

algorithms in all cases, with the Decision Trees' average F1 score being 100% for binary 

classification and multi-classification using Tranalyzer2 on both datasets. However, the 

performance of One-Class SVM, Isolation Forest and the Local Outlier Factor algorithms 

varied on the datasets used in this thesis and did not reach as high scores as the supervised 

learning algorithms. Having a lower performance with unsupervised learning algorithms is 

expected given that label information is not used while training these algorithms. Overall 

results show that Decision Tree algorithms perform better than the others on all evaluations 

including all datasets, binary, multi-class, Argus and Tranalyzer2 feature sets in this 

research. 

It should be noted there that all the algorithms were implemented off-the-shelf, I.e., using 

default hyperparameter values provided in the machine learning libraries, in this thesis. But 

it is known that hyper-parameter optimization could play a significant role in improving 

performance. This might be one of the reasons why unsupervised learning algorithms did 

not have a consistent performance on different evaluations. Future research will involve 

hyperparameter tuning to examine the impact on the different machine learning models' 

performance and studying further the complexity of the Decision Trees.  

From the results of implementation, Supervised learning algorithms had higher evaluation 

scores using T2 features, whereas the Unsupervised learning algorithms performed better 

with Argus features.  
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Future research will involve investigating the results of the performance while integrating 

the features of Argus and Tranalyzer2 flow exporters and studying the generalizability of 

the solutions further. Moreover, to improve the proposed framework's performance, further 

research would be beneficial in terms of different feature sets and other learning algorithms 

such as Deep Neural Network, ensemble learning algorithms and studying explainable AI 

models. Finally, the framework will be tested on other publicly available datasets, 

including further attack and benign data. 
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APPENDIX  A 

Argus Flow description 

Feature # Feature Names Feature Description 

1 Proto Transaction protocols present in network flow 

2 SrcAddr source IP address 

3 Sport source port number 

4 DstAddr destination IP address 

5 Dport destination port number 

6 Seq argus sequence number 

7 StdDev standard deviation of aggregated records 

8 Min minimum duration of aggregated records 

9 Mean average duration of aggregated records 

10 DstRate destination to source packets per second 

11 SrcRate source to destination packets per second 

12 Max maximum duration of aggregated records 

Tranalyzer2 Flow description 

Feature # Feature Names Feature Description 

1 dir Flow direction 

2 flowInd Flow index 

3 flowStat Flow status and warnings 

4 timeFirst Date time of first packet 

5 timeLast Date time of last packet 

6 duration Flow duration 

7 numHdrDesc Number of different headers descriptions 

8 numHdrs Number of headers (depth) in hdrDesc 

9 hdrDesc Headers description 

10 srcMac Mac source 

11 dstMac Mac destination 

12 ethType Ethernet type 

13 ethVlanID VLAN IDs 
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Feature # Feature Names Feature Description 

14 srcIP Source IP 

15 srcIPCC Source IP country 

16 srcIPOrg Source IP organisation 

17 srcPort Source port 

18 dstIP Destination IP address 

19 dstIPCC Destination IP country 

20 dstIPOrg Destination IP organization 

21 dstPort Destination port 

22 l4Proto Layer 4 protocol 

23 macStat macRecorder status 

24 macPairs Number of distinct source/destination MAC 

addresses pairs 

25 srcMac_dstMac_nu

mP 

Source/destination MAC address, number of 

packets of MAC address combination 

26 srcMacLbl_dstMac

Lbl 

Source/destination MAC label 

27 dstPortClassN Port based classification of the destination port 

number 

28 dstPortClass Port based classification of the destination port 

name 

29 numPktsSnt Number of transmitted packets 

30 numPktsRcvd Number of received packets 

31 numBytesSnt Number of transmitted bytes 

32 numBytesRcvd Number of received bytes 

33 minPktSz Minimum layer 3 packet size 

34 maxPktSz Maximum layer 3 packet size 

35 avePktSize Average layer 3 packet size 

36 stdPktSize Standard deviation layer 3 packet size 

37 minIAT Minimum IAT 

38 maxIAT Maximum IAT 

39 aveIAT Average IAT 

40 stdIAT Standard deviation IAT 

41 pktps Sent packets per second 
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Feature # Feature Names Feature Description 

42 bytps Sent bytes per second 

43 pktAsm Packet stream asymmetry 

44 bytAsm Byte stream asymmetry 

45 tcpFStat tcpFlags status 

46 ipMindIPID IP minimum delta IP ID 

47 ipMaxdIPID IP maximum delta IP ID 

48 ipMinTTL IP minimum TTL 

49 ipMaxTTL IP maximum TTL 

50 ipTTLChg IP TTL change count 

51 ipToS IP Type of Service hex 

52 ipFlags IP aggregated flags 

53 ipOptCnt IP options count 

54 ipOptCpCl_Num IP aggregated options, copy-class and number 

55 ip6OptCntHH_D IPv6 Hop-by-Hop destination option counts 

56 ip6OptHH_D IPv6 aggregated Hop-by-Hop destination options 

57 tcpISeqN TCP initial sequence number 

58 tcpPSeqCnt TCP packet seq count 

59 tcpSeqSntBytes TCP sent seq diff bytes 

60 tcpSeqFaultCnt TCP sequence number fault count 

61 tcpPAckCnt TCP packet ACK count 

62 tcpFlwLssAckRcv

dBytes 

TCP flawless ACK received bytes 

63 tcpAckFaultCnt TCP ACK number fault count 

64 tcpBFlgtMx TCP Bytes in Flight MAX 

65 tcpInitWinSz TCP initial effective window size 

66 tcpAveWinSz TCP average effective window size 

67 tcpMinWinSz TCP minimum effective window size 

68 tcpMaxWinSz TCP maximum effective window size 

69 tcpWinSzDwnCnt TCP effective window size change down count 

70 tcpWinSzUpCnt TCP effective window size change up count 

71 tcpWinSzChgDirC

nt 

TCP effective window size direction change count 
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Feature # Feature Names Feature Description 

72 tcpWinSzThRt TCP packet count ratio below window size 

WINMIN threshold 

73 tcpFlags TCP aggregated protocol flags (FINACK, 

SYNACK, RSTACK, CWR, ECE, URG, ACK, 

PSH, RST, SYN, FIN) 

74 tcpAnomaly TCP aggregated header anomaly flags 

75 tcpOptPktCnt TCP options packet count 

76 tcpOptCnt TCP options count 

77 tcpOptions TCP aggregated options 

78 tcpMSS TCP maximum segment size 

79 tcpWS TCP window scale 

80 tcpMPTBF TCP MPTCP type bitfield 

81 tcpMPF TCP MPTCP flags 

82 tcpMPAID TCP MPTCP address ID 

83 tcpMPdssF TCP MPTCP DSS flags 

84 tcpTmS TCP time stamp 

85 tcpTmER TCP time echo reply 

86 tcpEcI TCP estimated counter increment 

87 tcpUtm TCP estimated up time 

88 tcpBtm TCP estimated boot time 

89 tcpSSASAATrip TCP trip time (A: SYN, SYN-ACK, B: SYN-ACK, 

ACK) 

90 tcpRTTAckTripMi

n 

TCP ACK trip min 

91 tcpRTTAckTripMa

x 

TCP ACK trip max 

92 tcpRTTAckTripAv

e 

TCP ACK trip average 

93 tcpRTTAckTripJit

Ave 

TCP ACK trip jitter average 

94 tcpRTTSseqAA TCP round trip time (A: SYN, SYN-ACK, ACK, B: 

ACK-ACK) 

95 tcpRTTAckJitAve TCP ACK round trip average jitter 

96 tcpStatesAFlags TCP state machine anomalies 
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Feature # Feature Names Feature Description 

97 icmpStat ICMP Status 

98 icmpTCcnt ICMP type code count 

99 icmpBFTypH_Typ

L_Code 

ICMP Aggregated type H (>128), L (<32) & code 

bit field 

100 icmpTmGtw ICMP time/gateway 

101 icmpEchoSuccRati

o 

ICMP Echo reply/request success ratio 

102 icmpPFindex ICMP parent flowIndex 

103 connSip Number of unique source IPs 

104 connDip Number of unique destination IPs 

105 connSipDip Number of connections between source and 

destination IP 

106 connSipDprt Number of connections between source IP and 

destination port 

107 connF The f-number: connSipDprt / connSip 

[EXPERIMENTAL] 
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